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ABSTRACT 

 

Andrew Maurice Borror: A mathematical model for predicting maximum heart rate, maximal 

oxygen uptake, and oxygen uptake kinetics during treadmill walking and running at varied 

intensities 

(Under the direction of Claudio L. Battaglini)  

 

Maximal oxygen uptake (VO2 max) is difficult to measure and most predictions are 

inaccurate due to a variety of assumptions. The purpose of this study was to validate a dynamical 

system model (DSM) for predicting HR max and VO2 max during walking and running. A 

secondary purpose was to predict VO2 responses using a neural network. Twenty-six healthy 

males completed a maximal cardiopulmonary exercise test (CPET) and a submaximal protocol. 

The models were applied to the submaximal data to estimate the participants’ HR/VO2 responses 

and predict their HR max and VO2 max. The model accurately tracked HR and VO2 responses 

(R2 = -.85-0.99). However, it did not accurately estimate max (R2 < 0). Further refinement of the 

model is needed. This study elucidated some of the challenges of using a DSM and demonstrated 

that a neural network may be useful for easily predicting VO2 responses. 
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CHAPTER 1 

 

INTRODUCTION 

 Cardiorespiratory fitness (CRF) is considered the single best measurement of fitness and 

overall health in people. Low CRF has been associated with the development of chronic 

conditions as well as all cause mortality1–6. In clinical populations and sedentary individuals, low 

CRF is associated with lower levels of functionality and overall quality of life1,3–6. In athletes, 

CRF is the best predictor of performance in endurance events. Knowing an individual’s CRF 

makes it possible to accurately prescribe exercise and to evaluate how CRF changes over time, 

whether due to exercise training, ageing, or disease.  

 CRF is typically expressed as maximal oxygen uptake (VO2 max), or the highest volume 

of oxygen an individual can consume during exercise7. A maximal cardiopulmonary exercise test 

(CPET) with indirect calorimetry is considered the gold standard procedure for the assessment of 

VO2 max. Unfortunately, this is an elaborate procedure that requires expensive equipment, 

trained technicians, an all-out effort from individuals. In clinical populations, supervision from a 

physician during the test is recommended, adding another level of complexity.  

 Due to these limitations, submaximal exercise tests that do not require an all-out effort 

are popular for estimating VO2 max. These tests are used instead of maximal tests when 

equipment and specialized personnel are not available or in situations where there are a large 

number of individuals to be tested in a short period of time. Additionally, submaximal exercise 
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tests may be more appropriate than maximal tests depending on the population, setting, and 

desired applicability of the results.  

 While useful at times, current submaximal exercise tests have some disadvantages. These 

tests have a large degree of uncertainty and error due to many assumptions incorporated in linear 

mathematical models that are used to predict VO2 max8,9. One major assumption is that heart rate 

(HR) and oxygen uptake (VO2) have a linear relationship with exercise intensity, which is known 

not to be true10. Another source of error is the ubiquitous “220-age” equation used to estimate an 

individual’s maximum heart rate (HR max). Although the “220-age” equation is a rough estimate 

that broadly fits a large population, it may not be accurate for a specific individual as it can 

produce errors of estimation larger than 12 bpm8,11,12. Errors like this can become magnified 

when incorporated into a mathematical model and extrapolated out to predict VO2 max. 

Submaximal exercise tests also make the assumption that biomechanical efficiency is the same 

from person to person and that steady state is reached during each stage (Mazzoleni 17). In 

general, current submaximal estimations fail to take into account the person-specific nature of 

physiology and the non-linearity of HR and VO2 responses.  

 Recently, studies have provided promising evidence of mathematical models that may be 

able to address these issues8,13. Mazzoleni et al. (2016) developed a mathematical model that is 

able to account for the inter-individual differences along the non-linearity of HR and VO2 

responses during cycling8. Using a dynamical system model (DSM) and genetic algorithm (GA), 

it is able to accurately predict HR max, VO2 max, and VO2 kinetics using power and cadence as 

indicators of exercise intensity8. This model offers more accuracy in predicting HR max and VO2 

max compared to current estimations that use linear mathematical models and age-based 

equations for HR max8. The prediction of HR max is useful for exercise prescription using HR 
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training zones, a practice that is common in the general public. The prediction of VO2 max has 

applications for both athletes and clinicians, including accurate exercise prescription, the 

evaluation of training progression, and the measurement of CRF as it changes over time. 

Validating Mazzoleni et al.’s model for walking and running would be useful as these are 

common modalities people are comfortable with. Treadmill tests also tend to produce higher 

VO2 max values than cycling tests because running involves whole-body movement7,14. Since 

this model allows real-time predictions, VO2 can be estimated without the need for a specific 

protocol or achievement of steady-state exercise15. This would be particularly useful for runners, 

as real-time estimations of VO2 during exercise could be used during their training.   

 One limitation of this model is that it still requires the measurement of VO2 data to 

predict VO2 max. Once the model is validated, it could potentially be simplified if VO2 

measurement was no longer necessary. Beltrame et al. (2016) recently utilized an artificial neural 

network (ANN) technique to estimate VO2 during exercise using only HR and other easy-to-

obtain inputs13. Applying an ANN to the model used by Mazzoleni could allow VO2 max to be 

accurately predicted without the need to measure VO2 data13,15. This is exciting because it would 

make real-time VO2 estimations and the accurate assessment of VO2 max possible in a variety of 

settings such as a hospitals, clinics, or athletic facilities using only a heart rate monitor and a 

measure of exercise intensity (e.g. treadmill or running watch).  

 

 

Purpose Statement  

The purpose of this study will be to evaluate the accuracy of a DSM and GA for predicting HR 

max and VO2 max, as well as VO2 kinetics during walking and running at varied intensities. The 
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secondary purpose of this study will be to predict VO2 kinetics and VO2 max using HR and 

exercise intensity data by incorporating an ANN into the model.  

 

Research Questions  

RQ1. Can a DSM and GA accurately predict HR max by measuring HR data and exercise 

intensity during a submaximal treadmill walking test? 

RQ2. Can a DSM and GA accurately predict HR max by measuring HR data and exercise 

intensity during a submaximal treadmill running test? 

RQ3. Can a DSM and GA accurately predict VO2 max by measuring VO2 data and exercise 

intensity during a submaximal treadmill walking test? 

RQ4. Can a DSM and GA accurately predict VO2 max by measuring VO2 data and exercise 

intensity during a submaximal treadmill running test? 

RQ5. Can a DSM, ANN, and GA accurately predict VO2 max by measuring HR data and 

exercise intensity during a submaximal treadmill walking test? 

RQ6. Can a DSM, ANN, and GA accurately predict VO2 max by measuring HR data and 

exercise intensity during a submaximal treadmill running test? 

 

 

Hypotheses  

H1. A DSM and GA can accurately predict HR max by measuring HR data and exercise intensity 

during a submaximal treadmill walking test. 

H2. A DSM and GA can accurately predict HR max by measuring HR data and exercise intensity 

during a submaximal treadmill running test. 
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H3. A DSM and GA can accurately predict VO2 max by measuring VO2 data and exercise 

intensity during a submaximal treadmill walking test. 

H4. A DSM and GA can accurately predict VO2 max by measuring VO2 data and exercise 

intensity during a submaximal treadmill running test. 

H5. A DSM, ANN, and GA can accurately predict VO2 max by measuring HR data and exercise 

intensity during a submaximal treadmill walking test. 

H6. A DSM, ANN, and GA can accurately predict VO2 max by measuring HR data and exercise 

intensity during a submaximal treadmill running test. 

 

Operational Definitions  

• Regularly Active: Classified as participating in regular physical activity at least 3 days per 

week for 30 minutes. 

• Familiarization: Session that occurs two days prior to the testing session in order to 

familiarize the subjects with protocols being implemented and equipment being used. 

• Learning Effect: Phenomenon that occurs after the initial testing session; i.e., subjects know 

what to expect the second time and greater changes are observed. 

• Submaximal: Describes an exercise intensity where VO2 remains below VO2 max. 

• VO2: Volume of oxygen consumed. 

• VO2 max: Maximal volume of oxygen consumed. 

• VO2 max determination criteria: A subject’s maximum rate of oxygen uptake during a 

graded exercise test that meets 3 of the 5 following criteria: (1) plateau of ≤ 0.15 L⋅min-1; (2) 

respiratory exchange ratio (RER) > 1.10 (3) blood lactate concentration ≥ 8 mmol⋅L-1; (4) 

RPE ≥ 18; (5) HR within 10bpm of predicted HR max.  
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• VO2 peak: A subject’s highest volume of oxygen consumption attained during a graded 

CPET.  

• Dynamical System Model: A mathematical model used to predict physical occurrences that 

change over time. For current applications, the dynamical system is predictive, meaning it 

can predict future observations by examining past and present states of the system. 

• Artificial Neural Network: A computational model designed to mimic neurons in the human 

brain, where inputs interact with one another along with hidden neurons to provide outputs. 

ANNs need to be trained using inputs with known outputs to establish connections that allow 

future outputs to be generated from inputs alone. 

• Genetic Algorithm: A mathematical procedure designed to explore a search space and find 

near-optimal solutions using natural selection-inspired operations such as mutation, 

crossover, and selection.  

 

Delimitations  

• All subjects were regularly-active males between 18-35 years of age who exercise for at least 

30 minutes, 3 days per week.  

• All subjects were familiarized with facilities, exercises, and testing protocols being used prior 

to taking baseline measurements in order to reduce the learning effect.  

• All subjects were recruited from the central North Carolina area via email and face to face 

contact. 

• All subjects were cleared by a physician for exercise participation prior to participating in the 

study.  
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• All subjects followed appropriate pre-testing guidelines prior to each testing session (see 

appendix A). 

 

Assumptions  

• All subjects strictly followed the pre-assessment guidelines prior to testing sessions.  

• All subjects gave their maximal effort during VO2 max testing sessions. 

• All subjects avoided intentional alterations in breathing during VO2 measurements. 

• All subjects honestly reported medical history, activity levels, RPE, and any discomfort that 

occurs throughout the study.  

 

Limitations  

• The results of this study may only apply to healthy subjects with a normal heart rate response 

during exercise.  

• The generalizability of this study may only apply to healthy, regularly active males between 

the ages of 18-35.  

• It is possible that subjects did not adhere to pre-assessment guidelines entirely as researchers 

were not with them during the hours prior to testing.  

• Subjectivity to the smoothing coefficients, parameter estimation bounds, initial guesses, 

mutation coefficients, and convergence criteria.  

