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ABSTRACT

Sridutt Bhalachandra: Runtime Methods to Improve Energy Efficiency in Supercomputing Applications
(Under the direction of Allan K. Porterfield and Jan F. Prins)

Energy efficiency in supercomputing is critical to limit operating costs and carbon footprints. While the

energy efficiency of future supercomputing centers needs to improve at all levels, the energy consumed by

the processing units is a large fraction of the total energy consumed by High Performance Computing (HPC)

systems. HPC applications use a parallel programming paradigm like the Message Passing Interface (MPI) to

coordinate computation and communication among thousands of processors. With dynamically-changing

factors both in hardware and software affecting energy usage of processors, there exists a need for power

monitoring and regulation at runtime to achieve savings in energy.

This dissertation highlights an adaptive runtime framework that enables processors with core-specific

power control by dynamically adapting to workload characteristics to reduce power with little or no perfor-

mance impact. Two opportunities to improve the energy efficiency of processors running MPI applications

are identified - computational workload imbalance and waiting on memory. Monitoring of performance and

power regulation is performed by the framework transparently within the MPI runtime system, eliminating

the need for code changes to MPI applications. The effect of enforcing power limits (capping) on processors

is also investigated.

Experiments on 32 nodes (1024 cores) show that in presence of workload imbalance, the runtime reduces

Central Processing Unit (CPU) frequency on cores not on the critical path, thereby reducing power and

hence energy usage without deteriorating performance. Using this runtime, six MPI mini-applications and a

full MPI application show an overall 20% decrease in energy use with less than 1% increase in execution

time. In addition, the lowering of frequency on non-critical cores reduces run-to-run performance variation

and improves performance. For the full application, an average speedup of 11% is seen, while the power

is lowered by about 31% for an energy savings of up to 42%. Another experiment on 16 nodes (256 cores)

that are power capped also shows performance improvement along with power reduction. Thus, energy

optimization can also be a performance optimization. For applications that are limited by memory access
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times, memory metrics identified facilitate lowering of power by up to 32% without adversely impacting

performance.
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CHAPTER 1: Introduction

In the past few decades advances in large-scale computing have revolutionized many basic fields of

science. The impact of this progress however, has not been restricted to the fields originally intended, but

has helped to lay the foundations of an age centered around information and technology. In a large-scale

computer a massive number of parallel processors work together to solve a problem in a fraction of time it

would take on a single processor. Suppose a processor takes at least time t to solve a problem (sequential

solution), then a parallel solution utilizing p processors can improve the sequential solution by at most a

factor of p – Fundamental Law of Parallel Computation (Gustafson, 1988).

Traditionally, the scientific and commercial problems that used large-scale computing were called

compute-bound problems since I/O bound problems involving massive data were more conducive to better

data transmission technology than processing capability. In recent times however, more and more scientific

problems require the aid of efficient memory sub-systems and I/O capabilities to be solved with closer to

peak performance on modern HPC systems. This makes achieving high performance even more challenging

in current supercomputers as a poor provisioning can lead to very low percentages of peak performance

attainable.

The compute-bound problems are generally superlinear, typically exhibiting sequential time complexity

in the range O(n2) to O(n4) for problems of size n. The reason O(n4) problems are common in science

and engineering is that they often model physical systems with three spatial dimensions developing in time,

for example a storm surge. A frequent challenge with these problems is not to solve a fixed-size instance of

the problem faster, but rather to solve larger instances within a fixed time budget. Using this understanding

along with the Fundamental Law of Parallel Computation, Lawrence Snyder (Snyder, 1986) observed that

superlinear problems can be improved only sublinearly by parallel computation. Thus, parallel computation

only offers modest potential benefit – Corollary of Modest Potential. This corollary along with the increasing

complexity in current High Performance Computing (HPC) systems further mandates a need for efficiency in

parallel systems as technological advancements are approaching their inevitable physical limits.
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1.1 Energy efficiency in High Performance Computing

Advances in many branches of science and engineering increasingly depend on ever larger and more

detailed numerical simulations performed on high performance computing (HPC) systems. The days of ever

increasing single core performance have, however, come to an end as power dissipation and transistor scaling

are reaching fundamental limits. With 105 parallel processors now present in top supercomputers, power

consumption is increasingly becoming the limiting factor. These machines, with an aggregate performance of

1015 (Peta) floating point operations per second (FLOPS), already consume in excess of 15MW (Fu et al.,

2016), with energy costs of over $10M dollars a year. To make the next generation of supercomputers feasible,

the Exascale Computing study (Kogge et al., 2008) set a definitive power challenge to deliver exaFLOPS

using just 20 MW. A commensurate increase in power is no longer feasible with the performance needing to

improve over 10x, while power less than doubles.

Figure 1.1: Improving energy efficiency in a supercomputer

The scope for improving energy efficiency of a supercomputer exists at many levels as shown in Figure 1.1.

The hardware community is exploring alternative technologies like dark silicon to improve chip efficiency,

while also investing time and energy to come up with better micro-architectures, interconnects, memory

technologies among countless other improvements. The infrastructure research is focussing on designing

energy-efficient buildings, power delivery infrastructure and cooling solutions to name a few. A lot can

be achieved on the software side within a node to bridge the gap. HPC applications more often than not

exhibit workload imbalances, wait on memory or poorly utilize the available resources like Central Processing
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Unit (CPU), memory and network. These in-efficiencies present numerous opportunities to improve energy

efficiency in system software.

Figure 1.2: Improving energy efficiency in system software

In software (Figure 1.2), multiple hardware components like CPU, memory, storage and network

interfaces can be targeted within a conventional compute node of a supercomputer to improve energy

efficiency. Graphics Processing Units (GPU) too are making their way into newer systems and consume large

portion of the energy budget. Network fabric, interconnects, switches and other components outside of a

node too can be controlled through software. With more than 30% of energy being consumed in both idle and

active operations (David et al., 2010), CPU is an ideal target for efforts involving software energy efficiency

research.

With tighter power budgets likely in the near future, HPC researchers are searching for ways to improve

performance with the available power budget. Overprovisioning of processor nodes (Patki et al., 2013;

Sarood et al., 2014; Marathe et al., 2015; Gholkar et al., 2016) using hardware enforced power bounds is one

likely alternative. An overprovisioned system is a system with more capacity (nodes), with the stipulation

that we cannot simultaneously power all components at peak power because of strict power constraints.

The maximum power budget is then met with additional nodes (with attendant memory and bandwidth) by

constraining power for each node below the Thermal Design Power (TDP). This allows a greater number

of nodes to be run than normally possible at peak power. In an overprovisioned system, improvements in

energy efficiency increase performance by allowing more nodes or a higher effective power limit on actives

node without exceeding the power cap. Increased power cap on the active nodes may also lead to improved

performance as the cores can potentially run faster. The effect is improvement in the throughput of the system.
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1.2 Challenges and Goals

Energy efficiency of computations can be improved by completing a computation in less time or by

running the computation at lower power. The state-of-the-art of processor energy savings techniques mainly

address problems arising from uneven work distribution, waiting on a resource, mostly memory and poor

resource utilization. However, the techniques still faces many challenges:

Static Analysis. Many related studies (Feng et al., 2005; Kamil et al., 2008; Huang and Feng, 2009) make

use of static analysis of programs/applications to determine optimal frequency for an application execution.

Though these techniques provide useful insights, they are not always accurate as it is difficult to statically

predict behavior of a running application as the system factors can change dynamically. As making actual

test runs on production machines can be expensive, many a times synthetic benchmarks are used to obtain

parameters for static analysis. Such benchmarks may not always be representative of actual application

runtime conditions as energy usage of a processor depends both on physical and software factors that are

dynamic. Physical variations arise during the fabrication process and induce variations in performance among

otherwise identical processors (Rountree et al., 2012). Placement of components can induce variations in

performance due to different cooling efficiencies and steady-state temperatures. Software variations are

mainly due to varying data locality, compiler optimizations, and the number of threads utilized. These

variations are 20% in general and in the extreme case over 2x (Porterfield et al., 2013b). External factors like

cooling also contribute to the variation in energy consumed by an application. These variations suggest a

need for dynamic power regulation to achieve savings in energy.

Code instrumentation. Many solutions (Ge et al., 2005; Wang et al., 2015) require changes in application

code to support instrumentation. While feasible for small experimental codebases, this is a serious problem

for production applications involving several decades of software development. Moreover, the addition of

complex instrumentations and logic to an application code can affect the performance characteristics and

program flow. This necessitates making the solution transparent to the application, and also simple.

Simulation and synthetic benchmarks. Many results (Hsu and Feng, 2005; Kandalla et al., 2010; Rountree

et al., 2012; Livingston et al., 2014) are simulated or use synthetic benchmarks. Simulations provide extremely

useful insights on systems that are not readily accessible and as a preliminary work pave the way for better

solutions. The dynamic nature of HPC systems and applications however, make actual application run results

not always conform to the results from simulation. The results from synthetic benchmarks like NAS are
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useful as preliminary results, but are not always representative of actual HPC workloads. Therefore, there is a

need for research that show results on mini-apps and real-world applications.

Chip-wide effect of power control. Most research (Kappiah et al., 2005; Rountree et al., 2009; Ge et al.,

2007; Freeh and Lowenthal, 2005) to regulate energy and performance in CPU have revolved around chip-

wide Dynamic Voltage and Frequency Scaling (DVFS). Chip-wide DVFS is not used in production HPC

because it is difficult to find applications where slowing the entire multi-core processor does not result in

noticeable slowdowns. Until recently1, DVFS has only allowed frequency and voltage changes that applied

to all the cores of a multi-core processor. Slowing the critical path slows execution. Thus, DVFS-centric

research has focused on finding situations where the slowdown is greatly outweighed by the energy savings.

This chip-wide effect limits the effectiveness of DVFS to be used for fine grained control. The use of chip-

wide DVFS also restricts access to higher turbo frequencies for the critical core (core whose performance

determines the performance of the application). Chip-wide DVFS can save energy but slows applications, a

side-effect unacceptable for most HPC systems as the primary intent of these supercomputers is to improve

performance.

1.3 Scope for improving energy efficiency

With the introduction of core-specific voltage regulators in Intel Haswell microarchitecture, new options

for software energy control are now available. Each physical core (or 2 logical cores if using Hyper-Threading)

can be independently controlled allowing only non-critical threads to have their frequency reduced in software

using runtimes like the one discussed in this dissertation. In addition to DVFS, core-specific Software

Controlled Clock Modulation has been supported by Intel since Pentium. The effective core frequency is

adjusted nearly instantaneously by gating only a fraction of the clock cycles to that core. We call this approach

Dynamic Duty Cycle Modulation (DDCM), given that the objective is to match duty cycle of the core to

its work dynamically. The fine-grained control allows DDCM to save power effectively for unbalanced

applications. As voltage regulators are unaffected, changing clock frequency with DDCM requires less work

(and time) than with DVFS (Wang et al., 2015).

This dissertation identifies two opportunities (Figure 1.3) to improve energy efficiency in CPU - compu-

tational workload imbalance and waiting for a resource, mostly memory.

1Intel Haswell architecture introduced core specific voltage regulators that allow per-core frequency control.
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Figure 1.3: Problems addressed in this dissertation

Computational workload imbalance: Multi-core CPUs often have load imbalances between their cores.

Applications can have fixed loads or the amount of work can vary between steps. Most HPC applications

use parallel programming paradigms that use barriers. A processor that has been allocated less work may

finish work faster, but still it has to wait for all other processors to proceed further. Nominally homogeneous

computing elements exhibit heterogeneous performance and limiting power increases the performance

variation (Porterfield et al., 2015). Transistor thresholds and leakage currents vary within and between wafers

during fabrication, resulting in processor chips that require different supply voltages to operate at the design

frequency and that therefore consume different amounts of power. Furthermore, the amount of cooling

available to a chip depends on its position in the system, resulting in temperature differences that cause

additional variations in power consumption in many air-cooled HPC systems. Power and thermal constraints

will affect each chip differently causing on-chip mechanisms that control operating frequency to also vary.

Performance will thus vary between sockets for even perfectly balanced parallel applications.

Waiting on memory: HPC applications need access to memory often, and sometimes even I/O. Disparity

between CPU and memory speeds and the latency of accessing DRAM across the system bus contribute

significantly to CPU cycling while waiting on memory and wasting power. Memory operations are not

operating system (OS) visible and coarse-grained enough for the hardware circuitry to stall (or switch off)

cores and reduce power as memory accesses are serviced without any information from runtime/application.
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The hardware circuitry needs the core to idle for a certain amount of time (be coarse-grained enough) before it

can be put into a sleep state. The amount of idle time required by the circuity is not always met in the case of

HPC applications where the computation and memory sections are mostly alternating in bursts or could even

overlap. However with smaller idle times too, there exist opportunities to slow down the CPU and reduce

power in software using application-specific information. Also, for certain classes of HPC applications that

are memory-bound, reducing the processor speed or using related approaches like CPU throttling for power

savings has shown little adverse impact on performance, or in some cases slightly speeds up execution from

reduced contention (Porterfield et al., 2013b; Wang et al., 2015).

In this research, the above two problems have been addressed in the Message Passing Interface

(MPI) (Gropp et al., 1996) runtime from the available avenues shown in Figure 1.2. MPI includes pro-

tocols and semantic specifications for how its features must behave in any implementation. MPI is considered

a de facto standard for communication among processes of a program that run on a distributed memory

system. The following broad considerations have been made in our implementation for MPI:

1. Only pure MPI applications with one process per core are targeted. The techniques presented have not

be validated on hybrid programming models that use other shared-memory paradigms like OpenMP in

addition to MPI (No MPI+X).

2. The runtime policies and framework have been tested and use features specific to Intel processors. Many

of these techniques should be suited for processors from other vendors like IBM, AMD and others.

3. The techniques discussed have not been evaluated on hardware accelerators like Intel Xeon Phi, Field-

programmable gate arrays (FPGAs) or GPUs.

These considerations serve as basis for future work as we move towards exascale computing. Any other

specific assumptions are addressed when relevant.

1.4 Thesis statement

Measurements and controls local to each core in a multi-core system can on average reduce power

consumed by large supercomputing applications at runtime while having little or no adverse impact on

execution times.
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To prove this thesis, we design and evaluate runtime methods that use measurements and controls local to

each core to adapt the power consumption to the workload characteristics. The runtime methods dynamically

identify scenarios exhibiting computational workload imbalance and/or memory-constrained behavior and

improve energy-efficiency both on conventional and power-limited systems. The research in this dissertation

differs from prior work by employing adaptive methods at runtime, and core-specific power controls that

have not been readily applied to the above two scenarios. An adaptive runtime framework (MPI shim

library) transparent to the application consisting of runtime techniques and user options is developed allowing

processors to reduce power with little performance impact. Different core-specific power controls can be

employed separately or combined to enhance effectiveness of the framework. In the view of strict power and

energy budgets to control the operating costs of supercomputer centers in the future, the effect of enforcement

of power limits by external agents on application performance is also studied. For applications with memory

related issues, memory metrics that facilitate lowering of power without adversely impacting performance

are identified.

1.5 Main Results

The goal of this research is to explore and evaluate methods that improve energy efficiency of HPC

applications at runtime. Specifically, the focus is on using core-specific power controls available in recent

processor architectures. The major work and ideas in this dissertation are as follows:

• Dynamic Duty Cycle Modulation in High Performance Computing: DDCM is shown to be an

alternative to save energy, and improve performance in power-capped environments. The fundamental

weaknesses of socket-wide DVFS can be overcome with DDCM as it has a per-core control with lower

overheads allowing fine-grained core-specific clock frequencies. With power limits on a system, slowing

non-critical cores in software is shown to increase the available thermal headroom to the critical core

improving performance.

• Adaptive Core-Specific Runtime (ACR) for Energy Efficiency: The ACR showcased allows proces-

sors with core-specific power control to reduce power with little performance impact by dynamically

adapting core frequencies to workload characteristics. Such a runtime could help alleviate heterogeneous

processor loads that many future exascale applications will likely have. The MPI framework (shim
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library) is transparent to application eliminating any code changes and allows use of multiple power

controls (DDCM, per-core DVFS or both).

• Memory-Metric Policy for Reducing Energy: The presented characterization of HPC applications

identifies a metric that conforms to the memory behavior exhibited by many HPC mini-apps and can be

used to construct dynamic runtime polices improving energy efficiency.

We next summarize the results of the research presented in this thesis:

1.5.1 Dynamic Duty Cycle Modulation in High Performance Computing

On Intel processors before Haswell, Dynamic Voltage and Frequency Scaling (DVFS) affects all cores

of a multi-core processor. Slowing the critical path slows execution. DVFS-centric research has focused

on finding situations where the slowdown is greatly outweighed by the energy savings. Intel also supports

Dynamic Duty Cycle Modulation (DDCM) where the effective frequency of each core can be adjusted nearly

instantaneously by only gating a fraction of the clock cycles to that core. We show DDCM as an alternative

to improve energy-efficiency, and performance in power-capped environments. An adaptive runtime DDCM

policy is developed to reduce power in unbalanced MPI applications (Bhalachandra et al., 2015).

On Sandy Bridge systems, the adaptive DDCM policy for MPI was run on synthetic benchmarks and

mini-apps – miniAMR and graph500 on single and 16-node configurations. DDCM saved up to 13.5%

processor energy on one node and 20.8% (for miniAMR with slowdown of less than 1%) on 16 nodes. By

applying a power cap, DDCM effectively shifts power consumption between cores and improves overall

performance. Performance improvements of 6.0% and 5.6% on one and 16 nodes, respectively, were observed.

Saving energy in power-limited systems is also seen to improve performance.

The policy was then validated with production applications like ADCIRC, WRF and LQCD (Porterfield

et al., 2015). For ADCIRC on 16 nodes, energy savings of over 10% with only a 1-3% slowdown is obtained.

With a power limit of 50W, one version of the policy executes 3% faster while saving 6% in energy, and a

second version executes 1% faster while saving over 10% energy. The effectiveness of DDCM is also shown

for OpenMP by Wang et al., 20152 with savings of 21% in energy and improvement of energy-delay product

(EDP) by 16%. With encouraging results on both shared and non-shared memory as well as production

applications, DDCM is seen to be a viable alternative to achieve energy efficiency in HPC.

2Emphasized citations denote works including me as one of the authors, but not first author
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1.5.2 Adaptive Core-Specific Runtime for Energy Efficiency

With addition of core-specific voltage regulators in Intel Haswell, DVFS can now slow down only

non-critical cores like DDCM. An Adaptive Core-specific Runtime (ACR) that allows processors with

core-specific power control to reduce power with little performance impact by dynamically adapting core

frequencies to workload characteristics is developed. A policy to combine the benefit of larger power

reduction with DVFS owing to reduction in both voltage and frequency, and the ability of DDCM to lower

the frequency beyond the operating range of DVFS is also presented (Bhalachandra et al., 2017a).

This work highlights a generic policy that effectively utilizes core-specific power controls. Our previous

work (Section 1.5.1) aimed only at showing the efficacy of DDCM as an alternative to socket-wide DVFS.

However, the present work offers a context for comparing DDCM (with its simple per-core hardware

implementation and fast switching capability) and DVFS (more complex and costly to implement per-core but

with potential for greater savings), and for showing how and when they can be used together. A transparent

adaptive runtime framework (library) is implemented that throttles frequencies of cores not on the critical

path of an MPI application using either DDCM, per-core DVFS or both.

The framework is validated using six mini-apps (miniAMR, miniFE, CloverLeaf, HPCCG, AMG,

miniGhost), and a real world application, ParaDis. The evaluation shows an overall 20% improvement

in energy efficiency with an average 1% increase in execution time on 32 nodes (1024 cores) using per-core

DVFS. An improvement in energy efficiency of up to 39% is obtained with the real world application

ParaDis through a combination of speedup (11%) and power reduction (31%). The average improvement in

performance seen is a direct result of the reduction in run-to-run variation and running at turbo frequencies.

