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ABSTRACT 

Xiaozhen Hu : Computational design of ! sheet proteins 

(Under the direction of Brian Kuhlman) 

 

Computational protein design has become a very powerful approach to test our understanding of the 

forces and energetics of macromolecular systems.  The ability to design proteins that have specific 

structures and functions will be very valuable to future protein drug discovery.  Protein design 

technology has been successfully applied to stabilize proteins, increase protein-protein binding 

affinity and create new protein structures.  However, de novo design remains very challenging, 

especially for !-sheet proteins.  Most de novo designed !-sheet proteins tested to date either misfold 

or aggregate.  In this thesis, we use a hierarchical approach to search for the bottleneck in !-sheet 

design.  First, we tested our ability to redesign the sequence of a naturally occurring !-sheet protein.  

The molecular modeling program Rosetta was used to design new sequences for the !-sheet protein 

tenascin.  The redesigned proteins are well-folded and have thermal melting temperatures that are 40 

°C higher than the wild type.  These results indicate that given a designable backbone we can create a 

well-folded !-sheet protein. 

 

To move towards complete de novo design we next asked if we could design a portion of a !-sheet 

protein from scratch.  We tested our ability to design loops by removing a ten-residue loop from 

tenascin and rebuilding it to have a new but specific conformation.  These studies involved the 

simultaneous search of conformational and sequence space.  Two of the designed loops were 

crystallized, and one of them adopts a structure that is very similar to the design model. 
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Lastly, we have explored designing whole !-sheet proteins from scratch.  Four generations of designs 

have been tested to date, and unfortunately, none of the designs appear to be well folded.  To lay the 

groundwork for future success, we have been comparing the design models to naturally occurring !-

sheet proteins to identify structural features that may be missing from the designs.  We find that 

naturally occurring proteins include fewer voids accessible to small probes (~ 0.7 Å ) than our design 

models.  It remains to be seen if more conformational sampling is need to remove these voids or if the 

energy function requires changes. 
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EARLY DEVELOPMENT OF COMPUTATIONAL PROTEIN DESIGN 

 

Computational protein design has become a very powerful approach for testing our understanding of 

the forces and energetics of macromolecular systems1,2.  Designed proteins with desired structures or 

functions have been of special interest to pharmaceutical companies and this computational protein 

design method will make a significant impact on the development of new biotechnological 

therapeutics3,4.  Thirty years ago, computational protein design may have sounded like science fiction 

but recently there has been great progress in the development of protein design methodologies and 

applications5-9. 

 

The earliest attempts at computational protein design focused on redesigning naturally occurring 

proteins while assuming a fixed, native backbone.  One remarkable example was the complete 

redesign of a zinc finger by Dahiyat et al. with the backbone fixed5.  The fixed backbone assumption 

greatly reduces computational time and works well when an appropriate backbone scaffold exists; 

however, it is incompatible with de novo design because there is no design template available.  

Studies have shown that incorporating flexibility can improve sequence prediction and is therefore 

better for novel design10.  Harbury et al.
6 demonstrated the advantage of backbone flexibility by 

designing novel right-handed coiled-coil bundles.  They created a set of right-handed coiled-coils and 

experimentally validated the structures.  Another breakthrough in protein design was the creation of a 

fold that is not seen in nature so far.  Kuhlman et al. used the Rosetta program to iteratively optimize 

both sequence and structure and created a protein with a novel fold (TOP7)11.  The experimental 

results showed that TOP7 is very stable and the crystal structure matched the design model very well 

(root mean square deviation RMSD=1.2 Å).  This striking result opened a new window to the 

exploration of novel proteins.   

 

Protein design technology has many applications: so far it has been used to stabilize proteins, increase 
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protein-protein binding affinity, alter binding specificity and redesign a folding pathway12-14.  Grand 

challenges in the form of de novo design problems, such as creating novel enzymes and biosensors, 

have been addressed11,13,15-19.  Despite many successes, de novo design remains a very challenging 

problem, because it requires the design of a novel sequence that is unrelated to any naturally 

occurring protein that can fold into a pre-defined 3-dimensional structure20.  In order to fold into a 

well-defined structure, the designed sequence should energetically stabilize the desired fold as well as 

destabilize the alternative conformations.  De novo design is a rigorous test of our understanding of 

protein folding energetics, but the underlying principles are not yet understood well enough to ensure 

the success of all de novo designs21.   

 

It is fair to say though that we understand relatively well how to make a predominantly helical protein 

because some successful de novo designs for # helix bundles and #/" mixed proteins have been 

reported11,22-24.  However, the de novo design of purely "-sheet proteins has proven to be more 

complicated, as these designed sequences usually misfold or aggregate.  One possible reason is that 

the relatively slow folding of "-sheet proteins involves long range interactions, and unlike #-helix, "-

sheet formation is determined mostly by tertiary context instead of intrinsic secondary structure 

preferences25.  Compared with #-helix proteins, "-sheet proteins are less modular and inherently more 

difficult to design due to the fundamental difference in the hydrogen bonding patterns of these two 

different secondary structures26.  The backbone hydrogen bonds within #-helix will be satisfied by 

nearby residues within the same secondary structure element.  In contrast, "-sheet proteins require a 

"-strand to interact with a neighboring strand, possibly distant in primary structure, to satisfy 

backbone hydrogen bonds27.  Side chains will point alternately above and below the "-sheet to 

interact with the neighboring residues.  The need of a "-sheet to form so many interactions underlies 

"-sheet proteins’ great tendency to aggregate.  Additionally, residues with good "-sheet-forming 

propensities are also intrinsically prone to aggregation28,29.  Nevertheless, the field of "-sheet design 
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is of great interest.   

 

PREVIOUS WORK IN DE NOVO "-SHEET PROTEIN DESIGN 

 

Recent work includes several groups’ successful designs of some small water-soluble peptides, for 

instance "-hairpins30, a 20 residue three-stranded antiparallel "-sheet31 and even a four-stranded "-

sheet32.  Since 1981, the Richardson group has been trying to design several generations of betabellins 

but the solubility seems a big issue in these designs33.  Yan et al. designed a series of betabellins 34,35 

but the best one (betabellin 14D) only folded in the presence of a fold-stabilizing interchain disulfide.  

It consists of two 32-residue "-sheet packed against each other by a disulfide linkage.  The sequence 

of each half has a pattern of alternating polar/nonpolar for " strands and statistically favored residues 

for " turns as shown in Figure 1.1.  D-amino acid residues were used for the turn positions to favor 

formation of " turns.  The single chain of betabellin 14S is not folded.  To make it more globular, a 

disulfide bond was introduced to link the two identical subunit.  The double-chain form 14D, is 

folded into a "-sheet liked structure in the presence of the disulfide linkage suggesting that the folding 

is induced by the disulfide bond formation.  This disulfide bond strategy was also applied in the 

design of betadoublet23(Figure 1.2), which is water soluble only at low pH; however NMR data 

suggests that betadoublet does not adopt a single unique conformation, implying that it adopts a 

molten globular structure.   

 

Sollazzo et al. designed a small all "-sheet protein that can bind metal zinc upon folding, but again 

solubility limited the detailed structural analysis36.  Recently, Nanda et al. designed a mimic of the 

redox protein rubredoxin, which seems to adopt the target fold37.  This is one example of a functional 

de novo designed "-sheet protein.  To date, attempts at the de novo design of "-sheet proteins are very 

impressive and encouraging, however, the success is still very limited and no design has been 



 5 

validated with a high-resolution structure.  De novo design of globular "-sheet proteins still remains 

an unsolved problem. 

 

In nature, approximately one quarter of all protein domains are "-sheet folds38. "-sheet proteins form 

relatively rigid structures that can serve as good scaffolds for designing molecules with new 

functions. "-sheet proteins have also been a focus of considerable attention for medical biologists and 

the pharmaceutical industry3,39 because they have proven to be good targets for disrupting unwanted 

protein-protein interactions.  Protein-protein interactions are essential to many biological processes; 

however, uncontrolled interactions may lead to protein misfolding and aggregation which contribute 

to many different diseases including Alzheimer’s disease, Huntington’s disease, others40.  Protein 

misfolding in these diseases involves protein aggregation into "-sheet rich oligomeric structures.  

Considerable evidence has shown that these aggregate structures play important roles in disease 

pathogenesis41.  One strategy to develop therapies for these diseases is to address protein misfolding 

and aggregation with rationally designed inhibitors4,42.  The computational protein design approach 

provides a valuable way for us to better understand how nature “designs” "-sheet proteins that can 

avoid misfolding or aggregation, which will be highly useful in future protein therapeutics.  

 

MOLECULAR MODELING PROGRAM - ROSETTA 

 

Rosetta is a molecular modeling software package developed by several research groups.  Initially 

used for de novo structure prediction, it has since been expanded to contain protocols for high-

resolution structure refinement, loop modeling, molecular docking and protein design43-46.  The goal 

of protein design, also known as inverse folding, is to identify a compatible low free energy sequence 

for an existing protein backbone12,47.  To solve this problem, we need two things: an energy function 
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for describing the interactions in proteins and ranking the fitness of a particular sequence for a given 

backbone structure, and a search algorithm for sampling sequence space11.  

 

Energy function 

 

Being able to describe the interactions in proteins accurately is the most difficult problem in protein 

design.  The energy function used in Rosetta contains physical potentials and knowledge based 

potentials derived statistically from the many structures in the Protein Data Bank(PDB)12.  The 

potentials are combined in the Rosetta energy function as a linear sum of the following main 

terms11,47: 

 

! 

Etotal = watrEljatr + wrepEljrep + wsolEsol + whbond Ehbond + wpairE pair + wrot Erot + wramaErama " Eref  

The main components in the energy function are:  

 

Lennard-Jones potential: A 12-6 Lennard-Jones potential represents van der Waals interactions.  

This potential is slightly modified from the standard form with the introduction of a distance cutoff 

below which the potential is extrapolated linearly.  The attractive and repulsive energies are split into 

separate terms, Eljatr and Eljrep, which gives greater flexibility in weighting the terms and improves 

sequence recovery.  To compensate for the fixed backbone assumption, usually the repulsive term is 

softened to implicitly allow for some level of backbone flexibility.  

 

Solvation energy (Esol): The implicit solvation model developed by Lazaridis and Karplus is used to 

evaluate the solvation energy for a protein.  This is a semiempirical model that is parameterized with 

experimental data and does not require surface area calculations48.  This term penalizes surface 

exposure of hydrophobic residues and favors exposure of hydrophilic residues. 
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Hydrogen bonding potential (Ehbond): Hydrogen bonding is very important to stability and protein-

protein interactions.  Rosetta uses an orientation-dependent hydrogen bonding term, which is derived 

from the distribution of three parameters14 (distance between the hydrogen and acceptor atoms, angle 

at the hydrogen atom and angle at the acceptor atom) from PDB database.  This term allows buried 

polar atoms if they can form hydrogen bond.  Together with the solvation energy term, these two 

terms balance how many polar residues are placed in the core during a design simulation. 

 

Residue pair potential (Epair): Electrostatic interactions such as salt bridges are very important for 

protein function; however, these interactions are very dependent on the local environment, which 

makes it very difficult to model.  Rosetta uses a knowledge-based term to model electrostatics.  This 

term is derived from the probability of a pair of polar residues being seen near each other in the PDB 

database49. 

 

Rotamer self-energy (Erot): Internal energy of a rotamer is calculated based on the probability of 

seeing a particular rotamer for a given phi and psi angle in the PDB database.  These probabilities are 

taken from Dunbrack library directly50 and their negative log values were used as the rotamer internal 

energy as shown in the following equation  

! 

Erot = "ln(prob(rot(i) | phi(i), psi(i))
i

residue

#  

 

Torsion potential (Erama): Rosetta uses ideal bond lengths and bond angles for bonded interactions.  

The torsion potential is associated with backbone bond torsion angles and is related to Ramachandran 

torsion preferences.  It is derived from PDB statistics by measuring the probabilities of seeing a 

particular amino acid in a secondary structure type (helix, strand and loop) for a particular phi, psi 

angle11. 
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! 

Erama = "ln[prob(phi(i), psi(i) | aai,ssi)]
i

residue

#  

aa = amino acid type 

ss = secondary structure type 

 

Reference energy (Eref): Calculation of folded state stability requires a reference to the energy of an 

unfolded state.  Rosetta uses parameterized energies for each residue to represent the free energy of 

unfolded state.  The reference values and the weights for each energy term are calculated to best 

reproduce native sequences for known structures11. 

 

Search function 

 

One major challenge in protein design is determining how to scan through sequence space and 

identify the optimum effectively.  The size of sequence space is astronomical: for a 50-residue 

protein, in which all 20 standard amino acids are allowed at each position, 2050 (1065) sequences are 

possible.  To make the search computationally feasible, one simplification is to make the search space 

discrete.  Currently, most computational protein design methods use a discrete set of side chain 

conformations (rotamers). 

 

Computational protein design requires an efficient search algorithm that is able to scan an enormous 

search space51.  The choice of algorithms will influence the accuracy of side chain predictions and the 

speed of design simulations.  There are two categories of search algorithms, stochastic searches and 

deterministic search algorithms51.  Deterministic algorithms include self consistent mean field 

optimization and dead end elimination; they are semiexhaustive search as which will always converge 

to the same solution (if they are able to converge).  Stochastic algorithms include Monte Carlo 

simulated annealing and genetic algorithms.  These methods are based on a random search, the 
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advantage of these methods is that they can handle complicated problems because they do not require 

an exhaustive search, the disadvantage is that they are not guaranteed to find the global energy 

minimum.   

 

Rosetta uses a Monte Carlo search algorithm with simulated annealing to identify low energy 

sequences for a given structure.  This is a simple, fast and widely used stochastic search method.  In 

the Rosetta search algorithm, the initial conformation is generated randomly.  This conformation is 

then perturbed by a single rotamer substitution(sequence could be changed).  The substitution may or 

may not change the sequence identity (Figure 1.3).  If the substitution lowers the energy ( 

! 

E
new

" E
old

= #E < 0 ), it is accepted.  Otherwise, the substitution is accepted if 

! 

e
"#E / kT

> R(0 $ R $1) , where k is the Boltzman constant, T is the temperature and R is a random 

probability.  This condition, called the Metropolis criterion, prevents the simulation from getting 

trapped in local energy minima.  A trajectory may consist of a few hundred thousand rotamer 

substitutions, which is typically for convergence between trajectories.  

 

TARGET FOLD MODEL SYSTEM  

 

Our strategy for de novo design is to use a natural protein fold and design a new sequence that is not 

related to any natural protein sequence, but that will fold into the desired structure.  To simplify the 

design process, we want the template to be just large enough to present true tertiary structure without 

requiring disulfide bonds or metal binding sites.  One common "-sheet tertiary structure is the 

Fibronectin type III domain (FNIII).  This domain occurs in many proteins with very diverse 

sequences, including cell surface receptors and cell adhesion molecules, which indicates that it is 

highly designable and could easily be modified to generate new functions.  This small domain (about 

90 residues) contains seven "-strands arranged into two sheets connected by flexible loops.  These 
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exposed loops may be modified to generate novel functions for molecular recognition.  The surface 

topology is very similar to the immunoglobulin VH structure52 (Figure 1.4, left panel, pdbcode 1ol0), 

and this FNIII domain has become one popular scaffold for “monobody” design to date53,54.  

Monobodies are antibody-like proteins that bind to specific target proteins.  Unlike antibodies, 

monobodies are usually easy to express and purify in large quantities and are ideal for inhibiting 

protein-protein interactions.  Besides, they are small (~10 kDa), monomeric and lack disulfide bonds 

so that they are stable in reducing environments.  Because of all these excellent characteristics, Huang 

et al. used monobodies to generate the affinity resin that binds to a specific conformation of the target 

protein so as to purify the desired conformation based on the target protein surface properties55.  The 

template we used in this study is the third Fibronectin type III domain from tenascin56 ( pdbcode : 

1ten, Figure 1.4, right panel ).  It is small, cysteine-free and monomeric.  It is easy to purify and well 

characterized57.  Tenascin has been shown to undergo a two-state, thermally reversible unfolding 

transition.  These properties make it an ideal model system for our study. 

 

De novo designed "-sheet proteins often aggregate in solution.  One possible reason is that the 

designed sequence favors no folded structure or equally favors many folded structures.  Another 

reason is that kinetically "-sheet proteins fold slowly so that they easily form aggregated.  To design a 

well-folded structure, is it enough to only search for a sequence that has low free energy for the target 

structure (positive design)?  Should we also include some elements that can destabilize the alternative 

fold states explicitly in the sequence design process (negative design)58?  In this thesis, we address the 

importance of positive design and negative design by pursing different design problems. 

 

DESIGN APPROACH 

 
 
Experience shows that de novo design of all "-sheet proteins is an extremely challenging problem; 

hence, we decided to break up the process into small steps.  
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The Rosetta energy function is a linear combination of Lennard-Jones interactions, implicit solvation 

potential, hydrogen bonding energy and additional knowledge-based energy terms.  However, the 

program does not explicitly factor in side chain entropy, which is also very important to 

thermodynamics.  Residues with more degrees of freedom (Lys, Arg, Met, etc) lose more 

conformational entropy upon folding and these amino acids are less likely to be buried59.  The correct 

placement of a given amino acid is likely to partially depend on how much entropy is lost when the 

side chain is locally constrained in a folded protein.  However, the influence of the side chain entropy 

on protein design simulations in Rosetta was not clear.  In order to investigate how side chain entropy 

influences protein design simulations, in chapter 2 we will explicitly incorporate side chain entropy 

into Rosetta and test if it improves recovery of native sequence in design simulations.  

 

To decipher the importance of positive design and negative design, we will pursue a set of different 

design problems.  In chapter 3, we will try to redesign a naturally occurring all "-sheet protein 

(tenascin) with only positive design.  The use of tenascin guarantees that the backbone is designable.  

This test will determine whether we can use Rosetta to design an all "-sheet protein that is well-

folded and stable using only positive design.  In this test case, the backbone is fixed, which will bias 

sequence selection.  In chapter 4, we will incorporate backbone flexibility into the design simulation 

by redesigning a 10 residue loop in tenascin.  Being able to explore the backbone degrees of freedom 

will increase conformational sampling and design complexity.  By only designing part of the 

backbone, we will be able to test if we can design a well-structured loop conformation in the context 

of a stably folded "-sheet protein. 

