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ABSTRACT 

Tien M. Nguyen: Development of Two Organocatalytic Photoredox Transformations: The 

Enantioselective Cation Radical Diels-Alder Reaction and the Anti-Markovnikov Hydroamination of 

Alkenes 

 (Under the direction of David A. Nicewicz) 

 

 

 Herein we describe the development of two research projects within the field of organic 

photoredox catalysis. Both works involve the single electron oxidation of alkenes to generate cation 

radical intermediates which possess unique reactivity. The cation radical Diels-Alder reaction 

circumvents traditional electronic restraints on the substrates and allows for cycloaddition to occur 

between two electron-rich partners. We aimed to render this valuable reaction enantioselective by 

merging the fields of photoredox catalysis and chiral counteranion catalysis. The precedent for our 

research proposal and details of our findings are disclosed. We also employed cation radical intermediates 

for the development of an anti-Markovnikov hydroamination reaction catalyzed by an organic photoredox 

system. This transformation provides access to important pharmacological agents through the direct 

addition of amines to alkenes. The products are formed with complete anti-Markovnikov regioselectivity, 

a feature that is challenging to obtain without precious transition metals. We demonstrate 38 examples of 

the intra- and intermolecular anti-Markovnikov hydroamination reaction. Notably, the substrate scope 

includes trisubstituted aliphatic alkenes as well as heteroaromatic amines.  
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PREFACE 

 The results and supporting information disclosed regarding the intramolecular anti-Markovnikov 

hydroamination reaction were published in the Journal of the American Chemical Society in 2013. 
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CHAPTER 1: BACKGROUND FOR THE DEVELOPMENT OF AN ENANTIOSELECTIVE 

CATION RADICAL DIELS-ALDER REACTION 

 

 

Introduction  

 

 Synthetic organic chemists require an extensive array of transformations to construct complex 

molecules for drug discovery, industrial processes or new materials. We sought to develop a novel 

methodology that would also provide access to a relatively unexplored area of chemical space. As the 

platform on which to develop a new method, we looked to the Diels-Alder (DA) reaction, a well-

established and powerful cycloaddition that forms two bonds and can set up to four stereocenters in a 

single step.
1
 This transformation is strictly regulated by the electronic properties of the two coupling 

partners, generally limiting reaction between partners with mismatched electronic substitution. One 

strategy to circumvent this challenge is through the cation radical Diels-Alder, which relies on single 

electron oxidation to induce reactivity between two electronically matched starting materials.
2
 The cation 

radical Diels-Alder has attracted the interest of many research groups and their findings will be discussed 

in turn.  

 Building on existing precedent we wanted to explore the possibility of rendering the cation 

radical Diels-Alder reaction enantioselective. We saw an opportunity to introduce chirality through a 

unique non-covalent interaction between the key cation radical intermediate and a chiral counteranion. 

Other research labs have reported asymmetric induction through ionic interaction, though most rely on a 

chiral cationic species, with limited examples in organic catalysis. We set out to construct a novel photo-

oxidant with a chiral counteranion to catalyze a cation radical Diels-Alder reaction to furnish 

enantiomerically enriched cyclohexene products (Figure 1.1). 
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Figure 1.1 Proposal for an Enantioselective Cation Radical Diels-Alder Reaction 

 

 

1.1 Normal and Inverse Demand Diels-Alder Reactions 

 In the classic Diels-Alder, reaction occurs between a diene and a dienophile in a concerted 

manner. Productive reactivity can be rationalized using frontier molecular orbitals.
3
 In a normal demand 

Diels-Alder reaction, the orbitals of relevance are the highest occupied molecular orbital (HOMO) of the 

diene and the lowest occupied molecular orbital (LUMO) of the dienophile (Figure 1.2). The band gap 

between the two orbitals has to be sufficiently small in order for reaction to occur. Strategies to increase 

the likelihood of reaction involve adding electron density to the diene through substitution to raise its 

HOMO energy level or making the dienophile more electron-deficient to lower the LUMO energy level.  

 Conversely, the inverse demand Diels-Alder reaction relies on an electron deficient diene and an 

electron rich dienophile. This effectively allows for reaction to occur between the LUMO of the diene and 

the HOMO of the dienophile (Figure 1.2).
3
 In both the normal and inverse demand Diels-Alder, partners 

of mismatched electronics are required. Over the years many research groups have taken advantage of 

substitutions on the reaction partners like imine or carbonyl groups on either starting material to 

coordinate to catalysts, chiral or racemic, to influence the rate of reactivity. Generally these interactions 

are covalent, as seen in Lewis
4
 or Brønsted

5
 acid and also amine catalysis

6
 which involves the 

condensation of amines directly on to the substrate. This electronic requirement represents this 

transformation’s greatest limitation.  
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Figure 1.2 Electronic Restrictions of the Normal and Inverse Demand Diels-Alder Reaction 

 

 1.2 Cation Radical Diels-Alder Reactions 

 The cation radical Diels-Alder reaction offers a pathway into a new chemical space for the Diels-

Alder. Research groups began exploring this transformation which occurs between two electron rich 

coupling partners with success in the 1980s. To the best of our knowledge, the first report came from the 

lab of Nathan Bauld in 1981, when they demonstrated the dimerization of cyclohexadiene with a radical 

cation catalyst, tris(p-bromophenyl)aminium hexachlorostibnate in 15 minutes at 0 °C in 70% yield 

(Figure 1.3).
2
 This marked quite a breakthrough as the uncatalyzed thermal [4+2] of cyclohexadiene only 

occurs at 200 °C after 20h in a lower 30% yield.  

Figure 1.3 First Report of Cation Radical Diels-Alder by Bauld in 1981 

 

The report also included the [4+2] cross-cycloaddition between cyclohexadiene and 2,4-

dimethylhexadiene which proceeded in good yield and 5:1 diastereoselectivity, favoring the endo product. 
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They demonstrated that dienes which were not locked in the cis conformation were competent reaction 

partners as 1,1-dicyclopentenyl was dimerized in 50% yield by GC. With this initial finding, they offered 

a mechanistic proposal which began with single electon oxidation of the dienophile by the radical cation 

catalyst to produce a cation radical intermediate. This intermediate could then react with the diene 

forming a cyclic cation radical intermediate which could be reduced to give the desired cyclohexene 

(Figure 1.4). The following year the Bauld group disclosed the results of further investigation into the 

cation radical Diels-Alder to support their assertion that reaction occurs through formation of a dienophile 

cation radical and not a diene cation radical.
7
 Using frontier molecular orbitar theory, they show that 

reaction between a neutral ethene and a diene radical cation in a [3+2] fashion is symmetry forbidden.  

Figure 1.4 Proposed Mechanism for the Cation Radical DA by Bauld 

 

 In 1983, Bauld and co-workers expanded the scope of the cation radical Diels-Alder to include 

more electron-rich dienophiles (Figure 1.5).
8
 They recognized the advantageous nature of the cation 

radical DA, in which electron-rich partners are essentially converted to electron-poor dienophiles through 

one-electron oxidation. Attempts to dimerize 1-methoxy-cyclohexadiene with their aminium radical 

cation catalyst proved unfruitful, hampered by polymerization. After switching to a photoinduced electron 

transfer sensitizer, 1,4-dicyanobenzene activated by UV-light, they were able to obtain the dimerized 

product in 70% yield. Light activated single electron oxidants have unique properties that will be 

discussed in-depth later in the chapter. Vinyl enol ether and phenyl vinyl sulfide both reacted with 

cyclohexadiene in the presence of the aminium salt in good yields, though an excess of the dienophile was 
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required. In this paper, they also show the first example of a styrene substrate, anethole, as a competent 

dienophile partner for cyclopentadiene in 74% yield and 3:1 dr. 

Figure 1.5 Expanding Scope of Cation Radical Diels-Alder to Electron Rich Substrates 

 

 The Bauld group performed extensive investigations of pericyclic cation radical reactions and 

also reported [2+2] cycloadditions,
9
 though this class of reactions will not be discussed here. In their 

mechanistic investigations, they observed that in the case of  2,4-dimethyl-1,3-pentadiene, dimerization 

by the aminium salt or photoinduced electron transfer (PET) gave two different products (Figure 1.6).
9
 It 

was only when the dimerization was promoted by the aminium salt in the presence of 2,6-di-tert-butyl 

lutidine did the products’ identity match. The Bauld group suggests that for certain substrates, catalysis by 

the aminium salt may proceed through a Brønsted acid pathway, a pathway not seen in photoinduced 

electron transfer. 

 In 2000, Bauld and Gao investigated the mechanism specifically for the reaction between 

cyclopentadiene and cis and trans anethole.
10

 They concluded that cis-anethole was most likely going 

through a step-wise mechanism after observing comparable amount of all four diastereomeric products in 

the reaction mixture. They proposed an intermediate in the step-wise mechanism that underwent bond 

rotation at a rate comparable to cyclization. This contrast with the reaction between Cp and trans-anethole  
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Figure 1.6 Mechanistic Investigation of Radical vs. Brønsted Acid Catalyzed Pathways 

 

which did not produce any of the cis products. They also exposed the cis and trans products to the 

triarylaminium radical cation and observed isomerization to the trans product in the case of the cis 

product but no isomerization of the trans product (Figure 1.7). They assert that the cis product becomes 

oxidized and undergoes single bond rotation to relieve the unfavorable eclipsing interaction between the 

methyl and p-OMe phenyl groups. This finding supports the notion that the cis isomer of anethole is 

going through a stepwise mechanism and this leads them to suggest that it is likely that the trans isomer is 

operating under a similar mechanism. They noted that the same results are obtained when using 

photosensitized electron transfer conditions as well. 

Figure 1.7 Cation Radical Diels-Alder Reaction Between Cis and Trans-Anethole and Cp 

  

 Other research labs have also contributed to the development of this transformation. In 1983, 

Jones and colleagues demonstrated the [4+2] dimerization of cyclohexadiene promoted by the UV-
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activated 9,10-dicyanoanthracene (DCA) gave the desired cycloadducts in 60% yield in a 4:1 endo:exo dr 

(Figure 1.8).
11

 In photoinduced electron transfer manifolds, the sensitizers are activated by light and act 

as strong electron acceptors in their excited state. In contrast to Bauld’s aminium catalyzed cation radical 

DA, Jones suggests the formation of a exciplex in which free radical cations may not form but instead 

exist as a radical cation/anion pair. Extended irradiation in the presence DCA did result in the formation 

of very small amounts of adduct formation from the reaction between diene and sensitizer. 

Figure 1.8 Photosenzitized Cation Radical Diels-Alder by Jones et al. 

 

 In 1985, Mattay and colleagues introduced ketone-LiClO4 salts as competent electron acceptors 

for the photolytic generation of radical cations. They evaluated these new electron acceptors against 

reported oxidants in photolytic cycloadditions (Figure 1.9).
12

 The Mattay group found that each catalyst 

gave the desired cycloadducts in good yields but with varying endo to exo selectivities. The ketone-

LiClO4 mixtures showed no preference for either diastereomer while the aminium salt demonstrated a 4:1 

(endo:exo) diastereoselectivity and triaryloxopyrylium tetrafluoroborate (TPT) gave 6:1 dr, also favoring 

the endo diastereomer.  

Figure 1.9 Comparison of Electron Acceptors for the Cation Radical Diels-Alder Reaction 
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These results led the group to suggest that the mechanism of all cation radical reactions cannot 

simply be rationalized by a chain reaction mechanism. They present an alternative to Bauld’s assertion on 

the role selectivity in the cation radical DA, in which cation radical intermediates arise from the 

dienophile. In the presence of excess diene, the Mattay group observed an increase in the formation of the 

exo isomer, leading them to suggest the formation of a diene radical cation intermediate. To support their 

claim, they drew on previous studies reported by Gross.
13

 In the report by Gross, they investigated the gas 

phase cation radical DA with mass spectrometry methods  and observed the acyclic octadienyl 

intermediate along with the cyclohexene radical cation. Gross and colleauges then proposed a step-wise 

mechanism for the DA reaction of 1,3-butadiene, with a radical cation diene intermediate instead of the 

concerted pericyclic mechanism in which a [3+2] cyclization would be symmetry forbidden. 

In 1987, the Steckhan lab demontrated evidence for the presence of the cation radical of the 

diene.
14

 They were able to electrochemically generate the radical cation of the diene in the presence of 

less oxidizable dienophiles and obtain the Diels-Alder cycloadducts, supporting a [3+2] mechanistic 

pathway. The role selectivity for the diene and dienophile in the cation radical Diels-Alder has been 

debated by many groups. Given that the Steckhan report contradicts Bauld’s original assertion that the 

reaction went through a dienophile radical cation as a [4+1] cycloaddition, in 1990 Bauld and colleagues 

published another report that rigorously tested their understanding of the role selectivity in the cation 

radical Diels-Alder.
15

 They evaluated the Diels-Alder reaction between two dienes with sufficiently 

different oxidation potentials, with the assumption that the more easily oxidizable partner would become 

the radical cation intermediate, even if it was the diene partner. The product distribution should reveal 

whether a diene or dienophile radical cation was formed.  

The Bauld lab irradiated 1,3-cyclohexadiene (Eox = 1.53 V) and 1,2-diethylidenecyclohexane (Eox 

= 1.36 V) in the presence of a catalytic amount of tris(4-bromophenyl)aminium hexachlorostibnate and 

observes the [3+2] product along with the dimer of the 1,2-diethylidenecyclohexane (Figure 1.10).
15

 

They conclude that orbital symmetry allowedness/forbiddenness may not effect role selectivity in the 
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cation radical Diels-Alder. This suggests that the oxidation potential of the two reaction partners plays a 

very important role in determining the mechanistic pathway. 

Figure 1.10 Testing Orbital Symmetry Control in the Cation Radical Diels-Alder 

 

The Steckhan lab reported the cation radical DA reaction between indoles and electron-rich 

dienes in 1991, expanding the scope of competent dienophile partners for this transformation.
16

 Initially, 

irradiation of indole, cyclohexadiene and TPT catalyst gave only very low yields of the DA cycloadducts. 

Their calculations showed that the expected product had a much lower oxidation potential than the 

starting indole (Eox = 0.7 V vs. Eox = 1.28 V vs NHE), and that the excited catalyst was being quenched by 

the product as it became present in higher concentrations. The Steckhan lab circumvented this challenge 

by including acetyl chloride and sodium bicarbonate into the reaction mixture and obtained the N-

acylated cycloadduct product in 70% yield in 3.3:1 endo:exo diastereoselectivity. Other electron-rich 

dienes reacted with indoles in good yields, with the exception of dienes without rigid s-cis conformations 

of their double bonds, which gave slightly lower yields (Figure 1.11). 

Substituted indoles did not react to give desired product, likely due to steric hindrance around the 

dienophile. A variety of nitrogen protecting groups were evaluated and methyl chloroformate and p-

toluenesulfonyl chloride were also effective though gave slightly decreased yields (33% and 46%, 

respectively). Though the [2+2] reaction between enamides and cyclohexadiene has been reported, none 

of the [2+2] cycloadducts was detected by GC. Mechanistic investigations supported the accepted cation 

radical DA mechanism, starting with the oxidation of indole to give the cation radical indole intermediate. 

This intermediate can react with 1,3-cyclohexadiene to give the cyclic radical cation adduct, and then 

single electron reduction and protection by acetyl chloride furnishes the desired product.  
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Figure 1.11 Photolytic Cation Radical DA Reaction of Indole and Electron-Rich Dienes 

 

 In 1995, the Schmittel group reported the cation radical Diels-Alder reaction of electron-rich 

allenes (Figure 1.12).
17

 Beyond expanding the scope of the dienophile partner, this transformation also 

provides access to valuable exo-alkylidine products, which can readily undergo further manipulation. 

They obtained the desired products in moderate to good yields. All reactions were run in the presence of 

2,6-di-tert-butylpyridine as a base to suppress the acid catalyzed process which leads to rearrangement of 

the products. Electron withdrawing substituents were not tolerated at any position on the allene. 

Figure 1.12 Cation Radical DA Reactions with Electron-Rich Allene Dienophiles 
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 Recently, in 2011, the Yoon lab demonstrated the radical cation Diels-Alder reaction promoted 

by an inorganic ruthenium polypyridyl photocatalyst (Figure 1.13).
18

 Using very low loadings of 

Ru(bpz)3(BArF)2 activated by visible light in the presence of air, they obtained the desired cycloadducts 

in good to excellent yields. Ruthenium complexes have been well-studied as single electron oxidants and 

in this case, benefit from its ability to be turned over by oxygen. Reactions with terminal styrenes, 

styrenes with unprotected alcohols, electron neutral styrenes and trisubstituted styrenes were unsuccessful 

in the reaction as well as electron deficient dienes and Danishefsky’s electron rich diene. 

Figure 1.13 Photocatalysis of the Cation Radical DA Reactions by Ru(bpz)3(BArF)2  

 

The cation radical Diels-Alder reaction has been optimized by many groups to include a variety 

of electron-rich substrates and excellent reaction yields. To the best of our knowledge, there is only a 

single report of the enantioselective catalysis of the cation radical Diels-Alder reaction (Figure 1.14).
19

 

This example comes from Schuster and Kim in 1990, in which they report the reaction between β-

methylstyrene and cyclohexadiene photocatalyzed by (-)-1,1’-bis(2,4-dicyanonaphthalene) [(-)BDCN] at -

65 °C gave the cyclohexene adduct in 15% ee. The researchers found that raising the reaction temperature 
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to -30 °C or -5 °C gave essentially no enantioselectivity. They propose that enantioselectivity arises from 

the formation of diastereoselective exciplexes between the chiral catalyst and the prochiral styrene. It is 

possible that association between the radical cation intermediate and the reduced catalyst could direct 

reaction with cyclohexadiene with facial selectivity. 

Figure 1.14 Enantioselective Cation Radical Diels-Alder reported by Schuster and Kim 

 

 An overview of existing cation radical methods has been discussed. All strategies rely on single 

electron oxidation to access the cation radical intermediates. Of interest to our group is photochemical 

oxidation for the catalysis of the cation radical Diels-Alder reaction. The next section will discuss basic 

tenets of photoinduced electron transfer and its advantages and limitations as it applies to the cation 

radical Diels-Alder reaction. 

1.3 Photoinduced Electron Transfer 

 Photoinduced electron transfer is a fundamental process in chemical reactions. In general, it 

involves excitation of a compound to its excited state where is can easily gain a single electron from 

another molecule. One can predict the likelihood of such an event using the modified Rehm-Weller 

equation which states that the free energy of electron transfer is equal to the difference between the half-

wave oxidation potential of a donor molecule and the half-wave excited state reduction potential of an 

acceptor molecule plus the coulombic constant [ΔGet = E1/2(ox) – E*1/2(red) + C].
20

 The coulombic term 

represents electrostatic energy and is determined by the charges of the ions, their distance apart and the 

dielectric constant of the solvent being used.  
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  This equation allows researchers to judiciously select photo-oxidants as well as donor substrates. 

As discussed in the previous section, many groups believe that the role selectivity of the radical cation 

intermediate arises from the more easily oxizable reacting partner. Oxidation potentials of compounds can 

be measured by cyclic voltammetry against certain electrodes and are found in the literature (Figure 

1.15).
21–23

 Styrenes are popular substrates for the cation radical Diels-Alder reaction and generally more 

oxidizable than aliphatic di- or tri-substituted alkenes. Choosing an oxidant with an appropriate reduction 

potential to access alkenes is also critical in electron transfer reactions. These can be chemical oxidants 

which operate as oxidants in their ground state or photochemical oxidants, which generally have more 

oxidizing power. Our lab is particularly interested in the acridinium and triaryloxopyrylium salt 

photocatalysts as their oxidation potentials are around 2.0 V, which would provide access to substrates 

beyond styrenes like tri-substituted aliphatic alkenes. 

Figure 1.15 Redox Potentials of Various Alkenes and Single Electron Oxidants 

 

Triaryloxopyrylium Salts as Photo-Oxidants 

 Of the photo-oxidants discussed, we were particularly interested in triaryloxopyrylium (TPT) 

salts. These photocatalysts have previously been evaluated in the cation radical Diels-Alder reaction and 
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have attracted interest for their unique properties. Variants of the salt are commercially available and 

readily accessible from simple starting materials. They also absorb light in the visible region which allows 

researchers to avoid using harmful UV-light. Simple substitution of various groups on the arene moiety 

allows for tunability of the absorbance, with wavelengths ranging from 412 nm for the parent 

triphenyloxopyrylium to 577 nm for the p-dimethylaminophenyl diphenyl substituted oxopyrylium. These 

salts are strong oxidants in their excited state and have been shown to act as an electron acceptor in their 

singlet or triplet state with an oxidation potential of ~2.0 V vs. SCE (Figure 1.16).
23

   

Figure 1.16 Synthesis of Oxopyrylium Salts 

 

 The organic oxopyrylium salts can be easily solubilized in dichloromethane or acetonitrile. They 

also benefit from their ionic nature. The lack of coulombic attraction between the radical cation and the 

oxopyrylium radical after electron transfer reduces the likelihood of non-productive back electron 

transfer, which is a major issue for other oxidants. This feature also suggests that the coulombic term in 

the Rehm-Weller equation would be essentially negligible for this electron transfer event as it lacks net 

charge separation. However, the oxopyrylium radical may be susceptible to dimerization with an identical 

species at low temperatures as observed by García and colleagues, which would sequester the active 

catalyst. They report that at room temperature this reaction is reversible. 

 García and coworkers also recognized the TPT salts unique lack of reactivity with oxygen. They 

found that TPT did not form singlet oxygen and reacted 100 times more rapidly with any donors in 

solution than with dissolved oxygen. They also reported that superoxide cannot be formed from electron 

transfer with TPT salts. This is rationalized by the Rehm-Weller equation which shows that the event is 

disfavored by ~11.3 kcal/mol. These properties make TPT salts attractive catalysts for studying organic 

reactions.  
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 Lastly, we were interested in the TPT salts because we saw an opportunity to introduce a chiral 

organic anion to pair with the cationic oxopyrylium. The synthesis of these chiral salts will be discussed 

in the next chapter. We drew from the report by Schuster and Kim to hypothesize that the radical cation 

intermediate could potentially pair with the chiral anion as a means to induce asymmetry. In the next 

section, previous examples of chiral counteranion catalysis will be shown.  

1.4 Chiral Counteranion Directed Catalysis   

 Chiral ionic catalysis has found extensive utility in phase transfer catalysis by cinchona alkaloid 

derivatives, in which the ionic pairing generally occurs between an oxygen enolate and a quaternary 

amine. This area of catalysis should be mentioned but because the chiral information is associated with 

the cationic partner it will not be discussed in depth. Within the last decade asymmetric counteranion-

directed catalysis (ACDC) has emerged as an exciting new concept.  