As Exascale deploys over-provisioned systems that use per core power-limits in day-to-day operations,

energy optimizations will be more important. Runtimes such as ACR will either allow more work to be run at

one time by using less power or allow single applications to be run faster by allowing a higher power cap on

critical cores than non-critical.

1.5.3 Memory-Metric Policy for Reducing Energy

HPC would have been much easier if all the data required could fit in the cache of a processor, but

rarely is this true. For certain classes of applications that heavily utilize the memory sub-system, slowing the

processor speed or related approaches like CPU throttling has shown little impact on performance, with some
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cases showing performance improvement (Wang et al., 2015; Porterfield et al., 2013b). There exists a need

for solutions that can dynamically identify such opportunities. Toward this end, we identify metrics to detect

applications that are constrained by memory and build an adaptive runtime policy using one of these metric

to reduce energy wastage (Bhalachandra et al., 2017b).

We present an experimental memory study on modern CPU architectures, Intel Sandy Bridge and

Haswell, to identify opportunities to reduce CPU frequency. Since the Last Level Cache (LLC) is shared,

each core has to create a request for a particular memory location that is not in its private cache into the

Table of Requests (TOR). Using uncore performance monitoring hardware counters, we identify a metric,

TORo core, that captures all valid requests in TOR. This metric detects bandwidth saturation and increased

latency in the memory system, and is used in a dynamic policy to modulate per-core power controls.

The policy is evaluated when applied at coarse and fine-grained levels on six MPI mini-applications. The

best energy savings with the coarse and fine-grained application of the dynamic policy is 32.1% and 19.5%

respectively with a 2% increase in execution time in both cases. On average, the fine-grained dynamic policy

yields a 1% speedup while the coarse-grained dynamic policy yields a 3% slowdown.

1.6 Thesis Organization

The rest of the dissertation is organized as follows:

• In Chapter 2, the fundamentals of power consumption and control in processor are provided along with

a literature review of the prior energy-efficiency techniques, and existing work in the area of runtime

optimization for energy.

• Chapter 3 introduces the policy for using DDCM in presence of unbalanced workloads. The chapter

discusses the different steps of the technique, provides implementation details, and presents the results

and analysis. It also discusses the results on power-limited systems

• In Chapter 4, the DDCM policy is extended to work with core-specific DVFS. Further, a combined

policy that uses both DDCM and core-specific DVFS is introduced. An adaptive core-specific runtime is

showcased for integrating these policies with user options. It is also shown how optimizing for energy

can improve performance
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• Chapter 5 starts with the memory performance study on modern HPC systems. Next, it discusses the

characterization of memory activity using LLC counters and presents results for dynamic policies using

a LLC metric to reduce power without adversely affecting performance.

• Chapter 6 concludes the thesis and discusses avenues for future work.

12



CHAPTER 2: Background and Previous Research

This chapter provides background information about power and energy consumption and control, and

introduces the tools and techniques used in this dissertation such as metric measurement tools, and energy

control methods. Also, this chapter provides a literature review of the field of Energy Efficient HPC (EEHPC).

2.1 Power consumption in a processor

The power consumption of a modern processor has two key components: static and dynamic (Brooks

et al., 2000; Weste and Harris, 2015).

Ptotal = Pstatic + Pdynamic (2.1)

Static power (Idle power) corresponds to the minimum amount of power that is required to turn on and

run a processor without active computation/load. As a processor is made up of transistors, the static power

dissipation depends on the voltage applied (Vdd) and the leakage current (Ileakage) in the transistors as

Pstatic = Vdd × Ileakage (2.2)

The leakages mainly occur at gates and junctions, with additional subthreshold leakage through OFF

transistors. There is a small amount of static dissipation due to contention current.

When a computation is run on a processor, dynamic power is consumed due to the transistors constantly

switching states. How often the transistors switch state depends on the frequency (f ) at which the processor

operates. While switching states, the transistors with capacitance, C are charged from a 0 to 1 or vice versa

using the supply voltage, V . The dynamic power dissipation is given by

Pdynamic = ACV 2f (2.3)
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A is known as the activity factor, denoting how often the transistors are active. In addition to above, there

is a small contribution of short-circuit power in the circuit towards dynamic consumption.

2.2 Processor power control

In this section, we look at the different power control mechanisms available.

2.2.1 Dynamic Voltage and Frequency Scaling

The processor power consumption as explained in Section 2.1 depends on the operating frequency (f )

and the supply voltage (V ) of the processor. Intuitively, one can control the processor power by controlling

either the V , f or both. For reliable operation at a given frequency f however, there is a minimum voltage

V that is required (varies by chip); making V not readily modifiable during operation without changing f .

Therefore, the power consumption is controlling f and thereby, scaling V . This technique is commonly

referred to as Dynamic Voltage and Frequency Scaling (DVFS).

For controlling power using DVFS on a Linux based system, the acpi-cpufreq or other applicable

kernel modules requiring root privileges need to be loaded with only a limited set of frequency/volt-

age pairs supported. To change or read the supported frequencies thereafter from the /sys/devices/sys-

tem/cpu/cpu*/cpufreq/scaling available frequencies file no root permissions are needed, though the cpufreq

governor needs to be set to userspace. The other governors generally supported are conservative, ondemand,

powersave, and performance Users change the value of frequency by writing the desired frequency value to

the /sys/devices/system/cpu/cpu*/cpufreq/scaling setspeed file. In case hyper-threads are enabled, both the

threads need to be set to the same frequency for the DVFS to take effect.

DVFS has facilitated cubic reduction in the dynamic power dissipation with decrease in f taking

advantage of Dennard scaling (Dennard et al., 1974) in the past. As the V depends on the current f

V ∝ f (2.4)

Using this in Equation 2.3 gives

Pdynamic ∝ f3 (2.5)
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Because of hardware limitations to date, DVFS research has impacted all of the cores on a multi-core

processor and potentially slowed the critical path. Thus, the research has focused on finding situations where

the slowdown is greatly outweighed by the energy savings. Dennard scaling however, is running into limits

as feature sizes and voltages decrease. As transistor sizes decrease, static losses become a significant fraction

of the total power utilized and undermine the power savings, while lower voltages interfere with reliable

operation (Esmaeilzadeh et al., 2011). This makes possible reduction in power using DVFS much lesser than

theoretically possible. The chip-wide effect of DVFS also made effective fine-grain control of performance

difficult. Therefore, there had been a need for core-specific implementation of DVFS.

With the introduction of per-core specific voltage regulators in Intel Haswell (Kurd et al., 2015; Hammar-

lund et al., 2014), DVFS has been made core-specific to facilitate new options for software energy control.

Each physical core (or 2 logical cores if using Hyper-Threading) can be independently controlled allowing

only non-critical threads to have their frequency reduced. Core-specific DVFS is also supported in IBM

Power8 (Fluhr et al., 2014).

2.2.2 Dynamic Duty Cycle Modulation

Dynamic Duty Cycle Modulation (DDCM) has been supported in Intel processors since Pentium as

Software Controlled Clock Modulation, and is core-specific. For each core some percentage of the clock

signals can be gated with rest of the hardware skipping that cycle. Figure 2.1 shows the working of DDCM.

Figure 2.1: Dynamic Duty Cycle Modulation in operation

The top sub-figure shows the normal operation where 100% of the cycles generated by the clock is applied

to the CPU. The bottom half shows one out of four (25%) of clock cycles generated applied to the CPU.
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Power is dissipated in the processor core only during the active cycles. As the clock pulse is the same width

even when few of the cycles are gated, the voltage required remains same to ensure reliable operation. The

power reduction is thus a function of only the number of cycles gated (effective frequency). The stop-clock

duty cycle is controlled with the IA32 CLOCK MODULATION Model Specific Register (MSR) found in

/dev/cpu/cpu*/msr file using rdmsr and wrmsr operations, and requires root access on a Linux system. The

need for root access at application level can be overcome using libraries like msr-safe (Shoga et al., 2014).

The MSR kernel module needs to be loaded however, to make any changes to the MSR file.

Duty Cycle Level Binary Decimal Hexadecimal Effective Frequency
1 10001B 17 11H 6.25%
2 10010B 18 12H 12.50%
3 10011B 19 13H 18.75%
4 10100B 20 14H 25%
5 10101B 21 15H 31.25%
6 10110B 22 16H 37.50%
7 10011B 23 17H 43.75%
8 11000B 24 18H 50%
9 11001B 25 19H 56.25%
10 11010B 26 1AH 63.50%
11 11011B 27 1BH 69.75%
12 11100B 28 1CH 75%
13 11101B 29 1DH 81.25%
14 11110B 30 1EH 87.50%
15 11111B 31 1FH 93.75%
16 00000B 0 00H 100%

Table 2.1: Operational range of Dynamic Duty Cycle Modulation on Intel Sandy Bridge micro-architecture
and beyond. Older versions mostly support only eight levels with a 12.5% transition step.

On the Sandy Bridge architecture, the effective frequency of the clock can be reduced to 1/16th of the

actual frequency. It is controlled by a 4-bit counter which allows clock rates evenly spaced between 6.25%

and 100% (Table 2.1). The hardware implementation could be only a few instructions making the latency

very low. Low latency facilitates dynamic fine-grain use. Since the actual clock rate is not changed, other

hardware options like DVFS and TurboBoost are still operational, and can be combined with duty cycle

modulation.

The duty cycle is set for a single clock domain, normally a single core. The major benefit of DDCM

is that it allows each clock domain to be set to different duty cycle, thus a multi-core processor can have
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different frequencies active on each core. Consequently, a critical thread can run faster than a waiting thread.

Duty cycle modulation does not modify the voltage or the clock for shared regions of the processor. The

energy savings are less than DVFS at the same clock rate, since less of the system is impacted. But, it can

reduce the clock rate down to 6.25% which is much lower than the minimum frequency obtainable with

DVFS.

2.2.3 Power capping

Sandy Bridge and later architectures contain MSR PKG POWER LIMIT in the RAPL Interface

(Section 2.3.1), that sets a hardware enforced power limit for the chip. The hardware enforces an adjustable

chip-wide average power over a given time period and is used to set the power cap (Intel, 2015a). The user

specifies a time window and a maximum average power for that window and the processor guarantees that it

will not exceed this average by distributing the power budget across its cores. Two separate time windows

can be programmed by the user in to the MRS. A higher power could be made available for shorter intervals,

with a lower power limit enforced over longer periods to aid application performance.

The introduction of power capping capability has led researchers (Rountree et al., 2012; Patki et al.,

2013; Sarood et al., 2014) explore the idea of over-provisioning future HPC systems. In an over-provisioned

or power-limited system, for problems that benefit from higher number of processors, power capping could

be used to run nodes at a low power bound allowing more processors to be operated at lower frequencies. For

problems that perform best given a smaller number of faster processors, a smaller number of nodes running

at higher power cap or no cap can be used.

In this work, a constant power limit is enforced across the length of the application run for power-limiting

experiments.

2.2.4 Energy reduction with power controls

In this section, the potential energy reduction obtainable with DVFS and DDCM is discussed.

Figure 2.2 shows variation in the total power consumption of a processor core as the static power

component changes while using DVFS theoretically. When static power component is 100%, DVFS mostly

has no effect. In contrast, when the static power component is 0%, the total power consumption is total

dependent on the frequency set using DVFS and can be observed to change cubically with change in f as V

scales commensurately. The static power component in modern systems constitutes an increasing fraction of
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Figure 2.2: Variation in total power consumption of a processor core as the static power component changes
while using DVFS theoretically

the total power and commonly contributes 10 to 30% or higher in extreme cases (Butts and Sohi, 2000; Goel

and McKee, 2016). Given the contribution of static power to total power, Figure 2.2 gives a basic estimation

of the total energy savings that can be achieved using DVFS. For example, if the static power component is

10% and the frequency is reduced by 10%, using Figure 2.2 the expected total energy consumption is 75.6%

for a total energy reduction of 24.4% with no performance degradation for an application.

As discussed earlier in Section 2.2.1, the practical power reduction achievable with DVFS is at best

quadratic. Figure 2.3 shows the variation in total power consumption of a processor core as the static power

component changes while using DDCM and DVFS for a 2.4GHz processor core running at 1.2V by default.

In comparison to the possible theoretical reduction of 75.6% seen above, reducing the frequency from 2.4GHz

to 2.2GHz (8.3% reduction) gives an expected total energy consumption of 85.8% or reduction of 14.2% with

no performance degradation and static power component as 10%. The reduction in energy consumption for

DDCM is commensurate with the decrease in frequency, wherein a reduction of 12.5% in effective frequency

reduces energy by 12.5%.

It can be seen that the power/energy reduction with DVFS at a particular frequency below default is

much higher than DDCM. Thus, a core-specific implementation of DVFS is better for achieving greater

power reduction within its operation range. DDCM on the other hand has larger operation range and can

reach lower effective frequencies than DVFS at very low latency Experiments carried out on a Sandy Bridge

machine show that the frequency transition latency for DVFS is about 30-40 microseconds and the latency for
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Figure 2.3: Variation in total power consumption of a processor core as the static power component changes
while using DDCM and DVFS

switching between 16 levels of clock modulation is less than 2 microseconds (Wang, 2016). Running at low

frequency can do more harm than good, hence due caution needs to be exercised to avoid severe degradation

of performance that may lead to increase in overall energy consumption of an application. Thus, choosing the

right power control for energy reduction is a function of how fast and low the frequency transitions need to

happen.

2.3 Metrics Measurement

This section takes a look at the various counters available in the Intel processor micro-architecture and

how they can be used to monitor the characteristics of an application during execution.
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2.3.1 Running Average Power Limit

Starting with the Sandy Bridge implementation (Intel, 2015a), Intel extended the X86-64 architecture

with the “Running Average Power Limit” (RAPL) interface. RAPL provides MSRs to measure and control

microprocessor (PKG) energy/power utilization and also memory (DRAM). RAPL includes the MSR PKG -

ENERGY STATUS counter which records the energy since boot in 15.3 nanojoule increments and can be

accessed (read-only) using /dev/cpu/cpu*/msr file through rdmsr operations. It is only 32-bit counter and

rollover occurs frequently, but by counting the number of rollovers a very fine-grained measurement of chip

power can be obtained. It provides the supervisor with energy measurements about 1000 times a second (1

millisecond). Temperature measurements are obtained from IA32 THERM STATUS MSR.

On the Sandy Bridge architecture, our understanding is that the energy measurements are modeled.

Any resulting skew (e.g., difference between measured power and power-limit setting) should be consistent

between runs of the same application. The relative difference between runs should be approximately correct,

even if there is error in the absolute values. This weakness seems to have been overcome with the introduction

of core-specific voltage regulators in the Haswell architecture.

2.3.2 RCRdaemon

Resource Centric Reflection (RCR) daemon (Porterfield et al., 2010), as the name suggests is a daemon

that provides hardware performance counters to any program interested in how a system is performing. It

focuses on counters for resources that are shared by more than one hardware core (e.g. energy consumption

through RAPL, Last Level Cache performance or memory controller usage through Uncore Performance

Monitoring). It can provide access to any counter available through PAPI (Mucci et al., 1999), PERF

EVENTS (Per, 2008), or directly though hardware instructions. To provide access to some of the energy

counters directly, traditionally RCRdaemon runs at root level for supervisor-privilege. This has been overcome

by making RCRdaemon to use msr-safe (Shoga et al., 2014) to read counters that require root permissions.

The RCRdaemon information is available to the programmer through a simple API that delineates a code

region for measurement with a start and end call.

RCRdaemon writes the values into a shared memory region that can be shared with any other running

application. To access the region the application only needs shm open a file in /dev/shm. The shared memory

region contains no pointers and access to it (after the first access) is accomplished with simple volatile loads
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and stores. The counters tracked in the shared memory region is configured during RCRdaemon initialization

and can be modified during daemon startup.

2.3.3 Effect of temperature on energy measurement

Temperature has a major effect on power used. Previous study (Porterfield et al., 2013a) has shown

energy variation between nodes of an homogeneous cluster can be 10%. Also, power and time variations

between consecutive executions of the same application can vary by 2+%. The runs on ‘cold’ processors can

use up to 10% less energy compared to later runs with equivalent execution times. On several of the compute

nodes used in the study, lower temperature correlated with reduced energy usage. Whether a cause or effect,

hardware that is kept cooler uses less energy. To avoid energy variation with temperature, our experiments

ignore results from the first several minutes until the system temperature is stable. Further, the values reported

are generally averages taken over 10–12 runs.

2.4 Transparent monitoring and control of application

To facilitate transparent monitoring and control of applications the MPI profiling interface (PMPI) is used.

MPI Init and MPI Finalize calls are intercepted to setup and clean the infrastructure. The MPI Init

starts the RCRdaemon to acquire program execution metrics like the power, energy, time, temperature among

many others. While the MPI Finalize call prints the profiling results and resets any power controls used

during execution.

In typical use, calipers are placed around a region to be measured or controlled allowing instrumentations

to be inserted. The region can be as large as the entire application, or as small as between two successive

MPI calls. This strategy we will see is very useful in implementing the various energy policies discussed in

the next chapters.

2.5 Applications

A number of Department of Energy (DOE) MPI mini-apps, and other real world applications were

selected to simulate variety types of loads on HPC systems as required by this dissertation. This section

provides a brief summary of the applications that were used in multiple works, other applications specific to a

particular work or changes in the specific used for below applications are discussed in relevant chapters. It
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can be noted that the problem sizes chosen are small, which is to facilitate multiple runs of the applications

for arriving at average values and other statistics.

2.5.0.1 miniFE

miniFE is intended to be the best approximation to an unstructured implicit finite-element application

that includes all important computational phases. The problem size on 32 nodes is 225x375x525 with

‘load imbalance’ factor set at 100 to exploit maximum load imbalance that the application can present. The

load imbalance however is much lower in actual operation.

2.5.0.2 miniGhost

miniGhost simulates highly structured stencil operations. It executes the halo exchange pattern important

in structured and block-structured explicit applications. A problem size of 30x30x30 is spread across 1024

cores with 16, 8 and 8 cores along the three axes.

2.5.0.3 miniAMR

miniAMR does a stencil calculation on a unit cube computational domain and can emulate the interaction

of different bodies in space. It uses Adaptive Mesh Refinement to better model the edges of the moving

bodies. A test case of a sphere moving diagonally along 1024 cores with 16, 8, 8 cores along x, y and z

directions is used. It runs for 10 time steps.

2.5.0.4 CloverLeaf

CloverLeaf investigates the behavior and responses of materials when applied with varying levels of

stress using a two-dimensional Eulerian formulation. The input used is the provided “clover bm512 short.in”

and corresponds to a rectangular geometry of dimension 5.0x2.0 consisting of 30720 and 15360 cells along x

and y axes respectively.

2.5.0.5 HPCCG

HPCCG is another approximation to an unstructured implicit finite but generates a synthetic linear

system. The focus is entirely on the sparse iterative solver. The chosen problem size is 90x120x150.
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2.5.0.6 AMG

AMG is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured

grids. The problem consists of a 27-point stencil on a cube with size 60x60x60. The processor topology is 16,

8, 8 cores along x, y and z direction respectively, and uses PCG with diagonal scaling as its solver for 1024

cores experiments.

2.6 Related Work

Energy efficient computing research in software fundamentally involves characterization of power/energy

consumption of applications, architectures and infrastructure with an intent to design novel methods that

promote optimal utilization of computational components at all levels of hierarchy. The mismatch between

the workload and the resources mainly is due to current trend of using general purpose components to build

the supercomputer. An important reason for using general purpose components apart from economics is

to cater to a broad range of computational patterns characteristic to HPC applications. Table 2.2 attempts

to classify the broad problems with their solutions that have been of interest to previous researchers doing

power-aware or energy-efficient computing in HPC or general area of computing. The next few sections

provide a brief survey of previous work. Finally, key distinctions of our work are summarized.

