

Effect of pH on CAHS D's Secondary Structure Using FTIR Spectroscopy

Shikun (Rinco) Wang

Major: Biology & Chemistry (Biochemistry Track)

Advisor: Gary Pielak; Department of Chemistry

Research Question

Tardigrades are famous for their ability to survive extreme conditions such as complete desiccation. Cytosolic abundant heat soluble proteins (CAHS), a type of tardigrade disordered protein, is essential for desiccation survival. Our Lab has found that purified CAHS D undergo gelation, which I hypothesize is stabilized by intramolecular interactions involving transient formation of secondary structure.

I investigated how pH impacts the secondary structure of CAHS D.

Low (10 g/L) and high (40 g/L) concentration samples of CAHS D were prepared in buffer at pH 5.5 and 8.0. Their secondary structures were measured and compared by using Attenuated Total Internal Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. CAHS D's N-terminal region contains histidine residues, whose pK_a is between 5.5 and 8.0. The repulsive and attractive interactions of histidine depend on protonation state. **Understanding the structure of CAHS D gels will aid in our understanding of its function**.

Molecular Dynamics simulation of CAHS D

Results

- Experiments were performed in triplicate. Results are presented as averages. Uncertainties are presented as the standard deviation of the mean. At pH 8, 40 g/L CAHS D has 5 ± 1 % more α -helix, 1 ± 1 % fewer turns and loops, 3.3 ± 1.0 % less random structures, and between 0.2 ± 0.3 % and 1.2 ± 0.9 % less β -sheet than at pH 5.5. I conclude that deprotonation of histidine increases the percentage of α -helix. (Spectra of the 10 g/L sample had a low signal to noise and was not analyzed).
- The data shed light on the pH dependence of CAHS D's secondary structure. In the future research, I will expand the pH range. Investigating the structural rearrangement will aid in our understanding of CAHS D function in desiccation tolerance. Continued study of CAHS D is useful in real-world applications such as the manufacture of stress-tolerant crops and stabilizer for vaccines.

	Concentration	Low frequency	Random coil	Turn and		High Frequency β-sheet(%)	Amino
рΗ	(g/L)	$m{eta}$ -sheet (%)	(%)	Loops (%)	α-helix (%)	(another)	Acid (%)
5.5	40 ±2	17.8 ±0.5	27 ±1	16.6 ±0.6	25.2 ±0.7	7.5 ±0.3	5.9 ±0.3
8.0	40 ±2	16.6 ±0.8	23.7 ±0.4	16.0 ±0.8	30.3 ±0.9	7.3 ±0.1	6.1 ±0.3

