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ABSTRACT 

Juan D. Rojas: Contrast-Enhanced Ultrasound for the Assessment of Treatment Response to Therapy 

(Under the direction of Paul A. Dayton) 

 

Accurate assessment of cancer response to therapy is important for effective treatment outcome 

and limiting unnecessary therapeutics. The clinical gold standard for evaluating response to therapy 

consists of tracking changes in volume, which works well for cytotoxic treatments such and radio or 

chemo therapies, which directly induce cancer cell death. However, tumor volume is ineffective for 

tracking response to treatments such as antiangiogenic therapies, which target the formation of new 

blood vessels, and often lags behind the real effect of the drugs.  

Studies have shown that techniques such as dynamic contrast-enhanced magnetic resonance 

imaging, computed tomography, and positron emission tomography perform better at predicting and 

assessing response to therapy than changes in volume. However, these imaging modalities are 

expensive, cumbersome, expose patients to ionizing radiation, and use contrast agents that can often be 

harmful to patients. 

Contrast-enhanced ultrasound (CEUS) is an imaging modality that is inexpensive, real-time, 

and uses microbubble contrast agents that are safe and can be used to obtain quantitative measurements 

of blood perfusion and levels of endothelial biomarker expression. Moreover, CEUS has been shown 

to assess response to therapy more accurately than tumor volume in rodent tumor models. 

The first hypothesis of this dissertation is that that CEUS can evaluate and track response to 

therapies more accurately than changes in tumor volume. The results show that CEUS can assess 

response to therapies that are disruptive to tumor vessel formation earlier than tumor volume. 
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Specifically, the techniques discussed here include perfusion imaging, ultrasound molecular imaging 

of angiogenesis biomarkers, and acoustic angiography, which can provide metrics about microvessel 

morphology and density. 

The second hypothesis is that CEUS can be performed using phase-change contrast agents 

(PCCAs). PCCAs have better circulation times than conventional microbubbles and can be small 

enough to escape the vasculature for extravascular diagnostic imaging, and thus, may provide multiple 

advantages for the assessment of response to therapy. The development of techniques to perform 

perfusion and molecular imaging using PCCAs is described. The results show that PCCAs can be used 

for intravascular molecular imaging, but major modifications to the formulation are required to obtain 

meaningful measurements of perfusion. 
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CHAPTER 1  

INTRODUCTION TO CONTRAST-ENHANCED ULTRASOUND 

 

1.1 Motivation 

Cancer is the second leading cause of death in the United States behind cardiovascular disease, 

and will claim the lives of over 600,000 Americans in the coming year [1]. Because of the lethality of 

the disease, proper staging and accurate assessment of response to different therapies is critical to 

optimize therapy and correctly assess prognosis. Assessing the initial response is important for survival 

outcome, but tumors can develop resistance to different therapeutic regimens and show progression 

even if the disease seems to be controlled initially [2,3]. Therefore, it is equally important to accurately 

track the progression of the disease throughout treatment in order to better tailor therapy and enhance 

efficacy. For example, it has been shown that resistance to therapy can cause a rebound effect where 

the tumor becomes more aggressive, and this rebound can be worse in cases that showed a better initial 

response [2]. As such, it is very important to closely track the disease to provide effective treatments 

and avoid harmful outcomes. 

1.2 Limitations of Current Clinical Diagnostic Techniques 

The clinical gold standard for noninvasively assessing tumor response to therapy is measuring 

changes in tumor volume via the Response Evaluation Criteria in Solid Tumors (RECIST) [4]. 

However, a statistical simulation study showed that RECIST will often delay the identification of 

progression [5]. Furthermore, functional and molecular changes can occur before any measurable 

change in tumor size [6], and RECIST often does not appropriately demonstrate these effects of therapy 

[7–11]. As RECIST relies on changes in volume, it is appropriate for assessing response to cytotoxic 
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therapies such as radio and chemotherapies that directly kill cancer cells but not for therapies such as 

antiangiogenic drugs that attack the tumor vasculature [3,12]. These therapies often do not cause tumor 

shrinkage and are thus incorrectly categorized using tumor size criteria [13,14]. Studies have found that 

RECIST severely underestimated the response of antiangiogenic therapies in renal cell carcinoma 

(RCC) and could identify progression-free survival in less than 20% of patients  [3,12]. 

1.3 Biomedical Imaging for Assessment of Response to Therapy 

To overcome the limitations of RECIST, there has been a great deal of work in the field of 

biomedical imaging to create modalities that are sensitive to physiological changes and can accurately 

track and predict response to therapy. Anatomical imaging modalities such as computed tomography 

(CT) and magnetic resonance imaging (MRI) are used to provide size measurements for RECIST, but 

contrast agents can also be used to quantify molecular and functional characteristics of the disease. 

Contrast-enhanced MRI, contrast-enhanced CT, and positron emission tomography (PET) can predict 

and track tumor response earlier and more accurately than RECIST [7,15–20]. Contrast-enhanced CT 

has been shown to outperform RECIST in both RCC [12] and gastrointestinal stromal tumors [7,10], 

finding that CT density values can more accurately measure the response of the tumors to different 

therapies. PET has also been proven to be very sensitive at assessing early response to therapy [16,18] 

and has been shown to be especially effective when combined with CT [19]. However, these imaging 

modalities are cumbersome, expensive, and expose patients to ionizing radiation in the case of CT and 

PET. A study tracking the development of cancer in patients who were repeatedly imaged using CT 

showed that cumulative radiation exposure from CT imaging increases baseline cancer risk [21] and 

so, to limit exposure and to optimally capture the response to treatment, imaging is usually limited to 

once every several weeks or months [22]. However, more frequent monitoring is desirable for precise 

tracking of disease state and response to therapy. Furthermore, iodinated contrast agents for CT may 

be harmful for patients with compromised kidneys [23], and gadodiamide contrast agents for MRI may 
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cause nephrogenic systemic fibrosis (fibrosis in skin and lungs and then heart, liver, kidneys) for 

patients with advanced chronic kidney disease, which can lead to death [24,25]. 

1.4 Contrast-Enhanced Ultrasound and Microbubble Contrast Agents 

In comparison to the imaging modalities discussed in the previous section, contrast-enhanced 

ultrasound (CEUS) imaging is inexpensive, portable for bed-side diagnostics, widely available, and 

does not involve any ionizing radiation. CEUS uses contrast agents that are safe for clinical use [26,27], 

range in size between 1 and 5 µm and thus can freely traverse the vasculature, and have been used for 

molecular and perfusion imaging of disease [28–31]. Therefore, CEUS can be a powerful tool for serial 

monitoring of disease and assessment of early response to therapy. Conventional microbubble contrast 

agents (MCAs) are typically composed of a phospholipid shell to prevent dissolution and coalescence 

[32] and have cores with gases, such as sulfur hexafluoride or perfluorocarbons (PFCs), which have 

high molecular weight and low solubility in blood to decrease dissolution and enhance circulation time. 

Adding polyethylene glycol (PEG) to the shell of nanoparticles has been common practice for decades 

in the field of drug delivery, as PEG provides a steric shield that prevents immune cell recognition and 

dramatically decreases particle clearance by the mononuclear phagocytic system, also known as the 

reticuloendothelial system [33–35]. Hence, PEG is commonly conjugated to the lipid shell to reduce 

MCA coalescence and recognition by the immune system [36,37] and to attach targeting ligands for 

molecular imaging [38,39]. 

Ultrasound (US) uses high frequency pressure waves (in the MHz range) to differentiate tissues 

based on density. Contrast between tissues arises from mismatches in acoustic impedance, so MCAs 

provide high US contrast because the density of their cores is much lower than that of blood or tissue. 

Moreover, microbubbles are highly compressible and generate pressure waves when interrogated with 

US with frequencies in the clinical range (1-15 MHz). The response of MCAs to US is much different 

than that of tissue, so contrast-specific pulse sequences can be used to isolate MCA signals from those 

of tissue. 
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1.5 Pulse Sequences for Contrast-Enhanced Ultrasound 

Contrast-specific sequences separate MCA signals from tissue signals based on their non-linear 

frequency and amplitude response. Specifically, tissue response to transmitted ultrasound waves is 

predominantly linear, producing echoes having a frequency content dominated by the excitation 

frequency and an amplitude linearly proportional to that of the incident pressure wave. Conversely, the 

frequency content of signals produced by MCAs encompasses the excitation frequency as well as 

significant energy at higher harmonics [40], and the resulting signal amplitude is not linearly 

proportional to the excitation pressure [41]. Techniques such as pulse inversion [42] (Figure 1.1) and 

amplitude modulation [41] (Figure 1.2) take advantage of the non-linear response of MCAs to reduce 

tissue signal and produce images with a high contrast-to-tissue ratio (CTR). CadenceTM contrast pulse 

sequencing (CPS) from Siemens Medical Solutions, Inc. (Issaquah, WA, USA) incorporates pulse 

inversion and amplitude modulation to produce an US sequence that reduces tissue signal and is more 

sensitive to MCA signal than either pulse inversion or amplitude modulation alone [43] (Figure 1.3).   

 

Figure 1.1. Pulse inversion pulse sequence. This scheme uses two pulses that are 180 degrees out of 

phase to eliminate fundamental frequency content from both tissue and MCAs, so that only the second 

harmonic component of MCAs remains. 
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Figure 1.2. Amplitude modulation pulse sequence. This approach consists of subtracting twice a half-

amplitude pulse from a full-amplitude pulse to eliminate fundamental tissue signals. 

 

Figure 1.3. Cadence contrast pulse sequencing. Pulse inversion and amplitude modulation are combined 

to eliminate tissue signal and isolate fundamental and second harmonic frequency components from 

MCAs. A full-amplitude pulse is followed by 2 inverted and half-amplitude pulses. 

1.6 Ultrasound Molecular Imaging 

By incorporating targeting ligands such as antibodies or peptides to the microbubble shell, 

ultrasound molecular imaging (USMI) can be performed, thereby enabling imaging of pathology 

otherwise difficult to distinguish from normal tissue with the use of conventional US (B-mode) [44]. 

USMI has been evaluated to assess expression of different molecular biomarkers associated with 
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cardiovascular disease [44–46], inflammatory disorders [47,48], and angiogenesis [49–51]. Typically, 

biomarkers expressed on the vascular endothelium such as αvβ3 integrin and the Vascular Endothelial 

Growth Factor receptor (VEGFR-2) are targeted [49,52–55] because available markers are partially 

limited by the confinement of the microbubbles to the microvasculature due to their size.  

 

Figure 1.4. Example USMI protocol. B-mode is used for anatomical reference (a). Contrast-specific 

sequences greatly reduce the tissue signal (b). MCAs are injected and perfuse the entire tissue (c). 

MCAs are allowed to bind for several minutes while freely-flowing agents are cleared from circulation 

(d). A destructive flash clears bound MCA from the tumor, so that the level of freely-flowing signal 

can be captured (e). The USMI signal is calculated by subtracting (e) from (d). 

Typically, targeted MCAs are injected into the vasculature and allowed to circulate and bind 

to endothelial markers. A waiting period of 4-15 minutes is required after injection in order to allow 

the microbubbles to bind to the targets and for the free-flowing agents to be cleared from circulation. 

An increased concentration of MCAs enhances target binding, but free-flowing contrast will take longer 

to clear. A frequently used approach consists of waiting several minutes for binding to occur, then 

capturing the signal in the tumor before and after a destructive US pulse clears the field of view from 

both bound and freely-flowing MCAs, so that the molecular imaging signal is the difference between 
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the two scans [49] (Figure 1.4). This approach reduces the imaging time because it is not needed to 

wait until all of the freely-flowing MCAs have been cleared from circulation by the liver and lungs. 

1.7 Dynamic Contrast-Enhanced Ultrasound 

  Since MCAs are constrained to the vasculature, CEUS can image characteristics of blood such 

as perfusion rate, by monitoring the transit time of MCAs leaving or arriving into a target or measuring 

how long they remain in the tissue. Dynamic contrast-enhanced ultrasound (DCE-US) can produce a 

quantitative measurement of perfusion that can be used to evaluate functional changes, something that 

is difficult to do with other US techniques such as Doppler. DCE-US has been shown to measure tissue 

characteristics such as blood perfusion [56–58] for cardiology [59,60], evaluation and treatment of 

ischemic stroke [61–63], and cancer assessment and management [64,65] in animal models of disease. 

One strategy that is commonly employed in DCE-US is obtaining a time-intensity curve of the contrast 

signal by delivering a bolus of MCAs and monitoring the signal in the tissue as the agents are cleared 

from circulation [66] (Figure 1.5). For the time-intensity curve, parameters such as mean transit time 

(MTT), peak enhancement (PE), and area under the curve (AUC) can be calculated to quantify the 

perfusion in the tissue. This technique can be subject to error from difference in bolus injection rate and 

tissue motion over time. Additionally, creating a time-intensity curve of MCA washout can only be 

performed in one plane unless a 2D transducer is used, and there is evidence demonstrating that tumors 

have very heterogeneous physiological characteristics, making a 3D scan more appropriate for 

accurately assessing the state of the disease [67]. In comparison, a method referred to as Flash 

Replenishment or Destruction Reperfusion can be performed in 3D by sweeping a conventional US 

transducer across the tissue to obtain perfusion measurements of the entire region of interest (ROI) [58]. 

Typically, a continuous infusion of MCAs is used so that tissue is saturated with contrast, a flash 

consisting of destructive pulses clears the ROI of microbubbles, and the intensity inside the ROI is 

monitored as MCAs flow back in (Figure 1.5). The produced intensity curve can be fitted to a simple 

exponential equation, and the perfusion coefficient α can be calculated to quantify perfusion. 
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Additionally, the time for the intensity inside the ROI to reach 20% (20% is common, but any 

percentage can be used) of the value before the destructive flash can be used as a metric of perfusion. 

 

Figure 1.5. Time-intensity Curves for DCE-US. A bolus of MCAs is introduced and the signal is 

monitored until the agents are cleared from circulation (left). Perfusion metrics such as mean transit 

time (MTT), peak enhancement (PE), and area under the curve (AUC) can be calculated. The 

Destruction Reperfusion protocol (right) involves measuring the intensity after a destructive flash clears 

MCAs from the field of view. A perfusion coefficient α and a time to 20% of baseline can be calculated 

to quantify perfusion. 

Using a similar protocol to Destruction Reperfusion, the same perfusion metrics can be 

calculated for each pixel in the image to create parametric perfusion maps that allow for quantification 

of specific areas in the ROI [56,58,68] (Figure 1.6).  

 

Figure 1.6. Parametric perfusion maps overlaid on the corresponding B-mode images. The figure shows 

a tumor before treatment (a) and after several weeks of treatment (b). The color of each pixel represents 

the time it took that pixel to return to 20% of its value before the destructive flash. 
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1.8 Acoustic Angiography 

Acoustic angiography (AA) is another CEUS technique which uses the super-harmonic signals 

from MCAs to produce high resolution maps of vasculature [40,69]. Specifically, tissue response to 

transmitted ultrasound waves is predominately linear, producing echoes having the same frequency 

content dominated by the excitation frequency. Conversely, the frequency content of signals produced 

by MCAs encompasses the excitation frequency as well as significant energy at higher harmonics [40].  

The potential of superharmonic imaging was first demonstrated by Bouakaz et al. [70] and Kruse and 

Ferrara [71], where it was observed that broadband energy exceeding 45MHz was produced when 

microbubbles were excited with short 2.5 MHz pulses. Therefore, AA consists of exciting microbubbles 

at their resonant frequency (typically less than 10 MHz), and receiving at a high frequency (10-30 MHz) 

to capture their higher harmonic content response, and thus eliminating the fundamental frequency 

content of tissue (Figure 1.7a). The microbubble harmonics can be detected at several fold of the 

fundamental frequency, resulting in images with substantially higher resolution and higher CTR than 

obtained with existing technology [69].  

AA is a destructive CEUS technique because MCAs have to be driven with high pressures that 

cause fragmentation and destruction in order to produce the required higher harmonic content. By 

changing imaging parameters, such as the frame rate and the amount of frame averaging (or whether 

or not to average frames), different types of images can be obtained. For example, if a frame rate around 

5 Hz with frame averaging is used, AA will produce high resolution images where individual vessels 

down to 150 µm can be resolved (Figure 1.7b). Large vessels will re-perfuse between frames, but sub-

resolution vasculature with slow perfusion will not, so averaging the frames eliminates sub-resolution 

signal and isolates signal from large, resolvable vessels. This type of image can be used to evaluate 

vessel morphology in tumors for early detection and monitoring of early development of disease [72,73] 

and can potentially be used to assess the response of tumor vasculature to different therapies. In 

comparison, if a slow frame rate of 1 Hz is used without any frame averaging, AA will produce 
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“cloudy” images containing MCA signal from both sub-resolution and resolvable vessels (Figure 1.7c) 

that can provide a quantitative measure of microvascular density [74]. Furthermore, a measure of 

perfusion can be obtained by adjusting imaging parameters, since the main difference between the two 

types of AA images discussed above is the length of time allowed for re-perfusion between frames [75]. 

 

Figure 1.7. Overview of Acoustic Angiography. In (a), a transmit pulse with a frequency of f0 will 

produce a tissue response (black dashed line) around f0 and with some content at 2f0, but MCAs (red 

line) will have a response that extends to several harmonics. A receive transducer with a bandwidth that 

does not overlap with the tissue response (blue dashed line) can be used to produce images free of tissue 

with high CTR. Using a high frame rate and frame averaging will produce images with resolvable 

vessels (b). A slow frame rate and no frame averaging will include signal from both resolvable and sub-

resolution vasculature (c). The yellow dashed lines denote the tumor area. 
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Cancer is characterized by extensive angiogenesis, or the formation of new vasculature [76]. 

As tumors grow, they use different signaling pathways such as the vascular endothelial growth factor 

(VEGF) and Notch signaling pathways to recruit new vasculature and feed the rapidly growing number 

of cells [76,77]. However, angiogenesis in cancer is different than that of normal physiological 

processes, in that it results in abnormal vasculature that is often disorganized and tortuous due to an 

excess in signaling [78]. It has been shown that vascular remodeling in cancer can start when the tumor 

is as small as 100 cells [79], and morphological changes in the vasculature can be detected using AA 

before the tumor is palpable, or around 2-3 mm [72]. Therefore, AA might be an ideal technique for 

tracking and assessing the response of cancer to different therapies. 

1.9 Overview of Pre-Clinical CEUS for the Assessment of Response to Therapy  

Over recent years, researchers have started exploring the potential of CEUS to assess the 

response of disease to different therapies in rodents. Within the last 3 years, many studies have 

demonstrated the ability of USMI to target VEGFR-2 in different cancer models and provide imaging 

results that correlate with histology [80–85]. In line with these findings, some studies have shown that 

USMI of VEGFR-2 can be used to predict response to antiangiogenic therapy earlier than tumor volume 

[81–83]. Furthermore, Wang et. al showed that the effects of antiangiogenic therapy can be observed 

with USMI and DCE-US as early as 24 h after treatment [86]. Streeter et al. found that USMI of αvβ3 

integrin is capable of differentiating between patient-derived xenografts that respond to aurora-A kinase 

inhibition and non-responders earlier than tumor volume as an indicator [87], and Sirsi et al. 

demonstrated that USMI can predict response of antiangiogenic therapy earlier than volume 

measurements [88]. 

Although most work on the assessment of response to therapy using CEUS has been focused 

on USMI, a few studies have shown the ability of US to evaluate response to therapy using DCE-US 

and AA. Zhou et al. recently demonstrated that both PE and AUC can be used to show response to 

antiangiogenic treatment before changes in tumor volume [89], and Kasoji et al. used a metric of 
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vascular density from AA to differentiate between responders and non-responders in tumors treated 

with radiation [74]. 

It is worth noting that there have been a handful of clinical studies that use DCE-US to assess 

early response to antiangiogenic therapy in renal, hepatic, and gastrointestinal cancers [20,90–93] and 

have shown promising results. However, even though targeted agents for USMI have recently been 

approved for patient use, there are not studies, to my knowledge, that have used USMI for the 

assessment of response to therapy in human patients. 

To my knowledge, all previous pre-clinical work has used group statistics to show the 

effectiveness of CEUS to track disease progression, and while measuring differences in response to 

therapy between populations can provide valuable information for the overall treatment of disease, 

tracking and predicting response in individuals is more relevant for clinical translation.  
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CHAPTER 2                                                                                                                           

PHASE-CHANGE CONTRAST AGENTS 

 

2.1 Introduction to Phase-Change Contrast Agents 

Phase-change contrast agents (PCCAs) were introduced almost two decades ago for therapeutic 

applications, such as occlusion therapy [94–96], cavitation enhancement for tumor ablation [97–100], 

and aberration correction for diagnosis [94,101,102]. PCCAs conventionally have liquid cores 

composed of a perfluorocarbon (PFC) with a boiling point around body temperature, which can be 

vaporized, or activated, into microbubbles using ultrasound in an event termed acoustic droplet 

vaporization (ADV) by Kripfgans et. al [101]. ADV has been studied extensively over the years [103–

110], and it has been found that acoustic vaporization of the liquid core is initiated by superharmonic 

focusing; high frequencies that can have wavelengths around the size of the agent are created by non-

linear propagation and focused because of the difference in speed of sound between the PFC core and 

media around the agent [109,111]. Because ADV produces bubbles many times the size of the precursor 

PCCAs, these agents could be used in the occlusion of vessels for starving cancerous tissue or providing 

point targets for aberration correction.   

2.2 PCCAs for Therapy 

In the presence of gas bubbles, high-amplitude pressure waves can produce cavitation, which 

causes a violent collapse of the bubbles [112]. The collapse can cause local increases in temperature of 

6500ºC for a few microseconds due to the surrounding liquid rushing in to fill the void left by the 

bubble, as well as high amplitude shock-waves. Cavitation can increase tissue temperature beyond 

55ºC, which causes irreversible protein denaturing and cell death [113] for tumor ablation [114], but 
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offsite effects are common due to the high acoustic pressures used [115]. Using MCAs allows 

localization of the therapeutic effect to the target by providing cavitation nuclei but can cause skin 

lesions when the concentration of agents is too high [116]. Since PCCAs require acoustic pressures that 

exceed a certain threshold to become microbubbles, cavitation will only occur around the focus of the 

US pulse where that threshold is achieved, which helps to precisely control the location of the treatment 

[98–100]. Furthermore, PCCAs have been used for MR-guided tumor ablation [117,118], and 

cavitation of microbubbles created by ADV has been used for sonoporation in cells [119]. 

PCCAs can be manufactured to have a size of 100-400 nm, which may allow them to escape 

the vasculature in cancerous regions which have disorganized and “leaky” endothelial structures that 

allow nanoparticle diffusion into the tissue [120–122]. As such, PCCAs can be loaded with drugs and 

allowed to extravasate and accumulate in the tumor tissue for highly localized delivery [123–125]. 

2.3 PCCAs for Diagnosis 

Although used mainly for therapy, PCCAs have characteristics that can overcome limitations 

associated with microbubble contrast agents, namely, short circulation time in vivo and the inability to 

extravasate, due to their size, to provide contrast for diagnosis or deliver therapeutic agents into the 

interstitium. Furthermore, the liquid core greatly reduces dissolution of the PFC into the blood and 

expiration through the lungs. Because of these advantages and the fact that PCCAs can be vaporized to 

form echogenic microbubbles capable of providing contrast, droplets have great potential for diagnostic 

applications, such as molecular and perfusion imaging [126,127]. 

2.4 Stability of PCCAs at Room and Body Temperature 

It was believed that PCCAs remain in the liquid form due to increased Laplace pressure from 

the small curvature of the agent [128–130], but recent evidence suggests that the stability of droplets is 

due to the metastability of the pure PFC against vapor nucleation [131,132]. Regardless of the 

mechanism, PCCAs remain in the liquid form until an acoustic or thermal threshold is exceeded, which 
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precipitates nucleation of vapor embryos and subsequent vaporization of the entire droplet 

[107,108,130,131,133]. However, PCCAs have historically been composed of PFCs that are liquid at 

room or body temperature, such as perfluorpentane or perfluorohexane.  Vaporization of these “liquid” 

PFCs in nano-sized PCCAs requires more energy than micron-sized droplets, so the high acoustic 

pressures required for activation exceed the Food and Drug Administration limit for diagnostic imaging. 

2.5 Low Boiling-Point PCCAs 

High boiling-point PCCAs may be desired for therapeutic applications because of enhanced 

stability in vivo and resistance against spontaneous vaporization. Additionally, their stability allows for 

spatial and temporal control of activation, since vaporization occurs only in areas targeted by acoustic 

energy and once a high acoustic pressure threshold is achieved. However, there has also been an interest 

in PCCAs that can be vaporized at low acoustic pressures well within the diagnostic ultrasound regime. 

Sheeran et al. developed sub-micron PCCAs using low-boiling PFCs that are stable at body temperature 

and can be vaporized using imaging acoustic pressures [128,129,134]. These low-boiling point droplets 

are typically composed of either decafluorobutane (DFB, -2ºC boiling-point), octafluoropropane (OFP, 

-37ºC boiling-point), or mixtures of these perfluorocarbons.  Mixing the PFCs allows for tailoring of 

the vaporization threshold, so low boiling-point PCCAs have been used in vitro as temperature probes 

[135]. 

Low boiling-point PCCAs have been characterized extensively in vitro. The vaporization 

threshold has an inverse relationship with agent size and ambient temperature, and as expected, the 

more volatile PFC (OFP) has a lower acoustic [134] and thermal [131] threshold than DFB. 

Furthermore, it was found that PCCAs with a 1:1 mixture of DFB and OFP had vaporization thresholds 

in between those of DFB and OFP, suggesting that low boiling-point PCCAs can be tuned for different 

applications [134]. However, Mountford et. al showed that OFP preferentially leaks out of PCCAs with 

a mixture PFC core in environments that are not saturated with the mixture [135], such as in vivo, so 

more work is required to produce tunable PCCAs. Sheeran et. al showed that low-boiling point PCCAs 
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can be activated using short pulses (< 10 cycles) like those found in clinical scanners, using 

diagnostically relevant pressures, and that the microbubbles resulting from ADV have sizes similar to 

those of conventional MCAs or the precursor microbubbles that were condensed to make the PCCAs 

[130,134]. It is worth noting, however, that the resulting microbubble size after vaporization is often 

larger than the precursor bubble due to gasses in the environment diffusing in for several seconds after 

activation [128]. It has been observed that the lipid shell is conserved after condensation [134] and 

vaporization [136] by fluorescently labelling the shell, so it is not clear why the resulting microbubble 

is more permeable to gases in the environment. Furthermore, targeting ligands can be attached to the 

lipid shell since it is retained through condensation and vaporization, and molecular imaging has been 

demonstrated in vitro [126]. 

2.6 Vaporization Signal of Low Boiling-Point PCCAs 

In addition to producing highly echogenic microbubbles, the vaporization event of low-boiling 

point PCCAs produces very specific acoustic signatures [137]. As the droplet is vaporized, it over-

expands and oscillates down to its final size, producing acoustic signals between 0.25 and 2.5 MHz 

regardless of the excitation frequency (Figure 2.1). Furthermore, the vaporization signals have large 

amplitudes compared to those resulting from exciting microbubbles with the same pressures, and so, 

isolating droplet activation signatures may produce images that are specific to PCCAs and eliminate 

tissue or microbubble signal. Moreover, the low frequency of activation signals may provide better 

depth of penetration than conventional contrast ultrasound. 

Since vaporization signals from droplets ranging between 100 and 400 nm in size have 

frequencies around 1.5 MHz, a transmit high/listen low strategy has been employed in vitro to produce 

images with high CTRs by transmitting around 8 MHz and receiving around 1 MHz using 2 

piezoelectric pistons or a single capacitive micromachined ultrasound transducer [138,139]. However, 

this approach has not been extended to in vivo imaging. 
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Figure 2.1. Vaporization and expansion of low boiling-point PCCAs. The agent overexpands and 

oscillates down to its final diameter. The resulting bubbles are around 5 times larger than the PCCAs. 

In addition to the work mentioned previously, there have been in vitro studies on the 

condensation of PCCAs [140], the stability of the bubbles produced by PCCA vaporization [104,141], 

the effect of channel confinement on the contrast provided by PCCA activation [142], and 

characterization of vaporization using frequencies above 20 MHz [143], but few studies outside the 

work presented in this thesis have used PCCAs, either high or low-boiling point, for in vivo diagnostic 

imaging [143–145]. It is worth noting that in one of these studies, Nyankima et. al demonstrated that 

low boiling-point PCCAs can be safely used in vivo without causing bioeffects [145]. 

2.7 Possible Advantages of PCCAs for Diagnostic Imaging 

Low boiling-point PCCAs offer advantages over MCAs that might enhance USMI and DCE-

US for the assessment of disease and response to therapy. Namely, PCCAs can be manufactured small 

enough to extravasate, circulate longer in vivo, and provide spatial and temporal control of contrast 

generation. The ability to extravasate might allow PCCAs to target extracellular markers that are not 

expressed in the endothelium, which may enable the tailoring of treatment to specific patients and 

cancers; therapies may be more efficacious if changes in the expression of cancer-specific markers can 
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be detected, instead of changes in markers such as VEGFR-2 that are general to all cancers. For 

example, increased expression of human epidermal growth factor receptor 2 (HER2) in 25% to 30% of 

breast cancers correlates with poor disease-free and overall survival [146,147]. Additionally, anti-

HER2 antibodies such as trastuzumab have been shown to have significant anti-tumor capabilities and 

to enhance the efficacy of treatment when used in conjunction with chemotherapy but only in tumors 

overexpressing HER2 [146,148,149]. Therefore, imaging HER2 can be important to identify aggressive 

breast cancers with overexpression of HER2 that may not respond well to chemotherapy and to 

determine if drugs, such as trastuzumab, are viable treatment options. 

PCCAs may extravasate due to the enhanced permeability and retention (EPR) effect [120] and 

bind to markers expressed by cancer cells. In theory, the unbound PCCAs would then be cleared by the 

lymphatic system, leaving only bound droplets which could be vaporized to obtain USMI signal.  

The enhanced circulation time of PCCAs may provide better binding per dose than MCAs, 

since the agents have more opportunities to bind; thus, smaller doses may be used to reduce the imaging 

time. Furthermore, PCCAs are only detectable with US after they have been converted to microbubbles, 

so there is no need to wait until most of the free-flowing agents are cleared from circulation; 

Vaporization pulses can theoretically be delivered at any point after injection, and after the free-flowing 

agents wash out of the plane of imaging following activation, the only remaining signal should be that 

of bound agents. Lastly, since vaporization can be carefully controlled by US, droplets provide 

excellent temporal and spatial control of contrast generation, so they can be used to measure perfusion 

in specific areas of the tissue of interest.       
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CHAPTER 3                                                                                                            

ASSESSMENT OF TUMOR RESPONSE TO THERAPY USING MICROBUBBLE 

CONTRAST AGENTS1,2 

 

3.1 Introduction  

In this chapter, the ability of CEUS to assess tumor response to therapy is demonstrated. The 

chosen model is a clear-cell renal cell carcinoma (ccRCC) xenograft that was evaluated using USMI, 

DCE-US, and AA.  

Metastatic clear-cell renal cell carcinoma results in over 14,000 deaths annually in the US, and 

over 60,000 new cases are expected to be diagnosed this year [1]. This type of cancer is characterized 

by increased angiogenesis due to gene mutations in the von Hippel-Lindau gene (VHL), which 

upregulates various pro-angiogenic factors [150,151]. A common clinical therapeutic strategy for the 

treatment of ccRCC is antiangiogenic treatment [9,152–155]. Drugs such as Sunitinib, a small molecule 

multi-kinase inhibitor, reduces the signaling of the vascular endothelial growth factor (VEGF) pathway 

via its receptor VEGFR-2 [9,152–155]. The VEGF pathway plays a key role in tumor angiogenesis, 

such that inhibition reduces new vessel formation and starves the tumor. Antiangiogenic therapy is 

initially effective against ccRCC, which is characterized by increased angiogenesis [150,151],  although 

                                                      
1 © 2018 Ivyspring International Publisher. Reprinted, with permission, from JD Rojas, F Lin, YC Chiang, A Chytil, DC 

Chong, VL Bautch, WK Rathmell, PA Dayton, “Ultrasound Molecular Imaging of VEGFRR-2 in Clear-Cell Renal Cell 

Carcinoma Tracks Disease Response to Antiangiogenic and Notch-Inhibition Therpy”, Theranostics, 2018; 8(1): 141-155.  

2 © 2018 IEEE. Reprinted, with permission, from JD Rojas, V Papadopoulou, TJ Czernuszewicz, RM Rajamahendiran, A 

Chytil, YC Chiang, DC Chong, VL Bautch, WK Rathmell, S Aylward, RC Gessner, PA Dayton, “Ultrasound Measurement 

of Vascular Density to Evaluate Response to Anti-Angiogenic Therapy in Renal Cell Carcinoma”, IEEE Transactions on 

Biomedical Engineering, 2018. In Review. 
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resistance to anti-angiogenic therapy is almost universally developed after several months of therapy 

[156–158].  

Inhibition of the Notch signaling pathway is an alternative strategy to antiangiogenic therapy 

that also impairs angiogenesis. Notch signaling promotes vessel growth while suppressing excessive 

sprouting by down regulating VEGFR-2 on endothelial cells of the growing stalk [159–161]. 