In chapter 5, we will try to design a whole protein from scratch.  From multiple generations of design 

and experimental characterization of the results, we will have feedback that may be used to improve 

the design algorithm.  We will learn about how proteins fold from both failed attempts and successes.   
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De novo design of "-sheet protein is a rigorous test of our protein design software and our 

understanding of the relationship between sequences and structures.  By designing a sequence de 

novo we would expect to learn new things that we would not have learned by examining or 

redesigning naturally occurring proteins.  The results of these experiments will give us feedback on 

how we should improve the design program. 
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FIGURES 

 

 
Figure 1.1  Betabellin 14S 
Amino acid sequence assignment of the betabellin 14 single chain.  A: Pattern of polar(p), 
nonpolar(n) and turn(t) residues. B: Betabellin target structure34 
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Figure 1.2  Betadoublet 
Cartoon diagram of the model of betadoublet(pdb code 1btd).  Green and cyan are for the two 
identical subunit, the disulfide bond linkage is colored by yellow. 
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Figure 1.3  The Metropolis sampling algorithm used in Rosetta 
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Figure 1.4  Comparison of a monomeric immunoglobulin VH domain(left) with FN3(right). 
The binding loops are colored in magenta on the top.  
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ABSTRACT 

 
Loss of side chain conformational entropy is an important force opposing protein folding and the 

relative preferences of the amino acids for being buried or solvent exposed may be partially 

determined by which amino acids lose more side chain entropy when placed in the core of a protein.  

To investigate these preferences we have incorporated explicit modeling of side chain entropy into 

the protein design algorithm, Rosetta.  In the standard version of the program the energy of a 

particular sequence for a fixed backbone depends only on the lowest energy side chain conformations 

that can be identified for that sequence.  In the new model, the free energy of a single amino acid 

sequence is calculated by evaluating the average energy and entropy of an ensemble of structures 

generated by Monte Carlo sampling of amino acid side chain conformations.  To evaluate the impact 

of including explicit side chain entropy, sequences were designed for 110 native protein backbones 

with and without the entropy model.  In general, the differences between the two sets of sequences are 

modest, with the largest changes being observed for the longer amino acids: methionine and arginine.  

Overall, the identity between the designed sequences and the native sequences does not increase with 

the addition of entropy, unlike what is observed when other key terms are added to the model 

(hydrogen bonding, Lennard-Jones energies and solvation energies).  These results suggest that side 

chain conformational entropy plays a relatively small role in determining the preferred amino acid at 

each residue position in a protein.        
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INTRODUCTION 

 
Protein folding is a competition between the formation of favorable contacts, the loss of 

conformational entropy, and added strain.  In addition to adopting a relatively fixed backbone 

structure, many of the side chains in a folded protein only sample a subset of the rotamers accessible 

to them in the unfolded state.  A variety of independent methods have been used to estimate the 

average change in conformational side chain entropy upon folding 1-17. The consensus from these 

studies is that approximately 0.5 kcal·mol-1 of side chain entropy is lost per dihedral angle fixed in the 

folded structure.  It has also been proposed that the probability of an amino acid being placed in a 

buried position in a protein is proportional to how much entropy will be lost when the side chain is 

fixed in a single conformation.  Amino acids with greater degrees of freedom (Lys, Arg and Met) are 

expected to be disfavored in buried positions18,19.  Because the polar residues are on average 

intrinsically more flexible than the non-polar amino acids, it is not straightforward to determine the 

relative role of solvation and entropic effects in the environmental preferences of the amino acids.  

Protein design simulations provide one approach for deciphering the relative importance of these two 

effects.   

 

Recently, there has been considerable success in the area of computational protein design as a 

variety of computer programs have been developed for identifying low energy sequences for target 

protein structures20-25.  These models generally consist of two primary components: an energy 

function for evaluating the favorability of a particular sequence and a search protocol for scanning 

through sequence space.  The models are frequently tested by redesigning naturally occurring proteins 

and comparing the redesigned sequences to the native sequences.  Often the redesigned sequences are 

noticeably similar to the native sequences, and the usefulness of a specific term in the energy function 

can be determined by repeating the comparison without the energy term.  In one study, Koehl and 

Levitt used protein design simulations to show that the intrinsic propensity of the amino acids for the 
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various types of secondary structure is a natural consequence of Lennard-Jones interactions and 

hydrophobic burial, thus indicating that a separate term did not need to be added to capture these 

preferences.5,26-30 

 

Several approaches have been used to incorporate side chain entropy in protein design simulations.  

One common method is to assume that all residues in the protein are fixed in a single side chain 

conformation, and therefore the change in side chain entropy upon folding only depends on amino 

acid composition and the average side chain entropy of the various amino acids in the unfolded 

state31-33.  This method is attractive because it is compatible with rotamer optimization protocols such 

as Dead End Elimination that require pair wise additive energy functions.  However, this approach 

does not differentiate between buried and surface residues, and the practical effect is to only perturb 

the amino acid composition of the designed sequences. Several laboratories have developed a mean-

field approach in which each residue is simultaneously populated by all possible rotamers at 

probabilities related to their energy with neighboring rotamers4,34-36. From this protocol it is 

straightforward to calculate side chain entropy at each position and include this in the free energy of 

the protein.  One limitation of the mean-field method is that it is not entirely physical; it is not 

possible for a single residue to simultaneously occupy two conformations.   

 

Farid and co-workers used a two layer Monte Carlo optimization protocol to incorporate explicit side 

chain entropy in protein design calculations37.  The inner layer used Monte Carlo sampling of side 

chain conformational space to calculate the average energy and entropy of fixed sequences, while the 

outer layer was used to scan through sequence space.  Here, we will use a similar approach in large-

scale protein design simulations to determine if side chain entropy plays a significant role in 

determining the environmental preferences of the amino acids.  A similar comparison has not been 

made previously, and these results will indicate if it is useful to include explicit side chain entropy 

calculations in protein design simulations.          



 26 

 

METHODS 

 

Rosetta.  The Rosetta algorithm has been described previously 38,39.  It uses a Monte Carlo search 

procedure with simulated annealing to identify low energy amino sequences and side chain 

conformations for target protein structures.  The side chains are modeled using Dunbrack’s backbone 

dependent rotamer library 40,41.  Starting from a random sequence single amino acid substitutions or 

rotamer changes are accepted based on the Metropolis criterion.  The energy function is a linear 

combination of the following terms: a 12-6 Lennard-Jones potential, the Lazaridis-Karplus implicit 

solvation model 42, an explicit orientational dependent hydrogen bonding term 43, the relative free 

energy of the various rotamers ( as modeled by -lnP(rot|aa,phi,psi) ) and a statistically based pair term 

that gives a weak bonus for putting unlike charges near each other 44.   

 

In addition, each amino acid is assigned a reference energy that controls how often a particular amino 

acid is placed during a design simulation and represents to some degree the free energy of that amino 

acid in the unfolded state.  The reference values and weights on each of the energy terms are 

parameterized to best reproduce native sequences.  The weights used in this study are the same as 

those used previously to design a novel protein structure 39, with the exception that repulsive portion 

of the Lennard-Jones potential was dampened to account for the use of fixed backbones.  It is 

important to note that the amino acid reference energies implicitly account for the various amounts of 

side chain entropy that each amino acid has in the unfolded state.  This will control how often a 

particular amino acid is observed in the designed sequences, but it will not play a significant role in 

determining the environmental preferences of the amino acids.    

 

It should also be noted that in addition to the reference energies, other terms in the Rosetta energy 

function incorporate some entropic effects, but none of these terms are expected to significantly 
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overlap with a side chain entropy term.  The Lazaridis-Karplus solvation model is designed to model 

desolvation energies, and therefore implicitly accounts for the change in water entropy associated 

with the hydrophobic effect.  The term representing side chain torsion energies (-lnP(rot|aa,phi,psi)) 

relates to the relative free energy of each rotamer and therefore may depend in part on vibrational 

entropy within each rotamer.  It should not incorporate, however, the conformational entropy that we 

are modeling in this study that results from switching between rotamers.  The pair term is based on 

the probability that two amino acids will be found near each other and is related to a free energy.  It is 

difficult to determine if this term includes any effects from side chain entropy, if it does, there will be 

some double counting with our new explicit term for side chain entropy.  To insure that this term is 

not skewing our results we have repeated the native sequence recovery tests without the pair term.  

The effect of including explicit side chain entropy in the Rosetta model is nearly identical with and 

without the use of the pair term (data not shown).      

 

Incorporating explicit side chain entropy into Rosetta.  Figure 2.1 outlines our approach for 

incorporating side chain entropy into Rosetta.  It is a two layer approach; the inner layer is used for 

calculating the free energy of a fixed sequence on a fixed backbone, while the outer layer is used to 

scan through sequence space.  The inner layer uses Monte Carlo sampling to generate an ensemble of 

structures with a variety of side chain conformations.  Each round of this procedure involves:  

1) switching a single residue (chosen at random) to a new Dunbrack rotamer 

2) evaluating the new energy of the protein 

3) accepting the perturbation if it passes the Metropolis criterion. 

At the completion of each round the energy of the protein is added to a running sum that is later 

divided by the number of rounds to determine the average energy of the ensemble (U in equation 1).  

After each round, it is also determined which rotamer is present at each sequence position and these 

are added to running sums that are later used to calculate the probability of observing a rotamer at 
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each sequence position (p in eq. 2)2.  These probabilities are used to calculate the side chain 

conformational entropy (S) and Helmholtz free energy (A) of the system: 
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where nres is the number of residues in the protein, nrot is the number of possible rotamers at each 

sequence position, and T is the temperature. T was set to a physiologically relevant temperature (310 

K) for these calculations.  Average energies and rotamer probabilities were calculated after the system 

was equilibrated for  

( 3 * nrotamers ) rounds, where nrotamers is equal to the number of rotamers being considered at each 

sequence position times the number of residues being redesigned.  Similar results were obtained if the 

system was equilibrated for 5 * nrotamers rounds. 

 

The outer layer uses Monte Carlo sampling to scan through sequence space(Figure 2.1).  The 

procedure begins with a random sequence.  Each round of optimization involves: 

1) making a random single amino acid mutation 

2) evaluating the free energy of the new sequence with a repacking simulation ( equation 2) 

3) accepting the mutation if it passes the Metropolis criterion.  

For the outer layer the temperature is set high at the beginning of the simulation and gradually cooled 

to 0 K.  100 * number of residues sequence substitutions are used per simulation.  Because a 

complete repacking simulation is performed after each sequence change, the double layer protocol is 

considerably slower than a standard sequence optimization simulation with Rosetta (60 times 

slower).  To increase computational speed the protocol was modified so that only residues within 

10Å of the mutated residue were repacked.  We found that the average energies and entropies for 
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residues further away from the mutation site did not change, and therefore it was possible to use 

values saved from the previous repacking simulation.  The modified protocol was 1.5 times faster, 

and gave the same results as when all residues are repacked following each mutation. 

 

The quality of our results will depend in part on how accurately we can pack amino acid side chains 

(the inner layer of our protocol).  The accuracy of side chain packing algorithms is often evaluated by 

removing the side chains from naturally occurring proteins and rebuilding the side chains from 

scratch.  The procedure is evaluated by determining the fraction of the amino acids that are placed in 

the correct side chain conformation.  To insure that Rosetta performs satisfactorily on this test we 

rebuilt the side chains on 57 high resolution crystal structures.  With the standard Dunbrack rotamer 

library, 80% of the buried positions had both their chi 1 and chi 2 angles predicted within 40 degrees 

of the angles observed in the crystal structure.  These results are similar to what has been achieved 

with other side chain placement algorithms  12,45-48. 

 

Calculating side chain conformational entropies through complete enumeration.  One assumption of 

equation 2 is that the rotamer probabilities at the various sequence positions are independent of each 

other, or in other words, that there is no covariant motion between side chains.  If there is covariant 

motion equation 2 will overestimate the side chain entropy of the system.  To test the validity of this 

assumption we used complete enumeration of rotamer configurations for 6 residue clusters to 

calculate the energies of all possible rotamer combinations.  These energies were used to generate a 

partition function for the cluster and calculate the relative probabilities of each possible packing 

combination state (equation 3).  These probabilities were then used to calculate the entropy of the 

system (equation 4), and compared with results obtained by Monte Carlo sampling as described 

above.  
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KB is the Boltzmann constant and T is the temperature (310K).  816 clusters in 110 proteins were 

used for this comparison.  Side chains outside of the cluster were held fixed during the complete 

enumeration protocol and the Monte Carlo sampling protocol.           

 

Calculating side chain conformational entropy from a 80 ns molecular dynamics simulation of eglin 

C.  To further check if covariant side chain motion reduces the total entropy of a protein we examined 

a 80 ns molecular dynamics simulation of eglin C from a previous study.49  Eglin C remains folded 

throughout this simulation in a conformation similar to the crystal structure.  Previously, Lee and co-

workers used this trajectory to calculate order parameters for the side chains, and there was a good 

agreement between the calculated values and order parameters measured with NMR.  To calculate 

side chain entropy from the simulation dihedral angles for each side chain were extracted from every 

0.36 picosecond and binned into rotamers based on Dunbrack’s rotamer definitions41. Rotamer 

frequencies were used to calculate side chain entropy using two separate approaches.  The first 

approach was to treat each site independently, i.e., use the rotamer probabilities from single residues 

to calculate entropy (equation 2), and the second was to use probabilities of rotamer pairs to calculate 

entropy (equation 5):  
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where nres is the number of residues in the protein, p(i,j) is the probability of seeing a rotamer pair (i,j) 

during the whole simulation.  As a control, we also calculated entropy by treating each chi angle in 

the protein independently (equation 6).  
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Each chi angle in the protein is divided into bins (chi_bin) based on Dunbrack’s rotamer definitions, 

and the probability that a given side chain is in a specific bin (p(chi_bin)) is determined by averaging 

over the molecular dynamics simulation.  

 

Native sequence recovery tests.  Rosetta was used to design sequences for 110 proteins ranging in size 

from 50 to 150 residues (see supplementary Table 2.6 for pdb codes), and the designed sequences 

were compared to the wild type sequences.  Cysteines were held fixed during these simulations 

because the Rosetta energy function for disulfide formation still needs to be refined.  Residues were 

defined as buried if they had greater than 18 neighbors (C# atoms within 10Å), and surface if they had 

less than 13 neighbors.     

 

RESULTS AND DISCUSSION 

 

Covariant changes in side chain position do not significantly reduce the side chain conformational 

entropy of a protein.  Before determining the effects of side chain entropy on sequence design, we 

first tested if the total side chain entropy of a protein could be accurately calculated by assuming the 

rotamer probabilities at each sequence position were independent of each other (equation 2).  Because 

proteins are coupled systems, the preferred side chain conformation at one position may depend on 

the conformations of neighboring residues.  One consequence of covariant motion is that the total 
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number of populated states, and hence entropy, will be lower than if each residue moved 

independently of its neighbors.   

 

To test the importance of covariant motion between amino acid side chains we used two alternative 

methods for measuring side chain conformational entropy.  For the first method we enumerated 

through all possible rotamer combinations for 6 residue clusters from naturally occurring proteins and 

calculated the energy of each state.  Residues outside of the cluster were held fixed.  The energies 

were then used to derive the probability of each state and the total entropy of the system (equations 3 

and 4).  For the second method we used Monte Carlo sampling of amino acid rotamers to create an 

ensemble of structures.  Rotamer probabilities for individual residues were calculated from the 

resulting ensembles and total side chain entropy was calculated assuming the rotamer probabilities at 

each sequence position were independent of each other (equations 1 and 2).  The same 6 residue 

clusters were used for this approach as were used for the complete enumeration.     

 

As expected, we measure higher entropies when we assume that the residues behave independently, 

but in general the differences are very small ( Table 2.1 ).  This suggests that there is not significant 

covariant motion between side chains, and that equation 2 is suitable for calculating side chain 

entropy during design simulations. A similar conclusion was reached by Leach et al. when using the 

A* algorithm to explore rotamer packing proteins50.  To further test this result we also examined side 

chain motion from an 80 ns molecular dynamics simulation of eglin C.  Side chain conformations 

were assigned to bins corresponding to the Dunbrack rotamers, and rotamer frequencies were used to 

calculate side chain conformational entropy.  Entropy was calculated with two approaches, in the first 

case the rotamer probabilities for individual residues were used (equation 2) while in the second case 

probabilities for rotamer pairs were tabulated (equation 5).  The two results were similar, suggesting 

again that there is not significant covariant motion between amino acid side chains.  In contrast, if we 

treat each torsion angle in a side chain independently, then we calculate a higher value for side chain 
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entropy ( Table 2.1 ).  This result indicates, as expected, that the torsion angles within an amino acid 

side chain do not behave independently.        

 

Side chain entropy and energy as a function of burial.  Introducing the side chain entropy and free 

energy model into our energy function should have two competing effects.  Flexible side chains will 

be rewarded for being able to sample multiple conformations, but at the same time they will be 

penalized if those states are not iso-energetic and the average energy of the ensemble is greater than 

the energy of the most favorable conformation.  To examine the relative strength of these two effects 

we performed two sets of repacking simulations on a large set of naturally occurring protein 

structures (2832 pdb files).  In the first case we used the standard Rosetta model to identify the lowest 

energy side chain configuration for each protein and recorded the energy of each type of amino acid 

as a function of burial.  In the second case we performed repacking simulations at 310 K and recorded 

entropies (equation 2) and average energy for each amino acid as a function of burial.   

 

The longer amino acids have the highest average values of conformational entropy and show the 

greatest difference between surface and buried positions (Figure 2.2).  For instance, the average side 

chain entropy (TS) for arginine is 1.60 kcal / mol on the surface of a protein and 0.77 kcal / mol in the 

core of a protein, while for a valine the same values are 0.18 and 0.09 kcal / mol (Table 2.2).  

However, the longer amino acids also show the greatest differences between average energy and the 

energy of the most favorable rotamer.  On the surface of proteins the average energy of arginines 

when free to sample multiple conformations is on average 0.62 kcal / mol greater then the energy of 

the most favorable rotamer.  The net result is that the penalty for burying an arginine in the core of a 

protein is not as great as would be suggested from just examining the side chain entropy term.  In 

general, including explicit side chain flexibility in the scoring function does not appear to 

dramatically perturb the relative energies of the amino acids at buried and exposed positions.  The 

difference is only greater than 0.3 kcal / mol for 4 amino acids: Met, Arg, Gln and Glu.  The 
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difference is smaller for lysine ( 0.26 kcal / mol ) because lysine has a strong intrinsic preference to 

be in the extended conformation as evidenced by the Dunbrack rotamer library and high level 

quantum mechanics calculations 51.   

 

In these simulations we have been modeling the amino acid side chains using Dunbrack’s backbone 

dependent rotamer library.  This library does not allow for small perturbations of chi angles within a 

rotamer.  To test whether increasing the rotamer library would significantly perturb our results we 

increased the rotamer library by allowing for rotamers that had their chi 1 angles perturbed +/- one 

standard deviation from the most preferred chi 1 angle.  These perturbations are generally around 10 

degrees and are based on the standard deviations in the Dunbrack library.  As other groups have 

observed previously 2,50,52, with the expanded rotamer library the absolute side entropy of the amino 

acids goes up significantly but the difference between surface exposed and buried positions is largely 

unchanged (Table 2.3).  This suggests that vibration of torsional angles within rotamers will not be a 

key determinant of whether an amino acid prefers to buried or exposed.   

