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ABSTRACT 
 

Matthew Jacob Goldfogel: Hydrofunctionalization through Electrophilic Alkene Activation 
Using Carbodicarbene Ligands 

(Under the direction of Simon J. Meek) 
 

Alkenes and related π-systems serve as versatile and readily available feedstocks for the 

synthesis of a plethora of natural products and fine chemicals. The benefits of using these 

ubiquitous structures has fueled industrial research into alkene functionalization and related 

catalysis. Industrially relevant examples include the Tsuji-Wacker oxidation, the Mizoroki-Heck 

reaction, and asymmetric epoxidation. Successive improvements to alkene functionalization have 

been accomplished through iterative design of new ligands that form increasingly active metal 

complexes. These organometallic complexes are particularly effective at binding alkenes in order 

to activate stable π-systems. One mode of activation is to bind the alkene to an electron poor 

metal, which withdraws electron density from the alkene, making it susceptible to attack from an 

external nucleophile. Known as electrophilic activation, this mechanism can be generalized for a 

variety of nucleophiles that allow for C-C (hydroalkylation), C-N (hydroamination), and C-O 

(hydroetherification) bond formation. The mechanism begins with the binding of an alkene to the 

electrophilic metal center. The properties of the metal center are tuned by the ligand framework, 

which can be used to control the reactivity of the bound alkene. Alkene binding is followed by 

external addition of the nucleophile to generate a metal-alkyl intermediate. The metal-alkyl bond 

is then protonated to form a C-H σ-bond and the product. Dissociation of the product regenerates 

the electrophilic metal center and closes the catalytic cycle. 
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 The following studies will relate efforts to design organometallic catalysts for 

electrophilic alkene activation with the goal of promoting hydrofunctionalization reactions. 

Hydrofunctionalization is formally defined as a class of alkene reactions where the π-bond of the 

alkene is transformed into two new σ-bonds including a carbon-hydrogen bond. Such 

transformations have received considerable attention for their utility in forming desirable bonds 

with complete atom economy. The following chapters will document research into electrophilic 

hydrofunctionalization catalyzed by a series of new cationic metal complexes employing 

carbodicarbene ligands. Carbodicarbenes were not previously known as catalytically active 

ligands, but their unique reactivity has proved beneficial for stabilizing cationic Rh complexes. 
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CHAPTER 1: CATALYTIC HYDROAMINATION WITH CARBODICARBENE 
LIGATED METAL COMPLEXES1 

1.1: Introduction to Hydroamination 

One well-studied class of alkene functionalization is hydroamination.1–5 Hydroamination 

is defined as the addition of a N-H σ-bond across a C-C π-bond resulting in the formation of a 

new C-N and C-H bond vicinal to one another (Scheme 1.1-1). The significant interest in this 

reaction is in part due to the importance of carbon-nitrogen bonds in biologically active 

molecules, as highlighted by the rapid adoption of Buchwald-Hartwig couplings in the industrial 

syntheses of pharmaceuticals.6–8 Alkene hydroamination has the potential to generate valuable C-

N bonds in an atom-economical fashion, as every atom that is contained in the starting reagents 

is incorporated in the products. Additionally, the ready availability of alkenes and amines as 

starting materials allows hydroamination to rapidly transform simple compounds into complex 

molecules. Although a great deal of progress has been made in hydroamination, a general 

protocol has yet to be achieved and most catalysts are highly limited in scope.2  

R1 N
N

H
+ CatalystR2

R2R1

C-C π-bond

H

N-H σ-bond 2 new σ-bonds  

                                                
1 A portion of this chapter appeared as a communication in the Journal of the American 
Chemical Society. The original citation is as follows: Goldfogel, M. J.; Roberts, C. C.; Meek S. 
J., J. Am. Chem. Soc., 2014, 136 (17), 6227–6230. Of the work discussed, C. C. Roberts was 
responsible for the development and synthesis of the CDC ligands (PhCDC–H and iPrCDC–H), 
Rh complexes PhCDC-Rh–Cl and iPrCDC-Rh–Cl, and development of the amine scope for the 
intermolecular hydroamination while M. J. Goldfogel discovered and optimized the 
hydroamination reactions and was responsible for the diene scope. M. V. Joannou contributed to 
the synthesis of the Pd complexes and solved all reported crystal structures. 
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Scheme 1.1-1: A general hydroamination reaction scheme. 

Alkene hydroamination is complicated by the regiochemistry of the C-N bond formation. 

Addition of the C-N bond to the more substituted alkenyl carbon provides the branched 

Markovnikov products, while anti-Markovnikov addition to the less substituted or terminal sp2 

carbon forms the less substituted amine (Scheme 1.1-2).3 The Markovnikov addition is more 

common, as any mechanism that proceeds through a cationic intermediate will favor formation 

of the more substituted cationic carbon, directing addition of the nitrogen nucleophile to the 

same location. In 1993 anti-Markovnikov hydroamination was identified as one of the top 

challenges facing catalysis9 and, despite recent catalytic examples,10 remains a problem today. 

Anti-Markovnikov hydroamination has been developed utilizing such strategies as substrate 

bias,11–18 hydride insertion,19 and radical chemistry,20–22 yet limitations still exist in scope and 

these methods are untested in total synthesis.  

Ph PhPh

NR2
NR2

branched amine
Markovnikov Product

catalyst A catalyst B
linear amine

anti-Markovnikov Product

N
H

RR
N
H

RR

Ph
H

Ph

H

favored disfavored
Cationic intermediates favor the 

Markovnikov products  

Scheme 1.1-2: Regiochemical considerations in the hydroamination of an alkene. 

Stereochemical challenges further complicate many hydroamination reactions as addition 

to an alkene π-bond results in the formation of a stereocenter (Scheme 1.1-3).23,24 Catalysts that 

can enantioselectively generate C-N bonds are particularly desirable, as many of the natural 

products amenable to hydroamination have specific stereochemistry.25 Alkyne hydroamination 

does not form stereocenters, as the resulting carbon center is sp2 and can tautomerize to form the 

imine product. This work will focus on alkene hydroamination in the interest of forming 
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stereogenic products through diastereo- and enantioselective transformations. The following 

sections will introduce several methods of alkene hydroamination to define the state-of-the-art 

and identify limitations that still prevent hydroamination from being adopted as a common 

synthetic tool.  

Ph PhPh

NR2 N
H

R2R1 N
H

R2R1

(R)-catalyst (S)-catalyst

NR2

Ph Ph

N
H

R2R1

catalyst

NR2

Alkene Hydroamination:

Alkyne Hydroamination:

Ph

NR2

R1 and R2 ≠ H R1 = H

tautomerization

 

Scheme 1.1-3: Stereochemistry in hydroamination. 

1.1.1: Categories of Catalytic Methods for Hydroamination 

Despite its utility, mild methods for the hydroamination of alkenes are elusive. As an 

almost thermo-neutral process, hydroamination proceeds through an entropically disfavored 

transition state and consequentially high activation barrier.2 As such, hydroamination under mild 

conditions necessitates the use of a catalyst. Hydroamination was initially explored with 

alkaline26,3 and rare-earth metals (ie: lanthanides),4,27 but more modern developments have 

introduced early transition metal28,29 and late transition metal catalysts5,30 which have come to 

dominate the literature due to their improved substrate scope, stability, and intermolecular 

transformations.2 This introduction to research in the field will be organized according to the 

nature of catalysts used. Although this is not meant as an exhaustive review, it should provide 

insight into the types of catalysts that have been successful. We will briefly discuss 

organocatalytic methods, but organometallic catalysts will be the focus due to their greater 

prevalence and range of reactivity.  
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1.1.1.1: Alkaline and Rare-Earth Catalysts 

Alkaline and rare-earth catalysts are notable for their high reactivity, boasting high 

turnover frequencies and reliable regioselectivity (Scheme 1.1.1-1).4,31 Because of the reliability 

of these reactions, this class of catalysts is prevalent in synthetic applications of hydroamination 

(vide infra, section 1.1.3). However, alkaline and rare-earth catalysts rarely accomplish 

intermolecular reactions32,33 and are highly oxygen and water sensitive.27 These restrictions, 

paired with catalyst incompatibility with polar functional groups (eg: aldehydes, ketones) and 

acidic protons (eg: alcohols, carboxylic acids) have encouraged recent hydroamination research 

in alternative mild catalysts. 

Nd CH(TMS)2Si La
H
H La

N
Li

N
Me

MeMe

Me

N
SiMe3

SiMe3

O

N N

O

Li
N

iPriPr

Sm N(TMS)2Si

Alkaline Catalysts:

Rare-earth Catalysts:

N
Li

Me3Si SiMe3

 

Scheme 1.1.1-1: Examples of alkaline and rare-earth hydroamination catalysts. 

1.1.1.2: Early Transition Metal Catalysts:  

Early transition metal catalysts have also been extensively explored for hydroamination, 

with the majority of research focusing on the group 4 metals Ti34,35 and Zr36 (Scheme 1.1.1-2). 

Catalysts derived from these metals have shown particular facility for alkyne and allene 

hydroamination, but are significantly less developed for alkenes. More recent work has shown 

that Ti37,38 and Zr29,39 can catalyze intramolecular alkene hydroamination, but intermolecular 

examples remain scarce.40 These catalysts tend to be more stable than their Lanthanide 
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counterparts and have an accordingly greater tolerance for functional groups.2 The amine scope 

is notable for reacting efficiently with congested nucleophiles (eg: secondary amines, 

tertbutylamine), but bulky ligands are required to react with small amines due to catalyst 

dimerization (vide infra). Overall, early transition metal hydroamination has been proven to be 

quite effective, but limitations still exist in: (i) the scope of alkene substrates, (ii) the availability 

of intermolecular reactions, and (iii) tolerance for amines of varying nucleophilicity.  

Ti
Me
Me

N
Zr

NMe2

NMe2O

O
NMe2N

(iPr)2N

(iPr)2NN
N

Ti
NMe2

N
NMe2

Me

Ti
Me
Me

Zr
Me
CH2BH(C6F5)Zr

Me
Me

 

Scheme 1.1.1-2: Examples of early transition metal hydroamination catalysts. 

1.1.1.3: Late Transition Metal Catalysts 

Many of the recent notable advances in hydroamination have come from late transition 

metal catalysts. Such catalysts tend to bind amines less tightly, which can allow them to 

overcome nucleophilic substrate limitations.5 Because of this increased tolerance, late transition 

metal catalysts have become increasingly common with many examples of Ru,41–49 Pd50–52, Pt,53–57 

Rh,30,58–63 and Ir64–72 and catalysts appearing in the literature (Scheme 1.1.1-3). The coinage 

metals (Cu,73–76 Ag,77–85 Au79,86–117) have also been used, with both Au and Ag catalysts being the 

most developed for intramolecular and alkynyl reactions. Recent work with Cu has shown that 

hydride additions across alkenes offers an alternative, and useful, mechanism for 

hydroamination.76 There are limited examples of hydroamination with other first row late 

transition metals (Fe,118–122 Ni123–130, Zn131–142), but these methods are still relatively unknown.  
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Scheme 1.1.1-3: Examples of late transition metal hydroamination catalysts. 

Late transition metal catalyzed hydroamination generally benefits from a broader 

substrate scope than rare-earth or early transition metal methods, in part due to an increased 

tolerance for polar functional groups and decreased sensitivity of late transition metal complexes 

to oxygen and water.1,5 Despite several notable examples of intermolecular 

hydroamination,10,69,121,143,144 intramolecular examples predominate and alkene hydroamination is 

quite limited compared to reactions with alkynes and allenes.2 Furthermore, hydroamination 

catalysts tend to catalyze the addition of only a narrow range of amine nucleophiles, as the 

reactivity difference between electron rich alkylamines and electron poor amines (ie: amides, 

ureas) prevents the development of a single catalyst that is general for most amine substrates. 

The progress in late transition metal catalysis is directly linked to the development of new ligand 
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structures and scaffolds that have allowed for the control of reactivity at the metal center. The 

variety of available ligands paired with the range of accessible reactivity highlights the potential 

of late transition metal catalysts for hydroamination. 

1.1.1.4: Metal Free Methods 

Organocatalytic hydroamination reactions have been accomplished using acids to 

protonate the π-system and generate cationic intermediates before amine addition.145,146 However 

these reactions are generally limited by harsh reaction conditions or poor substrate scope, and are 

almost exclusively intramolecular.1 This strategy is also limited mechanistically, as acid catalysts 

are restricted to generating Markovnikov products, since the intermediate cation is formed in the 

more substituted internal position. Recent advances in organocatalytic methods have overcome 

this limitation using photoredox catalysis to generate cation-radical intermediates that favor anti-

Markovnikov addition.147–151 Although this field is in its infancy, these new metal-free methods 

mark a different and intriguing approach to hydroamination. 

1.1.2: Metal Catalyzed Hydroamination Mechanisms 

The variety of hydroamination mechanisms posited in the literature demonstrates that the 

mechanism of a given reaction is highly dependent upon reaction conditions, yet general 

mechanisms have been identified for (i) rare-earth catalysts, (ii) early transition metal catalysts, 

and (iii) late transition metal catalysts. This section surveys the general mechanisms postulated 

for the organometallic catalyst classes discussed above. This information will be utilized in our 

own efforts to develop new late transition metal catalysts that can expand the synthetic utility of 

hydroamination reactions.  
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1.1.2.1: Mechanism of Catalysis with Rare-Earth Metals 

Rare earth catalysts generally operate via direct nucleophilic addition or insertion of the 

amine into the π-system, which is usually the rate-determining step (Scheme 1.1.2-1).27 As such, 

there is a great deal of similarity between alkaline and Lanthanide mechanisms of 

hydroamination.152 Insertion into the π-system generates a highly basic alkyl-metal bond, which 

deprotonates another molecule of the amine to regenerate the active metal-amide intermediate. 

The high reactivity of the metal-amide intermediates is the source of the high turnover frequency 

and regioselectivity afforded by these catalysts.2 However, this high reactivity also results in high 

catalyst sensitivity and an inability to tolerate polar functional groups that could react with the 

metal-amide or alkyl metal bases found in the reaction.  

Ln
L

L
NR2

H NR2

n

N

n
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H
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NH2
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L

H
N n

Catalyst 
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Alkene 
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Scheme 1.1.2-1: General mechanism for hydroamination with rare-earth catalysts. 

1.1.2.2: Mechanism of Catalysis with Early Transition Metals 

The mechanism for hydroamination with group 4 metals has been extensively modeled 

and differs dramatically from other hydroamination pathways (Scheme 1.1.2-2).153,154 The group 
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4 metal initially reacts with a basic amine to generate a catalytically active metal-imido species. 

C-N bond formation then occurs through a [2+2] cycloaddition between the π-systems of the 

metal imido and alkene in order to form a strained metalocycle. Proton transfer from another 

amine to break the carbon-metal and metal-nitrogen bonds follows, releasing the product and 

reforming the catalyst. This mechanism is complicated by dimerization of the metal imido 

complexes to an off-cycle intermediate. Excessive formation of this intermediate can occur if the 

amine is not sufficiently bulky to prevent dimer formation. It is the formation of the off-cycle 

dimeric intermediate that is responsible for the general favorability of bulky amine substrates 

over primary amines, since steric bulk disfavors the formation of the bridged metal and forces 

the equilibrium towards the catalytically active monomeric metal imido.2 Smaller amine 

substrates can be utilized, provided ligands bound to the group 4 metal are large enough to 

compensate, but a specific ligand is rarely general for a large array of amine substrates.  

M
Me
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M
NHR
NHR

M N
R

Cp2M N
R

R1 R2

M
N
NH
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R

H
N
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M
N
N

M

R

R
- RNH2+ RNH2

RNH2

RNH2

R2
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R

metal imido 
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[2+2]
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off-cycle 
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Scheme 1.1.2-2: General mechanism for hydroamination with early transition metal catalysts. 
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1.1.2.3: Mechanism of Catalysis with Late Transition Metals 

Much of the literature discussed above has focused on developing late transition metal 

catalysts, which have shown greater substrate tolerance and mechanistic flexibility. Despite the 

variety of mechanisms that have been proposed, catalysis with late transition metals can be 

broadly categorized by whether the alkene or the amine is activated (Scheme 1.1.2-3, Cycle A vs 

Cycle B).2 Mechanisms that proceed via initial binding of the alkene are termed electrophilic 

activation, while a mechanism that occurs through activation of the amine is referred to as an N-

H insertion pathway. Electrophilic activation was initially proposed for Pd and is widely 

accepted for many mechanisms, particularly those involving cationic metal catalysts.155 

Electrophilic catalysts operate through direct activation of the alkene by coordinating to the C-C 

π-system, which weakens the π-bond. This allows for external attack by the amine and 

subsequent formation of a metal-carbon bond. Protonation of this metal-carbon bond releases the 

product and regenerates the catalyst (Scheme 1.1.2-3, Cycle A).156 The alternative N-H insertion 

mechanism begins with oxidative addition of the metal into the amine N-H bond,67 or generation 

of a metal hydride from a stoichiometric hydride source.157 The resulting hydride- and/or metal-

amido complex can insert across the olefin forming either the C-N or C-H bond respectively.5 

The cycle is turned over by subsequent reductive elimination to release the product and 

regenerate the catalyst (Scheme 1.1.2-3, Cycle B). Amines with acidic N-H bonds favor the N-H 

insertion pathway because oxidative insertion is more facile. Variations on these mechanisms are 

numerous, but the focus of this thesis will be on electrophilic alkene activation because it offers a 

general strategy for promoting hydrofunctionalization reactions with Lewis basic nucleophiles 

and does not depend as heavily on the identity of the nucleophile.  
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Scheme 1.1.2-3: Two commonly proposed mechanisms for hydroamination with late transition 

metal catalysts. 

1.1.3: Hydroamination in Total Synthesis: 

The use of catalytic methods in total syntheses serves as a metric for the overall utility 

and functional group tolerance of a reaction. Despite the prevalence of C-N bonds in natural 

products, and the corresponding value of forming C-N bonds with complete atom economy, 

hydroamination has only seen limited use in total synthesis. This is likely due to restrictions on 

substrate scope and the difficulty of identifying a general catalyst for a given reaction. However, 

several landmark examples of hydroamination in total synthesis do exist and will be discussed to 

enumerate the current limits of the reaction. Only stereoselective syntheses will be discussed in 

an effort to focus on hydroamination reactions that have the selectivity necessary to be generally 

applied in the synthesis of complex, stereodefined molecules. 

The first application of hydroamination in natural product synthesis was by Marks et. al. 

in 1999 when they synthesized (+)-Pyrrolidine 197B and (+)-Xenovenine, which are alkaloids 
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produced in the mucous coating of poison dart frogs.31 These syntheses were accomplished using 

organolanthanide catalysts to diastereoselectively hydroaminate allenes with a primary amine 

intramolecularly (Scheme 1.1.3-1: Lanthanide Catalysts). The high reactivity of 

organolanthanide catalysts is exemplified in the synthesis of Xenovenine as a tandem allene and 

alkene intramolecular cyclization could be catalyzed at temperatures as low as 45 °C. The 

absence of any other functional groups highlights the incompatibility of organolanthanide 

catalysts with Lewis basic moieties. Similar lanthanide catalysts have been subsequently used for 

the synthesis of (+)-Pinidinol158 and the HCl salt of coniine.159 The synthesis of coniine is 

particularly notable as one of only two examples of enantioselective hydroamination in total 

synthesis.  

Alkaline hydroamination catalysts have seen use in total synthesis for the 

diastereoselective formation of pyrrolidine and piperidine rings. These methods generate 

lithiated amines, which have exceptional activity and selectivity. Alkaline catalysts were used in 

the syntheses of (-)-Codeine, (-)-Morphine,160 (-)-Metazocine, and (-)-Pentazocine161 by Trost et 

al. However, further extension of these methods has been dissuaded by the necessity for alkyl 

lithium bases, which have no tolerance for acidic protons. The synthesis of (-)-Metazocine is 

representative of the harsh conditions required, as the base caused in situ isomerization of the 

alkene and the only functional group tolerated was an ether (Scheme 1.1.3-1: Alkaline Catalysts). 

The second example of enantioselective hydroamination in synthesis was accomplished using an 

alkaline catalyst; a bisoxazoline ligand was paired with lithium diisopropylamine to catalyze the 

piperidine ring formation to synthesize (S)-Laudanosine with modest enantioselectivity.162  
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Scheme 1.1.3-1: Natural products synthesized stereoselectively lanthanide and alkaline catalysts 

for hydroamination. 

More recent applications of hydroamination in synthesis have focused on late transition 

metal catalysts. Au,163–167 Pd,168 and Ag169 have been used in the intramolecular hydroamination 

of sp-hybridized alkynes or allenes to form piperidine rings, and limited examples of 

hydroamination with less reactive sp2-hybridized substrates are also known.170,171 The natural 

products synthesized via these methods are significantly more complex and contain a variety of 

functional groups (Scheme 1.1.3-2). This demonstrates the increased tolerance and utility of late 

transition metal catalysts over their alkaline and lanthanide counterparts (Scheme 1.1.3-1: Late 

Transition Metal Catalysts). Particularly impressive examples include, Crambidine164 and (-)-

Quinocarcine,165 which contain multiple fused rings and demonstrate that Au catalyzed 
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intramolecular hydroamination is tolerant of esters, protected alcohols, and alkenes. Most 

recently the formal synthesis of (-)-Swainsonine was introduced by Lim et al. and marks the first 

use of enantioselective intermolecular hydroamination in total synthesis.172 
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Scheme 1.1.3-2: Natural products synthesized stereoselectively lanthanide and alkaline catalysts 

for hydroamination. 

The progressive increase in the complexity of natural products synthesized through 

hydroamination methods mirrors the progression of catalytic methods. However, these 

applications are still few in number and the similarities between the syntheses emphasize the 

limitations that still exist. Almost every reported example of asymmetric hydroamination in total 

synthesis has been intramolecular. Furthermore, the majority of these syntheses use reactive 

alkyne, or allene electrophiles and enantioselective hydroamination has only been applied three 

times. Using total synthesis as a metric for the maturity of a method, it is readily apparent that 

the limited application of hydroamination does not match the potential of this reaction as a 

method for forming C-N bonds. This gap between method and application can be traced to the 

current limitations in catalytic methods for hydroamination. 
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1.1.4: Current Limitations in Hydroamination 

As was briefly discussed during the review of catalyst classes, efficient transition metal-

catalyzed hydroamination is limited by: (i) the small scope of amines and π-systems tolerated by 

a given catalyst, (ii) the scarcity of intermolecular methods, and (iii) the dearth of 

enantioselective methods. Catalysts rarely tolerate both nucleophilic and non-nucleophilic 

amines30,51 and are usually paired with sp-hybridized alkyne or allene electrophiles.2,5 We will 

focus on developing methods that react with sp2 hybridized π-systems in the interests of finding 

reactions that address current restrictions to substrate scope.  

 The nucleophilicity of the amine significantly impacts the viability of a given catalyst. 

Substrates containing nucleophilic amines are often plagued by product inhibition and exhibit an 

inverse dependence of the reaction rate on the amine concentration.173 Nucleophilic amines are 

less likely to react via the N-H insertion pathway due to the stronger N-H bond (Scheme 1.1.2-3: 

Cycle B).174 Similarly, electron poor amines are difficult for catalysts that favor the olefin 

activation pathway, as they lack the nucleophilicity necessary to add to the π* orbital of the 

alkene (Scheme 1.1.2-3: Cycle A). The large variance of Lewis basicity between amine 

nucleophiles means that most catalysts are only competent for a narrow range of amine 

substrates, such as alkylamines,30 aryl amines,142 amides,69 or ureas.100 A significant advance in 

hydroamination would be the development of a general catalyst capable of hydroamination with 

multiple amine classes. This could also encourage the application of hydroamination in 

synthesis. 

The majority of organometallic hydroamination catalysts have been demonstrated with 

alkyne and allene substrates.1 Reactions with alkenes are uncommon compared to these π-

systems, and particularly rare with group 4 and group 11 catalysts. In the reactions that have 
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been demonstrated with alkenes the substrates are often strained (ie: norbornene71) or activated 

by neighboring functional groups (ie: styrenyl olefins62 or dienes123). Substituted and internal 

alkenes still pose a major challenge to reactivity.173  

Most hydroamination protocols have been developed with intramolecular substrates. This 

is particularly apparent for rare-earth27 and early transition metal2 catalysts, where intermolecular 

reactions are rare. The examples of hydroamination in the synthesis of natural products 

underscore this limitation, as there are currently only intramolecular examples of stereoselective 

hydroamination. Intramolecular transformations significantly reduce the entropic barrier of the 

reaction, and can be further biased towards cyclization by the incorporation of geminal 

substituents.175 These limitations to substrate scope encourage the development of new catalysts 

and methods that can extend the viability of hydroamination as a synthetic reaction. One of the 

strengths of late transition metal catalysts is that they appear to be more amenable to the 

development of intermolecular reactions as there are examples with Cu,19 Pd,50 Rh,63 and Ir66 

catalysts. 

1.2: Designing a Hydroamination Catalyst 

 We aimed to develop a new catalyst capable of intermolecular reactions with alkenes to 

address systemic limitations to the field of hydroamination. To accomplish this goal, we chose to 

focus on late transition metal catalysts because they: (i) have been demonstrated in more 

intermolecular processes than other catalyst classes,176 (ii) show greater tolerance for polar 

functional groups and nucleophiles,173 and (iii) can have their reactivity tuned through judicious 

ligand choice.5 Many of the recent developments in hydroamination have been facilitated by the 

introduction of novel ligand frameworks that unlock new reactivity profiles and suppress 

undesired reactions.173 The key to developing a late transition metal catalyst will be the design 
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and synthesis of a new class of ligands that can control reactivity at the metal center. Known 

catalysts will provide the foundation for the rational design of new ligands and determine what 

steric and electronic traits may be beneficial to catalysis. 

1.2.1: Mechanistic Approach to Catalyst Design 

 There are a limited number of mechanisms proposed for late transition metal catalyzed 

hydroamination.2 As described above, hydroamination with late transition metals can be broadly 

categorized as either electrophilic activation or N-H insertion. Both have been demonstrated in 

alkene hydroamination, but the electrophilic activation pathway was chosen for further study in 

the interest of maintaining a broad nucleophile scope. Theoretically, an alkene activation 

mechanism could allow for the addition of any sufficiently nucleophilic Lewis base, possibly 

extending the developed catalysts to other hydrofunctionalization reactions (eg: hydroalkylation, 

hydroarylation, hydroetherification). This was particularly appealing as we hoped to develop a 

research program based on forming multiple types of bonds through the general activation of 

alkenes. Alkene activation should allow amines with varying nucleophilicity to react readily. In 

comparison, most N-H insertion mechanisms are restricted by the ability of the catalyst to insert 

into a given amine N-H bond, limiting the competent amine substrates.5 

 The general activation of an alkene by an electrophilic metal is shown in Scheme 1.2.1-1. 

Although simplified, this mechanism can be used to identify several key requirements for 

efficient alkene activation and subsequent hydroamination. The mechanism begins with binding 

of the alkene to an open coordination site on the metal. Only this single open coordination site is 

required for catalysis. Alkene binding must be competitive with binding to other Lewis basic 

molecules – such as amines – or the alkene will be displaced before the desired reaction can 

occur. This competition between alkene and amine binding is primarily responsible for the 
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substrate inhibition that commonly limits amine scope in hydroamination. An effective ligand for 

general hydroamination with a variety on nucleophiles must control the steric and electronic 

properties at the metal center in order to encourage alkene binding.  
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Scheme 1.2.1-1: Working mechanism for designing a hydroamination catalyst including 

anticipated side reactions and off-cycle pathways. 

The second step of the mechanism is external attack by a nucleophilic amine in order to 

generate the C-N bond and an alkyl-metal intermediate. The high activation barrier to this step 

requires that the alkene be sufficiently electrophilic to encourage amine addition. Coordination 

of the alkene to an electron poor metal can lower the activation barrier by withdrawing electron 

density from the alkene as predicted by the Dewar-Chatt-Dunkanson model (Scheme 1.2.1-2).177 

Alkene activation is described by Eisenstein and Hoffman as a geometric “slip” of the bound 

alkene to localize the LUMO on a single carbon.156,178 The requirement for a highly electrophilic 

metal center suggests that cationic metal centers will be favored for alkene activation. 
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Additionally, computational studies predicted that the electronegativity of the metal center will 

impact reactivity and hypothesized that group 10 metals would be favored catalysts.179  
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Scheme 1.2.1-2: The Dewar-Chatt-Duncanson Model for alkene coordination to a late transition 

metal. 

Unlike migratory insertion pathways, where the nucleophile initially binds to the metal 

before insertion can occur, electrophilic alkene activation is proposed to occur through outer 

sphere addition to the alkene. The catalyst only needs one open coordination site for this 

mechanism, encouraging bi- or tridentate ligand scaffolds that can fill unused coordination sites 

to prevent undesired reactivity. β-hydride elimination is a common side reaction in alkene 

hydroamination and forms imine products after reductive elimination. These imines can then 

further impede reactivity by tightly binding to the catalyst.173 Many catalysts have only a single 

available coordination site to prevent β-hydride elimination, which requires a second 

coordination site at the metal center in order to form the metal hydride.180 Tridentate meridonal 

ligands are known for preventing β-hydride elimination and are common scaffolds for group 9 

and 10 hydroamination catalysts.51,64,173 
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The final step of the proposed cycle is protonation of the metal-alkyl bond to form the 

product and regenerate the active metal catalyst with an open coordination site for alkene 

binding. For Rh and Ir catalysts this step is often considered to be rapid.5 However, for Pd181 and 

Au116 catalysts this protonation can be rate-determining. This is especially apparent for Au 

catalysts, which have been shown to stoichiometrically generate a stable alkyl-Au complex 

during C-N bond formation. For many catalysts protonation at the metal is not feasible since they 

do not have an open coordination site. In these cases, substrate or ligand assisted protonation 

may allow for an intramolecular protonation of the metal-alkyl bond to generate the product.108,181  

1.2.2: Trends in Successful Late Transition Metal Hydroamination Catalysts 

 Trends have begun to emerge in the catalysts that efficiently hydroaminate alkenes since 

the seminal work of Beller63,182 and Hartwig.157 DFT studies by Togni et al. led us to examine the 

group 9 and 10 metals, which were predicted to be highly effective catalysts for electrophilically 

activating alkenes to allow for external amine addition.179 A series of representative catalysts are 

depicted in Scheme 1.2.2-1 to inform the following discussion. Examining the metals (eg: 

Rh,173,183 Pd,51,157 Ni125) used shows that they all have a positive charge at the metal center. This 

cationic nature likely assists in removing electron density from a bound alkene to weaken the C-

C π-bond. The importance of a highly electrophilic metal center is demonstrated by the cationic 

Pd complex 2, which was developed by Michael et al. and is one of the most active late 

transition metal catalysts.51  

 Additional trends emerge in the ligands used by effective hydroamination catalysts. 

Excluding Au, which favors a monodentate linear geometry, most active ligands for late 

transition metal catalyzed hydroamination are multidentate.2 These tightly bound bidentate or 

tridentate ligands likely assist in: (i) stabilizing the positively charged metal center, (ii) 
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preventing inhibition, and (iii) suppressing undesired side reactions. The majority of active 

catalysts using group 9 and 10 metals are square planar, and have only a single open 

coordination site. Undesired β-hydride elimination processes will be prevented by maintaining 

only a single open coordination site.173 Tridentate ligand scaffolds (ie: pincer ligands) are 

particularly useful in fulfilling this role and appear in many successful catalysts.51,64,173 As 

discussed above, a cationic metal center is usually required for effective catalysis; this 

necessitates neutral L-type ligands. 
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Scheme 1.2.2-1: Representative complexes used to inform catalyst design. 

1.2.3: Design Goals for a Hydroamination Catalysts 

 The design of a catalyst was approached using the above observations and the 

mechanistic rationale discussed for electrophilic alkene activation. Current limitations in 

intermolecular processes and the amine scope in hydroamination could be overcome by 

improving upon the reactivity of known complexes. Two catalysts in particular proved 

inspirational, both for their desirable properties and notable limitations (Scheme 1.2.3-1). The 

first of these is the dicationic Pd complex 2 developed by Michael et. al.51 At the time of its 

publication, this was the most active late transition metal catalyst and could efficiently catalyze 

intramolecular hydroamination at room temperature. Such reactivity is comparable to rare-earth 
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and alkaline catalysts. However, catalyst 2 also suffered from inhibition in the presence of any 

Lewis base; even an ethereal solvent such as diethyl ether or tetrahydrofuran completely 

suppressed reactivity.181 Additionally, the reaction is restricted to intramolecular hydroamination 

with electron poor amides, which substantially reduces the generality of the transformation. By 

designing a similar complex with slightly reduced reactivity, we hoped to create a catalyst that 

maintained the activity of 2, while ameliorating catalyst inhibition. This could provide a catalyst 

capable of intermolecular hydroamination with more electron rich amines.  
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Scheme 1.2.3-1: Intramolecular hydroamination reactions used as direct inspiration for designing 

new catalysts. 

 The second inspirational catalyst was the Xantphos ligated Rh complex 1 introduced by 

Julian and Hartwig for the formation of pyrrolidine and piperidine rings by intramolecular 

hydroamination.173 Catalyst 1 serves as a counterpoint to the dicationic Pd complex discussed 

above, as it is notable for its general reaction scope. Intramolecular hydroamination with 1 has a 

broad amine scope including electron poor aryl amines, electron rich alkylamines, and primary 

amines. In addition, various ring sizes and polar functional groups are tolerated. The Rh(I) 

complex appears resistant to catalyst inhibition by strongly Lewis basic nucleophiles, yet 

maintains the electrophilic character necessary to efficiently activate simple alkenes. Despite the 

success of 1 for intramolecular reactions, intermolecular hydroamination were not reported and 

the catalyst rapidly decomposed at elevated temperatures due to fragmentation of the weak P-N 
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bonds. Development of a more stable complex could allow for higher reaction temperatures and 

intermolecular reactivity.  

Taking these complexes as a starting point, we identified the properties expected to be 

beneficial to an alkene hydroamination catalyst. We reasoned that a catalyst derived from a 

group 9 or 10 metal would provide a flexible starting point and would need to be mono- or 

dicationic to be sufficiently electrophilic to promote alkene activation.184 The limitations of 

catalyst 2 due to substrate inhibition encouraged the use of a highly donating set of ligands that 

could stabilize a cationic metal center.180 These ligands would need to be L-type donors to 

maintain the cationic character at the metal center. In order to prevent β-hydride elimination, the 

ligand should fill three of the four available coordination sites on a square planar group 9 or 10 

metal. This recommended the use of a tridentate ligand, and would have the additional benefit of 

incorporating a modular structure that could be used to tune the metal center through electronic 

and steric modifications.  

A subtle trend in reports of novel catalysts is that advances in late transition metal 

hydroamination are usually accompanied by the introduction of a new ligand structure. 

Hydroamination has been thoroughly researched and most privileged ligand scaffolds have 

already been explored, including phosphine ligands derived from binapthyl185 or ferocenyl 

backbones,45 pincer ligands,64 and N-heterocyclic carbenes.186 Further screening of these known 

structures is unlikely to unlock new reactivity. Instead, we proposed to develop ligands that were 

unknown in catalysis and would therefore access entirely new chemical space. Carbodicarbenes 

were a class of neutral carbon donor ligands that fit this stipulation perfectly, since they had not 

been successfully applied to any catalytic reaction.187 As exceptionally strong donors, we 
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anticipated that a ligand scaffold derived from these structures could stabilize a cationic metal 

center and prevent substrate inhibition. 

1.2.4: Introduction to Carbodicarbene Ligands 

 Carbodicarbenes (CDCs) are a class of carbone ligands that were first synthesized by 

Bertrand187 after being computationally predicted.188 Carbones are defined by their central 

divalent carbon(0) atom, which is stabilized by a pair of donor-acceptor bonds from adjacent 

atoms (Scheme 1.2.4-1).189 The zero oxidation state is present because the central atom harbors 

two lone pairs of electrons – one each in a σ and π orbital – making these structures both σ and π 

donors. This differs substantially from the more familiar carbene structure, which is defined by a 

central carbon(II) atom harboring a single lone pair of electrons. In contrast to the reactivity of 

carbones, carbenes serve as σ donors and weak π acceptors. A variety of carbones exist with 

various flanking donor groups, including carbodiphosphoranes190–192 and carbodisilanes,193 but, 

CDCs are specifically defined as carbones stabilized by two adjacent carbene donors. These 

ligands are usually N-heterocyclic carbenes (NHCs), which serve as L-type donors to stabilize 

the carbon(0).187,194,195  
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Scheme 1.2.4-1: Defining the reactivity and structure of carbones and carbodicarbenes. 

1.2.4.1: Structure and Reactivity of Carbodicarbenes 

 The unusual electronic structure of CDCs is a result of the strong σ donation of the NHCs 

into the central carbon(0), paired with minimal π back-donation. This results in the localization 
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of both the HOMO and HOMO-1 on the central carbon. Each filled orbital manifest as a lone 

pairs of electrons on the central carbon. The HOMO and HOMO-1 occupy perpendicular σ and π 

orbitals, as shown by the molecular orbital calculations of Tonner and Frenking.189,196 If the 

flanking donors do allow for π back-donation, then the structure changes to an sp-hybridized 

allene with a central carbon(IV) bound through both σ and π bonds. This related structure is 

termed a “bent allene,” and has substantially different properties from CDCs (eqn 1).197–199 
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The unique electronic nature of CDCs results in several unique structural properties, the first of 

which being their strongly bent bonding angles. Both calculated and experimental bonding 

angles for CDCs are far from linear, and range from 124° to 142°.196,200 These angles more 

accurately reflect the sp2 hybridization of the central carbon. A second property derived from the 

existence of the two lone pairs is that CDCs have very high first and second proton affinities.189 

The proton affinity of NHCs and CDCs was compared to illustrate this point and found that 

NHCs range from 40-100 kcal/mol while CDCs show values ranging from 110-200 kcal/mol.201 

These results are further demonstrated by the ready isolation of doubly protonated CDC 

structures.187  

1.2.4.2: Carbodicarbenes as Ligands 

 The existence of two pairs of electrons on the central carbon(0) is at the core of the 

reactivity of CDCs and dictates their activity when binding to metals.189 The HOMO and HOMO-

1 of CDCs exist in orthogonal orbitals, which can bind to a metal center as both σ and π donors 

(Scheme 1.2.4-2). This contrasts with other neutral carbon donor ligands, such as NHCs, which 

behave as σ donors and weak π-acceptors. Additionally, the high electron density of the 
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carbon(0) suggests that CDCs are strong σ donors. This was demonstrated by Bertrand, who 

synthesized CDC-Rh complexes and measured their donor properties through the IR stretching 

frequency of a carbonyl ligand bound opposite the CDC.187 They found a stretching frequency of 

2014 cm-1 for the CDC-Rh complex as compared to a range of 2058-2036 cm-1 for similar NHC-

Rh complexes. The importance of neutral carbon donor ligands has been well documented in 

both metathesis202 and cross-coupling,203 and the strong donation of NHCs has been lauded as 

responsible for their success in catalysis and ability to form strong metal-ligand bonds. This 

suggests that the strong donation of CDC ligands could be useful in the formation of catalytically 

active organometallic complexes. However, at the outset of this research, no examples of CDC 

ligands in catalysis had been reported. Furthermore, the influence of the secondary π donation on 

a bound metal was unknown.  

N
N

N
N

M

σ donation

N
N

N
N

M

π donation

and M

 

Scheme 1.2.4-2: Carbodicarbenes as ligands for late transition metals. 

1.2.4.3: Metal Complexes Ligated by Carbodicarbenes 

The unique structural properties of CDCs have encouraged their use as ligands for a 

variety of metals including Au,194 Ru,204,205 Rh,187,206 Fe,207 and Pd208,209 (Scheme 1.2.4-3). 

However, these examples encompass almost all of the uses of CDCs as ligands in organometallic 

chemistry. CDCs were first applied in the Rh complexes developed by Bertrand in 2008 and 

discussed above. Since then the groups of Ong, Stephan, Fürstner and Meek210,211 (vide infra) 

have been actively contributing to this field. Crystal structures of the formed complexes show 

that CDC ligands bind strongly to many metal species. Bond lengths between a C-C single and 
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double bond are characteristic of the central L!C(0)"L motif and show that the structures are 

better represented as carbon(0) rather than carbon(IV). Several of these complexes have been 

tested for their catalytic activity, however, when this research program was begun, only complex 

7 had been explored for metathesis and was found to be completely inactive.204 Since then the Ru 

complex 11 has been found to be active for the hydrogenation of highly substituted alkenes205 

and Pd complex 10 has shown activity in Suzuki cross-coupling.212 Despite these excellent 

examples, catalysis with CDC bound metal complexes is in its infancy.  
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Scheme 1.2.4-3: Metal complexes that have been synthesized with carbodicarbene ligands. 

1.3: Synthesis of the Carbodicarbene Ligand Scaffold 

 As was outlined in section 1.2.3, we hypothesized that a tridentate ligand scaffold with 

neutral L-type donors would be optimal for the development of an efficient hydroamination 

catalyst. In an effort to explore new chemical space and increase the novelty of our studies, we 

chose to use CDC ligands because of their strong σ donor properties and their unexplored ability 

to act as π donors. Using the CDC ligand developed by Bertrand187 as a starting point, we made 

several modifications to improve activity (Scheme 1.2.5-1). First, we chose to use saturated 

NHCs, rather than the benzene backbone, to simplify the structure while opening positions that 

could be modified to tune the ligand properties. The next modification was to connect the two 
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NHCs to form a cyclic diazepinium core. This serves to planarize the ligand and ensures that the 

filled p orbitals remain aligned and prevent back-donation from the carbon(0). Furthermore, the 

cyclization enforces a bent geometry to the CDC, which should increase the carbon(0) character 

of the central carbon. The final modification was to incorporate a tridentate scaffold as suggested 

by the discussion in Section 1.2.3. We chose to incorporate two phosphine ligands using P-N 

linkages similar to those found in the hydroamination catalyst 1 developed by Hartwig.173 The P-

N bonds promised to be more stable than those found in 1, as each phosphine would be bound to 

only one inductively withdrawing nitrogen atom. Additionally, the substituents on the phosphine 

ligands could be modified to influence both the steric and electronic environment of the bound 

metal. 
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Scheme 1.3-1: Design of a tridentate carbodicarbene ligand scaffold. 

 This ligand scaffold was built from a central tricyclic diazepinium core, which had been 

previously synthesized in order to study its basic properties.213 By modifying this synthesis, we 

were able to reliably generate the desired ligand structure on scale with good conversion 

(Scheme 1.2.5-2). The synthesis began with an acid catalyzed cyclization of triethylenetetramine 

onto malononitrile at 180 °C to yield the diazepinium core in 92% yield. This was followed by 

P-N bond formation via the nucleophilic addition of the diazepinium nitrogen atoms to 

phosphine chloride, a commercially available source of electrophilic phosphine. By changing the 

identity of the phosphine chloride we could efficiently synthesize the phenyl and isopropyl 

diazepinium ligand scaffolds on scale in high yield; PhCDC-H was formed in 90% yield and 
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iPrCDC-H in 71% yield. Both the diazepinium base and the tridentate ligand scaffolds are air and 

water stable and can be efficiently purified by column chromatography. Other phosphine 

chloride reagents were explored in an effort to generate variations to the functional groups on the 

phosphine; scaffolds bearing diethylamino- and tert-butyl substituents were attempted. However, 

scaffolds with more electron withdrawing groups (eg: -NEt2) decomposed readily under ambient 

conditions, while larger substituents on the phosphine weakened the P-N bond – presumably due 

to steric clashes with the backbone – preventing the use of these structures as ligands. C. C. 

Roberts was responsible for exploring the diethylamino-phosphine ligand scaffold. 
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Scheme 1.3-2: Synthesis of achiral diazepinium ligands. 

With PhCDC-H and iPrCDC-H in hand, we needed to demonstrate that these complexes 

behaved as CDCs. This was accomplished by comparing their NMR spectra to known CDCs and 

by demonstrating that the diazepinium structures have a second proton affinity at the central 

carbon(0). The 13C NMR signal of the CDC carbon(0) atoms appear as doublets of triplets in the 

13C{1H} NMR spectrum: 72.98 ppm for PhCDC-H (1JRh = 36.0 Hz, 1JP = 11.7 Hz) and 73.74 ppm 

for iPrCDC-H (1JRh = 36.3 Hz, 1JP = 10.4 Hz). These values are consistent with those previously 

reported194,197 with the upfield shift indicating the electron-rich nature of the divalent carbon(0). 

To gain insight into the electronic nature of the ligand, we treated PhCDC-H with 1 equiv of 

HBF4·OEt2 in CD2Cl2 at 22 °C, which generated the dication PhCDC-H2. The symmetrical 1H 

NMR confirms protonation at the central carbon, in accord with previously described 
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systems.195,198 This demonstrates the presence of significant electron density at the central carbon 

of the diazepinium salt and supports its reactivity as a CDC with two proton affinities at the 

carbon(0). This exploration of the diazepinium scaffold was in large part conducted by C. C. 

Roberts and additional information can be found in her dissertation (Roberts, 2016). 
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Scheme 1.3-3: Protonation studies of the carbodicarbene ligand used to demonstrate that the 

HOMO and HOMO-1 lies on the carbon(0). 

1.4: Syntheses of Carbodicarbene Ligated Metal Complexes 

 With syntheses of PhCDC-H and iPrCDC-H in hand, we began to explore how these 

structures could be metallated. The diazepinium framework is not a CDC, but rather the 

protonated form of a CDC. It is only after deprotonation of the central proton that the CDC 

structure is revealed (Scheme 1.4-1). Initial efforts to directly affect this deprotonation with 

alkoxide, amide, or alkyl bases proved ineffective.197 The central proton was too basic to be 

deprotonated by weak bases, and stronger bases reacted preferentially with the Lewis acidic 

phosphine substituents to break the P-N bond and quench the positive charge of the diazepinium 

backbone. Even bulky bases such as lithium tetramethylpiperidide or potassium 

bis(trimethylsilyl)amide destroyed the ligand structure before forming the free CDC.  

N N

N N
PP

R R
R R
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Scheme 1.4-1: Attempts to form the free CDC ligand. 

The incompatibility of the P-N bond with strongly basic conditions prevents the 

formation of the free CDC directly from the diazepinium salt. An alternative strategy for ligand 

formation is through C-H insertion into the CDC.214 This strategy is commonly used for forming 

pincer complexes of second and third row metals.215–217 We reasoned that coordination to the 

phosphine substituents could direct the metal to insert into the C-H bond of the carbodicarbene, 

generating a metal hydride. The metal hydride would then be deprotonated in a second step to 

generate the desired metal complex. This deprotonation is more facile than the direct strategy 

described above, as the metal hydride is more acidic than an alkyl hydride.  

1.4.1: Synthesis and Characterization of Carbodicarbene-Rh Complexes 

Using this strategy, diazepinium ligands PhCDC-H and iPrCDC-H were reacted with 

chloro(1,5-cyclooctadiene)rhodium(I) dimer {[Rh(cod)Cl]2} to generate the Rh(III)-hydride 

complexes 12 and 13 (Scheme 1.4.1-1). These complexes were deprotonated with an alkoxide 

base to provide the desired CDC-Rh(I) complexes PhCDC-Rh-Cl and iPrCDC-Rh-Cl in high 

yields. The intermediate Rh(III)-hydride complex 12 was not fully characterized, but is stable 

and could be isolated. However, the analogous Rh hydride of the isopropyl phosphine ligand 13 

does not form cleanly. Rh(III) complex 12 is insoluble in THF, but becomes partially soluble 

after deprotonation to form PhCDC-Rh-Cl. Both PhCDC-Rh-Cl and iPrCDC-Rh-Cl are 

transiently stable in acetonitrile (MeCN), but may decompose in dichloromethane (DCM), as the 

electron rich Rh complex appears to insert into the C-Cl bonds of DCM. Additionally, extended 

solvation in acetonitrile can result in ligand substitution of the chloride to form an acetonitrile 

ligated cationic Rh(I) complex. As with the above ligand syntheses, C. C. Roberts discovered 

these complexes and more information can be found in her dissertation (Roberts, 2016). 
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Scheme 1.4.1-1: Synthesis of CDC-Rh(I) complexes through C-H activation of the diazepinium 

ligand. 

In order to better understand the Rh complex and the nature of the CDC ligand, we 

attempted to recrystallize PhCDC-Rh-Cl to determine its structure by X-Ray crystallography. All 

attempts to directly recrystallize PhCDC-Rh-Cl were unsuccessful; the compound oiled out, 

generated unsuitable crystals or, when solvated by acetonitrile, slowly under went ligand 

substitution. Reasoning that a cationic complex might be more amenable to recrystallization, 

acetonitrile ligated Rh complex 14 was synthesized by abstraction of the chloride with a Ag salt 

and trapping of the resulting open coordination site. X-ray quality crystals were formed through 

slow formation of 14 from PhCDC-Rh-Cl via salt metathesis with NaBF4 in acetonitrile. The 

resulting crystal structure is shown in Scheme 1.4.1-2. M. V. Joannou was responsible for 

solving this crystal structure. The crystal structure shows that the CDC ligand remains almost 

planar. The CDC-Rh bond length is 2.043 Å and the bond lengths of the ligand indicate a CDC 

structure with average C3−C1 bond lengths of 1.395 Å. These bond lengths are in-between the 

values expected for a C-C single or double bond, demonstrating that the ligand framework does 

not have the structure of a bent allene.180 The C-N bond lengths support the assignment of a CDC 

structure by being shorter than the C-C bonds (N2−C2 average 1.365 Å), as would be expected 
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for the structure of an NHC. The Rh1− N5 bond length of 2.029 Å indicates that the CDC 

imparts a strong trans influence on the bound acetonitrile. 

The lengthened bond of the ligand trans to the CDC suggested that the ligand scaffold is a 

strong σ donor but did not provide any quantitation for this property. In the interest of 

determining the strength of the donation from PhCDC-H and iPrCDC-H, we sought to synthesize 

the carbonyl ligated Rh complexes PhCDC-Rh-CO and iPrCDC-Rh-CO (Scheme 1.4.1-3). 

Bertrand demonstrated that the donor properties of a CDC ligand could be assayed by measuring 

the stretching frequency of a carbonyl bound trans to the CDC.187 This value correlates to the 

back-donation of the Rh metal to the carbonyl providing a measurement of the relative electron 

density at the Rh center. The synthesis of PhCDC-Rh-CO and iPrCDC-Rh-CO was accomplished 

using the same C-H insertion strategy utilized in the previous organometallic syntheses, but 

employing [Rh(CO)2Cl]2 as the Rh source. The strong interaction between Rh and a carbonyl 

ligand favors formation of the cationic carbonyl complex over the neutral chlorides PhCDC-Rh-

Cl and iPrCDC-Rh-Cl allowing for the synthesis of complex 15 and 16 in high yield.  
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Scheme 1.4.1-2: Crystal structure of a CDC-Rh complex. 

As mentioned above, Bertrand found that a cyclic CDC donor exhibited a stretching 

frequency of 2014 cm-1 for a neutral CDC-Rh(I) complex.187 This provides an estimate for the 

stretching frequency values, but not a direct comparison, as PhCDC-Rh-Cl and iPrCDC-Rh-Cl 

are monocationic Rh(I) complexes and are expected to have substantially different electron 

densities at the Rh center. IR stretching frequency values for complexes 15 and 16 were found to 

be 1986 and 1970 cm-1 respectively. This suggests that iPrCDC is a stronger donor than PhCDC, 

as expected from the inductive withdrawl of electron density from the aryl rings. A literature 

search provided several tridentate cationic Rh(I) complexes that could serve as reasonable 

comparisons to gauge the donor properties of the CDC ligands PhCDC-H and iPrCDC-H.173,218,219 

These complexes are shown in Scheme 1.4.1-3 and show similar values for the IR stretching 

frequency as obtained for the CDC-Rh complexes. This provides evidence that the PhCDC-H and 

iPrCDC-H ligands are strong donors, but are not substantially more donating than other tridentate 
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scaffolds. One particularly notable comparison is to 17, which is the carbonyl-ligated version of 

the Rh catalyst 1 used in intramolecular hydroamination.173 The lower stretching frequency of 15 

and 16 compared to 1 suggests that the CDC-Rh complexes are more electrophilic than those 

used by Hartwig for hydroamination, although differences in the phosphine substituents do not 

allow for direct comparison. 
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Scheme 1.4.1-3: Complexes for determining carbonyl stretching frequency. 

1.4.2: Synthesis and Characterization of Carbodicarbene-Ligated Group 9 Complexes 

The synthesis of Pd and Ni complexes derived from the PhCDC-H and iPrCDC-H ligand 

scaffolds were undertaken in an effort to generate prospective group 9 catalysts. Application of 

the C-H insertion strategy utilized for the PhCDC-Rh-Cl and iPrCDC-Rh-Cl complexes described 

above failed to provide the desired Pd hydride complexes, however M. V. Joannou showed that 

the use of Pd(OAc)2 generated complex PhCDC-Pd-OAc at room temperature (Scheme 1.4.1-1, 

unpublished work). This showed that weak bases (eg: acetate) could be utilized to deprotonate 

the diazepinium framework if bound to the metal. This insertion likely occurs through an assisted 

internal deprotonation where coordination of the metal to the C-H bond allows for C-H 

activation.220 The acetate ligand on complex PhCDC-Pd-OAc could not be reliable abstracted to 
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generate the cationic complex identified as necessary for hydroamination. As such, we chose to 

pursue the synthesis of the chloride-ligated complexes, which could be removed by abstraction 

with Ag to generate a cationic Pd complex and AgCl.  
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Scheme 1.4.2-1: Synthesis of CDC-Pd(II) complexes. 

Heating PdCl2 with the PhCDC-H and iPrCDC-H ligands failed to form the Pd(II)-hydride 

complexes analogous to 12 and 13. Inspired by the success of the internal deprotonation/C-H 

activation with Pd(OAc)2, triethylamine (Et3N) was added in the hope that it would bind to Pd 

and act as an internal base. Heating a solution of the appropriate ligand, PdCl2 and Et3N in THF 

efficiently precipitated the desired complex as a yellow powder (Scheme 1.4.1-1). However, 

attempts to purify this compound away from the triethyl ammonium salt byproducts proved 

difficult. This problem was solved by substituting diisopropylethylamine (DIPEA) for Et3N as 

the ammonium byproducts of DIPEA are partially soluble in THF and could be washed away 

from the desired Pd complexes PhCDC-Pd-Cl and iPrCDC-Pd-Cl. The reverse of this strategy 



	   37	  

can be applied to the purification of complexes that are soluble in THF and was later used in the 

syntheses of chiral variants of the Pd complexes (vide infra).  

Crystals of PhCDC-Pd-Cl suitable for X-ray crystallography were obtained by slow 

recrystallization from layering DCM and hexanes (Scheme 1.4.2-2). Although this crystal 

structure cannot be directly compared to the cationic Rh complex 14, the bond lengths for the 

ligand scaffold are very similar. The most notable differences between the Rh and Pd complexes 

are the bond lengths of the C1-Pd1 (2.207 Å) and the Pd1-Cl1 (2.375 Å) bonds, both of which 

are substantially longer than in the cationic Rh complex. M. V. Joannou was responsible for 

solving the crystal structure shown in Scheme 1.4.2-2.  
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Scheme 1.4.2-2: Crystal structure of the PhCDC-Pd-Cl complex. 

1.5: Intramolecular Hydroamination with Carbodicarbene Ligated Rh Complexes 

Pd and Rh complexes derived from a tridentate carbodicarbene (CDC) ligand scaffold 

were successfully synthesized and characterized. These complexes demonstrated that the PhCDC-

H and iPrCDC-H scaffolds behave as neutral CDC donors after metallation. The next goal was to 

apply these new CDC-metal complexes to catalytic reactions. Prior to this work, no CDC ligated 

metal complex had been used as a catalyst and there was no proof that these complexes would be 
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catalytically active. The metal complexes described in Section 1.4 were applied to intramolecular 

hydroamination of unactivated terminal alkenes to validate the design principles discussed in 

Section 1.2 and explore how CDC donors affected the reactivity of bound metals. Intramolecular 

hydroamination was selected as a starting point because it is a well-studied reaction catalyzed by 

several late-transition metal complexes. Comparing our CDC-ligated metal complexes to known 

catalysts will allows us to gauge the reactivity of CDC-ligated metal complexes and determine 

whether they could expand the synthetic utility of hydroamination.  

1.5.1: General Catalyst and Reaction Considerations 

Our goal was to explore whether PhCDC-Pd-Cl, iPrCDC-Pd-Cl, PhCDC-Rh-Cl and 

iPrCDC-Rh-Cl could serve as hydroamination catalysts (Scheme 1.5.1-1). The inspiration for 

these organometallic compounds originated in the work of Michael51 and Hartwig173 for Pd and 

Rh, respectively. We chose to repeat the intramolecular hydroamination reactions catalyzed by 1 

and 2 with our CDC-metal complexes to provide a point of comparison and gauge reactivity. 

There are significant differences in the expected reactivity of the CDC-Pd and CDC-Rh 

complexes, as they differ in both the identity and oxidation state of the metal (eg: CDC-PdII-Cl 

vs CDC-RhI-Cl). This difference manifests in the expected charges of the active catalysts after 

abstraction of the X-type chloride ligand; the Pd complexes will be dicationic in nature whereas 

the Rh complexes are monocationic. The reported catalysts 1 and 2 share this difference and 

demonstrates how it effects reactivity, as the dicationic Pd catalyst 2 reacts efficiently with 

electron poor amides while the monocationic Rh complex is tolerant of electron rich 

alkylamines. This difference prompted us to test all four CDC-metal complexes for 

intramolecular hydroamination with both an electron poor protected amine and with an electron 

rich primary amine (Scheme 1.5.1-1). 
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Scheme 1.5.1-1: Potential catalysts for intramolecular hydroamination and the test reactions used 

to gauge reactivity. 

The metal complexes shown in Scheme 1.5.1-1 are stabilized by an X-type ligand and do 

not have an open coordination site to bind an alkene. As such, the chloride ligands needed to be 

abstracted in order to form the active catalysts. Ag salts were utilized as activators of the catalyst, 

as they are proficient in removing halides from metal complexes.180 We considered isolating the 

cationic complexes directly, but decided that in situ catalyst activation would serve the same 

purpose and avoid the need for additional inorganic syntheses.  

1.5.2: Intramolecular Hydroamination of Electron Poor Protected Amines 

The similarity in structure between literature catalyst 2 (Scheme 1.2.2-1) and complexes 

PhCDC-Pd-Cl and iPrCDC-Pd-Cl prompted us to begin our study of intramolecular 

hydroamination with the intramolecular pyrrolidine formation introduced by Michael et. al.51 

This reaction requires substantial activation, as the carbamate nucleophile is far less Lewis basic 

than an unprotected amine and the terminal alkene is unactivated by any electron-withdrawing 

group. The geminal-diphenyl substitution of the substrate was used to impart conformational bias 

towards a cyclic ring structure through the Thorpe-Ingold effect.175 Both the CDC-Pd and CDC-

Rh complexes were tested for catalytic activity using the conditions developed by Michael et al., 
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although we only anticipated reactivity with the CDC-Pd complexes.51 To our surprise, no 

reactivity was observed with any of the catalysts at 80 °C (Table 1.5.2-1). At higher temperatures 

thermal deprotection of the tert-butoxycarbonyl (Boc) group occurred, resulting in a background 

reaction and limiting the viable temperature range. 

Entry

Catalyst (5 mol %)
AgBF4 (5 mol%)

DCM, 80 °C, 24 h

NHBoc
Ph

Ph NBoc

Me

Ph Ph

1

2

3

4

Yield (%)

0

0

0

0

Catalyst
PhCDC-Pd-Cl
iPrCDC-Pd-Cl
PhCDC-Rh-Cl
iPrCDC-Rh-Cl  

Table 1.5.2-1: Catalyst activity screening for the intramolecular hydroamination of an electron 

poor amine. 

Since the structure of PhCDC-Pd-Cl strongly resembles 2, the reason for the inactivity of 

the synthesized CDC-Pd complexes was not immediately apparent. Reaction screens were run 

with various Ag salts (eg: AgPF6, AgClO4, AgOTf) and a range of solvents (eg: tetrahydrofuran, 

benzene, toluene, 1,2-dichloroethane) in an effort to discover conditions for catalysis, but no 

conversion to the desired product was observed (unpublished results). Significant isomerization 

of the terminal alkene to the internal position did occur, particularly at higher temperatures. 

Addition of AgBF4 and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF
4) allowed 

for conversion to the desired product, however identical conversion were obtained in the absence 

of the CDC-Pd catalyst. This suggested that a naked Ag cation is capable of intramolecular 

hydroamination, but failed to provide any evidence of reactivity with CDC ligated complexes. 

The repeated failure of CDC-Pd complexes to catalyze a reaction known to occur with 

similar Pd catalysts suggested that the active dicationic Pd complex was not being efficiently 
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formed in situ. The stoichiometric synthesis of a dicationic CDC-Pd complex was undertaken to 

resolve this question. We attempted to isolate the complex generated after abstraction of the 

chloride from PhCDC-Pd-Cl following the conditions developed by Vitagliano et al.221 Ethylene 

was bubbled through the reaction to trap the dicationic Pd complex theoretically formed from the 

reaction. However, analysis by NMR spectroscopy showed that the chloride ligand was never 

abstracted from the complex to form the dicationic Pd species. These conditions were very 

similar to those used in situ, meaning that it is unlikely the desired dicationic complex would 

also have formed during the catalytic screen for intramolecular hydroamination. Several 

conditions were attempted to isolate the dicationic Pd complex including: (i) abstraction of the 

chloride with NaBArF
4 and concurrent ligand substitution with alkene or nitrile ligands; (ii) 

synthesis of the Pd-hydride iPrCDC-Pd-H and abstraction of the hydride with triphenylmethyl 

BArF
4; and (iii) protonation of PhCDC-Pd-OAc with strong acid (Scheme 1.5.2-3, unpublished 

results). None of these attempts reliably produced the desired complex.  
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Scheme 1.5.2-3: Failed strategies for forming the dicationic CDC-Pd complexes. 
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It is not clear why the formation of the dicationic Pd complex is so challenging with the 

diazepinium CDC backbone considering the similarities between the tridentate diazepinium 

ligand scaffold and that used in 2. Based on the IR stretching frequencies discussed above (see 

Scheme 1.4.1-3), it is unlikely that the σ donation from the diazepinium backbone accounts for 

the difficulty of abstracting the chloride ligand. The carbonyl stretching frequency show that 

PhCDC and tridentate pyridine ligand should be similar donors. Therefore both should effectively 

stabilize the dicationic Pd complex. The most substantial difference between a pyridyl and CDC 

donor is the π donor properties of the second lone pair on the CDC. We hypothesize that an 

interaction between this lone pair and the orbitals at the metal center may account for the 

difficulties of ligand substitution found for the Pd complexes. Ligand substitution of a square 

planar d8 metal complex proceeds via an associative mechanism that utilizes an empty metal p 

orbital. This orbital also aligns with the filled p orbital of the CDC HOMO-1. We hypothesize 

that the CDC may fill the empty orbital necessary for associative ligand substitution, resulting in 

a much higher energy barrier. This explanation is purely theoretical and we do not currently have 

the evidence required to fully support this claim. However, the difficulty of generating the 

dicationic complex does explain the lack of reactivity demonstrated by the CDC-Pd complexes 

for intramolecular hydroamination.  

1.5.3: Intramolecular Hydroamination of Electron Rich Amines 

The intramolecular hydroamination of electron rich primary and secondary amines was 

studied in parallel to the Boc protected amines described above. The reactivity of CDC-ligated 

metal complexes was tested using the intramolecular formation of pyrrolidines developed by 

Hartwig (Scheme 1.5.3-1).173 This reaction is similar to that described in Section 1.5.2, but 

employs an electron rich primary amine. The primary amine is substantially more nucleophilic, 
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which allows for addition to less activated π-systems and increases the likelihood that the 

substrate will inhibit the catalyst by outcompeting alkene coordination.173 An efficient catalyst 

must be tolerant of stronger nucleophiles, as exemplified by the broad tolerance of catalyst 1 

(Scheme 1.2.2-1) for polar functional groups. 

An initial screen of PhCDC-Pd-Cl, iPrCDC-Pd-Cl, PhCDC-Rh-Cl and iPrCDC-Rh-Cl 

provided the first example of catalysis with a CDC-ligated metal complex (Table 1.5.3-1). 