Endothelial tip cells induce adjacent stalk cells to pattern new vessels [160–162]. Binding between 

Notch ligands such as Dll4 (Delta-like ligand 4) on tip cells and Notch receptors on stalk cells regulates 

the specialization of endothelial cells and limits sprout numbers [160,161]. This signaling pathway can 

be inhibited using gamma secretase inhibitors, which inhibit the activation of Notch via cleavage 

induced by ligand binding. Therefore, inhibiting Notch signaling yields a disproportionate number of 

tip cells, resulting in excessive sprouting and immature vasculature, which has been shown to inhibit 

tumor growth, likely due to inefficient perfusion [160,163–166]. These complementing inhibitory 

pathways provide an opportunity for parallel angiogenic blockade, and moreover, the additional 

expression of VEGFR-2 caused by the inhibition of Notch might cause ccRCC undergoing Notch 

inhibition to re-sensitize to the effects of VEGF receptor targeting. This proposed interaction has the 

potential to be a mechanism for overcoming resistance to conventional antiangiogenic therapy in ways 

that may be challenging to monitor with conventional imaging.  

In this work, the ability of CEUS to track the response of subcutaneous ccRCC tumors to two 

kinds of therapy was explored. Mice were treated with an antiangiogenic VEGF receptor targeting, an 

inhibitor of Notch pathway activation, or a combination of the 2. USMI was used because both types 

of therapies affect the expression of VEGFR-2 on endothelial cells, so monitoring the levels of this 

biomarker might elucidate the effects on the tumor. Furthermore, the treatment strategies used here 

attack the vasculature and lead to inefficient perfusion, which can be quantified with DCE-US, and 

using AA to quantify vascular density might demonstrate the effect that the therapies are having on the 
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vasculature. Furthermore, since Notch inhibition produces excess sprouting, the enhanced tortuosity 

might be captured using AA and could be a good indicator of response. 

3.2 Methods 

3.2.1 Microbubble Contrast Agents 

The contrast agents used for the USMI part of the study were VEGFR-2 targeted 

perfluorocarbon microbubbles (Visistar VEFGR2, Targeson, San Diego, CA, USA) with a mean 

diameter of 2.23 ± 0.02 μm. Competitive binding experiments show that Targeson VEGFR-2 bubbles 

produce significantly higher retention in tumors than similar control bubbles bearing isotype-matched 

antibodies [49], inactivated antibodies [167], or naked microbubbles without targeting antibodies [168]. 

The lipid-encapsulated perfluorocarbon MCAs used in the rest of this work were manufactured 

in-house and were similar to commercial lipid-shelled contrast agents. The lipids 1,2-distearoyl-sn-

glycero-3-phosphocholine and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy 

(polyethylene-glycol)-2000 (DSPE-PEG2000) in a 9:1 M ratio and a total lipid concentration of 1.0 

mg/mL were dissolved in a solution of phosphate-buffered saline, propylene glycol, and glycerol 

(16:3:1). Then, 1.5 mL of the solution was added to a 3-mL glass vial and the head space was gas-

exchanged with decafluorobutane gas. Microbubbles (1 µm mean diameter and a 1x1010 #/mL 

concentration) were produced by using an agitation technique. 

3.2.2 Xenograft and Treatment Protocol  

NSG (NOD/scid/gamma) female mice (Mus musculus) were injected subcutaneously in the 

flank with 8x106 786-O human renal cell adenocarcinoma cells, which were obtained from Dr. William 

Kim at the University of North Carolina [169]. For the tortuosity experiment only, Nude (Nu/Nu) 

female mice (Mus Musculus) were injected with 1x106 VHL (R16Q) cells [170] in the flank. These 

cells have a mutation in the VHL tumor suppressor gene that often leads to RCC and are characterized 

with high vascular density and excessive sprouting. 
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Treatment started when the tumors reached 200 mm3 (caliper measurement) and continued for 

5 weeks. The drugs used were a Notch pathway inhibitor GSI (Gamma secretase inhibitor, PF-

03084014, Pfizer, New York, NY, USA) at a daily dose of 90 mg/kg, and VEGF inhibitor SU (Sunitinib 

malate, Selleckchem, TX, USA) at a daily dose of 50 mg/kg. The therapies were delivered by oral 

gavage. 

For the USMI experiment a total of 32 mice were placed into 4 treatment groups: GSI, SU, a 

Switch group (SU to GSI), and Control (100 µL of saline). In the case of the Switch group, the mice 

were treated with SU for 3 weeks before switching to GSI.  

For the DCE-US portion of this work, the mice were treated daily with GSI, SU, a combination 

of the two drugs, or saline. There were 4 mice per group, except for the GSI group, which had 3 animals. 

The AA experiment contained 2 sections: vascular morphology (tortuosity) and vascular 

density analysis. For the morphology portion, 9 mice were divided into 3 groups: GSI, a combination 

of GSI and SU, and a Control (saline). The number of animals in each group for the density experiment 

were 8, 16, and 8 for the Control, SU, and Combo groups, respectively. 

3.2.3 Animal Protocol and Contrast Administration 

All imaging was performed using methods approved by the UNC Institutional Animal Care 

and Use Committee. An initial pre-treatment scan was acquired when the tumors reached 150 mm3, and 

the mice were imaged once per week until the end of treatment or until the tumor exceeded 2 cm (long 

axis), at which time they were euthanized in accordance with guidelines of the UNC Institutional 

Animal Care and Use Committee requirement. During each imaging session, the mice were 

anesthetized with 1.5% isoflurane and body temperature (37˚C) was maintained using a heated imaging 

platform. The area of imaging was cleared of fur using an electric razor and further depilated using a 

chemical hair remover, and the tissue was coupled to the imaging transducer using water-based 

ultrasound gel. A 27G catheter was inserted into the tail-vein for the introduction of MCAs. 
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 For the USMI experiment, a bolus of 2x106 of the Targeson microbubbles diluted in 100 µL 

of sterile saline was injected, followed by a 100 µL saline flush to clear the catheter and ensure the 

entire dose was delivered. An Accusizer 780 A (Particle Sizing Systems, Santa Barbara, CA, USA) was 

used to size the bubbles before every imaging session to ensure a precise dose was injected for all 

experiments. In-house MCAs were continuously infused at a rate of 6x107 bubbles/min for the DCE-

US portion, and at a rate of 1.5x108 bubbles/min for both sections of the AA experiment. 

3.2.4 Imaging and Analysis Protocols 

3.2.4.1 USMI 

All imaging was performed using an Acuson Sequoia 512 (Mountain View, CA, USA) driving 

a 15L8 linear array transducer. The imaging protocol utilized was a standard protocol for ultrasound 

molecular imaging, as previously described [49], and is summarized in Figure 3.1. A b-mode scan (14 

MHz, 0.63 Mechanical Index) was obtained before the introduction of contrast agents for anatomical 

reference using the system’s compounding mode. Next, a contrast baseline scan was acquired using 

cadence pulse sequencing (CPS), the imaging system’s contrast-specific imaging mode. Contrast 

imaging parameters were: 7 MHz, -7 dB gain, and a Mechanical Index of 0.18, and were found to be 

non-destructive in preliminary work. A scan to capture the peak contrast enhancement was obtained 1 

min after injection, and the bubbles were allowed to circulate for 7 min in order to allow for most of 

the freely-flowing contrast to be cleared from circulation. Preliminary studies showed that most of the 

free-flowing contrast was cleared from circulation by 7 min. Next, a second contrast imaging scan was 

captured, followed by a destructive b-mode scan (14 MHz, 1.9 Mechanical Index) in which the 

transducer was quickly swept over the tumor volume to remove bound bubbles. Lastly, the level of 

freely-circulating contrast was measured with a final contrast imaging scan 1 min after the destructive 

scan. All the imaging scans were captured in 3D by sweeping the transducer in the elevational direction 

over the tissue, as previously reported [58,67], using a step-size of 400 μm, and capturing a single 

contrast frame at each step. 
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Figure 3.1. Summary of USMI imaging protocol. A baseline contrast scan was captured prior to the 

microbubble injection (A). A scan to capture the maximum peak intensity was taken 1 min after the 

introduction of contrast (B). The bubbles were allowed to circulate and bind for 7 min, at which time a 

contrast scan was taken (C). Destructive pulses clear the tumor of both bound and freely-flowing 

bubbles (D), and the level of freely-flowing contrast was obtained 1 min after destruction to allow 

bubbles to reperfuse the tissue (E). Note: data was only collected at B, C, and E and the solid black line 

is only an estimate of the intensity over time. 

The scans were saved as JPEG-compressed DICOM files and were taken from the scanner for 

analysis. All analysis was performed using custom MATLAB scripts (The MathWorks, Inc., Natick, 

MA, USA). The volumetric b-mode scan was used to define a 3D region of interest (ROI) encompassing 

the entire tumor volume, and the mean intensity was calculated for each of the 3 CPS scans by averaging 

the intensity value of all the pixels inside the ROI. Furthermore, the number of pixels inside the ROI 

was used, in addition to the step size, to calculate the volume of the tumors. The targeting intensity 

(TI), a quantitative measure of the level of biomarker expression as indicated by the retention of targeted 

contrast in the sample volume, was calculated by subtracting the mean intensity of the post-destruction 

CPS scan (Figure 3.1E) from the contrast scan that was taken 7 min after injection (Figure 3.1C). Peak 

intensity (PI) was calculated by subtracting the intensity of the contrast baseline scan from that of the 

1 min scan. This time point was chosen based on preliminary results, which show that microbubbles 

have perfused the entire tissue after 1 min, and the intensity in this scan is close to the maximum 

enhancement for the tumor model being used in this study and treated with the same therapies. Aside 

from finding the peak intensity, the PI scan was also used to find regions that did not become perfused 

within 1 min after injection. Based on the blood volume, cardiac output, and cardiac frequency in mice, 
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microbubbles spread throughout the body and circulate the vasculature several times in one minute and 

therefore, anechoic regions that have not been perfused by that time do not have patent vasculature and 

should be excluded from analysis. Since our intent is to compare biomarker presence within the 

vasculature, inclusion of regions without perfusion would bias this result. 

Anechoic regions appear dark in the contrast images, but due to the nature of speckle, an area 

that is completely perfused will also contain small dark regions. Eliminating pixels that have intensities 

lower than a certain threshold would thus eliminate regions that are perfused in addition to regions that 

are anechoic. Therefore, the images were blurred using a Gaussian filter in order to eliminate small 

dark regions in areas that are full of contrast, in essence eliminating the speckle (Figure 3.2). Next, the 

regions of the image that were inside the analysis ROI and had an intensity lower than a predefined 

threshold were removed from the analysis region for the calculation of all metrics. The threshold was 

defined using preliminary data, and the same value was used for all animals at every time point. 

Furthermore, the different treatments affect functional characteristics of the tumor, such as perfusion, 

so the volume of the anechoic areas was used to calculate a “percent anechoic” (PA) metric to assess 

the response of the disease to the treatment over time. This metric is related to the amount of patent 

vasculature in the tumor volume, or lack thereof, due to necrosis or other factors. 

 

Figure 3.2. Method for obtaining anechoic regions in a peak intensity image (A). The green dots outline 

the tumor. The image is blurred using a Gaussian filter to eliminate dark areas in speckle (B). The 

regions below a predetermined intensity threshold are selected as anechoic (C). Note: these are single 

frames in a 3D volume, so the process will be performed for each slice in the volume. 

The response of individual mice to the treatments was compared to the group TI, PA, and 

volume of the Control mice (Figure 3). A threshold was found for each of the metrics so that any values 



 

 26      

 

above (or below) the threshold for individual mice at the different time points represented response to 

the treatment. For example, the individual volume (solid black line) in Figure 3.3 becomes smaller than 

the volume threshold (dashed black line) 3 weeks after the start of treatment, so it can be said that 

response was detected in the tumor volume at this time. The threshold value at each time point was 

calculated as the first quadrant of the grouped Control data at each time point for the TI and volume 

and the third quadrant for the PA. Finally, the percentage of mice in the SU and Switch groups that 

showed response (sensitivity) to the therapy using each metric was calculated for the first 3 weeks of 

treatment.  The process was repeated for the control mice using the same threshold as with the treated 

mice to find percentage of animals that were correctly identified as untreated (specificity).  

 

Figure 3.3. Example of individual response to the treatment. The solid lines represent either the TI (dark 

gray), PA (light gray), and the volume (black) for a single animal, while the dashed lines represent the 

threshold for each metric calculated using the Control group data. Each metric was determined to show 

resistance if the individual value (solid) was lower, for the TI and Volume, or higher, for the PA, than 

its threshold (dashed). The data for each metric were normalized to the pretreatment value, and by an 

additional factor in order to display the curves in the same scale. 

3.2.4.2 DCE-US 

All imaging was performed using an Acuson Sequoia 512 driving a 15L8 transducer. MCAs 

were allowed to circulate for 1 min before the start of imaging to allow for the bubble concentration in 

the blood to reach a steady-state level. The largest cross-section of the tumors was found using B-mode 

imaging, and the DCE-US imaging sequence consisted of 1 s of CPS imaging to obtain baseline frames, 

1 s of destructive pulses to clear the microbubbles from the imaging plane, and 40 s of CPS imaging to 
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capture the reperfusion of bubbles back into the FOV. It has been shown that blood flow characteristics 

can be very heterogeneous in tumors [58], so the imaging sequence was repeated for five different 

cross-sections to capture the 3D perfusion of the tumor by scanning the transducer in the elevation 

direction using a computer-controlled motion stage [58]. Since the number of imaging cross-sections 

was set to five for all experiments, the spacing between imaging locations varied depending on the size 

of the tumor. A maximum of five planes were imaged because of infusion volume limitations. 

For each imaging plane, a parametric perfusion map was generated by calculating the amount 

of time it took each pixel to reach 80% of the mean intensity from its baseline CPS frames, which is 

similar to what has been previously reported [56,58]. Pixels that did not reach the threshold in 40 s were 

left blank and will be referred to as anechoic areas. The mean value of the area inside the ROI of each 

perfusion map was calculated and averaged to obtain a volumetric perfusion time (VPT) for the entire 

tumor. The tumor volume was calculated by multiplying the total number of voxels inside the 3D ROI 

by the size of the voxels. 

3.2.4.3 AA- Morphology  

 To acquire AA images, a Vevo 770 ultrasound system (VisualSonics, Toronto, Canada) was 

used to control a prototype transducer that allows for transmission at 4 MHz and reception of MCA 

super harmonic signals around 30 MHz [171]. Two co-aligned, single-elements were mechanically 

swept and one element was used only for transmit and the other only for receive. The low-frequency 

element was excited with a single-cycle sinusoid and produced a signal with a peak-negative pressure 

of 1.2 MPa [72]. In order to explore the changes in morphology resulting from the different therapies, 

a frame rate of 4 Hz with 5-frame averaging was used to isolate resolvable vessels and eliminate sub-

resolution information, as was explained in Chapter 1. Additionally, the transducer was translated 

elevationally in steps of 100 µm to acquire 3D vascular images.  

3D coordinates of individual vessels from the AA images were obtained using a computerized 

algorithm  relying on height ridge traversal for centerline extraction [172]. Using the vessel coordinates, 
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the tortuosity, or “bendiness”, of the vessels was computed using different metrics previously described 

by Bullitt et al. [173], and used to characterize tumor vasculature from AA [40,72]. The metrics used 

were the distance metric (DM) and the sum of angles metric (SOAM). The DM was computed by 

dividing the length of the vessel by the Euclidian distance between start and end points, and the SOAM 

is found by calculating the integral of the curvature and normalizing by the vessel length, where the 

curvature is found by adding the angles between successive groups of 3 points along the vessel. While 

the DM is appropriate for vessels that loop or arc, the SOAM is effective for vessels that have high-

frequency changes in curvature over short distances. Both types of vessels are found in tumors, but it 

has been found that the SOAM is a better metric for quantifying the tortuosity of cancer vasculature 

and separating between tumor and normal vessels  [40,72]. Nevertheless, both metrics were used to 

evaluate the response of the tumors to the different therapies. 

3.2.4.4 AA- Vascular Density 

The imaging system used for this section was a VegaTM platform (SonoVol, Inc., Research 

Triangle Park, NC), which allows for automated 3D ultrasound image acquisition from mice.  The 

system was used in both high-frequency/high-resolution B-mode for anatomical reference and AA 

mode for microvascular analysis.   

 A 3D B-mode “scout scan” with an elevational resolution of 200 µm of was used to locate the 

tumor. Next, AA images were captured around the tumor location 30 seconds after the start of the MCA 

infusion.  AA imaging consisted of a continuous sweep acquisition, which produced images of 

vasculature with an elevational resolution of around 500 µm. The tumor was scanned 16 times, allowing 

MCAs to reperfuse into the tissue for 10 seconds between each scan, and a final AA image was 

computed by averaging all the acquisitions.   

Tumor ROIs were manually segmented using SonoEQTM (SonoVol, Inc., Research Triangle 

Park, NC) analysis software from B-mode anatomical reference images. Blood vessel density (BVD), 

or the percentage of the tumor that had measurable perfusion, was computed from the AA 
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microvasculature images by dividing the number of voxels with intensity values higher than a fixed, 

predetermined threshold by the total number of voxels in the ROI. The tumor volume was calculated 

by summing the number of voxels inside the ROI and multiplying by the spatial dimensions of a voxel. 

For calculating the BVD, a threshold that separates MCA signal from noise was first found. 

The threshold selected for all time-points was the value that provided the highest correlation coefficient 

(ρ) between the imaging results from the last imaging time-point and the results from histological 

analysis (described in the following section). The correlation coefficient was calculated using a right-

tailed Spearman test and was used to evaluate how well the BVD results from imaging correspond to 

real physiologic characteristics of the tissue. 

3.2.5 CD31 Immunohistochemistry 

CD31 immunohistochemistry was performed to serve as a gold standard for comparison against 

imaging results. Tumors were harvested after the last imaging time point or earlier if the size limit was 

exceeded, or due to poor health. Three tumors from each treatment group of the USMI and vascular 

density experiments were used for the histological analysis, except for the SU group in the vascular 

density portion, from which 6 tumors were used. Immunohistochemistry was performed on paraffin-

embedded tumor sections on a Leica Bond Max autostainer using anti-CD31 from Novocastra (cat # 

NCL-CD31-1A10). Following heat-induced epitope retrieval in EDTA for 20 min, the antibody was 

incubated on the tissue for 1 h at a dilution of 1:100 then visualized with diaminobenzidine (DAB). 

Thirty stained sections from each treatment group were captured by an Olympus DP 72 or an Infinity2 

camera at 200x, and the percentage of positively stained area was determined using NIH ImageJ [174]. 

A separate cohort of animals was treated with SU and their tumors were harvested after 3 weeks of 

treatment to obtain a pre-switch measurement of patent vasculature for the USMI experiment. 

3.2.6 Statistical Analysis 

Kruskal-Wallis analysis was performed for each time point and metric in order to determine if 

there was a significant difference between any of the groups, and a Tukey range test was used to find 
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significance between each of the groups. Statistical analysis was performed on all mice available at 

each time point, regardless of whether the animal survived through the end of the study. ANOVA 

analysis was used to find any significance between the groups for histology and vessel morphology 

instead of the Kruskal-Wallis method. Significance was set at p < 0.05. 

A right-tailed Spearman test was used to assess the correlation between the last imaging BVD 

timepoint (vascular density analysis section) and histology for different threshold values in order to 

select the most appropriate threshold.  

Furthermore, the BVD at early time points was used to predict response to treatment (treated 

vs untreated, inferred from the tumor volume at later time points). The BVD around day 7 (day 6 to 10) 

after the start of treatment was plotted against the corresponding tumor volume measurements from 

around day 21 (day 17 to 24). A linear regression model was used to fit the data, so that a predicted 

tumor volume (PTV) for each animal could be calculated from the BVD around day 7. Next, PTV 

values above and below a threshold were classified as untreated or treated, respectively, for a range of 

thresholds. Using receiver-operator curve (ROC) analysis, the PTV threshold that produced the best 

sensitivity (true positive) and specificity (true negative) at separating treated and untreated was 

calculated. 

3.2.7 Organization of Data 

The mice started treatment at different days, since the dosing began once the tumors reached 

200 mm3, so that imaging time points for different animals correspond to different days before/after the 

start of treatment. Therefore, the imaging time points that were captured before the start of treatment 

were binned into a baseline (-1) week, those that occurred between 1 and 7 days after the start of 

treatment were binned into week 1 of imaging, 8-14 days into week 2, 15-21 days into week 3, and 22-

28 days after the start of treatment into week 4 of imaging. 
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3.3 Results 

3.3.1 USMI 

Example USMI images, taken 7 min after injection (Figure 3.1C), of a single mouse for each 

group are shown in Figure 3.4. The Control and GSI mice looked very similar throughout the study, 

but the effect of SU was apparent; for both the SU and Switch mice, the ultrasound intensity decreased 

after treatment, and the tumors became increasingly anechoic, suggesting necrosis. However, the size 

of the anechoic region decreased and the intensity increased immediately after the switch to GSI for 

the Switch group. Many mice in the GSI and Switch groups were euthanized before the fifth imaging 

session after treatment due to tumor size, and some of the SU-treated mice were euthanized prior to the 

end of the experiment due to morbidity. This left 1, 5, 3, and 5 mice in the GSI, SU, Switch, and Control 

groups, respectively, for the final time point. The data for the remaining mouse in the GSI group is not 

shown. The same mice were imaged for the duration of the study, and each group contained at least 6 

mice at each time point. Results were not obtained for all the mice at each of the time points due to a 

technical problem saving the data on the Sequoia or due to lack of patent tail vein access on some 

animals late in the study. 
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Figure 3.4. Example USMI images of different treatment groups taken 7 min after injection. GSI and Control groups remained similar throughout 

the study. TI for the SU and Switch groups decreased after the start of treatment, and the tumors became more anechoic. PA and TI increased for 

the Switch group after the treatment was changed to GSI, indicated by the red arrows. The strong reflections in the images are artifacts and were 

excluded from the analysis. 
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A significant difference in targeting intensity (TI), a measure of VEGFR-2 expression, can be 

seen 2 weeks following the start of treatment (Figure 3.5). TI for SU became, and remained, 

significantly lower than that of the Control group after the first week (p < 0.05 for all time points after 

the first week of treatment), while the TI of the GSI group remained non-significant from the Control 

group for the duration of the experiment. TI for the Switch group mimicked that of the SU group for 

the first 3 weeks after the start of treatment, but it increased after the switch to GSI and became non-

significant from the GSI and Control groups 1 week after the switch. It is important to note that when 

the SU and Switch groups are combined, the TI was significant (p < 0.05) from that of the Control 

group 1 week after the start of treatment. Additionally, a subset of the SU and Switch groups was 

imaged 2 days after the start of treatment and there was a significant difference (p < 0.05) in the TI 

between this early time point and the baseline scan. USMI was able to closely track changes of VEGFR-

2 expression as the result of the two types of therapy. 

 

Figure 3.5. Targeting intensity (TI) for the different treatment groups and timepoints. The TI for the 

GSI and Control groups remained high throughout the study, while it remained low for the SU and 

Switch groups. However, TI increased in the Switch group after the change to GSI. Asterisks represent 

significance (p < 0.05). 
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Figure 3.6. Peak intensity (PI) for the different treatment groups and timepoints. PI was typically lower 

for the groups treated with SU but this relationship was only significant 3 weeks after the start of 

treatment. PI increased for the Switch group once the mice were treated with GSI and became 

significant from SU 2 weeks after the switch. 

 

Figure 3.7. Percent Anechoic (PA) metric. Groups treated with SU displayed increased percentages of 

anechoic regions. The Switch group returned to levels similar to those of the Control group after the 

switch to GSI. The size of anechoic regions remained low for the GSI and Control groups. 
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The peak intensity signal (PI), captured 1 min after the injection of contrast, was reduced for 

the SU and Switch groups in comparison to the Control and GSI groups, but the results were only 

statistically significant (p < 0.05) 3 weeks after the start of treatment (Figure 3.6). The Switch group PI 

became significant from that of the SU group 5 weeks after the start of treatment. The PI did not provide 

any significant trends or differences between groups that indicate the ability to track response to 

therapy. 

The groups that were treated with SU showed increased percentages of anechoic regions (PA) 

as the treatment progressed (Figure 3.7). The SU and Switch group became significantly higher (p < 

0.05) than the Control 2 weeks after the start of treatment and 1 week after the start of treatment 

compared to the GSI group. The SU group remained significantly higher than the Control and GSI 

groups for the remainder of the study, except on the last time point, while the Switch group decreased 

after the switch to GSI and became non-significant from the Control and GSI groups and significant 

from the SU group (p < 0.05) the week following the switch. The PA for the GSI and Control groups 

steadily rose throughout the study but remained smaller and non-significant from the SU group. PA 

provided a useful measure of how the therapy was affecting the amount of patent microvasculature in 

the tumor throughout the treatment, and the results agreed with the reported effect of the drugs.  

GSI enhanced tumor growth (p < 0.05) 1 week after the start of treatment and was significantly 

higher than the Control throughout the study except 2 weeks after the start of treatment (Figure 3.8). 

The groups treated with SU displayed reduced tumor growth throughout the study. The SU group 

became statistically lower (p < 0.05) than the GSI and Control groups 2 and 5 weeks after the start of 

treatment, respectively. The volume for the Switch group was similar to that of SU initially, but the 

change to GSI produced an enhancement in the tumor growth, as was the case with the GSI group, so 

that the tumor volume grew to be significant from the SU group (p < 0.05) one week after the switch. 

The change in volume eventually demonstrated a response to SU, but it was much later than USMI 

results. 
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Figure 3.8. Tumor volume for the different treatment groups and timepoints. A reduction in tumor 

growth was displayed by the groups treated with SU, while an enhancement in tumor growth was 

observed for the GSI treatment group but was only significant at the 1-week point. The volume for the 

SU group became significant from GSI 2 weeks after the start of treatment, and after 5 weeks from the 

controls. The p-value between the SU and Control groups on week 4 was 0.069. 

Immunohistochemistry was performed to examine the amount of patent vasculature, and, 

consequently, the amount of vasculature expressing VEGFR-2 in the tissues of treated xenograft tumors 

collected at the end of the study. Representative images of the different groups are shown in Figure 3.9. 

The stained area (SA) was calculated, and the results show that the SU group had a value that is 

significantly lower, while the Switch group was significantly higher, from all other groups. The GSI 

and Control groups were not significantly different in this model. Furthermore, the Pre-Switch group 

was significant from the Switch group. Overall, these findings corresponded closely with the in vivo 

assessments using ultrasound imaging. 
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Figure 3.9. Representative images of CD31 immunohistochemistry (top) from USMI experiment. The 

dark brown stains represent expression of CD31 in endothelial cells. SA results from CD31 staining 

(bottom). The plot on the left displays the SA of the different treatment groups, while the plot on the 

right only shows the SU, Switch, and the Pre-Switch cohorts. The SU group has significantly lower 

values from the other groups, while the Switch group showed significantly higher levels of patent 

vasculature. The Pre-Switch cohort is significant from the Switch group. 

Figure 3.10a-b shows examples of individual responses in the SU group for the TI, PA, and 

volume metrics, and Figure 3.10c-d gives examples of the Switch group. Analysis of individual 

responses shows that there were cases in both the SU and Switch groups in which the tumor volume 

showed response to the treatment at the same time as the other metrics. In both b and d, the individual 

volume value is smaller than the volume threshold 1 week after the start of treatment. However, the 

percentage of mice that showed response for each of the metrics over the first 3 weeks of treatment was 

calculated (Table 3.1), and the TI, PA, and volume detected response in 92.3%, 76.9%, and 40.0%, 

respectively, of the mice after the first week of treatment. These percentages increased to 100%, 92.3%, 

and 56.25% for the second week and to 100%, 100%, and 93% for the third week. Interestingly, volume 

was very sensitive to the change of treatment in the Switch group, and all tumors grew at a faster rate 

than that of the SU group after week 3 (Figure 3.10c-d). However, the change in TI and PA after the 

switch was much more abrupt, especially for TI, where 85% of individual values became larger than 
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the threshold after the switch. Furthermore, the specificity values, correctly identified untreated 

animals, were 83.3%, 83.3%, and 75% for TI, PA and volume, respectively, for week 1. The values 

remained similar at 80%, 83.3%, and 75% for week 2, and 66.7%, 66.7%, and 75% for week 3. The 

results demonstrate TI and PA were able to detect response to therapy earlier than tumor volume in 

individual cases with high sensitivity and specificity. 

 

Figure 3.10. Examples of individual responses of SU (rows a and b) and Switch (rows c and d). The solid lines 

represent the individual values of TI (dark gray), PA (light gray), and volume (black) at each time point, while 

the dashed lines represent the group threshold for each metric, which was obtained from the Control data. 
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Imaging Week After Start of Treatment 

 Sensitivity Specificity 
 1 2 3 1 2 3 

TI 92.3 100 100 83.3 80 66.7 

PA 76.9 92.3 100 83.3 83 66.7 

Volume 40 62.5 100 75 75 75 

Table 3.1. Sensitivity (true positive) and specificity (true negative) of the USMI metrics targeting 

intensity (TI), percent anechoic (PA), and tumor volume over the first 3 weeks of treatment. 

3.3.2 DCE-US  

Representative images of the perfusion maps for the different treatment groups are shown in 

Figure 3.11. The maps for the GSI and control groups were similar; the perfusion remained faster 

(green) than the SU and Combo groups after the start of treatment, but the anechoic regions increased 

significantly after 3 weeks of treatment. Conversely, large areas of poor perfusion (red) were seen in 

the SU and Combo groups immediately after the start of treatment and remained present for the duration 

of the study. 

The VPT and volume results can be seen in Figure 3.12. Groups that had very different median 

values were not statistically significant (p < 0.05) because of the small number of animals in each group, 

so a lower significance level (p < 0.1) was also used to illustrate differences between groups. The VPT 

of the Combo group became significant from that of the Controls a week earlier than tumor volume 

measurements for those groups. The VPT or volume of the GSI and SU groups did not become 

significant from the Control group at any point in the study. 
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Figure 3.11. Representative perfusion maps overlaid on B-mode images for each treatment group. Treatment started after the first imaging time-

point (-1), and the red and green color represents slow and fast perfusion, respectively. Scale bar represents 5mm. 
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Figure 3.12. Plots of volumetric perfusion times (VPT) and  tumor volume. Two levels of significance 

are displayed: p < 0.05 (*) and p < 0.1 (+). The Combo group because significant (+) from the control 

group 3 weeks after the start of treatment, while it took 4 weeks of treatment to produce significant (*)  

difference in tumor volume. 

3.3.3 AA- Morphology 

Figure 3.13 shows representative maximum intensity projections of AA images from the 

different treatment groups. Tumors from all groups have highly tortuous vessels (red arrows) in and 

around the tumor, and AA allowed for tracking of individual vessels where the tortuosity increased 

over time (blue arrow).
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Figure 3.13. Representative maximum intensity projections of acoustic angiography images for the different treatment groups. The tumor is outlined 

by the yellow dotted lines and the scale bar represents 1 cm. The red arrows point to tortuous vessels, and the blue arrows point towards a vessels 

that was monitored as its tortuosity increased.
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Between 50 and 100 vessels were extracted from each AA image, and vessels from all the 

tumors in each treatment group were grouped together (Figure 3.14). The results indicate that the DM 

did not provide any significant differences between treated and untreated vessels, and although the 

SOAM repeatedly produced a significantly (p < 0.05) different tortuosity between control and GSI 

vessels, the results are surprising since GSI was expected to produce more tortuous vasculature. 

 

Figure 3.14. Results for the distance metric (a) and sum of angles metric (b). The distance metric for 

the Combo group was significanlty higher than that of the GSI group 1 week after the start of treatment, 

but there was no difference between groups for the rest of the timepoints. Surprisingly, the sum of 

angles metric was of the Controls was significantly higher than the GSI group for most timepoints. 
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3.3.4 AA- Vascular Density 

Figure 3.15 shows representative BVD images for each treatment group before the start of 

treatment and at the end of the study. At the pretreatment time-point, all tumors were well perfused 

(blue line indicates boundary, yellow indicates MCA). Over the duration of the study, untreated tumors 

in the control group (top row) exhibited continued growth without significant vascular changes, while 

the SU and Combo treated tumors (middle and bottom row, respectively) saw stunted growth and a 

marked decrease in MCA signal density and intensity, indicating vascular disruption. 

 

Figure 3.15. Representative vessel density images from the different treatment groups. Representative 

images are displayed at the beginning (left) and end (right) of the study. In each panel, the image on 

the left is a cross-section of the tumors while the image on the right (dashed square) is a coronal view. 

The scale bar represents 1 cm.  Yellow indicates microvasculature acquired in AA mode.  The blue 

outlines the tumor region of interest, and was derived via registered anatomical B-mode images (not 

shown). 
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Due to unknown health issues, tumor size limitations, and inability to insert the catheter into 

the tail vein for contrast administration, the different imaging weeks had varying numbers of mice 

(Table 3.2). 

