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ABSTRACT 
 

ELIZABETH PEMPE CHAPPELL: Characterization of heparan sulfate-protein interactions 
for synthetic heparin design 

(Under the direction of Jian Liu, Ph.D.) 
 
 

Heparin is a widely prescribed anticoagulant that has been in clinical use for over 70 

years. It is a natural product and a special form of heparan sulfate, a heterogeneous 

polysaccharide that is expressed as a proteoglycan on the surface of all animal tissues. In 

recent years, the development of a chemoenzymatic method to synthesize specific heparan 

sulfate polysaccharides and oligosaccharides has enabled studies of the structure-based 

interactions between negatively charged heparan sulfate and its protein binding partners.  

A synthetic version of heparin and its low-molecular-weight derivatives could have 

several advantages over the drugs that are currently available. First, a synthetic drug would 

evade the historically contaminated porcine intestine supply chain from which heparin is 

currently derived. In addition, the structure of the drug could be tailored for improved safety 

and efficacy and to meet the needs of different patient populations. In this dissertation, we 

sought to characterize structure-function relationships of heparan sulfate with several goals: 

to reduce binding to platelet factor 4, an initiating step in heparin-induced thrombocytopenia; 

to identify the structure required for binding to Stabilin receptors, which clear heparins via 

the liver rather than the kidneys; and to create a heparan sulfate structure that has optimum 

bioavailability and activity against factors of the coagulation cascade. Through biochemical, 

cell-based and in vivo assays, we determined that PF4 binding was decreased by Sulf-2 

treatment and by limiting the oligosaccharide length, that a 3-O-sulfated 10-mer is required 

for robust Stabilin binding, that a 19-mer will confer anti-IIa activity and that oligosaccharides 

as short as a 6-mer are bioavailable through subcutaneous injection.  
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CHAPTER I 

INTRODUCTION 

 

Heparan sulfate  

Heparan sulfate (HS) is a widely expressed carbohydrate. As the body’s most 

negatively charged molecule, it interacts with numerous proteins to regulate many biological 

functions relevant to human health and disease. These functions range from embryonic 

development and coagulation to inflammation and cancer metastasis. Heparan sulfate is 

part of the glycosaminoglycan family, the members of which contain long unbranched 

carbohydrates made up of repeating disaccharide units. Other members include keratan 

sulfate, dermatan sulfate, hyaluronan and chondroitin sulfate [1]. 

 

Heparan sulfate structure 

The bioactivity of HS is dependent on its structure, namely the location of 

electronegative sulfo groups along its backbone and the presence of iduronic acid (IdoA), 

glucuronic acid (GlcA) and glucosamine (GlcN) residues (Fig. 1.1). HS exists on the surface 

of animal cells and within the extracellular matrix as a proteoglycan consisting of long 

carbohydrate chains attached to a core protein. Cell surface HS proteoglycans include 

syndecans and glypicans; perlecan and agrin are the primary extracellular examples [2-4]. 

The HS chains are composed of repeating disaccharide units of uronic acid and 

glucosamine. The uronic acid is present as either glucuronic or iduronic acid and can be 

sulfated at the -OH on carbon 2 (2-O-sulfation). The glucosamine can be 6-O- and 3-O-
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sulfated, and its amine group can be acetylated, sulfated or unsubstituted (Fig. 1.1). The 

biological functions of HS proteoglycans are dominated by the HS side chains. 

 

 

 

Figure 1.1. Chemical structure of the disaccharides present in HS. GlcA, glucuronic acid; IdoA, 
iduronic acid; GlcN, glucosamine.  

 

 

 

This broad structural variation in the location of negative groups, in addition to 

variation in length and glycosidic bond position, allows HS to interact with different binding 

protein partners to display many biological functions. Although nonspecific ionic interactions 

between HS and proteins exist, the binding of HS to proteins can be specific. Thus, the 

preparation of unique HS chains with defined sulfation patterns and length is highly 

desirable, as they allow researchers to investigate the substrate specificity of HS-protein 

interactions and provide numerous therapeutic opportunities.   

 

HS biosynthetic enzymes 

HS biosynthesis occurs in the Golgi apparatus and is carried out by a series of 

enzymes (Figure 1.2). The synthesis of HS has two main components: chain elongation and 

modification of the individual sugars. In vivo, the HS chain is elongated by the Exostosin 

genes, Ext1 and Ext2 [5]. This process can be mimicked in vitro by two bacterial 

glycosyltransferases: N-acetylglucosaminyl transferase from the E. coli K5 strain, known as  
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Figure 1.2. Enzyme reactions in the synthesis of heparan sulfate. N-deacetylase/N-sulfotransferase 
replaces N-acetyl groups with N-sulfo groups. C5-epimerase converts glucuronic acid to iduronic acid. 
2-O-, 6-O- and 3-O-sulfotransferase add sulfation at their respective positions. 
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KfiA [6], and heparosan synthase-2 from Pasteurella multocida, or pmHS2 [7]. In laboratory 

syntheses, KfiA and pmHS2 are incubated with uridine 5’-diphospho-N-

trifluoroacetylglucosamine (UDP-NTFA) and UDP-GlcA, respectively; with each cycle of 

incubation, the oligosaccharide is elongated by one sugar unit [8]. GlcNTFA is used 

because it is easily chemically deacetylated to GlcNH2 for later N-sulfation.  

The N-deacetylase/N-sulfotransferase (NDST) enzyme is the first to modify an intact 

HS chain during biosynthesis, and its action is believed to direct the location of all 

subsequent sulfation reactions [9]. The 325-aa C-terminal region (constituting the N-

sulfotransferase domain) of NDST is commonly expressed and used for HS synthesis in 

vitro following chemical deacetylation [10], although recent studies have focused on 

expression of the entire NDST enzyme [11]. Sulfation reactions are carried out by incubating 

HS with a sulfotransferase and 3’-phosphoadenosine 5’-phosphosulfate (PAPS), a natural 

sulfate donor. 

Characterization of NDST-1 by Sheng et al. uncovered a unique substrate specificity 

for this enzyme [12]. Treatment of a synthetic dodecasaccharide substrate with NDST-1 

produced a variety of N-sulfated products containing clusters of GlcNS, suggesting that 

NDST-1 binds to HS at a random position, converts consecutive GlcNAc to GlcNS from the 

non-reducing to reducing end, then releases the substrate when it is five sugars away from 

the reducing end. There are a total of four isoforms of NDST; NDST-2, which is highly 

expressed in mast cells, is proposed to be involved in the synthesis of highly-sulfated 

heparin but not HS [13]. This was principally confirmed by the absence of heparin in mast 

cells from NDST-2 knockout mice [14]. The N-deacetylase and N-sulfotransferase activities 

of NDST-2 through -4 have been investigated, but their use in HS synthesis specifically has 

not been fully explored [15]. 

After N-sulfation, C5-epimerase (C5-epi) converts some D-glucuronic acid residues to 

L-iduronic acid by altering the configuration of carbon 5 [16]. C5-epimerase was recently 
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shown to exhibit a biphasic catalytic mode: depending on the substitution groups of the 

surrounding saccharide residues, the epimerization reaction is either reversible or 

irreversible. Using structurally defined oligosaccharides, Sheng et al. identified that C5-epi 

will act on a GlcA residue if the residue immediately upstream (towards the non-reducing 

end) is a GlcNS residue. If the residue three sugars upstream is GlcNS, GlcNH2 or not 

present, the reaction is reversible; if it is GlcNAc, the reaction is irreversible (Figure 1.3A) 

[17]. This finding will enable researchers to “lock” IdoA sugars in place and synthesize pure 

HS oligosaccharides containing IdoA during in vitro synthesis.  

A series of O-sulfotransferases then sulfate their respective positions on HS. 

Heparan sulfate 2-O-sulfotransferase (2-OST) catalyzes the transfer of an -OSO3H group 

from PAPS to IdoA or GlcA. It is present in one isoform and has approximately five-fold 

greater affinity for IdoA than for GlcA [18], although mutational analyses have suggested 

that the preference for IdoA over GlcA can be controlled through site-specific mutations [19].  

6-OST sulfates both GlcNAc and GlcNS to form GlcNAc6S and GlcNS6S, 

respectively. 6-OST isoforms, of which there are three, appear to sulfate the same 

substrates [20]; however, placement of 6-O-sulfo groups in oligosaccharides can be 

controlled somewhat by the enzymatic reaction time and by elongating oligosaccharides 

already containing 6-O-sulfated glucosamine [21]. A combination of 6-OST-1 and -3 was 

demonstrated to prefer GlcNAc residues close to the reducing end of oligosaccharide 

substrates, but placement of a single 6-O-sulfo group in an oligosaccharide remains a 

challenge [21, 22].  

3-OST adds a sulfo group to the 3-OH position of GlcN residues and is present in 

seven isoforms. In endogenous HS, 3-O-sulfation is a relatively rare modification, sulfating 

only a small component of disaccharides [23]. However, the presence of 3-O-sulfation is 

critical for multiple types of HS activity, including binding to antithrombin, gD (a herpes 

simplex virus type 1 entry receptor) and Stabilin-1/2 (heparin clearance receptors) [24, 25].   
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Figure 1.3. Substrate recognition of C5-epimerase and 3OST. A. The epimerization reaction of C5-epi 
is reversible or irreversible depending on the GlcN three sugars towards the nonreducing end of the 
glucuronic acid to be modified. The asterisk indicates a GlcA that could be epimerized if the sugar to 
the immediate left is GlcNS. B. Substrates of the seven 3OST isoforms. The position that will carry 
the 3-O-sulfo group is shown in blue. 

 

 

 

The 3-OST isoforms exhibit greater than 60% homology in their sulfotransferase 

domains [9], and the substrate recognition of the 3-OSTs generally falls into one of three 

types, depending on the sugar linked to the non-reducing side of the glucosamine to be 

modified. 3-OST-1 will transfer a sulfo group to a GlcNS that is linked to a GlcA or IdoA at 

the non-reducing end. 3-OST-5 sulfates a GlcNS that is linked to an IdoA2S, GlcA or IdoA. 
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The remaining 3OSTs (-2, -3A, -3B, -4 and -6) will sulfate a GlcNS or GlcNH2 linked to an 

IdoA2S at the non-reducing end (Figure 1.3B). These different substrate specificities allow 

placement of 3-O-sulfo groups in specific locations depending on the identity of the 

neighboring residue. Based on their ease of production in E. coli, 3-OST-1, -3 and -5 are 

most commonly used in chemoenzymatic syntheses; 3-OST-3 and -5 will produce HS that 

binds to gD [24]. A complete list of the enzymes used in HS synthesis is given in Table 1.1.  

 

Heparin vs. HS 

Heparin and HS have very similar structures; however, heparin refers to a special 

form of HS that has more sulfo groups and a higher level of iduronic acid residues. Heparan 

sulfate is produced by virtually all cells in species ranging from simple invertebrates to 

humans [23]. Heparin, on the other hand, is produced by mast cells and is present only in 

some tissues of select members of the animal kingdom. Interesting examples include the 

observations that rabbit tissues do not contain heparin [26] and that chicken skin contains 

relatively high levels of heparin [27].  

 Heparan sulfate proteoglycans appeared early in metazoan evolution, and their 

common structural motifs are conserved in modern organisms [23]. Uncharacterized 

proteoglycans have been identified in ancient multicellular organisms such as Hydra [28], 

and lower organisms such as Drosophila and C. elegans contain homologs of syndecan, 

glypican and perlecan [29]. The essential role of HS proteoglycans (and heparins) in the 

development and physiology of living organisms is supported by their prevalence throughout 

the animal kingdom.  

Heparan sulfate is commonly made up of two domains, one composed of N-

acetylated and N-sulfated disaccharides containing glucuronic acid and one composed of 

more highly sulfated disaccharides containing iduronic acid [26]. Mammalian heparan  
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Enzymes Abbreviated 
Names 

Enzymatic function Expression 
system 

N-deacetylase/N-
sulfotransferase -1 

NDST-1 Converts a GlcNAc to a GlcNS residue E. coli ([30]),  
S. cerevisiae 
([11]) 

N-deacetylase/N-
sulfotransferase -2 

NDST-2 Similar to NDST-1, but prone to synthesize a 
long cluster of GlcA-GlcNS repeating domains 

E. coli ([31]), 
insect cells ([32]) 

N-deacetylase/N-
sulfotransferase -3 

NDST-3 Similar to NDST-1  

N-deacetylase/N-
sulfotransferase -4 

NDST-4 Similar to NDST-1  

N-sulfotransferase
1
 NST Converts a GlcNH2 to a GlcNS residue E. coli ([30]),  

K. lactis ([33]) 

C5-epimerase C5-epi Converts a GlcA to an IdoA residue E. coli ([34]),  

insect cells ([35]) 

2-O-sulfotransferase 2-OST Introduces a sulfo group to the 2-OH position of 
an IdoA or a GlcA residue 

E. coli ([36]),  
K. lactis ([33]), 
insect cells ([32]) 

6-O-sulfotransferase 1 6-OST-1 Introduces a sulfo group to the 6-OH position of a 
GlcNS or a GlcNAc residue 

E. coli ([36]),  
K. lactis ([33]), 
insect cells ([32]) 

6-O-sulfotransferase 2 6-OST-2 Same as 6-OST-1 insect cells ([32]) 

6-O-sulfotransferase 3 6-OST-3 Same as 6-OST-1 E. coli ([37]),  
K. lactis ([33]) 

3-O-sulfotransferase 1 3-OST-1 Introduces a sulfo group to the 3-OH position of a 
GlcNS±6S residue that is linked to a GlcA (or an 
IdoA) on the nonreducing end 

E. coli ([38]),  
K. lactis ([33]), 
insect cells ([39]) 

3-O-sulfotransferase 2 3-OST-2 Introduces a sulfo group to the 3-OH position of a 
GlcNS±6S residue that is linked to an IdoA2S on 
the nonreducing end 

insect cells ([40]) 

3-O-sulfotransferase 
3A 

3-OST-3A Introduces a sulfo group to the 3-OH position of a 
GlcNS±6S residue that is linked to an IdoA2S on 
the nonreducing end 

E. coli ([41]),  
insect cells ([42]) 

3-O-sulfotransferase 
3B 

3-OST-3B Same as 3-OST-3A insect cells ([40]) 

3-O-sulfotransferase 4 3-OST-4 Same as 3-OST-3A insect cells ([40]) 

3-O-sulfotransferase 5 3-OST-5 Has both 3-OST-1 and 3-OST-3A substrate 
specificities 

E. coli ([43]),  
insect cells ([44]) 

3-O-sulfotransferase 6 3-OST-6 Same as 3-OST-3A  

pmHS2
A
 from  

P. multocida 
Transfers a GlcA and a GlcNAc (or a GlcNTFA) 
residue to the backbone 

E. coli ([7]) 

KfiA
B
 from  

E. coli 
Transfers a GlcNAc (or a GlcNTFA) residue to 
the backbone 

E. coli ([6]) 

a
 N-sulfotransferase is a protein that is composed of the N-sulfotransferase domain of NDST-1. NST 

is an unnatural protein, and it is used in the chemoenzymatic synthesis to convert a GlcNH2 residue 
to a GlcNS residue. 

b
 Both pmHS2 and KfiA are bacteria enzymes, not HS biosynthetic enzymes. However, they are used 

for building the backbone structure of HS during chemoenzymatic synthesis. 

 

Table 1.1. List of HS biosynthetic enzymes.  
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sulfates from many different sources have been found to contain these domains in addition 

to a short linker that is positioned between the domains [45]. Heparan sulfate is ubiquitous in 

invertebrates as well; a survey of 23 invertebrates from 13 different phyla identified heparan 

sulfate in all of the species studied [46]. Studies in crustaceans and mollusks have 

characterized heparan sulfate in various tissues and found that the concentration of heparan 

sulfate is directly proportional to the salinity of the habitat [26].  

 There is much greater variation in the distribution of heparin, both among different 

organisms and within the tissues of a given species. In mammals, heparin is generally found 

in tissues that are in direct contact with the external environment, such as the skin, 

intestines and lungs, but it has low prevalence in the brain, muscle and kidneys of most 

species [26]. Several mollusks have been shown to contain heparin-like polysaccharides 

that possess anticoagulant activity [47, 48], but heparin is not present in all invertebrates. 

Like HS, heparin is understood to be comprised primarily of two different regions: a highly 

sulfated region that is subject to degradation by heparinase and a lowly sulfated region that 

is susceptible to heparitinase II, and the length and quantities of these regions depend on 

the species of origin and the specific tissue [26]. For example, bovine lung heparin is rich in 

the heparinase-cleavable region, while bovine intestinal heparin and mollusk heparins 

contain more of the heparitinase II-cleavable region [49, 50]. The roles of heparan sulfate 

and heparin appear to be the same in vertebrates and invertebrates. 