Reaction with the tridentate CDC-Rh complexes produced the desired pyrrolidine in modest 32% 

yield with both PhCDC-Rh-Cl and iPrCDC-Rh-Cl. Product formation was accompanied by 

isomerization of the terminal alkene to the internal position. Both PhCDC-Rh-Cl and iPrCDC-Rh-

Cl provided similar conversions to the pyrrolidine 21, but the more electron rich iPrCDC-Rh-Cl 

complex was substantially more selective and efficiently suppressed the alkene isomerization 

side reaction. Initial optimizations were performed with the PhCDC-Rh-Cl complex to observe 

how changes in reaction conditions affected the selectivity of the reaction for hydroamination 

versus alkene isomerization.  

Entry

Catalyst (5 mol %)
AgBF4 (5 mol%)

MeCN, 80 °C, 24 h

NH2

Ph
Ph NH

Me

Ph Ph

1

2

3

4

Yield (%)

0

0

32

32

Catalyst
PhCDC-Pd-Cl
iPrCDC-Pd-Cl
PhCDC-Rh-Cl
iPrCDC-Rh-Cl

21

 

Table 1.5.3-1: Initial catalyst screen for intramolecular hydroamination with electron rich 

amines. 
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1.5.3.1: Optimization of the Reaction Conditions 

Optimization of the reaction began with a solvent screen (Table 1.5.3-2). Only 

acetonitrile and benzene were effective solvents for the reaction with acetonitrile proving 

optimal; the reaction run in acetonitrile yielded 43% of 21, whereas the same reaction in benzene 

provided only 11% yield. Although formation of the pyrrolidine was suppressed in other 

solvents, the alkene isomerization to 22 occurred readily. Entry 6 demonstrates that the reaction 

is only minimally sensitive to protic conditions; a solvent mixture of acetonitrile and water 

provides 21 in 24% yield with 47% alkene isomerization to 22. The presence of oxygen 

completely shuts down any reactivity, likely due to oxidation of the Rh(I) catalyst. Alternative 

Ag sources were screened, but the reaction was minimally affected by the identity of the 

counterion; entry 7 shows very similar reactivity with AgPF6 (32% yield) compared to reaction 

with AgBF4 (24% yield). A control reaction was performed in the absence of Ag to demonstrate 

that abstraction of the chloride is necessary (Entry 8); without the Ag activator no 

hydroamination occurred and isomerization was suppressed.  

Entry
Isomerization 

Yield (%)

PhCDC-Rh-Cl (5 mol%) 
AgX (5 mol%); 

Solvent (0.1 M), 80 °C, 18 h
NH2

Ph
Ph NH

Me

Ph Ph

36
28
4

47
41
47
37
15

1
2
3
4
5
6
7
8

Me
NH2

Ph
Ph

MeCN
C6H6

Dioxane
MeNO2

tBuOH
H2O/MeCN (1:1)
MeCN
MeCN

Amine 
Yield (%)

32
11
0
0
0

24
32
0

Solvent Ratio
1:1.1
1:2.5

-
-
-

1:2.0
1:1.2

-

+

AgBF4

AgBF4

AgBF4

AgBF4

AgBF4

AgBF4

AgPF6

-

Ag Source

21 22

 

Table 1.5.3-2: Solvent screen for the intramolecular hydroamination of a primary amine. 
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The results reported in Table 1.5.3-2 show that isomerization is prevalent under a variety 

of reaction conditions when PhCDC-Rh-Cl is used as a catalyst. This side reaction cannot be 

fully suppressed by modifying the solvent or silver source. However, the initial screen showed 

that the iPrCDC-Rh-Cl complex was substantially more selective. Using this complex, further 

optimizations were performed to obtain high conversion to the desired hydroamination product 

21 (Table 1.5.3-3).  

The effect of temperature on the intramolecular hydroamination reaction was examined, 

and a screen from 60 to 100 °C found that 80 °C was optimal. Temperatures below 80 °C 

(Entries 1-2) substantially decreased conversion to 21, whereas higher temperatures failed to 

increase product formation (Entries 4-5). We hypothesized that the low conversion might be due 

to product inhibition, since the secondary amine in the product is more basic than the primary 

amine in the starting material. The addition of ammonium tetrafluoroborate (NH4BF4) as a weak 

acid was explored to see if an acid additive could protonate a portion of the product and prevent 

inhibition. We were pleased to discover that addition of a substoichiometric quantity of the weak 

acid improved catalyst turnover, with 0.2 equivalents of NH4BF4 proving optimal and providing 

21 in 56% yield (Entries 6-9). The effect of the ammonium counterion was explored (Entry 10) 

and demonstrated that it has a minimal effect on the reaction (55% yield). Extension of the 

reaction time from 18 h to 48 h provided the pyrrolidine 21 in a synthetically useful yield of 

81%. The success of the ammonium additive does not necessarily prove our hypothesis that 

product inhibition is responsible for the modest reactivity obtained without an acid additive. 

Later experiments with Lewis acids as activators of the CDC ligand (see Chapter 2) have 

suggested that there could be a positive interaction between the ammonium and CDC lone pair of 

electrons that is responsible for the improved reactivity.  
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Entry
Isomerization 

Yield (%)

iPrCDC-Rh-Cl (5 mol%) 
AgBF4 (5 mol%), Additive (equiv)

MeCN (0.1 M), Temp (°C), Time (h)
NH2

Ph
Ph NH

Me

Ph Ph

2

2

3

2

3

4

2

4

3

4

4

1

2

3

4

5

6

7

8

9

10

11

Me
NH2

Ph
Ph

60

70

80

90

100

80

80

80

80

80

80

Amine 
Yield (%)

12

11

32

30

27

52

56

48

32

55

81

Temp 
(°C) Ratio

6:1

6:1

11:1

15:1

9:1

13:1

28:1

12:1

11:1

14:1

20:1

+

-

-

-

-

-

NH4BF4; 0.1

NH4BF4; 0.2

NH4BF4; 0.5

NH4BF4; 1.0

NH4PF6; 0.2

NH4BF4; 0.2

Additive; equiv
18

18

18

18

18

18

18

18

18

18

48

Time (h)

21 22

 

Table 1.5.3-3: Survey of conditions for optimizing intramolecular hydroamination with CDC-

Rh(I) catalysts. 

1.5.3.2: Control Reactions 

In order to demonstrate that the reaction was not acid catalyzed a series of control 

reactions were performed. The desired pyrrolidine was formed in 44% yield when 0.5 

equivalents of lutidine was added in place of the acidic additive, which is similar to conversions 

obtained without any additive. If the reaction was acid catalyzed, the addition of basic lutidine 

would have significantly decreased reactivity. Control reactions were also performed, (i) in the 

absence of iPrCDC-Rh-Cl, (ii) in the absence of the silver salt, and (iii) substituting [Rh(cod)Cl]2 

for the CDC-Rh complex. None of these reactions provided the pyrrolidine, demonstrating that 

the CDC-ligated Rh complex is vital for catalysis. 
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1.5.3.3: Scope of the Intramolecular Hydroamination Reaction 

We sought to explore the limits of catalysis with iPrCDC-Rh-Cl to gauge the proficiency 

of our CDC-ligated metal complexes for alkene activation and determine their tolerance of Lewis 

basic functionality. The reaction scope was explored using the optimized conditions developed 

above (Scheme 1.5.3-4). During substrate screening we discovered that chlorobenzene is an 

excellent solvent for many substrates, allowing for high conversions at decreased temperatures. 

For example, 21 can be formed in 71% yield at 60 °C in chlorobenzene, but the same reaction in 

acetonitrile requires a temperature of 80 °C to provide 21 in 81% yield. Slower reactions favored 

competitive alkene isomerization, however, by tuning the solvent, concentration, and 

temperature, we could limit this side reaction for more challenging substrates. In the case of 

compound 24, we found that the PhCDC-Rh-Cl catalyst was optimal, which shows the 

complementary reactivity between the two CDC-Rh complexes.  

Five substrates were tested to probe reactivity and are shown in Table 1.5.3-4. Changing 

the solvent to chlorobenzene allowed for the isolation of 21 in 71% yield at a lower temperature 

of 60 °C. Reaction with a secondary benzylamine (as opposed to a primary amine) improved 

reactivity substantially and 23 could be readily formed in 98% yield at 60 °C. The reaction 

efficiently catalyzes the formation of 6-membered rings as piperidine 24 is produced in 69% 

yield. Higher yields were obtained in this reaction by using acetonitrile as solvent because it 

suppressed competitive alkene isomerization, but required elevated higher temperatures. This 

tradeoff in reactivity versus selectivity is common across multiple substrates as reactions run in 

chlorobenzene generally provide higher activity whereas reactions run in acetonitrile provide 

greater selectivity (see Chapter 2).  
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25 was synthesized in 72% yield and demonstrates that geminal substitution on the 

substrate is not necessary for ring closure. Alkene isomerization is more competitive without the 

benefits of the Thorpe-Ingold effect, but can be minimized by using acetonitrile as solvent or 

reducing the reaction temperature. Unexpectedly, an arylamine nucleophile efficiently reacted to 

form 26 in 65% yield at significantly reduced temperature (40 °C). The fact that a less basic 

arylamine nucleophile could be added across an alkene at lower temperatures than more basic 

alkylamines suggested that C-N bond formation was not limiting reaction turnover. Instead, the 

higher reaction temperatures are probably required to overcome catalyst inhibition or promote 

proton transfer. We found this highly encouraging as it implied that the CDC-Rh catalyst was 

efficiently activating the alkene and might be able to catalyze the addition of even weaker Lewis 

bases.  

23
98% Yield

iPrCDCRh-Cl
PhCl [0.5 M], 60 °C, 48 h

26
65% Yield

iPrCDCRh-Cl
PhCl [1.0 M], 40 °C, 48 h

25
72% Yield

iPrCDCRh-Cl
MeCN [1.0 M], 80 °C, 48 h

24
69% Yield

PhCDCRh-Cl
MeCN [2.0 M], 80 °C, 48 h

21
71% Yield

iPrCDCRh-Cl, NH4BF4
PhCl [0.5 M], 60 °C, 48 h

NBn

Me

Ph

Ph
NH

Me

Ph

Ph

NBn

Me

NPh

Me

NBn

Me

Ph

Ph

Catalyst (5 mol %), AgBF4 (5 mol%);
Additive (0.2 equiv) 

Solvent, Temperature, Time

H
N

R2R2

n G
NG

Me

R2

R2

n

 

Scheme 1.5.3-4: Substrate scope for intramolecular hydroamination catalyzed by CDC-Rh-Cl. 

In order to show the limitations of the reaction, a second table of substrates is provided 

that catalogs the substrates that proved inimical to reactivity (Table 1.5.3-5). These compounds 

show two general limitations to the substrate scope: (i) any substitution on the terminal alkene 
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prevents reactivity; and (ii) carbamates and sulfonamides are not effective nucleophiles. The 

attempted formation of 27 and 28 demonstrate the first limitation, as substitution of the alkene at 

the terminal or internal position is not tolerated. This limitation is likely the result of alkene 

substitution disfavoring coordination to the Rh catalyst, and subsequently preventing alkene 

activation. The limitations to the amine scope can be linked to the decreased nucleophilicity of 

carbamates and sulfonamides compared to alkyl- and arylamines. Attempted hydroamination 

with sulfonamide and carbamate nucleophiles was unsuccessful as both 29 and 30 failed to 

cyclize. The lack of conversion with these substrates shows the limit to amine nucleophilicity.  

29
0% Yield

30
0% Yield

28
0% Yield

NBoc

Me

Ph

Ph
NTs

Me

Ph

Ph
NBn

Me

Ph

Ph

Catalyst (5 mol %), AgBF4 (5 mol%);
Additive (0.2 equiv) 

Solvent, Temperature, Time

H
N

R2R2
G

NG
R2

R2

R1

R1

27
0% Yield

NBn
Ph

Ph

Me
Me

 

Scheme 1.5.3-5: Failed intramolecular hydroamination substrates. 

Overall, the scope of intramolecular hydroamination with CDC-Rh complexes was very 

encouraging and closely mirrored the catalytic activity of 1 (Scheme 1.2.2-1), which is one of the 

most general late transition metal catalysts for intramolecular hydroamination (see Section 

1.5.1).173 iPrCDC-Rh-Cl catalyzed the addition of highly electron rich secondary and primary 

amines – which inhibit many electrophilic metal complexes used for alkene activation – while 

being equally effective with comparatively electron poor arylamines. This suggested that 

tridentate CDC-Rh complexes could tolerate an unusually broad range of nucleophiles. 

Furthermore, the catalysts were sufficiently electrophilic to allow for formation of both five and 

six membered heterocycles without the assistance of the Thorpe-Ingold effect.175 Intramolecular 
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hydroamination proved to be a useful metric for gauging the reactivity of PhCDC-Rh-Cl and 

iPrCDC-Rh-Cl, but was not sufficiently unique to warrant immediate publication.  

1.5.4: Summary and Outlook 

This unpublished work is, to the best of our knowledge, the first example of CDCs in 

catalysis. The reactions described above provided proof of concept that the designed ligand 

scaffolds could accomplish hydroamination. Furthermore, the brief substrate scope proved to be 

invaluable for gauging what types of substrates could react using PhCDC-Rh-Cl and iPrCDC-Rh-

Cl as catalysts. The CDC-Rh species favor electron rich primary and secondary alkylamine 

nucleophiles, but were also exceptionally tolerant of less nucleophilic arylamines. This broad 

substrate scope was our first clue that tridentate CDC-ligated Rh complexes might have special 

properties for hydroamination. Our goal was to develop catalytic methods that would have direct 

applications in the synthesis of natural products and bioactive molecules and, although this 

reaction is the first example of catalysis with CDC-ligated metal complexes, there are already a 

number of catalysts for intramolecular hydroamination. We chose to pursue more challenging 

intermolecular transformations to demonstrate that these complexes have unique properties that 

can overcome unsolved challenges in catalysis. 

1.6: Intermolecular Hydroamination with Carbodicarbene-Ligated Rh Complexes 

 The results from our studies in intramolecular hydroamination were highly encouraging 

and hinted that carbodicarbene ligands could be used to access a broad scope of Rh catalyzed 

hydroamination substrates. However, our studies on the unique donor properties of these ligands 

would only be of interest to the synthetic community if we were able to apply CDCs to solving 

outstanding challenges in catalysis. Intermolecular hydroamination is substantially more 
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challenging than intramolecular hydroamination and comparatively few examples are known 

(see section 1.1.4). We chose to focus on addressing this gap in the state-of-the-art as a platform 

for introducing CDC catalysts to the literature. Intermolecular reactions must overcome a higher 

entropic barrier than intramolecular processes, and generally require more activating catalysts. 

Additionally, substrate inhibition is more problematic since the spatial assistance of having the 

alkene tethered to the amine can no longer assist in ligand substitution.173 We began our studies 

by screening a variety of amine and alkene analogs in order to determine if the CDC-Rh catalysts 

were capable of intermolecular hydroamination. The work discussed herein was published in 

2014 and marks the first reported use of CDCs in catalysis.210 

1.6.1 Screening for Intermolecular Hydroamination 

 A series of intermolecular test reactions were selected based on the reactivity observed 

for intramolecular hydroamination with PhCDC-Rh-Cl and iPrCDC-Rh-Cl. N-

methylbenzylamine was selected as a test substrate for intermolecular hydroamination because 

we naively hypothesized that a stronger Lewis base would require less alkene activation. We did 

not anticipate catalyst inhibition being an issue since our intramolecular studies proved that 

nucleophilic alkylamines do not irreversibly inhibit the iPrCDC-Rh-Cl catalyst. N-

methylbenzylamine was paired with several alkene-derived π-electrophiles to explore alkene 

electrophiles with varied reactivity. Dodecene, styrene, allylbenzene, and phenylbutadiene were 

tested and we were pleased to discover that the reaction between N-methylbenzylamine and 

phenylbutadiene proceeded at 80 °C to provide 31 in 34% yield (Scheme 1.5.1-1). This yield 

nearly doubled to 61% when the catalyst was switched from iPrCDC-Rh-Cl to the more active 

PhCDC-Rh-Cl complex.  
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Catalyst (5 mol %)
AgBF4 (5 mol %)

C6H5Cl, 80 °C, 24 h

Ph
Ph Me

N

(1 equiv)(1 equiv)

+ N
H

MeBn
Bn Me

Entry

1

2

Yield (%)

34

61

Catalyst
iPrCDC-Rh-Cl
PhCDC-Rh-Cl  

Scheme 1.6.1-1: Discovery of intermolecular hydroamination with CDC-Rh catalysts. 

 Identical conditions failed to hydroaminate the other alkenes that were explored. This is 

indicative of the increased reactivity of dienes compared to unactivated alkenes or styrenes. 

Dienes are not activated alkenes, which have a heteroatom in conjugation with the π-system (eg: 

α,β-unsaturated ketones), but the second π-bond does provide a slight dipole moment that can 

help with reactivity. Additions to dienes have the added complication of variable regioselectivity 

(Scheme 1.6.1-2). Hydroamination with dienes can result in the Markovnikov or anti-

Markovnikov products by adding to form the more stable benzylic cation or less stable terminal 

cation. For a mechanism that proceeds via electrophilic alkene activation, the formation of a C-N 

bond at the α or γ position of the alkene yields the Markovnikov products. The reaction is further 

complicated by alkene isomerization prior to the protonation step, which can result in the 1,2- or 

1,4-addition products. The hydroamination reactions discussed here favor the formation of the γ-

addition products with good selectivity. This is likely due to a combination of Markovnikov 

selectivity and the steric bias of the substrate favoring nucleophile approach further away from 

the large aryl ring. 
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Ph
α-addition

Ph
Markovnikov

favored

Markovnikov vs anti-Markovnikov Products:

α

β

γ

δγ-addition

δ-addition

β-addition

Ph
PhNH2 PhNH2

PhNH2

PhNH2

NHPh
H

Ph1,2-addition

1,4-addition

NHPh
H

Ph

NHPh

H

Ph

1,2-addition 1,4-addition

Ph
NHPh

H
NHPh

H

Ph
NHPh

H

Me Ph Me

Ph
anti-Markovnikov

disfavored

Ph-or-

Possible Products from Diene Hydroamination:

Benzyllic allyl cation is a more 
stable intermediate and therefore 
represent the Markovnikov 
products in diene hydroamination

Favored Product

 

Scheme 1.6.1-2: Describing regioselectivity in the hydroamination of a diene. 

 General catalytic procedures for the synthesis of functionalized, unsaturated N-containing 

molecules by the direct addition of amines to C−C π-bonds offer desirable, atom-economical 

transformations for chemical synthesis.2,3,24,27 The catalytic intermolecular hydroamination of 

phenylbutadiene with alkylamines proves that CDC-Rh catalysts can accomplish this goal by 

forming valuable allylic amine products. Transition-metal-catalyzed intermolecular addition of 

amines to dienes to selectively afford allylic amines has been studied;47,50,123,222–224 however, poor 

control of site selectivity and the lack of a general catalytic system capable of both aryl and 

alkylamine additions limit diene hydroamination.114,159,225–227 Catalytic protocols have focused on 

the use of aryl and alkylamines in order to obtain high site selectivity. In the interest of filling the 
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gap in available methods for diene hydroamination and introducing the first example of catalysis 

with CDC ligands, we chose to extensively explore this transformation.210 

1.6.2: Optimization of the Intermolecular Hydroamination of 1,3-Dienes 

 We began our study of diene hydroamination by optimizing the addition of aniline to 1,3-

phenylbutadiene (Table 1.6.2-1). This nucleophile was selected because its decreased Lewis 

basicity allows for generally lower reaction temperatures. Since alkene isomerization was not a 

concern with phenylbutadiene, chlorobenzene was used as the solvent (as opposed to acetonitrile, 

see Section 1.5.3) and both PhCDC-Rh-Cl and iPrCDC-Rh-Cl were tested. All of the reported 

results are an average of two reactions. Abstraction of the chloride was necessary for catalysis 

(Entries 1 and 2) both to generate a more electrophilic Rh center and to open a coordination site 

for alkene binding. We were pleased to discover that both PhCDC-Rh-Cl and iPrCDC-Rh-Cl 

efficiently catalyzed the transformation providing 66% and 65% yields respectively (Entries 3 

and 4). Further screening was conducted with PhCDC-Rh-Cl, although the yields were so similar 

that later substrate screens were run with both complexes to ensure the optimal catalyst was used. 

A screen of silver activators with various counterions showed no obvious trend between the 

degree of counterion dissociation and conversion to product; AgBF4 provided the products in the 

highest yield, although AgPF6 was similarly effective, providing 31 in 59% yield. We were 

pleased to discover that a reduction in catalyst loading from 5% to 1% produced the allylic amine 

in only slightly diminished yields; 1 mol% PhCDC-Rh-Cl yielded 59% of 31 compared to 66% 

with 5 mol% catalyst. This screen left us with optimal conditions that could be used as a starting 

point for exploring intermolecular hydroamination with various substrates. As will be discussed 

below, specific substrates often required modifications to the reaction conditions, but reaction 
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with 5 mol% PhCDC-Rh-Cl, with 5 mol% AgBF4 in chlorobenzene at 80 °C is a reliable starting 

point for most reactions. 

Catalyst (X mol %)
Additive (X mol %)

C6H5Cl, 80 °C, 24 h

Conv (%)Entry Complex; mol %

1
2
3
4
5
6
7
8
9
10
11

PhCDC-Rh-Cl; 5
iPrCDC-Rh-Cl; 5
PhCDC-Rh-Cl; 5
iPrCDC-Rh-Cl; 5
PhCDC-Rh-Cl; 5
PhCDC-Rh-Cl; 5
PhCDC-Rh-Cl; 5
PhCDC-Rh-Cl; 1
14; 5
-
-

<2
<2
75
73
70
40
60
63
72
<2
<2

Yield (%)

-
-
66
65
59
31
51
59
67
nd
nd

Ph
Ph Me

NHPh
PhNH2

Additive; mol %

-
-
AgBF4; 5
AgBF4; 5
AgPF6; 5
AgSbF6; 5
AgOTf; 5
AgBF4; 1
-
HBF4.OEt2; 5
AgBF4; 5

31
(1 equiv)(1 equiv)

α

β

γ

δ

α

β

γ

δ

+

 

Table 1.6.2-1: Evaluation of the CDC-Rh complexes in hydroamination and optimization of the 

reaction conditions.  

 The results described above established optimal conditions for the reaction and proved 

that lower catalyst loadings can be tolerated with only a marginal effect on conversion. We 

validated our understanding of the transformation with several control reactions to establish that: 

(i) the active catalyst was a cationic Rh species, (ii) the reaction was not acid catalyzed, and (iii) 

the reaction was not silver catalyzed. Entry 9 shows that reaction with the isolated cationic CDC-

Rh-acetonitrile complex provides 31 in 67% yield, which is nearly identical to the conversion 

found for the in situ generated complex. This strongly suggests that a cationic Rh species is the 

active catalyst, although it should be noted that the catalyst formed in situ is more effective at 

temperatures lower than 80 °C. We attribute the reactivity difference at lower temperatures to the 

presence of the acetonitrile, which may compete with alkene binding and require higher 

temperatures to dissociate from the metal. Hydrotetrafluoroboric acid etherate (HBF4.OEt2) was 
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added (Entry 10) to demonstrate that the reaction is not acid catalyzed. No conversion to 31 was 

observed and the diene was completely destroyed, presumably due to acid catalyzed 

polymerization. Lastly, the reaction was run without the CDC-Rh catalyst to show that the silver 

additive alone is incapable of catalyzing the intermolecular addition of aniline to dienes; Entry 

11 shows no conversion to 31 in the absence of PhCDC-Rh-Cl. 

1.6.3: Amine Scope of the Intermolecular Hydroamination  

 With optimized conditions identified for the addition of aniline to phenylbutadiene, we 

set out to explore the amine scope of the transformation. C. C. Roberts, a co-author for this work, 

took the lead in screening these substrates and should be consulted regarding the specifics of 

their reactivity (Roberts, 2016). Initial screening with N-benzylmethyl amine (see Scheme 1.6.1-

1) suggested that basic dialkylamines could be viable substrates for this reaction. Similarly, the 

optimizations described above demonstrated that arylamines could be utilized. We opted to 

separate our screening into the amine classes identified by these early observations, (i) electron 

rich alkylamines, and (ii) electron poor arylamines. A series of arylamines and alkylamines were 

screened with varied electronic and steric properties to demonstrate the broad scope of the 

reaction and encourage its use in synthesis. 
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1–5.0 mol % CDC-Rh-Cl
1–5.0 mol % AgBF4

C6H5Cl, Temp, Time

Conv (%)Entry

1
2
3
4
5
6
7
8
9
10

C6H5NH2; 31
p-CF3C6H4NH2; 32
p-MeOC6H4NH2; 33
o-BrC6H4NH2; 34
o-MeC6H4-NH2; 35
morpholine; 36
pyrrolidine; 37
Bn2NH; 38
Bn(Me)NH; 39
n-Pr2NH; 40

88
96
68
86
89
92
80
58
74
14b

Yield (%)

71
91
64
85
80
89
75a

56
72
6

Ph Ph Me

N

N
H

Time (h)

24
24
48
48
48
48
48
48
48
48

31-40

Amine; Product Complex; mol %
PhCDC-Rh-Cl; 1
iPrCDC-Rh-Cl; 2
iPrCDC-Rh-Cl; 3
PhCDC-Rh-Cl; 3
iPrCDC-Rh-Cl; 5
iPrCDC-Rh-Cl; 3
PhCDC-Rh-Cl; 5
iPrCDC-Rh-Cl; 2
iPrCDC-Rh-Cl; 5
iPrCDC-Rh-Cl; 5

Temp (°C)

60
60
60
50
60
80
80
80
80
80

R2R1

R2R1

+

See SI for experimental details; all reactions performed under N2 atm with 2 equiv. diene; up to 
>98% site-selectivity; yields of purified products are an average of two runs. aWith 20 mol % 
NH4BF4 additive; 11% without NH4BF4.  b12% conv at 100 °C.  

Table 1.6.3-1: CDC-Rh-catalyzed hydroamination of phenyl-1,3-butadiene with aryl and 

secondary alkylamines. 

The amine scope of the intermolecular hydroamination is shown in Table 1.6.3-1. These 

results were optimized for temperature, catalyst loading, and reaction time to provide the most 

efficient conversions to the products 31-35. The types of amine substrates are split between the 

first 5 entries, which focus on arylamines, and the second 5 entries, which show reactions with 

dialkylamines. This division shows that the catalyst can efficiently react amines with highly 

variable nucleophilicity. Rh-complexes PhCDC-Rh-Cl and iPrCDC-Rh-Cl catalyze the 

hydroamination of phenyl 1,3-butadiene with various aryl and alkylamines to generate allylic 

amines in >98% γ-selectivity. Dropping the reaction temperature from 80 °C to 60 °C gave 31 in 

71% yield, which was a slight improvement over the 66% yield obtained during optimization 

(Table 1.6.2-1: Entry 3). The findings in entries 2 and 3 of Table 2 illustrate that allylic aryl 

amines with electron-withdrawing (32) and electron-donating (33) groups can be accessed with 

high site-selectivity; the reaction of p-CF3-substituted aniline proves to be slightly more efficient 

providing 91% yield compared to 64% with p-MeO-aniline.  Sterically hindered o-bromoaniline 
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and o-toluidine (Entries 4 and 5) require 3–5 mol % of PhCDC-Rh-Cl and iPrCDC-Rh-Cl to 

generate allylic amines 34 and 35 with complete site-selectivity in 85% and 80% yield, 

respectively.   

The CDC-Rh-Cl complexes also efficiently catalyzed reactions with alkylamines. As 

shown in Entries 6 and 7, cyclic alkylamines morpholine and pyrrolidine are tolerated and react 

to furnish allylic amines 36 (89% yield) and 37 (75% yield); however, pyrrolidine requires the 

use of 20 mol % ammonium tetrafluoroborate (NH4BF4) additive. The inclusion of this additive 

was inspired by our intramolecular hydroamination conditions where it appeared to assist by 

decreasing catalyst inhibition when strongly Lewis basic and unhindered amines were utilized.  

Similarly, secondary alkylamines bearing benzyl (Entries 8 and 9) and n-propyl (Entry 10) 

groups can participate in Rh-catalyzed site-selective hydroamination, albeit with varying 

efficiency. Dialkylamines that do not incorporate branching near the amine proceed efficiently 

and products 38 and 39 are isolated in 56% and 72% yields respectively. However, the reaction 

is less effective with nucleophiles that incorporate branching alpha to the amine; for example, 

diisopropylamine reacts to form compound 40 in only 6% yield. We hypothesize that the reduced 

reactivity of diisopropylamine is due to the more demanding sterics of the nucleophile interfering 

with C-N bond formation. 

We took several general lessons from the substrate scope cataloged in Table 1.6.3-1.  

First, the optimal complex (PhCDC-Rh-Cl or iPrCDC-Rh-Cl) and reaction conditions in each 

case vary depending on the amine structure. Although the PhCDC-Rh-Cl catalyst was generally 

more active for the intramolecular hydroamination reactions studied in Section 1.6.2, no obvious 

trend emerged for the intermolecular transformations. Selection of the given catalyst was almost 

entirely empirical, although there is some correlation between catalysis with the iPrCDC-Rh-Cl 
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complex and greater selectivity for the 1,2-addition products. Second, in general, CDC-Rh-

catalyzed hydroaminations with alkylamines require higher temperatures (80 °C) to proceed 

compared to aryl amines (50–60 °C). This trend was also observed for intramolecular 

hydroamination (see Section 1.5) and we rationalize it as a result of the greater Lewis basicity of 

the alkylamine substrates. This increased basicity could cause tighter binding to the Rh 

complexes and correspondingly greater substrate inhibition, which necessitates higher 

temperatures to allow for ligand substitution by the alkene. Despite these minor differences 

between aryl- and alkylamines, the intermolecular hydroamination shows exceptional tolerance 

for a variety of amine nucleophiles. This is one of the strengths of this transformation, as most 

hydroamination reactions – especially intermolecular variants – use only a narrow range of 

amine nucleophiles. 

1.6.4: Diene Scope of the Intermolecular Hydroamination  

To further evaluate the catalytic properties of the CDC-Rh complexes, we investigated 

the scope of the diene component. We began by exploring how functionalization of the aryl ring 

of phenylbutadiene affected reaction efficiency (Scheme 1.6.4-1). When p-MeO-

phenylbutadiene and p-F-phenylbutadiene were explored as substrates we discovered that the 

electron rich aryl ring allowed for reaction to proceed at significantly decreased temperatures; 

addition of aniline to p-MeO-substituted diene occurs at 35 °C to afford 41 in 85% yield, 

whereas p-F-substituted diene adds efficiently at 60 °C to form 42 in 94% yield.  The substantial 

difference in reactivity between the electron rich aryl ring and the fluorinated aryl ring provides 

insight into the transition state of the reaction. The increased activity of the p-MeO-substituent 

derives from its ability to stabilize a transition state characterized by a buildup of positive charge. 

Since the unsubstituted and p-F-substituted products 31 and 41 respectively have similar 
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electronic properties, it follows that both show similar conversions at 60 °C. The mechanism of 

electrophilic alkene activation is expected to proceed through a positively charged transition 

state, which aligns with the reactivity observed for functionalized aryl dienes. 

Me

NHPh

Me

NHPh

FMeO

35 °C, 48 h
97% conv, 85% yield

60 °C, 48 h
96% conv, 94% yield

4241

5 mol % PhCDC-Rh-Cl 
5.0 mol % AgBF4

C6H5Cl, Temp, Time
Me

HN

H2N
Ph

Ph

+
G G

Me

NHPh

60 °C, 48 h
88% conv, 71% yield

31

See SI for experimental details; all reactions performed under N2; yields of purified products are 
an average of two runs.  

Scheme 1.6.4-1: Reactivity of electronically disparate phenylbutadiene derivatives. 

 The Rh-catalyzed diene hydroamination reaction promoted by a pincer CDC ligand was 

very tolerant of a variety of alkyl diene substrates. As the representative examples in Table 1.6.4-

2 indicate, Rh complexes PhCDC-Rh-Cl and iPrCDC-Rh-Cl promote the hydroamination to 

deliver allylic amine products bearing di- or trisubstituted olefins (up to >98% γ-selectivity for 

most substrates). Under optimal reaction conditions (5 mol % PhCDC-Rh-Cl at 60 °C) 

cyclohexyl butadiene is efficiently converted to 43 in 89% yield (Entry 1). Alkyl substituents 

that lack branching undergo efficient catalytic hydroamination to generate allylic amines as 

mixtures of constitutional isomers; 44 (5 mol % PhCDC-Rh-Cl, 70 °C; Entry 2) is generated in 

70% as an inseparable 3:2 mixture of γ:α addition products. The decrease in regioselectivity is a 

consequence of the reduction in steric bias from a branched alkane to a linear alkane. Without 

functionality on the terminus of the diene that sterically differentiates between the γ and α 

positions, intermolecular hydroamination proceeds with minimal selectivity. A limitation of the 

CDC-Rh catalysts is that site-selectivity is primarily controlled by the substrate rather than the 
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catalyst. As illustrated in Entries 3, 7, and 8, trisubstituted 1,3-dienes undergo site-selective 

(>98%) Rh-catalyzed hydroamination (5 mol % PhCDC-Rh-Cl or iPrCDC-Rh-Cl, 80 °C, 48 h) to 

deliver the corresponding allylic amines in good yield: 45 (97%), 49 (77%), and 50 (69%). The 

Rh-catalyzed protocol is also effective for the generation of cyclic allylic amines as 

demonstrated by the formation 48 (Entry 6) in 96% yield. It should be noted that a number of 

functional groups are compatible under the relatively mild reaction conditions, including: alkenes 

(Entry 3), esters (Entry 4), alcohols (Entry 5), and N-tosyl amines (Entry 8). 

TsN TsN

NHPh

Me

5.0 mol % Catalyst
5.0 mol % AgBF4

C6H5Cl, 60–80 °C, 24–48 h

Entry

1
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Me Me Me Me
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NHPh

43
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R2

R1

R2

44

+

See SI for experimental details; all reactions performed under N2 atm with 2 equiv. diene; up to >98% 
site-selectivity; yields of purified products are an average of two runs. a3:2 mixture of γ:α addition. b4 
equivalents of diene were used.  

Table 1.6.4-2: CDC-Rh-catalyzed hydroamination of aniline with alkyl dienes. 

The four representative examples in Scheme 1.6.4-3 further underline the generality and 

synthetic utility of this protocol. These substrates demonstrate that amine and diene substrates 
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from the previous tables can be reliably paired to yield the expected products. As noted above, 

catalytic hydroamination with aliphatic amines generally requires higher temperatures (70–120 

°C) versus aryl amines. Site-selective formation of aliphatic allylic amines 51 (62%) and 52 

(91%) from dibenzyl amine and morpholine proceeds efficiently in the presence of 5 mol % 

PhCDC-Rh-Cl (70 and 100 °C).  Incorporation of ester functionality is also tolerated, as catalytic 

hydroamination delivers 53 (120 °C, 48 h) and 54 (5 mol % PhCDC-Rh-Cl, 100 °C, 48 h) in 

modest to excellent yields (30% and 91%). These results underscore the general nature of this 

intermolecular reaction and this study catalogs one of the most broadly tolerant intermolecular 

hydroamination reactions known in the literature.210 

See SI for experimental details; all reactions performed under N2 atm with 2 equiv. 
diene; yields of purified products are an average of two runs.

Me

NBn2

MeEtO

N

Me Me

5.0 mol % PhCDC-Rh-Cl
5.0 mol % AgBF4

53
100 °C, 48 h
91% yield

(70 °C, 48 h)
62% yield

51

54

O

O

100 °C, 48 h
91% yield

52
120 °C, 48 h
30% yield

C6H5Cl, Temp, Time

Me

N

O

MeEtO

NBn2

Me Me

O

N
H

Bn Bn+

 

Scheme 1.6.4-3: CDC-Rh-catalyzed hydroamination of varied alkyl amines with alkyl dienes. 

Most of the results discussed in this section were reported in 2014 when we disclosed the 

first use of CDC-ligands in catalysis. However, a number of substrates that provided lower 

conversions or yielded inseparable regioisomers were not reported. The data reported in Table 

1.6.4-4 has not been published and is less likely to be of synthetic merit, however it is useful in 

establishing the synthetic limitations of this method and identifying whether a given substrate is 

likely to react with high conversion and selectivity. Limitations to both the amine scope and 
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diene scope will be discussed, but data will be provided to demonstrate the limitations to the 

diene as it is the more nuanced reaction component. The yields reported are from single reactions 

and are reported as either isolated yields or as NMR yields (see SI for details). 

The amine scope is separated into aryl and alkyl amines, both of which can be varied 

substantially without destroying the regioselectivity of the reaction. After much study, we have 

established that primary aryl amine nucleophiles react more efficiently than secondary aryl 

amines and that large ortho substituents can begin to decrease conversion. Electronic and steric 

modifications beyond that are well tolerated, albeit many require some optimization of 

temperature and catalyst for optimal conversions. Modifying the alkyl amine scope is 

significantly more challenging, as these reactions generally require higher temperatures and face 

competitive catalyst inhibition. Disubstituted alkyl amines react reliably provided that the alkyl 

functional groups are of middling sterics; benzyl and cyclic amines react readily, but branching 

alpha to the amine decreases conversions dramatically. Cyclic alkyl amines are particularly 

reliable reaction partners. Various ring sizes hydroaminate a variety of dienes with little need for 

optimization beyond modifying the reaction temperature. 

The diene scope is more complicated due to the variety of regioselective additions that 

can occur. Labeling the diene carbons from the most substituted terminal position shows how the 

amine addition can occur at the γ, α, or δ position. Addition to the later two positions is 

accompanied by alkene isomerization to provide the products shown in Table 1.6.4-4. Although 

other addition products could be imagined, no evidence of their formation has ever been found in 

these transformations (see Scheme 1.6.1-2). The evidence garnered from these hydroamination 

reactions suggests that the regioselectivity of the transformation is primarily substrate controlled; 

switching from the more active PhCDC-Rh-Cl catalyst to iPrCDC-Rh-Cl will generally increase 
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the selectivity for the γ-addition, but can be overridden by minor steric changes to the substrate. 

The γ-product is the major product when singly substituted terminal dienes are used as reaction 

partners (see Tables 1.6.4-2 and 1.6.4-3). However, internal dienes show substantially decreased 

reactivity; 55 and 56 demonstrate that a simple aryl and alkyl internal dienes react to yield 6% 

and <2% respectively. We hypothesize that this decrease in reactivity is caused by the difficulty 

of binding an internal diene to the Rh complex. Steric clashes between an internal diene and the 

CDC ligand will decrease the binding affinity of Rh to the alkene, allowing for the amine 

nucleophile to outcompete the alkene for the open coordination site.  

5.0 mol % Catalyst
5.0 mol % AgBF4

C6H5Cl, Temp, Time
G G Me

N

N
H

R1

R2

R1

R2
+

See SI for experimental details; all reactions performed under N2 atm.
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Scheme 1.6.4-4: Unselective or unreactive substrates tested during the study of the 

intermolecular hydroamination catalyzed by CDC-Rh complexes. 

The CDC-Rh catalysts are more tolerant of substitution at the α, β, and γ positions of the 

diene, but decreased conversions are common and regioselectivity varies dramatically. 

Hydroaminated products 57 and 58 demonstrate how the regioselectivity of the reaction shifts 

from favoring the γ-addition to preferring the α-addition as the substitution pattern of the diene 

progressively increases the steric congestion at the γ-carbon relative to the α-carbon. Reaction 

with myrcene, which is substituted at the β position, yields 57 in 82% yield as a 1:1 mixture of 

the γ:α regioisomers, whereas substitution at the γ position forms 58 in 34% yield with exclusive 

addition to the α-carbon. The regioselectivity of these hydroamination reactions can also be 

eroded by using: (i) electronically varied aryl amines (eg: 59, 60% yield, 1:1 γ:α regioisomers); 

(ii) dienes prone to isomerization (eg: 60, 50% yield, 0:0:1 γ:α:δ regioisomers); (iii)  substrates 

with minimal steric bias (eg: 61, 54% yield, 3:2 γ:α regioisomers) and (iv) highly reactive dienes 

(eg: 62, 71% yield, 2:1:1 γ:α:δ regioisomers). It is particularly notable that the nucleophilicity of 

the amine also appears to have some impact on regioselectivity, with dialkyl amines preferring 

the linear substitution pattern (δ-addition), while aryl amines tend to form the branched α-

addition products. This exemplified by 59 and 63, which show comparable yields but opposite 

regioisomers; 63 is formed in 60% yield as a 1:0:1 ratio of the γ:α:δ isomers, while 59 

(described above) reacts to give a 1:1 mixture of the γ:α products. 

The inclusion of these less selective substrates provides a more nuanced understanding of 

the intermolecular hydroamination catalyzed by PhCDC-Rh-Cl and iPrCDC-Rh-Cl. By carefully 

selecting the substitution pattern of the diene, three different regioisomers can be generated. 

Although it would be preferable to be able to control this regioselectivity through judicious 
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catalyst choice rather than by varying the substrate, we believe that the reaction generates 

valuable products that are challenging to efficiently synthesize via other known methods. 

1.6.5: Summary and Outlook 

In conclusion, we have developed a tridentate carbodicarbene ligand scaffold that enables 

efficient Rh-catalyzed site-selective intermolecular hydroamination of 1,3-dienes compatible 

with both alkyl and aryl amines.  The reactions described, represent the first published example 

of a carbodicarbene transition-metal complex that functions as an effective catalyst.210 This work 

efficiently forms C-N bonds, which are ubiquitous in natural products, from readily available 

diene and amine starting materials. The allylic amine products incorporate an alkene that can 

conceivably be used as a synthetic handle to incorporate additional functionality. This method 

provides an unusually broad substrate scope that tolerates amines of varied nucleophilicity and 

1,3-dienes with alkyl or aryl substituents. Yields are generally modest to excellent and 

regioselectivities are high, despite the array of different possible regioisomers. Reactions with 

more highly substituted dienes do begin to erode regioselectivity. Overall, this work 

demonstrates how CDC ligands can be used to overcome standing challenges in intermolecular 

hydroamination. The untapped potential of this new class of ligands has only just been identified 

and we expect that additional work will elucidate why the structure of the CDC is beneficial for 

alkene activation. 
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CHAPTER 2: CARBODICARBENE-LIGATED RHODIUM COMPLEXES AS ALKENE 
ACTIVATION CATALYSTS FOR HYDROARYLATION2 

2.1: Introduction  

Chapter 1 of this dissertation established that Rh complexes ligated by a tridentate 

carbodicarbene (CDC) ligand scaffold could act as catalysts for both intramolecular and 

intermolecular hydroamination. Chapter 2 will chronicle our efforts to expand the utility of these 

catalysts beyond hydroamination to the general hydrofunctionalization of dienes. This is 

nominally an expansion of the nucleophile scope, but would extend the application of CDC 

ligands to new reaction classes under the greater umbrella of hydrofunctionalization. These 

reactions share a common mode of olefin activation despite forming different bonds.1 The large 

variance in reactivity between nucleophile classes means that few, if any, catalysts are general 

for multiple classes of hydrofunctionalization.2,3 Whereas hydroamination is defined as the 

addition of an N-H bond across a C-C π-system, hydrofunctionalization is more broadly 

categorized as the addition of any X-H bond across a C-C π-system (Scheme 2.1-1).4 Since one 

can readily imagine N-H (eg: amine,5 amide6), O-H (eg: alcohol,7 acid), and C-H (eg: enol,8 

enamine,9 aryl10) nucleophiles, it is apparent how hydrofunctionalization can be applied to form 

many desirable molecules from simple starting materials.  

                                                
2 A portion of this chapter appeared as a communication in the Journal of the American 
Chemical Society. The original citation is as follows: Roberts, C. C.; Matías, D. M.; Goldfogel, 
M. J.; Meek, S. J., J. Am. Chem. Soc. 2015, 137, 6488– 6491. Of the work discussed, C. C. 
Roberts developed and synthesized PhCDC-Rh–styrene, discovered the hydroarylation reaction 
in addition to the Lewis acid additive effects.  C. C. Roberts and D. M. Matías were responsible 
for the reaction development, characterization, optimization, and mechanistic studies.  M. J. 
Goldfogel contributed to reaction development and characterization. 
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Scheme 2.1-1: Defining classes of hydrofunctionalization. 

One of our initial motivations for designing alkene activation catalysts was that their 

mechanism is translatable to a variety of nucleophiles with minimal catalyst modification.11 Our 

initial working hypothesis for the general mechanism of alkene activation is shown in Scheme 

2.1-2 and depicts how a single catalytic intermediate can be applied to multiple nucleophiles. 

The catalyst has minimal influence on the identity of the nucleophile since addition is proposed 

to occur externally for a catalyst with a single coordination site.3,12 Conceivably, a single catalyst 

can allow for a variety of nucleophiles with similar Lewis basicity to add to a common 

electrophilic intermediate.  
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Scheme 2.1-2: Working mechanism for alkene activation with tridentate, square-planar metal 

catalysts. 

The anticipated restrictions on the identity of the nucleophile were that it: (i) does not 

outcompete the π-electrophile for binding to the catalyst, (ii) is sufficiently nucleophilic to add to 

the π-system, and (iii) will result in an intermediate that is sufficiently acidic to allow for proton 

transfer to the Rh-alkyl bond. Our studies in intermolecular hydroamination demonstrated that 

amines with a broad range of nucleophilicity were tolerated and that the catalyst was remarkably 

resilient to inhibition by Lewis basic molecules.13 Both of these trends suggested that CDC-Rh 

catalysts might translate to an array of nucleophiles. We hypothesized that the diene coordinated 

to the cationic CDC-Rh catalyst was the relevant catalytic intermediate for promoting 

nucleophilic addition and began searching for a method that could utilize this proposed active 

species as a general electrophile (Scheme 2.1-3).  
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Scheme 2.1-3: Hypothetical catalytic intermediate responsible for alkene activation; it was later 

discovered that this model is missing a key interaction with the CDC (see Section 2.4). 

2.1.1 Selecting a Hydrofunctionalization Reaction for Study 

We approached the challenge of applying new nucleophiles to the proposed activated 

olefin intermediate by selecting a range of reactions and substrates that could be tested. This 

allowed us to narrow our focus to a reasonable number of substrates that were likely to succeed 

based on the past reactivity of PhCDC-Rh-Cl and iPrCDC-Rh-Cl. We chose to limit our 

screening to diene electrophiles, since initial results with hydroamination showed that these 

alkene derivatives are uniquely effective substrates (see Chapter 1). Furthermore, the 

incorporation of the second alkene provided a valuable synthetic handle for further 

functionalization.14 This choice has since been validated, as expanding the alkene scope beyond 

dienes has been challenging. The second governing principle for selecting a test reaction was that 

we wanted to develop intermolecular, rather than intramolecular, transformations. Intermolecular 

methods are far less common in hydrofunctionalization and are substantially more flexible when 

applied to synthesis.3,15 The ease of combining simple, commercially available substrates is a 

substantial advantage over methods that require the synthesis of a specific intramolecular 

substrate prior to hydrofunctionalization. This axiom was exemplified by our experience with 

hydroamination reactions where intramolecular substrates required multi-step syntheses prior to 
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data acquisition, while intermolecular processes could apply a library of diene electrophiles to 

rapidly screen substrates with various electronic and steric properties.  

The next design decision was to select the class of nucleophiles for study. Chapter 1 

demonstrated that C-N bonds could be efficiently formed using the first generation of CDC-Rh 

complexes, PhCDC-Rh-Cl and iPrCDC-Rh-Cl (Scheme 2.1.1-2). Our goal was to develop a 

catalytic method for forming C-C bonds since C-C bond forming reactions are the benchmark for 

synthetic methods and lie at the heart of total synthesis.1,16 Olefin substrates similar to those we 

have applied to hydroamination have proven to be useful starting materials in many C-C bond 

forming reactions, as exemplified by the venerable Heck17 and Friedel-Crafts reactions.18 These 

examples show that dienes are already utilized as molecular building blocks in fundamental 

synthetic methods. Hydrofunctionalization has the potential to improve upon these strategies as it 

can form C-C bonds with complete atom-economy while generating stereocenters enantio- 

and/or diastereoselectively.1  

A brief analysis of the nucleophiles used in Friedel-Crafts and Heck reactions led us to 

consider arene nucleophiles for our initial hydrofunctionalization screens. The addition of an Ar-

H bond across an alkene is referred to as hydroarylation and is a known subset of 

hydrofunctionalization.4,12,19,20 Arenes and heterocycles are present in many, if not most, natural 

products and of substantial synthetic importance.16 Additionally, arenes are readily available, 

reliable, and well-studied carbon nucleophiles which are often commercially available. The steric 

and electronic properties of arene nucleophiles are easily modifiable via the installation of 

pendant functional groups. Hence, arene nucleophiles can operate as a tuneable platform for 

probing the impact of subtle electronic and/or steric changes on the efficiency of a reaction via 

classical Hammett21 and linear free-energy relationship analyses.22,23 Developing a method for the 
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hydroarylation of dienes with CDC-Rh complexes to intermolecularly from C-C bonds would 

provide a valuable synthetic method and further demonstrate the utility of CDC ligands in 

catalysis. 

N N

N N
P PRh

Cl
Ph Ph
Ph Ph

N N

N N
P PRh

Cl
PhCDC-Rh-Cl iPrCDC-Rh-Cl  

Scheme 2.1.1-2: First generation of active CDC-Rh catalysts. 

2.1.2 Hydroarylation in the Literature 

 Methods for C-C bond formation via the catalytic addition of nucleophiles to olefins have 

been studied.1,2,11 Hydroarylation stands out among these reactions as a highly atom-economical 

process involving the net C−H addition across an unsaturated C−C bond.12,19,20 As such, 

hydroarylation is a potential alternative to Lewis acid catalyzed Friedel-Crafts reactions, which 

are often used in industrial applications.12 Friedel-Crafts reactions are limited by selectivity and 

regiochemistry challenges and there is a significant need for new catalytic methods for 

arylation.18,24 Hydroarylation has been studied with a variety of organic acids and metal π-acids, 

which operate by activating the C=C bond to render it electrophilic and susceptible to addition 

by arene nucleophiles.12 Catalytic methods have been developed with Fe,25 Ru,26–31 Rh,32 Pd,33–36 

Pt,10,37–39 and Au40–44 catalysts, although many intermolecular methods have focused on the 

hydroarylation of ethylene and have neglected more complex alkene substrates.12 Intermolecular 

hydroarylation reactions typically proceed at elevated temperatures (70−135 °C) in the presence 

of a cationic Pt, 38,40,43or Au41,42,44 catalyst with electron-rich alkenes, and are generally inhibited 

by Lewis-basic functionality,44 a problem also common to catalytic hydroamination.3 
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A significant difference between the nucleophile classes used in hydroarylation and 

hydroamination is that the average nucleophilicity of an arene is substantially lower than that of 

an amine. The high Lewis basicity of amines means there are relatively few acid catalyzed 

hydroamination reactions, as the addition of an acid generally results in the formation of an 

ammonium salt rather than protonation of the olefin to generate a carbon electrophile. This is not 

the case in hydroarylation reactions since many olefins have comparable Lewis basicity to 

arenes. As such, acid catalyzed hydroarylation reactions are more prevalent. For example, both 

trifluoroacetic acid45 and Lewis acids46,47 are known to efficiently catalyze the addition of arenes 

to π-electrophiles. As we develop CDC-Rh complexes for the hydroarylation of olefins we will 

need to demonstrate that the metal is responsible for catalysis and that the reaction is not 

catalyzed by adventitious acid. 

2.1.2.1 Trends in Hydroarylation Catalyst Design 

 A number of effective hydroarylation catalysts are depicted in Scheme 2.1.2-1. Many of 

these catalysts, particularly the Pt10,37,39 and Au40,41,43,44 complexes, are cationic as was common 

for the electrophilic hydroamination catalysts discussed in Chapter 1. Such structures are favored 

because the electron paucity of the metal center assists in activating the bound alkene towards 

nucleophilic addition. However, hydroarylation has a substantial subset of catalysts that counter 

this trend and feature neutral complexes with π-acid ligands and octahedral geometries.12 These 

catalyst structures tend to be favored by Ru26,30,31 and Ir48–52 catalysts and are an indication that the 

mode of activation differs from electrophilic alkene activation. Mechanistic studies have shown 

that these complexes hydroarylate through activation of an aryl C-H bond, followed by insertion 

of the resulting hydride or arene across a C-C π-system.4 Catalytic hydroarylation with these 

complexes is therefore a balance between maintaining a sufficiently electron rich metal center 
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for oxidative addition into an aryl-H bond, while ensuring that an alkene bound to the metal 

center is still activated enough to promote migratory insertion.12 This alternative mechanism is 

unrelated to the electrophilic alkene activation strategy proposed for our CDC-Rh complexes 

(see Scheme 1.1.2-3: Cycle A), which should occur through an external addition to a bound 

alkene rather than migratory insertion. We will focus our efforts on the olefin activation 

mechanism previously introduced for hydroamination as the proposed active CDC-Rh complexes 

are monocationic. 
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Scheme 2.1.2-1: Literature examples of cationic and neutral hydroarylation catalysts. 

Among the cationic complexes that react through electrophilic activation, we were 

particularly inspired by the work of Che et. al., who utilized a cationic Au catalyst formed from 

halide abstraction with Ag to efficiently hydroarylate styrenes, dienes, and unactivated alkenes, 

with indole nucleophiles.40 At the time of our studies, this method marked the state-of-the-art for 

intermolecular hydroarylation under mild conditions. This same catalyst system was used to 

promote the addition of a range of simple arenes across styrene under mild conditions with 

temperatures as low as 50 °C.42 Despite these excellent catalytic examples much of the work in 

this field has been intramolecular or been confined to intermolecular reactions with 
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ethylene.12,26,30,51 New intermolecular and functional group tolerant methods for the general 

hydroarylation of π-systems would significantly improve the utility of hydroarylation as a 

synthetic method.  

2.1.2.2 Hydroarylation in Total Synthesis 

Hydroarylation has been used sparingly in total synthesis with only four relevant 

examples employing hydroarylation as a key step.53–56 These synthetic examples mirror the 

restrictions observed for hydroamination in that: (i) only intramolecular cyclizations have been 

employed, and (ii) the π-electrophiles that have been used are all sp-hybridized. To our 

knowledge, intermolecular hydroarylation has not been used in the synthesis of a natural product. 

The reliability of entropically favored intramolecular reactions, paired with a lack of highly 

active hydroarylation catalysts, discourages intermolecular applications. The scope of the π-

systems employed as electrophiles is similarly stifled. Three of the syntheses employ an alkyne 

electrophile, while the fourth employs an allene. As such, none of these examples use 

hydroarylation to generate a stereocenter enantio- or diastereoselectively.  

The key steps shown in Scheme 2.1.2-2 serve to demonstrate how hydroarylation is still 

relatively unexplored in total synthesis. This cannot be due to the identity of the hydroarylation 

products as related arylation reactions (eg: Friedel-Crafts18) are used extensively in total 

synthesis.16 We propose that it is the lack of general and reliable methods for intermolecular 

hydroarylation that is responsible for the scarcity of hydroarylation in synthesis. Since there are 

so few examples of hydroarylation in complex molecular settings, we cannot use total synthesis 

as a reliable metric for the specific challenges facing hydroarylation catalysts, yet the absence of 

examples is an indication of the relative infancy of this field. The success of these few synthetic 

hydroarylations highlights the impact that new catalysts could have in the literature. 
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Scheme 2.1.2-2: Examples of hydroarylation in total synthesis. 

2.2: Discovery of Hydroarylation with Carbodicarbene-Rh Catalysts 

2.2.1 Screening for Catalytic Hydroarylation 

 Having established a framework for screening reactivity with the CDC-Rh complexes 

PhCDC-Rh-Cl and iPrCDC-Rh-Cl, we set out to find a specific test reaction. We chose to attempt 

an intermolecular reaction with diene substrates because intermolecular reactions are 
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underexplored and dienes displayed reactivity with CDC-Rh catalysts.13 The reliable activity of 

1,3-phenylbutadiene, paired with its selectivity for forming the 1,2-addition products with high 

regioselectivity, recommended its use as a trial substrate. The optimized conditions from 

intermolecular hydroamination reactions were appropriated as a starting point in the hope that 

the temperature (80 °C) and solvent (chlorobenzene) would translate between reactions proposed 

to occur through the same electrophilic Rh-alkene complex (Scheme 2.1-3). This left only the 

choice of the arene nucleophile.  

During our studies intermolecular hydroamination of dienes we naively attempted to use 

indoles as amine nucleophiles.57 However, indoles are more nucleophilic at the C-3 position than 

at the nitrogen and intermolecular hydroamination failed to provide the C-N bond.58 Instead, high 

conversion was observed to the hydroarylated product (Scheme 2.2.1-1). At the time this result 

was shelved in favor of pursuing amination. However, a survey of the literature found that a 

similar addition of indole to styrenes and dienes was at the forefront of synthetic methods for 

hydroarylation.40 The mild conditions and wide scope of Che’s Au catalyzed hydroarylation 

encouraged us to explore indoles as nucleophiles for our prospective hydroarylation of dienes. 

As such, a general method for forming allylic indole structures would provide a valuable 

synthetic method since substituted indoles are found in many natural products.59  

Indoles are strongly nucleophilic compared to simple arenes,58 which is likely partially 

responsible for the exceptionally mild conditions achieved by Che.40 According to the parameters 

developed by Mayr et al., the relative nucleophilicity of aniline and indole differs by 7.44 units, 

whereas a simple arene, such as 1,3-xylene, differs by over 16.60 As a point of comparison for 

understanding the range of these nucleophilicity units, an alkene and enolsilane nucleophile 

exhibits the same approximate difference (7 units) in nucleophilicity by the Mayr scale.  
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Scheme 2.2.1-1: Serendipitous observation of hydroarylation with indole. 

Initial screening of indole with 1,3-phenylbutadiene immediately demonstrated that 

hydroarylation could be readily catalyzed by both PhCDC-Rh-Cl and iPrCDC-Rh-Cl in 77% and 

34% yields respectively (Table 2.2.1-1: Entries 1 and 2). PhCDC-Rh-Cl provided the desired 

product with greater selectivity for the 1,2-addition product over the 1,4-addition. No diene was 

returned in either reaction. The lost mass balance was ascribed to diene oligomerization, which 

would result in a large molecular weight oligomer lacking defined NMR signals for a specific 

side product.61  

In an effort to improve upon our initial result, we ran a short optimization screen with 

PhCDC-Rh-Cl to determine how solvent, concentration, reaction temperature, and reaction time 

effected conversion to 1. Decreasing the concentration proved to have little effect on the 

reaction, whereas increasing the concentration produced multiple products non-selectively and 

consumed the diene substrate; hydroarylation at 0.5 M produced 1 in 76% yield (Table 2.2.1-1: 

Entry 3) compared to reaction at 2.0 M which provided only 28% product (Table 2.2.1-1: Entry 

4). The loss of diene to oligomerization, and the observation that increasing the concentration 

harmed conversion, led us to believe that the reaction conditions were excessively forcing. This 

proved true as dropping the temperature to 40 °C allowed us to reduce the reaction time to just 2 

h while still generating 1 in 98% yield. Reducing the reaction temperature suppressed the loss of 

diene to oligomerization and allowed for quantitative conversion to the desired product. This 

result suggests that indole hydroarylation catalyzed by a CDC-Rh complex is actually more 
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facile than hydroamination, possibly because the indole nucleophile is less likely to cause 

substrate inhibition. 

Catalyst (5 mol %)
Activator (5 mol %) 

Solvent, Temp, Time
Ph + Ph Me

δ

γ

β

α

δ

γ

β

α

H
N

NH

Entry Solvent; M

1

2

3

4

5

6

7

8

Catalyst; mol %
PhCDC-Rh-Cl; 5

iPrCDC-Rh-Cl; 5

PhCDC-Rh-Cl; 5

PhCDC-Rh-Cl; 5

PhCDC-Rh-Cl; 1

PhCDC-Rh-Cl; 5

PhCDC-Rh-Cl; 5

-

PhCl; 1.0

PhCl; 1.0

PhCl; 0.5

PhCl; 2.0

PhCl; 1.0

PhCl; 1.0

PhCl; 1.0

PhCl; 1.0

Activator; mol %

AgBF4; 5

AgBF4; 5

AgBF4; 5

AgBF4; 5

AgBF4; 1

AgBF4; 5

-

HBF4

Yield (%)

77

34

76

28

78

98

0

0

Time (h)

18

18

18

18

18

2

18

18

Temp (°C)

80

80

80

80

80

40

80

80

1

 

Table 2.2.1-1: Initial hits for intermolecular hydroarylation with CDC-Rh complexes and 

optimization to obtain an efficient reaction. 

Control reactions were run to establish that the transformation is catalyzed by a cationic 

Rh species and not through the in situ formation of an acid. Generation of the proposed active 

Rh(I)-olefin complex shown in Scheme 2.1-3 requires catalyst initiation of PhCDC-Rh-Cl 

through halide abstraction. As with hydroamination, the halide additive responsible for chloride 

abstraction was necessary for catalysis and starting materials were returned when the AgBF4 salt 

was excluded (Table 2.2.1-1: Entry 7). To demonstrate that the formation of 1 was catalyzed by 

Rh rather than by an in situ generated acid, a reaction was performed with HBF4 added in place 

of PhCDC-Rh-Cl. This reaction completely consumed the added 1,3-phenylbutadiene, but failed 

to yield 1 (Entry 8). We have observed that diene electrophiles are sensitive to acidic conditions 

when heated and often decompose due to oligomerization. As such, it is unlikely that the 

hydroarylation of 1,3-phenylbutadiene is acid catalyzed. 
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2.2.2 Scope of Diene Hydroarylation Catalyzed by a Carbodicarbene-Ligated Rh Complex 

Although we spent relatively little effort optimizing the PhCDC-Rh-Cl catalyzed 

hydroarylation of 1,3-phenylbutadiene, the reaction provided conversions that matched or 

exceeded those found by Che et al. for the related indole hydroarylation of sp2-hybridized π-

electrophiles.40 It is likely that further optimization could have lowered the catalyst loading and 

reaction temperature further, but we opted to explore the diene scope to better understand the 

limits of the reaction. We theorized that the increased reactivity compared to hydroamination 

might be leveraged to promote reactivity with diene substrates that were previously unreactive. 

The reaction conditions described above were utilized with the exception that benzene was used 

in place of chlorobenzene. 

The electronics of the diene were well tolerated and reactions proceeded efficiently with 

electron rich aryl dienes and halogenated aryl dienes; after just 2 h at 40 °C 2 and 3 were formed 

in 89% and 92% conversion, respectively (Scheme 2.2.2-1). We then explored reactions with 

alkyl dienes, as they had been more challenging substrates for hydroamination. We were pleased 

to see that reaction with a linear alkyl diene proceeded with only a minor reduction in conversion 

to provide 4 in 58% conversion as a 2:1 mixture of regioisomers. As observed for intermolecular 

hydroamination, substrates without steric bias to direct addition to the terminal alkene resulted in 

mixtures of the 1,2- and 1,4- addition products. This was even more pronounced in the reaction 

of myrcene and indole, which proceeded at 100 °C to give 5 in 40% conversion with complete 

selectivity for the 1,4-addition product where the indole had added to the δ-carbon of the diene. 

The increased sterics at both the γ- and α-positions resulted in the linear products. This suggests 

that indole nucleophiles may be more sensitive to steric differences than anilines.  
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The formations of compounds 2-5 demonstrate that hydroarylation can occur with similar 

regioselectivity to hydroamination at substantially lower temperatures. The apparent increase in 

reactivity prompted us to explore substituted dienes that were previously unreactive with CDC-

Rh catalysts (Scheme 2.2.2-1: Entries 6-8). Reactions with internal and substituted dienes were a 

consistent limitation to hydroamination, however, hydroarylation with indole proved more 

tolerant of substitution on the diene; hydroarylation of both internal dienes and 1,2-substiuted 

dienes proceeds in modest to high conversion providing 6 and 7 in 51% and 90% conversion. 

Literature examples of regioselective hydrofunctionalization of internal alkenes are rare, as the 

greater sterics of the π-system disfavor metal coordination to the alkene. Reaction with an allene 

substrate was also tolerated and 8 could be formed in 52% conversion at 70 °C. This result 

demonstrates the possibility that an entirely new class of sp-hybridized π-electrophiles could be 

utilized in CDC-Rh(I) catalyzed hydrofunctionalization, but this possibility was not explored 

further.  
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Scheme 2.2.2-1: Diene scope of the intermolecular hydroarylation catalyzed by PhCDC-Rh-Cl. 