 

Protein Design Simulations with Explicit Side Chain Entropy.  To test if side chain entropy plays a 

large role in determining the environmental preferences of the amino acids Rosetta was modified to 

include explicit side chain entropy and free energy calculations (see methods) and sequences were 

designed for 110 naturally occurring protein sequences.  Although Rosetta uses a stochastic search 

procedure to search for low free energy sequences, independent simulations for a single protein 

produce very similar sequences (> 70% identity between simulations), indicating that the protocol 

does not get trapped in false minima located far from the global minima.  To control the overall 

frequency that each amino acid is used during design, Rosetta, assigns a unique reference value to 

each amino acid.  Because the purpose of these simulations were to determine the role of side chain 

entropy in the environmental preferences of the amino acids, we parameterized a unique set of 
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reference values for each set of simulations so that the amino acids were designed at native-like 

frequencies.      

 

Overall, including side chain entropy as a new energy term did not have a large effect on the recovery 

of native sequences (Table 2.4).  32% of the residues in the design set were kept as the native amino 

acid in the simulations with and without the entropy term.  As anticipated, the largest changes are 

observed for the more flexible amino acids (Table 2.5).  With the explicit side chain entropy model 

49% of methionines are designed in the core while with standard Rosetta 55% of methionines are 

placed in the core.  Arginine shows the largest changes, 20% are placed in the core without explicit 

side chain entropy while only 12% are placed in the core with explicit side chain entropy.  For most 

amino acids, the environmental preferences were not significantly perturbed by adding the explicit 

side chain entropy.  Most likely this is because gains in favorable side chain entropy are generally 

accompanied by an increase in average energy (Figure 2.2), and the sum of these two effects is 

considerably smaller than the magnitude of other terms in the energy function.   

 

Results with and without side chain entropy contrast sharply with simulations performed with and 

without the Lazaridis-Karplus solvation model.  Without the solvation model there are dramatic 

changes in the environmental preferences of the amino acids, and the identity between the designed 

sequences and the wild type sequences falls to 19% (Table 2.4).  So although the longer polar 

residues may be partially disfavored from buried positions because of a loss in conformational 

entropy, it is clear that desolvation energies are a much stronger factor than side chain entropy in 

determining the environmental preferences of the amino acids.   

 

It is important to point out that the relative importance of side chain entropy does depend on the 

energy function that is being used, and larger effects may be observed with other potential energy 



 36 

functions.  In these cases, native sequence recovery tests will provide an excellent approach for 

determining the usefulness of the side chain entropy term for protein design.   

     

CONCLUSION 

 

We draw two main conclusions from these studies.  First of all, the agreement between side chain 

entropies calculated by complete enumeration (equation 4) and those calculated by Monte Carlo 

sampling (equation 2) suggest that most side chains rotate independently of each other.  To determine 

if this was primarily an artifact of using a fixed backbone, we also examined side chain motion in an 

80-ns trajectory of eglin C and observed little covariant motion between amino acid rotamers.  

Similar results have also been reported for molecular dynamics simulations with calmodulin and the 

fibronectin family of proteins 53,54, although correlated motion has been observed for a pair of 

residues in ubiquitin 55.   

 

Secondly, we observe that the incorporation of explicit side chain entropy and free energy 

calculations into Rosetta does not substantially increase our ability to recapitulate native sequences in 

protein design simulations.  However, we did observe a reduction in the number of methionines and 

arginines placed in buried positions that was consistent with the environmental preferences of these 

amino acids in naturally occurring proteins.  In general, our results suggest that side chain entropy 

plays a relatively small role in determining the environmental preferences of the amino acids.   
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Figure 2.1  Algorithm for incorporating side chain entropy and free energy into Rosetta 
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Figure 2.2  Changes in side-chain conformational entropy and free energy between surface and buried 
positions 
The black bars show the change in entropy (TS) when a residue is buried while the grey bars compare 
average free energies (Uavg – TS) obtained with the explicit side chain entropy model to the energies 
that are calculated with the standard Rosetta model (Ubest).  The grey bars indicate the net effect that 
the explicit side chain entropy model has on the environmental preferences of the amino acids.  
Values are derived from repacking simulations with 2832 pdb files using the standard Rosetta model 
and the explicit side chain entropy model (equation 2).  See Table 2.2 for a more complete breakdown 
of these results. 
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TABLES 

 
Table 2.1  Average side chain entropy per residue as calculated with a variety of approaches 
These results suggest that covariant motion between side chain rotamers does not significantly reduce 
side chain conformational entropy. 
 

 
 
 

TSa 
(kcal/mol) 

TSb (cluster) 
(kcal/mol) 

TSc(chi) 
(kcal/mol) 

Surface 
Boundary 
Buried 

0.62 
0.44 
0.26 

0.60 
0.43 
0.24 

0.68 
0.48 
0.28 

Clusters with 
Rosetta 

Average 0.47 0.45 0.51 
Eglin C MD 
simulation 

 
 

0.45 0.45* 0.53 

TSa
 : calculated from Monte Carlo sampling method by treating each residue independently 

(equation 2) . TSb
 : calculated from complete enumeration of rotamer combination of 6-residue 

clusters (equations 3 & 4). TSb*: calculated from rotamer pairs from MD simulation (equation 5). 
TSc

 : calculated by treating each torsion angle independently(equation 6).  T=310K. 
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Table 2.2  Energies and entropies as a function of environment 
This table illustrates the compensation that takes place between entropy and energy when the explicit 
side chain entropy model is incorporated into Rosetta.  On the surface residues have more 
conformational entropy, but in addition the average energy of the rotamer ensemble (Uavg) at each 
sequence position is significantly greater than the energy of the most favorable rotamer (Ubest).   The 
last pair of columns ((U avg – U best ) – TS) shows the net effect of using the explicit side chain entropy 
model. 

U avg 
a
 TS U avg 

a
– U best

b
 

(U avg 
a
 – U best

b
) - 

TS 
Amino 

acid 
Surface Buried Surface Buried Surface Buried Surface Buried 

ALA -0.79 -1.82 0.00 0.00 -0.01 0.01 -0.01 0.01 
CYS 1.60 0.80 0.38 0.22 0.11 0.12 -0.27 -0.10 
ASP -0.74 -1.50 0.79 0.47 0.37 0.24 -0.42 -0.23 
GLU -0.56 -1.32 1.34 0.79 0.49 0.29 -0.85 -0.50 
PHE -0.84 -3.10 0.29 0.07 0.14 0.06 -0.15 -0.01 
GLY -1.55 -1.36 0.00 0.00 0.00 -0.01 0.00 -0.01 
HIS 0.10 -0.94 0.75 0.42 0.29 0.17 -0.46 -0.25 
ILE -0.84 -2.84 0.42 0.19 0.22 0.11 -0.20 -0.08 
LYS -0.22 -1.09 1.46 0.83 0.75 0.38 -0.71 -0.45 
LEU -1.02 -2.74 0.34 0.15 0.20 0.10 -0.14 -0.05 
MET -0.21 -1.84 1.17 0.50 0.43 0.19 -0.74 -0.31 
ASN -0.65 -1.00 1.01 0.61 0.45 0.27 -0.56 -0.34 
PRO -1.10 -2.03 0.32 0.27 0.13 0.10 -0.19 -0.17 
GLN -0.72 -1.25 1.26 0.69 0.47 0.30 -0.79 -0.39 
ARG -0.57 -1.30 1.60 0.77 0.62 0.31 -0.98 -0.46 
SER -0.48 -0.93 1.17 1.04 0.20 0.23 -0.97 -0.81 
THR -0.84 -1.57 0.87 0.74 0.17 0.14 -0.70 -0.60 
VAL -0.94 -2.69 0.18 0.09 0.12 0.05 -0.06 -0.04 
TRP -0.26 -2.08 0.49 0.08 0.20 0.06 -0.29 -0.02 
TYR -0.77 -2.43 0.70 0.47 0.14 0.13 -0.56 -0.34 

 
 
The values in the table are derived from repacking simulations with 2832 pdb files using the standard 
Rosetta model and the new explicit side chain entropy model (equation 2). 
U avg 

a : average energy derived from repacking simulations at 310K 
U best

b : the energy of the most favorable rotamer calculated from the standard Monte Carlo simulated 
annealing protocol 
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Table 2.3  Entropies as a function of rotamer library size 
Including sub-rotamers (ex1) to more finely sample side chain conformational space increases the 
overall conformational entropy of buried and exposed positions, but does not dramatically perturb the 
change in entropy between surface and buried positions.   
 

default rotamer seta ex1b Amino 
Acid TSSurface TSBuried !TS TSSurface TSBuried !TS 

ALA 0.00 0.00 0.00 0.00 0.00 0.00 
CYS 0.38 0.22 0.16 1.02 0.86 0.16 
ASP 0.79 0.47 0.32 1.44 1.06 0.38 
GLU 1.34 0.79 0.55 2.00 1.40 0.60 
PHE 0.29 0.07 0.22 0.90 0.57 0.33 
GLY 0.00 0.00 0.00 0.00 0.00 0.00 
HIS 0.75 0.42 0.33 1.39 0.93 0.46 
ILE 0.42 0.19 0.23 1.07 0.83 0.24 
LYS 1.46 0.83 0.63 2.11 1.43 0.68 
LEU 0.34 0.15 0.19 0.99 0.76 0.23 
MET 1.17 0.50 0.67 1.83 1.12 0.71 
ASN 1.01 0.61 0.40 1.66 1.18 0.48 
PRO 0.32 0.27 0.05 0.98 0.93 0.05 
GLN 1.26 0.69 0.57 1.92 1.28 0.64 
ARG 1.60 0.77 0.83 2.26 1.35 0.91 
SER 1.17 1.04 0.13 1.82 1.68 0.14 
THR 0.87 0.74 0.13 1.53 1.38 0.15 
VAL 0.18 0.09 0.09 0.84 0.73 0.11 
TRP 0.49 0.08 0.41 1.04 0.46 0.58 
TYR 0.70 0.47 0.23 1.31 0.90 0.41 

 
default rotamer seta : no sub-rotamers are used for all residues  
ex1b : use extra chi 1 sub-rotamers for all residues 
The values in the table are derived from repacking simulations with the same pdb files and same 
Rosetta model as those used in Table 2.2. 
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Table 2.4  Comparison of native sequence recovery rates 
Comparison of native sequence recovery rates for design simulations with and without the explicit 
side chain entropy model (110 protein structures were used).  The general result is that the explicit 
side chain entropy model does not lead to large changes in sequence recovery, as opposed to when the 
solvation potential is removed from the model.  In each case the reference values used by Rosetta 
were reparameterized to ensure that the amino acids were designed with native-like frequencies. 

 Redesigned (Raw Counts) Fraction designed correctly Amino 
acid Native No 

Entropya 
Explicit 
Entropyb 

No 
Solvationc 

No 
Entropy 

Explicit 
Entropy 

No 
Solvation 

VAL 601 608 633 543 0.46 0.48 0.14 
ILE 430 436 460 425 0.43 0.45 0.12 
LEU 666 697 709 701 0.48 0.49 0.11 
MET 147 152 147 141 0.16 0.12 0.05 
PHE 292 363 360 281 0.52 0.47 0.14 
GLY 595 518 449 411 0.73 0.67 0.62 
ALA 651 560 586 637 0.35 0.35 0.18 
PRO 309 363 358 262 0.58 0.61 0.44 
TRP 94 127 142 148 0.40 0.34 0.24 
TYR 253 290 290 297 0.25 0.21 0.26 
SER 474 442 452 426 0.20 0.19 0.19 
THR 450 433 432 480 0.19 0.20 0.18 
ASN 334 328 337 354 0.18 0.18 0.19 
GLN 315 380 333 360 0.10 0.08 0.06 
ASP 518 468 482 578 0.21 0.22 0.19 
GLU 631 692 663 655 0.18 0.20 0.07 
ARG 351 325 343 363 0.10 0.12 0.07 
LYS 658 607 609 688 0.15 0.16 0.14 
HIS 135 115 119 154 0.10 0.12 0.05 
CYS 189 189 189 189 1.00 1.00 1.00 

Total 8093 8093 8093 8093 0.32 0.32 0.19 

 
a : standard Rosetta energy function  
b : explicit entropy and free energy is included in the energy function (equation 2)  
c : standard Rosetta without the solvation model 
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Table 2.5  Environmental preferences of the amino acids 
Environmental preferences of the amino acids in design simulations with and without the side chain 
entropy model (110 protein structures were used). 

% amino acids buried % amino acids surface 
Amino acid 

Native No Entropy
a 

Explicit Entropy
b 

Native No Entropy Explicit Entropy 

VAL 0.55 0.53 0.55 0.17 0.19 0.17 
ILE 0.54 0.58 0.57 0.17 0.10 0.12 
LEU 0.51 0.45 0.48 0.15 0.18 0.14 
MET 0.46 0.55 0.49 0.20 0.13 0.17 
PHE 0.61 0.63 0.59 0.11 0.10 0.10 
GLY 0.19 0.19 0.20 0.48 0.48 0.47 
ALA 0.37 0.50 0.55 0.33 0.19 0.15 
PRO 0.15 0.15 0.17 0.60 0.59 0.56 
TRP 0.55 0.48 0.46 0.15 0.17 0.20 
TYR 0.51 0.30 0.30 0.18 0.27 0.30 
SER 0.15 0.07 0.06 0.54 0.71 0.67 
THR 0.17 0.08 0.09 0.41 0.63 0.57 
ASN 0.13 0.04 0.05 0.54 0.81 0.77 
GLN 0.13 0.06 0.04 0.46 0.67 0.74 
ASP 0.11 0.11 0.10 0.62 0.65 0.60 
GLU 0.10 0.10 0.06 0.54 0.47 0.59 
ARG 0.12 0.20 0.11 0.49 0.27 0.45 
LYS 0.09 0.21 0.18 0.52 0.34 0.35 
HIS 0.24 0.23 0.20 0.36 0.41 0.38 
CYS 0.70 0.70 0.70 0.09 0.09 0.10 

a : standard Rosetta energy function  
b : explicit entropy and free energy is included in the energy function (equation 2)  
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SUPPLEMENTAL MATERIAL 

 
Table 2.6  PDB codes used in the design simulation 
 

 PDB ID  CHAIN ID  PDB ID  CHAIN ID 
 1A62  _  1IG5  A 
 1A8O  _  1IGD  _ 
 1AAC  _  1IGQ  A 
 1ABA  _  1IIB  A 
 1AIL  _  1IQZ  A 

 1AWD  _  1J75  A 
 1B0N  A  1JHG  A 
 1B67  A  1JO8  A 
 1BBZ  A  1K61  A 
 1BF4  A  1KQ1  A 
 1BKB  _  1KTH  A 
 1BKF  _  1KU3  A 
 1BKR  A  1KW4  A 
 1BRF  A  1L9L  A 
 1BX7  _  1LDD  A 
 1C4Q  A  1LJO  A 
 1C5E  A  1LKK  A 
 1C75  A  1MGQ  A 
 1C9O  A  1MGT  A 
 1CC8  A  1MHN  A 
 1CKA  A  1NG2  A 
 1CTJ  _  1NKD  _ 
 1CUK  _  1NME  B 
 1CZP  A  1O13  A 
 1D3B  A  1OAI  A 
 1D4T  A  1ON2  A 
 1D7Y  A  1OR7  A 
 1DD3  A  1OR7  C 
 1DJ7  B  1PLC  _ 
 1DP7  P  1PSR  A 
 1E0B  A  1PTF  _ 
 1EN2  A  1PWT  _ 
 1ERV  _  1QTN  B 
 1EZG  A  1R69  _ 
 1F9M  A  1RB9  _ 
 1FJL  A  1RRO  _ 
 1FK5  A  1SEM  A 
 1FPO  A  1TAF  A 
 1FR3  A  1TMY  _ 
 1FS1  B  1UTG  _ 
 1FSE  A  1VFY  A 
 1G2B  A  1VIE  _ 
 1G2R  A  1WAP  A 
 1G3P  _  1YCC  _ 
 1G6X  A  2HDD  A 
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 1G8F  A  2IGD  _ 
 1GCQ  C  2IHL  _ 
 1GEF  A  2MCM  _ 
 1GUT  A  2PHY  _ 
 1HG7  A  2PVB  A 
 1I07  A  2TRX  A 
 1I0V  A  2UAG  A 
 1I27  A  4RXN  _ 
 1I2T  A  7FD1  A 
 1I5Z  A  256B  A 

 
_ : no chain ID 
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ABSTRACT 

 

The de novo design of globular "-sheet proteins remains largely an unsolved problem.  It is unclear if 

most designs are failing because the designed sequences do not have favorable energies in the target 

conformations or if more emphasis should be placed on negative design, i.e. explicitly identifying 

sequences that have poor energies when adopting undesired conformations.  We tested if we could 

redesign the sequence of a naturally occurring "-sheet protein, tenascin, with a design algorithm that 

does not include explicit negative design.  Denaturation experiments indicate that the designs are 

significantly more stable than the wild type protein and the crystal structure of one design closely 

matches the design model.  These results suggest that extensive negative design is not required to 

create well-folded "-sandwich proteins.  However, it is important to note that negative design 

elements may be encoded in the conformation of the protein backbone which was preserved from the 

wild type protein.        

 

 

 

 

 

  

Keywords: Computational Protein Design, De Novo Protein Design, "-sheet Design, Negative Design 
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INTRODUCTION 

 

Approximately one quarter of all protein domains are made entirely from "-strands and connecting 

loops 1.  "-sheets and "-barrels form relatively rigid structures that serve as excellent scaffolds for 

loops that can evolve new molecular recognition capabilities; antibodies are an excellent example of 

this.  Despite the obvious importance of "-sheet proteins, we still do not understand them well enough 

to design them from first principles.  Most de novo designed "-sheet proteins are prone to 

aggregation, and there are no de novo designs of an all "-sheet protein with more than three "-strands 

that have been validated with a NMR or crystal structure 2-6.  In contrast, several de novo designs of 

all helical or mixed #/" proteins have been validated with high resolution structures 7-10. 

 

There may be several reasons why designed globular "-sheet proteins are prone to misfolding and 

aggregation.  Many "-sheet proteins have greater sequence separation between contacting residues 

(high contact order) and therefore fold more slowly than helical and mixed #/" proteins 11.  Slower 

folding rates may allow more time for misfolding, domain swapping and aggregation.  "-sheet 

proteins (designed and naturally occurring) are generally enriched in amino acids with a high intrinsic 

propensity to form "-strands 12-17.  While these amino acids are energetically favorable for the target 

"-sheet structure, they also have a high propensity to aggregate into fibrils or form undesired strand-

strand interactions18-20.  "-strands in two-layer "-sheet proteins often have an alternating repeat of 

hydrophobic and hydrophilic residues; this type of repeat is known to promote undesired strand-

strand interactions 21.  "-sheet proteins that do not form barrels have exposed "-strands that may be 

well suited for forming edge-to-edge interactions.  Indeed, it has been observed that naturally 

occurring "-sheet proteins contain negative design elements that protect them from unwanted edge-

edge interactions 22.  These include placing charged residues on both sides of the edge strand, using 
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bulges and prolines to prevent optimal hydrogen bonding, and protecting the edge with other portions 

of the protein.  