 There has been some debate over which transformations can be classified as strictly ACDC. In a 

2013 review,
24

 List and Mahlau define ACDC as the “induction of enantioselectivity in a reaction 

proceeding through a cationic intermediate by means of ion pairing with a chiral, enantiomerically pure 

anion provided by the catalyst.” However, it is possible that other stabilizing interactions exist in addition 

to the coulombic attraction within the ion pair. These interactions include hydrogen bonding, which 

suggests classic Brønsted acid catalysis,
25

 transition metal catalysis,
26

 where the anion is potentially acting 

as a chiral ligand, as well as anion binding catalysis which generally relies on the binding of an achiral 

anion to chiral thioureas.
27

 Phosphoric acid derivatives have also been applied in asymmetric 

counteranion-directed Lewis acid catalysis for the opening of meso-aziridines
28

 and in the Mukaiyama-

aldol reaction.
29

 These examples involve the simultaneous generation of the chiral counteranion and 

countercation after the transfer of a silyl group, and so will not be discussed. For the purposes of this 

project, only examples with presumably “pure” asymmetric counteranion directed catalysis will be 

presented. 

 In 2004, List and colleagues reported the enantioselective biomimetic transfer hydrogenation of 

enals with a slight excess of Hantzsch dihydropyridine and a catalytic amount of MacMillan’s 
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imidazolidinone salt.
30

 This transformation relies on chiral secondary amine catalysis but during their 

investigations, the List group was able to show a proof of concept for the catalytic asymmetric 

transformation hydrogenation with chiral phosphoramide salts. This result was unpublished at the time 

but appears in their 2013 review. Using an achiral morpholine, Hantzsch dihydropyridine and 20 mol % 

(R)-2,4,6-triisopropylphenyl phosphate BINOL [(R)-TRIP] anion, the authors obtain the hydrogenated 

product in 90% yield and 99:1 enantiomeric ratio (Figure 1.17).
24

 They assert that there are no major 

stabilizing effects present as there are no nitrogen-hydrogen bonds present in the quaternary iminium 

intermediate. However, it is possible that there are weak hydrogen bonding interactions between the anion 

and CH. This result was impressive because it gave enantioselectivies even higher than obtained with 

chiral secondary amine catalysis. 

Figure 1.17 Catalytic Asymmetric Transfer Hydrogenation through ACDC 

 

 In 2008, Toste and colleagues reported the enantioselective opening of meso-aziridines with 

alcohols using chiral counteranion catalysis (Figure 1.18).
31

 This example of reverse polarity phase 

transfer catalyst represents the one of the clearest examples of using a chiral anion to induce asymmetry. 

By employing Ag2CO3 and a chiral phosphate silver salt, they abstract a chloride from the starting 

material to form the meso-aziridinium. They propose that the positively charged nitrogen of the 

aziridinium can pair with the chiral phosphate anion and block one face to selectively direct the 

nucleophilic opening by the alcohol. They demonstrate 11 examples of the transformation in good yields 
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and excellent ee’s. Given that chiral phosphoric acids have been extensively reported in Brønsted acid 

catalysis, their use as chiral counteranions is quite appealing. 

Figure 1.18 Asymmetric Opening of Meso-Aziridines Using Chiral Counteranion Catalysis 

 

In the last year, Toste reported another example of ACDC with an asymmetric cross-

dehydrogenative coupling catalyzed by chiral triazole-containing phosphoric acid (Figure 1.19).
32

 

Though this report appeared after we discontinued research on this project, it serves to represent the 

growth of this field. Notably, the Toste group is able to access a library of chiral triazole containing 

phosphoric acid catalysts through the well-established copper catalyzed azide/alkyl click reaction.  

Figure 1.19 Asymmetry  Cross-Dehydrogenative Coupling Using Chiral Counteranion Catalysis 

 

The mechanism is proposed to begin with initial substrate oxidation to form the cationic 

intermediate. The chiral phosphate could undergo anion exchange with the cationic oxidant, ultimately 

forming a close ion pair with the iminium substrate. Intermolecular nucleophilic addition is directed to 

one prochiral face to furnish the desired product and reprotonate the chiral phosphate. This method is 
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demonstrated in good to excellent yield and enantioselectivity. To investigate the role of the triazole in 

the selectivity of the reaction they synthesized three adamantane substituted isosteres and observed a 

significant loss in selectivity when the nitrogen atoms of the triazole were replaced with carbon atoms. 

This finding suggests that electronics of the substituents at the 3,3’ positions play an important role in 

selectivity. 

Summary 

 We saw an opportunity to develop a method for the enantioselective cation radical Diels-Alder 

reaction. As disclosed earlier, no previous reports have shown synthetically useful levels of 

enantioinduction in this transformation. We wanted to take advantage of an easily synthesized organic 

photo-oxidant like the triaryloxopyrylium and introduce chirality into the molecule through a chiral 1,1’-

bi-2-napthyl (BINOL) derived counteranion. We hoped that a pairing between the radical cation 

intermediate and the chiral counteranion would induce asymmetry in the transformation. The next chapter 

will discuss the synthesis and evaluation of various chiral photo-oxidant salts and the optimization of the 

enantioselective cation radical Diels-Alder (Figure 1.20). 

Figure 1.20 Proposal for an Asymmetric Cation Radical Diels-Alder Reaction 
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CHAPTER 2: PROGRESS TOWARDS AN ASYMMETRIC PHOTOCATALYTIC 

DIELS-ALDER REACTION 

 

 

Introduction 

 This chapter will detail our efforts to develop a photocatalytic enantioselective cation 

radical Diels-Alder reaction. We recognized the great utility of the cation radical Diels-Alder 

reaction, a powerful transformation that combines two electronically matched partners to form 

two bonds and up to four contiguous stereocenters. Rendering this reaction asymmetric would 

represent a significant advance for this area of organic synthesis. We chose to explore 

triaryloxopyrylium salts paired with various chiral anions as our chiral photoredox catalysts. Over 

the course of three years, we extensively evaluated numerous catalysts and reaction conditions 

but were unable to achieve synthetically practical levels of reactivity and enantioselectivity. We 

believe this transformation to be highly valuable and herein present our results as a contribution 

to the field of chiral counteranion directed catalysis. 

2.1 Initial Investigation of Racemic Reaction 

 We began our investigations with the racemic reaction reported by Bauld
1
 and colleagues 

between β-methyl-p-methoxystyrene (anethole) and cyclopentadiene (Cp) catalyzed by 

triphenyloxopyrylium tetrafluoroborate (TPT) in DCM under irradiation by four 60W fluorescent 

light bulbs. We used cyclopentadiene in excess (5 equivalents) as reported by Bauld, in hopes of 

increasing the likelihood of reaction between the anethole radical cation and cyclopentadiene. We 

assumed that anethole would occupy the role of the cation radical partner given its lower 

oxidation potential.
2
 It was important to distill both starting materials before use. In the case of 

anethole, the radical inhibitor present as a stabilizer in its commercially available form had to be 

excluded from the reaction mixture. Cyclopentadiene dimerizes readily in a thermal [4+2] 
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reaction to form dicyclopentadiene at room temperature and must be heated to ~200 °C to obtain 

the retro-Diels-Alder product and distillate cyclopentadiene, which was kept at low temperatures 

to ensure its purity. The cation radical Diels-Alder reaction was run at -60 °C for 24 hours and the 

desired products were obtained in 88% GC yield in 10:1 dr. A chiral GC assay was developed for 

the isolated products (Figure 2.1). 

Figure 2.1 Initial Racemic Cation Radical Diels-Alder Catalyzed by a TPT Salt 

 

2.2 Optimization of the Cation Radical Diels-Alder Reaction 

 At the outset of the project we were very interested in C2-symmetric 1,1’-bi-2-naphthyl 

(BINOL) phosphate derivatives as counteranions to oxopyryliums to induce asymmetry in the 

reaction through the formation of a chiral ion pair. This class of compounds has been extensively 

used in enantioselective Brønsted acid catalysis
3
 and allowed us to prepare our acid precursors 

following existing literature. We recognized that it would be crucial to find an adequately acidic 

partner to cyclize the ene dione precursor to form the oxopyrylium salt. The subsequently formed 

counteranion should be poorly nucleophilic to disfavor addition to the radical cation intermediate. 

While addition of the counteranion could be reversible, if the equilibrium favors addition it could 

result in a loss of reactivity. For that reason we chose to target N-trifluoromethanesulfonyl (N-

trifyl) phosphoramides as opposed to the phosphoric acid analogs. The N-trifyl phosphoramide 

can delocalize the negative charge between five atoms as opposed to three atoms in the latter.  

The aryl substituted BINOL chiral catalysts were synthesized starting from enantiopure 

BINOL. Methyl protection of the alcoholic groups followed by bromination at low temperature 
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proceeded in good yield to give intermediate 2. This intermediate was treated with a nickel 

catalyst to install the aryl groups via a Kumada coupling then deprotection with boron tribromide 

revealed the pendant alcohols. The silyl-substituted BINOL catalysts also began from enantiopure 

BINOL. Hydrogenation of the back rings promoted by PtO2 then selective bromination furnished 

intermediate 5 in quantitative yield. Silylation of intermediate 5 was followed by a retro-Brook 

rearrangement with tert-butyl lithium to furnish the substituted BINOL 6. Treatment of 

intermediates 3 and 6 with phosphorous oxychloride, dimethylamino pyridine, triethylamine and 

trifluoromenthane sulfonamide produced the substituted N-trifyl phosphoramides 7 along with the 

phosphate side product, which can be separated via silica gel chromatography. With the 

phosphoramides in hand, we were pleased to find that upon heating with triaryl ene dione in 

ethanol by heat gun to ~80 °C the desired salt was precipitated upon cooling (Figure 2.2).  

Figure 2.2 Synthesis of 3,3’ Substituted BINOL and H8-BINOL Catalysts 

 

Impurities were removed after washing with hexanes or recrystallization with 

DCM/hexanes. We did experience some variation in our results with different batches of chiral 



25 

 

catalysts. We suspected that there may have been some inorganic counteranion contaminants 

present, which would lower the observed enantioselectivity. We tried to address this issue by 

careful recrystallization and drying the catalyst under vacuum at 60 °C overnight.  

With the chiral catalysts in hand we tested their efficiency and selectivity in the cation 

radical Diels-Alder reaction (Figure 2.3). We found that bulky arenes at the 3 and 3’ positions 

did not provide any useful levels of enantioselectivity. Interestingly, substitution with the bulky 

3,3’-SiPh3 gave a promising level of ee (enantiomeric excess) though very low yield was 

observed for the closely related tri-isopropyl substituted silane. We were interested in the H8-

BINOL scaffold as the fully saturated back rings would increase the steric interaction between the 

binaphthyl framework. This modification increases the rigidity of the structure and also changes 

the bite angle close to the anionic center. By employing catalyst 8a, we were pleased to observe 

an 18% yield with 18% ee and 4:1 dr, which is a similar level of diastereoselectivity obtained by 

Bauld with TPT.  

Figure 2.3 Initial BINOL-Derived Catalyst Screen  

 

 Given the promising initial results observed with the 3,3’ SiPh3-BINOL catalyst 8e, we 

proceeded to optimize the reaction conditions with this catalyst. In evaluating the catalysts we 
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used 5.0 equivalents of cyclopentadiene in keeping with Bauld and co-workers’ previous report. 

We did not observe any advantage in increasing or decreasing the equivalents of Cp used 5.0 

equivalents of cyclopentadiene throughout for consistency. When we inverted the relationship 

between the starting materials, with anethole present in excess, we obtained many unidentifiable 

side products in the crude reaction mixture. These new products eluted close to the desired 

products by chiral gas chromatography (GC), making it difficult to accurately measure yield and 

selectivity, therefore, we decided to keep anethole as the limiting reagent. 

We believed that solvent polarity would play a large role in enantioselectivity as we were 

relying on ionic interactions to control enantioinduction. We wanted to achieve tight ion pairing 

between the radical cation and chiral counteranion for good enantiocontrol through non-polar 

solvents. On the other hand, highly polar solvents would be more conducive for reactivity. The 

challenge would lie in finding a balance between selectivity and reactivity. When we evaluated 

our reaction in various solvents we observed inverse trends in yield and ee (Figure 2.4). 

Figure 2.4 Comparing Dielectric Constant vs. Yield and Selectivity 

  

At this point we decided to switch from cyclopentadiene as the diene to 2,3-dimethyl 

butadiene because it would make the determination of enantioselectivity more facile because only 



27 

 

two isomers are formed as opposed to four diastereomers. Although all of the yields are low, the 

highest yield was obtained using the solvent DCM, which is the most polar. Polarity can be 

expressed through dielectric constants of the solvents and we saw that as the dielectric constant 

decreased, the enantioselectivities increased. The two least polar solvents, toluene and xylenes, 

gave a 20.5% ee and 22% ee, respectively. 

We imagined addressing this delicate issue by evaluating the reaction in numerous 

different solvents as well as solvent mixtures (Table 1).  

Table 1. General Solvent Screen 

 

Entry Solvent Temperature Time GC Yield % ee 

1 Bromobenzene -30 °C 24 h 9.3% 36% 

2 Fluorobenzene -30 °C 24 h 0.2% 22% 

3 Acetone -30 °C 24 h 0.1% 1% 

4 Toluene -30 °C 24 h 1.8% 23% 

5 Toluene 0 °C 6 h 0.4% 12% 

6 THF 0 °C 6 h 0.3% 12% 

7 1%TFE/Toluene 0 °C 6 h 1.0% 1.2% 

8 3% TFE/Toluene 0 °C 6 h 1.1% 0.6% 

9 1% DCM/Toluene 0 °C 6 h 0.5% 16% 

10 3% DCM/Toluene 0 °C 6 h 0.5% 13% 

11 10% DCM/Toluene 0 °C 6 h 0.5% 14% 

12 20% DCM/Toluene 0 °C 6 h 0.6% 10% 

13 50% DCM/Toluene 0 °C 6 h 1.0% 11% 

14 75% DCM/Toluene 0 °C 6 h 1.3% 5% 

15 90% DCM/Toluene 0 °C 6 h 2.2% 0% 

 

Using bromobenzene as a solvent gave interesting selectivity but was not pursued as a 

solvent because its melting point of -30 °C would potentially limit its optimization. Reactions run 

in other solvents such as dimethylformamide, ethyl acetate and 2-methyltetrahydrofuran 
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performed poorly. Ultimately, we did not identify any solvent or solvent mixture that provided 

results superior to 100% toluene. 

We also conducted experiments evaluating various catalyst loadings (Figure 2.5). We 

found that lower catalyst loadings afforded higher enantioselectivities. The yields dropped from 

9% to 5% when the catalyst loading was decreased from 5 to 1 mol %, however, moving from 1 

mol % to 0.5 mol % did not have any effect on the yield. Moving forward we employed 0.5 mol 

% catalyst for our test reactions, not only in hopes of high selectivities but to conserve precious 

chiral catalyst. 

Figure 2.5 Catalyst Loading Screen 

 

We then turned to investigate the effects of temperature on the reaction (Figure 2.6). We 

hypothesized that lowering the temperature would slow down the reaction and potentially lead to 

better selectivities. We assumed that if the reaction proceeded more slowly, that might allow 

more time for the chiral counteranion to coordinate to the cation radical intermediate before 

encountering the diene partner. Cooling the reaction vessel in a cryobath, we observed an increase 

in % ee as temperatures decreased though the yields were extremely poor. However, lowering the 

temperature beyond -60 °C did not lead to any gains in enantioselectivity, likely because it is 

close to toluene’s freezing point of -95 °C and the yield was so low that it is difficult to be 

confident in the enantiomeric ratio via chiral GC. 
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Figure 2.6 Screening for Reaction Temperature 

 

 While we were quite pleased at the enantioselectivity observed at -60 °C, the yield was 

disappointingly low and needed to be addressed for this method to be viable. Moving away from 

our standard test reaction, we hoped that different substrates, specifically more reactive partners, 

would improve the observed product yields. There were a variety of substrates that did not 

participate even in the racemic cation radical Diels-Alder reaction (Figure 2.7). We attempted to 

react the electron rich trans-1-methoxy-3-trimethylsilyloxy-1,3-butadiene (Danishefsky’s diene) 

with anethole but surprisingly was unable to detect any desired product. The trimethylsilyl 

protected analog of Danishefsky’s diene also failed to react. It should be noted that this type of 

diene also did not react when promoted by ruthenium photoredox catalysts. Cyclohexadiene 

performed well as a reactive diene with anethole but was not pursued because the diastereomers 

could not be adequately separated by chiral GC. Reaction of substituted cyclohexadiene with 

anethole resulted in the formation of many side products. Furans have been reported as 

productive diene partners in normal demand Diels-Alder reactions but gave no desired product 

under our reaction conditions. We also saw no reaction between anethole and both 1,4-diphenyl 

butadiene and 7-methoxy-4-vinyl-1,2-dihydronaphthalene.  
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Figure 2.7 Failed Substrates for the Racemic Cation Radical Diels-Alder Reaction 

 

We also evaluated a number of dienophile partners that failed to react in the racemic 

reaction. Unsubstituted β-methylstyrene as well as α-methyl p-OMe styrene resulted in 

polymerization. The reaction did not tolerate tertiary amine or vinyl ether substitutions. We were 

quite interested in 6-methoxy-1,2-dihydronaphthalene as a dienophile that might allow us to 

explore the reactivity of a cis styrene, however we were unable to detect any desired product. 

Placing a phenyl ring at the β-position of the styrene resulted in no reaction, potentially because 

of unfavorable steric interactions or it may have deactivated the styrene towards oxidation.  

 We found a number of substrates that participated in the racemic cation radical 

Diels-Alder reaction yet did not produce synthetically useful levels of reactivity or 

enantioselectivity in the asymmetric transformation (Figure 2.8). We noticed that acyclic 

dienes generally resulted in lower reactivity. Substitution around the arene of the styrenyl 
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dienophiles was tolerated and in particular the triphenylsiloxy substituted styrene 

performed comparably to anethole. We investigated the effect of having the dienophile 

partner locked in the cis geometry, but observed no advantage in reactivity or selectivity. 

Figure 2.8 Substrates that Resulted in Low Yields and Selectivity 

 

 We realized that in order to move forward in the development of this method we had to 

address the low reactivity. While we were unsure of the cause, the lack of reactivity likely stems 

from the presence of the chiral anion as the oxopyrylium with the inorganic tetrafluoroborate 

counteranion catalyzes the racemic reaction quantitatively within a few hours. It was possible that 

the anion was binding to the cation radical intermediate and suppressing reactivity. We decided to 

focus on cyclopentadiene as the diene partner over 2,3-dimethyl butadiene because of its 

increased reactivity which it owes to its locked cis geometry. Encouragingly, a side by side 



32 

 

comparison of 2,3-dimethyl butadiene and cyclopentadiene did reveal an increase in yield from 

1.1% to 29% with Cp; however we observed a loss in enantioselectivity (Figure 2.9).  

Figure 2.9 Comparison of 2,3-Dimethyl Butadiene and Cyclopentadiene 

 

 We were encouraged by the modest levels of both reactivity and enantioselectivity 

observed with the use of cyclopentadiene. We hoped to find a way to increase both through 

optimization of the reaction conditions. We evaluated a series of concentrations and found that 

more dilute solutions led to higher enantioselectivities (Figure 2.10). Using a concentration of 

[0.063 M] in toluene gave the most promising result with 38% yield, 10:1 dr and 45% ee after 24 

hours. We repeated this result on a large scale for 72 hours and obtained the products in 63% 

yield, 9:1 dr and 36% ee. 

Figure 2.10 Optimization for Concentration with Cyclopentadiene Reaction Partner 
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 We believed we were close to exhausting all remaining optimization strategies for this 

transformation, save catalyst design and other miscellaneous ideas which will be discussed in a 

separate section. We synthesized a small set of substrates bearing different aliphatic groups at the 

β-position of the styrene to probe the substrate scope of this reaction. We had difficulty obtaining 

reliable results for the β-cyclohexyl substrate as we were unable to purify the starting styrene. We 

also synthesized the β-adamantyl substrate and developed a chiral GC assay for its reaction with 

cyclopentadiene but were unable to confidently calculate the enantioselectivity as new side 

products eluted around the same GC retention time as our products. The only productive variation 

was synthesizing the β-ethyl para-methoxy styrene which reacted with Cp after four days to give 

the desired products in a good 85% yield and modest enantioselectivity. 

Figure 2.11 Substrate Scope for the Enantioselective Cation Radical Diels-Alder 

 

We then decided to pursue other avenues of exploration, including the intramolecular variant of 

this transformation with efforts led by fellow graduate student Peter Morse. The subsequent 

sections disclose the evaluation of various catalysts and strategies that failed to provide a 

breakthrough for the project, though these results should be of use if this project is revisited in the 

future. 

2.3 Chiral Catalyst Screen for the Enantioselective Cation Radical DA 

  The catalysts evaluated in this transformation were developed by myself and fellow 

Nicewicz group members Jean-Marc Grandjean, Dr. Nicole Torres Knight and Peter Morse. 

Concurrent with this research, Jean-Marc Grandjean worked on the enantioselective cation radical 

cyclopropanation reaction, simultaneously testing this library of chiral catalysts. 
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 Early on we recognized that the 3,3’ SiPh3 BINOL N-trifylphosphoramide triaryl 

oxopyrylium 8a was a promising catalyst. We were interested in making minor modifications to 

this scaffold to hopes of gleaning information as to which moieties were critical to reactivity 

and/or selectivity (Figure 2.12). We evaluated the analogous phosphate catalyst 9 and found that 

moving away from nitrogen to oxygen resulted in a complete loss in reactivity and selectivity. 

Figure 2.12 Effect of Modifications on the 3,3’-SiAr3-H8-BINOL Catalyst Scaffold 

 

We hypothesized that the phosphate was too nucleophilic towards to the radical cation 

intermediate, shutting down reactivity. We then modulated the electronic nature of the 

sulfonamide, replacing trifluoromethane sulfonamide with p-nitrobenzene sulfonamide in 

compound 10 and while a modest 15% ee was observed, hardly any product was formed. We 

synthesized and tested the thiophosphoramide 11 and also observed a disappointing lack of 

reactivity and enantioselectivity. These results demonstrated that any changes around the anionic 

center and its nucleophilicity, in terms of sterics or electronics, resulted in dramatic decreases in 
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yield and enantioselectivity. The N-trifluoromethane sulfonyl phosphoramide moiety appears to 

be essential for reactivity. 

Dr. Nicole Torres Knight in our lab first synthesized the catalysts 12 and 13 which bear 

p-tert-butylphenyl and 3,5-dimethylphenyl (xylyl) trisubstituted silanes, respectively. We were 

intrigued by initial results from catalyst 12 but eventually abandoned further optimization after 

attempts to increase the yields were unfruitful. The trixylylsilyl substituted catalyst 13 provided 

similar but slightly decreased yield and selectivity to the triphenylsilyl catalyst 8a at our 

optimized conditions. Upon catalyst loading optimization we observed that yields could be much 

improved though selectivity did suffer (Figure 2.13). 

Figure 2.13 Optimization using the 3,3’-Si(xylyl)3-H8-BINOL Catalyst 13 

 

Closer inspection of these chiral GC traces revealed that the %ee of the minor set of 

diastereomers was actually quite high and the diastereoselectivity was approximately 2:1. We 

wondered if we could exploit this low diastereoselectivity and reverse the preference to the minor 

diastereomers. After running the reaction in a series of concentrations we saw that going to more 
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dilute concentrations decreased yields and the diastereoselectivity while increasing the 

enantioselectivity for both sets of diastereomers. However, after a certain point the diastereomeric 

ratio does not decrease to 1:1 or reverse as we had hoped. Ultimately, we were unable to strike a 

balance between yield and selectivity to give a synthetically useful result. 