 We were particularly excited to observe hydroarylation with internal dienes because these 

substrates were unpublished by Che et al.40 and are rarely tolerated in metal-catalyzed 

hydrofunctionalization reactions.3,12,20 Several reactions with internal dienes were run to establish 

the tolerance of this method for variations to the diene and to the indole nucleophile (Scheme 

2.2.2-2). Extensions of the alkyl chain on an internal diene from methyl to butyl was well 

tolerated and demonstrate that the identity of the internal diene can be varied without impairing 

conversion; 9 was formed in 82% yield as an 11:1 mixture of the γ:α regioisomers. However, the 

regioselectivity of the transformation does decrease as the difference in the size of the 

substituents on either side of the diene decreases (compare >20:1 γ:α for 7 to 11:1 γ:α for 9). 

Modifications of the electronics of the internal diene could be used to recover high 

regioselectivity as the inclusion of the electron donating para-methoxy substituent substantially 

increased regioselectivity while only slightly decreasing conversion; 10 could be formed in 78% 

conversion as 28:1 mixture of the γ:α regioisomers.  

Variations in the indole nucleophile were also tolerated by the PhCDC-Rh-Cl catalyzed 

hydroarylation of internal dienes. N-methyl substitution of indole and the inclusion of an electron 

withdrawing group on the arene backbone did not prevent reactivity, although higher 

temperatures were required; PhCDC-Rh-Cl provided 11 in 88% conversion as a >20:1 mixture of 

γ:α regioisomers and 12 in 39% conversion as a single regioisomer. Reaction with an electron 

poor indole nucleophile reduced conversion, but maintained exceptionally high regioselectivity. 
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Scheme 2.2.2-2: Further explorations of the scope of hydroarylation with internal dienes. 

2.2.3: Problems with Reproducibility in Carbodicarbene Catalyzed Hydroarylation 

We were highly encouraged by the versatile scope of PhCDC-Rh-Cl catalyzed 

hydroarylation, however the reaction was not without difficulties and reproducibility proved to 

be the Achilles’ heel of this method. As is shown by the examples in Scheme 2.2.3-1, reactions 

that were set up under theoretically identical conditions commonly resulted in conversions that 

varied by 20% conversion or more; 9 was formed in 98% conversion and 11:1 dr in one reaction, 

but 78% conversion and 9:1 dr when the reaction was repeated. These inconsistencies were 

especially apparent when dichloromethane (DCM) was used as a solvent; two reactions to form 7 

provided 56% yield or 0% yield respectively without any change in the reaction conditions. The 

irreproducibility of these results meant that we were uncomfortable publishing these 

transformations until a solution was found. 



	   96	  

2nd Data Point:
78 % Conversion

9:1 γ:α 
PhH, 80 °C, 18 h

NH

1st Data Point:
98 % Conversion

11:1 γ:α 
PhH, 80 °C, 18 h

Bu

1st Data Point:
56 % Conversion

6:1 γ:α 
DCM, 60 °C, 18 h

NH

2nd Data Point:
0 % Conversion

-- γ:α 
DCM, 60 °C, 18 h

Me9 7

 

Scheme 2.2.3-1: Irreproducibility in hydroarylation reactions catalyzed by PhCDC-Rh-Cl. 

The source of the irreproducibility appeared to be the efficiency of the catalyst activation. 

The in situ catalyst formation was achieved by combining PhCDC-Rh-Cl and AgBF4 in solution 

and allowing the reaction to stir at room temperature for 1 h prior to substrate addition. 

Unfortunately, neither PhCDC-Rh-Cl or AgBF4 are completely soluble in non-polar solvents (eg: 

benzene) and a highly heterogeneous solution that varied in color from purple to red was 

generated after the 1 h catalyst formation. The reactions became homogenous after the addition 

of the amine when these conditions were used for intermolecular hydroamination, but the 

addition of indole did not have the same homogenizing effect. This difference may be rooted in 

the ligand properties of the nucleophiles since indole cannot bind to Rh or Ag as readily as a 

Lewis basic amine. Furthermore, this implied that the substrate scope might be impeded by the 

solubility of a nucleophile rather than the inherent reactivity. Although the in situ catalyst 

generation was previously embraced as an experimental expedience, the likelihood that it was 

responsible for inconsistent reactivity could not be ignored.  

2.3: Developing a Cationic Carbodicarbene-Rh Complex 

 Our discovery that PhCDC-Rh-Cl can be used as a general catalysts for both the 

hydroamination and hydroarylation of dienes encouraged us to continue studying the activity of 

CDC-Rh(I) complexes in catalysis. However, our initial foray into hydroarylation demonstrated 

that the solubility of our first generation complexes was non-ideal. These complexes are 
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technically pre-catalysts and require activation via halide abstraction prior to catalysis. This 

meant that AgBF4 has to be added to each reaction, which complicated the experimental 

procedure, introduced insoluble AgCl salts to the reaction, and resulted in inconsistent 

conversions and regioselectivities. The heterogeneity of the catalyst formation also limited the 

solvents that could be explored for hydrofunctionalization; if the solvent was not polar enough to 

solubilize AgBF4 then catalyst formation could not occur regardless of how effective the solvent 

might be for the reaction itself.  

 Many of the drawbacks to the first generation of CDC-Rh catalysts relate to the need for 

in situ catalyst activation. Synthesizing a CDC-Rh complex that was bound by a neutral ligand 

rather than an X-type chloride could solve these issues. Unlike the chloride ligand, a weakly 

coordinating L-type donor could be displaced under the reaction conditions by a π-electrophile to 

provide the proposed active Rh-olefin complex (Scheme 2.1-3). This would obviate the need for 

catalyst formation and excise the addition of AgBF4 from the experimental procedure. The 

solubility of the proposed monocationic CDC-Rh(I) complex could be modulated via the anionic 

counterion.62 Non-coordinating anions such as tetrakis[3,5-bis(trifluoromethyl)phenyl]borate63 

(BArF
4) and tetrakis(pentafluoro)phenylborate64 have previously been used to solubilize cationic 

metal complexes and can have significant effects on catalyst reactivity.65,66 We proposed to 

synthesize cationic CDC-ligated Rh complexes that do not require catalyst activation using one 

of these non-coordinating counterions to increase the solubility of the catalyst relative to PhCDC-

Rh-Cl. This was accomplished in large part due to the efforts of C. C. Roberts and additional 

information can be found in her related dissertation (Roberts, 2016).  

 We envisioned that stoichiometrically abstracting the chloride from PhCDC-Rh-Cl and 

filling the open coordination site with an L-type donor would provide the simplest synthesis of a 
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monocationic CDC-Rh(I) complex. We were confident that this strategy could form 

monocationic Rh complexes, as it is identical to the strategy used to make the cationic catalyst in 

situ. However, our interest in a silver free reaction meant that we needed a replacement for the 

AgBF4 used for halide abstraction. Sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate63 

proved to be ideal as: (i) the sodium cation was able to abstract the chloride ligand from PhCDC-

Rh-Cl, and (ii) the weakly coordinating BArF
4 counterion solubalized the resulting monocationic 

Rh complex (Scheme 2.3-1).67 Excess styrene was added to the reaction to fill the vacated 

coordination site with an L-type ligand that could be readily substituted by the diene electrophile 

during the catalytic cycle. The NaCl byproduct from the halide abstraction could be filtered off 

to provide styrene-ligated complex PhCDC-Rh-styrene in >98% yield after extensive 

azeotroping to remove excess styrene. This monocationic CDC-Rh(I) complex was soluble in 

non-polar organic solvents, such as hexanes and diethyl ether, due to the influence of the BArF
4 

counterion.  

N N

NN
P PRh

Cl

Styrene, NaBArF4

THF, 22 °C, 18 h

N N

NN
P PRh

Ph

BArF4

PhCDC-Rh-styrene
>98% Yield

BArF4 = B

F3C

F3C
F3C CF3

CF3

CF3

CF3F3C

- No catalyst formation
- Homogenous reactions
- Soluble in hexanes
- No Ag+ additive  

Scheme 2.3-1: Synthesis of PhCDC-Rh-styrene, the monocationic CDC-Rh complex. 

 To gain insight into the structure of a monocationic CDC-Rh complex, we obtained an X-

ray structure of PhCDC-Rh-styrene (Scheme 2.3-2).67 PhCDC-Rh-styrene has a square-planar 

structure analogous to PhCDC-Rh-Cl with an sp2-hybridized central C(0)-donor bound to the Rh 

center with a C(0)-Rh bond length of 2.07 Å. The styrene ligand exhibits significant metal-
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alkene π-back-donation demonstrated by the elongation of the styrene C=C bond from the 

expected 1.325 Å to 1.395 Å.68 Additionally, the 1H and 13C NMR shifts for the bound styrene 

differ substantially from free styrene. The three protons of the alkene alkene shift from 7.34, 

6.84-6.77, and 5.86-5.79 ppm in the free alkene to 4.90, 3.44 and 2.99 ppm respectively in the 

bound alkene. Similarly, the alkenyl 13C peaks shift from 126.2 and 113.7 to 75.6 and 53.4 in the 

bound alkene.69 The ligand backbone displays bond angles and lengths that are very similar to 

those observed for PhCDC-Rh-Cl, which is indicative of the CDC structure and high electron 

density on the central C(0). Overall, the changes in the ligand backbone from a neutral Rh 

complex to a monocationic Rh complex are nominal. However, the bond lengths and chemical 

shifts of the bound alkene indicate the strong activation of the bound π-system. 
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P PRh

Ph
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PhCDC-Rh-styrene

1.70 A

2.26 A

1.37 A

1.40 A

2.08 A
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°

°

°
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°

°
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X-Ray Structure:

NMR Shifts of the Styrene Alkene Peaks:

 

Scheme 2.3-2: Characterization of the cationic CDC-Rh complex by X-ray crystallography and 

NMR. 



	   100	  

2.4: The Discovery of Lewis Acid Activation of Carbodicarbene-Ligated Rh 

2.4.1: Discovery of Bimetallic Catalyst Activation 

We were excited to explore the catalytic properties of the newly synthesized cationic 

PhCDC-Rh-styrene complex to determine if removing the catalyst pre-activation could improve 

reaction reproducibility. We began our investigations by repeating the hydroarylation of 

phenylbutadiene with indole using the optimized catalytic conditions identified in Section 2.2 

(for the original experimental discussion see the dissertation of Roberts, 2016). However, we 

were surprised to discover that PhCDC-Rh-styrene provided little to no product under identical 

conditions (Scheme 2.4-1). This completely unexpected result was directly at odds with the 

active catalytic species we had envisioned (Scheme 2.1-3). If alkene activation was a simple as 

binding the olefin to a cationic Rh complex, then reactions with PhCDC-Rh-styrene should 

exhibit similar reactivity to the cationic complex generated in situ from PhCDC-Rh-Cl and 

AgBF4. These results implied that our understanding of the active catalyst and the role of the 

CDC ligand were oversimplified. 

PhCDC-Rh-Cl (5 mol %)
AgBF4 (5 mol %)

PhCl, 80 oC, 18 h
Ph +

H
N

>98% conv

PhCDC-Rh-styrene (5 mol %)
AgCl (0 or 5 mol %)

PhCl, 80 oC, 18 h
Ph +

H
N

Ph Me

NH

0% AgCl: 0% conv
5% AgCl: >98% conv

Ph Me

NH
First-Generation Catalyst:

Second-Generation Catalyst:

 

Scheme 2.4-1: Unanticipated difference in reactivity between the neutral and cationic catalysts 

with and without AgCl. 
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 The unexpected difference in reactivity between PhCDC-Rh-styrene and PhCDC-Rh-Cl 

led us to carefully examine the differences between in situ catalyst formation and direct addition 

of a cationic Rh complex. The apparent difference in the contents of the two reactions was the 

presence of the Ag additive. Previously, we observed that the addition of AgBF4 rapidly 

generated the active cationic Rh complex via halide abstraction and formation of AgCl, which 

could be observed as a grey/black solid precipitate forming during catalyst activation. We had 

presumed that this AgCl was an insoluble spectator that remained in the reaction as a byproduct 

and served no further purpose. However, when AgCl was added back into the reaction catalyzed 

by PhCDC-Rh-styrene we observed a complete recovery of catalytic activity. The in situ catalyst 

formation and the cationic complex displayed identical reactivity provided AgCl was present 

(Scheme 2.4-1). 

 Clearly AgCl had an important and unanticipated role in CDC-Rh(I) catalyzed 

hydrofunctionalization. We had continually speculated on the importance of the CDC for 

reactivity, but had little evidence to extrapolate from. The core of a CDC is the divalent 

carbon(0) supported by two L-type donor groups (see Chapter 1: Section 1.2.4).70 Unlike their 

carbon(II) analogs, N-heterocyclic carbenes (NHCs), the reactivity profile of carbon(0) ligands is 

centered around two lone-pairs of electrons that are available for binding to Lewis acids. We 

were unsatisfied with the explanation that the unique activity of CDC-Rh complexes was 

exclusively caused by the σ-strong donation predicted for CDC ligands,71 but did not have a solid 

rationale for how the second lone pair of the C(0) ligand could be assisting in catalysis. Ag is 

often employed as a Lewis acid72 and we hypothesized that it could serve the same purpose in 

our reactions. Previous protonation experiments with strong acids demonstrated that the HOMO 

of the CDC-ligated metal complexes is the second lone pair of the carbon(0). It would follow 
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that a Lewis acid added to the reaction should bind to the same HOMO at the carbon(0). We 

hypothesized that his would significantly alter the donation properties of the CDC ligand and 

could account for the importance of the AgCl additive.  

Homo- and hetero-bimetallic transition-metal complexes of carbon(0) have been reported 

and primarily employ CDC ligand frameworks with coinage metals (Scheme 2.4-2).73–76 We 

hypothesized that binding a Lewis acid to the carbon(0), either temporarily or permanently, 

could electronically and sterically modify the reactivity profile of PhCDC-Rh-styrene.77 The 

unique ability of carbon(0) ligands to simultaneously act as strong σ-donors and bind a Lewis 

acid through the second lone pair could account for the catalytic activity we observed. 

Furthermore, the use of a carbon(0) bimetallic complex as a catalysts, or the application of Lewis 

acids to alter catalyst reactivity by secondary binding to carbon(0) ligand, had not been 

previously reported and would be a worthy addition to organometallic catalysis.78 Demonstrating 

the intermediacy of this interaction would significantly improve our understanding of CDC 

ligands and open a new strategy for tuning catalyst activity without needing to directly modify 

the CDC ligand itself. 
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Au Au
Cl Cl PPh2
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Ph2P

PPh2
Ph2P

Cl Cl

Au

Cl

PPh3P

Au Cu
Ph3P Cl

N
SbF6

Ph2Ph3P

Au Au
Cl Cl

OEt

OEt

 

Scheme 2.4-2: Examples of homo- and hetero-bimetallic transition metal complexes with two 

metal centers bound to a single carbon(0) donor. 

This rationale allowed us to update our hypothesis for the catalytically active Rh-olefin 

complex responsible for general electrophilic alkene activation. Our new hypothesis for the 

active catalyst is shown in Scheme 2.4-3. Initial coordination of the olefin by the cationic CDC-

Rh complex forms the square planar complex 13 previously discussed in Scheme 2.1-3. The lack 
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of reactivity observed for PhCDC-Rh-styrene without the addition of AgCl demonstrates that 13 

it not the active catalyst. This is likely because the Rh-olefin complex is too electron rich to 

sufficiently weaken the π-system and catalyze external nucleophilic addition. Instead, we 

propose that a Lewis acid additive is bound to the available lone pair of the carbon(0) on the 

ligand to form 14. This interaction between the electron rich CDC and electron poor Lewis Acid 

reduces the electron density at carbon(0) and occupies the filled π-orbital of the CDC. Together 

this reduces the donation of the CDC to Rh, resulting in a more electron-deficient Rh center and 

increased positive charge at the bound alkene. Thus, reversible binding of a Lewis acid to a 

CDC-Rh(I) complex will result in decreased electron density at Rh(I), rendering the Rh(I) more 

activating toward π acids. Armed with this new hypothesis, we set out to apply the cationic 

CDC-Rh complex to the hydroarylation of dienes in order to better understand the importance of 

CDC ligands in catalysis. 
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Scheme 2.4-3: Updated model for diene activation catalyzed by a CDC-Rh complex. 

2.4.2: Summary and Outlook 

The application of this bimetallic system to hydroarylation was described in a 

communication published in the Journal of the American Chemical Society in 2015 and more 

information can be found there.67 To briefly summarize, these studies described a key attribute of 

carbon(0) donor ligands and expanded their limited use in catalysis.79–81 We showed the potential 

for tuning ligand donation in CDCs through secondary binding of Lewis acids, which enabled 
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the use of cationic CDC-Rh-based complexes as catalysts for diene hydroarylation. Notably, 

simple lithium salts emerged as effective catalytic Lewis acids that could promote reactions 

under mild conditions for a range of heteroarenes with terminal and internal dienes. The work 

has been vital to our understanding of the mode of activation responsible for catalysis with CDC 

ligands. Furthermore, it began to reveal why the unique structure of CDCs could be vital to 

catalyzing diene hydrofunctionalization. As we suspected in Section 2.4, the strong donor 

properties of CDCs are not solely responsible for catalytic activity with Rh complexes. The 

second lone pair is intimately involved in a secondary activation of the complex through binding 

a Lewis acid additive. The resulting bimetallic catalytic intermediate 14 has become our working 

hypothesis for further studies with CDC-Rh(I) complexes, replacing our initial hypothesis that 13 

was the active catalytic species (Scheme 2.4-3). For details on the substrate scope and 

characterization of the interaction between the Lewis acid and CDC-Rh catalyst, please see our 

published work. 

2.5: Future Directions 

  The work discussed in this section has been instrumental in establishing our 

understanding of how CDC ligands operate in catalysis. The secondary activation by a Lewis 

acid co-catalyst was discovered entirely serendipitously and has completely changed the way we 

approach catalysis with CDC-Rh(I) complexes. The ability to tune the reactivity of the metal 

center without the need for synthesizing a different ligand structure allowed us to publish 

multiple papers with relatively minor modifications to the initially developed PhCDC-Rh-Cl 

complex.13 Introduction of the PhCDC-Rh-styrene complex may seem like a minor change, but it 

has consistently improved conversions in all hydrofunctionalization reactions and allowed us to 

utilize non-polar solvents, such as toluene, that have since proved vital for more challenging 
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reactions. C-C bond formations are a benchmark among catalytic methods and the success of 

hydroarylation for forming C-C bonds challenged us to take a step beyond well-established 

indole nucleophiles. Our focus since these studies has been on discovering new carbon 

nucleophiles that can form more challenging sp3-sp3 hybridized C-C linkages. The following 

work will detail our success in that arena. 
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CHAPTER 3: DIENE HYDROALKYLATION WITH CATIONIC CARBODICARBENE-
RHODIUM CATALYSTS3 

3.1: Introduction 

 Previous work with Rh catalyzed hydroarylation explained a great deal about how 

tridentate carbodicarbene (CDC) ligands assist in the electrophilic activation of dienes.1,2 The 

related CDC complexes PhCDC-Rh-Cl and PhCDC-Rh-styrene (Scheme 3.1-1a) proved 

themselves as reliable catalysts for multiple classes of hydrofunctionalization reactions including 

hydroamination (Chapter 1), and hydroarylation (Chapter 2). The generality of this catalyst for 

multiple nucleophiles implied that these reactions are accessing the same electrophilic 

intermediate (Scheme 3.1-1b). Our hypothesis for this activation mode was refined during the 

study of hydroarylation to include a bimetallic activation with two metals bound to the CDC 

carbon(0) center. This chapter will relate how a greater understanding of the catalytic system 

responsible for alkene activation was applied to expanding the scope of hydrofunctionalizations 

catalyzed by CDC-Rh(I) complexes to include alkyl nucleophiles.  

                                                
3 A portion of this chapter appeared as a communication in Chemical Science. The original 
citation is as follows: Goldfogel, M. J.; Meek, S. J., Chem. Sci., 2016, 7, 4079-4084. 
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Scheme 3.1-1: The structures of our CDC-Rh(I) complexes and the proposed activation mode for 

these catalysts. 

 The proposed mechanistic cycle is presented in Scheme 3.1-2. Past studies were directed 

towards the development of an electron poor catalyst capable of activating C-C π-systems 

towards external nucleophilic addition, yet the assumptions regarding the mechanism were 

challenged during the development of a catalytic method for hydroarylating dienes with indoles 

and related nucleophiles. Reactions failed to proceed without the addition of a Lewis acid 

activator that was able to bind the second lone pair of the CDC carbon(0) to form 2. This binding 

temporarily reduced the electron density of the Rh metal and, subsequently, further activated the 

bound olefin. This activation allowed for the external addition of the nucleophile followed by 

dissociation of the Lewis acid prior to protonation of the Rh-alkyl bond to deliver the product 

and regenerate the cationic CDC-Rh(I) complex. The identity of the diene had a far greater 

impact on hydrofunctionalization than the nucleophile, suggesting addition to the π-system was 
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occurring externally and that the catalyst and Lewis base interacted in a limited fashion during 

the transformation. 
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Scheme 3.1-2: Proposed mechanism for diene hydroarylation catalyzed by a CDC-Rh(I) 

complex and a Lewis acid co-catalyst.  

The transient nature of the secondary activation of the carbon(0) with a Lewis acid 

frustrated any attempts to directly observe it. Evidence pointed to the need for an equilibrium 

between 1 and 2 that favors 1, as an excess of the Lewis acid harmed reactivity. The bimetallic 

activation mode proved to be tuneable through selection of a Lewis acidic metal with greater or 

lesser charge density. Li salts proved to be the most activating and allowed for hydroarylation at 

exceptionally low temperatures to form C-C sp3-sp2 hybridized linkages. The success of this 



	   114	  

strategy prompted us to seek even more challenging bond formations to probe what nucleophiles 

were are tolerated by the active CDC-Rh(I)-diene intermediate 2. 

 Cross-coupling has demonstrated the impact that methods for forming C-C bonds can 

have on the literature.3–5 It is no exaggeration to say that the Suzuki-Miyaura cross-coupling has 

revolutionized chemical approaches to total synthesis and medicine.6,7 The desire to generate 

similarly useful carbon frameworks in an atom-economical fashion was a significant driving 

force behind our desire to develop efficient hydroarylation reactions. As was discussed in 

Chapter 2, C-C bond forming reactions have become the benchmark for synthetic methods as 

chemists have highlighted the challenge of constructing the stereodefined carbon skeletons of 

natural products.8,9 Our aim was to introduce a C-C bond forming reaction catalyzed by our 

CDC-Rh(I) complexes that would excite the organometallic and synthetic community and propel 

CDC ligands into the limelight by finding synthetic applications for their unique reactivity (see 

Chapter 1).10  

 Research in cross-coupling has progressed from forming C-C sp2-sp2 hybridized bonds to 

sp2-sp3 hybridized systems (Scheme 3.1.3).3,11,12 This has been a significant challenge and spurred 

the development of numerous novel ligand structures and catalytic methods. Only recently has 

cross-coupling begun to tackle the challenge of C-C sp3-sp3 bonds.13–15 A tremendous effort has 

been put forth by the catalytic community to solve this problem and notable professors have built 

their careers around it (eg: Gregory Fu16). Much like cross-coupling, our foray into C-C bond 

formation through hydroarylation could form C-C sp3-sp2 bonds, but left the significant challenge 

of forming C-C sp3-sp3 bonds unsolved. As such, we proposed to develop methods for the 

hydroalkylation of dienes using alkyl carbon nucleophiles. Such bond formations allow for the 

installation of adjacent stereocenters and could lead to useful diastereoselective transformations.8 
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Alkyl C-C bond formations rapidly generate molecular complexity and catalytic methods can 

quickly generate sterochemically dense products that map onto the complex carbon skeletons of 

many natural products and pharmaceutical agents.9 Our efforts in stereoselective catalysis have 

been relatively unmentioned thus far, (primarily due to limited success, see Chapter 4 for more 

information), yet this was a significant driving force behind our desire to develop a C-C sp3-sp3 

bond formation. For these reasons the next goal for hydrofunctionalization with CDC-Rh 

catalysts was the hydroalkylation of diene electrophiles. 
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Scheme 3.1.3: Comparing cross-coupling and hydrofunctionalization for the formation of new 

C-C bonds.  

3.1.1 Hydroalkylation in the Literature 

The catalytic hydroalkylation of alkenes is a valuable, atom-economical approach for the 

synthesis of C–C bonds from readily available starting materials.17 It is formally defined as the 

addition of an alkyl nucleophile across a C-C π-system to form a new C-C and C-H σ-bond 

(Scheme 3.1.1-1), which differs from hydroarylation in that the bond formed is between two sp3-

hybridized carbon atoms. The carbon nucleophiles used are usually derived from nucleophilic π-

bonds of an sp2 carbon center (ie: silyl enol ethers18). Hydrofunctionalization is often touted as 
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being an atom-economical process, however hydroalkylation can be the exception to this rule as 

protected enolate nucleophiles generate byproducts. For the purposes of this section, any carbon 

nucleophile that adds across a C-C π-system to install an adjacent C-C sp3-sp3 linkage and C-H 

bond will qualify as a hydroalkylation. 

H+ catalyst
R1 R1

C-C 
π-systemAlkyl Nucleophile

R'
X

or R'

sp3-sp3 
hybridized 
C-C bond

 

Scheme 3.1.1-1: Defining hydroalkylation as a subset of hydrofunctionalization. 

3.1.1.1 Classifying Hydroalkylation Reactions by π-Electrophile 

Pioneering studies have led to the development of intermolecular processes that employ 

styrenes,19–21 unactivated alkenes,22–25 allenes,26–28 and alkynes18,29,30,30–32 as effective substrates that 

can react with appropriate C-based nucleophiles. These studies will focus on diene electrophiles 

for the practical reason that they react efficiently with the developed CDC-Rh(I) catalysts1,2 and 

because such reactions convert readily available unsaturated hydrocarbons into versatile allyl-

containing building blocks. Only a limited number of catalytic intermolecular hydroalkylations 

of dienes have been reported, with none able to effectively promote the diastereoselective 

addition of C-based nucleophiles to terminal dienes. Catalytic intermolecular diene 

hydroalkylation was first accomplished with a Pd catalyst by Takahashi33 and subsequent Pd 

catalyzed hydroalkylations have introduced a variety of enolizable nucleophiles.34–36 These 

reactions selectively generate linear products via 1,4-addition with modest to excellent site-

selectivity. Such reactions work well with small 2,3-substituted dienes, but are limited to methyl-

substituted or cyclic substrates for 1,4-substituted dienes (e.g., cyclohexadiene).39 
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3.1.1.2 Classifying Hydroalkylation Reactions by Nucleophile 

The type of carbon nucleophile employed can also be used to classify hydroalkylation 

reactions. The majority of carbon nucleophiles36–38 can be categorized as enols, enolates, or 

organometallic reagents. Neutral enol nucleophiles form from in situ tautomerization of carbonyl 

species, either thermally39 or with the assistance of an acidic40 or basic41 promoter. The 

equilibrium between the enol and carbonyl form must be favorable enough to generate a 

sufficient concentration of the π-nucleophile to react with an electrophilic π-system. The 

necessity of this equilibrium limits enol nucleophiles to acidic carbon atoms alpha to a carbonyl 

or similar π-system. Although many useful products can be formed with readily enolizable C-C 

π-systems, this curtails the range of nucleophiles that could be utilized. This class of carbon 

nucleophiles is the most prevalent in the hydroalkylation literature and has been shown with 

Cu,39 Ag,42 Au,41,43–48 Pd,22,23,27,28,49–54 Pt,22,23,55 Rh,24,25,32 Ru,56 and Lewis acid20,40,57–67 catalysts. It is 

also important to note that the majority of these methods employ 1,3-diketo or malonate 

nucleophiles and there is a distinct lack of nucleophile diversity in the reported literature. 

Enolates are a separate class of carbon nucleophiles that are derived from the anionic 

form of the enol nucleophiles discussed above. These reagents are prepared by deprotonating 

alpha to a carbonyl and then trapping the resulting enolate through protection of the anionic 

oxygen, usually with a silyl group.18,26,31,68–70 The formed silyl enol ethers can be deprotected in 

situ to form a reactive charged nucleophile either concurrently or prior to addition to the olefin. 

A proton source, such as an alcohol, is commonly necessary to turn over the reaction and to trap 

silyl byproducts. The use of enolates significantly increases the scope of carbon nucleophiles 

available from neutral enols since there is no need for in situ equilibrium between the carbonyl 

and enol tautomers. This has been extensively applied in Mukaiyama-Aldol71–75 and Michael 
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additions,76,77 where the variety and synthetic utility of enolate nucleophiles has been extensively 

demonstrated. However, far fewer hydroalkylation reactions have been studied with enolates. 

Examples of silyl enol ether additions to activated carbon π-systems exist (eg: additions to α,β-

unsaturated carbonyls), but there are no prior examples of intermolecular enolate additions to 

unactivated olefins. 

The final class of carbon nucleophiles utilized in hydroalkylation is organometallic 

reagents such as grignards and alkyl-zincs. These more reactive species behave as carbon anions 

rather than carbon π-nucleophiles. Although there are relatively few publications in this area, 

Sigman et al. has introduced several impressive transformations to this rapidly developing 

field.78–81 The increased reactivity of organometallic reagents is both a strength and weakness of 

this nucleophile class, as the increased nucleophilicity can allow for difficult additions, but the 

reagents are unstable and must be synthesized rather than purchased. These nucleophiles also 

trade reactivity for atom economy as they produce metal salts as byproducts (ie: Mg2+ or Zn2+). 

3.1.1.3 Current Limitations in Hydroalkylation 

Although it was discovered as early as 1972 by Takahashi,33 relatively few methods for 

hydroalkylation exist. This is mirrored in the limited application of hydroalkylation in synthesis; 

the only synthetic use for hydroalkylation was in a formal synthesis of KRN7000.79 Despite the 

advances in olefin hydroalkylation discussed above, intramolecular41,45,49,52,82–90 examples 

predominate. The rarity of intermolecular transformations has been a trend common to all the 

classes of hydrofunctionalization reviewed in this dissertation and is likely caused by the 

increased entropic penalty associated with intermolecular reactions. Intermolecular processes can 

be more generally applied to the synthesis of natural products without the need for the 

preparation of specific intramolecular substrates. One of the goals of our research program is to 
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develop intermolecular transformations that bridge the gap between methods development and 

the application of hydrofunctionalization in total synthesis. 

The types of nucleophiles applied to hydroalkylation reactions highlight the lack of 

diversity in hydroalkylation methods; the majority of examples utilize 1,3-diketone or malonate 

derived nucleophiles and do not stray from established enols. This is evidenced in the literature 

in that the number of publications that utilize enols dwarfs those with either enolate or 

organometallic nucleophiles. Even thermally enolizable nucleophiles other than 1,3-diketones 

are comparatively uncommon (ie: oxazolones,26 oxindoles,28 β-keto amides,44 etc.). The 

development of methods for the general addition of multiple carbon π-systems would 

significantly expand the utility of hydroalkylation.  

One of the advantages of hydroalkylation over hydroarylation is that it is capable of 

forming two adjacent stereocenters in a single step. Limited examples of enantioselective 

transformations exist for intramolecular reactions18,31,41,43 and intermolecular reactions26–28,91 with 

the majority of the work accomplished by the Trost lab. Diastereoselective transformations are 

more common, although few are highly diastereoselective (>90% dr).37,44,45,47,48,68,70,87 Almost all 

of these diastereoselective reactions are from intramolecular cyclizations, and exhibit 

selectivities that vary dramatically depending on the substrate. The potential to form two 

stereocenters enantioselectively has attracted significant attention, but is still an unsolved 

challenge. 

Hydroalkylation is capable of forming exceptionally useful C-C sp3-sp3 hybridized bonds 

and installing two stereocenters, however current methods are not general enough to be used in 

synthesis. While this reaction is often applied to the transformation of alkenes, the intermolecular 

hydroalkylation of dienes remains relatively unexplored. This was particularly encouraging as 
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catalysis with CDC-Rh(I) complexes would be a novel addition to the field. A logical first step 

would be to establish that PhCDC-Rh-styrene could catalyze the intermolecular hydroalkylation 

of a diene. Starting with an intermolecular reaction would ensure that these studies will impact 

the field. After establishing proof-of-concept we could look towards expanding the nucleophile 

scope to include carbon nucleophiles with more varied functionality. 

3.2 Intermolecular Diene Hydroalkylation with 1,3-Diketo Nucleophiles 

 This exploration of intermolecular hydroalkylation initially took direction from literature 

precedent with thermally enolizable 1,3-diketo nucleophiles. These nucleophiles readily enolize 

at room temperature without additional additives and are the most common nucleophiles 

employed in hydroalkylation reactions. Their use minimizes the variables that must be varied to 

thoroughly screen for reactivity as they form the nascent carbon nucleophile without additional 

additives or reagents. It was theorized that hydroalkylation catalyzed by PhCDC-Rh-styrene 

would proceed through the common catalytic intermediate 2 and that the diene electrophiles 

utilized in hydroamination and hydroarylation would translate between hydrofunctionalizations. 

Therefore, like the hydroamination and hydroarylation reactions explored in Chapters 1 and 2, 

the electrophilic activation of 1,3-phenylbutadiene was used for reaction screening.  

The reaction conditions developed for hydroarylation were adopted as a starting point for 

screening intermolecular hydroalkylation with the prototypical 1,3-diketone nucleophile, 2,4-

pentanedione. The loading of the activator was dropped to 2.5 mol% on the suspicion that an 

excess of Lewis base compared to PhCDC-Rh-styrene (5 mol% loading) decreased reactivity by 

favoring catalytic intermediate 2 over 1 (Table 3.2-1). This precaution was later proven to have 

little effect on the reaction (see Section 3.3). Additionally, the heavier LiPF6 was substituted for 

LiBF4 to allow for more accurate mass additions at such low loading. Previously it was observed 
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that lithium tetrafluoroborate (LiBF4) lithium hexafluorophosphate (LiPF6) reacted similarly, and 

that the PF6 counteranion gave slightly improved results for many substrates.  

PhCDC-Rh+-Styrene (5 mol %) 
Activator (2.5 mol %)

Solvent, Temp (°C), 18 h
Ph

+ Ph

Me
Me

O

Me

O

O Me
MeO

Entry Solvent; M NMR Yield (%)Activator; mol %
1
2
3
4
5
6
7
8
9

PhMe; 1.0
PhMe; 1.0
PhMe; 1.0
Et2O; 1.0
THF; 1.0
Et2O; 1.0
Et2O; 1.0
Et2O; 1.0
Et2O; 1.0

88

17
0

53

4
5

8
5
0

LiPF6; 2.5
LiPF6; 2.5
AgCl; 2.5
LiPF6; 2.5
LiPF6; 2.5
AgCl; 2.5
Cu(MeCN)4 PF6; 2.5
NH4PF6; 2.5
AgBF4; 2.5

(2 equiv)

Temp (°C)
50
22
50
50
50
50
50
50
50

3

 

Table 3.2-1: Screening for the hydroalkylation of 1,3-phenylbutadiene with 2,4-pentanedione 

catalyzed by a cationic CDC-Rh(I) complex. 

Initial screening at 50 °C in toluene observed the formation of 3 in 88% yield based on 

NMR spectroscopy with dimethylformamide (DMF) as an internal standard (Entry 1). This 

proved that hydroalkylation could be efficiently catalyzed by PhCDC-Rh-styrene and further 

studies were conducted modifying the temperature, activator and solvent. Reducing the 

temperature from 50 °C to room temperature (22 °C) dropped the yield to 17% (Entry 2). This 

suggested that the reaction occurs less readily than hydroalkylation with an indole nucleophile, 

which occured in quantitative yield at room temperature under similar reaction conditions (see 

Table 2.5.1-1). Anticipating that the reaction would behave similarly to the hydroarylation, silver 

chloride (AgCl) was added as an activator. Unexpectedly, the reaction failed to generate 3 and 

reaction with 5 mol% AgCl in the place of LiPF6 gave 0% conversion (Entry 3). This result 

discredited the assumption that enolization would be unaffected by the Rh catalyst and/or Lewis 
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acid. It was hypothesized that the thermal enolization required to form the enol nucleophile 

might be affected by both the identity of the solvent and the activator (Scheme 3.2-2).  
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Scheme 3.2-2: Questioning whether the equilibrium between the keto and enol form of 2,4-

pentanedione could account for the observed reactivity. 

The theory that the tautomer equilibrium was effecting reactivity prompted a brief solvent 

screen. In diethyl ether (Et2O) the reaction proceeded in similar conversion to toluene, but 

conversion was suppressed in more polar THF; reaction in Et2O provided 3 in 53% yield (Entry 

4), whereas the same conditions in THF gave only 4% yield (Entry 5). This is likely due to a 

decrease in nucleophilicity of the tautomer of 2,4-pentanedione in a more stabilizing polar 

solvent. The failure to hydroalkylate 1,3-phenylbutadiene with AgCl as an activator could also 

be attributed to a solubility effect where insolubility of the activator was preventing reactivity in 

non-polar solvents such as toluene. A series of potential Lewis acid activators was tested in Et2O 

to more reliably solubilize the reaction mixtures. Using Et2O as a solvent was not necessarily 

optimal for conversion, as it did not provide 3 in as high conversion as toluene, but the increased 

polarity should tolerate a larger range of Lewis acid activators. A screen including AgCl, 

tetrakis(acetonitrile)copper(I) hexafluorophosphate [Cu(MeCN)4PF6], ammonium 

hexafluorophosphate (NH4PF6), and silver tetrafluoroborate (AgBF4) showed substantially 

decreased reactivity when compared to LiPF6; reaction with AgCl, Cu(MeCN)4PF6, NH4PF6, and 

AgBF4 provided 3 in 5%, 8%, 5%, and 0% respectively (Entries 6-9). Lithium has been shown to 
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assist in the tautomerization of ketones to enols and the success of lithium Lewis acids is 

tentatively attributed to this secondary activation of the 2,4-pentanedione nucleophile.92 

With effective conditions for the hydroalkylation of 1,3-phenylbutadiene in hand, we 

proceeded to explore the nucleophile scope to observe how tolerant it would be of differences in 

the nucleophilicity of the enol (Table 3.2-3). Reaction with methyl acetoacetate proceeded to 

provide 4 in 71% NMR yield as a 4.5:1 mixture of the γ:α regioisomers. The reaction was only 

minimally diastereoselective, providing a 1.4:1 ratio of the diastereoisomers. Although the 

selectivity of this transformation was non-ideal, it did demonstrate that a β-keto ester could be 

used in place of a 1,3-diketone despite its reduced nucleophilicity. Hydroalkylation with ethyl 

malonate further cemented this link between enol nucleophilicity and reactivity, as the decreased 

nucleophilicity of a malonate resulted in the formation of 5 in only 25% yield despite an 

increased reaction temperature of 80 °C. Meldrum’s acid, a cyclic 1,3-diketo derivative, was also 

tested because it has a nucleophilicity similar to diethylmalonate, but does not readily form the 

enol tautomer due to its cyclic structure. Reaction with Meldrum’s acid failed to yield 6, which 

strongly suggests that the enol form is necessary for reaction. 
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Table 3.2-3: A brief survey of the nucleophile scope for diene hydroalkylation with 1,3-diketo 

derivatives. 
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 The discovery of hydroalkylation with 1,3-diketo derivatives proved that PhCDC-Rh-

styrene could efficiently catalyze the formation of a C-C sp3-sp3 hybridized bond. The substrate 

scope further demonstrated that enol tautomers with varying nucleophilicity can serve as reaction 

partners. However, thermal equilibration to the enol form is necessary for catalysis as Meldrum’s 

acid did not react with 1,3-phenylbutadiene. Furthermore, reactions that proceed through thermal 

tautomerization to form the active nucleophile benefit from the use of a lithium activator; this 

observation would prove vital to further studies where lithium Lewis acids proved vital to 

obtaining reactivity. Despite these encouraging results, the study of 1,3-diketone additions to 

dienes was discontinued as the addition of 1,3-diketo nucleophiles has been previously studied 

and can be accomplished with simple Brønstead acids.40,62,64,66 It is therefore difficult to justify 

the need for a complex late-transition metal catalyst. However, the introduction of a highly 

diastereo- and/or enantioselective transformations would significantly impact this field. As such, 

focus was moved towards developing the addition of more challenging and synthetically 

applicable enolizable nucleophiles to showcase the unique reactivity of our CDC-Rh(I) catalysts. 

3.3: Diastereoselective Synthesis of Vicinal Tertiary and N-Substituted Quaternary 
Stereogenic Centers via Intermolecular Diene Hydroalkylation  
 
 The knowledge that PhCDC-Rh-styrene could efficiently hydroalkylate diene 

electrophiles left us with the challenge of finding a class of thermally enolizable carbon 

nucleophiles that could be useful for the synthesis of natural products. This would increase the 

utility of the developed method and display the value of our CDC-Rh(I) catalysts for 

hydroalkylation. Amino acids are ubiquitous in biologically active molecules and this section 

relates a method for the installation of amino acid surrogates in order to synthesize allylic amino 

acid derivatives with complete atom-economy.  
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3.3.1: Selecting Oxazolones as Enolizable Carbon Nucleophiles 

In a search of enolizable carbon nucleophiles oxazol-5-(4H)-ones are notable as they can 

enolize to form a carbon nucleophile alpha to both a carbonyl and amine functional group 

(Scheme 3.3.1-1a). This is functionally analogous to the enolization of an amino acid and 

provides the opportunity to install amino acids as C-C π-nucleophiles. These heterocyclic rings 

are commonly referred to as oxazolones and are notable as: (i) useful building blocks in total 

synthesis,93 (ii) effective substrates for forming quaternary centers,94 and (iii) reactive molecules 

for 1,3-dipolar cycloadditions95 and ene-type reactions.96 Oxazolones can be readily synthesized 

from modified amino acids through cyclization of the benzoylated amino acid under acidic 

conditions.95,97 A comparison of the reactivity of 1,3-diketone nucleophiles to oxazolones shows 

how the cyclic imine acts to increase the acidity of the enolizable carbon similarly to the second 

carbonyl in a 1,3-diketone (Scheme 3.3.1-1b). This reactivity is exemplified by the low pKa of 

oxazolones (pKa ≈ 9) and their ability to readily enolize at mild temperatures.98 Furthermore, 

oxazolones have proven to be exceptionally useful in the synthesis of unnatural and highly 

congested amino acids that are otherwise challenging synthetic targets. 
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Scheme 3.3.1: Introduction to oxazolone nucleophiles and their activity as nucleophiles. 
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 We postulated that the catalyst controlled γ-selective addition of a prochiral enol 

nucleophile to 1-substituted diene would enable C(sp3)–C(sp3) formation and generate vicinal 

stereogenic centers. By applying our CDC-Rh(I) catalysts to oxazolones nucleophiles we hoped 

to develop a useful synthesis of allylic amino acid equivalents. Enantioselective Michael 

additions of 1,3-oxazol-5(4H)-ones to activated C–C π-bonds94 has been demonstrated 

(aldehydes,99 ketones,100–103 amides,104–106 allenoates107), however, additions to unactivated alkenes 

or dienes substrates have not been reported. Trost108,109 and Kawatsura110,111 have developed 

methods for the synthesis of allyl substituted oxazolones via metal-catalyzed allylic alkylations, 

but the products have different substitution patterns than our proposed hydroalkylation reactions 

and are not derived from diene electrophiles.  

The following discussion will describe our efforts in developing a diastereoselective 

catalytic addition of substituted 1,3-oxazol-5(4H)-ones to 1-substituted dienes in order to 

generate vicinal stereogenic centers diastereoselectively. The use of substituted oxazolones has 

allowed for the formation of N-substituted quaternary centers that can be converted to 

synthetically challenging amino acid equivalents. This work was published in Chemical Science 

in 2016 (although it is currently only available as an advanced article) and chronicles our first 

foray into diastereoselective hydrofunctionalization.112 

3.3.2: Discovery and Optimization of Intermolecular Diene Hydroalkylation with Oxazolone 
Nucleophiles 
 

We began our search for an efficient catalytic hydroalkylation of dienes by reacting 

methyl-substituted oxazolone 7 with 1,3-phenylbutadiene in the presence of 5 mol % PhCDC-

Rh-styrene and 5 mol % LiPF6 activator in toluene at 50 °C (Table 3.3.2-1, Entry 1). We were 

encouraged to observe the formation of allylic oxazolone 8 in 17% yield and 10:1 dr (anti/syn). 
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A brief survey of solvents provided slightly higher yields (up to 21%), but reduced 

diastereoselectivities (<6:1 dr) in all cases (vide infra). As such, toluene was used for further 

optimization. A variety of Lewis acid activators were screened (Entries 2–4) and demonstrated 

that lithium salts were most effective; 5 mol % of AgCl and LiBF4 resulted <10% conversion to 

8 most likely the due to poor solubility of the metal salt in toluene. The necessity for lithium salts 

mirrored our earlier experience using 1,3-diketo nucleophiles in hydroalkylation and we 

hypothesize that the lithium cation may assist in enolization of the oxazolone. Weaker 

coordinating counter anions lead to dramatically improved reactivity as shown by lithium 

tetrakis(pentafluorophenyl)borate (LiBArF
4), which furnishes 8 in 51% yield with 18:1 dr.  

We do not currently have a satisfactory explanation for the dramatic effect of the 

counterion on conversion and diastereoselectivity. Furthermore, the effect of the counterion on 

the reaction is not necessarily consistent between substrates and reaction conditions. As will be 

described below, some reactions are more efficient and selective with less dissociated PF6 

counterions or display little difference between PF6
- and BArF

4
-. The preferred counterion for a 

given reaction could only be determined experimentally, although further studies might result in 

a predictive trend.  
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1
2
3
4
5
6
7
8
9

10e

17; 10:1
0; -
8; 4:1
51; 18:1
50; 11:1
85; 19:1
26; 3:1
29; 5:1
0; -
0; -

-
-
-
-
i-PrOH
i-PrOH
MeOH
t-BuOH
i-PrOH
i-PrOH

LiPF6; 5
AgCl; 5
LiBF4; 5
LiBArF4; 5
LiBArF4; 5
LiPF6; 5
LiPF6; 5
LiPF6; 5
-
LiPF6; 5

Entry Yield (%)c; drdAlcoholbActivator; mol %

+ Ph

Me

Me
Ph

8

O
N

O

Ph
N

O

O

Me

Ph

5 mol % PhCDC-Rh-styrene
Activator (5 mol %)
Alcohol (5 equiv)

toluene, 50 °C, 18 h7

aSee SI for experimental details; all reactions performed under N2 atm. bA solvent 
ratio of 40:1 toluene/alcohol used.  cYields of purified products are an average of 
two runs.  dValues determined by analysis of 400 or 600 MHz 1H NMR spectra of 
unpurified mixtures with hexamethyldisiloxane as an internal standard. eReaction 
run with 2.5 mol % [Rh(cod)Cl]2 and 5 mol % NaBArF4 as catalyst.  

Table 3.3.2-1: Screening for hydroalkylation of 1,3-phenylbutadiene with Me-oxazolone 7. 

Further increase in reaction efficiency was achieved through the use of alcohol co-

solvents (Entries 5–8). While addition of isopropanol (i-PrOH) led to no improvement in the 

LiBArF
4 promoted reaction (50% yield, 11:1 dr, Entry 5), treatment of 7 and 1,3-phenylbutadiene 

with 5 mol % PhCDC-Rh-styrene and 5 mol % LiPF6 in toluene/i-PrOH 40:1 at 50 °C proved 

optimal, delivering 8 in 85% yield and 19:1 dr (Entry 6). Screening sterically larger and smaller 

alcohol co-solvents results in both decreased conversion and selectivity (Entries 7 and 8); 

methanol (MeOH) and tert-butanol (t-BuOH) afforded 8 in 26% yield (3:1 dr), and 29% yield 

(5:1 dr), respectively. It should be noted that MeOH as a co-solvent leads to competitive 

oxazolone decomposition via ring-opening. The conditions reported in Entry 6 were identified as 

optimal and employed in further reaction development, although LiBArF
4 was found to be 

optimal for certain substrates (vide infra). Additional control reactions run without LiPF6 (Entry 

9), or with 2.5 mol % [Rh(cod)Cl]2 and 5 mol NaBArF
4 in place of PhCDC-Rh-styrene (Entry 
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10) result in no reaction, highlighting the importance of cationic (CDC)-Rh complex 1, in 

combination with a Lewis acid co-catalyst, for reactivity.  

The influence of the identity of the alcohol on reaction efficiency and diastereoselectivity 

cannot necessarily be explained or predicted from our studies. However, a number of 

observations were made regarding trends in reactivity: (1) The lithium salt is required for the 

reaction to occur and reaction does not occur with similar Lewis acid additives. (2) Based on the 

difference in reaction efficiency between LiPF6 and LiBArF
4 without i-PrOH (Table 3.3.2-1, 

Entries 1 and 4), it is likely that the alcohol assists in solubilizing the lithium salt. (3) The 

identity and presence of the alcohol additive dramatically changes the product 

diastereoselectivity, but a predictive trend cannot be derived from available data. To illustrate 

this point the addition of alcohol has the opposite effect on reactions with LiPF6 as opposed to 

LiBArF
4; reactions that are co-catalyzed by LiPF6 increase in diastereoselectivity from 10:1 to 

19:1 dr upon addition of i-PrOH (Entries 1 and 6), whereas reactions with LiBArF
4 decrease from 

18:1 dr to 11:1 dr when i-PrOH is added (Entries 4 and 5). This suggests that the alcohol must be 

participating in either hydrogen bonding with the nucleophile or in alcohol solvation of the 

lithium salt. (4) It is highly unlikely that the reaction is acid catalyzed, as a control reaction run 

in the presence of 2,6-ditert-butyl pyridine showed no deleterious effects and provided 8 in 23% 

NMR yield, 20:1 dr without i-PrOH, and 86% NMR yield, 20:1 dr with i-PrOH (Table 3.3.2-2, 

Entries 9 and 10). Similarly, this means that the alcohol cannot be acting as a Brønsted acid.  

It was theorized that the alcohol was directly assisting in the formation of the active enol 

nucleophile through hydrogen bonding with the oxazolone. This would account for the impact of 

the alcohol on diastereoselectivity and explain why reactions still proceed to a lesser degree 

without it. Based on this theory a chiral additive was introduced in the place i-PrOH in the hope 
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of engendering an enantioselective addition through hydrogen bonding with the oxazolone to 

catalytically form a chiral nucleophile. These reactions were run with 60 mol% of a chiral or 

achiral H-bond donor to observe the effects on diastereoselectivity and enantioselectivity (Table 

3.3.2-2). The increased loading of the alcohol additive improved conversion and selectivity with 

the achiral alcohols MeOH and t-BuOH, but reaction with i-PrOH was essentially unchanged; 

reaction with MeOH, i-PrOH, and t-BuOH provided 8 in 68%, 84%, and 87% NMR yields as 

7:1, 19:1, and 12:1 mixtures of diastereoisomers respectively. Reaction with menthol gave a 

similar reaction, but failed to induce any enantioselectivity; the addition of 60 mol% menthol to 

the reaction provided 8 in 62% NMR yield, >20:1 dr, and 0% ee. Diol additives decreased 

reaction efficiency and selectivity as evidenced by the addition of (R)-BINOL and (S,S)-

hydrobenzoin, which gave 56% NMR yield, 15:1 dr, 0% ee, and 53% NMR yield, 10:1 dr, 0% 

ee. The additions of a chiral acid and a chiral diamine were also explored, but resulted in low 

conversions while failing to generate 8 with any enantioselectivity; reaction with 60 mol % 

TADDOL-phosphoric acid gave 13% yield, 2:1 dr, 0% ee, while reaction with 10 mol% 

diphenylethylenediamine gave 27% yield, 18:1 dr, 0% ee. Unfortunately despite the dramatic 

effect on diastereoselectivity, the use of chiral alcohols, diols, or amines failed to provide an 

enantioselective reaction. This is not sufficient evidence to prove or disprove the role of 

hydrogen-bonding in oxazolone hydroalkylation, but it is highly likely that there is some benefit 

to enolization.  
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PhCDC-Rh-styrene (5 mol %)
LiPF6 (5 mol %)

Additive

PhMe, 50 °C, 18 h

Entrya NMR Yield (%)c; drb

1

2

3

4

5

6

7

8

9

10

68; 7:1

84; 19:1

87; 12:1

62; >20:1

56; 15:1

53; 10:1

13; 2:1

27; 18:1

23; >20:1

86; >20:1

Additive; mol %

MeOH; 60

iPrOH; 60

tBuOH; 60

Menthol; 60

(R)-BINOL; 60

(S,S)-hydrobenzoin; 60

                         ; 60

(S,S)-diphenylethylenediamine; 10

2,6-ditertbutylpyridine; 10

2,6-ditertbutylpyridine; 10
iPrOH; 60

+

7 8

N
O

O
Me

Ph
Ph

Me

N
O Me

O

Ph

Ph

O
P

OO

OMe
Me

Ph Ph

PhPh

OH
O

% ee

-

-

-

0

0

0

0

0

-

-

aSee SI for experimental details; all reactions performed under N2 atmosphere. 
bValues determined by analysis of 500 or 600 MHz 1H NMR spectra of 
unpurified mixtures with trimethylsilyl ether as an internal standard. cNMR Yield 
reported for conversion to the cis- and trans-8 products.  

Table 3.3.2-2: Studies on the role of the alcohol in oxazolone hydroalkylation and attempts to 

develop an enantioselective transformation through stereospecific hydrogen bonding. 

A substantial amount of optimization occurred prior to the discovery of the alcohol 

additive and could not be included in the 2016 publication. In particular, solvent and temperature 

screens were excised from the paper in the interest of brevity and readability. Table 3.3.2-3 

shows additional optimization that was conducted during our discovery of hydroalkylation with 

oxazolones. The initial solvent screen for this transformation was not exceptionally informative 

as reactions in toluene (PhMe) proved only marginally more effective than in chlorobenzene 

(PhCl), THF, and dichloromethane (DCM); hydroalkylation to form 8 proceeded with 26% NMR 

yield in PhMe compared to 21% in PhCl, 21% in THF and 20% in DCM. Future reactions were 

run in toluene because it provided 8 in slightly higher conversion and had proved optimal for 

previous hydrofunctionalization reactions. This choice was later validated as the addition of 
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alcohol improves reactions in non-polar solvents, but is less beneficial in THF or DCM. 

Decreasing the reaction concentration appeared to substantially improve reactivity, as evidenced 

by Entry 5 where reaction at 0.25 M in toluene provided the desired product in 84% yield, 19:1 

dr. Further decreases in the concentration decreased yield and selectivity and product 8 was 

formed in 38% NMR yield with 4:1 diastereoselectivity when run at a concentration of 0.125 M 

in toluene. The result in toluene at 0.25 M is comparable to the best results with an alcohol 

additive and demonstrates how individual substrates can be coaxed into providing high 

conversions with multiple reaction conditions. However, later studies found that reaction at 1.0 

M with the alcohol additive gave more consistent results when the reaction was extended to 

different oxazolones and diene substrates.  

 

PhCDC-Rh-styrene (5 mol %)
LiPF6 (5 mol %)

solvent, Temp, 18 h

Entry NMR Yield (%)c; drb

1

2

3

4

5

6

7

8

21; 6:1

21; 4:1

20; 3:1

26; 3:1

56; 7:1

0; -:-

84; 19:1

38; 4:1

Temp (°C)

50

50

50

50

60

80

50

50

Solvent; M

PhCl; 1.0

THF; 1.0

DCM; 1.0

PhMe; 1.0

PhMe; 1.0

PhMe; 1.0

PhMe; 0.25

PhMe; 0.125

+
7 8
N

O

O
Me

Ph
Ph

Me

N
O Me

O

Ph

Ph

aSee SI for experimental details; all reactions performed under N2 
atmosphere. bValues determined by analysis of 400 or 600 MHz 1H NMR 
spectra of unpurified mixtures with trimethylsilyl ether as an internal standard.  

Table 3.3.2-3: Additional optimization prior to the discovery of the alcohol additive. 

Modifying the reaction temperature initially looked promising as increasing from 50 °C 

to 60 °C resulted in a 56% NMR yield of a 7:1 mixture of diastereomers. Unfortunately this 

result proved inconsistent when the reaction was repeated and increasing the temperature further 
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completely shut down any reactivity; reaction at 80 °C did not generate any of 8. Reexamining 

the reaction established that higher temperatures decomposed the oxazolone. Although it is 

unclear what decomposition was occurring under anhydrous conditions, it is clear that the side 

products generated by decomposition harmed the overall reaction and decreased reproducibility. 

As such, a reaction temperature of 50 °C was maintained for all further studies. 

The importance of the oxazolone decomposition to the ring-opened product is mentioned 

above, but deserves further review to describe the eccentricities of the reaction. During the 

course of these screens we observed that the purity of the oxazolone substrate 7 is exceptionally 

important for providing an efficient reaction. A pure sample of 7 is a clear crystalline solid, but 

the presence of any impurity transforms this material into a semi-solid gel. Based on NMR 

spectroscopy and chemical intuition it is likely that the impurity in the synthesis of 7 is the 

uncyclized acid 9. Free acid has previously proven to be detrimental to hydrofunctionalization 

reactions catalyzed by PhCDC-Rh-styrene (see control reactions in Chapters 1 and 2). Reactivity 

decreases dramatically when the oxazolone substrate is hydrolyzed through the addition of 

adventitious water to form the acid (Scheme 3.3.2-3). This side reaction partially explains why i-

PrOH is the optimal alcohol additive as: (i) hydrolysis of the oxazolone is slower with larger 

alcohols, and (ii) the hydrolysis forms the ester rather than the more detrimental acid. 
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N
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O

Me

Ph

HO

O H
N

R

Ar

O

Synthesis of Oxazolone Substrates and Probable Impurites:

or

Acid Catalyed 
Cyclization with Ac2O

Peptide Coupling 
with EDC

N
O

O

R

Ar

HO

O H
N

R

Ar

O

+

<5% residual acid shuts 
down hydroalkylation

Alcohol Hydrolysis Side Reaction:

H2O

PhMe, 50 °C, 18 h HO

O H
N

Me

Ph

O
acid formation inhibits 

hydroalkylation

N
O

O

Me

Ph

i-PrOH

PhMe, 50 °C, 18 h O

O H
N

Me

Ph

O
- Hydrolysis occurs slowly
- Ester is less inhibitory

Me

Me

 

Scheme 3.3.2-4: The effect of acid impurities and oxazolone hydrolysis on reactivity. 

3.3.3: Diene Scope for Intermolecular Hydroalkylation with Oxazolones  

With optimized conditions in hand, we sought to explore the diene scope of the 

hydroalkylation with oxazolone 7. For certain diene substrates LiBArF
4 proved to be the more 

effective lithium salt and was necessary to obtain good yields and selectivities. As shown in 

Scheme 3.3.3-1, formation of the N-substituted quaternary carbon occurs readily with modest to 

excellent levels of selectivity with aryl (12-20) and alkyl dienes (21–23). Electronic 

modifications to the aryl ring were well tolerated by the reaction. Aryl rings bearing halogens or 

electron withdrawing groups react with only slight decreases to yield and diastereoselectivity; p-

Cl-, p-F- and p-NO2-phenylbutadienes react to give 12 in 67% yield (19:1 dr), 13 in 70% yield 

(6:1 dr), and 14 in 48% yield (8:1 dr) respectively. Electron-rich arenes are also compatible, but 

result in reduced anti/syn diastereoselectivity; p-MeO-phenylbutadiene reacts to form 15 in 58% 

yield and 4:1 dr. Phenylbutadiene containing alkyl substitution at the ortho-, meta- and para-

positions of the aryl ring are excellent substrates providing 16 in 59% yield (>20:1 dr), 17 in 
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66% yield (>20:1 dr), and 18 in 89% yield (6:1 dr). The high selectivity in the formation of 16 

and 17 demonstrates the influence of sterics and its translation to increased diastereoselectivity in 

C–C bond formation with only slight decreases in yield. Dienes bearing oxygen heterocycles 

participate in the hydroalkylation reaction with 19 formed in 91% and in 9:1 dr; however, pyridyl 

groups appear to inhibit PhCDC-Rh-styrene as 20 does not form under the same reaction 

conditions. As was shown in Table 3.3.2-2, catalytic hydroalkylation of 1,3-phenylbutadiene in 

the presence of 10 mol % 2,6-di-tertbutylpyridine afforded 8 in 86% conv, and >20:1 dr, which 

indicates that Lewis basic N-heteroarenes do not inhibit hydroalkylation due to their Bronsted 

basicity, but rather by binding to the cationic CDC-Rh(I) catalyst. 

R1
+

5 mol % PhCDC-Rh-styrene
5 mol % LiPF6 or LiBArF4

N
O

O

Me

Ph

12b

67% yield, 19:1 dr

R1

Me

N
O Me

O

Ph

Cl
13c

70% yield, 6:1 dr

F
14b

48% yield, 8:1 dr

NO2

15b

58% yield, 4:1 dr

OMe
16b

59% yield, >20:1 dr

Me

17b

66% yield, >20:1 dr

Me

Me

21c

66% yield, 12:1 dr
22c

43% yield, 3:1 dr

OTBS

23c

68% yield, 4:1 dr

18c

89% yield, 6:1 dr

Me
19c

91% yield, 9:1 dr
20

<2% yield

N

7 12–23
toluene/i-PrOH (40:1)

50 °C, 18–48 h

O

R1 = Aryl:

R1 = Alkyl:

aSee SI for experimental details; All reaction performed under N2 atmosphere; Yields of 
purified products are an average of two runs. b5 mol% of LiPF6. c5 mol% of LiBArF4.  

Scheme 3.3.3-1: Scope of the diene for the CDC-Rh(I) catalyzed hydroalkylation with methyl-

oxazolone 7. 
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Alkyl-substituted dienes are also effective substrates and react with oxazolone 7 to 

produce alkenyl products 21-23 in good yields and selectivities (Scheme 3.3.3-1). We anticipated 

that the decreased size of the alkyl chain, compared to an aryl ring, would result in diminished 

diastereoselectivity, however, the opposite was observed; 14 was formed in high 

diastereoselectivity (12:1 dr) in 66% yield. The increased α-branching in cyclohexylbutadiene 

results in lower reactivity and diastereoselectivity, providing 15 in 43% yield and 3:1 dr. 

Additionally, the mild reaction conditions are tolerant of silyl ether functionality; for example 

homoallyl TBS ether 16 is delivered in 68% yield and 4:1 dr without silyl ether deprotection or 

elimination to form the conjugated diene. For some substrates lower conversions are observed 

due to competitive ring-opening of the oxzalone by i-PrOH, however, high yields can often be 

recovered by increasing the equivalents of the nucleophile. 

Notably absent from these substrate tables are any examples of disubstituted dienes. 

Despite extensive screening, acceptable conversions could not be obtained for any diene that was 

not terminal and unsubstituted. This is likely due to the decreased binding affinity of more highly 

substituted π-systems for the Rh metal. A number of additional diene substrates were explored, 

but their decreased activity meant they were not included in our 2016 publication. The substrates 

shown in Scheme 3.3.3-2 were unsuitable reaction partners (<5% NMR Yield) for the addition of 

oxazolone 7 and, although these results are not synthetically useful, they help to establish the 

limitations of our hydroalkylation method. Certain electron poor aryl dienes (24 and 25) failed to 

hydroalkylate under the given reaction conditions, presumably because they proceed through a 

positively charged intermediate that is destabilized by an electron-withdrawing group. The 

failure of 24 suggests that an insertion into the aryl-bromide bond might also be occurring as the 

aryl-chloride reacts to form 12 without difficulty. The unsuitability of allene and alkene reaction 
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partners (eg: 26, 27, and 35) demonstrates the importance of diene electrophiles for these 

reactions. Any substitution of the terminal diene completely removes any activity for 

hydroalkylation as evidenced by 28-30. This trend also extends to alkyl dienes (eg: 31-34) and 

we have yet to find any substituted diene that is capable of reacting to form the desired N-

substituted quaternary center. Even cyclohexadiene 36, which was well tolerated in the 

previously explored diene hydroamination (Chapter 1), failed to react.  

Br NO2

MeMe

Me

Me

Me
Me

EtO
Me Me

O

Me

MeMe

R1
+

5 mol % PhCDC-Rh-styrene
5 mol % LiPF6 or LiBArF4

N
O

O

Me

Ph

R1

Me

N
O Me

O

Ph7
toluene/i-PrOH (40:1)

50 °C, 18–48 h

24 25 26 27

28 29 30 31 32

33 34 35 36  

Scheme 3.3.3-2: Diene substrates that did not react in intermolecular hydroalkylation. 

To summarize the scope of diene scope of this hydroalkylation reaction, the developed 

method tolerates a broad range of diene electrophiles while maintaining modest to excellent 

diastereoselectivity. Aryl dienes can be counted on to generate the desired vicinal and fully 

substituted α-amino stereocenters in good yields and high diastereoselectivities. Highly electron 

poor dienes result in decreased conversion, whereas electron rich arene rings tend to decrease 

diastereoselectivity. Only dienes with functional groups that could tightly bind to the catalyst 

proved problematic. Alkyl dienes were also reliable reaction partners, but displayed reduced 

conversions and diastereoselectivities compared to aryl diene electrophiles. Highly efficient 
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reactions cannot be reliably produced with alkyl diene substrates, but many terminal dienes do 

react.  