 

Significance of the Study 

 This study was designed to validate a novel method for predicting HR max and VO2 max 

based on submaximal treadmill tests. Prior studies have relied on a variety of assumptions that 

fail to take into account the non-linearity of HR and VO2 dynamics, along with the person-
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specific nature of physiological responses during exercise testing for the prediction of HR max 

and VO2 max. The model used in this study accounted for these factors and was also based on 

time series rather than steady-state measurements. This allows real-time estimates of VO2 

without requiring steady state exercise or a specific protocol. As long as the inputs include 

exercise intensity and heart rate, VO2 can be predicted during any arbitrary protocol of varied 

exercise intensities. Potentially, accurate predictions of VO2 max can also be made using data 

from a submaximal exercise effort.  

 The ability to accurately predict HR max and VO2 max without directly measuring VO2 

data has numerous implications for both athletes and clinical populations. Accurately assessing 

an individual’s CRF may be possible without the equipment, expense, and effort of a traditional 

CPET. This would allow more frequent evaluations of an athlete’s physical fitness to see how 

their body is adapting over time due to exercise training. Real-time VO2 predictions could be 

incorporated into fitness watches, improving exercise prescription and providing feedback during 

training. This model would also be helpful for clinicians to see how their patients are progressing 

due to pathologies or exercise interventions without a maximal CPET. VO2 max is a critical 

measurement that has been given a lot of attention in the field of exercise physiology. An 

accurate method of estimating VO2 max without measuring VO2 data would make it highly 

accessible, benefitting athletes and the assessment of health in all people.  
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CHAPTER II 

 

REVIEW OF LITERATURE 

  

For organizational purposes, Chapter II was divided into the following sections: 

SECTION I. Cardiorespiratory fitness and the oxygen cascade. SECTION II. Maximal oxygen 

uptake. SECTION III. Submaximal prediction tests. SECTION IV. Non-exercise equations. 

SECTION V. Dynamical system modeling. 

 

Cardiorespiratory fitness and the oxygen cascade 

Cardiorespiratory fitness (CRF) is the single greatest predictor of all-cause mortality and 

the development of chronic diseases1–6. Specifically, CRF refers to the ability of the 

cardiovascular and respiratory systems to supply oxygen to the skeletal muscles during 

exercise16. Another term used to describe this pathway is the oxygen cascade. 

 

Oxygen Cascade 

The oxygen cascade describes a pathway that includes the pulmonary system, the 

cardiovascular system (e.g. heart and blood vessels), and muscle tissue. It includes oxygen 

intake, oxygen delivery to the muscles, and oxygen uptake into active tissues. When oxygen is 

taken up into the muscles, it is converted into energy in the electron transport chain. Assuming 

all of the oxygen is converted into energy, it is possible to measure an individual’s CRF by 
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measuring the amount of oxygen utilized during a maximal CPET. This measure of CRF is 

commonly called maximal oxygen uptake (VO2 max).  

 

Maximal Oxygen Uptake 

VO2 max is defined as the volume of oxygen consumed during maximal exercise7. An 

individual’s VO2 max is determined by the functional capacity of the oxygen cascade to utilize 

oxygen and remove metabolic waste. It has become the standard measure of CRF and the 

functional limit of an individual’s aerobic capacity17. VO2 max was originally conceptualized by 

Hill et al. and Herbst et al. in the 1920’s, who observed that there was a limit to the  body’s 

ability to consume oxygen7. Today, this is widely accepted and VO2 max is commonly reported 

as a physiological characteristic like height, weight, or age17. 

 

Measurement of VO2 max 

 The gold standard measurement of VO2 max is done via indirectly calorimetry by 

measuring gas exchange with a metabolic cart during a maximal graded exercise test (GXT)18–20. 

One of the most widely used protocols for measuring VO2 max is the Bruce treadmill protocol, 

which takes subjects through increasingly difficult stages until volitional exertion. Although VO2 

max is a critical marker of functional ability and cardiovascular health, it is rarely assessed in the 

general public. VO2 max assessment requires expensive equipment, trained technicians, and an 

all-out effort from participants.  

Since it is an indirect measurement, there is inherent error in the assessment of VO2 max. 

The six variables directly measured are minute ventilation, O2 faction, CO2 fraction, barometric 

pressure, temperature, and water vapor pressure17. Error rates around 3% are common, even for 
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repeated measurements on a subject exercising at a steady state7,17,21. Additionally, there is 

controversy surrounding the criteria for determining an individual’s true VO2 max value.  

 

Criteria for Determining VO2 max 

 Originally, a plateau in VO2 was the criteria for determining whether or not an individual 

reached VO2 max. Although a plateau in VO2 is a good indicator, this plateau is not seen in all 

individuals7,17. Therefore, secondary criteria have been considered to determine whether or not 

max is reached. Typically, determination of whether an individual reached VO2 max requires 3 

of the 5 following criteria: (1) plateau of ≤ 0.15 L⋅min-1; (2) respiratory exchange ratio (RER) > 

1.15 (3) blood lactate concentration ≥ 8 mmol⋅L-1; (4) RPE > 18; (5) HR within 10bpm of 

predicted HR max. Significant debate over all of these criteria exists14,17. An RER > 1.15 and 

blood lactate concentration ≥ 8 mmol⋅L-1 both indicate than a subject is relying heavily on 

anaerobic metabolism and may have reached VO2 max. However, these criteria are not 

universally met, even in individuals who reach a plateau in VO2
17. Reaching HR max may be a 

good indicator of a maximal test, but the “220-Age” equation is known to have an error of up to 

12 bpm11,11,12. Finally, RPE is a highly subjective measure and it is important to note participant 

motivation can have a large impact on the VO2 max value derived from a GXT17,18. 

 

Limiting Factors of VO2 max 

Since the oxygen cascade is a multi-step pathway, VO2 max can be limited by whichever 

step is the rate-limiting factor. In healthy individuals exercising at sea level, pulmonary function 

does not appear to be the limiting factor for VO2 max, as arterial O2 saturation in the blood 

remains around 95%7. However, there is debate over whether the key limiting factor is oxygen 
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delivery or oxygen extraction in the skeletal muscle7.  Oxygen delivery includes cardiac output 

(HR x stroke volume) and oxygen carrying capacity and oxygen extraction is explained by 

arterial-venous oxygen difference (a-vO2 difference)7. According to Basset and Howley, almost 

all of the oxygen in the blood extracted during maximal exercise, so it is unlikely that a-vO2 

difference the limiting factor in healthy individuals7. Thus, it is probable that an increase in 

blood flow (or oxygen delivery) is the limiting factor in healthy individuals7. It is known that 

stroke volume increases with training and that blood doping, a practice that increases the oxygen 

carrying capacity of the blood, both increase VO2 max7. Therefore, it is likely that an increase in 

oxygen delivery is the main limiting factor of VO2 max in healthy individuals7,22. It is important 

to mention brain regulation of motor unit recruitment may also play a role in maximal exercise 

capacity14. However, more research is needed in this area.  

 

Submaximal Prediction Tests 

As previously stated, the measurement of VO2 max is expensive and impractical. There 

are field tests to estimate VO2 max, but they still make numerous assumptions and require the 

participant to give an all-out effort19. Due to its relevance, a great deal of effort has been put into 

finding ways to accurately estimate VO2 max without performing a maximal CPET. Generally, 

submaximal CPETs require participants to be at steady state during a certain stage9. Based on 

their heart rate at that level, predictions are made as to what that person’s VO2 would be at their 

HR max. The current submaximal methods of estimating VO2 max can be broken up into three 

main categories: cycling tests, treadmill tests, and step tests.  
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Submaximal Cycling and Step Tests 

 Submaximal cycling and step tests are frequently used to estimate an individual’s CRF 

level. For reference, Akalan at al. (2008) created a summary table of submaximal exercise tests9. 

Unfortunately, most of the predictions in the literature do not present cross-validation results and 

several have poor correlation coefficients (R) or high values of the standard error of the estimate 

(SEE)23. Additionally, many of them were developed using age/sex specific populations. A few 

of the most commonly used and widely validated include the YMCA bike test and the Astrand 

bike test. Commonly used step tests include the YCMA step test and the Queens College Step 

test. 

 

Submaximal Treadmill Tests 

It is known that cycle ergometers and treadmills produce different VO2 max values, with 

treadmills producing higher values due to greater motor unit recruitment24. Therefore, 

submaximal treadmill tests have been created as an attempt to more accurately predict VO2 max. 

For reference, Akalan at al. (2008) created a summary table of submaximal treadmill tests9. 

Unfortunately, few treadmill protocols have been widely validated9. One of the most accepted 

walking protocols is the single-stage treadmill test25. It has been validated for males and females 

from 20-59 years of age (R = 0.86, SEE = 5.0)9. While the correlation is strong, the SEE is rather 

high, likely due to assumptions used in the estimation equation. 

 

Assumptions of Submaximal Exercise Tests 

Submaximal exercise tests make a variety of assumptions to predict VO2 max. One key 

assumption is that the VO2 cost is the same for everyone at a given workload. This ignores 
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factors like biomechanical efficiency, genetics, and training effects9,21. Submaximal tests 

typically assume that steady state HR is reached at each workload. Another assumption is that 

HR and VO2 are linear, which is known not to be true26. It is true that HR and VO2 are 

intrinsically related. However, tests that use only heart rate in their prediction model tend to 

underestimate VO2 max due to the asymptotic rather than linear relationship between HR and 

VO2
26.  

Perhaps the most crucial assumption and source of error is the ubiquitous “220-age” 

equation for HR max. It is true that HR declines with age11. However, age-based regression 

equations like “220-age” typically have an SEE exceeding 10 bpm. While this equation 

represents a general trend for an entire population, it has poor accuracy for determining the HR 

max of an individual. HR is influenced by a variety of factors including genetics, and the 

response to given exercise intensities vary from person to person26. Additionally, these tests 

assume that there is a linear rise in VO2 with an increase in workload, which is not to be untrue, 

especially above lactate threshold27. As a whole, submaximal exercise tests fail to take into 

account the non-linear nature of VO2 dynamics and the inter-individual variation in physiology.  

  

Non-exercise Equations 

 For practicality and ease of measurement, various groups have attempted to estimate VO2 

max without an exercise bout. These equations are useful in certain situations because they 

provide a rough estimate of VO2 without any exercise bout. However, they do not provide 

sufficient accuracy for certain applications. Two of the most common non-exercise equations 

were developed by Jackson et al (1990) and George et al. (1997)28,29. The equation developed by 

Jackson et al. (1990) uses age, height, weight, gender, and a Physical Activity-Rating (PA-R) 
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questionnaire to estimate VO2 max29. George et al. improved this model by adding a Perceived 

Functional Ability (PFA) questionnaire28. While the non-exercise equation does surprisingly well 

for an entire population, its reliability for accurately predicting a specific individual’s VO2 max 

is questionable. 