 

Current anticoagulant therapies 

 Anticoagulants prevent the formation of blood clots by interfering with the blood 

coagulation cascade. Commonly used anticoagulants include vitamin K antagonists, 

thrombin inhibitors (both direct and indirect) and factor Xa inhibitors. Heparin drugs function 

as indirect (antithrombin-mediated) thrombin and Xa inhibitors, and they are typically 
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classified as unfractionated heparin, low-molecular-weight heparin or synthetic 

pentasaccharides. 

 Warfarin, the primary vitamin K antagonist, is a synthetic derivative of a natural 

product of plant and fungal origin, dicumarol [51]. It functions by inhibiting the biosynthesis 

of vitamin K-dependent procoagulant factors II (also called prothrombin), VII, IX and X [52]. 

It is given orally, and due to the long half-lives of some of these factors, it can take several 

days for it to reach its full antithrombotic effect. Warfarin is a mixture of R and S enantiomers 

(which are both active, but to different degrees) [53], and it is influenced by drug interactions 

and diet, especially the intake of vitamin K-rich greens. Thus, warfarin drugs require close 

monitoring and can cause bleeding complications [52]. Available reversal agents include 

vitamin K, fresh frozen plasma and bypassing agents such as prothrombin complex 

concentrates or recombinant factor VIIa. Warfarin is most typically administered for 

thrombosis treatment or prophylaxis.  

 Full-length unfractionated heparin (UFH) is isolated as a mixture from animal mast 

cells, primarily porcine intestine. It was discovered in 1916, before the establishment of the 

Food and Drug Administration, and it is one of the oldest drugs still in clinical use [54]. 

Heparin is a potent activator of antithrombin, a protein that inhibits factors Xa and IIa to 

prevent the downstream formation of fibrin clots (Fig. 1.4). Its inexpensive production, short 

half-life and reversibility with protamine make UFH an advantageous drug for surgery and 

for handling blood in laboratory settings. It also has certain drawbacks, including an 

unreliable supply chain, side effects such as heparin-induced thrombocyptopenia (HIT) and 

dosing difficulties due to its heterogeneous nature. Its short (30- to 60-min) half-life and 

intravenous administration route limit its clinical use to in-patient procedures, and it must be 

monitored using activated partial thromboplastin time [52].  
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Figure 1.4. Interaction of anticoagulant drugs with the coagulation cascade. Coagulation is initiated 
by the intrinsic or extrinsic pathway. The two pathways converge on the activation of factor X to Xa 
and result in the formation of fibrin clots. Target sites for current anticoagulant drugs are shown in 
red. 

 

  

 Low-molecular-weight heparin (LMWH) drugs, such as enoxaparin (Lovenox), are a 

mixture of products from depolymerized UFH. The average length is about 15 saccharide 

units, compared to 40 for UFH. LMWH inhibits IIa to a lesser extent than UFH, as not all 

components of the mixture are long enough to form an antithrombin:Xa:IIa complex. It tends 

to be safer than UFH, having a lower incidence of HIT, and its longer half-life and 

subcutaneous dosing make it more appropriate for venous thromboembolism prophylaxis 

and treatment. Its more predictable anticoagulant effect also means that fixed or weight-

based dosing is possible without routine laboratory monitoring [52]. At least a fraction of 
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LMWH is cleared by the kidneys, so anti-Xa monitoring is recommended for patients with 

renal impairment as well as for elderly, pregnant or obese patients.  

 The shortest and most recently developed heparin drugs, such as fondaparinux 

(Arixtra), are analogs of the antithrombin-binding heparin pentasaccharide. They inhibit Xa 

and do not have anti-IIa activity. Arixtra is produced through a lengthy chemical synthesis 

and, unlike UFH and LWMH, it is a pure compound, not a mixture. Like LMWH, it is dosed 

subcutaneously. Arixtra has a half-life of approximately 17 hours, allows for unmonitored 

once-daily dosing and is currently approved for deep vein thrombosis and pulmonary 

embolism [55]. A hypermethylated version of fondaparinux known as idraparinux was 

developed in the late 1990s [56]. It has a 30-fold higher affinity for antithrombin than Arixtra, 

and its 120-hour half-life permits once-weekly administration [55]. Like Arixtra, it does not 

have an antidote. However, a biotinylated version of idraparinux was developed, and its anti-

Xa activity is effectively reversed by avidin [57]. Both fondaparinux and idraparinux do not 

bind to PF4 and do not show evidence of causing heparin-induced thrombocytopenia. 

Despite these promising developments, idraparinux was associated with an increased risk of 

major hemorrhage in clinical trials [58], and it was withdrawn from further development. 

 Thrombin, or factor IIa, is a serine protease that is central to hemostasis. Direct 

thrombin inhibitors function independently of antithrombin and do not bind PF4 [52]. The 

drugs lepirudin, desirudin and bivalirudin are derivatives of hirudin, a naturally occurring 

peptide found in the salivary glands of medicinal leeches, and they are approved for 

thrombosis with HIT, postsurgical VTE and unstable angina, respectively [52]. Argatroban is 

a reversible small-molecule direct thrombin binder that is also approved for HIT. Dabigatran 

(given as an oral prodrug, dabigatran etexilate), is a small-molecule competitive direct 

thrombin inhibitor that is approved for deep vein thrombosis [52]. It was shown to be equal 

to enoxaparin in terms of safety and efficacy in reducing DVT after hip replacement surgery 

[59].  
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 Direct Xa inhibitors have the advantage of bypassing intermediary molecules like 

antithrombin, which may result in more consistent anticoagulation. Razaxaban and apixaban 

are both oral small-molecule direct Xa inhibitors developed by Bristol-Myers Squibb. 

Razaxaban was abandoned in favor of apixaban due to its better safety profile, and 

apixaban (Eliquis) was FDA-approved in December 2012. Rivaroxaban is another FDA-

approved Xa inhibitor; it is also a small molecule developed by Bayer that can be given in 

once-daily oral doses. Of all oral anticoagulants, rivaroxaban has been evaluated the most 

extensively and in largest patient populations [55]. It has a half-life that is considerably 

shorter than other oral Xa inhibitors (about 5 to 9 hours) [52], and it has a low risk of drug-

drug interactions [60]. Although they have many promising characteristics, a disadvantage 

of the oral Xa inhibitors is their lack of a reversal agent.    

 Selective direct inhibitors of factors IXa and XIa are also in development, but they 

have yet to complete clinical trials [55].  

 

Strategies for improved heparin drugs 

 Although unfractionated, low-molecular-weight and pentasaccharide heparin drugs 

are presently available, there is a need for more advanced heparins that suit the 

requirements of distinct patient populations. As long as binding to antithrombin is 

maintained, the structure of heparin can be rationally designed to allow for optimal 

interactions with other molecules and desirable pharmacological properties.  

A primary consideration in the administration of a drug is its bioavailability and 

delivery route, and the ease of administration is a major factor in patient compliance and 

acceptability. An oral heparin would be an improved anticoagulant for long-term therapy, 

such as the prevention of thrombosis [61], but its high molecular weight and negative charge 

density limit its oral bioavailability [62]. Several efforts have been made to synthesize orally 

available heparins. To counteract the poor delivery of anionic heparin across the mucosal 
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gastrointestinal lining, penetration enhancers such as SNAC (sodium N-[8-(2-

hydroxybenzoyl)amino]caprylate) have been administered with heparin, with promising 

results [63]. Other approaches include novel drug delivery systems, such as nanoparticles, 

lipid conjugates and enteric coatings [64-66]. Despite experimental successes, no oral 

heparin formulations have reached the market. A more relevant issue for rational synthesis 

of the heparin carbohydrate chain would be to focus on structures that were bioavailable via 

subcutaneous injection (like Arixtra and LMWHs) rather than intravenously. Although 

unfractionated heparin can be administered subcutaneously, its bioavailability is reduced to 

about 30% (compared to nearly 100% for LMWH), so much higher doses are required [67, 

68]. Thus, heparins of reduced molecular weight are likely to have high subcutaneous 

bioavailability.  

After administration, side effects of heparin drugs come into consideration. For many 

drugs, unwanted side effects can be avoided by modifying the structure of the active 

compound, but the heterogeneous nature of the heparin polysaccharide chain negates this 

approach, even when dealing with fragmented low-molecular-weight heparins [69]. Bleeding 

is the most common side effect of heparin therapy; major bleeding occurs in 4 to 5% of 

patients receiving unfractionated heparin [70, 71]. Other complications include heparin-

induced thrombocytopenia and, less commonly, osteoporosis, eosinophilia, skin reactions, 

alopecia (hair loss), liver dysfunction and hyperkalemia (elevated blood potassium) [72]. 

There is also an acute anaphylactic reaction that occurs within 5 to 10 minutes after 

commencing intravenous heparin bolus therapy; it includes the abrupt onset of chills and 

fever, tachycardia, diaphoresis and nausea, with possible hypertension, chest pain and 

amnesia [73]. This reaction is consistent with an immunoglobulin E-stimulated response 

[72]. The development and use of homogeneous heparin compounds could prevent many of 

these unwanted effects: first, because the dosing and anticoagulation would be much more 
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predictable, and second, because the compounds could be designed to avoid interaction 

with immunogenic molecules.  

 For certain heparin applications, particularly surgery, the availability of an antidote is 

imperative. Additionally, unstopped hemorrhaging as a result of heparin therapy can lead to 

long-term debilitating diseases and may be life threatening [74]. Protamine sulfate can be 

used to reverse unfractionated heparin, although heparin rebound is a concern, but it is 

ineffective with low-molecular-weight heparin and Arixtra [75].  Excessive bleeding due to 

Arixtra, although rare, can be very difficult to manage because of its long half-life [76]. It has 

been successfully managed with fresh frozen plasma and prothrombin complex 

concentrates [75], but the only systematically evaluated reversal for pentasaccharide 

heparins is the use of recombinant FVIIa [76]; however, the use of rFVIIa for hemorrhage is 

still controversial [77]. Novel heparin drugs would ideally be reversible by protamine to 

evade life-threatening bleeding episodes.  

 Finally, the metabolic route and rate by which heparin is cleared from the body can 

make it ideal or dangerous depending on the patient population. Long-acting heparins suit 

patients that require long-term therapy, and short-acting heparins better treat those 

undergoing surgery or at risk for anticoagulant complications. In addition, clearance by the 

liver is preferred over kidney clearance, as many patients have kidney impairment that 

results in the accumulation of short heparins like Arixtra [78]. Although length is known to be 

a determining factor, the structure of heparin required for liver clearance has not been 

previously described. Taking the aforementioned considerations into account, we sought to 

determine the structure-function relationships of synthesized heparins with the goal of 

designing heparins that had improved safety, administration, clearance and reversibility 

profiles to the existing drugs.     

 

 



16 
 

Statement of Problem 

 

 Heparin has been widely used for decades, but it has several limitations as a drug. 

Unfractionated heparin has contamination issues due to its sourcing and causes side effects 

like heparin-induced thrombocytopenia. Low-molecular-weight heparin can cause severe 

bleeding due to its structural heterogeneity. Pentasaccharides like Arixtra are unsafe for 

kidney impaired patients due to their renal clearance route [79]. The goals of this 

dissertation were to characterize the protein interactions underlying some of these 

drawbacks and to propose improved heparin structures.  

 Recent advances in heparan sulfate synthesis using a chemoenzymatic approach 

have enabled the production of novel molecules with desired sulfation patterns and lengths 

(for a review, see [80]). First, this synthetic approach was used to investigate methods to 

reduce binding between heparan sulfate and PF4, an interaction that initiates heparin-

induced thrombocytopenia. In addition, we sought to characterize the structural 

requirements for binding to Stabilin receptors, which were recently identified as heparin 

clearance receptors [81]. We hypothesized that heparan sulfate structures with robust 

binding to Stabilins would be cleared by the liver and cleared more quickly than non-binding 

ones. During these studies, bioavailability and affinity for coagulation factors (Xa and IIa) 

were also investigated. The results of these studies should provide insight into the 

mechanisms underlying heparin’s properties in the body and also suggest meaningful 

strategies for the development of improved heparin drugs.  

 

 

 

 

 



 
 

 

 

 

CHAPTER II 

MATERIALS AND METHODS 

 

Expression of HS biosynthetic enzymes   

Several enzymes were used for HS synthesis, including NST, C5-epi, 2-OST, 6-OST-1, 6-

OST-3, 3-OST-1, 3OST-5, KfiA, and pmHS2.  All enzymes were expressed in E. coli and 

purified by appropriate affinity chromatography as described previously [82].   

 

Preparation of 35S-labeled polysaccharides 

Radiolabeled polysaccharide substrates were prepared using approximately 1 µg 

heparosan, a capsular polysaccharide isolated from the E. coli K5 strain, as a starting 

material [83]. Other substrates were prepared from bovine kidney heparan sulfate. The 

starting materials were modified with 5-10 µg of C5-epi, NST, 6OST-1/3, 2OST, 3OST-1 and 

3OST-5 enzymes in sequential 200-µL reactions containing approximately 1 x 106 cpm 

[35S]PAPS and 10 nmol unlabeled PAPS in 50 mM MES (pH 7) and 0.5% triton X-100. The 

enzymatic reactions were incubated at 37°C for 60 min, heat inactivated and purified using a 

DEAE column [83].  

 

Expression of recombinant Sulf-2 in CHO cells   

A plasmid consisting of a full-length cDNA encoding human Sulf-2 was purchased from 

Open Biosystem (Clone ID #7969293). The gene was cloned into a pcDNA3.1A mammalian 

expression vector (from Invitrogen) using XhoI/HindIII sites to obtain a Sulf-2 expression 
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plasmid designated as pcDNA3.1A-myc/His-HSulf-2. Wild-type CHO cells were transiently 

transfected with the expression plasmid pcDNA3.1A-myc/His-HSulf-2 or an empty 

pcDNA3.1A vector according to a standard protocol. Briefly, CHO cells were seeded in 6-

well plates in F-12 media supplemented with 10% fetal bovine serum (FBS) and were 

maintained in a 5% CO2 humidified incubator at 37°C. When the cells reached 90-95% 

confluence, they were transfected using Lipofectamine 2000 reagent (Invitrogen) and Opti-

MEM Reduced Serum Media (Invitrogen) according to the manufacturer’s protocol. After 4-6 

h, the medium was replaced with F-12 media containing 10% FBS. The conditioned medium 

was collected after 48-72 h of incubation and centrifuged at 4,000 rpm for 15 minutes to 

remove cellular debris. 

 

Western blotting 

Sulf-2 and EV-transfected cells were collected using trypsin and washed with PBS. Cells 

were lysed with 1.5 M sucrose, 1% triton X-100 and 1 mM PMSF. Sulf-2 and EV CM and 

lysates were separated by 12% SDS-PAGE and visualized with an anti-myc primary 

antibody (Cell Signaling Technology) and the SuperSignal detection system (Thermo 

Scientific). 

 

Sulf-2 enzymatic assay  

A 100-µL reaction containing 35S-labeled substrate, 50 mM MES (pH 6.5), 10 mM CaCl2, 

0.1% triton X-100 and 50 µL Sulf-2 enzyme was incubated overnight at 37°C. 

Polysaccharide substrates were purified using Quick Spin Columns for radiolabeled DNA 

purification (Roche). Columns were centrifuged at 1100 x g for 2 min to remove the column 

buffer, then placed into a fresh collection tube and loaded with 50 µL of reaction mixture. 

After centrifugation for 4 min at 1100 x g, the eluate was collected and the amount of 35S-

labeled polysaccharide was quantified using a scintillation counter.  
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Analysis of synthetic polysaccharides 

To determine the structural compositions of radiolabeled substrates, disaccharide analyses 

were performed using heparin lyase digestion. Polysaccharide substrates were incubated 

overnight with a mixture of heparin lysase I, II and III (0.1 mg/mL each) in 200 µL of 50 mM 

sodium phosphate (pH 7) at 37°C. The reaction was terminated by boiling at 100°C for 5 min 

and was loaded onto a Bio-Gel P-2 column (Bio Rad) to isolate disaccharides. These 

disaccharides were analyzed using reverse-phase ion-pairing HPLC [31].  