 Imaging Week 
 -1 1 2 3 4 

Control 7 8 7 6 4 

SU 11 12 11 12 8 

Combo 6 7 5 6 4 

Table 3.2. Number of animals imaged for each treatment week. 

Quantitative assessment of tumor response to therapy is depicted in Figure 3.16. The BVD for 

the Combo and SU groups were significantly lower (p < 0.05) from the Control after only a week of 

treatment, while it took 2 weeks for the volumes to become significantly different between the groups 

(Figure 3.16). The BVD for the Combo group remained significantly lower from that of the Controls 

for the remainder of the study, and although the SU group had a lower median BVD value than the 

Control group, the difference was not statistically significant after the first week of treatment.  

 

Figure 3.16. Tumor volume and blood vessel density for the different imaging weeks. The vessel 

density (right) of the SU and Combo groups became significant (p < 0.05) from the Controls 1 week 

afer the start of treatment, while it took 2 weeks for a significant difference in volume (left) to emerge. 

Significance is denoted by the horizontal bars. 
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The volume measurements of all mice at every imaging time point after the start of treatment 

were plotted against the corresponding BVD values (Figure 3.17), and a line with a fixed y-intercept 

was used to classify the data points as treated (under line) or untreated (above line). Using the slope as 

a classifier, the sensitivity and specificity for a range of slopes were calculated. Setting the slope at -

0.06 %/mm3 (shown in Figure 3.17), the sensitivity and specificity were 89% and 92%, respectively, at 

classifying the control group from the treated groups. Moreover, when the same slope was used to 

classify the Control group from the SU and Combo groups individually, the sensitivity was 84% and 

100% for SU and Combo, respectively.  

 

Figure 3.17. Plot of blood vessel density (BVD) vs volume for all datapoints. The two plots display the 

points after the start of treatment (a) and only those at week 1 (b). A line with a y-intercept set at 100% 

BVD (black dotted line) can be used to separate the data between treated (under the line) and untreated 

(above the line). 

When only the data from week 1 was used for the analysis (Figure 3.17b), the sensitivity and 

specificity were 84% and 88% when classifying between treated and untreated, and the sensitivity was 

75% and 100% for the SU and Combo, respectively, when the Controls were classified against each 

group individually. 

The histological results collected after 4 weeks of treatment demonstrate that the amount of 

CD31 neovasculature via staining in the tumors for the SU and Combo groups was significantly lower 

(p < 0.05) than that of the Controls (Figure 3.18). The stained area was quantified and compared to the 

BVD results, and a strong correlation was demonstrated (Figure 3.19). Furthermore, the correlation 
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coefficient ρ was similar between the users (ρ = 0.77 ± 0.03). These results confirm that vascular density 

measurements acquired through AA imaging correlate with histological vascular density 

measurements. 

 

Figure 3.18. Representative CD31 staining images of the different treatment groups and Stained Area 

results. The SU and Combo groups had significant values (p < 0.05) from the Control group. SU and 

Combo groups were not statistically significantly different from each other. 

 

Figure 3.19. Correlation plot of image derived blood vessel density (BVD) vs CD31 stained 

neovasculature. The results show strong correlation (ρ = 0.75) between imaging and histology. Dotted 

line indicates the linear regression line. The black arrow is pointing towards an outlier measurement in 

the plots that reduces the strength of the correlation. 

The relationship between BVD around day 7 versus tumor volume around day 21 had a 

significant correlation (p < 0.001) and a spearman coefficient of 0.82 (Figure 3.20). An ROC curve was 

plotted using different PTV thresholds found using the equation of the linear fit model (Figure 3.20a) 

and the BVD values from around 7 days after the start of treatment (Figure 3.20b), and the curve 

indicates that a maximum sensitivity and specificity of 94% and 86%, respectively, can be obtained 

when using a PVT threshold value of 705 mm3. Therefore, the results show that BVD can be used to 

differentiate between treated and untreated tumors for individual mice with strong confidence. 
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Figure 3.20. Linear regression model used to calcualate predicted tumor volume (PTV) and ROC curve 

for PTV as a classifier. Plot (a) shows the linear regression model (dashed black line) of BVD vs tumor 

volume used to calculate PTV, and plot (b) shows the ROC curve for PTV as a classifier of treated and 

untreated tumors. the black filled in circle in the ROC curve represents the PTV threshold with the 

highest sensitivity (94%) and specificity (86%) and corresponds to a value of 705 mm3. The dashed 

line in (b) represent a random chance (50%) of correctly classifying the data. 

3.4 Discussion 

Resistance to therapy is the major limitation of disease control in most cancer types. Thus, it is 

important to track disease response to adjust treatment for enhanced efficacy. Furthermore, it is also 

important to accurately and closely track response to therapy of tumors to minimize undesirable side 

effects of chemo or radiotherapy if treatment begins to fail.  Moreover, the array of available therapies 

for ccRCC is expanding rapidly, creating a scenario where selecting therapy for an individual patient 

will be more relevant than ever. Conventional methods for evaluating response to therapy typically rely 

on changes of tumor volume, typically at an interval of 3 months, but tracking volume has been shown 

to be inaccurate and often underreports the effect of therapy. Imaging techniques such as dynamic 

contrast-enhanced MRI and metabolic PET imaging have been shown to be effective at tracking and 

predicting response to therapy by providing functional insights rather than simple changes in tumor 

volume.  These modalities are associated with challenges such as lack of bedside support, cost, contrast 

contraindications (MRI), and requirements for access to short-lived isotopes (PET).  In contrast, CEUS 
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is inexpensive, portable, and has been shown to outperform volume measurements for disease 

assessment.  

Attaching targeting ligands to MCAs allows for molecular imaging of biomarkers expressed in 

different diseases. Here, it is shown that the response of ccRCC tumors to VEGFR-2 antiangiogenic 

and Notch inhibition therapeutics in mice can be accurately tracked throughout the course of therapy 

using USMI of VEGFR-2 and AA, and the imaging results agree with histological data. Furthermore, 

we show that USMI and AA can detect statistically significant molecular and functional changes weeks 

before measurable differences in tumor volume between the treatment groups and the Control group, 

which indicates that CEUS can be a powerful diagnostic tool for the assessment of disease. The results 

of this work are consistent with findings from previous work [74,80–82,84–86], but we have also shown 

here that CEUS can detect response to therapy in individual cases before changes are detectable in 

tumor volume with high sensitivity and specificity. 

3.4.1 USMI 

Antiangiogenic drugs, such as SU, enzymatically inhibit and down-regulate VEGFR-2 to 

inhibit angiogenesis [154,155]. We were able to observe changes in TI corresponding to changes in 

expression of VEGFR-2. The results show that the anti-VEGF therapy was effective at arresting 

development of new vasculature, which may have led to anechoic areas, and more importantly, that 

CEUS can track the tumor response to the treatment more accurately than volume measurements. 

Additionally, the results showed that a significant difference in TI can be found only 2 days after the 

start of treatment (Figure 3.5). This is consistent with recent findings indicating that a change in 

VEGFR-2 expression 24 h after treatment can be detected with USMI using microbubbles targeted to 

VEGRF-2 before there are detectable changes in tumor growth [86]. Furthermore, the effect of SU can 

easily be seen in the tumors as an increase in anechoic areas and quantified in the PA metric, which 

provides another example of the ability of CEUS to detect tumor response to treatment faster and more 

accurately than tumor growth (Figure 3.7). Moreover, PA calculations can be accomplished with non-
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targeted contrast, which could facilitate translation into the clinic since non-targeted contrast agents, 

such as Definity (Lantheus Medical Imaging, N. Billerica, MA, USA), are already FDA approved for 

certain applications. 

TI and PA results showed that CEUS can detect response of populations to therapy, which can 

be important for designing new treatment regimens for combating cancer. However, detecting response 

in individuals is more significant for clinical translation since physicians use individual patient 

information to tailor the treatment. Here, we show that CEUS was able to detect the individual response 

(sensitivity) to therapy of most of the mice in the SU and Switch groups by the second week of 

treatment, while the chance of detecting response with the tumor volume by that time was slightly 

higher than a coin toss (Figure 3.10). Moreover, the specificity was higher for the imaging metrics than 

the volume for the first 2 weeks. The tumors used here grow rapidly and their vasculature becomes 

inefficient over time without any treatment, which is likely the cause of the specificity for the imaging 

metrics decreasing after the second week. Nevertheless, CEUS was very sensitive to changes in the 

tumor as a result of therapy and thus, it has great potential as a personalized theranostic tool. 

Taken together, these results demonstrate that CEUS has the potential to be a valuable clinical 

tool for assessing response to treatment without having to biopsy the tissue or wait for delayed changes 

in tumor size and may allow doctors to tailor treatment to individuals for better efficacy. Furthermore, 

early identification of ineffective treatments may reduce side effects. 

The PI did not significantly vary between treatment groups, which is surprising, given that the 

GSI and Control groups seemed to have better perfusion and smaller anechoic areas (Figure 3.6). A 

possible explanation of why PI remained similar among the groups is that there is significant bubble 

binding by 1 min and therefore, the intensity might be a result of the perfusion of the tissue in addition 

to VEGFR-2 expression. Thus, PI might not be suitable for the assessment of disease progression. A 

better technique might be to track the intensity for the first few minutes after injection in order to find 
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the true peak intensity, as is done by Wang et. al [86], which showed that peak intensity can measure 

changes in response to therapy. 

The results of the staining demonstrate that USMI of VEGFR-2 demonstrates real physiological 

characteristics of disease. As expected, levels of patent vasculature in the SU group were the lowest 

among all of the groups, while those of GSI and Control were about the same (Figure 3.9). Furthermore, 

the Switch group had significantly higher SA than all other groups, most likely caused by the switch to 

GSI. Additionally, the Pre-Switch SA was significantly lower than the Switch group, confirming that 

the increase in patent vasculature in the Switch group was caused by the change in treatment. Staining 

for VEGFR-2 was also performed, but the results showed expression in regions where patent 

vasculature was not present. Most likely, this is a result of extravascular VEGFR-2 expression or 

endothelial receptors of non-patent vessels. Since the contrast agents used in this study can only bind 

to intravascular VEGFR-2 receptors, VEGFR-2 staining results were not included. Nevertheless, we 

believe that USMI can be a valuable tool for disease monitoring, since it provides information about 

molecular biomarkers of disease that can be used to closely track disease state and response to therapy 

without the need for multiple biopsies or exposure to ionizing radiation. 

The Notch signaling pathway regulates proper development of new vasculature, and it has been 

reported that inhibition leads to excessive sprouting, immature vessels, and a reduction in tumor growth 

[163–165]. Notch inhibition promotes expression of VEGFR-2, so it is not surprising that the TI of the 

GSI group remained high throughout the experiment (Figure 3.5). Moreover, it is not surprising that 

the Control and GSI groups had similar levels of TI, since ccRCC is characterized by increased levels 

of angiogenesis and upregulation of angiogenic growth factors. Previous work suggests that the 

excessive sprouting resulting from Notch inhibition leads to inefficient perfusion and a reduction in 

tumor growth [163–166]; however, the results of treatment with this drug as a single agent in a ccRCC 

xenograft model demonstrate efficient vasculature in the GSI group with PA and PI values similar to 

the controls and an enhancement in tumor growth. This somewhat surprising result, however, must be 
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considered in context. In the study reporting on GSI Compound X causing regression in a renal cancer 

model, Kalen et al. [175] were utilizing the mouse RENCA model. This model system differs from ours 

in important ways. First, while this is a spontaneously arising kidney tumor from a Balb/C mouse, it 

lacks the common feature of human renal cell carcinoma, which is inactivation of VHL gene. VHL loss 

causes a high level of tumor microvascularity and upregulation of glycolysis, driving a unique 

dependency on oxygen and nutrient delivery. It is this dependency that renders VHL mutant renal cell 

carcinoma sensitive to the wide variety of anti-VEGF pathway agents currently in clinical use. 

However, this dependency may make the extra sprouting produced in response to GSI treatment an 

advantage to the specific physiology of this tumor type. Our model has a well-characterized VHL 

mutation and is known to demonstrate customary features of human clear cell renal cell carcinoma. The 

interaction between VEGF pathway targeted therapy and the vascular effects of GSI, however, 

highlights an intriguing alternate set of targeting strategies to alter vascular properties in tumors, the 

combination of which may be effective in renal cell carcinoma and potentially in a wider array of cancer 

settings. As discussed above, finding the PI may not be the best technique for approximating perfusion 

measurements, so further work is required to assess changes in perfusion efficiency as a result of Notch 

inhibition.  

When the tumors in the Switch group were treated with GSI, the treatment appeared to 

normalize features of the vasculature, promoting angiogenesis so that the PA was reduced to levels 

similar to those of the controls. Higher TI suggests greater expression of VEGFR-2 (Figure 3.5). This 

reversal in the state of the vasculature is only detectable by using CEUS, since the tumor volume of the 

Switch group remains non-significant from the Control group. However, the volume of the Switch 

group did become significant from that of the SU group 1 week after the change in treatment to GSI. 

Normalization of tumor vasculature has been shown to enhance therapeutic effect in different 

types of cancer [176–178]. Tumor vasculature is leaky, which produces increased interstitial pressure, 

and in turn inhibits delivery of therapy into the tissue [179,180]. By normalizing the vasculature and 
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making it less permeable, the interstitial pressure can be reduced, allowing for drugs to extravasate in 

larger concentrations for better efficacy [179–181]. We have shown that GSI produced normalization 

in the vasculature in ccRCC tumors that were first treated with SU. Additionally, it is possible that by 

renormalizing the vasculature of tumors that stop responding to antiangiogenic therapy, resistance can 

be overcome. Moreover, we show here that ultrasound can be used to track the progression of the 

disease and even though we did not conclusively detect the emergence of resistance to SU in the time 

frame of the study, CEUS can be used to monitor the disease and make the switch to GSI when the 

tumors start showing signs of resistance.  

The mice were imaged on set days of the week, when the tumor reached 200 mm3 (caliper 

measurement). Since not all of the tumors reached the size threshold at the same time, some mice were 

treated for different durations before their first imaging session after the start of treatment. Therefore, 

the effect measured by the different metrics on week 1 (the week after the start of treatment) might have 

been reduced and may be more drastic than the data show. Furthermore, the small number of mice in 

each group may have affected at which time point response was detected with the different metrics. For 

example, the volume of the SU and Control groups does not become significant until 5 weeks after 

treatment, but the p-values for week 3 and 4 are 0.066 and 0.069, respectively (Figure 3.8). Larger 

sample sizes would be required to validate this effect. An additional limitation of the study was that all 

analysis was performed on log compressed data, and while data compression did not allow calculation 

of absolute differences in intensity between the different treatment groups for PI and TI, relative 

differences are still valid, so the overall trends and results hold. 

Since statistical analysis was performed on all mice at each time point, even if they did not 

survive the entire study, the results might be biased and indicate a better treatment efficacy for the SU 

group; presumably, if the health of the mouse was poor, the tumor could progress more aggressively 

than in a healthy mouse. However, most of the morbidity was due to tumor size limitations, so we do 



 

54 

 

not expect that the overall results of the study would be significantly changed if statistical analysis were 

only performed on the animals that survived the entire study. 

While the different treatments slowed the tumor growth, no regression or stagnation was 

observed in this study. In the case of SU, the dose was chosen based on previous work [64,65], and 

absence of regression is likely due to the early emergence of resistance. The chosen dose of GSI, 90 

mg/kg, was shown to be effective against a breast cancer model [66], but it was not optimized for this 

work, so it is possible that the mice were under-dosed. However, we observed vascular effects that were 

histologically consistent with the enhanced sprouting expected with Notch inhibition. In addition, mice 

suffered from weight loss in pilot studies where a dose of 150 mg/kg was used.  

Since most of the mice were sacrificed because their tumors grew beyond the size limit, it is 

difficult to evaluate survival outcome. Therefore, even though USMI can be used to track disease 

progression, more work is required to assess the ability of this technique to predict eventual survival 

outcomes. 

3.4.2 DCE-US 

The results show that DCE-US is a promising diagnostic tool for evaluating the response of 

cancer to Notch and antiangiogenic therapy. The perfusion of the combination treatment became 

significantly (p < 0.1) slower from that of the untreated animals a week before there were any significant 

changes in tumor volume (Figure 3.12), illustrating that functional changes can occur before 

measurable changes in size so CEUS can be a better strategy for tracking the response of cancer to 

different treatments. 

It is difficult to make any conclusions from this data since this experiment was a pilot with very 

few animals, but the results are encouraging. It is likely that a larger sample size would yield significant 

differences between the SU and Control groups since the median VPT was consistently higher for the 

SU animals after the start of treatment, since there is proof that DCE-US is capable of separating treated 
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and untreated animals after 24 hours of antiangiogenic treatment [86]. Moreover, larger sample sizes 

might produce significant VPT values for the Combo group earlier than after 3 weeks of treatment. 

3.4.3 AA- Morphology 

The results indicate that AA might not be sensitive enough to track morphological changes in 

tumors with a VHL mutation being treated with SU or GSI. The extraction of vessels is a very complex 

process that is highly dependent on image quality. Therefore, vessels might not be extracted as single 

long unit with a high tortuosity, but multiple shorter vessels with lower tortuosity values.  

The reason for the inability of AA to accurately track morphological changes most likely lies 

in the scale of the vessel remodeling. The Notch signaling pathway plays a key role in the regulation 

of VEGF receptors VEGFR-1 and VEGFR-2 for the proper formation [161,166]. Notch negatively 

regulates VEGFR-2, and positively regulates of VEGFR-1 which prevents excessive sprouting caused 

by improper cell migration, so Notch inhibition produces aberrant sprouting and increased 

microvasculature density [164–166]. This process occurs on the capillary level so AA cannot capture 

the changes in morphology since its resolution limit is around 100 µm. 

To overcome resolution limitations associated with conventional ultrasound, researchers have 

adapted optical localization microscopy [182,183], which allows for optical imaging with resolutions 

down to 20 nm, to US in a technique called ultrasound localization microscopy which uses MCAs and 

is more commonly referred to as super resolution [184,185]. Using super resolution, blood vessels as 

small as 9 µm were imaged in the brains of rats [185]. Furthermore, this technique has been extended 

to cancer imaging, and the results demonstrated that vessels down to 25 µm could be resolved. 

Moreover, it was found that tumor vasculature had significantly different tortuosity than healthy tissue 

by using the same vessel extraction and tortuosity measurement techniques used in this work [186]. 

Therefore, super resolution has the potential to be a powerful to for tracking morphological changes in 

tumor vasculature for the assessment of response to therapy 
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3.4.4 AA- Vascular Density 

Data illustrates that microvascular assessment in conjunction with volume measurements can 

classify tumors as treated or untreated with very high sensitivity and specificity (Figure 3.17). The 

results suggest that a tumor can be correctly classified a responder to therapy regardless of its size or 

duration of treatment with a high degree of confidence. Sensitive classification can be accomplished 

within a week of the start of treatment, which cannot be accomplished with tumor volume 

measurements alone, and can be beneficial for clinical applications. While the sensitivity of classifying 

the tumors treated with SU is only about 75% at week one, every tumor treated with the combination 

therapy was correctly classified at the week 1 time point (Figure 3.17). Furthermore, the BVD values 

from around day 7 can be used to predict treatment response with a high degree of confidence before 

tumor volume measurements become significantly different (Figure 3.20). Although survival outcomes 

would need to be tracked in order to relate the observed changes in tumor properties to successful or 

failed treatment, initial results about our ability to assess a tumor’s response to treatment compared to 

controls based on microvascular density prior to volume measurements were encouraging.   

Histological validation demonstrated that the relative correlation between image based vascular 

density and vascular density from histology was high (Figure 3.19), but the value ranges of the two 

metrics were vastly different.   The explanation for this discrepancy lies in the resolution of the two 

techniques. While optical microscopy, which was used for the histological analysis, can resolve 

individual capillaries, AA ultrasound imaging utilized here will blur any vessels smaller than the 

resolution of 100-150 µm in diameter into the entire image voxel, indicating a higher vascular density 

than optical histology analysis. 

There was a strong correlation between imaging results and histology (ρ = 0.75), however, a 

single data point indicated by the arrow in Figure 3.19 reduces the correlation, and when it is removed 

from the analysis, ρ is 0.9. This suggests that this point was a substantial outlier, and it is likely that a 

higher correlation overall may be achieved than reported in this study if a larger data set is utilized.  
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Surprisingly, only 50% of the mice in the SU and Combo groups survived the entire study 

(Table 1). There is no work reporting this rate of morbidity as a result of the drugs used here, and the 

USMI study using the same tumor model, therapeutics, and dosage demonstrated no negative health 

effects on the animals [187]. It is unclear what effect the health issues of the mice had on the results of 

the study, but the findings of this work agree with those of previous studies which used similar treatment 

strategies [83,85,89,187]. In addition to the loss of mice due to health issues, the Control mice grew 

quickly and were euthanized once the tumors reached the size limit so that only ~50% of mice in that 

group remained at the week 4 time point. Therefore, the diminishing number of mice in the groups 

probably contributed to the lack of significance in the BVD between the Control and SU groups after 

the first week of imaging, even though the values appeared to be different (Figure 3.16). Another reason 

why the BVD of the SU and Control groups was not significant at the end of the study, unlike the 

histological results, is that the binning of data into weeks results in mice that have been treated for 

varying amounts of time to be grouped into the same week (e.g. 14 days and 20 days were binned into 

week 2 of treatment), which likely introduced additional variability. Furthermore, while the BVD 

values being compared for each group was small (around 4 per group) at the last time point, 30 histology 

images for each group were used for analysis. 

Lastly, the results of this work, and previous work showing that GSI may not be a good 

treatment alternative [187], demonstrate that a combination of SU and GSI provides a better strategy 

for angiogenic suppression than delivering either drug individually. The volume results demonstrate 

that while the SU group had reduced tumor growth from the Controls, the Combo group alone caused 

the stagnation of tumor growth, and in some cases produced a reduction in tumor volume (Figure 3.16). 

3.5 Conclusions 

In this study, mice bearing ccRCC tumors were treated with VEGFR-2 antiangiogenic and 

Notch inhibition therapy. It was observed that CEUS can be used to monitor the disease progression 

and its response to the different therapies more accurately than using the conventional methods of 
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tracking tumor volume, which is the gold standard. CEUS has important merits as a variety of targeted 

and immunotherapy agents crowd the treatment landscape of ccRCC and cancer in general. Other work 

in recent years has shown that USMI can track response to antiangiogenic therapy [80–82,84–86] and 

predict whether tumors will respond to different treatments [83,87,88]; however, this is the first study 

to show that USMI can differentiate and track response to alternate strategies of vascularity-altering 

therapies and detect the tissue response of individual animals using CEUS earlier than tracking changes 

in tumor volume with high sensitivity and specificity. Ultrasound can be a valuable tool because it has 

the capability to assess response to therapy in cancer and monitor disease progression which might 

allow doctors to modify patient treatment for enhanced therapeutic effect. 
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CHAPTER 4                                                                                                                              

PULSE SEQUENCES FOR THE USE OF LOW BOILING-POINT PHASE-CHANGE 

CONTRAST AGENTS FOR CONTRAST ENHANCED ULTRASOUND3,4,5 

 

4.1 Introduction 

As contrast agents, PCCAs require unique ultrasound pulse sequences to optimize diagnostic 

information. While other approaches are possible, perhaps the simplest is an image-activate-image 

sequence where the first imaging state is used to gather a pre-activation measurement and the second 

used to assess the level of contrast generated from an activation state. In the initial liquid state, pre-

activation imaging must occur at pressures low enough to avoid droplet activation. When activation is 

desired (either at intervals or user-triggered), activation should cover the area of interest (pre-designated 

or operator-designated) and produce droplet vaporization as quickly as possible in the plane or volume 

– likely through focused pulses to minimize activation elsewhere. For the final imaging state, the 

imaging pressures must be low enough to not cause further droplet vaporization, and to not disrupt the 

bubbles produced (unless this is desirable). This post-activation imaging state must also occur quickly 

enough after the activation to capture contrast before it leaves the imaging plane, although this timing 

                                                      
3 Copyright © 2015  Word Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. Reprinted, with 

permission, from PS Sheeran, JD Rojas, C Puett, J Hjelmquist, CB Arena, PA Dayton, “Contrast-Enhanced Ultrasound 

Imaging and In Vivo Circulatory Kinetics with Low Boiling-Point Nanoscale Phase-Change Perfluorocarbon Agents”, 

Ultrasound in Med. & Biol, 2015; 41(3): 814-831. 

4 © 2017 IEEE. Reprinted, with permission, from JD Rojas, PA Dayton, “Optimizing Acoustic Activation of Phase Change 

Contrast Agents with the Activation Pressure Matching Method: A Review”, IEEE Transactions on Ultrasonics, 

Ferroelectrics, and Frequency Control, 2017; 64(1): 264-272. 

5 Copyright © 2018  Word Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. Reprinted, with 

permission, from JD Rojas, PA Dayton, “Vaporization Detection Imaging: A Novel Technique for Imaging Phase-Change 

Contrast Agents with Higher Depth of Penetration and Contrast Enhancement than Microbubble Imaging”, Ultrasound in 

Med. & Biol, 2018. In Review. 
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may be more flexible for droplets that are stationary (such as targeted droplets or those in tissue rather 

than vasculature).  

Creating uniform contrast throughout the target organ is important for obtaining accurate 

measurements of targeting or perfusion and can be challenging due to the energy-sensitive activation 

thresholds of these agents; therefore, optimal activation parameters should be used. However, clinical 

ultrasound scanners typically do not allow the level of pulse sequence customization required to create 

ideal PCCA-based contrast imaging without manufacturer research agreements. Commercial systems 

have been used for droplet vaporization [188], but this approach relies on conventional B-mode pulses 

for vaporization so there is little spatial control of activation. Furthermore, since multiple frames are 

acquired to generate maximum intensity projections, generated microbubbles are interrogated multiple 

times with high intensity pulses which can lead to bubble destruction or cavitation. A new generation 

of highly-customizable ultrasound research platforms made by companies such as Verasonics 

(Redmond, WA, USA) and Cephasonics (Santa Clara, CA, USA) have allowed researchers to overcome 

these technological barriers and explore new imaging and processing techniques.  

In this chapter, the process of creating custom pulse sequences for the in vivo use of PCCAs 

and optimizing the ultrasound parameters to produce uniform vaporization is explained. Moreover, a 

different approach to imaging PCCAs that uses the vaporization signal produced by PCCA activation, 

which will be referred to as vaporization detection imaging (VDI), instead of the image-activate-image 

scheme, which will be referred to simply as contrast imaging (CI), is demonstrated. Hence, the different 

parts of this chapter will have three components: the development of pulse sequences for the use of 

PCCAs, the optimization of these pulse sequences, and the development of VDI. 
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4.2 Methods 

4.2.1 Phase-Change Contrast Agent Fabrication 

PCCAs were made using methods previously described [129]. Precursor microbubbles were 

created by the agitation a 3 mL vial containing 1.5 mL of a lipid solution and a headspace pressurized 

with either DFB or OFP. The lipid solution consisted of 1,2-distearoyl-sn-glycero-3-phosphocholine 

(DSPC) and 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N-methoxy(polyethylene-glycol)-

2000 (DSPE-PEG2000) in a 9:1 M ratio and a total lipid concentration of 1.0 mg/mL and was dissolved 

in a solution of phosphate-buffered saline (PBS), propylene glycol, and glycerol (16:3:1). The resulting 

microbubble solution was cooled to temperatures ranging between -10 °C and -12 °C and condensed 

by pressurizing the vial with room air. For the VDI portion of the study, the bubbles were allowed to 

separate into 2 layers by waiting 7.5 minutes, and the supernatant was discarded to eliminate large 

outliers in the population, prior to condensation.  

Microbubble size distributions were obtained by measuring 2 µL of microbubble emulsion with 

an Accusizer 780A (Particle Sizing Systems, Santa Barbara, CA, USA), and statistics averaged for 3 

independent microbubble vials to obtain a representative distribution and concentration. PCCAs formed 

from condensed microbubbles were sized by using a NanoSight NS500 (Malvern Instruments Inc., 

Westborough, MA, USA) capable of measuring both size distribution and concentration of sub-micron 

particles. The NanoSight was used to capture six 30-second recordings at a temperature of 23.3°C for 

each sample with all other settings at default values. DFB and OFP droplet samples were diluted 1/200 

in PBS prior to sampling. Measurements produced from each of the six recordings were averaged to 

produce a representative size distribution and concentration for each sample, and the process repeated 

for a total of 3 samples of both DFB and OFP droplets.  

4.2.2 Droplet Imaging and Activation Pulse Sequences 

Imaging and droplet activation for the first 2 portions of the study (development of activation 

sequences, and optimization of those sequences) was performed using a fully customizable Verasonics 
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V1 research ultrasound platform (Verasonics, Redmond, WA, USA), equipped with an ATL L12-5 

38mm 192-element linear array probe (Phillips, Andover, MA, USA) for the first part, and an ATL 

L11-5 128-element linear array for the second part. For the VDI portion, a Verasonics Vantage 256 

was used to control an ATL L11-5. The following section explains the pulse sequences that were used 

for all experiments. Deviations from the parameters described here will be presented for each section 

of this chapter. 

For each part, the transducer was calibrated in the free-field using a needle hydrophone (Onda 

HNA-0400, Sunnyvale, CA, USA) in degassed water (the center 128 elements of the L12-5 were used). 

The Verasonics hardware was controlled by MATLAB (The MathWorks, Natick, MA, USA) scripts, 

which allows for simple customization of acoustic parameters. Three different sequences were 

developed: One for B-mode (anatomical) images, another for droplet activation, and a pulse inversion 

approach [42] for contrast-specific imaging. The output of the transducer in each imaging mode was 

controlled by adjusting the output voltage of the Verasonics hardware using MATLAB scripts. 

For B-mode anatomical imaging, a plane-wave coherent angular compounding approach [189] 

was implemented by delivering 9 MHz, 1-cycle sinusoidal pulses. The final B-mode images were 

formed by compounding the envelope detected and beamformed RF signal from 7 transmit-receive 

frames in which the transmit beam was electronically steered at even angular intervals between the 

axial and lateral dimensions of the transducer (from -18° to 18°). The beamforming and compounding 

were performed by Verasonics reconstruction algorithms.  

For contrast-specific imaging, a similar coherent angular compounding approach as above was 

used in which the acquisition at each angle consisted of the RF addition of echoes received from 

sequential 4.5 MHz, 1-cycle pulses delivered 180° out of phase. The initial positive pulse was followed 

by a negative pulse after an interval of 105 µs, and each image was constructed from the compounding 

of all angles. The acquisition time between angles was 205 µs, and the final images were captured at a 

rate of 10 Hz. The number of compounding angles was reduced to 3 (-18°, 0°, 18°) in order to speed 
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up the data transfer rate and reduce reconstruction time. The Verasonics was set to receive at 9 MHz 

nominally, although no secondary filtering was performed to further isolate the 2nd harmonic 

component. 

Droplet activation was achieved by a series of electronically focused and steered 5 MHz, with 

1-5 cycle sinusoidal pulses, depending on the experiment. The use of focused pulses allowed activation 

only within the region of the beam where pressures were highest – limiting unwanted activation 

elsewhere. The pulses were delivered in a raster-scan style along the rows from left to right, starting 

with the deepest row in order to prevent shadowing by bubble clouds produced early in the sequence. 

Inter-pulse delay was set to 50 µs (near the limit of the Verasonics hardware) in order to activate within 

the region of interest (ROI) as quickly as possible. 

Kidney motion due to breathing could result in droplet activation in a plane not aligned with 

the imaging plane, and therefore a two-trigger structure was developed to ensure alignment between 

activation and imaging planes (Figure 4.1). Kidney appearance and motion was monitored during the 

free imaging state, and upon completion of the previous breathing cycle, the operator triggered the pre-

activation imaging state. In this state, 10 frames were collected at a frame rate of 10 Hz and then the 

system returned to a free imaging state to align with breathing motion prior to activation. Once the 

animal breathing motion ceased, a second trigger transitioned the machine to the droplet activation 

sequence. After a 500 µs delay to switch the Verasonics hardware to the activation voltage, focused 

activation pulses were delivered as described above, completing the entire activation sequence on a 

short timescale relative to respiratory motion. Upon completion of the last focused pulse, a delay of 1.2 

ms allowed the Verasonics hardware time to return to imaging output levels. After this pause, the 

machine entered a post-activation imaging state and collected 100 images at a rate of 10 Hz for droplet 

groups and 10 images at a rate of 10 Hz for microbubble groups. Data were transferred to the PC 

controlling the Verasonics after both the pre-activation and post-activation captures for offline analysis.  
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Figure 4.1. Imaging and activation sequence. A free imaging state was used to monitor the breathing 

cycle prior to a manually triggered transition to the pre-activation imaging state. Pre-activation imaging 

was followed by a return to the free imaging state.  After alignment with the breathing cycle, a transition 

to the activation sequence was manually triggered.  A period of post-activation imaging immediately 

followed the activation sequence. In these studies, images were reconstructed offline after all imaging 

and data transfer was complete. 