Like the submaximal tests, regression equations make a lot of assumptions about the 

linearity of the relationships between VO2 max, heart rate, age, mass, etc. However, as 

previously stated, these relationships are known to be non-linear10,30. Both non-exercise 

equations and submaximal exercise tests fail to take into account the non-linearity of VO2, along 

with the person-specific nature of physiology. In an attempt to account for these factors, new 

attention has been given to DSMs for estimating VO2 max.  

 

Dynamical System Modeling 

 Prior studies have used dynamical system mathematical models to predict HR and VO2 

responses8,13,31,32. These models are able to capture the inter-individual differences in human 

physiology and account for with the non-linearity of HR and VO2 responses during exercise8. 

Recently, Mazzoleni et al. developed a model that is able to accurately predict HR and VO2 

responses during a submaximal bout of cycling using power and cadence as indicators of 

exercise intensity8. Mazzzoleni developed this model based on the previous work by Sitrling et 

al8,31,32. Stirling et al.’s original model required steady state to predict the model parameters and 

did not include a term to account for the delay in HR and VO2 changes in response to the 

demand31,32. Mazzoleni addressed these issues by adding a new state equation for demand8. 

Mazzoleni also added a genetic algorithm (GA) to the equation8. A GA is a heuristic parameter 

estimation method inspired by evolution15. It simulates a population of solutions over time 
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utilizing the concepts of inheritance, selection, crossover, and mutation. Using a GA along with a 

DSM allows the estimation of HR max and VO2 max. 

 This new model, which combines a DSM and a GA, offers more accuracy in predicting 

VO2 max than current submaximal exercise tests that use linear mathematical models8. 

Validating this model for treadmill walking and running would be useful as treadmill tests tend 

to produce higher VO2 max values than cycling tests7,14. Additionally, walking is a comfortable, 

widely accessible form of exercise. This model would also allow VO2 to be estimated at any time 

point, without the need for a specific protocol or achievement of steady-state exercise15. The 

ability to have real-time estimations of VO2 during exercise and the ability to accurately predict 

VO2 max based on a submaximal effort both have numerous applications for exercise 

prescription and the evaluation of CRF. Accurate prediction of HR max would be useful for 

exercise prescription and HR training zones. One limitation of this model is that it still requires 

the measurement of VO2 data using a metabolic cart. However, this limitation can be addressed 

with the application of an ANN. 

 

Artificial Neural Networks 

 An ANN is an information processor inspired by how the brain interprets information33. 

It consists of a structure of elements (“neurons”) that work in unison to solve problems through 

learning by example. ANNs can be trained to detect patterns that are too complex to be noticed 

by humans or other mathematical models. They establish relationships between neurons through 

multiple layers of interaction (hidden neurons), as demonstrated by Figure 1. Training an ANN 

requires inputs with known outputs. Once trained, an ANN is able to make predictions of 

unknown outputs based on the inputs.  



 17

Figure 1. Artificial Neural Network Diagram 

 

 Recently, Beltrame et al. (2016), utilized an ANN technique to estimate VO2 during 

treadmill exercise using HR and other easy-to-obtain inputs like speed, grade, and body mass13. 

Applying an ANN to the DSM used by Mazzoleni would allow VO2 max to be accurately 

predicted without the need to measure VO2 data13,15. This model would make real-time VO2 

estimations and the assessment of VO2 max possible in a variety of settings such as a hospitals, 

clinics, or athletic facilities using only a heart rate monitor and measure of exercise intensity (eg. 

Running watch or treadmill).  
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CHAPTER III 

 

METHODOLOGY  

Subjects 

Twenty subjects were recruited to participate in this study. Recruitment for the study was 

completely voluntary; subjects were made aware of the project via flyers, emails, phone calls, 

and face-to-face interaction with research team members. Recruitment sites included areas that 

fall within that of central North Carolina. Approval from the Institutional Review Boards in 

Exercise and Sport Science and School of Medicine (Biomedical) at UNC-Chapel Hill was 

obtained before commencing with the recruitment of subjects.  

 All subjects participating in the study were regularly active males between the ages of 18 

and 35. The regularly active nature of the subjects was determined by participation in exercise 

for at least 30 minutes 3 days per week. Subjects were considered healthy, classified as low-risk 

for maximal exercise testing based on guidelines set forth by the American College of Sports 

Medicine (ACSM)34, and not taking any medications that could alter their HR or VO2 responses. 

Interested subjects were enrolled in the study if they presented no cardiopulmonary or 

musculoskeletal disease that precluded their participation in any aspect of the study as 

determined by a physician physical evaluation.  
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Study Design 

 Below is a brief overview of each visit the subjects attended throughout the course of the 

study. Visit one included physical screening, medical history forms, and physical activity 

questionnaires. Visit two included the full Bruce protocol for assessment of VO2 max. The third 

and final visit took place within one week of the second visit, following at least 48 hours of rest. 

The third visit consisted of three separate submaximal treadmill exercise tests that lasted 

approximately 10 minutes each. The first was the single-stage treadmill test developed by 

Ebbeling et al. (1991), the second was a submaximal walking protocol, and the third was a 

submaximal running protocol25. The second and third submaximal testing protocols consisted of 

stages varying intensities from 40- 85% of each subject’s measured VO2 max. Collectively, the 

three submaximal testing protocols lasted approximately 28 minutes (including warm up and 

cool down time). There were 5 minutes of rest between each test. Figure 1 provides a visual 

timeline of the visits described above.    

 

Figure 2. Study Timeline 

 

 

 

 

 

Visit 1

•Informed Consent

•Medical History

•Physician Clearance 

•Questionnaires

Visit 2

•VO2 max
Assessment 

Visit 3

•Single-stage submaximal 
treadmill test

•Submaximal walking test

•Submaximal running test
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Instrumentation 

Anthropometric / Screening   

 Height was measured to the nearest 0.1 cm via a Portable stadiometer (Perspective 

Enterprises, Portage, MI USA), and mass was measured to the nearest 0.1 kg via a mechanical 

scale (Detecto, Webb City, MO USA). A medical history questionnaire (Department of Exercise 

and Sports Science) was used to log the subjects’ medical history, age, race, and relative physical 

activity level within the past year. This was utilized in conjunction with the physical 

examination, Physical Activity Readiness Questionnaire (PAR-Q), and resting ECG to determine 

the subject’s ability to participate in the study. The resting ECG was accomplished with a GE 

CASE Cardiosoft V. 6.6 ECG diagnostic system (General Electric, Palatine, IL USA). Blood 

pressure was measured manually by auscultation via a Diagnostix 700 aneroid 

sphygmomanometer (American Diagnostics Corporation, Hauppauge, NY USA) and a Litmann 

stethoscope (3m, St. Paul, MN USA). Physical Activity Rating (PA-R) and Perceived Functional 

Ability (PFA) questionnaires were completed for use in the non-exercise equations to estimate 

VO2 max 28,29. 

  

Cardiopulmonary  

VO2 max and submaximal VO2 data were measured with a Parvo Medics TrueMax 2400 

Metabolic System (Parvo Medics, Salt Lake City, UT USA) on a GE CASE T-2100 Treadmill 

Exercise Testing System (General Electric, Palatine, IL USA). Rate of perceived exertion (RPE) 

was assessed via a Borg 6-20 Rate of Perceived Exertion (RPE) scale35. Heart rate was 

monitored via a Garmin heart rate monitor (Garmin International, Inc., Olathe, KS USA). Lactate 
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was assessed using a Lactate Plus handheld analyzer (Sports Resource Group, Hawthrone, NY 

USA). 

   

Procedures   

All subjects reported to the Exercise Oncology Research Laboratory (EORL) on a total of 

three separate occasions for screening and testing purposes. All subjects within the study were 

required to undergo a physical screening by a physician in accordance with a 12-lead ECG, 

medical history questionnaire, and PAR-Q form. Before reporting for testing sessions, subjects 

were required to follow a set of pre-assessment guidelines. Prior to testing, all subjects gave 

verbal confirmation that the pre-assessment guidelines were followed. These guidelines included 

maintaining a proper hydration status as assessed by an American Optical, Hand Held TS Meter 

(Keene, New Hampshire, USA) refractometer, being at least two hours fasted, refraining from 

caffeine consumption for at least eight hours prior, refraining from exercise for at least 24 hours 

prior to testing, and refraining from alcohol consumption for at least twenty-four hours prior to 

any testing (Appendix A).  

  

 

Visit One: Physical Screening & Questionnaires 

 The first visit to the laboratory included the signing of the informed consent form and 

completion of the medical history, PAR-Q, PA-R, and PFA questionnaires (Appendices B-E). 

All subjects within the study were required to undergo a physical screening by a physician in 

accordance with a 12-lead ECG, medical history questionnaire, and PAR-Q form. A 12-lead 

resting ECG was conducted as part of the physical examination by a physician member of the 
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research team. Height and weight measurements were taken along with resting HR and blood 

pressure (BP).  

 

Visit Two: Maximal CPET 

 Visit two consisted of a maximal CPET on the treadmill, following the procedures of the 

Bruce protocol (Appendix F). Each subject began by standing quietly on the treadmill for three 

minutes while the researchers collect resting metabolic and HR data. Once the test began, the 

subject walked/ran as the treadmill speed and incline increased every three minutes. HR and RPE 

(6-20) were continually monitored and recorded during the last 30 seconds of every stage 

(Appendix G). Termination of the test was determined by the subjects’ reaching volitional 

exhaustion or a plateau or decrease in VO2 with an increase in exercise intensity. At the end of 

the test, the subjects rested for 3 minutes; blood lactate was then analyzed. After the blood lactate 

collection, subject’s vital measurements (HR, BP) were checked. If heart rate had dropped below 

100 bpm and blood pressures returned to baseline values, subjects were cleared to leave the 

laboratory. In between visits two and three, subjects were asked to refrain from strenuous 

exercise. 

VO2 max was determined using the following criteria: (1) plateau of ≤ 0.15 L⋅min-1 with 

increase of exercise intensity in the last stages of the test; (2) respiratory exchange ratio (RER) > 

1.15 (3) blood lactate concentration ≥ 8 mmol⋅L-1; (4) RPE ≥ 18; (5) HR within 10 bpm of 

predicted HR max34. If three of these five criteria were not met, the measurement was considered 

a VO2 peak and not a VO2 max. An expanded discussion of the criteria for determining VO2 max 

was included in the review of the literature. Determination of the VO2 max value was done by 
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averaging the three highest values obtained during the last minute of the test (after 8-breath 

average data smoothing). 