 

Preparation of 35S-labeled HS from CHO cells 

A T-75 flask of wild-type CHO cells was grown to confluence in F-12 media supplemented 

with 10% FBS. The cells were then incubated with 1 mL of 1.0 mCi/mL sodium [35S]sulfate 

(Perkin Elmer) for 6 h at 37°C with 5% CO2. Two hundred microliters of a pronase stock 

solution containing 1 mg/mL Pronase (Sigma), 240 mM NaAcO (pH 6.5) and 1.92 M NaCl 

was added to the cells, and the flask was incubated overnight at 37°C. The pronase-

digested sample was centrifuged at 10,000 rpm for 15 min and filtered using a 0.45-µm filter, 

then purified using a DEAE-Sepharcel column (Sigma), which was equilibrated using a 

buffer containing 20 mM NaAcO (pH 5) and 150 mM NaCl.  The [35S]HS was eluted from the 

column with 1 M NaCl in 20 mM NaAcO and was dialyzed overnight against 50 mM 

ammonium bicarbonate using a 14,000 MWCO membrane, then dried. The sample was 

reconstituted in 1 mL water, and 10 µL of a solution containing 10 N NaOH and 0.89 M 

sodium borohydride was added to break the linkage between the core protein and HS. It 

was incubated at 46°C for 16 h. The sample was also treated with 20 U/mL chondroitinase 

ABC (Sigma) to remove chondroitin sulfate before use. 
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Preparation of 3OST-1-treated [35S]HS  

To 3-O-sulfate [35S]HS using unlabeled PAPS for affinity co-electrophoresis, approximately 

100,000 cpm of [35S]HS was added to a 50-µL reaction containing 0.05 ng 3OST-1, 10 mM 

MnCl2, 5 mM MgCl2, 75 ug/mL protamine chloride, 0.4 mg/mL chondroitin sulfate, 0.12 

mg/mL BSA, 1% triton X-100 and 0.5 mM PAPS. The reaction was incubated at 37°C for 20 

min, inactivated at 80°C for 10 min, then diluted with 60 µL H2O and centrifuged at 2000 x g 

for 10 min. Substrates used for antithrombin binding studies were then isolated using a 

concanavalin A-Sepharose column (Sigma). 

 

Preparation of mPF4 

The full-length murine PF4 cDNA was obtained from Open Biosystems (Clone ID: 582960). 

The heparin-binding domain of PF4 (Ala33-Ser105) was cloned into a PET32 vector 

(Novagen) using NcoI and HindIII sites to give a plasmid named as PF4-PET32/TEV. In this 

plasmid, a tobacco etch virus protease (TEV) cleavage hexapeptide sequence, EQLYFQG, 

was constructed between thioredoxin and PF4. The design permitted cleavage of the 

thioredoxin-PF4 fusion protein to release PF4. The resultant recombinant PF4 protein has 

five extra amino acid residues (GSRHG) at the N-terminus. A bacterial strain, BL21(DE3)-

RIL/pRK793, expressing TEV protease was a generous gift from Dr. Lars Pedersen 

(National Institute of Environmental Health Sciences). 

The PF4-PET32/TEV plasmid was introduced into BL21 cells, and the cells were 

grown in LB medium containing 50 µg/mL carbenicillin and induced with IPTG. The cells 

were pelleted, lysed in 25 mM Tris, 500 mM NaCl and 300 mM imidazole (pH 7.5) and 

purified using a nickel column. The fractions containing protein were collected and incubated 

overnight with TEV protease (1:25 w/w ratio of TEV:PF4). After TEV cleavage, the PF4 was 

dialyzed against 20 mM Tris and 250 mM NaCl (pH 8) and was purified with a heparin 

column, which was eluted with 250 mM to 2000 mM NaCl gradient in 20 mM Tris (pH 8). 
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The purity of PF4 was greater than 90% as determined by NuPAGE 12% Bis-Tris Gel 

(Invitrogen).  PF4 was eluted as a protein with a MW of 30 kDa on a Sephadex G75 column, 

suggesting that PF4 is present in a tetrameric form that was consistent with a previous 

report [84]. The concentration of PF4 was determined by amino acid compositional analysis. 

 

 Dot blot assay for PF4 binding 

A dot blot assay was used to determine the binding affinities of HS to PF4. 35S-labeled HS 

(approximately 6,000 cpm) was incubated with 0-15 µg/mL PF4 for 30 min at 37°C in 130 

mM NaCl, 50 mM Tris (pH 7) buffer (for the [35S]HS polysaccharide studies) or in 250 mM 

NaCl, 50 mM Tris (pH 7.3) buffer (for the oligosaccharide studies) to allow complex 

formation. The mixture was then spotted onto a nitrocellulose membrane (GE Healthcare), 

which binds to proteins nonspecifically, allowing the capture of PF4-[35S]HS complexes. The 

membrane wells were washed with buffer, then excised, and the bound radioactivity was 

quantified using a scintillation counter. 

 

Affinity co-electrophoresis 

Affinity co-electrophoresis gels were prepared using a standard protocol [85] with lanes 

containing 0-1.41 µM PF4 or 0-3.2 µM AT and approximately 50,000 cpm [35S]HS per gel. 

Gels were run for 2 (AT) or 2.5 (PF4) hours and the bands were imaged using a Storm 860 

phosphorimager (Molecular Dynamics) and ImageQuant TL v2005 software (GE Healthcare 

Life Sciences). Kd values were determined by plotting R/[protein] vs. R, where R = (Mo – 

M)/Mo; Mo = the mobility of free HS and M = the mobility of HS at each protein 

concentration. The slope is equal to -1/Kd.  
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AT binding assay  

To quantify the binding of Sulf-2-treated and untreated HS to AT, 3OST-1-labeled substrates 

were incubated with 0.1 mg/mL AT, and the complex of AT and HS was captured using 

concanavalin A-Sepharose beads (Sigma). For this experiment, the AT-binding [35S]HS was 

prepared by incubating HS from bovine kidney with the 3OST-1 enzyme and [35S]PAPS.  

 

Preparation of enzyme cofactors   

A sulfo donor, 3’-phosphoadenosine 5’-phophosulfate (PAPS), was prepared using 

adenosine phosphokinase and ATP-sulfurylase [82].  The preparation of UDP-GlcNTFA was 

started from glucosamine (Sigma), which was first converted to GlcNTFA by reacting with S-

ethyl trifluorothioacetate (Sigma-Aldrich) following the protocol described previously [82]. 

The resultant GlcNTFA was converted to GlcNTFA-1-phosphate using N-acetylhexosamine 

1-kinase [86].  The plasmid expressing N-acetylhexoamine 1-kinase was a generous gift 

from Prof. Peng Wang (Georgia State University), and the expression of the enzyme was 

carried out in E. coli as reported [86].  The UDP-GlcNTFA synthesis was completed by 

transforming GlcNTFA-1-phosphate using glucosamine-1-phosphate acetyltransferase/N-

acetylglucosamine-1-phosphate uridyltransferase (GlmU) as described [82].  The resultant 

UDP-GlcNTFA was then ready for the elongation reaction using KfiA. 

 

Preparation of oligosaccharide backbone 

A disaccharide (GlcA-AnMan) was prepared from heparosan as described [82].  The 

disaccharide was then elongated to N-TFA oligosaccharides by repetitive exposure to KfiA, 

pmHS2, UDP-GlcNTFA and UDP-GlcA as shown in Fig 1. Briefly, the disaccharide (20 mg), 

KfiA (30 µg/mL) and UDP-GlcNTFA (500 μM) were mixed in 120 mL of 50 mM Tris buffer.  

The reaction was incubated at room temperature overnight.  The completion of the reaction 
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was monitored by the disappearance of UDP-GlcNTFA using a silica-based polyamine 

HPLC column (PAMN-HPLC, Waters).  Once the reaction was completed, pmHS2 (30 

µg/mL) and UDP-GlcA (750 μM) were added, and the reaction was incubated for another 24 

hours at room temperature. The resultant product was a tetrasaccharide, which was purified 

by a Biogel P-2 column (0.75 × 200 cm) that was equilibrated with 0.1 M ammonium 

bicarbonate at a flow rate of 6 mL/h. The fractions were then subjected to ESI-MS analysis.  

The fractions containing the tetrasaccharide were pooled. The procedures for synthesizing 

the N-TFA pentadecasaccharide (15-mer), N-TFA heptadecasaccharide (17-mer), N-TFA 

nonadecasaccharide (19-mer) and N-TFA henicosasaccharide (21-mer)  were essentially 

the same completed by repeating the above cycle with the designated times.   

When the backbone was elongated beyond octasaccharide, a special method was 

employed to deplete the UDP-GlcNTFA and UDP-GlcNAc prior to the further elongation by 

pmHS2.  If unreacted UDP-GlcNTFA of UDP-GlcNAc was present in the GlcA elongation 

step involving pmHS2, an uncontrolled elongation occurred, resulting in a mixture.  It is, 

therefore, especially important to avoid the formation of mixtures when the synthesis 

reached octasaccharide and beyond because the P-2 column cannot separate 

oligosaccharides larger than octasaccharides. To this end, disaccharide (GlcA-AnMan) was 

added to the reaction to exhaust the residue UDP-GlcNTFA and GlcNAc at the reaction, and 

the resultant trisaccharide was removed by the P-2 column. 

 

N-detrifluoroacetylation  

Oligosaccharide backbones (1 to 2 mg) were resuspended in a solution (20 mL) containing 

CH3OH, H2O and (C2H5)3N (v/v/v = 2:2:1). The reaction was incubated at 50°C overnight.  

The samples were dried and reconstituted in H2O to recover de-N-trifluoroacetylated 

oligosaccharides. 
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N-sulfation of oligosaccharides   

N-sulfation of oligosaccharide was carried out by incubating the oligosaccharide substrates 

with NST and PAPS. The reaction mixture typically contained 1-2 mg de-N-

trifluoroacetylated oligosaccharide, 500 µM PAPS, 50 mM MES, pH 7.0 and 1 mg of NST in 

a total volume of 15 mL.  The reaction mixture was incubated at 37°C overnight.   

 

Sulfation and epimerization modifications of oligosaccharide backbones  

The conversion of N-sulfo oligosaccharides to final products involved three steps, including 

C5-epimerization/2-O-sulfation, 6-O-sulfation and 3-O-sulfation.  N-sulfo oligosaccharides (1-

2 mg) were incubated with a reaction mixture containing 50 mM MES, pH 7.0, 0.03 mg/mL 

C5-epi and 2 mM CaCl2 in a total volume of 40 mL.  After incubating 30 min at 37°C, 2-OST 

(0.03 mg/mL) and 200 µM PAPS were added, and the reaction was incubated overnight at 

37°C. The products were purified by a DEAE column described previously (14).  For 6-O-

sulfation, the substrate was incubated with a reaction mixture containing 50 mM MES, pH 

7.0, and 500 µM PAPS overnight at 37°C in the presence of 6-OST-1 (0.03 mg/mL) and 6-

OST-3 (0.03 mg/mL) in a total volume of 20 mL overnight at 37°C. The products were 

purified by a DEAE column.  For 3-O-sulfation, the reaction mixture contained 3-OST-1 (0.03 

mg/mL), 10 mM MnCl2, 5 mM MgCl2, and PAPS 500 µM in a total volume of 20 mL overnight 

at 37°C.   

 

Mass spectrometric analysis of oligosaccharides  

The analyses were performed with a Thermo LCQ-Deca. The nonsulfated oligosaccharide 

(1 µL) eluted from BioGel P-2 was directly diluted in 200 µL of 9:1 MeOH/H2O. A syringe 

pump (Harvard Apparatus) was used to introduce the sample via direct infusion (35 µL 

/min). Experiments were carried out in negative ionization mode with the electrospray source 
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set to 5 KV and 275°C. Sulfated oligosaccharide (1 µL) was diluted in a different working 

solution containing 200 µL of 70% acetonitrile and 10 mM imidazole.  Experiments for 

sulfated oligosaccharides were carried out in negative ionization mode with the electrospray 

source set to 2 KV and 200°C.  The automatic gain control was set to 1 X 107 for full scan 

MS. The MS data were acquired and processed using Xcalibur 1.3. 

 

Inhibition of the activities of factor Xa and IIa  

Assays were based on a previously published method [87, 88]. Briefly, factor Xa (Enzyme 

Research Laboratories, South Bend, IN) and thrombin (Sigma) were diluted at 80 nM and 

100 nM, respectively, with PBS containing 1 mg/mL BSA. Human AT (Cutter Biological) was 

diluted with PBS containing 1 mg/mL BSA to give a stock solution at the concentration of 0.4 

µM. The chromogenic substrates, S-2765 (for factor Xa assay) and S-2238 (for factor IIa 

assay) were prepared at 1.3 mM and 1.5 mM in water. The synthesized oligosaccharides or 

heparin was dissolved in PBS at various concentrations (1 to 30 nM). The reaction mixture, 

which consisted of 70 µL of AT stock solution and 15 µL of the sample solution, was 

incubated at room temperature for 2 min.  Factor Xa or thrombin (10 µL) was added. After 

incubation at room temperature for 4 min, 30 µL of S-2765 or S-2238 was added. The initial 

reaction rates as a function of concentration were used to calculate the IC50 values. The 

absorbance of the reaction mixture was measured at 405 nm continuously for 10 min. The 

absorbance values were plotted against the reaction time. The initial reaction rates as a 

function of concentration were used to calculate the IC50 values.   
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The neutralization effect of PF4 on anti-Xa activity 

HS oligosaccharides were incubated in a 96-well plate with 70 µL BSA (1 mg/mL in PBS), 

10 µL AT (0.2 mg/mL in PBS) and 0-16 µL PF4 (0.45 mg/mL) for two minutes at room 

temperature. Ten microliters of Xa was then added, and after four minutes, 30 µL of 

chromogenic substrate S-2765 (1 mg/mL) was added to initiate the color change reaction. 

Sequential absorbance readings at 405 nm were started immediately using an ELx808 plate 

reader (BioTek). The rate of increased absorbance relative to the rate of a control sample 

was used to define Xa activity. Quantities of oligosaccharides showing approximately 8% Xa 

activity in the absence of PF4 were used.  

 

HPLC analysis of oligosaccharides 

Both DEAE-HPLC and polyamine-based anion exchange (PAMN)-HPLC were used to 

determine the purity of the oligosaccharides. The elution conditions for the HPLC analysis 

are described in the literature [82].   

  

Nitrous acid-degraded disaccharide analysis of 35S-labeled oligosaccharides  

The 35S-labeled compound was deacetylated and degraded with nitrous acid at pH 4.5, then 

at pH 1.5, followed by reduction with sodium borohydride as described by Shively and 

colleagues [89]. The resultant 35S-labeled disaccharides were resolved by a C18 reverse-

phase column (0.46 × 25 cm) (Vydac) under reverse-phase ion pairing HPLC conditions.  

The identities of the disaccharides were determined by coeluting with appropriate 35S-

labeled disaccharide standards.  
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Materials, solutions and buffers for Flp-In 293-based assays  

Heparin (or unfractionated heparin) was from Sigma (St. Louis, MO).  Fondaparinux 

(Arixtra®) was purchased from a local pharmacy.   Flp-In 293 cells, serum, and high glucose 

Dulbecco’s Modified Eagle Medium (DMEM) were from Gibco, Hygromycin B, Zeocin, and 

glutamine were from Invitrogen/Gibco (Carlsbad, CA).  Western blot analysis was completed 

by either colorimetric or chemiluminescence detection of blotted protein. Anti-V5 antibodies 

and resins were from Bethyl Laboratories (Montgomery, TX).  Other materials, reagents and 

kits were obtained as described recently [90].  Tris-buffered saline with Tween-20 (TBST) 

contains 20 mM Tris-HCl, pH 7.0, 150 mM NaCl, and 0.1% Tween-20. TBST/BSA is TBST 

with 1.0% (w/v) bovine serum albumin (BSA).  Phosphate buffered saline (PBS) contains 

137 mM NaCl, 8 mM Na2HPO4, 1.5 mM KH2PO4, 2.7 mM KCl, pH 7.2.  Hank’s buffered 

saline solution (HBSS) contains 5 mM KCl, 0.4 mM KH2PO4, 0.8 mM MgSO4, 137 mM NaCl, 

0.3 mM Na2HPO4, 5.5 mM glucose, 1.26 mM CaCl2, 0.5 mM MgCl2, and 28 μM phenol red; 

at the time of use, 3.5 g/100 mL of NaHCO3 was added and the pH was adjusted to 7.2 with 

HCl. Endocytosis Medium contains DMEM supplemented with 0.05% BSA.   

