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ABSTRACT

YUN(SEAN) ZHANG: Friendship Formation and Smoking
Initiation Among Teens

(Under the direction of Donna B. Gilleskie)

In this research, I use a unique data set to examine the effect of peer influence on teen

smoking initiation. First, I develop a game theoretic model where friendship network and

smoking decisions are modeled as the equilibrium outcome of a Bayesian Nash game. A unique

feature of my model is that individuals choose both teens’ friends and smoking decisions

simultaneously to maximize utility. Second, I develop an empirical strategy that allows me

to estimate the structural equations that arises out of the theoretical model. Identification

depends on instrumental variables that exogenously shift peer smoking norms through either

friendship probabilities or individual smoking probabilities. I apply my estimator to The

National Longitudinal Study of Adolescent Health. Estimation results suggest that peer

influence is an important determinant of teen smoking. I also find evidence suggesting that

friendship sorting based on racial conformity explains why black teens have a lower smoking

rate than white teens. Policy simulation results indicate that although peer influence, as a

social multiplier, amplifies the cigarette tax deterrent effect on smoking, it primarily promotes

smoking.
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Chapter 1

Introduction

Literally, hundreds of studies in the public health, sociology and psychology literatures

confirm a strong positive correlation between individual smoking and peer smoking among

teens (e.g., Kandel, 1978; van Roosmalen and McDaniel, 1989, 1992; Crane, 1991; Graham

et al., 1991; Brooks-Gunn et al., 1993; Bauman and Ennet, 1994, 1996). In a comprehensive

review, Bauman and Ennett (1996) conclude that peer smoking is the most important risk

factor for teen smoking. These studies strongly suggest that (conforming) peer effects on

smoking exist.1 Peer effects are a double-edged sword. On one hand, they motivate an agent

to smoke when the agent has smoker friends; on the other hand, they discourage an agent

from smoking when the agent has nonsmoker friends. This implies that both the direction

and the magnitude of smoking peer effects on an agent depend on the agent’s peer smoking

norm.2 We further note that an agent’s peer smoking norm is endogenous because an agent

chooses her friends. Thus, evaluating the overall impact of peer effects on teen smoking entails

understanding teen friendship. So far, little is known about friendship formation among teens

and, consequently, whether peer effects promote or contain teen smoking is still unclear.

The presence of a cigarette tax further complicates peer effects on smoking. Peer effects

lead to a so called ”social multiplier effect” (Sheinkman, 2006; Hoxby, 2000; Epple and
1If peer effects are disconforming, then we should expect that teens with smoker friends are less likely to

smoke. In this paper, peer effects consistently refer to conforming peer effects.

2Following convention, an agent’s peer smoking norm is defined as the average of the agent’s friends’ smoking
actions. Therefore, it is a (nonlinear) function of three endogenous components: the agent’s own peer selection
action, others’ peer selection actions, and others’ smoking actions, with the first two governing friendship
outcomes.



Romano, 1998). Consider a school that introduces a $25 fine for on-campus smoking. Besides

the direct smoking disincentive caused by the $25 fine, a student’s expectation of a lower

peer smoking norm should serve as an additional smoking disincentive if peer influence exists.

Following this ”social multiplier effect” argument, peer effects should amplify the deterrent

effect of a cigarette tax on teen smoking. Given this research context, this paper investigates

two research questions. First, do peer effects on teen smoking initiation exist? Second, if peer

effects exist, how do they affect teen smoking initiation as the cigarette tax varies?

If peer influence matters, then a rational agent behaves strategically in the sense that the

agent makes decisions based on her expectation of others’ decisions. Therefore, it is natural

to model peer effects using a game theoretic approach. In this paper, I model high school

students’ smoking decisions under peer effects in a static simultaneous-move pure strategy

Bayes game. In the game, a student chooses both a peer selection action and a smoking

action.

Decision interdependence creates an identification concern regarding peer effect estimates.

Different from single-agent utility maximization problems, in a game an agent’s actions on

all outcomes of interest (say, smoking and peer selection) are functions of not only her own

personal exogenous characteristics but also others’ personal exogenous characteristics. This

dependence implies that an agent’s equilibrium peer smoking norm is inherently a function

of her own personal (both observed and unobserved) exogenous characteristics. As a conse-

quence, an agent’s peer norm is correlated with the agent’s unobserved (by the economist)

heterogeneity leading to an identification concern.

To address the concern over identification, my empirical strategy uses the recent two-

stage method for estimation of discrete games (Bajari et al., 2006; Pesendorfer and Schmidt-

Dengler, 2003). The first stage involves instrumenting for agents’ endogenous peer smoking

norms through reduced form analyses; the second stage estimates a behavioral model of smok-

ing that allows for smoking peer effects. In the presence of peer effects, even if endogenous

peer smoking norms and exogenous characteristics affect an agents’ latent index of smoking

linearly and additively in a behavioral specification, the corresponding reduced-form repre-
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sentation of endogenous actions is complicated.3 As such, an agent’s peer smoking norm is

a complicated function of exogenous characteristics. This suggests that the economist wants

to instrument endogenous peer norms through flexibly-specified reduced-form models; other-

wise, the impact of instrumental variables on the peer norm cannot be fully captured. With

this caveat in mind, in the first stage of estimation, I instrument endogenous peer smoking

norms in three steps sequentially. First, I instrument individual equilibrium smoking proba-

bilities using a nonparametric bagged tree classifier. Second, I instrument friendship through

a flexibly specified logit model. Last, I recover instrumented peer smoking norms using the

instrumented individual smoking probabilities and the instrumented friendship probabilities.

Both parental characteristics and school sizes are used as instrumental variables and both of

them could be correlated with school-level unobserved heterogeneity. Therefore, in estimat-

ing the behavioral model in the second stage, I further control for school-level unobserved

heterogeneity through school fixed effects.4

The data used in this study are from the in-home wave I survey of the National Lon-

gitudinal Study of Adolescent Health (Add Health). Add Health is unique for its detailed

measurements of friendship networks among schoolmates. This data advantage allows me to

estimate peer influence on smoking based on true peer composition instead of subjectively

defined peer groups (such as schools or classes) as used in previous studies (e.g., Norton et

al., 1998; Lundborg, 2006).

Estimation results indicate that peer effects on smoking initiation are significant and

homogenous among teens in different grades. In all grades (7 to 12), a one percent increase in

the peer smoking norm causes about the same amount of increase in the probability of smoking

initiation. Interestingly, although the observed smoking rate among white teens is significantly

higher than that among black teens, after controlling for peer influence, smoking initiation
3In a game, the reduced-form representation of the outcome process is, in essence, a Nash equilibrium

strategy that maps exogenous inputs into endogenous outcome(s).

4Parents choose schools for their kids, therefore, correlation between parental characteristics and school-
level unobserved heterogeneity is expected. School size may be correlated with some unobserved school level
heterogeneity also. For example, in small schools, teachers may have more interactions with students; this may
help to prevent smoking initiation.
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rates among black teens are found to be 7 percentage points higher than that among white

teens. Meanwhile, racial conformity is found to be a significant predictor for teen friendship.

Collectively, the results suggest that friendship sorting based on racial conformity significantly

reverses the racial smoking rate gap. This finding provides another potential explanation for

the racial smoking rate gap puzzle (US Dept of Health and Human Services, 1998).

Without controlling for peer influence, the marginal tax deterrent effect on the smoking

initiation rate is -3.86 percentage points per 10 cents with a standard error of 1.81. After

controlling for peer effects, the state cigarette tax deterrent effect falls slightly to -3.68 per-

centage points per 10 cents with a larger standard error of 2.29 percentage points. Such a

drop in tax effect indicates that social interaction amplifies the tax deterrent effect on smoking

initiation in the field. This study compares different specifications that attempt to control

for peer influence and the results indicate that using the school norms as an explanatory

variable to capture peer influence underestimates peer influence by six fold. In addition, even

if one can obtain peer norm measures, failing to control for its endogeneity completely will

underestimate peer influence by five to ten fold.

The presence of peer effects complicates policy simulations. In situations with peer effects,

a policy perturbation directly affects every agent’s actions on both peer selection and smoking,

and in turn, affects every agent’s peer smoking norm. Consequently, the ceteris paribus style

policy simulation is inappropriate because it is conceptually incorrect to hold an agent’s peer

smoking norm constant while perturbing policy variables. Policy simulation in a smoking

game with peer effects entails searching for an equilibrium that satisfies both the smoking

equation and the friendship equation. In operation, I iterate an initial smoking probability

vector over a behavioral smoking equation and a reduced form friendship equation until

the smoking probability vector converges uniformly across every agent. Policy simulation

results indicate two patterns. First, at certain cigarette tax thresholds, a small increase

in the cigarette tax causes the smoking rate to drop abruptly reflecting that at those tax

thresholds the social multiplier effect is so strong that students make smoking decisions in a

herding pattern. Second, although the existence of peer influence significantly amplifies the

deterrent effect of cigarette taxes on smoking initiation, it promotes teen smoking initiation

4



more severely. Combined, peer influence is a significant promoting factor for teen smoking

initiation.

This study makes several contributions to the literature. First, it provides a theoretical

framework to endogenize both the friendship decision and other decisions (e.g., smoking).

Previous theoretical models (Manski, 1995; Brock and Durlauf, 2001; Bajari et al., 2006)

begin by considering a reference group of people (say N people) in which an agent’s utility on

an action is affected by all the other N-1 agents’ actions.5 Unfortunately, these models fail to

explain how the reference group comes into being in the first place ignoring that a reference

group is endogenously chosen by agents collectively. As a contribution, my model explains

not only strategic decision on actions other than peer selection among members in a reference

group but also how agents choose friends strategically to form the reference group.

In this paper, the reader can gain insights on the econometric concerns associated with

estimation of a Bayes game with peer influence, which cannot be seen easily otherwise. For

example, the theoretical model reveals that estimating friendship selection and other actions

jointly across all agents, in general, is impossible due to the curse of dimensionality. Also,

the derivation of the econometric specification shows the reader exactly which elements are

absorbed into the error term. Furthermore, the reader will see why in the first stage of the

estimation of the game, the economist is willing to trade model interpretability for flexibility.

Policy simulations in the peer effect studies (e.g. Norton, 1998; Krauth, 2006; Lundborg,

2006; Cooley, 2007) only allow agents to choose actions given their friendships. This practice

is flawed because it ignores that fact that a rational agent should update her friendships while

choosing other actions in order to maximize her expected utility. This study contributes to

the literature by conducting policy simulations that allow agents to choose friends while also

choosing other actions (e.g., smoking).

5This implicitly imposes a strong assumption that any one of the N player’s utility associated with an
action is affected by any one of the rest of the N-1 players’ actions. So, asymmetric friendships among agents
are ruled out in these models.
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Chapter 2

Background

Traditionally, economists have focused on the effects of price, income, addiction, and

various regulations on cigarette consumption. In studying those effects, economists typically

model the cigarette consumption decision as a single-agent utility maximization problem

(Becker and Murphy, 1988; Chaloupka and Warner, 2000; Cook and Moore, 2000). This

framework disallows the possibility that an agent’s smoking action has a direct impact on

another agent’s utility (i.e., peer influence). In a widely cited work on social interaction,

Manski (1995) argues that an agent’s decision may affect other agents’ decisions through

three different interactions: preferences, constraints, and expectations. In teen smoking, the

potential existence of complementary preferences in the smoking dimension — a teen receives

direct utility if conformity between personal smoking and the peer smoking norm exists —

cannot be ruled out. Some economists have noticed the potential existence of peer influence.