 

Visit Three: Submaximal CPETs 

 After at least 48 hours of rest, but within one week of the maximal CPET, subjects 

returned to the EORL for submaximal testing. Each subject began by completing the 8-minute 

single-stage treadmill test, which consisted of a four-minute warmup and four-minutes at a 5% 

grade25 (Appendix I). At the end of the protocol, subjects rested for five minutes before 

beginning the submaximal walking protocol. During this time, the VO2 metabolic cart was set up 

to collect breath-by-breath measurements. Next, subjects completed the submaximal walking 

protocol (Appendix G), consisting of a one-minute warm up, three one-minute hard stages 

interspersed with two-minute easy stages, and a one-minute standing cooldown. Subjects then 

rested for three minutes before beginning the submaximal running protocol. The running 

protocol also consisted of a warm up, three difficult stages interspersed with easy stages, and a 

cool down (Appendix G). Subjects maintained a jog throughout the entire running protocol (ie. 

they will not be allowed to walk). HR, VO2, and exercise intensity (eg. speed, grade) data were 

measured continuously throughout the test. RPE was recorded at the end of the hard stages. 

 

Data Analysis  

Data Processing 

 Data processing was conducted according to the methods outlined by Mazzoleni et al8,36. 

HR (bpm), speed (mph), and grade (%) were measured at 1Hz. The raw HR data was smoothed 

using cubic smoothing splines in order to obtain a time derivative. VO2 data was sampled at 
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breath by breath intervals and then linearly interpolated at 1 Hz to match the HR, speed, and 

grade data. After interpolation, the VO2 data was smoothed using cubic smoothing splines to 

allow the calculation of a numerical derivative. Optimal smoothing criteria were based on mutual 

information techniques37. The original VO2 data was also sampled using 8-breath averaging 

technique for plotting purposes38.  

 

Dynamical System Model 

 The following differential equation was used to model HR and VO2 responses: 

 

where A, α, β, and λ are constants related to an individual’s physiology and fitness. Although the 

model form is the same, the corresponding parameter values differ depending on whether HR or 

VO2 is being analyzed. D refers to the demand for HR or VO2 as a function of time and exercise 

intensity:  

where B is a constant and  is the exercise intensity function: . Without 

knowing anything about the exercise intensity function, it is possible to obtain an approximation 

using a second order Taylor series expansion, 

 

where C0 – C5 are constants related to an individual’s physiology and fitness. 

 The original model derived by Stirling et al. did not account for the physiological delay in 

HR and VO2 responses to changes in exercise intensity, for which it was highly criticized31,32,39. 
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Mazzoleni et al. addressed this concern by adding a delay term and two state-equations that do 

not require the subject to be at steady state8. 

 

Genetic Algorithm 

 A GA was used in conjunction with the DSM to estimate HR max and VO2 max, along 

with all of the other model parameters (A, α, Co, etc.). During this process, time series 

predictions for HR and VO2 were also produced. In other words, VO2 was estimated at every 

given point in time based on the exercise intensity and person-specific parameters. The GA used 

a population size of 120 and generation limit of 1,000. It was run 20 times to reduce the risk of 

obtaining a false result. It also employed a tournament selection scheme, a BLX-α crossover 

scheme, and a Gaussian mutation scheme. The demand function was solved numerically and 

constraints were placed on the parameters to prevent solutions from becoming imaginary or 

physiologically invalid. 

 

Neural Network 

 After initial data processing, an ANN was trained using five inputs (HR, the time 

derivative of HR, speed, grade, and mass) and one target variable (VO2). Prior to initializing, the 

training, testing, and validation parameters were set to 70%, 15%, and 15%, respectively. The 

Levenberg-Marquardt generalization algorithm was chosen and the number of hidden neurons 

was set to 20. There parameters were then run, allowing the ANN to form a generalization 

algorithm capable of predicting VO2 responses based on the five inputs.   
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Statistical Analysis  

 Collected data for this current study were analyzed with SPSS Statistics version 20.0 

(SPSS Inc., Chicago, IL USA) and MATLAB version R2017b (MathWorks, Natick, MA USA). 

The alpha level was set a priori for all statistical analyses at 0.05. 

 

Descriptive Statistics 

Descriptive statistics were calculated in order to exhibit the study population 

characteristics (age, height, body mass, etc.). Descriptive statistics were also calculated for the 

HR max and VO2 max estimations from the DSM, as well as for the VO2 max predictions from 

the ANN, non-exercise equations (Appendix I), single-stage treadmill test, and Bruce protocol 

estimation equation.  

 

Line of Identity Analyses 

 The accuracy of model predictions was evaluated against the true values obtained from 

the CPET by calculating the coefficient of determination (R2) and standard error of the estimate 

(SEE). All of the R2 and SEE values were calculated from line of identity analyses. This is 

because the purpose at hand is prediction of physiological metrics. Rather than looking at the 

relationship between two variables (standard linear regression), we want to see the predictive 

power of the models. Therefore, it is possible for the R2 to be negative, indicating that a fixed 

line at the mean of the data would be a better fit than the model being evaluated. 

All of the following tests were conducted for both walking and running: The accuracy of 
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the time series predictions versus the experimental measurements were evaluated for each 

participant by calculating the R2 value and SEE for: (1) the DSM-GA estimate of HR; (2) the 

DSM-GA estimate of VO2; and (3) the ANN prediction of VO2. The accuracy of the maximal 

predictions versus the experimental measurements were evaluated for each participant by 

calculating the R2 value and SEE for: (1) the DSM-GA estimate of HR max; (2) the DSM-GA 

estimate of VO2 max; and (3) the ANN prediction of VO2 max. The accuracy of the trained ANN 

was evaluated by calculating the R2 value and SEE. The accuracy of the single-stage treadmill 

test, Jackson non-exercise equation, George non-exercise equation, 220 – age equation, and 208 

– (0.7 x age) were evaluated by calculating the R2 value and SEE. The DSM-GA estimates of 

HR max were compared to measured values of HR max using a dependent samples t-test. The 

DSM-GA estimates of VO2 max were compared to measured values of VO2 max using a 

dependent samples t-test. Finally, dependent samples t-tests were used to assess the accuracy of 

the model for walking compared to running for: (1) the DSM estimate of HR max; (2) the DSM 

estimate of VO2 max; and (3) the ANN prediction of VO2 max. 
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CHAPTER IV 

 

RESULTS   

Subjects 

Twenty-six subjects were recruited to participate in the study. Twenty-four of the 

subjects met the previously mentioned criteria for determination of VO2 max. One subject was 

significantly less fit than the rest, making the running test nearly maximal and therefore, this 

subject was excluded and analyses were performed on the remaining 23 subjects. Subjects 

characteristics are depicted as means and standard deviations in Table 1.  

Table 1. Subject Characteristics 

Characteristics Mean SD 

Age (years) 21.61 3.49 

Weight (kg) 74.89 11.69 

Height (cm) 174.76 7.31 

Composite PA-R (0-17) 12.17 3.43 

Composite PFA (2-26) 21.69 3.63 

Resting Heart Rate (bpm) 56 9 

Maximum Heart Rate 

(bpm) 
194 8 

VO2 Max (ml/kg/min) 62.17 8.70 
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DYNAMICAL SYSTEM MODEL & GENETIC ALGORITHM 

Heart Rate & Oxygen Uptake Kinetics 

 To assess the accuracy of the model for predicting HR and VO2 kinetics, R2 and SEE 

were calculated. The time series predictions were highly correlated with the experimental values 

for HR and VO2 for both walking (Table 2). Figure 3 provides an example time series plot of 

the predictions for (a) walking HR (b) walking VO2, (c) running HR, and (d) running VO2. 

 

 Table 2. HR and VO2 time series prediction accuracy for walking and running 

 Heart Rate Oxygen Uptake 

 R2 
SEE 

(bpm) 
R2 

SEE 
(ml/kg/min) 

DSM-GA Walk 0.97 3.1 0.92 1.9 

DSM-GA Run 0.96 3.7 0.88 2.7 
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Figure 3. Example time series plot for (a) walking HR (b) running HR, (c) walking VO2, and (d) 

running VO2. 
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Maximum Heart Rate Estimations 

 The model was used to estimate HR max from submaximal data for the walk test and run 

test separately. The accuracy of the model was compared to traditional equations used to 

estimate HR max. The results can be seen in Table 3. 

 

 Table 3. Comparison of HR max estimations 

 R2 
SEE 

(bpm) 

220 - Age -0.12 9.7 

208 – 0.7*Age 0.14 8.5 

DSM-GA: Walk -3.68 19.9 

DSM-GA: Run -4.38 21.4 

 

 Dependent samples t-tests were used to determine if each HR max estimation 

significantly differed from the measured value. The mean from the model estimation was 

significantly different from the mean of the true HR values for walking (p = 0.02) and running (p 

< 0.01). The mean of the 220 – age equation was significantly different than the mean for the 

true HR max values (p = 0.01). The mean of the 208 – 0.7 * age was not significantly different 

than the mean for the true HR max values (p = 0.64). Line of identity plots for the model and the 

non-exercise equations can be seen in Figure 4. 
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Figure 4. HR max predictions from the (a) 220 – Age equation, (b) 208 – .7*age equation, (c) 

walking model, and (d) running model. 
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VO2 Max Estimations 

 The model was used to estimate VO2 max from submaximal VO2 data for the walk test 

and run test separately. The accuracy of the model was compared to the Ebbeling single-stage 

treadmill test, the Jackson and George non-exercise equations, and the maximal Bruce protocol 

equation. The results can be seen in Table 4. 

 

 Table 4. Comparison of VO2 max estimations 

 R2 
SEE 

(ml/kg/min) 

DSM-GA: Walk -2.62 18.67 

DSM-GA: Run -2.20 17.54 

Ebbeling Single-stage 0.17 8.94 

Jackson Non-exercise -0.30 11.21 

George Non-exercise 0.10 9.32 

Bruce (maximal) -0.17 10.61 

 

Dependent samples t-tests were used to determine if each VO2 max estimation 

significantly differed from the measured value. The model estimates were significantly different 

from the experimental measures for both walking (p < 0.001) and running (p < 0.001). The VO2 

max estimations were significantly different than the true VO2 max values for the Jackson (p < 

0.001) and George (p < 0.001) equation. The Bruce equation was also significantly different than 

the measured value (p < 0.001). The Ebbeling single-stage treadmill test was not significantly 

different than the measured VO2 max mean (p = 0.41). Line of identity plots for each of the 

prediction methods can be seen in Figure 5. 
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Figure 5. Line of identity plots comparing the VO2 max predictions to the experimental values 

for the (a) George equation, (b) Jackson equation, (c) Ebbeling single-stage test, (d) Bruce 

equation, (e) DSM-GA: Walk estimation, and (f) DSM-GA: Run estimation. 
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ARTIFICIAL NEURAL NETWORK 

The accuracy of an ANN is influenced by the number of hidden neurons. Increasing the 

number of hidden neurons improves the accuracy of the model, but can lead to overfitting the 

data, consequently reducing its generalizability. Previous studies by Mazzoleni et al. observed 

diminished returns in accuracy beyond 20 hidden neurons for HR/VO2 applications8,36. 