3.3.4: Oxazolone Scope for the Carbodicarbene-Rh Catalyzed Intermolecular Hydroalkylation 

Following our examination of the diene scope, we turned our attention towards probing 

the tolerance of the transformation for variations in the oxazolone nucleophile. To explore the 

interplay between the identity of the oxazolone substituent and diene, oxazolones were reacted 

with representative dienes bearing heterocyclic, alkyl and aryl motifs to afford 24-35 (Scheme 

3.3.4-1). Extension from methyl- to n-propyl-substituted oxazolones (24–26) resulted in high 

conversions, similar to those obtained with 7, but with lower selectivity compared to 16, 19 and 

21; 24 was produced in 89% yield with 6:1 dr, 25 was synthesized in 55% yield with 7:1 dr, and 

26 was formed in 57% yield with 10:1 dr. The lower selectivity may be a consequence of 

increased sterics on the α-substituent influencing the orientation of the nucleophile as it 

approaches the activated diene. Reactions with sec-butyl-substituted oxazolone demonstrate that 

β-branched alkyl substituents work effectively as 27–29 are formed in good to high yields with 

varying selectivity; 27 is formed in 96% yield with 19:1 dr, while 28 is synthesized in 51% yield 

with 8:1 dr and 29 in 89% yield with 10:1 dr. To further demonstrate that increased substitution 

on the oxazolone is viable, phenethyl-oxazolone was reacted to give 30–32; 30 was formed in 

57% yield with 5:1 dr, 31 in 21% yield with 7:1 dr and 32 in 50% yield with 10:1 dr.  

The cationic catalyst PhCDC-Rh-styrene is compatible with alkenes as evidenced by the 

successful formation of 33 in 28% yield with 5:1 dr. The reduction in yield is from competitive 

isomerization of the allyl group to the internal alkene, as the resulting oxazolone with an internal 

alkene is not a competent nucleophile. Furthermore, formation of 34 (2:1 dr) demonstrates the 

subtle effect that the sterics of the diene play in obtaining a selective reaction (c.f., 29, generated 
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in 20:1 dr). The aryl substituent of the oxazolone could be varied, as demonstrated by the 

formation of 35, but these modifications decreased selectivity and provided a mixture of 

regioisomers; p-Cl-phenyl-oxazolone reacted to provide 35 in 71% yield and 3:1 dr, however, 

the site-selectivity of the reaction decreased to give a 11:1 mixture of γ,δ- and α,δ-regioisomers. 

R1
+

5 mol % PhCDC-Rh-styrene
5 mol % LiBArF4

N
O

O

G

Ar

R1

Me

N
O G

O

Ar
24–35a

toluene/i-PrOH (40:1)
 50 °C, 18 h

24: R1 = 2-furyl; 89% yield, 6:1 dr
25: R1 = n-C8H17; 55% yield, 7:1 dr
26: R1 = 2-Me-C6H4;  57% yield, 10:1 dr

R1

Me

N
O

O

Ph Me

R1

Me

N
O

O

Ph MeMe
27: R1 = 2-furyl; 96% yield, 19:1 dr
28: R1 = n-C8H17; 51% yield, 8:1 dr
29: R1 = 2-Me-C6H4;  89% yield, 10:1 dr

30: R1 = 2-furyl; 57% yield, 5:1 dr
31: R1 = n-C8H17; 21% yield, 7:1 dr
32: R1 = 2-Me-C6H4; 50% yield, 10:1 dr
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Me
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O

Ph Ph
33:  28% yield, 5:1 dr
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O

Ph

35: 71% yield,c 3:1 dr

Ph

Me
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O

4-Cl-C6H4

34:  96% yield,b 2:1 dr

O

Ph

Me

N
O

O

Ph MeMe

α

β
γ

δ γ

aSee SI for experimental details. All reactions performed under N2 atmosphere; 
Yields of purified products are an average of two runs. bFormed as a 20:1 mixture 
of the γ:α-regioisomers. cFormed as a 11:1 mixture of the γ:α-regioisomers.  

Scheme 3.3.4-1: Survey of the scope of the oxazolone nucleophile used in the CDC-Rh(I) 

catalyzed hydroalkylation of dienes. 

 As with our study of the diene scope, many unsuccessful reactions could not be included 

in publication. Scheme 3.3.4-1 catalogs some of the oxazolone nucleophiles that proved 

unreactive (<10% NMR yield or poor regio- and diastereoselectivity). As mentioned above, 

oxazolones that are branched in the α-position of the R group (eg: 37), or have particularly large 
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substituents (eg: 36), are not effective nucleophiles. Surprisingly, an unsubstituted oxazolone 

also failed to react and 39 was produced in 0% yield. We suspect that changes in the enolization 

of the oxazolone are responsible for the failed reactivity of both 39 and modified heterocycles 

such as 38. The inclusion of sulfur appears to inhibit the cationic CDC-Rh(I) catalyst as 40 was 

completely unreactive even at elevated temperatures. Some oxazolone nucleophiles did show 

low conversions for diene hydroalkylation, but were sufficiently non-selective for the desired 

regioisomer and/or diastereomer that they were not included in the 2016 publication. Compounds 

41 and 43 could be formed in 39% and 30% yields respectively with no greater than 3:1 

selectivity for the γ- over the α-regioisomers (ie: 1,2-addition versus 1,4-addition). Similarly, 42 

could be formed in 27% yield, but as a 1:1 mixture of the anti/syn-diastereomers. These 

substrates demonstrate how modifications to the sterics and electronics of the oxazolone 

nucleophile can substantially impact the selectivity of diene hydroalkylation and establish some 

limits that we hope to improve upon in the future. 
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Scheme 3.3.4-2: Oxazolone nucleophiles that were not successful reaction partners due to either 

low conversion or poor selectivity. 

3.3.5: Stereoretentive Functional Group Transformations of Allylic Oxazolone Products 

 One of the major weaknesses in the current applications of hydroalkylation is that there is 

only a single example of its use in synthesis.79 We hoped that this method could be applied to the 

construction of natural products, as it is capable of incorporating an amino acid equivalent while 

diastereoselectively forming two vicinal stereocenters. In addition, one of these stereocenters is 

an N-substituted quaternary center and relates to the synthesis of unnatural amino acids. To 

establish the utility of the products generated through this catalytic stereoselective 
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hydroalkylation protocol, several transformations of the oxazolone products to other useful 

molecules were demonstrated (Scheme 3.3.5-1).  
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Scheme 3.3.5-1: Stereoretentive or selective functional group transformations of allylic 

oxazolone products.  

Experiments proved that oxazolone products could be readily ring opened under basic 

conditions to form benzoyl protected quaternary amino esters; the ring-opening of allyl-

substituted oxazolone 8 with MeOH and K2CO3 at 22 °C delivers methyl esters 44 in 87% yield. 

The synthesis of 44 confirmed that this hydroalkylation method generates the anti-diastereomer 

as the major product by comparison to previously reported data.111 Two additional α,α-

disubstituted products, 27 and 28, were converted to their corresponding methyl esters 45 and 46 

in 99% and 84% yield, respectively. The oxazolone moiety could be converted to the benzoyl-

protected amino acids through acid hydrolysis; the conversion of 31 to 47 with dilute HCl in 
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87% yield is representative. Finally, the vicinal tertiary allylic, and N-substituted quaternary 

stereocenters can be used to impart stereocontrol in further alkene functionalizations. In this 

regard, 25 (9:1 dr) was successively hydrolyzed to the methyl ester and subjected to meta-

chloroperoxybenzoic acid (m-CPBA) epoxidation to form epoxide 48 in 58% yield over two 

steps with complete stereocontrol.113 This diastereoselective epoxidation was based on previous 

literature examples that used amides as directing groups for epoxidation.114,115 The resulting 

product contains four contiguous stereocenters and a versatile epoxide ring, which could be 

opened stereoselectively to introduce a variety of nucleophiles. Excellent examples of 

stereospecific ring-opening reactions with internal epoxides are known with both carbon116–119 

and nitrogen120,121 nucleophiles and we expect that they will translate to these substrates. 

3.3.6: Proposed Mechanism of Diene Hydroalkylation 

 
 The mechanism of CDC-Rh(I) catalyzed electrophilic alkene activation has been 

discussed throughout this dissertation, but a mechanistic cycle of CDC-Rh(I) catalyzed 

hydroamination or hydroarylation had not been published for lack of experimental support for 

our assertions. During the publication process for this work, we were asked to include our 

proposed mechanistic cycle (Scheme 3.3.6), which is very similar to that shown in Scheme 3.1-2 

for hydroarylation. Enolization to form the carbon nucleophile is not shown, but can be 

translated from that shown in Scheme 3.3.1. While the specific role of the lithium salt is not yet 

fully determined, previous studies indicate that secondary binding to the CDC carbon (e.g., II) 

decreases electron density at the Rh center, resulting in decreased π-back donation,2 and thus 

facilitating nucleophile addition (II→III).122,123 Product formation and regeneration of I could 

occur via two possible pathways: (a) direct Rh–alkyl protonation, or (b) proton transfer to Rh 
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and subsequent reductive elimination. A density functional theory calculation for the related 

hydroamination through activation of an olefin π-system has been reported by Togni et al and 

provides precedent for this mechanistic proposal.124 
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R
Nuc–H

III
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R
NucHIV

LiR

Nuc–H

R

Nuc
H

R(a)
Li

Li

(b)
 

Scheme 3.3.6-1: Proposed mechanistic cycle for the addition of oxazolones to diene 

electrophiles catalyzed by a CDC-Rh(I) complex. 

 Although the major diastereomer formed in our hydroalkylation reactions was established 

through association with literature precedent, a stereochemical model for the observed selectivity 

was not published. Based on previous experience with the regioselectivity of reactions catalyzed 

by CDC-Rh(I) complexes, and the dramatic effect that the identity of the substrate has on 

diastereocontrol, it is likely that the stereochemistry of the vicinal carbon centers is substrate—

rather than catalyst—controlled. This has been further supported by unpublished experiments 

where modifications to the aryl phosphine substituents of the catalyst (eg: xylyl or meta-tolyl as 

compared to phenyl) proved detrimental to diastereoselectivity. The external approach of the 

enol form of the oxazolone nucleophile is shown in Scheme 3.3.6-2a and demonstrates how the 

nucleophile approaches opposite to the catalyst. This minimizes any interactions that could result 

in catalyst-controlled diastereoselectivity. Instead, the substituents on the diene and oxazolone 

will be in direct contact during the facial approach of the carbon π-systems. This approach is 

modeled in Scheme 3.3.6-2b and shows how the largest diene substituent is placed opposite from 
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the larger imine in the favored transition state model. Based on the large influence that the 

identity of the alcohol additive has on diastereocontrol, we propose that there is a hydrogen 

bonding interaction between the imine and the alcohol that further increases the relative size of 

the cyclic imine as opposed to the cyclic ester. Hydrogen bonding to the imine is predicted to be 

favored over the less nucleophilic ester. Although this model accurately accounts for the 

observed diastereoselectivity, there is not enough evidence to fully support these conjectures. 
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Scheme 3.3.6-2: Model to explain the substrate controlled diastereoselective addition of CDC-

Rh(I) catalyzed diene hydroalkylation. 

3.3.7: Summary and Outlook 

In summary, we have demonstrated the first diastereo- and siteselective hydroalkylation 

of 1-substituted 1,3-dienes with oxazolone nucleophiles promoted by a cationic (CDC)-Rh 

catalyst. The use of a catalytic lithium salt activator, and alcohol serve to provide optimal 
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reactivity and good diastereoselectivity under mild conditions for a range of dienes with 

oxazolone nucleophiles. The resulting products contain two contiguous stereocenters and an N-

substituted quaternary center. These oxazolone products can be deprotected to generate useful 

amino acid analogues, or exploited to impart acyclic stereocontrol in alkene epoxidation. We 

have also presented a mechanism for this transformation that describes how an olefin can be 

electrophilically activated to allow for the external addition of the carbon nucleophile, as well as 

a related model to account for both the selective formation of the anti-diastereomer and the 

influence of the alcohol additive on diastereoselectivity. Related studies are in progress to 

expand the scope of carbon-based nucleophiles and alkene electrophiles in hydroalkylation 

processes as well as to develop enantioselective variants of this reaction. 
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CHAPTER 4: HYDROALKYLATION WITH ENOLATE NUCLEOPHILES TO 
DIASTEREOSELECTIVELY GENERATE ALLYLIC BUTENOLIDE PRODUCTS4 

4.1: Introduction 

Our work with oxazolone nucleophiles introduced hydroalkylation with PhCDC-Rh-

styrene to the organometallic and synthetic community, yet it was not the first hydroalkylation 

we explored. The development of enolate additions using silyl enol ether nucleophiles was 

attempted first, however, the facility of the oxazolone addition to dienes and the potential of the 

generated vicinal stereocenters led us to pursue that transformation upon its discovery. 

Hydroalkylation was first approached after publication of diene hydroarylation to generate allylic 

arenes. Interest in developing a C(sp3)-C(sp3) bond formation led to a search for arene 

nucleophile that could protonate on the arene to form a sp3-hybridized stereocenter rather than 

rearomatizing to form an sp2 hybridized stereocenter (Scheme 4.1-1). The successful addition of 

2,4-dimethylpyrrole in the hydroarylation of 1,3-phenybutadiene and 1,3-cyclohexylbutadiene 

observed in Section 2.5 proved that heterocycles could be utilized in conjunction with cationic 

CDC-Rh(I) catalysts. The goal was to substitute a stable derivative of furan-2-ol as the arene 

nucleophile such that reaction would form the butenolide product rather than the furan. 

Butenolides are found in many natural products and a catalytic method for their synthesis would 

be a useful contribution.1–3  

                                                
4  The work described in this chapter is currently unpublished and is being prepared for 
submission. M. J. Goldfogel discovered the reaction and ran all catalytic reactions. C. C. Roberts 
synthesized some of the PhCDC-Rh–styrene complex used for initial reaction development. 
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Scheme 4.1-1: Hydrofunctionalization with arene nucleophiles to form C-C sp3-sp3 hybridized 

bonds. 

4.1.1: Literature Examples of Hydroalkylation with Silyl Enol Ethers 

The direct functionalization of olefins is one of the most enabling classes of chemical 

transformations in organic synthesis4–6 and benefits from the commercial availability of many 

olefins substrates.7 A subgroup of these reaction types is catalytic hydroalkylation involving the 

net C–H addition across the unsaturated C–C double bond to form a C-C sp3-sp3 hybridized 

bond. Hydroalkylation has the potential to diastereoselectively generate vicinal stereogenic 

centers from carbon nucleophiles.8 Many thermally enolizable carbon nucleophiles have been 

employed to catalytically generate useful C-C bonds with Cu, Ag,9 Au,10–16 Pd,17–26 Pt,17,25,27 Rh,28–

31 Ru,32 and Lewis acid33–45 catalysts, but comparatively few examples of hydroalkylation with 

organometallic46–49 or enolate50–55 nucleophiles exist. This is a significant limitation in current 
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methods for hydroalkylation as a relatively small subset of carbon nucleophiles are thermally 

enolizable. The importance of enolate and enolsilane carbon nucleophiles has been extensively 

demonstrated by the Aldol56–59 and Mukaiyama-Aldol60–64 reactions, but translation to 

hydroalkylation has lagged. A few excellent examples exist for the catalytic addition of silyl enol 

ethers to Michael acceptors,65,66 but these reactions are still relatively unexplored and, to our 

knowledge, there are no examples of the addition of silyl enol ethers to unactivated olefins. 

4.1.2: Proposed Extension to Enolate Nucleophiles for Hydroalkylation 

We recently explored the use of a cationic CDC-Rh(I) catalyst for the diastereoselective 

hydroalkylation of dienes with thermally enolizable oxazolone nucleophiles31 and are interested 

in expanding this new class of tridentate ligands to additional C-C bond forming reactions. Silyl 

enol ethers can act as surrogates for enolate nucleophiles and the development of a catalytic 

diene hydroalkylation with these structures would provide access to a much larger pool of carbon 

nucleophiles than is currently possible with enols; unlike thermally enolizable carbon 

nucleophiles, silyl enol ethers are minimally constrained by the acidity of the position alpha to 

the carbonyl (Scheme 4.1.2-1). Extension of CDC-Rh catalyzed hydroalkylation to include 

additions with silyloxyfuran nucleophiles65 will allow for the formation of butenolides, which are 

common motifs in many natural products.1–3 The proposed diastereoselective synthesis of allylic 

butenolide products would provide a useful synthetic method and expand the applications of 

underexplored carbodicarbene ligands in organometallic catalysis. 

R
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O
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R2

R O

OR

+
(CDC)-Rh(I) complexR1

R2 ROH
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Scheme 4.1.2-1: Proposed diastereoselective hydroalkylation of 1,3-dienes with silyloxyfurans. 

4.2: Discovery of Diene Hydroalkylation with Silyloxyfuran Nucleophiles 

 Previously developed reactions provided conditions for the hydrofunctionalization of 

diene electrophiles through a common catalytic intermediate 2 (Scheme 3.1-2), which left the 

challenge of selecting a furan nucleophile that would provide the desired reactivity. This 

transformation is nominally an enolate addition and contrasts with the enol additions of 1,3-

pentandeione and oxazolones discussed in Sections 3.2 and 3.3. The previously discussed 

hydroalkylations relied on thermal tautomerization to generate a carbon π-nucleophile, but 

furanone, the parent nucleophile to the proposed furan hydroalkylation, cannot tautomerize 

thermally. Instead, the enolate form must be generated by deprotonation with a strong base and 

trapping the resulting oxyanion with a protecting group (eg: “O-X” in Scheme 4.1-1b). The 

majority of known enolate hydroalkylation reactions are derived from silyl protected enols that 

deprotect in situ to generate the anionic nucleophile (see Section 3.1.1.2). These literature 

examples were used as precedent for the application of silyl enol ethers to form allylic butenolide 

products from diene hydroalkylation. 

4.2.1: Reaction Screening to Identify a Furan Nucleophile 

 As with previous screens to discover new nucleophiles for the hydroalkylation of dienes, 

test reaction were performed using 1,3-phenylbutadiene and PhCDC-Rh-styrene as catalyst. 

Numerous Mukaiyama-Aldol60–64 reactions have been published that use 2-trimethylsilyloxyfuran 

(TMSO-furan) as an effective carbon nucleophile and reaction screens were run using this 

readily synthesized substrate (Table 4.2.1-1).67 An alcohol additive was necessary to protonate 

the anticipated Rh-alkyl bond formed after furan addition in order to release the product and 
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regenerate the catalyst. This additive would also sequester the silyl byproducts generated from 

the deprotection of the TMSO-furan nucleophile.68 However, we soon realized that deprotection 

occurred too readily at elevated temperatures with small alcohols. The reaction with 1 equivalent 

of MeOH and 5 mol% of LiBF4 as the Lewis acid co-catalyst failed to provided 50 at 60 °C 

while completely consuming the TMSO-furan to generate furanone (Entry 1). The reaction was 

repeated with larger alcohols to slow the rate of desilylation, but complete deprotection was still 

observed over the course of the reaction; using t-BuOH as the alcohol additive 50 was produced 

in 4% NMR yield (Entry 2). Decreasing the temperature from 60 °C to 40 °C slowed the 

desilylation to the point that 18% TMSO-furan was recovered, but the conversion to 50 

decreased to just 1% (Entry 3). Switching the Lewis acid co-catalyst from LiBF4 to LiBArF
4 

slightly improved the reaction by increasing the conversion to 50 to 10%, but the TMSO-furan 

reagent was clearly not an efficient source of the furan enolate. Despite extensive additional 

efforts to screen various solvents, alcohol additives, additive loadings, and temperatures, the best 

result obtained with TMSO-furan as the nucleophile is shown in Entry 5 where 50 was obtained 

in 12% NMR yield using sterically hindered triphenylsilanol (Ph3SiOH) as the proton source at 

40 °C. 

Entry NMR Yield (%)

1

2

3

4

5

6

0

4

1

10

12

0

PhCDC-Rh-Styrene (5 mol %)
Activator (mol %)
Alcohol (equiv)

PhCl (1.0 M), Temp, 18 h

Ph
+

O

OOTMS

O

Me

Ph

Temp (°C)

60

60

40

60

40

60

LiBF4; 5.0

LiBF4; 5.0

LiBF4; 5.0

LiBArF
4; 5.0

LiBF4; 5.0

LiBF4; 5.0

Activator; mol %Alcohol; equiv

MeOH; 1.0

t-BuOH; 1.0

t-BuOH; 1.0

t-BuOH; 1.0

Ph3SiOH; 1.0

-

TMSO-furan
50
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Table 4.2.1-1: Reaction screening with 2-trimethylsilyloxyfuran to yield the allylic butenolide 

50. 

 Despite the low conversions and complete consumption of the starting material, these 

results proved that hydroalkylation could be accomplished using a silyl enol ether and alcohol to 

generate the required enolate nucleophile in situ. This served as proof of concept, but we were 

concerned that the reaction might be occurring through a hydroarylation followed by a silyl 

deprotection rather than a formal addition of 2-furanolate. To test this, the reaction was run 

without the alcohol additive (Table 4.2.1-1). Arylation should occur readily under these 

conditions as the silyl deprotection is unnecessary for rearomatization to the sp2 hybridized 

carbon and a similar reaction with 2,4-dimethylpyrole occurs readily.69 No conversion to 50 was 

observed, which suggests that reaction is occurring through the enolate nucleophile or through 

concurrent addition/deprotection of the silyl enol ether (Entry 6).  

 The instability of TMSO-furan was preventing high conversions to the desired allylic 

butenolide products. Increasing the size of the alkyl substituents on the silanol protecting group 

from trimethylsilyl (TMS) to tert-butyldimethylsilyl (TBS) was used to improve thermal stability 

and decreases the rate of desilylation.70 Initial attempts at optimizing the reaction with 2-tert-

butyldimethylsilyloxyfuran (TBSO-furan) are shown in Table 4.2.1-2. A screen of alcohol 

additives revealed that t-BuOH was the most effective, although there was little difference 

between it and i-PrOH; the use of MeOH, i-PrOH, t-BuOH, and t-AmylOH generated in 50 in 

<2%, 8%, 10% and 3% respectively (Entries 1-4). The anticipated reduced rate of silyl 

deprotection for the more stable TBS protecting group was born out as the larger alcohols 

returned a portion of the TBSO-furan starting material. Various temperatures were screened and 

we observed that lower reaction temperatures decreased yields while higher temperatures had 
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little effect; reaction at 45 °C gave 1% 50 (Entry 5), whereas the same reaction at 80 °C gave 

12% (Entry 6). The reaction at higher temperature did completely destroy the furan nucleophile, 

which suggests that the catalyst is loses reactivity prior to complete consumption of the TBSO-

furan substrate. In an effort to improve catalytic activity, we screened a series of Lewis acidic 

co-catalysts and observed that both LiPF6 and AgF were slightly more active than LiBF4; 

catalysis with LiPF6, LiBArF
4, AgF, and CuCl generated 50 in 12%, 0%, 12%, and <2% yields 

(Entries7-10). Despite finding reaction conditions that returned a portion of both the diene and 

furan starting materials, the reaction could not be coaxed into providing more than a single 

catalytic turnover. 

Entry NMR Yield (%)

1

2

3

4

5

6

7

8

9

10

<2

8

10

3

1

12

12

0

12

<2

PhCDC-Rh-Styrene (5 mol %)
Activator (mol %)
Alcohol (equiv)

PhCl (1.0 M), Temp, 18 h

Ph
+

O

OOTBS
O

Me

Ph

Temp (°C)

60

60

60

60

45

80

60

60

60

60

LiBF4; 5.0

LiBF4; 5.0

LiBF4; 5.0

LiBF4; 5.0

LiBF4; 5.0

LiBF4; 5.0

LiPF6; 5.0

LiBArF
4; 5.0

AgF; 5.0

CuCl; 5.0

Activator; mol %Alcohol; equiv

MeOH; 1.0

i-PrOH; 1.0

t-BuOH; 1.0

t-AmylOH; 1.0

t-BuOH; 1.0

t-BuOH; 1.0

t-BuOH; 1.0

t-BuOH; 1.0

t-BuOH; 1.0

t-BuOH; 1.0

TBSO-furan
50

 

Table 4.2.1-2: Screening the effect of modifying the alcohol additive, temperature and Lewis 

acid on hydroalkylation with 2-tert-butyldimethylsilyloxyfuran. 

 The continued poor conversions to 50 and the rapid deprotection of the furan to the 

furanone led to the conclusion that the catalyst was participating in competing pathways vying 

for the silyloxyfuran substrate (Scheme 4.2.1-3). The desired hydroalkylation occurs when the 
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CDC-Rh(I) catalyst binds the diene and activates it towards addition by the silyl enol ether. 

However, if the silyloxyfuran outcompetes the diene for binding to the catalyst, the electron poor 

Rh center can pull electron density out of the bound furan and catalyze unproductive desilylation 

to furanone and silanol. Furthermore, the catalyst does not remain active throughout the reaction, 

as the conversion to 50 does not correlate with the amount of returned TBSO-furan. 

OSiR3
O

O

O

Me

Ph
O

O
ROH

Unproductive Pathway Productive Pathway

OSiR3
O

[Rh]

(CDC)Rh (CDC)Rh

R3SiOH [Rh]

Ph

Ph

 

Scheme 4.2.1-3: Competing catalytic pathways in the hydroalkylation of 1,3-phenylbutadiene 

with a silyloxyfuran nucleophile. 

 Additional screening was undertaken in an attempt to favor hydroalkylation over 

unproductive Rh-catalyzed desilylation (Table 4.2.1-4). i-PrOH was used because it showed 

comparable reactivity to t-BuOH (Table 4.2.1-2, Entries 2 and 3) and further optimizations with 

t-BuOH were beginning to show diminishing returns. Additionally, LiPF6 was used in place of 

LiBF4 since it showed marginally better activity and can be weighed more accurately on small 

scale. A series of solvents with varying polarity were screened and the reduced polarity of 

toluene gave improved reactivity; reaction with chlorobenzene (PhCl), benzene (PhH), toluene 

(PhMe), acetonitrile (MeCN), and diethyl ether (Et2O) provided 50 in 12%, 13%, 21%, and 0%, 

respectively (Entries 1-5). The loading of LiPF6 was reduced to 2.5% on the suspicion that an 

excess of Lewis acid might favor desilylation. This resulted in a modest increase in conversion to 

26% yield, and 8:1 diastereoselectivity (Entry 6). The improved conversion allowed for the 

accurate determination of diastereoselectivity through NMR spectroscopy and we were pleased 

to discover that hydroalkylation was modestly selective for a single diastereoisomer. Doubling 
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the equivalents of TBSO-furan provided the best conversion to 50 in 36% yield, 10:1 dr (Entry 

7).  

Entry NMR Yield (%)

1

2

3

4

5

6

7a

12

13

21

0

0

26

36

PhCDC-Rh-Styrene (5 mol %)
LiPF6 (mol %)

i-PrOH (1.0 equiv)

Solvent (1.0 M), Temp, 18 h

Ph
+

O

OOTBS
O

Me

Ph

PhCl; 1.0

PhH; 1.0

PhMe; 1.0

MeCN; 1.0

Et2O; 1.0

PhMe; 1.0

PhMe; 1.0

Solvent; M

TBSO-furan
50

LiPF6; 5.0

LiPF6; 5.0

LiPF6; 5.0

LiPF6; 5.0

LiPF6; 5.0

LiPF6; 2.5

LiPF6; 2.5

Activator; mol % dr

-

-

-

-

-

8:1

10:1

aThe reaction was run with two equivalents of TBSO-furan and i-PrOH.  

Table 4.2.1-4: Searching for improved reactivity with silyloxyfuran nucleophiles by modifying 

solvent, Lewis base loading and the equivalents of nucleophile. 

 Despite the significant improvement in conversion compared to the previous reaction, 

options for meaningful changes to the reaction conditions were being rapidly exhausted. As such, 

further modifications to the silyl protecting group were explored in the hope that a different 

group might allow for improved reactivity. A series of protected silyloxyfuran nucleophiles were 

synthesized and their reactivity explored. Brief optimizations of the temperature and alcohol 

additive are shown in Table 4.2.1-5 and the highest conversions obtained with each protected 

furan nucleophile listed. Three larger silyl protecting groups, triisopropylsilyl- (TIPS), tert-

butyldiphenylsilyl- (TBDPS), and tris(trimethylsilyl) [Si(TMS)3] were synthesized and tested in 

hydroalkylation (Entries 1-3). TIPS proved to be the most active providing 50 in 33% NMR 

yield and 4:1 dr, whereas TBDPS and Si(TMS)3 gave 15% and 13% yields, respectively. 2-

triisopropylsilyloxyfuran (TIPSO-furan) was the most successful nucleophile and formed 
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vicinal stereocenters with modest diastereoselectivity. However, this result was eclipsed by the 

more stable benzoyl (Bz) protected nucleophile, which allowed for the formation of 50 in 58% 

yield, albeit with only 2:1 dr (Entry 5). The methyl ether proved too stable for in situ formation 

of the reactive enolate and failed to react to form 50 (Entry 5). The results presented here were 

used to select TIPSO-furan and furan-2-yl benzoate (BzO-furan) as the most promising enolate 

nucleophiles for additional screening. 

Entry NMR Yield (%)

1

2

3

4

5

33

15

13

58

0

PhCDC-Rh-Styrene (5 mol %)
LiPF6 (2.5 mol %)
Alcohol (1.0 equiv)

PhMe, Temp, 18 h

Ph
+

O

OOG

O

Me

Ph

TIPS

TBDPS

Si(TMS)3

Bz

Me

G

50

MeOH; 1.0

H2O; 1.0

H2O; 1.0

MeOH; 1.0

H2O; 1.0

Alcohol; equiv dr

4:1

-

-

2:1

-

60

80

50

60

60

Temp (°C)

 

Table 4.2.1-5: Screening various protecting groups on 2-furanol as nucleophiles for 

hydroalkylation. 

4.3: Diene Hydroalkylation with Benzoyl-Derived Furan Nucleophiles 

The result with furan-2-yl benzoate (BzO-furan) eclipsed any previously observed 

conversions and offered a new manifold for optimization. However, the low diastereoselectivity 

provided by the reaction dramatically reduced the synthetic value and encouraged further 

optimization.  

4.3.1: Optimization of the Addition of Benzoyl-furans to 1,3-Phenylbutadiene 
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Modifications to the alcohol additive and temperature were undertaken in the interest of 

increasing diastereoselectivity. Previously MeOH provided 50 in 58% yield as a 2:1 mixture of 

diastereoisomers and the same reaction with water (H2O) resulted in a far less selective reaction 

and complete consumption of the BzO-furan substrate and diene; reaction with H2O gave 50 in 

20% yield, 1:1 dr (Table 4.3.1-1, Entry 2). Hydrolysis of the benzoyl protecting group with 

MeOH generates an ester byproduct, whereas hydrolysis with H2O forms benzoic acid. The in 

situ generation of acid is extremely detrimental to diene hydrofunctionalization and can result in 

oligomerization side reactions (see Section 3.3.2). It is therefore necessary to use an alcohol 

additive that has only one available proton. Hydroalkylation of 1,3-phenylbutadiene with BzO-

furan proceeded with i-PrOH and t-BuOH to a lesser degree than MeOH; 50 is formed in 22% 

yield, 5:1 dr and 23% yield, 2:1 dr with i-PrOH and t-BuOH. It is notable that i-PrOH did 

improve the diastereoselectivity of the reaction, but this was not pursued due to the poor yield. 

Entry NMR Yield (%)

1

2

3

4

5

6

7

58

20

22

23

63

71

48

PhCDC-Rh-Styrene (5 mol %)
LiPF6 (5.0 mol %)

Alcohol (equiv)

PhMe, Temp, 18 h

Ph
+

O

O

Me

Ph

50

MeOH; 1.2

H2O; 1.2

i-PrOH; 1.2

t-BuOH; 1.2

Menthol; 1.2

MeOH; 6.0

MeOH; 1.2

Alcohol; equiv dr

2:1

1:1

5:1

2:1

4:1

1:1

3:1

60

60

60

60

60

60

50

Temp (°C)

O

O
Ph

O

BzO-furan
(1.2 equiv)

 

Table 4.3.1-1: Alcohol and temperature screens for benzoyl-protected furan additions to 1,3-

phenylbutadiene. 
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Initial results with menthol were promising, yielding 50 in 63% NMR conversion and 4:1 

dr, however attempts to repeat this reaction were inconsistent. This irreproducibility is ascribed 

to miscibility issues associated with menthol in toluene, as the heavier alcohol makes up a larger 

fraction of the solvent mixture. Further screening was done using MeOH for its consistency and 

high conversion. Increasing the equivalents of the alcohol improved converstion at the cost of 

diastereoselectivity; 50 was formed in 71% yield with 1:1 dr. As such, the 1:1 stoichiometry 

between the furan nucleophile and alcohol additive was maintained. The effect of decreasing the 

temperature was explored and reaction at 50 °C gave a 48% yield of 50 with 3:1 dr. This slight 

increase in diastereoselectivity was encouraging as it suggests modification to the reaction 

conditions might provide higher selectivity. 

Steric and electronic modification to the benzoyl protecting group were explored to 

improve conversion and selectivity (Scheme 4.3.1-2, unpublished results). Electronic 

modifications to the aryl ring of the benzoyl group dramatically affected the selectivity of diene 

hydroalkylation. When the para-chlorobenzoyl furan 51 was used the regioselectivity of the 

transformation decreased and 50 was produced in 40% yield as a 3:1 mixture of the γ:α 

regioisomers with 2:1 dr for the γ isomer. The decreased conversion and selectivity are likely in 

part due to the increased rate of hydrolysis observed for 51. The opposite was observed for the 

para-methoxybenzoyl furan 52, which hydrolyzed slowly even at raised temperatures (70 °C) 

and allowed for a 73% conversion to product in 3:1 dr as a single regioisomer. This would prove 

to be the best reaction obtained using a benzoyl protected furan nucleophile.  

Modifications to the sterics of the benzoyl protecting group proved detrimental to both 

the conversion and diastereoselectivity of the transformation; hydroalkylation with 53 and 54 

generated 50 in 58% yield, 2:1 dr and 37% yield, 1:1 dr, respectively. Although these reactions 
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were completely selective for a single regioisomer, they did not improve upon the previous result 

with BzO-furan or 52. The reactivity of acyl protecting groups was also explored and the pivlate 

protected furan 55 reacted to provide 50 in 38% yield as a single regioisomer in 2:1 dr. Similarly, 

the amino acid derived substrate 56 gave 37% yield as a 1:1 mixture of diastereomers. This 

substrate was tested in the hope that the enantiopure stereocenter of 56 would allow relay 

enantiocontrol to the newly formed vicinal stereocenters, but the reaction proceeded to provide 

the products in 0% ee. 
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Scheme 4.3.1-2: The effect of modifying the acyl protecting group on the conversion and 

selectivity of PhCDC-Rh-styrene catalyzed hydroalkylation (unpublished results). 

 The cationic CDC-Rh(I) catalyzed hydroalkylation of 1,3-phenylbutadiene to form 50 

occurred with good conversion when 52 was used as the source of the furan nucleophile. 

However, the diastereoselectivity of the transformation was suboptimal and must be improved 

further before publication was considered. Any modifications of the protecting group failed to 
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significantly improve the diastereoselectivity of the transformation, although a drop in 

regioselectivity was observed when an electron poor benzoyl group was employed. We opted to 

briefly explore the substrate scope to observe how the efficiency and selectivity of the reaction 

adapted to electronic and steric modifications of the diene. 

4.3.2: Reaction Scope of Diene Hydroalkylation with Benzoyl-Furan Nucleophiles 

 The enolate hydroalkylation of terminal dienes with furan nucleophiles forms valuable 

allylic butenolide natural products and generates vicinal stereocenters. The diastereoselectivity of 

hydroalkylation with oxazolone nucleophiles was one of the strengths of that method (see 

Section 3.3), but additions with benzoyl furans proved far less selective. The lackluster 

diastereoselectivity obtained with BzO-furan and 52 for 50 was troubling, but other diene 

electrophiles might be more selective and provide a better understanding of the transformation. 

As such, a simple substrate scope was tested to observe how aryl and alkyl dienes with various 

functional groups would behave with the PhCDC-Rh-styrene catalyst. 

 The preliminary substrate scope shows how BzO-furan and 52 react with aryl and alkyl 

dienes (Scheme 4.3.2-1, unpublished results). Substrate 57 demonstrated that the selectivity of 

the reaction could not be easily predicted. During studies on the addition of oxazolones to dienes, 

the inclusion of a methyl group in the ortho-position of the aryl diene had improved region- and 

diastereocontrol. However, this did not translate to enolate hydroalkylation as 57 was formed in 

34% yield as a 1:2 mixture of diastereomers. Minor changes to the diene significantly decreased 

conversion and NMR analysis of the hydroalkylation of 2-methyl-1,3-phenylbutadiene showed 

that the reaction generated the opposite diastereomer compared to previous reactions forming 50 

(see Supporting Info). Similar stereoselectivity was obtained in the formation of 58, which was 

synthesized in 45% yield as a similar 1:2 mixture of diastereomers. To further confuse the 
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situation, hydroalkylation formed 59 with the same major diastereomer as 50 in 43% NMR yield 

and 2:1 dr. These diastereoselectivities were independent of the identity of the benzoyl protecting 

group (ie: Ph versus p-MeO-Ph). Further attempts to explore the scope of alkyl dienes, such as 

60, 61, and 62, failed to provide any of the allylic butenolide products 
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Scheme 4.3.2-1: Diene scope of CDC-Rh(I) catalyzed hydroalkylation with benzoyl furan 

nucleophiles (unpublished results). 

 The substrate scope of the addition of benzoyl furans to dienes was explored as a method 

for vetting the reactivity and selectivity of our optimized reaction conditions. Overall, the 

reaction was not sufficiently tolerant of modifications to the diene substrate scope. Any changes 

to the diene resulted in reduced conversion and diastereoselectivity. Diastereoselectivity did not 

improve beyond a 2:1 ratio of products and the favored diastereomer appeared to be substrate 

specific. In order for this reaction to be synthetically useful, higher selectivities would need to be 
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obtained and a model for predicting the favored diastereoisomer developed. To solve these 

challenges we began to explore modifications to the PhCDC-Rh-styrene catalyst. 

4.4: Synthesis of Sterically and Electronically Modified CDC-Rh(I) Catalysts 

 The results of our experiments with benzoyl- and silyloxyfuran proved that the addition 

of enolates to dienes could be catalyzed by PhCDC-Rh-styrene to generate C-C sp3-sp3 

hybridized bonds and generate allylic butenolide products. These compounds are relevant to the 

synthesis of many natural products that incorporate butenolides.1–3 However, the efficiency and 

stereoselectivity obtained with PhCDC-Rh-styrene as a catalyst was insufficient for publication 

and initial optimization of the reaction conditions failed to overcome these challenges. 

Modifying the catalyst to improve reactivity and selectivity could solve problems with this 

potentially useful transformation. The process of developing electronically and sterically 

modified catalysts was begun as soon as the diazepinium ligand scaffolds were discovered, but 

this was the first instance where it was necessary to move a reaction beyond proof-of-concept. 

4.4.1: Goals for Synthetic Modifications to the Carbodicarbene Ligand Scaffold 

 The diazepinium ligand scaffold used in the PhCDC-Rh-styrene complex was designed 

to be modular with the phosphine substituents serving as handles for tuning the steric and 

electronic properties of the ligand (Scheme 4.4.1-1). Such modifications had not been necessary 

up to this point and, despite many ligand syntheses (vida infra), catalyst modifications had not 

improved catalytic activity. Hence, ligand syntheses beyond PhCDC-H and iPrCDC-H have not 

been discussed for the previously developed hydrofunctionalizations. The phosphine substituents 

provide excellent sites for catalyst modification as these groups are adjacent to the reactive metal 

center and can provide substantial steric control over any bound olefins. Furthermore, the 
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electron-withdrawing or donating properties of these substituents can influence the electron 

density of the phosphine ligands. This directly impacts the σ-donation from the phosphine 

ligands to the Rh metal and, subsequently, the electron density at the metal center. Since its 

application in hydroamination (see Chapter 1), iPrCDC-H consistently exhibited reduced activity 

compared to PhCDC-H. As such, more effort was spent developing ligand modifications that 

incorporate aryl phosphine substituents rather than alkyl phosphines under the assumption that 

this trend would remain valid for the modified catalyst structures. The carbon backbone of the 

diazepinium scaffold offers several sites for catalyst modification, however these positions are 

pro-chiral and would complicate the development an achiral catalyst for a diastereoselective, 

rather than enantioselective, reaction. 
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P P

R R
R RRh

Tuneable Phosphine 
Substituents

R

steric interactions influence 
the bound alkene

σ-donation 
influences 
the electron 
density at Rh

N N

NN
P P

BF4 N N

NN
P P

BF4

PhCDC-H iPrCDC-H

Studied Ligand Scaffolds:

Strategies for Ligand Modification:

 

Scheme 4.4.1-1: Strategies for tuning the activity of the diazepinium ligand scaffold. 

During many ligand syntheses several trends have become apparent: (i) Electron rich aryl 

phosphine substituents tend to result in more stable ligand scaffolds. This is likely due to the 

increased bond strength of the P-N bond when the phosphine has a greater electron density. (ii) 

The installation of electron poor phosphines commonly requires forcing reaction conditions with 
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anionic nucleophiles, whereas more electron rich phosphines benefit from using uncharged 

nucleophiles. (iii) Large alkyl substituents or the inclusion of any ortho-substituents prevents the 

tridentate scaffold from coordinating to the metal center. (iv) The more electron poor CDC-Rh 

complexes are often unstable to small alkoxide bases, but can usually tolerate highly hindered 

bases that cannot reach the occluded phosphine atoms. We will begin our discussion with several 

failed syntheses that reveal many of the challenges in forming modified diazepinium ligands. 

4.4.2: Early Attempts at Synthesizing Modified Ligand Scaffolds with Increased Sterics 

 Some of the earliest efforts in ligand synthesis were made during the study of 

intramolecular hydroamination with iPrCDC-Rh-Cl. It was proposed that a ligand bearing a more 

hindered alkyl phosphine could assist in preventing catalyst inhibition from tightly bound amine 

nucleophiles. The di-tert-butyl phosphine analogue of iPrCDC-H could be readily synthesized 

using a strong base to form the doubly deprotonated diazepinium anion (Scheme 4.4.2-1). Benzyl 

potassium (BnK) was particularly useful as a titrating base; the color change from bright red to a 

dull white heterogeneous mixture in THF signaled that the potassium amide of the diazepinium 

backbone was formed. These forcing conditions proved necessary in the synthesis of 63, and 

many other ligands, as the large size of tert-butyl substituents prevented the formation of the P-N 

bonds with neutral bases (ie: triethylamine). The necessity for forcing conditions was a prelude 

to the challenges encountered metallating 63. Reactions in refluxing THF failed to form the 

tridentate Rh complex, instead returning unreacted 63. Refluxing in toluene also failed to 

accomplish the desired metallation and the ligand was abandoned.  
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Scheme 4.4.2-1: Attempted synthesis of a tert-butyl phosphine substituted CDC-Rh complex. 

 The attempted metallation of 63 exemplifies the reluctance of sterically encumbered 

phosphine substituents to bind to Rh. The importance of sterics in these ligand syntheses is 

further evidenced in the attempted formation of 64 and 65. The increased sterics of an ortho-tolyl 

group prevented the formation of the P-N bond in 64, which demonstrates how increasing the 

size of the aryl substituents can destabilize the ligand structure (Scheme 4.4.2-2). The failed 

reactivity of ortho-substituted arenes is a general limitation for the phosphine substituents.  

The synthesis of 65 shows how sterics can affect metallation with hindered phosphine 

substituents (Scheme 4.4.2-2). 65 could be synthesized analogously to PhCDC-H in a modest 

37% yield after purification by column chromatography. Many electron rich aryl phosphines are 

stable to silica gel chromatography, which greatly simplifies their synthesis. The reduced yield is 

indicative of partial conversion to the bis-phosphorylated ligand. This is commonly observed for 

more challenging P-N bond formations where it is common to obtain the product as a mixture 

with the mono-phosphorylated diazepine. This can be partially ameliorated by increasing the 

equivalents of phosphine chloride in the reaction. The influence of the increased steric 

contributions of the trisubstituted arenes in 65 was not observed until the attempted formation of 

the corresponding CDC-Rh complex. The increased congestion of the Rh complex weakens the 

P-N bonds of the ligand and causes 65 to decompose upon addition of KHMDS. Although 

hindered bases are usually tolerated by CDC-Rh(I) complexes, any steric or electronic effects 

that reduce the strength of the P-N bond decrease the stability of the catalyst. The catalyst 
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formation with 65 is indicative of later syntheses as combining the diazepinium ligand with a 

source of Rh allows for partial formation of the octahedral Rh-hydride. Decomposition only 

occurs when base is used to convert the complex from Rh(III) to square planar Rh(I).  
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Scheme 4.4.2-2: Additional examples of syntheses where the sterics of the phosphine 

substituents prevented ligand and/or complex formation. 

The attempted synthesis of 65 serves is an excellent example of how the substitution 

pattern and electronics of the phosphine substituents effect catalyst formation. The electron rich 

arene assists in the initial formation of the P-N bond and allows for purification using column 

chromatography. As such, 65 can be readily synthesized despite being a trisubstituted arene. 

However, its subsequent use as a ligand is prevented by sterics and results in fragmentation of 

the P-N bond. 

4.4.3: Synthesis of Achiral CDC-Rh(I) Complexes with Modified Phosphine Substituents 

 One of the goals of developing new catalysts was to increase the reactivity of the CDC-

Rh(I) complexes. It was predicted that a more electron poor Rh center would increase the 
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activation of a bound π-system. Complexes with more electropositive Rh centers could be 

synthesized by installing electronegative functional groups on the phosphines, which would 

reduce the electron density of the phosphorus atoms, reduce σ-donation to the Rh center, and 

weaken the P-N bonds. Several electron poor Rh complexes were synthesized using this strategy, 

but the reduced electron density at the Rh center had unintended consequences on complex 

synthesis; the insertion into the diazepinium C-H bond proved more challenging with less 

electron rich Rh centers. This is presumably due to the increased activation barrier for oxidative 

addition in electron poor metal complexes.71 Increasing the reaction temperature for the 

formation of the Rh-hydride could often solve this issue. 

 The synthesis of the para-chlorophenylphosphine substituted diazepinium scaffold 66 

could be accomplished through the anionic method developed during the formation of 63 

(Scheme 4.4.3-1). Deprotonation of the diazepinium salt with BnK at room temperature 

generated the amide anion, which efficiently added to bis(4-chlorophenyl)chlorophosphine at -20 

°C to generate 66 in 80% yield. The purification of ligands synthesized through this method is 

challenging, as they are not stable to aqueous conditions or column chromatography. Purification 

can often be accomplished using solvent washes and/or triturations, but it is not uncommon for 

the ligands synthesized via these methods to be slightly contaminated with the mono-phosphine 

products formed from incomplete phosphorylation. Formation of the CDC-Rh complex 67 

required elevated temperatures (50 °C) and the use of di-μ-chlorotetraethylene dirhodium(I) 

([Rh(ethylene)2Cl]2), when substitution of the cyclooctadiene ligand of chloro(1,5-

cyclooctadiene)rhodium(I) dimer ([Rh(cod)Cl]2) proved challenging with the less electron rich 

phosphine ligands of 67. The addition of a basic additive to deprotonate the Rh-hydride proved 

unnecessary as the product was formed without additional base after heating at 50 °C. This 
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appears to be common to the synthesis of electron poor CDC-Rh complexes (vide infra). 

[Rh(ethylene)2Cl]2 has proven to be a more reliable source of Rh for metallations of modified 

diazepinium ligand scaffolds. 

 

Scheme 4.4.3-1: Synthesis of the para-chlorophenylphosphine derivative of the CDC-Rh(I) 

complex. 

The 3,5-bis(trifluoromethyl)phenylphosphine derived ligand 68 could be synthesized in a 

manner similar to 66, but in lower yield and purity (Scheme 4.4.3-2). The more electron 

withdrawing bis(trifluoromethyl) substituents decreased the efficiency of the P-N bond formation 

and reduced the stability of 68. The ligand could only be formed as a 3:1 mixture of the desired 

bis-phosphine 68 and the mono-phosphine. Additionally, the reduced stability of the P-N bond 

meant that 68 must be stored at -20 °C and used immediately. Metallation could be accomplished 

to form slightly impure 69 in 40% yield and, curiously, did not require the addition of a base to 

deprotonate the hydride and form the square planar Rh(I) complex. The decreased electron 

density at the Rh center appears to increase the acidity of the Rh-hydride to the point that it either 

eliminates spontaneously as HBF4 or is deprotonated by an adventitious base (ie: decomposed 

diazepinium impurities). 



	   176	  

 

Scheme 4.4.3-2: Synthesis of the 3,5-bis(trifluoromethyl)phenylphosphine derivative of the 

CDC-Rh(I) complex. 

In order to have a point of comparison for the electron poor CDC-Rh complexes 67 and 

69, a ligand with an electron donating methoxy-substituent was synthesized (Scheme 4.4.3-3). 

The electron rich ligand 70 proved to be stable to column chromatography and was isolated in 

61% yield using the neutral P-N bond synthesis developed for PhCDC-H. The synthesis of the 

PhCDC-Rh-Cl complex translated to 71, which was formed in 60% yield by combining 70 and 

[Rh(cod)Cl]2 in THF at room temperature and deprotonating the resulting Rh-hydride with the 

hindered amine base sodium hexamethyldisilazide (NaHMDS).  

N N

N
H

N
H

BF4
N N

N N

BF4

P P

70
61% Yield

column stable

OMeMeO

MeO OMe

1) [Rh(cod)Cl]2;
    THF, rt, 18 h

2) NaHMDS
    THF, rt, 2 h

N N

N N
P P

71
60% Yield

OMeMeO

MeO OMe

Rh
Cl

ClP OMe
2

DCM/Et3N (1:1) 
rt, 18 h

 

Scheme 4.4.3-3: Synthesis of the para-methoxyphenylphosphine derivative of the CDC-Rh(I) 

complex. 

 With several examples of electronically modified achiral CDC-Rh(I) complexes in hand, 

there was renewed interest in synthesizing a catalyst that differed from PhCDC-Rh-Cl sterically 

rather than electronically. The attempted synthesis of a complex derived from 65 showed that 
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this could be challenging, however, the successful synthesis of 69 proved that meta-substitution 

could be incorporated into the phosphine substituents without preventing complex formation. 

Diazepinium salt 72 was synthesized in 56% yield after purification by column chromatography 

using the neutral P-N bond formation method (Scheme 4.4.3-4). This ligand could be applied to 

Rh to generate 73 in approximately 70% yield with a small amount of an unknown impurity. The 

complex could not be further purified due to its increased solubility in non-polar solvents and 

was used in catalytic reactions as formed. 
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Scheme 4.4.3-4: Synthesis of the 3,5-dimethylphenylphosphine derivative of the CDC-Rh(I) 

complex. 

 The last achiral complex synthesis attempted employed heterocyclic furyl- rather than 

phenyl substituents (Scheme 4.4.3-5). Furan rings are both smaller and more electron 

withdrawing than phenyl rings. Since the steric contributions of a phenyl ring cannot be reduced 

without modifying the arene structure, furylphosphine was selected as a counterpoint to the 

larger substituted arenes with the reasoning that a reduction in sterics might prevent clashes 

between the bound diene and/or approaching nucleophile. 73 was readily synthesized in 66% 

yield using the anionic method developed for installing P-N bonds to electron poor phosphine 

atoms. The combination of [Rh(ethylene)2Cl]2 and 73 in chloroform was observed by NMR 

spectroscopy to form the Rh-hydride, however, when sodium methoxide (NaOMe) was added 

the complex decomposed completely. It is possible that a more hindered base (eg: KHMDS) 
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might allow for deprotonation of the Rh-hydride complex, but this synthesis was not pursued 

further due to time constraints and poor catalytic results with other electron poor catalysts (vide 

infra).  
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Scheme 4.4.3-5: Attempted synthesis of the furylphosphine derivative of the CDC-Rh(I) 

complex. 

 In summary, four new achiral CDC-Rh(I) complexes were synthesized that incorporate 

steric and electronic variations in the structure of PhCDC-Rh-Cl (Scheme 4.4.3-6). Challenges in 

ligand and complex stability were encountered throughout the synthesis of 67, 69, 71, and 73 that 

necessitated the development of improved conditions for the formation of the P-N bond and for 

the metallation with Rh. These studies are an important component of our understanding of the 

behavior of diazepinium derived CDC ligands and demonstrate how the electronics and sterics of 

the phosphine effect the complexes formed. These catalysts have since been applied to many 

catalytic hydrofunctionalizations, but only a few of will be discussed in this dissertation. Despite 

the promise of these new structures, none of them have proven to be more useful than the parent 

PhCDC-Rh-Cl for catalysis. 
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Scheme 4.4.3-6: Structures of successfully synthesized CDC-Rh(I) complexes with differentially 

substituted aryl phosphines. 

4.5: Applications of Modified CDC-Rh(I) Complexes to the Hydroalkylation of Dienes 

 The purpose of our efforts in catalyst synthesis was to develop a solution to the poor 

selectivity and reactivity observed in the hydroalkylation of dienes with benzoyl-furan 

nucleophiles. This went hand-in-hand with the broader goal of creating a library of CDC-Rh(I) 

complexes that could be applied to a myriad of hydrofunctionalization reactions and applied to 

reactions outside the purvey of olefin activation. A challenge in applying the new complexes to 

catalytic reactions is that they are formally pre-catalysts. Two chapters of this dissertation 

elapsed before catalyst activation of PhCDC-Rh-Cl with AgBF4 could be fully explained. It 

would be naïve to assume that the catalyst formations of the complexes described in Section 4.4 

are identical to that of PhCDC-Rh-Cl. Furthermore, this approach does not include the fact that 

recent reactions utilize the cationic PhCDC-Rh-styrene complex. Despite these complications, 

the most direct way to learn more about these modified CDC complexes is to apply them to 
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reactions and observe their catalytic activity. As such, the hydroalkylation of 1,3-

phenylbutadiene with BzO-furan will serve as a testing ground for these new complexes. 

Additional reactions (eg: hydroarylation, hydroamination, enol hydroalkylation) have also been 

explored, but will only be discussed in passing as we focus on solving the challenge presented by 

enolate hydroalkylation. 

4.5.1: Screening Electronically Modified CDC-Rh(I) Complexes for the Formation of Allylic 
Butenolides 
 
 The in situ catalyst formation for the complexes shown in Scheme 4.4.3-6 was adapted 

from the synthesis of PhCDC-Rh-styrene using NaBArF
4 and a diene substrate. The reactivity 

differences between PhCDC-Rh-Cl and PhCDC-Rh-styrene have proven that the cationic 

complex is more reactive than the first generation in many respects. In theory this forms the 

cationic CDC-Rh(I) complexes in situ as NaBArF
4 strips the chloride and allow for the desired 

diene to bind the metal center. However, we were unable to validate that catalyst formation was 

occurring efficiently in all cases due to time constraints and minor impurities in the modified 

CDC-Rh(I) complexes. As such, the reactivity of these complexes is judged solely from the 

conversions obtained in catalytic hydrofunctionalizations. 

 One of the major challenges in the furan hydroalkylations described above (vide supra) is 

that the decomposition of the nucleophile is competitive with the rate of product formation. It 

was hypothesized that increasing the electron density at the Rh center would reduce the rate of 

desilylation through electrophilic activation of the furan while maintaining an electropositive 

metal center capable of activating a bound olefin. Hydroalkylation of 1,3-phenylbutadiene was 

explored with both 52 and TIPSO-furan to validate or disprove this hypothesis. Catalyst 

formation with 71 was accomplished by stirring with NaBArF
4 and 1,3-phenylbutadiene to form 
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the catalytic intermediate analogous to 1. Reaction at 70 °C with 52 generated 50 in 3% yield, 

whereas reaction at 50 °C with TIPSO-furan gave a 2% yield (Scheme 4.5.1-1, unpublished 

results). In both of these reactions a portion of the furan starting material was returned, which 

validated the hypothesis that a less electropositive Rh center would decrease desilylation. 

However, the rate of product formation was decreased to an even greater extent and 71 proved to 

be a poor catalyst for the diene hydroalkylation.  
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Scheme 4.5.1-1: Enolate hydroalkylations catalyzed by 71 (unpublished results). 

 The evident failure of an electron rich variant of the CDC-Rh(I) catalysts suggested that a 

solution to the observed reactivity problems might lie in an electron poor catalyst such as 67 or 

69. These catalysts were applied to the formation of allylic butenolide 50 using 52 and TIPSO-

furan, but no reactivity was observed (Scheme 4.5.1-2, unpublished results). Furthermore, the 

starting materials were completely consumed, indicating the relative increase in electrophilicity 

of the Rh center compared to PhCDC-Rh-styrene. This could explain the failure of these 

catalysts as the byproducts generated from the desilylation likely inhibit catalysis (see Section 
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4.6). Alternatively, the poor reactivity exhibited by 67 and 69 may be indicative of incomplete 

catalyst activation, since the chloride ligand will be more difficult to abstract from an electron 

poor Rh complex. Although these results were in no way optimized, the complete lack of 

reactivity for reactions that previously generated 50 in modest to good conversions led us to seek 

a catalyst that could improve the diastereoselectivity of the transformation while maintaining the 

activity observed with 52 and PhCDC-Rh-styrene.  

67 (5 mol %), NaBArF
4

 (5 mol%);
LiPF6 (5.0 mol %)
MeOH (1.2 equiv)

PhMe, 70 °C, 18 h

Ph
+

O

O

Me

Ph

50

O

O
O
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(1.2 equiv)

α

β
γ

δ OMe

0% Yield
-:- dr
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O
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β
γ
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Scheme 4.5.1-2: Enolate hydroalkylations catalyzed by 67 and 69 (unpublished results). 

4.5.2: Screening Sterically Modified CDC-Rh(I) Complexes for the Formation of Allylic 
Butenolides 
 
 The poor reactivity observed with both electron rich and electron poor phosphine 

substituents suggested that the electronics of the PhCDC-Rh complexes are close to optimal for 

hydroalkylation. As such, modified catalysts that incorporated phosphine substituents with 

minimal electronic differences were likely candidates for further catalyst modification. It is 

unlikely that the reactivity of the cationic CDC-Rh(I) catalyst could be substantially improved 
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without electronic modifications, but the selectivity of the hydroalkylation could be addressed 

through steric modifications to the aryl phosphine substituents. The poor diastereo- and 

regioselectivity of the hydroalkylation with BzO-furan was the primary issue preventing its 

application in synthesis, since a synthetically useful conversion of 73% was previously obtained. 

Of the newly synthesized CDC-Rh complexes, 73 should differ in electronics only slightly from 

catalysts derived from PhCDC-H. However, the steric contribution of the methyl substituents 

should significantly impact the binding of the olefin and approach of the nucleophile during C-C 

bond formation. 

 Hydroalkylation catalyzed by 73 was tested with both 52 and TIPSO-furan to determine 

how the inclusion of meta-methyl substituents on the arene rings affected diastereoselectivity 

(Scheme 4.5.2-1, unpublished results). Hydroalkylation of 1,3-phenylbutadiene with 52 at 70 °C 

generated the butenolide 50 in 10% yield as a 10:1 mixture of diastereoisomers. The dramatic 

improvement in diastereoselectivity demonstrates that the sterics on the phosphine substituents 

can be used to control selectivity, but at significant cost to conversion. The same reaction with 

PhCDC-Rh-styrene generated 50 in 73% yield, which demonstrates how minor changes to the 

catalyst and reaction conditions can dramatically reduce activity. A similar reaction with TIPSO-

furan using 2.5 mol% LiPF6 at 60 °C generated 50 in 6% yield and 10:1 dr. This result 

reinforces the above reaction as the catalyst allows for the most diastereoselective transformation 

observed with an enolate nucleophile, yet shows extremely poor conversion to product. 

Furthermore, neither reaction returned the furan starting materials, suggesting that the catalyst 

does not remain active in solution. 
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73 (5 mol %), NaBArF
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Scheme 4.5.2-1: Enolate hydroalkylations catalyzed by 73 (unpublished results). 

 The improved diastereoselectivity obtained with reactions catalyzed by 73 is strong 

evidence for the versatility of the diazepinium ligand framework, but every ligand modification 

explored resulted in decreased reactivity. Our results prove that more stereoselective catalysts 

can be developed using the tridentate ligand framework, however, the loss in reactivity was too 

great to justify the use of 73 over PhCDC-Rh-styrene. Preliminary efforts were undertaken to 

synthesize the styrene complex of 73, but were not pursued as we opted to seek alternative 

solutions to the challenges posed by enolate hydroalkylation.  

These studies proved that the CDC ligands derived from the diazepinium scaffold can be 

tuned by simple modifications to the phosphine substituents. Modified ligands can be 

synthesized in only two-steps from readily available materials and have been successfully 

applied to Rh and several other late transition metals. The application of these ligands to enolate 

hydroalkylation provided insight into their synthesis and, more importantly, into the reactivity 

engendered from changes to the electronics and sterics of the ligand. Although diversification of 
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the diazepinium scaffold is not currently an active vein of research in our laboratory, we hope 

that these studies assist in the application of these unique CDC ligands to new organometallic 

complexes and catalytic reactions. We are excited to see what future uses are found for these 

tridentate ligand scaffolds. 

4.6: Revisiting the Additions of Silyloxyfurans to 1,3-Phenylbutadiene 

 The continued failure to improve the reactivity of diene hydroalkylation with benzoyl-

protected furans suggested that that enolate source might be suboptimal for the formation of the 

desired allylic butenolide products. As stated previously, the low diastereoselectivity was the 

greatest issue with benzoyl-furan nucleophiles and could not be reliable improved via 

optimization of the reaction conditions or selection of the alcohol additive. Only catalyst 

modification allowed for improved diastereoselectivity, but could only be accomplished in 10% 

conversion. Examination of past reactions for the most diastereoselective results showed that 

silyl-protected furan nucleophiles generally provided selectivities ranging from 4:1 to 8:1 dr. 

TIPSO-furan was previously passed over in favor of 52 due to the higher conversion with that 

enolate equivalent, however, the importance of diastereoselectivity led us to return to TIPSO-

furan as a possible solution to our selectivity problems. The goal was to improve reaction 

conversion while maintaining the 4:1 diastereoselectivity shown in Scheme 4.2.1-5. 

4.6.1: Diene Hydroalkylation with Triisopropylsilyloxyfuran 

 Preliminary optimizations of hydroalkylation with TIPSO-furan were performed to 

determine how the reaction responded to changes in the alcohol additive, temperature and 

equivalents of the nucleophile (Table 4.6.1-1, unpublished results). The initial result with MeOH 

at 60 °C gave 50 in 33% NMR yield to a 4:1 mixture of diastereomers (Entry 1). Increasing the 
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equivalents of alcohol reduced conversion slightly to 24%, but did not affect the 

diastereoselectivity (Entry 2). When the reaction temperature was reduced to 50 °C both the 

yield and diastereoselectivity improved and 50 was synthesized in 35% yield, 5:1 dr (Entry 3). 

This result was particularly informative as it also returned 11% of the TIPSO-furan starting 

material, suggesting that higher conversions might be possible. However, when the equivalents 

of TIPSO-furan added to the reaction was doubled, 50 was only formed in 41% NMR yield 

with approximately the same amount of returned TIPSO-furan (Entry 4). The fact that 

conversion to product improved by only slightly while consuming an additional equivalent of the 

furan strongly indicated that the reaction conditions were too forcing and resulted in catalyst 

deactivation. Reaction with a 2:1 ratio of furan to alcohol failed to generate any product, which 

suggests that desilylation in the absence of an alcohol destroys the catalyst. Lastly, the use of a 

smaller alcohol H2O decreased diastereoselectivity to 4:1 while providing 50 in 42% yield. 

Entry NMR Yield (%)

1

2

3

4

5

6

33

24

35

41

0

42

PhCDC-Rh-Styrene (5 mol %)
LiPF6 (5.0 mol %)

Alcohol (equiv)

PhMe (1.0 M), Temp, 18 h

Ph
+

O

O

Me

Ph

50

MeOH; 1.0

MeOH; 2.0

MeOH; 1.0

MeOH; 2.0

MeOH; 1.0

H2O; 2.0

Alcohol; equiv dr

4:1

4:1

5:1

5:1

-

4:1

60

60

50

60

60

60

Temp (°C)

O

OTIPS

TIPSO-furan
(equiv)

1.0

1.0

1.0

1.0

2.0

2.0

Equiv Furan

 

Table 4.6.1-1: Screen of reaction conditions for the hydroalkylation of 1,3-phenylbutadiene with 

TIPSO-furan (unpublished results). 