4.2.3 Animal Protocols 

The kidneys of Fischer rats (Charles River Laboratories, Morrisville, NC, USA) were imaged 

using protocols approved by the University of North Carolina School of Medicine’s Institutional 

Animal Care and Use Committee. All rats were selected based on similar size (~150 g) and age to 

reduce experimental variation. The rats were anesthetized with 2.5% isoflurane, placed on a heated pad, 

and the flank was shaved to remove fur.  
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4.2.4 Development of Pulse Sequences for the Use of PCCAs 

In this section, the area of activation was set to a rectangular ROI within the lateral width of 

the transducer. Focused pulses were delivered uniformly within this region by setting the lateral and 

axial spacing between each pulse to cover the ROI.  Once the kidney was positioned in the desired 

location, B-mode images of the final kidney placement were captured and stored offline before 

switching to pulse inversion and droplet activation modes.  The final design choices for the imaging 

and activation states both in vitro and in vivo are reflected in Table 4.1. 

In vitro verification of the droplet activation sequence was performed in an acrylic-walled 

water bath at 37°C. DFB droplets were dispersed in the water to a concentration of approximately 107 

droplets/mL, and the water was stirred between experimental runs to redistribute the agents. 

Based on preliminary studies, the Verasonics output voltage was set to 18V for all imaging 

sequences (Table 4.1). Hydrophone measurements of the spatial pressure distribution resulting from 

the focused pulses were gathered to correlate with images of microbubble clouds generated. The 

hydrophone was stepped through the transducer’s lateral-axial plane at 0.1 mm intervals using a three-

axis motion stage (Newport XPS-RC, Irvine, CA, USA). The maximum peak negative pressures were 

recorded, and the pressure distributions (beam profiles) were analyzed in MATLAB and combined to 

form a composite beam map. 

At a nominal output voltage of 18V peak-to-peak, the maximum peak-negative pressures (PNP) 

were 482 kPa and 649 kPa for B-mode and pulse-inversion imaging, respectively. These pressures 

occurred at a depth of 1.5 cm for B-mode and 1.15 cm for pulse-inversion. As both imaging states were 

implemented with plane wave transmits, the pressure field was relatively uniform compared to a 

focused-wave approach. During focused activation pulses, the peak negative pressure was 3.0 MPa at 

a focal depth of 0.5 cm. Due to the elevational lens, pressure increased with increasing depth to a 

maximum peak negative pressure of 4.8 MPa at 1.4 cm.
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Table 4.1. Summary of imaging and activation design parameters. PNP- peak-negative pressure. 

 

State  

Center 

Freq 

(MHz) 

Pulse 

Cycles 

Compound 

Angles 

Tx volts  

 

Free-field 

Max PNP 

Axial 

Location (cm) 

Free-field 

Max PNP 

Value 

(MPa) 

Lateral ROI 

Limits 

Axial ROI 

Limits 

Lateral Pulse 

Separation 

(mm) 

Axial 

Pulse 

Separation 

(mm) 

B-mode 9.0 1 7 18 1.50 0.48 - - - - 

Pulse Inversion 4.5 1 3 18 1.15 0.65 - - - - 

Activation (in vitro) 5.0 2 - 18 1.40 4.80 
-6mm to 

6mm 

5mm to 

14mm 
Various Various 

Activation (in vivo) 5.0 2 - 30 1.10 8.30 
-6mm to 

6mm 

3mm to 

12mm 
0.85 1.50 
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Pulses were delivered at even spacing (user specified) within a rectangular region of interest 

extending laterally from -6 mm to 6 mm relative to the center of the transducer face and axially from 5 

to mm 14 mm. The multi-angle coherent plane-wave compounding with pulse inversion script 

described above was used to image the microbubble clouds generated in vitro by droplet activation 

following the application of focused ultrasound (2 cycles at 5 MHz) in the presence of DFB. Results 

from these tests were used to set the axial and lateral activation pulse spacing for in vivo studies based 

on the assumption that pulse pressures and spacing adequate to activate DFB in vivo would produce 

even greater activation of OFP droplets – ensuring the ability to measure both agents. 

Three groups were included in this section: DFB droplets (N = 7), OFP droplets (N = 6), and 

microbubbles (N = 6). Animals in the microbubbles group were administered DFB microbubbles (the 

same precursors used to form DFB droplets.  

B-mode imaging was first used as an anatomical reference to locate and align the kidney with 

the activation ROI. Prior to the injection of contrast agents, the imaging/activation program was used 

to capture agent-free baseline images.  

Contrast agents were delivered as single 120 µL bolus doses injected manually followed by a 

flush of sterile saline, similar to a previous study in mice with DFB droplets [190]. Based on the contrast 

agent size distribution and concentration measurements (see Results section), each bolus consisted of 

60 µL of contrast agents diluted in 60 µL of saline for an approximate initial blood plasma concentration 

of 3.99x107 #/mL, 8.42x108 #/mL, and 1.86x109 #/mL for control microbubbles, DFB droplets, and 

OFP droplets, respectively. Next, the pre-activation and post-activation frames were captured using the 

imaging/activation sequence every 3 minutes for 19 minutes, starting at 1 minute after the injection for 

the DFB and OFP groups, and every 2 minutes for 15 minutes, starting 1 minute after the injection for 

the microbubble group. Animal breathing was monitored closely after the injection and for the 

remainder of the experiment. The dose of isoflurane was adjusted depending on the breathing rate of 

the animal. 
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Based on the results of the in vitro verification experiments, a lateral spacing between pulses 

of 0.85 mm, around 50% of the measured lateral full-width half maximum (FWHM), and axial spacing 

of 1.5 mm (500% of the approximate axial FWHM). The area of activation was set to a rectangular 

region spanning 3 mm to 12 mm axially and from -6 mm to 6 mm laterally relative to the center of the 

transducer. The change in the axial window between in vitro and in vivo studies was made in order to 

ensure the region covered the entire kidney region in this imaging orientation. This combination of ROI 

and pulse spacing resulted in 90 focused pulses spaced evenly across the region delivered at a rate of 

20,000 pulses/s. Transducer output voltage was set to 18V for all imaging sequences, but increased to 

30V during the activation sequence to counteract the effects of tissue attenuation. This translated to a 

free-field peak negative pressure (not accounting for tissue attenuation) of 482.3 kPa and 648.8 kPa 

during B-mode and pulse-inversion imaging, respectively (Table 4.1). The increase in activation 

voltage resulted in a free-field peak negative pressure of 8.3 MPa (at an axial depth of 1.1 cm).  

4.2.4.1 Data Analysis 

Custom MATLAB scripts were used to analyze the pulse inversion data captured with the 

Verasonics. The output image data (envelope-detected and beam formed) was square root-compressed, 

so the pixel values in all the frames were squared to obtain the linear beam formed voltage data. In 

order to analyze the contrast properties within the kidney, reference images were normalized and 

converted to the decibel scale for visualization. ROIs were placed manually in the reference image and 

applied to all frames of the underlying (linear) data set. In cases where shadowing in the images was 

present, ROIs were drawn to avoid inclusion of the affected pixels. The average pixel value and 

standard deviation inside the ROI were calculated on each frame of the voltage data. 

The degree of contrast enhancement (CE) was measured by comparing the contrast images with 

the agent-free baseline in the following sequence.  An ROI was drawn around the region of highest 

activation within the kidney in the first post-activation frame (or post-injection, in the case of 

microbubbles). The mean pixel value was computed for each frame of the entire data set (agent-free 
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baseline, pre-activation, post-activation). For groups that were administered microbubbles, the data set 

consisted of only the agent-free baseline images and the post-injection images. The agent-free baseline 

value for each animal was calculated by averaging the ROI values from the 10 agent-free baseline 

images. The mean pixel value of each frame after administration of the contrast agents was normalized 

to the agent-free baseline value and converted to decibel scale to arrive at a dB increase in contrast 

relative to agent-free baseline. 

Using the CE measurements described above, the decrease in the contrast captured with each 

sequential data set was analyzed to obtain contrast half-lives and quantitatively compare the longevity 

of agent circulation. The CE values of each data set were normalized to the maximum value obtained 

at the 1 minute time point, and the normalized data for each animal was fitted with an exponential of 

the form 

𝑒−𝛽ℎ(𝑡−1)     (4.1) 

where t is the time in minutes after injection, and βh is the rate of decay. In this fit, any time points were 

excluded where the mean CE captured by the post-activation imaging was not significantly increased 

compared to the pre-activation imaging. These were excluded due to the fact that the mean contrast 

should return to zero for the exponential. The contrast measurements capture the maximum signal due 

to contrast agent enhancement, but once contrast is no longer being produced, this measure will capture 

the variation in the noise and produce a non-zero value at late time points. 

To measure the rate of contrast clearance from the imaging plane post-activation, the CE 

measurements were clipped to the maximum value (with breathing noise removed) and fit with an 

exponential curve of the form 

𝑑𝐵𝑚𝑎𝑥 ∗ 𝑒−𝛽𝑤(𝑡−𝑡𝑚𝑎𝑥)    (4.2) 

where βw is the wash-out rate, tmax is the time at which the maximum contrast occurred, and dBmax is 

the maximum CE produced. 
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4.2.5 Optimization of Activation Parameters 

A technique called activation pressure matching (APM) was developed in this work to produce 

uniform activation of PCCAs. Since the L11-5 has an elevational lens, the free-field pressure for a 

single applied voltage greatly varies with depth, increasing as the elevational focus is approached 

(Figure 4.2a). As a result, the amount of vaporization, or the number of droplets that are activated, 

varies with depth in a water bath, as can be seen in the size difference of the generated bubble clouds 

(Figure 4.2b). Furthermore, diffraction of focused pulses and a changing F-number, since the aperture 

size is being kept constant, can cause pressure variations in the field of view and may be additional 

factors that contribute to the change of vaporization levels with respect to depth. Puett et al. described 

a method for obtaining uniform contrast generation by optimizing the spacing between the activation 

pulses so that individual bubble clouds form a larger region that is full of contrast [191]. Although this 

method accomplishes the goal of uniform droplet vaporization in an ROI, it results in over-activation 

in the deeper regions of the field of view since the pressure distribution is non-uniform through depth. 

Consequently, the ROI is insonified with more energy than is necessary which may be undesirable for 

diagnostic purposes.  

 

Figure 4.2. Transduer output pressure and activation clouds at different depths. Several activation 

pulses were delivered to the locations indicated by the green markers in order to activate OFP droplets 

in a water bath. Output pressure varies with depth in a water bath for a single voltage as a result of the 

elevational lens on the L11-5 (a). This change in pressure leads to different levels of droplet activation 

(b). The pressure increases as the 1.4 cm elevational focus is approached, causing the bubble clouds 

produced by vaporization to be larger. 
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The rationale for Activation Pressure Matching (APM) is to deliver pulses with the same 

rarefactional pressure to all activation locations in order to limit the delivered energy. This technique 

not only overcomes the changes in pressure due to the elevational lens, but also due to diffraction, a 

changing F-number, and attenuation in tissue. By varying the output voltage, the appropriate acoustic 

pressure can be delivered at different depths. However, the Verasonics system requires hundreds of 

microseconds to switch between voltages, thus a complete activation sequence may take several 

milliseconds. All of the activation pulses should be delivered as quickly as possible to ensure uniform 

vaporization within a single plane, as respiratory motion may alter the imaging plane during in vivo 

imaging. The generated contrast must also be imaged quickly to ensure accurate measurement since the 

bubbles produced by the early activation pulses will begin to be cleared from the imaging plane.  

Fortunately, the Verasonics offers a tool for modulating the amplitude of the output waveform: 

pulse-width modulation (PWM). The system uses a tri-state pulser to generate a large variety of 

waveforms (Figure 4.3a-b), so in addition to changing the voltage, the amplitude of the generated 

waveform can be adjusted by modifying the number of clock cycles the output is at +volts, ground, and 

–volts. As can be seen in Figure 4.3a-b, the square wave for a PWM value of 0.6 maintains the high or 

low voltage value for less time compared to the wave for a value of 1 which produces an output pulse 

having a lower pressure amplitude. Therefore, a consistent pressure through depth can be achieved by 

selecting an appropriate voltage and adjusting the PWM parameter. 
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Figure 4.3. Example PWM pulse code and generated pulse. The Verasonics system uses PWM to 

modulate the amplitude of the output waveform by changing the time the output is at each of the three 

voltage states (+V, -V, ground). As can be seen in (a), the width of each square cycle is narrower for 

the PWM of 0.6 (gray line) than for the PWM value of 1 (black line), and this difference produces 

waveforms of different amplitudes (b). (c) demonstrates that decreasing the PWM value from 1 (no 

PWM) produces a waveform with a lower peak negative pressure. Therefore, a range in pressures can 

be achieved using only 1 peak-to-peak voltage. 

Because this approach does not require multiple voltage changes, different pressures can be 

quickly delivered. An example of the relationship between output pressure and PWM value for a given 

voltage is illustrated in Figure 4.3c; the output pressure increases as the PWM value increases, with a 

value of 1 signifying no PWM.  

In order to determine the correct voltage and PWM values for the desired activation pressures 

at a specific depth, the system was calibrated with a hydrophone.  A needle hydrophone (HNA-0400, 

Onda, Sunnyvale, CA, USA) was used to calibrate the L11-5 transducer for a range of PWM values at 

various voltages and depths, for a 5 MHz sinusoid with 5 cycles.   Peak rarefactional pressures of 3.75 

MPa and 1.5 MPa were chosen because they are above the activation thresholds for DFB and OFP 

[129,134,192,193], respectively. MATLAB (MathWorks, Natick, MA, USA) can then be readily used 

to calculate an appropriate voltage-PWM combination that resulted in the desired pressure for each 

activation depth. An example of this process is shown in Figure 4.4. The target pressure is set to 1.5 

MPa, and by using 6V and the PWM values shown in the solid gray line, the output pressure can be set 

to within the target ± 10 % to account for measurement error from the hydrophone. Furthermore, as 
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shown in Figure 4.4, the output pressure at 6V without PWM is enough to cause vaporization at 0.9 cm 

but is too high in deeper regions and would result in over-activation. 

 

Figure 4.4. Example APM parameters for in-vitro activation. In this example, a target activation 

pressure of 1.5 MPa (solid black) is chosen, and the PWM values (solid gray) are applied to 6V to 

obtain an output pressure (dashed black) that is within ± 10% (light dashed) of the target pressure for 

depths ranging from 0.9 to 1.7 cm. 

4.2.5.1 In Vitro Protocols 

APM was first tested in vitro. For all in vitro experiments, a 300 µL volume of the stock droplet 

solution was injected into a water bath at room temperature (22 ˚C), and a series of focused activation 

pulses were delivered to produce vaporization.  

In order to produce a uniform area of activation in the ROI, the spacing between the activation 

pulses was adjusted. Puett et al. described a procedure for optimizing the spacing that consisted of 

activating a group of vertical and horizontal lines, and varying the spacing between them until FWHM 

of the intensity profiles overlapped [191]. Since APM was not used, the size of the bubble clouds 

produced by droplet vaporization varied with depth. Therefore, individual lateral and axial spacings 

had to be derived for different regions in the field of view. In this work, the same procedure described 

by Puett et al. is used, but since APM produces same-sized bubble clouds regardless of depth, only one 

set of lateral and axial spacing needed to be calculated. Contrast lines separated by different distances 

were created by activating droplets in a water bath and intensity profiles were generated by averaging 
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the uncompressed image data along either the lateral dimension, for calculating the optimal axial 

spacing, or axially, for calculating the optimal lateral spacing. As discussed above, the optimal spacing 

is defined by the overlap of the FWHM of the intensity profiles. However, too much overlap is not 

desirable since any interaction that may cause cavitation or bubble destruction between an activation 

pulse and a pre-existing bubble cloud. Therefore, the distance between the right FWHM point on the 

left activation line intensity profile, and the left FWHM point on the right intensity profile should be as 

close as possible to zero, so the spacing that has the lowest distance value between these two points is 

the optimal spacing.  

4.2.5.2 In Vivo Imaging 

APM was translated into in vivo imaging. The previously described procedure can be applied 

in vivo with attenuation compensation. Here, we demonstrate the effectiveness of APM in rat kidneys. 

As with in vitro activation, an appropriate PWM value must be selected for each depth for a specific 

voltage. However, the target pressure will not be flat through depth but rather, it will increase so that 

the same pressure is delivered to all the activation locations after it is attenuated by tissue (Figure 4.5).  

In order to calculate the required initial pressure before attenuation, the free-field pressure at each depth 

is derated using the following model: 3.5 mm of superficial tissue (α = =0.6 dB/MHz/cm) followed by 

kidney tissue (α = 1 dB/MHz/cm), assuming a kidney frequency dependence of 1.1 (α = α0f1.1) 

[194,195]. Similar to the in vitro case, APM can yield a pressure through depth that is within ± 10% of 

the target pressure by selecting the appropriate attenuation model and PWM values for the different 

depths while using the same voltage (8V). Additionally, not using APM would result in over-activation 

in the shallower regions since 8V produces a pressure that is higher than the target without PWM.  
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Figure 4.5. Pressure map with distance after accounting for attenuation using a rat kidney attenuation 

model. The target pressure (solid back) of 1.5 MPa increases with depth since the initial pressure will 

be derated by the tissue. Using APM with the PWM values shown in the solid gray curve, the pressure 

delivered to each depth is within ±10% of the target pressure (dashed black line). The output generated 

without APM (dotted black) is higher than the target and would result in the delivery of higher pressure 

than is necessary for droplet vaporization. 

Using the attenuation-corrected APM method with the optimized activation pulse spacing 

discussed earlier, OFP droplets were activated in a rat kidney.  First, a bolus of 60 uL of OFP droplet 

was injected and allowed to circulate for 1 minute and was followed by the image-activate-image 

sequence described previously. In this part of the experiment, optimized spacing was used to produce 

uniform vaporization in vivo. 

Furthermore, the same procedure as in the previous section (Development of Pulse Sequences 

for The Use of PCCAs) was used to, except that APM was used for vaporization at the DFB threshold 

(3.5 MPa), to explore the effect of optimized activation parameters on the CE kinetics. Briefly, a bolus 

consisting of 60 µL droplets (around 1x109 droplets) diluted in 60 µL of saline was injected and a series 

of activation pulses was delivered every 3 minutes for 19 minutes, starting 1 minute after injection. 

Optimized spacing was not used in order to reduce over-activation of OFP, as it is much more volatile 

than DFB. 
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For all in vivo imaging, a custom MATLAB script was used to manually segment the kidney 

(found using the B-mode pulse sequence) and calculate the locations of the activation pulses and their 

appropriate PWM values. Activation locations start with the deepest lines first in order to avoid 

attenuation of the subsequent pulses by the generated contrast, as indicated by the red dashed lines.  

The CE and half-life were calculated using the same methods described in the previous section. 

The CE was found by dividing the mean intensity inside the ROI for the post-activation images by that 

of the pre-activation images of the baseline case (before injection of PCCAs). The data was fit to a 

decaying exponential to calculate the half-life.  

4.2.6 Vaporization Detection Imaging 

4.2.6.1 Activation Signal Detection 

The activation signal resulting from droplet activation was captured in vitro to evaluate the 

effects of pulse length and concentration. DFB and OFP droplets where continuously flowed through a 

200 µm microcellulose tube using a syringe pump (PHD2000, Harvard Apparatus, Holliston, MA, 

USA) set to infuse at 80 µL/min. The tube was submerged in a water bath that was kept at 35 ºC to 

simulate temperatures close to body temperature.  

PCCAs were vaporized using an ATL L11-5 linear array controlled by a Verasonics Vantage 

ultrasound system (Verasonics, Kirkland, WA, USA), using 5 MHz pulses with a pulse length of 1, 3, 

or 5 cycles. 5 MHz is lower than that used in other studies for imaging droplet vaporization signals 

[138,139], but it was chosen to reduce tissue attenuation and because it has been previously used in in 

vivo imaging of droplets [127,196]. The activation pulses were delivered at a rate of 1.25 Hz, and a 

range of pressures (peak-negative) were used for vaporization: 0.5, 0.75, 1, 1.25 MPa for OFP, and 1, 

1.5, 2, 2.5 MPa for DFB. The activation signals were captured using a 2.25 MHz piston transducer 

(Olympus Panametrics V305, Center Valley, PA), amplified with an RF amplifier (BR-640A, RITEC 

Inc., Warwick, RI, USA), digitized using a 200 MHz sampling rate (CSE1222, Gage, Lachine, QC, 

Canada), and stored using LabView (National Instruments, Austin, TX, USA). The combination of 
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flow rate and pulsing rate was chosen to allow fresh droplets to replenish the region of activation 

between each of the 30 acquisitions captured for each pulse length/pressure/dilution combination. 

Three different dilutions were used: 0.01% to study the activation signature of individual 

droplets or droplets that are far enough away to not affect each other’s response, 0.1% because similar 

dilutions have been used in vivo [127,196], and 1% to explore the effect of activating PCCAs in close 

proximity. Data were collected using all pulse lengths and pressures with only water in the tube to 

obtain a baseline. 

Two parameters were calculated from the activation traces: amplitude area under the curve 

(AUC) and the mean frequency. The AUC was computed to obtain a metric of vaporization signal 

strength, and mean frequency was measured to evaluate the interaction between the activation pulses 

and the produced microbubbles. The higher the mean frequency (a shift towards the transmit 

frequency), the more interaction between the pulse and the bubbles. Both metrics were found using 

only the traces that contained vaporization. All processing and analysis was performed using custom 

MATLAB (The MathWorks, Inc., Natick, MA, USA) scripts. 

 The AUC was calculated by envelope-detecting the time-domain traces and finding the area 

under the curve using trapezoidal approximation (Figure 4.6). First, the voltage traces of the non-droplet 

(water) cases, which is the signal from the microtube, were filtered with low-pass filters (100 order 

finite impulse response filter) of different corner frequencies, and the AUC was calculated. Next, the 

filter that produced the lowest AUC (tube signal) was used to filter the time-domain traces of all the 

droplet data, and the AUC was calculated. Furthermore, the mean AUC of the water measurements was 

subtracted from each droplet trace. 

To find the mean frequency, a fast Fourier transform was first calculated for each unfiltered voltage 

trace, and the frequency spectrum from the water measurements was subtracted from the droplet data 

to eliminate the frequency components of tube and droplet scattering (Figure 4.6). Lastly, the mean 
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frequency of the unfiltered data was calculated from the water-subtracted spectra by summing the 

product of each frequency (x-axis) by its corresponding amplitude (y-axis), and dividing the result by 

the summation of all amplitude values.  

 

Figure 4.6. Illustration of the analysis for the activation signal detection section. The data was filtered 

and envelope detected, the AUC was found (left), and the mean frequency was calculated from the 

frequency spectra (right). 

4.2.6.2 Imaging of Phase-Change Contrast Agents 

A Vantage system was used to control an L11-5 linear array for all imaging and vaporization. 

In this work, the conventional image-activate-image method of imaging, CI, was compared to the new 
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approach of making images from the vaporization signals, VDI. For CI, the pulse inversion technique 

described previously was used to capture a frame before and after activation, and APM was used to 

account for attenuation and deliver pulses with similar peak-negative pressures regardless of depth. In 

order to make VDI images, the signals produced by the activation pulses in the CI protocol were 

captured.  

ADV is an event that produces momentary low frequency signals that last for less than 10 µsec 

[137]. Therefore, unlike CI, where images are captured after the vaporization pulses have been 

delivered, VDI requires that RF data be stored for each transmission, and that small reconstruction 

regions around each activation location be combined to form an image (Figure 4.7), similar to 

conventional focused imaging. Verasonics reconstruction algorithms, which employed a delay and sum 

protocol with dynamic electronic receive focusing, were used to form the VDI images from the different 

activation locations. 

 

Figure 4.7. Reconstruction technique for making VDI images. There is one reconstruction region (light 

blue, dotted rectangles) for each activation location (green squares) in the ROI (yellow dashed line). 

The multiple reconstruction regions are combined to form the image. Since the entire field of view is 

not insonified, only part of the field of view is reconstruction (dotted, dark blue line). 



 

80 

 

4.2.6.3 In Vivo Imaging 

The kidney was found using the B-mode sequence on the Vantage, and a region of interest ROI 

was drawn around the kidney to select the location of the activation pulses (Figure 4.8). A catheter was 

inserted into the tail-vein for PCCA administration, which consisted of a continuous infusion of DFB 

or OFP droplets at a rate of 1.5 x108 #/min. PCCAs were activated with rarefactional pressures of 3, 

3.5, 4, and 4.5 MPa for DFB and 0.75, 1, 1.25, and 1.5 MPa for OFP, using a pulse-length of 1 cycle. 

Three trials were conducted for each pressure. 

 

Figure 4.8. ROI (yellow dashed line) drawn on b-mode image (left) and activation locations (right). 

The scale bar represents 3 mm. 

First, the RF data of VDI at the highest pressure for each perfluorocarbon (4.5 and 1.5 MPa for 

DFB and OFP, respectively) was filtered using filters having different corner frequencies. Next, the 

filter that provided the best CE was used to filter the data from all pressures, and VDI images were 

reconstructed using Verasonics reconstruction algorithms. CE was defined as the ratio between the 

uncompressed mean intensity inside the ROI of the activation images and baselines images taken before 

the introduction of PCCAs at all the pressures tested. No additional post-processing was performed for 

the CI images.  

CI and VDI were compared by evaluating the CE of each technique. However, the spacing 

between activation locations was not optimized because it was observed from preliminary work that CI 

and VDI required different spacing to produce a uniform region of activation. Therefore, simply taking 
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the mean intensity inside the ROI for the CE calculation would bias the results in favor of VDI because 

CI requires smaller spacing. Instead, a ROI image mask was created that isolated areas where activation 

was present so that the CE calculation did not depend on the spatial characteristics of the vaporization 

(Figure 4.9). Two image masks were created for each rat, one for DFB and one for OFP, using the 

images of the highest pressure for each PFC. Out of all pixels inside the ROI, only those with intensity 

values higher than the mean intensity of the no-droplet case plus 3 standard deviations were kept for 

analysis. Since speckle produces random regions of low and high intensity, a Gaussian filter was 

applied to smooth the images used for making the masks so that low-intensity pixels produced by 

speckle were not excluded. Each of the two masks were used for all the data of the same PFC.  

 

Figure 4.9. Example CI image (left), and mask for analysis (right). Only white pixels were included in 

the CE calculation. The scale bar represents 3 mm. 

4.2.6.4 Imaging at Depth 

To test the hypothesis that VDI has better depth of penetration than conventional contrast 

imaging due to the low frequency of the vaporization signals, PCCAs were activated in microtubes 

(320 µm inner diameter) that were embedded in a tissue-mimicking phantom with a measured 

attenuation coefficient of 0.61 dB/cm/MHz, which is in the range of normal tissues, such as liver and 

fat [194]. The tubes were positioned around 2 and 3 cm from the surface of the phantom, and APM was 

used to ensure that a 1 cycle, 5 MHz, 1.5 MPa peak-negative pressure was delivered to each activation 

location and that the imaging pressure for CI was the same at each of these depths. Before a stock 

droplet solution of OFP was diluted to 1%, the saline in the syringe was heated to 35 º C, and the diluted 
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solution was immediately infused into the tubes after the droplets were added. VDI and CI images were 

captured following the infusion of PCCAs, and the same procedure that was described in the previous 

section was employed to calculate the CE. A higher value is expected for VDI, since there should be 

less attenuation due to the low frequency of the activation signals. 

4.2.6.5 Statistical Analysis 

For the activation detection experiment, ANOVA was used to determine significance between 

any pulse lengths or PFCs, and a Tukey range test was used to find significance between each of the 

parameters. For the rest of the experiments, where the number of measurements consisted of a dozen 

or less values, Kruskal-Wallis analysis was performed instead of ANOVA, followed by a Tukey range 

test. Significance was set at p < 0.05. 

4.3 Results 

4.3.1 Contrast Agent Sizing and Concentration 

The averaged distribution of DFB microbubbles, which were used as control agents throughout 

this study, had a mean diameter and variation of distribution of 1.00 ± 0.89 µm, with a mode size of 

0.62 µm, and a total concentration of 6.57x109 ± 0.84x109 bubbles/mL (N = 3) (Figure 4.10a). 

Reproducibility between samples was high, with the standard deviation in the mean of 0.06 µm, and 

standard deviation in the mode of 0.01 µm (N = 3). Similarly, the precursor microbubbles used to make 

OFP particles had a mean diameter and variation of distribution of 1.03 ± 0.66 µm, with a mode size of 

0.61 µm. OFP microbubbles had a higher mean concentration of 8.50x109 ± 1.4x109 bubbles/mL (N = 

3) compared to DFB microbubbles, but not significantly so (p = 0.16, Student’s two-sided t-test). 
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Figure 4.10. Representative distributions of contrast agents used in this study. A) DFB microbubbles 

had a mean diameter of 1.00 ± 0.89 µm and a mode size of 0.62 µm. B) Droplets created by condensing 

DFB and OFP microbubbles produced sub-micron distributions. DFB droplets had a mean diameter of 

166 ± 59 nm and a mode of 141 nm, while OFP droplets had a smaller mean diameter of 154 ± 64 nm 

and a mode of 110 nm. 

The representative distributions obtained by averaging all 3 samples of each type of droplet 

(Figure 4.10b) produced a mean diameter and distribution variation of 166 ± 59 nm for DFB, with a 

mode size of 141 nm, and a total concentration of 13.88x1010 ± 6.58x1010 droplets/mL, while OFP 

produced a mean diameter and distribution variation of 154 ± 64 nm, with a mode size of 110 nm, and 

a total concentration of 30.61x1010 ± 9.65x1010 droplets/mL. Reproducibility between samples was 

high, with the standard deviation in the mean less than 3 nm for both OFP (N = 3) and DFB (N = 3). 

Similarly, mode size of the 3 samples for each droplet type had standard deviations less than 12 nm. A 

Kolmogorov-Smirnov test showed that the smaller size distribution of OFP droplets was statistically 

significant compared to DFB (p < 0.001), which agreed with Student's two-tailed t-test evaluation of 

the measured mean (p = 0.03) and mode (p<0.01) values for the two droplet types. OFP droplets had a 

nearly significant increase in concentration compared to DFB (p = 0.07), similar to the microbubble 

concentration results. The smaller mode and mean diameters of the OFP samples can be expected based 

on ideal gas laws, which predict a greater size-dependent factor of conversion for OFP than DFB 

[128,137,197]. Given that the peak in the DFB microbubble distribution occurred at 0.62 µm and at 

0.61 µm for OFP, an assumption of ideal conversion between the gas and liquid states suggests a 

conversion factor of 5.57 ± 0.33 for OFP and 4.41 ± 0.37 for DFB.  
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4.3.2 Development of Pulse Sequences for the Use of PCCAs 

4.3.2.1 In Vitro Verification 

Testing within an imaging field measuring 1 cm2 at a depth of 1 cm demonstrated a correlation 

between the focal pressures and the sizes of individual microbubble clouds generated by droplet 

activation (Figure 4.11). At the in vitro imaging and activation output settings, vaporization of DFB 

droplets was not observed prior to triggering the focused activation pulses, indicating pressures were 

low enough to eliminate unintended vaporization. This matches previous in vitro measurements 

showing that efficient DFB activation at frequencies near 5 MHz requires pressures on the order of 2 

MPa or greater [130].  

 

Figure 4.11. In vitro activation of DFB droplets. Changes in the magnitude and geometry of the pressure 

focal zones (A) and corresponding microbubble clouds (B) at nine focal locations occur as a result of 

electronically steering the activation pulses. A region of interest can be filled with bubbles by the 

accumulation of discrete microbubble clouds (C). Spacing the focal locations closer results in a more 

uniform field of bubbles (D). 
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During focused activation pulses, the focal zones as well as the maximum peak negative 

pressures achieved within these zones differed depending on the focal depth (Figure 4.11a) as a result 

of the elevational lens of the L12-5. Accordingly, the sizes of the microbubble clouds differed as a 

function of the focal depth (Figure 4.11b). Converting the output peak negative pressures to Mechanical 

Index (MI, defined as the PNP in MPa divided by the square root of the center frequency in MHz [198]), 

the maximum MI in the imaging state was 0.3, and the maximum MI in the activation state was 2.1. It 

is important to note that a mechanical index of 2.1 is higher than the current regulatory limits of 

diagnostic ultrasound output (MI = 1.9). In this study, it is evident that DFB droplets can be activated 

at ultrasound pressures lower than MI = 1.9. For example, in Figure 4.11b at a focal depth of 0.5 cm, 

bubble clouds are produced at MI = 1.3, although they are much smaller than those produced using 

higher pressures.  

When focused pulses are placed sparsely, such as a lateral separation of 6 mm and axial 

separation of 4.5 mm, contrast can be generated in isolated regions with no overlap (Figure 4.11a-b). 

The accumulation of many individual microbubble clouds can fill a region of interest with bubbles 

(Figure 4.11c-d). Differences in the individual microbubble cloud shapes and sizes as a function of their 

location in the acoustic field can be appreciated if the activating foci are spaced at 1.2 mm laterally 

(70% of the measured lateral full-width-half-max) and 2.1 mm axially (700% of the approximate axial 

full-width-half-max) (Figure 4.11c). However, a more uniform vaporization field of bubbles can be 

generated if the activating foci are spaced closer at 0.43 mm laterally (25% of the full-width-half-max) 

and 0.75 mm axially (250% of the approximate axial full-width-half-max) (Figure 4.11d). Although 

this results in a visually confluent region of contrast, it also indicates that the vaporization pulses may 

be interacting with the bubbles produced from previous pulses. 