 

How many negative design elements are needed to create a well-folded globular "-sheet protein?  Is it 

necessary to explicitly destabilize associations between non-native strand pairings or does the 

identification of a low free energy sequence for a target structure implicitly destabilize most 

competing states?  In one study on de novo designed "-sheet proteins, the placement of a charged 

residue on the inward side of putative edge strands was shown to stabilize the monomer versus the 

aggregated state 23.  This result suggests that negative design elements may not need to be spread 

throughout the entire sequence.  However, high resolution structures have not been solved for these 

designs, so it is not known if they are adopting the target structure.  Other studies in de novo "-sheet 

design have also produced monomeric proteins, but in these cases it is also not certain if the proteins 

are adopting the target topology 24-26.  A recent design of a Rubredoxin mimic is most likely adopting 

the target fold, but in this case the energy gained from metal binding may preclude the need for 

extensive negative design 27.   

 

In a previous study we used the design module of the molecular modeling program Rosetta to design 

a new amino acid sequence for the third FNIII domain of the protein tenascin 28.  This domain has 89 

residues and forms a Greek Key fold with three "$strands in one sheet and four "-strands in the 

second sheet.  Sheet 1 is formed by strands 1, 2 and 5.  Sheet 2 is formed by strands 3, 4, 6 and 7.  

The side chains were removed from the protein and computational protein design was used to 

redesign the protein with no explicit knowledge of the wild type sequence.  The only energy gap that 

was explicitly optimized was between the folded state and a reference energy that models the 

unfolded state and is based on amino acid composition.  Rosetta’s energy function is dominated by 

terms that model van der Waals forces, steric repulsion, desolvation energies, torsion energies and 



 55 

hydrogen bonds 9,29.  Unfortunately, the designed protein, called TEN-D1, aggregated and we were 

not able to characterize it.  This design may have failed because we did not identify a favorable 

sequence for the target state, or it may have failed because we did not sufficiently destabilize 

misfolded and aggregated states.  Here, we further pursue this question by characterizing a new set of 

redesigns for the third FNIII domain of tenascin, but with an energy function that has been 

specifically parameterized for "-sheet design.  As before, we do not include any explicit negative 

design in the protocol.       

 

RESULTS 

 

Reparameterizing the Rosetta Energy Function 

 

The energy function used by Rosetta for protein design is a weighted sum of a damped 12-6 Lennard-

Jones term, an implicit solvation model, an orientation dependent hydrogen bonding term, 

knowledge-based torsion energies and a set of reference values that control the relative favorability of 

the 20 amino acids 29.  The weights on these terms have been set to maximize the native sequence 

recovery during the complete redesign of whole proteins 30.  Our standard training set has a mixture of 

all helical, mixed #/" proteins, and all " proteins.  For these studies we assembled a set of 121 high-

resolution structures of all "-sheet proteins.  The standard Rosetta energy function was used to design 

sequences for the proteins in the training set and the sequences were compared to the wild type 

sequences.  Overall sequence identity was similar to what we have observed previously, but the 

fraction of hydrophobic residues in the redesigned sequences was higher than in the naturally 

occurring sequences (67% versus 53%, Supplementary Table 3.3 and Table 3.4).  To create more 

native-like sequences, iterative rounds of perturbing the amino acid reference values and redesigning 

the proteins were used to arrive at a set of reference values that accurately reproduce the 
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hydrophobic/hydrophilic preferences of the naturally occurring "-sheet proteins (Supplementary 

Table 3.3 and Table 3.4).  The goal of our fitting procedure is to improve our ability to perform 

positive design and find low energy sequences for target structures.  However, by adjusting the amino 

acid reference values and therefore perturbing the overall amino acid composition of the protein we 

may be implicitly including negative design in our protocol.  In this regard, our experiments are 

testing the importance of explicit negative design with the constraint that overall amino acid 

composition has been set to resemble naturally occurring "-sheet proteins. 

 

Computational Redesign of Tenascin 

 

Tenascin ( pdbcode : 1ten ) was used as the starting model for fixed backbone design. All the 

sidechains were removed from the protein except Tyrosine 869.  Tyrosine 869 was not allowed to 

vary because it forms a sidechain backbone hydrogen bond that is important for the stability of the 

protein 31.  Rosetta prefers to put a phenylalanine at this position because the tyrosine rotamers used 

during the simulation do not allow for a low energy hydrogen bond.  This residue was mutated to a 

phenylalanine in our previously published redesign of tenascin TEN-D1.  100 independent design 

trajectories were used to look for low energy sequences.  The Rosetta full atom energies in the 

redesigned models varied between -220 and -215 kcal / mol.  The lowest energy model, called TEN-

D2, was chosen for experimental characterization.   

 

A second round of design simulations were performed with an additional surface area- based packing 

score (SASAprob) included in the optimization procedure 32.  The SASAprob score examines the 

difference in solvent accessibility computed with a 0.5 Å probe and a 1.4 Å probe (the size of water).  

The difference in these two terms will be greater for underpacked proteins.  The score is formulated 

as a probability based on average values measured for naturally occurring proteins.  To optimize this 

score during a design simulation we have developed a rapid algorithm for computing solvent 
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accessible surface areas during protein design simulations.  Our design picked from the first round of 

simulations, TEN-D2, has a SASAprob score of 0.46, indicating that it is more tightly packed than 

46% of the proteins in the PDB.  From the second round of simulations, we chose a design called 

TEN-D3, with a SASAprob score of 0.52 and a total score of -216 kcal / mol.      

 

TEN-D2 has 53 mutations and TEN-D3 has 51 mutations when compared to the wild type sequence 

(Figure 3.1, Table 3.1).  Our previously characterized sequence, TEN-D1, had 58 mutations.  

Highest sequence similarity is seen in the protein core; out of 20 buried residues, 9 were mutated in 

TEN-D2, and 8 were mutated in TEN-D3.  The number of charged residues in the redesigns is 

significantly different than in the wild type protein.  20% of the wild type residues are negatively 

charged (Asp or Glu), while only 8% of the redesigns are negatively charged.  The most highly 

conserved amino acids in the redesigns are proline, glycine and threonine.  Four out of five prolines, 

three out of five glycines and ten out of 12 threonines are conserved.   

 

Experimental Characterization 

 

Both TEN-D2 and TEN-D3 were expressed in bacteria and experimentally characterized using a 

variety of biophysical methods.  Size-exclusion chromatographies of the two redesigns suggest they 

are both monomeric (data not shown).  There is good dispersion in the one-dimensional 1H NMR 

spectra indicating that both redesigns are well-folded (Figure 3.2), and there are amide protons with 

chemical shifts above 8.5 ppm, indicative of "-sheet structure.  Additionally, the circular dichroism 

(CD) spectra of the proteins are consistent with "-sheet structure.  To probe the stability of the 

redesigns CD signal was monitored as a function of temperature and concentration of chemical 

denaturant at a single wavelength.  Both TEN-D2 and TEN-D3 unfold at temperatures that are 

significantly higher than the wild type protein, the proteins unfold above 90 °C and 80 °C 

respectively (Figures 3.3 and 3.4, Table 3.2).  The Tm for wild type tenascin is 58 °C.  However, 
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unlike the wild type protein, the thermal unfolding curves for the redesigns are not reversible at pH 7.  

It has been shown that high net charges can help solubilize proteins in the unfolded state 33.  

Consistent with this hypothesis, TEN-D2 refolds reversibly when the pH is dropped below the pKa of 

the acidic side chains, increasing the net charge of the design (Figure 3.3.D).   

 

Denaturation induced by guanidine hydrochloride was monitored with circular dichroism to measure 

the stability.  Both redesigns fold reversibly in chemical denaturant and are significantly more stable 

than the wild type protein (Figure 3.4).  The extrapolated free energies of folding are -11.9 and -8.7 

kcal / mol respectively.  The wild type protein has a free energy of folding of -5.1 kcal / mol.  

Interestingly, the m-values (slope of free energy versus [GuHCl]) are larger for the redesigns.  This 

suggests that the redesigns bury more hydrophobic surface area upon folding than the wild type 

protein 34. 

 

Structure Determination 

 

The crystal structure of the TEN-D3 was determined at 2.4 Å resolution by X-ray crystallography 

(Supplementary Table 3.5) to verify that the structure matches the design model.  Overall, there is a 

good match between the crystal structure and the design model, the root-mean-square deviation 

(RMSD) between the crystal structure and the design model is less than 0.8 Å for all heavy atoms of 

the protein (Figure 3.5).  82 percent of the sidechains have the same chi1 rotamer as designed and all 

the rotamers in the core have the same conformation (chi1 and chi2) as designed.  Greater differences 

were seen on the surface; although several designed salt bridges on the protein surface were observed 

in the crystal structure.  These include interacting pairs, Arg 74 and Asp 48, Asp 43 and Arg 37, and 

Glu 62 and Arg 37.      
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DISCUSSION 

  

60% of the residues in the tenascin redesigns are not a direct reflection of natural protein evolution, 

but rather were chosen solely based on a calculated free energy difference between the target structure 

and a reference state that only depends on amino acid composition.  Despite the simplicity of this 

design criterion, the proteins fold into the target structure.  Similar findings have been reported for all 

helical, mixed #/" proteins, and small three stranded "-sheet proteins 6,28,35,36.  Our result suggests that 

the majority of amino acids in tenascin have not been explicitly selected to prevent misfolding, but 

rather selection for a low free energy target structure is sufficient to destabilize alternative folds.  This 

result is not obvious a priori, given the fact that small stretches of sequence rich in "-sheet propensity 

are prone to association and the possible number of non-native strand pairings is much greater than 

native pairings.   

 

Our results do not indicate that negative design is not important for de novo "$sheet design, but they 

do suggest that it may be sufficient to only focus on a limited number of negative design elements.  

For instance, the backbone conformation of tenascin appears to include negative design elements.  

Unwanted edge-to-edge "-strand interactions are most likely destabilized by a "-bulge in strand 1, the 

shortness of strand 5 and prolines in strand 7.  All of these elements are preserved in our redesigns.   

Additionally, negative design elements may be encoded in the residues that are preserved from the 

wild type sequence.  It is interesting that our designs do not include charged residues on the inward 

pointing face of the edge strands.  Other design elements, such as the prolines in strand 7, must be 

preventing association between edge strands.    

 

It is striking that the redesigned sequences are considerably more stable than the wild type sequences.  

Similar results have been observed when redesigning other protein folds with computational protein 

design software 28,37.  An increase in the m-values for chemical denaturation suggests that the designs 
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bury more hydrophobic surface area upon folding.  This increase is consistent with the addition of 

extra hydrophobic residues in the redesigns and may explain the increase in protein stability.   

 

Our results are encouraging in that they suggest that the de novo design of a "-sandwich protein may 

be possible without extensive consideration of strand mis-pairings.  Despite this fact, de novo design 

is still a very challenging problem.  To create a protein from scratch, it is necessary to identify a 

protein backbone that allows for tight packing of the side chains and allows for hydrogen bonding to 

buried polar groups.  It is especially challenging to ensure that backbone polar groups in the 

connecting loops have hydrogen bond partners.  Many of these polar groups are removed from 

solvent, and in naturally occurring proteins are engaged in sidechain-backbone hydrogen bonds.  It 

will be exciting to see if new techniques in computational protein design that allow for backbone 

sampling and sequence design will allow these hurdles to be overcome.   

 

EXPERIMENTAL PROCEDURES 

 

Sequence Optimization Simulations 

Fixed backbone design simulations were performed with svn version 9242 of Rosetta.  The standard 

full atom energy function was used except for the following changes: the reference values were 

reparameterized to maximize the native sequence recovery test, the desolvation penalty for histidine 

was increased by varying the ddGfree parameter for histidine nitrogens from -4.0 to -9.0, and the 

Lennard-Jones potential was set to a linear slope at 0.85 of the van der Waals radius (instead of 0.6).  

Dunbrack’s backbone dependent rotamer library was used with extra chi 1 torsion angles for all 

residues and extra chi 2 torsion angles for aromatic residues.  The command line used for the 

simulations was: Rosetta.gcc -s 1ten.pdb -design -fixbb -use_bw -ex1 -ex2aro_only -extrachi_cutoff 1 

-resfile resfile -ndruns 100 (-use_sasa_pack_score) 

 .    
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Protein Expression and Purification 

Genes for the redesigned proteins were synthesized in-house with PCR extension of  

commercially purchased overlapping oligonucleotides from Operon 38.  The genes were inserted into 

E. coli. expression vector pET21b, with a linker “GSLE” followed by C terminal 6x His tag.  The 

proteins were expressed in the E. coli.  BL21 strain at 37 °C with 0.5 mM IPTG used for induction.  

The proteins were purified with a Ni++ affinity column followed by size-exclusion chromatography 

(Superdex-75). 

 

NMR  

The two redesigned proteins (~0.4 mM) were equilibrated in 20 mM sodium phosphate, 0.15 M NaCl, 

pH 7.2 buffer and one-dimensional 1H NMR spectra were recorded at 25 °C on a Varian Inova 600 

MHz spectrometer.  NMR data were processed with NMRPipe 39. 

 

Circular Dichroism   

CD data were collected on a JASCO J-810/815 CD spectrometer using a 0.1 cm cuvette with 40 uM 

proteins.  The CD signal was monitored at 215 nm as a function of temperature (4 – 96 °C).  The 

fraction of unfolded protein was calculated assuming that the CD signal of the unfolded and folded 

protein varies linearly with temperature.  GuHCl induced chemical denaturation experiments were 

recorded at 222 nm.  The free energy calculations were obtained with a two-state assumption. 

 

Crystallization, X-ray Diffraction and Structure Determination 

The hanging-drop vapor diffusion method was used for crystallization trials.  TEN-D3 with the 

concentration of 12 mg / mL in 100 mM NaCl, 20 mM Tris buffer at pH 7.4, was mixed with an equal 

volume of well buffer of 0.1 M sodium dihydrogen phosphate, 0.1 M potassium dihydrogen 

phosphate, 0.1 M MES, pH 6.5, 2.2M NaCl and100 mM urea.  20% glycerol was used as the 
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cyroprotectant.  Diffraction data of TEN-D3 were collected at the Beamline x29A at Brookhaven 

National Laboratory. 

 

The data were indexed and processed with the program HKL2000 40. The structure of TEN-D3 was 

solved by molecular replacement using the programs MolRep 41 and Phaser 42.  Wild type tenascin 

(PDB code 1TEN) was used as the initial search model.  The model was then refined against the 

synchrotron data to 2.4 Å resolution.  O 41 was used to build the model and CNS 43 was used to refine 

the structure.  The geometry of the final model was assessed with the program PROCHECK 44. 

 

Accession code: The coordinates and structural factors of TEN-D3 have been deposited into the 

RCSB Protein Data Bank with PDB ID code 3B83.  
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FIGURES 

 

 

 

 

 

Figure 3.1  Sequences of the wild type and three redesigned proteins 
TEN-WT: wild type; TEN-D1,TEN-D2,TEN-D3: redesigned sequences.  The TEN-D1 sequence is 
from a previously published study 28.   
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Figure 3.2  One-dimensional 1H spectra of the redesigned proteins 
A: TEN-D2. B: TEN-D3. 
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Figure 3.3  CD spectra of the wt and redesigns 
Circular dichroism spectra of the wild type tenascin and the redesigned proteins at neutral and acidic 
pH with different temperatures. 20 °C(r) represents that the temperature was cooled back to 20 °C.  
A: TEN-WT at pH 7.0,  B: TEN-WT at pH 3.0, C: TEN-D2 at pH 7.0, D: TEN-D2 at pH 3.0,  E: 
TEN-D3 at pH 7.0, and  F: TEN-D3 at pH 3.0. 
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Figure 3.4  Temperature and chemical denaturation 
Temperature and chemical denaturation as monitored by circular dichroism.  A: Thermal unfolding of 
the wild type tenascin and the redesigned proteins.  B: Chemical denaturation of the wild type 
tenascin, TEN-D2 and TEN-D3.  
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Figure 3.5  Structure alignment beteen the design model and the crystal structure 
Structure alignment between the designed model (cyan) and the crystal structure of TEN-D3 (green).  
A: backbone only, B: buried residues, C: selected surface residues, D: a designed salt bridge between 
Asp 48 and Arg 74.
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TABLES 

 

Table 3.1  Sequence features of wild type and redesigned tenascin 
Protein TEN-WT TEN-D1 TEN-D2 TEN-D3 

MW ( Da ) 9895.9 9729.7 9800.0 9790.1 
Theoretical PI 4.15 4.99 5.10 4.72 

Fraction of positively charged 
residues 

0.09 0.07 0.07 0.06 

Fraction of negatively 
charged residues 

0.20 0.08 0.08 0.08 

Fraction of hydrophobic 
residues 

0.38 0.37 0.42 0.42 

Sequence identity to WT 
 ( overall ) 

/ 31/89 36/89 38/89 

Sequence identity to WT  
( buried* ) 

/ 9/20 11/20 12/20 

Sequence identity to TEN-D1 
( overall ) 

31/89 / 45/89 48/89 

*buried – Buried residues have more than 19 neighbors within 10Å. 
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Table 3.2  Thermodynamic parameters of wild type and redesigned tenascin 

Protein Tm(°C) 

! 