In 2011, Toste and colleagues reported the use of BINOL catalysts bearing biaryl 

moieties on the 3 and 3’ positions as Brønsted acids for the enantioselective intramolecular 

addition of sulfonamides to dienes.
4
 Following their literature procedure we synthesized the 

oxopyrylium N-trifylphosphoramide with 10-(2,4,6-(CH3)3-C6H2)-9-anthracenyl groups at the 3, 

3’ positions (14). We hoped that the biaryl groups would project further towards the radical cation 

intermediate to induce selectivity. We found however, that while a decent 41% yield was 

obtained, the enantioselectivity did not exceed 9% (Figure 2.14). 

Figure 2.14 Screening of Various Catalyst Scaffolds 
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Moving away from the BINOL scaffold, we looked at chiral catalysts derived from 

expensive, yet commercially available VAPOL (15) and VANOL (16). These compounds 

possessed unique backbone structures that extend out over the anionic moiety instead of relying 

on substituents that branched out. Unfortunately, we observed very low yield using catalyst 15 

and decent yield with catalyst 16 but absolutely no enantioinduction.   

We then tried a different tact by exchanging the oxygen linkers in the BINOL scaffold to 

nitrogen linkers, which would allow for the substitution at nitrogen and hopefully create a chiral 

pocket closer to the ion pair. Synthesized according to literature procedure we evaluated the 

anthracenyl substituted chiral catalyst 17, and observed a disappointing 9% yield with no 

enantioselectivity.  

 Given that chiral counteranion synthesis is arduous and time-consuming we wanted to try 

to take advantage of amino acids as potential catalyst scaffolds. Synthesis of chiral catalyst 18 

derived from L-alanine was very straightforward and obtained in high yield in just three steps. Its 

performance as a catalyst for the cation radical Diels-Alder reaction however was poor in terms 

of reactivity and selectivity; therefore no other amino acid based catalysts were pursued.  

 Lastly, we evaluated the disulfonimide BINOL catalyst 19, a scaffold reported recently 

by the List group. List and coworkers employed the 3,3’ arylsubstituted disulfimide for highly 

selective Mukaiyama aldol reactions.
5
 They propose that the chiral acid imparts such great 

enantiocontrol because the acid is more deeply embedded than the phosphoric acid counterpart. 

We experienced difficulty synthesizing the disulfimide with substituents at the 3,3’ position, 

however we were able to evaluate the unsubstituted catalyst and unfortunately did not observe 

any desired product. 

 We also tried different substituents on the para position of the triaryl oxopyryliums 

including methoxy, methyl and fluoro groups. We did not observe any clear advantage of using 

one substitution over the other, so we mainly employed the p-OMe substituted oxopyrylium for 

consistency between our optimization reactions. Though none of the catalysts we tested provided 
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the results we hoped for, they may be of use in other settings. It is probable that the key to 

success, as defined by high yield and selectivity, for this transformation still lies in the 

identification of a chiral catalyst with the right nucleophilicity and chiral environment.  

2.4 Miscellaneous Optimization Strategies 

 Because we were only using 0.5 mol % catalyst in our reactions, we proposed to add 

additional chiral Brønsted acid to the reaction mixture that could potentially become deprotonated 

and increase the amount of free chiral counteranion present in solution. We tested a side by side 

comparison of a reaction with 5 mol % chiral 8a catalyst and one with 5 mol % chiral catalyst in 

addition to 5 mol % of the corresponding chiral Brønsted acid. We observed very similar yields 

and selectivities leading us to abandon this course of investigation. We tested the chiral Brønsted 

acid’s ability to catalyze the reaction by itself and found that it was an incompetent catalyst as 

expected (Figure 2.15).  

Figure 2.15 Effect of Additional Chiral Brønsted Acid 

 

 Another aspect to consider for this transformation was the light source. In the early stage 

of our investigations we used four fluorescent light bulbs situated at the bottom of a cryobath. 

However we realized that it may be advantageous to irradiate the reactions with more focused 

wavelengths, tuned to the absorption wavelength of the catalyst. The absorption wavelength for 

the triphenyloxopyrylium tetrafluoroborate is ~412 nm so we imagined that our chiral catalysts 

would absorb in a similar range. We evaluated blue and violet light-emitting diodes (LEDs) and 
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fluorescent white light in the racemic reaction with TPT. We indeed observed a considerable 

increase in yield with the blue LEDs over violet and white light (Figure 2.16). Following this 

experiment, all of our reactions were irradiated with blue LEDs. 

Figure 2.16 Effect of Light Sources on the Racemic Reaction 

 

 Throughout our investigations we were diligent in setting up the reactions under an 

atmosphere of nitrogen. However, we wanted to probe the effect of oxygen on our reaction 

(Figure 2.17). We found that the addition of oxygen had a pronounced deleterious effect on the 

yield of the reaction while the selectivities stayed relatively constant. We propose that oxidative 

cleavage of the anethole reaction partner occurs competitively in the presence of oxygen 

accounting for the observed loss in yield. 

Figure 2.17 Effect of Oxygen as an Additive 
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Summary 

 In this chapter our attempts to develop a practical method for the enantioselective cation 

radical Diels-Alder reaction through chiral anion catalysis has been detailed. While synthetically 

relevant levels of reactivity and enantiocontrol were not reached, our work serves as a valuable 

contribution for the advancement of this novel strategy for enantioinduction. We have 

synthesized a library of enantiopure chiral acids that other research groups exploring the field of 

counteranion-directed catalysis may find helpful. Ultimately, we struggled to find a set of 

conditions that would allow for reactivity without sacrificing enantioselectivity and vice versa.  
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CHAPTER 3: BACKGROUND FOR THE DEVELOPMENT OF AN ANTI-MARKOVNIKOV 

HYDROAMINATION REACTION OF ALKENES 

 

Introduction 

 Carbon-nitrogen bonds are ubiquitous in highly valuable biologically active compounds. The 

most direct way to form these bonds is through the addition of an amine to an alkene in the 

hydroamination reaction. The hydroamination reaction is advantageous because it employs simple and 

commercially available starting materials and is completely atom economical. Challenges associated with 

the hydroamination reaction include the repulsion between the alkene pi-electrons and the nitrogen lone 

pair as well as the regioselectivity of the addition of the amine. 

The majority of existing hydroamination reactions furnish products with amine substitution at the 

more substituted carbon center as governed by Markovnikov’s rule, which places the cationic charge 

generated in situ at the most stabilized carbon, either by substitution or electronics. Relatively few 

methods exist for the direct anti-Markovnikov hydroamination reaction and as will be shown, many 

require precious metals and are limited to activated alkene partners. In this chapter, previous reports of 

anti-Markovnikov hydroamination reactions of alkenes will be discussed.  

3.1 Anti-Markovnikov Hydroamination Reactions Catalyzed by Transition Metals 

Transition metal catalysis dominates the arena of anti-Markovnikov hydroamination. Ni, Cu, Ru, 

Rh, and Ln have all been shown to be effective catalysts for this transformation by a number of research 

groups.    
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Ni-catalyzed Anti-Markovnikov Hydroamination Reactions 

 Nickel complexes have demonstrated some utility in the hydroamination of activated olefins, 

though with very limited substrate scope. In 2002, Togni and Fadini employed tridentate phosphines as 

chiral ligands in the Ni(II) catalyzed anti-Markovnikov addition of anilines and morpholine to electron 

deficient alkenes (Figure 3.1).
1
 Yields for the hydroamination with anilines ranged from 26% to 91% 

yield, with increased electron density providing higher yields while ortho substitution on the anilines led 

to lower yields. Reactions with morpholine as the amine coupling partner gave uniformly good yields. 

Based on prior computational studies, the authors propose that the reactions proceed via olefin activation 

followed by nucleophilic attack by the amine.  

Figure 3.1 Ni-catalyzed Anti-Markovnikov Hydroamination Reaction of Activated Olefins 

 

 Zargarian and co-workers published a similar Ni catalyzed hydroamination of acrylonitrile and 

phenylaniline using diphosphine pincer ligands in 2009 (Figure 3.2).
2
 The study evaluated the reactivity 

of pincer-type complexes with various substitution patterns, obtaining up to 95% yield in their target 

transformation. The researchers present two possible pathways by which activation occurs either by 

coordination to the olefin or the nitrile. They speculate that the process undergoes a Lewis acid promoted 

mechanism, whereby indirect activation of the olefin is followed by nucleophilic attack then proton 

transfer.    
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Figure 3.2 Ni-catalyzed Anti-Markovnikov Hydroamination Reaction of Acrylonitrile 

 

Cu-catalyzed Anti-Markovnikov Hydroamination Reactions 

 The Gunnoe group reported an anti-Markovnikov hydroamination of electron poor olefins using 

Cu(I) complexes (Figure 3.3).
3
 Given the limited nature of the substrate scope in this 2006 report, the 

transformation can also be thought of as a conjugate Michael addition. The proposed mechanism involves 

nucleophilic addition of the amido ligand to the alkene to give a zwitterionic intermediate followed by 

proton transfer to form a copper amido complex. A second proton transfer to regenerate the copper 

anilido complex completes the catalytic cycle and releases the desired product. In 2008, Gunnoe and co-

workers report an expanded substrate scope that includes vinyl arenes. Though the method has not found 

general utility, its advantage lies in the low cost of Cu in contrast to the more costly Rh and Ru catalysts.
4
 

Figure 3.3 Cu-catalyzed Anti-Markovnikov Hydroamination of Electron Deficient Olefins 

 

 Recently, Buchwald and co-workers published an important advance for Cu catalyzed anti-

Markovnikov hydroamination reactions. Using a catalytic amount of Cu(OAc)2, a phosphine ligand and 
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diethoxymethylsilane as a stoichiometric hydride-transfer reagent, they are able to promote the addition of 

hydroxylamines to unactivated aliphatic alkene substrates (Figure 3.4).
5
 The reaction derives its 

regioselectivity from the insertion of a CuH species that places the Cu on the less sterically hindered 

terminal carbon. Following hydride migration, oxidative addition of the Cu intermediate into the 

hydroxylamine then reductive elimination affords the desired tertiary amine products in high yields. The 

transformation is tolerant to a variety of functional groups including halides, epoxides, protected alcohols 

and heterocyclic amines.  

Figure 3.4 CuH-catalyzed Anti-Markovnikov Hydroamination of Unactivated Alkenes 

 

Rh and Ru-catalyzed Anti-Markovnikov Hydroamination Reactions 

 In 1999, Beller and colleagues reported the first anti-Markovnikov hydroamination of styrenes 

using a cationic Rh catalyst (Figure 3.5).
6
 However, only small amounts of the hydroamination product 

were observed while the major product was the enamine arising from the oxidative amination reaction. 

The enamine to alkylamine product ratio ranged from 2.1:1 to 10.5:1. Combined yields were higher for 

electron rich styrenyl substrates over electron poor substrates. The authors also observed ethylbenzene as 

a major side product and sought to probe rhodium’s ability to hydrogenate not only the styrene but the 

enamine product. Additional experiments demonstrated that enamine hydrogenation was not occurring 

and led them to propose a separate catalytic pathway for the formation of the hydroamination product. 

The mechanism is proposed to proceed through oxidative insertion of the Rh complex then addition 

across the alkene or coordination of rhodium to the olefin followed by subsequent nucleophilic addition 
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of the amine to give an alkyl rhodium species. From this intermediate, β-hydride elimination can occur to 

produce the enamine product or protonolysis of the complex can furnish the alkyl amine product. In the 

former case, the in situ generated rhodium dihydride species can go on to hydrogenate excess styrene. 

Figure 3.5 Rh-catalyzed Anti-Markovnikov Hydroamination of Styrenes, Beller et al. 

 

 In 2003, Hartwig and co-workers reported the same transformation but were able to favor 

formation of the amine product using a modified Rh catalyst (Figure 3.6).
7
 They obtained product 

mixtures in good to high yields at elevated temperatures. In their reported mechanism after initial olefin 

coordination or amine oxidative addition, they invoke the formation of a rhodium metallacycle, at which 

point reductive elimination to form the alkyl amine is favored. Alternatively, the metallacycle may also be 

opened by coordination of another alkene and from this intermediate, reductive elimination or β-hydride 

elimination can take place.  

Figure 3.6 Rh-catalyzed Anti-Markovnikov Hydroamination of Styrenes, Hartwig et al. 
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The following year, the Hartwig group overcame the competing oxidative hydroamination 

problem by switching to a ruthenium catalyst (Figure 3.7).
8
 After optimization, they report the anti-

Markovnikov hydroamination of various cyclic amines with terminal styrenes in 40-96% yield. 

Mechanistic investigations revealed the formation of a π-arene complex between the ruthenium complex 

and the aryl group of the styrene. This coordination effectively activates the olefin to nucleophilic attack 

by the amine while circumventing the undesired β-hydride elimination pathway.
9
  

Figure 3.7 Ru-catalyzed Anti-Markovnikov Hydroamination of Styrenes, Hartwig et al. 

 

In 2006, Hartwig and Takemiya report the extension of this method to include intramolecular 

examples, which to the best of our knowledge is the sole example of an intramolecular anti-Markovnikov 

hydroamination outside of our own report (Figure 3.8).
10

 They obtained the products in good yields and 

saw only negligible amounts of the enamine side product. 

Figure 3.8 Rh-catalyzed Intramolecular Anti-Markovnikov Hydroamination of Styrenes 
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La-catalyzed Anti-Markovnikov Hydroamination of Vinylarenes 

 The Marks lab reported an organolanthanide catalyzed anti-Markovnikov hydroamination of 

vinylarenes with primary alkylamines in high yields and regioselectivities (Figure 3.9).
11

 Electron rich 

and neutral arenes produced higher yields, which is attributed to their ability to stabilize the lanthanide 

through the arene π-electrons. The reaction is proposed to begin with coordination of the amine to the 

metal catalyst followed by insertion of the La-N across the olefin. Protonolysis of the lanthanide complex 

releases the catalyst and the desired arylethylamine.  

Figure 3.9 La-catalyzed Anti-Markovnikov Hydroamination of Vinylarenes 

 

Alkaline Earth Metal-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes 

 In 2012, heavy alkaline earth metals joined the field of catalysts for the anti-Markovnikov 

hydroamination of vinylarenes with a report from the Procopiou group (Figure 3.10).
12

 They proposed 

that the insertion of the metal-amine across the olefin is oriented such that the metal stabilizes the 

developing negative charge on the benzylic position. The reaction was successfully catalyzed by calcium, 

strontium complexes and even barium catalysts albeit with very long reaction times. The researchers also 

suggested that the transition state involved coordination of multiple amine substrate molecules to the 

metal, forming an organized framework of hydrogen bonds. This method is limited by the large excess of 

styrene required for productive reaction. 
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Figure 3.10 Ca, Sr, Ba-catalyzed Anti-Markovnikov Hydroamination of Vinylarenes 

 

3.2  Anti-Markovnikov Hydroamination Promoted by an Organic Sensitizer 

 While numerous groups have reported transition metal catalyzed hydroamination strategies, 

purely organic approaches have been relatively less explored. To the best of our knowledge, there exists 

just one such report from the Yamashita lab, in which UV-light activated dicyanobenzene (DCB) is used 

to promote the anti-Markovnikov hydroamination of styrenes with ammonia and other primary amines 

(Figure 3.11).
13

 Though the method avoids expensive transition metals, it suffers from the requirement of 

a stoichiometric amount of sensitizer. The desired alkylamine products are obtained in a range of yields 

along with an undesired side product in which cyanobenzene is incorporated.  

 The mechanism involved excitation of DCB by UV light which then abstracts a single electron 

from the alkene forming a radical cation-radical anion pair. Subsequent nucleophilic addition of the 

amine, deprotonation then reduction of the radical furnishes the desired product. Alternately, radical 

combination of the radical intermediate with cyanobenzene followed by loss of a cyano group leads to the 

undesired product.  

Figure 3.11 Photoamination of Styrenes Promoted by Dicyanobenzene 
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3.3 Formal Anti-Markovnikov Hydroamination Reactions 

Given the challenges associated with developing direct anti-Markovnikov alkene 

hydroaminations, formal indirect methods have also been explored. These reports generally rely on 

hydroboration-amination strategies and are highly regioselective though multiple steps are required. In 

2012, the Shenvi lab demonstrated an elegant stereoselective formal anti-Markovnikov hydroamination to 

form polysubstituted indolizidines, an important class of pharmacologically active compounds (Figure 

3.12).
14

 The intramolecular reaction forms two new carbon-nitrogen bonds and sets four stereocenters. 

The first step involves hydroboration of both internal alkenes and coordination of the amine to boron 

followed by an iodine mediated alkyl shift from boron onto nitrogen. Oxidation of the borate with 

hydrogen peroxide furnishes an intermediate alcohol, which was subjected to Mitsunobu conditions to 

form the second C-N bond.      

Figure 3.12 Formal Intramolecular Anti-Markovnikov Hydroamination 

 

In the same year, Gojko Lalic and colleagues reported an intermolecular anti-Markovnikov 

hydroamination of terminal alkenes also taking advantage of an initial hydroboration step (Figure 3.13).
15

 

Advantageously, the procedure is a one-pot process beginning with hydroboration of the alkene. Addition 

of a benzoyl hydroxylamine, a Cu(I) catalyst and lithium tert-butoxide effects the transmetallation from 

boron to copper, then electrophilic amination of the alkyl copper intermediate forms the desired amination 

product in excellent yields. The reaction is tolerant to a wide array of functional groups including alkyl, 

aryl, halide, ester, protected alcohol and cyano groups. Notably, this method provides access to sterically 
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hindered tertiary amines that can be challenging to synthesize via traditional reductive amination or 

alkylation strategies. 

 Figure 3.13 Formal Intermolecular Anti-Markovnikov Hydroamination 

 

There are relatively few reported methods for the anti-Markovnikov hydroamination reaction of 

alkenes and the majority rely on transition metal catalysis. Generally, the scope of each strategy has been 

limited to acrylonitriles, acrylate esters and vinyl arenes and are required to be present in a large excess. 

The formation of undesired side products either from oxidative amination or incorporation of the 

sensitizer has also been a challenge in this area. Given the value of gaining access to anti-Markovnikov 

hydroamination protocols in industrial and drug discovery processes, there exists a need for the 

development of new efficient strategies. In the next section, we will discuss our proposal to develop a 

novel catalyst system for the anti-Markovnikov hydroamination of alkenes.  

3.4 Research Proposal for an Anti-Markovnikov Hydroamination Reaction 

 We saw an opportunity to develop a method for the anti-Markovnikov hydroamination drawing 

on precedent in the area of organic photocatalysis. Our laboratory has found great utility in employing 

organic single electron photo-oxidants to generate radical cation intermediates. These intermediates are 

susceptible to nucleophilic addition and inherently give rise to anti-Markovnikov regioselectivity. Our 

aim was to identify a photoredox catalyst system to generate cation radical intermediates from alkenes 

that can be intercepted by protected amine nucleophiles. As photo-induced electron transfer for the 

generation of radical cation intermediates has already been discussed in chapter 1, the following section 

will focus on the addition of nucleophiles to these reactive intermediates.  
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3.5 Precedent for the Photocatalyzed Addition of Nucleophiles to Radical Cations 

 Among the first to explore the reactivity of photolytically generated radical cation intermediates 

was the Arnold group. In 1973, they reported the irradiation of p-cyanobenzoate with 1,1-

diphenylethylene in the presence of alcoholic solvents to form ether products with anti-Markovnikov 

selectivity.
16

 Subsequent reports from the Arnold
17,18 

and Gassman
19

 lab employ dicyanobenzene as a 

sensitizer to promote the anti-Markovnikov addition of alcoholic nucleophiles. Further exploration of 

these photochemical nucleophile-olefin combination aromatic substitution (photo-NOCAS) reactions 

using density functional theory (DFT) calculations led to the proposed mechanism (Figure 3.14). Initial 

irradiation excites DCB to its singlet excited state followed by single electron transfer from the olefin, 

then the radical cation intermediate is intercepted by the alcohol nucleophile. The β–alkoxy radical 

undergoes coupling with the 1,4-cyanobenzene radical anion, then loss of the cyano group and 

aromatization furnishes the product. The regioselectivity can be rationalized by the formation of a three-

membered nucleophile-radical cation intermediate which ruptures at the weaker C-O bond to form the 

more stable radical intermediate.   

Figure 3.14 Proposed Mechanism of Photo-NOCAS Reactions 

 

 Similar reports of photochemical anti-Markovnikov alcohol additions have been reported by the 

Mizuno
20

 and Inoue
21

 research labs with diphenyl alkenols and chiral sensitzers, respectively. These 

reports, as well as the previously discussed research from the Yamashita lab,
13

 are valuable precedents for 

photolytic anti-Markovnikov addition of nucleophiles but are quite limited in yield and scope. They also 

suffer from undesired incorporation of the sensitizer and require harsh ultraviolet (UV)-light for the 
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excitation of the single electron oxidants. Given these disadvantages, our group proposed to explore 

another class of photo-oxidants to access a broader range of alkenes.  

 In 2013, Hamilton and Nicewicz report a direct catalytic method for the anti-Markovnikov 

hydroetherification of alkenols using a 9-mesityl-10-methyl acridinium catalyst and 2-

phenylmalononitrile (PMN) as a hydrogen atom source (Figure 3.15).
22

 The acridinium catalyst  

Figure 3.15 Anti-Markovnikov Hydroetherification Catalyzed by an Organic Photoredox System  

 

developed by the Fukuzumi lab was an attractive photo-oxidant for its high excited state oxidation 

potential (+2.06 V vs. saturated calomel electrode [SCE]) and its absorption in the visible light range (λ = 

430). Initial investigations revealed that reaction of just alkenols and acridinium catalyst resulted in low 

yields. However introduction of an additive to act as a hydrogen atom transfer reagent improved yields to 

synthetically useful levels. The researchers evaluated a number of hydrogen atom transfer donors based 

on their homolytic bond dissociation energies (BDEs). Compounds that possessed sufficiently low BDEs 
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were chosen to encourage hydrogen atom transfer. Ultimately, 2-phenylmalononitrile proved to be the 

best transfer reagent with a BDE of 77 kcal/mol.  

 Using this novel catalyst system, substituted tetrahydrofurans are obtained from styrenyl and 

trisubstituted alkenols in good yields. The proposed mechanism for this transformation begins with 

excitation of the acridinium catalyst by visible blue light (450 nm) followed by single electron oxidation 

of the alkene. Intramolecular nucleophilic addition of the alcohol to the radical cation forms a transient 

three-membered intermediate then rupture of the weaker C-O bond furnishes the radical intermediate. 

Subsequent hydrogen atom transfer from PMN gives the desired product and a phenylmalononitrile 

radical, which can be reduced by the acridinium radical then protonation regenerates the H-atom transfer 

reagent (Figure 3.16). We believed that we could use this catalyst system to develop an analogous anti-

Markovnikov hydroamination reaction. 