4.3.2.2 In Vivo Acoustic Parameters 

To transition to in vivo verification, a lateral spacing between pulses of 0.85 mm (50% of the 

measured lateral FWHM) and axial spacing of 1.5 mm (500% of the approximate axial FWHM) was 



 

86 

 

chosen within the 1.08 cm2 activation region (see Methods section) in order to ensure bubble clouds 

generated from DFB droplets did not overlap significantly and minimizing exposure of existing bubbles 

to the higher energy activation pulses. These represent distances in between the spacing presented in 

Figure 4.11c-d. In our setup using a linear array transducer with an elevational lens, the pulse pressures 

increased with depth up to the elevational focus. However, this will not necessarily be the case in vivo, 

as frequency-dependent attenuation diminishes the pulse pressure as a function of depth and frequency.  

Initial in vivo investigations at the same pulse parameters used for in vitro verification were not 

capable of producing contrast from DFB droplets, although they proved sufficient to generate contrast 

from OFP droplets. In order to counteract tissue attenuation and aberration, transducer voltage was 

increased to 30V for the focused-wave activation state, but the plane-wave imaging states remained at 

18V. In order to estimate the actual in vivo pressures at this output voltage, the free-field pressures (see 

Methods section) were derated by a model assuming 3 mm of superficial soft tissue (attenuation 

coefficient of 0.6 dB/cm at 1 MHz) followed by kidney tissue (attenuation coefficient of 1.0 dB/cm at 

1 MHz). The attenuation coefficients were scaled assuming a frequency dependence of 1.1 (α=𝛼0𝑓1.1) 

[199–201]. With this model, the highest in vivo PNPs during the B-mode and pulse-inversion imaging 

states were 273.7 kPa (MI = 0.09) and 433.1 kPa (MI = 0.14), respectively (Table 4.2). During the 

focused-wave activation state the PNP was 3.7 MPa (MI = 1.65) at a depth of 3 mm (the shallowest 

pulses near the start of the kidney region). At 10 mm, where the kidney region of most of the test rodents 

ended, the PNP was 4.2 MPa (MI = 1.89). The highest PNP was 4.5 MPa (MI = 2.01), occurring at a 

depth of 8.5 mm. The deepest focused pulses in the activation ROI, occurring at 12 mm, produced a 

PNP of 3.8 MPa (MI = 1.70). Thus, the majority of the focused pulses occurred at mechanical indices 

below the regulatory limit of 1.9, although the pulses central to the kidney occurred at output levels 

slightly above MI = 1.9 as a result of the elevational focusing lens. 
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Estimated In Vivo Imaging Pressures 

State 

Max PNP 

Axial 

Location 

(cm) 

Maximum 

PNP Value 

(MPa) 

Mechanical 

Index 

B-mode 0.50 0.27 0.09 

Pulse Inversion 0.50 0.43 0.14 

Estimated In Vivo Activation Pressures 

Description 

Axial 

Location 

(cm) 

PNP Value 

(MPa) 

Mechanical 

Index 

Start of Kidney 0.30 3.70 1.65 

Maximum PNP 0.85 4.50 2.01 

End of Kidney 1.00 4.20 1.89 

End of Activation ROI 1.20 3.80 1.70 

Table 4.2. In vivo pressure estimations based on a simple tissue attenuation model. 

4.3.2.3 Contrast Enhancement Measurements 

For tests involving bubbles (no activation pulse), very little contrast signal (due to artifact) was 

present prior to injection (Figure 4.12). After injection, the relatively high dose of bubbles created a 

strong contrast signal that diminished at each time point until no contrast enhancement was observed 

(typically between minutes 11 and 15). Similar to the microbubble tests, very little signal was present 

within the kidneys prior to PCCA injection (Figure 4.12). After injection of DFB droplets the kidneys 

produced similar contrast to the agent-free baseline, indicating agents were still in the liquid state and 

that few, if any, bubbles were present due to spontaneously vaporized droplets. OFP droplets, however, 

produced some ‘flashing’ contrast after injection during the pre-activation imaging sequences, 

indicating either spontaneous vaporization to bubbles while in circulation or activation of OFP droplets 

by imaging pulse pressures (see further discussion below). After the vaporization sequence was 

triggered at 1 minute post-injection, a high degree of contrast was present in the kidney for both DFB 

and OFP (Figure 4.12). DFB droplets created a distinct spatial pattern due to the spacing between the 

individual vaporization pulses. Subsequent imaging/activation sequences for DFB every 3 minutes up 

to the final time point at 19 minutes showed a similar spatial pattern with a gradual decrease in the 
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amount of contrast produced. For tests with OFP droplets, a high degree of uniform contrast was present 

throughout the kidney after the activation pulse was delivered. No spatial patterning was present, 

indicating a much higher degree of activation and bubble formation. In fact, at early time points, the 

contrast present within the kidney was high enough to cause shadowing deep within the kidney that 

brightened as contrast washed out of the upper imaging plane. 

 

Figure 4.12. Example overlays of B-mode (grey scale) ultrasound scans and contrast-specific pulse-

inversion scans (green scale) for each contrast agent tested. In all images, the pulse-inversion scans 

have been manually cropped to the borders of the kidney region to illustrate differences in signal within 

the kidney. The first column displays the agent-free case (pre-injection), and the second column 

corresponds to the pre-activation imaging (after injection but before activation). DFB droplets produced 

no significant increase in contrast after injection, but once activated exhibited a ‘patterned’ contrast 

appearance with lower mean contrast compared to microbubbles. OFP droplets, in comparison, 

exhibited some ‘flashing’ in the pre-activation state as a result of unwanted activation, and generated 

uniform contrast with a higher mean value than microbubbles after the activation sequence. The level 

of OFP activation was high enough to produce shadowing deep within the kidney at early time points. 

Due to the low vaporization thresholds of OFP and relative thermal instability, contrast is 

produced even during the pre-activation imaging, manifesting as bright, temporary ‘flashes’ in the 

videos (Figure 4.12). This may be due to a combination of spontaneously vaporized droplets as well as 

droplet vaporization due to the pressure of the imaging pulses. In previous in vitro studies, the 

vaporization threshold of microscale OFP droplets exposed to 8 MHz, 2 cycle pulses proved to be at 
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peak negative pressures on the order of 0.5 MPa [134]. Here, the imaging state reached estimated peak 

negative pressures in the tissue of 424.2 kPa, and so we hypothesize that this effect is primarily due to 

imaging pulses that exceed the vaporization threshold of large outlier droplets still in circulation at early 

time points. This is consistent with preliminary studies using lower imaging pressures, where OFP 

‘flashing’ was not observed. 

Measuring contrast produced by the microbubble injections inside the ROI produced a steady 

level of CE in the 1 second captures at each time point. Droplets, on the other hand, produced a distinct 

wash-out phase as the newly generated contrast diffused out of the imaging plane and into the rest of 

the kidney and circulatory system over the 10 to 20 seconds following the activation sequence. 

Characterizing the CE relative to the agent-free baseline for all frames of the video capture produced a 

contrast wash-out curve at each major time point (Figure 4.13). Repeating this measurement at each 

major time point allows assessment of the change in the level of activation over time, which is directly 

related to the decay and clearance of the non-activated agents remaining in circulation. In these contrast 

wash-out curves, breathing motion manifests as dramatic drops in the measured value, as breathing 

causes translation into a neighboring imaging plane where fewer bubbles exist. In Figure 4.13, 

breathing motion artifacts have been manually removed to increase clarity.  

 

Figure 4.13. Examples of contrast measurements taken for individual animals administered A) DFB 

and B) OFP droplets. The mean value of the contrast enhancement increased over a short period 

following the vaporization pulse and then decreased as agents washed out of the kidney imaging plane. 

For OFP droplets, spikes in the 1 minute pre-activation capture are visible caused by unwanted 

vaporization. 
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Grouping the CE results for each animal by agent type allows for further analysis illustrating 

the fundamental difference in the behavior of the agents. The maximum contrast present in animals 

prior to microbubble injection (N = 6) (representing the ‘noisiest’ frame in the agent-free video capture) 

was 0.19 ± 0.10 dB. After injection, microbubbles produced a high degree of initial contrast, with a 

mean value of 12.63 ± 3.64 dB at the 1 minute time point (Figure 4.14a). Over the next 10 minutes, the 

contrast decayed quickly and returned to baseline levels by the 13 to 15 minute time points. 

 

Figure 4.14. Maximum dB enhancement relative to the mean of the agent-free baseline for A) 

microbubbles after injection and B) droplets after application of a vaporization sequence. The mean 

signal within the ROI showed that microbubbles produced a high degree of contrast initially that cleared 

by the 15 minute mark. Contrast generated by activation of OFP was initially greater than DFB and 

microbubbles, but decayed more rapidly than DFB due to droplet instability.  

For the droplet groups, the pre-injection measurements were similar to the microbubble test 

group, with noise in the measurement on the order of less than 1 dB (Figure 4.14b). After the activation 

sequence, animals in the DFB test group (N = 7) produced a mean CE at 1 minute post-injection of 7.29 

± 3.65 dB over the agent-free baseline. At each sequential time point, the ‘on-demand’ contrast from 

the activation sequence gradually decreased in magnitude, producing a mean CE of 2.27 ± 0.92 dB at 

the 19 minute mark that could be easily observed in the video sequence. In comparison to DFB droplets 

and microbubbles, activated OFP droplets produced a high initial CE, with a mean value of 18.24 ± 

3.14 dB at 1 minute post-injection. Similar to microbubbles, OFP contrast generated from each 

activation sequence decayed rapidly over the course of 19 minutes. At the 13 minute post-injection time 
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point, contrast produced by OFP had a lower mean value (2.24 ± 1.19 dB) than DFB (3.49 ± 1.78 dB), 

suggesting the concentration in the bloodstream diminished much more rapidly than DFB. This matches 

prior in vitro experiments demonstrating relatively poor thermal stability of OFP droplets at 37°C [134]. 

The results highlight the difference in stability between choices of PFC: at the last time point tested, 

new contrast was being generated in all animals given DFB droplets, while OFP droplets had cleared 

from circulation in the majority of animals. 

To arrive at the CE values in Figure 4.14, measurements were normalized to the mean value of 

the agent-free baseline images rather than the pre-activation images collected just before application of 

the vaporization sequence. This choice was based on preliminary studies showing that the pre-activation 

measurement of OFP agents was influenced by droplet vaporization (Figure 4.12 and Figure 4.13b). 

Thus, normalizing to the pre-activation mean value would have the effect of under-reporting the actual 

contrast generated by OFP particles at early time points.  

4.3.2.4 Half-life Measurements 

By normalizing the CE data to the maximum value, the circulation half-life can be calculated 

with a mono-exponential fit described in (Figure 4.15). Using this analysis, microbubbles had a mean 

decay rate of 0.22 ± 0.02 min-1, producing a mean circulation half-life of 3.26 ± 0.37 min. The minimum 

and maximum half-lives in the group were 2.77 min and 3.83 min, respectively. OFP droplets produced 

similar measurements as microbubbles, with a mean decay rate of 0.20 ± 0.06 min-1. The mean half-

life of the group was 3.67 ± 0.37 min, with minimum and maximum half-lives in the group of 2.43 min 

and 5.51 min, respectively. OFP half-lives were not statistically significantly different compared to the 

half-lives of the microbubble group (p = 0.4, student’s two-tailed t-test). DFB droplets, while initially 

showing lower contrast than the other two types of particles at the 1 minute time point, produced a 

significantly slower mean decay rate of 0.07 ± 0.01 min-1. The mean half-life of the group was 10.84 ± 

1.63 min, with minimum and maximum half-lives in the group of 8.07 min and 13.02 min, respectively. 
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DFB half-lives were statistically significantly different compared to both microbubbles and OFP 

droplets (p << 0.01). 

 

Figure 4.15. Maximum contrast enhancement (CE) over the mean of the agent-free baseline normalized 

to the maximum value produced by each animal for A) microbubbles and B) droplets. DFB decayed at 

a significantly slower rate than OFP and microbubbles, resulting in contrast production half-lives on 

the order of 3-fold longer than microbubbles and OFP droplets. Shown in solid lines are the exponential 

curve fits to the grouped data, with 95% confidence intervals in dashed lines. 

4.3.3 Optimization of Activation Parameters 

When APM was used, the bubble clouds produced by the activation pulses are of similar size 

as a result of the consistent activation pressure throughout the field of view (Figure 4.16a). Conversely, 

when a single voltage was used without PWM, the bubble clouds were vastly different in size, 

indicating that the activation pressure for the deeper regions was excessive since vaporization was 

achieved with a smaller pressure in shallower areas (Figure 4.16b). The size of the bubble clouds 

produced by the activation pulses was calculated using a method described previously by Puett et al. 

[191], where the number of pixels with an intensity higher than 1% of the cloud’s brightest pixel were 

counted, and this number was multiplied by the pixel size to get an area measurement (Figure 4.16c-

d). Each box in the box plot represents the area for the 5 bubble clouds at the different depths (rows). 

The size of the bubble clouds is very similar between the different depths when APM was used (Figure 

4.16c); cloud size between the different depths is not significant for any two depths. In contrast, when 

a single voltage is used for activation, there was a clear positive trend as the elevational focus was 
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approached, and the area of the bubble clouds was significant between rows in all but 3 cases (Figure 

4.16d). 

 

Figure 4.16. Difference between using APM (a) and a single voltage without PWM (b) on bubble cloud 

size. The bubble clouds on (a) are similar in size, indicating that the vaporization pressure was uniform 

for all activation areas. Not using PWM results in a range of activation pressures that vary with depth, 

which increases contrast generation as the pulses approach the elevational focus. The area of the 

activation clouds was measured for each depth (rows) and APM produced bubble clouds of the same 

size (c), while the size of the clouds increased with depth when a single voltage was used (d). 

Figure 4.17 shows the results of the activation pulse spacing experiments. When the 2 intensity 

profiles could not be differentiated, or the FWHM points are not visible, because the spacing is too 

small, the distance value was calculated by subtracting twice the mean FWHM of the largest spacing 

(1 mm and 0.75 mm for the axial and lateral cases, respectively) from the FWHM of the intensity 

profile. For example, the FWHM distance value for 0.5 mm in Figure 4.17 a was twice the mean FWHM 

of the intensity profiles for the 1mm spacing (0.95 mm), subtracted from the FWHM of the 0.5 mm 

intensity profile (0.475 mm), which produced value -0.475 mm. Three trials were averaged for each 

spacing, and the FWHM distances for the axial spacings 1, 0.75, and 0.5 mm were 0.515 ± 0.13, 0.16 

± 0.034, and -0.475 ± 0.11 mm, respectively, and the values for the lateral spacings 0.75, 0.5, 0.25 mm 

were 0.4 ± 0.089, 0.22 ± 0.056, and -0.36 ± 0.08 mm, respectively. Therefore, the optimal spacing for 

the L11-5 was around 0.75 mm and 0.5 mm in the axial and lateral directions, respectively. 
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Figure 4.17. Intensity profiles (rows a and c) were generated by averaging imaged data from activation 

lines (rows b and d) separated by a range of distances between 0.25 and 1 mm.  The optimal spacing 

between activation lines is characterized by the overlap of the FWHM of the intensity profiles of 

adjacent lines and so 0.75 mm and 0.5 mm are the best axial and lateral spacing. 

Using APM along with the optimized spacing, a uniform region of vaporization can be 

generated (Figure 4.18). As previously discussed, uniform activation is possible without APM using 

the methods described by Puett et al. [191]. However, that approach requires over-activation of droplets 

around the elevational focus in order to vaporize regions located further away from the transducer. 

APM creates uniform vaporization without excessive vaporization or energy delivery in the near-field. 
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Figure 4.18. APM and optimized spacing creates a region of uniform contrast. 

When APM was used in the kidneys of rats, APM generated uniform vaporization inside the 

kidney, indicating that the pressure delivered to each activation location was similar, and the spacing 

between locations was appropriate (Figure 4.19). 

 

Figure 4.19. OFP droplet activation in a rat kidney using APM and optimized spacing. The left image 

shows the contrast image of the kidney before droplet vaporization, and the image on the right is an 

image of the post-activation contrast that was generated by the activation pulses (center). The green 

dots on the center image represent the activation locations. Consistent activation throughout the kidney 

was achieved by sending activation pulses with the same peak rarefactional pressure regardless of 

depth. 

The results from the circulation study show that, as expected, OFP yielded a higher contrast 

enhancement with more droplets activated for a given pulse (Figure 4.20). However, the decreased 

stability of OFP led to spontaneous vaporization which reduced the concentration of agents in droplet 

form and decreased the circulation time, as was seen in the previous section. It should be clarified that 
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what is being referred to as “circulation time” in this study is the time for which detectable contrast can 

be generated, not the time the droplets remain in the vasculature. Figure 4.20 shows that the CE, in dB, 

relative to a baseline image taken prior to the injection of PCCAs. The CE for OFP was almost three 

times that of DFB (a) at the one-minute time point, and OFP was cleared much faster than DFB (b). 

The CE at each time-point was normalized to the one-minute time point and fitted to a mono-

exponential decay model in order to calculate the circulation half-life. The half-life for DFB and OFP 

was 15.97 ± 3.0 and 6.92 ± 0.7 min, respectively. In both cases, the resulting value obtained by using 

APM was substantially higher than the previous section when unoptimized activation parameters were 

used.  The droplets were circulating the same amount of time but using APM makes the vaporization 

at all depths more efficient enabling the use of the injected droplets for a much longer time. This part 

of the study demonstrates the benefit of using optimized activation parameters for in vivo applications.  

 

Figure 4.20. Contrast enhancement over the baseline case for each time point (a), and normalized to the 

one-minute time-point (b). The plot on the left shows that the contrast generated when OFP droplets 

were activated using APM is much greater than that of DFB at the one-minute time point. Conversely, 

OFP has a circulation time that is less than that of DFB, as can be seen on the right plot. A mono-

exponential (Ae-bt) was fit to the normalized contrast enhancement data (solid line) and used to compute 

the circulation half-life for each type of droplet. The dashed lines represent the 95% confidence 

intervals of the fit. The half-life was 15.97 ± 2.96 min for DFB and 6.92 ± 0.65 min for OFP. Both 

values are much higher than previously reported.   
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4.3.4 Vaporization Detection Imaging 

4.3.4.1 Activation Signal Detection 

Example voltage traces can be seen in Figure 4.21. It can be seen that the onset of activation 

shifts left, earlier in the pulse, as the vaporization pressure increases for 3 and 5 cycles. It is worth 

noting that the transmitted pulses, closely resembled the water signals in Figure 5 (dark blue), were 

longer than specified (1, 3, or 5 cycles) due to the ramp up and ring down of the L11-5. 

 

Figure 4.21. Example voltage traces from droplet vaporization detection. Dark blue is the mean voltage 

trace of the no-droplet case (only water), and the light blue are individual recordings of PCCA activation 

signals. 

 After the received signals were filtered, the AUC of the no-droplet case, essentially the signal 

from the microtube, could not be significantly reduced with filters with corner frequencies below 2 

MHz (Figure 4.22). Therefore, all data was filtered with a 2 MHz low-pass filter for the AUC analysis. 

Filtering the data ensured that the scattered signal from the droplets and microtube were eliminated, so 

that the spectrum only contained frequency content from vaporization signals. 
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Figure 4.22. AUC of tube signals after different filters. 

 The effect of pulse length was explored to test the hypothesis that short pulses can achieve 

efficient activation with large enough amplitudes to make high CTR images, and will limit interactions 

with the produced bubbles. Therefore, the effect of pulse length on vaporization efficiency, amplitude, 

and frequency was evaluated.  

 To investigate the vaporization efficiency of different pulse lengths, a threshold defined as the 

first pressure at which 25% of acquisitions contained activation was found. The results can be seen in 

Table 4.3. The vaporization threshold at the 0.1% dilution was higher for the 1 cycle pulses for both 

DFB and OFP, and it was higher for 1 cycle for OFP at the 0.01% dilution. The lower thresholds for 3 

and 5 cycles indicate that longer pulse lengths are more efficient at vaporizing droplets. However, the 

AUC results showed that using 1 cycle produces signals that were not significantly lower (p > 0.05) 

than 3 and 5 cycles for most pressures and dilutions (Figure 4.23). Therefore, long pulses are not 

required for effective vaporization and signal detection. 

 DFB OFP 

 0.01% 0.10% 1% 0.01% 0.10% 1% 

1 1.5 1.5 1 1 0.75 0.5 

3 1.5 1 1 0.75 0.5 0.5 

5 1.5 1 1 0.75 0.5 0.5 

Table 4.3. Vaporization Threshold (MPa) for the different pulse lengths and dilutions. 
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Figure 4.23. AUC results of DFB (left column) and OFP (right column) for the different dilutions 

(rows). Significance (p < 0.05) is denoted by the black bars. 1 cycle (white) activation pulses produce 

values similar to those produced by 3 (light blue) and 5 (dark blue) cycle pulses in most cases. 

The results for the mean frequency analysis are shown in Figure 4.24 and indicate that longer 

pulses produce a higher mean frequency, especially for the lower dilutions and higher pressures. 

Furthermore, 1 cycle pulses have a significantly lower (p < 0.05) mean frequency than 3 and 5 cycles 

in most cases. These findings agree with the hypothesis that longer pulses interact with the produced 

microbubbles, since the mean frequency shifts toward the transmit frequency. 
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Figure 4.24. Mean Frequency results of DFB (left column) and OFP (right column) for the different 

dilutions (rows). Significance (p < 0.05) is denoted by the black bars. The mean frequency increases 

with pulse-length for most pressure-concentration combinations for OFP and DFB. 

 Lastly, the effect of the PFC core was explored. In order to compare DFB and OFP, a threshold 

where all the pulse lengths produced activation in 25% of trials was calculated (Table 4.4). DFB had a 

significantly lower (p < 0.05) AUC from OFP in only a single instance (Figure 4.25Error! Reference 

source not found.). Therefore, the results suggest that DFB produces vaporization signals that are as 

strong or stronger than OFP. 
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DFB OFP 

0.01% 0.10% 1% 0.01% 0.10% 1% 

1.5 1.5 1 0.75 0.75 0.5 

Table 4.4. Vaporization Threshold (MPa) used for comparing DFB and OFP. Defined as the first 

pressure at which all pulse lengths produced activation in 25% of experiments. 

 

Figure 4.25. AUC comparison between DFB (light blue) and OFP (dark blue) for the different dilutions 

(columns) using the 25% threshold (top row). Mean Frequency results of DFB vs OFP at the 80% 

threshold for the different dilutions (bottom row). The AUC for DFB is as high or higher than OFP in 

most cases, and no clear relationship was found for the mean frequency results. Significance (p < 0.05) 

is denoted by (*). 

The thresholds described before represent the onset of activation and are appropriate for 

exploring the amplitude of the activation signals, since the pressure is the minimum that is required and 

will not affect the response unnecessarily. However, a threshold where activation is produced most of 

the time (at least 80% of trials) is more suitable for imaging and was also calculated (Table 4.5). When 

this 80% threshold was used to calculate the mean frequency, no clear relationship was found between 
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the mean frequency of DFB and OFP, except that DFB had a significantly higher (p < 0.05) mean 

frequency at the 1% dilution for all cycles (Figure 4.25). 

DFB OFP 

0.01% 0.10% 1% 0.01% 0.10% 1% 

2 1.5 1 1.25 0.75 0.5 

Table 4.5. 80% vaporization threshold. 

4.3.4.2 In vivo Imaging 

The CE of the VDI images using the different filters is shown in Figure 4.26. The 1.5 MHz 

filter was chosen even though its CE was not significant from the 2 MHz filter for either DFB or OFP, 

because its CE was significantly higher from the 1 MHz filter for OFP and has the highest average CE. 

 

Figure 4.26. CE of in vivo data using different filters for both DFB (left) and OFP (right). Significance 

(p < 0.05) is denoted by the black bars, and the (*) represents significance from all other filters. The 

1.5 MHz has the highest mean CE and was chosen to filter the rest of the data. 

Figure 4.27 shows example images of VDI filtered with the 1.5 MHz filter, and Figure 4.28 

shows example CI images. The CE analysis shows that VDI has significantly higher values from CI for 

all DFB pressures and the three highest OFP pressures (Figure 4.29). 
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Figure 4.27. Example in vivo VDI images from DFB (top panel) and OFP (bottom panel). The baseline 

images are shown on the top row of each panel for each of the different pressures (columns), and the 

activation images are shown on the bottom row. The scale bars represent 2 mm. 

 

Figure 4.28. Example in vivo CI images of DFB (top row) and OFP (bottom row) before PCCA injection 

(left-most column) and at each activation pressure (column). The scale bars represent 2 mm. 
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Figure 4.29. CE of VDI vs CI images for DFB (left) and OFP (right). VDI is significant (p < 0.05) from 

CI for all cases except for OFP at 0.75 MPa, denoted by (-). 

4.3.4.3 Activation at Depth 

Figure 4.30 shows example images of VDI and CI of the two microtubes in the tissue-mimicking 

phantom. Similar to the in vivo imaging, the CE is significantly higher for VDI over CI (Figure 16). 

These results are expected and confirm the hypothesis that VDI has better depth of penetration, since 

the vaporization signals have a low frequency, and produces higher CE values. 

 

Figure 4.30. CE of VDI (left panel) and CI (right panel) images of activation at depth in the 2 and 3 cm 

tubes before (left column) and after (right column) the introduction of droplets. The scale bars represent 

3mm. 
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Figure 4.31. CE of VDI (light blue) and CI (dark blue) images from droplet activation in the microtubes 

at 2 and 3 cm. 

4.4 Discussion 

4.4.1 Development of Pulse Sequences for the Use of PCCAs 

One unexpected aspect of the wash-out curves captured in this study (Figure 4.13) is the 

appearance of two distinct phases. In the first phase, typically occurring in the first second following 

the vaporization sequence, the contrast within the ROI increases until it reaches a maximal value within 

1 to 2 dB of the initial value. This increase may be partly due to contrast spreading from the spatial 

location of the peak pressures into neighboring regions. It may also be a result of bubble growth shortly 

after vaporization due to intake of ambient gases dissolved in the bloodstream [101,128,129,202]. In 

the second phase, the contrast decays exponentially as it washes out of the imaging plane and into the 

rest of the bloodstream. The mechanisms that create this two-phase behavior require further 

investigation. 

The exponential decay portion of these contrast curves affords a unique possibility to measure 

a wash-out rate of the vascular network in the imaging plane. Because contrast can be generated ‘on-
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demand’ with PCCAs and monitored in real-time, the clearance rate can be captured and used as an 

indication of perfusion. This is similar in concept to the destruction-replenishment curves gathered in 

microbubble-enhanced ultrasound that have been utilized to measure tissue perfusion [203,204]. In 

destruction-replenishment, pressures near the current upper limit of diagnostic ultrasound are used to 

destroy the microbubbles in the imaging plane, followed by lower imaging pressures to capture contrast 

reperfusion. Conversely, with a PCCA sequence, high pressures are used to generate contrast in the 

imaging plane rather than destroy it, and lower pressures used to capture wash-out rather than 

reperfusion.   

Although the wash-out characteristics here were captured after a single activation sequence 

spanning the entire region of interest and with similar droplet size distributions, there are many 

implementations that could be explored in future studies. Beyond measuring differences in perfusion 

as a function of droplet size, one could create sparse pockets (i.e. from single pulses) at desired locations 

and measure the dissipation as an indication of the underlying vasculature. This differs fundamentally 

from MCA DCE-US, where microbubbles in the entire imaging volume are destroyed and the 

measurement depends on the re-perfusion from all neighboring vascularized tissue. It may be much 

simpler to apply PCCA wash-out measurements to 3D imaging than destruction-replenishment, since 

a single bolus could be created in the center of the volume of interest and then be tracked as it dissipates. 

In larger vessels, PCCAs could be vaporized upstream using electronic steering and the microbubble 

bolus tracked as it passes a target site - allowing measurement of both flow velocity and flow dynamics. 

This may be a very desirable approach to theranostic applications, such as targeted clot break-up, where 

a site is evaluated using PCCA perfusion and then treated.  

The results demonstrate that PCCAs generally have longer circulation properties than 

microbubbles Figure 4.15. Even the most volatile PCCA explored in literature to date - OFP droplets 

(PFC boiling point of -36.7°C) - exhibited a virtually identical clearance rate to microbubbles, while 

DFB droplets had more than three times the measured contrast half-life that microbubbles exhibited. 
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This study also demonstrates that PCCAs at relatively similar doses can produce similar contrast 

properties as clinical microbubble formulations, which matches previous studies exploring the acoustic 

properties of bubbles produced from PCCAs [205]. 

The performance of the two different PCCA formulations was compared with set imaging and 

activation parameters in order to evaluate relative differences when the same acoustic settings are 

chosen. In reality, the pulse sequence should be designed around formulation and intended use 

(therapeutic vs. diagnostic) of the PCCA. Some of these considerations are highlighted in a recently 

published investigation performed in parallel to this one [206]. Here, the acoustic choices resulted in 

over-activation and unintended vaporization during imaging for OFP droplets, and under-activation of 

DFB droplets as a result of the drastic differences in droplet boiling point. Because of elevational 

focusing from the transducer used, the peak negative pressures varied highly with depth. This resulted 

in activation pulses that were lower than the regulatory limits (MI = 1.9) as well as some that exceeded 

these limits, highlighting the need for optimized activation parameters. It is evident from the images 

both in vitro (Figure 4.11) and in vivo (Figure 4.12) that activation of DFB and OFP can be 

accomplished at PNPs below these limits – as contrast is produced at superficial locations where the 

measured pressures do not exceed these limits. This is consistent with previous in vitro studies showing 

that DFB droplets can be activated optimally with short pulses that do not exceed MI = 1.9 [130].  

4.4.2 Optimization of Activation Parameters 

Activation Pressure Matching, the method described in this study, relies on using PWM to 

regulate the output pressure so that all activation locations are insonified with the same amount of 

pressure. The use of this approach allows for efficient droplet vaporization and the generation of 

uniform contrast in a region of interest without delivery of excessive pressure. In addition to modulating 

the output pressure for different depths, optimal spacing between activation points can be found in order 

to consistently vaporize droplets in the target. APM can be applied in vivo by using an appropriate 

attenuation model. In this study a rat kidney model was used to demonstrate that by modulating the 
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initial output pressure, uniform vaporization is achieved in the tissue after attenuation compensation 

Figure 4.19. When APM was used to activate OFP and DFB droplets over time, it was found that the 

circulation time of both compounds was much longer than indicated by previous experiments that used 

un-optimized activation parameters because higher amounts of detectable contrast are generated Figure 

4.20.  

This experiment presented a new method for activating droplets that can be a valuable tool for 

PCCA applications for the treatment and assessment of disease. For example, if droplets are targeted 

to a disease marker, as in USMI, it is imperative that the vaporization pressure is consistent throughout 

the tissue since variations in activation pressure will cause spatial inhomogeneities in vaporization. This 

is an issue because it would be challenging to determine if differences in contrast are a result of 

inconsistent pressures or different levels of targeting throughout the tissue.  

Inconsistent activation pressure would also be a problem for a perfusion imaging approach 

using PCCAs. Instead of measuring the wash-in of contrast into an imaging plane, as is done in 

microbubble destruction reperfusion techniques, the contrast generated by droplet activation can be 

monitored as it washes out of the imaging plane to obtain a measure of perfusion. Because droplets 

provide excellent temporal and spatial control of contrast generation, different regions of a target can 

be activated at different times in order to see any differences in perfusion in different tissues. A previous 

study found that the perfusion rate in kidneys depends on the concentration of microbubbles that is used 

[58]. Therefore, if different vaporization pressures are used, the perfusion rates might be different due 

to a disparity in droplet activation and not due to any physiological factors.  

Additionally, when investigating bio-effects caused by droplet vaporization, it is essential to 

produce uniform vaporization in order to reliably correlate droplet vaporization with therapeutic effects 

or tissue damage. Also, it is reasonable to assume that limiting the amount of energy delivered into the 

tissue to the minimum needed to achieve the desired result will induce the least amount of bioeffects.  
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These needs suggest that APM will be a desirable tool in not only imaging but also therapeutic 

applications. 

APM can vaporize droplets efficiently to produce uniform contrast generation in rat kidneys. However, 

APM does not take into account phenomena such as aberration which is a significant factor in human 

ultrasound imaging. As a result of aberration, pulses become de-focused by changes in density and 

speed of sound between different tissues. De-focusing of activation pulses can result in uneven 

vaporization of PCCAs and may require the tissue to be insonified with increased energy to overcome 

the loss of pressure due to weaker focusing. Therefore, a simple attenuation model may not be 

appropriate for use in humans where the volume of tissue that is interrogated is much larger than in a 

rat or mouse. Interestingly, using droplets for aberration correction has been proposed [94], so it is 

possible that preliminary pulses can be delivered to form microbubbles and monitor vaporization 

differences in order to evaluate aberration effects and further calibrate APM for efficient activation. 

Additionally, APM depends heavily on using the correct attenuation model and therefore, a different 

derating scheme must be used for each type of tissue (various types of tumors and body organs) in order 

to efficiently obtain uniform droplet activation. 

