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ABSTRACT

Tianxiang Gao: Extracting information from deep learning models for computational biology
(Under the direction of Vladimir Jojic and Jeff Dangl)

The advances in deep learning technologies in this decade are providing powerful tools for

many machine learning tasks. Deep learning models, in contrast to traditional linear models, can

learn nonlinear functions and high-order features, which enable exceptional performance. In the

field of computational biology, the rapid growth of data scale and complexity increases the demand

for building powerful deep learning based tools. Despite the success of using the deep learning

methods, understanding of the reasons for the effectiveness and interpretation of models remain

elusive.

This dissertation aims to provide several different approaches to extract information from deep

models. This information could be used to address the problems of model complexity and model

interpretability.

The amount of data needed to train a model depends on the complexity of the model. The cost

of generating data in biology is typically large. Hence, collecting the data on the scale comparable

to other deep learning application areas, such as computer vision and speech understanding, is

prohibitively expensive and datasets are, consequently, small. Training models of high complexity

on small datasets can result in overfitting – model tries to over-explain the observed data and has

a bad prediction accuracy on unobserved data. The number of parameters in the model is often

regarded as the complexity of the model. However, deep learning models usually have thousands

to millions of parameters, and they are still capable of yielding meaningful results and avoiding

over-fitting even on modest datasets. To explain this phenomenon, I proposed a method to estimate

the degrees of freedom – a proper estimate of the complexity – in deep learning models. My

results show that the actual complexity of a deep learning model is much smaller than its number
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of parameters. Using this measure of complexity, I propose a new model selection score which

obviates the need for cross-validation.

Another concern for deep learning models is the ability to extract comprehensible knowledge

from the model. In linear models, a coefficient corresponding to an input variable represents

that variables influence on the prediction. However, in a deep neural network, the relationship

between input and output is much more complex. In biological and medical applications, lack of

interpretability prevents deep neural networks from being a source of new scientific knowledge. To

address this problem, I provide 1) a framework to select hypotheses about perturbations that lead

to the largest phenotypic change, and 2) a novel auto-encoder with guided-training that selects a

representation of a biological system informative of a target phenotype. Computational biology

application case studies were provided to illustrate the success of both methods.
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CHAPTER 1: INTRODUCTION

Extracting knowledge from natural observed data has a long history, which can be traced back

when human’s measured the sunlight angle and related it to the year cycle. People have long been

using manual analysis to identify the essential truth behind the raw data.

Nowadays, with the advances in modern technologies, millions, billions and trillions of data

samples can be generated every day. Modern machine learning technology enables us to learn

useful and complex information and knowledge from these massive data, which could never be

done before.

A machine learning model can be regarded as a function that captures the relationships among

different variables. It can be either supervised learning, where some target variables are predicted

from a given set of input variables, like LASSO (Tibshirani, 1996); or unsupervised learning, which

learns the relationship among a set of variables, like Principle Component Analysis (Jolliffe, 2002).

Generally, these methods learn coefficients for mapping input variables. These coefficients indicate

the influence of the inputs to the output. By analyzing these coefficients, the relationship between

input and output can be easily understood.

However, most relationships in the world are not purely linearly related. Hence, many nonlinear

methods were developed to capture those complex relationships, like Random Forests (Breiman,

2001), which aggregate the predictions of multiple learners to generate the output, and Deep

learning (LeCun et al., 2015), which is a class of methods based on multiple layers of artificial

neural networks.

Despite the success of deep learning in many tasks, there are still several concerns with this

method that prevents people from further utilizing its power. One of the concerns is over-fitting.

In machine learning, over-fitting is a problem where a model tries to over-explain the observed
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data and makes bad predictions on unobserved data. It usually happens when the number of

parameters in the model is much larger than the number of training samples, where the model

can utilize all the parameters to memorize the exact value of all the samples. In order to avoid

over-fitting, regularization methods like LASSO (Tibshirani, 1996), LARS (Efron et al., 2004)

were used for linear models. For the purpose of deep learning models regularization, denoising-

auto-encoders(Vincent et al., 2008), and drop-out (Srivastava et al., 2014) can be used to prevent

over-fitting.

In order to compare the performance of different models, people used cross-validation (Golub

et al., 1979), where data is split into different folds and a model is trained on all but one of the

folds and validated on the rest. Akaike Information Criterion (Akaike et al., 1973), and Bayesian

Information Criterion (Schwarz et al., 1978) were also used, where a compensation term related

to the number of parameters in the model was added to the training loss. However, deep learning

models usually contain thousands to millions of parameters and they can still yield meaningful

results and avoid overfitting even on modest datasets. The number of parameters in the model could

be an overestimate of the complexity of the deep learning models. Hence, it is important that a

proper measurement of the complexity is used to make sure the model is well-trained.

Another concern with regard to deep learning models is the model’s interpretability. In many

applications, like biology, medicine, or any safety-related tasks like auto-piloting, prediction

accuracy is not the most important factor. People need to understand the mechanism to trust that

the model is working as assumed. On the other hand, people need guidance and conclusions from

the model for further actions and experiments. For nonlinear methods like deep learning, the

relationship between input and output can be very complex. Unlike linear models, the influence of

a specific input factor can be very different when the context of other input factors are changing.

These issues limit the use of deep learning.

There are many challenges with deep learning for biology data. First, it is still very expensive

to obtain data samples in the field of biology compared to other fields like social media images and

texts. With a limited amount of data, it is important that the model can be properly trained without
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over-fitting. On the other hand, it is important to efficiently design the experiments to be carried

out, as the cost of conducting experiments in biology can be very expensive. Also, the information

and knowledge extracted from deep learning models should be robust and interesting in order to be

practically tested. There are many undesired interferences in biological data during the collection,

like batch-effects, measurement noise. It is important that the undesired effects are treated properly

in order to train a meaningful model.

In this dissertation, my works will be focused on exploring the capability of extracting valuable

information from deep learning models for computational biology data.

1.1 Thesis Statement

The information in deep models can be extracted using several different approaches – the com-

plexity in deep models can be properly measured by its degrees of freedom; the hypotheses in deep

models can be extracted using a hypotheses generation framework; the informative representations

in deep models can be learned by guided-autoencoders, and this information could help us better

understand and trust the deep models for computational biology.

1.2 Outline of Contributions

This work provides several novel methods for extracting information from deep learning models.

All the works are published or in the submission process. These contributions include:

Degrees of freedom in deep neural networks This work focuses on measuring the complexity of

deep neural networks from their degrees of freedom – the sum of the sensitivity of the output

labels during the training process. Degrees of freedom can be used as a proper complexity

measurement. The methods were applied to both a synthetic and two image classification

tasks. The degrees of freedom can be used as a better measurement than the number of

parameters when evaluating the complexity of the model. With proper regularization, deep
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neural networks could have complexity much smaller than their parameters. This work is

described in Gao and Jojic (2016), and detailed in Chapter 3.

Selecting hypotheses from deep neural networks I propose a framework to extract testable hy-

potheses from a deep neural network. To identify potentially testable hypotheses, the pertur-

bation level and expected change associated with the hypothesis can be measured. Valuable

hypotheses are the ones with small perturbation level in the input and large expected change

in response. An economical hypotheses selection algorithm is introduced to efficiently select

hypotheses with total cost constraints. Such a framework enables us to generate testable

hypotheses from deep neural networks. The proposed hypotheses selection framework has

been applied to a microbial synthetic community design case study with biological validation.

This work is currently under submission Paredes et al. (2017), and detailed in Chapter 4.

Learning informative representations using guided-auto-encoders I propose a guided-auto-

encoder model to learn informative representations from the data with regard to a target

variable of interest. The learned representation can be used to reconstruct the data with good

accuracy, and predict the target label accurately. This method can be used to provide an

informative summarization of the data. Depending on the requirement, representations with

different levels of informativeness and compression can be learned by tuning the guided-ratio

factor. The method was applied to an immunology data set to construct a health-related

immune measurement metric. This work is currently under submission Furman et al. (2017),

and detailed in Chapter 5.
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CHAPTER 2: BACKGROUND AND RELATED WORK

Comparing to naı̈ve linear models and handcrafted features, deep models can be used to

automatically extract nonlinear relationships and learn complicated concepts. However, it is hard to

measure the complexity of the model and extract useful information from the model in comparison

to shallow models. In this chapter, I will review the background of deep learning, complexity

estimation and model selection methods, and recent advances in model interpretation for deep

learnings.

2.1 Deep Learning

Deep learning can be regarded as a class of machine learning algorithm with neural networks

with multiple layers of nonlinear transformations. It was inspired by the neuron architecture in the

brain. Neural networks – the most basic architecture in deep learning – have been studied for many

decades (Rumelhart et al., 1988; Hinton, 1990). But the neural networks were not able to outperform

shallow models like Support vector machines (Boser et al., 1992) until 2006. Breakthroughs in

2006 enabled deep neural networks to be trained efficiently and to outperform shallow models

(Hinton and Salakhutdinov, 2006). This allows deep learning based methods to beat the records in

many fields like computer vision (Krizhevsky et al., 2012; Farabet et al., 2013), speech recognition

(Hinton et al., 2012). A review of the deep learning method and application can be found (LeCun

et al., 2015).

There are many deep-learning methods for computational biology application (Min et al., 2016;

Angermueller et al., 2016). For example, DeepBind (Alipanahi et al., 2015) use deep convolution

network to achieve the benchmark for predicting sequence specificities for DNA-and RNA-binding

proteins. DeepSEA (Zhou and Troyanskaya, 2015) also applied deep convolutional neural networks
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to predict effects of noncoding variants. Gene expression inference using Deep learning has also

been used in (Chen et al., 2015).

2.2 Basic Neural Network

The neural network is the most basic structure in deep learning. In this section, I will introduce

the definitions and basic settings of the neural networks.

Figure 2.1: An example of a single neuron

The basic unit in a neural network is a neuron, as shown in Figure 2.1. Define the input as a p

dimensional vector x ∈ Rp, the output of the neuron is:

h(x) = g(wTx + b),

where w ∈ Rp is the weight vector, b is a scalar bias term, g(·) is a non-linear activation function.