Therefore, this was selected for the final ANN. 

 

 

Time Series Predictions 

 The time series predictions from the ANN were highly correlated with the experimental 

VO2 for both walking (R2 = 0.79, SEE = 3.4 ml/kg/min) and running (R2 = 0.79, SEE = 3.8 

ml/kg/min). The line of identity plots for (a) walking and (b) running can be seen in Figure 6. 

Figure 7 provides an example time series plot for one subject’s VO2 prediction for (a) walking 

and (b) running.  
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Figure 6. Line of identity plot comparing the ANN VO2 prediction to the experimental values 

for (a) walking and (b) running 

 

 

Figure 7. Example time series plot of the ANN’s VO2 prediction for (a) walking and (b) running. 

 

VO2 Max Predictions 

 The time series predictions from the ANN were used as VO2 inputs for the DSM-GA, 

yielded estimations of VO2 max with only the measurement of HR data and exercise intensity. The 

VO2 max estimates were poorly correlated  with the experimental data from the CPET for both 

walking (R2 = -4.31, SEE = 22.6 ml/kg/min) and running (R2 = 5.40, SEE = 24.8 ml/kg/min). 

Figure 8 depicts the line of identity analysis for the VO2 max estimations from the ANN used in 

conjunction with the DSM-GA for (a) walking and (b) running. 
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Figure 8. Line of identity plots comparing the VO2 max predictions using data from the ANN to 

the experimental values for (a) walking and (b) running. 
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CHAPTER V 

 

DISCUSSION   

 Traditional methods for VO2 max prediction based on submaximal exercise bouts were 

dependent on linear systems and physiological assumptions9,11,21,26,27. Early studies by Akalan et 

al. and Jamnick et al. began to address these issues by eliminating age-based equations or 

assumptions of linearity9,40. Mazzoleni et al. continued this progression, developing a cycling 

model to eliminate both of these assumptions8,36. By using a dynamical demand function, it had 

the adaptability necessary for precise evaluation of cardiopulmonary function. This type of 

model performs best when given a dynamic protocol involving both on and off oxygen kinetics 

(ie. periods of increased workload and periods of decreased workload or rest). The present study 

built upon the work of Mazzoleni et al., attempting to develop a model for treadmill walking and 

running. The purpose of this study was to evaluate the accuracy of a DSM and GA for predicting 

HR max and VO2 max, as well as VO2 kinetics during walking and running at varied intensities. 

The secondary purpose of this study was to predict VO2 kinetics and VO2 max using HR and 

exercise intensity data by incorporating an ANN into the model. 

 

VO2 Max 

 The presence of a plateau in VO2 is a highly debated topic in exercise physiology17. Only 

six of the 26 subjects exhibited a plateau in oxygen uptake. While it is a good indicator that 
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someone has reached their maximum, a plateau is not seen in all individuals7,17. Therefore, 

determination of whether an individual reached VO2 max requires 3 of the 5 following criteria: 

(1) plateau of ≤ 0.15 L⋅min-1; (2) respiratory exchange ratio (RER) > 1.15 (3) blood lactate 

concentration ≥ 8 mmol⋅L-1; (4) RPE > 18; (5) HR within 10bpm of predicted HR max. 

Significant debate over all of these criteria exists14,17. In the present study, only seven of the 26 

subjects exhibited an RER > 1.15. These seven subjects had low VO2 max values (M = 51.43, 

SD = 6.91) compared to the overall subject pool (M = 61.32, SD = 9.61). This makes sense, as 

someone who is less aerobically trained and/or less fit would be forced to rely more heavily on 

anaerobic metabolism in order to meet the metabolic demand. Every subject had lactate 

concentrations in excess of the criteria ( ≥ 8 mmol⋅L-1 [M = 13.79, SD = 2.35]). Twenty-two out 

of 26 subjects came within 10 bpm of their predicted maximum heart rate, as determined by the 

“220-Age” equation. It is worth noting that 10 bpm is a rather arbitrary number, and points out 

the inaccuracy of such equations. Twenty-four out of the 26 subjects had an RPE of 18 or higher, 

while two had an RPE of 17 (M = 18.73, SD = 0.72). However,  RPE is a highly subjective 

measure and it can be difficult to assess RPE right at the end of a maximal effort17,18. 

 The current study utilized the Bruce protocol because it is one of the most widely 

accepted treadmill protocols for VO2 max assessment and it is known to elicit increased muscle 

mass activation due to large increases in grade41,42. While widely accepted, it is not without 

limitations. Particularly, it is characterized by a large increase in gradient relative to speed. This 

can cause runners to experience muscular fatigue and decreased efficiency if they are not used to 

running uphill43. Additionally, it is generally accepted that maximal CPETs lasting 8-12 minutes 

will elicit the highest VO2 max values43. The test length in the present study was longer than this 

interval (M = 14.29 min, SD = 1.88 min). 
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 Another issue related to the determination of VO2 max is the data averaging technique 

utilized38,44. VO2 data has a lot of noise because it is an indirect measurement with great 

variability from breath to breath. The goal of data averaging is to minimize noise and 

differentiate high VO2 values due to inherent variability from those due to physiological 

increases in VO2. However, over-smoothing can lead to underestimation of VO2 responses and 

VO2  max. Meyers et al. found that averages from single-breath to 60-second averaging can 

impact VO2 measures by 20%45. Regardless of technique and rationale, exercise physiologists 

need to begin stating their methodology to allow comparison. Based on prior evidence from 

Robergs et al. and Astorino et al., the following method was used in the present study for the 

determination of VO2 max. VO2 data was exported in the 8-breath average format from the 

metabolic cart. VO2 max was calculated by taking the average of the three highest measures 

obtained during the last minute of the test. 

 

Time Series Predictions (HR & VO2 kinetics) 

Dynamical System Model & Genetic Algorithm 

  In terms of fitting the data, the model tracked HR and VO2 responses quite well. As 

anticipated, the predictions were more accurate for walking (HR: R2 = 0.97 ± 0.03, SEE = 3.1 ± 

0.3 bpm; VO2: R
2 = .92 ± 0.07, SEE = 1.9 ± 1.2 ml/kg/min) than for running (HR: R2 = 0.96 ± 

0.03 , SEE = 3.7 ± 0.5 bpm ; VO2: R
2 = .88 ± 0.10, SEE = 2.7 ± 1.8 ml/kg/min). One potential 

reason for this is that walking allows more diverse inputs. By switching between a slow walk on 

flat ground and a brisk walk with a large incline, the intensity can change rather dramatically, 
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providing the model with inputs across a wide range of intensities. On the contrary, running has a 

narrow window. In order to maintain a run, the speed must be kept above ~4.5 mph. In order for 

the test to be submaximal, the speed needs to be kept at a reasonably slow pace. This means the 

intensity will not fluctuate as drastically, as the minimum energy cost for running is still 

somewhat high. As evidenced by the time series plots in Figure 3, the walk test had nice 

transient peaks and valleys, whereas the running data had more noise and less variation.  

Overall, the model was not as accurate as the previously tested cycling model developed 

by our team, which was based on power and cadence8,36. One potential reason for this is the 

biomechanical differences from person to person21,36. Another hindrance for the model in the 

present study is that there were instances in multiple subjects where HR and VO2 increased 

without an increase in exercise intensity. One potential reason for this that may not be accounted 

for in the model is the braking phenomenon on a treadmill that is decelerating. Going from the 

higher to lower intensites during the protocol, the subjects were forced to expend energy in order 

to slow down with the treadmill, potentially altering the physiological response during the 

transition phase. Running on a treadmill is biomechanically different than running on the ground, 

which could affect the applicability of the model46–48. Interestingly, in many of the data files, the 

subjects’ HR increased around 200 seconds, which is one minute into the recovery stage. 

Whether this is physiological or circumstantial is unclear. For instance, perhaps there is a 

physiological overcompensation to the recovery workload due to an imbalance between venous 

return and contractility. Or perhaps circumstances such as drying off with a towel or anticipating 

the next stage had an impact on HR. This could be due to, among other things, psychological 

factors and sympathetic stimulation. 

One important strength of the model is that it is able to account for inter-individual 
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differences in physiology and fitness without being given the information a priori. These 

differences are captured in the model parameters, which are estimated with the GA. However, 

perhaps the model at hand was not able to fully account for differences in biomechanics with the 

given parameters and parameter bounds. There is subjectivity related to where the parameter 

bounds are placed and the amount to which the GA is allowed to mutate.  

It is crucial to mention that although the time series predictions are impressive, they may 

not represent real-world solutions. Currently, the genetic algorithm is not converging on proper 

values for resting HR/VO2 and HR/VO2 max, yet it is able to give alternative values for the other 

parameters and still come up with a solution that has low residual error. This solution, though it 

has low error, represents an “artificial” solution that does not authentically depict physiological 

reality. Potential reasons for this will be discussed later. 

Another weakness of using this method to predict VO2 responses is that it still requires 

the measurement of VO2 data. This concern was addressed by the secondary purpose of this 

study—to predict VO2 responses with HR and exercise intensity data using an ANN. 

 

Artificial Neural Network 

The ANN was able to accurately predict VO2 responses throughout both the walking (R2 

= 0.79, SEE = 3.4 ml/kg/min) and running tests (R2 = 0.79, SEE = 3.8 ml/kg/min). The running 

predictions were less accurate at lower intensities, where the model tended to overestimate VO2 

responses. This could be due to voluntary ventilation or other factors occurring during the 

recovery stages (eg. wiping sweat with a towel, changing the spit tube, etc.). One significant 



 43

concern for the ANN is that the current methods are overfitting the data. Additionally, the 

narrow demographics of the subject pool limit the generalizability of the results. Further 

analyses, testing, and validation are necessary to generalize these findings. However, these 

preliminary findings suggest that ANNs may be useful for estimation of VO2 using only heart 

rate and exercise intensity as inputs. 