APM is a novel approach to PCCA activation that has various advantages over using 

unoptimized activation parameters; mainly, the ability to deliver the same amount of pressure to all 

activation sites in order to minimize the energy that is delivered and produce uniform activation 

throughout the target. Furthermore, APM can serve as an important tool for the accurate assessment of 

disease progression and response to therapy. 

4.4.3 Vaporization Detection Imaging 

The in vitro examination of the vaporization signals showed that even though pulses with 3 and 

5 cycles were more efficient at vaporizing DFB and OFP droplets, the signal produced by the 1 cycle 

pulses was equally as strong (Figure 4.23). Furthermore, using longer pulses produces signals with 

higher mean frequencies (Figure 4.24), suggesting that the pulse may be interacting with the 
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microbubbles that are being created. The interaction of the high-pressure activation pulses with 

microbubbles might generate cavitation and lead to unwanted bioeffects. Additionally, using long 

pulses for vaporization might introduce error to the image reconstruction of VDI, since the onset of 

vaporization can occur at different parts of the pulse, depending on pressure (Figure 4.21). The 

reconstruction regions for each activation location should be positioned around the maximum amplitude 

of the signal, but this point may be at different depths depending on which cycle of the pulse triggers 

vaporization, so individual reconstruction regions may not be centered with the maximum of the 

vaporization signals. Therefore, short pulses should be used for making images from PCCA 

vaporization signals. 

Interestingly, it was found that DFB produced similar or higher AUC values than OFP when 

compared at the 25% threshold (Figure 4.25). This contradicts the findings of a previous study, which 

showed that OFP produces significantly higher signals than DFB [137]. A possible explanation is that 

Sheeran et al. used the same vaporization pressures for both types of agents, even though OFP is much 

more volatile, so more OFP droplets may have been activated than DFB when the same pressure was 

used. It is expected for OFP to produce higher amplitude signals because of its higher volatility [137]. 

However, in this work, DFB, which requires higher pressures for activation than OFP, has higher AUC 

values, especially at the 0.1% dilution, suggesting that the amplitude of the activation pulses may have 

an effect on the amplitude of the vaporization signal. 

Surprisingly, there was no apparent relationship in the mean frequency between DFB and OFP, 

except that DFB has a higher value at the 1% dilution. The two PFCs behave differently at the same 

temperature because of their difference in volatility, so it might be expected that one type of PCCAs 

would consistently have a higher or lower frequency, but this is not the case here. Further investigation 

is required to determine whether or not there is a difference in the frequency of vaporization signals of 

OFP and DFB droplets.  
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In vivo results show that VDI produces significantly higher CE than CI for all DFB pressures 

and all OFP pressures except 0.75 MPa (Figure 4.29). Specifically, CI for DFB has a very small CE 

value at 3 MPa, while VDI has a value that is more than an order of magnitude higher, suggesting that 

VDI may be able to detect signals from a small number of droplets that are undetectable using CI. This 

is not the case, however, with OFP at 0.75 MPa, where the CE is not significant between VDI and CI. 

As previously discussed, the amplitude of the vaporization pulses may affect the amplitude of the 

activation signals, so a possible explanation is that the vaporization signal is weak due to the small 

amplitude of the activation pulse.  

The pressures used for OFP vaporization are much lower than those used for DFB so the OFP 

baseline should contain less tissue signal. Therefore, the CE for OFP should theoretically be higher. 

However, the intensity obtained from the baseline and vaporization images of VDI is almost 2 orders 

of magnitude larger for DFB, and the maximum CE is similar. This difference in intensity is much more 

drastic than the difference in AUC from the in vitro experiment. In vivo, the difference in activation 

pressures was much larger than in vitro, so the large difference in intensity between DFB and OFP 

supports the hypothesis that the amplitude of the activation pulses affects the amplitude of vaporization 

signals. Since DFB and OFP have different acoustic vaporization thresholds, it is difficult to test this 

theory, so a protocol involving thermal activation [131,135] may be more appropriate. However, there 

is evidence that temperature plays a large role in microbubble behavior and response to ultrasound 

[207,208], so differences in activation may be caused by the ambient temperature and not the 

composition of the droplet core. 

One of the main limitations of this work is the inability to objectively compare DFB and OFP, 

as mentioned previously, because of differences in the acoustic vaporization threshold. Since different 

pressures were used to activate either OFP or DFB, it is unclear if the amplitude of the vaporization 

signals is only a product of the core and shell composition. Even though 1 MPa was used to activate 

both OFP and DFB in vitro, it is difficult to determine if the comparison is valid, since this pressure is 
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hardly enough to activate DFB. Furthermore, the L11-5 was used to enable the comparison of VDI and 

CI but using a transducer with a more appropriate bandwidth may provide better results. Additionally, 

the L11-5 has a lens that focuses the beam elevationally at around 1.25 cm, so the output pressure is 

greatly reduced for deeper regions. Therefore, a more suitable transducer could allow exploration of 

droplet activation at depths of 5 cm or more.  Droplet activation at depth could be explored at depths 

of 5 cm or more with a more suitable transducer. 

The conventional imaging technique used here was pulse inversion, which involves capturing 

the second harmonic components of the bubbles produced by PCCA activation. However, using other 

techniques such as CPS, which has been shown to be more sensitive to MCAs than pulse inversion 

[43], might make the difference in CE between conventional imaging and VDI smaller. Furthermore, 

contrast imaging techniques such as subharmonic imaging, which captures the frequency components 

at half of the excitation frequency, might allow for higher depth of penetration due to the lower 

frequency [209–212], and might be better for imaging deep targets than pulse inversion. 

We have demonstrated that a single ultrasound transducer can be used to capture the 

vaporization signals of low boiling-point PCCAs and make images that have significantly higher CE 

values than traditional methods. Because droplet activation signals have characteristic frequencies 

below 1 MHz, they provide better depth of penetration, but the resolution is poor. Therefore, with the 

current approach, VDI cannot be used to produce high resolution vascular maps as with Acoustic 

Angiography [69,186]. However, because VDI has a very high sensitivity to PCCAs, it could be used 

in applications that do not require high spatial resolution, such as molecular imaging, where being able 

to detect small changes in biomarker expression is desirable. 

4.5 Conclusions 

In work, it was demonstrated that custom imaging and activation sequences can be developed 

to produce and capture contrast from perfluorocarbon phase-change contrast agents in vivo. Moreover, 

the bubbles produced by these pulse sequences can circulate much longer than MCAs in vivo, 
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depending on the formulation, and have similar levels of contrast generation. Furthermore, it was shown 

that activation pressure matching can be used to produce uniform activation of PCCAs in vitro and in 

vivo and extend the time for which PCCAs can generate usable contrast. Lastly, a new technique for 

imaging PCCAs was developed, which is highly sensitive to droplets and can produce significantly 

higher contrast-to-tissue ratios than the conventional image-activate-image pulse sequences. 
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CHAPTER 5                                                                                                                        

THE EFFECT OF HYDROSTATIC PRESSURE, BOUNDARY CONSTRAINTS, 

AND VISCOSITY ON THE VAPORIZATION THRESHOLD OF LOW BOILING-

POINT PHASE-CHANGE CONTRAST AGENTS6 

 

5.1 Introduction 

Low boiling-point PCCAs have been proposed for diagnostic applications such as molecular 

and perfusion imaging [126,127], and the feasibility of using them for diagnosis in vivo has been 

demonstrated [127,143,196]. However, activation thresholds using clinical frequencies (< 10 MHz) in 

vivo have been reported to be higher than in vitro [127,196]. In this work, hydrostatic pressure, 

viscosity, and boundary constraints imposed by vessel walls are explored as possible contributors to 

this discrepancy. 

It has been shown that hydrostatic pressure affects the response of microbubbles so that 

subharmonic content can be used to estimate microvascular and interstitial fluid pressure in a technique 

called SHAPE [213,214]. Additionally, the Borden group has performed extensive work on the 

characterization of droplet condensation and vaporization using changes in temperature [131,215,216]. 

                                                      
6 Copyright © 2018  Word Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. Reprinted, with 

permission, from JD Rojas, MA Borden, PA Dayton, “Effect of Hydrostatic Pressure, Boundary Constraints, and Viscosity 

on the Vaporization Threshold of Low Boiling-Point Phase-Change Contrast Agents”, Ultrasound in Med. & Biol, 2018. In 

Review. 
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Pressure is also a parameter in the governing equations for superheat stability, which suggests that 

hydrostatic pressure may influence the vaporization threshold of PCCAs.  

The effect of boundary constraints on microbubble oscillations has been explored in tubes and 

chambers with rigid boundaries [217–219] and compliant microvessels [220], and the results from these 

studies show that the response of the microbubbles is dampened when near or at a boundary. 

Furthermore, Caskey et al. showed that expansion of microbubbles resulting from an ultrasound pulse 

is reduced with decreasing tube diameter even in tubes that are an order of magnitude larger than the 

initial bubble diameter [217].  This result suggest that boundaries affect the response of the oscillating 

bubble even if the bubble does not come in contact with the wall, probably due to the increased 

resistance displacing fluid in a small diameter tube. When low-boiling point PCCAs are activated, the 

sudden transition of the core from liquid to gas causes the agent to over-expand past, and oscillate down 

to, its final diameter in an event that takes less than 10 µs and produces a unique acoustic signal 

[137,215] and thus, the activation threshold might be affected if the vessel walls reduce the over-

expansion of the droplet.  

Many studies have modeled the effect of viscosity on microbubble response and suggested that 

a more viscous surrounding media dampens bubble oscillations [221–223]. More recently, work 

involving contemporary contrast agents has experimentally shown that viscosities close to that of blood 

reduce oscillation amplitude and fragmentation [224,225]. Furthermore, the threshold for inertial 

cavitation was increased, and the harmonic content was reduced and exhibited non-linear resonance 

characteristics [226]. Increased viscosity dampens microbubble response, so it may play a role on the 

vaporization threshold of PCCAs. 

In this study, the hypotheses that hydrostatic pressure, boundary constraints, and viscosity 

increase the threshold for PCCA activation were tested using microtubes with sizes down to 12.5 µm, 

and a pressurized chamber. Using different activation measurement techniques, we demonstrate that 

the activation threshold increases when droplets are vaporized in conditions simulating vasculature, 
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namely the boundary constraints and increased viscosity in-vivo. Furthermore, we confirm that the in 

vitro results translate to in vivo imaging in a rat kidney. 

5.2 Materials and Methods 

The in vitro components of the study consisted of 3 parts: the effect of boundary constraints 

(1), hydrostatic pressure (2), and viscosity (3) on the threshold for droplet activation. In all parts, 

droplets were vaporized using a range of pressures and the level of activation was measured to find the 

pressure threshold required for activation. In part 1, levels of activation were measured in tubes of 

different diameters using ultrasound (US) imaging, optical microscopy, and detection of the 

vaporization signal produced by droplet activation. In part 2, activation inside of a chamber was 

measured using US imaging only while the chamber was pressurized with pressures ranging between 

0 (no added pressure) and 17.24 kPa. For part 3, droplets in a microtube were vaporized when mixed 

with phosphate-buffered saline (PBS), viscosity of 1 cP, and a blood-mimicking fluid with a viscosity 

of 5.4 cP. Activation was measured using ultrasound imaging.  

In each experiment, droplets were introduced into the tube or chamber, and activation 

measurements were taken after droplets were interrogated with pulses having peak negative pressures 

(PNP) between 1 and 4 MPa were delivered. New droplets were introduced between US exposures with 

flow to wash away the bubbles produced by activation and replenish the activation area. The delivered 

pressure (peak rarefactional) started at 1 MPa and was increased by 500 kPa steps after each activation, 

and the whole process was repeated for a total of 3 trials. All in vitro experiments were performed in a 

temperature-controlled water bath at 37°C. The final component of the study consisted of using US 

imaging to find the activation threshold of droplets in vivo. 

5.2.1 Phase-Change Contrast Agent Fabrication 

The phase-change contrast agents were made using established procedures [129,192] where 

conventional lipid-shelled microbubbles with a perfluorocarbon gas core were cooled to temperatures 

between -10°C and -12°C and pressurized with room air until the gas core condensed into a liquid. The 
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precursor microbubbles consisted of a decafluorobutane (DFB) core and a shell consisting of the 

following formulation: the lipids 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-

distearoyl-sn-glycerol-3-phosphoethanolamine-N-methoxy(polyethylene-glycol)-2000 (DSPE-

PEG2000) in a 9:1 M ratio and a total lipid concentration of 1.0 mg/mL were dissolved in a solution of 

PBS, propylene glycol, and glycerol (16:3:1). Precursor microbubbles were produced by adding 1.5 

mL of the lipid solution into a 3 mL vial, gas-exchanging the head space with DFB, and rapidly agitating 

the vial. Before condensation, an additional step was taken to remove outliers from the bubble 

population using a decantation method similar to that used in other work [143,227]. Briefly, bubbles 

were allowed to separate for 10 minutes so that 2 separate layers emerged and the infranatant was taken 

and used. This size-selection process eliminates outliers in the distribution that can throw off bulk 

activation threshold measurements. The final droplet size is between 100 and 400 nm. 

5.2.2 Microtubes 

A range of tubes of varying diameters were tested to explore the effect of a boundary on droplet 

activation. Three tubes of identical wall material and similar wall thickness were utilized, as well as a 

fourth very small tube, which unfortunately was made of a different material with walls that were 

approximately twice as thick.  Three tubes consisted of fluorinated ethylene propylene (FEP), with 

lumen sizes of 50, 108, and 160 µm, and wall thicknesses of 8.5, 8.5, and 10 µm, respectively 

(Paradigm, Incom Inc, Charlton, MA, USA).   The fourth tube, which was a different material the others 

but provided the smallest available lumen, was an acrylic tube with a 12.5 lumen and 18.75 µm wall 

thickness (Paradigm, Incom Inc, Charlton, MA, USA). For all experiments where tubes were used, a 

diluted solution consisting of 1-part stock droplet suspension (5.0 x 1010 ± 4.5 x 109 #/mL) and 10 parts 

PBS was manually pumped through the tubes.  

5.2.3 Pressurized Chamber 

The chamber used for this experiment was a Slide-A-Lyzer 3.5K Dialysis Cassette 

(ThermoFisher Scientific, Waltham, MA, USA), because air or fluids could be easily injected into this 
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cassette, and prior tests have demonstrated the cassette wall membranes are acoustically translucent at 

the parameters tested (data not shown). The chamber was filled with a droplet solution with the same 

concentration used for the microtube experiments (5.0 x 1010 ± 4.5 x 109 #/mL), and air was used to 

increase the hydrostatic pressure inside of the chamber. A syringe was used to inject air into port 1 of 

the chamber (Figure 5.1), and the hydrostatic pressure was monitored using redundant gauges at both 

port 1 and 2. The solution of droplets was refreshed between activations by injecting 1 mL of fresh 

solution using ports 3 and 4. The hydrostatic pressures used were 0, 3.45, 6.89, and 17.24 kPa. A 

maximum hydrostatic pressure of 17.24 kPa was chosen because it corresponds to a normal systolic 

pressure (129 mmHg). 

 

Figure 5.1. Schematic of the pressurized chamber system used for part 2 of the in vitro experiments; 

testing the effect of hydrostatic pressure on droplet activation. In the configuration shown in this figure, 

all ports are closed (marked with the red X’s) except for port 1, which is being used to pump in air, so 

the chamber is being pressurized. 

5.2.4 Blood-Mimicking Fluid 

The 160 µm tube was used for the viscosity experiment. The same droplet concentration was 

used as described in the previous two sections, but the droplets were mixed with PBS (1 cP) or a blood-

mimicking fluid (5.4 cP) which consisted of 56% (w/w) glycerol, and 1.3% (w/w) sodium chloride in 

PBS [228]. This fluid has the same viscosity as blood [229,230]. 
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5.2.5 Phase-Change Contrast Agent Activation 

All activation was performed using a 128-element ATL L11-5 linear array driven by a 

Verasonics V1 Research Ultrasound System (Verasonics, Kirkland, WA, USA). Activation pulses 

consisted of 5 MHz, 5 cycle, sinusoid focused at a depth of 1.3 cm (f-number of 0.4). The transducer 

was calibrated using a needle hydrophone (HNA-0400, Onda, Sunnyvale, CA, USA). 

5.2.6 Measurement of Activation- Ultrasound Imaging  

Ultrasound was used to monitor the level of activation by imaging the microbubbles that were 

created by the vaporization pulses. A pulse inversion scheme was used to capture bubble signal and 

reduce the signal from the tubes. Pulse inversion consists of delivering two consecutive pulses that are 

180° out of phase and adding the radiofrequency signal received from each pulse in order to cancel the 

fundamental component of tissue signal and only keep the second harmonic content of microbubbles 

[42]. Here, we delivered the duo of pulses at 3 different angles (-18°, 0°, 18°) and an image was 

produced by the compounding of all the angles. The pulses were 4.5 MHz, 1 cycle, sinusoids with a 

mechanical index (MI, given by the PNP in MPa, derated by 0.3 dB/cm/MHz, divided by the square 

root of the frequency in MHz) of 0.17 at 1.3 cm. One image was captured before and after the 

vaporization pulse(s) was delivered. For experiments where the activation measurement method was 

US imaging, 5 activation pulses that were separated laterally by 1.5 mm and temporally by 150 µs were 

delivered in a line at a depth of 1.3 cm (Figure 5.2a). This was done to increase the level of activation 

signal in order to distinguish small differences in vaporization. 1.5 mm was chosen as the spacing 

between the activation pulses because it’s large enough (30 dB beam separation) so that pulses didn’t 

interact with the contrast created by the previous pulse. 

5.2.7 Measurement of Activation- Optical Microscopy 

An inverted microscope (Olympus IX71, Center Valley, PA) was used to observe droplet 

activation in each of the microtubes for the full range of vaporization pressures. The microtubes were 

positioned in the optical focus of the microscope, and droplets that were manually pumped through 
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were activated using the L11-5, which was aligned with the optical focus using the same needle 

hydrophone that was used for calibration. The 100x (NA = 1.0) water immersion objective was 

interfaced with a high-speed camera (FastCam SA1.1, Photron USA, Inc., San Diego, CA) to capture 

images before and after the delivery of the activation pulse at a rate of 125 frames per second. A 

framerate of millions of Hertz is required to capture the vaporization event, so the bubbles are evaluated 

once they have reached their final size. The activation event Droplet activation was confirmed using 

US imaging. 

5.2.8 Measurement of Activation- Vaporization signal detection 

When droplets are activated they over-expand and oscillate down to their final size, producing 

a very unique acoustic signature. The frequency content of this signal has been reported to range 

between a few hundred kHz and around 2 MHz, regardless of the vaporization pulse frequency [137]. 

Detecting vaporization of small numbers of droplets, as is the case in microtubes with small diameters 

(< 100 µm), may be difficult. However, droplet vaporization signals are larger than those resulting from 

microbubble excitation at vaporization pressures [137], and therefore, listening for these signals might 

be the most sensitive method for detecting activation. Here, a piston transducer with a center frequency 

of 1 MHz (Olympus Panametrics V314, Center Valley, PA) was used to receive the acoustic signature 

from droplets vaporized in the different microtubes, which were activated using the L11-5. First, the 

piston and the L11-5 were aligned using the needle hydrophone. For alignment of the piston, the 

transducer was driven with a 1 cycle sinusoid that was produced by an arbitrary function generator 

(AFG3021C, Tektronix, Inc., Beaverton, OR) and amplified by a 60 dB RF amplifier (A500, ENI, 

Rochester, NY). Once the transducers were aligned, the piston was connected to an RF receiver 

amplifier (BR-640A, RITEC, Inc., Warwick, RI, USA) set to pass signals above 50 kHz with a gain of 

28 dB. The amplified signal from the piston were digitized at a sampling rate of 100 MHz (PDA14, 

Signatec, IL, USA) and captured with LabView (National Instruments, Austin, TX, USA) for offline 

analysis. Next, the microtube was aligned with the transducers by transmitting with the L11-5 and 
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moving the tube until the received signal from the piston was maximized. Before droplets were 

activated, the tubes were filled with water to obtain a baseline for each pressure. 

5.2.9 In Vivo Droplet Activation 

Droplet activation was performed in the right kidneys of 4 Fischer rats and vaporization was 

measured using the ultrasound imaging approach discussed above, following animal protocols 

approved by the University of North Carolina Institutional Animal Care and Use Committee. The 

animals were anesthetized using 2.5 % isoflurane and the right abdominal region was cleared of fur 

using an electric razor and chemical hair remover. The transducer was coupled to the skin using water-

based ultrasound gel, and the droplets were administered through a 24-gauge catheter inserted into the 

tail vein. A continuous infusion of equal parts droplets-sterile saline (2.5x1010 #/mL) at a rate of 30 

µL/min was used. The droplets were allowed to circulate for 2 minutes before the first activation to 

allow the concentration to reach a steady state in the vasculature. As in the in vitro experiments, 

Activation Pressure Matching (APM) was used to deliver the same pressure to a series of vaporization 

locations to create a region of uniform activation inside the kidney [196].  The pulses were separated 

by 0.5 and 0.75 mm laterally and axially, respectively, and were delivered at a pulse repetition 

frequency of 6.67 kHz. APM accounts for tissue attenuation and modulates the transducer output so 

that every pulse has approximately the same pressure regardless of depth. For each animal, a range of 

pressures from 2.5 and 4.5 MPa was used and a contrast image was captured before and after the 

vaporization sequence (Figure 5.2b).  
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Figure 5.2. Example of activation scheme for US imaging measurement of activation in the 50 µm 

microtube (row a) and in a rat kidney (row b). The images on the left column show an example PI 

image of the kidney before vaporization, which was used for CE computations, and the images on the 

right column shown the contrast produced by the activation pulses represented in the center column by 

green squares. For the microtubes, 5 pulses were delivered at a depth of 1.3 cm. For activation in the 

kidney, a varying number of pulses were delivered to produce an area of uniform activation. 

5.2.10 Data Analysis 

All analysis was performed using custom MATLAB (The MathWorks, Natick, MA, USA) 

scripts. From the US imaging data, the contrast enhancement (CE) was found; CE was calculated by 

drawing a region of interest (ROI) around the activation locations and dividing the mean intensity inside 

the ROI of the post-activation frame by that of the pre-activation frame and turning the result into dB 

using the equation dB=20log10(x).  

The microscope data was viewed using ImageJ [174] software and the number of activate 

droplets was counted manually. The frames captured before vaporization were used to eliminate 

droplets or bubbles that were already present from the total count. 

For the droplet activation detection technique, the frequency content of the received signals 

was explored rather than the amplitude. A fast Fourier transform was calculated for each receive line, 

and the result from the baseline measurements was subtracted from that of the droplet transforms. In 

order to quantify the results, the area under the curve (AUC) was found by integration using trapezoidal 

approximation (Figure 5.3). Frequency components around the transmit frequency, 5 ± 1.5 MHz, were 
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assumed to originate from the tubes, or from the excitation of microbubbles created by droplet 

vaporization, and thus were excluded from the analysis. 

 

Figure 5.3. Example fast Fourier transform of the received signal from the 1 MHz piston transducer (a). 

The plot on the right shows the baseline-subtracted frequency spectrum and the AUC (b). 

The activation threshold was found using each of the activation metrics (CE, number of 

bubbles, AUC) for the various microtubes, and was set as the first pressure at which the metric became 

higher than 10% of its maximum. The thresholds for the 3 different trials were averaged to find one 

threshold for each tube. 

5.2.11 Statistical Analysis 

Kruskal-Wallis analysis was performed for the vaporization threshold values of each tube 

found by each of the activation measurement metrics in order to determine if there was a significant 

difference between any of the microtubes, and a Tukey range test was used to find significance between 

each of the tubes. The same procedure was used between the thresholds for the hydrostatic pressures 

and viscosities for part 2 and 3, respectively. 

5.3 Results 

5.3.1 Effect of Boundary Constraints on Droplet Activation Threshold 

Measurable contrast was obtained from all tubes except for the 12.5 µm tube. Figure 5.4 shows 

ultrasound images depicting the amount of activation for each tube for the pressure range of 1.5-4 MPa.  
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Figure 5.4. Post-activation images of the different tubes (columns) and pressures (rows). 

As was expected, the amount of contrast generated by the activation pulses increased with 

rarefactional pressure. The CE of each of the 3 trials for the different pressure-tube size combinations 

was calculated and the activation threshold for each microtube was found (Figure 5.5a-b). CE increased 

with pressure but surprisingly, the maximum CE was the highest for the 50 µm tube. A smaller tube 

has a smaller volume for a given length, so fewer droplets should be in the tube for that length, given 

the same concentration. Therefore, less droplets should be activated in smaller diameter tubes which 

would produce a smaller signal. The vaporization threshold was 2 MPa for all trials in the 160 µm tube, 

2, 2, and 1.5 MPa for the 108 µm tube, and 2.5 MPa for all trials in the 50 µm tube. The threshold for 
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the 50 µm was significantly higher (p < .05) from that of both the 108 and 160 µm tubes, and activation 

was not detected in the 12.5 µm tube, so the results show that the activation threshold increased once 

the tube diameter decreased below 108 µm for the tube sizes tested. 

 

Figure 5.5. Results from the 3 different techniques for measuring droplet vaporization in microtubes of 

different diameters: US imaging (a, b), optical microscopy (c, d), and droplet activation detection (e, 

f). The metrics of the 3 measurement techniques- contrast enhancement (a), number of bubbles (c), area 

under the curve (d)- increased with rarefactional pressure. The plots show the median value from the 3 

trials and the error bars correspond to the minimum and maximum values. The vaporization threshold, 

set as the lowest pressure to produce 10 % of the maximum of each metric, increased with decreasing 

tube diameter (b, d, f). Activation was not achieved in the 12.5 µm tube so the threshold is not shown. 

Vaporization was not observed using optical microscopy, even though it was detected using US, in the 

50 µm tube. 
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Microscope images of droplet activation for the different tubes over the range of pressures are 

shown in Figure 5.6. Bubbles resulting from activation were not visually observed in the 12.5 and 50 

µm tubes. US images confirmed that activation was taking place, so the experiment was repeated to 

ensure the L115 was aligned correctly to the optical focus, but the results remained unchanged. More 

bubbles were observed in the 160 µm tube than the 108 µm tube due to the larger diameter (Figure 5c-

d). The number of activated droplets increased with the delivered pressure, and the vaporization 

thresholds were 2.5, 2, and 2.5 MPa, and 2, 2.5, and 2 MPa for the 160 and 108 µm tubes, respectively. 

 

Figure 5.6. Microscope images of droplet activation. Activation was confirmed using US imaging, but 

no bubbles were observed in the 12.5 and 50 µm tubes after the activation pulses were delivered. 
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AUC measurements obtained from the vaporization signature from phase-changing droplets 

show that the activation threshold increases as the tube size decreases (Figure 5.5e-f), and no 

measurable signal was measured in the 12.5 µm tube. The activation thresholds were 2.5 MPa for all 

trials in the 50 µm tube and 1.5 MPa for all trials in the 160 µm tube, and 1.5, 1.5, and 2 MPa for the 

108 µm tube. 

5.3.2 Effect of Hydrostatic Pressure on Droplet Activation Threshold 

The results show that the contrast enhancement generated by droplet activation inside of the 

chamber increases with increasing interrogation pressure, as expected, but the activation threshold does 

not change under different hydrostatic pressures (Figure 5.7). The activation threshold was 1.5 MPa in 

all trials for all hydrostatic pressures, except for the 0 and 6.89 kPa pressures which had one trial with 

a threshold of 2 MPa. 

 

Figure 5.7. Contrast enhancement generated by droplet activation inside the pressure chamber increased 

with peak-negative pressure under different hydrostatic pressures (a). Droplet activation threshold does 

not significantly change with different hydrostatic pressures (b). The plots show the median value from 

the 3 trials and the error bars correspond to the minimum and maximum values. 

5.3.3 Effect of Viscosity on Droplet Activation Threshold 

 When the viscosity of the fluid in which droplets were activated matched that of blood, the 

activation threshold was significantly higher (p < 0.05) than when the droplets were activated in PBS 
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(Figure 5.8). The threshold was 1.5 MPa for all trials in PBS, and 1.75 MPa for all the trials in the 

blood-mimicking fluid. 

 

Figure 5.8. Contrast enhancement generated by droplet activation increased with pressure (a). The 

vaporization threshold is significantly higher for the blood-mimicking fluid (b). The plots show the 

median value from the 3 trials and the error bars correspond to the minimum and maximum values. 

Significance (p < 0.05) is represented by the asterisk. The label for the blood-mimicking fluid was 

shortened to “blood” for clarity inside figure. 

5.3.4 In Vivo Droplet Activation 

The CE inside of the kidney was measured for the range of pressures that was used (Figure 

5.9). The activation threshold was determined to be the pressure that first exceeded 10% of the 

maximum CE, and that was found to be 3.5 MPa for all trials on each of the rats. 

 

Figure 5.9. Example images of droplet vaporization in a rat kidney resulting from activation pulses of 

different pressures (top row). CE enhancement inside of the kidney for all the rats is shown on the 

bottom left, and the vaporization threshold (10% of maximum CE) is shown on the bottom right. The 

plots show the median value from the 3 trials and the error bars correspond to the minimum and 

maximum values. 
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5.4 Discussion 

5.4.1 Effect of Boundary Constraints on Droplet Activation Threshold 

Intriguingly, activation was not seen in the 50 µm tube with microscopy, even though US 

imaging confirmed vaporization. The simplest explanation is that the bubbles produced by the 

vaporization pulse are getting destroyed in the area around the optical field of view so that no bubbles 

are visible on the microscope, but the bubbles in areas away from the optical focus are not destroyed 

and can be detected by US imaging. To test this hypothesis, a 32x objective was used to observe 

vaporization in a larger region, and the resulting images show small groups of bubbles away from the 

center. This suggests that the peak pressure at the center of the US beam is destructive to the resulting 

microbubbles, but it decreases laterally until it no longer destroys bubbles (Figure 5.10). This 

phenomenon only occurred in the 50 µm tube so the size tube must play a role. One possible explanation 

is that the presence of a boundary induced non-spherical oscillations on the produced microbubbles, 

which greatly contribute to cavitation and fragmentation [231–234]. Non-spherical oscillations may 

also occur away from the focus but may not be destructive since bubbles are visible away from the 

center of the field of view (Figure 5.10). Sheeran et al. showed that the probability of vaporization 

increases with pulse length, and that longer pulses can lead to bubble fragmentation and coalescence 

during the later cycles of the pulse [130]. Therefore, it is possible that droplets were activated with the 

first few cycles of the vaporization pulse, and the resulting bubbles were destroyed by the last few 

cycles due to non-spherical oscillations caused by the presence of a boundary. Droplets were activated 

in the 50 µm tube using pulses with 1 and 2 cycles instead of 5 in a follow-up experiment, and 

vaporization can be seen throughout the field of view (Figure 5.10), suggesting that activation is 

occurring within the first couple of cycles. In is worth noting that using 1 or 2 cycles is less efficient at 

vaporizing droplets so the optimal pulse length for activation, without destruction of the produced 

bubbles, might be 3 or 4 cycles. Also, the 1 cycle pulse refers to the signal used to excite the transducer, 

but the actual pressure wave has 1.5 cycles due to transducer ring-down.  
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Figure 5.10. Example microscope image of droplet activation in 50 µm tube at 32X magnification. 

Bubbles are present on either side of the center of the tube (yellow arrows) when 5 cycles are used for 

vaporization (bottom). Activation is present throughout the field of view when 1 cycle (top) and 2 

cycles (middle) are used for vaporization, as marked by the black arrows. 

The biggest question brought up by the results is whether the measuring techniques employed 

were not sensitive enough to detect vaporization in the 12.5 µm tube, or if it was not possible to activate 

droplets in a tube that small. To answer this, the number of droplets in the 12.5 µm tube was calculated, 

and that number of droplets was used for vaporization in an acrylic 105/140 µm (inner/outer dimeter) 

and an FEP (320/360) µm microtubes. The acrylic tube was chosen to match the material and thickness 

of the 12.5 µm, and the FEP tube was chosen to match the thickness and to explore the role of material 

on droplet activation since acrylic, 6.4 dB/cm @ 5 MHz [235],  is more attenuating than FEP, 3.9 dB/cm 

@ 5MHz [236]. The difference in the number of droplets between different tubes for any given length, 
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assuming equal concentration, is a factor of the tube radius squared. Therefore, to match the number of 

droplets at a 1:10 concentration in the 12.5 µm tube for a given length, droplet solutions with 

concentrations of 1:770 and 1:6500 for the 105 and 320 µm tubes, respectively, were used for 

vaporization. The droplet activation detection method was used, and the results show that vaporization 

can be detected over a range of exposure pressures (Figure 5.11), suggesting that the activation 

detection method is sensitive enough to detect vaporization of small numbers of droplets, as is the case 

in the 12.5 µm tube. Therefore, these results suggest that the pressures used for activation in this study 

are not capable of activating droplets in a 12.5 µm tube, which supports the hypothesis that vaporization 

is harder to achieve in smaller tubes due to boundary constraints. 

 

Figure 5.11. AUC measurements from the 105 µm acrylic and 320 µm FEP tubes with a concentration 

of droplets matching the number of droplets in the 12.5 µm tube. 