There are three major activation functions: 1) sigmoid function

g(x) = sigmoid(x) =
1

1 + e−x
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2) hyperbolic tangent function:

g(x) = tanh(x) =
1− e−2x

1 + e−2x

and 3) rectified linear unit:

g(x) = ReLU(x) = max(x, 0).

The sigmoid unit has an output between (0, 1), hence it is often used to model the output as

a probability. The hyperbolic tangent function has an output range between (−1, 1) with a slope

of 1 at the origin, which makes it “locally linear” when the input is very small. Comparing to the

sigmoid and hyperbolic tangent functions, the rectified linear unit does not suffer from the gradient

vanishing problem when the input becomes too small or too large. A visualization of the three

functions is shown in Figure 2.2.
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Figure 2.2: Three common non-linear activation functions.

Multiple neurons can be stacked together to form a neural network hidden layer, as shown in

Figure 2.3. Hence, the output of a hidden layer of m neurons can be written as:

h(x) = g(Wx + b),

where W ∈ Rm×p is the weight matrix and b ∈ Rm is the bias vector.
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Figure 2.3: An example two-layer neural network. The number of hidden layers is defined as
the depth of the network. The number of nodes in the hidden layer is defined as the width of the
network, if the hidden layers have the same size.

Multiple layers of neurons can be stacked on top of each other to form a deep neural network.

Let hl(x) be the output of lth layer:

hl(x) = g(Wlhl−1 + bl),

where Wl and bl are the weight matrix and bias vector of lth layer. For convenience, I define

h0(x) = x. The depth of a deep neural network is the number of hidden layers in the network. In

general, the output of the neural network with depth L can be written as:

fNN(x) = hL(x).

Given a training dataset {(xi, yi)}, in order to train a neural network, one can use stochastic

gradient descend to optimize the loss on a training dataset:

minimize
θ

∑
i

L(f(xi,θ), yi) +R(θ),

8



where θ is the set of all parameters in the network. L is the loss term and R is the regularization

term. Depending on the requirement of the task, different loss functions and regularizations can be

used.

2.3 Complexity Estimation and Model Selection

Model selection is one of the key tasks in machine learning, as the performance of a method

on training data is an optimistic estimate of its general performance. Efron (2004) provided an

estimate of optimism, the difference of error on test and training data, and related it to a measure of

a model’s complexity deemed the effective degrees of freedom. This result reflects Occam’s razor

since models with higher degrees of freedom tends to have higher optimism. Degrees of freedom,

defined as parameter counts, have been frequently used in model selection. However, even in linear

models, the number of parameters is not a good indicator of model’s complexity. Straightforward

examples of this behavior are models fit using sparsity penalties. In that context, degrees of freedom

is related to the number of non-zero parameters instead of total parameter count.

Ye (1998) introduced the concept of Generalized Degrees of freedom (GDF) for complex

modeling procedures with Gaussian distributed outputs. GDF is defined based on the sensitivity

of the fitted values to the perturbations in observed values. Efron (2004) provided a framework

for estimating degrees of freedom for modeling procedures with output in exponential family

distribution.

In order to estimate degrees of freedom in deep neural networks for classification problems,

where the outputs can be regarded as a categorical distribution, Efron’s results can be extended to

the context of multinomial logistic regression. Similar to Ye’s GDF, the computation of the degrees

of freedom involves assessing network’s changes in output as a result of perturbation of the training

data. The more sensitive the network’s output to the perturbation, the more degrees of freedom it

has. A recent work utilizes Ye’s GDF to estimate the degrees of freedom in ensemble regression

(Reeve and Brown, 2017).
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The prior work on the model complexity is rich, and I briefly review some key contributions.

Bayesian Information Criterion (BIC) (Schwarz et al., 1978) and Akaike Information Criterions

(AIC) (Akaike, 1974) are most commonly used techniques for model selection. Both aim to

construct an estimate of the test log-likelihood by correcting the training set log likelihood with

terms dependent on the number of parameters in the model in order to produce a score that is a

less biased estimate of test log-likelihood. The weighting of the parameter count is different, BIC

depends on the sample size, and AIC uses a constant. BIC applied to the family of models that

contain the true model is consistent with the limit of the data. AIC, with some mild constraints,

guarantees the selection of a model with least square error, among models that do not include the

true model.

Crucial to the practical application of these methods is the correct count of parameters. Bayesian

model selection elegantly avoids the need to specify the complexity of the network by evaluating

evidence, a marginal probability of the data given the model. This approach marginalizes over all of

the parameters, making models of different parameterizations comparable. The size of the parameter

space directly impacts the evidence through this integration, as the prior on parameters gets spread

thinly across high dimensional spaces. Unfortunately, the cost of computing such integrals is often

prohibitive, but the models selected using these techniques have been shown to be very competitive.

(MacKay, 2003; Neal, 1996; Guyon et al., 2004).

Kolmogorov-Chaitin complexity (Kolmogorov, 1965) describes dataset complexity in terms

of a program that recapitulates the data. Generation of task-specific neural networks using algo-

rithmically simple programs was explored by Schmidhuber (1997). Networks whose parameters

could not be captured by a simple program were avoided. A related method of Minimal Description

Length reflects the desire for compact representation of the data. Its application (Hinton and Zemel,

1994) shows how the trade-off between the data and parameter compression can lead to an objective

for training auto-encoders.

Degrees of freedom of linear model fits with Lasso-type penalties have been analyzed, e.g.

Lasso (Zou et al., 2007), Fused Lasso (Tibshirani et al., 2005) and Group Lasso (Vaiter et al., 2012).
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The number of predictors and the number of degrees of freedom greatly differ due to the imposed

sparsity and weight tying. Recent results on degrees of freedom for non-continuous procedures such

as best subset regression and forward stagewise regression (Janson et al., 2015) highlight challenges

in determining the complexity of these procedures as the estimators can be discontinuous. Research

on Stein’s Unbiased Risk Estimate (SURE) has yielded model selection techniques (Stein, 1981) as

well as algorithms for their estimation (Ye, 1998; Ramani et al., 2008). Generalization of SURE

to exponential families has been proposed by Eldar (2009). However, its focus is on estimating

parameter risk instead of prediction error. In linear models, the two neatly coincide. But this does

not carry over to logistic regression and more broadly sigmoidal neural networks.

2.4 Interpretability in Deep Learning

A common problem in most deep learning based methods is the interpretation. For example,

how can we extract useful hypothesss or knowledge from the learned deep neural networks? For

convolutional neural networks, displaying the learned motif filters (Alipanahi et al., 2015) was

used. However, it is hard to compare and capture the contribution from different motif filters. For

feedforward neural networks, Li et al. (Li et al., 2015) proposed a regularization layer between

input nodes to the network to perform feature selection on input features.In a network with many

output nodes, it is possible that each input node is responsible for an output node, which makes it

hard and unreasonable to exclude any input features in the final model. Tan et al. (Tan et al., 2014,

2016) proposed an unsupervised method using a one layer denoising autoencoders to learn higher

order representations from gene expression data. They used the learned weights between the links

to distill the relationship between higher-order representations and raw features. Generalizing their

approach to models with more than one layers can be potentially hard. Visualization techniques

are also proposed (Chen et al., 2015) to visualize learned knowledge in deep neural networks by

highlighting significant weights in the neural network.

One problem in interpreting neural networks is the re-parameterization problem. Basically, the

nodes in each hidden layer are interchangeable. The weights and meaning of a hidden node are
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usually determined by random seeds used in initialization. Therefore, interpreting from a single

node is useless. Rippel et al. (Rippel et al., 2014) proposed a nested-dropout method to learn

ordered representations for auto-encoders to avoid this problem.

There are many works on model interpretation with gradient-based methods. Simonyan et al.

(Simonyan et al., 2013) visualized the absolute gradient of the output in a network w.r.t. each input

pixel in order to interpret which part of the image can influence the output most. Wang et al. (Wang

et al., 2016) introduced the Extended Data Jacobian Matrix to analyze neural networks. A variant

version of a gradient-based approach – guided backpropagation – takes account of gradients with

positive errors (Springenberg et al., 2014).

There are many very recent works aimed at fairly describeing the contribution of the change in

the output to different input factors. DeepLift (Shrikumar et al., 2017) use a back-propagation on

the change in each layer to obtain a better contribution interpretation. SHAP (Lundberg and Lee,

2017) provides a unified framework for interpreting models based on Shapely values, which is a

solution concept from cooperative game theory.
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CHAPTER 3: IDENTIFYING COMPLEXITY IN DEEP NEURAL NETWORKS

3.1 Introduction

Understanding the complexity of deep learning models is important. It provides us evidence if

the model is properly trained without over-fitting. In this work, I will show that the complexity in

Deep neural networks can be better measured using the sum of the sensitivity of the output to the

perturbation in training labels rather than the number of parameters. This work has been published

as a conference paper in The Conference on Uncertainty in Artificial Intelligence (UAI) 2016 (Gao

and Jojic, 2016).

3.2 Degrees of Freedom for Categorical Distribution

In this section, I derive the definition of degrees of freedom for a categorical distribution from

the optimism according to (Efron, 2004). Then, I introduce an efficient Monte-Carlo sampling

based method (Ramani et al., 2008) to estimate degrees of freedom.

3.2.1 Definitions

We focus on models aimed at multi-class classification task. The data is assumed to be

composed of features X ∈ Rn×p, where n is the number of observations and p is the number of

features, and output labels y range over k categories. I will denote the categorical distribution with

C(·). Categorical distribution over k categories can be parameterized using a vector of non-negative

values with a sum of 1. Sample label yi are regarded as realization of categorical random variables

for a specific parameter vector µi. Hence yi ∼ C(µi), where µi = [µi1, µi2, . . . , µik] is the true

probability of sample yi being in each class. µic ∈ [0, 1] and
∑k

c=1 µic = 1. Members of the
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exponential family follow the form:

f(pi|µi) = r(pi) exp{θ(µi)
Tpi − A(µi)}

where pi is the vector of sufficient statistics for sample i, θ(µi) is the vector of natural parameters,

r(pi) is the base measure, and A(µi) is the log-partition function.