"G
U

H
2
O (kcal mol-1) m-GuHCl (kcal mol-1 M-1) 

TEN–WT 58 5.1±1.2 1.7±0.3 

TEN–D1 / / / 

TEN–D2 >90 11.9±4.7 2.8±1.1 

TEN–D3 >80 8.7±2.0 2.1±0.4 

 

SUPPLEMENTARY MATERIAL 

 

Table 3.3  Comparison of native sequence recovery rates for design simulations with the standard 
weight and modified beta sheet weight 

 
 

 
a : standard energy function  
b : modified beta sheet weight 

 
Redesigned 

(Raw Counts) 
Fraction designed correctly Amino 

acid 
Native stda bwb stda bwb 

VAL 874 757 861 0.48 0.51 
ILE 515 646 541 0.52 0.51 
LEU 699 853 724 0.53 0.54 
MET 157 156 159 0.17 0.17 
PHE 297 602 321 0.54 0.45 
GLY 793 825 765 0.81 0.79 
ALA 635 545 638 0.34 0.41 
PRO 393 767 425 0.82 0.62 
TRP 130 330 151 0.41 0.39 
TYR 301 604 339 0.3 0.3 
SER 609 412 604 0.16 0.22 
THR 640 510 625 0.23 0.26 
ASN 385 381 376 0.23 0.25 
GLN 291 260 272 0.07 0.06 
ASP 522 390 516 0.19 0.24 
GLU 620 317 641 0.11 0.2 
ARG 411 323 423 0.12 0.17 
LYS 601 390 610 0.1 0.13 
HIS 166 90 167 0.07 0.15 
CYS 119 0 0 0 0 
Total 9158 9158 9158 0.35 0.37 
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Table 3.4  Environmental preferences of the amino acids in design simulations with the standard 
weight and modified beta sheet weight 
 

% amino acids buried % amino acids surface Amino 
acid Native std

a
 bw

b
 Native std

a
 bw

b
 

VAL 0.62 0.64 0.58 0.15 0.15 0.2 
ILE 0.64 0.54 0.62 0.14 0.15 0.11 
LEU 0.63 0.4 0.49 0.13 0.31 0.19 
MET 0.42 0.53 0.56 0.22 0.13 0.14 
PHE 0.63 0.49 0.72 0.15 0.23 0.06 
GLY 0.31 0.32 0.31 0.39 0.37 0.39 
ALA 0.46 0.67 0.61 0.27 0.08 0.16 
PRO 0.28 0.22 0.31 0.42 0.5 0.4 
TRP 0.52 0.3 0.5 0.14 0.3 0.16 
TYR 0.51 0.23 0.37 0.16 0.35 0.21 
SER 0.22 0.44 0.28 0.45 0.28 0.45 
THR 0.26 0.35 0.27 0.35 0.37 0.44 
ASN 0.2 0.08 0.1 0.48 0.76 0.74 
GLN 0.21 0.15 0.07 0.41 0.55 0.6 
ASP 0.14 0.15 0.13 0.52 0.53 0.53 
GLU 0.14 0.19 0.14 0.49 0.39 0.47 
ARG 0.3 0.28 0.3 0.31 0.23 0.21 
LYS 0.12 0.23 0.22 0.52 0.32 0.3 
HIS 0.24 0.52 0.48 0.37 0.23 0.17 

 
a : standard energy function  
b : modified beta sheet weight 
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Table 3.5  X-Ray diffraction data collection and refinement statistics 

Data collection 
Crystal TEN-D3 
Resolution range ( Å ) 30-2.4 
Total reflections 3,217,388 
Unique reflections 43,149 
Completeness 99.5% 
Rmerge 0.076 
Space group P4212 
Unit cell dimensions a = b = 126.329 Å 

c = 134.661 Å 

 
 

Refinement 

Crystal TEN-D3 

Resolution range ( Å ) 30-2.4 

R 0.24 
Rfree 0.29 

rmsd bond length ( Å ) 0.007 

rmsd bond angle  1.505 

No. of protein atoms 5956 

Average B factor for all atoms ( Å2 ) 50.22 
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ABSTRACT 

 

Despite having irregular structure, protein loops often adopt specific conformations that are critical to 

protein function.  Most studies in de novo protein design have focused on creating proteins with 

regular elements of secondary structure connected by very short loops or turns.  To design longer 

protein loops that adopt specific conformations we have developed a protocol within the Rosetta 

molecular modeling program that iterates between optimizing the sequence and conformation of a 

loop in search of low energy sequence–structure pairs.  We have tested the procedure by designing 

10-residue loops for the connection between the second and third strand in the "-sandwich protein 

tenascin.  Three low energy designs from 7200 flexible backbone trajectories were selected for 

experimental characterization.  All three designs, called LoopA, LoopB and LoopC, adopt stable 

folded structures.  High resolution crystal structures of LoopA and LoopB have been solved.  LoopB 

adopts a structure very similar to the design model (0.46 Å RMSD) and all but one of the side chains 

are modeled in the correct rotamers.  LoopA crystallized at low pH in a structure that differs 

dramatically from our design model.  It forms a strand swapped dimer mediated by hydrogen bonds to 

protonated glutamic and aspartic acids.  Gel filtration indicates that the protein is not a dimer at 

neutral pH.  These results suggest that the high resolution design of protein loops is possible; 

however, they also highlight how small changes in protein energetics can dramatically perturb the low 

free energy structure of a protein.   
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INTRODUCTION 

 

Protein loops often adopt specific conformations that are critical to protein function.  Many protein 

active sites contain residues that are located in loops, and protein-protein interactions are frequently 

mediated by loops.  Despite the clear importance of loops, most studies in de novo protein design 

have not involved the creation of longer loops that adopt specific conformations, but rather have 

focused on proteins that consist almost entirely of #-helices or "-strands connected by short turns or 

loops 1-8.   

 

There are several reasons why designing ordered loops may be especially challenging.  Unlike #-

helices and "-sheets, the backbone hydrogen bonding potential of a loop is not automatically 

satisfied.  For a loop conformation to have low free energy it is important that each polar group in the 

loop is hydrogen bonding with another group in the protein or is accessible to water.  However, if too 

much of the loop is exposed to water then it is less likely that it will adopt a unique conformation.  

Additionally, unlike #-helices and "-strands there are not well determined amino acid preferences for 

forming a well-ordered loop.  Protein engineers have shown that helices can be built by favoring 

sequences rich in alanine, leucine, lysine and glutamate, while the "$branched amino acids, 

threonine, valine and isoleucine, prefer to form "-strands 9-11.  Loops can be designed by favoring 

sequences enriched in glycine and polar amino acids, but sequences of this type are unlikely to form a 

unique conformation 12.  Well-ordered loops typically have diverse sequences that form specific tight 

packing interactions within the loop and with the rest of the protein.   

 

Designing a new loop requires specification of the new backbone coordinates as well as the amino 

acid sequence. This is a difficult problem because most arbitrarily chosen protein backbones are 

unlikely to be designable, i.e. there will be no amino acid sequences that pack on the structure with 
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energies that are comparable to what are observed for naturally occurring proteins 13.  Designable 

backbones can be created using heuristics derived from naturally occurring protein structures or 

structure prediction protocols can be used in tandem with sequence optimization protocols to search 

for low energy sequence-structure pairs 2,6,14-18.  Here, we examine if the second approach, combining 

structure prediction with automated sequence optimization, can be used to design loop sequences that 

adopt unique conformations.  Schliebs and co-workers have used a similar strategy to introduce 4 

mutations into a 8-residue loop in triosephosphate isomerase 19.  In their study, Monte Carlo sampling 

of loop conformations was interspersed with hand-picked mutations.      

 

A variety of methods have been developed to predict the structures of protein loops 20.  In general, 

loop prediction protocols have two primary components, a procedure for searching through the 

various conformations a loop might adopt and an energy function for evaluating the relative 

favorability of these conformations.  Often conformational sampling is aided by using loop 

conformations from other proteins as starting points for structure optimization.  We use the molecular 

modeling program Rosetta to perform sequence design and loop modeling.  Rosetta was first 

developed for ab initio structure prediction, but has since been expanded to contain protocols for high 

resolution structure refinement, loop modeling, molecular docking and protein design 6,21-24.  The 

Rosetta energy function used for high resolution refinement and design emphasizes short range 

interactions: steric repulsion, Van der Waals interactions within 5.5 Å, torsion energies, hydrogen 

bonding and a desolvation penalty for bringing atoms close to other polar atoms 25,26.  Sequence and 

conformational space are searched with a Monte Carlo optimization procedure. Single amino acid 

substitutions or backbone torsion angle perturbations are evaluated with the Metropolis criterion.  In 

the last stage of refinement the Monte Carlo moves are followed by gradient-based minimization of 

torsion angles before comparing the energy of the structure to the most recently accepted structure.  

To design protein loops we have combined Rosetta’s loop modeling protocols with sequence 

optimization.  The protocol iterates between refining the structure of a loop and designing a sequence 
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for the loop.  We generally perform thousands of independent trajectories as each individual 

simulation eventually gets trapped in a local energy minimum.   

 

To experimentally test the protocol we have examined whether we can design new backbone 

conformations and sequences for the 10 residue loop that connects the second and third "-strand from 

the third fibronectin type III domain from tenascin-C 27.  In these studies, the wild type loop is 

removed from the protein, and the new loop is designed from scratch.  The naturally occurring loop 

that connects these strands forms a well ordered structure with low B-values in the crystal structure, 

and 15N nuclear spin relaxation experiments have shown that the loop is fairly rigid in solution 28.  

Insertion of 4 glycines into the same loop from the homologous protein FNfn10 lowers the stability of 

FNfn10 by 1.7 kcal / mol 29. 

 

RESULTS AND DISCUSSION 

  

Computational design.  Alternate backbone conformations and sequences were designed for residues 

24-33 of the the third fibronectin type III domain from tenascin-C 27.  A three step process was used 

to create the new loops.  First, starting backbone conformations for loop design were picked from 

fragments of naturally occurring proteins.  Second, iterative rounds of backbone optimization and 

sequence design were used to search for low energy sequence-structure pairs.  Third, a variety of 

calculated energies were used to pick designs for experimental validation.     

 

Starting loop structures were built by searching the PDB database for 12 residue fragments of 

naturally occurring proteins with endpoints that superimpose with low RMSD on the backbone atoms 

of residues 23 and 34 of tenascin. 142 fragments were identified with endpoint RMSDs less than 3 Å.  

These fragments were then grafted onto tenascin using Monte Carlo optimization and gradient-based 

minimization of backbone torsion angles with a scoring function that favored loop closure, low 
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energy backbone torsion angles, low energy backbone-backbone hydrogen bonds and the absence of 

clashes with neighboring backbone atoms.  From these simulations, 36 low scoring backbone 

structures were selected for use as starting points for high resolution design.  These loops varied in 

RMSD to the wild type loop from 0.7 Å to 2.5 Å (supplementary Figure 4.7). 

 

Each starting structure was used to seed 200 independent sequence design and backbone optimization 

trajectories (7200 trajectories in total).  Each trajectory consisted of 9 rounds of sequence 

optimization followed by torsion-based backbone and side chain optimization (see methods).  During 

these runs only small backbone perturbations were made and the average backbone perturbation over 

the course of a trajectory was 0.3 Å RMSD.  However, these small backbone perturbations often 

changed the most preferred sequence, out of the 10 loop residues it was common to see 4 or 5 

mutations when comparing to the initial designed sequence, and the Rosetta full atom energy of the 

designed structure typically dropped between 5 and 10 kcal / mol (Figure 4.1).  In some cases the 

simulation fell into a local minimum after the first round of design and backbone optimization, while 

in other cases the energy continued to drop throughout the trajectory.  For the 7200 design models, 

the Rosetta scores varied from -135 to -156 kcal / mol.  Some starting structures produced lower 

energy, high-resolution models on average than other starting structures.  10 starting structures were 

represented in the final top 200 scoring models.       

 

Selecting designs for experimental validation.  Designs were selected for experimental validation 

using several criteria: the Rosetta full atom score, the number of buried polar groups without a 

hydrogen bonding partner 30, and the quality of packing in the protein as measured by the amount of 

molecular surface accessible to a 0.5 Å probe but not a water molecule (SASApack score, see 

methods).  A first round of selection was made by eliminating all models with more than 2 unsatisfied 

hydrogen bonds in the region of the designed loop, a SASApack score greater than 2.0 and a total 

score greater than -148 kcal / mol.  For reference, the wild type protein has a Rosetta score of -148 
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kcal / mol after relaxation, 2 unsatisfied hydrogen bonds in the region of the designed loop, and a 

SASApack score of 0.83.  The hydrogen bond filter was the most stringent and removed 6608 models 

from consideration.  60 models were left after applying all three filters.  From these 60, three 

sequences were selected for further study: the lowest scoring structure (LoopC), and two structures 

with low packing scores (LoopA and LoopB) (Figure 4.2).  Each sequence differs from the wild type 

protein and the starting structure in at least 7 out of the 10 sequence positions.  

 

The wild type loop on tenascin is stabilized by a set of hydrophobic residues that form closely packed 

interactions in the space between the beginning and end of the loop.  Similar types of interactions are 

present in all three designs selected for experimental study, but the identities of the amino acids vary 

(Figure 4.2).  The pairwise backbone RMSDs between the designs range between 0.9 and 1.6 Å 

(supplementary Figure 4.8).  To evaluate if the designed sequences were specific for their respective 

backbones, the sequences were threaded onto the other design models and scored after rotamer 

repacking and every sequence favored the backbone for which it was designed (supplementary 

Figure 4.9).  For example, LoopA has a score of -152; when the LoopA sequence is threaded onto the 

WT, LoopB and LoopC backbones the scores are -137, -140 and -143 respectively.   

 

Structure prediction with the designed loop sequences.  During the loop design protocol small 

perturbations in backbone motion are used to look for local minima in structure space, but the 

protocol does not include any explicit tests that would probe if the design sequence prefers 

significantly different alternative conformations.  To computationally test if our designed sequences 

prefer the designed target conformations we performed structure prediction with the loop sequences.  

In these simulations, the only input into Rosetta is the sequence of the loop and the structure of the 

scaffold.  Structure prediction is performed using fragment based insertion with a round of low 

resolution scoring followed by high resolution scoring 31.  A cyclic coordinate descent algorithm is 

used to close loops following insertions 32.  As is the usual strategy with Rosetta, thousands of 
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independent structure prediction simulations were run with each sequence.  For all three sequences, 

the lowest energy structure predictions resembled the design models (backbone RMSD < 0.8 Å) and 

there was an increase in energy as the RMSD values for the models increased above 1 Å (Figure 4.3).  

Pairwise backbone RMSDs were calculated between each of the designed loops and the lowest 

energy structure prediction for each loop (supplementary Figure 4.8).  There was a closer agreement 

between matched pairs, i.e. LoopA structure prediction compared to the LoopA design, than there 

was between unmatched pairs, i.e. LoopA structure prediction compared to the LoopB design model.   

 

The lowest energy structure predicted for LoopB is similar to the design model (backbone RMSD = 

0.77 Å), but there are noticeable differences in the backbone positions of residues 24-26.  In the 

predicted structure the carbon alpha positions of these residues are shifted ~1 Å towards the N-

terminal tail of tenascin, and proline 24 is better packed in the structure prediction model.  The 

SASAprob score of proline 24 is 0.29 in the structure prediction model and 0.09 in the original design 

model.  During structure prediction with the LoopB sequence there were models created that more 

closely matched the LoopB design model (backbone RMSD < 0.3 Å), but these models scored worse 

(Figure 4.3).  The fact that our design procedure did not find the lower energy conformation for the 

LoopB sequence indicates that in the future that it will be advantageous to perform more aggressive 

sampling of conformational space, including de novo structure prediction, when iterating between 

sequence design and structure optimization. 

 

Experimental characterization.  All three of the designed proteins were expressed in E. coli.   

1-dimensional 1H NMR spectra of each protein indicate that they are well folded and adopt � -sheet 

structures (supplementary Figure 4.10).  Circular dichroism was used to probe the thermal stability 

of the proteins (Figure 4.4).  Loop B and Loop C have midpoints of thermal unfolding (Tm) that are 

similar to the wild type protein, while the Tm for LoopA is 15 degrees lower than the wild type 

protein. The folding of all the three proteins is reversible and highly cooperative ( data not shown ).  
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Crystal trays were set up for all three designs.  Crystals that diffract at high resolution were obtained 

for LoopA and LoopB.  The crystal structure for LoopB was solved to 1.45 Å resolution with an R-

factor of 17% and an Rfree of 19%.  There is good agreement between the design model and the 

crystal structure.  The design model was superimposed on the crystal structure by aligning the loop 

residues and residues that make contact with the loop (residues 4-8 , 20-31 , 48-55 , 72-74) (Figure 

4.5).  Based upon this superposition, the RMSD between the backbone atoms in the designed loop 

and the crystal structure was 0.46 Å .  The lowest energy de novo structure prediction for loopB had a 

slightly better match to the crystal structure, the RMSD was 0.42 Å .  In the crystal structure the 

backbone atoms of residues 24-26 were located between the design model prediction and the de novo 

prediction.  The B-values for the atoms in the redesigned loop are comparable with the other loops in 

the protein and are all below 30 Å 2.    

 

All of the side chain rotamers in the design model were predicted correctly except for Gln26.  In the 

crystal structure the side chain of Gln26 forms hydrogen bonds with the backbone nitrogen and side 

chain oxygen of Asp2 (Figure 4.5) and has low B-values (<25).  We were curious if this side chain 

was not predicted correctly because of changes in the backbone coordinates of the residues or because 

of the Rosetta energy function.  To test between these two options the backbone coordinates of the 

crystal structure were used as the template for a Rosetta side chain repacking simulation with the 

designed sequence.  Like the design model, the repacked structure did not have hydrogen bonds 

between Asp2 and Gln26.   The Rosetta energy function disfavors the crystal structure rotamer for 

several reasons.  Firstly, the rotamer adopted in the crystal structure is especially rare in the Dunbrack 

rotamer library 33,34 and Rosetta assigns an internal energy of 3.0 kcal / mol to this rotamer.  The 

Rosetta preferred rotamer has a rotamer score of 0.8 kcal / mol.  Secondly, Rosetta only assigns weak 

scores to the two putative hydrogen bonds, both have scores weaker than 0.5 kcal / mol because the 

distances and angles between the groups are suboptimal.  Favorable hydrogen bonds in Rosetta score 
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near 2 kcal / mol.  Thirdly, there is a desolvation penalty (> 3 kcal / mol) for removing the glutamine 

side chain from water.  It is difficult to determine which of these scores is most misrepresenting the 

true energetics of Gln26, and this result demonstrates the challenge of balancing nearly equal and 

opposite energy terms.   

 

LoopA crystallized at low pH ( 3.0 ).  The resolution of the structure was 2.1 Å with an Rfree value of 

30%.  Under these conditions the structure of the protein does not look similar to the design model.  

In the crystal the protein adopts a 50/50 mixture of domain swapped dimers and monomers (Figure 

4.6).  In the domain swapped structure the designed loop opens up to allow strands 1 and 2 to insert 

into the partner molecule.  The loop is stabilized by a set of hydrogen bonds involving acidic side 

chains that appear to be protonated.  Unfortunately, there is not clear electron density for the loop 

residues in the monomeric chain.  This suggests that at low pH the loop is not adopting a specific 

conformation in the monomer.  To further characterize the monomer-dimer equilibrium, gel filtration 

experiments were performed at a variety of pHs.  At neutral pH the protein has an apparent molecular 

weight that is close to the predicted weight for a monomer, while at low pH the apparent molecular 

weight is 18 kDa, halfway between a monomer and dimer.  These results, combined with the 

decreased stability of LoopA at pH 7, suggest that the designed loop may not have a strong preference 

for adopting the target conformation. 

 

None of the scores that were used to evaluate the design models suggested that LoopA would be more 

prone to forming a domain swap interaction than the other loop designs.  Domain swapping has been 

observed in many proteins, including de novo designed proteins 35,36.  From these studies it is clear 

that subtle changes in environment or sequence can promote swapping.  Unlike the sequences of 

LoopB, LoopC and the wild type protein, LoopA does not have any prolines in the redesigned loop.  