Figure 3.16 Proposed Mechanism for the Anti-Markovnikov Hydroetherification of Alkenols  
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Summary 

 This chapter has provided an overview of existing methods for the anti-Markovnikov 

hydroamination reactions as well as their advantages and drawbacks. We proposed to introduce a new 

method to this arena by building on previous success in our lab with a novel organic photoredox catalyst 

system. This transformation can provide direct access to pharmacologically valuable compounds.  
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CHAPTER 4: DEVELOPMENT OF AN ANTI-MARKOVNIKOV HYDROAMINATION OF 

ALKENES CATALYZED BY A NOVEL PHOTOREDOX SYSTEM 

 

Introduction 

As detailed in the previous chapter, there exists a need for a facile, direct route for the 

regioselective construction of carbon-nitrogen bonds. To meet this need, we have developed a transition 

metal-free catalytic anti-Markovnikov hydroamination of alkenes using a unique photoredox system. In 

this chapter, the reaction development and scope of the intra- and intermolecular anti-Markovnikov 

hydroamination reaction of alkenes will be discussed. 

4.1 Initial Development of an Anti-Markovnikov Hydroamination Reaction of Alkenes 

 In our initial investigations, we hoped to take advantage of the conditions developed by Hamilton 

and Nicewicz for the anti-Markovnikov hydroetherification. We believed that we could effect the anti-

Markovnikov hydroamination through a similar pathway, though we realized that in modifying the 

alcohol moiety to an amine there were some challenges and opportunities. Because amines are trivalent, 

the nitrogen could be substituted with different functionalities to manipulate its nucleophilicity. However, 

secondary amines, particularly electron rich amines, have been shown to be susceptible to single electron 

oxidation at nitrogen to give nitrogen radical cations. In fact, this reactivity has been successfully used in 

other reaction manifolds.  

 We began by synthesizing diphenyl isoprenylamine according to literature procedure and 

submitting it to the photocatalytic system successfully used in the anti-Markovnikov hydroetherification 

reaction. Unfortunately we did not observe any productive reactivity. We tried adding a variety of organic 

and inorganic base additives for the initial deprotonation of the primary amine to increase its 
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nucleophilicity. We also evaluated potential additives that had been previously reported as electron 

shuttles. None of these adjustments to the reaction conditions resulted in any appreciable formation of 

desired product (Table 2). 

Table 2. Optimization of the Anti-Markovnikov Hydroamination of Isoprenylamine  

 

H-Atom Donor Base Solvent Additive 

PMN (1.5 equiv) 2,6-lutidine  

(1.0 equiv) 

TFE/MeCN (1:1), 

MeOH, DCE 

None 

PMN (1.5 equiv) 2,6-lutidine (None, 0.2 

equiv, 3.0 equiv) 

DCE None 

PMN (1.5 equiv) KHSO4 (1 equiv) DCE None 

PMN (1.5 equiv) NaOAc (1 equiv) DCE None 

9-phenylfluorene  

(1.5 equiv) 

2,6-lutidine (None, 0.2 

equiv, 1.0 equiv) 

DCE None 

PMN (1.5 equiv) 2,6-lutidine  

(1.0 equiv) 

DCE Benzoic acid  

(0.9 equiv) 

PMN (1.5 equiv) 2,6-lutidine  

(1.0 equiv) 

DCE Triphenylbenzene (0.2, 

1.0 equiv) 

 

Given the lack of reactivity observed with primary unprotected amines, we turned our attention to 

exploring different protecting groups. Using diphenyl isoprenyl amine as a scaffold, we evaluated a 

number of sterically and electronically diverse protecting groups (Figure 4.1). In moving to secondary 

amines, we found that the addition of base was not required to observe reactivity. We were pleased to find 

that the installation of electron rich protecting groups resulted in low to modest amounts of product. 

Electron withdrawing protecting groups were also tolerated as the p-toluenesulfonyl protecting group 

gave a 16% yield.  
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Figure 4.1 Evaluation of Various Protecting Groups on Isoprenyl Amine Substrate 

 

Initially, the benzylamine substrate seemed quite promising with a yield of 40%, though even 

minor substitutions on the arene with electron donating or withdrawing groups had a negative effect on 

the yields. Given the sensitivity to substitution, we proposed that the nucleophilicity of the amine was 

important to reactivity. Further investigation of the benzylamine substrate revealed that an undesired side 

product was also being formed in the course of the reaction. 

 After 
1
H NMR characterization, we determined that the side product was a primary amine with 

phenylmalononitrile incorporated into the structure (Figure 4.2). Running the reaction on a large scale, 

we obtained 44% desired product along with 30% undesired side product. We propose that the electron 

rich benzylamine could undergo single electron oxidation at nitrogen. This amine radical cation could be 

susceptible to deprotonation at the neighboring alpha carbon, followed by addition of the 

phenylmalononitrile anion. The exploration of protecting groups signaled to us that for productive 
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reactivity the amine should be sufficiently nucleophilic for the addition but that as the protecting group 

increases in electron density beyond a certain point, it may participate in unproductive single electron 

pathways. 

Figure 4.2 Detection of Undesired Side Product with Isoprenyl Benzylamine Substrate 

 

 Though yields were promising with the benzyl protected amines, we decided to pursue the more 

electron withdrawing p-toluenesulfonyl (Ts) protecting group to avoid side reactions. Interestingly, while 

the Ts protecting group gave only a low yield for the isoprenyl substrate, moving to a p-methoxy styrenyl 

substrate, which is more electron rich and more easily oxidized, we observed a good yield of 50%. At this 

point we focused our efforts on evaluating a range of hydrogen atom donors to optimize the reaction 

yields (Figure 4.3). The hydrogen atom donors evaluated had relatively similar bond dissociation 

energies ranging between 75-79 kcal/mol. We found that sulfinic acid and 9-cyanofluorene both provided 

an increase in yield, while exchanging the cyano group for an ester on the fluorene led to a slightly 

decreased yield.  

The best yield was obtained with thiophenol (PhSH) and upon further screening of PhSH loading, 

we could use just 0.2 equivalents of the H-atom donor to obtain the product in good yields. Interestingly, 

we observed a minor side product in the reactions with styrenyl substrates that we identified to be the 

deprotected pyrrolidine. We are unsure about the mechanism of deprotection, though current methods of 
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Ts group deprotection include treatment with a strong acid or strong reducing metal. It is possible that 

loss of the Ts group occurs through a single electron reduction or even by a strong acid like the aminium 

intermediate before it is deprotonated. Thiophenol was also found to be the most efficient H-atom donor 

for the isoprenylamine substrate as well, with 0.2 equivalents furnishing the product in 70% yield after 

96h.   

Figure 4.3 Evaluation of H-atom Donors for a Styrenyl Substrate 

 

   In our optimization reactions we found that the addition of up to 2.0 equivalents of 2,6-lutidine or 

completely omitting base had no effect on the yields, so we decided move forward without base in our 

system. We evaluated other solvents such as dichloromethane, nitromethane, acetonitrile and toluene but 

saw poor reactivity in each solvent. After identifying our optimized conditions, we revisited the identity 

of the protecting group on the amine using the isoprenylamine as our test substrate (Figure 4.4). We 

observed a low yield for the benzylamine, with many side products, which is in keeping with our 

hypothesis that more electron rich amines are susceptible to oxidation at the nitrogen, leading to undesired 
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side product formation. No protecting group resulted in essentially no reaction. We were pleased to see 

that the electron withdrawing tert-butylcarbonyl (Boc) protecting group gave the desired product in 65% 

yield. Boc protecting groups are advantageous for the ease of their removal but we opted not to use the 

Boc group in our evaluation of substrates as rotamers made for rather difficult characterization by nuclear 

magnetic resonance (NMR) spectroscopy. We also performed a series of control reactions and confirmed 

that blue light, hydrogen atom donor and photocatalyst were all required for product formation. 

Figure 4.4 Control and Optimization Studies of Isoprenyl Substrate 

 

4.2 Scope of the Intramolecular Anti-Markovnikov Hydroamination Reaction 

 We then explored the scope of the intramolecular anti-Markovnikov hydroamination reaction 

(Figure 4.5).
1
 Styrenyl substrates 5a-10a furnished the desired pyrrolidines in high yields. The presence 

of electron withdrawing or donating groups on the arene had little effect on the yield as the reactions with 

p-fluoro and p-methoxy substituted styrenyl substrates proceeded in 89% and 88% yield, respectively.  

Substitution of the ortho position of the styrene was also tolerated, though it required a slightly longer 

reaction time for completion (8a, 69% yield). We also observed that the absence of geminal dimethyl 
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substitution in the backbone of the structure was not required for reactivity and gave the desired product 

in good yield (9a, 79% yield). Mono-substitution in the chain with an isopropyl group led to a similarly 

good yield with a low level of diastereoselectivity (10a, 88%, 1.6:1 dr). We were also able to effect 6-exo 

cyclizations with styrenes with and without substitution in the backbone (11a &12a, 79% and 60%). As 

mentioned earlier, for styrenyl substrates, the deprotected pyrrolidines are formed as the minor side 

product, though reprotection or deprotection could easily circumvent this issue to give a single product. 

Trisubstituted alkenyl substrates gave good yields though required longer reaction times of 96h.  

Figure 4.5 Scope of the Intramolecular Anti-Markovnikov Hydroamination Reaction 

 

 Substitution at the carbon alpha to the amine was tolerated and gave product 13b in a modest 

56% yield with 3:1 dr. A cyclic alkene substrate underwent 5-exo cyclization to produce the bicyclic 

product 14b in 72% yield and 12:1 dr. These substrates are notable in that they provide access to non-

activated alkene partners, which is a limitation for existing anti-Markovnikov hydroamination methods. 

We demonstrated one example without the Ts protecting group on the amine, replacing it with a 
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sulfamate and obtaining the product 15b in a decent 54% yield. Deprotection of this type of substrate 

could provide access to valuable 1,3-amino alcohols.   

4.3 Mechanistic Investigations of the Anti-Markovnikov Hydroamination Reaction 

 At the outset of our investigations we presumed that the anti-Markovnikov hydroamination 

reaction was going through a similar mechanism as the hydroetherification, but with thiophenol instead 

acting as the H-atom donor. We probed alternative pathways that could be operative. We considered the 

possibility that thiophenol was acting as a hydrogen atom shuttle, working in concert with a nitrogen 

centered radical. To this end we submitted the isoprenylamine substrate to two different thermal radical 

initiators in the presence of thiophenol. However, we observed no reactivity in both cases, suggesting that 

a nitrogen centered radical intermediate in the case of a Ts-protected amine was unlikely (Figure 4.6).  

Figure 4.6 Probing Mechanistic Pathways for the Anti-Markovnikov Hydroamination  

 

A report from the Yoon lab in 2013
2
 demonstrated that benzyl mercaptan could participate in 

light activated Ru catalyzed thiol-ene reactions with terminal styrenes. To explore whether an acridinium 

catalyzed thiol-ene reaction could be occurring followed by nucleophilic substitution by the pendant 

amine we synthesized the tertiary Ts, Boc-amine. Exposing the fully substituted amine substrate to light, 

5 mol % acridinium catalyst and 1 equivalent of thiophenol resulted in no reaction, making the thiol-ene 

pathway unlikely (Figure 4.7).  
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Figure 4.7 Probing Thiol-Ene Pathway for the Anti-Markovnikov Hydroamination  

 

 Based on our observations we proposed the following mechanism for the intramolecular anti-

Markovnikov hydroamination reaction (Figure 4.8). Initial excitation of the acridinium catalyst to its 

excited state is followed by single electron oxidation of the olefin furnishing the radical cation 

intermediate and the reduced acridine radical. Nucleophilic addition of the amine to the cationic charge on 

the anti-Markovnikov position gives the distonic cation radical intermediate. Hydrogen atom transfer 

from thiophenol and deprotonation of the amine releases the desired product. Reduction of the thiyl 

radical by the acridine radical to the thiolate is then followed by protonation to regenerate the thiophenol 

hydrogen atom donor. 

In our exploration of this method, we were pleased to find that it could be extended to 

intermolecular reactions. We were able to obtain the anti-Markovnikov products of the reaction between 

two cyclic alkenes and trifluoromethanesulfonamide in decent yields with the addition of 0.25 equivalents 

of 2,6-lutidine (Figure 4.9). To the best of our knowledge these examples represent the first 

organocatalytic method for the intermolecular anti-Markovnikov hydroamination of alkenes. 

Development and expansion of this method will be discussed in the following section. 
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Figure 4.8 Proposed Mechanism for the Anti-Markovnikov Hydroamination of Alkenes 

 

Figure 4.9 First Examples of Intermolecular Anti-Markovnikov Hydroamination 

 

 4.4 Development of the Intermolecular Anti-Markovnikov Hydroamination Reaction 

 Encouraged by initial results for the intermolecular anti-Markovnikov hydroamination reaction, 

we sought to optimize the reaction conditions for this transformation. Namita Manohar, an undergraduate 

student in our lab, joined the project and assisted in running optimization reactions and final reactions for 

our manuscript. Using β-methylstyrene as our test substrate with trifluoromethanesulfonamide, we re-
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evaluated the H-atom donors: phenyl malononitrile, 9-cyanofluorene and thiophenol. Of the three, we 

found that thiophenol was the most efficient hydrogen atom transfer reagent. We then explored how 

different substitution patterns on thiophenols affected product yields (Figure 4.10).  

We found that p-nitrothiophenol gave the lowest yield of 60%, potentially because its electron 

deficiency is unfavorable for hydrogen atom donation. Thiophenol gave an 86% yield while 

dimethylthiophenol gave the product in a slightly lower yield of 78%, perhaps due to the steric hindrance 

from the two neighboring methyl groups. Interestingly, the addition of diphenyl disulfide as a hydrogen 

atom donor furnished the desired secondary amine in an excellent yield of 91%. 

Figure 4.10 H-Atom Donor Screen for Intermolecular Hydroamination Reaction 

 

  With our optimized hydrogen atom donor in hand, we screened for loading of diphenyl disulfide 

(Figure 4.11). We observed that 5 mol % of disulfide gave a low yield, while increasing the loading to 

Figure 4.11 Screening of Diphenyl Disulfide Loading  
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10 mol % and 20 mol % gave similarly good yields. The presence of 1.0 equivalent of disulfide led to a 

decreased yield.  

We have observed the presence of diphenyl disulfide in the crude reaction mixtures, leading us to 

speculate that there exists an equilibrium between thiophenol and disulfide. Work by Nathan Romero in 

our lab suggests that diphenyl disulfide can be homolyzed by visible light, in the presence and absence of 

our photooxidant, to give the corresponding thiyl radical. In addition to producing the highest yield in our 

H-atom donor screen, diphenyl disulfide is also a desirable additive because it is an odorless solid 

whereas thiophenol is a very pungent liquid. This observation led us to propose a modified mechanism in 

which thiyl radical is generated in situ, then gains an electron from the acridine radical intermediate 

followed by protonation to form thiophenol (Figure 4.12). 

Figure 4.12 Proposed Mechanism for the Intermolecular Hydroamination Reaction 

 

 To complete the optimization of this reaction, we then investigated base loading and 

concentration as summarized in Table 3. We decided to switch to dichloromethane (DCM) from 

dichloroethane (DCE) because it gave a marginally better yield and is a slightly more common solvent. 
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We also found that we could decrease the catalyst loading from 5 mol % to 1 mol % with no appreciable 

loss in yield. In our screening, we found that 25 mol % of 2,6-lutidine and [0.5 M] DCM was optimal for 

our reaction conditions. We saw decreased yields upon going to [1.0 M] likely because the increased 

concentration was unfavorable for solubility. 

Table 3. Optimization of Concentration and Base Loading for the Intermolecular anti-

Markovnikov Hydroamination Reaction  

 

Catalyst Loading Disulfide Loading 2,6-lutidine Loading Concentration 
1
H NMR Yield 

5 mol % 20 mol % None [0.5 M] 64% 

5 mol % 20 mol % 15 mol % [0.5 M] 59% 

5 mol % 20 mol % 25 mol % [0.5 M] 91% 

5 mol % 20 mol % 50 mol % [0.5 M] 77% 

5 mol % 20 mol % 100 mol % [0.5 M] 36% 

1 mol % 10 mol % 25 mol % [0.1 M] 65% 

1 mol % 10 mol % 25 mol % [0.25 M] 62% 

1 mol % 10 mol % 25 mol % [0.5 M] 80% 

1 mol % 10 mol % 25 mol % [1.0 M] 30% 

 

 Following the optimization of various reaction parameters, we turned our attention to evaluating 

different amine nucleophiles (Figure 4.13). We found that p-toluenesulfonamide and  

Figure 4.13 Screening of Amine Nucleophiles with β-Methylstyrene 
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p-nitrobenzenesulfonamide were not competent reaction partners, while tert-butylcarbamate did react 

with β–methyl styrene to give the desired product in low yield. Trifluoromethanesulfonamide has a pKa 

of ~9.7
3
 in dimethyl sulfoxide (DMSO) and is more acidic than the other amine nucleophiles. The parent 

benzene sulfonamide has a reported pKa of ~24.2
4
 in DMSO and ethyl carbamate has a pKa of ~16,

5
 

which can be used to estimate the acidities of the amines we investigated. It is likely that only amines 

within a certain pKa range that is sufficiently nucleophilic will lead to product formation in our reaction 

conditions. 

4.5 Scope of the Intermolecular Anti-Markovnikov Hydroamination Reaction 

 We recognized that our method would provide access to a class of phenethylamine compounds, 

which are highly valuable for their bioactivity. To this end, we began screening styrenyl substrates as the 

alkene partner with trifluoromethane sulfonamide as the amine nucleophile (Figure 4.14). Our optimized 

reaction conditions included 1 mol % mesityl acridinium tetrafluoroborate catalyst, 10 mol % diphenyl 

disulfide, 25 mol % 2,6-lutidine, 1.0 equivalent of alkene and 1.5 equivalents of trifluoromethane 

sulfonamide in a [0.5 M] solution of dichloromethane.  

Figure 4.14 Scope of Intermolecular Anti-Markovnikov Hydroamination Reactions with Styrenes 

 



72 

 

We found that the p-methoxy substituted styrenes went to completion with the fastest reaction 

times and were formed in good yields. Slightly less electron rich methyl substituted styrenes also gave the 

desired products in high yields. In both methoxy and methyl substituted styrenes, substitution at the para 

position of the arene gave the highest yields. The electron neutral β-methylstyrene and electron deficient 

p-F and p-Cl substituted styrenes were tolerated and high yielding. Bulky mesityl styrene and tert-butyl 

substituted styrene reacted only in modest yields and in the latter case we observed the formation of many 

oligomeric side products. We also extended the scope to include bicyclic styrenes, with naphthalene and 

isosafrole performing as competent alkene partners. Heteroaromatic substitution was also tolerated as 

demonstrated by thiophene though in low yield and prolonged reaction times. 

 We then turned our attention to evaluating alkenes with more challenging oxidation potentials 

and substitution patterns. We observed that our reaction tolerated ester, protected amine and even free 

alcohol moieties. Alkenyl substrates also underwent reaction in good yields with 1-phenyl cyclohexene 

and 1-methyl cyclopentene reacting to give the anti-Markovnikov products in 50% and 85% yield, 

respectively, with a mild level of diastereoselection. Due to its volatility, 3.0 equivalents of 2-methyl-2-

butene was employed and the amine product was formed in 72% yield as determined by 
1
H NMR with an 

internal standard (Figure 4.15). 

Figure 4.15 Scope of the Anti-Markovnikov Hydroamination Reactions with Alkenes 
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 We were pleased to discover that heterocyclic amines could act as nucleophiles in our reaction, 

providing direct access to compounds highly sought after by medicinal chemists (Figure 4.16). We found 

that pyrazole and 1,2,3-triazole gave the desired product in good yields, 83% and 80%, respectively. 

1,2,3-triazole reacted with p-OMe styrene to give the product in a 2:1 mixture of regioisomers with 

preferential substitution at the N1 position, as expected due to its statistical advantage and increased 

electron density. Imidazole and indazole both reacted to give the amine products in similarly decent 

yields. We attribute the lowered yield observed in the reaction with imidazole to its poor solubility and 

unfortunately, attempts to increase solubility through various solvents were unsuccessful. Indazole 

reacted with o-OMe styrene to give a single regioisomer with substitution at the N2 position, as 

previously reported for alkylations with indazole under non-basic conditions. 1,1-disubstituted styrenes 

were also reactive towards 1,2,3-triazole though no reaction was observed with trifluoromethane 

sulfonamide.  

Figure 4.16 Scope of the Intermolecular Anti-Markovnikov Hydroamination Reactions with 

Heterocyclic Amines 
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Summary 

 We have developed an efficient method for the anti-Markovnikov hydroamination reaction of 

alkenes. Using a novel organic photoredox catalyst system developed by our lab, this method offers direct 

access to valuable biologically active amines with complete regioselectivity. The scope of our 

transformation is complementary to existing methods, as it includes non-activated alkenyl partners as well 

as heteroaromatic amine nucleophiles. In total we have demonstrated 38 examples in 35%-89% yield. 

Based on previous literature and our own observations we have proposed a mechanism for this 

transformation, with deeper investigations ongoing in our lab.  
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APPENDIX 1: SUPPORTING INFO FOR CATION RADICAL DIELS-ALDER REACTIONS 

 

General Procedure 1: To a clean dry 1 dram vial was added catalyst and purged with N2. 

Dichloromethane (sparged for ~10 min with N2) was added then dienophile (freshly distilled over CaH) 

and then diene (freshly distilled) was added to the reaction mixture. The reaction was irradiated with the 

specified light source and then quenched with a TEMPO solution (~5mg/0.2 mL). Products were purified 

via silica gel chromatography with 1% EtOAc/Hexanes. 

5-(4-methoxyphenyl)-6-methylbicyclo[2.2.1]hept-2-ene (A). 

 

Prepared via General Procedure 1 and spectral data were in agreement with reported literature.
1
 

4'-methoxy-2,4,5-trimethyl-1,2,3,6-tetrahydro-1,1'-biphenyl (D). 

 

Prepared via General Procedure 1 and spectral data were in agreement with reported literature.
2
  

5-ethyl-6-(4-methoxyphenyl)bicyclo[2.2.1]hept-2-ene (E). 

 

Prepared via General Procedure 1. 
1
H NMR Major set of diastereomers (400MHz, CDCl3) δ = 7.08 (d, 

J = 8.7 Hz, 2 H), 6.76 (d, J = 8.7 Hz, 2 H), 6.30 (dd, J = 3.0, 5.3 Hz, 1 H), 5.85 (dd, J = 2.8, 5.5 Hz, 1 H), 

3.76 (s, 3 H), 2.90 (br. s., 1 H), 2.73 (t, J = 3.6 Hz, 1 H), 2.64 (br. s., 1 H), 1.67 - 1.54 (m, 2 H), 1.51 - 

1.42 (m, 4 H), 0.93 - 0.87 (m, 3 H); 
1
H NMR (400MHz , CDCl3) δ = 7.20 (d, J = 8.7 Hz, 2 H), 6.83 (d, J 



77 

 

= 8.7 Hz, 2 H), 6.11 - 6.05 (m, 1 H), 5.73 - 5.60 (m, 1 H), 3.78 (s, 3 H), 2.02 (br. s., 1 H), 1.97 - 1.90 (m, 

1 H), 1.69 (s, 1 H), 1.60 - 1.53 (m, 2 H), 1.41 (br. s., 2 H), 1.17 - 1.06 (m, 2 H), 0.85 (t, J = 7.4 Hz, 3 H). 

General Procedure 2:  

 

To a clean dry RBF was added triaryloxopyrylium tetrafluoroborate and sodium acetate. Then the solids 

were dissolved in a 1:1 mixture of DCM/H2O. Equipped with reflux condenser and heated to 50 °C 

overnight. Cooled to room temperature then the organic and aqueous layers separated, then the aqueous 

layer was extracted with DCM 3x, organic layers combined and washed with brine, dried over Na2SO4 

and concentrated in vacuo. Chromatographed in 25% EtOAc/Hexanes to give the desired product. 