For a categorical distribution with parameter µi, we have pi = h(yi) = [δ(yi − 1), . . . , δ(yi −

k − 1)]T , where δ(·) is the Kronecker delta function, δ(a) = 1 if a = 0, δ(a) = 0 if a 6= 0. In

other words, pi is a vector of the observations of sample i being in each class. Base measure

is r(pi) = 1; natural parameters are θc(µi) = lnµic − ln(1 −
∑k−1

l=1 µil), and the log partition

function is A(µi) = ln(1 +
∑k−1

c=1 e
θc(µi)). Note that both µi and pi are of dimension k − 1. Let

P = [p1, . . . ,pn]T be the matrix of observations for all sample labels y1, . . . , yn.

3.2.2 Optimism in Models with Categorical Distribution

Optimism is the difference between expected test log deviance error and training log deviance

error for a model fitting procedure. It is related to the complexity of the model and degrees of

freedom is derived from optimism. If the optimism for a modeling procedure can be estimated, we

can use it for model selection. (Efron, 2004) provides the derivations of expected optimism for the

single parameter exponential family. We follow Efron’s approach to derive the definition of degrees

of freedom for modeling procedure with output in categorical distribution form.

Given sample input xi, the output label is assumed to follow a categorical distribution yi ∼

C(µi). Let L(·) be the training procedure that fits the estimated probability for the training input

labels. Let µ̂i = L(pi) be the estimated probability for sample i from observations pi. The log

deviance error for µ̂i and pi is:

erri = −2 log f(pi|µ̂T
i )

= −2[θ(µ̂i)
Tpi − A(µ̂i)]
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Suppose another sample y0i is drawn from the same distribution as yi, y0i ∼ C(µi). Let

qi = h(y0i ) be the vector of its observations. The expected log deviance error of qi using µ̂i is:

Erri = E
y0i

{−2 log f(qi|µ̂i)}

= −2[θ(µ̂i)
Tµi + A(µ̂i)]

The definition of optimism is:

Oi = Erri − erri

= 2θ(µ̂i)
T (pi − µi)

Hence, optimism is the difference between log deviance error on the training set and expected log

deviance error with respect to the true distribution.

The expected optimism over yi ∼ C(µi) for the estimated probability µ̂i and true probability

µi is:

Ωi = 2 E
yi
{θ(µ̂i)

T (pi − µi).}

As we do not know the true probability µi, we cannot compute the expected optimism. However,

an approximate measurement using first order Taylor series expansion can be applied. We can

approximate θ(µ̂i) by taking the Taylor series expansion at pi = µi to obtain:

θ(µ̂i) ≈ θ(L(µi)) + D(i)(pi − µi).

D(i) is the first derivative matrix where each entry D(i)
jc =

∂θj(L(v))
∂vc

|v=µi
.
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Therefore, the approximate expected optimism can be estimated:

Ω̃i = 2 E
yi
{[θ(L(µi)) + D(i)(pi − µi)]

T (pi − µi)}

= 2 E
yi
{
k−1∑
j=1

k−1∑
l=1

(pij − µij)(pil − µil)D(i)
jl }

= 2
k−1∑
j=1

k−1∑
l=1

cov(pij, pil)
∂θj(L(v))

∂vl
|v=µi

The expected optimism can be estimated by assuming pi ∼ C(µ̂i), so:

Ω̂i = 2
k−1∑
j=1

k−1∑
l=1

cov(pij, pil)
∂θj(L(v))

∂vl
|v=µ̂i

. (3.1)

For a categorical distribution, cov(pij, pil) = −µ̂ijµ̂il, if i 6= j. var(pij) = µ̂ij(1− µ̂ij). Therefore,

Equation (3.1) can be reduced to:

Ω̂i = 2
k−1∑
j=1

∂Lj(v)

∂vj
|v=µ̂i

. (3.2)

Equation (3.2) for k = 2 is exactly the result for the Bernoulli distribution derived in (Efron,

2004). Efron also showed that Eqn (3.2) gives the correct degrees of freedom for maximum

likelihood estimation (Efron, 1975). In a p-parameter curved exponential family, we have:

n∑
i=1

∂L(v)

∂vi
|v=µ̂i

= p.

Here, I define the degrees of freedom for a classification model estimator µ̂i = Li(P) on all

the data samples P to be:

df =
n∑
i=1

k−1∑
c=1

∂Lic(P)

∂pic
, (3.3)
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where i indicates the sample index and c indicates the category index. This definition tells that

the degrees of freedom is the sum of each sample’s sensitivity of its estimated probability to the

perturbations in its observation for all categories.

3.2.3 Degrees of Freedom for Model Selection

As degrees of freedom is related to the expected optimism, degrees of freedom can be used for

model selection. According to Equation (3.2) and (3.3), the relationship between expected test and

training log deviance errors is:

n∑
i=1

E
yi
{Erri} =

n∑
i=1

E
yi
{erri}+ 2df. (3.4)

Equation (3.4) is very similar to Akaike Information Criterions (AIC) (Akaike, 1974):

AIC =
n∑
i=1

erri + 2k, (3.5)

where k is the number of parameters. I refer to 2df in Equation (3.4) and 2k in Equation (3.5) as

“complexity correction” for training log deviance error. In simple linear regression models, df = k,

and the complexity corrections are the same. However, in complex models such as deep neural

networks, simply counting number of parameters can result in an overestimate of the expected test

log deviance error. Therefore, I introduce DoFAIC for model selection:

DoFAIC =
n∑
i=1

erri + 2df. (3.6)

DoFAIC uses degrees of freedom instead of the number of parameters for complexity correction.

Hence, the basic assumption is that DoFAIC can produce a better criterion for model selection than

Naı̈ve AIC.
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3.2.4 Monte-Carlo Estimation for Degrees of Freedom

For most practical estimators of the model’s predictions with respect to the data derivatives,

∂Lic(P)
∂pic

are not available in closed form. For example, fitting multinomial logistic regression using

stochastic gradient descent with adaptive learning rates requires a fairly sophisticated derivation

which accounts for changes in step-sizes as a result of data perturbation. For deep neural networks,

this difficulty grows due to the use of back-propagation. In this paper, I used a sampling-based

method to efficiently estimate

Monte-Carlo Estimation A theoretical result for a stochastic estimate of the degrees of freedom

of nonlinear estimators has been proposed by Ramani et al. (2008). I restate the key result from that

paper here.

Theorem 3.1. Let b be a zero mean i.i.d. random vector (that is independent of y) with unit variance

and bounded higher moments. Then

∑
i

∂f(y)

∂yi
= lim

ε→0
E
b

[
bT
(
f(y + εb)− f(y)

ε

)]

provided that f admits a well-defined second-order Taylor expansion.

The prediction in a neural net via forward pass is a smooth function of the observations of

training labels. I will abbreviate “differentiable with respect to observations” as d.w.r.t.o. Sigmoid

and soft-max are smooth functions of their inputs. The cross-entropy loss is a multivariate function

that depends on data and weights, and all of its partial derivatives exist. For simplicity, assume

that the network is trained using gradient descent. Each update of the network’s parameters is a

linear combination of previous weights and a gradient of the loss. Assuming that the initial weights

d.w.r.t.o. and loss is smooth then the update yields weights that are d.w.r.t.o. Random initialization

and pre-training both yield initializations that are independent of observations, hence the partial

derivatives of the initial weights with respect to observations are 0. By induction, gradient descent,

at any iteration, yields weights that are d.w.r.t.o. Forward pass through sigmoidal network yields
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estimated probabilities which are smooth with respect to observations. Thus, the Taylor expansion

required by the above theorem exists.

Using this theorem, the derivative of a function ∂f(x)
∂x

can be estimated by perturbing the inputs. I

applied a modified version of the method (Ramani et al., 2008) for categorical distribution. Applying

random perturbation to the observations can be used to estimate the degrees of freedom:

df =
∑n

i=1

∑k−1
c=1

∂Lic(P)
∂pic

= limε→0

{
EB

[∑
i

∑
c bic

(
Lic(P+εB)−Lic(P)

ε

)]}
,

where B is a zero-mean i.i.d. random matrix with unit variance and bounded higher order moments.

Therefore, df can be approximated with T independent samplings of B(t):

df ≈ 1

T

T∑
t=1

n∑
i=1

k−1∑
c=1

b
(t)
ic

(
Lic(P + εB(t))− Lic(P)

ε

)
, (3.7)

where ε is a small value. In our experiments, I choose ε = 10−5. To better estimate the sensitivity,

we can use the average of multiple runs as the final estimation. The algorithm for estimating degrees

of freedom is summarized in Algorithm 1.

Algorithm 1 Monte Carlo algorithm for computing degrees of freedom of a multi-class classifier
Input: training data X ∈ Rp×N , y ∈ {1, 2, .., k}N

1: Compute observations matrix P = h(y)
2: Train model on X and P
3: Compute estimated probabilities for each sample L(P)
4: Sample entries of B(t) ∈ Rp×k from zero-mean, unit variance normal distribution
5: Train model on X and P(t) = P + εB(t)

6: Using trained model compute estimated probabilities for each sample L(P(t));
7: Repeat 4-6 for T times;
8: Calculate df from Equation (3.7)

Note that training on original and perturbed observations matrices can be performed in parallel.

Finally, I also derived analytical derivatives for stochastic gradient descent learning which yields

the same degrees of freedom as the algorithm presented above. However, this method requires
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maintenance of partial derivatives of each parameter with respect to each sample’s observations.

Such storage requirements make this method impractical for real world applications.

Variance reduction For deep neural networks, training takes a considerable amount of time. In

order to estimate degrees of freedom in a reasonable computational time, we used a variance

reduction technique – common random numbers – during Monte-Carlo sampling. When comparing

the degrees of freedom on a specific data, fixed P, for several different fitting procedures, we used

the same perturbation matrix B for all the models. I used the same random seed for all models

throughout the training. For example, in deep neural network training, we use the same random

seed to initialize weights and bias; during pre-training with denoising-autoencoders, I use the same

random seed for drop-out and input corruptions. For stochastic gradient descent methods, I use the

same mini-batches splittings during training. In the experiment, I found that degrees of freedom

can be estimated well enough using just one perturbed copy of the data when using these variance

reduction techniques.