Lewitt et al. (1981) argued that peer effects may increase the magnitude of price elasticity

in cigarette consumption. Becker (1992) showed that addiction and peer effects both would

increase the magnitude of the price elasticity.

In the peer effects literature, empirical researchers have proposed various strategies to

correct for endogeneity bias in peer effects. Ideally, one could correct for this endogeneity

bias by estimating decisions (both the outcome of interest, say smoking, and peer selection)

across all agents jointly. Doing so, in general, is infeasible because the high dimensionality of

the peer selection decision involves an extremely large number of repeated observations over

all agents in a self-containing reference group.1 Such a data requirement is too demanding to
1To illustrate this point, let us consider a smoking game with only N = 10 agents. To simplify the problem,



be practical often times. So far, few studies have modeled peer effects in a game. Bajari et

al. (2006) model peer effects on stock recommendation. The nature of the financial market

determines that major stock appraising firms do not choose their peers. Therefore, peer

selection is not a concern in that study. Krauth (2006) models teens’ smoking decisions in

a pure strategy game of complete information. Krauth (2006) controls for peer selection

by allowing individual unobserved heterogeneity (in the smoking equation) to be correlated

across agents and no instrumental variables are used to instrument endogenous peer norms.2

Some studies use exogenous peer arrangements (e.g., random assignment of roommates)

in experiments to evaluate peer effects (Kremer and Levy, 2001; Sacerdote, 2001; Katz et

al., 2001; Eisenberg, 2004). Whether this approach can successfully purge off correlation

between one’s endogenous peer norm and her own error term is open to debate. Experiments

perturb the distribution of an agent’s potential friends’ characteristics, and thus ”restrict” an

agent’s peer selection. The degree of this ”restriction” depends on how homogenous agents

are within the experimentally-assigned groups and to what extent the experiment can block

friendship between agents from different groups. Expectedly, when agents assigned to the

same experimental group are quite homogenous and exchanging friendship signals across

let us further suppose that the peer selection decision is binary in the sense that an agent either sends a
friendship signal to another or does not send a friendship signal to another. In such a smoking game, each
agent has 2N−1 = 29 possible peer selection decisions and 2 possible smoking decisions, so the size of the entire
joint decision space is [2× (29)]10. This expression is a number greater than the total population on the earth.
Therefore, even if the economist observes peer selection decisions, these decisions are expected to distribute
very sparsely in the decision space, i.e., the curse of dimensionality emerges. As a consequence, estimation of
the peer selection decision jointly across agents requires an extremely large number of repeated observations
on a reference group.

If a researcher knows a priori that the equilibrium will definitely not be established over some subspaces of
the entire possible decision space, then the data requirement is less demanding. However, it is hard to obtain
this knowledge. In fact, Add Health does not have the peer selection decision recorded; what Add Health
records is realizations of equilibrium friendship probabilities.

2Instrumental variables may still be necessary in Krauth (2006). We note that an agent’s unobserved
heterogeneity (in the smoking equation) affects the agent’s equilibrium peer norm because it affects how the
agent makes friends with others. For example, suppose a smoker suddenly contracts asthma (unobserved
by the economist). This unobserved heterogeneity (asthma) not only makes the smoker unwilling to smoke
but also, holding all else constant, makes her unwilling to make friends with smokers in order to avoid the
utility loss due to smoking disconformity. In other words, the smoker reselects her peer smoking norm. This
example indicates that one’s equilibrium peer smoking norm is correlated with her unobserved heterogeneity
even after controlling for the correlation between her own unobserved heterogeneity and her peers’ as done in
Krauth (2006). Hence, arguably using instrumental variables to purge off correlation between the peer norm
and unobserved heterogeneity is still necessary.
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groups is costly, then peer selection is quite hindered by the experiment; one could argue

that peer selection is largely ”controlled”. However, even in this situation, an agent is still

choosing friends within group members who are similar to her. Hence, strictly speaking, even

in experiments, an agent’s peer norm is still a function of endogenous peer selection and, in

turn, correlated with the agent’s own unobserved heterogeneity affecting her peer selection.

Another strategy exploits instrumental variables that directly affect peers’ outcome of in-

terest but not the individual’s outcome to purge off the correlation between one’s peer norm

and her unobserved heterogeneity (Evans, Oates and Schwab, 1992; Gaviria and Raphael,

2001; Hoxby, 2000; Ioannides and Zabel, 2002). This strategy is not thorough because al-

though it purges off the correlation between an agent’s peers’ outcomes and the agent’s

individual unobserved heterogeneity, the agent’s peer selection decision is still correlated with

her individual unobserved heterogeneity. In other words, the agent’s instrumented peer norm

is still a variable that is conditional on endogenous friendships. Realizing this shortcoming, I

instrument an agent’s friendships as well as the agent’s peers’ smoking decisions to purge off

confounding due to peer section.

Estimating peer effects entails understanding how agents make friends with each other.

Therefore, I first present a theoretical model that endogenous outcomes of interest and friend-

ship formation (Chapter 3). In Section 4, I describe the empirical model that accounts for

endogenous peer norms (both friendship selection and peer smoking behavior) in the deci-

sion to initiate smoking. The unique data are described in Chapter 5. Chapter 6 discusses

estimation results. Section 7 concludes with a simulated policy change.

8



Chapter 3

Theoretical Model

The theoretical model described below assumes that agents play a pure strategy simultaneous-

move Bayes game. The game endogenizes both the discrete peer selection decision and other

discrete decisions.1 The decision process in the game is the following. At the beginning of a

period, each agent first receives an action-dependent private shock/information. Then each

agent chooses the actions of peer selection and smoking based on public information, the

action-dependent private shock and her expectation of others’ private shock conditional upon

her individual private shock. Due to the presence of a stochastic private shock, an agent is

not able to tell what actions she should take prior to the realization of the private shock. As

such, even with full observability of public information, one can at most predict equilibrium

actions in a probability sense. The equilibrium probability distribution of actions on both

peer selection and the outcomes of interest, and hence, equilibrium friendship probabilities

among agents are completely governed by exogenous public information and a common prior.2

3.1 Peer Selection and Friendship Production

Consider a self-containing group of players Nt = {1, 2, ..., nt} in period t (t = 1, 2, ..., T ).

Nt is self-containing in the sense that every player in Nt only makes friends with a subset of
1Although my major interest is peer effects on smoking, this theoretical model is general in the sense that

it allows for peer effects in multiple endogenous dimensions (e.g., smoking, drinking, academic performance)
and multiple exogenous dimensions (e.g., family income, gender).

2Though the common prior is known to every player in the game, I do not include it as a piece of public
information consistently.



Nt. I use subscript ‘−i’ to represent all players in Nt except player i. I assume that peers are

equally important. Players in Nt are characterized by a nt×K matrix zt recording exogenous

characteristics and predetermined actions. At the decision moment in period t, zt is known

to all members in Nt.

zt =



z′1,t

.

z′i,t

.

z′nt,t


=



z1,1,t ... z1,k,t ... z1,K,t

. ... . ... .

zi,1,t ... zi,k,t ... zi,K,t

. ... . ... .

znt,1,t ... znt,k,t ... znt,K,t


where zi,t is the column vector that records individual i’s exogenous characteristics and pre-

determined actions.

At the beginning of period t, a generic player i ’s peer selection action is a nt×1 friendship

signal vector (si,t), where

si,t = [s1
i,t...s

j
i,t...s

nt
i,t]

′

. If player i decides to send a friendship signal to player j ∈ Nt\{i} then sj
i,t = 1; otherwise

sj
i,t = 0. The cost associated with peer selection action si,t is reflected in player i’s budget

constraint. Let Si denote a generic player i’s peer selection action set (i.e., si,t ∈ Si). Si has

2nt−1 distinct elements corresponding to agent i’s 2nt−1 different ways of sending friendship

signals to nt − 1 other players.

Stacking s′1,t, s′2,t,...,s
′
i,t,...,s

′
nt,t, we obtain a nt × nt square matrix (st) that records peer

selection actions across all players in Nt. That is,

st =



s′1,t

.

s′i,t

.

s′nt,t


=



0 ... sj
1,t ... snt

1,t

. ... . ... .

s1
i,t ... 0 ... snt

i,t

. ... . ... .

s1
nt,t ... sj

nt,t ... 0


(3.1)
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A player does not send a friendship signal to herself; therefore, si
i,t = 0 ∀i ∈ Nt.

In period t, after the peer selection decision (st), the friendship network can be depicted by

a nt × nt matrix (ζt). The network records observed friendship outcomes. A generic element

of ζt (ζj
i,t) is either 0 (agent i regards agent j as a peer) or 1 (agent i does not regard agent j

as a peer). Since one does not consider herself as a peer, ζi
i,t = 0 ∀i ∈ Nt. Because friendship

can be asymmetric, ζj
i,t may not equal to ζi

j,t. More specifically,

ζt =



ζ ′1,t

.

ζ ′i,t

.

ζ ′nt,t


=



0 ... ζj
1,t ... ζnt

1,t

. ... . ... .

ζ1
i,t ... 0 ... ζnt

i,t

. ... . ... .

ζnt
nt,t ... ζj

nt,t ... 0


A generic element of matrix ζt, ζj

i,t, is the output of the friendship network production

function ζ(.). That is,

ζj
i,t = ζ(sj

i,t, s
i
j,t; zi,t, zj,t) = 1(ζ∗(sj

i,t, s
i
j,t; zi,t, zj,t) ≥ ζ∗c(zi,t, zj,t)) (3.2)

where ζ∗(sj
i,t, s

i
j,t; zi,t, zj,t) is the latent index governing whether agent i regards agent j as a

peer. ζ∗c(zi,t, zj,t) is the friendship cutoff value that varies as characteristics of agent i and

agent j vary.

Let us assume that friendship between two agents is affected only by their friendship

signals to each other and their exogenous characteristics. Then, zl,t ∀l ∈ Nt\{i, j} and any

element in st other than sj
i,t and si

j,t are not inputs of ζ(sj
i,t, s

i
j,t; zi,t, zj,t) in equation 3.2.

Because friendship can be asymmetric, the sequencing of input arguments in function

ζ∗(.), ζ∗c(.), and ζ(.) matters. In general,

ζ∗c(zi,t, zj,t) 6= ζ∗c(zj,t, zi,t) (3.3)

ζ∗(sj
i,t, s

i
j,t; zi,t, zj,t) 6= ζ∗(si

j,t, s
j
i,t; zj,t, zi,t) (3.4)

11



ζ(sj
i,t, s

i
j,t; zi,t, zj,t) 6= ζ(si

j,t, s
j
i,t; zj,t, zi,t) (3.5)

I make the following three assumptions, regarding the friendship network production func-

tion ζ(.).