1,3,5-triphenylpent-2-ene-1,5-dione (B). 

 

Prepared according to General Procedure 2 and spectral data were in agreement with literature values.
3
 

1,3,5-tris(4-methoxyphenyl)pent-2-ene-1,5-dione (C). 

 

Prepared according to General Procedure 2. 
1
H NMR (400MHz , CDCl3) δ = 8.08 (d, J = 8.8 Hz, 2 H), 

8.01 (d, J = 8.8 Hz, 6 H), 7.53 (d, J = 8.8 Hz, 2 H), 7.42 (s, 1 H), 7.01 - 6.90 (m, 6 H), 4.86 (s, 2 H), 3.90 

(s, 3 H), 3.89 (s, 3 H), 3.85 (s, 3 H); 
13

C NMR (101MHz , CDCl3) δ = 195.1, 189.4, 163.5, 163.2, 160.6, 

151.7, 134.3, 132.3, 130.6, 128.3, 121.8, 114.1, 113.7, 55.5, 42.3. 
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3,3’-SiPh3-H8-BINOL N-trifyl phosphoramide (7). 

 

 
 

Prepared according to literature procedure and spectral data were in agreement with reported.
4
 

3,3’-SiPh3-H8-BINOL N-trifyl phosphoramide tri-(p-OMeC6H4)oxopyrlium (8e). 

 

To a clean dry 20 mL scintillation vial was added N-trifylphosphoramide 7 (1.0 equiv) and ene dione C. 

Dissolved in a small amount of EtOH and heated with heat gun until all solids were in solution. Allowed 

mixture to cool slowly and precipitates formed. Filtered and washed with hexanes then recrystallized 

from DCM/Hexanes to give the desired product. 
1
H NMR (400MHz , CDCl3) δ = 8.14 - 8.05 (m, 6 H), 

7.57 - 7.45 (m, 10 H), 7.20 - 6.99 (m, 12 H), 6.98 - 6.93 (m, 2 H), 6.80 (d, J = 8.8 Hz, 2 H), 3.81 (s, 6 H), 

3.71 (s, 3 H), 2.78 - 2.51 (m, 6 H), 2.41 - 2.19 (m,23 H), 1.83 - 1.54 (m, 8 H); 
13

C NMR (101MHz , 

CDCl3) δ = 167.5, 166.2, 165.0, 162.0, 136.7, 133.1, 130.5, 127.7, 123.9, 121.2, 115.7, 110.6, 55.8, 29.2, 

27.7, 22.8 
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Compound C 
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Compound E 
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Compound 8e 
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Racemic GC Trace of Compound D: 

         

Chiral GC Trace for Figure 2.4 (Entry 4): 

        

 

Chiral GC Trace for Figure 2.4 (Entry 5): 
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Chiral GC Trace for Table 3 (Entry 1): 

        

Chiral GC Trace for Table 3 (Entry 2): 

        

Chiral GC Trace for Table 3 (Entry 4): 
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Chiral GC Trace for Figure 2.5 (Entry 3): 

        

Chiral GC Trace for Figure 2.6 (Entry 1): 

        

Chiral GC Trace for Figure 2.6 (Entry 2): 
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Chiral GC Trace for Figure 2.6 Entry 3): 

        

Chiral GC Trace for Figure 2.6 (Entry 4): 

        

Chiral GC Trace for Figure 2.9 (Entry 1): 
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Racemic GC Trace for Compound A: 

        

Chiral GC Trace for Figure 2.10 (Entry 3): 

        

Chiral GC Trace for Figure 2.10 (Entry 4): 
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Racemic GC Trace for Compound E: 

        

Chiral GC Trace for Figure 2.11: 
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Racemic GC Trace for Compound A: 

        

Chiral GC Trace for Figure 2.12 (Catalyst 12): 
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Racemic GC Trace for Compound E: 

        

Chiral GC Trace for Figure 2.13 (Entry 1): 

        

Chiral GC Trace for Figure 2.13 (Entry 2): 
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Chiral GC Trace for Figure 2.13 (Entry 3): 

        

Chiral GC Trace for Figure 2.13 (Entry 4): 

        

Chiral GC Trace for Figure 2.13 (Entry 5): 
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Chiral GC Trace for Figure 2.13 (Entry 6): 

        

Racemic GC Trace for Compound A: 

        

Chiral GC Trace for Figure 2.17 (Entry 1): 
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Chiral GC Trace for Figure 2.17 (Entry 2): 

        

Chiral GC Trace for Figure 2.17 (Entry 3): 
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APPENDIX 2: SUPPORTING INFO FOR ANTI-MARKOVNIKOV HYDROAMINATION 

REACTIONS 

 

General Methods: 

 

Infrared (IR) spectra were obtained using a Jasco 260 Plus Fourier transform infrared spectrometer. 

Proton and carbon magnetic resonance spectra (
1
H NMR and 

13
C NMR) were recorded on a Bruker model 

DRX 400 (
1
H NMR at 400 MHz and 600 MHz and 

13
C NMR at 100 MHz) spectrometer with solvent 

resonance as the internal standard (
1
H NMR: CDCl3 at 7.24 ppm; 

13
C NMR: CDCl3 at 77.0 ppm). 

1
H 

NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = 

doublet of doublets, ddt = doublet of doublet of triplets, ddd = doublet of doublet of doublets, dddd = 

doublet of doublet of doublet of doublets m = multiplet, brs = broad singlet), coupling constants (Hz), and 

integration. Mass spectra were obtained using a Micromass (now Waters Corporation, 34 Maple Street, 

Milford, MA 01757) Quattro-II, Triple Quadrupole Mass Spectrometer, with a Z-spray nano-Electrospray 

source design, in combination with a NanoMate (Advion 19 Brown Road, Ithaca, NY 14850) chip based 

electrospray sample introduction system and nozzle. Thin layer chromatography (TLC) was performed on 

SiliaPlate 250 μm thick silica gel plates provided by Silicycle. Visualization was accomplished with short 

wave UV light (254 nm) or cerium ammonium molybdate solution followed by heating. Flash 

chromatography was performed using SiliaFlash P60 silica gel (40-63 μm) purchased from Silicycle. 

Tetrahydrofuran, diethyl ether, dichloromethane, and toluene were dried by passage through a column of 

neutral alumina under nitrogen prior to use. Irradiation of photochemical reactions was carried out using a 

15W PAR38 blue LED floodlamp purchased from EagleLight (Carlsbad, CA). All other reagents were 

obtained from commercial sources and used without further purification unless otherwise noted. Cyclic 

voltammograms were obtained with a glassy carbon working electrode, Ag/AgNO3 reference electrode, a 

platinum wire auxiliary and a BAS CV-27 potentiostat using 1 mM solutions of analyte in acetonitrile 

with 0.1 M tetrabutylammonium hexafluorophosphate as supporting electrolyte at a scan rate of 0.1V/s. 
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Oxidation potential is reported as the half-wave oxidation potential, taken as the midpoint between the 

onset of the sloping curve and the minima of the curve. 

 

Preparation of Acridinium Photocatalyst (Catalyst A): 

The photocatalyst used in this study, N-Me-9-mesityl acridinium tetrafluoroborate, was synthesized by 

the method of Fukuzumi et al.
1
 Tetrafluoroboric acid (diethyl ether complex) was substituted for 

perchloric acid during the hydrolysis. The spectral data matched the values reported in the literature for 

the perchlorate and hexafluorophosphate salts. 
1
H NMR (600 MHz, CDCl3)  8.60 (d, J = 9.0 Hz, 2H), 

8.37 (t, J = 9.0 Hz, 2H), 7.84 (s, 4H), 7.23 (s, 2H), 4.81 (s, 3H), 2.46 (s, 3H), 1.68 (s, 6H). 

Oxidation Potentials of Substrates vs. Ag/AgNO3: 
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Optimization Studies (equivalents of thiophenol): 

 

 

 

5-methyl-2,2-diphenylhex-4-en-1-amine (1a). Prepared according to a published procedure; spectral 

data were in agreement with literature values.
2
 

 

N-Benzyl-5-methyl-2,2-diphenylhex-4-en-1-amine (2a). 

 

To a clean dry RBF was added a magnetic stir bar, 5-methyl-2,2-diphenylhex-4-en-1-amine
2 
(1.0 equiv, 

prepared from literature procedure) and benzaldehyde
 
(1.0 equiv), dissolved in TFE [0.5 M] under 

nitrogen.  Reaction mixture was heated to 40 °C for ~1 h then sodium borohydride was added. Allowed to 

stir at 40 °C for ~3 h then heating was discontinued, reaction mixture was filtered through cotton then 

concentrated in vacuo.  Title compound was purified by silica gel chromatography using 10% 
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EtOAc/Hexanes to give a colorless oil in 56% yield. 
1
H NMR (400 MHz, CDCl3)  = 7.33 - 7.18 (m, 5 

H), 7.18 - 7.12 (m, 5 H), 4.76 - 4.69 (m, 1 H), 3.69 (s, 2 H), 3.15 (s, 2 H), 2.92 (d, J = 7.3 Hz, 2 H), 1.53 

(s, 3 H), 1.46 (s, 3 H); 
13

C NMR (100 MHz, CDCl3)  = 147.3, 140.8, 134.0, 128.3, 127.9, 126.7, 125.9, 

120.4, 55.7, 54.3, 50.9, 35.8, 26.0, 17.9; IR (thin film): 3065, 3058, 3025, 2966, 2912, 2852, 2359, 1943, 

1868, 1800, 1749, 1716, 1698, 1683, 1670, 1540, 1495, 1444, 1375, 1361 cm
-1

;
 
LRMS (ESI): Calculated 

for [M+H
+
] = 356.52; found 356.19  

tert-Butyl (5-methyl-2,2-diphenylhex-4-en-1-yl)carbamate (3a). 

 

To a clean dry RBF was added a magnetic stir bar and 5-methyl-2,2-diphenylhex-4-en-1-amine
2 
(1.0 

equiv, prepared from literature procedure) and dissolved in DCM [0.2 M] under nitrogen. Reaction 

mixture was cooled to -78 °C and freshly distilled triethylamine added then boc anhydride added quickly.  

Allowed to stir at -78 °C for ~30 min then warmed to 0 °C. After 1 h, saturated ammonium chloride 

solution was added, the aqueous layer was extracted 3x with DCM, organic layers were combined and 

washed with brine solution, dried over Na2SO4 and concentrated in vacuo. Purified via silica gel 

chromatography with 10% EtOAc/Hexanes to give the desired product as a white solid in 68% yield. 
1
H 

NMR (400 MHz, CDCl3)  = 7.30 - 7.24 (m, 4 H), 7.22 - 7.11 (m, 6 H), 4.82 (t, J = 6.8 Hz, 1 H), 4.12 

(br. s., 1 H), 3.80 (d, J = 5.9 Hz, 2 H), 2.77 (d, J = 7.1 Hz, 2 H), 1.56 (s, 3 H), 1.39 (s, 3 H), 1.35 (s, 9 H); 

13
C NMR (100 MHz, CDCl3)  = 155.8, 145.7, 134.8, 128.2, 126.3, 119.3, 50.8, 47.4, 35.9, 28.4, 27.4, 

26.0, 17.7; IR (thin film): 3442, 2925, 1718, 1498, 1445, 1390, 1365, 1233 cm
-1

; LRMS (ESI): 

Calculated for [M+H
+
] = 366.51; found 366.24 

General Procedure A: Protection of primary amines with tosylchloride 
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To a clean dry RBF was added a magnetic stir bar and the primary amine (1 equiv) under nitrogen at RT. 

Dissolved in DCM [0.2 M] and freshly distilled triethylamine (1.5 equiv) then tosylchloride added. 

Allowed to stir at room temperature overnight, then H2O added and aqueous layer was extracted 3x with 

DCM, organic layers washed with brine solution, dried over Na2SO2 and concentrated in vacuo. Final 

substrates were purified by silica gel chromatography using the conditions listed. 

4-Methyl-N-(5-methyl-2,2-diphenylhex-4-en-1-yl)benzenesulfonamide (4a). 

 

Prepared via general procedure A from 5-methyl-2,2-diphenylhex-4-en-1-amine
2 
(prepared from reported 

literature procedure).
 
Purified in 10% EtOAc/Hex to give a white solid in 51% yield. 

1
H NMR (400 MHz, 

CDCl3)  = 7.57 (d, J = 8.0 Hz, 2 H), 7.33 - 7.16 (m, 8H), 7.11 - 7.02 (m, 4 H), 4.77 - 4.69 (m, 1 H), 3.87 

(t, J = 6.1 Hz, 1 H), 3.50 (d, J = 6.3 Hz, 2 H), 2.81 (d, J = 7.0 Hz, 2 H), 2.42 (s, 3 H), 1.58 - 1.53 (m, 3 H), 

1.38 (s, 3 H); 
13

C NMR (100 MHz, CDCl3)  = 144.8, 143.4, 136.1, 135.5, 129.7, 128.1, 127.2, 126.6, 

118.5, 50.2, 49.7, 35.6, 26.0, 21.5, 17.9; IR (thin film): 3276, 3058, 2919, 1671, 1598, 1496, 1445, 1406, 

1330, 1266 cm
-1

; LRMS (ESI): Calculated for [M+H
+
] = 420.58; found 420.26 

General Procedure B: Preparation of N-tosylamines via amide coupling/reduction sequence 

 

To a clean dry RBF was added a magnetic stir bar, the starting carboxylic acid (1.0 equiv), 

dimethylaminopyridine (1.5 equiv) and tosylamine (1.0 equiv) under nitrogen at ambient temperature. 

Dissolved in DCM [0.2 M] then EDC (1.5 equiv) was added.  Reaction was stirred at RT overnight. Then 

4N HCl was added, phases were separated then aqueous layer extracted three times with DCM. Organic 

portions were combined and washed with brine solution, dried over Na2SO4 and concentrated in vacuo. 

Reaction mixtures were then taken onto the reduction step as a crude reaction mixture. 
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To a clean dry RBF was added a magnetic stir bar, the starting amide (1.0 equiv) and lithium aluminium 

hydride (2.0 equiv) under nitrogen. Reaction was cooled to 0 °C and slowly dissolved in THF [0.2 M]. 

Reaction was monitored by TLC and upon complete consumption of starting material, mixture was 

cooled to 0 °C and a saturated solution of sodium potassium tartrate was added slowly.  The reaction was 

allowed to warm to RT and stirred for ~20 min.  Then phases were separated and aqueous layer extracted 

three times with diethyl ether, and organic layers combined and washed with brine solution. Dried over 

Na2SO4 and concentrated in vacuo.  Final substrates were purified by silica gel chromatography using the 

conditions listed. 

(E)-N-(2,2-Dimethyl-5-phenylpent-4-en-1-yl)-4-methylbenzenesulfonamide (5a). 

 

Prepared using general procedure B starting from (E)-2,2-dimethyl-5-phenylpent-4-enoic acid
3
 (prepared 

from reported literature procedure). Title compound was purified in 10% EtOAc/Hexanes to give a white 

solid in 33% yield over two steps. The alkenol was found as a major by-product. 
1
H NMR (400 MHz, 

CDCl3)  = 7.75 (d, J = 8.3 Hz, 2 H), 7.30 - 7.16 (m, 7 H), 6.34 (d, J = 15.6 Hz, 1 H), 6.15 - 6.04 (m, 1 

H), 5.02 (t, J = 6.8 Hz, 1 H), 2.70 (d, J = 7.0 Hz, 2 H), 2.37 (s, 3 H), 2.10 (d, J = 7.5 Hz, 2 H), 0.90 (s, 6 

H); 
13

C NMR (100 MHz, CDCl3)  = 143.3, 137.5, 137.0, 133.0, 129.7, 128.5, 127.1, 126.1, 52.8, 42.9, 

34.8, 25.1, 21.5; IR (thin film): 3275, 3025, 2956, 1653, 1597, 1576, 1493, 1457, 1410, 1368, 1321, 1265 

cm
-1

; LRMS (ESI): Calculated for [M+H
+
] =344.48; found 344.24 

(E)-N-(5-(4-Fluorophenyl)-2,2-dimethylpent-4-en-1-yl)-4-methylbenzenesulfonamide(6a). 

 

Prepared using general procedure B starting from (E)-5-(4-fluorophenyl)-2,2-dimethylpent-4-enoic acid
3
 

(prepared from reported literature procedure). Title compound was purified in 10% EtOAc/Hexanes to 

give a white solid in 33% yield over two steps. The alkenol was found as a major by-product. 
1
H NMR 
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(400 MHz, CDCl3)  = 7.72 - 7.68 (dd, 2 H), 7.28 - 7.22 (m, 4 H), 6.96 (dd, J = 8.7 Hz, 2 H), 6.30 (d, J = 

16.1 Hz, 1 H), 6.06 - 5.96 (m, 1 H), 4.34 - 4.27 (m, 1 H), 2.71 (d, J = 7.0 Hz, 2 H), 2.39 (s, 3 H), 2.11 - 

2.07 (m, 2 H), 0.89 (s, 6 H); 
13

C NMR (100 MHz, CDCl3)  = 163.2, 160.8, 143.3, 137.0, 133.7, 131.8, 

129.7, 127.4, 125.8, 115.4, 115.2, 52.7, 42.8, 34.8, 25.1, 21.5; IR (thin film): 3284, 3031, 2961, 1652, 

1600, 1508, 1471, 1417, 1325, 1266, 1227 cm
-1

;
 
LRMS (ESI): Calculated for [M+H

+
] = 362.47; found 

362.04 

(E)-N-(5-(4-Methoxyphenyl)-2,2-dimethylpent-4-en-1-yl)-4-methylbenzenesulfonamide (7a). 

 

Prepared using general procedure B starting from (E)-5-(4-methoxyphenyl)-2,2-dimethylpent-4-enoic 

acid
3
 (prepared from reported literature procedure). Title compound was purified in 10% EtOAc/Hexanes 

to give a white solid in 25% yield over two steps. The alkenol was found as a major by-product.  
1
H 

NMR (400 MHz, CDCl3)  = 7.77 (d, J = 8.3 Hz, 2 H), 7.32 - 7.27 (m, 2 H), 7.25 (d, J = 8.5 Hz, 2 H), 

6.85 (d, J = 8.5 Hz, 2 H), 6.31 (d, J = 15.6 Hz, 1 H), 6.04 - 5.92 (m, 1 H), 4.91 (t, J = 6.8 Hz, 1 H), 3.82 

(s, 3 H), 2.73 (d, J = 7.0 Hz, 2 H), 2.42 (s, 3 H), 2.11 (d, J = 7.5 Hz, 2 H), 0.92 (s, 6 H); 
13

C NMR (100 

MHz, CDCl3)  = 158.9, 143.3, 136.9, 132.3, 130.3, 129.7, 127.2, 123.7, 113.9, 55.6, 52.8, 42.9, 34.8, 

25.1, 21.5, 19.9; IR (thin film): 3283, 3030, 2960, 2836, 1770, 1651, 1607, 1576, 1509, 1465, 1419, 

1368, 1325, 1247 cm
-1

;
 
LRMS (ESI): Calculated for [M+H

+
] = 374.51; found 374.22 

(E)-N-(5-(2-Methoxyphenyl)-2,2-dimethylpent-4-en-1-yl)-4-methylbenzenesulfonamide (8a). 
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Prepared using general procedure B starting from (E)-5-(2-methoxyphenyl)-2,2-dimethylpent-4-enoic 

acid
3
 (prepared from reported literature procedure). Desired product was obtained as an inseparable 

mixture with the alkenol by-product.  To a clean dry RBF was added a magnetic star bar and the 

amine/alcohol mixture and dissolved in THF [0.2 M] under nitrogen. Then freshly distilled triethylamine 

(1.2 equiv) and TMSCl (1.1 equiv) added and allowed to stir overnight at room temperature. Then H2O 

was added and layers separated. The aqueous layer was extracted 3x with Et2O, organic layers combined 

and washed with brine solution, dried over Na2SO4 and concentrated in vacuo. Purified by silica gel 

chromatography with 25% EtOAc/Hexanes to give the title compound in 19% yield over three steps. 
1
H 

NMR (400 MHz, CDCl3)  = 7.72 (d, J = 8.1 Hz, 2 H), 7.30 (dd, J = 1.5, 7.6 Hz, 1 H), 7.23 - 7.14 (m, 3 

H), 6.91 - 6.81 (m, 2 H), 6.65 (d, J = 15.9 Hz, 1 H), 6.13 - 6.03 (m, 1 H), 4.79 (t, J = 6.8 Hz, 1 H), 3.81 (s, 

3 H), 2.70 (d, J = 6.8 Hz, 2 H), 2.38 - 2.35 (m, 3 H), 2.11 (d, J = 7.6 Hz, 2 H), 0.90 (s, 6 H);
 13

C NMR 

(100 MHz, CDCl3)  = 156.4, 143.3, 137.0, 129.7, 128.2, 127.7, 127.1, 126.8, 126.6, 126.5, 120.6, 110.9, 

55.5, 52.9, 43.6, 34.8, 25.2, 21.5; IR (thin film): 3283, 2960, 1715, 1488, 1463, 1436, 1327, 1242 cm
-1

; 

LRMS (ESI): Calculated for [M+H
+
] = 374.51; found 374.16 

(E)-N-(5-(4-Methoxyphenyl)pent-4-en-1-yl)-4-methylbenzenesulfonamide (9a). 

 

Prepared via general procedure A from (E)-5-(4-methoxyphenyl)pent-4-en-1-amine
4 
(prepared from 

reported literature procedure).
 