3.2.5 Degrees of Freedom in Multinomial Logistic Regression

In order to validate the above algorithm in a setting with known degrees of freedom, I perform

an empirical analysis of the degrees of freedom in different multinomial logistic regression models.

An i.i.d. zero mean unit variance random design matrix X with n = 100 samples and p = 20

features is generated. Each sample is presented as xi = [xi1, xi2, . . . , xip]. With k = 4 classes, I

generated a random weight matrix W ∈ Rp×k, where each entry wic ∼ N (0, 1). I generate each

label from yi = argmaxj µij , where µi = exiW.

5 models were fitted using multinomial logistic regression. In the ith model, we only use the

first 2i features in X to fit. Therefore, the ith model only contains 2(i+ 1)(k − 1) parameters and

the degrees of freedom are equal to the number of parameters. We perform 5 Monte-Carlo degrees

of freedom estimates for each model.

I plot degrees of freedom in Figure 3.1(a). In each plot, the blue line is the mean of the five

Monte-Carlo estimates. Error bar represents the standard error. Degrees of freedom are very close
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Figure 3.1: (a) Comparison between degrees of freedom estimates in multinomial logsitic regression
and the true number of parameters used in the model. (b) Comparison between degrees of freedom
estimates in multinomial logsitic regression and the optimism in log deviance error.

to the number of parameters we used in the model. The standard error for Monte-Carlo estimate is

small.

I also randomly generated 1000 samples for testing. Optimism is calculated by the difference

between average testing log deviance error and training log deviance error. The degrees of freedom

and optimisms for all 5 models are plotted in Figure 3.1(b). It shows that the optimism has a linear

relationship with degrees of freedom, as expected.

3.2.6 Degrees of Freedom of an XOR Network

I generated a small synthetic example using exclusive-or (XOR) operator, where XOR(a, b) = 0

if a = b, and XOR(a, b) = 1 if a 6= b. Given an input x1, x2 ∈ {0, 1}, the output y = XOR(x1, x2),

a model of XOR operator is expected to be learned. In general, building a neural network with two

hidden nodes as shown in Figure 3.2 and weights in Table 3.1 is enough to learn a perfect XOR

classifier.

A network that trained properly should have weight matrix with form in Table 3.1. If x contains

no noise, F , a multiplier, can be infinitely large to achieve perfect estimation. Therefore, we set y to

be 0.9 instead of 1.
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Figure 3.2: A Neural Network with 2 Hidden Nodes

Table 3.1: An XOR Network

x1 0 1 0 1
x2 0 0 1 1
h1 = σ(F (−0.5 + x1 − x2)) 0 1 0 0
h2 = σ(F (−0.5− x1 + x2)) 0 0 1 0
y = σ(K(−0.5 + h1 + h2)) 0 1 1 0

I train networks with different structures on XOR data using back-propagation and estimate

their degrees of freedom using Monte-Carlo method. Even though there are 9 parameters in the

network, I found that the degrees of freedom for all learned models are 4. Note that the symmetry

in weights of the inputs to the two hidden nodes, eliminates degrees of freedom, as does implicit

tying of the weights of inputs to the output node. To give an intuition why this tying occurs, note

that the predominantly correctly labeled data drives the network to keep the weights close to each

other. Hence, a small perturbation in the labels can affect multiple weights simultaneously but does

not disturb their balance. This observation encourages us to investigate deeper models.

3.3 Degrees of Freedom in Deep Neural Networks

In this section, I investigate degrees of freedom in deep neural network models. From the XOR

example, we know that the degrees of freedom in a network is not equal the number of parameters in

the model. The structure of the network and different regularization techniques will impact degrees

of freedom.
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3.3.1 Terminologies and Settings

In the following experiments, I explore deep networks trained to solve larger classification

problems. Each of the networks takes a real-valued vector xi ∈ Rp×1 as input and outputs the

probability µ̂i for this sample being in one of k categories. Sigmoid activation functions are used

for all the hidden nodes and a soft-max layer is used in the last layer. The number of hidden

layers is called “depth” of the network. I only consider networks with an equal number of units in

each hidden layer, and we call this number “width” of the network. Next, I investigate degrees of

freedom in networks with different width and depth.

Stacked-Auto-Encoder (SdA) pre-training I used SdA (Vincent et al., 2010) to pre-train the

neural network with the input dataset, as unsupervised pre-training helps the network to achieve

a better generalization from the training data on supervised tasks (Erhan et al., 2010). In the

denoising autoencoder, corruption is used in layer-wised pre-training. The corruption is introduced

by zeroing out input to the auto-encoder with a certain probability. The chosen probability of

corruption is called corruption rate. Dropout (Srivastava et al., 2014) is also used during the

pre-training of SdA, where the output of hidden units are randomly zeroed with probability, which is

called dropout rate. Assume that increasing in corruption rate or dropout rate will reduce degrees

of freedom as they provide more regularization to the network.

Weight-decay I used a weight decay penalty on the sum of the squares of all the weights in the

network during both pre-training and fine-tuning stage. Adding this penalty prevents the network

from over-fitting. I refer to the multiplier associated with the sum of squares as weight decay rate.

The degrees of freedom is expected to drop with increasing weight decay rate.

Implementation All the codes are based on Theano (Bastien et al., 2012; Bergstra et al., 2010) and

I ran experiments on a cluster of machines with NVIDIA Tesla compute cards.
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3.3.2 Data Sets

I prepared a synthetic dataset and two real datasets MNIST and CIFAR-10 to estimate degrees

of freedom.

Synthetic I built a synthetic dataset from a randomly generated network with 30 input nodes, 2

hidden layers with 30 hidden nodes in each, and 4 output nodes. I generated n = 5000 random

zero-mean unit variance inputs with 30 dimensions. Each layer was fully connected to the previous

layer, and I generated weights w ∼ N (0, 5). I used the sigmoid activation function for each hidden

layer and a soft-max on the final output. The output sample labels y are then sampled according

to the probabilities from the soft-max layer. To get the optimism, I also generated another 5000

samples for test.

MNIST 1 (LeCun et al., 1998) is a benchmark dataset that contains handwritten digit images. Each

sample is a 28× 28 image from 10 classes. 50000 samples were used for training.

CIFAR-10 2 (Krizhevsky and Hinton, 2009) is a dataset that contains 32× 32 tiny color images

from 10 classes. Each sample has 3072 features. 50000 samples were used for training.

3.3.3 Degrees of Freedom and the Structure of the Network

To investigate the degrees of freedom for networks with different structures, I estimated the

degrees of freedom for networks with width [10, 20, . . . , 100] and depth with 1,2,3 and 4, where all

the hidden layers have equal widths. I used SdA to pre-train with 0.1 dropout rate and 0.1 corruption

rate. I use weight decay penalty 1e− 5 for both pre-training and fine-tuning. The estimated degrees

of freedom are shown in Figure 3.3. The lines represent the degrees of freedom estimate from 1

Monte-Carlo run, and the color of each indicates the depth of the models.

From the results, I found that networks with more width have more degrees of freedom. This

is reasonable as increasing width leads to more independence between parameters. However, the

1 http://yann.lecun.com/expdb/mnist/
2 https://www.cs.toronto.edu/˜kriz/cifar.html
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Figure 3.3: Degrees of freedom estimates for different models trained on synthetic data. Left:
degrees of freedom vs network width. Right: degrees of freedom vs number of parameters in the
network, which is linearly related to the network depth and quadratically related to the number of
width.

degrees of freedom in deep networks is generally much less than its the number of parameters. The

ratio of the parameters to degrees of freedom is on the order of 102. Loosely, one degree of freedom

is acquired for 100 parameters. Among the models with the same number of parameters, deeper

networks have less degrees of freedom. This observation indicates that the depth of the network has

regularization on the complexity.

To further validate our assumption that deeper networks have less degrees of freedom, I also

estimated degrees of freedom on the MNIST and CIFAR-10 datasets. We tested networks with

width [100, 300, 500, 700], all other settings are the same as in the above synthetic experiment. The

results are shown in Figure 3.4. The lines represent the degrees of freedom estimates from a single

Monte-Carlo sample and the color of each indicates the depth of that model.

The same conclusions hold for MNIST and CIFAR-10 as for synthetic data. The only difference

is increasing depth results in more degrees of freedom than models trained with synthetic data. This

could be attributed to the differences of input data size and complexity between the real datasets,

MNIST and CIFAR-10, and the much simpler synthetic datasets.
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3.3.4 Degrees of Freedom and Regularization Techniques

When training a deep neural network, many practical methods can be used for regularization. I

investigate how the different techniques affect the degrees of freedom in the model.

I train networks using the same settings as in Section 3.3.3. In this experiment, I separately

trained networks with different settings of penalty rates: corruption rate, dropout rate, and weight

decay rate. One rate is changed at a time while keeping rest fixed.

For all three datasets, I trained networks using corruption rates and dropout rates from

[0, 0.1, 0.2, . . . , 0.9], and weight decay rates from 10−6 to 10−3. For each setting of regulariza-

tion parameters, I trained a 3 layer network [30, 30, 30] for synthetic data and [300, 300, 300] on

MNIST and CIFAR-10 data. I used one Monte Carlo sample to estimate degrees of freedom in each

model. The result is shown in Figure 3.5.

Neither corruption rate nor dropout rate affected degrees of freedom drastically for synthetic

data. This is because the input of the synthetic data is generated randomly. Hence, pre-training

cannot learn higher-level features for synthetic data. For MNIST and CIFAR-10, I found that

both corruption rate and dropout rate have an impact on degrees of freedom . In CIFAR-10, the

regularization effect is much larger. These results suggest that the regularization strength from

dropout and corruption can be data-specific.

Weight decay penalty has a very strong effect on the degrees of freedom for all three datasets.