Assumption 1: ∀si
j,t,∀zi,t and ∀zj,t, if sj

i,t = 0 then ζj
i,t = 0.

This assumption states that if agent i does not send a friendship signal to agent j then

for sure agent i does not regard individual j as a peer no matter what peer selection decision

is made by agent j and what characteristics these two agents have.

Assumption 2: If ζj
i,t = 1 then si

j,t = 1.

This assumption states that a necessary condition for agent i to regard agent j as a peer

is that agent j sends a friendship signal to agent i. This is consistent with the intuition that

an agent does not regard another agent as a friend if the latter agent does not even spend

some time or other resources on the former.

Assumption 3: ∀sj
i,t,∀zi,t and ∀zj,t, ζ∗(sj

i,t; s
i
j,t = 1, zi,t, zj,t) ≥ ζ∗(sj

i,t; s
i
j,t = 0; zi,t, zj,t).

This assumption states that given agent i’s peer selection decision and agent i and agent

j’s exogenous characteristics, if agent j sends a friendship signal to agent i, the latent index

value of ‘agent i nominates agent j as a friend’ increases.

Assumption 1 and Assumption 2 jointly imply the following:

ζj
i,t = 1 ⇒ sj

i,t = 1 and si
j,t = 1.

This says, consider any two generic agents, as long as one of them regards the other as a peer

then these two agents have exchanged friendship signals.

The number of agents regarded by agent i as friends in period t is
∑

j∈Nt\{i}

ζj
i,t.

12



3.2 Decisions Other Than Peer Selection

Together with the peer selection action, player i also chooses M other actions (m =

1, 2, ....,M) summarized in a M × 1 column vector as below:

ai,t = [ a1
i,t a2

i,t ... am
i,t ... aM

i,t
]′.

Let Ai denote the decision set of the mth (m = 1, 2, ...,M) action for all players, i.e., am
i,t ∈ Ai.

Ai has Jm categories. For example, if Ai is the smoking action set and the smoking action is

binary, then Ai = {0, 1} and J1 = 2.

Let column vector di,t = [s′i,t a′i,t]
′ denote an arbitrary decision on both peer selection and

the M other choices made by player i at the beginning of period t ; Let Di ≡ Si ×
M∏

m=1

Ai be

the corresponding decision set; i.e., di,t ∈ Di. Di has NDi = 2nt−1
M∏

m=1

Jm elements. Di is the

collection of mutually exclusive and collectively exhaustive decisions player i can choose from

at decision moment t. Since any two different players, say player i and player j, choose peers

from two different peer choice sets, then, Si 6= Sj and in turn, Di 6= Dj . However, ∀i ∈ Nt,

Si has 2nt−1 elements, so I define ND = NDi ∀i ∈ Nt.

Let ai,t = [ a1
i,t a2

i,t ... am
i,t ... aM

i,t
]′ denote player i’s M × 1 peer norm vector in

period t. We note player i’s peer norm is determined by both her peer selection decision (si,t)

and other nt − 1 players’ M decisions other than peer selection. An element of ai,t can be

expressed as below:

am
i,t = χ(ζ(st, zt), am

−i,t) =

∑
j∈Nt\{i}

ζj
i,ta

m
j,t∑

j∈Nt\{i}

ζj
i,t

(3.6)

Next, I lay out the main elements of this game.

13



3.3 Preference

Suppose player i knows all other nt−1 players actions d−i,t = [d1,t, ...di−1,t, di+1,t, ...dnt,t] ∈

D−i, (D−i ≡
∏

j∈Nt\{i}

Dj) at decision moment t, then she solves the following single-agent

utility maximization problem:

max
di,t

M∑
m=1

um(am
i,t; zi,t) + 1[

∑
j∈Nt\{i}

ζj
i,t > 0]

M∑
m=1

up
m(|am

i,t − am
i,t|; zi,t) (3.7)

s.t. C(di,t; d−i,t, zi,t)− yi,t ≤ 0

where um(am
i,t; zi,t) captures the payoff associated with the mth action (m = 1, ...,M)

other than peer selection. If player i regards at least one person as a friend, then she receives

an additional component of utility. up
m(|am

i,t − am
i,t|; zi,t) is the peer influence utility derived

from the mth action (m = 1, ...,M) other than peer selection given that player i regards

one or more people as friend(s). |am
i,t − am

i,t| is player i’s deviation from the mth peer norm.

Player i may maximize her payoff by choosing to not regard anyone as a friend. If so, then

1[
∑

j∈Nt\{i}

ζj
i,t > 0] = 0. Price variables are contained in zi,t. yi,t is per-period income. (yi,t is

also an element of zi,t.) C(di,t; d−i,t, zt) represents the cost of decision di,t conditional upon

other players decisions d−i,t. The presence of d−i,t in player i’s budget constraint reflects

Manski’s (1995) point that social interaction could work through not only preferences (utility

function) but also the budget constraint. For example, suppose Jack dislikes Tom. Compared

with the case where Jack does not try to make friends with Mary, it probably becomes more

financially expensive for Tom to make friends with Mary if Jack tries to make friends with

Mary too.

14



3.4 Information Structure

At the beginning of period t, nt players collectively receive a (action-dependent) nt ×ND

private shock (private information) matrix εt. That is,

εt =



ε
′
i,t

.

ε
′
i,t

.

ε
′
nt,t


=



ε1
i,t .... εh

i,t .... εND
i,t

. ... . ... .

ε1
i,t .... εh

i,t .... εND
i,t

. ... . ... ...

ε1
nt,t .... εh

nt,t .... εND
nt,t


nt×ND

h = 1, 2, ...., ND

where εh
i,t is player i’s private shock if she chooses the hth decision from her decision choice set

Di. Column vector εi,t = [ ε1
i,t .... εh

i,t .... εND
i,t

]′ is player i’s private shock vector, which

is not revealed to any player j 6= i at the decision moment. In a Bayes game framework, εi,t

represents ”player type”. The distribution of private shocks, f(εi,t), is known by every player

in the game. Therefore, f(εi,t) is the common prior. Let f−i|i(ε−i,t|εi,t) denote player i’s prior

over others’ private shocks (types) conditional upon hers. Individual priors are consistent with

common prior; following Bayes’ rule, we have

f−i|i(ε−i,t|εi,t) =
f(εi,t, ε−i,t)∫

f(εi,t, ε−i,t)dε−i,t

∀i ∈ Nt (3.8)

Define

f−i|i = (f−i|i(ε−i,t|εi,t))i∈Nt

where f−i|i is the collection of individual priors consistent with the common prior.
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3.5 Allowed Decision Space

Social interactions among agents’ budget constraints implies that not only player i’s per-

sonal decision (di,t) but also her potential peers’ decisions (d−i,t) affect whether her budget

constraint is satisfied. In the game, I assume that there exists at least one nonempty subspace

of the largest possible joint decision space,
∏
i∈Nt

Di, that satisfies the following two conditions

simultaneously: (1) the subset can be expressed as a Cartesian product of all nt players’ indi-

vidual decision space; and (2) each element of the subspace satisfies all nt budget constraints.

I refer to such a subspace as an Allowed Decision Space (ADS). I characterize an ADS in

Appendix 1.

Hereafter, I abuse notation and use D =
∏
i∈Nt

Di to denote an ADS to ease the notational

burdern.

Consider an ADS, D =
∏
i∈Nt

Di, let NDi denote the number of elements in Di then there

are
∏
i∈Nt

NDi decision elements in D.

Solving the maximization problem defined in equation 3.7, we obtain action-specific payoff

functions as below:

V (di,t, d−i,t, εi,t, zt, um(.), up
m(.)) =

M∑
m=1

Vm(di,t; zt d−i,t) + ε
di,t

i,t ∀dt ∈ D (3.9)

where ε
di,t

i,t is player i’s action-dependent private shock.

Let It denote the public information at decision moment t, such that

It = {zt, V (.), ζ(.)} ∈ ϑpub.

3.6 Bayes Game and Pure Strategy Bayes Nash Equilibrium

(PSBNE)

At decision moment t, the following fundamentals govern the nt players’ decisions:

• Players: Nt = {1, 2, ..i.., nt}
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• Public information: It = {zt, V (.), ζ(.)} ∈ ϑpub

• Private shock set (player type space) : E =
∏
i∈Nt

Ei

• Priors: f−i|i = (f−i|i(ε−i,t|εi,t))i∈Nt

• an ADS: D

In essence, nt players make decisions in the following Bayes game (Gt) where

Gt =
〈
Nt, E, f−i|i, D, It

〉
.

A player’s strategy profile (di,t(It, εi,t)) is a correspondence between (both public and private)

information and the individual decision

di,t(It, εi,t) : ϑpub × Ei 7−→ Di

At a Nash equilibrium, no player has an incentive to alter her strategy as long as other players

do not.

Therefore, a PSBNE is a collection of nt mappings from the information set to the decision

set, i.e.,

(d∗i,t(It, εi,t))i∈Nt where d∗i,t(.) : ϑpub × Ei 7−→ Di

such that

d∗i,t(It, εi,t) ∈ arg max
di,t∈Di

∫
ε−i,t∈E−i

V (di,t, (d
∗
j,t)j∈Nt\{i})f−i|i(ε−i,t|εi,t)dε−i,t

∀i ∈ N t and ∀{It, εi,t} ∈ ϑpub×Ei

(3.10)

where

Di =
⋃

εi,t∈Ei

d∗i,t(It, εi,t),

f−i|i(ε−i,t|εi,t) is individual priors consistent with a common prior restricted to Ei, and
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f−i|i(ε−i,t|εi,t) =
f (εi,t,ε−i,t)∫

f (εi,t,ε−i,t)dε−i,t

and f(.) is the joint density function of private shocks

restricted to E ,

i.e., f (εt) = f(εt)∫
1(εt∈E)f(εt)dεt

.

Let us define d∗(.) : ϑpub × E 7−→ D

d∗((It, εi,t)i∈Nt) ≡ (d∗i,t(It, εi,t))i∈Nt

By stacking equation 3.10 over all players in Nt, the right hand side of equation 3.10 can be

written as a function Ψ(.) : D∗ 7→ D∗. We get

d∗((It, εi,t)i∈Nt) = Ψ(d∗((It, εi,t)i∈Nt); It, Nt, f−i|i) ∀{It, εi,t} ∈ ϑpub × Ei (3.11)

According to equation 3.11, a PSBNE d∗((It, εi,t)i∈Nt) is a fixed point of function Ψ. Accord-

ing to Brouwer’s fixed point theorem, such a PSBNE exists.

3.7 Equilibrium Decision Probabilities

Due to the random realization of private information, an exact prediction of whether a

player makes a specific decision or not is impossible; however, one can predict the equilibrium

decision probabilities based on public information. In this subsection, I characterize the

decision probabilities at a PSBNE.

Let the set π∗
i denote the collection of equilibrium probabilities corresponding to equilib-

rium decision elements in Di.