In the domain-swapped crystal structure of LoopA, residues 23, 27, 29 and 30 have phi angles that are 

incompatible with a proline.  This suggests that the prolines in the other designed loops could play a 



 86 

role in preventing domain-swapping by disallowing conformational changes required for opening up 

the loop.  However, it should be noted that in a previous study we used a designed proline to favor 

domain swapping 37.  In summary, the LoopA results highlight the diversity of structures that a 

designed sequence can adopt, and provides an example of where explicit negative design would be 

useful if the competing states could be identified a priori.    

 

CONCLUSION 

 

Our results indicate that with the current Rosetta energy function and sampling techniques it is 

possible to design a 10-residue loop with high accuracy.  LoopB is stabilized by tight packing 

interactions between hydrophobic side chains in the center of the loop.  In the future, it will be 

interesting and important to test if novel protein loops can be designed by forming new hydrogen 

bonding interactions.  In this study we used de novo structure prediction simulations to test if our 

designed sequences prefer the target conformations.  In all three cases the lowest energy structure 

prediction resembled the design models, but in the case of LoopB there were a few residues that were 

shifted ~1 Å from the design model.  In the crystal structure of LoopB, these residues adopted a 

position that was between the design model and the structure prediction.  In future designs with more 

complicated target structures, it may be even more useful to evaluate designed sequences with de 

novo structure prediction simulations.  These simulations can provide templates for creating even 

lower energy sequence-structure pairs and they can be used to determine if negative design will be 

needed to disfavor competing states.       

 

MATERIALS AND METHODS 

 

Iterative backbone and sequence optimization.  Rosetta’s standard full atom energy function was 

used for structure prediction and sequence design 6,21.  Rotamer-based sequence optimization was 
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performed as described previously 38.  Dunbrack’s backbone dependent rotamer library was used with 

extra sub-rotamers created by varying all chi1 angles and the chi2 angles on aromatic residues plus or 

minus one standard deviation from the most preferred chi angles 33.  During sequence design all 10 

residues in the designed loop were allowed to vary to any amino acid except for cysteine, and the 

neighboring residues were allowed to adopt alternative side chain conformations.  9 rounds of 

iterative sequence design and backbone optimization were used to search for low energy sequence-

structure pairs.   

 

Backbone flexibility was restricted to the loop.  Backbone optimization was performed using Monte 

Carlo optimization.  Only torsion angles are explicitly varied during the procedure.  A single Monte 

Carlo move consisted of 1) a small change to the phi and psi angles of the loop residues (up to 5 

residues are varied simultaneously), 2) a quick optimization of side chain rotamers and 3) gradient-

based optimization of backbone and side chain torsion angles.  After performing these 3 steps the 

energy of the new structure is compared to the energy of the protein before the move and the 

Metropolis criterion is used to decide if the move should be accepted.  Two types of moves were used 

to create the initial perturbation to the backbone: small random changes (~1 degree perturbations) and 

shear moves.  A shear move consists of a small change to a phi angle compensated by a change in the 

opposite direction to the psi angle.  Fast rotamer optimization was performed by cycling over each 

side chain once (in random order) and choosing the lowest energy rotamer given the current 

environment.  Gradient based minimization was performed with a conjugate gradient protocol that 

calculates the first derivative of the energy function for each torsion angle that is being varied 21,22.  A 

score that favors a low RMSD deviation between the first and last residue of the loop and the protein 

scaffold was used to keep the loop closed during backbone optimization. 

 

De novo structure prediction of loop sequences.   The structures of the designed sequences were 

predicted using a recently developed Monte Carlo-based loop modeling protocol in Rosetta 39(Chu 
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Wang, Phil Bradley and David Baker, personal communication). The sequence of the loop is used to 

pick overlapping 3 residue fragments from the PDB with similar sequences.  These fragments are 

then randomly combined to create a starting structure for optimization.  The first round of 

optimization is performed with a low resolution model of the protein that favors good backbone 

torsion angles and backbone hydrogen bonding.  The second round is performed in high resolution 

full atom mode and combines small and shear moves (see above) with gradient based minimization 

and Dunbrack’s cyclic coordinate descent algorithm for loop closure 32.  Rotamer repacking is also 

performed after every 20 backbone trials.  Thousands of Monte Carlo moves are considered.  For 

each sequence, 20,000 independent trajectories were performed.    

 

SASApack and SASAprob scores.  SASApack score was used to evaluate the quality of packing of 

the design models. The solvent accessible surface area (SASA) of each residue was calculated with 

two different probes ( 0.5 Å and 1.4 Å ) and the difference was compared to the average difference 

seen in PDB for a particular residue in a similar environment 40.  The SASAprob score is the 

probability of observing an amino acid in a similar environment with a higher SASApack score.  A 

SASAprob score of 0.95 indicates that a residue is better packed than 95% of similar residues in the 

PDB.     

 

Protein expression and purification.  Genes for the redesigned proteins were constructed with 

cassette mutagenesis in the pET21b expression vector.  The proteins were expressed in the E. coli. 

BL21 strain at 37 °C with 0.5 mM IPTG used for induction.  The proteins were purified with a Ni+ 

affinity column followed by size-exclusion chromatography ( Superdex-75). 

 

NMR.  The redesigned proteins ( about 1 mM concentration ) were equilibrated in 20 mM sodium 

phosphate, 0.5 M NaCl, pH = 7.4 buffer and one-dimensional 1H NMR spectra were recorded at 25 

°C on a 700 MHz Varian spectrometer.  
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Circular dichroism.  CD data were collected on a JASCO J-810/815 CD spectrometer using 0.1cm 

cuvetta containing 50 uM samples.  The CD signal was monitored at 200 nm as a function of 

temperature (10 – 90 °C). The fraction of unfolded was calculated assuming that the CD signal of the 

unfolded and folded protein varies linearly with temperature. 

 

Crystallization, X-ray diffraction and structure determination.  The hanging-drop vapor diffusion 

method was used for crystallization trials of the three designed proteins at room temperature. LoopA ( 

about 20 mg/mL in 100 mM NaCl, 20 mM Tris buffer at pH 7.4 ) was mixed with an equal volume of 

well buffer of 2.0 M Ammonium Sulfate, pH = 3.0, 10% additive 0.1 M cupric chloride (from 

Hampton research) was added to the drop. 20% ethylene glycol was used as the cryoprotectant. 

Crystals of LoopB ( about 35 mg/mL in 100 mM NaCl, 20 mM Tris buffer at pH 7.4 ) were grown 

against a well buffer of 3.8M sodium formate, 5% glycerol, pH = 7.5. 20% glycerol was used as the 

cryoprotectant. Diffraction data of LoopA were collected at the Advanced Photon Source at Argonne 

National Laboratory, Beamline 22-ID (SER-CAT). Diffraction data of LoopB were collected at the 

Beamline x29A at Brookhaven National Laboratory. 

 

The data were indexed and processed with the program HKL2000 41. Both the structures of LoopA 

and LoopB were solved by molecular replacement using the program AmoRe 42 and Phaser 43,44. Wild 

type tenascin (PDB code 1TEN) was used as the initial search model. The models were then refined 

against the synchrotron data to 1.45 and 2.1 Å resolution respectively (supplementary Figure 4.11). 

Alternating cycles of model building with the program O 45 and refinement with the programs CNS 46 

and refmac 47 were used to determine the final structure. The geometry of the final model was 

assessed with PROCHECK 48. 

 

Accession codes : The coordinates and structural factors of LoopA and LoopB have been deposited 
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into the RCSB Protein Data Bank with PDB ID code 2RBL and 2RB8. 
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 FIGURES 

 

Figure 4.1  Iterative optimization of a loop sequence and conformation 
A) Two representative design trajectories are shown in red and blue.  The diamonds indicate the 
energy of the protein after sequence design and the squares after optimization of backbone and side 
chain torsion angles.  B) The starting (green) and ending (blue) models for the red trajectory (panel 
A)  C)  The starting and ending sequences scored on the starting and ending structures from the red 
trajectory (panel A).               
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Figure 4.2  Models and sequences of the redesigned proteins 
A) Sequences and scores of the redesigns.  The SASAprob scores, which reflect the quality of 
packing for individual residues, are shown for residues buried in the center of the loop.  A SASAprob 
score of 0.20 for a leucine indicates that 80% percent of the leucines in a similar environment in the 
PDB are better packed (see methods).   B) Designed loops (blue – LoopA, cyan – LoopB,  fuschia – 
LoopC) compared to the WT loop structure (red – WT).   C-F) Models of the designed loops. 
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Figure 4.3  Structure prediction with the designed sequences 
10,000 independent prediction trajectories were run for each design and the Rosetta energy of the 
models was plotted against the backbone RMSD of the predicted structures compared to the design 
models. 
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Figure 4.4  Thermal unfolding of the designed sequences as monitored with circular dichroism 
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Figure 4.5  Alignment between the crystal structure and the design model 
A) The crystal structure of LoopB (green) aligned with the design model of LoopB (mauve).  The 
backbone atoms of residues 4-8, 20-31, 48-55, and 72-74 were used for the alignment.  B) Close-up 
of glutamine 26.   

 

 

 

A

) 
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Figure 4.6  The crystal structure of LoopA 
A) The crystal structure of LoopA at low pH.  The repeating unit contains a domain-swap dimer ( 
chain 1: cyan, chain 2: green ) and a monomer (purple).  Electron density is not present for the 
redesigned loop in the monomer.  In the dimer the loop opens up and strands 1 and 2 insert into the 
partner molecule.  B) The designed loop appears to be stabilized by protonated glutamic acid 
residues.    
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SUPPLEMENTARY MATERIALS 

 

 

 

 

 

 

Figure 4.7  Representative set of starting structures used for loop design 
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 WT LoopA LoopB LoopC 
LoopA 

(sp) 
LoopB 

(sp) 
LoopC 

(sp) 

WT / 1.89 0.90 1.12 1.87 0.45 1.15 

LoopA 1.89 / 1.49 1.58 0.58 1.82 1.50 

LoopB 0.90 1.49 / 0.94 1.55 0.77 0.68 

LoopC 1.12 1.58 0.94 / 1.46 1.14 0.47 

LoopA(sp) 1.87 0.58 1.56 1.46 / 1.84 1.43 

LoopB(sp) 0.45 1.82 0.77 1.14 1.85 / 1.10 

LoopC(sp) 1.15 1.49 0.68 0.47 1.43 1.10 / 

 
Figure 4.8  Alignment between the design models and structure predictions 
Pairwise RMSDs between the design models and the lowest energy structure predictions (sp).  The 
RMSDs are given for the backbone atoms in residues 22-33.  The models were aligned using the 
fixed residues in the scaffold: residues 1-19 and 35-89. 
 

 

 

 

 WT sequence LoopA sequence LoopB sequence 
LoopC 

sequence 
WT  

Structure 
-147.8 -137.0 -144.4 -137.2 

LoopA Structure -147.1 -151.8 -136.0 -127.0 
LoopB Structure -143.6 -140.0 -148.8 -141.2 
LoopC Structure -144.2 -143.3 -147.8 -156.2 

 
Figure 4.9  Energies of design models for different templates 
Energies of design models created by threading the design sequences onto the various design 
templates.  The side chain conformations were optimized with rotamer repacking before scoring. 
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Figure 4.10  1-dimensional 1H spectra of the designed proteins 
 

 
 
 

LoopC 

LoopB 

LoopA 

WT 
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Data collection 
Crystal LoopA LoopB 
Resolution range ( Å ) 49.004 – 2.101 27.185 – 1.450 
Total reflections 1,366,022 573,177 
Unique reflections 15,770 19,928 
Completeness 86.0 % ( 60.3 ) 90% ( 33.9 ) 
Rmerge 0.054 ( 0.466* ) 0.068 ( 0.191* ) 
Space group H32 P3221 
Unit cell dimensions a = b = 137.2 Å 

c = 86.682 Å 

a = b = 62.781 Å 

c = 53.793 Å 

 
 

Refinement 
Crystal LoopA LoopB 
Resolution range ( Å ) 70 – 2.1 30 – 1.45 
R 0.25 0.17 
Rfree 0.30 0.19 
rmsd bond length ( mc ) ( Å ) 0.042 0.005 
rmsd bond angle ( mc ) 3.330 1.379 
No. of protein atoms 2014 724 
Average B factor for all atoms ( Å2 ) 55.204 16.167 

 

Figure 4.11  X-ray diffraction data 
X-ray diffraction data collection and refinement (cryo solvent and wavelength , beam line, 
crystallization condition, shown in materials and methods) 
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ABSTRACT 

 

De novo design is a rigorous test of our understanding of the protein folding process and is a very 

challenging problem.  Despite many successes to date, de novo design of globular "-sheet proteins 

remains an unsolved problem.  To improve our understanding of "-sheet proteins, we have used 

Rosetta to try to design "-sandwich proteins with Greek Key topology using only positive design.  

The designed proteins expressed at the anticipated size, and circular dichroism experiments indicated 

the designed proteins either aggregated with "-sheet content or are unfolded.  Even after several 

generations of design, these proteins displayed low solubility.  These results suggest that in the future, 

it will be worthwhile to incorporate negative design techniques to create well-folded "-sandwich 

proteins. 
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INTRODUCTION 

 

De novo protein design has been a very attractive approach to test our understanding of the principles 

of the protein folding process1,2.  The goal of de novo design is to predict a sequence that is not 

necessarily related to any naturally occurring protein sequence, and which will fold into a predefined 

three-dimensional structure.  It is very challenging and computationally expensive because de novo 

design involves the construction and optimization of a new backbone template3.  In the past few years 

there has been great progress in de novo design and a number of strategies have been developed for 

this approach4-10.  Hecht et al. designed a four-helix bundle protein that seemed to be monomeric with 

helical secondary structure using a binary library approach9.  The Degrado laboratory tried to design a 

four-helix bundle by incorporating some hydrophilic residues at buried positions, and they were able 

to convert the design from molten globule to a specific conformation.  However, the high resolution 

structure shows that the protein does not adopt the target fold11,12.  Harbury et al. created a four-helix 

coiled-coil with a novel super-helical twist7.  Their approach was to search for a sequence that 

maximized the energy gap between a target structure and alternative structures.  Another 

breakthrough result was the creation of a novel fold in the protein TOP7 by Kuhlman et al.
4  They 

used Rosetta to create a family of starting structures, which were optimized through iterations 

between sequence design and backbone minimization.  This approach did not explicitly include 

negative design.  The crystal structure of the design matches the design model very closely(RMSD 

1.2 Å), and it is very stable (Tm > 100 °C).   

 

Compared with #-helix design, "-sheet protein design has been less successful2.  Since 1981, the 

Richardson group has been trying to design a series of "-sheet, bell-shaped proteins termed 

betabellins.  For several generations, solubility was a big issue with these designs13-15.  The most 

successful designs from their trials are betabellin 14D and betadoublet.  They used an alternating 

hydrophobic/polar pattern for the primary sequence and a disulfide bond was used to connect two 
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identical subunits.  Both proteins were water soluble at low pH; however NMR data suggested that 

they did not adopt a single unique conformation and are most likely molten globules.  Kortemme et 

al. designed a 20-residue three-stranded "-sheet protein without disulfide bonds16.  In this work they 

incorporated an aromatic cluster along one "-sheet which contributed to the stability.  Sollazzo et al. 

used a portion of the immunoglobulin VH domain to design a small protein that can bind metal upon 

folding17.  Its solubility was poor (10 µM) which limited detailed structural analysis.  Nanda et al. 

designed a mimic of the redox protein rubredoxin, which is one example of a functional de novo 

designed !-sheet protein18.   

 

These attempts at de novo design of "-sheet proteins are very encouraging; however, no design has 

yet been validated by a high resolution structure.  The de novo design of modular "-sheet proteins is 

still very challenging.  As we might expect, many of the de novo designed "-sheet proteins have very 

low stability and solubility, suggesting the need to incorporate negative design elements to design 

against unwanted misfolded and aggregated states.  Negative design means trying to design a 

sequence that is unfavorable in alternative conformations.  

 

To test if negative design is necessary for de novo design, we decided to design a "-sandwich protein 

from scratch using only positive design (search for a sequence that has low energy in the target 

conformation).  Kuhlman et al. used this approach to design TOP7 successfully and we were curious 

to see whether this same approach could be used to design a "-sheet protein.  To increase the chance 

of success, we chose a target fold found in nature, the fibronectin type III (FNIII) domain, an 

immunoglobulin-like (Ig-like) "-sandwich protein with a Greek Key topology.  The Ig-like fold is one 

of the most common structures in the protein database.  This domain is found in proteins of diverse 

functions with low sequence identity but with very similar three dimensional structures19,20, 

suggesting that this fold is highly designable.  It has three strands A, B and E in one sheet, and four 
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strands C, D, F and G in the other sheet, forming two interacting antiparallel "-sheets (Figure 5.1).  

Studies have shown that this FNIII domain is a very good structural scaffold for protein design 

because the residues contributing to stability are mostly in the core and those residues involved in 

function are mostly located in the loop regions19-21.  The separation of function from folding allows 

the loops to be reengineered for different functional requirements.  Because the loops are very 

tolerant to mutations, this fold has been proven to be a very good scaffold for monobody design22.  

Monobodies, small proteins that are considered antibody mimics, are easy to express and purify.  This 

seems to be an ideal target fold for our de novo design and potentially could be useful for future 

molecular recognition applications. 

 

MATERIALS AND METHODS 

 

Computational design approach 

 

The protocol for de novo design is shown in Figure 5.2, it mainly has four steps: 1) generating 

starting structures; 2) high resolution refinement of backbone conformation and sequence design; 3) 

rebuilding and refinement; 4) model selection for experimental validation. 

 

Step 1: Generating starting structures 

 

Our goal is to create a stable three-dimensional all "-sheet protein based on a specific design model. 

The first step for de novo design is to define the target structure. Figure 5.3 A shows the schematic 

representation of the target fold and the constraints used to specify the topology.  A secondary 

structure was assigned to each sequence position and some short-range distance constraints were used 

to guide the assembly process; for instance, distance constraints between backbone nitrogens and 

carbonyl oxygens for stand pairing as shown in Figure 5.3 A.  To create starting structures, a library 
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of three and nine residue fragments with the desired secondary structure was generated from the 

PDB23.  A Monte Carlo optimization strategy was used to assemble these fragments to yield native-

like models that maximize hydrophobic burial and hydrogen bonding (Figure 5.3 B)4,23.  The 

advantage of Rosetta’s proven fragment assembly strategy is that most of the local interactions are 

favorable because the backbone is built from small pieces of naturally occurring proteins.  Structures 

satisfying the strand pairing constraints were minimized and passed to the next step: sequence design.   