Further, the weight decay exhibited a highly nonlinear impact on the degrees of freedom, in dramatic

contrast to its effect in ridge regression.3

3.3.5 Model Selection using Degrees of Freedom

To validate that DoFAIC is a useful criterion for model selection, I compare it against model

selection based on error estimates using cross-validation. For brevity, I refer to the cross-validation

estimate of error as the cross-validation error. A 5-fold cross-validation experiment is conducted

3 Ridge regression degrees of freedom scale with 1
1+λ which is nonlinear but a much tamer multiplier than in neural

networks
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for Synthetic, MNIST and CIFAR data on models with different network structures learned in

Section 3.3.3. I calculated DoFAICs for all the models we trained using Equation (3.6) with the

estimated degrees of freedom. I also calculated Naı̈ve AIC using Equation (3.5) with the number of

parameters in the network. I compared these estimates against cross-validation errors. The result is

shown in Figure 3.6. Each circle in the plot represents a model with a specific structure. The x-axis

is the mean cross-validation log deviance error across 5 folds.

Further, I calculate the Spearman rank correlation between cross-validation log deviance errors

and DoFAIC/Naı̈ve AIC estimates for each dataset. The result is shown in Table 3.2.

Table 3.2: Spearman Rank Correlation between Cross-validation error and DoFAIC/Naı̈ve AIC

Dataset DoFAIC ρ Naı̈ve AIC ρ
Synthetic 0.9865 -0.6711
MNIST 0.9853 -0.9471
CIFAR-10 0.9941 -0.7824

DoFAIC is very consistent with cross-validation error. Naı̈ve AIC, on the other hand, exhibits a

negative correlation with cross-validation error due to highly non-linear behavior. This is because

Naı̈ve AIC overestimates the complexity of the model by using the large number of parameters in

the network. The actual complexity in deeper and larger networks are much less than the number of

parameters.

For all three datasets, both DoFAIC and cross-validation chose the same model. This indicates

that DoFAIC can be used for model selection. Note that k-fold cross-validation, which needs at

most k rounds of training, while DoFAIC only requires at most 2 rounds of training. This makes

DoFAIC an efficient model selection criterion.

3.4 Discussion

In this chapter, I investigated the degrees of freedom for classification models and presented

an efficient method to estimate their degrees of freedom. I showed that for simple classification

models, degrees of freedom is equal to the number of parameters in the model. In deep networks, the
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degrees of freedom is generally much less than the number of parameters in the model, and deeper

networks tend to have fewer degrees of freedom. I also theoretically and empirically showed we

can use DoFAIC as an efficient criterion for model selection, which has a comparable performance

to cross-validation.
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CHAPTER 4: SELECTING HYPOTHESES FROM DEEP NEURAL NETWORKS

4.1 Introduction

Deep learning methods have been successfully applied to many different tasks. However,

despite providing a high-accuracy model, more knowledge and guidance were expected to be

summarized from the well-trained deep models. However, unlike simple models, the information

from nonlinear models is hard to be distilled.

In this work, I focus on the task of generating hypothesis from nonlinear models – deep neural

networks in this case. In general, a model is trained on some training data and a prediction function

is obtained as f(x), where x is the input vector, and f(x) is the prediction on the target output.

In classification problems, f(x) is the predicted probability; in regression problems, f(x) is the

predicted target value.

In general, the prediction function f(x) is obtained in order to make accurate predictions.

In some cases, people care more about how to utilize the trained model to obtain reasonable,

conductible hypotheses. The hypothesis, in this case, is a pair of similar input vectors that is

believed to induce a significant difference in the output. It can also be considered as a context when

introducing specific small perturbations that can lead to substantial changes in the output.

In this work, I provided a framework for hypothesis generation. This framework includes 3

aspects: 1) A formal definition of hypothesis and quantified properties of interests. 2) Methods to

obtain hypotheses of interests from a nonlinear model. 3) An economical procedure of selecting

hypotheses for further validation. The framework was applied to both a toy image classification

example and a plant-microbial design case study. The result shows that the framework is useful in

generating hypotheses and provide guidance for validation experiments.
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4.2 Method

In this section, I am going to introduce the definition of the hypothesis and the procedure for

selecting hypotheses from a trained model and constraints.

4.2.1 Definitions

First, a treatment is defined as a pair of input vectors T = (xr,xp), where xr is the reference

state and xp is the perturbed state. ∆x = xp−xr is defined as perturbation. A significant difference

between the outcomes of these two states is expected. Given a trained model with predictive function

f(x), the expected change of a hypothesis can be defined as D(h, f). In a classification problem,

where f(x) is the predicted probability of x being in the target class, D is defined as the log-fold

change in the probability:

D(h, f) = log f(xp)− log f(xr)

In the regression problem, where f(x) is the predicted value of the target output, D can be regarded

as the squared difference:

D(h, f) = (f(xr)− f(xp))
2

When conducting the validation experiment, besides identifying states that can induce most

significant changes, perturbing as few as factors as possible could make the treatment interesting

and efficient. Therefore, perturbation level is introduced for a hypothesis as δ(h). Depending on

the problem, different forms of perturbation level can be used. For example, the perturbation level

can be defined as the L1 distance between perturbed state and referenced state: δ(h) = |xr − xp|.

4.2.2 Generating Hypothesis

Each hypothesis h corresponds to a expected change D(h, f) and perturbation level δ(h).

Ideally, preferred hypotheses are the ones with small perturbation level and large expected change.
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Let H(τ,K) be the preferred hypotheses set. All the hypotheses in the set should meet the following

constraints:

D(h, f) ≥ τ, ∀h ∈ H(τ,K)

δ(h) ≤ K, ∀h ∈ H(τ,K).

If the trained model f(x) is a linear function, the preferred hypotheses set can be easily obtained,

as all the factors in the state are independent and their contributions to the output are linear. But

if the trained model f(x) is a nonlinear function, finding the exactly preferred hypotheses set can

be very hard. However, if the hypotheses space is finite and small, all satisfied hypotheses can be

identified by enumerating all possible pairs of states.

When state space is continuous and large, identifying the exactly preferred hypotheses set

can be extremely inefficient. Given a referenced state xr, instead of finding all possible perturbed

state that can induce desired expected changes in the outcome, hypotheses can be generated by

finding one perturbed state that can induce the most changes. Therefore, the task can be written as a

constrained optimization problem:

max
xp

D(xr,xp, f)

s.t. δ(xr,xp) ≤ K

There are many works from the model interpretation field aim to solve these kinds of problems,

including perturbation-based approaches (Zeiler and Fergus, 2014; Zhou and Troyanskaya, 2015;

Zintgraf et al., 2017), gradient-based approaches (Simonyan et al., 2013; Springenberg et al., 2014)
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and novel approaches like Deep-Lift(Shrikumar et al., 2017). In this work, I am using perturbation

based method for hypothesis generation.

Algorithm 2 Filter hypotheses from a candidate hypothesis set
Input: Candidate hypothesis set C = {h1, h2, . . . , hn}, perturbation threshold τ p, expected change

threshold τ c, a trained model f .
Output: Hypothesis set H

1: H ← ∅
2: for each candidate hypothesis h ∈ C do
3: Calculate the expected change D(h, f)
4: Calculate the perturbation level δ(h)
5: if D(h, f) > τ c and δ(h) < τ p then
6: H ← H ∪ h

In general, to get a list of hypotheses of interest, one can enumerate through referenced states

of interests (usually the training samples), calculate the corresponding best perturbation level and

expected change, and pick any hypothesis that satisfied the desired constraints as the preferred

hypotheses set. I provided an algorithm for selecting hypotheses when a candidate set of hypotheses

is of interests in Algorithm 2.

4.2.3 An Economical Procedure of Hypothesis Selection

Validating a hypothesis comes at a cost. In many biological experiments, exhaustively validating

all possible hypotheses is inefficient and can be extremely expensive. Therefore, an economical

way of selecting hypothesis is important. Given a limited experimental resource, one might choose

to greedily select the hypothesis from those with the most expected change. In some cases, it might

not be the most efficient way of selecting hypotheses. For example, a single perturbed state might

serve 2 referenced states, and by choosing that state might allow us to test more hypotheses. On the

other hand, each state might come with a different cost. This requires us to utilize a better way of

choosing hypotheses.

In this section, I am going to introduce different procedures to select hypotheses under a total

cost constraint and maximize the total benefit.
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The choice of hypothesis can be considered as a graph problem. A state xs can be regarded as a

vertex s in the graph. A hypothesis h can be regarded as an edge in the graph that connects two

vertices r, p (referenced state and perturbed state). Considering a graph G of edges (hypotheses)

as H and vertices (states) as S, each edge h = (s, t) ∈ H has a benefit bs,t = v(h) as the expected

change. For each vertex s, it associates with a binary variable zs. zs = 1 indicates the vertex is

selected, while zs = 0 indicates the vertex is not selected. Selecting one vertex corresponding to

conducting a validation experiment with the state xs. Hence, a cost ws associates with each vertex

s.

The goal is to find a subset of vertices with total costs less than K, and the edges that covered

by the vertices (where both ends are selected) contain the most benefit.

A simple idea is to use the greedy algorithm. The idea is to select hypotheses based on their

benefits from high to low as long as the total cost is less than K, as shown in Algorithm 3.

Algorithm 3 Greedy algorithm for hypothesis selection
Input: Hypothesis set H = {h1, h2, . . . , hn}, corresponding benefit B = {b1, b2, . . . , bn}, cost for

each state w, total cost constraint K
Output: Selected state set Z

1: Z ← ∅
2: Sort H and B based on the value B from high to low
3: for each hypothesis h ∈ H do
4: u, v ← the states of h
5: if total cost of Z ∪ {u, v} is less than K then
6: Z ← Z ∪ {u, v}

The greedy algorithm apparently would not provide the optimal solution. In order to better

state the problem, it can be written as an quadratic constraint optimization problem:

max
z

∑
s,t∈S zsztb(s,t) (4.1)

s.t. zs ∈ {0, 1},∀s ∈ S∑
s∈S wszs ≤ K
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Hence, the problem becomes a quadratic integer programming (QIP) problem (Bertsekas, 1999).

In this work, the CPLEX quadratic integer programming solver (ILOG, 2014) is used. The algorithm

takes the input of a state cost vector w and a hypothesis benefit matrix B and returns a binary choice

vector z. The choice vector z indicates which states to be validated. The procedure is described in

Algorithm 4.