 

Preparation of 35S-labeled HS constructs for Stabilin binding studies  

A total of 27 HS constructs were prepared using a chemoenzymatic approach published 

previously [91, 92]. Constructs 14 through 23 are polysaccharide constructs differing in 

sulfation types and IdoA content, while construct 24 through 36 are oligosaccharide 

constructs ranging from hepta- to nonadeca-saccharides (Table 4.1).  A representative 

structure of a decasaccharide (28b) is shown in Fig. 4.10. For the synthesis of 

polysaccharide constructs (14 through 23), N-sulfo heparosan was used as a starting 

material and incubated with appropriate enzymes and the sulfo donor 3’-phosphoadenosine 

5’-phosphosulfate (PAPS) [91]. The polysaccharide products were analyzed by disaccharide 
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analysis to confirm the anticipated sulfations [93]. To prepare the oligosaccharide constructs 

(24 through 36), both elongation and modification steps were involved. During the 

elongation step, a disaccharide starting material (GlcA-AnMan) was first elongated to the 

desirable size with KfiA (N-acetyl glucosaminyl transferase of E. coli K5 strain) and pmHS2 

(Pasteurella multocida heparosan synthase 2) in the presence of UDP-GlcA and UDP-

GlcNAc or UDP-GlcNTFA. The elongated products were confirmed by electrospray 

ionization mass spectrometry (ESI-MS).  The oligosaccharides were then converted to N-

sulfo oligosaccharides by treating with triethylamine followed by N-sulfotransferase 

modification. The products were demonstrated to have the anticipated molecular size and 

purity by ESI-MS.  

The oligosaccharides were then modified by C5-epimerase (C5-epi), 2-O-

sulfotransferase (2-OST), 6-O-sulfotransferase 1 and 3 (6-OST-1 and 6-OST-3) and 3-O-

sulfotransferase 1(3-OST-1).  After the modifications, a mixture of oligosaccharides with 

different levels of sulfation was obtained as determined by DEAE (diethylaminoethyl)-HPLC.  

To introduce a 35S-label to the polysaccharides or oligosaccharides, [35S]PAPS replaced 

unlabeled PAPS.  3-O-[35S]sulfated heparin was prepared by incubating heparin with 3-OST-

5 enzyme and [35S]PAPS, and the product was purified by DEAE chromatography. 

The procedures for preparing the N-sulfo heparosan, PAPS and [35S]PAPS, UDP-

GlcNTFA and disaccharide (GlcA-AnMan) starting materials are described elsewhere [82, 

91, 94]. The enzymes used for the synthesis, including KfiA, pmHS2, NST, C5-epi, 2-OST, 

6-OST-1, 6-OST-3 and 3-OST-1, were expressed in E. coli as described previously [92]. 
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Stabilin expression plasmids  

The cDNA for human Stab1 (a kind gift of J. Kzhyshkowska, University of Heidelberg) and 

Stab2/315-HARE were ligated into the MCS of the pcDNA5/FRT/V5-6xHIS-TOPO vector.  

The Stab2/190-HARE cDNA encoding the C-terminal 1416 aa is cloned in 

pSecTag/FRT/V5-6xHIS-TOPO, which provides a secretion signal for the 190-HARE protein 

[95].  Plasmids encoding the secreted ecto-domain were generated by single primer deletion 

mutagenesis [96] in which the transmembrane and cytoplasmic domain encoding regions 

were deleted, and the resulting plasmids were then used to create stable cells which 

secreted properly folded and functional ecto-domains in the medium.  The ecto-domains 

comprised amino acids M1-P2475 for Stab1, M1-T2458 for Stabilin-2/315-HARE, and 

S1136-V2453 for Stab2/190-HARE.  

 

Endocytosis assays 

Stably transfected cells expressing Stab-1 or Stab-2 receptors or only Hygromycin B 

resistant (empty vector, EV) were plated in 24-well dishes and grown in DMEM with 8% FBS 

and 50 μg/mL Hygromycin B for at least 2 days prior to the experiments.  The cells were 

incubated at 37˚C for 3 h with fresh Endocytosis Medium supplemented with labeled 35S-HS 

constructs (2.0 x 104 cpm/mL).  For those experiments utilizing AT, the 35S-HS constructs 

were pre-incubated with AT (0.2 mg/mL) for 30 min prior to diluting ten-fold in endocytosis 

medium.  Specific binding or endocytosis was assessed in the presence of excess 

unlabeled heparin (0.1 mg/mL) to determine background cpm (counts per minute) values. 

These values were subtracted from all data points to determine specific 35S-HS endocytosis.  

At the termination times, cells were washed three times with ice-cold Hank’s buffered saline 
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solution, lysed in 0.3 N NaOH, and radioactivity and protein content were determined and 

expressed as cpm/µg protein ± standard deviation of the mean. 35S radioactivity of all 

samples was measured by a Beckman-Coulter LS6500 scintillation counter.  Non-specific 

binding/background radiation levels were consistently between 16 and 20 cpm for all 

experiments. 

 

Direct ectodomain binding assays  

To assess direct protein-HS binding, ecto-domains of each receptor were expressed and 

secreted in stable cell lines. The ecto-domains were immunoprecipitated with a goat anti-V5 

resin (Bethyl labs), washed with TBS and then incubated with 4.0 x 105 cpm of each 35S-HS 

construct for 1.5 h under rotation. The resin was centrifuged, washed 3 times with TBS, then 

placed in scintillation fluid and quantified by a Beckman-Coulter LS6500 scintillation counter. 

The amount of protein on the resin was quantified by separation with 5% SDS-PAGE, 

blotted, probed with rabbit anti-V5 antibody (Bethyl labs), and images were captured on film.  

  

Assessment of liver clearance 

All animal procedures were approved by the IACUC of the University of Nebraska under the 

Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) 

guidelines. BALB/c mice were placed under general anesthesia (isoflurane) on a warming 

platform during the entire procedure. Once unconsciousness was confirmed, the mice were 

injected via the lateral tail vein using a 27G x 1/2 needle with 0.053 µCi 35S-labeled HS 

construct. The radiolabeled material was allowed to circulate for 10 min, followed by 

abdominal exposure and severance of the descending aorta abdominalis for bleed out.  The 

liver was collected, briefly washed to get rid of residual blood, cut into smaller (~0.1 g) 
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pieces, weighed and then homogenized with a PowerGen 125 (Fisher) tissue homogenizer 

in 0.75 mL 1% NP-40. Homogenized tissue was then spun at 12,000 x g for 2 min to clear 

out insoluble material, and supernatants were mixed with 4 mL scintillation fluid and 

counted. 

 

Synthesis of pure pnp-tagged oligosaccharides 

Oligosaccharides were elongated from a 1-O-(para-nitrophenyl) glucuronide (GlcA-pnp) 

monosaccharide (Sigma) using KfiA and pmHS2. The oligosaccharides were modified using 

2OST, C5-epi, 6OSTs and 3OST-1. Controlled additions of GlcNAc and GlcNTFA sugars in 

the backbone to prepare a GlcNTFA-GlcA-GlcNS-GlcA-GlcNS pentasaccharide region 

allowed exploitation of the irreversible reaction mode of C5-epi on the underlined GlcA. This 

IdoA was then 2-O-sulfated. Next, the GlcNTFA was converted to a GlcNS and another 

GlcNTFA-GlcA was added to the nonreducing end so that the next GlcA could be converted 

to IdoA2S. Subsequent cycles prepared pure oligosaccharides that contained repeating 

GlcNS6S-IdoA2s regions. The reactions were purified using a C18 column (0.75 × 20 cm, 

Biotage), and the product was identified by its absorbance at 310 nm and later by mass 

spectroscopy.  

 

Protamine reversibility assays 

Quanitities of HS oligosaccharides that displayed 90% inhibition of factor Xa were incubated 

in a standard chromogenic anti-Xa assay with human serum and 0-2.6 µg/mL protamine. 

Anti-Xa activity was measured by the decrease in the rate of absorbance at 405 nm 

compared to a control sample without heparin. 
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Clearance profile of anti-Xa activity in rats  

Male Sprague-Dawley rats were dosed with amounts of Lovenox or Arixtra having 

equivalent anti-Xa activity: 2.27 mg/kg for Lovenox and 0.2 mg/kg for Arixtra. The drugs 

were diluted in saline and injected subcutaneously at a volume of approximately 100 µL. 

Blood (approximately 50 µL) was collected from unanesthetized rats at set time intervals by 

the tail clip method, then spun down to isolate plasma. The plasma was subjected to anti-Xa 

activity assays. All rat procedures were approved by the UNC IACUC.  

 

Anti-Xa activity in mice 

Male BALB/c mice from Charles River Laboratories were injected subcutaneously with 100 

nmoles of oligosaccharide per kg body weight. The oligosaccharides were diluted in saline 

and the injection volume was approximately 100 µL. Thirty minutes after injection, the mice 

were sacrificed with a CO2 chamber and approximately 0.5 mL of blood was immediately 

drawn by cardiac puncture. The blood samples were centrifuged to obtain plasma, which 

was used for analysis of anti-Xa activity. Plasma from mice injected with saline was used as 

a control. 

 

 

 

 



 
 

 

 

 

CHAPTER III 

REDUCTION OF PLATELET FACTOR 4 BINDING TO HEPARAN SULFATE 

 

 One of the most dangerous side effects associated with the use of heparin is 

heparin-induced thrombocytopenia, or HIT. HIT results in platelet degradation and a 

prothrombotic state and occurs in up to 5% of patients receiving unfractionated heparin [97]. 

HIT is initiated by the formation of HS-platelet factor 4 complexes that are recognized by 

platelet-activating antibodies to invoke an immune response [98]. Thus, decreased binding 

between HS and PF4 could prevent the formation of these complexes and the likelihood of 

HIT. 

 Platelet factor 4 (PF4) belongs to the CXC family of chemoattractant chemokines. 

The interaction between HS and PF4 is mediated by negatively charged sulfo groups on the 

HS backbone interacting with positively charged residues on the PF4 protein, which is 

released from alpha-granules upon vascular injury [99]. However, little is known about the 

specific HS sulfation patterns and length required for this interaction. Based on a preliminary 

examination of HS-PF4 binding in our laboratory, we hypothesized that the removal of 6-O-

sulfation should reduce the binding of HS to PF4. Sulf-2, a 6-O-endosulfatase, is known to 

remove these negatively charged 6-O-sulfo groups from HS, and its role in mediating HS-

PF4 binding was investigated. The substrate specificity of Sulf-2 was also explored. 

The Sulfs are known to have endosulfatase activity and remove 6-O-sulfo groups 

from HS [100, 101]. Two Sulf enzymes (Sulf-1 and Sulf-2) have been identified, cloned and 

expressed in several cell lines [100-104]. The two Sulfs appear to be functionally redundant 

and have varied roles in cell signaling, development and cancer. The Sulfs 
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promote some signaling pathways, such as Wnts [100, 105, 106], bone morphogenic protein 

[107] and glial cell-derived neurotrophic factor [108] while inhibiting others, such as 

fibroblast growth factor-2 [109, 110] and transforming growth factor-β [111]. Gene 

knockdown [100] and knock-out studies [108, 112-114] have shown the importance of Sulfs 

in development; these mice show aberrant growth, muscle innervation, skeletal tissue, and 

lung development. In cancer, Sulfs are believed to possess both pro-oncogenic [115-117] 

and tumor suppressing [110, 118, 119] activities. Overexpression of Sulf-2 in particular was 

recently found to promote carcinogenesis in non-small-cell lung carcinomas, pancreatic 

cancer and hepatocellular carcinoma [120, 121]. Sulf-2 also regulates receptor tyrosine 

kinase pathways and tumor growth in glioblastoma [122], making it an attractive target for 

cancer therapy. 

The Sulfs are understood to cleave 6-O-sulfo groups from trisulfated (N-, 2-O- and 6-

O-sulfated) disaccharides [101]. However, the extent of their substrate specificity and their 

ability to recognize other disaccharides is not well understood, largely due to the fact that 

polysaccharides with defined sulfation types were unavailable. In previous studies, only 

substrates containing this trisulfated motif have been used to test Sulf-2 activity [101, 123]. 

Utilizing our ability to control the sulfation types in HS polysaccharides using biosynthetic 

enzymes [37], we enzymatically synthesized 35S-labeled polysaccharides that allowed us to 

test Sulf-2’s ability to recognize other disaccharide motifs. In addition, we investigated the 

effect of Sulf-2 treatment on the ability of HS to bind to antithrombin (AT) and PF4. Binding 

to antithrombin is what confers anticoagulant activity to HS: when heparin binds 

antithrombin, it induces a conformational change that increases antithrombin’s affinity for 

proteases in the blood coagulation cascade, including factors Xa and IIa. This inhibits the 

downstream production of fibrin and fibrous clots.  

In addition to the distribution of negative charges, we hypothesized that the size of 

HS contributes to its PF4 binding affinity. We investigated the relationship between the 
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length of HS oligosaccharides and their interaction with PF4 and coagulation factors. An AT-

binding pentasaccharide sequence is sufficient for anti-Xa activity, but if the HS chain is long 

enough, it is capable of forming a ternary complex with antithrombin and factor IIa (also 

called thrombin). The ratio between factor IIa and Xa activity is an important component of 

heparin drugs: activity against both coagulation factors is preferred, as it is expected to infer 

more reliable anticoagulation. Previous studies indicated that to obtain anti-IIa activity, a 

heparin fragment of approximately 5,000 Da (roughly an 18-mer) was necessary [124]. Our 

group prepared a set of oligosaccharides ranging from a 15- to 21-mer to investigate the 

minimum length requirement for anti-IIa activity, and the PF4 binding capabilities of these 

oligosaccharides were tested. This information could be useful in designing heparins with a 

high anti-IIa/-Xa ratio and reduced PF4 binding.   

 

Substrate specificity of Sulf-2 

 The Sulf-2 enzyme was transiently expressed in CHO cells to obtain the Sulf-2 

protein for the substrate specificity study. The recombinant Sulf-2 enzyme was detected in 

both the cell lysate and in the conditioned medium, as measured by western blot analysis 

(Fig. 3.1D). The recombinant Sulf-2 enzyme was harvested from the conditioned medium of 

transfected CHO cells. To test the activity of the crude protein, [35S]HS isolated from CHO 

cells that had been metabolically labeled with sodium [35S]sulfate was subjected to Sulf-2 

treatment. The resultant HS was digested with heparin lyases to disaccharides for 

disaccharide compositional analyses. The HPLC chromatograms of the disaccharide 

analysis of Sulf-2-treated, empty vector-treated and untreated [35S]HS samples (Fig. 3.1) 

show a clear decrease in the trisulfated ΔUA2S-GlcNS6S peak in the Sulf-2-treated sample 

with an increase of the corresponding free [35S]sulfate and ΔUA2S-GlcNS peaks. This 

suggested that the enzyme was indeed active, and it could remove 6-O-sulfo groups located 

on UA2S-GlcNS6S disaccharides as described in previously published reports [101, 123]. 
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Figure 3.1. Disaccharide composition of Sulf-2-treated and untreated [
35

S]HS. [
35

S]HS from CHO 
cells was digested with heparin lyases and analyzed by RPIP-HPLC. A. Disaccharide composition of 
untreated [

35
S]HS. Peak 2, ΔUA-GlcNS; peak 3, ΔUA-GlcNac6S; peak 4, ΔUA-GlcNS6S; peak 5, 

ΔUA2S-GlcNS; peak 6, ΔUA2S-GlcNS6S. B. Disaccharide composition of EV-treated [
35

S]HS. Peak 
2, ΔUA-GlcNS; peak 4, ΔUA-GlcNS6S; peak 5, ΔUA2S-GlcNS; peak 6, ΔUA2S-GlcNS6S. C. 
Disaccharide composition of Sulf-2-treated [

35
S]HS. Peak 1, free sulfate; peak 2, ΔUA-GlcNS; peak 3, 

ΔUA-GlcNac6S; peak 4, ΔUA-GlcNS6S; peak 5, ΔUA2S-GlcNS; peak 6, ΔUA2S-GlcNS6S. D. 
Western blot showing presence of the Sulf-2 protein. Cell lysates (30 µg) and CM were separated on 
12% SDS-PAGE, blotted to nitrocellulose and probed with anti-myc antibody. EV, empty vector-
tranfected cells. E. Lyase degradation products of [

35
S]HS. R1=H/SO3H, R2=H/SO3H/Ac. F. Lyase 

degradation products of Sulf-2-treated [
35

S]HS. R1=H/SO3H, R2=H/SO3H/Ac. Cleavable groups are 
shown in bold. 
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Having determined that Sulf-2 was active, we sought to determine with greater detail 

which polysaccharide substrates could function as substrates for the enzyme. To this end, a 

series of polysaccharides carrying different sulfation types with or without IdoA were 

prepared using an enzymatic approach, as demonstrated in Fig. 3.2. A 35S-label was 

strategically introduced to a specific site by a sulfotransferase, facilitating the identification of 

which sulfo groups were removed by Sulf-2. For example, construct 1, IdoA2S-[6-O-

35S]GlcNS6S, carried the 6-O-[35S]sulfo group at the N,6-O-sulfo glucosamine (GlcNS6S) 

unit. Thus, a release of [35S]sulfo groups from construct 1 after Sulf-2 treatment 

unambiguously indicated that a 6-O-desulfation reaction occurred. Construct 1 was 

prepared by incubating deacetylated heparosan with unlabeled PAPS and NST, 2OST and 

C5-epi in subsequent steps. This compound was 35S-labeled at the 6-O position using 

[35S]PAPS and 6OST. The rest of the constructs (2-9) were prepared in a similar fashion 

using recombinant enzymes, as shown in the synthetic scheme (Fig. 3.2). The structure of 

each substrate was confirmed by disaccharide analysis as described previously [125].  