 

Step 2: High resolution refinement of backbone conformation and sequence design 

 

The starting structures were generated without consideration of side chain packing, which means the 

starting structures might not have been designable (i.e. no low free energy sequence is available for 

the target structure).  As we have seen in previous de novo design experiments using fixed-backbone 

sequence optimization to search for low energy sequences, no sequences for these backbone 

structures existed with energies comparable to energies of naturally occurring proteins4.  To improve 

the models’ energies, we used a protocol which couples sequence design and backbone movement by 

iterating between the sequence optimization for a fixed backbone and optimization of the backbone 

for a fixed sequence.  The energies were improved dramatically with this iterative optimization 

procedure and were comparable to values we observed for fixed-backbone redesign of naturally 

occurring proteins.   

 

The first round of sequence design uses a standard Metropolis Monte Carlo optimization procedure.  

The starting conformation is perturbed by a single rotamer substitution. If the substitution lowers the 

energy, it is accepted.  If the energy is higher, the substitution is accepted with a probability.   

 

The second round of backbone optimization protocol uses Monte Carlo optimization with gradient-

based minimization.  A variety of random changes to the backbone conformation are allowed23.  One 
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type of change is a small perturbation of selected phi or psi angles.  Another change involves the 

random perturbation of a selected phi angle and a compensating opposite rotation of the preceding psi 

angle.  These two types of movements produce subtle local perturbation.  A third random change is 

the insertion of a new fragment (using fragment libraries as before) along with variation of nearby 

backbone torsion angles to accommodate the change.  After minimizing perturbation of a subset of 

phi and psi angles, the side chain torsion angles are rapidly optimized.  The conformation produced 

by these changes is conjugate-gradient minimized to a local energy minimum and the perturbation is 

accepted or rejected based on the Metropolis criterion.  Several thousand Monte Carlo moves 

followed by minimization are used for a round of backbone refinement.   

 

Following backbone refinement, the sequence will be redesigned based on the new backbone 

conformation.  Typically after 10 iterations of backbone optimization and sequence design, the 

sequence and energies do not change significantly.  This protocol was used successfully to design a 

novel globular protein TOP7 4.  In this work, the protein backbone did not move dramatically during 

this optimization procedure, but the subtle movement of the backbone usually lowered the energy of 

the structure significantly.  For each starting structure, the protocol was used to obtain low energy 

structure-sequence pairs.  To restrict our search to more soluble sequences, we allowed all amino 

acids except cysteine for all the loop positions and buried positions in the strands but restricted the 

surface positions in the strands to be polar amino acids.  The reference energies were recalibrated to 

best reproduce the native sequences for a set of high resolution "-sheet proteins. 

 

Step 3: Rebuilding and refinement  

 

Step 2 allows us to design sequences with a flexible backbone, however, the backbone does not move 

dramatically during the optimization procedure.  To introduce more backbone diversities so as to 

increase the conformational sampling, a newly developed protocol has been used to refine the 
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structures24.  There are three steps in this protocol.  First, identify the highly structurally variable 

regions of the protein, often mainly the loop regions, and rebuild them.  Fresh coordinates for these 

regions were generated using the fragment insertion protocol.  Cyclic coordinate descent25 (CCD) was 

used to maintain the connectivity of the design model and proper closure of rebuilt sequences.  This 

rebuilding protocol allows for the sampling a broad range of conformational spaces.  The second step, 

full atom refinement, searches for local energy minima for the structures produced by the rebuilding 

process.  The refinement has four steps: 1) random perturbation of backbone torsion angles; (2) rapid 

rotamer optimization; (3) gradient-based minimization to the local energy minimum; (4) evaluation of 

the Metropolis criterion.  The refinement step ensures sampling of the lowest energy regions of the 

energy landscape. 

 

Step 4: Model selection for experimental validation 

 

Designed structures were selected for experimental validation with several filtering criteria: the 

number of unsatisfied hydrogen bonds, Rosetta energy and the quality of packing in the protein.  

Studies have shown that unsatisfied backbone polar groups are energetically quite expensive and 

unlikely26, so the backbone polar groups should be involved in hydrogen bonds or solvent exposed.  

Unlike in fixed backbone design, structures from de novo design are more likely to have problems, 

particularly in hydrogen bonding and tight packing.  The number of unsatisfied hydrogen bonds is the 

most stringent filter, so the first round of selection was made by filtering out those structures that 

have more unsatisfied hydrogen bonds than those seen in naturally occurring "-sheet proteins.  The 

other two criteria were then applied to get the final designs.  The final sequences were submitted to 

the NCI database with PSI-BLAST to confirm that the sequences were not related to any naturally 

occurring protein sequences27. 

 

First generation of design trials 
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We have tried to design "-sandwich proteins from scratch over four different generations, always 

using the fold topology as shown in Figure 5.1.  For the first generation of designs, the short loops 

(AB, CD and FG) were all constructed with 2-residue hairpins that presumably would help to induce 

structure formation.  The longer loops (BC, DE and EF) varied in size from 5 to 9 residues.  Starting 

structures were assembled using small fragments from naturally occurring proteins, using distance 

constraints to force the desired strand pairing (see the Materials and Methods section for more 

details).  From several thousand independent trajectories 76 starting backbone models were selected.  

Each starting structure was relaxed and followed by flexible sequence design.  We did 10 independent 

trajectories for each relaxed structure and finally selected four design models (B001 ~ B004) for 

experimental characterization. 

 

Second generation of design trials 

 

Compared with the first generation designs, these designs were constructed with longer loops.  We 

substituted two-residue hairpins (AB, CD) with longer loops.  Earlier work demonstrated that 

conformational sampling is very important, so for this generation, we generated more decoys and 

selected 1303 starting backbone structures.  More importantly, we also added one more step in the 

design simulation, which is to cut out the loop regions and rebuild them followed by high resolution 

refinement.  Multiple iterations have been performed between sequence design and backbone 

optimization.  This dramatically increased the conformational sampling and improved the energies.  

The Rosetta energies per residue for these designs became comparable to those of the naturally 

occurring "-sheet proteins.    

 

Third generation of design trials 
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We constructed the models for the first and second generations based on some information from 

naturally occurring "-sheet proteins: the length of "-strands and the length of the loops.  However, the 

models were still arbitrarily constructed and it is possible that the target structure is not designable(no 

low free energy sequence for that target fold).  Studies have shown that loops and hairpins are very 

critical to stability and folding kinetics28.  We noticed that naturally occurring "-sandwich proteins 

usually have long flexible loops instead of short hairpins, and decided to use a wild type "-sandwich 

protein, the tenth FNIII domain from human fibronectin21(PDB code 1FNA), as a template to 

construct the fragments and constraint file.  To avoid ending up with very native-like sequences, we 

excluded homologies in the fragment files.  All the loops were quite long in this set of designs.  

Figure 5.4 shows one example of a starting backbone model( long loops for AB, CD and FG).  We 

generated 260 starting structures that closely resembled the final target fold; the RMSD to the 

template varied from 2 to 5 Å.  Nine models (F1 ~ F9) were finally selected for experimental 

validation; their sequence identity to the template was about 20 percent. 

 

Fourth generation of design trials 

 

Rosetta uses an orientation-dependent hydrogen bonding term, derived from the distribution of three 

parameters (distance between the hydrogen and acceptor atoms %, angle at the hydrogen atom & and 

angle at the acceptor atom ', Figure 5.4) from the PDB database29.  However, there is another 

important angle, (, which is the torsion angle given by rotation around the acceptor-acceptor base 

bond for sp2 hybridized acceptors (Figure 5.5).  This angle is missing from the current energy 

function.  We calculated the ( angle for naturally occurring "-sheet proteins and Rosetta generated 

decoys and found that the patterns are clearly very different (Figure 5.6 A and Figure 5.6 B).  In 

nature, the ( angle favors 0 degrees, however, Rosetta generated decoys do not.  Our collaborators 

Jack Snoeyink and Ning Jin explicitly incorporated this ( term into Rosetta energy function (Figure 
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5.6.C), and we used those starting structures from the second generation to do another round of 

sequence design with the modified energy function.  Four models were selected for experimental 

validation (BN1 ~ BN4).  The sequences for all the designs are listed in the supplementary Table 

5.2. 

 

EXPERIMENTAL PROCEDURES 

 

Protein expression, purification and biophysical characterization 

 

Genes for the designed proteins were either bought from a commercial gene synthesis corporation 

(GenScript) or synthesized in-house with PCR extension of many overlapping oligonucleotides 

bought from Operon30.  Appropriate restriction enzymes were used to digest and subclone the 

sequences into the E. coli expression vector pET21b (Novagen) or pGex4T (Amersham) as fusions 

with either a 6x histidine tag or GST tag. Individual clones were screened for inserts and verified by 

DNA sequencing.  The proteins were expressed in E. coli BL21 strain and were purified using affinity 

chromatography followed by ion exchange and gel filtration chromatography (Superdex-75).  For 

those proteins that expressed in inclusion bodies, 6 M GuHCl was used to solubilize the pellet and 

then the soluble fraction was loaded onto an affinity column for further purification.  GuHCl was then 

gradually removed by dialysis.  The gel filtration was used to indicate if the protein was monomeric, 

oligomeric or aggregated.  Analytical ultracentrifugation was used to confirm the oligomeric status if 

necessary.  Circular dichroism (CD) was used to probe the secondary structure of the protein and 

measure whether it unfolds cooperatively with temperature or chemical denaturants.  1D-NMR 

experiments were used to confirm if the proteins were well folded.  For those designs that appeared to 

be stable and well folded, we used X-ray or NMR to solve the structures. 
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RESULTS  

 

Experimental Characterization 

 

First generation 

 

All four designed proteins (B001~B004) were expressed in E. coli and purified with nickel  column 

affinity chromatography, concentrated and run on a size exclusion column.  In all cases the proteins 

displayed apparent molecular weights in their gel filtration profiles, which were significantly higher 

than the expected weight of a monomeric protein.  To determine the secondary structures of the 

designed proteins, CD spectra were recorded on Pistar-180 spectrometer. Spectra from 250 to 190 nm 

were collected using 0.1 cm cuvette containing 50 µM samples.  As shown in Figure 5.7 A, the 

protein B002 has a single trough around 215 nm, which is characteristic of "-sheet proteins.  Thermal 

denaturation was monitored at four different temperatures (25 °C, 50°C, 80°C and 95°C).  The 

observed behavior suggested that the folding and unfolding under these circumstances were 

reversible.  Although the CD spectra showed that the protein B002 were largely composed of "-sheet 

secondary structure, it was actually aggregated as evidenced by 1D NMR spectrum.  1D NMR data 

were collected on a 600 MHz Inova spectrometer and the spectrum showed very broad lines 

suggesting that the protein was poorly folded (Figure 5.7 B).  From these data it was clear that the de 

novo designs were aggregating.  

 

Second generation 

 

Genes for five selected designs (B5~B9) were synthesized in-house and the genes were inserted into 

E. coli expression vector pGex4T1 with a GST tag.  The proteins were purified with a GST affinity 

column, thrombin cleavage, then ion exchange and gel filtration columns.  Gel filtration profiles of 
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the first three suggested that they were aggregating.  B9 showed an apparent molecular weight of 24 

kDa.  To test secondary structure, CD experiments were performed on a Jasco J-810/815 CD 

spectrometer with 1mm path length cuvette.  As shown in Figure 5.8 A, B9 showed a strong 

minimum at 190 nm suggesting the protein was unfolded.  In the design model, there is a buried 

hydrogen bond between Tyr 17 and Ser 66 (Figure 5.8 B).  We decided to mutate these two polar 

residues to hydrophobic residues and Rosetta picked Phe at position 17 and Ala at position 66 

(Figure 5.8 C).  We made these two point mutations, but the mutant showed very similar behavior to 

B9.  Both the CD data and 1D NMR spectrum (Figure 5.8 D) showed the mutant was still unfolded.  

 

Third generation 

 

Nine designs (F1~F9) models were selected from this generation of designs.  They were cloned into 

pet21b expression vector with a 6x histidine tag on the C-terminus.  The proteins were expressed in E. 

coli, largely in the inclusion bodies.  Gel filtration studies showed that all these designs aggregated.  

This aggregation is probably related to the sequence composition of these designs: as shown in Table 

5.1 C, there are many more phenylalanines and prolines compared to the naturally occurring proteins. 

 

Fourth generation 

 

All the design models from this generation appeared to aggregate except BN1, which showed an 

apparent molecular weight of 20 kDa in the gel filtration profile.  However, CD data showed that 

BN1 was unfolded (Figure 5.9 A).  To help stabilize the protein, we introduced a disulfide bond 

between two strands from the two different sheets into the design model (Figure 5.9 B).  The mutant, 

named ds2, showed behavior similar to BN1, and was also unfolded as evidenced by CD (data not 

shown). 
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DISCUSSION 

 

In summary, we were able to express proteins of anticipated size with "-sheet tendencies, but they 

were either unfolded or aggregated.  It is still unclear why the designed proteins are so prone to 

aggregation.  Unfolded proteins may be associating with each other because some regions are 

intrinsically prone to aggregation.  The protein may form a domain swap or it may not adopt a near 

native conformation.  Nevertheless, from our design trials we have learned some important lessons 

that should deliver improvements in the future.   

 

The Richardons’ betabellins and betadoublet, as well as several of our design trials, all displayed 

limited solubility.  An appropriate hydrophobic/hydrophilic residue composition is very important to 

a protein’s stability.  Several trends are observed by comparing the amino acid compositions of our 

designed models with naturally occurring proteins.  If a designed protein has a relatively large 

number of hydrophobic residues, it is very likely to precipitate, as in our third generation of designs.  

All of the designed proteins display a relatively high percentage of hydrophobic residues, especially 

phenylalanine and proline, and none of these designs are soluble.  However, if there are too few 

hydrophobic residues, it is hard to induce a self-associated folding process.  Our design models B9 

and BN1 both show a relatively low hydrophobic/polar ratio and both appear to be soluble but 

unfolded(Table 5.1 E).  Thus, an optimal number of hydrophobic residues seems to be critical.   

 

Hydrophobic interactions clearly increase stability, but to generate a well-folded protein, packing 

must be very compact.  We noticed that overall the packing in our design models is not optimal.  

Rosetta has recently gained a tool named “packstat” which evaluates how well the protein is packed.  

The score increases from 0 to 1 as packing improves.  We constructed a test set containing 112 

naturally occurring "-sheet proteins from the PDB with high resolution and calculated their packstat 

scores.  We found that the designed proteins have a lower packstat score than wild type proteins, 
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indicating poorer packing. Figure 5.10 shows the histogram of the residue distribution of packstat 

scores in different environments for the design models (Figure 5.10 A and Figure 5.10 C) and 

naturally occurring "-sheet proteins (Figure 5.10 B and Figure 5.10 D).  It is very clear that the 

naturally occurring proteins are much better packed than our design models, especially for the buried 

positions (Figure 5.10 C and Figure 5.10 D).  Here we define buried residues as those with more 

than 19 neighbors (C" distance within distance of 10 Å) and surface residues as those with less than 

13.  In the naturally occurring "-sheet proteins, the packstat scores are clustered near 0.9.  The 

distribution of packstat scores for designed models is somewhat noisy, but we can still see the average 

packstat score is around 0.6, which is quite a bit lower than the wild type proteins.  This result was 

quite shocking, and we were curious if this poor packing in the design models is due to the energy 

function or the sampling problem.  Does this poor packing only happen in de novo design or is it a 

general problem in Rosetta?  Given a designable backbone, will Rosetta do a better job in packing 

residues tightly?  We took the set of native proteins and did fixed backbone design with different 

options and still the designed models did not pack as well as wild type proteins.  This indicates that 

even if the backbone conformation is designable, Rosetta still has some problems in tightly packing 

the side chains.  It remains to be seen if more conformational sampling is need or if the energy 

function needs to be changed to improve packing.   

 

Another observation we have found is that in our design models, usually the number of positively and 

negatively charged residues is about equal, whereas in the naturally occurring proteins, the net charge 

is usually higher (Table 5.1 E).  We believe that increasing the overall net charge of the protein can 

help to improve solubility because the charge repulsion may help to prevent precipitation and 

aggregation31.   
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The successful de novo design of a "-sandwich protein still remains a grand challenge for the protein 

design field.  Most "-sheet proteins designed from scratch aggregate.  However, in nature, almost a 

quarter of all proteins are "-sheet and they are well-folded.  Nature must have encoded some negative 

design elements to prevent misfolding and aggregation; for example, studies have shown that there is 

one proline that is highly conserved in the FNIII domains, but it is conserved for preventing 

aggregation, not for stability or function32.  There are also some other structural features proposed by 

the Richardson laboratory, like short edge strands and "-bulges, that may contribute to preventing 

aggregation32,33.  In our future design trials, we intend to include these negative design elements to 

our design simulation. 
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1  Target FNIII fold 
Three strands A, B and E form the top sheet and strands C, D, F and G form the bottom sheet. Black 
lines connecting the strands represent the loop regions, the dotted lines represent the loops in the back 
of the bottom sheet. 
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Figure 5.2  Protocol for de novo design 
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Figure 5.3  Schematic representation of the target fold 
 (A) Schematic of the target FNIII fold (top panel, hexagon represents "-strand, circular represents 
loop, green dashed line represents the distance constraint for hydrogen bonding); (B) An example of 
one of the starting structures built with Rosetta from the first generation 
 

A 
 

B 
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Figure 5.4  One example of the starting structures 

One example of the starting structures built with Rosetta based on the wild type FN3 template (from 
the third generation). 
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Figure 5.5  Schematic representation of the parameters used in Rosetta for hydrogen bonding 
potential 
( is the dihedral angle between atoms R1, AB, A and H. R1: atom bound to the acceptor base; A: 
acceptor; D: donor; H: hydrogen 34  
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Figure 5.6  X angle distribution 
(A) ( angle distribution of naturally occurring "-sheet proteins. (B) ( angle distribution of 
Rosetta generated decoys with the current version of Rosetta.  (C) ( angle distribution of 
Rosetta generated decoys after explicit incorporation of ( term  in the energy function 
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Figure 5.7  Spectra of B002 
(A) Circular Dichroism spectra for protein B002 at different temperatures( Buffer condition: 50 mM 
NaPi, 150 mM NaCl, pH 3.5).  A single minimum at 216 nm indicates that the protein was largely 
composed of " sheet secondary structure. The temperature was varied from 25 °C (black), 50 °C 
(red), 80 °C (green), 95 °C (yellow) and then cooled down back to 25 °C (blue).  (B) 1D H1 NMR 
spectrum of Protein B002 in pH 3.9, 150mM NaPi, 15mM Tris buffer at 37 °C on the 600MHz 
Varian spectrometer. 
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Figure 5.8  B9 and double mutant 
(A) Circular Dichroism spectrum of B9 at 20 °C; (B) Design model of B9, Tyr 17 formed a hydrogen 
bond with Ser 66 in our design model; (C) Mutant of B9 ( Y17F,S66A); (D) 1D NMR spectrum of 
the double mutant at 20 °C. 
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Figure 5.9  Spectra of BN1 
(A) Circular Dichroism spectrum of BN1 at 20 °C;  (B) Design model of ds2, a disulfide bond was 
introduced into the design model BN1(disulfide bond was shown as stick in brown). 
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Figure 5.10  Comparison of packstat scores 