 

HR Max Estimations 

 The typical equations for predicting HR max performed horrendously. As seen in Table 

3, the ubiquitous “220 – age” equation would have been outperformed by a horizontal line at the 

mean of the data. The “208 – .7*age” performed slightly better, explaining 14% of the variance 

in HR max. Both of these equations had SEEs of ~9 bpm. Although non-exercise equations are 

simple and work well for populations as a whole, they make assumptions based on age that 

diminish their ability to accurately estimate a specific individual’s HR max. Non-linear 

mathematical models can potentially provide greater accuracy by reducing these assumptions. 

 Unfortunately, the current model yielded inconsistent results for both walking (R2 = -

3.68, SEE = 19.9 bpm) and running (R2 = -4.38, SEE = 21.4 bpm) due to non-convergence. 

Rather than converging on an inaccurate result, it did not converge at all. Meaning, each time the 

model is run, it gives a vastly different output for HR max. This major limitation will be 

discussed later. 
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VO2 Max Estimations 

VO2 max estimations from previously cited methods had a great degree of variability. As 

seen in Table 4, even the best method, which involved an exercise bout, had a SEE of almost 9 

ml/kg/min25. It is worth noting that these methods may have been particularly innacurate for the 

subject pool in the present study most likely due to a narrow age range and exceptionally high 

fitness. Regardless, the non-exercise equations, single-stage treadmill test, and Bruce equation 

(an equation using data collected during the CPET) provided less than ideal estimates of VO2 

max. Interestingly, the Bruce equation performed very poorly, despite the fact that it uses data 

from a maximal bout.  

Just as with HR, the current model gave inconsistent VO2 max predictions for both 

walking and running. Although there is potential for a DSM to be used in conjunction with a 

heuristic parameter estimation method to predict VO2 max, the current model has not been 

optimized. When using predictions from the ANN, the accuracy decreased for walking and 

running which again, had poor results due to issues with the model. These issues will now be 

addressed. These predictinos were especially bad, as many of the predictions hit the upper bound 

limit of 85 ml/kg/min (Figure 8). 

 

Potential Issues 

 The current model is able to accurately predict HR/VO2 responses to varied exercise 

intenisties, but not maximal values. Although it can fit the data quite well, it is doing so with 

artificial rather than real-world solutions. For instance, the resting HR and HR max may be 
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wrong for an individual, but the model can find alternative values for C0-C5 that allow the 

prediction to fit the data rather well. Although this solution has low residual error, it does not 

represent physiological reality since we know the HR values of the estimations are off.  

One potential reason for this is that the model may still be missing a parameter. Perhaps 

adding stride length, cadence, or acceleration to the model would improve its accuracy. 

Biomechanical efficiency varies greatly from person to person, and the current model may be 

unable to account for this. Another likely issue is overly-broad parameter bounds. Since the 

parameters represent real-world values (eg. C1 is the degree to which the speed of the treadmill 

alters the HR/VO2 response), it makes sense that each value should remain within certain limits. 

Although the precise values will vary from person to person, there may be an optimal range that 

would allow the model to converge more consistently. If the model is able to latch onto a “good” 

(ie. low-error) solution based on physiological reality, it may be able to more consistently 

converge on HR/VO2 max and avoid “good” (ie. low-error) solutions with unrealistic values 

(based on physiology). Even if the time series data and overall error is slightly higher, this would 

represent a “better” solution, since the goal is to model physiological responses rather than 

simply find a mathematical solution that matches measured data. Currently, if the model is run 

multiple times, it will yield different results for HR/VO2 max each time. Thus, the issue is not 

that it is converging on the wrong result and has poor accuracy. Rather, it is not converging at 

all, and is giving any HR/VO2 max value that, in combination with the other parameters, will 

give a low-error solution. Although a solution may have low error, that does imply that it is a 

good solution for the current application, since it represents an artificial solution. Further 

refinement of the model and parameter bounds are needed in order to make this DSM-GA usable 

for the prediction of HR max and VO2 max. 
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Practical Applications 

Dynamical System Model & Genetic Algorithm 

This study elucidates the challenges to using a DSM-GA to capture the non-linear 

dynamics of HR and VO2 responses during walking and running. However, if these challenges 

can be overcome, a model of this type would be extremely useful for the prediction of 

physiological functions. As stressed in the introduction, VO2 max is a critical metric for the 

assessment of fitness in athletes and clinical populations alike. Accurately VO2 max estimates 

without the need for a maximal exercise test would be invaluable, especially in clinical settings 

where lack of time, money, and space are major obstacles. Once optimized for the treadmill, this 

model could be adapted to other forms of exercise such as stair stepping or swimming. While a 

properly converging DSM-GA may be a useful tool for the prediction of HR kinetics and HR 

max, it is limited by the fact that is still requires VO2 measurement. This makes it useful in a 

laboratory setting, but not in the real world. However, the ANN is able to address this issue, 

arguably making it the more practical aspect of this study. 

 

Artificial Neural Network 

This machine learning approach to VO2 prediction has significant implications for 

training, rehabilitation, and evaluation. Athletes and coaches are always seeking to find the 

balance between high training loads and recovery. An ANN-based approach could potentially 

enable athletes to monitor their VO2 response during exercise without the use of expensive and 
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cumbersome equipment. Additionally, many high-level athletes try to train at or around their 

lactate threshold, which can be difficult without having access to real-time VO2 data.  

For clinical populations, VO2 kinetics may be used to identify abnormalities in aerobic 

responses and potential disease development49. VO2 is also important for the assessment of heart 

failure disease severity and eligibility50. Accurate assessment of exercise intensity would 

increase the efficacy and safety of exercise evaluations and training programs. In healthy 

individuals, real-time VO2 estimates may improve the accuracy of energy expenditure 

estimations in wearable devices, which have had poor accuracy to date51. Other predictions can 

be made from real-time VO2 estimates during exercise, including cardiac output and stroke 

volume52. Accurate assessment of VO2 max without the need to perform a maximal 

cardiopulmonary exercise test would dramatically increase the accessibility of VO2 max, and 

potentially allow it to become a vital sign53. The current study does not deal directly with these 

potential applications, but it is a preliminary study demonstrating the usefulness of such a tool 

for predicting VO2 responses. 

 

Limitations 

The primary limitation of this project is that the model is not yet converging properly. 

Although the R2 is very high, the output represents an artificial solution. Further refinement is 

necessary for this model to have any practical applications. Another key limitation is the narrow 

demographics of the subject pool. The results can only be generalized to moderately active, 

healthy males who have typical heart rate responses and cardiovascular physiology. This is 

especially true for the ANN. A diverse subject pool with data from people of all walks of life and 
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abilities would be needed to train an ANN that works for the population at large. Another 

limitation, discussed previously, is the Bruce treadmill protocol’s appropriateness for the 

subjects in this study. 

The subjective nature of mathematical modeling also had an impact on the present study. 

For the GA to test parameters and begin converging on a solution, it must be given bounds and 

initial guesses. There is subjectivity to how wide/narrow to make these bounds and how large to 

make the mutation standard deviation/generation limit. Increasing the mutation standard 

deviation and/or the generation limit allows the model to explore more potential solutions, which 

is helpful so that it does not get stuck at local maximums or minimums. However, it makes the 

model take longer to run, as initial guesses may be way off from the actual solution. It also 

increases the likelihood of latching on to an artificial solution that may have low error.  

A major limitation to the GA is that it can only predict VO2 responses from VO2 data, 

which is cumbersome to measure. This can potentially be addressed by the ANN (the secondary 

purpose of this current study), which allows the prediction of VO2 responses from measured HR 

data. However, predicting VO2 max from estimated VO2 response introduces another level of 

potential error. Finally, there is subjectivity in the ANN regarding how many hidden neurons to 

use and what percentage of the data to use for training, testing, and validation.  

 

Future Research 

 Future research should investigate other parameters that could potentially be added to the 

model to improve its accuracy. For instance, oxygen saturation sensors on the calves might 
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explain more of the variance in oxygen uptake. If someone has an abnormal HR response, 

oxygen saturation at the calf may be a meaningful was to see how much oxygen is actually being 

utilized during activity. Perhaps even the delay in oxygen delivery to the working muscle 

(relative to the increase in intensity or HR) would provide meaningful information about how the 

cardiorespiratory system is functioning. Additionally, easy-to-obtain gait metrics should be 

added to the model to see if they can account for individual differences in biomechanical 

efficiency and help the model converge properly. 

 Future research should explore other methods of mathematical modeling and machine 

learning to predict physiological outcomes. Wearables are becoming increasingly popular and 

collecting substantial amounts of data51. Mathematical modeling and machine learning can be 

used to decipher meaningful information amidst the noise. For instance, Apple Watches and 

FitBits have continuous access to HR and accelerometer data. These metrics can be used to 

estimate VO2 max without the need for a specific exercise protocol, but current methods have a 

large degree of error. This could make VO2 max accessible to their health care providers with 

virtually no added time or burden. 

 

Conclusions 

 The purpose of this study was to predict HR max, VO2 max, and HR/VO2 kinetics during 

walking and running at various intensities using a DSM and GA. HR/VO2 responses during 

submaximal intensities were tracked very well by the DSM and ANN, however the estimations 

of HR max and VO2 max encountered significant challenges, resulting in less than optimum 

accuracy. This study provided preliminary data and brought to light some of the potential issues 
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with using a model like this to predict HR and VO2 kinetics. A properly converging model would 

have numerous applications, the most noteworthy of which would be the ability to predict HR 

max and VO2 max with greater accuracy than current methods which rely on a variety of 

assumptions; VO2 max predictions are of particular interest. Although somewhat useful, DSM-

GA predictions of VO2 max still require the measurement of VO2 data, which is a serious 

limitation outside of the laboratory. Therefore, a secondary purpose of this study was to utilize 

an ANN to predict VO2 (and subsequently, VO2 max) from HR data. ANNs were found to be a 

useful and simple tool for predicting VO2 responses in healthy males with reasonable accuracy. 

Future studies may be able to improve upon this accuracy through refinement of data processing 

produces and the use of additional sensors. All in all, this study elucidated some of the benefits 

and challenges of using mathematical modeling and machine learning for the prediction of 

physiological functions.
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APPENDIX A: PRE-ASSESSMENT GUIDELINES 

 
UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL 

Claudio Battaglini, Ph.D. FACSM. 