 A disaccharide analysis of the Sulf-2-treated substrate was also performed for each 

construct. The HPLC analysis of untreated and Sulf-2 treated construct 1 is shown as an 

example in Fig. 3.3. The presence of the trisulfated peak, ΔUA2S-GlcNS6S, is nearly 

completely eliminated by treatment with the Sulf-2 enzyme. The reduction of this peak is 

balanced by the appearance of a large free sulfate peak in the treated sample. In addition, 

there is a partial decrease in the ΔUA-GlcNS6S peak that contributed to the free sulfate 

peak.  
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Figure 3.2. Synthetic scheme for the 
35

S-labeled HS constructs. Heparosan or heparan sulfate were 
treated with heparan sulfate biosynthetic enzymes and PAPS to achieve the desired sulfation groups 
and epimerization of the uronic acid. In heparan sulfate, both GlcA and IdoA are present. 

35
S-labeled 

groups are shown in bold. 
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Figure 3.3. Disaccharide analysis of construct 1 before and after Sulf-2 treatment. Construct 1 is 
IdoUA2S-[6-O-

35
S]GlcNS6S, the best Sulf-2 substrate. A. Disaccharide composition of construct 1. B. 

Disaccharide composition of Sulf-2-treated construct 1; disaccharides without 
35

S-labeled groups are 
not detected. C. Lyase degradation products of construct 1.  D. Lyase degradation products of Sulf-2-
treated construct 1. Cleavable groups are shown in bold. 

 

 

 

To quickly quantify the activity of Sulf-2 against the different substrates, spin column 

assays were performed. Here, the column separates the analytes based on the size of the 

molecule. We anticipated that the [35S]sulfate would be trapped in the column while the 

intact polysaccharides would pass through the column without retardation. Substrates were 

incubated overnight in the presence of Sulf-2 or water as a control, and the samples were 

purified by QuickSpin column to determine how much 35S-radioactivity had been converted 

to smaller [35S]sulfate. The results from the spin column assays are shown in Table 3.1. 

From these assays, it is clear that the best substrate for Sulf-2 is the polysaccharide 
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containing N-, 2-O- and 6-O-sulfations. Further analysis of the susceptibility of the different 

sulfated polysaccharides to [35S]sulfate release permitted us to dissect the substrate 

specificities of Sulf-2. 

 

 

construct 
name  

repeating disaccharide  structure  [
35

S]sulfation 
level (nmoles/ug 
polysaccharide)  

control [
35

S] 
sulfate 
release (%)  

Sulf-2-treated 
[
35

S] sulfate 
release (%)  

1 [-IdoA2S-[6-O-
35

S]GlcNS6S-]n  1.7 2.7 ± 1.0 97.5 ± 0.8 

2 [-IdoA-[6-O-
35

S]GlcNS6S-]n  1.9 8.3 ± 0.1 24.3 ± 2.7 

3 [-GlcA-[6-O-
35

S]GlcNS6S-]n  1.4 6.6 ± 1.6 43.1 ± 2.4 

4 [-GlcA-[6-O-
35

S]GlcNAc6S-]n  0.1 14.2 ± 3.5 28.1 ± 1.3 

5 [-[2-O-
35

S]IdoA2S-GlcNS-]n  1.1 10.4 ± 2.6 12.6 ± 1.3 

6 [-[-2-O-
35

S]GlcA2S-GlcNS-]n  1.3 6.7 ± 1.9 13.7 ± 3.0 

7 3-O-[
35

S]HS (consisting of -GlcA-[3-
O-

35
S]GlcNS3S±6S- domains) 

1.1 13.6 12.2 

8 3-O-[
35

S]HS (consisting of -IdoA2S-
[3-O-

35
S]GlcNS3S±6S- and -GlcA-

[3-O-
35

S]GlcNS3S±6S- domains) 

0.8 10.1 13.9 

9 N-[
35

S]sulfated HS  1.6 11.7 13.2 

 

Table 3.1. Substrate specificity of Sulf-2. Synthetic substrates were incubated with or without the 
Sulf-2 enzyme and isolated from released sulfate groups by QuickSpin column. The remaining 
[
35

S]sulfate on the polysaccharide was quantified with a scintillation counter.  
 

  

The susceptibility of the nine HS constructs to sulfatase activity indicated that in 

addition to trisulfated disaccharides, Sulf-2 is able to desulfate the 6-O-sulfo group on a 

GlcNS6S disaccharide that is flanked by a nonreducing-end GlcA or IdoA residue 

(constructs 2 and 3). Construct 4, which contained GlcA-GlcNAc6S groups, experienced a 

slight loss of 6-O sulfo groups. The inability of Sulf-2 to remove sulfo groups from 5-9 

confirms that Sulf-2 cannot desulfate from the N-, 2-O- or 3-O positions.  
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Effect of Sulf-2 treatment on PF4 and antithrombin binding 

 To assess whether Sulf-2 could decrease the binding of HS to PF4, [35S]HS 

prepared from CHO cells was used due to its high specific [35S] radioactivity. A dot blot 

membrane binding assay was used to compare the PF4 binding capabilities of Sulf-2-

treated and untreated HS (Fig. 3.4A). The wells contained 6,000 cpm of Sulf-2-treated or 

untreated [35S]HS with increasing amounts of PF4. [35S]HS bound to PF4 was captured by 

the nitrocellulose membrane. The untreated samples reached a maximum binding of 66% 

with 152 nM PF4, but the Sulf-2-treated samples bound only up to 3.1% with 608 nM PF4. 

From the two binding curves, it is apparent that Sulf-2 treatment can reduce the binding of 

HS to PF4 by over ten-fold.    

AT-binding HS was prepared by incubating HS from bovine kidney with 3OST-1 and 

[35S]PAPS. A Sulf-2-treated fraction was prepared by incubating this material with Sulf-2. 

Concanavalin A (ConA)-Sepharose beads were incubated with AT and HS, and the AT-

bound HS fraction was eluted using a 1 M NaCl solution (Fig. 3.4).  When the treated and 

untreated fractions were incubated with ConA-Sepharose and AT, 52% of the untreated 

fraction and 44% of the Sulf-2-treated fraction were recovered, suggesting that Sulf-2 does 

not remove critical 6-O-sulfo groups from the AT-binding pentasaccharide within the 

polysaccharide. [N-35S]HS, which does not considerably bind AT, was used as a negative 

control.  

For a more quantitative assessment of the effect of Sulf-2 treatment on the binding 

affinities of HS to AT and PF4, affinity co-electrophoresis was performed. This is an 

established method for determining the affinity constant of radiolabeled polysaccharide 

ligands with proteins [85]. The mobility of each lane is determined, and the protein 

concentration in each lane can be used to determine a Kd value based on the Scatchard 

equation.  For antithrombin, gels containing serial dilutions from 0-3.2 µM AT were prepared 
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and 50,000 cpm of the AT-binding fraction of 3OST-1-treated [35S]HS from CHO cells was 

added. The gel was run for 2 h, dried overnight, imaged and analyzed using ImageQuant TL 

software. For the untreated and treated samples, a plot of R/[AT] vs. R gave linear slopes of 

y=-0.0949x + 0.048 (R2=0.87) and y=-0.094 + 0.44 (R2=0.95), respectively. These 

correspond to Kd values of 10.5 and 10.6 nM, indicating that the binding affinity of HS to AT 

is unaffected by treatment with Sulf-2.  

 

 

 

Figure 3.4. Effect of Sulf-2 treatment on PF4 and AT binding. A. PF4 binding assay comparing Sulf-
2-treated and untreated radiolabeled heparan sulfate.  [

35
S]HS obtained from CHO cells was 

incubated with varying amounts of PF4, and the solutions were directly applied to a nitrocellulose 
membrane. The membrane was then washed and subjected to radioactivity analysis using a 
scintillation counter. Filled circles: untreated HS; open circles: Sulf-2-treated HS. B. [

35
S]HS was 

incubated with 0.1 mg/mL AT, and the complex of AT and HS was captured using ConA-Sepharose 
beads. The AT-binding [

35
S]HS was prepared by incubating HS from bovine kidney with the 3OST-1 

enzyme and [
35

S]PAPS.  

 

 

For PF4, serial dilutions of 0-1.41 µM PF4 were used, and 50,000 cpm of 3OST-1-

treated [35S]HS from CHO cells was added to each gel. The gels were run for 2.5 h and 

analyzed as above. Linear regression slopes of y=-0.1627x + 0.1238 (R2=0.77) and y=-

0.0085x + 0.0037 (R2=0.74) were calculated for the untreated and treated substrates, 
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respectively. These correspond to Kd values of 5.47 and 117.6 nM, showing that the binding 

affinity of HS for PF4 is decreased approximately 20-fold by treatment with Sulf-2. Taken 

together, our data suggest that Sulf-2 treatment decreases the binding affinity of HS to PF4 

while the affinity to AT remains intact. 

 

 

 untreated [
35

S]HS  Sulf-2-treated [
35

S]HS  

AT 10.5 nM  10.6 nM  

PF4  5.5 nM  118 nM  

 

Table 3.2. Binding affinities of Sulf-2-treated and untreated HS to PF4 and AT. Kd values were 
determined by affinity co-electrophoresis.  

 

 

The lack of impact on AT binding led us to question whether the 3-O-sulfated 

glucosamine residue present at the center of the AT-binding pentasaccharide in HS was 

affected by Sulf-2 [126]. We compared the disaccharide composition of 3-O-[35S]sulfated HS 

with and without Sulf-2 treatment (Fig. 3.5). The disaccharide analysis revealed the 

presence of three 3-O-sulfated disaccharides: Glc-AnMan3S, IdoA2S-AnMan3S and GlcA-

AnMan3S6S. We observed that the level of the disaccharide GlcA-AnMan3S6S in the Sulf-

2-treated sample was decreased to 38% from 51%, suggesting that Sulf-2 removed a 6-O-

sulfo group from the 3-O-sulfated glucosamine residue. However, the removal of this 6-O-

sulfo group from the 3-O-sulfated glucosamine residue has no impact on the binding affinity 

to antithrombin. This observation is consistent with the fact that AT-binding HS is composed 

of a disaccharide unit of GlcA-GlcNS3S (without a 6-O-sulfo group in the disaccharide unit) 

and GlcA-GlcNS3S6S (with a 6-O-sulfo group in the disaccharide unit) [127]. 
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Figure 3.5. Disaccharide analysis of 3-O-sulfated HS with and without Sulf-2 treatment.  The 3-O-
[
35

S]sulfated HS was prepared by incubating HS with purified 3-OST-1 enzyme and [
35

S]PAPS.  A 
portion of the 3-O-[

35
S]sulfated HS was treated with Sulf-2.  Both Sulf-2-treated and untreated HS 

were subjected to deacetylation with hydrazine followed by nitrous acid degradation at pH 4.5 and 
1.5. The resultant disaccharides were analyzed by HPLC. Panel A shows the chromatogram of the 
analysis of untreated 3-O-[

35
S]sulfated HS. Panel B shows the chromatogram of the analysis of Sulf-

2-treated 3-O-[
35

S]sulfated HS. The elution positions were identified by eluting with standards: 1 
represents GlcA-AnMan3S, 2 represents IdoA2S-AnMan3S and 3 represents GlcA-AnMan3S6S. * 
indicates the unidentified components. 

 

 

PF4 binding of oligosaccharides with anti-IIa activity 

 A small library of oligosaccharides was prepared by Dr. Yongmei Xu to investigate 

the relationship between the number of saccharide units and the anti-IIa/-Xa ratio [128]. The 

synthesis of these oligosaccharides was prepared by a novel method in which a 

disaccharide starting material (obtained by the degradation of heparosan) is sequentially 

incubated with HS elongation enzymes (KfiA and pmHS2) and UDP-sugars (UDP-GlcNAc or 

UDP-GlcNTFA and UDP-GlcA) to add one saccharide unit per step to the HS backbone. 

The backbone can then be sulfated using HS biosynthetic enzymes as previously described. 

 The PF4 binding characteristics of four oligosaccharides ranging from a 15-mer to a 

21-mer, some showing anti-IIa activity, were examined. The structures of the four 

oligosaccharides are shown in Table 3.3. 
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compound structure anti-IIa/-Xa 

10, 15-mer GlcNS6S-(IdoA2S-GlcNS6S)2-GlcA-GlcNAc6S-GlcA-GlcNac6S-GlcA-

GlcNS6S3S-IdoA2S-GlcNS6S-GlcA-AnMan 

N/A  

11, 17-mer GlcNS6S-(IdoA2S-GlcNS6S)3-GlcA-GlcNAc6S-GlcA-GlcNac6S-GlcA-

GlcNS6S3S-IdoA2S-GlcNS6S-GlcA-AnMan 

N/A 

12, 19-mer GlcNS6S-(IdoA2S-GlcNS6S)4-GlcA-GlcNAc6S-GlcA-GlcNac6S-GlcA-

GlcNS6S3S-IdoA2S-GlcNS6S-GlcA-AnMan 

1:5 

13, 21-mer GlcNS6S-(IdoA2S-GlcNS6S)5-GlcA-GlcNAc6S-GlcA-GlcNac6S-GlcA-

GlcNS6S3S-IdoA2S-GlcNS6S-GlcA-AnMan 

1:2 

 

Table 3.3. Chemical structure and anti-IIa/-Xa ratio of synthetic oligosaccharides. The AT-binding 
domain is shown in red. AnMan,anhydromannitol. 

 

 

 

Using the dot blot assay, we determined that all compounds bound to PF4; however, 

the oligosaccharides bound to PF4 to a lower extent than full-length HS (Fig. 3.6A). It should 

be noted that ULMW heparin 1 (a 7-mer) did not bind to PF4, consistent with the previous 

finding indicating that the minimum size of HS oligosaccharides that bind to PF4 is an 

octasaccharide  [129, 130]. Furthermore, the use of fondaparinux, a synthetic ULMW 

heparin, effectively eliminates the risk of heparin-induced thrombocytopenia [131, 132]. 

Next, we compared the binding affinity between the oligosaccharides and full-length 

heparin using a PF4 neutralization assay [129]. In this experiment, heparin and the 

oligosaccharides were incubated with AT and Xa. Under these conditions, the activity of Xa 

is low because of the presence of AT-saccharide complexes. Upon the addition of PF4 to 
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the reaction mixture, PF4 displaced AT by interacting with the oligosaccharides. 

Consequently, AT lost the ability to inhibit the activity of Xa. As shown in Fig. 3.6B, PF4 

effectively neutralized the inhibition effect of heparin at an ED50 of ∼1.2 μg/mL. In contrast, 

compound 13 displayed a much higher ED50 (3.4 μg/mL), suggesting that the synthesized 

21-mer has reduced binding affinity for PF4. As expected, PF4 was unable to neutralize the 

anti-Xa activity of ULMW heparin 1 because ULMW heparin 1 does not bind to PF4. 

 

 
 
Figure 3.6. Determination of the binding of PF4 to O-sulfated oligosaccharides. A. Binding between 
the 

35
S-labeled oligosaccharides and PF4 using a dot blot assay. 

35
S-labeled oligosaccharides were 

incubated with increasing amounts of PF4 and spotted onto a nitrocellulose membrane. Complexes of 
PF4 and 

35
S-labeled oligosaccharide were captured by the membrane, excised, and quantified using 

a scintillation counter. 3-O-Sulfated [
35

S]HS was used as a positive control, and it was prepared by 
incubating HS from bovine kidney and purified 3-OST-1 enzyme in the presence of [

35
S]PAPS. B. 

Neutralizing effects of PF4 on the anti-Xa activity of compound 13, heparin, and ULMW heparin 1. 
The HS compounds were incubated with AT and varying amounts of PF4 before the addition of Xa. 
AT inhibited the activity of Xa by binding to HS; PF4 competed with AT for binding to HS and 
therefore neutralizes the anti-Xa activity of AT. Chromogenic substrate was added to the mixture, and 
the rate of increase in the absorbance at 405 nm was used to determine Xa activity. 