 Results from initial investigation of hydroalkylation with TIPSO-furan as the enolate 

source did not reach the high conversions obtained with the benzoyl derivative 52. The limited 
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effect of adding more furan indicated that the catalyst was being inhibited as the reaction 

progressed (Table 4.6.1-1, Entry 1 vs 2, unpublished results). This could indicate that product 

inhibition favored desilylation over hydroalkylation. Product inhibition could also stem from the 

byproducts of desilylation, furanone and triisopropylsilanol. We suspected that furanone might 

bind to the CDC-Rh(I) complex. This would explain why conversion did not significantly 

increase with higher equivalents of silyloxyfuran, as catalyst deactivation would occur before the 

excess nucleophile could react with the electrophilically activated diene. An experiment was run 

with and without the addition of furanone to observe how its presence affected reactivity 

(Scheme 4.6.1-2). The reaction with H2O at 50 °C generated 50 in 53% yield and 4:1 dr, but the 

identical conditions with the addition of 0.5 equivalents of furanone formed 50 in only 20% yield 

and 2:1 dr. These results clearly demonstrated that the byproducts of desilylation were inhibiting 

the catalyst. 

PhCDC-Rh-Styrene (5 mol %)
LiPF6 (2.5 mol %)
H2O (2.0 equiv)

PhMe (1.0 M), 50 °C, 18 h

Ph
+

O

O

Me

Ph

50

O

OTIPS

TIPSO-furan
(2 equiv) 53% Yield

4:1 dr

PhCDC-Rh-Styrene (5 mol %)
LiPF6 (2.5 mol %)
H2O (2.0 equiv)

PhMe (1.0 M), 50 °C, 18 h

Ph
+

O

O

Me

Ph

50

O

OTIPS

20% Yield
2:1 dr

+
O

O

Furanone
(0.5 equiv)

 

Scheme 4.6.1-2: Control reaction demonstrating the inhibitory effect of furanone on 

hydroalkylation with TIPSO-furan (unpublished results). 

 The discovery of the harmful effects of furanone on reactivity led us to the conclusion 

that we needed to explore reaction conditions that would result in as little desilylation as 

possible. The rate of reaction did not matter significantly provided that the ratio of product 
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formation to desilylation was kept as high as possible. Previous experiments demonstrated that 

larger alcohol additives slowed desilylation of silyloxyfuran. Similarly, lower temperatures and 

reduced concentrations of the furan nucleophile should encourage catalyst association with the 

diene rather than the furan. These insights were used to begin developing a useful catalytic 

method for the intermolecular hydroalkylation of dienes to generate allylic butenolide products 

diastereoselectively. 

4.7: Diastereoselective Synthesis of Substituted 2-Butanones through Carbodicarbene-Rh 
Catalyzed Additions of Silyloxyfurans 
 

In the following section we present our preliminary efforts towards the development of a 

diastereoselective synthesis of 2-allyl-butanones through the CDC-Rh catalyzed hydroalkylation 

of dienes with silyl enol ethers. This work will be accomplished through electrophilic activation 

of bound C-C π-systems and represent the first hydroalkylation of unactivated olefins with silyl 

enol ethers. The reactions generate allylic butenolides in up to 95% yield, 5:1 dr and >20:1 

regioselectivity using 5 mol% of a CDC-Rh(I) catalyst and 5 mol% LiPF6 as a co-catalyst. It is 

our goal to have this work published in the near future as a follow-up to the recent disclosure of 

hydroalkylation with oxazolones. 

4.7.1: Optimization of Carbodicarbene-Rh Catalyzed Diene Hydroalkylation with 
Silyloxyfurans 
 
 The search for an efficient hydroalkylation of terminal diene electrophiles with 

silyloxyfuran nucleophiles began by exploring the effect of the silyl protecting group on 

reactions catalyzed by 5 mol% PhCDC-Rh-styrene and 5 mol% of LiPF6 as a Lewis acid for 

catalyst activation (Table 4.7.1-1).69 Reactions were run with silyloxyfurans protected with 

trimethyl-, tert-butyldimethyl-, tris(trimethylsilyl)-, and triisopropylsilyl groups at 50 °C with 1 
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equivalent of water as a proton source and silyl scavenger. Trimethylsilyloxyfuran hydrolyzed 

readily under the reaction conditions to generate furanone and failed to provide any of the 

desired product 50 (Entry 1). The more stable silyl protecting groups tert-butyldimethyl-, 

tris(trimethylsilyl)-, and triisopropylsilyl provided 50 in 29% yield, 5:1 dr, 16% yield, 3:1 dr and 

29% yield, 5:1 dr, respectively (Entries 2-4, dr refers to the γ-regioisomer). The butenolide 

product 50 was generated as a 5:1 mixture of the γ- and α-regioisomers when tert-

butyldimethyloxyfuran and triisopropylsilyloxyfuran were used, but in a 2:1 ratio with the 

tris(trimethylsilyl)silyloxyfuran nucleophile. As such, reaction with TIPSO-furan generated the 

desired product in the highest conversion and with the greatest diastereo- and regioselectivity 

and this nucleophile was used for all further screening. 

aSee SI for experimental details. All reactions performed under N2 atm. Yields of purified 
products are an average of two runs. bValues determined by analysis of 400 or 600 MHz 1H 
NMR spectra of unpurified mixtures with hexamethyldisiloxane as an internal standard.; 
cReactions run with four equivalents of i-PrOH and furan, added in four aliquots over three hours. 
dControl reaction run with [Rh(cod)Cl]2 as catalyst with 5 mol % AgBF4.

Ph

Me

O5.0 mol % PhCDC-Rh-styrene
5.0 mol % Activator

ROH (1 equiv)
toluene, 50 °C, 24 h 50γα

+
O

RO
O

Yield (%)Entry

1
2
3
4
5
6
7
8
9c

10c,d

SiMe3
Si(t-Bu)Me2
Si(SiMe)3
Si(i-Pr)3
Si(i-Pr)3
Si(i-Pr)3
Si(i-Pr)3
Si(i-Pr)3
Si(i-Pr)3
Si(i-Pr)3

0
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29
21
20
36
41
68
0

dr

-:-
5:1
3:1
4:1
3:1
4:1
4:1
4:1
3:1
-
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H2O
H2O
H2O
H2O
H2O
H2O
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i-PrOH
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LiPF6
LiPF6
LiPF6
LiPF6
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LiBArF4
LiPF6
LiPF6
LiPF6
LiPF6

γ:α

-
5:1
2:1
5:1
3:1
5:1
5:1
6:1
5:1
-
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α

β
γ

δ PhMe
50α

+
O

O

 

Table 4.7.1-1: Survey of conditions for the addition of silyloxyfurans to 1,3-phenylbutadiene 

using a cationic CDC-Rh(I) catalyst. 
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 A brief survey of Lewis acid activators showed that LiPF6 was optimal for the reaction; 

hydroalkylation with 5 mol% AgCl generated 50 in 21% yield as a 3:1 mixture of the γ:α 

regioisomers with 3:1 dr for the major product (Entry 5), whereas 5 mol% LiBArF
4 gave 50 in 

20% yield as a 5:1 mixture of the γ:α regioisomers with 4:1 dr (Entry 6). During these screens 

we observed that the majority of TIPSO-furan was being hydrolyzed under the reaction 

conditions to form furanone. In an effort to disfavor this undesired side reaction a series of larger 

alcohols were screened and i-PrOH proved optimal; reaction with MeOH provided 50 in 36% 

yield as a 5:1 mixture of the γ:α regioisomers with 4:1 dr of the major product (Entry 7), while i-

PrOH gave 41% yield, 6:1 regioselectivity, and 4:1 dr (Entry 8). The conversion to product was 

improved by an excess of TIPSO-furan in four separate aliquots over the course of 4 hours to 

limit the concentration of the silyloxyfuran and further discourage hydrolysis; increasing the 

substrate loading to 4 equivalents of TIPSO-furan generated 50 in 68% yield, 5:1 

regioselectivity, and 3:1 dr (Entry 9). These conditions proved to be optimal for hydroalkylation 

to form allylic butenolide products. A control reaction was performed with 2.5 mol% 

[Rh(cod)Cl]2 instead of PhCDC-Rh-styrene to demonstrate the importance of the CDC ligand for 

obtaining any reactivity and failed to yield 50 (Entry 10). 

 Although they are unlikely to be included in the final publication, many of the previous 

reaction screens with silyloxyfuran nucleophiles were instrumental in developing the reaction 

conditions used here. In particular, the solvent, concentration and reaction temperatures were all 

derived from previous studies reacting silyl enol ethers with 1,3-phenylbutadiene. These results 

succeed in matching the conversion obtained with BzO-furan and significantly exceed the 

diastereoselectivities obtained with benzoyl protected furan nucleophiles. However, the 
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regioselectivity of the transformation is non-ideal and provides an opportunity for improving this 

reaction further. 

4.7.2: Exploring the Diene Scope for Hydroalkylation with Silyloxyfuran 

Having established a set of reaction conditions for the efficient hydroalkylation of 1,3-

phenylbutadiene with TIPSO-furan, we began to explore the diene scope of the transformation 

(Scheme 4.7.2-1). The reaction proved exceptionally tolerant of modifications to the electronics 

of the aryl diene and both electron poor and electron rich aryl dienes reacted with higher 

conversions than those obtained for 1,3-phenylbutadiene. Electron poor p-chloro-1,3-

phenylbutadiene reacted to yield 75 in 87% yield and 5:1 dr as a single regioisomer and reaction 

with p-fluoro-1,3-phenylbutadiene was similarly successful resulting in 76 in 73% yield, as a 

17:1 mixture of the γ:α-regioisomers with 4:1 dr for the major product. Dienes with electron 

donating groups provided even higher yields, but significantly reduced regioselectivities; p-

methoxy-1,3-phenylbutadiene reacted to form 77 in 90% yield and 4:1 dr, but with only a 2:1 

selectivity for the γ-addition over the α-addition product. We were pleased to observe that 

substitution of the aryl ring in the meta- and ortho-positions is well tolerated and significantly 

improves regioselectivity while maintain diastereoselectivity; the meta-methyl substituted 

product 78 is generated in 75% yield, 4:1 dr, and 18:1 γ:α selectivity, while the ortho-methyl 

derivative 79 is provided in 39% yield and 5:1 dr as a single regioisomer. Heterocyclic arenes 

can also serve as good reaction partners as 80 can be formed in 83% yield and 5:1 dr as an 8:1 

mixture of regioisomers. 
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      2:1 γ:α
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Scheme 4.7.2-1: Diene scope for the CDC-Rh(I) catalyzed formation of allylic butenolides.  

 Although aryl dienes generally provide higher conversions to the allylic butenolide 

products, alkyl dienes also react to generate the desired products in modest yields. An alkyl diene 

substrate with branching at the position alpha to the olefin reacted to form 81 in 37% yield as a 

9:1 mixture of the γ:α-regioisomers, but showed no diastereoselectivity. Poor diastereoselectivity 

is observed for all alkyl diene substrates explored thus far. Hydroalkylation with 1,3-dodecadiene 

reacted to form 82 in 22% yield, 2:1 dr and 2:1 γ:α regioselectivity demonstrating that linear 

dienes can be used as substrates, although an alkene isomerization side reaction to the unreactive 

internal dienes is competitive with product formation. This can be mitigated by reducing the 

reaction concentration. When a gem-dimethyl substituted diene was employed as a substrate we 

were surprised to observe the formation of a third regioisomer where the silyloxyfuran added to 

the terminus of the diene; the δ-addition product 83 was formed in 29% yield as a single 
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regioisomer. Overall, reactions with alkyl dienes are far less efficient than with aryl dienes. This 

is likely due to arene stabilization of a cationic transition-state during the transformation. Despite 

this, alkyl dienes do react and can be used to form valuable 2-allyl-butanones. 

4.7.3: Preliminary Studies of the Silyloxyfuran Scope of Diene Hydroalkylation  

 Our explorations of the diene scope were followed by studies to determine how tolerant 

the reaction is of various substituted furan nucleophiles. Many of the triisopropylsilyl-protected 

furan nucleophiles of interest have not been previously synthesized. These substrates have 

proven unexpectedly challenging to purify due to decomposition on silica gel and thermal 

instability preventing distillation. As such, only triisopropyl((3-methylfuran-2-yl)oxy)silane has 

been synthesized tested as an alternative furan nucleophile for CDC-Rh(I) catalyzed 

hydroalkylation, although further efforts are in progress. 

 Hydroalkylation translates very effectively to form butanone products with substitution 

adjacent to the carbonyl (Scheme 4.7.3-1). In reactions with methyl-substituted 84 conversions 

are comparable to yields obtained with TIPSO-furan although diastereo- and regioselectivity 

drops precipitously. 84 reacted with electron rich aryl dienes efficiently generating 85 in 76% 

yield and 2:1 dr; however, the regioselectivity of the reaction switched to favoring the α-addition 

product over the typical γ-addition in a 1:2 ratio. This suggests that it may be possible to favor 

different substitution patterns for individual substrates with modifications to the reaction 

conditions. Reaction with electron poor aryl dienes was similarly effective providing 86 in 

slightly reduced yield and minimal selectivity; the generation of 86 was accomplished in 52% 

yield with 1:1 dr and 2:1 γ:α regioselectivity. Heterocyclic arenes were well tolerated for 

reaction with substituted silyloxyfuran 84 and 87 can be synthesized in exceptionally high 95% 

yield as a 2:1 mixture of diastereomers and 4:1 selectivity for the γ- over the α-addition 
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products. Lastly, cylcohexyl-1,3-butadiene reacted to provide 88 in higher conversions than 

observed for reaction with TIPSO-furan and with similar selectivities; 88 was formed in 37% 

yield as a 4:1 mixture of the γ:α regioisomers with no diastereoselectivity.  It is not currently 

clear why the region- and stereoselectivity decreases so dramatically when 84 is employed as a 

nucleophile, but we were encouraged to observe minimal decrease in yield compared to the 

unsubstituted silyloxyfuran nucleophile. 

5 mol% PhCDC-Rh-styrene
5.0 mol % LiPF6

iPrOH (4 equiv)
toluene, 50 °C, 24 h

85-8884

85: 76% yield
      2:1 d.r. 
      1:2 γ:α

86: 52% yield
      1:1 d.r.
      2:1 γ:α

88: 37% yield
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      4:1 γ:α
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O
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Scheme 4.7.3-1: Expanding hydroalkylation to 3-methyl-silyloxyfuran 84 with substituted aryl 

and alkyl dienes. 

4.7.4 Summary and Outlook 

 The work presented in this section is entirely unpublished and we are racing to finish the 

substrate scope and improve upon the current selectivity of the transformation. Work is ongoing 

to expand the nucleophile scope for they hydroalkylation of diene electrophiles. Before 

publication the reactivity of 3- and 4-substituted furans will be explored as well as how different 

heterocycles (eg: thiophene and pyrrole) behave as silyl enol ether nucleophiles. The identity of 
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the major diastereomer also must be determined before publication as we are currently unsure 

whether the syn- or anti-diastereomer is formed preferentially. This will be accomplished by 

recrystallization to generate a diastereomerically pure sample and then X-ray crystallography to 

characterize the stereocenters present in the molecule. We believe that the products formed from 

this transformation have potential applications to the synthesis of several natural products and 

that the organometallic community will be interested in this new chapter in the reactivity of 

cationic CDC-Rh(I) catalysts. 

4.8: Hydroalkylation Synopsis and the Directions of Future Studies 

 This chapter has been exclusively dedicated to hydroalkylation reactions that can 

efficiently form C-C sp3-sp3 hybridized bonds. This vein of research is the only non-

enantioselective transformations that we are actively pursuing. This is certainly subject to 

change, but it demonstrates just how useful these bond formations are. The knowledge gleaned 

from hydroamination and hydroarylation reactions catalyzed by CDC-ligated Rh complexes was 

necessary to address the challenges presented by both enol and enolate nucleophiles. In many 

ways this chemistry is only possible as the culmination of our non-enantioselective 

hydrofunctionalization studies. Although these reactions are not enantioselective, they were able 

to introduce diastereoselectivity with CDC-Rh(I) catalysts and show how substrate control can 

provide highly useful allylic products from the hydroalkylation of dienes. 

Future work will be directed towards the completion of the silyloxyfuran addition to 

diene electrophiles as well as expansion to new enol (eg: oxindoles) and enolate (eg: acyclic silyl 

enol ethers) nucleophiles. The current limitation of electrophilic alkene activation with CDC-

Rh(I) complexes to dienes will also be addressed. We are very interested in moving towards the 

activation of styrenes and unactivated alkenes. Even within diene electrophiles there is a great 



	   196	  

deal of work to be done in the hydrofunctionalization of substituted dienes as current methods 

are largely restricted to terminal unsubstituted olefins. Olefin hydrofunctionalization continues to 

be a vibrant area of research in our laboratory and we expect that the synthesis of new catalyst 

and reaction manifolds will open up many new catalytic transformations catalyzed by CDC-

ligated late-transition metals 
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CHAPTER 5: ENANTIOSELECTIVE HYDROFUNCTIONALIZATION WITH 
CARBODICARBENE-RHODIUM CATALYSTS5 

5.1: Introduction 

 We have worked to develop methods for stereoselective catalysis from the initiation of 

our studies in hydrofunctionalization1 with carbodicarbene (CDC) bound Rh complexes. The 

importance of enantioselective catalysis is evidenced by the 2001 Nobel prize awarded to 

Sharpless, Noyori and Knowles for their work in catalytic asymmetric epoxidation, and in the 

subsequent impact of this reaction on organometallic catalysis,2–4 industrial syntheses,5 and the 

construction of natural products.6–8 In the preceding chapters a number of achiral or 

diastereoselective transformations were introduced that allow for the addition of amine9 

(hydroamination), aryl10 (hydroarylation), enol11 (hydroalkylation) nucleophiles across diene π-

systems. These transformations would be of far greater utility if they could be accomplished 

enantioselectivly, as the stereoselective construction of new bonds is one of the greatest 

challenges in catalysis.12–14 A core goal of our studies in CDC-Rh catalyzed 

hydrofunctionalization is to develop enantioselective functionalizations of olefins that can be 

applied to the stereoselective synthesis of complex biologically active molecules. 

 The common thread throughout these studies is the unique class of CDC-Rh(I) complexes 

developed for the electrophilic activation of olefins. Catalytic methods for enantioselective 
                                                
5	  The work discussed in this chapter is unpublished.  Of the work discussed, C. C. Roberts was 
responsible for the synthesis and development of valine-derived chiral CDC ligand 29 and 
complex 32c.  C. C. Roberts was responsible for the synthesis, design, and development of CBA 
ligand 35, and corresponding Rh (38), Pd (39), and Pt (40) complexes.  M. J. Goldfogel 
developed the remaining chiral CDC ligands and catalysts and explored enantioselective 
hydroalkylation with CBA-Rh(I) complexes.	  
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hydrofunctionalization will be accomplished by the inclusion of chirality into one of the achiral 

methods discussed in the preceding chapters. Reactions with CDC-Rh(I) catalysts have proven 

surprisingly general for the activation of π-systems towards the external addition of a 

nucleophile and, although the olefin source is thus far limited to dienes, these achiral methods 

developed would have a significant impact on the field if made enantioselective. Our achiral 

methods offer a rich array of reactions that can serve as the focus of new enantioselective 

strategies. 

The previous achiral studies were accomplished with three catalysts, PhCDC-Rh-Cl, 

iPrCDC-Rh-Cl, and PhCDC-Rh-styrene, and are proposed to occur through a common 

electrophilic intermediate 1 (Scheme 5.1-1). Intermediate 1 shows how a diene bound to a 

cationic Rh center can be activated with the assistance of a Lewis acid co-catalyst towards the 

external addition of a Lewis base. If this common intermediate 1 could be modified to include a 

chiral element then we hypothesized that the stereoselectivity of the enantiodetermining bond 

formation could be controlled. Pursuit of this impactful and elusive goal has been threaded 

through the past five years of research in CDC-Rh catalyzed hydrofunctionalization. This chapter 

will catalog our attempts to develop a catalytic system that incorporates chirality to impart 

stereoselectivity to the hydrofunctionalization of dienes.  
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Scheme 5.1-1: CDC-Rh(I) complexes used in catalysis and the proposed catalytic intermediate 

responsible for diene activation. 

5.1.1: Introduction to Enantioselective Hydrofunctionalization 

 Enantioselective hydrofunctionalization is a varied field of research with many published 

methods that can be subdivided by the type of hydrofunctionalization achieved (ie: 

hydroamination vs hydroarylation). Examples of enantioselective catalysis will be discussed for 

each class of hydrofunctionalization that we have published an achiral method for. This brief 

review is intended to define the state-of-the-art for enantioselective hydrofunctionalization and 

provide context for our own efforts. Many of these enantioselective methods for 

hydroamination,15–17 hydroarylation,14,18,19 and hydroalkylation20 have inspired our studies. Some 

broad trends are consistent between these transformations, as (i) enantioselective methods for 

intramolecular hydrofunctionalization are far more common than the intermolecular 

counterparts, (ii) reactions with unactivated alkenes are very challenging, and (iii) 
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functionalizations using sp-hybridized olefin sources predominate due to their increased 

reactivity. 

5.1.1.1: Enantioselective Hydroamination 

 Enantioselective hydroamination is the most developed stereoselective 

hydrofunctionalization with numerous intramolecular examples and a growing number of 

intermolecular transformations. Hartwig21–23 and Marks24,25 first introduced enantioselective inter- 

and intramolecular hydroamination, respectively, in the early 2000’s. Although no new methods 

for intermolecular hydroamination were disclosed until 2008, methods for the intramolecular 

hydroamination of unactivated alkenes proliferated rapidly. Although intramolecular 

hydroamination is by no means a solved problem, it has been thoroughly studied and reviewed.15–

17 Numerous publications with early transition metals26–36 (primarily Zr and Ti), rare-earth 

catalysts,24,25,37–59 late transition metals60,60–66 (Pd, Rh, and Ir), Lewis acids,67–70 amide bases,71 and 

coinage metals72–87 (Au, and Cu) have been reported with modest to excellent 

enantioselectivities. There have also been three applications of enantioselective hydroamination 

in total synthesis.88–90 Despite these successes, the scope of intramolecular hydroamination 

remains limited, as substrates often require geminal functionalization to bias the substrates for 

cyclization or exhibited low enantioselectivities ranging from 30 to 70% ee. In addition, few 

catalysts are tolerant of more than a single class of amines (ie: secondary amines vs amides).  

 Intermolecular hydroamination is not as well developed, but recent efforts with Cu-

hydride catalysts have been highly successful and dramatically impacted the field.91–100 The 

mechanism of these reactions is discussed in Chapter 1 as the electronic reverse of the 

electrophilic activation invoked for CDC-Rh catalysts; reactions catalyzed by Cu-hydride 

transform the alkene into the nucleophile by generating an alkyl Cu species via hydride insertion 
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across the olefin π-system. The alkyl Cu nucleophile can then transmetallate with an 

electrophilic source of nitrogen and reductively eliminate to form the C-N bond. As such, Cu 

catalyzed reactions utilize electrophilic nitrogen sources, which are often complementary to the 

products obtained through electrophilic olefin activation. 

Prior to the discovery of Cu catalyzed hydroamination, studies by the Hartwig lab utilized 

late transition metals to catalyze the addition of amines through electrophilic mechanisms.21–23 

These reactions operate similarly to the proposed mechanism for CDC-Rh complexes. Later 

publications have primarily employed late transition metal catalysts such as Pd,101 Rh,102–105 Ir,106–

108 and Au.109–111 Unlike intramolecular catalysis, relatively few rare-earth112,113 and early 

transition metal catalysts114,115 are known. In addition although limited examples of metal-free 

organocatalysts have been demonstrated.116–118 Many of the reported methods for intermolecular 

hydroamination require sp-hybridized olefins102–105,109,111,118 or alkenes activated through ring 

strain.106 As such, the limitations of enantioselective hydroamination mirror those discussed for 

achiral catalysts in Chapter 1.1: (i) intermolecular methods are rare compared to their 

intramolecular counterparts, (ii) the olefin scope rarely includes unactivated alkene substrates, 

and (iii) the olefin electrophiles are often limited to more reactive sp-hybridized π-systems. 

5.1.1.2: Enantioselective Hydroarylation 

 Methods for the enantioselective hydroarylation of olefins are significantly less common 

than those for hydroamination. Only a handful of inter-119–129 or intramolecular130–133 

hydroarylations have been reported, although the difficulty in separating a hydroarylation 

reaction from a Friedel-Crafts arylation, reductive Heck coupling, or aryl-cross coupling does 

blur the boundaries of classification. Enantioselective hydroarylation has been accomplished 

with a handful late transition metal catalysts (Ir,121–126 Rh,127–129,132,133 Pt,131 and Au,120,130) and a 
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single acid catalyst.119 The olefin scope of these reactions is exceptionally limited and current 

methods for enantioselective hydroarylation are unlikely to be used over established Friedel-

Crafts134 and cross-coupling135 methods. Most intermolecular reactions require norbornene 

derived olefins that are activated by ring strain.121,122,124,126,127 The development of new methods 

could address this gap in the literature and allow for the construction of important stereoselective 

molecules from readily available olefin substrates and nucleophilic arene partners. 

5.1.1.3: Enantioselective Hydroalkylation 

 The difficulties and limitations to achiral hydroalkylation were discussed in Chapter 3 

and highlight that this is a challenging class of reactions. It follows that this category of olefin 

functionalization has the fewest published enantioselective methods. Several contributions to 

enantioselective hydroarylation were made in the Trost lab and utilize Pd catalysts to 

intermolecularly pair thermally enolizable nucleophiles with allene electrophiles.136–138 Since 

these seminal publications, Toste139,140 and Boutier141 et al. have contributed three intramolecular 

Pd catalyzed transformations. The remaining examples of enantioselective hydroarylation are 

catalyzed by Au142 and Rh143 complexes that allow for efficient intra- and intermolecular 

additions, respectively. Enol nucleophiles are more commonly employed over enolates (eg: silyl 

enol ethers); of the eight reported examples only two use enolate nucleophiles.139,140 Unlike 

hydroarylation, there are few reactions that can generate the products obtained from these 

hydroarylation reactions.  

 Many strategies for imparting enantiocontrol have been applied to olefin 

hydrofunctionalization and could be adapted to our achiral CDC-ligated Rh catalysts. The most 

common strategy is to use a chiral ligand directly bound to the metal to control the 

stereochemical environment of the bond-forming step. For electrophilic activation mechanisms 
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this is usually the external addition of the nucleophile to a specific face of the π-electrophile (see 

Scheme 5.1-1b). An alternative strategy is to incorporate a chiral additive or counterion which 

can form acomplex with the catalyst during the rate determining transition state.78,144 The chiral 

additive can then control the stereochemical environment without being directly bound to the 

metal. Both strategies will be explored as possible methods for imparting stereocontrol to 

hydrofunctionalization reactions catalyzed by CDC-Rh(I) complexes. 

5.2: Enantiocontrol with Chiral Additives 

 A strategy for developing an enantioselective version of a known achiral reaction is to 

find a chiral additive that will form a strong interaction with the catalytic intermediate 

responsible for stereodifferentiation.144 The additive can then provide chirality without requiring 

major changes to a successful achiral catalyst. For the purposes of the CDC-Rh(I) catalysts we 

envisioned that enantiocontrol could be translated through: (i) a chiral Lewis acid additive that 

would bind the Lewis basic lone pair of the CDC, (ii) a chiral Lewis base that would coordinate 

to the bimetallic catalyst system, or (iii) a chiral counteranion that formed a tight ion-pair with 

the cationic CDC-Rh(I) catalyst (Scheme 5.2-1). These methods were explored for a variety of 

hydrofunctionalization reactions and demonstrate that it is challenging to impart 

enantioselectivity through a transient association between an active catalyst and additive. 
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Scheme 5.2-1: Strategies for enantiocontrol with chiral additives. 
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5.2.1: Hydrofunctionalization with Chiral Lewis Acids 

 When the importance of the Lewis acid additive was discovered during the development 

of diene hydroarylation it appeared to be an ideal opportunity to incorporate a chiral element into 

the stereodetermining catalytic intermediate. Catalysis requires a bimetallic intermediate 1 where 

the Lewis acid is directly bound to the ligand. We hypothesized that a chiral Lewis acid additive 

would control stereoselectivity at the Rh center.144 This could allow for enantioinduction without 

the need for any modifications to the CDC-Rh(I) complexes themselves. This is experimentally 

expedient, as it does not require any additional catalyst synthesis, and minimizes the likelihood 

that catalyst modification will dramatic decreases in conversion or regioselectivity, as seen when 

the phosphine substituents of PhCDC-Rh-Cl were modified (see Section 3.6).  

 A series of Lewis acid additives were selected based on previous results that suggested 

the carbon(0) of the CDC could associate with proton sources through hydrogen bonding (see 

Chapter 2). Coordination of the free lone pair of the CDC decreases the donation from the ligand 

to Rh and thereby increases the relative electrophilicity of the complex. Since studies with 

PhCDC-Rh-styrene demonstrated that catalysis does not occur without a Lewis acid additive (eg: 

AgCl), we anticipated that product formation through an achiral background reaction would be 

minimal. Protic Lewis acids with a variety of pKas were selected to provide a range of co-

catalysts.  

The ligand protonation studies published as part of the achiral hydroarylation10 

demonstrated that the CDC could associate with a proton source. This suggested that TADDOL 

and BINOL derived chiral phosphoric acids 2 and 3 could impart enantioselectivity to reactions 

catalyzed by PhCDC-Rh-styrene. Hydroalkylation of 1,3-phenylbutadiene with 1-methylindole 

was selected as a test reaction because 6 was one of the most reliable achiral substrates, and 
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because a racemic trace could be readily obtained. Reactions with 2 as the Lewis acid additive 

generated 6 in very high conversion in both toluene (PhMe) and chlorobenzene (PhCl), but only 

as racemic mixtures (Table 5.2.1-1: Entries 1 and 2). Solvation effects were predicted to have a 

large impact on the association between the Lewis acid and the catalyst, yet the change in solvent 

had little effect on the reaction. Use of 3 as the acidic additive dramatically decreased conversion 

to 6 and failed to provide any enantioselectivity. 

PhCDC-Rh-styrene (5 mol %)
Chiral Additive (5 mol %) 

Solvent, 60 °C, 18 h

Ph
+ Me

N Ph

Me

NMe

Entry Solvent; MChiral Additive Yield (%) %ee

1

2

3

PhCl; 1.0

THF; 1.0

PhCl; 1.0

92

91

10

2

1

0

O
P

O O

O Me
Me

PhPh

PhPh

HO
O

O
P

O O

O Me
Me

PhPh

PhPh

HO
O

O
P

O
HO

O

2

3

2

6

 

Table 5.2.1-1: Survey of chiral phosphoric acid additives for diene hydroarylation. 

 We hypothesized that the poor enantioselectivity with phosphoric acid additives could be 

due to dissociation of the proton from the chiral phosphate (ie: proton transfer vs hydrogen 

bonding). This could prevent the spatial association of the stereodetermining element and ligand. 

The use of alcohols with substantially higher pKa values would favor hydrogen bonding over 

deprotonation. This theory was tested for the hydroalkylation of 1,3-phenylbutadiene with 4-

methyl-2-phenyloxazol-5(4H)-one with a series of chiral alcohols, acids, and amines. These 
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results were published as an addendum to our achiral method (see Section 3.3).11 The alcohol 

proved to have no effect on the enantioselectivity of the transformation despite possible 

interactions with the oxazolone nucleophile, or associations with the CDC ligand (Table 5.2.1-2). 

Both the phosphoric acid 2 and the amine 5 resulted in reduced conversions to the allylic 

oxazolone 7, whereas the alcohols 4, 5, and (R)-BINOL generated 7 in similar conversions. 

Unfortunately none of these additives imparted any enantioselectivity to the transformation. 

PhCDC-Rh-styrene (5 mol %),
LiPF6 (5 mol%)

Chiral Additive (5 mol %) 

PhMe, 50 °C, 18 h

Ph
+

Ph

Me

N
O

Me
O

Ph

N
O

O

Ph

Me

Entry Chiral Additive Yield (%) %ee

1

2

3

4

5

13

53

27

62

56

0

0

0

0

0

O
P

O O

O Me
Me

PhPh

PhPh

HO
O
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Ph
Ph
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OH

Ph
Ph

NH2

NH2

HO
HO

4

5
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iPr

Me

OH

Menthol

7

 

Table 5.2.1-2: Survey of protic chiral additives for the hydroalkylation of 1,3-phenylbutadiene 

(see Section 3.3). 
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5.2.2: Hydroarylation with Chiral Lewis Bases  

 The apparent failure of Lewis acid additives suggested that hydrogen-bonding with the 

carbon(0) was incapable of controlling enantioselectivity. An alternative approach is to use a 

chiral Lewis base to tightly bind known Li co-catalysts (see Chapter 2).145 Protected cinchona 

bases 8 and 9 were selected for their strong Lewis basicity and tested as additives for the 

hydroarylation of 1,3-phenylbutadiene. Protection of the cinchonidine was necessary to minimize 

inhibition of the Rh catalyst. We theorized that these nitrogen bases would tightly associate with 

cationic Li and be positioned near the site of stereoinduction when the active catalytic 

intermediate 1 was formed (Scheme 5.2-1).  As anticipated, the addition of Lewis bases 8 and 9 

reduced conversion to 6 (Table 5.1-1). This is likely due to catalyst inhibition caused by either 

association of the Lewis base with the PhCDC-Rh-styrene complex or competition between the 

Lewis base and the the CDC carbon(0) for the Li co-catalyst. The allylic arene 6 was obtained in 

too low conversion to allow for clean isolation and determination of %ee The significant 

reduction in conversion prompted us to abandon this strategy for stereoinduction. 

PhCDC-Rh-styrene (5 mol %)
LiPF6 (5 mol%)

Chiral Additive (5 mol %) 

Solvent, 50 °C, 18 h
Ph +

Me
N

Ph

Me

NMe

Entry Solvent; MChiral Additive Yield (%)

1

2

Et2O; 0.7

Et2O; 0.7

6

2

6

OTIPS

N

N

OTBDPS

N

N

8

9

 

Table 5.2.2-1: Survey of Lewis basic additives for stereoinduction in diene hydroarylation. 
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5.2.3: Hydroarylation with Chiral Counterions 

 A different tactic for stereoinduction with chiral additives was required in response to the 

lack of stereoselectivity obtained with Lewis acidic and basic additives. Chiral counterions have 

been shown to control the stereoselectivity of a variety of catalytic transformations with cationic 

metal complexes146,147 and the active catalyst PhCDC-Rh-styrene is an achiral cationic complex. 

Substitution of the achiral BArF
4 anion for a chiral phosphate could result in a tightly bound ion 

pair capable of inducing stereocontrol in a CDC-Rh(I) catalyzed reaction. Furthermore, the chiral 

counterion could be derived from the Lewis acid additive, minimizing both the number of 

additives required in the reaction and the spectator ions present in solution. 

 The use of TADDOL and BINOL derived Ag salts 11 and 12 were explored for the 

hydroarylation of 1,3-phenylbutadiene with 1-methylindole (Table 5.2.3-1). The Ag cation 

provided the Lewis acid necessary for the generation of the active bimetallic catalyst 1 while the 

phosphoric acid anion was added to pair with the Rh cation. Reaction in PhCl and PhMe 

proceeded to generate 6 in 95% and 93% yields respectively when 11 was used as an additive 

(Entries 1 and 2). However, none enantioselectivity was obtained as 6 was formed in a racemic 

mixture with both solvents. Surprisingly, reaction with 12 failed to generate the product (Entry 

3). It is not clear why a BINOL derived anion is detrimental to reactivity, but this trend was also 

observed for reactions with BINOL derived acid 3 (Table 5.2.1-1). 
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PhCDC-Rh-styrene (5 mol %)
Chiral Ag Salt (5 mol %) 

Solvent, 60 °C, 18 h
Ph +

Me
N

Ph

Me

NMe

Entry Solvent; MChiral Ag Salt Yield (%) %ee

1

2

3

PhCl; 1.0

THF; 1.0

PhCl; 1.0

95

93

0

1

2

-

6

11

11

12

O
P

O O

O Me
Me

PhPh

PhPh

AgO
O

O
P

O O

O Me
Me

PhPh

PhPh

AgO
O

O
P

O
AgO

O

 

Table 5.2.3-1: Attempted enantioselective hydroarylation with chiral counterions. 

 The control of enantioselectivity through the addition of chiral additives was reevaluated 

after three separate strategies failed to engender enantioselectivity in hydroarylation or 

hydroalkylation. Both Lewis acidic and basic additives failed to impact the enantioselectivity of 

the transformation, although the Lewis acidic additives did allow for high conversions to 

product. The use of chiral counterions met with similarly limited success. We concluded that the 

association between the chiral additives and the CDC-Rh catalyst was either too weak to transfer 

stereochemical control, or the chiral additives were too spatially removed from the site of bond 

formation to influence enantioselectivity. These challenges could be better addressed by the 

inclusion of chiral centers on the CDC ligand itself. 

5.3: Enantioselective Hydrofunctionalization Controlled by P-Stereogenic Carbodicarbene 
Ligands 
 
 The conclusion that chiral additives were unable to control enantioselectivity in 

hydrofunctionalization reactions with CDC-Rh(I) complexes led us to consider synthetic 
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modifications to the tridentate ligand structure. As discussed in Section 3.5, the phosphine 

substituents on the diazepinium backbone are ideal locations for modifying the electronic and 

steric properties of the ligand. This comes with the caveat that most modifications to the 

phosphine substituents in Section 3.5 resulted in substantially reduced catalyst activity. 

Tridentate ligands with chiral phosphine substituents are known and have been used in highly 

enantioselective catalysis.148–152 We theorized that the application of such ligands to Rh could 

allow provide highly enantioselective methods for electrophilic olefin activation. Ligand 

modifications incorporating P-stereogenic phosphines directly bound to the metal center place 

the stereodetermining elements in close proximity to the site of bond formation and should allow 

for efficient stereoinduction.  

5.3.1: Synthesis of P-Stereogenic CDC-Rh(I) Complexes 

 The phosphine substituents are the logical location for catalyst modification, as they are 

the last motifs installed before metallation. The synthesis of achiral diazepinium ligand with 

modified phosphine substituents demonstrated the general nature of the P-N bond formation (see 

Section 3.5). The installation of P-stereogenic phosphines will be accomplished analogously 

using chiral phosphorus chloride reagents akin to the choloro-phosphines used in the synthesis of 

achiral diazepinium scaffolds (ie: chlorodiphenylphosphine and chlorodiisopropylphosphine). 

Unlike achiral chloro-phosphines, which can be synthesized readily from the desired aryl 

Grignard, chiral phosphine reagents must be synthesized from a stereodefined chiral center. A 

literature search revealed two notable chlorophosphine compounds that met these requirements 

and had previously been synthesized: 2,5-dimethylphospholane153 and BINEPINE.154  
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5.3.1.1: Synthesis of Carbodicarbene Ligands Incorporating 2,5-Dimethylphospholane 

The synthesis of P-stereogenic CDC ligands requires P-stereogenic chlorophosphine 

reagents. DuPhos ligands are well known in the literature as privileged structures for 

enantioselective catalysis derived from 5-membered phospholanes.155–157 The 5-membered ring is 

substituted at the 2,5-positions to generate a C2-symmetric P-stereogenic phosphine. Application 

of a Duphos-derived carbodicarbene to a Rh metal center will significantly alter the electronics 

of the formed CDC-Rh(I) complex compared to the aryl substituted CDC ligands that have 

proven the most general for hydrofunctionalization. However, our work with hydroamination has 

demonstrated that CDCs incorporating alkyl phosphines can be equally efficient catalysts.  

The literature synthesis of phosphine chloride 13158 was undertaken and the resulting 

reagent used to form the P-stereogenic diazepinium salt 14 via the anionic P-N bond formation 

first described in Section 3.5 (Scheme 5.3.1.1-1). The CDC precursor 14 was then metallated 

with di-μ-chlorotetraethylene dirhodium(I) ([Rh(ethylene)2Cl]2) and the resulting hydride 

deprotonated to form the CDC-Rh(I) complex 15 in 56% yield. This catalyst formation 

proceeded very similarly to the synthesis of the achiral complexes with modified arene 

substituents, further demonstrating the variety of CDC complexes that can be rapidly synthesized 

using these methods. 

N N

N
H

N
H

BF4 1) BnK
    THF, 22 °C, 1 h

2) 

    -20 to 22 °C, 1 h

N N

N N

BF4

P P

14
80% Yield

1) [Rh(ethylene)2Cl]2;
    CHCl3, 22 °C, 18 h

2) NaOMe
    THF, 22 °C, 2 h

N N

N N
P P

15
56% Yield

Rh
ClP

Cl
Me Me

 

Scheme 5.3.1.1-1: Synthesis of chiral a CDC-Rh(I) complex incorporating P-stereogenic 2,5-

dimethylphospholanes. 
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5.3.1.2: Synthesis of BINEPINE Derived Carbodicarbene Ligands  

 A second class of P-stereogenic phosphorus ligands was selected to compliment the 

Duphos derived Rh complex 15. P-stereogenic phosphines derived from a chiral binapthyl 

moiety have been used sparingly in the literature as enantioselective ligands.152,159–161 Termed 

BINEPINES,154 these seven membered heterocyclic structures can be employed as 

monodentate160 phosphine ligands or incorporated into multidentate ligands.159 The chloro-

BINEPINE 16 has been used as an electrophilic source of BINEPINE and its synthesis is 

known.162 We reasoned that the binapthyl structure of BINEPINE would be significantly 

different both sterically and electronically from 2,5-dimethylphospholane to provide a 

substantially different P-stereogenic catalyst.  

The synthesis of 16 proved challenging as the reaction of the alkyl-lithium species and 

following hydrochloric acid addition are highly sensitive to minimal changes in the reaction 

conditions (Scheme 5.3.1.2-1). Many of the steps in this synthesis are extremely sensitive to air 

and moisture and utilize malodorous pyrophoric reagents and it proved beneficial to minimize 

purification and characterization throughout the synthesis. 16 was effectively formed and applied 

to the synthesis of the diazepinium ligand 17 without purification. Metallation of the impure 

material with [Rh(ethylene)2Cl]2 generate 18 in 33% yield over two steps. The resulting tan solid 

could be purified through subsequent washes and triturations to provide the CDC-Rh(I) complex 

cleanly. 
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2) 16
    -20 to 22 °C, 1 h

17

1) [Rh(ethylene)2Cl]2;
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18
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(2 steps)

ClP
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71% Yield 
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NN
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PP Rh
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Scheme 5.3.1.2-1: Synthesis of chiral a CDC-Rh(I) complex incorporating P-stereogenic 

BINEPINE. 

5.3.2: Enantioselective Hydrofunctionalization Catalyzed by P-Stereogenic CDC-Rh(I) 
Complexes 
 
 With the P-stereogenic CDC-Rh(I) complexes 15 and 18 in hand, we proceeded to test 

their catalytic activity and enantioselectivity in hydroamination and hydroarylation reactions. 

Both complexes contain alkyl-phosphine substituents on the phosphorus atoms, which suggested 

that their reactivity would most closely mimic the achiral iPrCDC-Rh-Cl complex. This directed 

focus towards reaction screens of hydroamination as the iPrCDC-Rh-Cl complex was optimal for 

intramolecular reactions and showed comparable reactivity for intermolecular additions across 

dienes (see Chapter 1). Hydroarylation was included to gauge whether a P-stereogenic complex 

would react substantially differently from its achiral counterpart. 

 Intramolecular hydroamination has been widely used as a metric for the 

enantioselectivity of chiral catalysts (see Section 5.1). We selected N-benzyl-2,2-diphenylpent-4-

en-1-amine as a test substrate for its exceptional conversion with iPrCDC-Rh-Cl as the catalyst. 

The reaction catalyzed by the P-stereogenic BINEPINE complex 18 generated the desired 
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cyclized product 19 in 20% yield and 9% ee (Scheme 5.3.2-1). This result was exceptionally 

encouraging in spite of the low enantioselectivity as it is the first example of enantioselectivity 

with a chiral CDC-Rh(I) complex. It serves as proof of concept that the chirality of the P-

stereogenic phosphines can directly influence the bond formation in an electrophilic alkene 

activation mechanism catalyzed by a tridentate CDC-ligated metal. However, the reaction did 

generate the product in substantially reduced yield compared to an identical transformation with 

iPrCDC-Rh-Cl (20% versus 98% yield).  

18 (5 mol %)
AgBF4 (5 mol %) 

PhCl, 80 °C, 18 h
Ph + Ph

Me

6
0% Yield

N
Me

NMe

18 (5 mol %)
AgBF4 (5 mol %) 

PhCl, 60 °C, 18 h 19
20% Yield

9% ee

18 (5 mol %)
AgBF4 (5 mol %) 

PhCl, 60 °C, 18 h
Ph + Ph

NHPh

Me
20

0% Yield

NH2

Ph Ph
NHBn NBn

Me

Ph
Ph

 

Scheme 5.3.2-1: Screening for enantioselectivity with hydroamination and hydroarylation 

reactions catalyzed by BINEPINE-derived 18. 

Following the result for intramolecular hydroamination, the same catalyst 18 was tested 

for intermolecular hydroamination and hydroarylation. Despite previous results showing that the 

achiral complex iPrCDC-Rh-Cl could catalyze both reactions, no conversion to the desired 

products 20 or 6 was observed (Scheme 5.3.2-2). A common trend in all the catalyst 

modifications studied is that modification of the phosphine substituents result in substantially 

lower catalytic activity. Although it is highly unlikely that this is a universal axiom, it does 

hamper the application of chiral CDC-Rh(I) complexes to hydrofunctionalization. On the basis 
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of this low conversion and the minimal enantioselectivity obtained in the formation of 19, further 

studies with the catalyst 18 were discontinued in favor of exploring alternative P-stereogenic 

CDC-Rh(I) complexes. 

Intramolecular hydroamination with 18 provided proof of concept for the viability of 

enantioselective olefin activation with P-stereogenic complexes. We hoped that the smaller 

DuPhos-related catalyst 15 would further improve upon the 9% enantiomeric excess (ee) 

obtained with 18, as the stereocenters are positioned closer to the phosphine. This would 

hypothetically allow for better relay of stereochemistry to the chiral pocket where the exigent 

olefin was bound. This theory was tested using both intra- and intermolecular hydroamination 

with the assumption that the intramolecular reaction would proceed more readily and that 

catalysts with alkyl-phosphine substituents were better suited for amination over arylation. 

Reaction to form 19 catalyzed by 5 mol% 15 with 5 mol% AgBF4 proceeded in quantitative 

conversion (98%) and 30% ee. This result was a substantial improvement in both reactivity and 

selectivity over the BINEPINE catalyst 18 and suggests that a less hindered catalyst improves 

reactivity. Additionally, it lends circumstantial support for the hypothesis that the close 

proximity of the chiral stereocenters is beneficial to enantioselectivity. 
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15 (5 mol %)
AgBF4 (5 mol %) 

PhCl, 60 °C, 18 h 19
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30% ee

Ph Ph
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Ph
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N
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H
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Scheme 5.3.2-2: Screening for enantioselectivity with hydroamination reactions catalyzed by 

DuPhos-related complex 15. 

Further studies were undertaken to determine if the improved results with 15 could 

translate to an intermolecular transformation. Intermolecular hydroamination with morpholine at 

the elevated temperature of 80 °C generated 21 in 62% yield, but without any enantioselectivity. 

More troubling, reaction with dibenzylamine failed to generate 22, suggesting that, although 15 

was more active than 18, its activity is still substantially reduced compared to the achiral iPrCDC-

Rh-Cl complex (see Chapter 1). The lack of reactivity for intermolecular hydroamination with a 

diene substrate can be rationalized based on the increased conformational flexibility associated 

with an intermolecular process. Unlike intramolecular hydroamination where the nucleophilic 

amine is tethered to the alkene substrate, intermolecular hydroamination has no conformational 

bias and enantioselectivity must be controlled through which face of the alkene is bound to the 

Rh-center. Unfortunately, the vinylogous diene π-system of the diene appears to place the large 

phenyl substituent outside of the influence of the P-stereogenic phosphines.  
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Despite the improvements to both conversion and enantioselectivity obtained with the 

DuPhos-related complex 15, it seemed unlikely that further modifications to the phosphine 

substituents would be able to improve enantioselectivity without incurring a commensurate cost 

in reactivity. The steric and electronic properties of the phosphine substituents on the achiral 

catalysts PhCDC-Rh-Cl and iPrCDC-Rh-Cl appear to be well tuned for accomplishing the 

hydrofunctionalizations discussed in the preceding chapters. Thus, we decided that a different 

strategy that did not modify the phosphine substituents would be necessary in order to develop a 

catalyst capable of efficient and enantioselective diene hydrofunctionalization. 

5.4: Enantioselective Hydrofunctionalization with Chiral Carbodicarbene-Rh Complexes 
Derived from Chiral Diazepinium Ligands 
 
 The catalyst modifications discussed prior to this section avoided changes to the carbon 

backbone of the diazepinium scaffold in the interest of limiting ligand synthesis. However, we 

did not hesitate to explore multistep ligand syntheses in the hope of providing a highly reactive 

and enantioselective CDC-Rh(I) catalyst. Our approach to generating chiral diazepinium ligands 

was to install stereocenters adjacent to the secondary nitrogen atoms (Scheme 5.4-1). These 

locations were selected for their proximity to the binding pocket of the CDC ligand, and we 

hypothesized that the stereocenters could relay chiral information to the open coordination site 

on Rh through interactions with the phosphine substituents. This relay could occur through a 

“gearing effect” where the phosphine substituents were locked in the lowest energy conformation 

by interactions with the chiral stereocenters. C2-symmetric ligands were selected to simplify the 

synthesis of the proposed chiral diazepinium salts.  
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coordination site where 
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Scheme 5.4-1: Design philosophy for a chiral CDC-Rh(I) complex constructed from a chiral 

diazepinium ligand. 

5.4.1: Retrosynthetic Analysis of the Chiral Diazepinium Core 

 A brief retrosynthesis is presented to summarize the synthetic route used for constructing 

the chiral diazepinium salts (Scheme 5.4.1-1). The malonate cyclization developed by 

Schwesinger163 forms 4 σ-bonds in a single step and was selected as the most efficient method 

for forming the diazepinium ring. This disconnection led to a chiral tetra-amine structure with 

stereocenters in the positions alpha to the terminal amines. The C2-symmetry of the tetra-amine 

allows for instillation of both stereocenters through amide coupling with diethylenediamine 

followed by hydride reduction from the amide to the amine. Commercially available amino acids 

could then be utilized as inexpensive sources of enantiopure chiral molecules. 
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Scheme 5.4.1-1: Retrosynthetic analysis of the chiral diazepinium salts. 

5.4.2: Synthesis of Chiral Diazepinium Salts 

 The synthetic route to the chiral diazepinium ligand precursor appeared straightforward. 

A variety of amino acids were selected to supply a range of sterics including (a) phenylglycine 
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(R = Ph), (b) tert-leucine (R = tBu), (c) valine (R = iPr), (d) phenylalanine (R = Bn), and (e) 

alanine (R = Me) (Scheme 5.4.2-1). The amide coupling required protection of the nitrogen and 

activation of the carboxylic acid with N-hydroxysuccinimide as initial attempts at directly 

coupling amino acids with ethylenediamine proved inconsistent between amino acids. Heating 

the commercially available protected amino acid-succinimides 23 with ethylenediamine formed 

the desired diamides 24 in good to quantitative yields; substitution of the succinimide provided 

24a-e in 53% (R = Ph), 87% (R = tBu), >95% (R = iPr), >95% (R = Bn), and >95% yields (R = 

Me). The synthesis of the valine-derived scaffold is reported in the dissertation of C. C. Roberts 

(Roberts, 2016). 
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O

HNNH
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OO

R R
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a: R = Ph; 
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c: R = iPr;
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2423

 

Scheme 5.4.2-1: Formation of the diamide backbones for the diazepinium ligand synthesis. 

 The Boc-protected amides 24 were deprotected with trifluoroacetic acid (TFA) before 

being reduced to the amines. Reactions with diisobutylaluminum hydride (DIBAL) generated 

25a-e in low to modest yields over two steps; 26a-e were formed in 41% (R = Ph), 38% (R = 

tBu), 39% (R = iPr), 59% (R = Bn), and 12% yields (R = Me), respectively. This reduction 

proved to be a weakness in the diazepinium syntheses with generally poor yields and challenging 

purifications. Furthermore, concerns over epimerization with phenylglycine-derived 25a under 

the basic reduction conditions led to the discontinuation of this substrate. Despite minor 

setbacks, products were obtained for each reduction and syntheses could continue. Cyclization 

with malononitrile generated the desired diazepinium salts 26 in modest yields. Variations in the 
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polarity of the chiral diazepinium salts required changes in solvent compared to cyclizations to 

form the achiral diazepinium salt and higher boiling point solvents proved challenging to 

remove. Cyclization of 25 gave 39% (R = Ph), 30% (R = tBu), 45% (R = iPr), 60% (R = Bn), 

and 13% yields (R = Me) for 26a-e respectively. 
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Scheme 5.4.2-2: Deprotection, reduction and cyclization steps in the synthesis of chiral 

diazepinium ligand precursors. 

5.4.3: Synthesis of Chiral Diazepinium Tridentate Ligands 

 The syntheses described above provided the necessary chiral diazepinium salts 26. 

Instillation of the P-N bonds and subsequent metallation of the tridentate ligands was 

accomplished using synthetic methods adapted from synthesis of the P-stereogenic CDC-Rh(I) 

complexes (see Section 5.3). The anticipated gearing effect responsible for enantiocontrol was 

predicted to be highly dependent on both the identity of the R group and the phosphine 

substituents. As such, syntheses of the chiral tridentate scaffolds incorporating both phenyl and 

isopropyl substituents were attempted in analogy to the achiral PhCDC-H and iPrCDC-H ligand 

structures. 

 Phosphorylation with the chiral diazepinium salts 26 proved substantially more 

challenging than the achiral systems. As was observed during attempts to incorporate large 

phosphine substituents, the P-N bond is weakened by steric clashes between the phosphine 

substituents and diazepinium backbone (see Section 3.5). Large R groups destabilize the thermal 
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stability of the P-N bond and can prevent its formation. This is evidenced in the attempted 

synthesis of 29b; reaction with chlorophosphine reagents using the anionic P-N bond formation 

developed in Section 3.5 failed to generate the desired product (Scheme 5.4.3-1). Few of the 

ligands represented in Scheme 5.4.3-1 are stable to column chromatography and purifications 

must be done using triturations and solvent washes. In spite of these obstacles, syntheses of 29 

and 30 with smaller R groups were accomplished in varying yields. Reactions with 

chlorodiphenylphosphine (ClPPh2) proceeded to form the P-N bond of 29c, 29d, and 29e in 

>95%, 12% and >95% yields, respectively. The benzyl substituent in 26d significantly inhibits 

P-N bond formation, likely because the extended aryl ring clashes with the phosphine 

substituents. The instability of these compounds often prevents isolation of 29 in high purity, and 

partial conversion to the mono-phosphorylated diazepine are common.  
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Scheme 5.4.3-1: Phosphorylation of the diazepinium salt to form the tridentate ligand precursor 

27. 

Reaction with chlorodiisopropylphosphine [ClP(iPr)2] proceeded reluctantly and the 

phosphorylation of 26 generated 30d in 18% yield (Scheme 5.4.3-1). We do not fully understand 

what causes the poor conversion to the phosphorylated product with isopropyl phosphine 

substituents. The factors governing these reactions are complex and yields depend on the relative 
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conversion to the mono- and bis-phosphorylated products. Furthermore, the identity of the non-

polar R group substantially changes the solubility of chiral diazepinium salts compared to their 

achiral counterparts, which can complicate isolation or reduce reactivity. 

The detrimental effect of sterics on the stability of diazepinium ligands suggested that 

smaller phosphine substituents might lead to more robust ligands. Phosphorylation of 26c with 

chlorodifurylphosphine was explored to test this hypothesis, as the furyl substituent is sterically 

less demanding than phenyl (Scheme 5.4.3-2). The result was formation of 31c in 85% 

conversion as a 10:1 mixture of the bis- and mono-phosphorylated products. Although we did 

not have time to pursue alternative phosphine substituents further, this demonstrates that it is 

possible to further tune the interplay between the sterics of the diazepinium backbone and 

phosphine by modifying multiple components of the ligand simultaneously. 
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Scheme 5.4.3-2: Ligands formed from simultaneous modifications to the diazepinium skeleton 

and phosphine substituents.  

5.4.4: Metallation of Chiral Diazepinium Ligands 

The previous section illustrated the successful synthesis of 5 new chiral diazepinium 

ligand structures: phenylphosphines 29c-e, isopropylphosphine 30d, and furylphosphine 31c. 

Without a clear method for predicting the reactivity or selectivity likely to be exhibited by CDC-

Rh(I) complexes formed from these ligands, we opted to explore metallating each ligand to 
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determine their activity experimentally. C. C. Roberts developed the valine-derived CDC-Rh(I) 

complex and the synthesis can be found in the related dissertation (Roberts, 2016). 

The first attempted metallations were with the phenylphosphine diazepinium salts 29c-e. 

The optimal conditions developed from Section 3.5 with [Rh(ethylene)2Cl]2 were applied to the 

synthesis of complexes 32c-e (Scheme 5.4.4-1). The valine derived CDC-Rh(I) complex 32c was 

formed efficiently in 86% yield using these conditions. However, neither the phenylalanine or 

alanine variants generated the metallated complexes cleanly. The failure to form 32d can be 

explained by the larger steric influence of the benzyl substituent, as this interaction was 

previously observed to weaken the P-N bond of 29d resulting in poor conversion (Scheme 5.4.3-

1). Metallation appears to further constrain the molecule and increases the limitations imposed 

by large R groups and phosphines. Alternative reaction temperatures, bases, and solvents were 

explored but did not improve the reaction. The failure to form 32e was more surprising. The 

methyl substituent is smaller than the isopropyl found in 32c and the sterics of the R group do 

not explain the poor metallation. The alanine-derived substrates proved problematic in nearly 

every synthetic step, but there is currently no satisfactory explanation for the challenges 

associated with their synthesis. 

N N

N NR R

BF4

Ph2P PPh2

c: R = iPr 
d: R = Bn 
e: R = Me

c: R = iPr; 86% Yield  
d: R = Bn; 0% Yield
e: R = Me; 0% Yield

1) [Rh(ethylene)Cl]2 
CHCl3, 22 °C, 4 h

2) NaOMe
THF, 22 °C, 2 h

N N

N N
P PRh

Cl

R R

29 32

 

Scheme 5.4.4-1: Synthesis of chiral CDC-Rh(I) complexes with phenyl phosphine substituents. 

 The synthesis of chiral CDC-Rh(I) complexes containing isopropyl phosphine 

substituents was also explored. Metallation with [Rh(ethylene)2Cl]2 provided the phenylalanine 
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derived CDC-Rh(I) complex 33d in 60% yield. This suggests that isopropyl phosphine 

substituents are less sterically demanding than phenyl, as the analogous complex 32d with 

phenylphosphines could not be formed. This theory has since been supported by catalytic 

experiments showing enantioselectivity with the larger phenyl phosphine substituents 

exclusively (vide infra).  

N N

N NBn Bn

BF4

(iPr)2P P(iPr)2

1) [Rh(ethylene)Cl]2 
CHCl3, 22 °C, 4 h

2) NaOMe
THF, 22 °C, 2 h

N N

N N
P PRh

Cl

Bn Bn

30d 33d
60% Yield  

Scheme 5.4.4-2: Synthesis of chiral CDC-Rh(I) complexes with isopropyl phosphine 

substituents. 

 The last chiral diazepinium ligand synthesized was the furylphosphine 31c. The smaller 

furyl substituents were predicted to improve the metallation, but the electron withdrawing nature 

could weaken σ-donation from the phosphorus atoms counteract this effect. Metallation of 31c 

occurred readily using the reaction conditions described above with [Rh(ethylene)2Cl]2 and 

generated 34c in 36% yield. Although the yield is low, it provided enough material to test 34c as 

a hydrofunctionalization catalyst. 

1) [Rh(ethylene)Cl]2 
CHCl3, 22 °C, 4 h

2) NaOMe
THF, 22 °C, 2 h

N N

N NiPr iPr

BF4

P P

31c

O

O

O O

N N

N NiPr iPr

P P

34c
36% Yield

O

O

O O

Rh
Cl

 

Scheme 5.4.4-3: Synthesis of chiral CDC-Rh(I) complexes with furyl phosphine substituents. 
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5.4.5: Surveying Enantioselectivity with Chiral CDC-Rh(I) Complexes 

 Synthetic efforts provided the thee chiral CDC-Rh(I) complexes shown in Scheme 5.4.5-

1. Although we had hoped to have a wider range of chiral catalysts to determine trends between 

ligand properties and catalysis, we were eager to explore the catalytic activity of these 

complexes. Hydroamination and hydroarylation were used as the primary test reactions for 

surveying the reactivity and selectivity of each chiral complex. 

N N

N NiPr iPr

P P

34c

O

O

O O

Rh
Cl

N N

N N
P PRh

Cl

Bn Bn

33d

N N

N N
P PRh

Cl

iPr iPr

32c  

Scheme 5.4.5-1: Chiral CDC-Rh(I) complexes successfully synthesized and used applied to 

hydrofunctionalization reactions. 

5.4.5.1: Enantioselective Intramolecular Hydroamination 

 Intramolecular hydroamination was used as the flagship reaction for testing 

enantioselectivity with the new chiral CDC-Rh(I) complexes because catalysts consistently react 

efficiently with these substrates. Table 5.4.5.1-1 summarizes the surveyed catalysts and 

conditions for enantioselective hydroamination. A survey of all three chiral CDC-Rh(I) 

complexes shown in Scheme 5.4.5.1 demonstrated that only 33d and 32c catalyzed the formation 

of 19 in 56% (Entry 2) and 40% NMR yield (Entry 3), respectively. Reaction with 33d required 

the higher reaction temperature of 80 °C. When the products were analyzed for enantioselectivity 

the valine scaffold paired with phenyl phosphine substituents provided 17% ee (Entry 3), while 

products formed from 33d were racemic. Both of these catalysts were screened with PhCl as 

solvent in an attempt to improve enantioselectivity, but both catalyst failed to catalyze the 

formation of 19 unless MeCN was used as the solvent (Entries 4 and 5). 
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NHBn
Ph

Ph Chiral Catalyst (5 mol %)
AgBF4 (5 mol %) 

Solvent, Temperature, 18 h

Entry % eeNMR Yield (%)Chiral Catalyst

1

2

3

4

5

0

0

17

0

0

0

56

40

0

0

34c

33d

32c

33d

32c

19

NBn

Me

Ph
Ph

Solvent; M

MeCN; 1.0

MeCN; 1.0

MeCN; 1.0

PhCl; 1.0

PhCl; 1.0

Temp (°C)

60

80

60

60

60  

Table 5.4.5.1-1: Surveying enantioselective intramolecular hydroamination with chiral CDC-

Rh(I) complexes. 

 This reaction screen proved that the chiral stereocenters in the diazepinium framework 

could control enantioselectivity. However, catalyst reactivity decreased dramatically compared 

to achiral iPrCDC-Rh-Cl and the enantioselectivities obtained were far from synthetically useful. 

These results mirrored those found with P-stereogenic chiral CDC-Rh(I) catalysts. 

Intermolecular hydroamination reactions were also explored by C. C. Roberts with 32c and 

results can be found in the relevant dissertation (Roberts, 2016). These reactions further 

supported the trends in reactivity and enantioselectivity found for intramolecular 

hydroamination, as the only enantioselective result was obtained with very low conversion and 

enantioselectivity; dibenzylamine and 1,3-phenylbutadiene were combined in 5% yield and 22% 

ee using 32c as the catalyst. 

 The results from intra- and intermolecular hydroamination show that 32c is the only 

chiral complex that can control enantioselectivity through a chiral CDC backbone. We suspect 

that this is because of the large spatial separation between the stereocenters and the site of bond-

formation. 32c contains the largest phosphine substituents of the three screened chiral CDC-

Rh(I) complexes, which may explain its higher enantioselectivity compared to 33d. Attempts at 
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the synthesis of larger complexes resulted in the decomposition of the P-N bond. Similarly, 

electronic modifications to the ligand scaffold did not appear promising, as evidenced by the 

complete lack of catalysis obtained with furylphosphine-substituted 34c. From these results we 

concluded that 32c was the most enantioselective chiral diazepinium catalyst that we could 

access. 