Let the function π∗
i (.) : D∗

i 7−→ π∗
i denote the correspondence between equilibrium decision

elements and their probabilities. Then

π∗
i (d

∗) =
∫

εi,t

1(d∗i,t(It, εi,t) = d∗)fεi,t
(εi,t)dεi,t ∀i ∈ Nt,∀d∗ ∈ Di
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where fεi,t
(εi,t) is the marginal density function of εi,t; that is

fεi,t
(εi,t) =

∫
ε−i,t∈E−i

f(εi,t, ε−i,t)dε−i,t

and 1[.] is an indicator function where

1[d∗i,t(It, εi,t) = d∗] =

 1 if d∗i,t(It, εi,t) = d∗

0 otherwise.

We note that the following equation holds:

∑
d∗∈Di

π∗
i (d

∗) = 1 ∀i ∈ Nt.

19



Chapter 4

Empirical Strategy

In the presence of peer effects, schoolmates are playing a game. This implies that the

ideal approach is to estimate all schoolmates’ actions on peer selection and smoking jointly.

Doing so means that the economist should regard a cross section of peer selection actions

and smoking actions made by all schoolmates as a single observation. The analysis sample

(sample 1 in Table 5.1) only contains 124 schools, therefore, I could not implement this

ideal approach.1 Another data limitation is that I do not observe students’ peer selection

actions in Add Health; I only observe the friendship outcomes. Given these data limitations,

I have chosen to estimate smoking peer effects in a single agent style in the sense that I

estimate agents’ smoking actions agent by agent rather than jointly across all agents in a

reference group (i.e., a school in this study). In addition, my empirical strategy should avoid

estimating peer selection actions and smoking actions jointly within an agent because I do

not observe peer selection actions.

In what follows, I first derive an (structural form) empirical specification that is consistent

with the theoretical model and is implementable under the data limitations mentioned above.

In addition, I discuss identification concerns in the empirical specification. I also explain how

to instrument endogenous peer smoking norms using two separate reduced-form analyses in

sequence. Next, I explain how to estimate the structural form empirical specification in two

stages. The first stage involves instrumenting the peer norm flexibly through three flexible

(reduced-form) steps sequentially to control for endogeneity bias caused by both peer selection
1Implementing this ideal approach means that I only have 124 observations.



and smoking decision simultaneity. The second stage estimates the structural form empirical

specification for smoking initiation using the instrumented peer norm.

4.1 Derivation of Empirical Specification and Identification

I assume players only choose a smoking action and a peer selection action in the smoking

game. Hence, a generic player’s decision is di = [ai si]′ where ai is the smoking action and si

is the peer selection action. At a PSBNE, a generic player i expects that others players adopt

the equilibrium strategy d∗−i(.). Therefore, I parameterize player i’s decision-specific payoff

(equation 3.9) as follows:

V ([ai si]′, d∗−i(ε−i, I), εi, z, usmoke(.))

= usmoke(di; z, d∗−i) + εdi
i

= zβ(ai; I)− δai − γ
∣∣ai − a−i(si; z, d∗−i)

∣∣ + εdi
i

(4.1)

where

(1) d∗−i(ε−i, I) is other players’ equilibrium decisions.

(2) z is all players’ exogenous characteristics in the game; z =

 z′i

z′−i


(3) δ is the biological smoking disutility;

(4) β(ai; I) is the parameter vector corresponding to z. According to equation 3.9, β(ai; I)

is smoking–action-dependent;

(5) γ > 0 is the smoking peer effects parameter. The larger the γ, the heavier the

punishment for deviation from peer smoking norm;

(6) a−i(si; z, d∗−i) is player i’s peer smoking norm when she takes peer selection action si.

a−i(si; z, d∗−i) is a function of si reflecting that player i chooses her peer smoking norm;

(7)
∣∣ai − a−i(si; z, d∗−i)

∣∣ > 0 is player i’s deviation from peer smoking norm; if she smokes

then
∣∣ai − a−i(si; z, d∗−i)

∣∣ = 1−a−i(si; z, d∗−i); otherwise,
∣∣ai − a−i(si; z, d∗−i)

∣∣ = a−i(si; z, d∗−i).

I do not observe students’ peer selection actions (si) in Add Health. To proceed with
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estimation, I first derive player i’s ex post expected smoking-action-specific payoff based on

equation 4.1 below.2

Player i’s ex post expected smoking-action-specific payoff is

EV (εi, I, F (.); ai)

= Max
si

zβ(ai; I)− δai − γ

∣∣∣∣∣∣∣ai −
∫

ε−i|εi

a−i(si; z, d∗−i)dF (ε−i|εi)

∣∣∣∣∣∣∣ + εdi
i


= zβ(ai; I)− δai − γ

∣∣∣∣∣∣∣ai −
∫

ε−i|εi

a−i(si; z, d∗−i)dF (ε−i|εi)

∣∣∣∣∣∣∣ + ε
[ai s∗i (ai)]

′

i

(4.2)

where s∗i (ai) = arg max
si

zβ(ai; I)− δai − γ

∣∣∣∣∣∣∣ai −
∫

ε−i|εi

a−i(si; z, d∗−i)dF (ε−i|εi)

∣∣∣∣∣∣∣ + ε
[ai s∗i (ai)]

′

i

.

We note that if ai is player i’s smoking action at PSBNE, then s∗i (ai) is her equilibrium peer

selection action.

Substituting equation 3.6 and equation 4.1 into equation 4.2 yields

EV (εi, I, F (.); ai)

= zβ(ai; I)− δai − γ

∣∣∣∣∣∣∣∣∣∣
ai −

∫
ε−i|εi

∑
j∈Nt\{i}

ζj
i (s

j∗
i (ai), si∗

j , zi, zj)a∗j (εj , I)

∑
j∈Nt\{i}

ζj
i (s

j∗
i (ai), si∗

j , zi, zj)a∗j (εj , I)
dF (ε−i|εi)

∣∣∣∣∣∣∣∣∣∣
+ ε

[ai s∗i (ai)]
′

i .

(4.3)

Defining the ex post expected peer smoking norm as E(a∗−i
|εi, I, F (.)), we have

E(a∗−i
|εi, I, F (.)) =

∫
ε−i|εi

∑
j∈Ns\{i}

ζ(s∗i (εi, I), s∗j (εj , I); I)a∗j (εj , I)

∑
j∈Ns\{i}

ζ(s∗i (εi, I), s∗−i(ε−i, I); I)
dF (ε−i|εi)

E(a∗−i
|εi, I, F (.)) ∈ [0, 1].

(4.4)

2ex post means after the realization of private shock (εi); ex ante means prior to the realization of private
shock (εi).
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Then player i’s ex post expected smoking-action-specific payoff is

EV (εi, I, F (.); ai) = zβ(ai; I)− δai − γ
∣∣∣ai − E(a∗−i

|εi, I, F (.))
∣∣∣ + εai

i (4.5)

where,
∣∣∣ai − E(a∗−i

|εi, I, F (.))
∣∣∣ > 0 is the deviation from the ex post expected peer smoking

norm; if player i smokes then
∣∣∣ai − E(a∗−i

|εi, I, F (.))
∣∣∣ = 1 − E(a∗−i

|εi, I, F (.)); otherwise,∣∣∣ai − E(a∗−i
|εi, I, F (.))

∣∣∣ = E(a∗−i
|εi, I, F (.)).

We note even if the number of players in the game is modestly large (say 50 players),

estimating parameters related to exogenous terms containing z−i is hard because there is a

large number of different combinations between zj and zj′ (j ∈ N\{i} and j′ ∈ N\{i}) and

between zi and z−i. As such, I focus on the component of zβ(ai; I), which is purely related

to zi. To do so, I assume that zβ(ai; I) can be decomposed as

zβ(ai; I) = ziβself (ai; I) + f(zi, z−i)βinteract(ai; I) (4.6)

where βself (ai; I) is the parameter vector corresponding to player i’s exogenous characteristics

zi; f(zi, z−i) collects the terms containing some or all elements in z−i; βinteract(ai; I) is the

parameter vector corresponding to z−i. Let us define

υai
i (I) ≡ f(zi, z−i)βinteract(ai; I). (4.7)

We note that υai
i (I) is smoking-action-specific because βinteract(ai; I) is smoking-action-specific.

Substituting equation 4.6 and equation 4.7 into equation 4.5, we get the smoking-action-

specific ex post expected payoff as below

EV (εi, I, F (.); ai) = ziβself (ai; I)− δai − γ
∣∣∣ai − E(a∗−i

|εi, I, F (.))
∣∣∣ + εai

i + υai
i (I) (4.8)

Next, I can define a player’s ex post expected payoff differential (∆EV (εi, I, F (.))) between

smoking and not smoking. It is this differential that governs a player’s smoking action. That

23



is,

∆EV (εi, I, F (.)) ≡ EV (εi, I, F (.); ai = 1)− EV (εi, I, F (.); ai = 0) (4.9)

A player’s smoking decision is

a∗1,i = 1(∆EV (εi, I, F (.)) > 0).

Substituting equation 4.8 into equation 4.9, we have

∆EV (εi, I, F (.)) = −γ − δ + zi[βself (ai = 1; I)− βself (ai = 0; I)]+

2γE(a∗−i
|εiI, F (.)) + ε1

i − ε0
i + υ1

i (I)− υ0
i (I).

(4.10)

The constant term ”−γ−δ” in the equation above is collinear with the intercept; therefore, the

biological smoking disutility parameter (δ) cannot be identified separately from the intercept.

Without loss of generality, I can rewrite the equation above as

∆EV (εi, I, F (.)) = zi[βself (ai = 1; I)− βself (ai = 0; I)]+

2γE(a∗−i
|εi,I, F (.)) + ε1

i − ε0
i + υ1

i (I)− υ0
i (I).

(4.11)

The economist does not have full observability on public information (I). Let us decompose

I = [Io Iu]; zi is a component of I, so, correspondingly, zi = [zo zu]; superscript ”o” means

observed by the economist and superscript ”u” means unobserved by the economist. In the

game, common prior F (.), Iu, and private shocks are unobserved by the economist. Define

∆βself ≡ βself (ai = 1; I)− βself (ai = 0; I)

∆εi ≡ ε1
i − ε0

i

∆υi(I) ≡ υ1
i (I)− υ0

i (I)

(4.12)

Assume that zi∆βself can be decomposed as

zi∆βself = zo
i ∆βo

self + zu
i ∆βu

self .
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Then ∆EV (εi, I, F (.)) can be rewritten into

∆EV (εi, I, F (.)) = zo
i ∆βo

self + 2γE(a∗−i
|εi, I, F (.)) + ∆εi + ∆υi(I) + zu

i ∆βu
self . (4.13)

The economist does not know private shock εi, therefore, she cannot use the private-shock-

specific ex post expected equilibrium peer norm (i.e., E(a∗−i
|εi, I, F (.))) in equation 4.13) as

a predictor of smoking initiation. In order to proceed with estimation, she can, alternatively,

use the ex ante equilibrium peer norm to proxy E(a∗−i
|εi, I, F (.)) because she can recover the

ex ante equilibrium peer norm from the data. Player i’s ex ante equilibrium peer norm is

E(a∗−i
|I, F (.)) =

∫
E(a∗−i

|εi, I, F (.))dFεi(εi). (4.14)

Define

τ(εi, I, F (.)) = 2γ[E(a∗−i
|εi, I, F (.))− E(a∗−i

|I, F (.))]. (4.15)

Substituting equation 4.15 into equation 4.13, we get

∆EV (εi, I, F (.)) = zo
i ∆βo

self + 2γE(a∗−i
|I, F (.))