Having established that activation from a number of droplets equivalent to the that contained 

within a 12.5 µm tube can be detected in a much larger tube (tube diameter at least 105 µm), the results 

suggests that the activation threshold increases as the tube size decreases. From both US imaging and 

activation detection, the threshold for the 50 µm tube was significantly higher than that of the 108 µm 

and 160 µm tubes, and activation could not be achieved in the 12.5 µm tube. As the droplet is vaporized 

it over expands and displaces the fluid around it. When activation occurs in an unconstrained 

environment, or when the boundaries are far enough away, the created bubble is able to displace the 

fluid around, but the overexpansion may be dampened when the boundaries are further constrained. 
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This behavior was seen by Zheng et. al in oscillating microbubbles, where the amplitude of bubble 

oscillations was nearly twice as large in a 200 µm tube than in a 12 µm tube, and bubbles translated 

more than 5 times farther in the larger tube [237]. Therefore, even though the 50 µm tube is an order 

of magnitude larger than the diameter of the resulting microbubbles, the boundary constraints had a 

significant effect on the vaporization threshold.  

It is interesting to point out that the measurements for the dilute concentrations (1:770 and 

1:6500) produced much larger maximum AUC values than the other activation detection experiments. 

It has been reported that bubble oscillations are significantly reduced when in close proximity to other 

bubbles [218], so the 1:10 concentration of droplets used for the experiments might have been too high, 

and the resulting droplets attenuated each other’s activation signal. This has important implications for 

droplet-specific imaging techniques that have been proposed [138,139]. Furthermore, the frequency 

content of the activation signal has been reported to range between a few hundred kHz and around 2.5 

MHz, but it was measured to extend past 3 MHz in this study.  

The AUC for the FEP tube was much higher than that of the acrylic tube even though the same 

number of droplets were activated and the tube thickness was about the same, which is reasonable since 

acrylic is a harder material.  

5.4.2 Effect of Hydrostatic Pressure on Droplet Activation Threshold 

The activation threshold of droplets did not change by varying the hydrostatic pressure between 

0 and 17.24 kPa (Figure 5.7).  The body of work discussed in the introduction suggests that hydrostatic 

pressure influences the behavior of microbubbles, but the results here show that this is not the case with 

liquid droplets.  Previous work has shown that vaporization of DFB droplets occurs at a reduced 

temperature (
𝑇

𝑇𝑐
) of around 88% [132], where T is the temperature of the system and Tc is the critical 

temperature, which is the maximum temperature at which a gas be condensed by applying pressure. 
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The embryo formation flux, which is the rate at which the gas nuclei are formed, is estimated to be 

[238]: 

𝐽 = 𝜌𝐿 (
2𝜎

𝜋𝑚
)

1/2
𝑒𝑥𝑝 [

−16𝜋𝜎3

3𝑘𝑇[𝑒𝑥𝑝(
𝑃−𝑃𝑠𝑎𝑡

𝜌𝐿𝑅𝑇
)𝑃𝑠𝑎𝑡−𝑃]

2]   (5.1) 

where 𝜌𝐿 is the density of DFB in the liquid phase (1.45×103 kg/m3 at 37oC), 𝜎 is the surface tension 

of a DFB vapor embryo (6.06×10-3 N/m at 37oC), 𝑚 is the molecular mass (3.12×10-25 kg), 𝑘 is 

Boltzmann’s constant, 𝑇 is absolute temperature, 𝑃𝑠𝑎𝑡 is the saturation pressure (3.83×105 Pa at 37oC), 

𝑅 is the mass-weighted gas constant (44.2 J/kg) and 𝑃 is the pressure inside the droplet.  Using equation 

(1) and the results from Mountford [132], the critical flux for vaporization is estimated to be 𝑙𝑜𝑔10 𝐽 =

−92.6.  The corresponding acoustic PNP to achieve this flux increases from 1.64 MPa to 1.66 MPa as 

the hydrostatic pressure increases from 0 to 17.24 kPa.  Note that these values are within the range of 

values observed experimentally, but the effect of hydrostatic pressure is negligible compared to the 

experimental error. 

Kripfgans et. al first showed that bubbles created by droplet vaporization increase inside due 

to dissolved gasses in the surrounding liquid diffusing into the agent [101]. Pressurizing the chamber 

with air may have increased the amount of dissolved air into the solution, which could have led to 

bigger bubbles and higher CE values. However, a greater concentration of air in the solution would not 

affect the vaporization threshold of the droplets. 

5.4.3 Effect of Viscosity on Droplet Activation Threshold 

The results showed that viscosity increases the vaporization threshold of low-boiling point 

PCCAs (Figure 5.8). It has been shown that increased viscosity reduces fragmentation and limits 

cavitation [224,225], so it is possible that a similar mechanism can enhance the droplet’s metastability 

to homogeneous nucleation or slow the embryo formation flux required for complete vaporization of 

the core. 
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5.4.4 In Vivo Droplet Activation 

As shown in previous work, the vaporization threshold for in vivo activation of droplets was 

higher, even when attenuation was accounted for, than in vitro (Figure 5.9).  Interestingly, the activation 

threshold was much more consistent in the in vivo results rather than the more controlled in vitro setup. 

The threshold for in vitro experiments inside of the chamber without any added hydrostatic pressure or 

boundary constraints, or free conditions, and was as low as 1.5 MPa, and as high as 2.5 MPa in the 

smallest tube where vaporization was still detected. The vaporization threshold in vivo was 3.5 MPa, 

so even though boundary constraints account for some of the difference between the threshold of the 

free conditions state and in vivo, other factors not explored here must be playing a role in increasing 

the activation threshold.  

5.4.5 Limitations 

The main limitation of this work is that the increment (500 kPa) of the pressure delivered to 

activate droplets in the in vitro experiments was too large, which could confound some of the 

conclusions of this work. For example, a finer increment in pressure could have produced activation in 

the 50 µm that was detectable using optical microscopy before bubble destruction was induced by the 

pulse. The reason that such a coarse increment was chosen was that the range of pressures required to 

vaporize droplets in vivo and in vitro span between 1.5 and 4 MPa, so we expected hydrostatic pressure 

and boundary constraints to have a larger effect on the activation threshold that what was found in this 

work. A finer pressure increment may have yielded smaller differences in vaporization threshold 

between the microtubes, but the conclusion that tube size affects the threshold would not change. 

Another factor that must be discussed is the vaso-activity of the isoflurane used to anesthetize 

the animals. It has been show that that isoflurane use increases heartrate and decreases blood pressure 

[239–241], which would not affect the results in this work since it has been demonstrated that 

hydrostatic pressure does not influence PCCA vaporization threshold, but there is evidence that 

isoflurane causes vasoconstriction and vasodilation depending on the size of the vessel [242], or  part 
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of the body [243,244]. Therefore, isoflurane may play a role on the in vivo vaporization threshold since 

the vessel size (tube size in this work) has been shown to affect it, and it likely depends on the dose of 

isoflurane used and the imaging target. 

5.4.6 Implications for In Vivo Imaging 

The largest advantage of PCCAs over conventional microbubble contrast agents is that they 

can be manufactured to be small enough to extravasate (100-400 µm). In cancer, blood vessels grow 

very quickly to keep up with the demand for nutrients from the growing tumor and are often 

disorganized, immature, and “leaky”. As a result, large particles that would not be able to escape the 

vascular space in healthy tissue extravasate and accumulate in the interstitial space in what is referred 

to as the enhanced permeability and retention effect (EPR) [120,121]. Therefore, PCCAs that 

extravasate can have the potential to be used for drug delivery or extravascular diagnostic imaging.  

The extravascular environment consists of the extracellular matrix (ECM), which is mainly 

composed of connective proteins such as collagen that provide structure and support to cells [245–247], 

and the interstitial fluid, which consists of mainly proteins [248]. In cancer, the ECM is characterized 

by excess deposition of connective proteins, which make tumors stiffer than healthy tissue [245–247]. 

Increased amounts of connective tissue and cancer cells themselves might impose additional boundary 

constraints on vaporizing droplets, likely increasing the vaporization threshold as was demonstrated 

here. Although, stiffness of boundary constraints was not explored in this work, the added stiffness of 

cancerous tissues might also affect the activation threshold of droplets. As discussed above, leaky 

vasculature in cancer leads to fluid and particles leaking out of circulation, which can increase the 

interstitial fluid pressure in the tumors [177,249]. The results from this work indicate, however, that 

increased fluid pressure does not affect droplet vaporization thresholds. Lastly, the viscosity of the 

interstitial fluid may have an effect of activation threshold. It is difficult to extract interstitial fluid to 

measure its characteristics [248] so there is few studies exploring its viscosity  [250]. However, it has 

been shown that the viscosity of the interstitial fluid is similar to that of lymph [251], so an estimation 
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can be obtained. Experiments have measured the viscosity of lymph to be higher than that of plasma 

and water [250,252], so the vaporization threshold of droplets activating in the extravascular space may 

be increased, according to the results from this work. 

The data from this study suggests that boundary constraints and increased viscosity may 

influence the vaporization of droplets when used to extravascular drug delivery or diagnosis and should 

be taken into consideration when designing vaporization protocols. 

5.5 Conclusions 

This works explored the effect of boundary constraints, increased hydrostatic pressure, and 

viscosity on the vaporization threshold of sub-micron PCCAs. Using different methods to detect 

activation, it was demonstrated that the vaporization threshold increases as tube diameter decreases 

until it was no longer possible to detect vaporization, and that viscosity of the surrounding media also 

increases the activation threshold. Surprisingly, we found that increased hydrostatic pressure did not 

have any effect on the activation threshold. Finally, we showed that higher pressures are required to 

activate droplets in vivo, and that boundary constraints and viscosity account for part of this difference 

but more work is required to find all the factors that affect the vaporization threshold of droplets in the 

vasculature. 
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CHAPTER 6                                                                                                            

MOLECULAR IMAGING USING LOW BOILING-POINT PHASE-CHANGE 

CONTRAST AGENTS7 

 

6.1 Introduction 

Molecular imaging generally refers to the evaluation and quantification of cellular and 

molecular processes. For example, positron emission tomography (PET), the most commonly used 

imaging technique in oncology, can use 18F-fluorodeoxyglucose to image metabolic activity of tumors 

and assess malignancy, response to therapy, and recurrence [253–255]. Furthermore, PET can also be 

used to image angiogenesis using agents targeted to the αvß3 integrin [256,257], which plays a key role 

in tumor development [258,259]. However, as previously discussed, PET is expensive, cannot provide 

anatomical information, requires cyclotron-produced radioisotopes, and involves radiation exposure to 

the patient and hospital staff, which limits its application.  

In comparison, contrast-enhanced ultrasound (CEUS) imaging is inexpensive, portable for 

bedside diagnostics, widely available, and does not involve any ionizing radiation. Since low boiling-

point PCCAs are manufactured from MCAs, creation of targeted PCCAs can be achieved using the 

same methods already employed for conjugating targeting ligands to MCAs for USMI.  

The enhanced circulation time of PCCAs may provide more opportunities for endothelial 

binding, allowing the use of smaller contrast doses and a reduction in imaging time. Furthermore, 

PCCAs are only detectable with US after they have been converted to microbubbles, so there is no need 

                                                      
7 Copyright © 2018 by Elsevier. Parts used from JD Rojas, PA Dayton, “In-Vivo Molecular Imaging Using Low-Boiling-

Point Phase-Change Contrast Agents: A Proof of Concept Study”, Ultrasound in Med. & Biol, 2018. In Review. 
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to wait until most of the free-flowing agents are cleared from circulation; vaporization pulses can 

theoretically be delivered at any point after injection, and after the free-flowing agents wash out of the 

plane of imaging following activation, the only remaining signal should be that of bound agents. 

USMI using PCCAs has been demonstrated in vitro by targeting αvβ3 expressed by human 

umbilical vein endothelial cells, but to our knowledge, no other work has demonstrated USMI with 

droplets in vivo. In this work, the feasibility of using PCCAs as intravascular USMI agents is 

demonstrated. As a first step towards extravascular USMI, we provide proof of principle for targeting 

αvβ3 in vivo using PCCAs. 

6.2 Methods 

6.2.1 Agent Formulation 

Both MCAs and PCCAs were used in this work. Droplets were formed from prepared MCAs, 

so both agents were composed of the same lipid formulation. The lipid solution used for control 

(untargeted) agents consisted of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-

distearoyl-sn-glycerol-3-phosphoethanolamine-N-methoxy(polyethylene-glycol)-2000 (DSPE-

PEG2000) in a 9:1 molar ratio with a total lipid concentration of 1.0 mM and was dissolved in a 

solution of propylene glycol (15% v/v), and glycerol (5% v/v) in phosphate-buffered saline (PBS). The 

lipid solution for agents targeting αvβ3 integrin consisted of the same formulation as the control solution 

with a cyclic RGD peptide (Cyclo-Arg-Gly-Asp-D-Tyr-Cys) cross-linked to DSPE-MAL-

PEG2000 (0.4 mol%) replacing an equivalent portion of DSPE-PEG2000 [260]. The headspace of a 3 

mL vial containing 1.5 mL of the lipid solution was filled with OFP and, the vial was mechanically 

agitated to form microbubbles. 

6.2.2 Size Selection 

It has been shown that selecting for large bubbles greater than 1 µm significantly improves 

USMI sensitivity in vivo [260], so a size selection protocol was employed in this work. Additionally, 
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selecting larger bubbles allows the formation of droplets greater than 400 nm in diameter, which will 

prevent extravasation. Since the focus of this work is intravascular USMI, unintentional extravasation 

would confound the results. 

After agitation, the microbubbles were centrifuged inside the vial for 1 minute at 230 g, and 

the infranatant containing the smaller bubbles was replaced with 1 mL of the PBS, propylene glycol, 

and glycerol solution described in the previous section. This process was performed a total of three 

times for all agents. 

6.2.3 Condensation 

Size-selected microbubbles were condensed into droplets using methods previously described 

by Sheeran and colleagues [129]. The microbubble suspension was cooled to -10°C and pressurized 

with air until the bubbles condensed. 

6.2.4 Agent Sizing 

After the size selection process, the size distribution and concentration of the bubbles were 

measured using an Accusizer 780 (Particle Sizing Systems, Santa Barbara, CA, USA) that is capable 

of measuring particles down to 0.5 µm. Samples from five targeted and five control vials were averaged. 

After the microbubbles were condensed, the resulting droplets were sized using the Accusizer (three 

vials per group) and a NanoSight NS500 (Malvern Instruments, Westborough, MA, USA), which can 

measure particles between 20 and 2000 nm. For the NanoSight measurements, the droplets were diluted 

300-fold in HPLC-grade, 20 nm filtered water, and five 30 s videos were captured to calculate the 

average distribution and concentration for each sample. Three control and three targeted samples from 

different vials were used to find average values for each group. 

6.2.5 Tumor Model and Animal Protocols 

Fischer 344 rats (Charles River Laboratories, Morrisville, NC, USA) were implanted with 

fibrosarcoma (FSA) tissue provided by the Dewhirst lab at Duke University in the right flank using 
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protocols approved by the University of North Carolina Institutional Animal Care and Use Committee 

(IACUC). FSA was chosen because USMI has successfully been demonstrated in this model using the 

targeting strategy used in this work [260]. 

During imaging experiments, animals were anesthetized using 2.5% isoflurane and placed on 

a heated platform to conserve body temperature. The flank area was cleared of hair, and a 24G catheter 

was inserted into the tail vein for contrast agent administration. The animals were euthanized at the end 

of each imaging session using protocols approved by the UNC IACUC. 

6.2.6 Pulse Sequences 

All imaging and activation was performed using an ATL L11-5 linear array transducer 

controlled by a Verasonics Vantage ultrasound research system (Verasonics, Kirkland, WA, USA) 

using custom pulse sequences.  

The vaporization pulse sequence consisted of delivering a series of 1 cycle, 5 MHz pulses to a 

predetermined region of interest (ROI). The pulses were separated by 1.2 mm laterally and 0.72 mm 

axially and were delivered serially at a pulse repetition frequency of 6.67 kHz. Activation Pressure 

Matching (APM) was used to account for tissue attenuation and deliver activation pulses with a peak-

negative pressure of 2.5 MPa to each vaporization location regardless of depth [196]. An attenuation 

model consisting of a 1 mm layer of fat (attenuation coefficient α = 0.6 dB/MHz/cm) followed by the 

tumor tissue (α = 1 dB/MHz/cm [194]) was used for the APM calculation. 

Three different types of imaging pulse sequences were implemented: B-mode, contrast-specific 

imaging, and vaporization detection imaging (VDI). The B-mode sequence consisted of conventional 

focused imaging, where a series of focused pulses (focused at 1.3 cm) were delivered across the field 

of view (FOV), the received echoes from each pulse were used to reconstruct an A-line, and an image 

was formed by compiling all A-lines. 128 pulses were delivered by sweeping a sub-aperture (25% of 
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entire aperture) in steps equal to the element spacing and receiving echoes with the full aperture at each 

lateral location. The transmit frequency was 9 MHz, and the maximum pressure was 673.5 kPa. 

The contrast-specific pulse sequence (CSS) used here was similar to CPS (CadenceTM contrast 

pulse sequencing, Siemens Medical Solutions, Inc., Issaquah, WA, USA), an approach where a full-

amplitude pulse was followed by two half-amplitude and inverted pulses. The received echoes from the 

transmissions were summed, and the process was repeated for each A-line to form a focused CSS 

image. This approach has been found to be more sensitive to MCAs than other contrast-specific 

approaches, such as pulse inversion and amplitude modulation [41–43]. Transmit pulses consisted of 4 

MHz, 1 cycle sinusoids at a mechanical index (MI) of 0.18, where MI is defined as the peak-negative 

pressure (derated using an attenuation coefficient of 0.3 dB/MHz/cm) divided by the square root of the 

frequency. This MI was chosen because it has been shown to be non-destructive to MCAs [260]. 

VDI is a PCCA-specific imaging technique that uses the vaporization signals produced by 

droplets to make images that are highly sensitive to PCCAs and have higher CTR values than 

conventional contrast imaging [261]. The received signals from droplet activation were captured and 

filtered using a low-pass filter with a corner frequency of 1.25 MHz to reduce signal from tissue. The 

signals from individual vaporization pulses were used to reconstruct regions around the location of each 

pulse, and the different reconstruction regions were combined to form an image. 

6.2.7 Imaging Protocol 

The imaging protocol consisted of several steps, as illustrated in Figure 6.1. The B-mode 

sequence was used to locate the largest cross-section of the tumor, and an ROI was drawn to select the 

vaporization locations. Next, droplets were injected, and five baseline frames were captured at a rate of 

5 Hz using the CSS sequence. Vaporization pulses were then delivered to the activation locations, and 

a VDI image was formed from the received echoes. Lastly, post-activation frames were collected at 5 

Hz for 8 s to capture the contrast generated by droplet activation and monitor the wash-out of the 

bubbles from the FOV. Steps 2 through 4 were repeated throughout the experiment and will be referred 
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to as the droplet imaging sequence. For imaging microbubbles, the sequence will be referred to as the 

bubble imaging sequence, which consisted of capturing 5 CSS frames at a rate of 5 Hz and clearing the 

FOV from both bound and freely-flowing bubbles by increasing the imaging pressure to maximum MI 

of 1.25. 

 

Figure 6.1. Summary of imaging protocol. B-mode was used to find tumor and draw ROI, yellow dotted 

line (1). Baseline CSS Images were captured after droplet injection (2). Vaporization pulses (green 

squres) were delivered inside of the ROI (3). Post-activation VDI images (4) and CSS images of the 

produced contrast (5) were captured. The blue dotted box includes the steps that are repeated in the 

droplet imaging sequence. The scale bar represents 3 mm. 

In USMI experiments, the bubbles are typically injected and allowed to circulate for several 

minutes and bind to their targets before any imaging is performed. In this work, the agents were allowed 

to circulate for three different time periods to explore the optimal wait time for PCCAs: 3 min (short), 

6 min (moderate), 9 min (long).  

Dosing is an important parameter in USMI. A high dose enhances binding but requires long 

wait times to allow the free-flowing bubbles to be cleared from circulation, while a low dose requires 

shorter wait times but produces worse targeting. Since droplets cannot be detected with US, it is 

expected that once the droplets are activated into bubbles, the unbound bubbles will wash out of the 

FOV, and the remaining signal will contain only bound agents. Therefore, long wait times should not 

be required regardless of the dose. To test this hypothesis, two different doses of droplets were explored: 
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a low dose of 2x107 droplets and a high dose of 2x108 droplets. The dose was calculated using the 

concentration measurements of the bubbles before condensation. 

To test whether the droplets are targeting αvβ3 or passively accumulating in the tumor, both 

targeted and control droplets were injected at the high dose. Additionally, both targeted bubbles and 

targeted droplets were injected at the low dose in order to compare USMI with the different agents. 

Lastly, the wash-in of the low dose of bubbles was captured using CSS at 2 Hz for 1 minute after 

injection.  

Figure 6.2 summarizes the experimental parameters tested. A total of 13 contrast doses were 

administered to each animal. Streeter and Dayton showed that microbubbles can be administered 

repeatedly without affecting the amount of targeting with each subsequent injection [262], so we did 

not expect any bias in the results from repeated administrations of the agents. Additionally, a recent 

study demonstrated that exposure to contrast agents containing polyethylene glycol (PEG) produces an 

immune response that accelerates the clearance from circulation [263]. However, an effect was not seen 

until 2 days after the initial exposure, so we do not expect any changes in circulation between the 

different doses since all the imaging for each animal took place during the same session. 

 

Figure 6.2. Summary of all experimental trials performed in each animal. 13 injections were 

administered to each rat. 
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The droplet imaging or bubble imaging sequences were performed for each trial at the 

designated wait time, 30 s after wait time, and every 1 min until 12 min after the injection. For example, 

for a wait time of 9 min, the droplet or bubble imaging sequence would be repeated at 9, 9.5, 10, 11, 

and 12 min after injection. It was found in preliminary studies that 12 min is enough time for the agents 

to be cleared from circulation.  

6.2.8 Data Analysis 

To quantify the amount of biomarker targeting inside the sample volume, a previously 

described protocol for USMI was used [49]; droplets or bubbles were allowed to reperfuse the tissue 

after the first activation or imaging/destruction, respectively, so that the level of free-flowing agents 

could be captured by the 30 s acquisition. The mean intensity inside of the ROI of the post-activation 

frames (CSS and VDI, for droplet imaging sequence) and the CSS frames (bubble imaging sequence) 

was calculated for each time-point. Next, the targeting intensity (TI) was then calculated by dividing 

the maximum mean intensity of the first time-point (3, 6, or 9 min) by that of the 30 s time-point, which 

is the level of freely-flowing contrast. Furthermore, in the case of droplet imaging, the mean intensity 

of the baseline CSS frames was used to monitor any bubbles that remained bound from the activation 

in the previous time-point.  

Perfusion in tumors is highly heterogeneous, so different regions will become fully perfused at 

different times. As such, 30 s or 1 min might not be sufficient for some regions to properly perfuse, so 

using the entire area inside the ROI might bias the results when calculating TI. Therefore, two masks 

including all the regions that became perfused in 30 s or 60 s were applied to the data of the second 

time-point or the third and later time-points, respectively, when calculating TI. The wash-in CSS frames 

were blurred, as described previously [187], and the pixels above a predetermined threshold 30 and 60 

s after the appearance of contrast in the FOV were added to the 30 and 60 s masks, respectively (Figure 

6.3). 
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Figure 6.3. Illustration of the mask making process. The frames at either 30 or 60 s (a) are blurred using 

a Gaussian filter (b), and the areas that are not perfused (filled in regions) were excluded from analysis 

(c). 

Each acquisition destroyed the bound bubbles either with the destructive pulses for the bubble 

imaging sequence or the vaporization pulses for the droplet imaging sequence, so the different time-

points were used to make a circulation curve. For each agent/targeting/dose combination, the data for 

the three wait times, excluding the first time-point in each, was combined to find a circulation clearance 

curve by fitting the data to a mono-exponential (Eq. 6.1) whereb is the clearance rate and t is time 

(Figure 6.4a). 

𝑦 = 𝐴𝑒−𝑏𝑡      (6.1) 

 

Figure 6.4. Example of data acquired by imaging protocol at the three different timepoints with example 

clearance curve (a) and example wash-out curve with mean intensity data captured with CSS imaging 

after droplet vaporization (b).  Note: the clearance curve in (a) was calculated without using the first 

time-points of each wait time, and both curves in (a) and (b) were found using Equation 1. 

When droplets are activated, the unbound bubbles that are generated should wash out and leave 

only the targeted agents. Therefore, the wash-out bubbles generated by the activation of targeted 
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droplets should be different from that of bubbles generated by the activation of control droplets, so the 

wash-out was also explored. Equation 1 was used to fit the mean intensity of the post-activation CSS 

frames (first time-point in the 3, 6, and 9 min wait times), starting with the frame that had the maximum 

mean intensity, to find a wash-out curve and calculate the wash-out rate, bwo (Figure 6.4b). 

6.2.9 Statistical Analysis 

Kruskal-Wallis analysis was performed to determine significance in any groups being tested 

(agents, wait times, detection methods), and a Tukey range test was used to find significance between 

each of the parameters. Significance was set as p < 0.05. 

6.3 Results 

Size distributions of MCAs and PCCAs can be seen in Figure 6.5. MCAs had a mean size of 

2.7 ± 0.2 µm and 2.6 ± 0.4 µm and a concentration of 1.6x109 ± 0.4x109 #/mL and 2.1x109 ± 0.4x109 

#/mL for the control and targeted agents, respectively. After condensation, the Accusizer measured 

sizes of 675 ± 5 nm for controls and 675 ± 15 nm for targeted droplets. NanoSight results contained 

PCCA sizes of 198 ± 18 nm and 169.6 ± 28 nm for control and targeted droplets, respectively. 

 

Figure 6.5. Size distributions of MCAs (a) and PCCAs using the Accusizer (b) and NanoSight (c). 

Figure 6.6 shows example images of post-activation CSS, VDI, and CSS of MCAs, 

respectively, at the different wait times and at the 30 s acquisition. 
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Figure 6.6. Example post-activation CSS (top), VDI (middle), and MCA CSS (bottom) images. The 

odd and even columns show the activation at the different wait times and the acquisition at the 30 s 

time-point, respectively. Images from control and targeted PCCAs at the doses tested are shown in the 

different rows of the top and middle pannels, while the bottom pannel shows images of MCAs at the 

low dose. The scale bar represents 3 mm, and the tumor tissue ROI is depicted by the dashed yellow 

line. 

Firstly, the TI results from the targeted PCCAs were compared with those from the control 

agents for the high dose. As can be seen in Figure 6.7, both post-activation CSS and VDI produced 

significantly higher (p < 0.05) TI values for the targeted droplets over the control agents at the 3 and 6 

min wait times. 
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Figure 6.7. Targeting intensity (TI) for post-activation CSS and VDI at the different wait times. Both 

CSS and VDI had significantly higher (p < 0.05) TI for the 3 and 6 min wait times. Significance is 

denoted with an asterisk. 

Circulation time is an important parameter in USMI, so the clearance rate b was compared 

between targeted and control PCCAs using post-activation CSS data. It was found that targeted PCCAs 

had a significantly higher (P < 0.05) clearance rate than control droplets, which circulated nearly twice 

as long (Figure 6.8). 

 

Figure 6.8. Clearance rate b of control and targeted PCCAs. Control droplets had a significanly lower 

(p < 0.05) rate than targeted agents. Significance is denoted with an asterisk. 

Next, the TI of VDI and post-activation CSS for USMI with targeted droplets was compared 

for all wait times and doses tested in this work. While there was no statistical difference between CSS 
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and VDI for the high dose, VDI had a significantly higher TI for the 6 and 9 min wait times for the low 

dose (Figure 6.9).  

 

Figure 6.9. Comparison of VDI and post-activation CSS for all wait times and doses. VDI had a 

significanlty higher (p < 0.05) targeting intensity (TI) for the 6 and 9 min time-points of the low dose.  

The efficacy of droplets (VDI) as intravascular USMI contrast agents was compared against 

that of MCAs. As can be seen in Figure 6.10, MCAs produced superior TI than PCCAs for all wait 

times when the low dose was used. 

 

Figure 6.10. Comparison of PCCAs and MCAs. Microbubbles had a significanlty higher (p < 0.05) 

targeting intensity (TI) than PCCAs (VDI) for all wait times. 

Furthermore, the TI values for the different wait times was compared for all targeted agents 

and doses tested. It was found that even though the 3 min wait time has a higher median value in most 
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cases, the wait times did not produce significantly higher TI values for any agent/dose combination 

(Figure 6.11). However, it is worth pointing out that for the MCA case, 6 min was nearly significant (p 

= .051) from the 3 min wait time, suggesting that a larger sample size may have produced significant 

results. 

 

Figure 6.11. Targeting intenisty (TI) for the different wait times. Wait times were not significant (p < 

0.05) for any dose or contrast agent. The 6 min time-point for the MCA case was nearly significantly 

higher from the 3 min time-point (p = 0.051). 

As previously discussed, the bubbles produced by the vaporization of targeted PCCAs that 

were unbound should wash out of the FOV over several seconds and leave only the bubbles produced 

by activation of bound PCCAs. Hence, the wash-out between targeted and control droplets should be 

different since all control bubbles should wash out, theoretically. The wash-out rate, bWO, of control 

and targeted PCCAs was compared using post-activation CSS data, and it was found that bWO was not 

significant between the two types of agents for any of the wait times (Figure 6.12). 
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Figure 6.12. Wash-out rate, bWO, for control and targetd PCCAs at all wait times. Wash-out rates were 

statistically equal for all cases ( p > 0.05). 

Furthermore, the CSS baseline frames of the 30 s time-point should contain any remaining 

bubbles from the first time-point activation. However, no remaining contrast was detected on any of 

the baseline frames. Additionally, in both the targeted and control cases, the intensity decreased to 

values similar to the baseline, so very few bound bubbles produced by droplet activation remained in 

the FOV after 8 s (Figure 6.4b). 

6.4 Discussion 

The purpose of this work was to assess the capabilities of low boiling-point PCCAs as 

intravascular USMI contrast agents, as a first step towards an extravascular USMI platform. In theory, 

the enhanced circulation time of PCCAs might provide more chances for targeting and produce better 

binding than MCAs. Additionally, unbound bubbles produced by droplet activation should be washed 

out from the FOV by blood flow so that only bound bubbles remain, allowing USMI to be performed 

much faster than conventional techniques using MCAs, which require a waiting period for the freely-

flowing agents to be cleared from circulation. In order to test these theories, two types of droplet 

imaging techniques were used to compare control and targeted PCCAs and MCAs using different doses 

and wait times. The results show that even though PCCAs do not perform as well as MCAs, they are 
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viable USMI contrast agents. Furthermore, it was shown that VDI is a more sensitive method for 

detecting smaller numbers of bound PCCAs than conventional contrast imaging techniques, such as 

CSS. 

The size distributions of PCCAs produced by the Accusizer and NanoSight did not agree 

(Figure 6.5). While the Accusizer distribution contained a large number of PCCAs larger than 500 nm, 

the Nanosight distribution did not show a significant number of agents in this range. Theoretically, 

droplets should be 5-10 times smaller than the precursor microbubbles [101,128]. Therefore, there 

should be large numbers of droplets between 500 and 1000 nm since the MCA distribution extends past 

5 µm. This theory agrees with the Accusizer measurements and suggests that the NanoSight system 

might not be sensitive to PCCAs larger than 500 nm. 

The results show that the targeted PCCAs actively bind to their target (αvß3), since their TI is 

significantly higher than the controls for the 3 and 6 min wait times (Figure 6.7). At the 9 min wait 

time, there was no significant difference between TI with the control and targeted PCCAs. This is likely 

due to the longer circulation time of control droplets, which provides more opportunity for unspecific 

binding and accumulation in the tumor. It is likely that using a control with similar kinetics to the 

targeted PCCAs would produce a lower TI at the 9 min wait-time, and the TI for the cRGD agents 

would be significant. For example, control agents with cRAD (Arg-Ala-Asp), which should not bind 

to αvß3, have been used previously [264],  may be cleared from circulation at similar rates as the cRGD 

and would be a more appropriate control. Furthermore, it is possible that the longer circulation time of 

control PCCAs allowed the agents to extravasate and accumulate in the tumor tissue, which would 

make the TI at the 9 min wait-time artificially high. The imaging techniques used here cannot 

differentiate between targeting and extravasation, so more work is required to separate these two 

phenomena. 

Control PCCAs circulated for nearly twice as long as the targeted droplets (Figure 6.8). The 

explanation for this phenomenon lies in the shell composition of the agent. Adding polyethylene glycol 
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(PEG) to the shell of nanoparticles has been common practice for decades, as the PEG provides a steric 

shield that prevents immune cell recognition and dramatically decreases particle clearance by the 

mononuclear phagocytic system, also known as the reticuloendothelial system [33–35]. Hence, 

PEGylated lipids are ubiquitous in US contrast agent shells [36,37]. However, there is evidence 

demonstrating that PEGylated agents with targeting ligands can be cleared from circulation faster than 

untargeted PEGylated agents [265–268], and studies have found that the concentration of the targeting 

ligand heavily contributes to the increase in clearance by the immune system [269–271]. Furthermore, 

it has been shown that microbubbles conjugated with cRGD produce a much larger immune response 

than untargeted PEGylated bubbles [36], so it is likely that the accelerated clearance of the targeted 

PCCAs seen here was a result of an enhanced immune response. A possible strategy to overcome the 

accelerated clearance is using agents with ‘buried’ targeting lingands. This approach consists of having 

contrast agents with a shell that has an overbrush, where the PEG chains not containing the targeting 

ligands are much longer, thereby hiding the ‘buried’ targeting ligands to reduce immune recognition 

[264]. 