Algorithm 4 Quadratic integer programming algorithm for hypothesis selection
Input: Hypothesis set H = {h1, h2, . . . , hn}, corresponding benefit B = {b1, b2, . . . , bn}, cost for

each state w, total cost constraint K.
Output: Selected state set Z

1: z← optimal solution of objective 4.1
2: Z ← {i|zi == 1, ∀i}

If the cost of conducting an experiment is same for all states, the cost can be set to ws = 1 for

all states. The total benefit provides a higher opportunity that more hypotheses are validated.

4.2.4 Summary

Now I introduced the definition of hypothesis, the properties of a preferred hypothesis set, the

procedure of generating hypothesis from a trained model, and when cost is under consideration,

how to smartly choose the hypotheses. This framework can be applied to different tasks as need

with flexible constraints and economical considerations.

In the next section, I am going to present both a toy example and a biological case study

using the hypothesis generation framework. In the first toy example, the framework is used to help

identify hypotheses about masked perturbations on a digit-classification task. In the second one, the

hypotheses generation framework is used to help design microbial communities that improve plant

nutrition.
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4.3 Toy Example: Hypothesis Generation for Digit-classification image

In this toy example, I will show how to generate hypotheses using the framework from a

convolutional neural network trained on images to predict digits. This example is aimed to provide

a guide for using the hypothesis generation framework.

4.3.1 Task Description

In this example, hypotheses generation is applied to a digit image classification scenario on

the MNIST dataset (LeCun et al., 1998). To simplify the task, I aimed to generate hypothesis with

small perturbations that can change images with digit “0” to digit “6”. Assume that there is a

cost associated with the validation of each image, as in the real world setting, this could be done

by recruiting people to label images. A candidate image set (has not been seen by the model) is

provided as the state space for hypotheses. Valuable hypotheses are generated under different cost

constraints.

4.3.2 Hypothesis Generation

First, a convolutional neural network was trained using Keras (Chollet et al., 2015) on 60,000

MNIST images. The model reached an accuracy of 98.7%. A candidate state space with 50 “0”-digit

images and 50 “6”-digit images is provided. All pair-combinations of 100 images were enumerated

to generate the candidate hypotheses set, which results in 9900 candidate hypotheses. The expected

changes in the log predicted probabilities of class “6” was calculated. The perturbation level was

calculated using the mean absolute difference between images.

The hypotheses were selected using Algorithm 2 with perturbation level smaller than τ p = 0.15

and expected change greater than τ c = 5 as the preferred hypotheses set. 502 hypotheses and

88 candidate images were selected after filtering. An overview of the generated hypotheses and

threshold is shown in Figure 4.1. Each point in the graph represents a candidate hypotheses, with the

x-axis as the perturbation level and y-axis as the expected change. Red points are hypotheses that
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indeed results in a change from digit “0” to digit “6”, and blue points do not. The vertical/horizontal

dashed line represents the threshold used for perturbation level/expected change. Two sample

selected hypotheses are shown in Figure 4.2. These examples have small perturbation level and

large expected change. Each row represents a hypothesis. From left to right, referenced image,

perturbed image, the difference between two images. The hypothesis in the first row has perturbation

level 0.072 and expected change 6.87. The hypothesis in the second row has perturbation level

0.085 and expected change 8.71.
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Figure 4.1: Overview of hypotheses space and thresholds on digit “0” to digit “6”.
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Figure 4.2: Examples of selected hypotheses.

4.3.3 Hypothesis Selection

If the cost of validating the label of an image is considered, it is important to choose hypotheses

to validate optimally. In this work, I used both the greedy method described in Algorithm 3 and the

quadratic integer programming (QIP) method described in Algorithm 4 to select hypotheses with

the cost constraint.

Different cost constraint K are chosen from [10, 30, 50, 70, 90] for the algorithms. For each

running, I calculate 1) total benefit obtained from both methods, 2) valid hypotheses count from

the selected hypotheses, 3) total hypotheses generated from both methods. The result is shown in

Figure 4.3. QIP method outperformed the greedy method and generated more valid hypotheses

under different cost constraint.
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Figure 4.3: Hypothesis selection for digit classification using greedy and QIP algorithm.

In this toy example, I demonstrated the procedure of generating hypotheses from the MNIST

dataset. This framework can be used to generate reasonable hypotheses. It can also account for

generating most efficient hypotheses under a cost budget.

4.4 Case Study: Hypothesis Generation for Microbial Community Design

In this work, I provided a case study for hypothesis generation for identifying the microbial

synthetic community designs that will bring significant improvement in nutrition concentration in

the plant. This work is in collaboration with Dangl’s lab. The work has been submitted to PLoS.

(Paredes et al., 2017).

4.4.1 Background

In ecosystem function and plant development, microbial communities are a key important

factor (Seedorf et al., 2014; Faith et al., 2014; Hacquard et al., 2015; Bai et al., 2015). One goal in

microbiology is to design microbiome synthetic communities (SynComs) with desired functions

and properties, for example, increasing the nutrient absorbability in the plant. In this work, I focus

on design of SynComs that can increase the absorption of a class of macronutrient for the plant,
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inorganic orthophosphate (Pi-content), which is limited in the soil. An example of the plant growth

under the environment of different Pi-content levels is shown in Figure 4.4.

Figure 4.4: Plant growth under different levels of inorganic orthophosphate (Pi).

It is a huge cost to conduct and measure Pi-content for all possible SynComs exhaustively.

Instead, machine learning models can be trained on existing data. These models can be used to

generate hypothesis about the Pi-content change of untested designs.

In this work, I first modeled the data using a multilayer feed forward neural network. Next, I

used the model to generate a set of hypotheses using the framework. These generated hypotheses

were finally validated from biology experiments. This case study provides a full procedure for

generating hypotheses and validation. A significant amount of hypotheses are validated in the end,

which provides a list of applicable treatments guidance for building beneficial microbial synthetic

community.

4.4.2 Modeling Pi-content using Neural Network

As Pi-content measurement of a SynCom has different mean under different phosphate con-

ditions, the model is expected to capture these interactions. These interactions come from both

environmental effects and microbiome synthetic communities, as shown in Figure 4.5.
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Figure 4.5: Pi-content in the plant can be influenced by the interaction between environmental
factors and microbial communities.

Deep learning methods have been successfully applied to many problems and outperformed

many simple linear methods (LeCun et al., 2015; Angermueller et al., 2016; Min et al., 2016).

Multilayer Feedforward neural network (NN), a typical framework for deep neural network structure

family, is a prediction model where input data are combined and transformed non-linearly through

multiple layers of hidden nodes. NN can capture high-order interactions between input features

through intermediate layers, as they are universal approximators (Hornik et al., 1989).

In this work, I trained NN models on an existing data set – primary experiment. It contains

the Pi-content measurements from 14 pair-combinations from 9 different non-overlapping bacteria

groups (P1,P2,P3, I1,I2,I3,N1,N2,N3) under 4 different environment conditions (combination of

a starvation/non-starvation pre-treatment of the plant, and a rich/poor nutrient condition in the

experiment soil). A model takes the design information as the input, and output the predicted

Pi-content measurement. Table 4.1 summarized the input vector.
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Table 4.1: Summarization of the input design information

Feature Name Replicate b Pre-treatment p Phosphate level q

Synthetic community

bacterial block

indicator S

x = 0 or 1 b = 1 or 2 p = −Pi or +Pi
q = 30µM

or 100µM

bacterial block

is absent/present

in this design

Several NN models are trained on the data from the primary experiment, and the best model

has 3 hidden layers and 200 hidden nodes in each layer, as shown in Figure 4.6.

Figure 4.6: Schematic representation of the neural network defined and applied for predictions.

A leave-SynCom-out cross-validation experiment is performed. Each model is trained on all

but one synthetic community and evaluated on that held out the synthetic community. The result is

shown in Figure 4.7. Each dot in the plot represents the mean Pi content prediction error on the held

out synthetic community. The result shows that NN has lower prediction error on held-out SynCom

samples comparing to simple linear model (LM) and a linear model with manually constructed

interaction features (INT).
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Figure 4.7: Cross-validation error from the three types of models tested for their ability to predict
shoot Pi content.

To visualize the learned model of NN, I investigated the ”sensitivity” of the network, which is

the change in the predicted output when perturbing a particular input feature (Figure 4.8). Each dot

represents the sensitivity under a specific context. This approach is similar to derivatives analysis of

the network in many computer vision tasks (Simonyan et al., 2013; Wang et al., 2016). Sensitivity

in LM is constant for a feature across different context. In INT and NN, sensitivity is different in

the different context. NN can capture more complex context-dependent sensitivity than INT. From

the sensitivity analysis, I found that changing phosphate-level from 30µM to 100µM will always

increase the Pi-content. However, when switching pre-treatment from -Pi to +Pi, the change in

Pi-content is not always positive.

Figure 4.8: Sensitivity of Pi accumulation with respect to each biological variable for each type of
model.
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4.4.3 Hypothesis Generation and Validation

In this section, I use the trained model to generate hypothesis about possible treatments in

untested SynComs. Enhancing the plant nutrition concentration by increasing environment nutrition

level seems obvious and not interesting in this case. Hence, I focus on generating hypothesis that

improves nutrition concentration by switching microbial blocks while keeping the environment

nutrition level fixed.

The possible perturbation level allowed in this study is microbial block swapping. Let Sr and

Sp be the referenced and perturbed SynCom, where |Sr| = |Sp| = 2 and |Sr ∩ Sp| = 1. This

means that swapping a microbial block in the referenced SynCom to another different microbial

block. All possible swaps of bacterial blocks under a certain phosphate condition (pre-treatment

p phosphate-level q) are considered as the candidate hypotheses set that satisfies the perturbation

level constraint.

To calculate the expected change, the hypothesis that can induce a significant difference in the

output are considered. Hence, not only the mean difference but also the variance is needed to be

modeled. In this work, the worst-case variance estimate is used. The largest residual variance ( the

difference between observed value and predicted value) related to a bacterial block is transferred

from the training data to all related conditions. Hence, the p− value of all possible hypotheses can

be calculated using predicted mean from the trained NN model and variance from the training data.

A specific starvation phosphate condition of interest −Pi, 30µM is chosen and hypotheses that

at least one state is not tested are generated. In this case, as there are not many valid states, all

25 hypotheses are selected and validation experiment for 20 SynComs was conducted. The same

procedures as the primary experiment have been used to gather Pi-content measurements in the

plant under phosphate condition −Pi, 30µM .