+ ∆εi + ∆υi(I) + zu
i ∆βu

self + τ(εi, I, F (.)).
(4.16)

An identification concern regarding the peer effect (γ) arises if correlation exists between

E(a∗−i
|I, F (.)) and either of the four unobserved components: ∆εi, ∆υi(I), zu

i ∆βu
self , and

τ(εi, I, F (.)). We note zu
i ∆βu

self is innocuous because zo
i ⊥ zu

i . Meanwhile, we can draw the

following three conclusions:

(1) unobserved heterogeneity is expected to be correlated across players due to two reasons.

First, E(∆υi(I),∆υj(I)) 6= 0 and E(τ(εi, I, F (.)), τ(εj , I, F (.))) 6= 0 in general; second, if

private shocks are correlated then E(∆εi,∆εj) 6= 0.

(2) correlation between E(a∗−i
|I, F (.)) and ∆υi(I) is expected because both of them are

functions of public information (I);

(3) correlation between E(a∗−i
|I, F (.)) and τ(εi, I, F (.)) is expected because both of them

are functions of public information (I) and the common prior (F (.)).
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My interest is to examine peer effects on smoking among schoolmates; therefore, it is rea-

sonable to assume that school-level unobservables account for the correlation of unobserved

heterogeneity across students attending the same school. As such, I decompose a student’s un-

observables into two components; one is school-level unobservables and the other is individual

unobservables. The final empirical specification is:

∆EVi,s = Xi,sα + γÊ(a∗−i,s
;F (.), I) + µs + εi,s

a∗i,s = 1(∆EVi,s > 0); E(a∗−i,s
) ∈ [0, 1]

(4.17)

where

(1) s indexes schools;

(2) i indexes students; i ∈ Ns = {1, 2, ..., ns}

(3) Xi,s is student i’s observed exogenous characteristics;

(4) α is the parameter vector corresponding to Xi,s;

(5) γ is the peer effect parameter;3

E(a∗−i,s
;F (.), I) is student i’s ex ante equilibrium peer smoking norm; it is a function of

public information and the function form of the common prior;

µs is the school-level unobserved heterogeneity; this term allows for students’ unobserv-

ables to be correlated at school level, µs = ∆υi(I);

εi,s is the individual unobserved heterogeneity;

a∗i,s is observed equilibrium smoking action;

E(µs, µs′) = 0, E(εi,s, εj,s) = 0, E(εi,s, εj,s′) = 0, and E(µs, εi,s) = 0.

4.2 Estimation

In this subsection, I discuss estimation of the empirical specification in equation 4.17.

The identification concern is that E(a∗−i,s
;F (.), I) may be correlated with (school-level and/or

individual) unobserved heterogeneity. To address this concern, in the first stage of estimation,
3Compared with equation 4.16, I drop ”2” in front of γ for simplicity. This simplification rescales the peer

effect estimate and is innocuous.
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I predict the ex ante equilibrium peer norm (E(a∗−i,s
;F (.), I)) using instrumental variables

that affect an agent’s peer smoking norm and are uncorrelated with the agent’s unobserved

heterogeneity (εi,s). I also use school fixed effects to futher control for the potential correlation

between the instrumented peer norm and school-level unobserved heterogeneity (µs) in the

second stage of estimation.

Before further discussion, let us first examine the functional form of the ex ante equi-

librium peer smoking norm (E(a∗−i,s
;F (.), I)). Substituting equation 3.6 into equation 4.14

yields the reduced form representation of E(a∗−i,s
;F (.), I) in equation 4.18 below. Apparently,

exogenous inputs (I and F (.)) of the game affect the ex ante equilibrium peer smoking norm

nonlinearly and interactively.4 We further note that the peer smoking norm is affected by ex

post equilibrium friendships (ζ∗(εi, εj , I)) and ex post equilibrium potential peers’ smoking

4To see this through an example, let us think of a 2-agent smoking Bayes game with peer effects. For
simplicity, let us assume (1) there is no peer selection decision in this game (two agents are assigned as friends
by nature), (2) the latent smoking behavioral outcome process can be specified additively and linearly based
on observed public information. (3) unobserved heterogeneity specified in the behavioral specification of this
game follows an i.i.d. logistic distribution across agents. Consequently, this game has the following behavioral
form {

π1 = exp(X1β+γπ2)
1+exp(X1β+γπ2)

π2 = exp(X2β+γπ1)
1+exp(X2β+γπ1)

where π1 and π2 are equilibrium smoking probabilities for agent 1 and agent 2, respectively. X1 and X2

are public information which have direct impact on the first agent’s smoking decision and the second agent’s
smoking decision, respectively. γ is peer effect behavioral parameter.

Solving for π1and π2 in terms of exogenous characteristics, we can get a reduced form representation as{
π1 = R(X1, X2)
π2 = R(X2, X1)

where, R is the reduced form representation. In this example, R(.) cannot be solved in a closed form.
We note, X2 enters the first agent’s reduced form solution and X1 enters the second agent’s reduced form

solution. In addition, X1 and X2 enter R(.) nonlinearly and interactively even if they affect the latent outcome
in a linear and additive pattern in the behavioral outcome process.
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actions (a∗j (εj , I)).

E(a∗−i,s
;F (.), I) =

∫
εi

∫
ε−i|εi

∑
j∈Ns\{i}

ζ(s∗i (εi, I), s∗j (εj , I); I)a∗j (εj , I)

∑
j∈Ns\{i}

ζ(s∗i (εi, I), s∗−i(ε−i, I); I)
dF (ε−i|εi)dF (εi)

=
∫
ε

∑
j∈Ns\{i}

ζ(s∗i (εi, I), s∗j (εj , I); I)a∗j (εj , I)

∑
j∈Ns\{i}

ζ(s∗i (εi, I), s∗−i(ε−i, I); I)
dF (ε)

=
∫
ε

∑
j∈Ns\{i}

ζ∗(εi, εj , I)a∗j (εj , I)

∑
j∈Ns\{i}

ζ∗(εi, εj , I)
dF (ε) (4.18)

The economist is unable to recover the ex ante equilibrium peer smoking norm based on

the two ex post quantities (ζ∗(εi, εj , I) and a∗j (εj , I)) because she does not observe private

shocks. To proceed with estimation, the economist can construct an estimate of a student’s

(say, student i attends school s) ex ante equilibrium peer smoking norm based on the stu-

dent’s ex ante equilibrium friendship probabilities (p(ζj∗
i (I;F (.)) = 1) ∀j ∈ Ns\{i}) and her

schoolmates’ ex ante smoking probabilities (p(a∗j (I;F (.)) = 1) ∀j ∈ Ns\{i}) because both

of them can be recovered from the data. As such, I predict a student’s ex ante equilibrium

peer smoking norm in three sequential steps.5 In a school (say school s), I first instrument

all students’ ex ante equilibrium smoking probabilities (p(a∗i (I;F (.)) = 1) ∀i ∈ Ns); next, I

instrument all students’ ex ante equilibrium friendship probabilities (p(ζj∗
i (I;F (.)) = 1)ns

i=1

∀j ∈ Ns\{i} and ∀i ∈ Ns ); in the third step, I construct a student’s instrumented ex ante

equilibrium peer smoking norm (Ê(a∗−i,s
;F (.), I)) from her schoolmates’ instrumented ex ante

equilibrium smoking probabilities (p̂(a∗j (I;F (.)) = 1) ∀j ∈ Ns\{i}) and her instrumented ex

5Instrumenting the ex ante equilibrium peer norms in three steps increases the flexibility and in turn the
goodness of fit. In practice, it is difficult to instrument the ex ante equilibrium peer norms in one step because
it is difficult to specify appropriate interaction terms. It turns out that even when I instrument the ex ante
equilibrium peer norms in three steps, the interaction terms involved are fairly complicated.
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ante friendship probabilities (p̂(ζj∗
i (I;F (.)) = 1) ∀j ∈ Ns\{i}) according to equation 4.19:

Ê(a∗−i,s
;F (.), I) =

∑
j∈Ns\{i}

[
p̂(ζj∗

i (I;F (.)) = 1)× p̂(a∗j (I;F (.)) = 1)
]

∑
j∈Ns\{i}

p̂(ζj∗
i (I;F (.)) = 1)

∀j ∈ Ns\{i} and ∀i ∈ Ns

(4.19)

where, Ê(a∗−i
;F (.), I) is student i’s instrumented ex ante equilibrium peer smoking norm;

p(ζj∗
i (I;F (.)) = 1) is the ex ante equilibrium probability that student i regards student j

as a friend;

p̂(ζj∗
i (I;F (.)) = 1) is the instrumented ex ante equilibrium probability that student i

regards student j as a friend;

p(a∗j (I;F (.)) = 1) is schoolmate j’s ex ante equilibrium smoking probability;

p̂(a∗j (I;F (.)) = 1) is schoolmate j’s instrumented ex ante equilibrium smoking probability.

To obtain instrumented ex ante equilibrium individual smoking probabilities in the first step, I

use a bagged tree classifier which is, in essence, an ensemble of 100 fully-grown tree classifiers

created from 100 bootstrap samples (Breiman 1996).6 The bagged tree classifier includes

the following exogenous characteristics as explanatory variables: grade level, race, gender,

age, parental smoking, the highest education of parents, family income, and state cigarette

tax. We note that these variables directly affect a student’s schoolmates’ ex ante smoking

probabilities (p(a∗j (I;F (.)) = 1)), and in turn, the student’s ex ante equilibrium peer smoking

norm but should be uncorrelated with the student’s individual unobserved heterogeneity (i.e.,

µs in equation 4.17).7

To implement the second step, I use a flexibly specified logit model to predict ex ante equi-
6In this study, a logit model does not perform well when even only a few interaction terms are added.

A quasi-perfect separation problem emerges and logit estimation cannot proceed. Interaction terms causing
the quasi-perfect separation problem are covariates that explain outcomes so well that in one realization (one
wave of Add health) variations in binary smoking actions within categories defined by those interaction terms
disappear. Thus, the quasi-perfect separation problem is a drawback with the logit model specification. This
concern further motivates me to use the bagged tree classifier.

7The predicted smoking probability for a student may still be correlated with school-level unobserved
heterogeneity (µs). I will come back to this concern soon.
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librium friendship probabilities (p(ζj∗
i (I;F (.)) = 1)). Three reasons motivate me to adopt a

logit model rather than a bagged tree classifier in this second step. First, I have a large num-

ber of pairwise observations (2, 987, 761 pairs) where each student is paired with every student

in her school; therefore, the quasi-perfect separation problem that plagues the logit model

when the sample size is small (N = 17, 844 in the first step) disappears. Second, conformity

theory (Bernheim, 1994) provides guidance for specifying a logit model, so this step is less

”data mining” oriented than the first step. Third, the large number of pairwise observations

makes the computational cost in a bagged tree classifier overly expensive. To be specific, I use

student i’s directional deviations from a generic schoolmate j in gender, race, age, grade level,

family income, parental smoking, and parents’ highest education as explanatory variables for

student i’s friendship with the generic schoolmate j.8 I also use the instrumented ex ante

equilibrium individual smoking probabilities from the first step to create directional devia-

tions in smoking. It is worth mentioning that because the instrumented ex ante equilibrium

individual smoking probabilities from the first step are functions of exogenous characteristics

such as whether the students’ parents smoke or not, a student’s created directional smoking

deviations using the instrumented smoking probabilities should be uncorrelated with her own

error term in the friendship logit model.