2.6.1 Computation work-load imbalance

Computational workload imbalance arises from uneven distribution work between the cores while running

an application. The uneven distribution could be inherent to the nature of computation (e.g. sparse matrix)

or due to poor coding practice. A few works aimed at detecting workload imbalance in applications and

reducing power are discussed below.

Freeh and Lowenthal 2005 present a framework that uses Dynamic Voltage and Frequency Scaling

(DVFS) for running a single application with several frequency-voltage settings. A program is divided into

phases and then a series of experiments is executed, with each phase assigned a prescribed frequency. A

significant potential is shown for energy savings in HPC applications without an undue increase in execution

time. This basic idea is pursued by the authors further in the next couple of investigations.

Kappiah et al. 2005 introduce a system called “Jitter” that reduces frequency on nodes that are assigned

less computation and therefore have slack time. The attempt is to ensure that nodes arrive “just in time” so
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that the overall execution time does not increase. As the work focusses on HPC applications, they assume

iterative problems allowing the use of past behavior to predict future behavior.

Hsu and Feng 2005 provide the β-adaptation algorithm. This power-aware algorithm is implemented

in the run-time system, and the performance is evaluated on commodity HPC platforms, both uniprocessor

(SPEC CFP95 & CPU2000) and multiprocessor (NAS MPI benchmarks). The maximum allowed performance

slowdown δ (e.g., δ = 5%) is specified by the user, and the algorithm uses DVFS to schedule CPU frequencies

and voltages in such a way that the actual performance slowdown does not exceed the threshold value. No

application-specific information a priori, e.g., profiling information is required making it transparent to the

end-user applications.

Ge et al. 2005 present a study analyzing the tradeoffs of various DVFS scheduling techniques that

exploit CPU slack time in distributed systems. A framework for application-level power measurement

and optimization is proposed that implements distributed DVFS scheduling on power-aware clusters. The

techniques used are largely manual and they remark that more work is needed to fully automate their process.

Kimura et al. 2006 showcase a toolkit called PowerWatch for power monitoring tools and DVFS control.

A new energy reduction algorithm targets parallel programs that can be represented by DAG to reclaim slack

using DVFS. They report empirical results for their new algorithm on real power-scalable clusters, a contrast

from the simulated results presented in competing studies.

Ge et al. 2007 present a run-time system called CPU MISER and an integrated performance model. The

runtime is application-independent and uses DVFS for target computational workload imbalance. Several

types of inefficient phases are exploited including memory accesses, I/O accesses and system idle. The

evaluation is carried out on the NAS parallel benchmarks.

Rountree et al. 2009 propose Adagio, a runtime that uses DVFS to slow down computation that is not on

an applications critical path thereby reclaiming slack. Each task (period of computation between two MPI

calls) is associated with a behavior to predict the time taken by the next task.

Tiwari et al. 2012 develop an application-aware analysis and runtime framework for job scheduling

called Green Queue. It utilizes application behavior from intra-node and inter-node observations to churn

out energy efficient runtime configurations using DVFS. The observations are obtained by instrumenting the

application for data movement and MPI communication trace collection.

Most of the above works use DVFS with socket-wide effect as the control to reduce power. The socket-

wide nature of DVFS is seen to sometimes increase the execution times greatly, making the researchers
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consider scenarios where the large reduction in power outweighs the increase in time to show improvement

in energy. The empirical software policies targeting computational workload imbalance discussed in this

dissertation are similar to the intra-node methods discussed in above works, but focuses on measurements

and controls at a local and not socket level. This makes the solution to scale well even on large systems with

little impact on performance. Also, several of the above studies need application instrumentation for trace

collection that is not required in case of the policies discussed in this thesis. In addition to using DVFS and

DDCM separately, a policy to use them together is also demonstrated that shows further improvement in the

energy reduction.

2.6.2 Waiting for a resource, mostly memory

HPC applications need access to memory often, and sometimes even I/O. Given the slowness of memory

when compared to CPU, the data can take very long to reach CPU and the power is wasted. These memory

operations are seldom visible to operating system (OS), making it difficult for the hardware circuitry to stall

(or switch off) cores and reduce power while doing memory. The research below try to identify memory

bottlenecks and reduce power.

Huang and Feng 2009 propose a systems-software approach that leverages accurate workload char-

acterization through hardware performance counters guiding DVFS to improve power efficiency without

degrading performance. The power-aware daemon called ‘ecod’ presented uses CPU stall cycles due to

off-chip activities and does not require application-specific information a priori. The evaluation is carried out

for SPEC CPU2000 and NAS Parallel Benchmarks.

Eyerman and Eeckhout 2011 show that coarse-grained DVFS is unaffected by timescale and scaling speed.

They further suggest that fine-grained DVFS may lead to substantial energy savings for memory-intensive

workloads. They propose a DVFS implementation based on mechanistic performance modeling utilizing

on-chip regulators to record off-chip memory accesses with small performance penalty.

Livingston et al. 2014 present Runtime Energy Saving Technology (REST) that utilizes DVFS at runtime

without prior knowledge. REST includes a memory versus non-memory phase detection system on two

different Xeon architectures. The work also studies energy consumption on modern architectures using NAS

and SPEC benchmark suites.

Wang et al. 2015 show that socket-wide DVFS has a high power state switching (frequency transition)

overhead, preventing its use when a more fine-grained technique is necessary. They take advantage of the low
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transition overhead of CPU clock modulation (DDCM) and apply it to fine-grained OpenMP parallel loops.

They use memory access density to determining the right clock modulation setting and thread configuration

for loops based.

Even while addressing memory bottlenecks, mostly socket-wide DVFS has been used to develop coarse-

grain solutions that may suffer from the pitfalls of DVFS socket-wide effect. Some approaches use static

analysis and may not always be flexible to adapt to dynamic changes. The memory metric policies presented

in Chapter 5 are core-specific in nature and make decisions at runtime using measurements local to the

core. They do not adversely impact performance whether computer or memory-bound, but lower energy if

memory-bound. The metric identified detects bandwidth saturation and increased latency in the memory

system.

2.6.3 Optimal resource utilization

Research focusing on optimal resource utilization generally put a constraint on an available resource

and optimize the application to perform best within this constraint. The two major methods utilized are

concurrency throttling and operating under a power budget. In concurrency throttling, the number of threads

available to an application is restricted and the power corresponding to the idle threads is reclaimed. While

operating under a power budget, nodes in a power-limited HPC system are forced to operate below the

Thermal Design Power (TDP) thereby freeing up power to run more number of nodes than what is normally

possible running the nodes at peak power. The research here mostly involves allocation of the available power

budget wisely to improve the performance of the running application. There are also few works that discuss

actively switching off computational components to reduce power.

2.6.3.1 Concurrency throttling

Curtis-Maury et al. 2006 present a user-level library framework for online adaptation of multi-threaded

codes for low-power using hardware event-driven profiling and changing the processors/threads configuration

as the program executes. The framework is implemented for OpenMP programs on multi-SMT system with

Intel Hyperthreaded processors.

Curtis-Maury et al. 2008 combine multivariate regression techniques with data collected from hardware

event counters to present a dynamic, phase-aware performance prediction model (DPAPP) for locating optimal
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operating points of concurrency. The overhead of searching the optimization space for power-performance

efficiency is reduced by using a prediction-driven runtime optimization scheme.

Li et al. 2010 present a system that uses both DVFS and Dynamic Concurrency Dynamic Concurrency

Throttling (DCT) to improve energy efficiency. The implicit penalty of concurrency throttling on last-level

cache misses is overcome by aggregating OpenMP phases using the proposed DCT algorithm. A power-aware

performance prediction model is used for power-efficient execution of realistic applications from the ASC

Sequoia and NPB MZ benchmarks.

Porterfield et al. 2013b reveal substantial variations exist in energy usage depending on the algorithm,

the compiler, the optimization level, the number of threads, and even the temperature of the chip. They show

that performance increases and energy usage decreases as more threads are used. However, for programs

with sub-linear speedup, minimal energy usage often occurs at a lower thread count than peak performance.

They design and implement an adaptive run time system that automatically throttles concurrency using data

measured on-line from hardware performance counters.

2.6.3.2 Operating under a power limit

Rountree et al. 2012 evaluate the power capping capability in Intel Sandy Bridge micro-architecture in

the HPC environment detailing opportunities and potential pitfalls. Their experiments with single-processor

instances of several of the NAS Parallel Benchmarks show that manufacturing variation in processor power

efficiency translates into variation in performance under a power cap.

Patki et al. 2013 demonstrate a policy to improve performance in over-provisioned systems using

intelligent hardware-enforced power bounds. For several standard benchmarks they show that the optimal

configuration depends on its parallel efficiency and memory intensity for a particular power cap.

Sarood et al. 2013 use power capping to improve execution time of an application by adding more nodes.

The strong scaling of an application is profiled while using different power caps for both CPU and memory

subsystems. The application profile is then used in an interpolation scheme to optimize the number of nodes

and the distribution of power between CPU and memory subsystems to minimize execution time under a

strict power budget.

Marathe et al. 2015 introduce an intelligent run-time system called Conductor to maximize performance

under a power budget. Optimal thread concurrency level along with the required DVFS frequency is obtained
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by exploring the configuration space such that it maximizes performance. Further, additional power is made

available to predicted critical paths using adaptive power balancing.

Gholkar et al. 2016 overcome sub-optimal performance seen in power capped jobs arising from perfor-

mance variation of identical processors using a two-level hierarchical variation-aware approach. At system

level, the power available is partitioned across all the jobs without violating the power budget (PPartition).

Thereafter, the optimal processor count and package power level is determined for a particular job taking into

account processor performance variation to maximize performance under power budget (PTune).

2.6.3.3 Switching off components

Youssef et al. 2006 present a dynamic approach that has a better accuracy predicting the length of the

sleep period with minimal power overhead aimed to reduce leakage power in processors. They maximize

leakage savings by applying the sleep signal when it is most likely for the functional unit to stay idle long

enough for the power savings to exceed the power overhead introduced by the application of the sleep signal.

The proposed dynamic approach uses an instruction level analysis of the utilization of the functional units.

Leverich et al. 2009 propose per-core power gating (PCPG) as an additional power management knob

apart from DVFS for datacenter workloads that exhibit load variability on a different time-scale than programs

from conventional benchmark suites (e.g. SPEC CPU, MiBench). As PCPG has the ability to cut the voltage

supply to selected cores, the leakage power for the gated cores is reduced to almost zero.

It has to be noted that datcenters also shut down entire computing racks during periods of low activity to

save energy. This is in contrast to a supercomputer that is based on the principles of high availability where

entire computing nodes/racks are switched off mostly during periods of maintenance and other unavoidable

circumstances.

2.6.3.4 Sub-section summary

The idea of overprovisioning (operating under a power limit) is being explored aggressively, and future

supercomputers may be power limited. The DDCM policy in Chapter 3 is shown to improve performance

under a power limit. Since energy and power are being reduced by the policy, the hardware does not have

to squeeze the chip quite as hard to stay below the limit. This allows the whole chip to run slightly faster.

In effect, the policy is allowing power to be moved from the cores that do not need it to cores that do. The

tent-pole thread runs faster. For a system that is not power-limited, when the frequency on the non-critical
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cores is very low, the critical core can run faster with the additional available thermal headroom at turbo

frequencies. The memory policies too improve performance slightly in certain cases mostly due to mitigation

of resource contention.

2.6.4 Communication

The power used by the network in supercomputers is a considerable part of the total dissipation. Several

works therefore analyze the power dissipation during communication operations and attempt to reduce the

power consumption. As the CPU is generally idle during communication phase of an application there have

been attempts to reduce CPU power using socket-wide DVFS or halt instructions.

Kandalla et al. 2010 use DVFS and CPU throttling on Intel Nehalem micro-architecture to reduce power

during the communication phases of MPI applications. A theoretical model analyzes the power consumption

characteristics of communication operations in generic work-loads and several optimized collective algorithms

are presented. The evaluation is done using NAS benchmark and CPMD.

Vishnu et al. 2010 present Power Aware one-sided Communication Library (PASCoL) using Aggregate

Remote Memory Copy Interface (ARMCI), the communication runtime system of Global Arrays, a Partitioned

Global Address Space (PGAS) model. The impact of DVFS and a combination of interrupt (blocking)/polling

based mechanisms is studied using communication primitives. The evaluation is done with synthetic

benchmarks using an InfiniBand cluster.

Sundriyal and Sosonkina 2011 study all-to-all operation in MPI on per-call basis. They incorporate

energy saving strategies within the existing all-to-all algorithms as the MPI Alltoall collective in MVAPICH2

without modifying the standard algorithms used to perform this operation. They test this implementation on

the OSU MPI benchmark as well as NAS and CPMD application benchmarks.

Hoefler and Moor 2014 analyze the tradeoffs between energy, memory, and runtime of different algo-

rithms that implement collective operation in shared and distributed memory parallel applications. They show

no known algorithm is optimal in addressing all of the three metrics and different algorithms can be the most

optimal for a particular chosen metric.

Venkatesh et al. 2015 present Energy Aware MPI (EAM) – an application-oblivious energy-efficient MPI

runtime using MVAPICH2. EAM uses a combination of communication models for common MPI primitives

along with online monitoring of slack to maximize energy efficiency within performance degradation limits.

They evaluate their runtime on ten applications using up to 4,096 processes on an InfiniBand cluster.
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The works discussed above use socket-wide DVFS or halt instructions to reduced power during com-

munication. The policies in the current research do not explicitly account for communication, but the

communication time is considered to be a part of the collective waiting time. A few of the works discussed

above make use of synthetic benchmarks like NAS that are not always representative of the actual HPC work-

loads. Some works use static models that may not always be accurate in dynamic changing heterogeneous

environments. The policies discussed in this work use dynamic methods and are evaluated using HPC mini

and full applications on HPC systems with and without power limits.

2.6.5 Resource aware scheduling

The works addressing resource (power) aware scheduling use socket-wide DVFS or power cap to control

power assigned at a job level. These are mostly coarse-grained solutions applied to several known job

schedulers.

Fan et al. 2007 present aggregate power usage characteristics of up to 15 thousand servers for different

classes of applications over a period of approximately six months. The opportunities for maximizing the use

of the deployed power capacity of datacenters and assess the risks of over-subscribing are evaluated. The

evaluation shows 7 - 16% gap between achieved and theoretical aggregate peak power usage for well-tuned

applications. With the observation that the energy/power savaing opportunities are greater at the cluster-level

(thousands of servers) than at the rack-level (tens), they use their modeling framework to estimate the potential

of power management schemes.

Etinski et al. 2010a showcase a power budget guided job scheduling policy that maximizes overall job

performance for a given power budget. When DVFS is used under a power constraint, it is seen that more

jobs can run simultaneously leading to shorter wait times improving performance. The DVFS frequency

chosen for a job is dependent on instantaneous power consumption of the system and on the job’s predicted

performance. The evaluation is done on four workload traces from systems in production use with up to 4008

processors.

Etinski et al. 2010b introduce UPAS (Utilization driven Power-Aware parallel job Scheduler) on DVFS

enabled clusters. A frequency assignment algorithm that uses DVFS is integrated into the EASY backfilling

job scheduling policy. To avoid performance degradation, DVFS is applied only when system utilization is

below a certain threshold to exploit periods of low system activity. They simulate five workload traces from

systems in production use with up to 9216 processors for evaluation.
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Etinski et al. 2012 demonstrate MaxJobPerf, a parallel job scheduling policy based on integer linear

programming where optimization problem determines the DVFS frequency for a job. They also compare

MaxJobPerf policy against other power budgeting policies for different power budgets, and provide a detailed

analysis of the policy parameters including a discussion on how to manage job reservations to avoid job

starvation.

Mämmelä et al. 2012 present an energy-aware scheduler for HPC data center that communicates with the

resource management system. The scheduler tries to minimize the number of active servers of a system while

still satisfying incoming application requests through changes made to the FIFO and Backfill First/Best Fit

(E-FIFO and E-BFF/E-BBF) scheduling algorithms. The scheduler is evaluated with a simulation model and

a real-world HPC testbed.

Sarood et al. 2014 propose an online resource manager called PARM that uses overprovisioning, power

capping and job malleability along with the power-response characteristics of each job for scheduling and

resource allocation decisions. A power aware strong scaling (PASS) performance model estimates application

performance for a given number of nodes and CPU power cap. The resource manager is compared with

SLURM scheduler on a 38 node cluster with two different job data sets.

The solutions discussed above mostly address power allocation up to node level. The power management

at individual threads is not generally covered. All the policies presented in our work are intra-node and

address fine grain power management across the cores.

2.6.6 Analysis, profiling and surveys

This section mostly consists of works that profile applications or architecture specific surveys with an

emphasis on power/energy.

Feng et al. 2005 present a framework for direct and automatic profiling of power consumption for non-

interactive, parallel scientific applications. Power-performance efficiency of the NAS parallel benchmarks

is studied on a 32-node Beowulf cluster to generate profiles by component, node and system scale. They

observe that power profiles are often regular corresponding to application characteristics and for fixed problem

size increasing the number of nodes always increases energy consumption but does not always improve

performance.

Kamil et al. 2008 provide power measurements for various computational loads on large scale HPC

systems. They observe that the power consumed while running the High Performance Linpack (HPL)
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benchmark is very close to the power consumed by any subset of a typical compute-intensive scientific

workload. Further, they show that the power consumed by smaller subsets of the system can be projected

accurately to estimate the power consumption of the full system as the difference in power usage due to

switch fabric is not large.

David et al. 2010 present a comprehensive definition and evaluation of memory power estimation

and limiting algorithm that significantly improves sensing accuracy, power limit enforcement and system

performance. They discuss a mechanism for measuring DIMM power using a set of observable activity

variables that share a tight correlation to the power consumption. Furthermore, they describe and evaluate the

Running Average Power Limiting (RAPL) scheme for memory sub-system that can simultaneously enforce

multiple memory power limits.

Hackenberg et al. 2015 cover a broad range of details and low-level benchmarks to provide researchers

with fundamental understanding about the Intel Haswell processor generation. They analyze the impact of

newly introduced features in Haswell on energy efficiency optimization strategies that use DVFS and DCT.

2.6.7 Summary

Most power aware computing research discussed has centered around DVFS that had a socket-wide

effect used either inter-node (Kappiah et al. 2005, Rountree et al. 2009) or intra-node methods (Ge et al.

2005, Freeh and Lowenthal 2005). Computational workloads have been analyzed to propose ways to save

power (Feng et al. 2005, Kamil et al. 2008). Models to amortize the effect of uneven work distribution

through slack reclamation have been proposed (Kimura et al. 2006, Kappiah et al. 2005, Kang and Ranka

2010). Green Queue (Tiwari et al. 2012) automates the process of finding phases and optimal frequencies

using power models. Automatic tuning of applications based on software performance options and processor

clock frequency has also been explored (Rahman et al. 2012). The empirical software policy we present is

similar to the intra-node models, but focuses on individual core (not socket) performance. The use of per-core

DVFS and its combination with DDCM in the current dissertation is a departure from state of art solutions on

architectures older than Haswell.

Moving beyond DVFS, duty cycle modulation (Porterfield et al. 2013a), power capping (Rountree et al.

2012) along with similar mechanisms on IBM Power 6 and 7 (capping) and AMD Bulldozer (amd 2012)

(capping and thermal design power limits) have been explored. These solution have focused on specifically

a single power control to improve energy-efficiency. Our runtime provides the flexibility of using multiple
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core-specific power controls to save energy. Use of DDCM and DVFS together is shown to enhance energy

reduction.