5.4.5.2: Enantioselective Intermolecular Hydroarylation 

 More enantioselective reactions are often obtained at lower temperatures. This prompted 

us to use intermolecular hydroarylation as as a test reaction with chiral CDC-Rh(I) complexes as 

achiral intermolecular hydroarylation was catalyzed at lower temperatures than any other 

hydrofunctionalization explored with CDC-Rh(I) complexes (see Chapter 2). The results from 

both intra- and intermolecular hydroamination succinctly demonstrated that 32c was the only 

complex likely to impart enantioselectivity, therefore reaction screens focused on it exclusively.  

Hydroarylation of 1,3-phenylbutadiene with 1-methylindole at 60 °C in benzene (PhH) 

catalyzed by 5 mol% of 32c and AgBF4 provided 6 in 22% yield and 23% ee (Table 5.4.5.2-1: 

Entry 1). This result was further improved by changing the solvent from PhH to PhCl and 

increasing the reaction temperature to 60 °C; 6 was formed in 50% yield and 29% ee (Entry 2). 

This result marks the highest yield and enantioselectivity obtained for any intermolecular 

reaction with the first generation of CDC-Rh(I) complexes. Further attempts at optimizing the 

Lewis acid additive failed to improve the selectivity of the transformation and reaction with 5 

mol% NaBArF
4 and 5 mol% of a neutral Lewis acid, such as CuCl or AgF, generated 6 in 54% 

yield, 7% ee and 26% yield, 5% ee, respectively  (Entries 3-4). In spite of these enantioselective 

results, catalysis with 32c proved too low yielding and selective to warrant further study.  
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32c (5 mol %)
Additive (5 mol %) 

Solvent, Temperature, 48 h

Entry % eeNMR Yield (%)

1

2

3a

4a

23

29

7

5

22

50

54

26

Solvent; M

PhH; 1.0

PhCl; 1.0

PhCl; 1.0

PhCl; 1.0

Temp (°C)

50

60

60

60

Ph + Ph

Me

6

Me
N

NMe
Additive; mol%

AgBF4; 5

AgBF4; 5

CuCl; 5

AgF; 5

a Reaction run with 5 mol% NaBArF4 to generate the cationic CDC-Rh(I) catalyst.  

Table 5.4.5.2-1: Enantioselective intermolecular hydroarylation catalyzed by 32c. 

 We were pleased to observe that a chiral CDC-Rh(I) catalyst could be general for 

hydroamination and hydroarylation, but the modest yields and low enantioselectivities provided 

by 32c could not be overcome. It was apparent that none of the CDC-Rh(I) complexes that could 

be synthesized from chiral diazepinium ligands could provide the general reactivity observed for 

the achiral PhCDC-Rh-styrene complex. The catalyst modifications proved too detrimental to 

conversion while only providing modest levels of enantioselectivity. After four years of research, 

we were forced to come to the conclusion that the ligand design for achiral catalysts was unlikely 

to be optimal for an enantioselective transformation.  

5.5: Enantioselective Hydrofunctionalization with a Chiral Tridentate Cyclic Bent Allene 

  Studies with chiral CDC-Rh(I) complexes showed that a general catalyst for 

enantioselective hydrofunctionalization could be developed, but that the ligand framework 

adopted from the achiral transformations was unsuitable to the task. This conclusion came from 

the observation that a single catalyst 32c was able to engender similar enantioselectivity for both 

hydroamination and hydroarylation. This further suggests that the proposed electrophilic 

intermediate 1 (Scheme 5.1-1) will allow for a single ligand structure to translate to multiple 

enantioselective catalytic reactions. These positive results were marred by the poor reactivity and 
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selectivity obtained using chiral variants of the diazepinium ligand. The poor reactivity could be 

rationalized by the active site of the CDC-Rh(I) complex being too hindered to accommodate 

additional steric restrictions from chiral elements. We hypothesized that a more flexible ligand 

structure would allow for a more reactive catalyst. Additionally, the poor enantioselectivity 

suggested that the sites of stereoinduction were too far removed from the stereodetermining bond 

formation. A more stereoselective catalyst should be achieved by constructing a ligand that more 

effectively encapsulated the catalyst active site. These hypotheses led to the design of a second-

generation of carbodicarbene-derived ligands. 

5.5.1: Designing a Second Generation Chiral Carbodicarbene Catalyst 

 The unique reactivity of the carbon(0) found in a carbodicarbene ligand allowed for 

efficient achiral hydrofunctionalization and would benefit from further study. We wanted to 

continue exploring these structures by incorporating a carbon(0) donors into the second-

generation ligand and maintain a narrative between the first- and second-generation ligands. The 

design and initial synthesis of these ligands was accomplished by C. C. Roberts and details are in 

the related dissertation (Roberts, 2016). Reexamination of the carbodicarbene literature 

highlighted a cyclic bent allene (CBA) ligand developed by Bertrand as a starting points for 

developing a new carbon(0) catalyst (Scheme 5.5.1-1).164 CBAs retain much of the σ- and π-

donation of CDCs, but lack the rigid tricyclic structure of the diazepinium framework. 

Arguments can be made whether the CBA core is a true CDC or a bent allene,165 but recent 

studies by Stephan et al. have shown that these structures are strong σ-donors166 and can form 

catalytically active Ru complexes.167 This literature precedent encouraged applications of the 

CBA core to enantioselective catalysis. 
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N N

N N
P P

iPr iPr N N

OO

sensitive 
P-N bond

rigid tricyclic 
backbone

occluded 
active site

open 
active siteflexible ligand 

backbone
1st Generation 

Carbodicarbene 
(CDC) Ligands

2nd Generation 
Cyclic Bent Allene 

(CBA) Ligands  

Scheme 5.5.1-1: Comparing the structure of CDC and CBA ligands. 

 The most readily modifiable sites of the CBA framework are the alcohol substituents on 

either side of the pyrazole core. The donor properties of the CBA ligand were designed to mimic 

the CDC framework in order to allow for a similar mode of olefin activation. As such, the ligand 

was designed from a tridentate ligand framework composed of phosphorus-carbon-phosphorus 

(P-C-P) donors flanking a central carbodicarbene (see Chapter 1). Replacing the 2,6-

dimethylphenol substituents on the pyrazole provides allows the installation of stereocenters for 

enantiocontrol (Scheme 5.5.1-2). We elected to use amino acids as a chiral pool by deriving the 

pyrazole substituents from proline. Proline was selected because its cyclic structure strikes a 

balance between the rigidity of a tricylic CDC and the conformational restrictions needed to 

define a chiral pocket. The ligand design was completed by incorporating diphenylphosphine 

substituents analogous to those used for PhCDC-Rh-styrene complex.  

N N

OO

X

N N

XX

X

N N

NN

X

HO PPh2

Pyrazole 
Core

proline provides 
a stereocenter 
with a rigid 
conformation

phosphine substituents 
mimic the tridentate 
diazepine ligand

Bertrand's 
CBA Ligand

Second-Generation 
CBA Ligand Design

σ-donor atoms 
are variable
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Scheme 5.5.1-2: Ligand design of a chiral tridentate CBA incorporating two phosphine donors. 

 The CBA framework will also accommodate structures that are not C2-symmetric. This 

includes ligand structures beyond P-C-P donors that could incorporate X-type ligands (eg: O-C-

P). Changes to the donor atoms are particularly intriguing as they allow access to oxidation states 

that were not previously possible with the CDC structure. This could lend itself to the synthesis 

of organometallic complexes with Pd(II) and Pt(II). Early studies of group 8 metals (Pd and Ni) 

showed that the dicationic complexes could not be readily formed through halide abstraction (see 

Chapter 1). However, the opportunity to incorporate X-type donors into the tridentate ligand 

framework can allow for the synthesis of monocationic Pd and Ni complexes that may 

electrophilically active olefins. 

5.5.2: Synthesis of the Second-Generation Cyclic Bent Complexes 

Having established the design of chiral CBA ligands, effort was directed towards 

synthesizing the proposed structures. The initial synthesis of the proline-derived CBA ligand 35 

and corresponding CBA-Rh(I) complex 36 can be found in the dissertation of C. C. Roberts 

(Roberts, 2106). The following discussion will focus on development of a tridentate O-C-P 

ligand 37. 

The synthesis of a dissymmetric pyrazole can be accomplished by adding a single 

equivalent of a less reactive amine followed by reaction with a second amine using more forcing 

conditions (Scheme 5.5.2-1). This interrupted pyrazole substitution allows for the synthesis of 

the O-C-P CBA 37 in 23% yield over two steps. The ligand scaffold is amenable to further 

diversification on both the phosphine substituents and the amino acids used as sources of 

chirality. Furthermore, the electronics of the carbon(0) donor can be modified by installing 
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electron donating or electron withdrawing substituents on the aryl rings bound to the 1- and 2-

positions of the pyrazole. Work is ongoing to develop variants of 36 and 37. 

N N

NN

BF4

Ph2P PPh235

N N

ClCl

BF4

Et3N
DCM/MeCN 2:1

-78 to 22 °C, 18 h

N N

ClN

BF4

HO

HN
HO

95% Yield

PhPh

Ph
Ph

Et3N
DCM/MeCN 2:1

-78 to 22 °C, 18 h

HN
Ph2P

N N

NN

BF4

Ph
37

24% Yield

OH
Ph PPh2

 

Scheme 5.5.2-1: CBA ligand syntheses. 

 With ligands 35 and 37 in hand, we explored various metallation procedures. This was 

spearheaded by C. C. Roberts and for the synthesis of the CBA-Rh(I) complex 38 (Scheme 

5.5.3-1) please see the corresponding dissertation (Roberts, 2016). Metallations proceeded 

analogously to those developed for CDC-ligated complexes except that an internal base was used 

to assist with deprotonating the C-H bond to form the carbon(0) ligand.164 Metallation of the O-

C-P CBA ligand 37 required full deprotonation prior to addition of the metal complex. The Pd 

complex 41 could be formed in >90% yield by stirring 37 with LiTMP in THF, presumably to 

deprotonate both the oxygen and carbon(0), and then adding PdBr2.  
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N N
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BF4

Ph
37

OH
Ph PPh2
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NN

Ph Ph

Ph Ph
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PO Pd
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Ph Ph
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Br

BF4
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PP Pt

NN

NN

Ph Ph

Ph Ph

I

BF4

40

Ph

Ph

 

Scheme 5.5.2-2: Metallation of CBA ligands to form complexes with Pd and Pt. 

 The synthesis of the CBA carbon(0) scaffold and associated metal complexes was only 

begun in the last few months prior to this dissertation, yet the ease of synthesizing these 

structures – and our experience with carbon(0)-ligated metal complexes – has allowed for the 

rapid isolation of four new metal complexes 38, 39, 40, and 41 (Scheme 5.5.2-3). These 

complexes are derived from two basic ligands and the synthesis of sterically and electronically 

modified variants are currently in progress. Although our previous efforts with group 8 metals 

had been fruitless (see Chapter 1), we hoped that the new catalyst structure would expand the 

available hydrofunctionalization catalysts beyond Rh.  

PP Pd

NN

NN

Ph Ph

Ph Ph

Br

PO Pd

NN

NN

Ph Ph

Ph

Br

BF4

39 41

PP Pt

NN

NN

Ph Ph

Ph Ph

I

BF4

40

Ph

PhPP Rh

NN

NN

Ph Ph

Ph Ph

Cl
38  

Scheme 5.5.2-3: Newly prepared CBA-ligated metal complexes. 



	   238	  

5.5.3: Enantioselective Hydrofunctionalization Catalyzed by Cyclic Bent Allene-Ligated Metal 
Complexes 
 
 Our primary interest was to assay the reactivity and enantioselectivity of CBA-ligated 

metal complexes for the hydrofunctionalization of olefins. As with the chiral complexes 

developed in Section 5.4, this was accomplished by surveying these complexes as catalysts for 

hydroamination, hydroarylation, and hydroalkylation using the reaction conditions developed for 

achiral transformations. Studies are ongoing and only the most successful will be discussed here. 

 The group 8 metal complexes proved reluctant catalysts for intermolecular 

hydrofunctionalization. Test reactions pairing 1,3-phenylbutadiene and 1-methylindole or 

dibenzylamine failed to generate the desired products (Scheme 5.5.3-1). Results were similar for 

hydroalkylation with oxazolone and silyloxyfuran nucleophiles, however, reaction with 2,4-

pentanedione proceeded to generate 42 with complex 40 and 41 in 45% and 13% NMR yields, 

respectively. These compounds were assayed by chiral HPLC to find that the products were 

formed in 9% and 3% ee. The diene was completely consumed during the course of the reaction. 

The difficulty of applying carbon(0) ligated group 8 complexes to hydrofunctionalization has 

appeared in both our studies with CDC and CBA ligands. As such, we turned our focus towards 

the more promising Rh analogues in the hope that reactivity would directly translate between the 

first- and second-generation complexes. 
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39, 40, or 41 (5 mol %)
NaBArF4 (5 mol %)

LiPF6 (5 mol%) 

Solvent, Temperature, 18 h
Ph + Ph

Me

6

Me
N

NMe

Ph + Ph

N

Me
22

Bn
N
H

Bn

BnBn

no conversion to product 
under any conditions

no conversion to product 
under any conditions

39, 40, or 41 (5 mol %)
NaBArF4 (5 mol %)

LiPF6 (5 mol%) 

Solvent, Temperature, 18 h

Ph + Ph

Me
40 or 41 (5 mol %)
NaBArF4 (5 mol %)

LiPF6 (5 mol%) 

Solvent, Temperature, 18 h

O

Me

O Me

O

Me

O Me42

Entry Catalyst Solvent; M Temp (°C) Yield (%) %ee

1

2

40

41

THF; 0.5

Et2O; 0.5

22

50

45

13

9

3  

Scheme 5.5.3-1: Surveying reactivity with CBA complexes of group 8 metals. 

 Results with the CBA-Rh(I) complex 38 are more encouraging. Catalytic activity has 

been observed for intermolecular hydroamination and hydroarylation with excellent 

enantioselectivity (see Roberts, 2016) and the complex appears to be general for multiple 

reaction classes. Efforts were made to extend the catalytic activity of complex 38 to 

hydroalkylation as enantioselective reactions with carbon nucleophiles are underexplored (see 

Section 5.1). Additionally, there was interest in publishing hydroalkylation with malonate-

derived carbon nucleophiles (see Chapter 3), but these studies would only be impactful if they 

could be accomplished enantioselectively. 

 A survey of Lewis acid activators was performed to gauge the reactivity and selectivity of 

38 using DCM as the solvent based on initial screens with intermolecular hydroarylation. 

Reactions with Li salts gave variable results and generated 42 as a mixture of the γ- and α-

additions regioisomers (Table 5.5.3-2). Yields and enantioselectivities were modest, but the 
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regioselectivity of the transformation was unexpectedly poor; hydroalkylation with 38 and 

LiBArF
4, gave 67% yield, 22% ee and 1:1 γ:α selectivity, while LiBF4 gave 53% yield, 0% ee 

and 3:1 γ:α selectivity, and LiPF6 gave 34% yield, -8% ee and 2:1 γ:α selectivity. The Li 

counterion had a modest effect on the yields and regioselectivities obtained with 38, but proved 

vital to controlling the enantioselectivity of the transformation. The identity of the Li counterion 

could switch which enantiomer was favored in the catalytic reaction. Additional Lewis acids 

derived from metal salts other than Li were screened to find that reactions with CuCl, AuCl, and 

AgCl provided 42 in 26% yield, 2:1 γ:α selectivity, -23% ee; 16% yield, 1:1 γ:α selectivity, -

13% ee; and 32% yield, 2:1 γ:α selectivity, 0% ee, respectively. This further emphasized the 

importance of the Lewis acid for determining enantioselectivity. We do not currently have an 

explanation for this surprising effect. Overall, this screen demonstrated that 38 could serve as an 

effective catalyst for hydroalkylation and has the potential to control enantioselectivity. 

Ph +
Ph

Me38 (5 mol %)
NaBArF4 (5 mol %)

Lewis Acid (5 mol%) 

DCM (0.5 M), 50 °C, 18 h

O

Me

O Me

O

Me

O Me42

Entry Lewis Acid; mol% Yield (%) %ee

1

2

3

4

5

6

LiBArF4; 5

LiBF4; 5

LiPF6; 5

CuCl; 5

AuCl; 5

AgCl; 5

67

53

34

26

16

32

22

0

-8

-23

-13

0

γ:α

1:1

3:1

2:1

2:1

1:1

2:1

α γ

 

Table 5.5.3-2: Screening Lewis acids for the enantioselective hydroalkylation of 1,3-

phenylbutadiene with 2,4-pentanedione. 

 The large variation in reactivity and selectivity obtained with relatively minor changes to 

the Lewis acid suggested that further optimization might substantially improve the reaction 

(Table 5.5.3-3). Various solvents were explored to determine their effect on hydroalkylation, but 
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none superseded the conversion and enantioselectivity obtained with DCM (Entry 1). 

Hydroalkylation proceeded with reduced yields when Et2O, PhCl and PhMe were used as 

solvents, but reaction in chloroform (CHCl3) failed to generate 42 (Entries 2-5). The 

enantioselectivities were diminished compared to Entry 1 and DCM was adopted as the optimal 

solvent. Lowering the reaction temperature failed to improve enantioselectivity and reaction at 

22 °C gave 42 in 15% yield, 2:1 regioselectivity and 10% ee. Next, the effect of concentration 

was examined and we were pleased to discover that decreasing the solvent concentration from 

0.5 M to 0.1 M and 0.05 M provided enantioselectivities of 50% and 55% ee, respectively 

(Entries 7 and 8). These higher enantioselectivities were accompanied by reductions in 

conversion and increases in regioselectivity; reaction at 0.1 M gave 45% yield to a 2:1 mixture of 

regioisomers, whereas 0.05 M gave 33% yield as a 5:1 mixture of isomers. Increasing the 

loading of the diene electrophile to two equivalents provided the best enantioselectivity obtained 

to date, as 42 was formed in 31% yield, 2:1 γ:α selectivity and 60% ee (Entry 9). 

Ph +
Ph

Me38 (5 mol %)
NaBArF4 (5 mol %)
LiBArF4(5 mol%) 

Solvent, Temperature, 18 h

O

Me

O Me

O

Me

O Me42

Entry Solvent; M Temp (°C) Yield (%) %ee

1

2

3

4

5

6

7

8

9a

DCM; 0,5

Et2O; 0.5

PhCl; 0.5

CHCl3; 0.5

PhMe; 0.5

DCM; 0.5

DCM; 0.1

DCM; 0.05

DCM; 0.05

50

50

50

50

50

22

50

50

50

67

40

34

0

50

15

45

33

31

22

<5

15

-

9

10

50

55

60

γ:α

1:1

2:1

2:1

-

2:1

2:1

2:1

5:1

2:1
a Reaction was run with 2 equiv of 1,3-phenylbutadiene.

α γ
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Table 5.5.3-3: Optimization of the solvent, concentration and temperature for enantioselective 

intermolecular diene hydroalkylation with 2,4-pentanedione. 

 These results are extremely encouraging and obtained with less effort compared to the 

development of enantioselective CDC-Rh(I) complexes. The second-generation CBA ligand 

appears to be far more amenable to enantioselective transformations, although it does suffer from 

decreased regioselectivity and activity when compared to similar reactions with PhCDC-Rh-

styrene (see Chapter 3). Efforts are ongoing and we are excited to delve into this new vein of 

research. We anticipate this ligand being the foundation for future studies on catalytic 

hydrofunctionalization with carbon(0)-ligated metal complexes. 

5.5.4: Summary and Outlook 

 All signs point towards the CBA ligands being the future of catalysis within the Meek 

group. Years of exploring chiral ligands and additives with the diazepinium CDC framework 

gave interesting – but ultimately disappointing – yields and selectivities for various 

hydrofunctionalization reactions. In comparison, research with CBAs has provided the highest 

enantioselectivities known with a carbon(0) ligand. We anticipate that the first publication of an 

enantioselective carbon(0) ligand will further improve our understanding of these tridentate CBA 

Rh complexes. Further efforts in enantioselective catalysis with CDC-Rh(I) complexes have 

been discontinued for the time being, but it is the author’s hope that future applications will arise 

for the developed chiral diazepinium ligands. 
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APPENDIX 1: SUPPORTING INFORMATION FOR CHAPTER 1 
 

#  General: All reactions were carried out in flame or oven (140 oC) dried glassware that had 

been cooled under vacuum. Unless otherwise stated, all reactions were carried out under an inert 

N2 atmosphere. All reagents were purged or sparged with N2 for 20 min prior to distillation or 

use. All solid reagents were dried by azeotropic distillation with benzene three times prior to use. 

Infrared (IR) spectra were obtained using a Jasco 460 Plus Fourier transform infrared 

spectrometer or a ASI ReactIR 1000, Model: 001-1002 for air sensitive rhodium carbonyl 

complexes. Mass spectra were obtained using a Micromass Quattro-II triple quadrupole mass 

spectrometer in combination with an Advion NanoMate chip-based electrospray sample 

introduction system and nozzle for low-res or Waters Q-ToF Ultima Tandem Quadrupole/Time-

of-Flight Instrument UE521 at University of Illinois at Urbana Champaign for high-res or Waters 

Q-ToF Xevo Tandem Quadrupole/Time-of-Flight Instrument. The Q-Tof Ultima mass 

spectrometer was purchased in part with a grant from the National Science Foundation, Division 

of Biological Infrastructure (DBI-0100085). All samples were prepared in MeOH or MeCN for 

metal complexes. Proton and carbon magnetic resonance spectra (1H NMR and 13C NMR) were 

recorded on a Bruker model DRX 400 or a Bruker AVANCE III 600 CryoProbe (1H NMR at 400 

MHz or 600 MHz, 13C NMR at 100 or 150 MHz, 31P NMR at 160 or 243 MHz and 19F NMR at 

376 or 564 MHz) spectrometer with solvent resonance as the internal standard (1H NMR: CDCl3 

at 7.26 ppm, CD2Cl2 at 5.30 ppm, C6D6 at 7.16 ppm, CD3CN at 1.94 ppm; 13C NMR: CDCl3 at 

77.16 ppm, C6D6 at 128.4 ppm, CD3CN at 1.31 ppm). NMR data are reported as follows: 

chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of 

doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of doublet of doublets, 

septetd = septet of doublets, m = multiplet, bs = broad singlet, bm = broad multiplet), and 
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coupling constants (Hz). X-ray diffraction studies were conducted on a Bruker-AXS SMART 

APEXII diffractometer. Crystals were selected and mounted using Paratone oil on a MiteGen 

Mylar tip.  

#  Solvents: Solvents were purged with argon and purified under a positive pressure of dry argon 

by a SG Waters purification system: dichloromethane (EMD Millipore) and THF (EMD 

Millipore) were passed through activated alumina columns. Chlorobenzene (Alfa Aesar) was 

dried over K2CO3, distilled under vacuum and stored over activated 5 Å molecular sieves in a dry 

box. 

Section 1.3: Synthesis of the Carbodicarbene Ligand Scaffold 

HNNH

H2NNH2

NC CN

NH4BF4

180 °C, 2 h

N N

N
H

N
H+

92% Yield
30 g scale

BF4

 

Synthesis of the Diazepinium Base 

A 1 L three-neck flask was charged with reagent grade triethylenetetramine (26.6 mL, 177 

mmol) and fitted with a condenser and addition funnel. The flask was evacuated and backfilled 

with N2 before undried, solvent grade methanol (52 mL) and 2-methoxyethoxy ethanol (65 mL) 

were added after being sparged for 30 minutes with N2. The reaction was heated to 50 °C and 

ammonium tetrafluoroborate (56.8 g, 542 mmol) added quickly in one large portion. The 

reaction was heated to 75 °C and malononitrile (10.3 g, 156 mmol) added to the addition funnel 

as a solution in N2 sparged MeOH (27 mL). The solution of malononitrile was added dropwise 

over 10 minutes and the reaction fitted with a Claisen head and distillation flask while 

maintaining a N2 atmosphere. The solution was heated to 180 °C for 3 h causing the MeOH to be 

distilled off. The reaction was then cooled to 100 °C and butylamine (15.7 mL, 159 mmol) added 
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before the reaction was allowed to stand overnight at -20 °C as a yellow powder crashed out of 

solution. The solid was isolated by filtration and extensive washing with iPrOH, followed by 

purification by silica gel column chromatography (7:3 DCM:Hexanes) to yield a sticky yellow 

powder. Further washing of this powder with iPrOH removed residual 2-methoxyethoxy ethanol 

to yield a free flowing yellow crystalline powder (26 g, 144 mmol, 92% yield). This powder was 

dried by heating in a drying pistol with refluxing iPrOH with P2O5 to trap volatilized moisture. 

 

PhCDC-H
 

Synthesis of PhCDC-H 

A 250 mL round-bottom flask with a stir bar was charged with diazepinium salt 3 (2.00 g, 7.52 

mmol), sealed with a septum and purged with nitrogen. Dichloromethane (12.0 mL, [ ] = 0.640 

M) and triethylamine (12.0 mL, 860 mmol) were added via syringe and the solution was allowed 

to stir for 5 min. To the yellow heterogenous solution, chlorodiphenylphosphine (4.05 mL, 22.6 

mmol) was added via syringe and the reaction was allowed to stir at 22 oC for 18 h. The reaction 

was triturated with diethyl ether (100 mL) and filtered to isolate a yellow solid. The yellow solid 

was purified by SiO2 column chromatography (20:1 to 9:1 CH2Cl2/MeOH). After concentrating 

the solution to a solid, the resulting yellow residue was dissolved in benzene (5 mL) before being 

triturated with toluene (150 mL) to produce a white powder which was filtered off (4.10 g, 6.39 

mmol 85% yield). Excess water was removed by azeotropic distillation with benzene (3 x 3 mL). 

1H NMR (600 MHz, CDCl3): δ 7.41 (20H, m), 6.17 (1H, t, J = 7.3 Hz), 3.80 (4H, s), 3.77 (4H, t, 

J = 8.8 Hz), 3.34 (4H, t, J = 8.8 Hz). 13C NMR (150 MHz, CDCl3): δ 163.90 (d, J = 19.2 Hz), 
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132.98 (d, J = 9.2 Hz), 132.50 (d, J = 17.0 Hz), 130.43, 129.18 (d, J = 5.4 Hz), 62.21 (t, J = 26.4 

Hz), 50.92, 47.52, 44.40 (d, J = 7.3 Hz). 31P NMR (243 MHz, CDCl3): δ 41.4. 19F NMR (376 

MHz): δ -153.33 (d, J = 19.8 Hz). IR (ν/cm-1): 3057 (w), 2891 (w), 1594 (w), 1557 (s), 1524 (s), 

1508 (w), 1478 (m), 1436 (m), 1312 (w), 1292 (m), 1227 (m), 1161 (w), 1097 (w), 1054 (s). 

HRMS (ES+) [M+H]+ calcd for C33H33N4P2
+ 547.2175, found: 547.2172. 

 

iPrCDC-H
 

Synthesis of iPrCDC-H  

A 250 mL round-bottom flask with a stir bar was charged with diazepinium salt 311 (2.00 g, 7.52 

mmol), sealed with a septum and purged with nitrogen. Dichloromethane (12.0 mL, [ ] = 0.640 

M) and triethylamine (12.0 mL, 860 mmol) were added via syringe and the solution was allowed 

to stir for 5 min. To the yellow heterogeneous solution, chlorodiisopropylphosphine (3.6 mL, 

22.6 mmol) was added via syringe and the reaction was allowed to stir at 22 oC for 18 h. The 

reaction was filtered through a pad of Celite® which was washed with dichloromethane (100 

mL). The filtrate was concentrated and purified by SiO2 column chromatography (30:1 

CH2Cl2/MeOH). The resulting off-white solid was dissolved in a minimal amount of 

dichloromethane and triturated with hexanes to produce a white powdery solid which was 

filtered off (2.65 g, 71% yield). Excess water was removed by azeotropic distillation with 

benzene (3 x 3 mL). 

1H NMR (400 MHz, CDCl3): δ 5.70 (1H, t, J = 7.0 Hz), 3.73 (4H, m), 3.65, (4H, s), 3.59 (4H, 

m), 2.08 (4H, septd, J = 7.0, 1.6 Hz), 1.11 (12H, dd, J = 16.8, 7.0 Hz), 1.03 (12H, dd, J = 12.5, 
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7.0 Hz). 13C NMR (100 MHz, CDCl3): δ 165.04 (d, J = 21.3 Hz), 63.63 (t, J = 29.7 Hz), 51.13, 

47.27, 44.55, 25.11 (d, J = 15.1 Hz), 19.21 (d, J = 19.21 Hz), 18.80 (d, J = 22.9 Hz). 31P NMR 

(162 MHz, CDCl3): δ 63.24. 19F NMR (376 MHz): δ -153.64 (d, J = 18.8 Hz). IR (ν/cm-1): 2952 

(m), 2924 (w), 2867 (m), 1557 (s), 1523 (m), 1507 (w), 1457 (w), 1436 (w), 1386 (m), 1291 (m), 

1227 (m), 1163 (w), 1053 (s). HRMS (ES+) [M+H] + calcd for C21H41N4P2
+ 411.2801, found: 

411.2799. 

 

PhCDC-H2  

Synthesis of Dicationic PhCDC-H2 

In an N2 filled dry box, an 8-mL vial was charged with 4 (10.0 mg, 0.016 mmol) and CD2Cl2 

(0.25 mL). The solution was transferred to an NMR tube and the vial was washed with CD2Cl2 (2 

x 0.25 mL). The tube was capped with a septum-lined lid and brought outside the dry box. 

Tetrafluoroboric acid (5.1 µL, 0.019 mmol) was added via syringe, which resulted in an 

immediate color change from pale yellow to almost colorless, and the tube was shaken for 5 min 

before being analyzed.  

1H NMR (600 MHz, CD2Cl2): δ 7.44-7.7.52 (m, 20H), 5.36 (t, J = 4.9 Hz), 4.05-4.09 (m, 8H), 

3.64 (t, 4H, J = 10.9 Hz). 
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Section 1.4: Syntheses of Carbodicarbene Ligated Metal Complexes 

# General procedure for the preparation of CDC-Rh(I)Cl complexes PhCDC-Rh-Cl and 

iPrCDC-Rh-Cl: In an N2 filled dry box, a 20-mL scintillation vial with a stir bar was charged 

with CDC-H BF4 salt (1.0 equiv) and chloro(1,5-cyclooctadiene)rhodium(I) dimer (0.50 equiv). 

Tetrahydrofuran was added, the vial capped, and the resulting mixture was allowed to stir for 3 h 

at 22 °C. The solution was concentrated in vacuo. Residual 1,5-cyclooctadiene was removed by 

azeotropic distillation with benzene (3 x 1 mL). Sodium methoxide (1.0 equiv) and THF were 

added to the reaction vial. The resulting heterogeneous mixture was allowed to stir for 3 h at 22 

°C.  

 

PhCDC-H PhCDC-Rh-Cl
 

Synthesis of PhCDC-Rh-Cl 

Following the general procedure for the preparation of CDC-Rh(I)-Cl complexes, PhCDC-H BF4 

(258 mg, 0.406 mmol) and chloro(1,5-cyclooctadiene)rhodium(I) dimer (100 mg, 0.203 mmol) 

were solvated with THF (10 mL, [ ] = 0.020 M). After concentration, NaOMe (21.9 mg, 0.406 

mmol) was added and solvated with THF (10 mL, [ ] = 0.020 M). After reaction was complete, 

acetonitrile (4.0 mL) was added to the solution, which was then filtered through a pad of 

Celite®. The Celite® pad was washed with a 1:1 mixture of THF:MeCN (5 mL) to dissolve the 

solid. The resulting filtrate was concentrated to afford orange solid PhCDC-Rh-Cl in >98% yield 

(282 mg, 0.412 mmol). 
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1H NMR (600 MHz, CD3CN): δ 7.65-7.68 (8H, m), 7.50-7.56 (12H, m), 4.01 (4H, t, J = 8.1 Hz), 

3.45 (4H, s), 3.30 (4H, t, J = 8.3 Hz). 13C NMR (150 MHz, CD3CN): δ 173.11 (td, J = 18.1, 1.3 

Hz), 134.61, (t, J = 17.0 Hz), 133.15 (t, J = 6.8 Hz), 131.70, 129.82 (t, J = 3.8 Hz), 72.98 (dt, J = 

29.9, 9.7 Hz), 58.88, 47.32, 42.24. 31P NMR (243 MHz, CD3CN): δ 79.20 (d, J = 170.4 Hz). 

HRMS (ES+) [M–Cl]+ calcd for C33H32N4P2Rh+ 649.1157, found: 649.1155. When formic acid 

was added to neutral complex 6 the protonated N2 adduct was formed. HRMS (ES+) [M+H+N2]+ 

calcd for C33H33N6P2RhCl+ 713.0985, found: 713.1317. 

 

iPrCDC-H iPrCDC-Rh-Cl
 

Synthesis of iPrCDC-Rh-Cl  

Following the general procedure for the preparation of CDC-Rh(I)-Cl complexes, iPrCDC-H BF4 

(100 mg, 0.201 mmol) and chloro(1,5-cyclooctadiene)rhodium(I) dimer (49.5 mg, 0.100 mmol) 

were solvated with THF (5.0 mL, [ ] = 0.020]. After concentration, NaOMe (10.9 mg, 0.201 

mmol) was added and solvated with THF (5 mL, [ ] = 0.020 M). The resulting yellow powder 

was filtered through a pad of Celite® and washed with THF (4 x 1 mL). The yellow solid was 

dissolved off the Celite® pad using acetonitrile (5 mL) and concentrated in vacuo to afford 

iPrCDC-Rh-Cl in >98% yield (110 mg, 0.201 mmol) as a canary yellow powder.  

1H NMR (600 MHz, CD3CN): δ 3.88 (4H, t, J = 8.2 Hz), 3.42 (4H, t, J = 8.2 Hz), 3.31 (4H, s), 

2.29 (4H, septetd, J = 7.0, 1.0 Hz), 1.27 (12H, m), 1.20 (12H, m). 13C NMR (150 MHz, CD3CN): 

δ 173.95 (t, J = 15.1 Hz), 73.76 (dt, J = 30.1, 8.7 Hz), 58.69, 47.40, 42.66, 27.91 (t, J = 8.1 Hz), 
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19.37, 18.89 (t, J = 4.4 Hz). 31P NMR (162 MHz, CD3CN): 110.44 (d, J = 167.1 Hz). HRMS 

(ES+) [M–Cl]+ calcd for C21H40N4P2Rh+ 513.1783, found: 513.1795. 

 

N N

N N
P P

BF4
[Rh(cod)Cl]2

THF, 22 °C, 18 h
H

Ph Ph
Ph Ph

N N

N N
P PRh

Cl
Ph Ph

Ph Ph
H

BF4

PhCDC-H 12
85% Yield  

Synthesis of PhCDC-Rh-HCl (12) 

In an N2 filled dry box, a 20 mL scintillation vial equipped with a stir bar was charged with 

PhCDC-H (103 mg, 0.162 mmol) and [Rh(cod)Cl]2 (40 mg, 0.0811 mmol) before being solvated 

with THF (3 mL). The reaction was allowed to stir at room temperature for 18 h during which 

time a yellow precipitate crashed out of solution. The reaction was filtered through a plug of 

celite® and washed with excess THF (3 x 2 mL) until the flowthrough had no yellow color. The 

product was then dissolved off the column with MeCN and the solution concentrated to yield 12 

as a yellow powder (106.6 mg, 0.138 mmol), 85% yield). This powder was dried on high 

vacuum for several hours to remove residual THF. 

1H NMR (600 MHz, Acetonitrile-d3) δ 7.98 (dtd, J = 7.7, 6.1, 1.4 Hz, 4H), 7.66 (t, J = 7.4 Hz, 

2H), 7.62 – 7.55 (m, 8H), 7.55 – 7.49 (m, 6H), 4.14 (td, J = 9.7, 8.4 Hz, 2H), 3.95 (td, J = 9.8, 

5.6 Hz, 2H), 3.68 (td, J = 9.8, 5.7 Hz, 2H), 3.54 – 3.43 (m, 4H), 3.27 (q, J = 9.7 Hz, 2H), -16.32 

(dt, J = 19.3, 9.8 Hz, 1H). 13C NMR (151 MHz, Acetonitrile-d3) δ 169.23 (t, J = 18.6 Hz), 

162.68, 134.85 (t, J = 8.4 Hz), 132.51, 131.32 (t, J = 6.7 Hz), 131.07 (d, J = 4.6 Hz), 130.89, 

129.11, 128.85 (t, J = 5.7 Hz), 128.56 (t, J = 4.9 Hz), 67.29, 57.71, 57.36, 46.33, 42.32, 25.25. 
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PhCDC-Rh-COPhCDC-H
 

Synthesis of PhCDC-Rh-CO 

In an N2 filled dry box, an 8-mL vial with a stir bar was charged with PhCDC-H (16.3 mg, 0.026 

mmol) and dicarbonylchlororhodium(I) dimer (5.0 mg, 0.013 mmol), and tetrahydrofuran (0.50 

mL, [ ] = 0.050 M). The vial was capped and the resulting mixture was allowed to stir for 18 h at 

22 °C. The resulting solution was concentrated to afford a yellow powder. To this solid, NaOMe 

(1.4 mg, 0.026 mmol) was added followed by tetrahydrofuran (0.50 mL, [ ] = 0.05 M). The 

yellow heterogeneous solution was allowed to stir for 6 h at 22 °C. The solution was 

concentrated in vacuo, dissolved in CHCl3 (1 mL), and filtered through a cotton plug, which was 

washed with CHCl3 (2 x 1 mL). The filtrate was concentrated in vacuo to afford PhCDC-Rh-CO 

in 80% yield (15.8 mg, 0.021 mmol) as a burnt yellow powder.  

1H NMR (600 MHz, CD3CN): δ 7.67-7.70 (8H, m), 7.52-7.57 (4H, m), 7.50-7.54 (8H, m), 4.19 

(4H, t, J = 8.4 Hz), 3.65 (4H, s), 3.36 (4H, t, J = 14.4 Hz). 13C NMR (150 MHz, CD3CN): δ 

194.6 (dt, J = 57.2, 12.7 Hz), 174.4 (t, J = 21.6 Hz), 133.4 (t, J = 7.9 Hz), 132.9, 132.2, (t, J = 

27.1 Hz), 130.2, (t, J = 5.4 Hz), 86.4 (dt, J = 28.1, 11.0 Hz), 59.5, 47.2, 42.4. 31P NMR (162 

MHz, CD3CN): δ 87.99 (d, J = 103.6 Hz). IR (ν/cm-1) (CH2Cl2): 1986 (νCO), 1537 (m), 1475 (w), 

1375 (w), 1267 (w). HRMS (ES+) [M-CO]+ calcd for C34H32N4OP2Rh+ 677.1101, found: 

677.1809.  
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iPrCDC-Rh-COiPrCDC-H
 

Synthesis of iPrCDC-Rh-CO 

In an N2 filled dry box, an 8-mL vial with a stir bar was charged with iPrCDC-Rh-Cl (13.0 mg, 

0.026 mmol) and dicarbonylchlororhodium(I) dimer (5.0 mg, 0.013 mmol), and tetrahydrofuran 

(0.50 mL, [ ] = 0.050 M). The vial was capped, and the resulting mixture was allowed to stir for 

18 h at 22 °C. The resulting solution was concentrated to afford a yellow powder. To this solid, 

NaOMe (1.4 mg, 0.026 mmol) was added followed by tetrahydrofuran (0.50 mL, [ ] = 0.05 M). 

The yellow heterogeneous solution was allowed to stir for 6 h at 22 °C. The solution was 

concentrated in vacuo to afford iPrCDC-Rh-CO in 83% yield (16.5 mg, 0.0216 mmol) as a 

canary yellow powder. 

1H NMR (600 MHz, CDCl3): δ 4.11 (4H, t, J = 8.52 Hz), 3.55 (4H, t, J = 8.52 Hz), 3.53 (4H, s), 

2.38 (4H, m), 1.28-1.32 (12H, m), 1.2-1.24 (12H, m). 13C NMR (150 MHz, CDCl3): δ 195.36 

(dt, J = 34.5, 19.0 Hz), 174.15 (t, J = 19.1 Hz), 85.16 (dt, J = 19.0, 9.3 Hz), 58.24, 46.37, 42.26, 

27.31 (t, J = 12.3 Hz), 18.95, 18.73 (t, J = 4.3 Hz). 31P NMR (162 MHz, CDCl3): δ 119.97 (d, J 

= 98.8 Hz). IR (ν/cm-1) (CH2Cl2): 2966 (w), 2885 (w), 1970 (νCO), 1529 (m), 1475 (w), 1375 (w), 

1182 (w), 1055 (s). HRMS (ES+) [M-CO]+ calcd for C22H40N4OP2Rh+ 541.1727, found: 

541.1715.  
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PhCDC-Rh-Cl

14

 

Synthesis of cationic PhCDC-Rh-MeCN BF4 (14) 

An 8-mL amber vial equipped with a stir bar was charged with PhCDC-Rh-Cl (40.0 mg, 0.0584 

mmol) and AgBF4 (17.1 mg, 0.0876 mmol). Acetonitrile (2.0 mL, [ ] = 0.029) was added to the 

vial and the heterogeneous solution was allowed to stir for 2 h at 22 °C. The resulting solution 

was filtered through a pad of Celite® and concentrated to afford 14 (39.0 mg, 0.0502 mmol, 86% 

yield) as a dark orange powder. X-ray quality crystals of 14 were grown from a slow salt 

metathesis of PhCDC-Rh-Cl and NaBF4 in a 5:1 mixture of benzene:MeCN. 

1H NMR (600 MHz, CD3CN): δ 7.75-7.78 (12H, m), 7.68-7.70 (8H, m), 4.31 (4H, t, J = 8.5 Hz), 

3.78-3.80 (8H, m). 13C NMR (150 MHz, CD3CN): δ 168.67 (t, J = 16.6 Hz), 134.75, 133.60 (t, J 

= 7.1 Hz), 130.94 (t, J = 5.8 Hz), 125.40, (t, J = 29.8 Hz), 58.29, 56.33 (dt, J = 28.1, 4.5 Hz), 

47.51, 44.55. 31P NMR (162 MHz, CD3CN): 67.63 (d, J = 58.4 Hz). 19F NMR (376 MHz): δ -

152.24 (d, J = 20.0 Hz). HRMS (ES+) [M+H]+ calcd for C35H35N5P2Rh+ 690.1423, found: 

690.1435. 
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Crystal Structure Data for PhCDC-Rh-MeCN 

X-ray of 8PhCDC-Rh-MeCN
 

Table 2. Crystal structure data for PhCDC-Rh-MeCN 

Identification code  x1312005_0m_p21onc 
Empirical formula C47 H44 B F4 N5 P2 Rh  
Formula weight 930.53 
Temperature 100 K 
Wavelength 1.54178 
Crystal system monoclinic 
Space group P 21/c  
Unit cell dimensions  a = 17.0682(4) Å α= 90 

 
b = 16.9409(4) Å β= 110.952(1) 

 
c = 17.3070(5) Å γ = 90 

Volume  4673.5(2) 
Z 4 
Density (calculated) 1.322 Mg/m3 
Absorption coefficient 4.041 (mm-1) 
F(000) 1908 
Crystal size 0.086 x 0.124 x 0.279 
Theta range for data collection 77.10-2.77 
Index ranges  Hmax = 20, kmax = 20, lmax = 20 
Reflections collected 43697 
Independent reflections 8846 
Completeness to theta  99.5 
Max. and min. transmission 0.2815, 0.6907 
Refinement method  XS least squares 
Goodness-of-fit on F2 0 1.2983 
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Final R indices [I>2sigma(I)]  R1 = 0.0477, wR2 = 0.1542 
R indices (all data) R1 = 0.0435, wR2 = 0.1542 
Extinction coefficient na 

 

 

Table 3. Bond lengths (Å) for PhCDC-Rh-MeCN 

Number Atom 1 Atom 2 Length 
1 Rh1 P1 2.2301(8) 
2 Rh1 P2 2.2400(7) 
3 Rh1 N5 2.027(3) 
4 Rh1 C1 2.043(2) 
5 P1 N4 1.699(2) 
6 P1 C16 1.814(3) 
7 P1 C10 1.817(4) 
8 P2 N1 1.704(2) 
9 P2 C28 1.819(3) 
10 P2 C22 1.817(4) 
11 N1 C3 1.379(4) 
12 N1 C7 1.465(3) 
13 N2 C3 1.359(3) 
14 N2 C9 1.458(7) 
15 N2 C6 1.539(7) 
16 N3 C2 1.352(4) 
17 N3 C5 1.465(5) 
18 N3 C8 1.516(9) 
19 N4 C2 1.374(4) 
20 N4 C4 1.469(4) 
21 N5 C34 1.132(5) 
22 C16 C21 1.387(4) 
23 C16 C17 1.379(5) 
24 C25 H25 0.950(7) 
25 C25 C24 1.366(9) 
26 C25 C26 1.372(8) 
27 C32 H32 0.950(4) 
28 C32 C31 1.372(7) 
29 C32 C33 1.378(7) 
30 C31 H31 0.949(3) 
31 C31 C30 1.399(5) 
32 C18 H18 0.950(5) 
33 C18 C19 1.374(6) 
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34 C18 C17 1.397(6) 
35 C24 H24 0.950(5) 
36 C24 C23 1.380(9) 
37 C19 H19 0.950(5) 
38 C19 C20 1.365(7) 
39 C20 H20 0.950(4) 
40 C20 C21 1.389(5) 
41 C34 C35 1.468(9) 
42 C33 H33 0.950(6) 
43 C33 C29 1.393(6) 
44 C26 H26 0.951(5) 
45 C26 C27 1.405(9) 
46 C35 H35A 0.981(8) 
47 C35 H35B 0.980(9) 
48 C35 H35C 0.98(1) 
49 C28 C30 1.390(4) 
50 C28 C29 1.393(5) 
51 C15 H15 0.950(3) 
52 C15 C10 1.396(5) 
53 C15 C14 1.386(5) 
54 C22 C27 1.379(5) 
55 C22 C23 1.397(4) 
56 C1 C2 1.398(4) 
57 C1 C3 1.387(4) 
58 C10 C11 1.394(4) 
59 C11 H11 0.950(3) 
60 C11 C12 1.384(5) 
61 C30 H30 0.949(4) 
62 C27 H27 0.950(4) 
63 C23 H23 0.950(5) 
64 C29 H29 0.950(3) 
65 C13 H13 0.949(4) 
66 C13 C12 1.389(5) 
67 C13 C14 1.388(5) 
68 C12 H12 0.949(3) 
69 C14 H14 0.950(3) 
70 C21 H21 0.950(5) 
71 C4 H4A 0.991(3) 
72 C4 H4B 0.990(4) 
73 C4 C5 1.517(5) 
74 C5 H5A 0.990(4) 
75 C5 H5B 0.990(4) 
76 C17 H17 0.950(3) 
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77 C7 H15A 0.989(3) 
78 C7 H15B 0.991(4) 
79 C7 C6 1.511(8) 
80 C8 H1WA 0.99(1) 
81 C8 H1WB 0.989(9) 
82 C8 C9 1.58(1) 
83 C9 H1XA 0.989(7) 
84 C9 H1XB 0.990(5) 
85 C6 H1YA 0.990(8) 
86 C6 H1YB 0.988(6) 
87 C45 H45 0.949(6) 
88 C45 C46 1.39(1) 
89 C45 C44 1.390(8) 
90 C46 H46 0.950(6) 
91 C46 C47 1.390(9) 
92 C47 H47 0.950(3) 
93 C47 C42 1.391(8) 
94 C42 H42 0.949(5) 
95 C42 C43 1.389(7) 
96 C43 H43 0.951(5) 
97 C43 C44 1.390(8) 
98 C44 H44 0.950(4) 
99 C40 H40 0.950(7) 
100 C40 C39 1.402(9) 
101 C40 C41 1.37(1) 
102 C37 H37 0.950(7) 
103 C37 C38 1.34(1) 
104 C37 C36 1.379(8) 
105 C39 H39 0.950(6) 
106 C39 C38 1.31(1) 
107 C41 H41 0.950(6) 
108 C41 C36 1.294(9) 
109 C38 H38 0.950(6) 
110 C36 H36 0.951(6) 
111 F1 B7 1.380(5) 
112 F2 B7 1.355(7) 
113 F3 B7 1.401(5) 
114 F4 B7 1.339(9) 

 

Table 4. Bond angles (o) for PhCDC-Rh-MeCN 

Number Atom 1 Atom 2 Atom 3 Angle 
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1 P1 Rh1 P2 165.13(3) 
2 P1 Rh1 N5 94.44(8) 
3 P1 Rh1 C1 82.49(8) 
4 P2 Rh1 N5 100.42(8) 
5 P2 Rh1 C1 82.65(8) 
6 N5 Rh1 C1 176.9(1) 
7 Rh1 P1 N4 103.4(1) 
8 Rh1 P1 C16 117.4(1) 
9 Rh1 P1 C10 120.4(1) 
10 N4 P1 C16 103.9(1) 
11 N4 P1 C10 106.4(1) 
12 C16 P1 C10 103.7(1) 
13 Rh1 P2 N1 102.69(9) 
14 Rh1 P2 C28 119.3(1) 
15 Rh1 P2 C22 121.7(1) 
16 N1 P2 C28 103.1(1) 
17 N1 P2 C22 104.2(1) 
18 C28 P2 C22 103.2(1) 
19 P2 N1 C3 116.6(2) 
20 P2 N1 C7 131.8(2) 
21 C3 N1 C7 111.5(2) 
22 C3 N2 C9 122.9(3) 
23 C3 N2 C6 108.9(3) 
24 C9 N2 C6 113.8(4) 
25 C2 N3 C5 111.7(3) 
26 C2 N3 C8 122.7(4) 
27 C5 N3 C8 120.1(4) 
28 P1 N4 C2 116.3(2) 
29 P1 N4 C4 131.1(2) 
30 C2 N4 C4 111.5(3) 
31 Rh1 N5 C34 172.4(3) 
32 P1 C16 C21 119.3(3) 
33 P1 C16 C17 120.5(2) 
34 C21 C16 C17 119.5(3) 
35 H25 C25 C24 119.6(6) 
36 H25 C25 C26 119.7(6) 
37 C24 C25 C26 120.7(5) 
38 H32 C32 C31 119.6(4) 
39 H32 C32 C33 119.7(5) 
40 C31 C32 C33 120.7(4) 
41 C32 C31 H31 120.3(4) 
42 C32 C31 C30 119.2(3) 
43 H31 C31 C30 120.4(3) 
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44 H18 C18 C19 119.9(5) 
45 H18 C18 C17 119.9(5) 
46 C19 C18 C17 120.2(4) 
47 C25 C24 H24 120.0(6) 
48 C25 C24 C23 119.9(5) 
49 H24 C24 C23 120.0(5) 
50 C18 C19 H19 120.1(5) 
51 C18 C19 C20 119.7(5) 
52 H19 C19 C20 120.2(5) 
53 C19 C20 H20 119.5(5) 
54 C19 C20 C21 121.0(4) 
55 H20 C20 C21 119.5(4) 
56 N5 C34 C35 178.1(6) 
57 C32 C33 H33 119.8(5) 
58 C32 C33 C29 120.4(4) 
59 H33 C33 C29 119.9(5) 
60 C25 C26 H26 120.0(6) 
61 C25 C26 C27 120.0(5) 
62 H26 C26 C27 120.0(5) 
63 C34 C35 H35A 109.4(7) 
64 C34 C35 H35B 109.6(7) 
65 C34 C35 H35C 109.5(7) 
66 H35A C35 H35B 109.4(8) 
67 H35A C35 H35C 109.4(8) 
68 H35B C35 H35C 109.5(8) 
69 P2 C28 C30 121.6(2) 
70 P2 C28 C29 118.8(2) 
71 C30 C28 C29 119.0(3) 
72 H15 C15 C10 119.5(3) 
73 H15 C15 C14 119.7(3) 
74 C10 C15 C14 120.8(3) 
75 P2 C22 C27 117.9(3) 
76 P2 C22 C23 122.7(3) 
77 C27 C22 C23 119.4(3) 
78 Rh1 C1 C2 118.7(2) 
79 Rh1 C1 C3 118.9(2) 
80 C2 C1 C3 122.4(3) 
81 P1 C10 C15 122.9(2) 
82 P1 C10 C11 118.3(2) 
83 C15 C10 C11 118.8(3) 
84 C10 C11 H11 119.7(3) 
85 C10 C11 C12 120.6(3) 
86 H11 C11 C12 119.7(3) 
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87 C31 C30 C28 120.9(3) 
88 C31 C30 H30 119.6(3) 
89 C28 C30 H30 119.5(3) 
90 N3 C2 N4 108.1(3) 
91 N3 C2 C1 132.9(3) 
92 N4 C2 C1 119.0(3) 
93 C26 C27 C22 119.5(4) 
94 C26 C27 H27 120.2(4) 
95 C22 C27 H27 120.3(4) 
96 C24 C23 C22 120.5(4) 
97 C24 C23 H23 119.8(4) 
98 C22 C23 H23 119.8(4) 
99 C33 C29 C28 119.8(3) 
100 C33 C29 H29 120.1(4) 
101 C28 C29 H29 120.0(3) 
102 N1 C3 N2 107.6(2) 
103 N1 C3 C1 119.0(3) 
104 N2 C3 C1 133.4(3) 
105 H13 C13 C12 120.0(3) 
106 H13 C13 C14 120.0(3) 
107 C12 C13 C14 120.0(3) 
108 C11 C12 C13 120.1(3) 
109 C11 C12 H12 119.9(3) 
110 C13 C12 H12 119.9(3) 
111 C15 C14 C13 119.8(3) 
112 C15 C14 H14 120.1(3) 
113 C13 C14 H14 120.1(3) 
114 C16 C21 C20 119.6(4) 
115 C16 C21 H21 120.2(4) 
116 C20 C21 H21 120.2(4) 
117 N4 C4 H4A 111.3(3) 
118 N4 C4 H4B 111.3(3) 
119 N4 C4 C5 102.3(3) 
120 H4A C4 H4B 109.2(3) 
121 H4A C4 C5 111.3(3) 
122 H4B C4 C5 111.4(3) 
123 N3 C5 C4 103.3(3) 
124 N3 C5 H5A 111.1(3) 
125 N3 C5 H5B 111.0(3) 
126 C4 C5 H5A 111.1(3) 
127 C4 C5 H5B 111.1(3) 
128 H5A C5 H5B 109.1(4) 
129 C16 C17 C18 120.0(3) 
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130 C16 C17 H17 120.0(3) 
131 C18 C17 H17 120.1(4) 
132 N1 C7 H15A 111.2(3) 
133 N1 C7 H15B 111.2(3) 
134 N1 C7 C6 102.7(3) 
135 H15A C7 H15B 109.2(3) 
136 H15A C7 C6 111.3(4) 
137 H15B C7 C6 111.1(4) 
138 N3 C8 H1WA 109.9(7) 
139 N3 C8 H1WB 110.0(7) 
140 N3 C8 C9 108.6(6) 
141 H1WA C8 H1WB 108.4(9) 
142 H1WA C8 C9 109.9(7) 
143 H1WB C8 C9 110.0(7) 
144 N2 C9 C8 107.9(5) 
145 N2 C9 H1XA 110.1(5) 
146 N2 C9 H1XB 110.1(5) 
147 C8 C9 H1XA 110.1(6) 
148 C8 C9 H1XB 110.1(6) 
149 H1XA C9 H1XB 108.5(6) 
150 N2 C6 C7 99.5(4) 
151 N2 C6 H1YA 111.8(6) 
152 N2 C6 H1YB 111.9(6) 
153 C7 C6 H1YA 111.8(6) 
154 C7 C6 H1YB 111.9(6) 
155 H1YA C6 H1YB 109.6(6) 
156 H45 C45 C46 120.0(6) 
157 H45 C45 C44 120.1(6) 
158 C46 C45 C44 119.9(6) 
159 C45 C46 H46 120.0(6) 
160 C45 C46 C47 120.0(5) 
161 H46 C46 C47 120.0(5) 
162 C46 C47 H47 120.0(5) 
163 C46 C47 C42 120.0(4) 
164 H47 C47 C42 120.0(4) 
165 C47 C42 H42 119.9(4) 
166 C47 C42 C43 120.0(4) 
167 H42 C42 C43 120.1(5) 
168 C42 C43 H43 120.0(5) 
169 C42 C43 C44 120.0(5) 
170 H43 C43 C44 120.0(5) 
171 C45 C44 C43 120.0(5) 
172 C45 C44 H44 119.9(6) 
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173 C43 C44 H44 120.0(5) 
174 H40 C40 C39 121.2(7) 
175 H40 C40 C41 121.3(7) 
176 C39 C40 C41 117.5(6) 
177 H37 C37 C38 120.3(7) 
178 H37 C37 C36 120.3(6) 
179 C38 C37 C36 119.4(6) 
180 C40 C39 H39 120.3(6) 
181 C40 C39 C38 119.2(6) 
182 H39 C39 C38 120.5(6) 
183 C40 C41 H41 119.2(7) 
184 C40 C41 C36 121.7(6) 
185 H41 C41 C36 119.1(7) 
186 C37 C38 C39 121.5(7) 
187 C37 C38 H38 119.2(7) 
188 C39 C38 H38 119.3(7) 
189 C37 C36 C41 120.0(6) 
190 C37 C36 H36 120.0(5) 
191 C41 C36 H36 120.0(6) 
192 F1 B7 F2 111.5(4) 
193 F1 B7 F3 108.0(4) 
194 F1 B7 F4 111.2(4) 
195 F2 B7 F3 105.4(4) 
196 F2 B7 F4 112.0(5) 
197 F3 B7 F4 108.4(4) 

 

Table 5. Torsion angles (o) for PhCDC-Rh-MeCN 

Number Atom 1 Atom 2 Atom 3 Atom 4 Torsion 
1 P2 Rh1 P1 N4 -5.4(2) 
2 P2 Rh1 P1 C16 -119.1(1) 
3 P2 Rh1 P1 C10 113.0(2) 
4 N5 Rh1 P1 N4 177.0(1) 
5 N5 Rh1 P1 C16 63.3(1) 
6 N5 Rh1 P1 C10 -64.6(1) 
7 C1 Rh1 P1 N4 -3.4(1) 
8 C1 Rh1 P1 C16 -117.1(1) 
9 C1 Rh1 P1 C10 115.0(1) 
10 P1 Rh1 P2 N1 -1.2(2) 
11 P1 Rh1 P2 C28 -114.3(1) 
12 P1 Rh1 P2 C22 114.7(2) 
13 N5 Rh1 P2 N1 176.4(1) 
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14 N5 Rh1 P2 C28 63.3(1) 
15 N5 Rh1 P2 C22 -67.7(1) 
16 C1 Rh1 P2 N1 -3.2(1) 
17 C1 Rh1 P2 C28 -116.3(1) 
18 C1 Rh1 P2 C22 112.7(1) 
19 P1 Rh1 N5 C34 10(3) 
20 P2 Rh1 N5 C34 -169(3) 
21 C1 Rh1 N5 C34 3(4) 
22 P1 Rh1 C1 C2 2.3(2) 
23 P1 Rh1 C1 C3 -177.1(2) 
24 P2 Rh1 C1 C2 -178.3(2) 
25 P2 Rh1 C1 C3 2.3(2) 
26 N5 Rh1 C1 C2 9(2) 
27 N5 Rh1 C1 C3 -170(2) 
28 Rh1 P1 N4 C2 4.8(2) 
29 Rh1 P1 N4 C4 172.0(3) 
30 C16 P1 N4 C2 127.9(2) 
31 C16 P1 N4 C4 -64.9(3) 
32 C10 P1 N4 C2 -123.0(2) 
33 C10 P1 N4 C4 44.2(3) 
34 Rh1 P1 C16 C21 -88.7(3) 
35 Rh1 P1 C16 C17 81.6(3) 
36 N4 P1 C16 C21 157.9(3) 
37 N4 P1 C16 C17 -31.8(3) 
38 C10 P1 C16 C21 46.9(3) 
39 C10 P1 C16 C17 -142.9(3) 
40 Rh1 P1 C10 C15 174.7(2) 
41 Rh1 P1 C10 C11 -4.3(3) 
42 N4 P1 C10 C15 -68.4(3) 
43 N4 P1 C10 C11 112.6(3) 
44 C16 P1 C10 C15 40.8(3) 
45 C16 P1 C10 C11 -138.2(3) 
46 Rh1 P2 N1 C3 4.2(2) 
47 Rh1 P2 N1 C7 179.6(3) 
48 C28 P2 N1 C3 128.8(2) 
49 C28 P2 N1 C7 -55.8(3) 
50 C22 P2 N1 C3 -123.6(2) 
51 C22 P2 N1 C7 51.8(3) 
52 Rh1 P2 C28 C30 -103.8(3) 
53 Rh1 P2 C28 C29 67.1(3) 
54 N1 P2 C28 C30 143.2(3) 
55 N1 P2 C28 C29 -45.9(3) 
56 C22 P2 C28 C30 34.9(3) 
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57 C22 P2 C28 C29 -154.2(3) 
58 Rh1 P2 C22 C27 -2.7(3) 
59 Rh1 P2 C22 C23 179.1(2) 
60 N1 P2 C22 C27 112.4(3) 
61 N1 P2 C22 C23 -65.9(3) 
62 C28 P2 C22 C27 -140.1(3) 
63 C28 P2 C22 C23 41.6(3) 
64 P2 N1 C3 N2 177.4(2) 
65 P2 N1 C3 C1 -3.0(4) 
66 C7 N1 C3 N2 1.1(3) 
67 C7 N1 C3 C1 -179.3(3) 
68 P2 N1 C7 H15A 45.0(4) 
69 P2 N1 C7 H15B -76.9(4) 
70 P2 N1 C7 C6 164.2(3) 
71 C3 N1 C7 H15A -139.4(3) 
72 C3 N1 C7 H15B 98.6(3) 
73 C3 N1 C7 C6 -20.3(4) 
74 C9 N2 C3 N1 155.7(4) 
75 C9 N2 C3 C1 -23.9(6) 
76 C6 N2 C3 N1 18.8(4) 
77 C6 N2 C3 C1 -160.8(4) 
78 C3 N2 C9 C8 64.4(6) 
79 C3 N2 C9 H1XA -55.7(6) 
80 C3 N2 C9 H1XB -175.3(4) 
81 C6 N2 C9 C8 -160.5(5) 
82 C6 N2 C9 H1XA 79.3(6) 
83 C6 N2 C9 H1XB -40.3(7) 
84 C3 N2 C6 C7 -30.0(5) 
85 C3 N2 C6 H1YA 88.2(6) 
86 C3 N2 C6 H1YB -148.4(5) 
87 C9 N2 C6 C7 -171.2(4) 
88 C9 N2 C6 H1YA -53.0(7) 
89 C9 N2 C6 H1YB 70.4(7) 
90 C5 N3 C2 N4 6.2(4) 
91 C5 N3 C2 C1 -174.8(3) 
92 C8 N3 C2 N4 160.0(5) 
93 C8 N3 C2 C1 -21.0(7) 
94 C2 N3 C5 C4 -15.0(4) 
95 C2 N3 C5 H5A -134.2(3) 
96 C2 N3 C5 H5B 104.2(4) 
97 C8 N3 C5 C4 -169.5(5) 
98 C8 N3 C5 H5A 71.3(6) 
99 C8 N3 C5 H5B -50.4(6) 
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100 C2 N3 C8 H1WA -59.7(9) 
101 C2 N3 C8 H1WB -178.9(5) 
102 C2 N3 C8 C9 60.6(7) 
103 C5 N3 C8 H1WA 92.0(8) 
104 C5 N3 C8 H1WB -27.2(9) 
105 C5 N3 C8 C9 -147.7(5) 
106 P1 N4 C2 N3 175.5(2) 
107 P1 N4 C2 C1 -3.6(4) 
108 C4 N4 C2 N3 5.9(3) 
109 C4 N4 C2 C1 -173.3(3) 
110 P1 N4 C4 H4A 58.7(4) 
111 P1 N4 C4 H4B -63.3(4) 
112 P1 N4 C4 C5 177.7(2) 
113 C2 N4 C4 H4A -133.6(3) 
114 C2 N4 C4 H4B 104.4(3) 
115 C2 N4 C4 C5 -14.6(3) 
116 Rh1 N5 C34 C35 24(19) 
117 P1 C16 C21 C20 168.6(3) 
118 P1 C16 C21 H21 -11.5(5) 
119 C17 C16 C21 C20 -1.8(6) 
120 C17 C16 C21 H21 178.2(4) 
121 P1 C16 C17 C18 -169.2(3) 
122 P1 C16 C17 H17 10.8(5) 
123 C21 C16 C17 C18 1.1(5) 
124 C21 C16 C17 H17 -179.0(3) 
125 H25 C25 C24 H24 -0.1(9) 
126 H25 C25 C24 C23 179.9(5) 
127 C26 C25 C24 H24 180.0(6) 
128 C26 C25 C24 C23 -0.0(9) 
129 H25 C25 C26 H26 1.0(9) 
130 H25 C25 C26 C27 -179.1(5) 
131 C24 C25 C26 H26 -179.1(6) 
132 C24 C25 C26 C27 0.9(8) 
133 H32 C32 C31 H31 0.1(7) 
134 H32 C32 C31 C30 -179.9(4) 
135 C33 C32 C31 H31 -179.9(4) 
136 C33 C32 C31 C30 0.1(6) 
137 H32 C32 C33 H33 -0.8(8) 
138 H32 C32 C33 C29 179.4(4) 
139 C31 C32 C33 H33 179.2(5) 
140 C31 C32 C33 C29 -0.7(7) 
141 C32 C31 C30 C28 0.0(5) 
142 C32 C31 C30 H30 180.0(4) 