Besides these directional deviations, school size is also used as an explanatory variable

in the friendship logit model due to the following two considerations. First, as school size

increases, the probability that an arbitrary pair of schoolmates run into each other, and

become friends, decreases. Second, school size may affect competition (e.g., competition for

teachers’ attention) among teens, and hence, friendship formation.

After modeling ex ante equilibrium individual smoking probabilities and ex ante equi-

librium friendship probabilities, I then construct the instrumented ex ante equilibrium peer

smoking norm according to equation 4.19 as the third step.
8To illustrate direction deviations, let us consider directional deviation in a categorical variable, say, gender,

between two agents, say, Tom and Mary. Tom’s directional deviation from Mary in gender is ”male-to-female”
and Mary’s directional deviation from Tom in gender is ”female-to-male”; ”male-to-female” is not equal to
”female-to-male”. Friendship between two agents may not be symmetric; this is the reason why I use directional
deviations as instrumental variables.
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As mentioned above, one’s schoolmates’ parental characteristics are used to explain her

ex ante equilibrium peer smoking norm. Schoolmates’ parents also choose schools for their

children. Consequently, the instrumented ex ante equilibrium peer norms could be corre-

lated with school-level unobserved heterogeneity (µs). To address this concern, I control for

school-level unobserved heterogeneity by including school fixed effects in the second stage of

estimation.

31



Chapter 5

Data

The theoretical model indicates that an agent’s friendships directly affect her peer norm.

Therefore, to estimate peer effects, the economist should observe an agent’s friends in the

data.1 Regarding this data requirement, The National Longitudinal Study of Adolescent

Health (Add Health) is a suitable dataset because it provides detailed information on some

respondents’ friendships within their attending schools. Currently, Add Health has three

waves of in-home surveys fielded in 1995, 1996, and 2001. I only use the wave I in-home

survey data collected between April 1995 and December 1995 because the other two waves

lack state cigarette tax information from the survey year and the state identifiers are not

released even in the restricted-use version of the data. The wave I in-home survey sample

contains 20, 745 nationally representative 7th-12th graders from 145 schools nationwide.

Among the 145 schools, there are 16 schools in which all students are included in the

survey sample and almost every student is asked to nominate five schoolmate friends of each

gender.2 Among the remaining schools, respondents are randomly selected from a gender-

grade stratum within each school and some of the respondents are also asked to nominate five

schoolmate friends of each gender.3 After deleting respondents with missing values, I obtain
1Observing agents’ peer selection actions is unnecessary if the economist does not intend to estimate the

peer selection action and smoking action jointly. In fact, as explained before, even if the economist observes
agents’ peer selection actions for a couple of periods, estimating peer selection and smoking jointly is typically
infeasible due to the high dimensionality of a peer selection action.

If the economist cannot observe the friendship network in the data, then the economist has to subjectively
assign friends to an agent. For example, the economist may assign all of a student’s classmates as the student’s
peers. The drawback of doing so is obvious because, in general, a student is not a friend of all her classmates.

2Due to administrative error, a small fraction (<5%) of students in those schools were asked to nominate
one friend of each gender.

3When respondents are randomly selected from a school, even if a student is asked to nominate all her



17, 844 students (Sample 4 in Table 5.1). Among the 17,844 students, there are 5, 774 students

(Sample 4.1) who were asked to nominate five schoolmate friends of each gender.4 To model

friendship formation, I create 2, 987, 761 pairwise observations from the 5, 774 students and

their corresponding schoolmates. Consider a created pairwise observation corresponding to a

generic student i in the 5, 774 students and one of her schoolmates (say, schoolmate j). The

pairwise observation records whether i regards j as a friend or not and student i’s directional

deviations from schoolmate j in terms of their exogenous characteristics that affect their peer

selection actions. In the section of empirical strategy, I explained the construction of these

pairwise directional deviations and estimation of friendship formation in more detail.

Regarding questions related to smoking behavior, Add Health asked respondents ”During

the past 30 days, on how many days did you smoke cigarettes?”. Based on this question,

I dichotomize the smoking decision. I classify respondents who reported smoking cigarettes

one or more days during the last 30 days prior to the wave I in-home survey date as smok-

ers; otherwise, they are nonsmokers. The literature suggests that lagged smoking behavior

schoolmate friends the recorded (within-school) friendship network contains missing information. It can be
shown that in a very large school, if the sampling rate is r, then the percentage of missing friendship network
information is close to 1− r2.

Let N by N zero-diagonal matrix, ζpop, denote the true friendship network among the N individuals in the
population of interest. We note, only N2 − N non-diagonal elements in ζpop matter. The random sample
contains N × r respondents. Let ζsample denote the recorded friendship network in the survey sample. Then,
[(N × r)2 − (N × r)] non-diagonal elements in ζsample matter.

Hence, the number of missing (friendship network) elements in the survey is N2−N− [(N×r)2− (N×r)] =
N2(1− r2)−N(1− r) and the corresponding rate of missing information, Rmissing, is then

Rmissing =
N2(1− r2)−N(1− r)

(N2 −N)

=
N(1− r2)− (1− r)

(N − 1)

As N approaches infinity, we have

lim
N→+∞

Rmissing = lim
N→+∞

N(1− r2)− (1− r)

(N − 1)

= 1− r2

4Ideally, the economist would like to have a dataset in which she can track down all of a respondent’s
friends (not only schoolmate friends but also non-schoolmate friends). However, no such data set exists to my
knowledge.
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affects an agent’s current smoking decision through nicotine tolerance and dependence that

alter current period utility (Becker and Murphy, 1988; Bullock et al., 1994; Stolerman and

Jarvis, 1995). Without knowledge of a respondent’s state of residence, I am unable to find

an instrumental variable to control for the endogeneity of lagged smoking behavior (e.g.,

lagged cigarette prices/taxes). Realizing this data limitation, I restrict the analysis sample

to respondents who had no regular smoking history before the wave I in-home survey. More

specifically, respondents who answered ”yes” to ”Have you ever smoked cigarettes regularly,

that is, at least 1 cigarette every day for 30 days?” in the wave 1 in-home survey are excluded

from the analysis. Hence, this selection applies only to the analysis of the smoking initiation

decision. The full sample of respondents from each school with complete data (sample 4 of

Table 5.1) is used in the analysis of friendship formation and construction of the peer smoking

norm. Table 5.1 details derivation of the sample used in estimation.

Add Health provides a rich set of measurements on respondents’s characteristics. For my

purposes, the following measurements are of particular interest due to their potential impact

on smoking. They are gender, age, race, grade, religious orientation, family income, parental

smoking behavior and highest education of parents. All the 13, 924 respondents in sample 4.2

of Table 5.1 have no smoking history. About 12% of the 13, 924 initiated smoking in wave I.

Table 5.2 lists the summary statistics for this sample. Figure 5.1 (created from Sample 4 in

Table 5.1) presents the relationship between individual smoking and peer smoking. As the

number of smoker friends among the three closest friends increases from 0 to 3, the individual

smoking rate increases from about 10% to about 70%, indicating a strong positive correlation

between personal smoking and peer smoking.

Figure 5.2 (created from sample 1 in Table 5.1) presents the distribution of the number

of schoolmate friends. 72.81% of respondents (15,103 out of 20,745) in Add Health wave I

in-home survey had at least one schoolmate friend. On average, a respondent had 1.76 friends.
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Table 5.1: Sample Derivation

Sample number and selection criterion Sample size
1. wave I respondent 20,745
2. with at least one parent 19,903
3. has measurements on family income 18,245
4. with complete state cigarette tax information 17,844
4.1. asked to nominate 5 schoolmate friends of each gender 5,7741

4.2. never smoking regularly before wave I 13,9242

1 Using the 5,774 observations, I generate 2,987,761 directional pairwise observations to model friendship
formation.

2 Both sample 4.1 and sample 4.2 are subsets of sample 4.

Table 5.2: Summary Statistics (N = 1, 3924)

Variables Mean (Std. Dev.) Min Max
Smoking initiation 0.117(0.003) 0 1
State Cig. Tax (in 10 cents) 3.240(1.595) 0.25 7.5
No. of Smoking Parents
0 0.384(0.004) 0 1
1 0.250(0.004) 0 1
2 0.367(0.004) 0 1

Highest Parents’ Education
College 0.334(0.004) 0 1
High school 0.499(0.004) 0 1
Less than high School 0.167(0.003) 0 1
Family Income by grade (in 10K dollars) 3.455(4.857) 0 99.9
Grade Level
7 0.149(0.356) 0 1
8 0.139(0.346) 0 1
9 0.179(0.383) 0 1
10 0.194(0.396) 0 1
11 0.180(0.384) 0 1
12 0.158(0.364) 0 1

Age 16.028(1.729) 12 21
Female 0.504(0.500) 0 1
Race
White 0.582(0.493) 0 1
Black 0.266(0.442) 0 1
Asian 0.076(0.265) 0 1
Other 0.076(0.265) 0 1

Religion
Not Religious 0.148(0.335) 0 1
Unimportant 0.056(0.229) 0 1
Important 0.340(0.474) 0 1
Very important 0.457(0.498) 0 1
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Figure 5.1: Individual Smoking vs. Peer Smoking
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Figure 5.2: Number of Schoolmate Friends
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Chapter 6

Results

6.1 Estimation of Instrumented ex ante Equilibrium Smoking

Probabilities

The distribution of instrumented ex ante equilibrium smoking probabilities from the

bagged tree classifier is shown in Figure 6.1. We can see that the median of the instrumented

smoking probabilities among smokers (0.7024) is much larger than that among nonsmokers

(0.0268). This is an indication that the bagged tree classifier does a good job in differentiat-

ing between smokers and nonsmokers. I further examine the performance of the bagged tree

classifier in comparison with a flexibly specified logit model based on two widely accepted

diagnostic tests: the receiver operating characteristic (ROC) curve and the reliability diagram

(Jolliffe and Stephenson 2003).1 Figure 6.2 and Figure 6.3 compares the performance of the

flexibly specified logit model and the bagged (n=100) tree classifier in terms of ROC and

reliability, respectively. We can see clearly that in Figure 6.2, the area under the ROC curve

of smoking probabilities obtained from the bagged tree classifier are much larger than that

of smoking probabilities obtained from the flexibly specified logit model. This indicates that

the fit in the bagged tree classifier is better than that in the logit model.

Figure 6.3 compares the bagged tree classifier and the flexibly specified logit model in terms

of reliability.2 We can see that the dots in the bagged tree classifier panel are clustering around
1The logit model includes the same exogenous explanatory variables as in the bagged tree. I manually

added interactions terms into the logit model. The logit model already has quasi-perfect separation problem,
so it already reaches the limit of flexibility in logit framework.