 

 

 The ability of the compounds to bind AT was confirmed by affinity co-electrophoresis. 

If a portion of the compound mixture is unable to bind AT, two bands are expected on the 

gel: an AT-binding portion that is retarded at the top of the lane, and a non-binding portion 



47 
 

that travels partway through the lane. The complete retardation of our compounds at 

different concentrations of AT indicates that all of the mixture bound AT. 

 

 

 

Figure 3.7. Determination of the binding of compounds 10-13 to AT using affinity co-electrophoresis. 
The 

35
S-labeled compounds were loaded onto the lanes with different concentrations of AT. After 

performing the electrophoresis, the gels were imaged by phosphoimager. The 
35

S-labeled 
compounds were retarded due to the binding of AT and the oligosaccharides. ULMWH-1 represents 
the ultra-low molecular weight heparin 1, a pure heptasaccharide with a structure of GlcNAc6S-GlcA-
GlcNS3S6S-IdoA2S-GlcNS6S-GlcA-AnMan [92]. The ULMWH1 was used as a positive control 
because it was expected to bind AT completely under this condition. 

 

Conclusions 

 The results herein present two methods to produce anticoagulant HS with reduced 

binding to PF4: treatment with Sulf-2 and limited oligosaccharide length. These methods can 

aid in the design of heparin drugs with a lower incidence of HIT.  

 Understanding the full substrate specificity of Sulf-2 is of interest due to its 

involvement in development and cancer and its potential role in preparing HS structures. To 

address this issue, we synthesized nine HS polysaccharides with unique sulfation patterns 

and 35S-labeled groups at a specific position. We determined which polysaccharide 

constructs acted as substrates for Sulf-2 based on their decrease in radioactivity after Sulf-2 

treatment. We found that, as previously understood, trisulfated IdoA2S-[6-O-35S]GlcNS6S 

regions served as an excellent substrate for Sulf-2, showing approximately 90% removal of 

the radiolabeled group. In addition, this study found for the first time that disulfated UA-[6-O-

15-mer (10)      17-mer (11)        19-mer (12)          21-mer (13)           ULMWH 1 
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35S]GlcNS6S units experienced hydrolysis of 6-O-sulfo groups. Sulfation at positions other 

than the 6-O position was unable to be removed by the enzyme. These results were 

determined by spin column assay and by HPLC analysis. 

We also examined how Sulf-2 treatment affected binding to AT and PF4. Heparin 

interacts with AT through a specific AT-binding pentasaccharide: GlcNAc/NS6S-GlcA-

GlcNS3S6S-IdoA2S-GlcNS6S. It appears from our results that Sulf-2 removes 6-O-sulfo 

groups that are not within the critical AT-binding region, allowing HS to maintain its 

interaction with AT. It should be noted that the importance of 6-O-sulfation for AT-binding is 

well documented. Atha and colleagues, using a series of synthetic pentasaccharides, 

demonstrated that a particular 6-O-sulfo group on the nonreducing end side of the 3-O-

sulfated glucosamine residue contributed the AT binding energy nearly equal to that of the 

3-O-sulfo group [133]. At the polysaccharide level, 6-O-sulfation is also important for AT-

binding [37, 134]. The unique substrate specificity of Sulf-2 allows the removal of 6-O-sulfo 

groups that are nonessential for AT-binding. In addition, based on a ligand binding assay 

and affinity co-electrophoresis, we found that Sulf-2 treatment can reduce binding to PF4 on 

the order of 10- to 20-fold.  

The study of oligosaccharides with anti-IIa activity is the first to demonstrate the 

enzymatic synthesis of HS oligosaccharides up to a 21-mer. These substrates showed that 

the minimum size requirement for anti-IIa activity is a 19-mer, with a 1:5 anti-IIa/-Xa ratio, 

and that a 21-mer has a 1:2 ratio. It should be noted that these oligosaccharides, though 

defined in size, are heterogeneous in their O-sulfation patterns; however, they represent a 

significant step forward in the enzymatic synthesis of HS. All of the oligosaccharides (up to 

21 sugars in length) showed decreased binding to PF4 compared to full-length heparin in a 

dot blot protein binding assay, and the longest was less susceptible to PF4 neutralization 

than heparin in a chromogenic anti-Xa test. These results provide structural guidelines for 

new heparins with measurable anti-IIa activity and reduced PF4 interaction.   



 
 

 

 

CHAPTER IV 

IDENTIFICATION OF STABILIN-BINDING STRUCTURAL MOTIFS 

 

 Although heparin is one of the oldest drugs still in clinical use, its clearance from the 

body has remained poorly understood. Early studies on the clearance of heparin identified 

that UFH and LMWH bound and were internalized into lysosomes by human endothelial 

cells [135, 136], and it was later discovered that liver sinusoidal endothelial cells are the 

principal site for the clearance of UFH [137]. It is also known that UFH is eliminated via the 

liver and displays a fast clearance rate, while the pentasaccharide drug Arixtra is not and 

has a slow clearance rate in vivo [138]. Arixtra is instead cleared from the circulation by the 

kidneys, which makes its use in patients with renal impairment unsafe [79].  

 Recently, Stabilin-2 (Stab-2) was identified as a systemic clearance receptor for 

heparins [81]. Stabilin-2, also called HARE (hyaluronic acid receptor for endocytosis), is 

presented on the cell surface as two isoforms: a 315-kDa version and a 190-kDa version 

that is the product of proteolytic cleavage (Fig. 4.1.). Both receptors bind to heparin and 

participate in its clearance. The binding affinity of Stab-2 for UFH is higher than for LWMH, 

suggesting that the interaction between Stab-2 and heparins is dependent on the length of 

the carbohydrate chain. Stab-2 is responsible for the clearance of other 

glycosaminoglycans, such as hyaluronic acid and chondroitin sulfates, although the heparin 

binding site is known to be distinct from the LINK domain that binds these two substrates 

[90]. 
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Figure 4.1. Domain structure of Stabilin-2. 

 

 Stabilin-1 (Stab-1) is a homolog of Stab-2, with 41% amino acid identity and 56% 

similarity. It has not been previously reported to bind heparins. Like Stab-2, Stab-1 is 

expressed in the endothelium of the liver, lymph node and spleen, but it is also uniquely 

expressed in activated macrophages and continuous endothelial vasculature [139, 140], 

suggesting that the receptor is immune responsive.  

 Based on the current understanding of the role of Stabilin-2 in clearing heparin, we 

hypothesized that the binding affinity between heparin and Stab-2 likely relates to the 

clearance rate of heparin. We prepared a series of HS poly- and oligosaccharides to probe 

the structural requirements for binding to Stab-2. In addition, we tested whether the 

homologous receptor Stabilin-1 is involved in heparin clearance.  

 

Polysaccharide constructs 

 To investigate how sulfation patterns and IdoA content influenced binding to Stabilin 

receptors, ten polysaccharide constructs were chemoenzymatically prepared using 
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heparosan as a starting material. All constructs were N-[35S]-labeled using NST and 

[35S]PAPS. Subsequent sulfo groups were added using nonradiolabeled PAPS; thus, the 

cpm/µg was equal between the different constructs. The structures of the nine test 

constructs and the control (3-O-sulfo heparin) are shown in Fig. 4.2. Their structures were 

confirmed using disaccharide analysis.  

 

 

Figure 4.2. Chemical structures of the polysaccharide constructs. The top left structure shows the 
disaccharide structure of constructs without IdoA, and the top right disaccharide represents IdoA-
containing structures. The sulfo groups present for each construct are given in the table below. Bold 
groups indicate a 

35
S-label.  

 

 

 

 

Cell internalization assays 

 We tested the Stabilin-mediated cellular internalization of the ten polysaccharide 

constructs using Flp-In 293 cells. The cell lines were stably transfected with 

pcDNA5/FRT/V5-6xHIS-TOPO vectors for Stab-1, Stab-2/190-HARE and Stab-2/315-HARE. 

Transfected cells expressing the Stab-1 or Stab-2 receptors (or empty vector, Hygromycin B 
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resistant only) were plated in 24-well dishes in DMEM supplemented with 8% FBS and 50 

µg/mL Hygromycin B and grown for at least two days prior to experiments. The radiolabeled 

constructs (2.0 x 104 cpm/mL) were added to the cell cultures with fresh medium and 

incubated for 3 h.  

 The control construct 23, 3-O-sulfated heparin, was added to the cell lines to assess 

receptor binding and endocytosis (for structure, see Fig. 4.2). All three cell lines (Stab-1, 

Stab-2/190-HARE and Stab-2/315-HARE) internalized 23, as measured by the cpm/µg 

protein of the cell lysate. The expression level of Stab-2/315-HARE was previously 

determined to be lower than that of Stab-2/190-HARE; thus, its HS internalization levels 

tend to be lower. The results of the assay clearly indicated that the cell lines were capable of 

internalizing radiolabeled heparin (Fig. 4.3).  

 

 

Figure 4.3. Internalization of 3-O-sulfated heparin by Stab-1 and -2. A. 20 µg of cell lysate was 
separated by 5% SDS-PAGE, blotted onto nitrocellulose and probed with anti-V5 antibody. Lane 1, 
Stab-2/190-HARE, 2, Stab-2/315-HARE, 3, Stab-1. B. Cell lines expressing Stab-1 (white bar), Stab-
2/190-HARE and Stab-2/315-HARE (gray bars) or empty vector (black bar) were incubated with 3-O-
[
35

S]-labeled heparin for 3 h. The dotted line represents nonspecific binding. Endocytosis was 
measured as the cpm/µg cell lysate protein, mean ± s.d., n=3.  
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 Having confirmed the applicability of the cell-based assay, the nine HS constructs 

were incubated with the three cell lines under the same conditions. In general, constructs 

with more sulfo groups were more readily internalized. Surprisingly, constructs 21 and 22, 

which contained 3-O-sulfation, were endocytosed to a much higher extent than the other 

constructs (Fig. 4.4). Because 3-O-sulfation is a rare modification on HS, it is unlikely that 

the higher internalization was a simply a result of the charge density. Constructs that 

contained the same sulfo groups but differed in their IdoA content were not appreciably 

different in the internalization assay. At this time, we cannot conclude that there is any 

epimerization effect.  

 

Figure 4.4. Internalization of modified HS polysaccharides. Empty vector, Stab-1 and Stab-2/190-
HARE cell lines were incubated with HS constructs for 3 h. The cells were washed, and the [

35
S] 

cpm/µg protein cell lysate was determined with scintillation counting. Mean ± s.d., n = 3. 

 

 

Direct binding assay 

 The nine polysaccharide constructs were also tested for direct binding to purified 

Stabilin receptor ectodomains. The Stabilin receptors were isolated from the media of their 

respective cell lines using anti-V5 antibody coupled to Sepharose resin and were incubated 

HS construct:  14  15  16  17  18  19  20  21  22  
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with the 35S-labeled constructs. An empty vector cell line was used as a baseline for 

nonspecific binding due to the inherent “stickiness” of highly charged HS.  

 

  

 

Figure 4.5. Direct binding of HS constructs and Stabilin ectodomains. Secreted ectodomains of each 
receptor were immunopurified with V5 resin. A. Ectodomains were separated by 5% SDS-PAGE, 
blotted and probed with anti-V5 antibody. Lane 1, Stab-2/190-HARE, 2, Stab-2/315-HARE, 3, Stab-1. 
B-D. Ectodomains bound to V5 resin were incubated with an equal amount of each HS construct for 
1.5 h under rotation. The resin was washed three times with Tris-buffered saline and subjected to 
scintillation counting. Cpm were normalized to the amount of protein on the resin.  

 

14  15  16  17  18  19  20  21  22 

14  15  16  17  18  19  20  21  22 14  15  16  17  18  19  20  21  22 
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The binding between the nine constructs and receptor ectodomains followed a 

similar pattern to that of the cell internalization assay (Fig. 4.5). Again, constructs 21 and 22 

exhibited the highest interaction with the Stabilin receptors, and there was no observed 

difference between the constructs with IdoA and those without.  

 

Antithrombin competition  

 We noted that the structural modifications shown to provide the best binding to the 

Stabilins are the same as those that confer antithrombin binding, namely the presence of 3-

O-sulfation. This is a rare modification in HS, but it is critical for antithrombin activity. To 

discern whether AT and the Stabilins bind HS at the same site, we tested whether 

antithrombin was able to inhibit the interaction between our constructs and the Stabilin 

receptors.  

 First, Stab-1 cells were incubated with [35S]-labeled heparin and increasing 

concentrations of AT (Fig. 4.6A). Decreased heparin endocytosis with increasing AT 

indicated that some overlap between the AT-binding sequence and Stabilin-binding 

sequence does exist. Next, four of our constructs that showed at least partial Stabilin 

binding (19-22) were incubated with the three Stabilin-expressing cell lines in the presence 

and absence of AT. Constructs 19 and 20 do not contain an AT-binding site whereas 21 and 

22 do, with 21 being the best substrate for AT due to its IdoA content. Consistent with our 

previous result, constructs 21 and 22 exhibited decreased endocytosis in the presence of 

AT, while constructs 19 and 20 were unaffected (Fig. 4.6).  
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Figure 4.6. Inhibition of Stabilin-mediated endocytosis by antithrombin. A. Dose-response curve for 
AT against radiolabeled heparin. The dotted line represents the threshold for nonspecific binding. B-
E. Stabilin-binding HS constructs were incubated with the indicated cell lines in the presence or 
absence of 0.2 mg/mL AT. Constructs 8 and 9 contain an AT-binding site; constructs 6 and 7 do not. 

Data are the mean ± s.d., n = 4. 

 

AT (mg/mL) 

AT  

AT  AT  

AT  

HS without 3-O sulf (19)  HS without 3-O sulf  
and IdoA (20)  

HS with 3-O sulf (21)  HS with 3-O sulf,  
no IdoA (22)  
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Oligosaccharide constructs 

 Having determined the sulfation patterns necessary for robust Stabilin binding and 

cell internalization, we sought to determine the minimum oligosaccharide length. The 

oligosaccharide substrates were elongated (using GlcA-AnMan as a starting material) to the 

desired length, then treated with recombinant enzymes and PAPS to give the intended 

structural motifs.  A full list of the synthesized HS constructs (including polysaccharides) is 

given in Table 4.1. 