Purified by silica gel chromatography in 15% EtOAc/Hex to give a 

colorless oil in 25% yield. 
1
H NMR (cis) (400 MHz, CDCl3)  = 7.69 (d, J = 8.3 Hz, 2 H), 7.28 - 7.22 (m, 

2 H), 7.12 (d, J = 8.5 Hz, 2 H), 6.87 - 6.81 (m, 2 H), 6.32 (d, J = 11.5 Hz, 1 H), 5.41 (td, J = 7.2, 11.6 Hz, 

1 H), 4.66 (t, J = 6.1 Hz, 1 H), 3.78 (s, 3 H), 2.93 (qd, J = 6.7, 13.0 Hz, 2 H), 2.38 (s, J = 2.3 Hz, 3 H), 

2.27 (dq, J = 1.5, 7.4 Hz, 2 H), 1.63 - 1.54 (m, 2 H) 
1
H NMR (trans) (400 MHz, CDCl3)  = 7.73 (d, J = 

8.3 Hz, 2 H), 7.28 - 7.23 (m, 2 H), 7.19 (d, J = 8.8 Hz, 2 H), 6.81 - 6.76 (m, 2 H), 6.23 (d, J = 15.8 Hz, 1 

H), 5.95 - 5.84 (m, 1 H), 4.77 (t, J = 6.1 Hz, 1 H), 3.77 (s, 3 H), 2.98 - 2.92 (m, 2 H), 2.38 (s, 3 H), 2.19 - 
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2.11 (m, 2 H), 1.67 - 1.57 (m, 2 H); 
13

C NMR (mix of isomers) (100 MHz, CDCl3)  = 143.4, 137.0, 

130.3, 130.0, 129.7, 129.4, 127.9, 127.0, 113.9, 113.7, 55.3, 42.9, 42.6, 29.8, 29.3, 25.6, 21.5; IR (thin 

film): 3280, 3005, 2933, 1607, 1575, 1509, 1456, 1323 cm
-1

;
 
LRMS (ESI): Calculated for [M+H

+
] = 

346.46; found 346.11 

(E)-N-(2-Isopropyl-5-(4-methoxyphenyl)pent-4-en-1-yl)-4-methylbenzenesulfonamide (10a). 

 

Prepared using general procedure B starting from (E)-2-isopropyl-5-(4-methoxyphenyl)pent-4-enoic acid
3
 

(prepared from reported literature procedure). Desired product was obtained as an inseparable mixture 

with the alkenol.  To a clean dry RBF was added a magnetic star bar and the amine/alcohol mixture and 

dissolved in THF [0.2 M] under nitrogen. Then freshly distilled triethylamine (1.2 equiv) and TMSCl (1.1 

equiv) added and allowed to stir overnight at room temperature. Then H2O was added and layers 

separated. The aqueous layer was extracted 3x with Et2O, organic layers combined and washed with brine 

solution, dried over Na2SO4 and concentrated in vacuo. Purified by silica gel chromatography with 20% 

EtOAc/Hexanes to give the title compound in 18% yield over three steps. 
1
H NMR (400 MHz, CDCl3)  

= 7.67 (d, J = 8.3 Hz, 2 H), 7.20 (t, J = 8.6 Hz, 4 H), 6.82 (d, J = 8.6 Hz, 2 H), 6.24 (d, J = 16.4 Hz, 1 H), 

5.87 (td, J = 7.6, 15.5 Hz, 1 H), 4.27 (br. s., 1 H), 3.79 (s, 3 H), 2.98 - 2.81 (m, 2 H), 2.37 (s, 3 H), 2.28 - 

2.19 (m, 1 H), 2.07 - 1.98 (m, 1 H), 1.73 (dd, J = 6.5, 12.1 Hz, 1 H), 1.48 - 1.37 (m, 1 H), 0.86 (d, J = 3.7 

Hz, 3 H), 0.84 (d, J = 3.7 Hz, 3 H); 13
C NMR (100 MHz, CDCl3)  = 158.8, 143.2, 136.9, 131.1, 130.3, 

129.7, 127.1, 126.4, 113.9, 55.3, 44.4, 44.0, 32.3, 28.2, 21.5, 19.6, 19.2; IR (thin film): 3648, 3566, 3283, 

3030, 2958, 2933, 2873, 2737, 1918, 1770, 1716, 1652, 1607, 1576, 1510, 1464, 1325, 1440, 1419, 1388, 

1368, 1325, 1304, 1289 cm
-1

;
 
LRMS (ESI): Calculated for [M+H

+
] = 387.54; found 388.13 
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N-(3,3-Dimethyl-4-phenylpent-4-en-1-yl)-4-methylbenzenesulfonamide (11a). 

 

Prepared using general procedure B starting from 3,3-dimethyl-4-phenylpent-4-enoic acid
3
 (prepared 

from reported literature procedure). Title compound was purified by silica gel chromatography in 25% 

EtOAc/Hexanes to give a white solid in 45% yield over two steps. 
1
H NMR (400 MHz, CDCl3)  = 7.73 

(d, J = 8.3 Hz, 2 H), 7.31 - 7.26 (m, 2 H), 7.22 - 7.17 (m, 3 H), 6.96 (dd, J = 3.0, 6.5 Hz, 2 H), 5.06 (d, J = 

1.5 Hz, 1 H), 4.82 (d, J = 1.3 Hz, 1 H), 4.67 (t, J = 6.0 Hz, 1 H), 3.01 - 2.93 (m, 2 H), 2.41 (s, 3 H), 1.53 - 

1.47 (m, 2 H), 1.02 (s, 6 H);
 13

C NMR (100 MHz, CDCl3)  = 156.7, 143.4, 142.6, 137.0, 129.7, 128.7, 

127.6, 126.9, 114.2, 40.2, 40.0, 38.4, 27.8, 21.6; IR (thin film): 3279, 3080 3053, 2967, 2871, 1810, 

1717, 1625, 1598, 1573, 1493, 1439, 1362, 1325, 1267, 1230 cm
-1

;
 
LRMS (ESI): Calculated for [M+H

+
] 

= 344.48; found 344.18 

4-Methyl-N-(4-phenylpent-4-en-1-yl)benzenesulfonamide (12a). 

 

Prepared using general procedure B starting from 4-phenylpent-4-enoic acid
3
 (prepared from reported 

literature procedure). Title compound was purified by silica gel chromatography in 20% EtOAc/Hexanes 

to give a white solid in 56% yield over two steps. Spectral data were in agreement with literature values.
5 

1
H NMR (400 MHz, CDCl3)  = 7.73 - 7.64 (m, 2 H), 7.31 - 7.15 (m, 5 H), 5.22 - 5.15 (m, 1 H), 4.95 (t, J 

= 6.0 Hz, 1 H), 4.93 (s, 1 H), 2.87 (q, J = 6.8 Hz, 2 H), 2.50 - 2.39 (m, 2 H), 2.34 (s, 3 H), 1.59 - 1.47 (m, 

2 H)  
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4-Methyl-N-(6-methylhept-5-en-2-yl)benzenesulfonamide (13a). 

 

To a clean dry RBF was added a magnetic stir bar, tosylboc amine and triphenylphosphine and solids 

were dissolved in THF [0.2 M] under nitrogen. Then 6-methylhept-5-en-2-ol (commercially available) 

was added and reaction was cooled to 0 °C and then DIAD was added and allowed to warm to RT 

overnight. Then Et2O was added and aqueous layer was extracted 3x with Et2O, organic layers were 

combined and washed with brine solution, dried over Na2SO4 and concentrated in vacuo. Purified by 

silica gel chromatography in 10% EtOAc/Hexanes.  

To a clean dry vial was added a magnetic stir bar, tosylboc amine and dissolved in DMF [0.2 M] under 

nitrogen. The vial was sealed and heated to 120 °C for 48 hours. Heating was discontinued and H2O was 

added and then the aqueous layer was extracted 3x with Et2O, organic layers were combined and washed 

with brine solution, dried over Na2SO4 and concentrated in vacuo. Purified by silica gel chromatography 

in 10% EtOAc/Hexanes to give the title compound as a colorless oil in 27% yield over 2 steps. Spectral 

data were in agreement with literature values.
6 1

H NMR (400 MHz, CDCl3)  = 7.77 - 7.72 (m, 2 H), 7.25 

(d, J = 8.3 Hz, 2 H), 4.91 - 4.85 (m, 2 H), 3.31 - 3.19 (m, 1 H), 2.38 (s, 3 H), 1.96 - 1.74 (m, 2 H), 1.59 (s, 

3 H), 1.47 (s, 3 H), 1.38 - 1.30 (m, 2 H), 1.00 (d, J = 6.5 Hz, 3 H)  

N-(2-(Cyclohex-1-en-1-yl)ethyl)-4-methylbenzenesulfonamide (14a). 

 

Prepared via general procedure A from commercially available 2-(cyclohex-1-en-1-yl)ethanamine.
 

Purified in 10% EtOAc/Hex to give a white solid in 27% yield. Spectral data were in agreement with 

literature values.
6 1

H NMR (400 MHz, CDCl3)  = 7.71 (d, J = 8.3 Hz, 2 H), 7.30 - 7.24 (m, 2 H), 5.33 
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(br. s., 1 H), 4.58 (t, J = 5.6 Hz, 1 H), 2.95 (q, J = 6.5 Hz, 2 H), 2.39 (s, 3 H), 2.01 (t, J = 6.7 Hz, 2 H), 

1.94 - 1.86 (m, 2 H), 1.68 (br. s., 2 H), 1.54 - 1.41 (m, 4 H)  

(E)-4-Phenylbut-3-en-1-yl sulfamate (15a). 

 

Prepared according to a published procedure;
7
 spectral data were in agreement with literature values.

8
 
1
H 

NMR (400 MHz, CDCl3)  = 7.42 - 7.28 (m, 4 H), 7.27 - 7.20 (m, 1 H), 6.50 (d, J = 15.9 Hz, 1 H), 6.16 

(td, J = 7.0, 15.8 Hz, 1 H), 5.15 (s, 2 H), 4.28 (t, J = 6.6 Hz, 2 H), 2.63 (q, J = 6.6 Hz, 2 H) 

 (E)-tert-Butyl (5-(4-fluorophenyl)-2,2-dimethylpent-4-en-1-yl)(tosyl)carbamate (16). 

 

To a clean dry RBF was added a magnetic stir bar and (E)-N-(5-(4-fluorophenyl)-2,2-dimethylpent-4-en-

1-yl)-4-methylbenzenesulfonamide (1.0 equiv) and DMAP (1.0 equiv) and dissolved in MeCN [1.0 M] 

under nitrogen. Then boc anhydride was added quickly.  Allowed to stir at RT overnight. Water was 

added, and the aqueous layer extracted 3x with EtOAc, organic layers combined and washed with 1M 

HCl solution then brine solution, dried over Na2SO4 and concentrated in vacuo. Purified via silica gel 

chromatography with 10% EtOAc/Hexanes to give the desired product as a colorless oil in 64% yield. 
1
H 

NMR (400 MHz, CDCl3)  = 7.73 - 7.68 (m, 2 H), 7.34 - 7.25 (m, 4 H), 6.99 - 6.93 (m, 2 H), 6.40 - 6.32 

(m, 1 H), 6.25 - 6.15 (m, 1 H), 3.87 (s, 2 H), 2.41 (s, 3 H), 2.22 (d, J = 7.3 Hz, 2 H), 1.22 (s, 9 H), 1.02 (s, 

6 H); 
13

C NMR (100 MHz, CDCl3)  = 151.6, 144.0, 137.9, 133.9, 131.5, 129.3, 127.6, 126.6, 115.4, 

115.2, 84.1, 56.2, 44.2, 36.7, 27.6, 25.3, 21.6; IR (thin film): 3674, 3648, 3028, 3617, 3566, 3437, 3039, 

2979, 2932, 2825, 2392, 1808, 1730, 1652, 1636, 1599, 1588, 1508, 1472, 1434, 1395, 1354, 1276, 1225 

cm
-1

;
 
 LRMS (ESI): Calculated for [M+Na] = 484.59; found 484.15 
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General Procedure C: Anti-Markovnikov hydroamination reactions 

 

To a clean flame-dried 1 dram vial was added a magnetic stir bar, N-Me-mesityl acridinium catalyst (5.0 

mol %) and protected amine substrate (100 mg). Reaction vessel was purged with nitrogen then 

dichloroethane (sparged for 15 min, [0.5M]) was added, then thiophenol (0.2 equiv). Reaction was sealed 

with Teflon tape then irradiated with blue LED lamp at room temperature until reaction was complete 

monitoring by TLC. Reactions were quenched with a solution of TEMPO (~5 mg) in dichloromethane 

(0.2 mL) and concentrated in vacuo.  The final products were purified by silica gel chromatography using 

the conditions listed. 

2-Isopropyl-4,4-diphenylpyrrolidine (1b). 

 

Prepared using general procedure C on a 100 mg scale with 0.2 equiv thiophenol, and dichloroethane [0.5 

M]. Irradiated for 96h then purified in 3% EtOAc/Hexanes to give a white solid in 65% isolated yield. 
1
H 

NMR was very complex, to confirm identity isolated material was submitted to deprotection with TFA. 

To a clean dry RBF was added a magnetic stir bar and tert-butyl 2-isopropyl-4,4-diphenylpyrrolidine-1-

carboxylate and dissolved in DCM:TFA (1:1) under nitrogen at room temperature. After 3 h, saturated 

sodium bicarbonate added, aqueous layer extracted 3x with DCM, organic layers combined and washed 

with brine solution, dried over na2SO4 and concentrated in vacuo. Purified by silica gel chromatography 

in 50% EtOAc/Hexanes to give the desired 2-isopropyl-4,4-diphenylpyrrolidine. Spectral data were in 

agreement with literature values.
9
  

1
H NMR (400 MHz, CDCl3)  = 7.33 - 7.24 (m, 4 H), 7.23 - 7.11 (m, 6 

H), 3.73 (dd, J = 1.7, 11.2 Hz, 1 H), 3.33 (d, J = 11.2 Hz, 1 H), 2.90 - 2.82 (m, 1 H), 2.70 (ddd, J = 1.7, 
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6.5, 12.6 Hz, 1 H), 2.06 (dd, J = 9.8, 12.7 Hz, 1 H), 1.71 - 1.60 (m, 1 H), 1.28 (d, J = 16.1 Hz, 1 H), 0.94 

(d, J = 6.6 Hz, 3 H), 0.88 (d, J = 6.6 Hz, 3 H) 

2-Benzyl-4,4-dimethyl-1-tosylpyrrolidine (5b). 

 

Prepared using general procedure C on a 100 mg scale with 0.2 equiv thiophenol, and dichloroethane [0.5 

M]. Irradiated for 24h then purified in 2% EtOAc/Hexanes to give a white solid in 82% isolated yield 

(average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.79 (d, J = 8.0 Hz, 2 H), 7.33 (d, J = 8.3 Hz, 2 

H), 7.29 (d, J = 7.3 Hz, 2 H), 7.25 - 7.19 (m, 3 H), 3.84 - 3.75 (m, 1 H), 3.58 (dd, J = 3.5, 13.1 Hz, 1 H), 

3.13 (s, 2 H), 2.78 (dd, J = 9.8, 13.1 Hz, 1 H), 2.43 (s, 3 H), 1.54 - 1.42 (m, 2 H), 0.99 (s, 3 H), 0.46 (s, 3 

H); 
13

C NMR (100 MHz, CDCl3)  = 143.3, 138.5, 135.3, 129.6, 129.5, 128.4, 127.6, 126.4, 61.7, 61.6, 

45.7, 42.9, 37.2, 26.5, 25.8, 21.6; IR (thin film): 3061, 3027, 2960, 1288, 2873, 1599, 1540, 1494, 1245, 

1454, 1390, 1347, 1303, 1224 cm
-1

; LRMS (ESI): Calculated for [M+H
+
] = 344.48; found 344.12 

2-(4-Fluorobenzyl)-4,4-dimethyl-1-tosylpyrrolidine (6b). 

 

Prepared using general procedure C on a 100 mg scale with 0.2 equiv thiophenol, and dichloroethane [0.5 

M]. Irradiated for 24h then purified in 2% EtOAc/Hexanes to give a white solid in 89% isolated yield 

(average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.75 (d, J = 8.3 Hz, 2 H), 7.30 (d, J = 8.5 Hz, 2 

H), 7.20 - 7.13 (m, 2 H), 7.00 - 6.92 (m, 2 H), 3.78 - 3.69 (m, 1 H), 3.43 (dd, J = 3.4, 13.4 Hz, 1 H), 3.07 

(q, J = 10.5 Hz, 2 H), 2.80 (dd, J = 9.5, 13.3 Hz, 1 H), 2.40 (s, 3 H), 1.43 (d, J = 8.0 Hz, 2 H), 0.94 (s, 3 

H), 0.41 (s, 3 H); 
13

C NMR (100 MHz, CDCl3)  = 143.4, 135.2, 134.0, 131.1, 131.0, 129.6, 127.5, 115.3, 
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115.1, 61.6, 61.4, 45.5, 41.7, 37.2, 26.4, 25.8, 21.6; IR (thin film): 2962, 1597, 1508, 1465, 1330, 1302, 

1218 cm
-1

; LRMS (ESI): Calculated for [M+H
+
] = 362.47; found 362.10 

2-(4-Methoxybenzyl)-4,4-dimethyl-1-tosylpyrrolidine (7b). 

 

Prepared using general procedure C on a 100 mg scale with 0.2 equiv thiophenol, and dichloroethane [0.5 

M]. Irradiated for 30h then purified in 5% EtOAc/Hexanes to give a colorless oil in 88% isolated yield 

(average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.76 (d, J = 8.0 Hz, 2 H), 7.30 (d, J = 8.3 Hz, 2 

H), 7.12 (d, J = 8.5 Hz, 2 H), 6.81 (d, J = 8.5 Hz, 2 H), 3.87 - 3.76 (m, 3 H), 3.75 - 3.68 (m, 1 H), 3.45 

(dd, J = 3.4, 13.2 Hz, 1 H), 3.13 - 3.04 (m, 2 H), 2.72 (dd, J = 9.7, 13.2 Hz, 1 H), 2.40 (s, 3 H), 1.52 - 1.42 

(m, 2 H), 1.02 - 0.92 (m, 3 H), 0.42 (s, 3 H);
 13

C NMR (100 MHz, CDCl3)  = 158.2, 143.3, 135.3, 130.5, 

129.6, 127.5, 113.8, 61.7, 55.2, 45.7, 41.8, 37.2, 26.5, 25.8, 21.4; IR (thin film): 2958, 2872, 1683, 1612, 

1582, 1511, 1464, 1390, 1346, 1302, 1247 cm
-1

; LRMS (ESI): Calculated for [M+H
+
] = 374.51; found 

374.15 

2-(2-Methoxybenzyl)-4,4-dimethyl-1-tosylpyrrolidine (8b). 

 

Prepared using general procedure C on a 100 mg scale with 0.2 equiv thiophenol, and dichloroethane [0.5 

M]. Irradiated for 40h then purified in 5% EtOAc/Hexanes to give a white solid in 69% isolated yield 

(average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.80 (d, J = 8.3 Hz, 2 H), 7.30 (d, J = 8.1 Hz, 2 

H), 7.20 - 7.12 (m, 2 H), 6.89 - 6.80 (m, 2 H), 3.85 (s, 3 H), 3.83 - 3.76 (m, 1 H), 3.72 (dd, J = 3.9, 12.7 

Hz, 1 H), 3.22 - 3.16 (m, 1 H), 3.11 - 3.06 (m, 1 H), 2.68 (dd, J = 10.3, 12.7 Hz, 1 H), 2.40 (s, 3 H), 1.48 

(dd, J = 8.2, 12.8 Hz, 1 H), 1.34 (dd, J = 7.1, 12.7 Hz, 1 H), 0.99 (s, 3 H), 0.42 (s, 3 H); 
13

C NMR (100 



109 

 

MHz, CDCl3)  = 157.7, 143.1, 135.0, 131.2, 129.4, 127.7, 127.7, 127.2, 120.5, 110.4, 62.1, 60.0, 55.3, 

45.8, 37.5, 37.0, 26.7, 26.1, 21.6; IR (thin film) 2958, 2872, 1732, 1716, 1698, 1683, 1670, 1652, 1599, 

1540, 1507, 1493, 1438, 1396, 1304, 1244 cm
-1

; LRMS (ESI): Calculated for [M+H
+
] = 374.51; found 

374.16 

2-(4-Methoxybenzyl)-1-tosylpyrrolidine (9b). 

 

Prepared using general procedure C on a 100 mg scale with 0.2 equiv thiophenol, and dichloroethane [0.5 

M]. Irradiated for 48h then purified in 5% EtOAc/Hexanes to give a colorless oil in 79% isolated yield 

(average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.73 (d, J = 8.3 Hz, 2 H), 7.28 (d, J = 8.0 Hz, 2 

H), 7.16 - 7.10 (m, 2 H), 6.81 (d, J = 8.5 Hz, 2 H), 3.77 (s, 3 H), 3.74 (d, J = 3.8 Hz, 1 H), 3.39 - 3.31 (m, 

1 H), 3.16 - 3.05 (m, 2 H), 2.69 (dd, J = 9.4, 13.4 Hz, 1 H), 2.40 (s, 3 H), 1.65 - 1.54 (m, 2 H), 1.47 - 1.34 

(m, 2 H); 
13

C NMR (100 MHz, CDCl3)  = 158.3, 143.3, 134.8, 130.6, 130.5, 129.7, 127.5, 113.8, 61.7, 

55.3, 49.3, 41.7, 29.8, 23.8, 21.5; IR (thin film): 2953, 2835, 1612, 1597, 1583, 1511, 1399, 1339, 1247 

cm
-1

; LRMS (ESI): Calculated for [M+H
+
] = 346.46; found 346.12 

4-Isopropyl-2-(4-methoxybenzyl)-1-tosylpyrrolidine (10b). 

 

Prepared using general procedure C on a 100 mg scale with 0.2 equiv thiophenol, and dichloroethane [0.5 

M]. Irradiated for 39h then purified in 8% EtOAc/Hexanes to give a white solid in 88% isolated yield 

(average of two trials) in a 1.6:1 dr. 
1
H NMR (major) (400 MHz, CDCl3)  = 7.73 (d, J = 3.2, 8.1 Hz, 2 

H), 7.33 - 7.27 (m, 2 H), 7.16 - 7.09 (m, 2 H), 6.85 - 6.78 (m, 2 H), 3.80 (d, J = 2.7 Hz, 1 H), 3.76 (s, 3 
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H), 3.71 - 3.63 (m, 1 H), 3.62 - 3.51 (m, 1 H), 3.30 (dd, J = 3.4, 13.4 Hz, 1 H), 2.85 - 2.71 (m, 1 H), 2.41 

(s, 3 H), 1.79 (td, J = 6.4, 12.8 Hz, 1 H), 1.27 - 1.10 (m, 2 H), 0.70 (t, J = 7.3 Hz, 6 H) 
1
H NMR (minor) 

(400 MHz, CDCl3)  = 7.74 - 7.70 (m, 2 H), 7.30 (d, J = 5.1 Hz, 2 H), 7.14 (d, J = 6.6 Hz, 2 H), 6.84 - 

6.81 (m, 2 H), 3.76 (s, 3 H), 3.72 - 3.63 (m, 1 H), 3.62 - 3.51 (m, 1 H), 3.11 (dd, J = 3.4, 13.4 Hz, 1 H), 

2.69 - 2.54 (m, 1 H), 2.40 (s, 3 H), 1.73 - 1.65 (m, 1 H), 1.21-1.14 (m, 1H), 1.03 - 0.90 (m, 2 H), 0.78 (d, 

J = 6.6 Hz, 3 H), 0.74 (d, J = 6.6 Hz, 3 H) 
13

C NMR (mix of isomers (100 MHz, CDCl3)  = 158.2, 

143.3, 135.3, 134.4, 130.7, 130.6, 130.5, 130.3, 129.7, 129.6, 127.5, 127.4, 113.9, 113.8, 62.5, 62.1, 55.3, 

55.2, 53.4, 45.4, 44.1, 42.1, 41.9, 36.8, 34.0, 31.8, 31.2, 21.6, 21.5, 21.4, 21.3, 21.1, 21.0 IR (thin film): 

3060, 3030, 2959, 2871, 2835, 1749, 1716, 1683, 1652, 1613, 1597, 1558, 1540, 1494, 1456, 1386, 1302, 

1247 cm
-1

; LRMS (ESI): Calculated for [M+H
+
] = 388.54; found 388.13 

4,4-Dimethyl-3-phenyl-1-tosylpiperidine (11b). 