Department of Exercise and Sport Sciences 

105 Fetzer  Hall, CB # 8700 

(919) 843-6045 / Email: claudio@email.unc.edu 

 

 

Pre-Test Guidelines 
 

1. Avoid eating 2 hours prior to testing. 

2. Void completely before testing. 

3. Maintain proper hydration prior to testing. 

4. Please wear appropriate clothing/shoes for testing (running shorts/shirt/shoes) 

5. No exercise 24 hours prior to testing. 

6. No alcohol consumption 24 hours prior to testing. 

7. No diuretic medications 7 days prior to testing. 
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APPENDIX B: PHYSICAL ACTIVITY READINESS QUESTIONNAIRE 
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APPENDIX C: MEDICAL HISTORY QUESTIONNAIRE  

 

 

Department of Exercise and Sport Science 

Medical History 

 

Subject:__________________________ ID: ___________  Telephone:______________ 

 

Address:________________________________________________________________ 

 

Occupation:___________________________________  Age:______________________ 

 

          YES NO 

Patient History 

1. How would you describe your general health at present? 

Excellent______ Good_______ Fair______ Poor______ 

2.   Do you have any health problems at the present time?   _____ _____ 

3.  If yes, please describe:          

            

4.  Have you ever been told you have heart trouble?    _____ _____ 

5.  If yes, please describe:          

            

6. Is there any chance of you being pregnant at this time?  Yes:   No:   

7. Is there any chance that you may become pregnant during span of the study?  

 Yes:    No:    

8. Have you had consistent menstrual periods for the last 3 

months?                                                      Yes:_________          No:________ 

If no, when was your last period____________________________________ 

9.  Do you ever get pain in your chest?     _____ _____ 

10.  Do you ever feel light-headed or have you ever fainted?   _____ _____ 

11.  If yes, please describe:          

            

12.  Have you ever been told that your blood pressure has been elevated? _____ _____ 

13.  If yes, please describe:          

            

14.  Have you ever had difficulty breathing either at rest or with exertion? _____ _____ 

15.  If yes, please describe:          

            

16.  Are you now, or have you been in the past 5 years, under a doctor’s care for any reason? 

        _____ _____ 

17.  If yes for what reason?          

            

18.  Have you been in the hospital in the past 5 years?   _____ _____ 
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19.  If yes, for what reason?          

            

20.  Have you ever experienced an epileptic seizure or been informed that you have epilepsy? 

        _____ _____ 

21.  Have you ever been treated for infectious mononucleosis, hepatitis, pneumonia, or another 

infectious disease during the past year?    _____ _____ 

22.  If yes, name the disease:          

23.  Have you ever been treated for or told you might have diabetes? _____ _____ 24.  

Have you ever been treated for or told you might or low blood sugar? _____ _____ 

25.  Do you have any known allergies to drugs?    _____ _____ 

26.  If so, what?           

            

27.  Have you ever been “knocked-out” or experienced a concussion? _____ _____ 

28.  If yes, have you been “knocked-out” more than once?   _____ _____ 

29.  Have you ever experienced heat stroke or heat exhaustion?  _____ _____ 

30.  If yes, when?           

            

31.  Have you ever had any additional illnesses or operations? (Other than childhood diseases) 

        _____ _____ 

32.  If yes, please indicate specific illness or operations:      

            

33.  Are you now taking any pills or medications?    _____ _____ 

34.  If yes, please list:           

            

35.  Have you had any recent (within 1 year) difficulties with your: 

 a.  Feet         _____ _____ 

 b.  Legs        _____ _____ 

 c.  Back        _____ _____ 

 

Family History 

36.  Has anyone in your family (grandparent, father, mother, and/or sibling) experienced any of 

the following? 

 a.  Sudden death       _____ _____ 

 b.  Cardiac disease       _____ _____ 

 c.  Marfan’s syndrome      _____ _____ 

 

Mental History 

37.  Have you ever experienced depression?     _____ _____ 

38.  If yes, did you seek the advice of a doctor?    _____ _____ 

39.  Have you ever been told you have or has a doctor diagnosed you with panic disorder, 

obsessive-compulsive disorder, clinical depression, bipolar disorder, or any other psychological 

disease?       _____ _____ 

40.  If yes, please list condition and if you are currently taking any medication. 

Condition      Medication 
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Bone and Joint History 

41.  Have you ever been treated for Osgood-Schlatter’s disease?  _____ _____ 

42.  Have you ever had any injury to your neck involving nerves or  

vertebrae?         _____ _____ 

43.  Have you ever had a shoulder dislocation, separation, or other injury of the shoulder that 

incapacitated you for a week or longer?     _____ _____ 

44.  Have you ever been advised to or have you had surgery to correct a shoulder condition? 

        _____ _____ 

45.  Have you ever experienced any injury to your arms, elbows, or wrists?_____ _____ 

46.  If yes, indicate location and type of injury:       

            

47.  Do you experience pain in your back?     _____ _____ 

48.  Have you ever had an injury to your back?    _____ _____ 

49.  If yes, did you seek the advice of a doctor?    _____ _____ 

50.  Have you ever been told that you injured the ligaments or cartilage of either knee joint? 

         _____ _____ 

51.  Do you think you have a trick knee?     _____ _____ 

52.  Do you have a pin, screw, or plate somewhere in your body as the result of bone or joint 

surgery that presently limits your physical capacity?   _____ ____ 

53.  If yes, indicate where:          

            

54.  Have you ever had a bone graft or spinal fusion?   _____ _____ 

 

Activity History 

55.  During your early childhood (to age 12) would you say you were: 

 Very active ____ Quite active____ Moderately active____ Seldom active____ 

56.  During your adolescent years (age 13-18) would you say you were: 

 Very active ____ Quite active____ Moderately active____ Seldom active____ 

57.  Did you participate in: 

a. Intramural school sports?      _____ _____ 

b. Community sponsored sports?     _____ _____ 

c. Varsity school sports?      _____ _____ 

d. Active family recreation?      _____ _____ 

58.  Since leaving high school, how active have you been? 

 Very active ____ Quite active____  Active____  Inactive____ 

59.  Do you participate in any vigorous activity at present?   _____ _____ 

60.  If yes, please list: 

Activity  Frequency   Duration  Intensity 
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61.  How would you describe your present state of fitness? 

Excellent_____ Good_____ Fair_____ Poor_____ 

62.  Please list the type(s) of work you have been doing for the previous ten years: 

Year  Work    Indoor/Outdoor Location (city/state) 

             

             

             

             

         

63.  Whom shall we notify in case of emergency? 

 Name:            

 Phone: (Home)     (Work)     

 Address:           

64.  Name and address of personal physician:       

             

           

 

All of the above questions have been answered completely and truthfully to the best of my 

knowledge. 

 

Signature:        Date:     
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APPENDIX D: PHYSICAL ACTIVITY RATING QUESTIONNAIRE  

 

 

Physical Activity Rating (PA-R) 
 

Select the number that best describes your general activity level for the previous month: 

 
 

Category 1.   

Did not participate regularly in programmed recreational sport or heavy physical 

activity. 

 
0 - Avoid walking or exertion, e.g., always use elevator, drive whenever possible 

instead of walking. 

1 - Walk for pleasure, routinely use stairs, occasionally exercise sufficiently to 

cause heavy breathing or perspiration. 

 
Category 2.   

Participated regularly in recreation or work requiring modest physical activity, such as 

horseback riding, calisthenics, gymnastics, table tennis, bowling, weight lifting, yard 

work. 

 
2 - 10 to 60 minutes per week. 

3 - Over one hour per week 

 

Category 3. 

Participated regularly in heavy physical exercise such as running or jogging, swimming, 

cycling, rowing, skipping rope, running in place or engaging in vigorous aerobic activity-

type exercise such as tennis, basketball, or handball. 

 
4 - Run less than one mile per week or spend less than 30 minutes per week in 

comparable physical activity. 

5 - Run 1 to 5 miles per week or spend 30 to 60 minutes per week in comparable 

physical activity. 

6 - Run 5 to 10 miles per week or spend 1 to 3 hours per week in comparable 

physical activity. 

7 - Run over 10 miles per week or spend over 3 hours per week in comparable 

physical activity29,54.  
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Physical Activity Rating (PA-R)  
 

Select the number that best describes your general activity level for the previous 6 months: 

 
0 avoid walking or exertion; e.g., always use elevator, drive when possible 

instead of walking 

1 light activity: walk for pleasure, routinely use stairs, occasionally exercise 

sufficiently to cause heavy breathing or perspiration 

2 moderate activity: 10 to 60 minutes per week of moderate activity; such as 

golf, horseback riding, calisthenics, table tennis, bowling, weight lifting, yard 

work, cleaning house, walking for exercise 

3          moderate activity: over 1 hour per week of moderate activity as described 

above 

4 vigorous activity: run less than 1 mile per week or spend less than 30 

minutes per week in comparable activity such as running or jogging, 

lap swimming, cycling, rowing, aerobics, skipping rope, running in 

place, or engaging in vigorous aerobic-type activity such as soccer, 

basketball, tennis, racquetball, or handball. 

5 vigorous activity: run 1 mile to less than 5 miles per week, or spend 30 

minutes to less than 60 minutes per week in comparable physical activity as 

described in 4 above. 

6          vigorous activity: run 5 miles to less than 10 miles per week or spend 1 hour to 

less than 

3 hours per seek in comparable physical activity as described 

in 4 above 

7 Vigorous activity: run 10 miles to less than 15 miles per week or spend 3 

hours to less than 6 hours per week in comparable physical activity as 

described in 4 above 

8 Vigorous activity: run 15 miles to less than 20 miles per week or spend 6 

hours to less than 7 hours per week in comparable physical activity as 

described in 4 above 

9 Vigorous activity: run 20-25 miles per week or spend 7 to 8 hours  

per week in comparable physical activity as described in 4 above 

10 Vigorous activity: run over 25 miles per week or spend over 8 hours 

per week in comparable physical activity as described in 4 above28
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APPENDIX E: PERCEIVED FUNCTIONAL ABILITY QUESTIONNAIRE 

 

Perceived Functional Ability (PFA) 

  
Suppose you were going to exercise continuously on an indoor track for 1 mile. Which 

exercise pace is just right for you –not too easy and not too hard? 

 
1          Walking at a slow pace (18 minutes per mile or more) 

2          Walking at a slow pace (17-18 minutes per mile) 

3          Walking at a medium pace (16-17 minutes per mile) 

4          Walking at a medium pace (15-16 minutes per mile) 

5          Walking at a fast pace (14-15 minutes per mile) 

6          Walking at a fast pace (13-14 minutes per mile) 

7          Jogging at a slow pace (12-13 minutes per mile) 

8          Jogging at a slow pace (11-12 minutes per mile) 

9          Jogging at a medium pace (10-11 minutes per mile) 

10        Jogging at a medium pace (9-10 minutes per mile) 

11        Jogging at a fast pace (8-9 minutes per mile) 

12        Jogging at a fast pace (7-8 minutes per mile) 

13        Running at a fast pace (7 minutes per mile or less) 

 
How fast could you cover a distance of 3 miles and NOT become breathless or overly 

fatigued? Be realistic. 