The detection of small numbers of targeted agents is important for accurately tracking disease 

progression with USMI. The results indicate that while at the high dose, VDI and CSS did not produce 

significantly different TI values, VDI is superior to CSS when the low dose was used (Figure 6.9). The 

caveat to this conclusion is that neither VDI nor CSS produced significantly different TI compared to 

the controls for the high dose. However, a low dose of the control PCCAs was not tested, so the low 

dose of targeted agents might produce a TI that is significantly higher from that of a low control dose. 

This hypothesis is supported by the fact that the 9 min wait time produced TI that was not significantly 

lower from the 3 or 6 min wait times for either dose of the targeted PCCAs (Figure 6.11).  

USMI with MCAs did, however, produce a TI that was nearly significantly higher for the 6 

min wait time, and this result probably would have been significant with a larger animal number. This 

result suggests that large numbers of freely-flowing bubbles can negatively impact USMI results, so it 
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is better to wait for unbound bubbles to be cleared. However, the 9 min wait time has a lower 

distribution of TI values, although not significant from the 6 min wait time, so wait time that is too long 

might be disadvantageous due to agent detachment caused by blood flow shear stress [272,273].  

One of the hypotheses for PCCAs enhancing USMI was that the increased circulation time of 

droplets compared to microbubbles would provide more opportunities for binding, leading to greater 

accumulation of droplets in the tumor. However, results of this work demonstrate that MCAs are still 

better USMI agents, despite the faster clearance from circulation (Figure 6.10). The difference in 

targeting might be attributed to the size of agents. Studies have shown that the amount of binding and 

detachment is highly dependent on the site density of the target biomarker [39,272]; more attachment 

points (ligand-marker attachments) will lead to greater and stronger bubble binding. Therefore, since 

PCCAs are around 5 times smaller than MCAs, the surface area is lower by a factor of 25, and the 

number of targeting ligands presented is much lower per unit area. As a result, PCCAs form fewer links 

to the endothelial markers, making them more likely to not bind at all or detach from shear stress caused 

by blood flow.  

Since PCCAs cannot be detected using US unless they are vaporized into echogenic 

microbubbles, USMI could be performed faster because there would be no need to wait for the freely-

flowing agents to be cleared from circulation. Theoretically, both bound and unbound droplets would 

be activated, but only the unbound bubbles produced by the vaporization pulses would be washed out 

of the FOV. Hence, the targeted and control agents should have different wash-out characteristics, since 

all the produced control bubbles should wash out. However, the results showed that this is not the case, 

and in fact, the targeted agents almost completely washed out of the imaging plane (Figure 6.12). In 

order to further elucidate the wash-out process, the perfusion was explored spatially for both the 

microbubble wash-in and the wash-out of bubbles generated by PCCA vaporization (3 min wait time, 

first time-point) by making parametric perfusion maps, like those previously described by Feingold and 

colleagues [58]. These maps allow for the visualization of perfusion on a pixel-by-pixel basis by color-
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coding perfusion times of each pixel. Example maps can be seen in Figure 6.13. Green and red pixels 

denote fast and slow perfusion, respectively, from 0 s to the maximum perfusion time, which was 40 s 

for the bubble wash-in and 8 s for the droplet (bubbles generated by droplet vaporization) wash-out. 

Surprisingly, the perfusion maps look completely different, with the slow perfusion areas in the bubble 

wash-in at the top (Figure 6.13a) and at the bottom of the tumor for the control PCCA wash-out (Figure 

6.13b). 

 

Figure 6.13. Perfusion maps of MCA wash-in (a), control (b) and targeted (c) PCCA wash-out, overlaid 

over Bmode images. The color range is normalized to the maximum perfusion time for each case (40 s 

for wash in and 8 s for wash-out). Standard deviation (STD) maps of wash-in (d), control (e) and 

targeted (f) wash-out. Color and STD maps shown here are from different animals. 

  Furthermore, when the standard deviation (STD) of each pixel is taken through time (all frames 

in wash-in or wash-out), maps depicting the change in intensity can be created, where bright areas 

represent large changes in perfusion (Figure 6.13d-f). Similar to the perfusion color maps, the STD 

maps between the bubble wash-in and droplet wash-out look completely different, with the largest 

changes in perfusion appearing in different areas of the tumor. Once PCCAs are activated, the produced 

bubbles should disperse throughout the tissue, but the majority remain in the location where they were 

activated. This is illustrated by the STD maps, where the columns of activation seen in Figure 6.6 

correspond to the areas of largest perfusion in Figure 6.13e-f. 



 

156 

 

The fact that the perfusion maps look completely different between bubble wash-in and control 

droplet wash-out suggest that the clearance of PCCAs from the FOV is not solely dependent on blood 

flow. The bubbles seem ‘stuck’ in the regions of activation, which should not happen with control 

agents. Even for targeted agents that should be stationary after activation, they almost completely 

disappear from the FOV by 8 s, but it doesn’t appear that they are washing out, since they don’t have 

the same perfusion characteristics as MCAs washing-in. The violent oscillation of the vaporization 

process may be detaching the produced bubbles that were bound, which explains why the mean 

intensity in the tumor nearly disappears, but this theory does not explain the spatial perfusion 

inconsistencies illustrated by the maps in Figure 6.13. Although in-vitro studies have shown that 

targeted droplets retain adherent after vaporization, these in-vitro studies did not involve flow [126]. 

Further studies will need to be performed to further elucidate what is responsible for signal loss. 

Another possible explanation for the inconsistencies in these perfusion patterns is that the droplets are 

in fact extravasating, and this is the reason they appear stationary after activation. While this is a 

reasonable explanation, it is unlikely that extravasation plays a major role, since the droplets only 

circulated for 3 min before activation, and previous studies have found that significant extravasation 

occurs over several hours [121,266,267,274]. Moreover, the same pattern of perfusion was seen in the 

30 s time-points, and in many control cases, the mean intensity of the first and second time-points was 

equal, which would imply that the same number of droplets extravasated in only 30 seconds. 

It has been reported that bubbles produced by droplet vaporization can grow to several times 

their initial size within the first 200 ms after activation and can coalesce to form large bubbles 

[104,136,141,275]. Therefore, a possible explanation is that the bubbles produced by activation of 

PCCAs quickly coalesce to form very large bubbles that become lodged in the tumor vasculature and 

slowly dissolve over time. Few studies have explored the stability of PCCAs more than 400 ms after 

vaporization, but preliminary studies in our lab have found that vaporized PCCAs are less resistant to 

dissolution and fragmentation caused by imaging pulses than conventional MCAs, which has been 
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corroborated by a recent study [276]. These observations suggest that the wash-out rate might, in part, 

be driven by the dissolution of bubbles or destruction by imaging pulses and not solely by blood-flow. 

More work is required to determine the mechanism of vaporized PCCA clearance after activation. 

A different type ultrasound contrast agents that has potential for extravascular USMI are 

nanobubbles, which are nano-scale bubbles that have been reported to passively accumulate in the 

tissue and provide high contrast levels in vivo [277,278]. However, the smaller diameter of these agents 

reduces their stability in vivo, and the echogenicity at clinical frequencies (1-10 MHz), compared to 

conventional MCAs [278–280]. Therefore, more work is required for nanobubbles to become viable 

contrast agents for USMI. Moreover, echogenic liposomes [281] and biogenic gas vesicles [282] are 

nanoscale agents that have been used for USMI in vivo, but due to their small cross-section, they are 

significantly less echogenic than vaporized PCCAs. 

This work has found that PCCAs are inferior to MCAs for intravascular USMI. However, 

because they can be manufactured with sizes smaller than 400 µm, there is potential for using targeted 

droplets for extravascular USMI. Much like this work, droplets would be injected and allowed to 

circulate, but instead of binding to endothelial markers, PCCAs would extravasate due to the enhanced 

permeability and retention (EPR) effect and bind to markers expressed by cancer cells. The unbound 

PCCAs would then be cleared by the lymphatic system, leaving only bound droplets which could be 

vaporized to obtain USMI signal. However, many aspects of this process need to be explored, such as 

the circulation time required for sufficient accumulation of droplets in the tumor tissue and the amount 

of time the droplets would have to remain stable while the lymphatic system clears unbound agents.  

6.5 Conclusion 

PCCAs have advantages over MCAs that might enhance USMI. Droplets have longer 

circulation times in vivo, which might produce better targeting through increased opportunities to bind. 

USMI with PCCAs might be able to be performed before faster than current methods by simply 

measuring the wash-out of the bubbles produced by activation or the remaining signal of bound bubbles 
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after wash-out, eliminating the need to wait for the unbound agents to be cleared from circulation. 

However, this work has shown that the increased circulation of PCCAs is offset by lower targeting due 

to their small size, and that the wash-out information after vaporization cannot be used to quantify 

targeting without long wait times, making droplets perform worse than MCAs for USMI. Nevertheless, 

PCCAs were able to bind their target and provide significant molecular signal. Even though they are 

not efficient intravascular USMI agents, PCCAs have the potential to be used to target extravascular 

markers.   
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CHAPTER 7                                                                                                              

PROTOCOLS FOR PERFUSION IMAGING USING PCCAS 

 

7.1 Introduction 

As was shown in the previous chapter, the bubbles produced by PCCA activation seem to 

coalesce and form very large bubbles that become lodged in the vasculature. Although, the contrast 

“washes” out of the imaging plane, the clearance is most likely destruction and dissolution caused by 

the imaging pulses. As a result, reliable measures of perfusion cannot be obtained. In this chapter, 

several factors are explored in an effort to reduce coalescence and dissolution. Namely, the effect of 

size, concentration, vaporization pressure, pulse length, and the shell formulation on coalescence and 

formation of large bubbles was explored. 

The MCAs used for this dissertation often have a polydisperse distribution, and since PCCAs 

are made from these bubbles, there will be large droplets that may occlude vessels once converted back 

microbubbles. Therefore, the effect of removing large outliers was explored. Furthermore, it has been 

reported that bubbles produced by PCCA vaporization coalesce to form larger bubbles [104,105], so 

the role of concentration, vaporization pressure, and activation pulse length were also evaluated.  

Lastly, the lipid shell formulation was altered to enhance stability and prevent coalescence and 

dissolution. There are 2 main shell components on conventional MCAs: the main lipid making up most 

of the shell and the PEGylated lipid used to prevent coalescence and immune recognition. There is 

evidence that bubbles produced by vaporization that have a longer PEG chain on the shell can traverse 

the vasculature and do not become lodged [143], so different PEG lengths were compared. Furthermore, 
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shells with longer lipid acyl chains (more carbons on the chain) have been shown to decrease dissolution 

[283,284] and make more stable PCCAs [131] so different chain lengths were assessed. 

7.2 Methods 

7.2.1 Animal Protocol 

The kidneys of Fischer 344 rats (Charles River Laboratories, Morrisville, NC, USA) were used 

as targets because there should be no extravasation, unlike tumors. The rats were anesthetized with 

2.5% isoflurane, placed on a heated pad, and the flank was shaved to remove fur. A catheter was 

inserted into the tail-vein for PCCA administration in a bolus or continuous infusion. All animal and 

imaging protocols were approved by the University of North Carolina School of Medicine’s 

Institutional Animal Care and Use Committee. 

7.2.2 PCCA and MCA Formulations 

 Both MCAs and PCCAs were used in this work. Droplets were formed from prepared MCAs, 

so both agents were composed of the same lipid formulation. The lipid solution consisted of 1,2-

distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-distearoyl-sn-glycerol-3-

phosphoethanolamine-N-methoxy(polyethylene-glycol)-2000 (DSPE-PEG2000) in a 9:1 M ratio and a 

total lipid concentration of 1.0 mg/mL and was dissolved in a solution of phosphate-buffered saline 

(PBS), propylene glycol, and glycerol (16:3:1). This is the formulation conventional formulation used 

in the experiments not exploring the role of PEG chain length or acyl chain length.  

To test the effect of different PEG chain lengths, DSPE-PEG5000 was compared to DSPE-

PEG2000, and 1,2-diarachidoyl-sn-glycero-3-phosphocholine (DBPC, C:20, 20 carbons on the acyl 

chain) was compared to the conventional DSPC (C:18) to evaluate the effect of acyl chain length. 

The headspace of a 3 mL vial containing 1.5 mL of the different lipid solution was filled with 

OFP or DFB and the vial was mechanically agitated to form microbubbles with a distribution that will 

be referred to as native. In order to eliminate the large outliers from the native distribution, the bubbles 
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were allowed to separate into 2 layers by waiting 7.5 minutes, and the supernatant was discarded. This 

distribution will be referred to as size-selected. 

Finally, the different MCA formulations were condensed into PCCAs using previously 

described methods [129]. 

7.2.3 MCA Sizing 

 The size distribution and concentration of the bubbles were measured using an Accusizer 780 

(Particle Sizing Systems, Santa Barbara, CA, USA) that is capable of measuring particles down to 0.5 

µm.  

7.2.4 Imaging Protocols 

Two types of imaging pulse sequences were implemented: B-mode and contrast imaging. Both 

sequences consisted of plane-wave imaging with angular compounding, as is described in Chapter 4. 

The kidney was found using a conventional B-mode script on a Verasonics V1, and a region of interest 

(ROI) was drawn around the kidney to select the location of activation pulses. The vaporization pulses 

were focused, delivered serially and were separated by 0.75 mm and 0.5 mm axially and laterally, 

respectively. APM was used to account for tissue attenuation and deliver the same pressure to all 

locations, and the vaporization pulses consisted of 5-cycle sinusoids at 5 MHz. As described in Chapter 

4, baseline contrast frames were first captured, the vaporization pulses were delivered, and post-

activation contrast fames were captured to monitor the wash-out of the produced microbubbles. 

7.2.5 Data Analysis 

The amount of activation was quantified as the contrast enhancement (CE), which was 

calculated by diving the linearized mean intensity inside of the ROI of the post-activation frames by 

the average mean intensity of the baseline frames. To quantify the wash-out of PCCAs or wash-in of 

MCAs, the CE was normalized to the maximum value and fitted to a mono-exponential. Equations 7.1 

and 7.2 were used for PCCA wash-out and MCA wash-in, respectively,  
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𝑦(𝑡) = 𝑒−𝑏𝑤𝑜𝑡      (7.1) 

𝑦(𝑡) = 1 − 𝑒−𝑏𝑤𝑖𝑡     (7.2) 

Where bwo is the wash-out rate, bwi is the wash-in rate, and t is time.  

7.2.6 MCA Perfusion Imaging 

DCE-US with MCAs was performed to quantify perfusion in the kidneys and compare it to that 

obtained using PCCAs. The pulse sequence used was similar to the PCCAs activation sequence: 

baseline contrast frames were captured, destructive (focused) pulses (MI=1.3) were delivered to clear 

bubbles from the imaging plane, and post-destruction contrast frames were captured to monitor the 

bubbles flowing back into the kidney. 

To assess whether or not the imaging pulse sequence was sensitive to changes in perfusion, 

dopamine was used to increase perfusion rate, as described previously [58]. Size-selected MCAs were 

continuously infused at a rate of 1.5x108 bubbles/min and allowed to circulate for 2 minutes before 

imaging to allow the concentration in the blood to reach a steady state and a pre-drug scan was acquired. 

Next dopamine was added to a fresh solution of microbubbles and infused at a rate of 2 µg/kg/min 

while keeping the bubble infusion rate at 1.5x108 bubbles/min. The bubbles and drug were allowed to 

circulate for the drug to take effect, and 3 post-drug scans were taken at 3, 5, and 7 min after the start 

of drug infusion. 

7.2.7 Effect of PCCA Size 

 Bolus injections of 6x108 size-selected DFB and OFP droplets were administered and allowed 

to circulate for 1 min before activation. The resulting contrast and wash-out was captured by the post-

activation contrast frames at a rate of 10 Hz for 10 s. Droplets were activated using pulses with peak-

negative pressures of 4.25 and 1 MPa for DFB and OFP, respectively. 
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7.2.8 Effect of Concentration and Vaporization Pressure 

 Size-selected OFP PCCAs were continuously infused at 4 different rates: 1.2x107, 2x107, 

2.8x107, and 3.6x107 #/min. Droplets were activated using 1.25 MPa activation pulses to explore the 

effect of concentration of PCCAs in the blood with a set vaporization pressure. In a separate experiment, 

droplets were activated using 0.75, 1, 1.25, and 1.5 MPa for all infusion rates. 

7.2.9 Effect of Pulse Length 

 The effect of activation pulse length was explored by monitoring the generated bubbles from 

size-selected OFP activation using optical microscopy. PCCAs at a concentration of 5x109 #/mL were 

manually infused through a 200 µm cellulose tube submerged in a water bath at room temperature. A 

100x (NA = 1.0) water immersion objective on an inverted microscope (Olympus IX71, Center Valley, 

PA) was interfaced with a high-speed camera (FastCam SA1.1, Photron USA, Inc., San Diego, CA) to 

capture images before and after activation at a rate of 125 frames per second. A framerate of millions 

of Hertz is required to capture the vaporization event, so the bubbles were evaluated once they have 

reached their final size. Vaporization pulses with 1, 2, 5, 10, and 15 cycles and a peak-negative pressure 

of 1.5 MPa were used. The generated bubbles were localized and sized using a custom MATLAB (The 

Mathworks, Inc., Natick, MA) script employing the Hough Transform [285,286].  

7.2.10 Effect of PEG Chain Length 

 In order to isolate the PEG length as the only variable, size-selected DFB and OFP droplets 

were activated in their vials using temperature. The precursor MCAs were sized using the Accusizer, 

the vials were opened to relive pressure and partially submerged in a heated water bath (40°C and 65°C 

for DFB and OFP, respectively) for 1 min, and the solution was sized again. This protocol was 

implemented to explore shifts in the distribution of the bubbles before condensation and after 

vaporization. It has been reported that bubbles produced by droplet vaporization can grow to several 

times their initial size within the first 200 ms after activation due to dissolved gasses in the environment 

diffusing in [104,136,141,275], which would confound the results here. The lipid solution was placed 



 

164 

 

under vacuum to remove all of the dissolved gasses before the gas-exchange and agitation process. 

Therefore, there should not be any dissolved gasses in the MCA/PCCA solution inside the vial, which 

will limit the shift in size distribution due to gas diffusion after vaporization. 

7.2.11 Effect of Acyl Chain Length 

 Size-selected OFP PCCAs with both C:18 and C:20 acyl chains were injected in rats. Bolus 

doses of either 2.25x108 or 1x109 droplets were injected and allowed to circulate for 1 min before 

activation. Vaporization pulses with peak-negative pressures of 1.25 MPa were used, and the contrast 

wash-out was captured using contrast imaging frames at 10 Hz. Furthermore, droplets were also 

activated using pulses that were spatially separated by 2.5 mm both axially and laterally to explore the 

effect of pulse proximity on coalescence. 

7.2.12 PCCA Perfusion imaging 

 Changes in perfusion using PCCAs were explored using a similar dopamine experiment 

described previously. Size-selected OFP droplets (PEG2000, C:18) were continuously infused at a rate 

of 2.8x107 droplets/min and activations were captured at 3, 4, and 5 min after the start of infusion. 

Dopamine (2 µg/kg/min) was then added to a fresh droplet solution and activations were captured 3, 4, 

5, and 6 min after the start of the drug/droplet infusion. 

7.2.13 Statistical Analysis 

Kruskal-Wallis analysis was performed to determine significance between any groups being 

tested (wash-in or wash-out rates, distributions, doses), and a Tukey range test was used to find 

significance between each of the parameters. ANOVA was used for determining significance between 

the number of cycles for the effect of pulse length. Significance was set as p < 0.05. 
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7.3 Results 

7.3.1 MCA Perfusion Imaging 

The wash-in rate for all rats was grouped, and it was found that the rate was significantly higher 

before the infusion of dopamine (Figure 7.1). It is worth pointing out that complete reperfusion inside 

the kidney happens in the order of hundreds of milliseconds and not seconds, as in the wash-out curves 

shown in Chapter 4. 

 

Figure 7.1. Plots of MCA wash-in rate (left) and curves (right) in rate kidneys before and after 

administration of dopamine. The wash-in rate was significantly (p < 0.05) faster after the infusion of 

dopamine. 

7.3.2 Effect of PCCA Size 

Accusizer results are shown in Figure 7.2. The size-selection process reduces the number of 

bubbles larger than 1.5 µm and eliminates most of the outliers. The distribution shifts from a mean of 

1.05 ± 0.09 µm to 0.87 ± 0.01 µm from the native to the size selected distributions, respectively. The 

mean diameter values of the two types of PCCAs is significant. However, when the droplets were 

activated in vivo, both OFP and DFB wash-out of the imaging plane in time scales that were an order 

of magnitude longer than the reperfusion of MCAs (Figure 7.2). The CE of DFB only decreased by 

about 50% in 10 s and OFP completely washed-out in around 5 s. 
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Figure 7.2. Size distributions for native and size-selected MCAs (left) and the averaged wash-out curves 

for size-selected PCCAs. The size-selection process eliminated outliers and majority of bubbles greater 

than 1.5 µm. The wash-out of size selected vaporized droplets was still an order of magnitude larger 

than MCA wash-in. 

7.3.3 Effect of Concentration and Vaporization Pressure 

The wash-out rates increased, and the maximum CE decreased with decreasing PCCA dose 

(Figure 7.3). There was a significant negative spearman correlation (rho = 0.79, p = 2x10-11) between 

wash-out rate and dose. Furthermore, the wash-out rate was generally higher for the lower activation 

pressures, although only significant between 1 and 1.5 MPa for the 2 highest doses. 0.75 MPa produced 

inconsistent vaporization so it was excluded from the wash-out analysis. Concentration of PCCAs in 

the blood and the activation pressure were found to have an effect on the wash-out rate, but the rate 

was still an order of magnitude higher than bubble reperfusion even at the lowest pressure and dose. 
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Figure 7.3. Plots of wash-out rate and maximum contrast enhancement for different size-selected OFP 

PCCAs doses and vaporization pressures. The wash-out rate became slower as dose increased (a), and 

the reverse was true for contrast enhancement (b). The wash-out rate generally decreased with 

increasing vaporization pressure (c) and 1.25 MPa produced higher median contrast enhancement (d). 

7.3.4 Effect of Pulse Length 

Figure 7.4 illustrates an example image of the bubbles produced by vaporization, and the 

algorithm localizing a sizing the bubbles. The results indicate that the 1 cycle group was significant 

from all other groups, but the distributions from the other groups were not significant from each other. 

The number of activated droplets increased with pulse length, which agrees with previous findings 

about vaporization thresholds [134,287], so it is likely that the 1 cycle pulses produced a larger 

distribution of bubbles because they could only activate larger droplets, which are easier to vaporize. 
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Therefore, the results suggest that pulse length does not heavily influence final diameter of bubbles 

produced by PCCA activation. 

 

Figure 7.4. Example microscopy image (top) of vaporized PCCAs and plot of bubble sizes for each 

number of cycles group (bottom). The localization of bubbles using the Hough transform is displayed 

by the red x’s (bubble center) and blue circles (bubble outline). The bubble size for the 1 cycle group 

was significant (p < 0.05) from all other groups (denoted with a *), but none of the other groups were 

significant from each other. 

7.3.5 Effect of PEG Chain Length 

The size distributions of pre-condensation and post-vaporization OFP and DFB bubbles with 

PEG2000 and PEG5000 are shown in Figure 7.5. In both lengths of PEG, the distribution shifts towards 

larger bubbles after vaporization, suggesting coalescence. For DFB, the distribution shifted from 0.825 

± 0.005 µm to 1.55 ± 0.43 µm, and from 0.945 ± 0.005 µm to 1.275 ± 0.025 µm, for PEG2000 and 

PEG5000, respectively. For OFP, the distribution shifted from 0.82 ± 0.01 µm to 0.945 ± 0.05 µm, and 
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from 1.02 ± 0.02 µm to 1.125 ± 0.035 µm, for PEG2000 and PEG5000, respectively. None of the pre-

condensation and post-vaporization values were significant, likely due to the small number of samples 

per group (3), but the distribution curves clearly show a shift in size. Therefore, PEG5000 did not 

prevent more coalescence than PEG2000. 

 

Figure 7.5. Size distributions of size-selected DFB and OFB bubbles before condensation and after 

vaporization for PEG2000 and PEG5000. The distributions of both types of PEG shifts right (larger) 

after vaporization. 

7.3.6 Effect of Acyl Chain Length 

Representative curves for the different conditions are displayed in Figure 7.6. At both the low 

(2.25x108 droplets) and high (1x109 droplets) dose, the C:20 bubbles produced by droplet vaporization 

were cleared from the imaging plane much slower than for C:18. Furthermore, using a larger spacing 

produced a faster wash-out rate, suggesting that activation pulse proximity has an effect of coalescence 

and bubble lodging in the vasculature. The bubbles produced by the activation of both C:20 and C:18 

PCCAs appeared to be stuck in the blood vessels, but the C:20 bubbles seemed to be more resistant to 

dissolution or destruction caused by the imaging pulses, which contributed to the slower wash-out.  
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Figure 7.6. Example wash-out curves for size-selected OFP droplets with C:18 and C:20 acyl chain 

lengths. At both the low (a) and high doses (b), the vaporized C:18 droplets were cleared from the 

imaging plane much faster than vaporized C:20 droplets. Vaporized droplets were washed out faster 

when a large spacing between activation pulses was used (c). 

 

 

Figure 7.7 Wash-out rate (left) and maximum contrast enhancement (right) of vaporized size-selected 

OFP droplets in the kidneys of rats before and after the administration of dopamine. The contrast 

enhancement was not significant, but the wash-out rate was significantly lower (p < 0.05) after the 

administration of dopamine. 
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7.3.7 PCCA Perfusion Imaging 

The wash-out rates for all the pre-drug trials for all rats were combined, and it was found that 

the pre-drug wash-out rate was significantly higher than that of combined post-drug wash-out rate 

(Figure 7.7). The maximum CE was not significant between the two groups, so it is not clear why the 

dopamine had the opposite effect than what was seen in MCA perfusion imaging. 

7.4 Discussion 

The results indicate that vaporized droplets still coalesce and form large bubbles that become 

lodged in the vasculature regardless of modifications to the vaporization parameters or shell 

formulation. The effect of dopamine to the wash-out dynamics of bubbles produced by droplet 

activation was opposite of what it was with MCAs and it was an order of magnitude longer. Therefore, 

the wash-out of vaporized PCCAs does not seem to depend heavily on blood flow but on dissolution 

and fragmentation by imaging pulses.  

Figure 7.8 shows colormaps of the wash-in of MCAs into the kidney, like those from DCE-US 

in Chapter 3, and the wash-out of vaporized PCCAs. The MCAs map shows that the perfusion in the 

kidney is slow in the center and fast in the periphery. However, perfusion maps for PCCA wash-out do 

not follow this pattern, but rather, seem to have random areas of fast and slow perfusion. Furthermore, 

when standard deviation maps, like those from the previous chapter, are made, it can be seen that large 

changes in intensity (flow, dissolution, fragmentation) are only seen in the areas where vaporization 

occurred, and not on the periphery where there should be faster perfusion. 

Lastly, a longer acyl chain produces bubbles that were more stable and resistant to dissolution 

and fragmentation by imaging pulses, which lead to a slower wash-out, supporting the hypothesis that 

bubbles produced by droplet activation become lodged in the vasculature and the apparent wash-out is 

more heavily driven by dissolution and destruction than by blood flow. 
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Figure 7.8. Perfusion (top) and standard deviation (bottom) maps. The MCA wash-in maps show that most of the perfusion in the kidney occur on 

the periphery, while the perfusion maps for PCCA wash-out show that the perfusion happens randomly throughout the kidney. Areas that are dark 

did not reach the threshold (above 80% of baseline for MCA wash-in, and below 20% of maximum for PCCA wash-out), so the perfusion map for 

the large spacing indicates that the generated contrast does not spread out but remains in the location at which it was generated. This is specially 

highlighted in the standard deviation maps, since the dark regions (slow perfusion) exist where there is the faster perfusion (red arrows). The scale 

bar represents 5 mm.
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7.5 Conclusion 

The clearance of vaporized low boiling-point PCCAs from the imaging plane is governed by 

bubble dissolution and destruction due to imaging pulses rather than blood flow. Therefore, accurate 

measurements of perfusion cannot be obtained with PCCAs with the current formulation. 
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CHAPTER 8                                                                                                                    

DISCUSSION AND CONCLUSIONS 

 

8.1 Assessment of Response to Therapy Using Microbubble Contrast Agents 

The first hypothesis of this thesis was that CEUS can assess response to therapy more 

accurately and earlier than changes in tumor volume. The results in Chapter 3 demonstrate USMI of 

VEGFR-2 and vascular density measurements using AA can accurately track the response of ccRCC 

tumors in mice to antiangiogenic and Notch inhibition therapies and detect the response of the tumors 

before changes in tumor volume, which is the clinical gold standard. Furthermore, the results from the 

small pilot study of DCE-US are encouraging and a larger study with higher numbers of animals per 

group would likely produce significant results, as those from recent studies using DCE-US for assess 

response to therapy in tumors [86,87]. 

The work described in this thesis, along with other experiments in the last decade, demonstrate 

the value of CEUS for cancer diagnosis and evaluation of response to therapy. The next step is to 

translate these techniques into the clinic. CEUS is already used to characterize and classify liver 

[288,289], thyroid [290], and breast [291] lesions in patients, as well as diagnosing different gallbladder 

cancers [292] and characterizing between renal cancer subtypes [29]. Moreover, there has been work 

on early assessment of renal and gastrointestinal tumors to antiangiogenic therapy, that illustrate the 

benefits of CEUS and its potential to become a crucial tool for cancer diagnosis [20,90–93]. Therefore, 

the tools are already in place to explore the capabilities of CEUS in different types of cancers and 

therapies. 
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All the experiments described in the previous paragraph used DCE-US. However, the results 

of this works and others over the last five years suggest that USMI might be a more sensitive technique 

than DCE-US for the assessment of response to antiangiogenic therapies. VEGFR-2 targeted agents 

have recently been approved for human use, and a few studies have demonstrated the feasibility of 

USMI with these agents in human patients [30,31], so it is now up to the field to explore the capabilities 

of USMI for the evaluating response to therapy in patients. 

8.2 Phase-Change Contrast Agents for the Assessment of Response to Therapy 

The second hypothesis of this thesis was that CEUS can be performed using PCCAs. The 

results of this work demonstrate that pulse sequences can be created to activate PCCAs and generate 

uniform vaporization within a target, kidney or tumor, and produce contrast enhancement levels similar 

to those of conventional MCAs. Moreover, the activation signal of PCCAs can be captured to produce 

images with significantly higher contrast-to-tissue ratios than conventional microbubble specific pulse 

sequences. It was also discovered that the bubbles produced by droplet activation wash out of the 

imaging plane, so capturing this clearance might provide measures of blood perfusion. However, the 

results of the previous two chapters demonstrate the wash-out rate of vaporized PCCAs might be 

governed by destruction and dissolution of bubbles that coalesce and become lodged in the vasculature, 

and not blood flow. Therefore, meaningful perfusion measurements cannot be obtained with the current 

formulation of PCCAs.  

Changes to the major components of the shell, PEG and acyl chains, were modified without 

significant improvements in perfusion, so it is likely that a lipid shell is not the best option for this 

application. A stiffer shell is likely to prevent dissolution or coalescence, but like shells with long lipid 

(C:22 and above), would make the agent harder to condense and vaporize, and would return smaller 

ultrasound signals [131,140]. 

The results of Chapter 6 demonstrated that PCCAs can be used as intravascular USMI agents, 

which is encouraging for the goal of extravascular USMI. However, there are limitations that have to 
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be overcome before PCCAs can be used to image extravascular markers. The premise of extravascular 

USMI is that the droplets extravasate in to the interstitial space and the unbound agents are cleared by 

the lymphatic system, which is a network of vessels that clear waste from cell metabolism out of the 

interstitium. The remaining droplets can be assumed to be targeted to the desired marker, and can be 

activated and imaged. However, much like the blood vessels, lymphatic vessels in cancer are 

disorganized, inefficient, or non-existent [248,293,294]. For this reason, nanoparticles accumulate in 

the tumor tissue for hours to days. Therefore, PCCAs would have to be manufactured to be stable at 

body temperature for far longer periods than low-boiling point PCCAs can be. Thus, a higher boiling 

point liquid core would be needed, which could increase the vaporization threshold past the diagnostic 

limit. 

The results indicate that CEUS can be performed using low boiling-point PCCAs, and that 

these agents have the potential to be valuable contrast agents for cancer diagnosis and assessment of 

response to therapy, but substantial modifications to the formulation are required for effective in vivo 

use. 
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