The validation result of the chosen hypotheses is shown in Figure 4.9.These block replacements

involved 20 different synthetic communities. Each box represents selected replacements in a

particular constant background noted at the top. Each arrow represents a replacement of the

bacterial block on the left with the block on the right. Asterisk indicates the blocks that lead to
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maximal plant Pi accumulation in the validation experiment. There was a significant correlation

(C= 0.42, p-value = 0.0375) between predicted and observed shoot Pi content changes caused by

the bacterial block replacements (Figure 4.10). Strikingly, 23 out of 25 bacterial block replacements

increased shoot Pi content (p-value = 0.004; 1000 permutation tests with synthetic community labels

randomly permuted). Moreover, the improvement in shoot Pi content was statistically significant in

16 out of 25 bacterial block replacements (p-value = 0.032; 1000 permutation tests with synthetic

community labels randomly permuted). Only 1 out of 25 bacterial block replacements significantly

decreased Pi content.

Figure 4.9: The most significant 25 block replacements with a positive effect on the shoot Pi
concentration predicted by the neural network.

As the selection space is small, all possible combinations from the hypothesis space are tested.

However, the greedy method and QIP are still tested on the validated experiment result to select
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Figure 4.10: The shoot Pi accumulation change predicted by the neural network (x-axis) and the
change observed experimentally are significantly correlated (Spearman’s correlation co-efficient
0.42, p-value = 0.0375).

hypothesis with cost constraints. The result is shown in Figure 4.11. As expected, using QIP could

provide an equal or better hypothesis selection compared to the greedy method.
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Figure 4.11: Hypothesis selection for synthetic microbial community design using greedy and QIP
algorithm.
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4.5 Summary

In this chapter, I provided a hypothesis generation framework for nonlinear methods. To select

reasonable hypothesis for validation, perturbation level and expected change of the hypothesis

should be used to filter hypotheses with good quality. I provide two algorithms for selecting

hypotheses when the experimental budget is limited. Two case studies including an image digit

classification and a microbial synthetic community design were provided. The experimental results

showed that the method is useful in extracting hypothesis.
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CHAPTER 5: LEARNING INFORMATIVE REPRESENTATIONS USING GUIDED
AUTOENCODERS

5.1 Introduction

Nowadays, the data often contain a large number of dimensions. In order to summarize and

visualize the data, methods that can extract a compressed representation of the data are expected.

The compressed representation could contain an essential information and characteristics of the

original data. Hence, analysis of these compressed representations could help us to efficiently gather

valuable information and knowledge.

To define the concept formally, I introduce some basic concepts and definitions about com-

pressed representation. Given the real value input data vector x with p dimensions as the original

data, an encoder function is expected to transfer the original data to the compressed representation

c of m dimensions:

enc(x) = c.

m is defined as code length of the encoder, as it represents how many codes are need to store the

data. In order to compress the original data, the code length should be smaller than the original data

dimension: m < p.

The original data should be reconstructible from the compressed representation c. Therefore, a

decoder function corresponds to the encoder function should transfer the compressed representation

c to the reconstructed data x̂:

dec(c) = x̂.

Let f(x) be the combination function of the encoder and decoder functions f(x) = dec(enc(x)).

To evaluate the quality of the compressed representation functions, a loss function can be calculated.
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In this case, the mean-square-error is used:

L(f,x) = ||f(x)− x||22

In general, a set of encoder/decoder functions can be trained by optimizing the following

objective:

minimize
f

L(f,x) +R(f) (5.1)

where R(f) is a regularization term on the encoder/decoder to avoid overfitting.

Principal component analysis (PCA) was used a lot in many statistical applications. It learns a

compact representation, which is obtained from a linear transformation of the original data (Jolliffe,

1986). Its encoder and decoder function can be written as:

enc(x) = Wx

dec(c) = WTc,

where W is a matrix of m by p. The learned compressed representations – principle components –

c are ranked by their contribution to the total variance of the data.

Besides linear methods like PCA, deep structures like autoencoders represent another family of

compressed representation learning. An autoencoder performs a nonlinear transformation of the

data through neurons and activation functions through multiple layers (Bengio et al., 2007). With the

ability to learn nonlinear transformation, autoencoders can model more compressed representations

comparing to linear methods.

It is important to use a model that can learn compressed representations. However, sometimes

it is more important that this compressed information carries characteristics of interests. This is

somehow important for nonlinear transformations, as many very different representations might

have similar reconstruction errors. In this situation, one usually wants a representation that is the

most informative of a specific target of interest.
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Hence, under a fixed code length, a representation can be constructed with two focuses: (1)

the learned compressed representation can be recovered to the original data as accurate as possible

(reconstruction loss); (2) the learned compact representation should be as informative of the desired

target as possible (prediction loss). To achieve this goal, I proposed a novel structure – guided-

auto-encoder – that is able to learn a compressed representation contains both the information from

original data and information about the target. I will show that by balancing the ratio factor in the

learning, representations with different informative levels can be obtained.

In the following sections, I will first introduce the autoencoder and guided-autoencoder. Next,

I will show a case study of using guided-autoencoder to obtain an immunology scores from the

immunology data.

5.2 Methods

5.2.1 Multi-layer Autoencoder

Autoencoders with encoder and decoder functions are considered as multiple-layer feedforward

neural networks. The encoder and decoder have the same number of layers. Hence, the depth of an

autoencoder is defined as the number of layers in encoder/decoder.

For convenience, the input layer is defined as h0(x) = x, and the output of lth hidden layer is

defined as hl(x). The number of nodes in layer l is ml. The input into the lth layer of the network is

defined as:

al(x) = hl−1(x)TWl + βl,

where Wl is a real value weight matrix of ml−1 by ml and βl is a vector of length ml−1. The output

of lth hidden layer is:

hl(x) = tanh(al(x)),

where tanh is the hyperbolic tangent function:

tanh(x) =
1− e( − 2x)

1 + e( − 2x)
.
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For an autoencoder of depth L, the output of the Lth layer hL(x) is defined as the coding layer.

Hence, the encoder function can be written as:

enc(x) = hL(x).

The decoder function consists of layers from L+ 1 to 2L− 1. In this work, the weight matrices

Wl are not tied between encoder and decoder layers.

To model the data with real values, a linear output layer is on top of the last decoding layer:

fAE(x) = h2L−1(x)TW2L−1 + β2L,

where fAE(x) is the overall reconstruction function.

An example guided-auto-encoder is showed in Figure ??.

Now the autoencoder with multiple layers of non-linear transformation is introduced. To train

this autoencoder, we can minimize the reconstruction loss by optimizing the following objective:

minimize
θ

||fAE(x, θ)− x||22 + λ||θ||22, (5.2)

where θ represents all the parameters used in the autoencoder, and λ is the weight decay penalty for

regularization term. To optimize the objective (5.2), the stochastic optimization method ADAM

(Kingma and Ba, 2014) is used.

5.2.2 Guided-Autoencoder

A guided-autoencoder aims to model both the reconstruction and prediction of a target label.

Given the input x, a target label y and an auto-encoder fAE , the guided-autoencoder builds a linear

predictive function on the coding layer:

fG(x) = hL(x)TwG + βG,
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Figure 5.1: An example auto-encoder.

fG contains the parameters wG and βG as the function and parameters for the guided layer. Let θ be

the set of all parameters, the training objective becomes:

minimize
θ

α||fG(x)− y||22 + (1− α)||fAE(x)− x||22 + λ||θ||22 (5.3)

where α ∈ [0, 1] is the guided ratio. If α = 0, the objective (5.3) is equivalent to the objective

of autoencoder (5.2). If α = 1, the optimization has the nothing to do with the parameters in the

decoder, and the objective is equivalent to training the encoder function as a feed forward neural

network. The essential factor in guided-autoencoder is choosing a proper guided ratio α during

training as needed. In fact, later I will show that by choosing different guided ratio α, one can

generate representations of different levels of balancing between reconstruction and prediction

power.
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An example guided-auto-encoder is showed in Figure 5.2.

Figure 5.2: An example guided-auto-encoder with depth 2 and width 3.

5.3 Learning Informative Representations from Immunology Data

In this work, I am going to provide a case study on learning informative representations using

guided-autoencoder from immunology data. The result indicates that informative health-related

codes can be extracted using guided-autoencoder.

5.3.1 Background

Low-grade chronic has been associated with most diseases associated with aging, including

cardiovascular disease, cancer, neurodegenerative disorders and many others, but the mechanisms

underlying this type of inflammation are poorly understood. Recent technological developments

have made it possible to extensively monitor biological material for a relatively low cost, enabling

systems-wide characterization of immune systems.
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In this work, I set out to study the human blood immunome of 1,000 subjects age 9-96.

50 different inflammatory proteins levels were measured. A compressed representation of the

inflammatory proteins measurements could be learned to summarize the patient of different types.

The relationship between inflammatory protein levels and the chronological age of the subject is

also of interest. Hence, an “inflammatory score” built on composite objectives – informative of age

and reconstructible of inflammatory protein levels – could be learned from guided-autoencoders.

5.3.2 Data preparation and model training

The inflammatory protein level data contains n = 1000 samples and p = 50 features. To use

the data for analysis, the data were log-transformed. As the data is a combination of two different

cohorts, a linear batch-correction on the transformed data is performed to remove batch-effects.

Finally, each processed feature is centralized with mean zero and standardized with unit standard

deviation. The target label of interests – chronological age – is used here. To make a comparable

comparison, ages are standardized among all subjects.

PCA and autoencoders were trained on the data to obtain compressed representations. Elas-

ticNet(Zou and Hastie, 2005) was used to regress the compressed representations to the age. A

5-fold-cross-validation for each model of code length from 1 to 10 is performed. To make a compar-

ison, a linear model is trained as the baseline for prediction error. The prediction and reconstruction

loss for PCA and autoencoder is shown in Figure 5.3. From the result, we can see that autoencoder

is able to get smaller reconstruction loss compared to PCA under each code length. But neither

methods can extract compressed representations that have smaller or comparable prediction error

than the baseline linear model.