 
1          I could walk the entire distance at a slow pace (18 minutes per mile or more) 

2          I could walk the entire distance at a slow pace (17-18 minutes per mile) 

3          I could walk the entire distance at a medium pace (16-17 minutes per mile) 

4          I could walk the entire distance at a medium pace (15-16 minutes per mile) 
5          I could walk the entire distance at a fast pace (14-15 minutes per mile) 
6          I could walk the entire distance at a fast pace (13-14 minutes per mile) 

7          I could jog the entire distance at a slow pace (12-13 minutes per mile) 

8          I could jog the entire distance at a slow pace (11-12 minutes per mile) 

9          I could jog the entire distance at a medium pace (10-11 minutes per mile) 

10        I could jog the entire distance at a medium pace (9-10 minutes per mile) 

11        I could jog the entire distance at a fast pace (8-9 minutes per mile) 

12        I could jog the entire distance at a fast pace (7-8 minutes per mile) 

13        I could run the entire distance at a fast pace (7 minutes per mile or less)28
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APPENDIX F: BRUCE TREADMILL PROTOCOL 

 

 

Bruce treadmill test protocol 
 

The Bruce treadmill test protocol was designed in 1963 by Robert. A. Bruce, MD, as non-

invasive test to assess patients with suspected heart disease. In a clinical setting, the Bruce 

treadmill test is sometimes called a stress test or exercise tolerance test.  

Today, the Bruce Protocol is also one common method for estimating VO2 max in athletes. 

VO2 max, or maximal oxygen uptake, is one factor that can determine an athlete's capacity 

to perform sustained exercise and is linked to aerobic endurance. VO2 max refers to the 

maximum amount of oxygen that an individual can utilize during intense or maximal 

exercise. It is measured as "milliliters of oxygen used in one minute per kilogram of body 

weight" (ml/kg/min). 

The Bruce Treadmill Test is an indirect test that estimates VO2 max using a formula rather 

than using direct measurements that require the collection and measurement of the volume 

and oxygen concentration of inhaled and exhaled air. This determines how much oxygen the 

athlete is using.  

The Bruce Protocol 

The Bruce Protocol is a maximal exercise test where the athlete works to complete 

exhaustion as the treadmill speed and incline is increased every three minutes (See chart). 

The length of time on the treadmill is the test score and can be used to estimate the VO2 

max value. During the test, heart rate, blood pressure and ratings of perceived exertion are 

often also collected.  

Bruce Treadmill Test Stages 

Stage 1 = 1.7 mph at 10% Grade 

Stage 2 = 2.5 mph at 12% Grade 

Stage 3 = 3.4 mph at 14% Grade 

Stage 4 = 4.2 mph at 16% Grade 

Stage 5 = 5.0 mph at 18% Grade 

Stage 6 = 5.5 mph at 20% Grade 

Stage 7 = 6.0 mph at 22% Grade 

Stage 8 = 6.5 mph at 24% Grade 

Stage 9 = 7.0 mph at 26% Grade 

The Bruce Protocol Formula for Estimating VO2 Max 

 For Men VO2 max = 14.8 - (1.379 x T) + (0.451 x T²) - (0.012 x T³) 

 For Women VO2 max = 4.38 x T - 3.9 

 T = Total time on the treadmill measured as a fraction of a minute (ie: A test time of 9 
minutes 30 seconds would be written as T=9.5). 

Because this is a maximal exercise test, it should not be performed without a physician's 

approval and without reasonable safety accommodations and supervision.  
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Taken from: Fitness Tests to Predict VO2 Max. 

https://sites.uni.edu/dolgener/Fitness_Assessment/CV_Fitness_Tests.pdf 

  

Bruce Protocol Norms for Men 

VO2 Max Norms for Men - Measured in ml/kg/min  

Age Very Poor Poor Fair Good Excellent Superior 

13-19 <35.0 35.0-38.3 38.4-45.1 45.2-50.9 51.0-55.9 >55.9 

20-29 <33.0 33.0-36.4 36.5-42.4 42.5-46.4 46.5-52.4 >52.4 

30-39 <31.5 31.5-35.4 35.5-40.9 41.0-44.9 45.0-49.4 >49.4 

40-49 <30.2 30.2-33.5 33.6-38.9 39.0-43.7 43.8-48.0 >48.0 

50-59 <26.1 26.1-30.9 31.0-35.7 35.8-40.9 41.0-45.3 >45.3 

60+ <20.5 20.5-26.0 26.1-32.2 32.3-36.4 36.5-44.2 >44.2 

Also See: VO2 Max Norms for Women  

 

VO2 Max Norms for Women 

VO2 Max values for Women as measured in ml/kg/min  

Age Very Poor Poor Fair Good Excellent Superior 

13-19 <25.0 25.0-30.9 31.0-34.9 35.0-38.9 39.0-41.9 >41.9 

20-29 <23.6 23.6-28.9 29.0-32.9 33.0-36.9 37.0-41.0 >41.0 

30-39 <22.8 22.8-26.9 27.0-31.4 31.5-35.6 35.7-40.0 >40.0 

40-49 <21.0 21.0-24.4 24.5-28.9 29.0-32.8 32.9-36.9 >36.9 

50-59 <20.2 20.2-22.7 22.8-26.9 27.0-31.4 31.5-35.7 >35.7 

60+ <17.5 17.5-20.1 20.2-24.4 24.5-30.2 30.3-31.4 >31.4 
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APPENDIX G: DATA COLLECTION SHEET 
 

 

Subject ID:    

 

Visit 1 
 

Height (cm):      Weight (kg):     

 

RHR:       RBP:     

 

PA-R Score:      PFA Score:    

 

Age:       Sleeve Size:    

 

 

 

VO2 Max Test     Date & Time:       
 

Height (cm):      Weight (kg):     

 

RHR:       RBP:     

 

Test Start (Parvo):     Test Stop (Parvo):   

 

 

Bruce Protocol 

 

Stage Speed Grade HR RPE 

1 1.7 10 
  

2 2.5 12 
  

3 3.4 14 
  

4 4.2 16 
  

5 5 18 
  

6 5.5 20 
  

7 6 22 
  

8 6.5 24 
  

9 7 26 
  

 

 

VO2 max (ml/kg/min):    HR max:   

 

Lactate (mmol/L):     RPE:    

 

Plateau: Yes  No   RER:    

Notes: 
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Subject ID:    
 

 

Submaximal Tests      Date & Time:     
 

Height (cm):      Weight (kg):     

 

RHR:       RBP:     

 

 

Single-stage Treadmill Test 

 

Predicted HR max:     50-70% HR max:   

 

Speed (mph):      Steady State HR:   

 

Test Start (Time):     Test Start (Time):   

 

Notes: 

 

 

 

 

 

 

Walking Protocol 

 

Test Start (Parvo):     Test Start (Garmin):   

 

Test Start (Time):     

 

Stage Time Speed Grade RPE 

Warm up 0:00 2 0 
 

1 1:00 3.5 12 
 

2 2:00 2 0 
 

3 4:00 3.5 14 
 

4 5:00 2 0 
 

5 7:00 3.5 16 
 

6 8:00 2 0  

Cool Down 10:00 0 0 
 

END 11:00 - - 
 

 

  

Notes: 



 

 64

Subject ID:   

 
 

Running Protocol 

 

Test Start (Parvo):     Test Start (Garmin):   

 

Test Start (Time):     

 

Stage Time Speed Grade RPE 

Warm up 0:00 4.5 0 
 

1 1:00 6.0 0 
 

2 2:00 4.5 0 
 

3 4:00 7.0 0 
 

4 5:00 4.5 0 
 

5 7:00 8.0 0 
 

6 8:00 4.5 0  

Cool Down 10:00 0 0 
 

END 11:00 - - 
 

 

 

 

Comments: 

 

 

              

 

              

 

              

 

              

 

              

 

              

 

              

 

              

 

 

  

Notes: 
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APPENDIX H: SINGLE-STAGE TREADMILL TEST 

 
 

 

Test Procedure 
The subject walks on a treadmill at a 5% grade for 4 min at a speed of 2.0, 

3.0, 4.0, or 4.5 mph. (For this lab, walk at 4.0 mph). The heart rate should be taken at the 

end of the 4-min stage but prior to stopping the walk.  If the heart rate cannot be obtained 

until the walk is discontinued, the heart rate should be taken as quickly as possible after 

stopping.  If you are palpating the heart rate, find the pulse as soon as you finish and count for 

10 seconds.  If you are using a heart monitor, take the heart rate just prior to stopping the test.  

VO2 max is computed using the formula 

 

VO2max (ml.kg-1.min-1) = 15.1 + (21.8 * Speed in mph) - (0.327 * HR) 

- (0.263 * Speed * Age) 
+ (5 .98 * 

Gender) 

+ (0.00504 * HR * 

Age) Where:  Gender = 1 for males; 0 for females 

Accuracy of Prediction 

R= 0.86, SEE= 4.85 ml.kg-1.min-1 
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APPENDIX I: NON-EXERCISE EQUATIONS 

 

 

The Jackson Non-Exercise Test 
 

Test Procedures 
The estimation of VO2max with this test requires a score from a simple exercise 

history questionnaire in addition to age, height, weight, and gender.  No exercise is 

performed but a measure of past exercise is determined by the questionnaire.  The VO2max 

is computed using the formula 

 

VO2max (ml.kg-1.min-1) = 56.363 + (1.921 * PA-R) - (0.381 * AGE) 

- (0.754 * BMI) + (10.987 * Gender) 

 
Where:  Male = 1, Female = 0 

BMI = Weight in kg / Height2 in meters 

PA-R = Score on the physical activity questionnaire (see appendix 3.5) 

 

Accuracy of Prediction 

R = 0.78 and SEE = 5.7 ml.kg-1.min-1 

 

 

 

The George Non-Exercise Test 
 

 
Test Procedures 
The estimation of VO2max from this test is similar to that of the Jackson Non-Exercise test.  

However, the activity level categories are more extensive for the George test and include a 
Perceived Functional Ability (PFA) scale as well as an expanded Physical Activity Rating (PA-
R) scale.  The VO2max is computed using the following formula: 
 

VO2max (ml
.
kg

-1.
min

-1  
) = 45.513 + (6.564 * Gender) – (0.749 * BMI) + (0.724 * PFA) 

+ (0.788 * PA-R) 

 
Where:  Gender = 1 for male and 0 for 

female; BMI = Weight in kg / 
Height

2 
in meters 

PFA = sum of both PFA scales on following pages 
PA-R = number form PA-R scale on following pages. 

 
Accuracy of Prediction 

R = 0.86 and SEE = 3.34 ml
.
kg

-1.
min

-1 
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