 

Prepared using general procedure C on a 100 mg scale with 0.2 equiv thiophenol, and dichloroethane [0.5 

M]. Irradiated for 48h then purified in 4% EtOAc/Hexanes to give a white solid in 79% isolated yield 

(average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.65 (d, J = 8.3 Hz, 2 H), 7.33 (d, J = 8.0 Hz, 2 

H), 7.27 - 7.19 (m, 3 H), 7.01 (d, J = 7.8 Hz, 2 H), 3.67 (d, J = 12.0 Hz, 1 H), 3.61 (d, J = 10.5 Hz, 1 H), 

2.80 - 2.67 (m, 2 H), 2.58 (dt, J = 2.8, 12.3 Hz, 1 H), 2.44 (s, 3 H), 1.71 (dt, J = 4.5, 13.1 Hz, 1 H), 1.52 - 

1.45 (m, 1 H), 0.79 (s, 3 H), 0.67 (s, 3 H);
 13

C NMR (100 MHz, CDCl3)  = 143.5, 139.5, 133.6, 129.7, 

129.1, 127.9, 126.9, 51.6, 46.4, 42.8, 39.7, 32.5, 29.9, 21.6, 19.3; IR (thin film): 2948, 1597, 1455, 1389, 

1340, 1223 cm
-1

; LRMS (ESI): Calculated for [M+H
+
] = 344.48; found 344.06 
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3-Phenyl-1-tosylpiperidine (12b). 

 

Prepared using general procedure C on a 100 mg scale with 0.2 equiv thiophenol, and dichloroethane [0.5 

M]. Irradiated for 96h then purified in 5% EtOAc/Hexanes to give a colorless oil in 60% isolated yield 

(average of two trials). Spectral data were in agreement with literature values.
10

 
1
H NMR (400 MHz, 

CDCl3)  = 7.62 (d, J = 8.3 Hz, 2 H), 7.33 - 7.26 (m, 4 H), 7.25 - 7.19 (m, 1 H), 7.16 (d, J = 7.0 Hz, 2 H), 

3.91 - 3.81 (m, 2 H), 2.92 - 2.81 (m, 1 H), 2.42 (s, 3 H), 2.32 - 2.17 (m, 2 H), 1.93 (d, J = 13.3 Hz, 1 H), 

1.87 - 1.70 (m, 2 H), 1.48 - 1.35 (m, 1 H)  

2-Isopropyl-4,4-diphenyl-1-tosylpyrrolidine (4b). 

 

Prepared using general procedure C on a 100 mg scale with 0.2 equiv thiophenol, and dichloroethane [0.5 

M]. Irradiated for 96h then purified in 3% EtOAc/Hexanes to give a colorless oil in 70% isolated yield 

(average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.42 (d, J = 8.3 Hz, 2 H), 7.22 (d, J = 7.8 Hz, 2 

H), 7.15 (d, J = 7.3 Hz, 1 H), 7.10 (dd, J = 1.9, 10.2 Hz, 4 H), 7.06 - 7.00 (m, 5 H), 4.47 (dd, J = 1.8, 11.0 

Hz, 1 H), 3.91 (d, J = 11.0 Hz, 1 H), 3.74 (s, 1 H), 2.75 - 2.67 (m, 1 H), 2.57 - 2.47 (m, 1 H), 2.33 (s, 3 

H), 2.23 (dd, J = 10.4, 12.9 Hz, 1 H), 0.88 (d, J = 7.0 Hz, 3 H), 0.74 (d, J = 6.8 Hz, 3 H); 
13

C NMR (100 

MHz, CDCl3)  = 146.3, 144.3, 142.5, 136.7, 129.3, 128.6, 128.5, 126.7, 126.7, 126.5, 126.5, 126.1, 64.5, 

59.9, 52.4, 36.9, 30.0, 21.5, 19.4, 14.7; IR (thin film): 3058, 2962, 1598, 1495, 1447, 1389, 1336, 1304, 

1265, 1235 cm
-1

; LRMS (ESI): Calculated for [M+H
+
] = 420.58; found 420.15 
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(2S, 5S)-2-Isopropyl-5-methyl-1-tosylpyrrolidine (13b). 

 

Prepared using general procedure C on a 100 mg scale with 0.2 equiv thiophenol, and dichloroethane [0.5 

M]. Irradiated for 96h then purified in 3% EtOAc/Hexanes to give a colorless oil in 56% isolated yield 

(average of two trials) in 3:1 dr. Spectral data were in agreement with literature values.
11 1

H NMR 

(major) (400 MHz, CDCl3)  = 7.71 - 7.67 (m, 2 H), 7.27 (d, J = 7.8 Hz, 2 H), 3.71 - 3.63 (m, 1 H), 3.43 

- 3.36 (m, 1 H), 2.40 (s, 3 H), 2.11 - 2.00 (m, 1 H), 1.62 (td, J = 6.1, 12.1 Hz, 1 H), 1.56 - 1.45 (m, 1 H), 

1.44 - 1.34 (m, 1 H), 1.31 - 1.23 (m, 4 H), 0.96 (d, J = 7.0 Hz, 3 H), 0.90 (d, J = 6.8 Hz, 3 H) 

1-Tosyloctahydro-1H-indole (14b). 

 

Prepared using general procedure C on a 100 mg scale with 0.2 equiv thiophenol, and dichloroethane [0.5 

M]. Irradiated for 96h then purified in 5% EtOAc/Hexanes to give a colorless oil in 72% isolated yield 

(average of two trials) in 12:1 dr. Spectral data were in agreement with literature values.
12 1

H NMR 

major (400 MHz, CDCl3)  = 7.72 - 7.65 (m, 2 H), 7.29 - 7.22 (m, 2 H), 3.56 - 3.42 (m, 2 H), 3.19 - 3.09 

(m, 1 H), 2.42 - 2.35 (m, 3 H), 1.91 - 1.69 (m, 3 H), 1.63 - 1.46 (m, 5 H), 1.39 - 1.23 (m, 2 H), 1.23 - 1.11 

(m, 1 H) 

4-Benzyl-1,2,3-oxathiazinane 2,2-dioxide (15b). 

 

Prepared using general procedure C on a 100 mg scale with 0.2 equiv thiophenol, and dichloroethane [0.5 

M]. Irradiated for 96h then purified in 20 % EtOAc/Hexanes to give an off-white solid 54% isolated yield 
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(average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.36 - 7.29 (m, 2 H), 7.28 - 7.24 (m, 1 H), 7.18 - 

7.14 (m, 2 H), 4.66 (dt, J = 2.8, 12.0 Hz, 1 H), 4.48 (ddd, J = 1.8, 4.9, 11.6 Hz, 1 H), 4.10 (d, J = 10.0 Hz, 

1 H), 4.03 - 3.90 (m, 1 H), 2.92 (dd, J = 5.9, 13.7 Hz, 1 H), 2.77 (dd, J = 7.3, 13.7 Hz, 1 H), 1.81 - 1.62 

(m, 2 H) 
13

C NMR (100 MHz, CDCl3)  = 135.4, 129.4, 129.0, 127.4, 72.0, 56.5, 41.1, 29.0 3 IR (thin 

film): 3259, 3086, 3062, 2965, 2925, 2855, 1698, 1683, 1670, 1636, 1602, 1558, 1523, 1497, 1455, 1420, 

1360, 1267, 1239, 1220 cm
-1

;
 
LRMS (ESI): Calculated for [M+H

+
] = 227.28; found 227.99 

Procedure for Control Reactions: 

 

Figure 4.7: To a clean flame-dried 1 dram vial was added a magnetic stir bar, N-Me-mesityl acridinium 

catalyst (5.0 mol %), (E)-tert-butyl (5-(4-fluorophenyl)-2,2-dimethylpent-4-en-1-yl)(tosyl)carbamate (100 

mg). Reaction vessel was purged with nitrogen then dichloroethane (sparged for 15 min, [0.5M]) was 

added then thiophenol was added (1.0 equiv). Reaction was sealed with teflon tape then irradiated with 

blue LED lamp at room temperature for 24 hours. Reaction was quenched with a solution of TEMPO (~5 

mg) in dichloromethane (0.2 mL) and concentrated in vacuo. Only unchanged starting material was 

observed by 
1
H NMR. 
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Figure 4.6, Conditions A: To a clean dry 20 mL scintillation vial was added a magnetic stir bar, 4-

Methyl-N-(5-methyl-2,2-diphenylhex-4-en-1-yl)benzenesulfonamide (1 equiv) , benzene [0.4 M], di-tert-

butyl peroxide (0.5 equiv) and thiophenol (0.15 equiv) under nitrogen.  Reaction vessel was sealed and 

heated to 140 °C for 96 hours, then heating was discontinued and reaction mixture was quenched with 

TEMPO solution, and concentrated in vacuo. Only unchanged starting material was observed by 
1
H 

NMR. 

Figure 4.6, Conditions B: To a clean dry 20 mL scintillation vial was added a magnetic stir bar, 4-

Methyl-N-(5-methyl-2,2-diphenylhex-4-en-1-yl)benzenesulfonamide (1 equiv) , dichloroethane [0.5 M], 

azobisisobutyronitrile (0.2 equiv) and thiophenol (0.2 equiv) under nitrogen.  Reaction vessel was sealed 

and heated to 85°C for 96 hours, then heating was discontinued and reaction mixture was quenched with 

TEMPO solution, and concentrated in vacuo. Only unchanged starting material was observed by 
1
H 

NMR. 

1,1,1-trifluoro-N-(2-phenylcyclohexyl)methanesulfonamide (17b). 

 

To a clean dry 2 dram vial was added a magnetic stirbar, catalyst A (5 mol %), commercially available 1-

phenylcyclohexene 17a (1 equiv) and TfNH2 (3.0 equiv). Vial with solids were then brought into the 

glovebox where 2,6-lutidine (0.25 equiv) and dichloroethane [0.5 M] were added. Reaction vessel was 

sealed and taken out of the glovebox, then thiophenol (0.2 equiv, freshly sparged) was added. Irradiated 

for 96h then purified in 5% EtOAc/Hexanes to give a white solid  in 55% isolated yield (average of two 

trials) in 2.6:1 dr.  
1
H NMR (inseparable mixture of diastereomers) (400 MHz, CDCl3)  = 7.36 - 7.29 

(m, 4 H), 7.26 (s, 2 H), 7.19 - 7.13 (m, 4 H), 4.67 (br s, 1 H), 4.33 (br s, 1H), 3.95-3.89 (m, 1 H), 3.01 - 
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2.93 (m, 1 H), 2.43 - 2.31 (m, 1 H), 2.09-1.38 (m, 17 H); 
13

C NMR (100 MHz, CDCl3)  = 141.5, 141.3, 

128.8, 128.6, 127.7, 127.6, 127.4, 127.2, 60.0, 57.5, 51.1, 45.8, 35.5, 34.3, 32.6, 25.6, 25.2, 25.0, 19.8; 
19

F 

NMR (376 MHz, CDCl3)  = -77.68 (minor), -77.79 (major);IR (thin film): 3313, 2928, 1421, 1357, 

1224 cm
-1

;
 
LRMS (ESI): Calculated for [M+H2O] = 325.35; found 325.20 

1,1,1-trifluoro-N-(2-methylcyclopentyl)methanesulfonamide (18b). 

 

To a clean dry 2 dram vial was added a magnetic stirbar, catalyst A (5 mol %), commercially available 1-

methylcyclopentene 18a (1 equiv) and TfNH2 (3.0 equiv). Vial with solids were then brought into the 

glovebox where 2,6-lutidine (0.25 equiv) and dichloroethane [0.5 M] were added. Reaction vessel was 

sealed and taken out of the glovebox, then thiophenol (0.2 equiv, freshly sparged) was added. Irradiated 

for 96h then purified in 5% EtOAc/Hexanes to give a colorless oil in 51% isolated yield (average of two 

trials, obtained an average 63% yield by NMR using hexamethyldisiloxane as an internal standard) in 

1.5:1 dr. 
1
H NMR (inseparable mixture of diastereomers) (400 MHz, CDCl3)  = 5.04 (br s, 2 H), 3.86 

(m, 2 H), 3.34 (quint, J = 7.3 Hz, 2 H), 2.20 – 1.43 (m, 8 H), 1.31 – 1.14 (m, 4 H), 1.05 (d, J = 6.4 Hz, 3 

H), 0.97 (d, J = 6.8 Hz, 3 H); 
13

C NMR (100 MHz, CDCl3)  = 121.2, 118.1, 63.4, 60.3, 41.5, 40.5, 37.1, 

33.2, 32.4, 31.6, 31.0, 22.9, 21.3, 21.0, 17.2, 14.3; 
19

F NMR (376 MHz, CDCl3)  = -77.54 (major), -

77.71 (minor); IR (thin film): 3647, 3565, 3303, 2965, 2878, 1622, 1444, 1375, 1269, 1232 cm
-1

;
 
LRMS 

(ESI): Calculated for [M+H+K] = 271.34; found 271.16 
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Preparation of Alkene Substrates in Figure 4.14: 

(E)-1-methoxy-2-(prop-1-en-1-yl)benzene (20a): Prepared according to a published procedure
13

; 

spectral data were in agreement with literature values.
14

 

(E)-1-methoxy-3-(prop-1-en-1-yl)benzene (21a): Prepared according to a published procedure; spectral 

data were in agreement with literature values.
15

 

(E)-1-methyl-2-(prop-1-en-1-yl)benzene (23a): Prepared according to a published procedure; spectral 

data were in agreement with literature values.
16

 

(E)-1-methyl-3-(prop-1-en-1-yl)benzene (24a): Prepared according to a published procedure; spectral 

data were in agreement with literature values.
17

 

(E)-1-methyl-4-(prop-1-en-1-yl)benzene (25a): Prepared according to a published procedure; spectral 

data were in agreement with literature values.
17

 

(E)-1-fluoro-4-(prop-1-en-1-yl)benzene (26a): Prepared according to a published procedure; spectral 

data were in agreement with literature values.
18

 

(E)-1-chloro-4-(prop-1-en-1-yl)benzene (27a): Prepared according to a published procedure; spectral 

data were in agreement with literature values.
19

 

(E)-1-(tert-butyl)-4-(prop-1-en-1-yl)benzene (28a): Prepared according to a published procedure; 

spectral data were in agreement with literature values.
20

 

(E)-1,3,5-trimethyl-2-(prop-1-en-1-yl)benzene (29a): Prepared according to a published procedure; 

spectral data were in agreement with literature values.
21

 

(E)-2-(prop-1-en-1-yl)naphthalene (30a): Prepared according to a published procedure; spectral data 

were in agreement with literature values.
22

 

(E)-2-(prop-1-en-1-yl)thiophene (32a): Prepared according to a published procedure; spectral data were 

in agreement with literature values.
23

 

(E)-methyl-6-(4-methoxyphenyl)hex-5-enoate (33a): Prepared according to a published procedure; 

spectral data were in agreement with literature values.
24
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(E)-2-(3-(4-methoxyphenyl)allyl)isoindoline-1,3-dione (34a):Prepared according to a published 

procedure; spectral data were in agreement with literature values.
25

 

(E)-3-(4-methoxyphenyl)prop-2-en-1-ol (35a): Prepared according to a published procedure; spectral 

data were in agreement with literature values.
26

 

General Procedure X: Anti-Markovnikov Intermolecular Hydroamination Reactions 

 

To a clean flame-dried 2 dram vial was added a magnetic stir bar, N-Me-mesityl acridinium catalyst (1.0 

mol %), diphenyldisulfide (10 mol %) and amine (1.5 equiv). Reaction vessel was purged with nitrogen 

then 2,6-lutidine (25 mol %),  starting alkene (1.0 equiv) and dichloromethane (sparged for 15 min, [0.5 

M]) was added. Reaction was sealed with Teflon tape then irradiated with a blue LED lamp at room 

temperature. Reactions were quenched with a solution of TEMPO (~5 mg) in dichloromethane (0.2 mL) 

and concentrated in vacuo.  The final products were purified by silica gel chromatography using the 

conditions listed. 

1,1,1-trifluoro-N-(1-(2-methoxyphenyl)propan-2-yl)methanesulfonamide (20b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 48h then purified in 10% EtOAc/Hexanes to give a yellow oil in 

55% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  =

 
1.50 - 1.69 (m, 3 H), 3.10 - 

3.26 (m, 2 H), 4.09 - 4.20 (m, 3 H), 4.21 - 4.33 (m, 1 H), 5.38 - 6.31 (m, 1 H), 7.21 - 7.30 (m, 2 H), 7.43 

(d, J=7.34 Hz, 1 H), 7.59 (t, J=7.83 Hz, 1 H); 
13

C NMR (100 MHz, CDCl3)  = 22.71, 37.97, 53.56, 
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55.40,  110.74, 121.17, 125.04, 128.74, 131.57, 157.15; IR (thin film): 3750, 3648, 3807, 3071, 2939, 

2840, 1683, 1603, 1558, 1495, 1457, 1372; LRMS (ESI): Calculated for [M+H2O]= 315.3; found 315.24.  

1,1,1-trifluoro-N-(1-(3-methoxyphenyl)propan-2-yl)methanesulfonamide (21b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 48h then purified in 10% EtOAc/Hexanes to give a yellow oil in 

69% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 1.22 (d, J=6.60 Hz, 3 H), 2.78 

(t, J=5.62 Hz, 2 H), 3.78 (s, 3 H), 3.84 - 3.93 (m, 1 H), 4.47 - 4.53 (m, 1 H), 6.82 - 6.87 (m, 2 H), 7.04 - 

7.09 (m, 2 H), 7.23 (s, 1 H); 
13

C NMR (100 MHz, CDCl3)  =21.39, 43.79, 52.97, 55.24, 112.50, 115.43, 

121.94, 129.81, 137.47, 159.87; IR (thin film): 3627, 3305, 2439, 2839, 2416, 1715, 1602, 1436, 1368; 

LRMS (ESI): Calculated for [M+H
+
] = 298.29; found 298.14. 

1,1,1-trifluoro-N-(1-(4-methoxyphenyl)propan-2-yl)methanesulfonamide (22b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 48h then purified in 10 % EtOAc/Hexanes to give a yellow oil in 

73% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3) 1.12 - 1.29 (m, 3 H), 2.68 - 2.90 

(m, 2 H), 3.66 - 3.82 (m, 3 H), 3.84 - 3.98 (m, 1 H), 4.80 (d, J=7.34 Hz, 1 H), 6.63 - 6.77 (m, 3 H), 6.77 - 

6.85 (m, 1 H), 7.18 - 7.27 (m, 1 H); 
13

C NMR (100 MHz, CDCl3)  = 21.20, 42.85, 53.19, 55.29, 114.19, 

121. 15, 127.98, 130.61, 158; IR (thin film): 3902, 3870, 3838, 3819, 3801, 3734, 3716, 3307, 3034, 



119 

 

2839, 1770, 1698, 1671, 1585, 1436, 1373, 1361, 1231; LRMS (ESI): Calculated for [M+H2O] = 315.3; 

found 315.18. 

1,1,1-trifluoro-N-(1-(o-tolyl)propan-2-yl)methanesulfonamide (23b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 72h then purified in 10% EtOAc/Hexanes to give a yellow oil in 

76% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.19 - 7.12 (m, 3 H), 7.07 (d, 

J = 5.4 Hz, 1 H), 3.94 (br. s., 1 H), 2.97 (d, J = 7.1 Hz, 1 H), 2.80 (br. s., 1 H), 2.33 (s, 3 H), 1.27 (d, J = 

6.4 Hz, 3 H); 
13

C NMR (100 MHz, CDCl3) =  136.6, 135.0, 131.0, 130.9, 127.4, 126.3, 52.7, 42.5, 22.5, 

19.7; IR (thin film): 3307, 3067, 3019, 2980, 2876, 2351, 1918, 1844, 1792, 1732, 1698, 1670, 1635, 

1576, 1540, 1434, 1372, 1230; LRMS (ESI): Calculated for [M+H
+
] = 282.29; found 282.23. 

1,1,1-trifluoro-N-(1-(m-tolyl)propan-2-yl)methanesulfonamide (24b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 72h then purified in 5% EtOAc/Hexanes to give a yellow oil in 

73% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.23 - 7.18 (m, 1 H), 7.07 (d, 

J = 7.6 Hz, 3 H), 6.98 - 6.92 (m, 6 H), 4.57 - 4.42 (m, 1 H), 3.99 - 3.87 (m, 1 H), 2.88 - 2.74 (m, 2 H), 

2.33 (s, 3 H), 1.24 (d, J = 6.8 Hz, 3 H); 
13

C NMR (100 MHz, CDCl3)  =; IR (thin film): 3565, 3307, 
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2979, 2928, 1867, 1828, 1792, 1744, 1732, 1683, 1670, 1609, 1590, 1546, 1507, 1457, 1372, 1288, 1230; 

LRMS (ESI): Calculated for [M+H
+
] = 282.29; found 282.22. 

1,1,1-trifluoro-N-(1-(p-tolyl)propan-2-yl)methanesulfonamide (25b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 72h then purified in 10% EtOAc/Hexanes to give a yellow solid 

in 84% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.15 - 7.11 (m, 2 H), 7.06 - 

7.01 (m, 2 H), 4.48 (br. s., 1 H), 3.92 (d, J = 5.1 Hz, 1 H), 2.87 - 2.75 (m, 2 H), 2.32 (s, 3 H), 1.23 (d, J = 

6.6 Hz, 3 H); 
13

C NMR (100 MHz, CDCl3)  = 136.9, 132.8, 129.6, 129.5, 53.1, 43.5, 21.5, 21.1; IR (thin 

film): 3749, 3734, 3710, 3689, 3628, 3566, 3299, 2980, 2740, 1683, 1636, 1576, 1558, 1457, 1427, 1326, 

1227; LRMS (ESI): Calculated for [M+H
+
] = 282.29 ; found 282.22. 

1,1,1-trifluoro-N-(1-phenylpropan-2-yl)methanesulfonamide (19b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 72h then purified in 10 % EtOAc/Hexanes to give a yellow oil in 

72% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.35 - 7.28 (m, 2 H), 7.28 - 

7.24 (m, 1 H), 7.15 (d, J = 6.8 Hz, 2 H), 4.54 (br. s., 1 H), 3.94 (br. s., 1 H), 2.90 - 2.77 (m, 2 H), 1.24 (d, 

J = 6.6 Hz, 3 H); 
13

C NMR (100 MHz, CDCl3) = 21.67, 44.12, 53.34, 127.23, 128.82, 129.74, 136.25; 
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IR (thin film): 3642, 3565, 3308, 3066, 3031, 2980, 2935, 1951, 1886, 1810, 1603, 1586, 1432, 1230; 

LRMS (ESI): Calculated for [M+H2O] = 285.27; found 285.16. 