Applications have been profiled to determine the best configuration of nodes and power caps for

overprovisioned systems (Patki et al. 2013, Sarood et al. 2013). Resource allocation schedulers that use

overprovisioning incorporating power-response characteristics of each job along with power cap are being

explored (Sarood et al. 2014). The use of core-specific power control is shown to improve performance with

energy savings in such overprovisioned systems, or significantly reduce power (decreasing energy) without a

power cap and may also improve performance by allowing the critical core to run at turbo frequencies.

There has been considerable amount of research to design energy-efficient runtimes oblivious to the

running application (Venkatesh et al. 2015). These are aimed at alleviating the problems caused by system

factors (OS noise, congestion) for runtimes that assume temporal patterns, and also to handle dynamic

workloads. The runtime presented does assume temporal patterns, but we show that an adaptive solution is

effective on par with premptive methods in handling dynamic conditions well.

A number of efforts use hardware performance counters (Snowdon et al. 2009, Choi et al. 2004, Lively

et al. 2012) to compute optimal off-line settings. Several projects estimate energy usage based on hardware

counters with direct correlation to cache access (Ge et al. 2007), MIPS (Hsu and Feng 2005) and CPU

stall cycles (Huang and Feng 2009). The runtime policy targeting workload imbalance does not make use

of any hardware performance counters and only makes lightweight dynamic adjustments to each core’s

individual clock frequency. Further, a number of studies show simulated results or use simple benchmarks

that many a times do not accurately model the behavior of actual HPC applications. Standard benchmarks

(mini applications) or full HPC applications are used in our evaluation.

While addressing memory bottlenecks, mostly chip-wide DVFS has been used to develop coarse-grain

solutions that may suffer from the pitfalls of DVFS chip-wide effect. System-software approach that leverages

accurate workload characterization via a unique synthesis of hardware performance counters in order to

determine when and how to use DVFS to improve power efficiency while strictly maintaining performance

has been proposed (Huang and Feng 2009). A fine-grained microarchitecture-driven DVFS mechanism that

scales down voltage and frequency upon individual off-chip memory accesses using on-chip regulators is

proposed in (Eyerman and Eeckhout 2011). Runtime Energy Saving Technology (REST) (Livingston et al.

2014) utilizes DVFS to modify frequencies of cores at runtime without prior knowledge using memory versus

non-memory phase detection system on Xeon architectures. Some approaches use static analysis and may not
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always be flexible to adapt to dynamic changes. The memory policies in this dissertation use the TORo core

metric at runtime and do not adversely impact performance, but save energy for memory-bound applications.

The adjustments are made using local measurement at the core level.
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CHAPTER 3: Using Dynamic Duty Cycle Modulation to improve Energy Efficiency

3.1 Introduction

Most research to regulate energy and performance in HPC has revolved around Dynamic Voltage and

Frequency Scaling (DVFS) (Kimura et al. 2006, Kappiah et al. 2005, Rountree et al. 2009). DVFS is not used

in production HPC because it is difficult to find applications where slowing the entire multi-core processor

does not result in noticeable slowdowns. Until recently1, DVFS has only allowed frequency and voltage

changes that impacted all of the cores of a multi-core processor. Slowing the critical path slows execution.

Thus, DVFS-centric research has focused on finding situations where the slowdown is greatly outweighed

by the energy savings. This chip-wide effect limits the effectiveness of DVFS to be used for fine grained

control. The use of DVFS also restricts access to higher turbo frequencies. This can save energy but slows

applications, a side-effect unacceptable for most HPC systems.

Intel, as earlier discussed in Section 2.2.2, also supports Dynamic Duty Cycle Modulation (DDCM) in

which the effective frequency of each core can be adjusted nearly instantaneously by only gating a fraction

of the clock cycles to that core. This improved control allows DDCM to save power more effectively for

imbalanced applications. With power-limits in place, the hardware can provide more power to the critical

thread, improving overall performance. Changing the clock frequency with DDCM as discussed requires

less work (and time) than with DVFS, since the voltage regulators are unaffected. DVFS does save more

power at the same frequency, but as the operating voltage approaches the minimum voltage this advantage

is shrinking (Esmaeilzadeh et al. 2011). The use of DDCM for energy conservation in HPC has not been

heavily studied.

The major work and ideas presented in this chapter are:

• Using Dynamic Duty Cycle Modulation as an alternative to save energy and improve performance in

power-capped environments.

1Intel Haswell architecture has introduced core specific voltage regulators that allow per core frequency control.
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• An empirical runtime policy that uses DDCM to save energy in imbalanced MPI applications.

• Validation of the policy using a synthetic benchmark suite (RENCI Imbalance) and two mini-apps,

miniAMR and graph500.

• The impact of node heterogeneity on DDCM use is investigated by running the policy on a machine with

a different configuration from the testbed but same underlying architecture.

3.2 Dynamic Duty Cycle Modulation in HPC

DDCM has been supported in Intel processors since the Pentium era. In this section only the salient

features of DDCM facilitating its use in HPC are highlighted, a more detail description can be found in

Section 2.2.2. The major benefit of DDCM is that it allows each clock domain to be set to a different duty

cycle, thus a multi-core processor can have different effective frequencies active on each core. Consequently,

a critical thread can run faster than a waiting thread. Duty cycle modulation does not modify the voltage

or the clock for shared regions of the processor. The energy savings are less than DVFS at the same clock

rate. But, it can reduce the clock rate down to 6.25%, which is much lower than the minimum frequency

obtainable with DVFS. Since the actual clock rate is not changed, other hardware options like DVFS and

TurboBoost are still operational, and can be combined with duty cycle modulation.

3.3 RENCI Workload Imbalance micro-benchmarks

MPI applications that run on multi-core CPUs eventually hit a collective where all of the threads join

and thus have multiple phases. The work distribution among the cores across phases can be fixed or vary.

To explore the potential of DDCM-based energy saving techniques, a benchmark explicitly designed to be

near best cases is used. In “Repeating Unequal” benchmark, each MPI process is a simple summation loop

followed by a MPI barrier as shown in the code snippet below.

chunk = rank % coresPerNode;

for(i = 0; i < REPEAT; i++)

{

result = 0;

for(j = 0; j < chunk * SCALE; j++)

{

result += j;

}
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MPI_Barrier(MPI_COMM_WORLD);

}

Work is the same on every node, and within each node the same imbalances exist. The largest rank on

each node does the most work and determines the execution time. Any slowdown of that thread increases

execution time. “Repeating Unequal” was executed twice, once standalone and then with manually added

optimal DDCM settings2. DDCM saved 22.2% in power and increased execution time by 0.14% for a net

energy improvement of 22.1%. The potential savings are intriguing.

The next benchmark, “Equally Shifting Load”, implements a dynamic workload loosely resembling

an Adaptive mesh refinement (AMR) code. The work increases each iteration until the maximum allowed

is reached, at which point it is reset. Where “Repeating Unequal” energy can be minimized with a static

clock frequency, “Equally Shifting Load” requires a dynamic solution, since each thread’s preferred clock

frequency changes each iteration. AMR applications’ work will change over time although maybe not every

iteration.

for(i = 0; i < REPEAT; i++)

{

chunk = ((rank % coresPerNode) + i) % coresPerNode;

for(j = 0; j < chunk * SCALE; j++)

{

result += j;

}

MPI_Barrier(MPI_COMM_WORLD);

}

In most AMR applications work can both grow and shrink over time. “Randomly shifting load” attempts

to model this by allowing random changes in work either up or down each iteration. Where the previous

micro-benchmarks work patterns are statically computable. The uncertainty in “Randomly shifting load”

better expresses the performance variations that any dynamic policy must take into account.

srand(rank % coresPerNode);

for(i = 0; i < REPEAT; i++)

{

randomValue = rand()% 3 - 1;

chunk = (chunk + randomValue) % coresPerNode;

if(chunk < 0)

{

2The DDCM is manually computed, to have each thread arrive at the barrier with as little waiting time as possible.
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chunk = 0;

}

for(j = 0; j < chunk * SCALE; j++)

{

result += j;

}

MPI_Barrier(MPI_COMM_WORLD);

}

For our experiment the load changes in the interval {−1, 0, 1}. For generic imbalance loads, DDCM can save

significant power and energy with almost no impact on performance. Going through by hand and computing

the “best” dynamic effective clock frequency is not feasible in practice. A policy is needed that can examine

local system state and predict the proper duty cycle level to use for the next application region. We next

arrive at a policy for reducing power empirically by applying an intuitive approach based on retrospective

information, when an MPI collective is executed. The idea is that if a processor reaches the collective

earlier than others, then we should slow it down (or speed up if it arrives late), so that on the next collective

processors will more likely reach the collective at the same time.

Section 3.6.1 discusses the results obtained for the synthetic benchmarks with the policy in detail.

3.4 The policy

Hardware and software are evolving to increase performance variation between threads. Algorithm,

compiler optimizations, number of threads and data locality impact performance and energy usage (Porterfield

et al. 2013b). Physical variations during fabrication result in energy/performance differences during execution

between otherwise identical processors (Rountree et al. 2012, Dighe et al. 2011). Our goal is to detect thread

workload imbalances and automate the process of picking the right duty cycle level for the next application

region.

The policy analyzes the time spent at and between collectives to determine when and how much a thread

can be slowed down without impacting performance. It assumes that the next segment will match the current

segment and determines the new DDCM setting. The policy chooses the lowest (slowest) setting that would

have reached the collective without causing any additional delay. A thread doing more work will run at a

higher duty cycle than the one doing less work. Optimally, all threads reach the next collective at almost the

same time (Figure 3.1).
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Figure 3.1: (left) Each MPI process in an MPI application is observed to complete its phase i in a fraction of
the time in which all processes reach the barrier at the end of phase i. The runtime uses this fraction to adjust
the duty cycle for each process in phase i+ 1, according to eqns (1) and (2). (right) If the work per process is
similar in phase i+ 1, the completion times will be more nearly equal, energy will be saved and perhaps time
will be decreased.

The policy uses two equations - one to decrease the duty cycle level of a core and the other to increase it.

The equation to decrease the duty cycle level of a core is

Ldown =
Tcompute

Ttotal
∗ Cmax

Ccurrent
(3.1)

• Tcompute & Ttotal - time computing and total time since the last collective

• Cmax & Cmin - maximum (100%) and minimum (6.25%) duty cycle setting

• Ccurrent - duty cycle setting during last region

• Ldown & Lup - number of levels by which the duty cycle should decrease and increase

It is a simple policy for computing the amount of slowdown required, but it does take into account the

previous clock rate to prevent overly aggressive clock frequency reductions. The mapping of levels to duty

cycle as used in the policy is shown in Table 3.1. The maximum duty cycle of 100% is mapped to level 16,

while the lowest level (1) maps to a duty cycle value of 6.25%.

To handle real AMR-like applications, the policy needs to not only be able to reduce the clock rate,

but must also be able to increase the clock rate to prevent the thread from being last to the collective. The

idea is to provide breathing room to prevent threads running at less than maximum clock rate from slowing

an application. One alternative is to always increase to max or to make it equal to Tcompute

Ttotal
, which would

waste energy and could cause undue frequency oscillations. Another alternative is to always increase by one
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Level Duty Cycle (%)
1 6.25
2 12.5
3 18.75
4 25
5 31.25
6 37.5
7 43.75
8 50
9 56.25
10 62.5
11 68.75
12 75
13 81.25
14 87.5
15 93.75
16 100

Table 3.1: Mapping of levels to duty cycle as used in the DDCM policy

level, but that would respond slowly to changing conditions and increase execution time. Our approach is to

compare the wait time with minimum wait time and increase more if the thread might have been the last to

arrive.

Lup =
Tcompute

Ttotal
∗ Cmin

Ccurrent
(3.2)

To better understand how these equations are used, consider the following scenario. When the application

starts Ccurrent is set to Cmax (i.e. all threads start at full clock frequency). At the first collective, if a thread

is one of the last to arrive (Tcompute ' Ttotal), then Ldown ' 1 and the current clock frequency is left

unchanged. At a later time, the thread may have significantly less work to do than the other threads and

would wait at the collective for a significant amount of time. If Ldown = 0.8681, it shows that the thread was

running a little over 13% faster than required to get to the barrier before it is released. Ccurrent is set to the

lowest rate that results in arriving at the next collective before the other threads. In this case Ccurrent is set to

87.5% (or 2 levels lower).

At some later collective, if Ldown > 1. The thread is now doing more work and needs to have the clock

frequency increased. Now applying the second equation, a new ratio is computed which indicates the amount
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to increase the clock frequency. If Lup = 0.1467, the duty cycle is increased 2 levels (i.e if Ccurrent is 50%,

it is set to 62.5%).

For very low duty cycle levels, higher performance degradation occurred than was predicted. To prevent

this from slowing applications, the policy never sets the duty cycle below 18.75%. In practice, running a little

too slow noticeably degraded performance. To avoid this effect, the policy was relaxed a bit. After computing

the “correct” Ccurrent, the speed is slightly increased Ccurrent = Ccurrent + 1. Some extra power is used,

but the performance degradation is significantly reduced.

There are several options to avoid performance degradations from phase shifts. We use a damper to

ignore the initialization phase at the start of several of the benchmarks. In practice, if the user or software

could identify the start of a new phase, all threads could be reinitialized. If the phases are long and have a

large number of collectives, the equations adjust and the performance impact may be small.

3.5 Infrastructure

The Intel Sandy Bridge architecture has hardware performance counters for measuring power/energy and

temperature among others. It also provides several mechanisms to limit energy usage (power cap or modifying

the clock rate). The power and temperature counters are read using RCRdaemon (refer Section 2.3).

3.5.1 Power Interface

PowerInterface allows the user system-wide introspection and control of processor energy and power

usage. The PowerInterface is used directly by an application or embedded in libraries (e.g. MPI) to control

energy with no application code changes. In typical use, calipers are placed around a region to be measured

or controlled. The region can be as large as the entire application, or as small as between two barriers. The

interface is pinned to the first core in the socket, avoiding any interruption to the other cores. By executing as

root, no privilege level change is required and each call comprises only handful of staightline instructions,

limiting the overhead. In our tests, the overheads are smaller than the run-to-run variation in performance and

not detectable.

The PowerInterface allows applications to acquire program execution metrics like the power, energy,

time and temperature through the RCRdaemon. MPI Init and MPI Finalize calls are intercepted to

setup and clean the infrastructure. During program execution, the PowerInterface uses the empirical policy to
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set the best effective clock rate between collective calls (MPI Barrier, MPI Allreduce). For current

experimentation, a power cap is set at the beginning of the application for the duration of each run, and only

the duty cycle is modified dynamically.

3.5.2 MPI

The MPI profiling interface (PMPI) is used to intercept MPI init, MPI Finalize and some collective

calls. In the epilogue of the collective, the policy is called and DDCM is used to adjust the effective clock

frequency. All of the work is done within the interface and should be effective for any MPI implementations

(all testing is with MVAPICH2).

Within the MPI prologue and epilogue, the policy only uses values that can be locally computed. Some

values are computed or set in prologue and used in the epilogue, but no data from other ranks is used. This

eliminates the need for any communication, which could impact the application. The minor side-effects of

using the policy with the application are the need to link against our MPI library (that uses PMPI) in addition

to the standard MPI library, and the need to run as root to allow access to the DDCM control MSRs. The

need for root access can be overcome by using libraries as discussed in Chapter 2.

3.5.3 Experimental setup

All tests used a portion of a local M420 Dell blade cluster. Each node has two Intel Xeon E5-2450 CPUs,

each with eight cores, 96GB of memory running at 2.1GHz with hyperthreading enabled3 and connected with

Infiniband. The cluster runs Centos 6.5, is scheduled by Slurm 2.6.9 (with modified RAPL energy plugin)

and runs a Linux 2.6.32 kernel.

Modern processors have enough internal heterogeneity that execution times often vary by several percent

run to run (Porterfield et al. 2013a). The average is taken over 10 test runs. To avoid energy variation with

temperature (Porterfield et al. 2013a), each test script ignored results from the first several minutes until the

system temperature was stable. For each experiment, all runs at a particular power cap were run successively.

The cap was varied from 40W to 100W in 5W increments (14 cases).

3The hyperthread enablement has no effect on our experiment as the benchmarks are run only on one thread per core and the duty
cycle is changed by same amounts for both logical threads.
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3.6 Results

The policy was validated using a set of synthetic MPI benchmarks created in-house. These are designed

to be conditions where it should perform well. The policy was then tested with two standard benchmarks

known to have uneven load, miniAMR and Graph500. miniAMR is part of the Mantevo Suite (Heroux

and Barrett 2012) and uses a simple AMR algorithm. Graph500 (Bader et al. 2010) is the MPI reference

implementation of Breadth First Search (BFS).

3.6.1 Synthetic benchmarks

Three different unbalanced workload are simulated. Repeating Unequal, is static throughout execution.

The next two, Equally shifting load and Randomly shifting load change the amount of computation performed

by each thread every barrier. All simulated workloads exhibit very low memory traffic.

3.6.1.1 Repeating Unequal

The static unbalanced workload, mentioned in section 3.2, has work proportional to the rank number. On

a single node with no power cap, Figure 3.2, energy consumption is reduced by 9.3% with a execution time

increase of only 0.76%. When the benchmark is extended to run on a 16 node cluster, the energy savings is

still 9.3% and the performance slowdown drops to 0.04%. Each execution of benchmark with the policy is on

a average about 2◦C cooler on both one and 16 nodes. The combination of low overhead and providing each

core with an effective clock rate tuned to its own needs, allows DDCM to save significant energy with almost

no performance impact.
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Figure 3.2: Power, Energy, Time and Temperature for Repeating Unequal pattern

More interesting results occur when socket-wide hardware power limits are applied. Since energy and

power are being reduced by the policy, the hardware does not have to squeeze the chip quite as hard to

stay below the limit. This allows the whole chip to run slightly faster. In effect, the policy is allowing

power to be moved from the cores that do not need it to cores that do. The tent-pole thread runs faster.

Performance improvements from saving energy will be important for over-provisioned systems of the future.

The maximum energy savings are seen near where the cap starts effecting performance. At a cap of 55W, the

policy runs about 2.6% faster with 10.2% savings in energy on one node. On 16 nodes, the speedup is 1.9%

and energy saving is 9.5%.

3.6.1.2 Equally shifting load

Next, we see how the model reacts to a dynamic workload. Figure 3.3 shows the single and 16 nodes

results. Execution time degrades by 0.59%, which is slightly less than before for the non-capped case. The

power savings is 14.0% and energy savings is 13.5% are higher than for “Repeating Unequal”. Even on

16 nodes, the policy scales seamlessly with execution slowed down only by 0.79%. The power and energy
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savings are 12.3% and 11.6% respectively. The reduced power again, results in lower socket temperatures

(3◦C on one node and 4◦C on 16).

Figure 3.3: Power, Energy, Time and Temperature for Equally Shifting Load pattern

When running under a power cap, the adaptive policy translates the energy savings into faster performance.

With a 50W cap on one node, the policy runs 6.0% faster on one node saving 13.0% in energy. On 16 nodes

at a 45W cap, the application is sped up by 5.6% with a energy savings of 10.5%. Again the best energy

saving occured when the cap was only slightly throttling the processor. For Equally shifting load the policy

does a good job of handling multi-node barrier delay.

3.6.1.3 Randomly shifting load

Finally, we present the policy with a random dynamic workload. On single and 16 nodes without power

cap, the execution time increased by 3.3% and 4.2% respectively (Figure 3.4). Even with this increase, the

policy decreased the power consumption by 7.8% and saved 4.8% in energy on one node, and decreased

power by 7.7% with 3.8% energy saving on 16 nodes. The increased randomness caused the policy some

problems and execution time increased but the policy was still able to reduce the overall energy consumption.
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Figure 3.4: Power, Energy, Time and Temperature for Randomly Shifting Load pattern

Temperatures were reduced with DDCM between 3◦C on one node and about 4◦C on 16 nodes. With

50W power cap on single node and 45W power cap on 16 nodes, the application sped up by 4.0% and 2.0%

respectively. The energy savings observed were 6.3% and 2.7%, mainly due to application speed up as the

power reductions were 2.4% and 0.67%.