	   285	  

143 H31 C31 C30 C28 -179.9(3) 
144 H31 C31 C30 H30 -0.0(6) 
145 H18 C18 C19 H19 -2.4(9) 
146 H18 C18 C19 C20 177.6(5) 
147 C17 C18 C19 H19 177.7(5) 
148 C17 C18 C19 C20 -2.3(7) 
149 H18 C18 C17 C16 -178.9(4) 
150 H18 C18 C17 H17 1.2(7) 
151 C19 C18 C17 C16 1.0(7) 
152 C19 C18 C17 H17 -179.0(4) 
153 C25 C24 C23 C22 -0.3(7) 
154 C25 C24 C23 H23 179.7(5) 
155 H24 C24 C23 C22 179.7(5) 
156 H24 C24 C23 H23 -0.3(8) 
157 C18 C19 C20 H20 -178.3(5) 
158 C18 C19 C20 C21 1.6(7) 
159 H19 C19 C20 H20 1.7(8) 
160 H19 C19 C20 C21 -178.4(5) 
161 C19 C20 C21 C16 0.4(7) 
162 C19 C20 C21 H21 -179.5(4) 
163 H20 C20 C21 C16 -179.7(4) 
164 H20 C20 C21 H21 0.4(7) 
165 N5 C34 C35 H35A -72(18) 
166 N5 C34 C35 H35B 168(17) 
167 N5 C34 C35 H35C 48(18) 
168 C32 C33 C29 C28 1.0(6) 
169 C32 C33 C29 H29 -179.0(4) 
170 H33 C33 C29 C28 -178.8(4) 
171 H33 C33 C29 H29 1.1(7) 
172 C25 C26 C27 C22 -1.4(7) 
173 C25 C26 C27 H27 178.6(5) 
174 H26 C26 C27 C22 178.6(5) 
175 H26 C26 C27 H27 -1.4(8) 
176 P2 C28 C30 C31 171.2(3) 
177 P2 C28 C30 H30 -8.7(5) 
178 C29 C28 C30 C31 0.3(5) 
179 C29 C28 C30 H30 -179.6(3) 
180 P2 C28 C29 C33 -172.0(3) 
181 P2 C28 C29 H29 8.0(5) 
182 C30 C28 C29 C33 -0.8(5) 
183 C30 C28 C29 H29 179.2(3) 
184 H15 C15 C10 P1 0.3(5) 
185 H15 C15 C10 C11 179.3(3) 
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186 C14 C15 C10 P1 -179.6(3) 
187 C14 C15 C10 C11 -0.5(5) 
188 H15 C15 C14 C13 -178.8(3) 
189 H15 C15 C14 H14 1.2(6) 
190 C10 C15 C14 C13 1.1(5) 
191 C10 C15 C14 H14 -179.0(3) 
192 P2 C22 C27 C26 -177.3(3) 
193 P2 C22 C27 H27 2.7(5) 
194 C23 C22 C27 C26 1.1(6) 
195 C23 C22 C27 H27 -179.0(4) 
196 P2 C22 C23 C24 178.0(4) 
197 P2 C22 C23 H23 -2.0(5) 
198 C27 C22 C23 C24 -0.2(6) 
199 C27 C22 C23 H23 179.8(4) 
200 Rh1 C1 C2 N3 -178.7(3) 
201 Rh1 C1 C2 N4 0.2(4) 
202 C3 C1 C2 N3 0.7(5) 
203 C3 C1 C2 N4 179.6(3) 
204 Rh1 C1 C3 N1 -0.3(4) 
205 Rh1 C1 C3 N2 179.3(3) 
206 C2 C1 C3 N1 -179.6(3) 
207 C2 C1 C3 N2 -0.1(5) 
208 P1 C10 C11 H11 -1.0(5) 
209 P1 C10 C11 C12 179.0(3) 
210 C15 C10 C11 H11 179.9(3) 
211 C15 C10 C11 C12 -0.1(5) 
212 C10 C11 C12 C13 0.1(5) 
213 C10 C11 C12 H12 -179.8(3) 
214 H11 C11 C12 C13 -179.9(3) 
215 H11 C11 C12 H12 0.2(6) 
216 H13 C13 C12 C11 -179.5(3) 
217 H13 C13 C12 H12 0.3(6) 
218 C14 C13 C12 C11 0.4(5) 
219 C14 C13 C12 H12 -179.7(3) 
220 H13 C13 C14 C15 178.9(3) 
221 H13 C13 C14 H14 -1.0(6) 
222 C12 C13 C14 C15 -1.0(5) 
223 C12 C13 C14 H14 179.0(3) 
224 N4 C4 C5 N3 16.8(3) 
225 N4 C4 C5 H5A 136.0(3) 
226 N4 C4 C5 H5B -102.3(4) 
227 H4A C4 C5 N3 135.8(3) 
228 H4A C4 C5 H5A -105.0(4) 
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229 H4A C4 C5 H5B 16.6(5) 
230 H4B C4 C5 N3 -102.1(3) 
231 H4B C4 C5 H5A 17.0(5) 
232 H4B C4 C5 H5B 138.7(3) 
233 N1 C7 C6 N2 28.3(4) 
234 N1 C7 C6 H1YA -90.0(6) 
235 N1 C7 C6 H1YB 146.7(5) 
236 H15A C7 C6 N2 147.4(3) 
237 H15A C7 C6 H1YA 29.1(7) 
238 H15A C7 C6 H1YB -94.2(6) 
239 H15B C7 C6 N2 -90.7(4) 
240 H15B C7 C6 H1YA 151.0(5) 
241 H15B C7 C6 H1YB 27.7(7) 
242 N3 C8 C9 N2 -81.5(6) 
243 N3 C8 C9 H1XA 38.7(8) 
244 N3 C8 C9 H1XB 158.2(6) 
245 H1WA C8 C9 N2 38.8(9) 
246 H1WA C8 C9 H1XA 159.0(7) 
247 H1WA C8 C9 H1XB -81.5(9) 
248 H1WB C8 C9 N2 158.1(6) 
249 H1WB C8 C9 H1XA -81.7(9) 
250 H1WB C8 C9 H1XB 38(1) 
251 H45 C45 C46 H46 0(1) 
252 H45 C45 C46 C47 -180.0(6) 
253 C44 C45 C46 H46 -180.0(6) 
254 C44 C45 C46 C47 -0.2(9) 
255 H45 C45 C44 C43 179.9(6) 
256 H45 C45 C44 H44 -0(1) 
257 C46 C45 C44 C43 0.1(9) 
258 C46 C45 C44 H44 -179.9(6) 
259 C45 C46 C47 H47 180.0(5) 
260 C45 C46 C47 C42 0.1(8) 
261 H46 C46 C47 H47 -0.2(9) 
262 H46 C46 C47 C42 180.0(5) 
263 C46 C47 C42 H42 179.9(5) 
264 C46 C47 C42 C43 -0.0(7) 
265 H47 C47 C42 H42 0.1(8) 
266 H47 C47 C42 C43 -179.9(5) 
267 C47 C42 C43 H43 -179.9(5) 
268 C47 C42 C43 C44 -0.0(7) 
269 H42 C42 C43 H43 0.2(8) 
270 H42 C42 C43 C44 -179.9(5) 
271 C42 C43 C44 C45 0.0(8) 
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272 C42 C43 C44 H44 -180.0(5) 
273 H43 C43 C44 C45 179.9(5) 
274 H43 C43 C44 H44 -0.1(9) 
275 H40 C40 C39 H39 -10(1) 
276 H40 C40 C39 C38 170.3(7) 
277 C41 C40 C39 H39 170.3(6) 
278 C41 C40 C39 C38 -10(1) 
279 H40 C40 C41 H41 6(1) 
280 H40 C40 C41 C36 -173.6(7) 
281 C39 C40 C41 H41 -173.7(6) 
282 C39 C40 C41 C36 6(1) 
283 H37 C37 C38 C39 176.7(7) 
284 H37 C37 C38 H38 -3(1) 
285 C36 C37 C38 C39 -3(1) 
286 C36 C37 C38 H38 176.7(6) 
287 H37 C37 C36 C41 179.6(6) 
288 H37 C37 C36 H36 -0(1) 
289 C38 C37 C36 C41 -0(1) 
290 C38 C37 C36 H36 179.8(6) 
291 C40 C39 C38 C37 8(1) 
292 C40 C39 C38 H38 -171.8(6) 
293 H39 C39 C38 C37 -171.6(7) 
294 H39 C39 C38 H38 8(1) 
295 C40 C41 C36 C37 -2(1) 
296 C40 C41 C36 H36 178.6(6) 
297 H41 C41 C36 C37 178.5(6) 
298 H41 C41 C36 H36 -1(1) 
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Crystal Structure Data for PhCDC-Pd-Cl 

 

Identification code  phcdcpdcl_2_0m 
Empirical formula C35 H33.78 B Cl7 F4.50 N4 P2 Pd 
Formula weight 1023.24 
Temperature 100 K 
Wavelength 1.54178 
Crystal system triclinic 
Space group P -1 
Unit cell dimensions  a = 10.4744(2) Å α= 110.1005(11) 

 
b = 18.9611(4) Å β= 94.9400(12) 

 
c = 22.0214(4) Å γ = 93.4040(12) 

Volume  4073.4 
Z 4 
Density (calculated) 1.669 Mg/m3 
Absorption coefficient 9.111 (mm-1) 
Theta range for data collection 66.754-2.493 
Reflections collected 14098 
Independent reflections 11759 
Max. and min. transmission 0.7437, 0.2931 
Refinement method  XS least squares 
Goodness-of-fit on F2 0 1.296 
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Table of Bond Lengths for PhCDC-Pd-Cl 

Number Atom1 Atom2 Bond Length 
1 Pd1 P1 2.274(1) 
2 Pd1 P2 2.271(1) 
3 Pd1 Cl1 2.375(1) 
4 Pd1 C1 2.027(4) 
5 P1 N1 1.703(4) 
6 P1 C22 1.810(5) 
7 P1 C10 1.799(6) 
8 P2 N4 1.690(4) 
9 P2 C28 1.814(6) 
10 P2 C16 1.805(5) 
11 C1 C2 1.403(6) 
12 C1 C3 1.399(6) 
13 N1 C2 1.380(5) 
14 N1 C4 1.473(7) 
15 N4 C9 1.464(5) 
16 N4 C3 1.372(6) 
17 C22 C27 1.403(8) 
18 C22 C23 1.400(7) 
19 C28 C29 1.394(8) 
20 C28 C33 1.383(7) 
21 N2 C2 1.334(6) 
22 N2 C6 1.475(7) 
23 N2 C5 1.474(6) 
24 C27 H27 0.949(5) 
25 C27 C26 1.378(9) 
26 C9 H9A 0.991(6) 
27 C9 H9B 0.990(6) 
28 C9 C8 1.523(7) 
29 C3 N3 1.352(5) 
30 C32 H32 0.951(6) 
31 C32 C33 1.384(9) 
32 C32 C31 1.394(8) 
33 C4 H4A 0.989(5) 
34 C4 H4B 0.991(7) 
35 C4 C5 1.519(8) 
36 C16 C21 1.389(8) 
37 C16 C17 1.389(6) 
38 N3 C8 1.463(6) 
39 N3 C7 1.476(7) 
40 C8 H8A 0.989(5) 
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41 C8 H8B 0.990(6) 
42 C10 C15 1.377(7) 
43 C10 C11 1.393(9) 
44 C29 H29 0.951(5) 
45 C29 C30 1.400(8) 
46 C33 H33 0.950(6) 
47 C30 H30 0.950(6) 
48 C30 C31 1.374(7) 
49 C31 H31 0.950(6) 
50 C18 H18 0.951(4) 
51 C18 C17 1.393(8) 
52 C18 C19 1.376(8) 
53 C26 H26 0.951(6) 
54 C26 C25 1.392(8) 
55 C21 H21 0.949(5) 
56 C21 C20 1.39(1) 
57 C7 H7A 0.991(7) 
58 C7 H7B 0.990(5) 
59 C7 C6 1.483(7) 
60 C15 H15 0.952(7) 
61 C15 C14 1.377(8) 
62 C25 H25 0.950(7) 
63 C25 C24 1.380(9) 
64 C6 H6A 0.991(7) 
65 C6 H6B 0.989(5) 
66 C23 H23 0.950(6) 
67 C23 C24 1.379(9) 
68 C13 H13 0.949(6) 
69 C13 C14 1.37(1) 
70 C13 C12 1.371(9) 
71 C17 H17 0.951(6) 
72 C19 H19 0.952(7) 
73 C19 C20 1.395(8) 
74 C5 H5A 0.990(6) 
75 C5 H5B 0.989(7) 
76 C24 H24 0.951(6) 
77 C14 H14 0.950(6) 
78 C20 H20 0.951(6) 
79 C12 H12 0.949(7) 
80 C12 C11 1.388(8) 
81 C11 H11 0.950(5) 
82 Pd2 P3 2.262(1) 
83 Pd2 Cl2 2.362(1) 
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84 Pd2 P4 2.272(1) 
85 Pd2 C34 2.009(5) 
86 P3 N5 1.679(4) 
87 P3 C43 1.788(6) 
88 P3 C49 1.799(5) 
89 P4 N8 1.680(4) 
90 P4 C55 1.804(7) 
91 P4 C61 1.799(7) 
92 C34 C36 1.388(6) 
93 C34 C35 1.407(7) 
94 N5 C35 1.387(5) 
95 N5 C37 1.476(7) 
96 N8 C42 1.487(5) 
97 N8 C36 1.381(6) 
98 C42 H42A 0.989(6) 
99 C42 H42B 0.990(5) 
100 C42 C41 1.522(8) 
101 C36 N7 1.341(5) 
102 N7 C41 1.456(5) 
103 N7 C40 1.444(7) 
104 N6 C35 1.336(6) 
105 N6 C38 1.442(7) 
106 N6 C39 1.463(6) 
107 C44 H44 0.949(6) 
108 C44 C43 1.392(6) 
109 C44 C45 1.380(8) 
110 C43 C48 1.403(8) 
111 C45 H45 0.951(5) 
112 C45 C46 1.383(8) 
113 C48 H48 0.951(5) 
114 C48 C47 1.395(8) 
115 C49 C54 1.390(6) 
116 C49 C50 1.393(9) 
117 C37 H37A 0.989(6) 
118 C37 H37B 0.989(7) 
119 C37 C38 1.519(7) 
120 C46 H46 0.950(6) 
121 C46 C47 1.378(7) 
122 C38 H38A 0.991(7) 
123 C38 H38B 0.990(6) 
124 C54 H54 0.950(6) 
125 C54 C53 1.394(7) 
126 C51 H51 0.949(6) 
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127 C51 C50 1.39(1) 
128 C51 C52 1.384(7) 
129 C53 H53 0.951(4) 
130 C53 C52 1.369(9) 
131 C41 H41A 0.990(5) 
132 C41 H41B 0.990(6) 
133 C55 C60 1.402(8) 
134 C55 C56 1.390(8) 
135 C60 H60 0.950(6) 
136 C60 C59 1.38(1) 
137 C47 H47 0.950(6) 
138 C50 H50 0.950(5) 
139 C61 C66 1.39(1) 
140 C61 C62 1.39(1) 
141 C52 H52 0.949(7) 
142 C40 H40A 0.990(5) 
143 C40 H40B 0.991(8) 
144 C40 C39 1.476(9) 
145 C39 H39A 0.990(6) 
146 C39 H39B 0.990(8) 
147 C56 H56 0.948(5) 
148 C56 C57 1.383(9) 
149 C66 H66 0.950(8) 
150 C66 C1B 1.41(1) 
151 C59 H59 0.950(5) 
152 C59 C58 1.384(8) 
153 C62 H62 0.951(9) 
154 C62 C1A 1.40(1) 
155 C57 H57 0.950(5) 
156 C57 C58 1.379(7) 
157 C58 H58 0.952(7) 
158 C1A H1A 0.95(1) 
159 C1A C1C 1.31(2) 
160 C1B H1B 0.95(1) 
161 C1B C1C 1.39(2) 
162 C1C H1C 0.95(1) 
163 C67 H67 1.001(5) 
164 C67 Cl12 1.764(6) 
165 C67 Cl14 1.760(6) 
166 C67 Cl13 1.759(6) 
167 Cl5 C69 1.789(9) 
168 Cl4 C69 1.71(1) 
169 C69 H69 1.000(7) 
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170 C69 Cl6 1.745(9) 
171 F2F B1 1.376(9) 
172 F14 B1 1.356(9) 
173 F2 B1 1.36(1) 
174 F3 B1 1.36(1) 
175 Cl8 C70 1.762(8) 
176 Cl7 C70 1.739(8) 
177 C70 H70 1.000(6) 
178 C70 Cl9 1.759(7) 
179 Cl10 C68 1.71(1) 
180 Cl11 C68 1.83(1) 
181 Cl15 C68 1.77(1) 
182 C68 H68 1.000(9) 
183 F4 B2 1.30(1) 
184 F1 B2 1.340(9) 
185 F5 B2 1.56(1) 
186 F6 B2 1.35(1) 
187 B2 F7 1.72(2) 

 
 
    

 

Table of Bond Angles for PhCDC-Pd-Cl 

Number Atom1 Atom2 Atom3 Angle 
1 P1 Pd1 P2 166.70(5) 
2 P1 Pd1 Cl1 97.73(5) 
3 P1 Pd1 C1 83.4(1) 
4 P2 Pd1 Cl1 95.51(4) 
5 P2 Pd1 C1 83.4(1) 
6 Cl1 Pd1 C1 178.8(1) 
7 Pd1 P1 N1 101.5(2) 
8 Pd1 P1 C22 118.6(2) 
9 Pd1 P1 C10 117.6(2) 
10 N1 P1 C22 106.1(2) 
11 N1 P1 C10 107.0(2) 
12 C22 P1 C10 104.9(2) 
13 Pd1 P2 N4 101.2(1) 
14 Pd1 P2 C28 121.3(2) 
15 Pd1 P2 C16 117.3(2) 
16 N4 P2 C28 104.7(2) 
17 N4 P2 C16 106.2(2) 
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18 C28 P2 C16 104.5(2) 
19 Pd1 C1 C2 118.2(3) 
20 Pd1 C1 C3 117.5(3) 
21 C2 C1 C3 124.3(4) 
22 P1 N1 C2 117.1(3) 
23 P1 N1 C4 130.4(4) 
24 C2 N1 C4 110.9(4) 
25 P2 N4 C9 130.0(3) 
26 P2 N4 C3 117.2(3) 
27 C9 N4 C3 110.6(4) 
28 P1 C22 C27 119.0(4) 
29 P1 C22 C23 121.4(4) 
30 C27 C22 C23 119.6(5) 
31 P2 C28 C29 120.7(4) 
32 P2 C28 C33 119.0(4) 
33 C29 C28 C33 120.0(5) 
34 C2 N2 C6 124.2(4) 
35 C2 N2 C5 111.2(4) 
36 C6 N2 C5 119.9(4) 
37 C22 C27 H27 120.3(5) 
38 C22 C27 C26 119.6(5) 
39 H27 C27 C26 120.1(5) 
40 N4 C9 H9A 111.2(4) 
41 N4 C9 H9B 111.4(4) 
42 N4 C9 C8 102.2(4) 
43 H9A C9 H9B 109.3(5) 
44 H9A C9 C8 111.3(4) 
45 H9B C9 C8 111.4(5) 
46 C1 C2 N1 119.6(4) 
47 C1 C2 N2 131.4(4) 
48 N1 C2 N2 109.0(4) 
49 C1 C3 N4 120.1(4) 
50 C1 C3 N3 131.7(4) 
51 N4 C3 N3 108.2(4) 
52 H32 C32 C33 120.8(6) 
53 H32 C32 C31 120.7(6) 
54 C33 C32 C31 118.5(5) 
55 N1 C4 H4A 111.4(5) 
56 N1 C4 H4B 111.4(5) 
57 N1 C4 C5 101.8(4) 
58 H4A C4 H4B 109.3(6) 
59 H4A C4 C5 111.4(5) 
60 H4B C4 C5 111.4(5) 
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61 P2 C16 C21 119.4(4) 
62 P2 C16 C17 121.4(4) 
63 C21 C16 C17 119.2(5) 
64 C3 N3 C8 111.5(4) 
65 C3 N3 C7 123.9(4) 
66 C8 N3 C7 117.4(4) 
67 C9 C8 N3 101.8(4) 
68 C9 C8 H8A 111.5(5) 
69 C9 C8 H8B 111.4(5) 
70 N3 C8 H8A 111.4(4) 
71 N3 C8 H8B 111.4(4) 
72 H8A C8 H8B 109.2(5) 
73 P1 C10 C15 117.7(4) 
74 P1 C10 C11 124.1(4) 
75 C15 C10 C11 118.0(5) 
76 C28 C29 H29 120.6(5) 
77 C28 C29 C30 118.7(5) 
78 H29 C29 C30 120.7(5) 
79 C28 C33 C32 121.3(5) 
80 C28 C33 H33 119.3(6) 
81 C32 C33 H33 119.4(6) 
82 C29 C30 H30 119.8(5) 
83 C29 C30 C31 120.5(5) 
84 H30 C30 C31 119.7(5) 
85 C32 C31 C30 120.9(5) 
86 C32 C31 H31 119.5(5) 
87 C30 C31 H31 119.5(5) 
88 H18 C18 C17 120.4(5) 
89 H18 C18 C19 120.4(5) 
90 C17 C18 C19 119.2(5) 
91 C27 C26 H26 119.8(6) 
92 C27 C26 C25 120.4(5) 
93 H26 C26 C25 119.8(6) 
94 C16 C21 H21 119.9(6) 
95 C16 C21 C20 120.2(5) 
96 H21 C21 C20 119.9(6) 
97 N3 C7 H7A 109.2(5) 
98 N3 C7 H7B 109.2(5) 
99 N3 C7 C6 112.1(5) 
100 H7A C7 H7B 107.9(5) 
101 H7A C7 C6 109.2(5) 
102 H7B C7 C6 109.2(5) 
103 C10 C15 H15 119.2(6) 
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104 C10 C15 C14 121.5(6) 
105 H15 C15 C14 119.3(6) 
106 C26 C25 H25 120.0(6) 
107 C26 C25 C24 120.0(5) 
108 H25 C25 C24 120.0(6) 
109 N2 C6 C7 114.9(5) 
110 N2 C6 H6A 108.5(5) 
111 N2 C6 H6B 108.6(5) 
112 C7 C6 H6A 108.5(5) 
113 C7 C6 H6B 108.5(5) 
114 H6A C6 H6B 107.6(5) 
115 C22 C23 H23 120.0(5) 
116 C22 C23 C24 119.9(5) 
117 H23 C23 C24 120.0(5) 
118 H13 C13 C14 120.0(6) 
119 H13 C13 C12 120.0(6) 
120 C14 C13 C12 120.0(6) 
121 C16 C17 C18 121.0(5) 
122 C16 C17 H17 119.4(5) 
123 C18 C17 H17 119.6(5) 
124 C18 C19 H19 119.8(6) 
125 C18 C19 C20 120.5(6) 
126 H19 C19 C20 119.7(6) 
127 N2 C5 C4 103.4(4) 
128 N2 C5 H5A 111.1(5) 
129 N2 C5 H5B 111.1(5) 
130 C4 C5 H5A 111.0(5) 
131 C4 C5 H5B 111.1(5) 
132 H5A C5 H5B 109.1(6) 
133 C25 C24 C23 120.4(6) 
134 C25 C24 H24 119.7(6) 
135 C23 C24 H24 119.9(6) 
136 C15 C14 C13 119.9(6) 
137 C15 C14 H14 120.1(6) 
138 C13 C14 H14 120.0(6) 
139 C21 C20 C19 119.9(6) 
140 C21 C20 H20 120.0(6) 
141 C19 C20 H20 120.2(6) 
142 C13 C12 H12 119.9(7) 
143 C13 C12 C11 120.0(6) 
144 H12 C12 C11 120.1(7) 
145 C10 C11 C12 120.5(5) 
146 C10 C11 H11 119.7(6) 
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147 C12 C11 H11 119.8(6) 
148 P3 Pd2 Cl2 96.03(5) 
149 P3 Pd2 P4 166.89(5) 
150 P3 Pd2 C34 83.5(1) 
151 Cl2 Pd2 P4 97.05(5) 
152 Cl2 Pd2 C34 178.4(2) 
153 P4 Pd2 C34 83.4(1) 
154 Pd2 P3 N5 102.0(1) 
155 Pd2 P3 C43 118.1(2) 
156 Pd2 P3 C49 117.5(2) 
157 N5 P3 C43 107.5(2) 
158 N5 P3 C49 104.0(2) 
159 C43 P3 C49 106.2(2) 
160 Pd2 P4 N8 101.2(2) 
161 Pd2 P4 C55 116.8(2) 
162 Pd2 P4 C61 118.2(2) 
163 N8 P4 C55 108.5(2) 
164 N8 P4 C61 106.8(3) 
165 C55 P4 C61 104.7(3) 
166 Pd2 C34 C36 118.4(4) 
167 Pd2 C34 C35 117.9(4) 
168 C36 C34 C35 123.7(5) 
169 P3 N5 C35 116.6(3) 
170 P3 N5 C37 130.6(4) 
171 C35 N5 C37 110.6(4) 
172 P4 N8 C42 131.2(3) 
173 P4 N8 C36 117.4(3) 
174 C42 N8 C36 111.2(4) 
175 N8 C42 H42A 111.3(4) 
176 N8 C42 H42B 111.3(4) 
177 N8 C42 C41 102.3(4) 
178 H42A C42 H42B 109.1(5) 
179 H42A C42 C41 111.3(5) 
180 H42B C42 C41 111.3(5) 
181 C34 C36 N8 119.5(4) 
182 C34 C36 N7 131.4(5) 
183 N8 C36 N7 109.1(4) 
184 C36 N7 C41 112.2(4) 
185 C36 N7 C40 125.5(4) 
186 C41 N7 C40 121.8(4) 
187 C35 N6 C38 112.8(4) 
188 C35 N6 C39 124.2(4) 
189 C38 N6 C39 121.8(4) 
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190 C34 C35 N5 119.4(4) 
191 C34 C35 N6 131.7(5) 
192 N5 C35 N6 108.8(4) 
193 H44 C44 C43 119.3(5) 
194 H44 C44 C45 119.2(5) 
195 C43 C44 C45 121.5(4) 
196 P3 C43 C44 118.4(4) 
197 P3 C43 C48 123.0(4) 
198 C44 C43 C48 118.4(4) 
199 C44 C45 H45 120.1(5) 
200 C44 C45 C46 119.9(5) 
201 H45 C45 C46 120.0(5) 
202 C43 C48 H48 120.2(5) 
203 C43 C48 C47 119.6(5) 
204 H48 C48 C47 120.2(5) 
205 P3 C49 C54 122.4(4) 
206 P3 C49 C50 118.0(4) 
207 C54 C49 C50 119.3(5) 
208 N5 C37 H37A 111.1(5) 
209 N5 C37 H37B 111.1(5) 
210 N5 C37 C38 103.0(4) 
211 H37A C37 H37B 109.2(6) 
212 H37A C37 C38 111.1(5) 
213 H37B C37 C38 111.2(5) 
214 C45 C46 H46 120.1(5) 
215 C45 C46 C47 119.8(5) 
216 H46 C46 C47 120.1(5) 
217 N6 C38 C37 104.6(5) 
218 N6 C38 H38A 110.8(5) 
219 N6 C38 H38B 110.9(5) 
220 C37 C38 H38A 110.8(5) 
221 C37 C38 H38B 110.8(5) 
222 H38A C38 H38B 108.9(6) 
223 C49 C54 H54 119.8(5) 
224 C49 C54 C53 120.2(5) 
225 H54 C54 C53 120.0(5) 
226 H51 C51 C50 120.1(6) 
227 H51 C51 C52 120.1(6) 
228 C50 C51 C52 119.8(6) 
229 C54 C53 H53 120.2(5) 
230 C54 C53 C52 119.9(5) 
231 H53 C53 C52 120.0(5) 
232 C42 C41 N7 105.0(4) 
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233 C42 C41 H41A 110.8(4) 
234 C42 C41 H41B 110.7(4) 
235 N7 C41 H41A 110.8(4) 
236 N7 C41 H41B 110.7(4) 
237 H41A C41 H41B 108.9(5) 
238 P4 C55 C60 122.2(5) 
239 P4 C55 C56 118.7(4) 
240 C60 C55 C56 119.0(5) 
241 C55 C60 H60 120.2(6) 
242 C55 C60 C59 119.7(6) 
243 H60 C60 C59 120.1(6) 
244 C48 C47 C46 120.8(5) 
245 C48 C47 H47 119.6(5) 
246 C46 C47 H47 119.5(5) 
247 C49 C50 C51 120.2(5) 
248 C49 C50 H50 119.9(6) 
249 C51 C50 H50 119.9(6) 
250 P4 C61 C66 120.0(5) 
251 P4 C61 C62 119.9(5) 
252 C66 C61 C62 119.6(6) 
253 C51 C52 C53 120.7(5) 
254 C51 C52 H52 119.7(6) 
255 C53 C52 H52 119.6(6) 
256 N7 C40 H40A 108.7(5) 
257 N7 C40 H40B 108.7(5) 
258 N7 C40 C39 114.1(5) 
259 H40A C40 H40B 107.5(6) 
260 H40A C40 C39 108.8(6) 
261 H40B C40 C39 108.8(6) 
262 N6 C39 C40 113.9(5) 
263 N6 C39 H39A 108.8(5) 
264 N6 C39 H39B 108.8(5) 
265 C40 C39 H39A 108.8(6) 
266 C40 C39 H39B 108.8(6) 
267 H39A C39 H39B 107.7(6) 
268 C55 C56 H56 119.7(6) 
269 C55 C56 C57 120.6(5) 
270 H56 C56 C57 119.7(6) 
271 C61 C66 H66 120.5(7) 
272 C61 C66 C1B 118.9(7) 
273 H66 C66 C1B 120.6(8) 
274 C60 C59 H59 119.5(6) 
275 C60 C59 C58 121.0(6) 



	   301	  

276 H59 C59 C58 119.5(6) 
277 C61 C62 H62 121.0(7) 
278 C61 C62 C1A 117.8(8) 
279 H62 C62 C1A 121.2(8) 
280 C56 C57 H57 119.7(6) 
281 C56 C57 C58 120.4(5) 
282 H57 C57 C58 119.8(6) 
283 C59 C58 C57 119.4(5) 
284 C59 C58 H58 120.3(6) 
285 C57 C58 H58 120.3(6) 
286 C62 C1A H1A 118(1) 
287 C62 C1A C1C 125(1) 
288 H1A C1A C1C 118(1) 
289 C66 C1B H1B 119(1) 
290 C66 C1B C1C 121(1) 
291 H1B C1B C1C 119(1) 
292 C1A C1C C1B 118(1) 
293 C1A C1C H1C 121(1) 
294 C1B C1C H1C 121(1) 
295 H67 C67 Cl12 108.6(4) 
296 H67 C67 Cl14 108.5(4) 
297 H67 C67 Cl13 108.6(4) 
298 Cl12 C67 Cl14 110.0(3) 
299 Cl12 C67 Cl13 110.4(3) 
300 Cl14 C67 Cl13 110.7(3) 
301 Cl5 C69 Cl4 109.0(5) 
302 Cl5 C69 H69 108.0(6) 
303 Cl5 C69 Cl6 110.4(5) 
304 Cl4 C69 H69 108.1(7) 
305 Cl4 C69 Cl6 113.1(5) 
306 H69 C69 Cl6 108.0(6) 
307 F2F B1 F14 107.7(6) 
308 F2F B1 F2 108.0(7) 
309 F2F B1 F3 111.1(7) 
310 F14 B1 F2 112.6(6) 
311 F14 B1 F3 108.4(7) 
312 F2 B1 F3 109.2(7) 
313 Cl8 C70 Cl7 109.6(4) 
314 Cl8 C70 H70 108.7(5) 
315 Cl8 C70 Cl9 110.3(4) 
316 Cl7 C70 H70 108.7(5) 
317 Cl7 C70 Cl9 110.7(4) 
318 H70 C70 Cl9 108.7(5) 
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319 Cl10 C68 Cl11 107.7(6) 
320 Cl10 C68 Cl15 115.1(6) 
321 Cl10 C68 H68 109.0(8) 
322 Cl11 C68 Cl15 107.0(6) 
323 Cl11 C68 H68 109.0(8) 
324 Cl15 C68 H68 108.9(8) 
325 F4 B2 F1 115.5(8) 
326 F4 B2 F5 86.6(7) 
327 F4 B2 F6 131.4(9) 
328 F4 B2 F7 86.7(7) 
329 F1 B2 F5 102.2(7) 
330 F1 B2 F6 112.1(8) 
331 F1 B2 F7 96.7(7) 
332 F5 B2 F6 92.7(7) 
333 F5 B2 F7 161.0(8) 
334 F6 B2 F7 78.6(7) 

 

Table of Torsion Angles for PhCDC-Pd-Cl  

Number Atom1 Atom2 Atom3 Atom4 Torsion 
1 P2 Pd1 P1 N1 2.1(3) 
2 P2 Pd1 P1 C22 117.7(3) 
3 P2 Pd1 P1 C10 -114.2(3) 
4 Cl1 Pd1 P1 N1 176.3(2) 
5 Cl1 Pd1 P1 C22 -68.1(2) 
6 Cl1 Pd1 P1 C10 60.0(2) 
7 C1 Pd1 P1 N1 -3.3(2) 
8 C1 Pd1 P1 C22 112.4(2) 
9 C1 Pd1 P1 C10 -119.5(2) 
10 P1 Pd1 P2 N4 -11.4(3) 
11 P1 Pd1 P2 C28 -126.4(3) 
12 P1 Pd1 P2 C16 103.5(3) 
13 Cl1 Pd1 P2 N4 174.3(1) 
14 Cl1 Pd1 P2 C28 59.3(2) 
15 Cl1 Pd1 P2 C16 -70.7(2) 
16 C1 Pd1 P2 N4 -6.1(2) 
17 C1 Pd1 P2 C28 -121.1(2) 
18 C1 Pd1 P2 C16 108.8(2) 
19 P1 Pd1 C1 C2 1.7(4) 
20 P1 Pd1 C1 C3 -176.8(4) 
21 P2 Pd1 C1 C2 -177.1(4) 
22 P2 Pd1 C1 C3 4.5(4) 
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23 Cl1 Pd1 C1 C2 -155(7) 
24 Cl1 Pd1 C1 C3 26(7) 
25 Pd1 P1 N1 C2 5.1(4) 
26 Pd1 P1 N1 C4 169.1(4) 
27 C22 P1 N1 C2 -119.5(4) 
28 C22 P1 N1 C4 44.5(5) 
29 C10 P1 N1 C2 128.9(4) 
30 C10 P1 N1 C4 -67.1(5) 
31 Pd1 P1 C22 C27 0.1(5) 
32 Pd1 P1 C22 C23 -176.5(4) 
33 N1 P1 C22 C27 113.3(4) 
34 N1 P1 C22 C23 -63.3(5) 
35 C10 P1 C22 C27 -133.7(4) 
36 C10 P1 C22 C23 49.7(5) 
37 Pd1 P1 C10 C15 -74.3(5) 
38 Pd1 P1 C10 C11 102.0(5) 
39 N1 P1 C10 C15 172.5(4) 
40 N1 P1 C10 C11 -11.2(5) 
41 C22 P1 C10 C15 60.0(5) 
42 C22 P1 C10 C11 -123.6(5) 
43 Pd1 P2 N4 C9 169.6(4) 
44 Pd1 P2 N4 C3 8.0(4) 
45 C28 P2 N4 C9 -63.6(5) 
46 C28 P2 N4 C3 134.9(4) 
47 C16 P2 N4 C9 46.6(5) 
48 C16 P2 N4 C3 -115.0(4) 
49 Pd1 P2 C28 C29 84.2(4) 
50 Pd1 P2 C28 C33 -90.9(4) 
51 N4 P2 C28 C29 -29.0(5) 
52 N4 P2 C28 C33 155.9(4) 
53 C16 P2 C28 C29 -140.4(4) 
54 C16 P2 C28 C33 44.5(5) 
55 Pd1 P2 C16 C21 -2.7(5) 
56 Pd1 P2 C16 C17 179.8(3) 
57 N4 P2 C16 C21 109.4(4) 
58 N4 P2 C16 C17 -68.1(4) 
59 C28 P2 C16 C21 -140.3(4) 
60 C28 P2 C16 C17 42.2(5) 
61 Pd1 C1 C2 N1 1.2(6) 
62 Pd1 C1 C2 N2 -177.3(4) 
63 C3 C1 C2 N1 179.5(5) 
64 C3 C1 C2 N2 1.0(9) 
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65 Pd1 C1 C3 N4 -0.5(6) 
66 Pd1 C1 C3 N3 -178.9(4) 
67 C2 C1 C3 N4 -178.8(4) 
68 C2 C1 C3 N3 2.8(9) 
69 P1 N1 C2 C1 -4.6(6) 
70 P1 N1 C2 N2 174.2(3) 
71 C4 N1 C2 C1 -171.6(4) 
72 C4 N1 C2 N2 7.2(6) 
73 P1 N1 C4 H4A 59.8(7) 
74 P1 N1 C4 H4B -62.5(7) 
75 P1 N1 C4 C5 178.7(4) 
76 C2 N1 C4 H4A -135.4(5) 
77 C2 N1 C4 H4B 102.3(5) 
78 C2 N1 C4 C5 -16.5(5) 
79 P2 N4 C9 H9A 58.7(6) 
80 P2 N4 C9 H9B -63.4(6) 
81 P2 N4 C9 C8 177.6(3) 
82 C3 N4 C9 H9A -138.8(4) 
83 C3 N4 C9 H9B 99.1(5) 
84 C3 N4 C9 C8 -19.9(5) 
85 P2 N4 C3 C1 -5.8(6) 
86 P2 N4 C3 N3 172.9(3) 
87 C9 N4 C3 C1 -170.8(4) 
88 C9 N4 C3 N3 7.9(5) 
89 P1 C22 C27 H27 4.4(7) 
90 P1 C22 C27 C26 -175.5(4) 
91 C23 C22 C27 H27 -178.9(5) 
92 C23 C22 C27 C26 1.2(8) 
93 P1 C22 C23 H23 -5.6(7) 
94 P1 C22 C23 C24 174.3(4) 
95 C27 C22 C23 H23 177.8(5) 
96 C27 C22 C23 C24 -2.2(8) 
97 P2 C28 C29 H29 5.4(7) 
98 P2 C28 C29 C30 -174.4(4) 
99 C33 C28 C29 H29 -179.6(5) 
100 C33 C28 C29 C30 0.6(7) 
101 P2 C28 C33 C32 174.9(5) 
102 P2 C28 C33 H33 -4.9(8) 
103 C29 C28 C33 C32 -0.1(8) 
104 C29 C28 C33 H33 180.0(5) 
105 C6 N2 C2 C1 -19.7(8) 
106 C6 N2 C2 N1 161.7(4) 
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107 C5 N2 C2 C1 -175.3(5) 
108 C5 N2 C2 N1 6.1(6) 
109 C2 N2 C6 C7 56.0(7) 
110 C2 N2 C6 H6A -65.6(7) 
111 C2 N2 C6 H6B 177.7(5) 
112 C5 N2 C6 C7 -150.4(5) 
113 C5 N2 C6 H6A 88.0(6) 
114 C5 N2 C6 H6B -28.7(7) 
115 C2 N2 C5 C4 -16.1(6) 
116 C2 N2 C5 H5A -135.3(5) 
117 C2 N2 C5 H5B 103.1(5) 
118 C6 N2 C5 C4 -172.9(4) 
119 C6 N2 C5 H5A 68.0(7) 
120 C6 N2 C5 H5B -53.6(7) 
121 C22 C27 C26 H26 -178.6(5) 
122 C22 C27 C26 C25 1.3(8) 
123 H27 C27 C26 H26 1.4(9) 
124 H27 C27 C26 C25 -178.6(5) 
125 N4 C9 C8 N3 22.9(5) 
126 N4 C9 C8 H8A 141.8(4) 
127 N4 C9 C8 H8B -95.9(5) 
128 H9A C9 C8 N3 141.7(4) 
129 H9A C9 C8 H8A -99.4(5) 
130 H9A C9 C8 H8B 22.9(7) 
131 H9B C9 C8 N3 -96.1(5) 
132 H9B C9 C8 H8A 22.8(7) 
133 H9B C9 C8 H8B 145.1(5) 
134 C1 C3 N3 C8 -172.9(5) 
135 C1 C3 N3 C7 -23.6(8) 
136 N4 C3 N3 C8 8.6(5) 
137 N4 C3 N3 C7 157.9(4) 
138 H32 C32 C33 C28 179.6(6) 
139 H32 C32 C33 H33 -0(1) 
140 C31 C32 C33 C28 -0.4(9) 
141 C31 C32 C33 H33 179.5(6) 
142 H32 C32 C31 C30 -179.6(6) 
143 H32 C32 C31 H31 0.4(9) 
144 C33 C32 C31 C30 0.4(8) 
145 C33 C32 C31 H31 -179.5(5) 
146 N1 C4 C5 N2 18.5(5) 
147 N1 C4 C5 H5A 137.7(5) 
148 N1 C4 C5 H5B -100.7(5) 
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149 H4A C4 C5 N2 137.4(5) 
150 H4A C4 C5 H5A -103.4(6) 
151 H4A C4 C5 H5B 18.1(8) 
152 H4B C4 C5 N2 -100.3(6) 
153 H4B C4 C5 H5A 18.9(7) 
154 H4B C4 C5 H5B 140.5(5) 
155 P2 C16 C21 H21 1.1(8) 
156 P2 C16 C21 C20 -178.8(4) 
157 C17 C16 C21 H21 178.7(5) 
158 C17 C16 C21 C20 -1.3(8) 
159 P2 C16 C17 C18 178.3(4) 
160 P2 C16 C17 H17 -1.8(7) 
161 C21 C16 C17 C18 0.8(8) 
162 C21 C16 C17 H17 -179.3(5) 
163 C3 N3 C8 C9 -20.3(5) 
164 C3 N3 C8 H8A -139.2(5) 
165 C3 N3 C8 H8B 98.5(5) 
166 C7 N3 C8 C9 -171.8(4) 
167 C7 N3 C8 H8A 69.3(6) 
168 C7 N3 C8 H8B -53.0(6) 
169 C3 N3 C7 H7A -63.4(7) 
170 C3 N3 C7 H7B 178.8(5) 
171 C3 N3 C7 C6 57.7(7) 
172 C8 N3 C7 H7A 84.2(6) 
173 C8 N3 C7 H7B -33.5(7) 
174 C8 N3 C7 C6 -154.7(5) 
175 P1 C10 C15 H15 -6.0(8) 
176 P1 C10 C15 C14 174.1(5) 
177 C11 C10 C15 H15 177.5(6) 
178 C11 C10 C15 C14 -2.5(9) 
179 P1 C10 C11 C12 -174.7(5) 
180 P1 C10 C11 H11 5.3(8) 
181 C15 C10 C11 C12 1.6(9) 
182 C15 C10 C11 H11 -178.4(6) 
183 C28 C29 C30 H30 179.6(5) 
184 C28 C29 C30 C31 -0.6(8) 
185 H29 C29 C30 H30 -0.1(8) 
186 H29 C29 C30 C31 179.7(5) 
187 C29 C30 C31 C32 0.1(8) 
188 C29 C30 C31 H31 -180.0(5) 
189 H30 C30 C31 C32 179.9(5) 
190 H30 C30 C31 H31 -0.2(8) 
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191 H18 C18 C17 C16 179.8(5) 
192 H18 C18 C17 H17 -0.1(8) 
193 C19 C18 C17 C16 -0.3(8) 
194 C19 C18 C17 H17 179.8(5) 
195 H18 C18 C19 H19 0.2(9) 
196 H18 C18 C19 C20 -179.9(5) 
197 C17 C18 C19 H19 -179.8(5) 
198 C17 C18 C19 C20 0.2(9) 
199 C27 C26 C25 H25 177.2(6) 
200 C27 C26 C25 C24 -2.7(9) 
201 H26 C26 C25 H25 -3(1) 
202 H26 C26 C25 C24 177.2(6) 
203 C16 C21 C20 C19 1.2(9) 
204 C16 C21 C20 H20 -178.8(6) 
205 H21 C21 C20 C19 -178.8(6) 
206 H21 C21 C20 H20 1(1) 
207 N3 C7 C6 N2 -73.5(6) 
208 N3 C7 C6 H6A 48.1(7) 
209 N3 C7 C6 H6B 164.7(5) 
210 H7A C7 C6 N2 47.6(7) 
211 H7A C7 C6 H6A 169.2(5) 
212 H7A C7 C6 H6B -74.2(7) 
213 H7B C7 C6 N2 165.3(5) 
214 H7B C7 C6 H6A -73.1(7) 
215 H7B C7 C6 H6B 43.5(7) 
216 C10 C15 C14 C13 2.3(9) 
217 C10 C15 C14 H14 -177.5(6) 
218 H15 C15 C14 C13 -177.6(6) 
219 H15 C15 C14 H14 3(1) 
220 C26 C25 C24 C23 1.6(9) 
221 C26 C25 C24 H24 -178.2(6) 
222 H25 C25 C24 C23 -178.3(6) 
223 H25 C25 C24 H24 2(1) 
224 C22 C23 C24 C25 0.8(9) 
225 C22 C23 C24 H24 -179.3(5) 
226 H23 C23 C24 C25 -179.2(5) 
227 H23 C23 C24 H24 0.6(9) 
228 H13 C13 C14 C15 178.6(6) 
229 H13 C13 C14 H14 -2(1) 
230 C12 C13 C14 C15 -1(1) 
231 C12 C13 C14 H14 178.6(6) 
232 H13 C13 C12 H12 0(1) 
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233 H13 C13 C12 C11 -179.5(6) 
234 C14 C13 C12 H12 -179.7(6) 
235 C14 C13 C12 C11 0(1) 
236 C18 C19 C20 C21 -0.7(9) 
237 C18 C19 C20 H20 179.3(6) 
238 H19 C19 C20 C21 179.3(6) 
239 H19 C19 C20 H20 -1(1) 
240 C13 C12 C11 C10 -1(1) 
241 C13 C12 C11 H11 179.4(6) 
242 H12 C12 C11 C10 179.5(6) 
243 H12 C12 C11 H11 -0(1) 
244 Cl2 Pd2 P3 N5 179.2(2) 
245 Cl2 Pd2 P3 C43 61.6(2) 
246 Cl2 Pd2 P3 C49 -67.9(2) 
247 P4 Pd2 P3 N5 2.6(3) 
248 P4 Pd2 P3 C43 -115.0(3) 
249 P4 Pd2 P3 C49 115.5(3) 
250 C34 Pd2 P3 N5 -2.3(2) 
251 C34 Pd2 P3 C43 -119.9(2) 
252 C34 Pd2 P3 C49 110.6(2) 
253 P3 Pd2 P4 N8 -6.8(3) 
254 P3 Pd2 P4 C55 110.7(3) 
255 P3 Pd2 P4 C61 -122.9(3) 
256 Cl2 Pd2 P4 N8 176.6(2) 
257 Cl2 Pd2 P4 C55 -65.9(2) 
258 Cl2 Pd2 P4 C61 60.5(2) 
259 C34 Pd2 P4 N8 -1.9(2) 
260 C34 Pd2 P4 C55 115.6(3) 
261 C34 Pd2 P4 C61 -118.0(3) 
262 P3 Pd2 C34 C36 178.9(4) 
263 P3 Pd2 C34 C35 -1.7(4) 
264 Cl2 Pd2 C34 C36 -107(5) 
265 Cl2 Pd2 C34 C35 72(6) 
266 P4 Pd2 C34 C36 0.1(4) 
267 P4 Pd2 C34 C35 179.4(4) 
268 Pd2 P3 N5 C35 6.4(4) 
269 Pd2 P3 N5 C37 168.1(4) 
270 C43 P3 N5 C35 131.4(4) 
271 C43 P3 N5 C37 -66.9(5) 
272 C49 P3 N5 C35 -116.2(4) 
273 C49 P3 N5 C37 45.5(5) 
274 Pd2 P3 C43 C44 -69.0(4) 
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275 Pd2 P3 C43 C48 105.9(4) 
276 N5 P3 C43 C44 176.4(4) 
277 N5 P3 C43 C48 -8.7(5) 
278 C49 P3 C43 C44 65.5(4) 
279 C49 P3 C43 C48 -119.6(4) 
280 Pd2 P3 C49 C54 165.9(4) 
281 Pd2 P3 C49 C50 -20.8(5) 
282 N5 P3 C49 C54 -82.3(4) 
283 N5 P3 C49 C50 91.0(4) 
284 C43 P3 C49 C54 31.0(5) 
285 C43 P3 C49 C50 -155.7(4) 
286 Pd2 P4 N8 C42 179.2(4) 
287 Pd2 P4 N8 C36 3.9(4) 
288 C55 P4 N8 C42 55.8(5) 
289 C55 P4 N8 C36 -119.5(4) 
290 C61 P4 N8 C42 -56.6(5) 
291 C61 P4 N8 C36 128.1(4) 
292 Pd2 P4 C55 C60 -172.8(4) 
293 Pd2 P4 C55 C56 10.5(5) 
294 N8 P4 C55 C60 -59.3(6) 
295 N8 P4 C55 C56 124.0(5) 
296 C61 P4 C55 C60 54.5(6) 
297 C61 P4 C55 C56 -122.2(5) 
298 Pd2 P4 C61 C66 73.4(6) 
299 Pd2 P4 C61 C62 -99.3(6) 
300 N8 P4 C61 C66 -39.7(6) 
301 N8 P4 C61 C62 147.7(5) 
302 C55 P4 C61 C66 -154.7(5) 
303 C55 P4 C61 C62 32.7(6) 
304 Pd2 C34 C36 N8 2.5(6) 
305 Pd2 C34 C36 N7 -175.1(4) 
306 C35 C34 C36 N8 -176.8(5) 
307 C35 C34 C36 N7 5.6(9) 
308 Pd2 C34 C35 N5 6.6(6) 
309 Pd2 C34 C35 N6 -169.8(4) 
310 C36 C34 C35 N5 -174.1(5) 
311 C36 C34 C35 N6 9.5(9) 
312 P3 N5 C35 C34 -8.9(6) 
313 P3 N5 C35 N6 168.3(3) 
314 C37 N5 C35 C34 -174.1(4) 
315 C37 N5 C35 N6 3.1(6) 
316 P3 N5 C37 H37A 77.1(6) 
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317 P3 N5 C37 H37B -44.7(7) 
318 P3 N5 C37 C38 -163.8(4) 
319 C35 N5 C37 H37A -120.3(5) 
320 C35 N5 C37 H37B 117.9(5) 
321 C35 N5 C37 C38 -1.3(6) 
322 P4 N8 C42 H42A 69.3(6) 
323 P4 N8 C42 H42B -52.6(6) 
324 P4 N8 C42 C41 -171.6(4) 
325 C36 N8 C42 H42A -115.1(5) 
326 C36 N8 C42 H42B 122.9(5) 
327 C36 N8 C42 C41 3.9(5) 
328 P4 N8 C36 C34 -4.5(6) 
329 P4 N8 C36 N7 173.6(3) 
330 C42 N8 C36 C34 179.3(4) 
331 C42 N8 C36 N7 -2.6(5) 
332 N8 C42 C41 N7 -3.7(5) 
333 N8 C42 C41 H41A 116.0(5) 
334 N8 C42 C41 H41B -123.2(5) 
335 H42A C42 C41 N7 115.4(5) 
336 H42A C42 C41 H41A -125.0(5) 
337 H42A C42 C41 H41B -4.1(7) 
338 H42B C42 C41 N7 -122.7(5) 
339 H42B C42 C41 H41A -3.1(7) 
340 H42B C42 C41 H41B 117.8(5) 
341 C34 C36 N7 C41 177.8(5) 
342 C34 C36 N7 C40 6.0(9) 
343 N8 C36 N7 C41 -0.0(6) 
344 N8 C36 N7 C40 -171.9(5) 
345 C36 N7 C41 C42 2.5(5) 
346 C36 N7 C41 H41A -117.1(5) 
347 C36 N7 C41 H41B 122.0(5) 
348 C40 N7 C41 C42 174.7(5) 
349 C40 N7 C41 H41A 55.1(7) 
350 C40 N7 C41 H41B -65.8(6) 
351 C36 N7 C40 H40A -171.1(5) 
352 C36 N7 C40 H40B 72.1(7) 
353 C36 N7 C40 C39 -49.5(8) 
354 C41 N7 C40 H40A 17.8(8) 
355 C41 N7 C40 H40B -99.0(6) 
356 C41 N7 C40 C39 139.4(5) 
357 C38 N6 C35 C34 172.9(5) 
358 C38 N6 C35 N5 -3.7(6) 
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359 C39 N6 C35 C34 5.5(9) 
360 C39 N6 C35 N5 -171.2(5) 
361 C35 N6 C38 C37 2.8(6) 
362 C35 N6 C38 H38A -116.6(5) 
363 C35 N6 C38 H38B 122.3(5) 
364 C39 N6 C38 C37 170.6(5) 
365 C39 N6 C38 H38A 51.2(7) 
366 C39 N6 C38 H38B -69.9(7) 
367 C35 N6 C39 C40 -51.0(7) 
368 C35 N6 C39 H39A -172.4(5) 
369 C35 N6 C39 H39B 70.5(7) 
370 C38 N6 C39 C40 142.6(5) 
371 C38 N6 C39 H39A 21.2(8) 
372 C38 N6 C39 H39B -95.9(6) 
373 H44 C44 C43 P3 -4.3(7) 
374 H44 C44 C43 C48 -179.4(5) 
375 C45 C44 C43 P3 175.5(4) 
376 C45 C44 C43 C48 0.4(7) 
377 H44 C44 C45 H45 -0.6(8) 
378 H44 C44 C45 C46 179.3(5) 
379 C43 C44 C45 H45 179.5(5) 
380 C43 C44 C45 C46 -0.5(8) 
381 P3 C43 C48 H48 4.4(7) 
382 P3 C43 C48 C47 -175.4(4) 
383 C44 C43 C48 H48 179.3(5) 
384 C44 C43 C48 C47 -0.5(7) 
385 C44 C45 C46 H46 -179.3(5) 
386 C44 C45 C46 C47 0.8(8) 
387 H45 C45 C46 H46 0.7(8) 
388 H45 C45 C46 C47 -179.3(5) 
389 C43 C48 C47 C46 0.8(8) 
390 C43 C48 C47 H47 -179.2(5) 
391 H48 C48 C47 C46 -179.1(5) 
392 H48 C48 C47 H47 1.0(8) 
393 P3 C49 C54 H54 -7.4(7) 
394 P3 C49 C54 C53 172.6(4) 
395 C50 C49 C54 H54 179.4(5) 
396 C50 C49 C54 C53 -0.6(8) 
397 P3 C49 C50 C51 -173.2(4) 
398 P3 C49 C50 H50 6.9(8) 
399 C54 C49 C50 C51 0.4(8) 
400 C54 C49 C50 H50 -179.5(5) 



	   312	  

401 N5 C37 C38 N6 -0.8(5) 
402 N5 C37 C38 H38A 118.6(5) 
403 N5 C37 C38 H38B -120.4(5) 
404 H37A C37 C38 N6 118.2(5) 
405 H37A C37 C38 H38A -122.4(6) 
406 H37A C37 C38 H38B -1.3(8) 
407 H37B C37 C38 N6 -119.9(5) 
408 H37B C37 C38 H38A -0.5(8) 
409 H37B C37 C38 H38B 120.6(6) 
410 C45 C46 C47 C48 -0.9(8) 
411 C45 C46 C47 H47 179.1(5) 
412 H46 C46 C47 C48 179.1(5) 
413 H46 C46 C47 H47 -0.9(8) 
414 C49 C54 C53 H53 -179.5(5) 
415 C49 C54 C53 C52 0.5(8) 
416 H54 C54 C53 H53 0.4(8) 
417 H54 C54 C53 C52 -179.5(5) 
418 H51 C51 C50 C49 180.0(6) 
419 H51 C51 C50 H50 -0(1) 
420 C52 C51 C50 C49 0.0(9) 
421 C52 C51 C50 H50 179.9(6) 
422 H51 C51 C52 C53 179.9(6) 
423 H51 C51 C52 H52 -0(1) 
424 C50 C51 C52 C53 -0.1(9) 
425 C50 C51 C52 H52 179.9(6) 
426 C54 C53 C52 C51 -0.1(8) 
427 C54 C53 C52 H52 179.8(5) 
428 H53 C53 C52 C51 179.9(5) 
429 H53 C53 C52 H52 -0.1(9) 
430 P4 C55 C60 H60 3.0(9) 
431 P4 C55 C60 C59 -177.0(5) 
432 C56 C55 C60 H60 179.7(6) 
433 C56 C55 C60 C59 -0.3(9) 
434 P4 C55 C56 H56 -3.3(8) 
435 P4 C55 C56 C57 176.7(5) 
436 C60 C55 C56 H56 179.9(6) 
437 C60 C55 C56 C57 -0.1(9) 
438 C55 C60 C59 H59 -179.3(6) 
439 C55 C60 C59 C58 0.7(9) 
440 H60 C60 C59 H59 1(1) 
441 H60 C60 C59 C58 -179.3(6) 
442 P4 C61 C66 H66 9(1) 
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443 P4 C61 C66 C1B -170.8(7) 
444 C62 C61 C66 H66 -178.2(7) 
445 C62 C61 C66 C1B 2(1) 
446 P4 C61 C62 H62 -10(1) 
447 P4 C61 C62 C1A 169.9(7) 
448 C66 C61 C62 H62 177.2(7) 
449 C66 C61 C62 C1A -3(1) 
450 N7 C40 C39 N6 74.3(7) 
451 N7 C40 C39 H39A -164.2(5) 
452 N7 C40 C39 H39B -47.1(7) 
453 H40A C40 C39 N6 -164.1(5) 
454 H40A C40 C39 H39A -42.6(8) 
455 H40A C40 C39 H39B 74.5(7) 
456 H40B C40 C39 N6 -47.2(7) 
457 H40B C40 C39 H39A 74.2(7) 
458 H40B C40 C39 H39B -168.7(6) 
459 C55 C56 C57 H57 -179.8(6) 
460 C55 C56 C57 C58 0.1(9) 
461 H56 C56 C57 H57 0(1) 
462 H56 C56 C57 C58 -179.9(6) 
463 C61 C66 C1B H1B 179.2(9) 
464 C61 C66 C1B C1C -1(1) 
465 H66 C66 C1B H1B -1(2) 
466 H66 C66 C1B C1C 179(1) 
467 C60 C59 C58 C57 -0.7(9) 
468 C60 C59 C58 H58 179.5(6) 
469 H59 C59 C58 C57 179.4(6) 
470 H59 C59 C58 H58 -1(1) 
471 C61 C62 C1A H1A -177.2(9) 
472 C61 C62 C1A C1C 3(2) 
473 H62 C62 C1A H1A 3(2) 
474 H62 C62 C1A C1C -177(1) 
475 C56 C57 C58 C59 0.3(9) 
476 C56 C57 C58 H58 -179.9(6) 
477 H57 C57 C58 C59 -179.8(6) 
478 H57 C57 C58 H58 0(1) 
479 C62 C1A C1C C1B -2(2) 
480 C62 C1A C1C H1C 178(1) 
481 H1A C1A C1C C1B 178(1) 
482 H1A C1A C1C H1C -2(2) 
483 C66 C1B C1C C1A 1(2) 
484 C66 C1B C1C H1C -179(1) 
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485 H1B C1B C1C C1A -179(1) 
486 H1B C1B C1C H1C 1(2) 
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Section 1.5: Intramolecular Hydroamination with Carbodicarbene Ligated Rh Complexes 

# General procedure for Intramolecular Hydroamination Catalyzed by CDC-metal 

Complexes 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with the appropriate CDC-metal 

complex (0.005 mmol, 5 mol%) and silver salt (0.005 mmol, 5 mol%). The solids were solvated 

with the listed solvent and allowed to stir at room temperature for >20 minutes. The 

intramolecular amine substrate (0.1 mmol) was added to the reaction, followed by the addition of 

an additive if appropriate, and the vial was capped with a Teflon® lined lid or septum cap, taped 

with electrical tape and brought outside the dry box. Any volatile liquids (eg: HBF4.OEt2) were 

added via syringe through the Teflon® septa under an atmosphere of N2. The reaction was 

allowed to warm to the appropriate temperature and stir for 18 to 48 h as appropriate. The 

reaction was allowed to cool and an aliquot was taken to determine the conversion by 1H NMR 

using DMF as an internal standard. The NMR sample was recovered and the solvent evaporated 

before the products were purified by SiO2 column chromatography. 

 

iPrCDC-Rh-Cl (5 mol %) 
AgBF4 (5 mol%); 

NH4BF4 (20 mol%)

PhCl [0.5 M], 60 °C, 48 h

NH2

Ph
Ph NH

Me

Ph

Ph

21
71% Yield  

Synthesis of 2-methyl-4,4-diphenylpyrrolidine (21)  

Following the general procedure for (CDC)-Rh-catalyzed intramolecular hydroamination, 2,2-

diphenylpent-4-en-1-amine (23.7 mg, 0.100 mmol) was added to a solution of iPrCDC-Rh-Cl 

(2.7 mg, 0.0050 mmol) and AgBF4 (1.2 mg, 0.005 mmol) in chlorobenzene (200 µL, [ ] = 0.50 

M). Ammonium tetrafluoroborate (2.1 mg , 0.02 mmol) was added to the solution and the 
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reaction was sealed and allowed to stir at 60 °C for 48 h. The reaction was concentrated and the 

resulting oil was purified by SiO2 column chromatography (20:1 DCM/MeOH) to afford 21 

(16.9 mg, 0.071 mmol, 71% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.35 – 7.24 (m, 6H), 7.25 – 7.20 (m, 2H), 7.19 – 7.14 (m, 2H), 

3.71 (d, J = 11.5 Hz, 1H), 3.51 – 3.45 (m, 1H), 3.43 – 3.32 (m, 1H), 2.75 (dd, J = 12.6, 6.5 Hz, 

1H), 2.06 (dd, J = 12.6, 9.3 Hz, 1H), 1.22 (d, J = 6.4 Hz, 3H). 