2For a dot (x, y) in Figure 6.3, y is the average smoking rate of students falling into an estimated smoking



the 45 degree line in Figure 6.3 over the whole range of the estimated smoking probabilities.

For the logit model, an apparent problem is that the maximum estimated smoking probability

is less than 0.75. This suggests that the flexibly specified logit model underestimates the

individual smoking probability because sample 4 (see Table 5.1) includes many students with

previous smoking histories whose smoking probabilities should be close to 1.

6.2 Estimation of Friendship Probabilities

Table 6.1 presents coefficient estimates of the directional friendship logit model. We can

see as school size increases friendship probability drops.3 This finding is consistent with

the intuition that as school size increases a student’s probability of making friends with an

arbitrary schoolmate drops holding others constant. Conformities in grade, gender, age,

and race contribute to friendship significantly. Income conformity does not contribute to

friendship except for friendships among teens from low income families. As we can see in

Table 6.1, directional smoking deviations are significant predictors for friendships. This is

consistent with the theoretical implication that smoking actions and peer selection actions

are interdependent. Figure 6.4 presents the reliability diagram of the estimated directional

friendship probabilities. We can see that dots are closely clustering along the 45 degree line

over the whole range indicating that the logit model performs well.

6.3 Estimation of the Structural Smoking Initiation Probabil-

ities

With the instrumented ex ante equilibrium smoking probabilities and the instrumented

ex ante equilibrium directional probabilities in hand, I then construct the instrumented ex

probability bin. y is calculated from observed data. x is the center of the estimated smoking probability bin.
If estimation is good, we should expect x to be close to y. Therefore, dots should cluster closely to a 45 degree
line.

3To achieve a higher degree of goodness of fit, I include the square of school size as an explanatory variable.
If I do not include these square terms, the coefficient estimates of all the first order terms are negative values
and are statistically significant.
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ante equilibrium peer smoking norms based on equation 4.19. Figure 6.5 presents the scatter

plot of the instrumented ex ante equilibrium individual smoking probabilities and the con-

structed instrumented ex ante equilibrium peer norms; the thick line is the trend curve fitted

through a polynomial (up to the 9th order) regression. Apparently, the instrumented ex ante

equilibrium individual smoking probabilities are positively correlated with the instrumented

ex ante equilibrium peer smoking norms.

For comparison purposes, I present in Table 6.2 the coefficient estimates from six different

specifications of the smoking initiation probability. Each Specification differently controls for

the peer smoking norm. The corresponding marginal effect estimates are presented in Table

6.3. The first specification (no peer effects) does not include peer effects. Specification 1 as-

sumes that peer influence does not exist. It controls for school-level unobserved heterogeneity

by using school fixed effects. Specification 2 and Specification 3 model peer influence by using

school norms as explanatory variables (Norton, 1998 and Lundborg, 2006). If the economist

does not have detailed friendship network data on hand but knows the respondents’ school

memberships, then the economist may run Specification 2 and Specification 3 to capture peer

influence. It is worth mentioning that both Specification 2 and Specification 3 implicitly as-

sume that everyone is everyone else’s friend within a school and such a friendship composition

is exogenously assigned but not chosen by students. Specification 2 uses observed smoking

actions to construct school-level peer norms.4 peer Specification 3 uses instrumented ex ante

equilibrium smoking probabilities. Specification 4, Specification 5 and Specification 6 exploit

the detailed peer composition information in Add Health in modeling peer influence. They

differ in their efforts to correct for bias caused by the endogenous peer norms. In Specifica-

tion 4, the peer norms are constructed based on observed friendships and observed smoking

actions. In Specification 5, the peer norms are constructed based on observed friendships

and instrumented ex ante equilibrium smoking probabilities. Therefore, both Specification

4 and Specification 5 fail to control for endogenous friendships. Specification 5 differs from

Specification 4 in that it controls for the endogenous smoking action while the latter does
4I am able to construct such school-level peer norms using the Add Health data that provides smoking

behavior of all students in a school. However, those data are typically unavailable. Rather, researchers use
reported school-level smoking average to represent peer smoking norms.
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not. Some people did not nominate any schoolmate as a friend, therefore, in Specification 4

and Specification 5, only 4,268 out of the 13,924 observations can be used in analysis because

for those students who did not nominate any schoolmate as a friend, the peer norms are

undefined. Specification 6 is the preferred model because it controls for both the endogenous

friendships and the endogenous smoking actions.

An obvious pattern in Table 6.3 is that the grade effect differs dramatically across different

model specifications. Before further discussion on the interpretation of coefficients on grade

levels, let us first examine what grade level really measures. Recall that all observations in

the analysis samples (either N=13,924 or N=4,268) are free of smoking history. Therefore,

a respondent’s grade level is, in fact, perfectly collinear with the respondent’s left censored

survival time when we interpret smoking initiation as the event of interest. The starting point

of the left censored survival time can be arbitrarily set to a time prior to entering grade 7

depending on research convenience. A person’s left censored survival time is a function of the

person’s (observed and unobserved) smoking initiation deterrents in the past. Hence, it is

reasonable to infer that grade level is positively correlated with the strength of the unobserved

(by the economist) smoking initiation deterrents in the past. Those unobserved deterrents

in the past may be correlated with unobserved smoking initiation deterrents in the present.

As such, coefficient estimates on grade levels should be interpreted with the following two

cautions. First, they reflect the effects of past unobserved smoking initiation deterrents on

smoking initiation in the present. Second, they are biased if serial correlation exists between

past unobserved smoking deterrents and present unobserved smoking deterrents. Expectedly,

the more the time-invariant deterrents on smoking initiation are controlled, the less severe

is the bias. As explained, grade level is perfectly collinear with the left censored survival

time. Hence, we should expect that a marginal change in grade level from 7 to a higher grade

level causes a larger percentage drop in the smoking initiation rate, holding other covariates

constant, because it is reasonable to believe that teens who managed to abstain from smoking

a longer period in the past probably are less likely to initiate smoking in the present. From

Table 6.3, we see that estimation results in Specification 4, 5 and 6 are consistent with

such an expectation. In all these three specifications, as grade level increases (from grade
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7), the predicted smoking initiation rate drops significantly. However, estimation results in

Specification 1, 2 and 3 are inconsistent with such an expected pattern. For example, in

Specification 1 (no peer effects), changing all teens from those who survive smoking initiation

up to at least grade 7 into teens who survive smoking initiation up to at least grade 8, the

smoking initiation rate increases by 3.30 (1.22) percentage points.

Comparing Specification 2, 3 and 6 in Table 6.3, we can see that peer influence estimated

in Specification 2 (0.18 (0.03)) and Specification 3 (0.16 (0.03)) are much smaller than that

that in Specification 6 (1.07 (0.09)). This is expected because it is reasonable to believe that

a person’s chosen friends influence the person more heavily than the person’s schoolmates.

Comparing Specification 4, 5 and 6 in Table 6.3, we see a pattern that peer influence

estimates in the former two specifications (0.11 (0.01) and 0.19 (0.04), respectively) are much

smaller than that in Specification 6 (1.07 (0.09)). Recall that it is a person’s expected peer

norm rather than the person’s friends’ average smoking actions that enters the econometric

representation of the outcome process (equation 4.17). For a person who chooses a finite

number of friends at a decision moment, these two quantities, in general, are different. More

specifically, the person’s expected peer norm is the expectation of her friends’ average smoking

actions. The smaller the number of friends a person has at equilibrium, the larger the variation

of the person’s friends average smoking actions should be. From an econometric perspective,

using a person’s friends’ average smoking actions as an explanatory variable in Specification 4

and 5, in essence, adds a measurement error onto her expected peer norm.5 Since an average

respondent in Add Health has only 1.76 friends, the variances of the measurement errors

among the 4,268 respondents in Specification 4 and 5 are considerably large. This explains

why when compared with Specification 6, the peer effect estimate in Specification 4 and 5 are

smaller.6

5The variance of this measurement error is not only affected by the number of friends a person has (as just
mentioned) but also by the distribution of equilibrium smoking probabilities among her friends. To see this
point, consider a person whose friends’ smoking probabilities are all 0s (or 1s), then the measurement error
vanishes even if the person has only 1 friend.

6The author notices that Specification 4 and 5 use an analysis sample different than that used in Specification
6. This difference may explain the smaller peer influence estimates in Specification 4 and 5. To investigate this
possibility, the author checked the smoking rate (12.4%) in the analysis sample used in Specification 4 and 5
and that (11.7%) used in Specification 6 and found that they are very close. Therefore, the author believes
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The preferred model (Specification 6) shows that peer influence is large and significant. A

one percentage point increase in the peer norm causes the smoking initiation rate to increase

by 1.07 (0.10) percentage points. All other models that use poorly constructed norms as

explanatory variables underestimate peer influence. These models underestimate the peer

effect 5 to 10 fold with marginal effects ranging from 0.11 to 0.19 percentage points. It should

be cautioned that Specification 6 itself cannot provide useful policy implications related to

the peer norm because it is typically impossible for policy makers to exogenously assign peer

norms to teens because teens choose their friends after all. I will discuss how to do policy

simulation based on both the smoking equation and the friendship formation equation below.

Estimation results suggest that peer influence amplifies the direct tax deterrent effect on

smoking initiation. In Specification 1 (no peer effect), we can see that the overall marginal

tax effect is -3.86 (1.81). This implies that if the cigarette tax increases by 10 cents, then the

smoking initiation rate for those individuals who had no smoking history will drop by 3.86

(1.81) percentage points. After controlling for peer influences, we see the overall marginal tax

effect decreases to -3.68 (2.29). Though the magnitude of the mean marginal effect only drops

0.18 percentage points, the standard error increases quite a lot pulling down the statistical

significance from the 3% to 10% level. This differential in tax effect implies that the social

multiplier effect amplifies the tax deterrent effect in the field because the tax effect estimated

in Specification 1 is the combination of the direct tax effect estimated in Specification 6 and

a social multiplier tax effect.

In specification 1 (no peer effects), compared to white teens with a smoking initiation

rate of 13.76 (0.43) percentage, black teens are less likely to initiate smoking by 4.86 (0.81)

percentage points. However, in Specification 6 (preferred model), after taking peer influence

into account, being black increases an individual’s smoking probability by 7.01 (1.55) percent-

age points. This finding indicates that friendship sorting based on racial conformity explains

why black teens have a lower smoking rate than white teens. In specification 1, compared

to having parents who have college education, having parents who have only a high school

that the differences in the analysis sample do not explain why the peer influence estimate in Specification 6 is
larger than those in Specification 4 and 5.
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education, the teen’s smoking probability is increased by 1.25 (0.60) percentage points, and

having parents who have an education level less than high school, the teen smoking proba-

bility is increased by 1.69 (0.82) percentage points In both specification 1 and specification

6, we can see that family does not matter too much. For 8th to 12th graders, family income

effect was insignificant. For 7th graders in Specification 1, family income has a statistically

significant effect, but is still trivial in a practical sense (-0.59 (0.23) percentage points).
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Figure 6.1: Distribution of Estimated Smoking Probabilities(from bagged tree)
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Figure 6.2: ROC Comparison Bagged Tree vs. Logit
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Figure 6.3: Reliability Comparison: Bagged Tree vs. Logit
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Figure 6.4: Reliability: Logit Directional Friendship

Table 6.1: Friendship logit model (N=2,987,761 created from 5,774 students)

Explanatory Variable Coefficient (std err)

School size

School size (<= 100) 0.065(8.44e-3)***

School size square -5.76e-4(7.17e-5)***

School size (100 <size<= 200) 0.030(3.73e-3)***

School size square (100 <size<= 200) -1.41e-4(1.45e-5)***

School size square(> 200) 2.83e-3(5.52e-4)***

School size square (> 200) -1.91e-6(2.72e-7)

Grade deviation .