3.6.2 Standard benchmarks

The policy works for synthetic unbalanced workloads. The next test is to apply it to standard HPC

benchmarks with unbalanced workloads. miniAMR is a scientific computation with a predictably varying

workload and Graph500 has a varying analytic workload.

3.6.2.1 miniAMR

miniAMR does a stencil calculation on a unit cube computational domain and can emulate the interaction

of different bodies in space. It uses Adaptive Mesh Refinement to better policy the edges of the moving

bodies. For the one node run, a sphere moves diagonally along 16 cores for 25 time steps with 4, 2, 2 cores

along x, y and z direction respectively. On 16 nodes the problem size was increased 16x, the sphere moves
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diagonally along 256 cores with 16, 4, 4 processors along x, y and z directions. The load balancing option is

turned off in the current evaluation.

Figure 3.5: Power, Energy, Time and Temperature for miniAMR

On single node (Figure 3.5), the policy increased the application running time by 1.9% while decreasung

the power by 10.4%, saving 8.7% in energy. On 16 nodes a 21.4% decrease in power and 20.8% reduction in

energy are observed. The slowdown in application on 16 nodes is less than one percent (0.8%). Over the 60.2

second execution, the 20.8% total energy savings on 256 cores is 22.9kJ. miniAMR on 256 cores runs about

3◦C cooler, while on 16 cores runs it is substantially cooler by 6◦C. The savings scale nicely as the mini-app

is scaled to larger systems.

On a single node miniAMR the policy and the normal version performed approximately the same. On 16

nodes, the application sped up by 1.1%, and reduced power by 9.5% leading to 10.5% energy savings.

3.6.2.2 Graph500

The Graph500 benchmark contains multiple analysis benchmarks that access a single data structure

representing a weighted, undirected graph. The current evaluation uses the simple Breadth First Search (BFS)

version that starts with a single source vertex, and then finds and labels its neighbor in phases. The single
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node case uses 12 as its SCALE, while the 16 nodes case uses 11. A smaller SCALE on 16 nodes is used to

avoid network overheads that increase execution time and may skew the energy results. No edgefactor is

specified.

Figure 3.6: Power, Energy, Time and Temperature for graph500

Unlike previously discussed benchmarks, the behavior of Graph500 with the policy is different. On single

node (Figure 3.6), there was no power or energy reduction either with or without cap, and the application

running time increased by about 0.7%. On 16 nodes, the energy savings are due to a combination of power

reduction and application speedup even with no cap. The energy savings are predominantly due to speed up

as the reduction in power is only 0.36%. The application energy is reduced by 2.2% with a speed up of 1.8%.

No temperature change on the processor is observed as there is almost no power reduction. At 100W cap

on 16 nodes the power reduction is less than 0.01%, but an energy reduction of 2.3% is observed due to a

performance improvement of 2.3%.
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3.6.3 Platform Variation

In some cases no observed speed up occurred or experienced more performance degradation than

expected. To better understand these behaviors, the same experiments were repeated on a standalone system

with a similar CPU architecture.

Figure 3.7: The graphs show variation in power, energy and time for two different nodes while using DDCM
with RMR synthetic benchmark.

The new system (Node-F) has a higher default clock rate4 and uses significantly more power than the

original node (Node-S). The comparison of the two systems (Figure 3.7 & Figure 3.8) shows significant

variation in results even for very similar architectures.

• The power consumed is substantially different. miniAMR consumed 57.4W on Node-S running at 58.5◦C

and 71.4W on Node-F 67.5◦C. The faster (and maybe less well-cooled) system used 14W more and was

9◦C hotter. System Design can have a major impact.

• DDCM seems to work better on the high power nodes. Benchmarks Randomly shifting load, miniAMR

and graph500 speed up under the power cap or see almost no performance degradation on Node-F.

4M620 Dell blade with two Intel Xeon E5-2680 at 2.70GHz containing eight cores each and 64GB of memory with hyperthreading
disabled
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(a) miniAMR

(b) graph500

Figure 3.8: The graphs show variation in power, energy and time for two different nodes while using DDCM
on mini-applications. It is observed that in every case the results obtained using Node-F are superior to
Node-S, suggesting the results obtained are highly machine dependent and agnostic to the actual mechanism
using DDCM.
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Further study to understand the significant differences is required, to determine if they are caused by minor

difference in chip architecture or the significant differences in system design.

3.7 DDCM policy with full applications

Several full HPC applications are used regularly on RENCI system (Section 3.5.3) - ADCIRC for storm-

surge modeling research, WRF within a larger climate-change research effort, and an optimization effort for

LQCD. These applications were used to validate the DDCM policy (Porterfield et al. 2015). For the following

tests, minimum speed that the policy could set the processor was limited. The Sandy Bridge architecture

allows 16 setting of the duty cycle, the following tests used 3 different minimums; 100% no slowdown

allowed; 75% or 12/16 maximum slowdown and 50% or 8/16 maximum slowdown.

Each application was sized to run for between 15-35 minutes This limits any initialization effects and

allows the program to compute a significant result. All tests were run consecutively and are long enough to

mitigate the effect of a cool start. Each application was run ten times for each power and software setting.

The graphs show all results with the runs sorted by execution time to understand better the average difference

between settings.

3.7.1 ADCIRC

ADCIRC+SWAN (Luettich et al. 1992, Westerink et al. 2008, Dietrich et al. 2010, Zijlema 2010), a storm

surge, tidal and wind-wave model, uses a finite-element method to discretize shallow water equations, while

simultaneously facilitating large domains with very high spatial resolution in coasts of interest, without

unnecessary resolution in offshore areas. This high-resolution capability requires substantial compute

resources (Blanton et al. 2012). Research and applications with ADCIRC include regional and local tidal

phenomena (Westerink et al. 1994, Blanton et al. 2004), inlet and estuarine dynamics (Luettich et al. 2002,

Hench and Luettich 2003); and storm surge and wave hindcasts (Atkinson et al. 2008, Dietrich et al. 2010, Lin

et al. 2010). ADCIRC is approved by FEMA and was used for development of Digital Flood Insurance Rate

Maps in TX, LA, MS, AL, DE, VA, NC, SC, GA, and FL (Blanton 2008, Ebersole et al. 2010, Niedoroda

et al. 2010). It is also used as the core numerical model in real-time forecasting and prediction systems

(Fleming et al. 2008, Blanton et al. 2012).
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When running ADCIRC at 70W (effectively no limit) (Figure 3.9) the policy reduces energy consumption

significantly. Running at 3/4 speed, a 6.0% reduction in total energy occurs, and as slow as 1/2 speed it

increases to a 11.3% savings. As the power-limit is applied to the application the savings still occur. At 60W

and 3/4 speed saves 5.6%, and at 50W, 3/4 at speed saves 6.6%. Examination of the application code reveals

that most of the savings occur during IO phases, during which a majority of the work is on a single thread.

This is because irregular finite elements of ADCIRC are not perfectly partitioned always. Furthermore, there

is dynamic load imbalance (or change) when flooding starts to occur and previously dry elements get wet.
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Figure 3.9: Execution times for ADCIRC with combinations of power cap and minimum threshold duty cycle
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Figure 3.10: Energy consumed by ADCIRC with combinations of power cap and minimum threshold duty
cycle

HPC systems are expensive, and any energy savings that increases execution time significantly is not

cost-effective when you account for computer time. As Figure 3.10 shows at 60W running at 1/2 and 3/4

speed significant energy is saved, but execution slows slightly. As the power-limit is lowered and starts to

impact execution time at 55W and 50W, the energy savings are 7.3% and 6.6%.

Since the power is limited to less than the desired amount, the energy savings can no longer come from

a lower average power usage. Saving energy under a power cap means that the execution runs faster. The
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average increase in execution speed is 1.5% at 55W and 3.1% at 50W. The hardware is intelligent enough to

detect that power is being saved in some thread and effectively moves it to the critical threads, IMPROVING

performance.

3.7.2 WRF

The Weather Research and Forecasting (WRF) Model (Michalakes et al. 2004) is a much used mesoscale

numerical weather prediction system. The model serves a wide range of meteorological applications across

scales from tens of meters to thousands of kilometers. Our test case is small and forecasts one day of weather

for Puerto Rico given different boundary conditions obtained in a larger climate model simulation. It ran on

the first six of the 16 available nodes.

WRF has low run-to-run variation and is well balanced between the threads. At no point does the policy

detect code regions in which lowering the clock frequency by 6% or greater would not increase execution

time. With the policy, the execution time, energy, and run-to-run variation are equal to the non-policy

results presented earlier. However, WRF can become imbalanced when interesting atmospheric physics

(condensation, ice, precipitation) occurs in part of the domain and the policy may be useful in such scenarios.

3.7.3 LQCD

The t leapfrog program, distributed with Chroma (Edwards and Joó 2005), is a timing and functional

test for a “leapfrog” integration scheme to compute trajectories. The test example is on a 32× 32× 32× 64

lattice and uses periodic boundary conditions. This example is compute-bound near the limit of useful strong

scaling with data fitting in cache as well as with load balance in both computation and communication.

t leapfrog is perfectly balanced and has no distinct IO phase. The policy detects very few regions

in which the clock rate could be reduced (8-15 during a 16 minute run). In Figure 3.11, the policy has

minimal impact on execution time. At 60W and 70W, the various settings for the policy have no significant

impact. At 50W, the policy slows the execution by 1% at 3/4 speed and 2% at 1/2 speed. LQCD has a low

arithmetic intensity and is consequently memory bandwidth bound for large local problem sizes. With enough

processors however, local problems fit in cache and the problem is greatly mitigated making the policy not

that effective.

When energy is examined, Figure 3.12, at 70W there is no significant difference between the three

policy settings. At 60W, the total energy used increases slightly (both graphs have the same bounds) but the
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Figure 3.11: Execution times for LQCD with combinations of power cap and minimum threshold duty cycle
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Figure 3.12: Energy consumed by LQCD with combinations of power cap and minimum threshold duty cycle

run-to-run energy variation increases significantly. Overall the increase in execution time at a cap of 50W,

greatly increase energy usage. Because the policy slows execution speed, the policy slightly increases energy

usage.

For a compute-bound application, such as t leapfrog, the energy policy detects very few regions of

code where the imbalance is large enough to change the clock rate. Applying the policy has little impact on

the execution and energy consumption of compute-bound applications. The application of a power limit can

significantly increase execution time and total energy usage.

3.8 Conclusion

Over the last decade much research into energy saving methods has been conducted using DVFS. The

fundamental weaknesses of DVFS with respect to HPC can be overcome with DDCM as it has a per-core

control with lower overheads and can be used to create fine-grained core-specific clock frequencies. HPC

systems are likely to be overprovisioned as they approach Exascale on fixed power budgets. Each node will

be power limited. Power limits will increase the heterogeneity of the systems as no two nodes will run at
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quite the same clock rate. All applications will have some degree of imbalance between its threads. By

identifying the fast threads in software and slowing their clock, the hardware can recognize the power savings

and increase the global clock rate. A faster clock rate impacts program performance and system throughput.

The chapter described a policy that uses DDCM to achieve fine-grained power control in the MPI

collectives. Synchronization delays is one of several applications features that could be exploited for

energy savings with minimal impact on performance. In the future, examining rate limited application and

determining if the performance could be improved (or energy saved) by shifting power to the busy resource

from the lightly used resources would be interesting (slow threads when memory bound/slow cache/memory

and faster threads when computationally bound). Saving energy in a power-limited systems is a performance

optimization. HPC has historically ignored energy saving techniques. As they transition to a world where

overprovisioned systems are common, runtime energy savings/optimization techniques will be important

to an efficient HPC application. In the future, we would like to compare DDCM to the recently released

core-specific DVFS on unbalanced applications to know, which saves the most energy – lower overheads or

lower voltage?
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CHAPTER 4: An Adaptive Core-specific Runtime for Energy Efficiency

4.1 Introduction

The runtime policy using DDCM in the last chapter showed potential for energy reduction in the presence

of computational workload imbalances. With the introduction of per-core specific voltage regulators in

Intel Haswell, new options for software energy control are now available. Each physical core (or 2 logical

cores if using Hyper-Threading) can be independently controlled allowing only non-critical threads to have

their frequency reduced. It is therefore fitting to explore the potential of the new control in aiding energy

improvement. To make aforementioned policies generic enough to be relevant for a wide variety of HPC

application and for their possible adoption in production systems a method to limit any performance degration

is also necessary. These factors facilitate a need for a runtime framework consisting of the policies along

with options to tailor the behavior of the policies as per the user.

In this chapter, we extend the DDCM policy discussed in Chapter 3 and present a generic policy that

uses a core-specific power control like DDCM or per-core DVFS to throttle the frequencies of cores not on

the critical path. The goal is to match a core’s duty cycle to its workload to eliminate idle cycles. The duty

cycle is given by,

Duty cycle =
Time core (processor) in active state

Total time
× 100

The amount of time a core is active can be changed either by lowering its T-state (with DDCM) or by

reducing frequency (DVFS). By dynamically adapting core frequencies to workload characteristics on that

core, fewer idle clock ticks occur and less power is wasted. Many HPC applications comprise multiple

phases of computation with each of the cores performing disparate amounts of work leading to workload

imbalance. In the current policy, a core doing more work will have a higher duty cycle (and run at higher

T-state/frequency) than the one doing less work. Ideally, all threads reach next phase boundary at almost

same time (Figure 3.1).
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Many HPC researchers are exploring overprovisioning of processor nodes (Patki et al. 2013, Sarood

et al. 2013, 2014) to improve performance within the available power budgets. Many future exascale

applications will have heterogeneous processor load, and with power-limits, most exascale systems will

have heterogeneous performance. This can lead to significant run-to-run variations in the execution time

and energy consumed. The adaptive runtime framework saves energy by dynamically setting core-specific

frequencies. To the extent possible in the hardware, the power saved in non-critical nodes can be allocated to

the cores on the critical path. This results in execution time reductions, particularly under a hardware power

cap (Bhalachandra et al. 2015).

This chapter presents the following major work and ideas:

• A generic policy that effectively utilizes per-core specific power controls to improve energy efficiency.

The DDCM policy from Chapter 3 aimed only at showing the efficacy of DDCM as an alternative to

socket-wide DVFS. We now present work offering a context for comparing DDCM (with its simple

per-core hardware implementation and fast switching capability) and DVFS (more complex and costly to

implement per-core but with potential for greater savings), and for showing how and when they can be

used together.

• Implementation of an adaptive runtime framework (library) that uses the duty cycle inspired policy to

throttle the frequencies of cores not on the critical path of an MPI application. An important feature

of this implementation is that it allows the flexibility to use multiple power policies to save energy -

DDCM, per-core DVFS or both. Use of this library does not require any code changes to the underlying

application.

• Validation of framework using six mini applications (miniAMR, miniFE, CloverLeaf, HPCCG, AMG,

miniGhost), and full application, ParaDis. The evaluation shows an overall 20% improvement in energy

efficiency with an average 1% increase in execution time on 32 nodes (1024 cores) using per-core DVFS.

• Energy optimization is shown to improve performance in certain scenarios. With a full application

ParaDis, the runtime is seen to improve performance by lowering run-to-run variation and facilitating

running at turbo frequencies. The performance improvement is achieved in addition to reducing power.
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4.2 Adapting core frequency to workload characteristics

HPC applications have large varieties of CPU/memory usage patterns that are input driven and dependent

on executing application phase. System noise from diverse factors like hardware, OS, network further

complicates any static attempt to determine optimal core frequencies. These factors drove our choice to

create an adaptive policy driven by runtime inputs.

Slack reclamation by trying to slow down the non-critical paths of computation is not new to energy-

efficient HPC nor is the idea of an adaptive runtime. Most previous research has revolved around DVFS and

its ability to obtain cubic savings in energy. The previous chip-wide requirement made it difficult to find

applications where the savings did not result in significant execution time increases. Some of the previous

investigations (see Section 2.6.1) used complex models requiring system-wide introspection that are better

suited for off-line analysis. Other studies required application level source code changes making them tedious

and difficult for production applications.

In the previous chapter, we saw how the DDCM policy examines local system state and predicts proper

duty cycle level to use for next application region. It saved 13.5% processor energy on one node and 20.8%

on 16 nodes for several benchmarks. On a production application, ADCIRC1 energy savings of 10% were

obtained with only a 1-3% increase in execution time.

In the current work, we offer a context for comparing DDCM (with its simple per-core hardware

implementation and fast switching capability) and DVFS (more complex and costly to implement per-core

but with potential for greater savings). This is done by showing how the previous policy (Porterfield et al.

2015) can be made generic to work with per-core DVFS in current work, and other core-specific power

controls that the hardware might provide in the future. Further, a novel approach to combine per-core DVFS

and DDCM is presented. The combination of multiple power controls in complementary ways is shown to

achieve improved energy savings.

The new generic policy reduces power by applying retrospective information during an MPI collective to

predict slack at the next MPI collective. The idea is that if a core reaches the collective earlier than others,

then it should be slowed down (or sped up if it arrives late) so that on the next collective cores will more likely

reach the collective at the same time (Figure 3.1). The policy depends on the amount of work performed

1The storm surge, tidal and wind wave model ADCIRC+SWAN is used to simulate and predict water inundation and wind wave
impacts from coastal storms.
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between MPI collectives to be relatively stable during execution. In practice, this has not been found to be

overly restrictive.

Only local timing and state information are used at each core. No global communication or state is

required. This allows the policy to scale to any application size. The policy is implemented within the MPI

profiling interface (PMPI) and requires no application code changes. Calls to MPI init, MPI Finalize

and most MPI collective calls are intercepted. Data is computed or set in the prologue and used during the

epilogue to determine the next phase’s clock frequency. No data from another rank is required, eliminating

the need for any communication. The application does need to link against our MPI library in addition to the

standard MPI library, and needs to access protected machine-specific registers (MSRs) only to control power

using software-controlled clock modulation. The access to MSRs can be obtained either by using libraries

like msr-safe (Shoga et al. 2014) or by running the application as root. For controlling power using DVFS,

the acpi-cpufreq or other applicable kernel modules need to be loaded.

4.2.1 Working of policy with DDCM

The policy’s goal as explained in Section 3.4 is to detect and reduce imbalances. When a core is running

faster than needed, that core’s effective clock frequency is reduced. The new frequency is chosen to be the

lowest such that core will not be the last one to arrive at the next collective. If the last core to arrive at a

collective is running at full speed, the application should experience no slowdown.

The policy automates the process of selecting the clock frequency for the next application region by

comparing the computing and waiting times of each core. If a core reaches a synchronization point early,

(e.g. has a significant fraction of waiting time), it is assumed that the core will also arrive at the next

synchronization point early and is a candidate to have its clock frequency reduced. The clock frequency for

the next phase is calibrated using the compute and waiting times for the previous region. A core doing more

work will run at a higher effective frequency than the one doing less work.

Figure 4.1 shows working of the generic core-specific adaptive runtime policy. The policy uses two rules

- one to decrease the clock frequency of a core and the other to increase it. It first attempts to decrease the

clock frequency.

Ldown =
Tcompute

Ttotal
∗ Cmax

Ccurrent
(4.1)

• T∗ - time
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Figure 4.1: Working of the generic core-specific adaptive runtime policy

• C∗ - clock frequency

• L∗ - levels/steps to change clock frequency

The next clock frequency is a function of the ratio of computing time to total time between barriers and

the previous clock frequency. In practice not every clock frequency is available, the one chosen is the lowest

frequency such that it would have made the core to wait least at the last barrier.