1,1,1-trifluoro-N-(1-(4-fluorophenyl)propan-2-yl)methanesulfonamide (26b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 96h then purified in 5% EtOAc/Hexanes to give a yellow solid in 

77% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.15 - 7.09 (m, 2 H), 7.05 - 

6.96 (m, 2 H), 4.56 - 4.41 (m, 1 H), 3.90 (d, J = 5.9 Hz, 1 H), 2.82 (dd, J = 6.5, 7.7 Hz, 2 H), 1.24 (d, J = 

6.6 Hz, 3 H); 
13

C NMR (100 MHz, CDCl3)  = 163.3, 160.8, 132.0, 131.0, 115.6, 53.4, 43.0, 21.3; IR 

(thin film): 3648, 3566, 3310, 2981, 2936, 1771, 1732, 1716, 1698, 1652, 1558, 1456, 1367, 1227; 

LRMS (ESI): Calculated for [M+H2O] = 303.26; found 303.13. 

N-(1-(4-chlorophenyl)propan-2-yl)-1,1,1-trifluoromethanesulfonamide (27b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 72h then purified in 10% EtOAc/Hexanes to give a white solid in 

75% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3) = 7.33 - 7.26 (m, 2 H), 7.15 - 

7.05 (m, 2 H), 4.59 (d, J = 9.0 Hz, 1 H), 3.96 - 3.84 (m, 1 H), 2.91 - 2.73 (m, 2 H), 1.24 (d, J = 6.8 Hz, 3 

H); 
13

C NMR (100 MHz, CDCl3)  = 134.5, 133.3, 130.9, 128.9, 53.1, 43.3, 21.3; IR (thin film): 3307, 
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2981, 1761, 1683, 1652, 1540, 1494, 1457, 1428, 1360, 1320, 1226; LRMS (ESI): Calculated for [M+ 

H2O] = 319.71; found 319.11. 

N-(1-(4-(tert-butyl)phenyl)propan-2-yl)-1,1,1-trifluoromethanesulfonamide (28b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 72h then purified in 10% EtOAc/Hexanes to give a yellow oil in 

43% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  =  7.34 (d, J = 8.1 Hz, 2 H), 

7.08 (d, J = 8.1 Hz, 2 H), 4.03 - 3.85 (m, 1 H), 2.83 (br. s., 2 H), 1.30 (s, 9 H), 1.25 (d, J = 6.6 Hz, 3 H); 

13
C NMR (100 MHz, CDCl3)  = 150.2, 132.8, 129.5, 125.7, 53.1, 43.5, 34.5, 31.4, 21.8; IR (thin film): 

3567, 3307, 3094, 3026, 2964, 2864, 2871, 1792, 1771, 1698, 1652, 1635, 1558, 1513, 1457, 1432, 1372, 

1269; LRMS (ESI): Calculated for [M+ H2O] = 341.37; found 341.21. 

1,1,1-trifluoro-N-(1-mesitylpropan-2-yl)methanesulfonamide (29b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 72h then purified in 10% EtOAc/Hexanes to give an orange oil in 

64% isolated yield (average of two trials. 
1
H NMR (400 MHz, CDCl3)  = 6.85 (s, 2 H), 3.93 (br. s., 1 H), 

2.98 (br. s., 1 H), 2.81 (br. s., 1 H), 2.29 (s, 6 H), 2.24 (s, 3 H), 1.24 (d, J = 5.6 Hz, 3 H); 
13

C NMR (100 

MHz, CDCl3)  = 136.8, 136.3, 130.8, 129.5, 52.5, 38.0, 22.1, 20.9, 20.6; IR (thin film): 3302, 2932, 
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2737, 1732, 1716, 1683, 1614, 1577, 1558, 1434, 1371, 1283, 1230; LRMS (ESI): Calculated for [M+H
+
] 

= 310.35; found 310.18. 

1,1,1-trifluoro-N-(1-(naphthalen-2-yl)propan-2-yl)methanesulfonamide (30b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 72h then purified in 10% EtOAc/Hexanes to give a yellow oil in 

63% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  =  7.86 - 7.76 (m, 18 H), 7.61 

(s, 1 H), 7.52 - 7.43 (m, 12 H), 7.29 (dd, J = 1.6, 8.4 Hz, 6 H), 4.86 (d, J = 7.6 Hz, 1 H), 4.08 - 3.95 (m, 1 

H), 3.09 - 3.01 (m, 1 H), 2.98 - 2.88 (m, 1 H), 1.26 (d, J = 6.6 Hz, 3 H); 
13

C NMR (100 MHz, CDCl3)  = 

133.5, 133.5, 132.5, 128.5, 128.3, 127.7, 127.6, 127.6, 126.4, 126.0, 121.2, 53.1, 44.0, 21.3; IR (thin 

film): 3820, 3801, 3734, 3648, 3305, 3056, 3022, 2980, 2876, 2360, 1771, 1683, 1633, 1558, 1508, 1433, 

1371, 1286, 1271; LRMS (ESI): Calculated for [M+H
+
] = 318.33; found 318.17. 

N-(1-(benzo[d][1,3]dioxol-5-yl)propan-2-yl)-1,1,1-trifluoromethanesulfonamide (31b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 96h then purified in 10% EtOAc/Hexanes to give a white solid in 

63% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 6.75 (d, J = 7.8 Hz, 1 H), 6.66 

- 6.56 (m, 2 H), 5.92 (s, 2 H), 4.84 (d, J = 8.1 Hz, 1 H), 3.91 - 3.77 (m, 1 H), 2.84 - 2.66 (m, 2 H), 1.23 (d, 

J = 6.6 Hz, 3 H); 
13

C NMR (100 MHz, CDCl3)  = 147.9, 146.7, 129.6, 122.7, 121.1, 117.9, 110.0, 108.5, 

101.1, 53.2, 43.5, 21.2; IR (thin film): 3853, 3828, 3819, 3801, 3749, 3734, 3648, 3305, 3076, 2981, 
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2901, 2613, 1854, 1749, 1716, 1671, 1491, 1443, 1368; LRMS (ESI): Calculated for [M+H
+
] = 312.28; 

found 312.12. 

1,1,1-trifluoro-N-(1-(thiophen-2-yl)propan-2-yl)methanesulfonamide (32b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 144h then purified in 25% EtOAc/Hexanes to give a yellow oil in 

35% isolated yield (average of two trials).
 1
H NMR (400 MHz, CDCl3)  = 7.20 (d, J = 5.1 Hz, 1 H), 6.97 

(dd, J = 3.4, 5.1 Hz, 1 H), 6.85 (d, J = 3.2 Hz, 1 H), 3.99 - 3.89 (m, 1 H), 3.15 - 2.99 (m, 2 H), 1.29 (d, J = 

6.6 Hz, 3 H); 
13

C NMR (100 MHz, CDCl3)  = 137.1, 127.3, 125.1, 121.1, 118.0, 52.5, 37.5, 21.1; IR 

(thin film): 3710, 3688, 3648, 3628, 3565, 3113, 2981, 2933, 1716, 1698, 1653, 1558, 1506, 1488, 1430, 

1373, 1287; LRMS (ESI): Calculated for [M+H
+
] = 274.30; found 274.04. 

Methyl -6-(4-methoxyphenyl)-5-(trifluoromethylsulfonamido)hexanoate (33b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 96h then purified in 10% EtOAc/Hexanes to give a yellow oil in 

58% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.29 - 7.34 (m, 2 H), 7.23 - 

7.28 (m, 3 H), 7.15 (d, J=6.85 Hz, 2 H), 3.72 - 3.83 (m, 2 H), 3.64 (s, 3 H), 2.91 - 2.97 (m, 1 H), 2.82 - 

2.88 (m, 1 H), 2.24 - 2.39 (m, 2 H), 1.56 - 1.82 (m, 4 H), 1.36 - 1.47 (m, 1 H); 
13

C NMR (100 MHz, 

CDCl3)  =174.02, 135.94, 129.58, 127.10, 121.08, 117.89, 57.09, 51.76, 41.86, 33.43, 33.21, 20.58 IR 
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(thin film):3628, 3221, 3030, 2955, 1955, 1887, 1716, 1603, 1558, 1496, 1438, 1374; LRMS (ESI): 

Calculated for [M+H
+
] = 354.36; found 354.19. 

N-(1-(1,3-dioxoisoindolin-2-yl)-3-(4-methoxyphenyl)propan-2-yl)-1,1,1-

trifluoromethanesulfonamide (34b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 48h then purified in 15% EtOAc/Hexanes to give a white solid in 

67% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.83 (dd, J = 3.1, 5.3 Hz, 2 

H), 7.71 (dd, J = 3.1, 5.3 Hz, 2 H), 7.15 (d, J = 8.3 Hz, 2 H), 6.82 (d, J = 8.6 Hz, 2 H), 6.17 (d, J = 9.3 Hz, 

1 H), 4.10 (d, J = 5.9 Hz, 1 H), 3.78 - 3.68 (m, 5 H), 3.05 - 2.89 (m, 2 H); 
13

C NMR (100 MHz, CDCl3)  

=  168.6, 158.9, 134.4, 131.7, 130.7, 127.0, 123.6, 120.9, 114.3, 56.1, 55.2, 41.2, 39.4; IR (thin film): 

3853, 3838, 3750, 3710, 3689, 3674, 3648, 3420, 1772, 1706, 1652, 1635, 1616, 1514, 1456, 1434, 1397, 

1249, 1230; LRMS (ESI): Calculated for [M+H
+
] = 443.41; found 443.21. 

1,1,1-trifluoro-N-(1-hydroxy-3-(4-methoxyphenyl)propan-2-yl)methanesulfonamide (35b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 96h then purified in 20% EtOAc/Hexanes then 50% 

EtOAc/Hexanes to give a yellow oil in 70% isolated yield (average of two trials). 
1
H NMR (400 MHz, 

CDCl3)  =7.24 (s, 2 H), 7.10 (d, J=8.56 Hz, 2 H), 6.85 (d, J=7.34 Hz, 2 H), 5.24 (br. s., 1 H), 3.78 (s, 4 
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H), 3.58 - 3.71 (m, 2 H), 2.86 - 2.95 (m, 2 H); 
13

C NMR (100 MHz, CDCl3)  =158.26, 130.16, 127.68, 

113.82, 62.83, 57.87, 54.89, 37.27; IR (thin film): 3734, 3710, 3292, 2551, 2425, 2360, 1999, 1942, 

1889, 1771, 1613, 1586, 1517, 1202; LRMS (ESI): Calculated for [M+H
+
] = 314.29; found 314.18. 

1,1,1-trifluoro-N-(2-phenylcyclohexyl)methanesulfonamide (17b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 96h then purified in 5% EtOAc/Hexanes to give a white solid in 

50% isolated yield in 2.5:1 dr (average of two trials). Assignment of major and minor diastereomers 

calculated by coupling constants of peaks at 3.00 – 2.95 ppm (ddd, J = 3.6, 3.6, 12.8 Hz) and 2.42 – 2.35 

ppm (ddd, J = 3.6, 11.6, 11.6 Hz). Spectral data were in agreement with literature values.
27

 

1,1,1-trifluoro-N-(2-methylcyclopentyl)methanesulfonamide (18b). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 96h then purified in 5% EtOAc/Hexanes to give a clear oil in 

85% isolated yield, 2.3:1 dr (average of two trials). Spectral data were in agreement with literature 

values.
27 
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1,1,1-trifluoro-N-(3-methylbutan-2-yl)methanesulfonamide (36b).   

 

Prepared using general procedure X on a 100 mg scale (3.0 equiv alkene) with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.0 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 96h then purified in 10% EtOAc/Hexanes to give a yellow oil in 

72% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 4.83 - 4.39 (m, 1 H), 3.55 (br. 

s., 1 H), 1.78 (d, J = 6.4 Hz, 1 H), 1.24 (d, J = 6.8 Hz, 3 H), 0.96 (d, J = 4.6 Hz, 6 H); 
13

C NMR (100 

MHz, CDCl3)  = 57.5, 33.8, 19.0, 18.2, 18.1; IR (thin film): 2924, 2851, 1715, 1583, 1540, 1457, 1373, 

1318, 1229; LRMS (ESI): Calculated for [M+Na
+
] = 242.21 ; found 242.25. 

1-(1-(2-methoxyphenyl)propan-2-yl)-1H-pyrazole (37). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 96h then purified in 10% EtOAc/Hexanes to give a clear oil in 

83% isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  = 7.49 (d, J = 1.5 Hz, 1 H), 7.20 

- 7.11 (m, 2 H), 6.85 - 6.69 (m, 3 H), 6.10 (t, J = 2.0 Hz, 2 H), 4.66 - 4.54 (m, 1 H), 3.84 - 3.78 (m, 3 H), 

3.16 - 3.00 (m, 2 H), 1.50 (d, J = 6.6 Hz, 3 H); 
13

C NMR (100 MHz, CDCl3)  = 157.5, 138.8, 131.0, 

127.9, 126.4, 120.5, 110.1, 104.4, 57.9, 55.3, 38.5, 20.6; IR (thin film):3421, 3102, 2978, 2936, 2835, 

1897, 1732, 1716, 1698, 1652, 1601, 1558, 1540, 1457, 1398, 1340, 1243, 1210; LRMS (ESI): 

Calculated for [M+H
+
] = 217.28; found 217.11. 
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1-(1-(2-methoxyphenyl)propan-2-yl)-1H-indazole (38). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 96h then purified in 10% EtOAc/Hexanes to give a yellow oil in 

57% isolated yield (average of two trials). Regioselectivity determined by NOESY NMR experiment. 
1
H 

NMR (400 MHz, CDCl3)  = 7.78 (dd, J = 0.9, 8.7 Hz, 1 H), 7.75 (s, 1 H), 7.60 (td, J = 1.1, 8.4 Hz, 1 H), 

7.32 - 7.26 (m, 1 H), 7.19 (dt, J = 1.8, 7.8 Hz, 1 H), 7.06 (ddd, J = 0.7, 6.6, 8.3 Hz, 1 H), 6.89 - 6.81 (m, 2 

H), 6.78 - 6.72 (m, 1 H), 4.96 - 4.86 (m, 1 H), 3.82 (s, 3 H), 3.38 - 3.21 (m, 2 H), 1.69 (d, J = 6.8 Hz, 3 

H); 
13

C NMR (100 MHz, CDCl3)  = 157.5, 148.6, 131.0, 128.1, 126.1, 121.6, 121.2, 121.1, 120.5, 120.2, 

117.5, 110.2, 59.8, 55.2, 38.6, 21.0; IR (thin film): 3734, 3711, 3648, 3566, 3420, 3060, 2834, 2533, 

2483, 2007, 1935, 1782, 1716, 1626, 1601, 1587, 1494, 1455, 1333, 1288, 1242; LRMS (ESI): 

Calculated for [M+H
+
] = 267.34; found 267.17. 

1-(1-(4-methoxyphenyl)propan-2-yl)-1H-imidazole (39). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (3.0 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 96h then purified in 5% MeOH/DCM to give a yellow oil in 50% 

isolated yield (average of two trials). 
1
H NMR (400 MHz, CDCl3)  =7.72 - 7.80 (m, 1 H), 7.50 (s, 1 H), 
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7.35 (s, 1 H), 7.28 - 7.32 (m, 2 H), 7.24 (s, 2 H), 4.75 (sxt, J=6.80 Hz, 1 H), 4.22 (s, 3 H), 3.37 (br. s., 2 

H), 1.98 (s, 3 H); 
13

C NMR (100 MHz, CDCl3)  =158.39, 135.77, 129.78, 129.03, 116.50, 113.84, 55.31, 

55.10, 43.72, 20.99; IR (thin film): 3838, 3801, 3749, 3710, 3689, 3383, 3107, 2934, 2548, 2059, 1889, 

1771, 1698, 1652, 1612, 1583, 1455, 1378, 1246; LRMS (ESI): Calculated for [M+H
+
] = 217.28; found 

217.12. 

2-(1-(4-methoxyphenyl)propan-2-yl)-2H-1,2,3-triazole (40). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for 96h then purified in 10% to 20% to 50% to 75% EtOAc/Hexanes 

to give two separately collected clear oils in 80% isolated yield, 2:1 mix of regioisomers (average of two 

trials). Major Regioisomer: 
1
H NMR (400 MHz, CDCl3)  = 7.57 (s, 1 H), 7.26 (s, 1 H), 6.84 (d, J = 8.6 

Hz, 2 H), 6.72 (d, J = 8.6 Hz, 2 H), 4.85 - 4.72 (m, 1 H), 3.71 (s, 3 H), 3.20 - 3.06 (m, 1 H), 3.06 - 2.97 

(m, 1 H), 1.57 (d, J = 6.8 Hz, 3 H); 
13

C NMR (100 MHz, CDCl3)  =  158.5, 133.2, 130.1, 128.7, 122.2, 

113.9, 58.7, 55.2, 42.8, 20.4; IR (thin film): 3710, 3673, 3420, 3124, 2836, 1771, 1732, 1716, 1652, 

1584, 1513, 1420, 1302, 1280; LRMS (ESI): Calculated for [M+H
+
] = 218.27; found 218.11; Minor 

Regioisomer: 
1
H NMR (400 MHz, CDCl3)  = 7.54 (s, 2 H), 6.96 - 6.89 (m, 2 H), 6.79 - 6.72 (m, 2 H), 

4.96 - 4.82 (m, 1 H), 3.74 (s, 3 H), 3.25 (dd, J = 7.7, 13.8 Hz, 1 H), 3.01 (dd, J = 7.0, 13.8 Hz, 1 H), 1.60 - 

1.50 (m, 3 H); 
13

C NMR (100 MHz, CDCl3)  = 158.3, 133.5, 130.0, 129.6, 113.8, 63.0, 55.2, 42.2, 20.1; 

IR (thin film): 3125, 2983, 2835, 1733, 1698, 1683, 1652, 1635, 1613, 1540, 1374, 1301, 1248; LRMS 

(ESI): Calculated for [M+H
+
] = 218.27; found 218.11. 

 



130 

 

1-(2,2-diphenylethyl)-1H-1,2,3-triazole (41). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 

dichloromethane [0.5 M]. Irradiated for Xh then purified in 10 to 25 to 100% EtOAc/Hexanes to give two 

white solids in 81% isolated yield, 3.9:1 mix of regioisomers (average of two trials). Major regioisomer 

1
H NMR (400 MHz, CDCl3)  = 7.52 (s, 1 H), 7.35 - 7.28 (m, 4 H), 7.27 - 7.20 (m, 5 H), 7.09 (s, 1 H), 

5.02 (d, J = 8.1 Hz, 2 H), 4.63 (t, J = 7.9 Hz, 1 H); 
13

C NMR (100 MHz, CDCl3)  = 140.5, 133.3, 128.9, 

127.9, 127.3, 124.1, 54.7, 51.8; IR (thin film): 3853, 3801, 3674, 3420, 1771, 1716, 1683, 1635, 1558, 

1540, 1495, 1455, 1210; LRMS (ESI): Calculated for [M+H
+
] = 250.31; found 250.20 Minor 

regioisomer 
1
H NMR (400 MHz, CDCl3)  = 7.47 (s, 2 H), 7.30 - 7.14 (m, 10 H), 5.05 (d, J = 8.3 Hz, 2 

H), 4.93 - 4.84 (m, 1 H); 
13

C NMR (100 MHz, CDCl3)  = 140.9, 134.0, 128.7, 128.0, 127.0, 58.8, 51.1; 

IR (thin film): 3027, 1771, 1698, 1652, 1558, 1540, 1507, 1473, 1418, 1362; LRMS (ESI): Calculated 

for [M+H
+
] = 250.31; found 250.20. 

1-(2-phenylpropyl)-1H-1,2,3-triazole (42). 

 

Prepared using general procedure X on a 100 mg scale with catalyst 1 (1 mol %), 

trifluoromethanesulfonamide (1.5 equiv), diphenyldisulfide (10 mol %), 2,6-lutidine (25 mol %) and 
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dichloromethane [0.5 M]. Irradiated for 72h then purified in 5 to 50% EtOAc/Hexanes to give two white 

solids in 41% isolated yield as a 1.9:1 mix of regioisomers (average of two trials). Major regioisomer 
1
H 

NMR (400 MHz, CDCl3)  = 7.55 (s, 1 H), 7.32 - 7.26 (m, 2 H), 7.23 - 7.20 (m, 1 H), 7.14 - 7.08 (m, 5 

H), 4.60 - 4.53 (m, 2 H), 4.46 - 4.39 (m, 2 H), 3.40 - 3.29 (m, 2 H), 1.31 (d, J = 7.1 Hz, 3 H); 
13

C NMR 

(100 MHz, CDCl3)  = 142.4, 133.4, 127.3, 127.1, 123.8, 57.0, 41.0, 18.7; IR (thin film): 3853, 3801, 

3750, 3689, 3125, 3062, 2968, 2876; LRMS (ESI): Calculated for [M+H
+
] = 188.11; found 188.12. 

Minor regioisomer 
1
H NMR (400 MHz, CDCl3)  = 7.54 (s, 2 H), 7.32 - 7.25 (m, 2 H), 7.23 - 7.16 (m, 3 

H), 4.63 - 4.47 (m, 2 H), 3.58 - 3.46 (m, 1 H), 1.21 (d, J = 6.8 Hz, 3 H); 
13

C NMR (100 MHz, CDCl3)  = 

142.8, 134.0, 128.7, 127.1, 126.9, 61.4, 40.6, 18.6; IR (thin film): 3029, 2966, 1733, 1716, 1698, 1652, 

1635, 1558, 1520, 1495, 1455, 1418, 1361; LRMS (ESI): Calculated for [M+H
+
] = 188.11; found 188.12. 
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Compound 2a 
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Compound 3a 
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Compound 4a 
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Compound 5a 
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Compound 6a 
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Compound 7a 
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Compound 8a
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Compound 9a 
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Compound 10a 
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Compound 11a 
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Compound 12a 
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Compound 13a 
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Compound 15a 
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Compound 16 
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Compound 3b 
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Compound 4b 
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Compound 5b 
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Compound 6b 
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Compound 7b 
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Compound 8b 
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Compound 9b
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Compound 10b 

 

 



156 

 

Compound 11b 

 

 



157 

 

Compound 12b 
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Compound 13b 
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Compound 14b 

 

 



160 

 

Compound 15b 
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Compound 17b 
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Compound 18b 
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Compound 19b 
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Compound 20b
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Compound 21b 
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Compound 22b 
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Compound 23b 
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Compound 24b
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Compound 25b 
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Compound 26b
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Compound 27b 
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Compound 28b
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Compound 29b 
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Compound 30b 
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Compound 31b 
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Compound 32b 
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Compound 33b 
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Compound 34b 
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Compound 35b 
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Compound 36b 
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Compound 37 
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Compound 38 
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Compound 38 
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Compound 39 
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Compound 40 (major regioisomer) 
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Compound 40 (minor regioisomer) 
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Compound 41 (major regioisomer) 
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Compound 41 (minor regioisomer) 

 

 



189 

 

Compound 42 (major regioisomer) 
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Compound 42 (minor regioisomer) 

 

 