 To test the impact of length on endocytosis, oligosaccharides with 3-O-sulfation 

ranging from a 10-mer to a 19-mer (constructs 27-36) were prepared. None of these 

constructs were internalized by the empty vector cells, but surprisingly, all were taken up by 

the Stab-1 and Stab-2/315-HARE cells. A 7-mer (24) was used as a negative control and 

showed no internalization. Having determined that the minimum binding structure was 

between seven and ten sugar units, we synthesized and tested an 8-mer (25b) and 9-mer 

(26b). As shown in Fig. 4.7A, the 7-mer and 8-mer exhibit very little internalization. The 9-

mer shows a slight increase in internalization, primarily in the Stab-1 cells, while the 10-mer 

confers a significant increase in the amount of internalized HS. From this point, the amount 

of HS endocytosis remains steady up to a 19-mer, which was the largest oligosaccharide 

tested. A similar assay examined the cellular uptake of the 7-mer (not shown) and 19-mer 

with a 50-fold excess of Arixtra (Fig. 4.7B). The internalization of the 19-mer was unchanged 

by the addition of Arixtra, suggesting that Arixtra is not cleared by cells expressing Stabilin 

receptors.  
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# disaccharide repeating unit size of construct 

14 (-GlcA-GlcNS-)n polysaccharide, >6000 Da 

15 (-GlcA-GlcNS6S-)n polysaccharide, >6000 Da 

16 (-IdoA-GlcNS6S-)n polysaccharide, >6000 Da 

17 (-GlcA2S-GlcNS-)n polysaccharide, >6000 Da 

18 (-IdoA2S-GlcNS-)n polysaccharide, >6000 Da 

19 (-IdoA2S-GlcNS6S-)n polysaccharide, >6000 Da 

20 (-GlcA2S-GlcNS6S-)n polysaccharide, >6000 Da 

21 (-GlcA-GlcNS±6S±3S-)n and (-IdoA2S-GlcNS6S-)m polysaccharide, >6000 Da 

22 (-GlcA2S-GlcNS6S-)n and (-GlcA-GlcNS±6S±3S-)m polysaccharide, >6000 Da 

23 heparin, (-IdoA2S-GlcNS6S-)n and (-GlcA-GlcNS±6S±3S-)m polysaccharide, >6000 Da 

24 GlcNac6S-GlcA-GlcNS6S3S-IdoA2S-GlcNS6S-GlcA-AnMan 7-mer 

25a GlcA-GlcNS6S-(IdoA±2S-GlcNS6S)2-GlcA-AnMan 8-mer no 3-O-sulfation 

25b GlcA-GlcNS6S±3S-(IdoA±2S-GlcNS6S)2-GlcA-AnMan 8-mer with 3-O-sulfation 

26a GlcNS6S-GlcA-GlcNS6S-(IdoA±2S-GlcNS6S)2-GlcA-AnMan 9-mer no 3-O-sulfation 

26b GlcNS6S-GlcA-GlcNS6S±3S-(IdoA±2S-GlcNS6S)2-GlcA-AnMan 9-mer with 3-O-sulfation 

27 GlcA-GlcNS6S±3S-(GlcA±2S-GlcNS6S)3-GlcA-AnMan 10-mer no IdoA 

28a GlcA-GlcNS6S-(IdoA±2S-GlcNS6S)3-GlcA-AnMan 10-mer no 3-O-sulfation 

28b GlcA-GlcNS6S±3S-(IdoA±2S-GlcNS6S)3-GlcA-AnMan 10-mer with 3-O-sulfation 

29 GlcA-GlcNS6S±3S-(GlcA±2S-GlcNS6S)4-GlcA-AnMan 12-mer no IdoA 

30a GlcA-GlcNS6S-(IdoA±2S-GlcNS6S)4-GlcA-AnMan 12-mer no 3-O-sulfation 

30b GlcA-GlcNS6S±3S-(IdoA±2S-GlcNS6S)4-GlcA-AnMan 12-mer with 3-O-sulfation 

31 GlcNS6S-(GlcA±2S-GlcNS6S±3S)3-(GlcA-GlcNAc6S)2-GlcA-

GlcNS6S-GlcA-AnMan 

15-mer no IdoA 

32 GlcNS6S-(IdoA±2S-GlcNS6S±3S)3-(GlcA-GlcNAc6S)2-GlcA-

GlcNS6S-GlcA-AnMan 

15-mer 

33 GlcNAc6S-(GlcA±2S-GlcNS6S±3S)4-(GlcA-GlcNAc6S)2-GlcA-

GlcNS6S-GlcA-AnMan 

17-mer no IdoA 

34 GlcNAc6S-(IdoA2S-GlcNS6S±3S)4-(GlcA-GlcNAc6S)2-GlcA-

GlcNS6S-GlcA-AnMan 

17-mer 

35 GlcNS6S-(GlcA±2S-GlcNS6S±3S)5-(GlcA-GlcNAc6S)2-GlcA-

GlcNS6S-GlcA-AnMan 

19-mer no IdoA 

36 GlcNS6S-(IdoA2S-GlcNS6S±3S)5-(GlcA-GlcNAc6S)2-GlcA-

GlcNS6S-GlcA-AnMan 

19-mer 

 

 Table 4.1. Summary of the polysaccharide and oligosaccharide constructs.  
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Figure 4.7. Effect of size on endocytosis. A. Stab-1 and Stab-2/315-HARE cells were incubated with 
radiolabeled oligosaccharides for 3 h, washed and quanitified by scintillation counting and Bradford 
assay. B. Radiolabeled 7-mer and 19-mer were incubated for 3 h with Stab-1 and Stab-2/315-HARE 
cells with a 50-fold excess of Arixtra (Ax), then washed, lysed and quantified. The Stab-2/190-HARE 
cell line showed similar results. Data are the mean ± s.d., n = 3. 

 

  

The results up to this point strongly suggested that a 10-mer was the minimum 

length required for Stabilin binding. To further establish the role of 3-O-sulfation near this 

critical length, we prepared 8-, 9-, 10- and 12-mers without 3-O-sulfation (constructs 25a, 

26a, 28a and 30a) and with 3-O-sulfation (25b, 26b, 28b and 30b). These eight constructs 

were incubated with Stab-1 and Stab-2/315-HARE cell lines, and heparin and 7-mer were 

used as positive and negative controls. As seen in Fig. 4.8., the 7-mer, 8-mer and 9-mer 

showed little to no internalization regardless of whether they contained 3-O-sulfation. 

However, the 10-mer and 12-mer showed much higher internalization when 3-O-sulfation 

was present; in the Stabilin-1 cells, the levels of endocytosis were similar to those of 

heparin, and in the Stab-2/315-HARE cells they were about half those of heparin.  

7-mer, 24 

8-mer, 25b 

9-mer, 26b 

10-mer, 28b 

15-mer, 32 

19-mer, 36 

19-mer, 36 

19-mer, 36 + Ax 

7-mer, 11 

19-mer, 36 

19-mer, 36 + Ax 

7-mer, 11 
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Lastly, we were interested to know how Stabilin binding related to the retention of our 

constructs in the liver. The current understanding is that longer heparin chains are cleared 

by the liver, while short (non-Stabilin-binding) heparins are processed by the kidneys [138]. 

Therefore, if the Stabilins are responsible for the bulk of heparin clearance, the size and 

sulfation parameters for Stabilin binding should lead to their being taken up by the liver. 

 

 

 

Figure 4.8. A 3-O-sulfated decasaccharide is required for binding to Stabilin receptors. Stab-1 (A) 
and Stab-2/315-HARE cells (B) were incubated with heparin (positive control, black bars), 7-mer 
(negative control), 3-O-sulfated oligosaccharides (gray bars) and non-3-O-sulfated oligosaccharides 
(white bars) for 3 h. Cells were washed with Hank’s buffered saline solution and radioactivity and 
protein levels were determined, mean ± s.d., n = 3.  
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Figure 4.9. 3-O-sulfation leads to efficient liver retention. Mice were injected via the tail vein with 
radiolabeled heparin (black bar), 7-mer (white bar), or a 10-mer with or without 3-O-sulfation (28b, 
28a). After a short incubation, the livers were collected and processed for scintillation counting. The 
data presented are the cpm/mass of liver divided by the total cpm injected of at least three liver 
samples. n = 3 mice.  

 

 

Mice under general anesthesia were injected via the tail vein with equal amounts of 

radioactive heparin, 7-mer, 28a or 28b, and the compounds were allowed to circulate. The 

mice were then bled out, and the livers were collected and processed for scintillation 

counting. The 7-mer was not retained in the liver (Fig. 4.9, white bar), but the 3-O-sulfated 

10-mer (28b) showed retention similar to that of heparin. The non-3-O-sulfated 10-mer 

retention was significantly reduced. Thus, our data suggest that 3-O-sulfation indeed 

contributes to the uptake of heparins by the liver.  

 

Figure 4.10. The structure of 28b, the shortest HS construct that displayed robust Stabilin binding.  

Heparin 
7-mer, 24 
10-mer, 28a w/o 3-O sulf 
10-mer, 28b w/ 3-O-sulf 
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Conclusions 

Understanding the clearance rate of heparin has significant clinical implications for 

improving the safety of heparin-based drugs. For surgical applications, a fast-clearing 

heparin drug is preferred, as it would allow the anticoagulant effect to disappear rapidly after 

the operation and thus reduce the risk of bleeding side effects. In contrast, a slow-clearing 

heparin is more desirable for patients with that require repeated dosing. Indeed, UFH is 

widely used in surgical procedures and kidney dialysis, whereas LMWH and fondaparinux 

are more commonly used as prophylactic agents among high-risk patients prone to 

thrombosis [141, 142]. Although the size of the heparin chain is known to play a role in the 

rate of clearance in patients, the precise structural requirements for regulating clearance has 

remained uncharacterized. Previous studies have demonstrated that a liver endothelial cell 

receptor, known as Stabilin, is primarily responsible for heparin clearance [81]. By taking 

advantage of our laboratory’s success in synthesizing heparins [91, 92], we investigated the 

contribution of the sulfation and the size of heparin to the binding to Stab proteins. Our 

results provide a molecular basis for designing synthetic heparins with desired clearance 

rates for unique clinical applications. 

Our study revealed two binding modes between heparin and Stab proteins. In one 

binding mode, the heparin polysaccharide binds to Stab-1/-2 nonspecifically; such binding 

requires a long polysaccharide chain. Another binding mode is specific, in which the Stabilin 

proteins recognize a saccharide domain containing a 3-O-sulfo group. In the specific binding 

mode, a much shorter oligosaccharide can sufficiently display high affinity to the Stabilins. 

We also demonstrate that a 3-O-sulfated decasaccharide displays higher retention in the 

liver in mice compared to its counterpart without 3-O-sulfation, suggesting that Stabilin 

binding affinity correlates to the clearance in vivo. 



63 
 

Our data also suggest that Stabilin proteins recognize a unique saccharide 

sequence. Although we do not know the precise saccharide structure recognized by the 

Stabilin receptors at the present time, some overlaps between the Stab-binding sequence 

and AT-binding sequence exist. We know that 3-O-sulfation is a critical modification for 

displaying high binding affinity to AT and for carrying anticoagulant activity [143]. Further, 

competitive binding of the Stabilin receptors and AT to heparins was observed in this study. 

The mechanistic effect of 3-O-sulfation on the binding to the Stabilin receptors is currently 

unknown. We postulate that this effect is unlikely to be purely attributed to an increase in 

charge density because 3-O-sulfation is a rare modification in HS [144]. A recent study 

suggests that 3-O-sulfation may affect the conformation of neighboring IdoA2S residues to 

rearrange the positioning of sulfo groups [145]. In addition, previous studies have shown 

that one natural highly sulfated chondroitin sulfate (CS-D) did not compete with heparin in 

contrast to other similar chondroitin sulfates (CS-B, CS-E) that demonstrated some degree 

of competition [90], providing evidence that charge is not the only determinant for heparin 

binding to the Stabilins. 

This is the first report demonstrating the structural selectivity of heparin binding to 

Stab-1. The Stab-1 receptor is expressed in the liver sinusoidal endothelium as well as in 

alternatively activated macrophages [146] and other physiological niches [147], and it may 

play a role in both systemic and localized clearance of heparinoid molecules.  

It should be noted that the rate of endocytosis also depends on the concentration of 

Stab receptors on the cell surface. The Stab-2/190-HARE isoform always showed the 

highest increase in endocytosis because these cells produce more receptor per microgram 

of cell lysate than the other two cell lines. Not surprisingly, the liver endothelial cells exhibit a 

much higher ratio of 190/315-HARE Stab-2 than the recombinant cell lines, which may 

account for the rapid uptake of heparin within the liver [148]. The consistently lower 
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internalization rate of heparin in the Stab-1 cells may be reflective of the amount of total 

surface receptor available to bind and internalize heparin, a lower binding affinity, or the 

unavailability to bind ligand due to the very short transient time on the cell surface. Others 

have reported the very short transient time of Stab-1 on the cell surface [146, 149].  In these 

experiments, we noticed a discrepancy in binding vs. endocytosis. Our in vitro binding 

assays by immunoprecipitation of the ecto-domain of Stab-1 revealed that the binding of the 

HS oligomers was qualitatively about as high as that of the Stab-2 ecto-domains. This 

contrasts with the cell-based assays and reveals that a combination of surface availability 

and rapid turnover, not binding affinity, may be responsible for lower endocytic rates in Stab-

1 cells. In addition, the expression of Stabilin receptors can be regulated by other cellular 

mechanisms. A genetic screen in which human umbilical vein endothelial cells (HUVEC) 

activated with VEGF revealed an increase of Stab-1 expression reveals that growth factors 

and cytokines are able to alter endocytosis profiles of tissues [150].   

These results provide a molecular basis for designing anticoagulant heparin drugs 

with controlled clearance rates and advance our understanding of the HS and heparin 

clearance mechanism.  

 

 

 

 

 

 



 
  

 

 

CHAPTER V 

DESIGN OF HOMOGENEOUS HEPARINS WITH CONTROLLED CLEARANCE 

PATHWAYS 

 

 Problems with the heparin drugs available today have underscored the need for 

structurally pure heparin compounds. Most notable is the recent distribution of contaminated 

heparin that caused over 80 deaths in the United States and a major drug recall [151]. The 

heparin supply had been contaminated with oversulfated chondroitin sulfate, a related 

glycosaminoglycan is difficult to distinguish from heparin by common screening methods but 

provokes a potentially fatal immune response when administered to patients. Contamination 

issues of this nature could be avoided by replacing the porcine-derived heparin with a 

synthetic version that is not dependent on the international (primarily Chinese) pig 

population and has a shorter, better regulated supply chain.  

 Other heparin concerns can be addressed by tailoring heparin structures to have 

improved biological effects and traits desirable for different patient populations. One element 

of heparin that is essential in surgical applications is the availability of a reversal agent. 

Protamine sulfate, a highly cationic peptide, is a long-standing heparin antidote. The 

anticoagulant effect of unfractionated heparin is efficiently reversed by protamine, but 

protamine is unable to fully neutralize low-molecular-weight heparins. Thus, we investigated 

the susceptibility of our synthetic heparin compounds to protamine neutralization, with the 
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goal of designing a low-molecular-weight heparin analog with better protamine reversibility 

than existing LMWHs like Lovenox.  

 When assessing new compounds, in vitro assays, such as measurements of direct 

antithrombin binding and anti-Xa activity, give a good indication of the activities of heparin 

analogs. However, in vivo studies are necessary to investigate the biological effects and 

bioavailability of these compounds.  

 Most in vivo assays of anticoagulants involve taking timed blood samples and 

measuring a physical parameter, such as clotting, or testing for the activity of components of 

the coagulation cascade. In human patients, activated partial prothromboplastin time is the 

standard for unfractionated heparin monitoring, while more complex anti-Xa assays are 

used for patients on chronic LMWH dosing and for higher risk patients, such as infants, 

pregnant women and those with renal impairment [152-155]. Other commonly used 

research models include arterial and venous thrombosis (induced by pharmacologic or 

mechanical means) and bleeding models (such as rabbit ear bleeding and rat tail bleeding) 

[156]. Here, we used rodent models to assess anti-Xa activity.  

 

Design and synthesis of 6-, 8-, 10- and 12-mer 

 With the structural information gathered from previous studies, we set out to design 

novel anticoagulant heparin structures that were homogenous, reversible by protamine, 

cleared by the liver and short enough to have reduced PF4 binding. To this end, we 

designed heparin analogs ranging from a 6-mer to a 12-mer that contained an AT-binding 

pentasaccharide at the non-reducing end and repeating IdoA2S-GlcNS6S units (which are 

common in heparin but not heparan sulfate). Commerically available p-nitrophenyl β-

glucuronide (GlcA-pnp) was used as a starting material because the pnp tag is detectable 
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by UV at 310 nm, facilitating isolation of the product during the synthetic steps. Based on 

our previous results, we expected that the 10-mer and 12-mer would be cleared by the liver 

rather than the kidneys. The molecular weights and AT binding affinities of the constructs 

are shown in Table 5.1. 

 

 

compound molecular mass (Da) AT affinity (Kd) 

6-mer 1791.5 16.2 ± 3.7 nM 

8-mer 2368.9 13.1 ± 2.0 nM 

10-mer 2946.4 9.9 ± 4.1 nM 

12-mer 3485.8 8.5 ± 3.0 nM 

 

Table 5.1. Pure oligosaccharides for in vivo studies. All compounds contain an AT-binding motif and 

repeating IdoA2S-GlcNS6S units. Kd values were determined by affinity co-electrophoresis. 

 

 

 

Antithrombin binding affinities 

 Affinity co-electrophoresis was used to determine the binding affinities (Kd values) of 

the different constructs to AT. Each oligosaccharide was run through a gel with lanes 

containing 0-3 µM AT, and the mobility of the oligosaccharide in each lane was used to 

determine a Kd value. These values are shown in Table 5.1. The four compounds showed 

comparable binding affinities for antithrombin. 
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Protamine reversibility 

 We tested whether protamine could reverse the anti-Xa activity of the four 

compounds. The assay was similar to that used to test PF4 neutralization (Chapter III); an 

amount of each compound that was able to inhibit factor Xa by 90% was incubated with 

increasing concentrations of protamine. The return of Xa activity in the presence of 

protamine indicated that protamine was inhibiting the ability of the HS compound to bind and 

antagonize factor Xa. 