When the previous rule determines that duty cycle does not need to be reduced, the policy then determines

whether the duty cycle needs to be increased to prevent the current core from being the last to arrive at the

next barrier, thus slowing the application. The policy aggressively increases frequency when it determines

that this core may have been the last to arrive a the next barrier. Increasing a core from the minimum clock

frequency to the maximum only takes a few policy invocations rather than one for each effective clock rate

level possible.

The equation to increase the duty cycle level is given by

Lup =
Tcompute

Ttotal
∗ Cmin

Ccurrent
(4.2)
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The model estimates the next value for the duty cycle by comparing wait time with how close to the minimum

duty cycle the last region was executed. Thus, the model again assumes some predictability between

successive phases.

4.2.2 Making the policy generic (per-core DVFS)

The approach to making the adaptive runtime policy generic is straightforward. This is achieved by

changing the maximum, minimum and intermediate values to the ones supported by core-specific power

control that may be provided by the hardware in the future.

For per-core DVFS, Cmax is the maximum non-turbo frequency on a machine, and Cmin is the lowest

frequency supported by DVFS. The transitions (L∗) occur at frequencies available in /sys/devices/sys-

tem/cpu/cpu*/cpufreq/scaling available frequencies2.

4.2.3 Combined Policy

On an Intel Haswell machine, the cores can either use T-state (DDCM) or P-state (DVFS) transitions

to lower frequency. DVFS can generally support frequencies only down to about half the standard non-

turbo frequency of the processor. As discussed in Section 2.2.4, the power saved using DVFS is higher in

comparison to DDCM as both voltage and frequency is reduced. When the clock frequency needs to be

reduced beyond what DVFS allows, DDCM can be used to further reduce the clock frequency.

The combined policy can be modeled as a joint optimization problem. However, preliminary profiling of

many HPC applications showed that the phase times are long enough (hundreds of milliseconds or more) so

that DVFS can be used efficiently to reduce frequency even with larger transition overhead (Section 2.2.4).

The lack of frequent changes required motivated a two level approach where DDCM is used to effectively to

increase the operational range of DVFS. As the primary aim of policy is to reduce the power (thereby energy),

DVFS is first used followed by DDCM.

In the combined policy (Figure 4.2), a core starts by using DVFS policy to lower frequency when its

work corresponds to a frequency greater than or equal to the minimum frequency supported. Once the core

is running at the minimum allowed by DVFS, and if it is determined that the clock rate should be further

reduced, only then DDCM policy is applied. By using DVFS and DDCM together, effective clock rates up to

20% of maximum are possible before hardware glitches are seen.

2The minimum, maximum and intermediate values for DVFS are machine-dependent even for the same architecture, unlike DDCM.
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Figure 4.2: Working of the Combined policy that uses both per-core DVFS and DDCM

Once a core uses DDCM policy, it continues to use it every phase until duty cycle is increased back to

100%. Only then is the DVFS policy used. During highly unbalanced code regions, cores can have both

DVFS and DDCM active, attempting to reduce the effective clock frequency as much as possible.

4.2.4 Adaptive Core-specific Runtime

The Adaptive Core-specific Runtime (ACR) implements the DVFS, DDCM and combined policies

described above. It provides the user with a choice to select one of the three policies to control processor

power usage, and in addition supports system-wide introspection through data reported from hardware

counters. To avoid aggressive lowering of frequency/duty cycle that may cause unnecessary performance

degradation a few modifications have been made to the policies in the ACR. These changes below can be

easily overridden by the user to apply the policies in their purest form.

• Frequency headroom aimed at minimizing execution time penalties: The chosen clock-rate by default is

rounded up to the next highest clock-rate. If the chosen value is too low the execution time penalty is

seen to be larger than the potential energy savings.

• Limit on the minimum permissible clock-rate: For low clock-rates, observed performance degradation

is observed to be higher than predicted. The minimum clock-rate is thus set to be at most 18.75% of

the maximum non-turbo frequency, a value that is obtained empirically. This minimum is likely to be

architecture specific and can be changed by using a set of environment variables provided.

ACR provides support for user options to facilitate user customization of the framework to fit specific use

cases. The options below may allow further improvement in energy savings or limit performance degradation.
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1. Introduction of a limit on minimum phase length: This consideration is to avoid frequency change

decisions based on characteristics of smaller non-computational phases (like startup). This limit also

prevents decisions from taking place too frequently, while the history is carried forward from skipped

phases.

2. Monitoring performance degradation at the end of every phase: To minimize performance deterioration,

a maximum flexible slowdown factor is introduced. It is expressed as a percentage value to monitor

performance degradation. When the phase degradation in the last phase is greater than the specified

value, the policy is skipped in the current phase and the frequency, as well as the duty cycle, are reset

to maximum. In the next phase, the policy is applied with reset values. Additionally, this serves as a

rudimentary way to reset clock frequency when a phase change is detected based on changes in total

phase time.

3. Support for user-annotations: A user can easily override the preselected behavior of the runtime through

environment variables.

Effects of OS noise and performance jitter that cause some applications to have irregular temporal

patterns are somewhat smoothed by these user options and in practice, more predictable results have been

observed.

ACR can be used directly by an application or embedded in libraries (e.g., MPI) to control energy

with no application code changes. To measure energy, temperature and other execution metrics like fre-

quency, it requires access to MSRs in user space through interfaces like “intel-rapl” kernel module and

/sys/class/powercap/intel-rapl or RCRdaemon (Porterfield et al. 2010).

The ACR interface for performance measurement is pinned to the first core in a socket, avoiding any

interruption to other cores. Each call comprises only handful of straightline instructions, limiting the overhead

to be smaller than the run-to-run variation in performance and are not detectable.

MPI Init and MPI Finalize calls are intercepted to setup and clean the infrastructure. During

program execution, ACR uses one of three policies discussed earlier to set the best effective clock rate

between MPI calls. MPI Barrier and MPI Allreduce are intercepted in the current experiments, but

other MPI collectives can be easily used as well.
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4.3 Infrastructure

A thirty-two blade partition of the Shepard Advanced Systems Technology Test Bed at Sandia National

Laboratories is used for all experiments. This development partition exposes at the user-level power and

energy instrumentation as well as grants user control of clock frequency and modulation through msr-safe

and other kernel modules.

4.3.1 System

All tests used a portion of Penguin blade cluster. Each node has two Intel(R) Xeon(R) E5-2698 V3

CPUs, each with 16 cores, 128GB of memory at 2.3GHz with hyperthreading enabled3 and connected with

Mellanox Fourteen Data Rate InfiniBand. The maximum turbo frequency for the CPU is 3.6GHz. The cluster

runs Red Hat Enterprise Linux Server 6.8 (Santiago), is scheduled by Slurm 2.3.3-1.18chaos and runs a Linux

3.17.8 kernel. MPI version used is Mpich 3.2.

4.3.2 Measurement Techniques

All reported power, energy and temperature numbers are obtained with the Intel Running Average Power

Limit (RAPL) interface. To allow user-level access to the RAPL values of interest, the Resource Centric

Reflection (RCR) daemon (Porterfield et al. 2010) is used. The RCRdaemon has been extended to provide

additional performance related metrics associated with frequency, instructions retired and cache accesses.

Modern processors have enough internal heterogeneity that execution times often vary by several percent

run to run (Porterfield et al. 2013a). The average is taken over 12 test runs for each power and software

setting. To avoid energy variation with temperature, each test script ignored results from the first several

minutes until the system temperature was stable.

4.4 Results

The evaluation of ACR uses a set of DOE mini-apps that encompass a variety of computation/memory

patterns. Measurements are reported for the entire execution and not restricted to single phases. The

applications can be divided into two groups.

3The hyperthread enablement has no effect on our experiment as applications are run only on one thread per core and frequency is
changed by same amounts for both logical threads.
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• Mini-apps: Six Mini-applications - five from the Mantevo Suite (Heroux and Barrett 2012) (MiniFE,

MiniGhost, CloverLeaf, miniAMR, HPCCG) and one from the NERSC-8/Trinity Benchmarks (tri arks),

AMG

• Production application: One production DOE application, ParaDiS - a free large scale dislocation

dynamics simulation code to study the fundamental mechanisms of plasticity. It was originally developed

at the Lawrence Livermore National Laboratory (Bulatov et al. 2004).

4.4.1 Mini applications

ACR attempts to act where load imbalance exists and remain dormant when work is evenly partitioned.

The potential gain realistically achievable with ACR should occur when evaluating several HPC benchmarks

with unbalanced workloads. For evaluation, a number of DOE MPI mini-apps were selected to simulate

variety types of loads on HPC systems.

Application Default Time (s) Policy Min Phase Limit (ms) Max Phase Degradation(%)
miniFE 182 DDCM none none

DVFS 10 5
Combined none none

miniGhost 68 DDCM none none
DVFS none none

Combined none none
miniAMR 81 DDCM none none

DVFS none none
Combined none none

CloverLeaf 90 DDCM none 0
DVFS none none

Combined 50 10
HPCCG 125 DDCM 10 10

DVFS 100 10
Combined none 0

AMG 133 DDCM 10 10
DVFS none none

Combined none none
Paradis 123 DDCM none none

DVFS none none
Combined none none

Table 4.1: Execution time and ACR parameters for all applications on 32 nodes
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Table 4.1 gives the execution time for default run without ACR for all applications. It also lists the

ACR parameters used for runs that use ACR on 32 nodes. It can be observed that the policy works well

without changing any ACR user options in most cases (represented as “none” value). Better energy efficiency

while using ACR user options is obtained for some cases either by enhancing power reduction or controlling

performance degradation as explained in Section 4.4.2. The values chosen for the user options in our

experiments, especially for minimum phase length, is obtained empirically. We recommend using user-

annotations supported by ACR to skip startup or non-computation phases in practice. A brief description of

the mini applications used can be found in Section 2.5.

4.4.2 Impact of ACR user options

The impact of the user options on the Clock-Frequency policy is measurable. The performance impact

on HPCCG as the user options are added is demonstrated with per-core DVFS policy in Figure 4.3. The base

policy (A) results in a slight improvement in performance of 0.5%. Power is marginally reduced by 6.1%, to

see an energy improvement of 6.5%.

Default	 HPCCG	(A)	=	
base	policy	

HPCCG	(B)	=	
(A)	+	min	

phase	length	

HPCCG	(C)	=	
(B)	+	monitor	

phase	
performance	

Time	 124.76	 124.17	 164.28	 126.38	
Energy	 12982.72	 12132.06	 13533.14	 10629.90	
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Figure 4.3: Execution metrics showing improved effectiveness of the policy through options in ACR
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By forcing minimum phase length to be equal or greater than 100ms (B), power reduction is improved

drastically to 20.8%. The increase in execution time though is extremely large at 31.7% that the energy

consumption increases by 4.2%. For HPC applications high execution slowdown is problematic.

By limiting phase degradation (C) to 10%, performance slowdown is reduced to 1.3%. The power

reduction remains very similar to (B) at 19.2%. With this option, the runtime attempts to (over-)react quickly

at a phase change to prevent the critical core in the next phase from running at a clock frequency below 100%.

If ACR detects a phase to run greater than 10% longer than the previous instance, it resets the core clock

frequency to 100%. Even with aggressive clock frequency resets, the energy saved is still 18.1%.

4.4.3 Mini-application Results

The results for the mini-apps are in Figure 4.4. The best energy savings obtained for each application

with ACR using either DDCM, DVFS or Combined is summarized in Table 4.2. The mini-apps fall into two

broad categories. miniFE and miniGhost have significant imbalanced phases with a large number of memory

references. DDCM reduces the clock frequency further than DVFS resulting in greater power savings. The

effect of DVFS and DDCM on memory references was not studied. The combined policy provides the best

results by allowing the voltage to also be lowered during the low clock frequency phases. miniAMR does not

have a large number of memory references like the above two, yet it achieves highest energy savings with

Combined due to large imbalanced phases.

The other mini-apps have better load balance and use DVFS’s ability to lower the voltage resulting in

lower energy usage than DDCM. The combined policy does not improve over DVFS for these mini-apps.

The most likely cause is the overly aggressive use of DDCM during transition phases.
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Figure 4.4: Energy consumption and execution times of ACR using DDCM, DVFS and both for mini
applications

No. Application Power % Energy % Time % Temperature diff Avg. Frequency % Policy
1 miniFE 58 63 109 -8 37 Combined
2 miniGhost 64 67 104 -6 45 Combined
3 miniAMR 78 81 104 -4 61 Combined
4 CloverLeaf 82 82 100 -4 84 DVFS
5 HPCCG 81 82 101 -4 79 DVFS
6 AMG 72 72 100 -1 72 DVFS

Table 4.2: The best energy savings obtained for each application with ACR using either DDCM, DVFS or
Combined.

4.4.3.1 miniFE

For miniFE version using DDCM, the energy saving is 22.4% and program execution time is increased

by 10.1%. With DVFS the energy savings is only 18.9%, but the slowdown is reduced to only 0.1%. When

the combined policy is used energy savings increases to 36.7%. The energy reduction is achieved in spite of a

9.4% execution time increase through a 42.1% power reduction.
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4.4.3.2 miniGhost

DDCM reduces energy on miniGhost by 31.0% with a 2.5% execution slowdown. DVFS increases

execution time by 4.7% and lowers power by 25.9% resulting in an energy reduction of 22.4%. By combining

the two policies, the performance penalty is only 3.8% and the energy savings increases to 33.1%.

4.4.3.3 miniAMR

miniAMR is an interesting example. With DVFS, execution actually speeds up slightly (2.7%). This

combined with a power reduction of 14.4% results in it using 16.7% less energy. The speedup is consistent

over multiple runs. It may result from the hardware moving power from the core saving energy to the core

with the critical section, or it may be related to a better performance of the barrier when all processes arrive at

nearly the same time (no thread is swapped out). The energy savings with DDCM and Combined are 15.3%

and 19.1% with an execution time increase of 2.1% and 3.9% respectively.

4.4.3.4 CloverLeaf

This and the next two mini-apps with lower amounts of extreme imbalance all perform best with the

DVFS policy. DVFS increases CloverLeaf execution by only 0.2%. This allows the energy reduction (17.6%)

to effectively be equal to the power savings of 17.7%. In contrast, with DDCM the performance degradation

is 7.7% results in only a 4.8% reduction in energy consumed. The combined policy does better than DDCM

but still suffers a 2.9% execution time penalty and only reduces energy by 11.7

4.4.3.5 HPCCG

With DVFS, HPCCG is executed using 18.1% less energy. This savings is obtained with a time increase

of only 1.3%. Both the DDCM and Combined policy see time increases of 4.5% and 4.9% respectively. The

increased time results in energy savings of only 10.6% and 12.0% .

4.4.3.6 AMG

DVFS performs the best on AMG. Over a quarter of the energy is saved (28.2%), while only increasing

execution time by 0.1%. The DVFS policy produced significant power/energy savings with a performance
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impact less than typical run-to-run variation in execution time. DDCM and Combined policies were much

less effective.

4.4.4 Production applications - ParaDis

With encouraging mini-app results, testing was expanded to a small real world (full) application (Fig-

ure 4.5) with parameters shown in the last row of Table 4.1. ParaDis does dislocation dynamics by intro-

ducing dislocation lines into a computational volume that interact and move in response to forces imposed

by external stress and inter-dislocation interactions. The simulation run is “form binaryjunc” with “fm-

ctab.Ta.600K.0GPa.m2.t5.dat” correction table demonstrating the formation of a binary junction from two

dislocation lines. There are 8x8x8 cells spread across 16, 8, 8 cores along x, y and z axes on 32 nodes. The

discretization range is [5.000000e+01, 2.000e+02] and re-mesh method used is 3, with maximum steps equal

to 100. With load balancing turned off, ParaDis provides an unbalanced small real-world application where

number of timesteps can be adjusted to create short enough runs for extensive testing.

Initial testing with ParaDis on 1024 cores yielded encouraging results (Table 4.3). With the chosen

number of time steps default case on average executed in 122.6 seconds. DDCM lowered power 19% but took

on average 5% longer to execute, while DVFS also reduced 19% power but ran in 122.3 seconds showing

no performance degradation. The Combined policy takes only 108.7 seconds on average. The optimization

meant for power reduction, also decreased the execution time by 11%. When combined with the 31%

reduction in power the best total energy savings is 42%.

Configuration Power (W) Energy (J) Time (s) Average Frequency (MHz) Metrics compared with default
Default 94.2 11541.1 122.6 2272.8 Power % Energy % Time % Frequency %
DDCM 76.5 9865.5 129.0 1531.5 81 85 105 67
DVFS 76.3 9330.9 122.3 1837.7 81 81 100 81
Combined 65.0 7058.1 108.7 1321.7 69 61 89 58

Table 4.3: Execution metrics for ParaDis while using ACR with DDCM, DVFS and both on 32 nodes (1024
cores)

Upon closer inspection, a large amount of run-to-run variation is present in the 1024 core runs. Figure 4.6

graphs the performance of 12 runs for each of the energy policies. The default runs have a 30% run-to-run

variation, from a low of 105 seconds to high of 136 seconds. When using the Combined policy, variation
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Figure 4.5: Execution metrics for ParaDis while using ACR with DDCM, DVFS and both on 32 nodes (1024
cores). Note that the values are discrete with links only serving as visual cues.

was reduced to about 5%, and execution times clustered around the fastest observed for default execution

(between 105 seconds and 111 seconds).

4.4.5 Understanding performance improvement for ParaDis

To better understand performance improvement seen with ParaDis its critical path behavior for the

Default (no ACR), DDCM and DVFS cases on 24 nodes (768 cores) is shown in Figure 4.74. The single run

chosen has the worst execution time out of 12 runs for each of the three cases. The values in subtitles denote

average values across the entire execution of the run, while the values in legend are average values taken only

across data shown in the plot. A core with the highest compute time per phase is considered as the critical

core. Critical cores with compute times shorter than 0.1s are discarded to avoid large average frequency

values computed using Intel APERF and MPERF counters. Only cores running at average frequencies greater

than 2200MHz are considered to ensure that the critical cores run at the maximum possible frequency and do

not experience any undue slowdowns (due to policy mispredictions). Consequently, a lower percentage (89%,

74%, and 70%) of the actual critical execution is captured in Figure 4.7.

4All 32 nodes in the partition were not available during profiling
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Figure 4.6: Variation in execution time of Paradis across all cores for 12 runs on 32 nodes

On 24 nodes ParaDis takes about four times longer to complete in the default case and shows a lot higher

workload imbalance than on 32 nodes. As a result with DDCM, the execution time for ParaDis is reduced

from 405.0s to 265.2s, a reduction of 34.5% (compared to 11% on 32 nodes). For the Combined case (not

shown in Figure 4.7), the execution time is lowered by 35.4% (261.6s) and the power by 28.9% (65.5W)

for a total energy savings of 54.1% (17127.8J). The DVFS case, though, shows only 1.3% performance

improvement running for 399.7s. This indicates that the performance improvement for the Combined case

is mainly due to DDCM, and not DVFS. As in the case of 32 nodes, the run-to-run variation is seen to be

greatly reduced with ACR on 24 nodes to suggest conformity between the two execution profiles.

By analyzing the critical path behavior in Figure 4.7 the speedup for ParaDis can be explained using two

key factors:

Reduction in run-to-run variation: The two dashed lines in each plot trace the means of a bimodal

distribution of critical path times. In successive phases work appears to be similar, with occasional jumps

between short and long critical paths. The consistency suits ACR as the frequency for the non-critical cores

can be lowered to very low values for prolonged periods. Hence, non-critical cores do not compete with the

critical core for resources during a phase. This alleviates any existing contentions to explain the reduced

run-to-run variation. Further, the regular work pattern reduces mispredictions in all ACR policies.