7-upper grader -1.872(0.149)***

8-8 2.50e-2(0.106)***

8-upper graders -1.460(0.178)***

8-lower graders -1.791(0.169)***

Continued on next page...
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... table 6.1 continued

Explanatory Variable Coefficient (std err)

9-9 -0.414(0.151)***

9-upper graders -1.951(0.162)***

9-lower graders -1.252(0.267)***

10-10 -0.525(0.149)***

10-upper graders -1.814(0.155)***

10-lower graders -1.985(0.174)***

11-11 -0.477(0.149)***

11-upper graders -1.708(0.160)***

11-lower graders -1.872(0.159)***

12-12 -0.472(0.150)***

12-lower graders -1.980(0.163)***

Gender deviation

Male-female -0.320(0.027)***

Female-male -0.381(0.037)***

Female-female 0.107(0.031)***

Age deviation

Nonnegative age deviation (age<= 14) -0.484(0.141)***

Negative age deviation (age<= 14) -0.457(0.057)***

Nonnegative age deviation (14 <age<= 17) -0.407(0.038)***

Negative age deviation (14 <age<=17) -0.350(0.024)***

Nonnegative age deviation (age> 17) -0.417(0.031)***

Negative age deviation (age> 17) -0.283(0.064)***

Racial deviation

White-Black -1.842(0.130)***

White-Asian -1.399(0.111)***

White-Other races -0.357(0.076)***

Black-White -1.957(0.165)***

Black-Black 0.107(0.064)*

Black-Asian -2.850(0.251)***

Black-Other races -2.000(0.209)***

Asian-White -1.420(0.153)***

Asian-Black -3.118(0.239)***

Asian-Asian 0.589(0.066)***

Asian-Other races -1.507(0.129)***

Other races-White -0.389(0.081)***

Other races-Black -1.916(0.206)***

Other races-Asian -1.238(0.161)***

Other races-Other races 2.31e-2(8.82e-2)

Continued on next page...
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... table 6.1 continued

Explanatory Variable Coefficient (std err)

Family income deviation

Nonnegative income deviation (self income<= 25K) -7.29e-2(3.75e-2)***

Negative income deviation (self income<= 25K) -2.62e-2(7.80e-3)

Nonnegative income deviation (25K<self income<= 50K) -3.67e-3(1.17e-3)

Negative income deviation (25K<self income<= 50K) 3.22e-3(5.86e-3)

Nonnegative income deviation (50K<self income75K) -1.02e-2(9.50e-3)

Negative income deviation (50K<self income<= 75K) -2.62e-3(7.92e-3)

Nonnegative income deviation (self income> 75K) -4.52e-3(4.16e-3)

Negative income deviation (self income> 75K) 1.32e-3(8.77e-3)

IV smoking probability deviation

Magnitude of IV smoking probability deviation (deviation > 0) -0.641(0.115)***

Magnitude of IV smoking probability deviation (deviation < 0) -0.297(0.096)***

Note: ∗∗∗indicates significance at the 1% level; ∗∗5% level; ∗10% level

50



Figure 6.5: Trend Plot: IV individual Smoking Probability vs. IV Peer Smoking Norm
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Chapter 7

Policy Simulations

Consider a policy intervention that causes a variation in observed public information

(∆Io). Since a Nash equilibrium strategy is a function of public information, such a policy

intervention affects students’ actions on both smoking and peer selection and, in turn, their

peer smoking norms.

Consider a generic school s with ns students under a policy intervention, ∆Io. Let the ns

by 1 vector E(a∗−i,s
;F (.), I + ∆Io) denote the ns students’ ex ante equilibrium peer smoking

norms. We note the following three theoretical inferences. First, according to equation 4.19,

the ex ante peer norm vector is completely determined by a ns × (ns − 1) by 1 ex ante equi-

librium directional friendship probability vector, p(ζj∗
i (I + ∆Io;F (.)) = 1), and a ns by 1 ex

ante individual equilibrium smoking probability vector, p(a∗s,j(I + ∆Io;F (.)) = 1). Second,

the ex ante individual smoking probability vector is partially determined by an ex ante equi-

librium smoking norm vector due to peer effects on smoking. Third, the ex ante equilibrium

friendship vector is partially determined by the ex ante individual smoking probability vector

that affects directional deviations in smoking probabilities among schoolmates. Hence, the

ex ante equilibrium peer smoking norm vector, the ex ante equilibrium directional friendship

probability vector, and the ex ante individual smoking probability vector are interdependent

at a PSBNE. In other words, these three vectors should be consistent among themselves at a

PSBNE. With this caveat in mind, in a policy simulation, I iterate an initial ex ante equilib-

rium individual smoking probability vector over the estimated smoking behavioral equation

and the estimated friendship equation. In each iteration the three ex ante probability vectors

are updated once. An equilibrium emerges when the iterated ex ante smoking probability



vector converges uniformly across all schoolmates.

Prior to further discussion of the policy simulation, let us first examine how it is affected

by data limitations. Due to the lack of knowledge of a respondent’s state of residency in

Add Health, I do not have instrumental variables (e.g., lagged cigarette price and lagged

state cigarette tax) to explain lagged smoking behavior. This data limitation motivates me

to only estimate a smoking behavioral equation for students without smoking histories. Re-

garding friendship formation, however, students without smoking histories are able to choose

schoolmates with smoking histories as friends. This implies that in the policy simulation it

is appropriate to allow for friendship formation between any two schoolmates regardless of

their smoking histories. Thus, in operation I have to use the estimated behavioral smoking

equation based on students without smoking histories to update ex ante individual smoking

probabilities for students with smoking histories. Such a practice is flawed because it ignores

the effect of a student’s lagged smoking on her current smoking decisions. As a consequence,

the simulation results presented below should be interpreted with caution.

Table 7.1 shows the basic information in the two schools used in policy simulation. The

first school has 55 students and the second school, 63. State cigarette tax is 28 cents in

the first school and 75 cents in the second school. The original equilibrium smoking rates

in the first school and the second school are 5.45% and 33.33%, respectively.1 In the policy

simulation, I perturb cigarette taxes by adding an additional amount of tax to the original

state cigarette tax. For comparison purposes, I solve for equilibrium smoking rates with

and without peer effects at each tax level. In simulating equilibrium smoking rates without

peer effects, I set the coefficient estimates corresponding to grade-specific peer effects in

the estimated smoking equation (Table 6.2) and the coefficient estimates corresponding to

directional deviations in smoking dimension in the friendship equation (Table 6.1) to zeros.

Parameters used in simulation are randomly drawn from the estimated distribution of smoking

equation parameters and the estimated distribution of friendship equation parameters.

Figure 7.1 presents the simulation results in the two schools. The upper panel is the first

school; the lower panel is the second school. Overall, with or without peer effects, as tax in-
1The original equilibrium smoking rate is just the smoking rate observed in the Add Health data.
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creases the smoking rate decreases. Interestingly, in the presence of peer effects, tax increases

in certain ranges may cause ”abnormal” increases in the smoking rate (e.g., tax increase=40

cents, in the first school). We note if the friendship network does not change as taxes increase,

then a tax increase should monotonically pull down the smoking rate. These ”abnormal” in-

creases in the smoking rate reflect that a variation in the cigarette tax motivates agents to

update their smoking decision and their friendships as well. Regarding the social multiplier

effect, in both schools, we see that compared with having no peer effects, a given tax increase

causes a dramatically larger drop in smoking rate in the presence of peer effects. This indi-

cates peer effects significantly amplify tax deterrent effects. Meanwhile, in both schools the

presence of peer effects significantly increases the smoking rate over the entire range of the

cigarette tax increases. Collectively, simulation results suggest that although peer influence

significantly amplifies the cigarette tax deterrent effect, it mainly promotes teen smoking ini-

tiation. Also we note under peer effects, at certain tax thresholds, the smoking rate drops

abruptly (e.g., tax increase=7 cents in the first school). This indicates that at those tax

thresholds the social multiplier effect is particularly large (herding behavior appears).

Table 7.1: Two Schools Used in Policy Simulation
School No. of students 1995 state cig. Tax Smoking rate

1 55 28 5.45
2 63 75 33.33
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Figure 7.1: Equilibrium Smoking Rate: Peer Effects vs. No Peer Effects
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Appendix: Characterization of Allowed Decision Space

Let Bi(d−i,t) denote the set of player i’s decisions allowed by her individual budget con-

straint and other nt − 1 players’ decisions (d−i,t).

Bi(d−i,t) = {di,t|C(di,t; d−i,t, zt)− Yi,t ≤ 0}

Proposition 1. If a collection of nt individual decision sets {D̃1, ..., D̃i, ..., D̃nt} (D̃i ⊆ Di

∀i ∈ Nt) in the game satisfy

D̃i =
⋃

d̃−i,t∈D̃−i

Bi(d̃−i,t) ∀i ∈ Nt (7.1)

then the Cartesian product
∏

i

D̃i is an ADS of the game.

where
⋃

d̃−i,t∈D̃−i

Bi(d̃−i,t) is the union of those player i’s decision sets corresponding to all

different combinations of nt − 1 players’ decisions. D̃−i is a Cartesian product defined as

D̃−i =
∏

j∈Nt\{i}

D̃j

Proof. Let K(
∏

i

D̃i) denote the number of elements in
∏

i

D̃i.

∀k = 1, 2, ...,K(
∏

i

D̃i) and ∀i ∈ Nt , let [d̃k
i,t d̃k

−i,t] = d̃k
t denote the bi-decomposition of

an element in
∏

i

D̃i, which decomposes d̃k
t into the decision made by player i (d̃k

i,t) and the

decisions made by the rest nt − 1 players (d̃k
−i,t).

We note, d̃k
t ∈

∏
i

D̃i ⇒ d̃k
−i,t ∈ D̃−i. In turn, d̃k

−i,t ∈ D̃−i and D̃i =
⋃

d̃−i,t∈D̃−i

Bi(d̃−i,t) ⇒

Bi(d̃k
−i,t) ⊆ D̃i. This says ∀i ∈ Nt and ∀k = 1, 2, ...,K(

∏
i

D̃i), the set of player i’s decisions

allowed by dk
−i,t and her individual budget constraint is a subset of the D̃i. Recall

∏
i∈Nt

D̃i is a
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Cartesian product of D̃is, therefore, ∀i ∈ Nt and ∀k = 1, 2, ...,K(
∏

i

D̃i), d̃i,t ∈
∏

i

D̃i satisfies

nt budget constraints simultaneously. Q.E.D.
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