To learn informative representations that are predictive of the chronological age of the subjects,

guided-autoencoder can be used to include the prediction loss in the objective during training. In

order to compare different models, total loss – the sum of prediction loss and reconstruction loss –

was used as a model evaluation metric. In each fold, the best hyper-parameters (depth, weight decay
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Figure 5.3: The reconstruction loss and prediction loss for PCA and autoencoder with different
code length.

and guided ratio) were chosen from a 3-fold-cross-validation. The result is shown in Figure 5.4.

Guided-autoencoder is able to achieve the lowest total loss of each code length.

To better understand the effectiveness of guided-autoencoders. The prediction loss and recon-

struction loss of guided-autoencoders trained with different guided-ratios with code length 3 are

shown in Figure 5.5. Note that the top left most GAE is equivalent to autoencoder, and the bottom

right GAE is equivalent to a neural network. A properly trained GAE can achieve a good balance

between reconstruction loss and prediction loss. By tuning the guided-ratio in guided-autoencoder,

the solutions form a path representing the trade-offs between prediction power and reconstruction

power.

When guided-ratio is zero, guided-autoencoder is equivalent to autoencoder. In this case, the

prediction loss of autoencoder is similar to PCA. By introducing more and more guided-ratio,

compressed representations with less prediction loss and more reconstruction loss can be obtained.

Guided-autoencoders could achieve both smaller prediction loss than the linear model and smaller

reconstruction loss than PCA, which indicates those compressed representations are both very

informative of the age and contains essential information about the original data.
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Figure 5.4: The total loss including prediction and reconstruction loss for PCA, autoencoder and
guided-autoencoder with different code length.

5.3.3 Inflammatory age extraction

In order to provide a marker summarization of the subject’s immune system state, a novel

immunology measurement concept – inflammatory age – is invented. This novel measurement

should be relevant to both the inflammatory protein level and the chronological age of the subject.

In this work, the inflammatory age is defined as the output of a nonlinear function of inflammatory

protein levels. This real value measurement should both be informative of the chronological age

and contain the essential information about the inflammatory protein levels.

A guided-autoencoder is trained as the nonlinear transformation function for inflammatory age.

As the total loss will always decrease when more code length is allowed. Hence, the best code

length of the guided-autoencoder needs to be identified. In this work, the best code length is chosen

as the one with non-significant improvement in the total loss when introducing one more code under

a 5-fold cross-validation. The best code length is 5, in this case, as shown in Figure 5.6 .
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Figure 5.5: Test reconstruction loss and prediction loss for PCA and guided-autoencoders trained
different guided-ratio with code length 3.
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Figure 5.6: The 5-fold cross-validation total loss for guided-autoencoders with different code length.
The best code length should have non-significant improvement in total loss when adding more code.
In this case, the best code length is 5.

After obtaining the best code length as 5, a 5-fold-cross-validation is used to select the best

hyper-parameter setting (depth = 2, guided-ratio = 0.2, weight-decay penalty = 0.001) on all

guided-autoencoders with code length 5. The best hyper-parameter setting was finally used to

train the guided-autoencoder on the whole dataset. The age predictive function from the final

guided-autoencoder was used as the inflammatory age predictor.

The learned compressed representation colored by chronological age is shown in Figure 5.7.

X-axis and y-axis represent the first and second dimension of the compressed representation (PCA

for guided-autoencoders). The color indicates the chronological age of the subject (red for young

and yellow for old). One can visually tell the separation between old and young subjects from the

guided-autoencoders; while in PCA, subjects with different ages are clogged together.

5.4 Summarization

In this chapter, I provided a novel structure – guided-autoencoder – to learn informative com-

pressed representations. Traditional autoencoder can be used to generate compressed representations,
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Figure 5.7: Visualization of compressed representation PCA and guided-autoencoders.

but without guided-training, the compressed representations could be not predictive of the informa-

tion of interest. With the guided-autoencoder, compressed representations with small reconstruction

loss and prediction loss can be obtained. In this case, the compressed representation contains both

the information about the input data and the information of the target label of interest. By using

different guided-ratio during the training, representations with different levels of reconstruction and

prediction power can be obtained. Finally, the guided-autoencoder is used to extract an immunology

state marker – inflammatory score. The score is a summary of the subject’s immunology state and

related to the chronological age.
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CHAPTER 6: DISCUSSION

In this dissertation, I introduced 3 methods extracting information from deep learning models.

Chapter 3 introduced a method for estimating degrees of freedom in deep learning models. In deep

models, the number of parameters can be very large and can be an overestimate of the complexity

of the model. Degrees of freedom is a more proper metric for measuring the complexity comparing

to the number of parameters. A Monte-Carlo based method can be used to efficiently estimate the

degrees of freedom in the model. The degrees of freedom estimated on an image classification

model shows that with reasonable regularization techniques, deep learning models with many

parameters can still be trained properly without overfitting issue. This provides strong evidence for

applying deep learning methods on computational biology data with not many samples.

Chapter 4 introduced a general hypotheses generation framework for deep learning models.

We can calculate the perturbation level and expected change from the hypotheses to evaluate

their values. The testable and valuable hypotheses should have small perturbation level and large

expected change. When designing the validation experiment on a set of candidate hypotheses, a

cost-efficient algorithm is provided to select hypotheses that maximize the expected benefit under

a total cost constraint. The proposed framework is used to generate hypotheses on a microbial

synthetic community design task. The results indicate that the proposed framework can be used to

efficiently generate hypotheses from deep learning models.

In Chapter 5, an informative representation learning method based on autoencoders is introduced.

When learning a compressed representation of the data of high dimensionality, reconstruction loss

is optimized under the constraint of code length used. Due to the re-parameterization issue,

different models with similar reconstruction error can be trained, but some models can contain

more informative representations comparing to others. Guided-autoencoder aims to minimize the
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reconstruction loss and prediction loss on a specific guided target at the same time. By choosing

different guided training ratio, representations of different focus can be generated. The guided-

autoencoder method is applied to an immunology data to extract compressed representations that

are informative of the chronological age of the subjects.

In this thesis, I showed that different kinds of information – complexity, hypothesis, informative

representations – can be extracted from deep learning models. For a long-term goal, many more

model interpretation related tasks can be developed to facilitate the information extraction of

the deep model. The information can also be used as a feedback monitor during the training

process to ensure the model is properly trained. The guided-autoencoder can also be used for

generative adversarial networks (Goodfellow et al., 2014) to learn informative generative codes.

Rules discovery – a specific perturbation pattern that is common holds in many contexts – for deep

learning models is also of interest to many fields. I hope that the methods I introduced in this thesis

can be used as a founding basis for the better intelligent system, and the information could be used

for validation and reassurance that the deep learning is working properly.

63



BIBLIOGRAPHY

Akaike, H. (1974). A new look at the statistical model identification. Automatic Control, IEEE
Transactions on, 19(6):716–723.

Akaike, H., Petrov, B., and Csaki, F. (1973). Information theory and an extension of the maximum
likelihood principle.

Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. (2015). Predicting the sequence
specificities of dna-and rna-binding proteins by deep learning. Nature biotechnology.

Angermueller, C., Pärnamaa, T., Parts, L., and Stegle, O. (2016). Deep learning for computational
biology. Molecular Systems Biology, 12(7):878.

Bai, Y., Müller, D. B., Srinivas, G., Garrido-Oter, R., Potthoff, E., Rott, M., Dombrowski, N.,
Münch, P. C., Spaepen, S., Remus-Emsermann, M., et al. (2015). Functional overlap of the
arabidopsis leaf and root microbiota. Nature.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A., Bouchard, N.,
and Bengio, Y. (2012). Theano: new features and speed improvements. Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise training of
deep networks. In Advances in neural information processing systems, pages 153–160.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-
Farley, D., and Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler. In
Proceedings of the Python for Scientific Computing Conference (SciPy). Oral Presentation.

Bertsekas, D. P. (1999). Nonlinear programming. Athena scientific Belmont.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal margin
classifiers. In Proceedings of the fifth annual workshop on Computational learning theory,
pages 144–152. ACM.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Chen, Y., Li, Y., Narayan, R., Subramanian, A., and Xie, X. (2015). Gene expression inference with
deep learning. bioRxiv, page 034421.

Chollet, F. et al. (2015). Keras. https://github.com/fchollet/keras.

Efron, B. (1975). Defining the curvature of a statistical problem (with applications to second order
efficiency). The Annals of Statistics, pages 1189–1242.

Efron, B. (2004). The estimation of prediction error. Journal of the American Statistical Association,
99(467).

64

https://github.com/fchollet/keras


Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. (2004). Least angle regression. The Annals
of statistics, 32(2):407–499.

Eldar, Y. C. (2009). Generalized SURE for exponential families: Applications to regularization.
Signal Processing, IEEE Transactions on, 57(2):471–481.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S. (2010). Why does
unsupervised pre-training help deep learning? The Journal of Machine Learning Research,
11:625–660.

Faith, J. J., Ahern, P. P., Ridaura, V. K., Cheng, J., and Gordon, J. I. (2014). Identifying gut
microbe–host phenotype relationships using combinatorial communities in gnotobiotic mice.
Science translational medicine, 6(220):220ra11–220ra11.

Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013). Learning hierarchical features for scene
labeling. IEEE transactions on pattern analysis and machine intelligence, 35(8):1915–1929.

Furman, D., Gao, T., Hastie, T., Sayed, N., Tibshirani, R., Rosenberg-Hasson, Y., Dekker, C.,
Haddad, F., Maecker, H., Jojic, V., Wu, J., Montoya, J., and Davis, M. (2017). Inflammation,
cardiovascular disease and mortality risk : Results from the 1000 immunomes project. Cell (to
be submitted).

Gao, T. and Jojic, V. (2016). Degrees of freedom in deep neural networks. arXiv preprint
arXiv:1603.09260.

Golub, G. H., Heath, M., and Wahba, G. (1979). Generalized cross-validation as a method for
choosing a good ridge parameter. Technometrics, 21(2):215–223.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680.

Guyon, I., Hur, A. B., Gunn, S., and Dror, G. (2004). Result analysis of the nips 2003 feature
selection challenge. In Advances in Neural Information Processing Systems 17, pages 545–552.
MIT Press.
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