Turbo mode: Lowering the frequency of non-critical cores for prolonged periods increases the avail-

able thermal headroom making critical cores with ACR using DDCM to run at higher turbo frequencies

(2784.8MHz) compared to default (2507.4MHz). Because turbo frequencies are disabled when DVFS
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Figure 4.7: Critical Path Behavior for ParaDis running on 24 nodes (768 cores).

is in operation, critical cores run at much lower frequencies (2467.3MHz) resulting in low performance

improvement, if any. Critical cores running at turbo also reduce the impact of policy mispredictions during

phase transitions compared to DVFS (E.g. 75% of 2.6GHz (turbo) with DDCM > 75% of 2.3GHz with

DVFS). The average count of instructions retired at OS and User level by each core using DDCM (1.1E+13)

is only one-third compared to default (2.9E+13) due to lowered busy waiting. The reduction in busy waiting

again can be mostly attributed to critical cores running at turbo with DDCM as this effect is not seen in the

case of DVFS (2.3E+13). Finally, even though the power is reduced substantially (21.4%) with DDCM and

average frequency across cores is only 1429.7MHz the temperature is not reduced comparably (only 3.2◦C

reduction). This indicates work of turbo, as the heat dissipation is non-linear.
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4.5 Discussion

Table 4.4 summarizes the energy savings and other related metrics obtained by each of the policies with

mini applications and full application ParaDis on 1024 cores. The least performance degradation of 0.5%

across all applications is obtained with DVFS. It also reduces power by 20.5% to achieve a commensurate

average energy efficiency improvement of 20.2%. The best energy savings overall is achieved with Combined

at 22.6% with a power reduction of 24.9%. However, the execution time increases to 2.9%. The energy

improvement with DDCM is 15.1% with power reduction of 19.3% and execution time penalty of 5.3%.

Policy Avg %Power Avg %Energy Avg %Time Avg Temp diff
DDCM -19.3 -15.1 5.3 -3.2
DVFS -20.5 -20.2 0.5 -3.3
Combined -24.9 -22.6 2.9 -4.2

Table 4.4: Summary of energy savings and other metrics obtained with each policy for mini applications and
Paradis

The intent of the above comparison table is not to help the decision of choosing one policy over the

other, but only to summarize the effectiveness of ACR with the three policies. Figure 4.4 and Figure 4.5

show unique characteristics of each policy depending on the nature of the application. For applications that

show extreme workload imbalances and/or high memory references the Combined or DDCM policy work

best. And in some cases (ParaDis) with improved performance. For applications showing more moderate

imbalance, DVFS works better. The higher average time penalty seen by Combined and DDCM in Table 4.4

is mostly due to the higher performance deterioration observed with applications that are more stable.

By tailoring the frequency of each core to match its work, slack as well as the power wasted is greatly

reduced. Reducing the clock frequency for hardware threads spending significant time at software barriers

results in valuable energy savings and in most cases will be invisible to the users, as the execution delay

is well below the variance already observed during execution. With the reduction in power, ACR shows a

corresponding reduction in the chip temperature for all applications, reducing cooling requirements.

4.6 Conclusion

ACR uses hardware core-specific power control mechanisms and an adaptive software policy to achieve

significant energy savings with minimal execution time penalties. It provides, for a number of DOE mini-apps
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and small applications, 20+% energy savings with performance within the normal run-to-run variation. With

no application code modifications, ACR provides significant energy savings with no user-visible effects.

For one application case (ParaDis) a significant performance improvement is observed due to the reduction

in run-to-run variation and execution of critical path cores at turbo frequencies with DDCM. This shows

evidence in proving measurements and controls local to the core can on average reduce power at runtime

with little performance impact.

As Exascale deploys over-provisioned systems that use per core power-limits in day-to-day operations,

energy optimizations will be more important. Runtimes such as ACR will either allow more work to be run at

one time by using less power or allow single applications to be run faster by allowing a higher power cap on

critical cores than non-critical. On power-limited systems, power (and energy) optimizations will be critical.

ACR demonstrates that adaptive dynamic control of power at runtime is possible.

In the future, a better understanding of the advantages and disadvantages of ACR is needed. At some

scales, ACR results in a significant performance improvement. As a downside, at other configuration sizes

(and user options) ACR results in slowdowns. A better understanding of when the chosen clock frequency is

too low and how to correct it quickly is required before a system such as ACR can be deployed in a production

environment.
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CHAPTER 5: Improving Energy Efficiency in Memory-constrained Applications

5.1 Introduction

Disparity between CPU and memory speeds and the latency of accessing DRAM across the system

bus contribute significantly to CPU cycling while waiting on memory and wasting power. Many memory

operations are not visible to the operating system (OS) and are not sufficiently coarse-grained for the hardware

circuitry to stall (or switch off) cores and reduce power as memory accesses are serviced. For certain classes

of applications that are memory-bound, reducing the processor speed or using related approaches like CPU

throttling for power savings has shown little adverse impact on performance, or in some cases slight speedup

from reduced contention (Porterfield et al. 2013b, Wang et al. 2015). The last few chapters discussed

techniques targeting computational workload imbalance, however waiting on memory and sometimes even

I/O is another important problem faced by many HPC applications. This chapter focuses on detecting

situations in which an application is memory-bound during execution and using core-specific power controls

to reduce CPU power consumption.

Most research to regulate energy and performance in software has revolved around Dynamic Voltage

and Frequency Scaling (DVFS) (Kimura et al. 2006, Kappiah et al. 2005, Rountree et al. 2009). Because of

past hardware limitations, these previous DVFS methods impacted all cores on a multi-core processor and

potentially slowed the critical path. Those research efforts focused on finding situations where the slowdown

is greatly outweighed by the energy savings. The chip-wide effect of DVFS also made effective fine-grain

control of performance difficult. With the introduction of per-core voltage regulators in Intel Haswell, each

physical core (or pair of logical cores when using Hyper-Threading) can be independently controlled using

software as discussed in this research to target slowing of only non-critical threads.

Recent advancements in memory technologies like the introduction of double data rate fourth-generation

synchronous dynamic random-access memory (DDR4 SDRAM), among others, have attempted to close the

gap between CPU and memory processing times. It is important to ascertain the severity of the memory

bottleneck in modern HPC systems, to see if there exist opportunities to pursue energy efficiency research
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addressing that bottleneck. We analyze the memory bandwidth and latency on modern CPU architectures like

Intel Sandy Bridge and Haswell with different memory configurations. The study reveals bandwidth saturation

and increased latency situations where CPU frequency can be reduced without affecting performance. Several

on-board hardware counters are evaluated to determine a usable metric that can detect the above situations

during execution, and form a basis for a runtime control policy. The metrics are then used to characterize

HPC applications based on their memory activity. and a dynamic policy to lower frequency of individual

cores using per-core DVFS on Haswell machines, is used to reduce power and save energy with minimal

performance impact.

This chapter introduces the following main results:

• An experimental memory study on modern CPU architectures, Intel Sandy Bridge and Haswell, with

different memory configurations.

• A memory characterization of HPC applications using on-board hardware counters to identify metrics

that guide application of power controls.

• A dynamic policy with coarse and fine-grained application modes that uses the TORo core metric to

direct per-core DVFS during program execution. Policy validation is performed using six mini-apps

(HPCCG, AMG, CloverLeaf, miniFE, miniGhost, miniMD). The evaluation shows the best energy savings

with coarse and fine-grained versions is 32.1% and 19.5% respectively. Also, the performance is seen to

improve in a few cases, more often with the fine-grained version.

5.2 Memory performance on modern HPC systems

The memory study undertaken is similar to the one in our previous work (Mandal et al. 2010) on Dual

and Quad-socket AMD Opterons and Intel Nehalem. Recent HPC systems are evaluated to better understand

the improvement in memory performance over previous generations. The goal is to determine when memory

bottlenecks exist.

5.2.1 PCHASE Benchmark

PCHASE (Pase 2008) is specifically used to test memory throughput under carefully controlled degrees

of concurrent access. Each thread executes a loop with a controllable number of independent “pointer
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chasing” operations per iteration. Each sequence of pointer addresses is pseudo-random and designed to

defeat hardware prefetching while limiting TLB misses. A wrapper script around PCHASE is added that

iterates over different numbers of memory reference chains (thereby controlling memory concurrency) and

threads for each PCHASE run. PCHASE was also modified to control thread placement on multi-socket,

multi-core systems. This forces sequential memory accesses within a thread. References from different

chains can be issued concurrently. A PCHASE experiment specifies the number of miss chains followed by

each thread. The chains within a thread are independent and interleaved, so their references can be resolved

concurrently. An experiment also specifies the number of threads that access memory concurrently. By

varying the number of chains, number of threads and placement of threads, contention in most parts of the

downstream path and components can be measured.

Threads that run on different cores will use different paths to memory and may use different memory

components. While concurrent references within a thread all use the same paths, references from threads on

distinct cores and sockets use distinct on-core components, but will interleave and contend with one another

in the downstream paths and components of the system.

Each experimental run of PCHASE is parametrized by (a) memory requirement for each reference chain,

(b) number of concurrent miss chains per thread and (c) number of threads. The other parameters (page size,

cache line size, iterations, access pattern etc.) are kept fixed.

5.2.2 Experimental Setup

The memory performance is obtained by running PCHASE on Sandy Bridge (SB16) and Haswells

(HW20, HW32).

SB16 is an M620 Dell Blade with two Intel Xeon E5-2680 CPUs at 2.7GHz containing eight cores each

and 64 GB of main memory. It has 20MB cache per CPU (40MB total). Each DDR3 DIMM is 4GB in size,

with 8 out of the 12 available slots for each CPU populated. This configuration allows the memory to run at

its maximum speed of 1600MHz.

HW20 is an Dell PowerEdge R730 with two Intel E5-2650v3 CPUs at 2.3GHz containing 10 cores.

The LLC size is 25MB per CPU (50MB total). The DDR4 memory with a chip size of 4GB is placed in 4

out of the 12 slots available for each of the CPU (32GB total). The maximum memory speed is 2133MHz.

Hyperthreading has been disabled on SB16 and HW20, and both run Linux kernel 2.6.32.
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The 32-core Haswell machine (HW32) runs Linux kernel 3.17.8. It has two Intel(R) Xeon(R) E5-2698

V3 CPUs, each with 16 cores at 2.3GHz and hyperthreading enabled. The total memory is 128GB and cache

size is 50MB on each. The DDR4 16GB chip is populated in 4 out of the 8 slots available and clock at

maximum speed of 2133MHz.

5.2.3 Results
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Figure 5.1: Memory Bandwidth & Latency using PCHASE on Sandy Bridge (SB16) and Haswell (HW20,
HW32)

The memory utilization as the number of outstanding requests change per core is measurable. Figure 5.1

shows total memory bandwidth (in MB/s) and effective latency (in ns) with varying numbers of outstanding

memory references. For each system, the lowest bandwidth and latency is found with one memory reference

per core. Bandwidth increases almost linearly without increasing latency as the system becomes better

utilized at two references per core. As the number of references per core increases beyond two, queuing and

contention within the system increase latency.
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The reason to include a Sandy Bridge (older) machine in this work is to understand the improvements

leading to Haswell. A considerable improvement in bandwidth is observed from SB16 to HW20 & HW32

emphasizing the benefit of DDR4 over DDR3 memory. Better bandwidth does not always guarantee better

latency, which is subject to core count on chip (Figure 5.1). HW20 is seen to be the fastest in terms of

latency above three outstanding references per core. The gap increases slowly as the number of outstanding

references increases. In contrast, HW32 is not only slower than HW20, but is also slower than SB16. It is

slower at all concurrency levels and the disparity increases as contention increases. Looking back at the

figure reveals that both the Haswell systems have similar effective latencies for an equal total number of

references. For example, the effective latency for HW20 with 16 outstanding memory references per core

(320 in total) is similar to that of HW32 with 10 outstanding memory references per core. Core count and

type/number of DIMMs is still an important factor when determining the overall memory performance. An

poorly provisioned newer chip can have higher latency than an older chip.

Peak bandwidth on all three machines is achieved with 5-7 outstanding memory references per core.

Beyond this, the memory bandwidth no longer increases, but the effective latency continues to rise. This is

because the references queue up after the bandwidth saturation thereby increasing the stress on the memory

system. For example, at 24 memory references per core the latency (476.83ns) on HW32 is about 10 times

that of at one memory reference (49.13ns). Even though hyperthreads weren’t used, a non-uniform memory

bandwidth curve is seen for HW32 beyond 5 memory references. The low level at which memory bandwidth

reaches saturation and consequent increased latency presents an opportunity to improve energy efficiency by

reducing cpu frequency when the offered memory load exceeds saturation level. This motivates use of uncore

metrics to determine memory load and dynamically control power and frequency of CPUs.

5.3 Infrastructure

The modern Intel architectures can monitor performance of both core and uncore components. The uncore

sub-system of Intel architecture consists of caching agent (CBo), power controller unit (PCU), integrated

memory controller (iMC) and home agent (HA) among other components. It facilitates per-component

performance monitoring (PMON) through sets of counter registers. In this chapter, we use the counter

registers that are part of the CBo to monitor all core transactions that access the Last Level Cache (LLC).
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The transaction monitoring is supported using 44-bit wide counters (Cn MSR PMON CTR{3:0}) (Intel

2015b). We track the Table of Requests (TOR) queue for pending CBo transactions.

All reported power, energy and temperature numbers are obtained with RAPL through the RCRdaemon.

RCRdaemon has been extended to provide additional performance related metrics associated with frequency,

instructions retired and cache accesses. The average is taken over 12 test runs for each power and software

setting. To avoid energy variation with temperature, each test script ignored results from the first several

minutes until the system temperature was stable.

A number of DOE MPI mini-apps from the Mantevo suite (Heroux and Barrett 2012) and NERSC-

8/Trinity benchmarks (tri arks) were selected to simulate a variety of loads on HPC systems. The description

for these can be found in Section 2.5.

5.3.1 System

A thirty-two blade partition of the Shepard Advanced Systems Technology Test Bed at Sandia National

Laboratories is used for all memory characterization and policy experiments. This development partition

exposes power and energy instrumentation along with control of clock frequency and modulation through

msr-safe and other kernel modules. The Penguin nodes are connected with Mellanox Fourteen Data Rate

InfiniBand and have configuration similar to HW32. The hyperthread enablement has no effect on our

experiment as benchmarks are run only on one thread per core and frequency is changed by same amounts for

both logical threads. The cluster runs Red Hat Enterprise Linux Server 6.8 with Mpich 3.2 and is scheduled

by Slurm 2.3.3-1.18chaos.

5.4 Characterizing memory behavior

As uncore performance monitoring can capture numerous events in various components, choosing an

appropriate metric that detects memory saturation and latency increase presents a challenge. With shared

LLC, each core has to create requests for memory locations not in its private cache into the Table of Requests

(TOR). Hence, it was reasonable to begin the search to find our metrics by analyzing the events associated

with LLC, particularly TOR. From the many events monitored in the CBo, three memory metrics captured

using Cn MSR PMON CTR{3:0} were chosen. The metric value from each core is summed for the entire
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length of the application and then divided by the number of memory updates that happened in the RCRdaemon

during this period.

The first metric, TOR occupancy (TORo) captures all valid requests in TOR, including those that reside

even for a short time, such as LLC Hits that do not need to snoop cores or requests that get rejected and have

to be retried through one of the ingress queues.

TORo =

∑t
0

∑n
i=0(TOR Occupancyi/Clock cyclesi)

Number of Memory updates

The second metric, RR occupancy (RRo) is the average number of entries in the Ingress Request Queue

(IRQ) on Address (AD) Ring. The AD Ring is associated with core read/write requests and Intel QPI Snoops.

It also carries Intel QPI requests and snoop responses from core to Intel QPI. This metric is supposed to be a

subset of TORo such that applications with high R×R Occupancy generally have higher TORo.

RRo =

∑t
0

∑n
i=0(RR Occupancyi/Clock cyclesi)

Number of Memory updates

The final metric, LLCv is the average number of lines that are victimized on a LLC fill.

LLCv =

∑t
0

∑n
i=0(LLC V ictimsi/Clock cyclesi)

Number of Memory updates

In the above two equations; n is the number of cores per socket, t is the running time of the application.

The memory value in the RCRdaemon is updated every 1ms.

The results for memory characterization of the chosen applications on 32 Haswell nodes (1024 cores) is

shown in Figure 5.2 along with average power consumption and temperature. TORo, RRo and LLCv are

dimensionless ratios.

The metrics TORo and RRo classify the applications along a spectrum with cache/memory bound

applications on the left of the plot and compute bound applications to the right. For miniGhost and miniMD

that are completely compute intensive applications the two metric values are 0. LLCv is not a viable metric for

characterizing application as compute or memory bound as even for highly memory constrained applications

– CloverLeaf, HPCCG and AMG the value for LLCv is 0. Overall both TORo and RRo are able to support

characterization/classification of the applications. However, TORo has better resolution for applications in
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Figure 5.2: Memory characterization of applications on 32 Haswell Nodes (1024 cores)

the middle of the spectrum. TORo is the best metric for use in the policies to capture the opportunities seen

in the evaluation with PCHASE.

5.5 Runtime Policy

The insights from characterization were used to formulate a dynamic policy based on TORo to control

power. The policy is implemented within the MPI profiling interface (PMPI) and requires no application

code changes. Calls to MPI Init, MPI Finalize are intercepted to start collection of power, memory

and other metrics using RCRdaemon, while other MPI calls like MPI Send, MPI Recv among others are

intercepted to collect TORo values and make policy decisions. Since the policies are core-specific, the TORo

value collected by the RCRdaemon at a core level between the MPI calls is used (denoted by TORo core

hereafter) eliminating the need for communication with other MPI ranks. The policies, as in the previous

chapters, are embedded in a shim library that uses PMPI.

Figure 5.3 describes actions taken at each MPI call by the dynamic policy in coarse and fine-grained

versions. The basic idea in both the versions is that when the memory load associated with a core is high

at a MPI call, it is better to slow down that core as the performance is no longer dependent on the speed of

core, but on the memory access time. In contrast to the policies in Chapter 3 and 4, here the decision on

processor speed is taken at the beginning of the MPI call rather than at the end. For the coarse-grained policy,
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Figure 5.3: Flowchart of the dynamic policy using TORo core as the metric to throttle power using per-core
DVFS

the threshold value is empirically obtained and set at the beginning of execution. The fine-grained dynamic

policy uses multiple threshold values to change the core frequency.

5.5.1 Coarse-grained application

The coarse-grained dynamic policy (CDP) targets applications that are well-known to be memory

intensive like HPCCG (Figure 5.2). For empirically determining the threshold value for evaluation, HPCCG

and miniMD were run on HW32 with different TORo core threshold values as shown in Figure 5.4. Initially,

the applications run in their default (D) configuration with power, execution time and energy consumption

recorded. Cores for which the TORo core value is above the specified value are controlled to run at their

lowest frequency (1.2GHz). The threshold value is varied from 0 (almost all cores run at lowest frequency for

the entire length of execution) to 10 (almost all cores run at max frequency).

85



●

● ● ● ●

●
● ● ● ●

● ●

0
20

40
60

80
10

0
12

0
14

0

Configuration

P
ow

er
 (

W
) 

an
d 

T
im

e 
(s

)

D 0 1 2 3 4 5 6 7 8 9 10

0
10

00
20

00
30

00
40

00
50

00
60

00
HPCCG

●

●
● ● ●

● ●
●

●
● ● ●

0
20

40
60

80
10

0
12

0
14

0

Configuration

D 0 1 2 3 4 5 6 7 8 9 10

0
10

00
20

00
30

00
40

00
50

00
60

00

E
ne

rg
y 

(J
)

miniMD

●  Power  Time  Energy

Figure 5.4: Effect of using different TORo core threshold values on HPCCG (memory constrained) and
miniMD (compute bound) application energy and execution time within coarse-grained dynamic policy
(CDP). Note that the values are discrete with links only serving as visual cues.