Distribution of packstat scores for our de novo designed models (panel A and C) and naturally 
occurring "-sheet proteins (panel B and D).  Panel A and B are for all the residues; C and D are for 
the buried residues (have more than 19 neighbors in 10 Å distance). 
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TABLES 

 

Table 5.1  Sequence compositions for different generation of designs 
 

(A) Sequence composition for the first generation of designs 

 

Sequence B001   B002   B003   B004   
ALA 0.05 0.01 0.09 0.06 
CYS 0.00 0.00 0.00 0.00 
ASP 0.09 0.04 0.11 0.12 
GLU 0.10 0.15 0.04 0.07 
PHE 0.04 0.03 0.04 0.03 
GLY 0.03 0.11 0.05 0.10 
HIS 0.03 0.03 0.01 0.03 
ILE 0.05 0.09 0.09 0.10 
LYS 0.11 0.06 0.10 0.06 
LEU 0.01 0.01 0.05 0.05 
MET 0.01 0.00 0.01 0.01 
ASN 0.09 0.06 0.10 0.05 
PRO 0.05 0.03 0.03 0.03 
GLN 0.01 0.06 0.03 0.01 
ARG 0.04 0.07 0.03 0.05 
SER 0.04 0.03 0.01 0.03 
THR 0.10 0.07 0.10 0.11 
VAL 0.10 0.14 0.11 0.05 
TRP 0.00 0.00 0.01 0.00 
TYR 0.06 0.01 0.00 0.04 

Positive 0.17 0.16 0.14 0.14 
Negative 0.19 0.19 0.15 0.20 

Polar 0.24 0.23 0.24 0.20 
Aromatic 0.10 0.04 0.05 0.06 

Hydrophobic 0.30 0.39 0.42 0.40 
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(B) Sequence composition for the second generation of designs 

 

Sequence B5   B6   B7   B8   B9   
ALA 0.06 0.05 0.01 0.05 0.01 
CYS 0.00 0.00 0.00 0.00 0.00 
ASP 0.11 0.11 0.02 0.11 0.07 
GLU 0.05 0.05 0.11 0.05 0.07 
PHE 0.04 0.07 0.05 0.04 0.02 
GLY 0.00 0.05 0.02 0.01 0.07 
HIS 0.02 0.01 0.05 0.02 0.02 
ILE 0.10 0.10 0.11 0.07 0.08 
LYS 0.07 0.08 0.08 0.10 0.07 
LEU 0.05 0.02 0.01 0.04 0.06 
MET 0.00 0.00 0.00 0.01 0.00 
ASN 0.06 0.06 0.07 0.06 0.04 
PRO 0.01 0.01 0.02 0.00 0.04 
GLN 0.02 0.05 0.02 0.04 0.04 
ARG 0.02 0.02 0.07 0.00 0.02 
SER 0.08 0.07 0.06 0.06 0.13 
THR 0.17 0.11 0.13 0.20 0.17 
VAL 0.11 0.12 0.12 0.11 0.05 
TRP 0.00 0.01 0.00 0.01 0.01 
TYR 0.04 0.01 0.04 0.04 0.02 

Positive 0.12 0.12 0.20 0.12 0.12 
Negative 0.15 0.15 0.13 0.15 0.14 

Polar 0.33 0.29 0.29 0.36 0.37 
Aromatic 0.07 0.10 0.08 0.08 0.06 

Hydrophobic 0.32 0.35 0.30 0.29 0.31 
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(C) Sequence composition for the third generation of designs 

Sequence F1   F2   F3   F4   F6   F7   F8   F9   F10   1fna 1ten 
ALA 0.01 0.03 0.01 0.02 0.01 0.04 0.04 0.02 0.04 0.08 0.04 
CYS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
ASP 0.07 0.08 0.08 0.04 0.09 0.02 0.11 0.10 0.03 0.04 0.11 
GLU 0.07 0.02 0.07 0.03 0.05 0.03 0.01 0.03 0.02 0.04 0.09 
PHE 0.07 0.05 0.07 0.10 0.10 0.05 0.05 0.01 0.03 0.01 0.02 
GLY 0.09 0.04 0.04 0.04 0.05 0.05 0.05 0.08 0.05 0.09 0.06 
HIS 0.02 0.00 0.05 0.02 0.02 0.02 0.01 0.00 0.03 0.00 0.00 
ILE 0.04 0.05 0.04 0.03 0.08 0.04 0.07 0.13 0.05 0.08 0.09 
LYS 0.02 0.01 0.03 0.07 0.02 0.03 0.05 0.07 0.09 0.03 0.06 
LEU 0.02 0.04 0.04 0.08 0.07 0.07 0.07 0.02 0.07 0.04 0.08 
MET 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.03 0.02 0.00 0.01 
ASN 0.02 0.05 0.07 0.07 0.05 0.04 0.02 0.01 0.05 0.02 0.03 
PRO 0.15 0.12 0.13 0.13 0.12 0.11 0.14 0.11 0.16 0.08 0.06 
GLN 0.05 0.04 0.08 0.04 0.02 0.03 0.04 0.02 0.01 0.01 0.02 
ARG 0.11 0.05 0.08 0.08 0.07 0.04 0.04 0.01 0.01 0.05 0.03 
SER 0.04 0.08 0.02 0.09 0.05 0.09 0.05 0.02 0.07 0.11 0.07 
THR 0.04 0.14 0.02 0.04 0.07 0.16 0.11 0.20 0.11 0.13 0.13 
VAL 0.08 0.10 0.04 0.04 0.04 0.10 0.02 0.08 0.08 0.10 0.04 
TRP 0.01 0.00 0.02 0.01 0.01 0.00 0.02 0.00 0.02 0.01 0.01 
TYR 0.07 0.05 0.10 0.05 0.05 0.03 0.07 0.05 0.03 0.07 0.03 

Positive 0.15 0.07 0.16 0.16 0.11 0.10 0.11 0.08 0.13 0.09 0.09 
Negative 0.13 0.10 0.14 0.08 0.14 0.05 0.12 0.13 0.05 0.09 0.20 

Polar 0.16 0.32 0.19 0.24 0.20 0.33 0.23 0.25 0.24 0.27 0.26 
Aromatic 0.14 0.11 0.19 0.16 0.16 0.09 0.14 0.07 0.09 0.09 0.07 

Hydrophobic 0.41 0.41 0.32 0.35 0.38 0.43 0.40 0.47 0.48 0.46 0.38 
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(D) Sequence composition for the fourth generation of designs 

 

Sequence BN1   BN2   BN4   BN5   
ALA 0.10 0.00 0.04 0.10 
CYS 0.00 0.00 0.00 0.00 
ASP 0.07 0.00 0.05 0.06 
GLU 0.10 0.13 0.05 0.08 
PHE 0.04 0.08 0.02 0.04 
GLY 0.02 0.06 0.07 0.06 
HIS 0.02 0.00 0.00 0.02 
ILE 0.05 0.05 0.10 0.04 
LYS 0.06 0.07 0.06 0.02 
LEU 0.04 0.05 0.05 0.06 
MET 0.01 0.01 0.01 0.00 
ASN 0.10 0.10 0.10 0.05 
PRO 0.00 0.04 0.01 0.02 
GLN 0.08 0.05 0.06 0.02 
ARG 0.07 0.07 0.04 0.11 
SER 0.05 0.08 0.06 0.12 
THR 0.10 0.08 0.14 0.14 
VAL 0.05 0.07 0.11 0.04 
TRP 0.01 0.00 0.00 0.01 
TYR 0.05 0.06 0.05 0.01 

Positive 0.15 0.14 0.10 0.15 
Negative 0.17 0.13 0.10 0.14 

Polar 0.32 0.31 0.36 0.33 
Aromatic 0.10 0.14 0.07 0.06 

Hydrophobic 0.26 0.27 0.38 0.31 
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(E) Overall comparison between the de novo design models and naturally occurring proteins 

 

Generation Proteins Positive Negative Polar Aromatic Hydrophobic 
      

B001 0.17 0.19 0.24 0.10 0.30 
B002 0.16 0.19 0.23 0.04 0.39 
B003 0.14 0.15 0.24 0.05 0.42 
B004 0.14 0.20 0.20 0.06 0.40 

1 

Average(1) 0.15 0.18 0.23 0.06 0.38 
      

B5 0.12 0.15 0.33 0.07 0.32 
B6 0.12 0.15 0.29 0.10 0.35 
B7 0.20 0.13 0.29 0.08 0.30 
B8 0.12 0.15 0.36 0.08 0.29 
B9 0.12 0.14 0.37 0.06 0.31 

2 

Average(2) 0.14 0.14 0.33 0.08 0.31 
      

F1 0.15 0.13 0.16 0.14 0.41 
F2 0.07 0.10 0.32 0.11 0.41 
F3 0.16 0.14 0.19 0.19 0.32 
F4 0.16 0.08 0.24 0.16 0.35 
F6 0.11 0.14 0.20 0.16 0.38 
F7 0.10 0.05 0.33 0.09 0.43 
F8 0.11 0.12 0.23 0.14 0.40 
F9 0.08 0.13 0.25 0.07 0.47 
F10 0.13 0.05 0.24 0.09 0.48 

3 

Average(3) 0.12 0.10 0.24 0.13 0.41 
      

BN1 0.15 0.17 0.32 0.10 0.26 
BN2 0.14 0.13 0.31 0.14 0.27 
BN4 0.10 0.10 0.36 0.07 0.38 
BN5 0.15 0.14 0.33 0.06 0.31 

4 

Average(4) 0.14 0.14 0.33 0.09 0.31 
      

Average(all) 0.13 0.13 0.27 0.10 0.36 All 
Wt* 0.09 0.20 0.26 0.07 0.38 

 
Average(i:1~4) : average values for the ith generation, highlight in light turquoise 
Average(all) : average values for all the design models ( hightlight in turquoise) 
Wt*: naturally occurring high resolution "-sandwich protein 1ten, highlight in green 
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SUPPLEMENTARY MATERIAL 

 

Table 5.2  Sequences of all the design models 
 

> B001.pdb 
IPEPRVEYHNNKIEVHAPAGSSTARVKVEVKFNNKKYEDEFTQSDDTARFYNTPTGYDIDVK
VKVDTNNKDLEKEYTITM 
> B002.pdb 
QGQIEVHYENGKVRIHVPPQDDDGEVRGKARFNGKEIEIRVNRGEEEIEITGTQENSVIEVEV
KVTSNGQTVTKRFTVLG 
> B003.pdb 
PGNATVKTENGKLKIKVDVQISNALVKIEIDMNGTKIRWTFDVADAHLTVDNFPKTADIKVE
VRVDFNNIDANQTLDATG 
> B004.pdb 
YDNITITFENGKMKIDLGPGTTTADIEAEIDLDGSSIEGRATGGNADLDFDITVPGEKYRARVR
VKLNDYHHDKTIEVTQ 
 
> B5.pdb 
NASQDVTVKVQKTTIDVTYKLFNLDIVKIIVEFHPSDATTTDRKDFSASDDNATYTLISTNSSI
EVRVEIDLKNAHYETTITVT 
> B6.pdb 
VADATVDVQVQDNSITVEFRYNFTSKLDIVVEWKTNSNDDTQRLKVSGNQTSATFTGFPSG
KDVEIIIKIDGDFFHIEITVKAK 
> B7.pdb 
IQPPKVEITVHATKIEVKVETTQNSEFRIEVYVKRHNHNTIETRTISENRDSTRVLGFGNNHEY
EIIVRVDFSVTSYTFKTKIK 
> B8.pdb 
NASQDVTVKVQKTTIDVTYKLFNLDIVKIIVKFHGQDMTTEDEKDFSASDDNATWTTTSTNT
SYTVKVEIDLKNAHYETTITVT 
> B9.pdb 
LDFKQPRTSIQKDSIKYDVISGSTDNSTIIIEGHPESQNTTTTVKLSSSDNSLTLTGFPTGTKGVS
TIKVEGERAHLDYTETWE 
> B10.pdb 
LDFKQPRTSIQKDSIKFDVISGSTDNSTIIIEGHPESQNTTTTVKLSSSDNSLTLTGFPTGTKGVA
TIKVEGERAHLDYTETWE 
> B11.pdb 
LDCKQPRTSIQKDSIKFDVISGSTDNSTIIIEGHPESQNTTTTVKLSSSDNSLTLTGFPTGTKGVA
TIKVEGERAHCDYTETWE 
 
> BN1.pdb 
YNSKRAEIHFQDNTITARAVAGQYNDHRFEFRVDKENDNQQEKLRMTGSDNSATIKLTDVQ
KSAEAQARVQENNWEYETTYTIL 
> BN2.pdb 
LGKPEFRFTVRNNSLEVRVQPFNQGPERIKVEITEKNSNSETSFEVTGNQYTVTLSMSNSGTK
YEIRIKFEFNGYRYEQKYEFL 
> BN4.pdb 
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SNSGQITVTLSNNSMTVKYLPGNKKIRTAVIVIKAQDENDIQTYTITGNIFTLTVTGVNGNLK
YIVEVRVEGDDERFSQTYTAQ 
> BN5.pdb 
NGPGTATITFHDGRVEFRAVASNQTNSEFRAEARPSSSSDGTERKASEQLDRITVEITDTTSSY
KARLELRGDNWTLRHTASLT 
> ds1.pdb 
YNSCRAEIHFQDNTITARAVAGQYNDHRFEFRVDKENDNQQEKLRMTGSDNSATIKLTDVQ
KSAEAQARVQENNWECETTYTIL 
> ds2.pdb 
YNSKRAEIHFQDNTITARCVAGQYNDHRFEFRVDKENDNQQEKLRMTGSDNSATIKLTDVQ
KSAEAQARCQENNWEYETTYTIL 
 
> F1.pdb 
VDMTWIRQGPYRVILHYPPPPTDVQYARFRVFKRDGGPPSYERERPPGSDHVDITGLEPGQE
YRVRIFYFSGDNNSPQTGPPQEFEFRVPK 
> F2.pdb 
NDFSFYPTSKTSVTVEAFPPQYDSRRVLVLVRDRTGDDVRATYTVPPNQTSTTITGLLPGYQY
EIIVFSDPPTNDMPNNAQPVSITITGPF 
> F3.pdb 
LDGSWHPIRQNDLLIDLKPYPSNYQFFRVRATHEEEDGWEREYTVPPQQDKIKFNNFQPGRH
YRVRIFPDPNQGFPPNYYDPYEVQYHHYP 
> F4.pdb 
LDGTFYPKRSNDLIVKLVPSDSPFQYFLAKAGHSRNEWQSRQFTRPSNLTSISFNNFLPGREY
KIYVFPFPNLGDPPQKRPPYEVRFKHTP 
> F6.pdb 
PPITIVEEDSDKFRITIPDFNLDVQFADHELWSETGTFPRLRFRIPGNLDSFEFTNLYPGYRYKG
RMFPISNNGDVPPQVFPYHLDISPYT 
> F7.pdb 
LDVRVTPTGLTTALGEFLPSSSTDTRHLVFVFKHENTAPQASYTQPPTSTTVTITGLVPGVEYI
AMFISRSGTNTSQPNNVPVKYKFRIPP 
> F8.pdb 
NYLQATFLSDYKAFFRWIPPDDDIQKFDVRTYDSSGSPPQYTYTAPPTLDKATITNLDPGQEY
RTKVIPRIGDGPGPPDTPPITLHLKSFW 
> F9.pdb 
IDITVIPEYKTEVRIKIDASTLDMQDITVIAYTEGGDTPTFTYTIPPTDKSMTVTGMPPGQKYKI
TVIIYPGNGTLPPITPDTTVTVDGDK 
> F10.pdb 
PHVHPKKIHLTKLIIKWQPPPVPLTRVIVIMKSSNGDVPTAKFTMPGNATSLEVNGLPPGAKY
KFDVFTWALPGTPDSNTPPYTSETSPNY 
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CHAPTER 6 

CONCLUSIONS AND FUTURE DIRECTIONS 
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In our studies on the "-sheet protein design, we have the following conclusions.  First of all, we 

developed a protocol to account for side chain entropy in Rosetta energy function, however, the 

incorporation of explicit side chain entropy and free energy calculations into Rosetta does not 

substantially increase our ability to recapitulate native sequences in protein design simulations.  In 

general, our results suggest that side chain entropy plays a relatively small role in determining the 

environmental preferences of the amino acids.   

 

Second of all, the fixed backbone design results are very encouraging, given a designable backbone, 

we were able to design a protein that is well-folded and much more stable with only positive design, 

suggesting that the de novo design of a "-sandwich protein may be possible without extensive 

negative design.  However, one caveat is that the negative design elements may be encoded in the 

backbone conformation.  It will be exciting to see if we can also design a protein that allow for 

backbone sampling. 

 

Thirdly, we tried to design a part of the backbone for the wild type tenascin by removing a ten-residue 

loop from the wild type structure and rebuilding it with a specific conformation.  This involved the 

optimization of both the conformational and sequence space.  Two of the designs were crystallized 

and one of them matches the design model very well.  This result indicates that with the current 

Rosetta energy function and sampling technique, it is possible to design a 10-residue loop with high 

accuracy.  These results validate the design protocol we used for de novo design. 

 

Last but not least, our de novo design trials failed for several generations as the design models mostly 

aggregate.  The successful de novo design of a "-sandwich protein still remains an unanswered 

question.  However, from our failure we learned some lessons that could potentially useful for future 

design. 
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By comparing our design models with the naturally occurring "-sheet proteins, we see several 

different patterns in the sequence composition.  The hydrophobic residues are important for driving 

folding process so it is important to have a certain amount of hydrophobic residues (~40%).  More 

importantly, these residues should be packed well enough to form a compact core that can nucleate 

the folding process of the whole protein.  We found that our designed models generally are poorly 

packed compared to the naturally occurring "-sheet proteins and it still remains to be seen if this is a 

problem of conformational sampling or energy function.  All our design models have low solubility, 

suggesting the need to incorporate negative design elements to design against unwanted misfolded or 

aggregated states.  Another approach is to try to increase the net charges to increase solubility.  

 

Nature have encoded some negative design elements to prevent misfolding and aggregation, we 

should borrow those information for our future design, for instance, incorporating some "$sheet 

element breakers, like edge prolines, "$bulges, polar residues in the middle of edge strands etc. that 

may contribute to prevent aggregation.  In our future design trials, we should include these negative 

design element features to our design simulation.   

 
 
 