 

Figure 5.1. Susceptibility of HS oligosaccharides to protamine neutralization. HS constructs expected 
to display 90% factor Xa inhibition were added to human serum with different amounts of protamine. 
The Xa activity in the serum was then measured using a chromogenic assay. Lovenox was used as a 
control.  

 

 

 

 The experiment indicated that the two longest compounds, a 10-mer and 12-mer, 

were more susceptible to protamine neutralization than Lovenox, although they were not 
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completely neutralized. The 6-mer was not reversible by protamine and the 8-mer was 

reversed less than Lovenox. The result suggests that a pure LMWH that is 10 to 12 sugars 

long will be reversed by protamine to a greater extent than Lovenox.  

 

Pharmacokinetic profile in rats 

 Having confirmed the anti-Xa activity of the 6- to 12-mer in vitro, we were interested 

to measure their activity in a living system. Rats and rabbits are used more commonly than 

mice for anticoagulant testing because multiple blood samples can be taken from a single 

animal. Because training and facilities for rats were more readily available, we used 

Sprague-Dawley rats to test the clearance profiles of our compounds.  

  The existing drugs Lovenox and Arixtra were tested first as controls. Because these 

drugs have a half-life of 2-6 hours and 17 hours in humans, respectively, we expected that 

their half-lives in rats would be considerably different from each other and that we could use 

them as guidelines to judge whether our 6-, 8-, 10- and 12-mer showed fast clearance 

profiles (close to or shorter than Lovenox) or slow ones (more similar to Arixtra). In vitro anti-

Xa assays were performed to obtain standard curves for Lovenox and Arixtra and determine 

an equivalent dosage for the two drugs (Fig. 5.2). The doses chosen were 2.27 mg/kg for 

Lovenox and 200 µg/kg for Arixtra.  
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Figure 5.2. Pharmacokinectic profile of Lovenox and Arixtra. Standard curves of the anti-Xa activity of 
Lovenox (A) and Arixtra (B) were determined in vitro in blank rat serum. C. Rats were dosed 
subcutaneously with heparin drugs, and blood samples were taken by tail clip over a 24-hour period, 
then centrifuged to isolate plasma and subjected to a chromogenic factor Xa assay. Data points are 
the average of 2-3 samples.    

 

 

 Male rats (250-350 g) were dosed subcutaneously with approximately 100 µL of 

Lovenox or Arixtra, and blood was collected by tail clip at 0.75, 1.5, 2.25, 3, 4, 6, 8 and 24 

hours. Blood was centrifuged to obtain plasma immediately after collection and was stored 

at -20°C until use. Rat serum without drugs was used to represent 100% Xa activity (0% 

inhibition).  

 When the rat samples were assayed for anti-Xa activity, we were surprised to find 

that the two drugs exhibited a very similar plasma clearance profile (Fig. 5.2C). Although no 

published studies have compared the clearance of these two drugs in rats, a review of the 
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literature confirmed that both Lovenox and Arixtra showed a peak concentration at around 2 

hours and a half-life of about 4.5 hours in rats (for examples, see [157-159]). The long half-

lives characteristic of pentasaccharide heparin drugs like Arixtra and idraparinux (a 

fondaparinux analog with a human half-life of 80 hours) are not exhibited in animal studies 

unless a primate species (commonly baboon) is used [56]. Because we were unlikely to 

obtain meaningful data on heparin clearance rates in rats and because primate studies were 

not possible, we abandoned this study and instead investigated how the Stabilin-binding 

character of our heparin analogs influenced their route of elimination in vivo.  

 

Anti-Xa activity and elimination route in mice 

 BALB/c mice were used to investigate the bioactivity and elimination route of our four 

compounds. To confirm that the compounds were bioavailable by subcutaneous injection, 

four mice were injected with each compound (or with PBS as a control), and blood was 

collected by cardiac puncture after a 30-minute incubation. The samples were spun down to 

isolate plasma, and the anti-Xa activity of the PBS- and HS-injected mouse samples were 

compared using a chromogenic assay. The four compounds showed similar activity and did 

not exhibit a correlation between length and anti-Xa activity. This suggests that pure 

oligosaccharides ranging from a 6-mer to a 12-mer are equally bioavailable and confirms 

that they show anti-Xa activity in vivo, a common indication of anticoagulant activity.  

Having shown that our compounds exhibited anti-Xa activity in vivo, we questioned 

how their Stabilin-binding character would influence their clearance by the liver or by the 

kidneys. We expected that the 10-mer and 12-mer, which contain Stabilin-binding 

structures, would be present in the liver after a short incubation time, whereas the 6-mer and 
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8-mer (which are not Stabilin binding) would be cleared primarily by the kidneys and would 

be detectable in urine. 
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Figure 5.3. Factor Xa inhibition in mice. Male BALB/c mice (16-20 g) were injected subcutaneously 
with HS at 100 nmoles/kg. After 30 minutes, mice were sacrificed and blood was collected via cardiac 
puncture. Isolated plasma was tested for Xa activity using a chromogenic assay with plasma from 
PBS-injected mice as a control. n = 4 mice per compound, 3 assays per sample.  

 

 

   

 35S-labeled versions of the four compounds were synthesized and injected in mice 

intravenously. Radiolabeled unfractionated heparin and a 7-mer (an ultra-low-molecular-

weight heparin that showed no Stabilin binding) were used as controls. Livers and urine 

were collected after a ten-minute incubation and were processed for scintillation counting. 

The percentage of recovered radioactivity (in cpm) out of the amount injected was quantified 

for each compound. 
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Figure 5.4. Retention of oligosaccharides in mouse liver and urine. Equal amounts of 
35

S-labeled 
heparins were injected via the tail vein to male BALB/c mice. After a short incubation, the mice were 
bled out and the livers were processed for scintillation counting (A). 

35
S-radioactivity in the urine was 

also determined (B). Unfractionated heparin (UFH), which is known to be cleared by the liver, and a 
7-mer (ULMWH) that did not show Stabilin binding were used as controls. n = 4 mice.  

 

 

 The study found that the 7-mer control, 6-mer and 8-mer were retained at a very low 

level, whereas the 10-mer and 12-mer showed greater retention in the liver than UFH. In the 

urine, the 6-mer and 7-mer were present to a much higher extent than the other compounds. 

These data support the hypothesis that Stabilin-binding oligosaccharides are primarily 

cleared by the liver and that non-Stabilin-binding ones are cleared by the kidneys and 

excreted in urine. This information could be useful in the future design of heparins for 

patients with renal impairment and suggests different clinical applications for the four 

compounds designed in this study.  
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Conclusions 

 These studies present the first synthesis of structurally homogenous heparin 

oligosaccharides with anticoagulant activity. Four heparan sulfate constructs, a 6-, 8-, 10- 

and 12-mer, were prepared by sulfating the sugars concurrently with saccharide chain 

elongation.  As a result, C5-epimerase exhibited its irreversible reaction mode and IdoA 

residues were locked in place, allowing the formation of repeating IdoA2S-GlcNS6S regions.  

 When compared to an existing low-molecular-weight heparin, Lovenox, the 10-mer 

and 12-mer were more reversible by protamine in an in vitro assay. The 10-mer and 12-mer 

were also retained in the liver, not the kidneys, to a greater extent than the 6-mer and 8-mer, 

which is consistent with our data on Stabilin binding. Avoiding heparin kidney clearance 

would be highly advantageous for renally impaired patients and for elderly patients, who 

experience reduced clearance of drugs eliminated by the kidneys due to physiological 

changes in old age [160]. All four compounds exhibited similar anti-Xa activity in mice, 

suggesting that bioavailability does not change within this oligosaccharide size range.  

 Despite the passage of nearly a century since its discovery, the chemical structure of 

the drug heparin has gone largely unchanged. The first decades of its use saw the 

development of depolymerized low-molecular-weight heparins and later, the synthesis of the 

AT-binding pentasaccharide region by both chemical and enzymatic methods. After the 

development of Arixtra, innovations in the heparin field have primarily focused on extending 

the half-life of the drugs. This has been achieved by adding tags such as biotin and by 

replacing sulfo groups with less reactive methyl groups. Despite these advances, there has 

been no targeted development of heparin analogs that have specific biological functions or 

meet the needs of specific patient populations.   
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Breakthroughs in the field of heparan sulfate synthesis and in understanding 

heparan sulfate biochemistry have facilitated the production of heparan sulfate constructs 

that have desirable biological activities. We hope that these innovations will enable the 

development of new heparin drugs that better serve patients requiring anticoagulant 

therapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

CHAPTER VI 

CONCLUSIONS 

 

Heparan sulfate is a ubiquitous carbohydrate that regulates many physiological 

events. A special highly-sulfated form of heparan sulfate, heparin, has been exploited for its 

anticoagulant activity and used as a drug for over 70 years. Due to the abundance of 

electronegative sulfo groups on the sugar backbone of heparin, it engages in both specific 

and nonspecific interactions with many proteins. A chemoenzymatic method was employed 

to prepare many heparan sulfate compounds having different sulfation patterns; in some 

cases, oligosaccharides of different lengths were also utilized.  

First, the substrate specificity of the Sulf-2 enzyme and its effect on HS-PF4 binding 

was examined. Sulf-2 removes sulfo groups from HS, and we hypothesized that treatment 

with Sulf-2 would affect binding between HS and platelet factor 4. Sulf-2 was previously 

shown to remove a 6-O-sulfo group from trisulfated disaccharides [101]; in addition, we 

found that 6-O-sulfo groups were removed from disaccharides carrying N- and 6-O-sulfation 

but not 2-O-sulfation. These studies were completed using HS polysaccharides prepared 

with a 35S-label at a specific sulfo group. By comparing Sulf-2-treated and untreated HS, we 

also confirmed that treatment with the Sulf-2 enzyme will reduce binding between HS and 

PF4 by approximately 10 to 20-fold but will not affect binding to antithrombin. 

The PF4 binding character of size-defined oligosaccharides was also examined. HS 

oligosaccharides having 15, 17, 19 and 21 sugar units were synthesized to investigate the 
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effect of size on the ratio of anti-IIa to anti-Xa activity. The 19-mer and 21-mer had 1:5 and 

1:2 anti-IIa/Xa ratios, respectively, and the 15-mer and 17-mer were too short to have anti-

IIa activity. All four oligosaccharides bound to PF4 in a dot blot assay; however, they bound 

to a much lower extent than unfractionated heparin. The anti-Xa activity of the 21-mer, 

which had the highest anti-IIa activity, was compared to an ultralow-molecular-weight 

heparin (7-mer) and full-length heparin. PF4 had no effect on the 7-mer and was able to fully 

neutralize the anti-Xa activity of full-length heparin; the 21-mer showed significantly reduced 

neutralization by PF4. Thus, Sulf-2 treatment and reduced length are proposed as methods 

to reduce binding between heparin and PF4. 

Stabilin-2, a scavenger receptor located on sinusoidal endothelial cells, was 

identified recently as a clearance receptor for heparins [81]. It had been determined that 

Arixtra (which is cleared by the kidneys) does not bind Stabilin-2, while unfractionated 

heparin (which is cleared primarily by the liver) does bind. We hypothesized that HS 

sulfation and length would control binding to Stabilin-2 and that binding to Stabilin-2 would 

result in liver clearance. First, by synthesizing HS polysaccharides and testing them for 

internalization by Stabilin-expressing cells, we found that Stabilin binding appeared to be 

somewhat charge-dependent but that the addition of 3-O-sulfation led to much greater 

internalization. This finding was confirmed by direct binding assays between the HS 

constructs and purified Stabilin ectodomains. Incubation of Stabilin-binding constructs with 

antithrombin in the cell internalization assay indicated that there is some overlap between 

the Stabilin and AT binding sites on HS.  

With the structural information gathered from the polysaccharide studies, a series of 

oligosaccharides were prepared that contained the Stabilin-binding motifs but varied in 

length. We found that a 10-mer was required for robust binding to Stabilin-1 and Stabilin-2, 

and that removing the 3-O-sulfation nearly eliminated the internalization of a 10-mer and 12-
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mer.  Additionally, we found that the 3-O-sulfated 10-mer was retained in the liver to the 

same extent as heparin after administration to mice, indicating that a Stabilin-binding LMWH 

should avoid clearance by the kidneys. This would be beneficial for kidney-impaired and 

elderly patients, and it would have a shorter half-life than small heparins like Arixtra.   

Later studies focused on the bioactivity of four new pure compounds that were 6-12 

sugars in length. All compounds contained an AT-binding domain and repeating IdoA2S-

GlcNS6S units, which are commonly found in heparin but not HS. The compounds had 

similar binding affinities for antithrombin in affinity co-electrophoresis assays. In anti-Xa 

activity assays, the activities of the 10-mer and 12-mer were more effectively reversed by 

protamine than Lovenox, a common LMWH, suggesting that a pure heparin compound 10-

12 sugars long could be more reversible that the low-molecular-weight mixtures that are 

currently available.  

In vivo studies in rats proved incapable of distinguishing the different half-lives of the 

drugs, but the subcutaneous bioavailability of the compounds was confirmed by 

administration to mice and anti-Xa testing. As anticipated after the cell-based assays, 

additional mouse experiments showed that the 10-mer and 12-mer were retained in the 

liver, not in urine, to a much higher extent than the 6-mer and 8-mer.  

When considering strategies for improved heparins, the research presented in this 

dissertation provides several pieces of new information that could be beneficial to the design 

of new anticoagulants. First, two methods are proposed to reduce binding to PF4 and 

potentially heparin-induced thrombocytopenia: removal of 6-O-sulfation by treatment with 

Sulf-2 and limiting the size of the oligosaccharide. In our studies, HS constructs up to a 21-

mer had reduced binding to PF4 compared to full-length heparin. Next, we demonstrated 

that binding to Stabilin receptors can be achieved with HS that is at least 10 sugars in length 
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and contains N-, 2-O-, 6-O- and especially 3-O-sulfation. This finding should allow the 

design of short heparins with either short half-lives and liver clearance or long half-lives and 

kidney clearance. In addition, HS constructs up to a 12-mer were found to be available by 

subcutaneous injection. While we did not investigate the maximum length for this 

administration route, this shows that pure synthetic compounds in the size range of LMWHs 

will not need to be given intravenously. We hope that these findings will be useful in the 

synthesis of new heparin drugs that are safe, effective and well suited for different patient 

populations.  
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Completed training and paperwork to commence animal studies in the Liu laboratory, 
attended lectures.  
 
Radiation and Laboratory Safety Officer, Jian Liu lab 05/2011-present 
Performed monthly radiation checks, trained personnel, ordered and inventoried radioactive 
reagents, managed radioactive and chemical waste. 
 
Contract Editor, American Journal Experts 03/2010-present 
Edited over 200 scientific manuscripts in a variety of fields for publication in English-
language journals. 
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Graduate Student Organization Division Representative, UNC-CH     08/2010-05/2011 
Organized social and fundraising activities for graduate students in the School of Pharmacy. 
 
Graduate TA, Biochemistry I-II and Pharmacodynamics, UNC-CH 08/2008-05/2010 
Led review sessions, held weekly office hours, wrote and graded exams, maintained grades 
and course materials using Blackboard. 
 
Program Volunteer, Sexual and Reproductive Health, SPW Uganda 01/2008-08/2008 
Taught weekly health classes to primary and secondary school students at eight schools 
and organized community events such as clinic visits and HIV testing in rural Uganda.  
 
Chemistry Tutor, Whitworth University 09/2006-05/2007 
Tutored lower-division chemistry students for four hours per week. 
 
Teaching Assistant, Organic Chemistry labs, Whitworth University 09/2005-12/2005 
Prepared lab reagents, disposed of chemical waste and assisted students in lab 
experiments. 
 
 
Poster Presentations 
 
Elizabeth H. Pempe, Yongmei Xu, Sandhya Gopalakrishnan, Jian Liu, Edward N. Harris. 
Structural Requirements for Synthetic Heparin Binding to the Stabilin-1/-2 Receptors. 
Gordon Research Conference on Proteoglycans, Andover, NH. 2012. 
 
Tanya C. Burch, Elizabeth H. Pempe, Courtney L. Jones, Jian Liu. Characterization of 
Heparan Sulfate 6-O-endosulfatase Substrate Specificity: potential for a safer heparin drug. 
International Carbohydrate Symposium, Tokyo, Japan. 2010. 
 
Elizabeth H. Pempe, Deanna D. Ojennus. Creating a structural model of subunit d of yeast 
V-ATPase. Murdock Undergraduate Research Conference, Salem, OR, and Spokane 
Intercollegiate Research Conference, Spokane, WA. 2007. 
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