For HPCCG, which is heavily memory constrained (Figure 5.2), there is very little performance impact

when running the application at lowest frequency for the entire duration. Consequently, at TORo core=0,

the application power is at its lowest point at 91.1W (30.6% reduced) along with the energy consumption

(3091.4J – 25.8% reduction) as the increase in execution time is marginal at 3.7% (33.94s). At TORo core=4,

the application power consumption increases drastically to 108.4W and the execution time increase at this

point is reduced to 1.6%. This suggests that for a highly memory-bounded application like HPCCG , the

majority of its memory references are concentrated at a value of less than four on the TORo core scale.

Between a TORo core value of five to eight, the power and performance is almost flat followed by drastic

increase in power at TORo core=9 where the values are comparable to default. This indicates there exists a

second level of concentration for the memory references.

The compute-bound application (Figure 5.2), miniMD, sees a steep increase of about 16% in execution

time at TORo core=0. Even though the power is reduced by 30.4%, the energy increases by 8%. Each increase

in threshold level thereafter is seen to reduce the performance impact with increasing power consumption.

At TORo core=10, the values match that of the default configuration. The prevailing phenomenon is
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indicative of the direct impact of frequency reduction on performance of a compute bound application.

For highly compute bound applications like miniMD, the TOR core scale is not suited to improve energy

efficiency, and such applications are best left alone by memory-centric schemes like the ones discussed

here. Computational-centric policies discussed in Chapter 3 and Chapter 4 may be more suitable for such

applications.

For HPCCG the lowest energy point is TORo core=0. The PCHASE evaluation (Figure 5.1) shows

that the memory bandwidth is no longer linear beyond two outstanding memory references. As the energy

consumption curve is almost flat up to TORo core=3, we choose a value of 1.0 (one outstanding request in

the TOR per core). The value of TORo core=1.0 also allows some headroom for the frequency decisions

avoiding overfitting. However, the value for TORo core can be set to any desired value at runtime using

environment variables.

5.5.2 Fine-grained application

Figure 5.4 reveals that memory references are concentrated on multiple levels of the TORo core scale

with steps at TORo core=4 and TORo core=9. The fine-grained dynamic policy (FDP) aims to take advantage

of this information to have a much finer control on frequency to make the TOR core-scale based policy

broad. This further helps the policy to target applications that lie between the extremes of the memory

characterization spectrum by controlling degradation (Figure 5.2). The memory references for a memory

intensive application are spread across different values on the TORo core scale with regions of concentration.

The DVFS operational range levels are mapped to TORo core values and the frequency is set to the value at a

particular TORo core value during execution. The effective average TORo core value at which the core has

to be slowed down is determined during execution. For example, in our evaluation between a TORo core

value of 0 to 0.5 the mapped core frequency is 2.3GHz (max non-turbo frequency supported). Beyond a

TORo core value of 9.0, the mapped core frequency is 1.2GHz. During execution the core frequency ranges

from 1.2 to 2.3 GHz. The effective frequency at which the core needs to run for an application is adaptive,

making the performance deterioration lower. In contrast, with CDP the frequency reduction is fixed and is

set at the beginning of execution.
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Figure 5.5: Energy consumption and execution times using coarse (CDP) and fine-grained (FDP) dynamic
policy for mini applications

5.6 Results

The result for mini-applications with the two policies is shown in Figure 5.5. The energy consumptions

and execution times are normalized and the default values for each application is provided. At the onset,

the policies are seen to target applications that are only memory constrained and not compute-bound. The

most memory constrained application – HPCCG is seen to have largest reduction in energy with both

policies. While the least memory constrained – miniGhost and miniMD are mostly untouched. This validates

TORo core as the right metric for controlling the behavior to improve energy efficiency seen in Figure 5.1.

For HPCCG using FDP, the energy saving is 19.5% and program execution time is increased by 1.9%.

With CDP the increase in execution time is slightly more at 2.4%, but the reduction in energy is 32.1%

owing to large power reduction of 33.7%. The large energy efficiency improvement with CDP can be mostly

attributed to its high memory-intensive nature.

CDP not only reduces energy consumption (17.8%) for AMG, but also improves performance by 2.2%.

Even with FDP the performance improves by 0.6% saving 6.4% in energy. These cases demonstrate that

energy optimization improves performance in certain scenarios.

88



CloverLeaf is an interesting example where we see that even though its average TOR occupancy is the

highest (Figure 5.2), the energy savings is much lesser than HPCCG. It reduces the power with CDP by up to

24.7%, however the execution time is increased by 3.6% resulting in energy savings of 24.7%. Using FDP,

we are able to reduce the performance degradation up to 0.4% saving 12.0% in energy. This shows the benefit

of FDP to control performance deterioration within permissible levels of run-to-run variation. Profiling

CloverLeaf revealed a large presence of asynchronous calls (MPI Isend and MPI Irecv). The frequency

at which these calls run determines execution time. To overcome this, both policies were slightly modified to

run the asynchronous calls at 1.8GHz instead of 2.3GHz. The energy reduction without slowdown in case of

FDP suggests that even though asynchronous calls are able to hide memory latency to an extent, there exist

further opportunities to improve energy efficiency.

Applications miniFE, miniGhost and miniMD are mostly cache/compute bound (Figure 5.2). Neither

policy reduces power or adversely impacts performance, as necessary for a policy meant to only target

memory-constrained scenarios.

miniFE sees a slight increase in energy (2.1%) owing to increase in power (1.4%) and execution time

(0.7%) using CDP. With FDP the increase in execution time is nullified and the execution time and power is

close to default. It is important to note here that even though the load imbalance=100, there is no change in

its memory footprint. It continues to remain compute-bound and is unaffected by the dynamic policy.

miniGhost performance improves with both CDP (2.0%) and FDP (2.5%). The power slightly increases

with CDP (0.6%) therefore the energy saving is 1.4%. With FDP power is on par with default and energy

savings commensurate with speedup (2.5%), showing yet another scenario showing energy optimization

leading to performance improvement.

For miniMD using CDP, power is increased slightly by 0.8% and execution time by 0.1% to increase

energy consumption by 0.9%. The FDP runs at same speed as that of default and consumes similar power.

Overall, FDP saves considerable amount of energy at lower performance degradation even with smaller

power reduction compared to CDP. It is more suitable for applications whose memory behavior is not well

known, as CDP may adversely impact performance. The best energy savings with CDP and FDP are 32.1%

and 19.5% for HPCCG.
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Figure 5.6: Compute and barrier times for HPCCG using fine-grained dynamic policy (FDP) on one Haswell
node (32 cores). Power consumption and total execution time for default and FDP are also shown.

5.6.1 Understanding the effects of FDP on application performance

To better understand the effects of FDP on application performance, especially where the performance is

improved, we looked at the critical path behavior for HPCCG (application with largest energy savings) on a

single node. The experiment was repeated multiple times to ensure reproducibility of the compute and barrier

times on a particular node and the results from one such node is shown in Figure 5.6. It can be observed that

HPCCG runs slightly faster with FDP, in addition to reducing power by about 6.9% for an overall energy

savings of 6.3%. This shows that FDP is also effective on single node runs.

The critical path for HPCCG on Core-0 (phases where Core-0 has the longest compute time) of a single

Haswell node is shown. Core-0 was chosen as it was on the critical path for 142 out of the 302 HPCCG

phases. Every phase runs 1 to 2% faster with almost no impact on the closing barrier time. The timescales

however are very small as the improvement in execution time with the policy is only 0.2s.

Multiple metrics like the number of sets and resets by the policy, instructions retired and frequency were

further analyzed to explain improvement in performance or lack of performance degradation. There is about

a 10% reduction in the overall instructions retired both at the user and OS-level across the 32 cores. This is
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mostly due to elimination of busy-waiting instructions for cores not on the critical path with their frequency

reduced. We found that the length of the phases as seen in the figure are not large enough to support reliable

gathering of frequency related information to aid our understanding. Further, our attempt to use Intel’s

Precision Event Based Sampling (PEBS) (Intel 2015a) was not useful as the sampling information is not

accurate with changing frequency as the clock timing is affected. Thus, we infer that the cases where the

policies have shown to improve performance may be attributed to lowering of frequency decreasing resource

contention and eliminating busy-wait instructions or adding thermal headroom for the critical core.

5.7 Conclusion

Despite faster memory transfer rates and simultaneous transfers through multiple memory controllers,

the memory bottleneck remains a frequent limitation in HPC. As Big Data and other memory-intensive

applications become more main stream in HPC, the bottleneck is likely to stay. There is likely to remain

an opportunity to save energy in memory-bound applications. The TORo core metric presented identifies

memory behavior exhibited by the applications conducive to constructing runtime energy saving policies. This

along with the policies in the previous chapter further supports the thesis claim that local core measurements

and controls are effective in improving energy efficiency without performance degradation.

Further understanding of advantages and disadvantages of the proposed metric and policy is needed. This

can involve finding memory-constrained applications for assessment, and identifying when and where each

of the two policies is better suited. Other metrics like instructions per cycle may also aid the policy decisions

to further improve energy efficiency.
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CHAPTER 6: Conclusions

In recent times, the fundamental drive in supercomputing to increase peak performance by adding an

increasing number of power hungry components has waned, with the shift in focus to energy efficiency to

mitigate large operating costs and carbon footprints in future supercomputing centers. This dissertation

explored and evaluated methods to improve energy efficiency of HPC applications at runtime by dynamically

adapting power consumption to the workload characteristics utilizing underlying machine power controls.

Toward this end, runtime optimization techniques that perform measurements and control local to a processor

core are presented that improve energy efficiency in several varieties of HPC applications. These techniques

address many of the challenges faced by prior energy efficiency techniques in HPC. The techniques do not

involve static analysis or require code changes in the application. The use of core-specific power control

overcomes the global slowdown effect experienced by techniques that use chip-wide power controls. The

techniques have been validated on several HPC mini and full applications. Several experiments have been

performed to study the effect of DDCM techniques on power-limited systems. Our results prove that

measurements and controls local to each core in a multi-core system can on average reduce power consumed

by large supercomputing applications at runtime while having little or no adverse impact on execution times.

Research over the last 10-15 years has focused on software techniques to save energy. The techniques

save energy but increase execution time. HPC has to date, ignored the results because very high machine

depreciation costs make absolute performance critical. This dissertation introduced techniques that on

average reduce power consumed while having little or no adverse impact on execution times. With exascale

performance goals, changes in system design like over-provisioning will make software energy saving

techniques particularly relevant to HPC. Many exascale applications will have heterogeneous processor load,

and with power-limits most exascale systems will have heterogeneous performance. The techniques presented

in this dissertation save energy by dynamically setting core-specific clock rates. Since the hardware uses less

power for cores doing less work, in the presence of favorable conditions (Chapter 4) or when power-limited

(Chapter 3), it is free to allocate additional power to cores running the critical threads. This improves overall

performance, suggesting that saving energy will also be a performance optimization.
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6.1 Summary of Results

An adaptive runtime DDCM policy is presented in Chapter 3 to reduce power in unbalanced MPI

applications. In contrast with prior chip-wide DVFS based studies, this is a core-specific approach that slows

down only non-critical cores to prevent performance degradation. As the policy computation is all local, it

is seen to scale well from a single node to 16 nodes both on conventional and power-limited systems. This

makes the demonstrated policy attractive for large HPC systems. Optimizing for energy is often also seen to

be a performance optimization. In the presence of a power limit, the policy is seen to reduce energy along

with improving performance. DDCM is thus shown to be an alternative to save energy in HPC, and improve

performance in power-capped environments.

Secondly, an Adaptive Core-Specific Runtime for energy efficiency allowing processors with core-specific

power control to reduce power with little performance impact by dynamically adapting core frequencies to

workload characteristics is introduced in Chapter 4. This work extends the DDCM policy to DVFS and also

introduces a method to combine the benefit of larger power reduction with DVFS owing to reduction in both

voltage and frequency, and the ability of DDCM to lower the frequency beyond the operating range of DVFS.

This framework is transparent to the application in the form of a MPI library and allows use of multiple

power controls (DDCM, per-core DVFS or both). A large improvement in energy efficiency is obtained

with a full application through a combination of speedup and power reduction. The average improvement in

performance seen is a direct result of the reduction in run-to-run variation and running at turbo frequencies.

This further makes a case for energy optimization as a performance optimization.

Lastly, metrics to detect applications that are constrained by memory are identified in Chapter 5 to be used

in adaptive runtime policies to reduce energy. Our experimental memory study on modern CPU architectures,

Intel Sandy Bridge and Haswell, identifies opportunities to reduce CPU frequency. The presented metric

detects bandwidth saturation and increased latency in the memory system, and is used in a dynamic policy to

modulate per-core power controls. The policy is evaluated when applied at coarse and fine-grained levels on

MPI mini-applications. The policies do not adversely affect performance whether compute or memory-bound,

but lower energy if memory-bound. In a few cases, using the policy makes the execution faster, which

may be attributed to lowering of frequency decreasing resource contention or adding thermal headroom for

non-throttled cores.

93



6.2 Limitations

In this section, we discuss the limitations of the showcased work. The general limitation for all of these

techniques and the framework is that they need to have access to controls and counters at protection ring-0

of the operating system (OS) requiring root privileges. This can be a challenge on production machines

as operating at root level can expose system vulnerabilities. In recent times however, the machine vendors

and other vested entities have shown interest in coming up with interfaces to overcome this limitation (e.g.

msr safe). As these interfaces become more mainstream, policies and frameworks like ours may see more

wide-spread adoption. Also, another minor side-effect of using our techniques is that applications need to

link against our MPI library.

Our policies that target computational workload imbalance assume temporal patterns in the application.

Though this is largely true, there can be departures from this. We do introduce rudimentary approaches

to detect phase change and performance deterioration, however being able to ensure an upper-bound on

performance degradation in the future will be ideal. As certain supercomputing centers also need to operate

within an energy budget, this will also ensure that an energy budget is never violated due to high performance

degradation.

The policies that target memory-constrained applications only work reliably for synchronous calls. The

asynchronous calls are merely bypassed by resetting back the frequency. It will be beneficial however to see

if the presented metric is still useful once latency hiding comes into play. One way to achieve this could

be to use additional metrics to aid the policy decisions to make it effective for applications with majority

asynchronous calls.

6.3 Future Work

There are many avenues of future work. First and foremost, we want to develop a more improved and

encompassing ACR that can target applications with both unbalanced and memory-constrained phases by

combining the two sets of policies. This is because many HPC applications exhibit both workload imbalance

and memory-constrained phases as evinced by the results in Chapters 3, 4 and 5. This new framework will

not be just combining of the two individual shim libraries, but will include a policy that would be first able

to ascertain if a phase is compute or memory-bound, and if compute bound whether there is any workload
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imbalance dynamically at runtime. Next, it would be able to use the appropriate approach with the correct

power control. There are certain challenges to achieving this in a real world setting.

• New boundary conditions to couple the solutions in the two areas with an upper-bound on the performance

degradation are required.

• A thorough understanding of the different power controls to ascertain what control is most appropriate

for a particular scenario.

• A comprehensive evaluation and validation of the policy is required on large system using several full

HPC application for it to be adoption ready on production systems.

For policies targeting unbalanced works loads a more detailed understanding of when to use each of the

power controls will be very useful. It is observed that DDCM and combined policies work well for extreme

workload imbalances. A scale to classify the extent of workload imbalance will be highly useful in guiding

a scheme that can choose a power control dynamically at runtime. In our evaluation of the above policies

and the framework we use several HPC applications with unbalanced workloads to understand the potential

gain realistically achievable. It would be interesting to compare the improvements with our policies to using

dynamic load balancers. This would enable deeper understanding of lower resource contention and turbo

boost due to increased thermal headroom on performance of an HPC application.

In the case of our policy for memory-constrained applications, we would want to compare it with Dynamic

Concurrency Throttling (DCT) that involves changing the number of processes on which an application runs

to lower energy. Traditionally, memory-bound applications have been shown to scale well on lower number of

cores running at full speeds when compared to compute-bound applications (Curtis-Maury et al. 2006, 2008,

Li et al. 2010, Porterfield et al. 2013b). This comparison will help us answer if running a memory-bound

application on more cores at lower speeds has more merit than the traditional approach. Further, an analysis

to see the improvement with our policy when compared to running all cores for a memory bound application

at minimum frequency will help us determine the efficiency of our approach.
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APPENDIX A: RENCI WORKLOAD IMBALANCE MICRO-BENCHMARKS CODES

/ * R e p e a t i n g Unequal * /

# inc lude<s t d i o . h>
# i n c l u d e ” mpi . h ”
# inc lude<s t d i n t . h>

# d e f i n e SCALE 100000000
# d e f i n e REPEAT 10
# d e f i n e CORES 16

i n t main ( i n t argc , char ** a rgv )
{

M P I I n i t (NULL, NULL ) ;

i n t i , j , r ank ;
i n t 6 4 t r e s u l t ;
i n t chunk ;

co re sPe rNode = CORES;
MPI Comm rank (MPI COMM WORLD, &rank ) ;
chunk = rank % coresPe rNode ;

f o r ( i = 0 ; i < REPEAT ; i ++)
{

r e s u l t = 0 ;
f o r ( j = 0 ; j < chunk * SCALE ; j ++)
{

r e s u l t += j ;
}
M P I B a r r i e r (MPI COMM WORLD ) ;

}

M P I F i n a l i z e ( ) ;

re turn 0 ;
}

Listing A.1: Repeating Unequal benchmark in C/MPI
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/ * E q u a l l y S h i f t i n g Load * /

# inc lude<s t d i o . h>
# i n c l u d e ” mpi . h ”
# inc lude<s t d i n t . h> / / i n t 6 4 t

# d e f i n e SCALE 100000000
# d e f i n e REPEAT 10
# d e f i n e CORES 16

i n t main ( i n t argc , char ** a rgv )
{

M P I I n i t (NULL, NULL ) ;

i n t i , j , r ank ;
i n t 6 4 t r e s u l t ;
i n t chunk ;

co re sPe rNode = CORES;
MPI Comm rank (MPI COMM WORLD, &rank ) ;

f o r ( i = 0 ; i < REPEAT ; i ++)
{

chunk = ( ( r ank % coresPe rNode ) + i ) % coresPe rNode ;
f o r ( j = 0 ; j < chunk * SCALE ; j ++)
{

r e s u l t += j ;
}
M P I B a r r i e r (MPI COMM WORLD ) ;

}

M P I F i n a l i z e ( ) ;

re turn 0 ;
}

Listing A.2: Equally Shifting Load benchmark in C/MPI

97



/ * Randomly S h i f t i n g Load * /

# inc lude<s t d i o . h>
# i n c l u d e ” mpi . h ”
# inc lude<s t d i n t . h> / / i n t 6 4 t
# inc lude<s t d l i b . h> / / rand

# d e f i n e SCALE 100000000
# d e f i n e REPEAT 10
# d e f i n e CORES 16

i n t main ( i n t argc , char ** a rgv )
{

M P I I n i t (NULL, NULL ) ;

i n t i , j , r ank ;
i n t 6 4 t r e s u l t ;
i n t chunk ;
i n t randomValue ;

co re sPe rNode = CORES;
MPI Comm rank (MPI COMM WORLD, &rank ) ;
s r a n d ( r ank % coresPe rNode ) ;

f o r ( i = 0 ; i < REPEAT ; i ++)
{

randomValue = rand ()% 3 − 1 ;
chunk = ( chunk + randomValue ) % coresPe rNode ;
i f ( chunk < 0)
{

chunk = 0 ;
}
f o r ( j = 0 ; j < chunk * SCALE ; j ++)
{

r e s u l t += j ;
}

M P I B a r r i e r (MPI COMM WORLD ) ;
}

M P I F i n a l i z e ( ) ;

re turn 0 ;
}

Listing A.3: Randomly Shifting Load benchmark in C/MPI
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