 

iPrCDC-Rh-Cl (5 mol %) 
AgBF4 (5 mol%); 

PhCl [0.5 M], 60 °C, 48 h

H
N

Ph
Ph NBn

Me

Ph

Ph

23
98% Yield

Bn

 

Synthesis of 1-benzyl-2-methyl-4,4-diphenylpyrrolidine (23)  

Following the general procedure for (CDC)-Rh-catalyzed intramolecular hydroamination, N-

benzyl-2,2-diphenylpent-4-en-1-amine (32.7 mg, 0.100 mmol) was added to a solution of 

iPrCDC-Rh-Cl (2.7 mg, 0.0050 mmol) and AgBF4 (1.2 mg, 0.005 mmol) in chlorobenzene (200 

µL, [ ] = 0.50 M). The reaction was sealed and allowed to stir at 60 °C for 48 h. The reaction was 

concentrated and the resulting oil was purified by SiO2 column chromatography (20:1 

Hex/EtOAc) to afford 23 (32.0 mg, 0.098 mmol, 98% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.38 (d, J = 7.4 Hz, 2H), 7.33 (dd, J = 17.8, 10.8 Hz, 2H), 7.30 – 

7.23 (m, 5H), 7.23 – 7.15 (m, 5H), 7.11 (dd, J = 19.2, 12.1 Hz, 1H), 4.10 (d, J = 13.2 Hz, 1H), 

3.65 (d, J = 9.9 Hz, 1H), 3.27 (d, J = 13.2 Hz, 1H), 2.93 (dd, J = 12.6, 7.8 Hz, 1H), 2.89 – 2.82 

(m, 1H), 2.80 (d, J = 9.9 Hz, 1H), 2.22 (dd, J = 12.6, 8.0 Hz, 1H), 1.18 (d, J = 5.6 Hz, 3H). 13C 

NMR (151 MHz, CDCl3) δ 150.67, 148.76, 140.12, 128.62, 128.23, 128.15, 127.84, 127.46, 

127.27, 126.79, 125.81, 125.42, 66.46, 59.68, 58.03, 52.54, 48.02, 19.54. 
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PhCDC-Rh-Cl (5 mol %) 
AgBF4 (5 mol%); 

MeCN [2.0 M], 80 °C, 48 h

H
N

PhPh

24
69% Yield

NBn

Me

Ph

Ph

Bn

 

Synthesis of 1-benzyl-2-methyl-5,5-diphenylpiperidine (24)  

Following the general procedure for (CDC)-Rh-catalyzed intramolecular hydroamination, N-

benzyl-2,2-diphenylhex-5-en-1-amine (34.2 mg, 0.100 mmol) was added to a solution of 

iPrCDC-Rh-Cl (2.7 mg, 0.0050 mmol) and AgBF4 (1.2 mg, 0.005 mmol) in acetonitrile (50 µL, [ 

] = 2.0 M). The reaction was sealed and allowed to stir at 80 °C for 48 h. The reaction was 

concentrated and the resulting oil was purified by SiO2 column chromatography (40:1 

Hex/EtOAc) to afford 24 (23.6 mg, 0.069 mmol, 69% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.38 – 7.32 (m, 4H), 7.30 – 7.26 (m, 1H), 7.22 – 7.14 (m, 6H), 

7.13 – 7.06 (m, 4H), 4.05 (d, J = 13.3 Hz, 1H), 3.35 (d, J = 12.2 Hz, 1H), 3.13 (d, J = 13.3 Hz, 

1H), 2.50 – 2.43 (m, 2H), 2.41 (d, J = 12.2 Hz, 1H), 2.21 – 2.13 (m, 1H), 1.62 (ddt, J = 8.9, 6.7, 

3.5 Hz, 1H), 1.40 – 1.32 (m, 1H), 1.13 (d, J = 6.1 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 

148.59, 146.75, 139.46, 129.51, 128.48, 128.02, 127.95, 127.62, 127.06, 126.89, 125.65, 125.30, 

77.24, 77.02, 76.81, 60.94, 58.90, 56.13, 46.54, 34.22, 30.99. 

 

iPrCDC-Rh-Cl (5 mol %) 
AgBF4 (5 mol%); 

MeCN [1.0 M], 80 °C, 48 h

H
N

25
72% Yield

Bn

NBn

Me

 

Synthesis of 1-benzyl-2-methylpyrrolidine (25)  

Following the general procedure for (CDC)-Rh-catalyzed intramolecular hydroamination, N-

benzylpent-4-en-1-amine (17.5 mg, 0.100 mmol) was added to a solution of iPrCDC-Rh-Cl (2.7 

mg, 0.0050 mmol) and AgBF4 (1.2 mg, 0.005 mmol) in acetonitrile (100 µL, [ ] = 2.0 M). The 
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reaction was sealed and allowed to stir at 80 °C for 48 h. The reaction was concentrated and the 

resulting oil was purified by SiO2 column chromatography (20:1 Hex/EtOAc) to afford 25 (12.6 

mg, 0.072 mmol, 72% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.34 – 7.27 (m, 4H), 7.25 – 7.20 (m, 1H), 4.02 (d, J = 12.8 Hz, 

1H), 3.14 (d, J = 12.8 Hz, 1H), 2.93 – 2.83 (m, 1H), 2.44 – 2.32 (m, 1H), 2.10 (q, J = 9.0 Hz, 

1H), 1.98 – 1.84 (m, 1H), 1.76 – 1.54 (m, 2H), 1.51 – 1.40 (m, 1H), 1.17 (d, J = 6.0 Hz, 3H). 13C 

NMR (151 MHz, CDCl3) δ 129.12, 129.09, 128.15, 126.78, 59.63, 58.35, 54.04, 32.72, 21.47, 

19.14. 

 

iPrCDC-Rh-Cl (5 mol %) 
AgBF4 (5 mol%); 

PhCl [1.0 M], 40 °C, 48 h

H
N

26
65% Yield

Ph

NPh

Me

 

Synthesis of 2-methyl-1-phenylpyrrolidine (26)  

Following the general procedure for (CDC)-Rh-catalyzed intramolecular hydroamination, N-

(pent-4-en-1-yl)aniline (17.5 mg, 0.100 mmol) was added to a solution of iPrCDC-Rh-Cl (2.7 

mg, 0.0050 mmol) and AgBF4 (1.2 mg, 0.005 mmol) in acetonitrile (100 µL, [ ] = 2.0 M). The 

reaction was sealed and allowed to stir at 80 °C for 48 h. The reaction was concentrated and the 

resulting oil was purified by SiO2 column chromatography (20:1 Hex/EtOAc) to afford 26 (12.6 

mg, 0.072 mmol, 72% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.24 – 7.19 (m, 2H), 6.64 (t, J = 7.3 Hz, 1H), 6.58 (d, J = 7.9 Hz, 

2H), 3.91 – 3.83 (m, 1H), 3.44 – 3.39 (m, 1H), 3.19 – 3.11 (m, 1H), 2.13 – 2.00 (m, 2H), 2.00 – 

1.92 (m, 1H), 1.72 – 1.67 (m, 1H), 1.17 (d, J = 6.2 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 

147.23, 129.17, 129.15, 115.11, 111.75, 111.73, 53.58, 48.14, 33.11, 23.29, 19.37. 
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Section 1.6: Intermolecular Hydroamination with Carbodicarbene-Ligated Rh Complexes 

#  Reagents:  

Acetonitrile – d3 was purchased from Cambridge Isotope Labs, dried over CaH2 and stored in a 

dry box over activated 4 Å molecular sieves. 

AgNO3 Doped Silica Gel was prepared as a 1% mixture by weight as described in the 

literature.10 

Aniline was purchased from Aldrich, dried on CaH2, distilled under vacuum, and stored in a dry 

box freezer at -30oC. 

p-Anisidine was purchased from Alfa Aesar, dried over CaCl2, distilled under vacuum, and 

stored in a dry box. 

Benzylmethylamine was purchased from Alfa Aesar, dried over K2CO3, distilled under vacuum, 

and stored in a dry box. 

2-Bromoaniline was purchased from Alfa Aesar, dried over CaCl2, distilled under vacuum, and 

stored in a dry box. 

Chlorobenzene was dried over K2CO3, distilled under vacuum and stored over activated 5 Å 

molecular sieves in a dry box. 

Chloroform – d1 was purchased from Cambridge Isotope Labs, dried over CaH2 and stored in a 

dry box over activated 4 Å molecular sieves. 

Chloro(1,5-cyclooctadiene)rhodium(I) dimer was purchased from Pressure Chemicals, stored 

in a dry box and used as received.  

Chlorodiisopropyl phosphine was purchased from Acros Organics and used as received. 

Chlorodiphenylphosphine was purchased from Alfa Aesar and used as received. 
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Cyclohexa-1,3-diene was purchased from Alfa Aesar and was distilled and stored under N2 at -

20 °C.  

Dichloromethane – d2 was purchased from Cambridge Isotope Labs, dried over CaH2 and stored 

in a dry box over activated 4 Å molecular sieves. 

Dibenzyl amine was purchased from Alfa Aesar, passed through a plug of alumina onto 

activated 5 Å molecular sieves for 24 h and transferred to a vial in a dry box. 

Di-n-propyl amine was purchased from Aldrich, dried over KOH, and distilled under reduced 

pressure and stored in a dry box. 

Morpholine was purchased from Alfa Aesar, dried over KOH, distilled under reduced pressure 

and stored in a dry box. 

Pyrrolidine was purchased from Alfa Aesar, dried over Na, distilled under reduced pressure and 

stored in a dry box. 

Silver tetrafluoroborate was purchased from Strem, stored in a dry box, and used without 

further purification. 

4-(Trifluoromethyl)aniline was purchased from Alfa Aesar, distilled over CaH2, and stored in at 

-30 oC in a dry box freezer. 

Sodium methoxide was purchased from Strem, stored in a dry box, and used as received. 

o-Toluidine was purchased from Alfa Aesar, dried over CaH2, distilled under vacuum, and stored 

in a dry box. 

Tetrafluoroboric acid was purchased from Alfa Aesar and used as received. 

Triethylamine was purchased from Fisher and dried over CaH2 and distilled immediately prior 

to use. 
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# General procedure for the (CDC)-Rh-catalyzed hydroaminations of phenyl 1,3-

butadiene in SI Tables 1 and 2.  

In an N2 filled dry box, an 8-mL vial equipped with a stir bar was charged with the appropriate 

(CDC)-RhCl complex and silver salt. Chlorobenzene was added via syringe, the vial was capped 

and the mixture allowed to stir for 1 h at 22 °C. Reactions that did not require the addition of 

(CDC)-RhCl were also allowed to stir for 1 h at 22 oC for consistency. Aniline was added via 

syringe, followed by addition of the phenyl 1,3-butadiene. The vial was capped with a Teflon® 

lined lid or septum cap, taped with electrical tape and brought outside the dry box. Any volatile 

acids (HBF4.OEt2 and HCl-dioxane) were added via syringe through the Teflon® septa under an 

atmosphere of N2. The reaction was allowed to warm to the appropriate temperature and stir for 

24 h. The reaction was allowed to cool and an aliquot was taken to determine the conversion by 

1H NMR using DMF as an internal standard. The remaining solvent was removed in vacuo. The 

products were purified by SiO2 column chromatography.  
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39
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40

XCDC-Rh-Cl

 

 

# General procedure for Rh-catalyzed hydroaminations in Tables 1.6.2-1 and 1.6.3-1: In an 

N2 filled dry box, an 8-mL vial equipped with a stir bar was charged with (CDC)-Rh-Cl, AgBF4, 

and chlorobenzene. The vial was capped and the mixture allowed to stir at 22 °C for 1 h, to 

generate a heterogeneous, purple or blue solution. The appropriate amine was added via syringe 

(or weighed into the vial) followed by the 1,3-diene. The vial was capped with a Teflon® lined 

lid, sealed with electrical tape, brought outside the dry box, and heated to the indicated 

temperature for the appropriate amount of time. The reaction was allowed to cool to 22 °C, and 
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an aliquot was taken to determine the conversion by 1H NMR using an internal DMF standard. 

The remaining solvent was removed in vacuo. The products were purified by SiO2 column 

chromatography to give isolated yields.  

 

31
 

Synthesis of (E)-N-(4-phenylbut-3-en-2-yl)aniline (31) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and phenyl 1,3-butadiene (26.0 mg, 0.200 mmol) were added to a solution of 

PhCDC-Rh-Cl (1.4 mg, 0.0020 mmol) and AgBF4 (0.4 mg, 0.0020 mmol) in chlorobenzene (200 

µL, [ ] = 1.00 M), and the reaction allowed to stir at 60 °C for 24 h. The resulting oil was 

purified by SiO2 column chromatography (20:1 Hex/Et2O) to afford 31 (31.3 mg, 0.142 mmol, 

71% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3): δ 7.36 (2H, d, J = 7.4 Hz), 7.30 (2H, t, J = 7.6 Hz), 7.22 (1H, t, J = 

7.3 Hz), 7.17 (2H, t, J = 8.0 Hz), 6.69 (1H t, J = 7.3 Hz), 6.66 (2H, d, J = 7.9 Hz), 6.58 (1H, d, J 

= 16.0 Hz), 6.22 (1H, dd, J = 15.9, 5.9 Hz), 4.14-4.17 (1H, m), 3.72 (1H, bs), 1.41 (3H, d, J = 6.6 

Hz). 13C NMR (150 MHz, CDCl3): δ 147.53, 137.09, 133.31, 129.39, 129.34, 128.65, 127.49, 

126.45, 117.46, 113.50, 50.98, 22.25. IR (ν/cm-1): 3412 (br, m), 3081 (w), 3056 (w), 3023 (m), 

2968 (m), 2926 (w), 2867 (w), 1602 (s), 1506 (s), 1456 (w), 1429 (w), 1317 (m), 1257 (m), 1178 

(m), 1156 (w). LRMS (ES+) [M+H]+ calcd for C16H18N+ 224.14, found: 224.04. 
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32
 

Synthesis of (E)-N-(4-phenylbut-3-en-2-yl)-4-(trifluoromethyl)aniline (32)  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, 4-

(trifluoromethyl)aniline (32.2 mg, 0.200 mmol) and phenyl 1,3-butadiene (31.2 mg, 0.240 mmol) 

were added to a solution of iPrCDC-Rh-Cl (1.4 mg, 0.0020 mmol) and AgBF4 (0.4 mg, 0.0020 

mmol) in chlorobenzene (200 µL, [ ] = 1.00 M) and the reaction allowed to stir at 60 oC for 48 h. 

The resulting oil was purified by SiO2 column chromatography (10:1 Hex/EtOAc) to afford 32 

(53.0 mg, 0.182 mmol, 91% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3): δ 7.41 (2H, d, J = 8.4 Hz), 7.38 (2H, dd, J = 8.2, 1.2 Hz), 7.33 

(2H, t, J = 7.8 Hz) 7.25 (1H, tt, J = 7.2, 1.8 Hz), 6.66 (2H, d, J = 8.4 Hz), 6.58 (1H, d, J = 6.2 

Hz), 6.20 (1H, dd, J = 15.9, 5.7 Hz), 4.19-4.22 (1H, m), 4.1 (1H, bs) 1.45 (3H, d, J = 6.6 Hz). 13C 

NMR (150 MHz, CDCl3): δ 149.75, 131.95, 129.72, 128.56, 127.57, 126.52 (q, J = 2.5 Hz), 

126.32, 124.97 (q, J = 223.8 Hz), 118.68 (q, J = 27.5 Hz), 112.38, 50.53, 21.91. 19F NMR (564 

MHz, CDCl3): δ 60.89. IR (ν/cm-1): 3418 (br, s), 3083 (w), 3062 (w), 3027 (m), 2973 (m), 2928 

(m), 2871 (m), 1616 (s), 1531 (s), 1491 (w), 1327 (s), 1266 (m), 1188 (m), 1159 (m), 1110 (s). 

LRMS (ES+) [M+H]+ calcd for C17H17NF3
+ 292.13, found: 292.06. 

 

33
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Synthesis of (E)-4-methoxy-N-(4-phenylbut-3-en-2-yl)aniline (33) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, 4-methoxyaniline 

(24.6 mg, 0.200 mmol) and phenyl 1,3-butadiene (26.0 mg, 0.200 mmol) were added to a 

solution of iPrCDC-Rh-Cl (3.3 mg, 0.0060 mmol) and AgBF4 (1.2 mg, 0.0062 mmol) in 

chlorobenzene (400 µL, [ ] = 0.500 M), and the reaction allowed to stir at 60 °C for 48 h. The 

resulting oil was purified by SiO2 column chromatography (10:1 Hex/EtOAc) to afford 33 (32.5 

mg, 0.128 mmol, 64% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3): δ 7.37 (2H, dd, J = 8.1, 1.2 Hz), 7.31 (2H, t, J = 7.8 Hz), 7.23 (1H, 

tt, J = 7.2, 1.2 Hz), 6.77-6.80 (2H, m), 6.63-6.66 (2H, m), 6.58 (1H, d, J = 15.6 Hz), 6.23 (1H, 

dd, J = 16.2, 6.0 Hz), 4.07-4.10 (1H, m), 3.75 (3H, s), 1.40 (3H, d, J = 6.6 Hz). 13C NMR (150 

MHz, CDCl3): δ 152.04, 141.56, 136.98, 133.53, 129.19, 128.47, 127.27, 126.26, 114.89, 

114.76, 55.72, 51.80, 22.09. IR (ν/cm-1): 3396 (br, m), 3059 (w), 3025 (m), 2964 (m), 2928 (m), 

2831 (m), 1502 (s), 1448 (m), 1291 (m), 1234 (s), 1177 (m), 1038 (m). LRMS (ES+) [M+H]+ 

calcd for C17H20NO+ 254.15, found: 254.05. 

 

34
 

Synthesis of (E)-2-bromo-N-(4-phenylbut-3-en-2-yl)aniline (34) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, 2-bromoaniline (34.4 

mg, 0.200 mmol) and phenyl 1,3-butadiene (39.0 mg, 0.300 mmol) were added to a solution of 

PhCDC-Rh-Cl (4.1 mg, 0.0059 mmol) and AgBF4 (1.2 mg, 0.0062 mmol) in chlorobenzene (100 

µL, [ ] = 2.00 M), and the reaction allowed to stir at 50 °C for 48 h. The resulting oil was 
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purified by SiO2 column chromatography (15:1 Hex/Et2O) to afford 34 (51.2 mg, 0.172 mmol, 

86% yield) as a colorless oil. 

1H NMR (400 MHz, CDCl3): δ 7.43 (1H, dd, J = 7.9, 1.4 Hz), 7.35-7.37 (2H, m), 7.30 (2H, t, J 

= 7.3 Hz), 7.22 (1H, tt, J = 6.9, 2.0 Hz), 7.13 (1H, td, J = 7.7, 1.3 Hz), 6.69 (1H, dd, J = 8.2, 1.1 

Hz), 6.53-6.58 (2H, m), 6.21 (1H, dd, J = 15.9, 5.9 Hz), 4.41 (1H, bd, J = 6.1 Hz), 4.15-4.20 

(1H, m), 1.47 (3H, d, J = 6.6 Hz). 13C NMR (100 MHz, CDCl3): δ 144.15, 136.78, 132.47, 

132.34, 129.54, 128.53, 128.39, 127.46, 126.36, 117.72, 112.45, 109.72, 50.98, 22.14. IR (ν/cm-

1): 3409 (br, m), 3060 (w), 3025 (m), 2967 (m), 2922 (m), 2867 (w), 1595 (s), 1504 (s), 1459 

(m), 1426 (m), 1319 (s), 1165 (m), 1018 (m). LRMS (ES+) [M+H]+ calcd for C16H17BrN+ 302.05, 

found: 302.00. 

 

35

 

Synthesis of (E)-2-methyl-N-(4-phenylbut-3-en-2-yl)aniline (35) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, o-toluidine (21.4 mg, 

0.200 mmol) and phenyl 1,3-butadiene (39.0 mg, 0.300 mmol) were added to a solution of 

iPrCDC-Rh-Cl (5.5 mg, 0.010 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in chlorobenzene (100 

µL, [ ] = 2.00 M), and the reaction allowed to stir at 60 °C for 48 h. The resulting oil was 

purified by SiO2 column chromatography (15:1 Hex/Et2O) to afford 35 (38.0 mg, 0.160 mmol, 

80% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3): δ 7.36 (2H, d, J = 7.2 Hz), 7.30 (2H, t, J = 7.2 Hz), 7.22 (1H, t, J = 

7.8 Hz), 6.66 (2H, m), 6.58 (1H, d, J = 16.2 Hz), 6.25 (1H, dd, J = 16.2, 6.0 Hz), 4.20 (1H, bm), 



	   349	  

3.26 (1H, s), 2.19 (3H, s), 1.46 (3H, d, J = 7.2 Hz). 13C NMR (150 MHz, CDCl3): δ 145.47, 

137.14, 133.51, 130.23, 129.37, 128.65, 127.48, 127.24, 126.48, 121.84, 116.99, 110.97, 50.85, 

22.45, 17.77. IR (ν/cm-1): 3429 (br, m), 3056 (w), 3024 (m), 2967 (m), 2924 (m), 2861 (w), 1605 

(s), 1585 (m), 1510 (s), 1477 (w), 1445 (w), 1371 (m), 1314 (m), 1259 (m), 1163 (m), 1050 (m). 

LRMS (ES+) [M+H]+ calcd for C17H20N+ 238.16, found: 238.13. 

 

36
 

Synthesis of (E)-4-(4-phenylbut-3-en-2-yl)morpholine (36)  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, morpholine (17.4 mg, 

0.200 mmol) and phenyl 1,3-butadiene (39.0 mg, 0.300 mmol) were added to a solution of 

iPrCDC-Rh-Cl (3.5 mg, 0.0064 mmol) and AgBF4 (1.2 mg, 0.0062 mmol) in chlorobenzene (100 

µL, [ ] = 2.00 M), and the reaction allowed to stir at 80 °C for 48 h. The resulting oil was 

purified by SiO2 column chromatography (20:1 CH2Cl2:MeOH) to afford 36 (38.8 mg, 0.178 

mmol, 89% yield) as a yellow oil. 

1H NMR (600 MHz, CDCl3): δ 7.37 (2H, d, J = 7.2 Hz), 7.31 (2H, t, J = 7.8 Hz), 7.23 (1H, t, J = 

7.2 Hz), 6.46 (1H, d, J = 16.2 Hz), 6.17 (1H, dd, J = 15.9, 8.1 Hz), 3.74 (4H, t, J = 6.6 Hz), 3.01-

3.04 (1H, m), 2.57 (4H, bt, J = 5.1Hz), 1.26 (3H, d, J = 6.6 Hz). 13C NMR (150 MHz, CDCl3): δ 

137.04, 132.27, 131.36, 128.72, 127.61, 126.40, 67.36, 63.27, 50.92, 17.90. IR (ν/cm-1): 3058 

(w), 3025 (m), 2961 (s), 2891 (w), 2852 (m), 2806 (m), 2755 (w), 2687 (w), 1494 (m), 1448 (m), 

1315 (w), 1266 (m), 1142 (w), 1119 (s), 1069 (w), 1040 (m). LRMS (ES+) [M+H]+ calcd for 

C14H20NO+ 218.15, found: 218.01. 
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Synthesis of (E)-1-(4-phenylbut-3-en-2-yl)pyrrolidine (37)  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, pyrrolidine (14.2 mg, 

0.200 mmol), phenyl 1,3-butadiene (52.1 mg, 0.400 mmol) and NH4BF4 (4.2 mg, 0.040 mmol) 

were added to a solution of PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 

mmol) in chlorobenzene (100 µL, [ ] = 2.00 M), and the reaction allowed to stir at 80 °C for 48 

h. The resulting oil was purified by SiO2 column chromatography (50:1 CH2Cl2/MeOH) to afford 

37 (30.2 mg, 0.150 mmol, 75% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3): δ 7.37 (2H, d, J = 7.3 Hz), 7.29 (2H, t, J = 7.7 Hz), 7.21 (1H, t, J = 

7.3 Hz), 6.47 (1H, d, J = 15.8 Hz), 6.24 (1H, dd, J = 15.8, 8.5 Hz), 2.90-2.92 (1H, m), 2.56-2.61 

(4H, m), 1.77-1.82 (4H, m), 1.3 (3H, d, J = 6.5 Hz). 13C NMR (150 MHz, CDCl3): δ 137.33, 

134.07, 129.86, 128.70, 127.44, 126.41, 63.26, 52.40, 23.50, 21.16. IR (ν/cm-1): 3057 (w), 3025 

(m), 2968 (s), 2929 (w), 2873 (m), 2781 (s), 1495 (m), 1457 (m), 1370 (w), 1311 (m), 1167 (m), 

1139 (m), 1070 (m), 1025 (m). LRMS (ES+) [M+H]+ calcd for C14H20N+ 202.16, found: 202.13.  

 

38
 

Synthesis of (E)-N,N-dibenzyl-4-phenylbut-3-en-2-amine (38)  
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Following the general procedure for (CDC)-Rh-catalyzed hydroamination, dibenzylamine (39.4 

mg, 0.200 mmol) and phenyl 1,3-butadiene (52.0 mg, 0.400 mmol) were added to a solution of 

iPrCDC-Rh-Cl (2.2 mg, 0.0040 mmol) and AgBF4 (0.80 mg, 0.0041mmol) in chlorobenzene 

(100 µL, [ ] = 2.00 M), and the reaction allowed to stir at 80 °C for 48 h. The resulting oil was 

purified by SiO2 column chromatography (5:1 Hex/EtOAc) to afford 38 (38.2 mg, 0.116 mmol, 

58% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3): δ 7.41-7.44 (6H, m), 7.32-7.36 (6H, m), 6.46 (1H, d, J = 16.1 Hz), 

6.34 (1H, dd, J = 13.5, 6.7 Hz), 3.73 (2H, d, J = 14.0 Hz), 3.62 (2H, d, J = 13.9 Hz), 3.49-3.52 

(1H, m), 1.32 (3H, d, J = 6.7 Hz). 13C NMR (150 MHz, CDCl3): δ 140.58, 137.30, 131.64, 

130.93, 128.53, 128.51, 128.17, 127.25, 126.67, 126.25, 54.53, 53.64, 15.80. IR (ν/cm-1): 3061 

(w), 3025 (m), 2967 (m), 2928 (m), 2799 (m), 1601 (m), 1494 (m), 1451 (m), 1366 (m), 1144 

(m), 1057 (m), 1024 (m). LRMS (ES+) [M+H]+ calcd for C24H26N+ 328.21, found: 328.17. 

 

39
 

Synthesis of (E)-N-benzyl-N-methyl-4-phenylbut-3-en-2-amine (39)  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, benzylmethylamine 

(24.2 mg, 0.200 mmol) and phenyl 1,3-butadiene (39.0 mg, 0.300 mmol) were added to a 

solution of iPrCDC-Rh-Cl (5.5 mg, 0.010 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in 

chlorobenzene (100 µL, [ ] = 2.00 M), and the reaction allowed to stir at 80 °C for 48 h. The 

resulting oil was purified by SiO2 column chromatography (10:1 Hex/EtOAc to 100% EtOAc) to 

afford 39 (37.0 mg, 0.148 mmol, 74% yield) as a colorless oil. 
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1H NMR (600 MHz, CDCl3): δ 7.42 (2H, d, J = 7.2 Hz), 7.32-7.37 (6H, m), 7.23-7.27 (2H, m), 

6.49 (1H, d, J = 16.2 Hz), 6.33 (1H, dd, J = 16.2, 7.2 Hz), 3.67 (1H, d, J = 13.2 Hz), 3.53 (1H, d, 

J = 13.2 Hz), 3.37-3.40 (1H, m), 2.24 (3H, s), 1.32 (3H, d, J = 6.6Hz). 13C NMR (150 MHz, 

CDCl3): δ 140.06, 137.40, 132.25, 130.89, 129.00, 128.68, 128.35, 127.41, 126.91, 126.40, 

60.52, 58.39, 38.06, 17.11. IR (ν/cm-1): 3082 (w), 3060 (w), 3026 (m), 2970 (s), 2932 (w), 2876 

(w), 2839 (m), 2788 (s), 1601 (m), 1494 (m), 1450 (s), 1368 (m), 1311 (m), 1209 (w), 1156 (w), 

1129 (w), 1073 (m), 1027 (m). LRMS (ES+) [M+H]+ calcd for C18H22N+ 252.17, found: 252.07. 

 

40
 

Synthesis of (E)-4-phenyl-N,N-dipropylbut-3-en-2-amine (40)  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, di-n-propyl amine 

(20.2 mg, 0.200 mmol) and phenyl 1,3-butadiene (39.0 mg, 0.300 mmol) were added to a 

solution of iPrCDC-Rh-Cl (5.5 mg, 0.010 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in 

chlorobenzene (50 µL, [ ] = 4.00 M), and the reaction allowed to stir at 80 °C for 48 h. The 

resulting oil was purified by SiO2 column chromatography (100% CH2Cl2 to 20:1 

CH2Cl2:MeOH) to afford 40 (2.7 mg, 0.012 mmol, 6% yield) as a yellow oil. 

1H NMR (400 MHz, CDCl3): δ 7.43 (2H, d, J = 9.1 Hz), 7.32-7.37 (3H, m), 6.74 (1H, d, J = 

15.9 Hz), 6.26 (1H, dd, J = 15.9, 8.5 Hz), 4.10-4.17 (1H, m), 3.09-3.11 (4H, m), 1.82 (4H, 

quintet, J = 8.2 Hz), 1.60 (3H, d, J = 6.7 Hz), 0.99 (6H, t, J = 7.3 Hz). 13C NMR (100 MHz, 

CDCl3): δ 138.03, 134.83, 129.35, 129.00, 127.18, 121.68, 62.89, 53.04, 18.24, 16.19, 11.2. IR 
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(ν/cm-1): 3140 (br, m), 2972 (m), 2932 (m), 2883 (w), 2852 (w), 1652 (m), 1457 (m), 1061 (s). 

LRMS (ES+) [M+H]+ calcd for C16H26N+ 232.21, found: 232.18.  

 

41
 

Synthesis of (E)-N-(4-(4-methoxyphenyl)but-3-en-2-yl)aniline (41)  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and (E)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene (64.1 mg, 0.400 mmol) were 

added to a solution of PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) 

in chlorobenzene (200 µL, [ ] = 1.00 M), and the reaction allowed to stir at 35 °C for 48 h. The 

resulting oil was purified by SiO2 column chromatography (20:1 Hex/Et2O) to afford 41 (43.1 

mg, 0.170 mmol, 85% yield) as a light yellow solid. 

1H NMR (600 MHz, CDCl3): δ 7.30 (2H, d, J = 8.7 Hz), 7.17 (2H, t, J = 8.0 Hz), 6.85 (2H, d, J 

= 8.7 Hz), 6.70 (1H, t, J = 7.3 Hz), 6.66 (2H, d, J = 7.6), 6.53 (1H, d, J = 15.8), 6.09 (1H, dd, J = 

15.9, 5.9), 4.13-4.16 (1H, m), 3.81 (3H, s), 3.72 (1H, bs), 1.41 (3H, d, J = 6.6 Hz). 13C NMR 

(150 MHz, CDCl3): δ 158.98, 147.42, 130.95, 129.72, 129.14, 128.63, 127.41, 117.22, 113.88, 

113.35, 55.25, 50.83, 22.12. IR (ν/cm-1): 3407 (br, m), 3052 (w), 3021 (w), 2967 (m), 2922 (m), 

2865 (w), 1602 (s), 1507 (s), 1316 (m), 1227 (s), 1157 (m). LRMS (ES+) [M+H]+ calcd for 

C17H19NO+ 254.15, found: 254.11. 
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Synthesis of (E)-N-(4-(4-fluorophenyl)but-3-en-2-yl)aniline (42)  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and (E)-1-(buta-1,3-diene-1-yl)-4-fluorobenzene (59.3 mg, 0.400 mmol) were 

added to a solution of PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) 

in chlorobenzene (200 µL, [ ] = 1.00 M), and the reaction allowed to stir at 60 °C for 48 h. The 

resulting oil was purified by SiO2 column chromatography with a layer of 1% (by weight) 

AgNO3 doped silica gel (20:1 Hex/EtOAc) to afford 42 (45.4 mg, 0.188 mmol, 94% yield) as a 

light yellow solid. 

1H NMR (600 MHz, CDCl3): δ 7.31 (2H, m), 7.16 (2H, t, J = 7.9 Hz), 6.98 (2H, t, J = 8.7 Hz), 

6.69 (1H, t, J = 7.2 Hz), 6.64 (2H, d, J = 7.6 Hz), 6.53 (1H, d, J = 15.9 Hz), 6.13 (1H, dd, J = 

15.9, 5.8 Hz), 4.13 (1H, m, J = 6.2 Hz), 3.72 (1H, bs), 1.4 (1H, d, J = 6.6 Hz). 13C NMR (150 

MHz, CDCl3): δ 147.35, 133.12, 132.91, 132.89, 129.23, 128.10, 127.82, 127.77, 117.38, 

115.47, 115.32, 113.35, 50.79, 22.13. IR (ν/cm-1): 3407 (br, m), 3052 (w), 3021 (w), 2967 (m), 

2922 (m), 2865 (w), 1602 (s), 1507 (s), 1316 (m), 1227 (s), 1157 (m). LRMS (ES+) [M+H]+ 

calcd for C16H17FN+ 242.13, found: 242.14. 

 

43
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Synthesis of (E)-N-(4-cyclohexylbut-3-en-2-yl)aniline (43) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and buta-1,3-dien-1-ylcyclohexane (54.5 mg, 0.400 mmol, 2:1 mixture of E/Z 

isomers) were added to a solution of PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 

0.0098 mmol) in chlorobenzene (200 µL, [ ] = 1.00 M), and the reaction allowed to stir at 60 °C 

for 24 h. The resulting oil was purified by SiO2 column chromatography (100% hexanes) to 

afford an 88:12 mixture of 43 and an unidentifiable constitutional isomer (40.8 mg, 0.178 mmol, 

89% combined yield) as a clear oil. 

Data is reported for the major product (E)-N-(4-cyclohexylbut-3-en-2-yl)aniline. 1H NMR (600 

MHz, CDCl3): δ 7.17 (2H, t, J = 7.8 Hz), 6.69 (1H, t, J = 7.3 Hz), 6.63 (2H, d, J = 8.2 Hz), 5.61 

(1H, dd, J = 15.5, 6.7 Hz), 5.39 (1H, dd, J = 15.6, 6.0 Hz), 3.94-3.97 (1H, m), 3.61 (1H, bs), 

1.98-1.93 (1H, m), 1.78-1.65 (6H, m), 1.30 (2H, d, J = 6.6 Hz), 1.28-1.26 (1H, m), 1.21-1.15 

(1H, m), 1.12-1.06 (2H, m). 13C NMR (150 MHz, CDCl3): δ 147.54, 136.43, 130.32, 113.39, 

50.59, 40.27, 32.90, 26.04, 22.04. IR (ν/cm-1): 3405 (br, m), 3048 (w), 3017 (w), 2923 (s), 2850 

(s), 1601 (s), 1503 (s), 1448 (m), 1318 (m), 1254 (w), 1179 (w). LRMS (ES+) [M+H]+ calcd for 

C16H24N+ 230.19, found: 230.11.  

 

44
 

Synthesis of (E)-N-(dec-3-en-2-yl)aniline and (E)-N-(dec-2-en-4-yl)aniline (44) Following the 

general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 0.200 mmol) and 

(E)-deca-1,3-diene (55.3 mg, 0.400 mmol) were added to a solution of PhCDC-Rh-Cl (6.8 mg, 
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0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in chlorobenzene (200 µL, [ ] = 1.00 M), and 

the reaction allowed to stir at 60 °C for 48 h. The resulting oil was purified by SiO2 column 

chromatography (20:1 Hex/Et2O) to afford 44 (32.4 mg, 0.140 mmol, 70% combined yield, 3:2 

β/δ isomers) as a clear oil.  

Reported as a 3:2 mixture of (E)-N-(dec-3-en-2-yl)aniline and (E)-N-(dec-2-en-4-yl)aniline: The 

regio-isomers were characterized by 1H COSY NMR (spectra included). 1H NMR (400 MHz, 

CDCl3): δ [N-(dec-3-en-2-yl)aniline: 7.15 (2H, t, J = 7.9 Hz), 6.67 (1H, m), 6.60 (2H, t, J = 7.5 

Hz), 5.62 (1H, td, J = 15.4, 7.0 Hz), 5.41 (1H, dd, J = 15.4, 6.0 Hz), 3.90-3.97 (1H, m), 3.59 (1H, 

bs), 2.02 (2H, q, J = 7.1 Hz), 1.27-1.39 (8H, m) 1.29 (3H, d, J = 6.6 Hz), 0.88 (3H, t, J = 7.1 

Hz)], [(E)-N-(dec-2-en-4-yl)aniline: 7.15 (2H, t, J = 7.9 Hz), 6.67 (1H, m), 6.60 (2H, t, J = 7.5 

Hz), 5.62 (1H, td, J = 15.4, 7.0 Hz), 5.33 (1H, ddd, J = 15.3, 6.6, 1.4 Hz), 3.69-3.75 (1H, m), 

3.59 (1H, bs), 1.45-1.64 (2H, m), 1.68 (3H, d, J = 6.4 Hz), 1.27-1.39 (8H, m), 0.88 (3H, t, J = 6.6 

Hz)]. 13C NMR (100 MHz, CDCl3): δ [Reported as a mixture of N-(dec-3-en-2-yl)aniline and 

(E)-N-(dec-2-en-4-yl)aniline: 147.76, 147.54, 133.16, 132.91, 130.66, 129.05, 125.89, 117.00, 

116.81, 113.38, 113.20, 55.30, 50.51, 36.22, 32.19, 31.68, 29.23, 28.74, 25.94, 22.60, 22.09, 

17.70, 14.07]. IR (ν/cm-1): 3410 (br, m), 3053 (w), 3021 (w), 2956 (m), 2926 (s), 2855 (s), 1601 

(s), 1504 (s), 1457 (m), 1428 (w), 1374 (w), 1318 (m), 1253 (m), 1179 (w), 1154 (w). LRMS 

(ES+) [M+H]+ calcd for C16H26N+ 232.21, found: 232.18. 

 

45

 

Synthesis of (E)-N-(4,8-dimethylnona-3,7-dien-2-yl)aniline (45) 
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Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and (E)-4,8-dimethylnona-1,3,7-triene (60.1 mg, 0.400 mmol, 92:8 E/Z) were 

added to a solution of PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) 

in chlorobenzene (200 µL, [ ] = 1.00 M), and the reaction allowed to stir at 70 °C for 48 h. The 

resulting oil was purified by SiO2 column chromatography (20:1 Hex/Et2O) to afford 45 (47.2 

mg, 0.194 mmol, 97% yield, 92:8 E/Z) as a clear oil. 

Data for the E isomer is reported. 1H NMR (600 MHz, CDCl3): δ 7.15 (2H, dt, J = 7.0, 1.7 Hz), 

6.67 (1H, dt, J = 7.3, 0.9 Hz), 6.58 (2H, dd, J = 8.5, 0.9 Hz), 5.05-5.07 (2H, m), 4.14 (1H, m), 

3.57 (1H, s), 1.98-2.09 (4H, m), 1.73 (3H, d, J = 1.2 Hz), 1.66 (3H, d, J = 0.8 Hz), 1.59 (3H, s), 

1.25 (3H, d, J = 6.5 Hz). 13C NMR (150 MHz, CDCl3): δ 147.79, 136.12, 131.53, 129.59, 

129.11, 124.00, 117.03, 113.30, 47.25, 39.43, 26.39, 25.69, 22.01, 17.72, 16.38. IR (ν/cm-1): 

3406 (br, m), 3052 (w), 2966 (s), 2924 (s), 2859 (w), 1602 (s), 1502 (s), 1443 (m), 1424 (m), 

1378 (m), 1318 (m), 1254 (m), 1150 (m), 1105 (m), 1072 (m). LRMS (ES+) [M+H] + calcd for 

C17H26N+ 244.21, found: 244.09. 

 

46
 

Synthesis of (E)-ethyl 2,2-dimethyl-5-(phenylamino)hex-3-enoate (46)  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and (E)-ethyl-2,2-dimethylhexa-3,5-dienoate (67.3 mg, 0.400 mmol) were added to 

a solution of PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in 

chlorobenzene (200 µL, [ ] = 1.00 M), and the reaction allowed to stir at 80 °C for 48 h. The 



	   358	  

resulting oil was purified by SiO2 column chromatography with a layer of 1% (by weight) 

AgNO3 doped silica (20:1 Hex/Et2O) to afford 46 (40.8 mg, 0.156 mmol, 78% yield) as a clear 

oil. 

1H NMR (600 MHz, CDCl3): δ 7.13 (2H, t, J = 7.8 Hz), 6.67 (1H, t, J = 7.2 Hz), 6.59 (2H, d, J = 

7.7 Hz), 5.83 (1H, dd, J = 15.7, 0.5 Hz), 5.47 (1H, dd, J = 15.7, 5.9 Hz), 4.08 (2H, q, J = 7.1 Hz), 

3.95-3.98 (1H, m), 1.29 (3H, d, J = 6.5 Hz), 1.27 (6H, s), 1.2 (3H, t, J = 7.1 Hz). 13C NMR (150 

MHz, CDCl3): δ 176.46, 147.35, 134.73, 131.39, 129.07, 117.31, 113.55, 60.63, 50.76, 43.82, 

25.01, 21.99, 14.13. IR (ν/cm-1): 3399 (br, m), 2977 (w), 2933 (s), 2874 (m), 1726 (s), 1603 (s), 

1503 (s), 1318 (m), 1254 (m), 1144 (s), 1027 (m). LRMS (ES+) [M+H]+ calcd for C16H24NO2
+ 

262.18, found: 262.13. 

 

47
 

Synthesis of (E)-2,2-dimethyl-5-(phenylamino)hex-3-en-1-ol (47)  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and (E)-2,2-dimethylhexa-3,5-dien-1-ol (50.5 mg, 0.400 mmol) were added to a 

solution of PhCDC-Rh-Cl (6.8 mg, 0.099 mmol) and AgBF4 (1.9 mg, 0.098 mmol) in 

chlorobenzene (200 µL, [ ] = 1.00 M), and the reaction allowed to stir at 80 °C for 48 h. The 

resulting oil was purified by SiO2 column chromatography with a layer of 1% (by weight) 

AgNO3 doped silica (10:1 Hex/Et2O) to afford 47 (32.5 mg, 0.148 mmol, 74% yield) as a clear 

oil. 
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1H NMR (600 MHz, CDCl3): δ 7.16 (2H, dt, J = 7.0, 1.6 Hz), 6.69 (1H, dt, J = 7.3, 0.9 Hz), 6.59 

(2H, dd, J = 8.5, 0.9 Hz), 5.54 (1H, dd, J = 15.8, 0.9 Hz), 5.39 (1H, dd, J = 15.8, 6.3 Hz), 3.96-

3.99 (1H, m), 3.58 (1H, bs), 3.25 (2H, dd, J = 14.2, 10.6 Hz), 1.31 (3H, d, J = 6.6 Hz), 0.98 (6H, 

d, J = 4.0 Hz). 13C NMR (150 MHz, CDCl3): δ 147.37, 136.92, 132.10, 129.15, 117.47, 113.73, 

71.54, 51.02, 38.29, 23.92, 23.57, 22.21. IR (ν/cm-1): 3360 (br, s), 2959 (s), 2926 (s), 2869 (m), 

1743 (s), 1602 (s), 1503 (s), 1461 (m), 1374 (m), 1319 (m), 1254 (m), 1155 (m), 1041 (m). 

LRMS (ES+) [M+H]+ calcd for C14H22NO+ 220.17, found: 220.11. 

 

48
 

Synthesis of N-(cyclohex-2-en-1-yl)aniline (48)  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and cyclohexa-1,3-diene (64.1 mg, 0.800 mmol) were added to a solution of 

PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in chlorobenzene (200 

µL, [ ] = 1.00 M), and the reaction allowed to stir at 60 °C for 48 h. The resulting oil was 

purified by SiO2 column chromatography (20:1 Hex/Et2O) to afford 48 (33.3 mg, 0.192 mmol, 

96% yield) as a clear oil. 

1H NMR (600 MHz, CDCl3): δ 7.17 (2H, dt, J = 7.0, 1.6 Hz), 6.69 (1H, t, J = 7.1 Hz), 6.62 (2H, 

d, J = 5.0 Hz), 5.84-5.87 (1H, m), 5.75-5.77 (1H, m), 4.00 (1H, bs), 3.63 (1H, bs), 1.99-2.09 (2H, 

m), 1.89-1.93 (1H, m), 1.69-1.75 (1H, m), 1.60-1.67 (2H, m). 13C NMR (150 MHz, CDCl3): δ 

147.20, 130.15, 129.33, 128.59, 117.14, 113.23, 47.86, 28.90, 25.18, 19.67. IR (ν/cm-1): 3404 
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(br, m), 3083 (w), 3050 (w), 3021 (m), 2925 (s), 2859 (m), 2360 (w), 1603 (s), 1558 (s), 1504 

(m), 1429 (m), 1309 (m), 1257 (m), 1179 (w), 1102 (m). LRMS (ES+) [M+H]+ calcd for 

C12H16N+174.13, found: 174.05.  

 

49
 

Synthesis of N-(1-cyclohexylidenepropan-2-yl)aniline (49) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and allylidenecylohexane (48.9 mg, 0.400 mmol) were added to a solution of 

PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in chlorobenzene (200 

µL, [ ] = 1.00 M), and the reaction allowed to stir at 60 °C for 48 h. The resulting oil was 

purified by SiO2 column chromatography (20:1 Hex/Et2O) to afford 49 (33.2 mg, 0.154 mmol, 

77% yield) as colorless oil. 

1H NMR (400 MHz, CDCl3): δ 7.15 (2H, dt, J = 8.0, 2.1 Hz), 6.66 (2H, t, J = 7.3 Hz), 6.59 (2H, 

dd, J = 8.6, 1.0 Hz), 4.99 (3H, d, J = 8.4 Hz), 4.17-4.24 (1H, m), 3.57 (1H, bs), 2.20-2.28 (2H, 

m), 2.04-2.07 (2H, m), 1.48-1.61 (6H, bm), 1.25 (3H, d, J = 6.5 Hz). 13C NMR (100 MHz, 

CDCl3): δ 140.68, 129.09, 126.20, 117.02, 113.36, 46.36, 36.92, 29.27, 28.51, 27.78, 26.78, 

22.60. IR (ν/cm-1): 3405 (br, m), 3083 (w), 3050 (w), 3018 (w), 2926 (s), 2852 (s), 1666 (w), 

1601 (s), 1503 (s), 1447 (m), 1374 (w), 1317 (m), 1253 (w), 1179 (w), 1154 (w), 1111 (w), 1074 

(w), 1029 (w). LRMS (ES+) [M+K]+ calcd for C15H21NK+ 254.13, found: 254.03.  
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50
 

Synthesis of N-(1-(1-tosyl-2,5-dihydro-1H-pyrrol-3-yl)ethyl)aniline (50) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and 1-tosyl-3-vinyl-2,5-dihydro-1H-pyrrole (99.7 mg, 0.400 mmol) were added to 

a solution of iPrCDC-Rh-Cl (5.5 mg, 0.010 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in 

chlorobenzene (100 µL, [ ] = 2.00 M), and the reaction allowed to stir at 65 °C for 48 h. The 

resulting oil was purified by SiO2 column chromatography (20:1 to 100% Et2O) to afford 50 

(47.1mg, 0.138 mmol, 69% yield) as a light yellow oil. 

1H NMR (600 MHz, CDCl3): δ 7.66 (2H, d, J = 8.2 Hz), 7.27 (2H, d, J = 8.0 Hz), 7.09 (2H, t, J 

= 7.9 Hz), 6.69 (1H, t, J = 7.3 Hz), 6.45 (2H, d, J = 7.9 Hz), 5.48-5.49 (1H, m), 4.03-4.18 (4H, 

m), 4.00 (1H, m), 3.52 (1H, bs), 2.43 (3H, m), 1.29 (2H, d, J = 6.7 Hz). 13C NMR (150 MHz, 

CDCl3): δ 146.72, 143.34, 142.50, 134.09, 129.71, 129.19, 127.33, 119.30, 117.73, 113.06, 

55.04, 54.32, 47.84, 21.51, 20.57. IR (ν/cm-1): 3391 (br, m), 3052 (w), 3019 (w), 2962 (w), 2923 

(m), 2859 (m), 1602 (s), 1506 (s), 1338 (s), 1254 (m), 1162 (s), 1099 (m). LRMS (ES+) [M+H]+ 

calcd for C19H23N2O2S+ 343.15, found: 343.14 

 

51
 

Synthesis of (E)-N,N-dibenzyl-4-cyclohexylbut-3-en-2-amine (51) 



	   362	  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, dibenzylamine (39.5 

mg, 0.200 mmol) and buta-1,3-dien-1-ylcyclohexane (54.5 mg, 0.400 mmol, 2:1 E/Z) were 

added to a solution of PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) 

in chlorobenzene (100 µL, [ ] = 2.00 M), and the reaction allowed to stir at 70 °C for 48 h. The 

resulting oil was purified by SiO2 column chromatography with a layer of 1% (by weight) 

AgNO3 doped silica (20:1 Hex/Et2O) to afford 51 (41.4 mg, 0.124 mmol, 62% yield) as a 

colorless oil. 

1H NMR (600 MHz, CDCl3): δ 7.38 (4H, d, J = 7.4 Hz), 7.28 (4H, t, J = 7.5 Hz), 7.20 (2H, t, J = 

7.2 Hz), 5.39-5.47 (2H, m), 3.62 (2H, d, J = 13.9 Hz), 3.48 (2H, d, J = 13.9 Hz), 3.21-3.24 (1H, 

m), 1.95-2.00 (1H, m), 1.66-1.75 (4H, m), 1.64-1.66 (1H, m), 1.25-1.33 (3H, m), 1.15 (2H, d, J = 

6.7 Hz), 1.05-1.18 (2H, m). 13C NMR (150 MHz, CDCl3): δ 140.94, 138.41, 128.57, 128.09, 

127.99, 126.54, 54.50, 53.45, 40.78, 33.39, 33.31, 26.23, 26.10, 16.16. IR (ν/cm-1): 3063 (w), 

3026 (m), 2963 (w), 2923 (s), 2850 (m), 2796 (w), 1494 (w), 1450 (m), 1376 (m), 1147 (w), 

1073 (w), 1028 (w). LRMS (ES+) [M+H]+ calcd for C24H32N+ 334.25, found: 334.21. 

 

52
 

Synthesis of (E)-4-(4-cyclohexylbut-3-en-2-yl)morpholine (52)  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, morpholine (17.4 mg, 

0.200 mmol) and buta-1,3-dien-1-ylcyclohexane (54.5 mg, 0.400 mmol, 2:1 E/Z) were added to a 

solution of PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in 

chlorobenzene (100 µL, [ ] = 2.00 M), and the reaction allowed to stir at 90 °C for 48 h. The 
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resulting oil was purified by SiO2 column chromatography (3:1 Hex/Et2O) to afford a 89:11 

mixture of 52 and an unidentifiable constitutional isomer (33.5 mg, 0.150 mmol, 75% combined 

yield) as a clear oil. 

Data is reported for the major product (E)-4-(4-cyclohexylbut-3-en-2-yl)morpholine. 1H NMR 

(600 MHz, CDCl3): δ 5.45 (1H, dd, J = 15.5, 6.5 Hz), 5.28 (1H, ddd, J = 15.5, 8.2, 1.2 Hz), 3.69-

3.71 (4H, m), 2.74-2.78 (1H, m), 2.41-2.53 (4H, m), 1.90-1.95 (1H, m), 1.67-1.71 (4H, m), 1.60-

1.65 (1H, m), 1.23-1.30 (2H, m), 1.13-1.18 (1H, m), 1.13 (3H, d, J = 6.5 Hz), 1.01-1.09 (2H, m). 

13C NMR (150 MHz, CDCl3): δ 138.52, 128.92, 67.22, 62.89, 50.52, 40.41, 33.04, 32.97, 26.14, 

25.98, 18.06. IR (ν/cm-1): 2958 (w), 2924 (s), 2851 (s), 2802 (m), 1448 (m), 1265 (m) 1245 (w), 

1198 (s). LRMS (ES+) [M+H]+ calcd for C24H32N+ 224.20, found: 224.16. 

 

53

 

Synthesis of (E)-ethyl 5-(dibenzylamino)-2,2-dimethylhex-3-enoate (53)  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, dibenzylamine (19.7 

mg, 0.100 mmol), (E)-ethyl 2,2-dimethylhexa-3,5-dienoate (33.6 mg, 0.200 mmol) and NH4BF4 

(2.1 mg, 0.02 mmol) were added to a solution of PhCDC-Rh-Cl (3.4 mg, 0.0050 mmol) and 

AgBF4 (1.0 mg, 0.0051 mmol) in chlorobenzene (50 µL, [ ] = 2.0 M), and the reaction allowed to 

stir at 120 °C for 48 h. The resulting oil was purified by SiO2 column chromatography (100:1 

Hex/Et2O) to afford 53 (11.0 mg, 0.030 mmol, 30% yield) as a colorless oil. 
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1H NMR (600 MHz, CDCl3): δ 7.37 (4H, d, J = 7.1 Hz), 7.30 (4H, t, J = 3.6 Hz), 7.20 (2H, t, J = 

7.2 Hz), 5.69 (1H, dd, J = 15.9, 1.0 Hz), 5.56 (1H, dd, J = 15.9, 6.7 Hz), 4.12 (2H, q, J = 7.1 Hz), 

3.63 (1H, d, J = 13.9 Hz), 3.47 (1H, d, J = 13.9 Hz), 3.25-3.35 (1H, m), 1.30 (6H, d, J = 16.4 

Hz), 1.22 (3H, t, J = 7.1 Hz), 1.17 (3H, d, J = 6.8 Hz). 13C NMR (150 MHz, CDCl3): δ 176.68, 

140.66, 136.39, 129.29, 128.56, 128.14, 126.65, 60.64, 54.40, 53.50, 44.11, 25.38, 25.10, 15.88, 

14.20. IR (ν/cm-1): 3061 (w), 3027 (w), 2965 (m), 2927 (m), 2866 (w), 2801 (w), 1731 (s), 1495 

(w), 1455 (m), 1363 (m), 1249 (m), 1143 (s), 1029 (m). LRMS (ES+) [M+H]+ calcd for 

C24H31NO2
+ 366.24, found: 366.22. 

 

54
 

Synthesis of (E)-ethyl 2,2-dimethyl-5-morpholinohex-3-enoate (54)  

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, morpholine (17.0 mg, 

0.200 mmol) and (E)-ethyl 2,2-dimethylhexa-3,5-dienoate (67.3 mg, 0.400 mmol) were added to 

a solution of PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in 

chlorobenzene (100 µL, [ ] = 2.00 M), and the reaction allowed to stir at 100 °C for 48 h. The 

resulting oil was purified by SiO2 column chromatography (10:1 Hex/Et2O) to afford 54 (46.5 

mg, 0.182 mmol, 91% yield) as a clear oil. 

1H NMR (600 MHz, CDCl3): δ 5.73 (1H, dd, J = 15.7, 0.5 Hz), 5.43 (1H, dd, J = 15.8, 8.3 Hz), 

4.11 (2H, q, J = 6.1 Hz), 3.71 (4H, t, J = 4.7 Hz), 2.82-2.85 (1H, m), 2.45-2.52 (4H, m), 1.29 

(6H, d, J = 5.8 Hz), 1.23 (3H, t, J = 7.1 Hz), 1.15 (3H, d, J = 6.5 Hz). 13C NMR (125 MHz, 

CDCl3): δ 176.46, 136.59, 130.30, 67.23, 62.71, 60.63, 50.60, 44.04, 25.11, 17.90, 14.15. IR 
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(ν/cm-1): 2975 (s), 2852 (m), 2805 (m), 1731 (s), 1558 (w), 1541 (w), 1507 (w), 1457 (m), 1226 

(br, m), 1144 (s), 1119 (m), 1029 (m). LRMS (ES+) [M+H]+ calcd for C14H26NO3
+ 256.19, found: 

256.07. 

 

The following data was not characterized for publication and is unpublished work. As such, 

values are not an average of two experiments and some compounds are not completely 

characterized. 

 

Synthesis of (E)-N-(1-phenylpent-1-en-3-yl)aniline (55) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and a 6:1 mixture of ((1E,3Z)-penta-1,3-dien-1-yl)benzene and ((1E,3E)-penta-1,3-

dien-1-yl)benzene (28.8 mg, 0.200 mmol) were added to a solution of iPrCDC-Rh-Cl (6.8 mg, 

0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in chlorobenzene (200 µL, [ ] = 1.00 M), and 

the reaction allowed to stir at 80 °C for 24 h. The crude reaction was assayed by NMR 

spectroscopy to determine an NMR conversion to 55 of 6% compared to 20 µL of DMF used as 

an internal standard. 

 

γ:α  
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Synthesis of N-(7-methyl-3-methyleneoct-6-en-2-yl)aniline (57) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and myrcene (54.5 mg, 0.400 mmol) were added to a solution of PhCDC-Rh-Cl 

(6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in chlorobenzene (400 µL, [ ] = 0.50 

M), and the reaction allowed to stir at 80 °C for 24 h. The crude reaction was assayed by NMR 

spectroscopy to determine an NMR conversion compared to 20 µL of DMF used as an internal 

standard. The reaction produced 82% of 57 as a 1:1 mixture of N-(7-methyl-3-methyleneoct-6-

en-2-yl)aniline and (Z)-N-(2-ethylidene-6-methylhept-5-en-1-yl)aniline. 

 

 

Synthesis of N-(3-methyl-1-phenylbut-2-en-1-yl)aniline (58) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and (E)-(3-methylbuta-1,3-dien-1-yl)benzene (57.7 mg, 0.400 mmol) were added to 

a solution of PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in 

chlorobenzene (200 µL, [ ] = 1.00 M), and the reaction allowed to stir at 110 °C for 48 h. The 

resulting oil was purified by SiO2 column chromatography (10:1 Hex/Et2O) to afford 58 (16.1 

mg, 0.068 mmol, 34% yield) as a clear oil. 
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γ:α  

Synthesis of (E)-N-(dec-3-en-2-yl)-4-fluoroaniline (59) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and (E)-deca-1,3-diene (55.3 mg, 0.400 mmol) were added to a solution of PhCDC-

Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in chlorobenzene (200 µL, [ ] 

= 1.00 M), and the reaction allowed to stir at 60 °C for 24 h. The crude reaction was assayed by 

NMR spectroscopy to determine an NMR conversion compared to 20 µL of DMF used as an 

internal standard. The reaction produced 60% of 59 as a 1:1 mixture of (E)-N-(dec-3-en-2-yl)-4-

fluoroaniline and (E)-N-(dec-2-en-4-yl)-4-fluoroaniline. 

 

 

Synthesis of ethyl (E)-6-(phenylamino)hex-4-enoate (60) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and ethyl (E)-hexa-3,5-dienoate (42.1 mg, 0.300 mmol) were added to a solution of 

PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in chlorobenzene (200 

µL, [ ] = 1.00 M), and the reaction allowed to stir at 30 °C for 24 h. The crude reaction was 

assayed by NMR spectroscopy to determine an NMR conversion to 60 of 50% compared to 20 

µL of DMF used as an internal standard. 
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γ:α  

Synthesis of (E)-5-(phenylamino)hex-3-en-1-ol (61) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and (E)-hexa-3,5-dien-1-ol (39.3 mg, 0.400 mmol) were added to a solution of 

PhCDC-Rh-Cl (6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in chlorobenzene (200 

µL, [ ] = 1.00 M), and the reaction allowed to stir at 50 °C for 48 h. The crude reaction was 

assayed by NMR spectroscopy to determine an NMR conversion compared to 20 µL of DMF 

used as an internal standard. The reaction produced 54% of 61 as a 3:2 mixture of (E)-5-

(phenylamino)hex-3-en-1-ol and (E)-3-(phenylamino)hex-4-en-1-ol. 

 

γ:α:δ  

Synthesis of N-(3-methylbut-3-en-2-yl)aniline (62) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (18.6 mg, 

0.200 mmol) and isoprene (200 µL, 2.00 mmol) were added to a solution of iPrCDC-Rh-Cl (6.8 

mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in chlorobenzene (200 µL, [ ] = 1.00 M), 

and the reaction allowed to stir at 60 °C for 48 h. The crude reaction was assayed by NMR 
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spectroscopy to determine an NMR conversion compared to 20 µL of DMF used as an internal 

standard. The reaction produced 71% of 62 as a 2:1:1 mixture of N-(3-methylbut-3-en-2-

yl)aniline, N-(3-methylbut-2-en-1-yl)aniline, and (E)-N-(2-methylbut-2-en-1-yl)aniline. 

 

γ:α:δ  

Synthesis of (E)-N,N-dibenzyldec-3-en-2-amine (63) 

Following the general procedure for (CDC)-Rh-catalyzed hydroamination, aniline (9.5 mg, 0.050 

mmol) and (E)-deca-1,3-diene (13.8 mg, 0.100 mmol) were added to a solution of iPrCDC-Rh-Cl 

(6.8 mg, 0.0099 mmol) and AgBF4 (1.9 mg, 0.0098 mmol) in chlorobenzene (50 µL, [ ] = 1.00 

M), and the reaction allowed to stir at 80 °C for 48 h. The crude reaction was assayed by NMR 

spectroscopy to determine an NMR conversion compared to 20 µL of DMF used as an internal 

standard. The reaction produced 60% of 63 as a 1:1 mixture of (E)-N,N-dibenzyldec-3-en-2-

amine and (E)-N,N-dibenzyldec-2-en-1-amine. 

NMR Data for (E)-N,N-dibenzyldec-3-en-2-amine: 1H NMR (600 MHz, CDCl3) δ 7.38 (d, J = 

7.2 Hz, 4H), 7.28 (t, J = 7.6 Hz, 4H), 7.20 (t, J = 7.3 Hz, 2H), 5.52 – 5.40 (m, 2H), 3.63 (d, J = 

14.0 Hz, 2H), 3.49 (d, J = 14.0 Hz, 2H), 3.23 (p, J = 6.7 Hz, 1H), 2.09 – 2.01 (m, 2H), 1.41 – 

1.22 (m, 8H), 1.15 (d, J = 6.8 Hz, 3H), 0.92 – 0.85 (m, 3H). 13C NMR (151 MHz, CDCl3) δ 

141.06, 132.53, 130.91, 128.68, 128.66, 128.49, 128.23, 128.22, 126.69, 54.65, 53.62, 32.75, 

31.87, 29.71, 28.98, 22.81, 16.28, 14.26. NMR Data for (E)-N,N-dibenzyldec-2-en-1-amine: 1H 

NMR (600 MHz, CDCl3) δ 7.36 (d, J = 7.4 Hz, 4H), 7.29 (dd, J = 15.7, 8.0 Hz, 4H), 7.22 (t, J = 
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7.3 Hz, 2H), 5.64 – 5.42 (m, 2H), 3.56 (s, 3H), 3.00 (d, J = 6.2 Hz, 2H), 2.06 – 1.97 (m, 2H), 

1.40 – 1.17 (m, 8H), 0.90 – 0.82 (m, 3H). 13C NMR (151 MHz, CDCl3) δ 140.06, 134.41, 

128.94, 128.27, 127.18, 126.85, 57.76, 55.68, 32.61, 32.00, 29.54, 29.30, 29.28, 22.81, 14.25. 
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APPENDIX 2: SUPPORTING INFORMATION FOR CHAPTER 2 
 

#  General: All reactions were carried out in flame or oven (140 °C) dried glassware that had 

been cooled under vacuum. Unless otherwise stated, all reactions were carried out under an inert 

N2 atmosphere. All reagents were purged or sparged with N2 for 20 min prior to distillation or 

use. All solid reagents were dried by azeotropic distillation with benzene three times prior to use. 

Infrared (IR) spectra were obtained using a Jasco 460 Plus Fourier transform infrared 

spectrometer or a ASI ReactIR 1000, Model: 001-1002 for air sensitive rhodium carbonyl 

complexes. Mass spectra were obtained using a Thermo LTqFT mass spectrometer with 

electrospray ionization and external calibration. All samples were prepared in MeOH, MeCN or 

CHCl3 for metal complexes. Proton and carbon magnetic resonance spectra (1H NMR and 13C 

NMR) were recorded on a Bruker model DRX 400 or a Bruker AVANCE III 600 CryoProbe (1H 

NMR at 400 MHz or 600 MHz, 13C NMR at 100 or 151 MHz, 31P NMR at 160 or 243 MHz and 

19F NMR at 376 or 564 MHz) spectrometer with solvent resonance as the internal standard (1H 

NMR: Chloroform-d at 7.26 ppm, CD2Cl2 at 5.32 ppm, CD3CN at 1.94 ppm; 13C NMR: 

Chloroform-d at 77.16 ppm, CD2Cl2 at 53.84 ppm, CD3CN at 1.32 ppm). NMR data are reported 

as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, dd = 

doublet of doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of doublet of 

doublets, m = multiplet, bs = broad singlet, bm = broad multiplet, etc.), and coupling constants 

(Hz). X-ray diffraction studies were conducted on a Bruker-AXS SMART APEXII 

diffractometer. Crystals were selected and mounted using Paratone oil on a MiteGen Mylar tip. 

 

#  Solvents: Solvents were purged with argon and purified under a positive pressure of dry argon 

by a SG Waters purification system: dichloromethane (EMD Millipore), diethyl ether (EMD 
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Millipore, hexanes (EMD Millipore), benzene (EMD Millipore), and THF (EMD Millipore) 

were passed through activated alumina columns. Chloroform – d1 and Dichloromethane – d2 

were purchased from Cambridge Isotope Labs, distilled over CaH2 and stored in a dry box over 

activated 4 Å molecular sieves. 

Section 2.2: Discovery of Hydroarylation with Carbodicarbene-Rh Catalysts 

#   Procedures for the preparation of internal diene substrates: 

 

Synthesis of ((1E,3E)-octa-1,3-dien-1-yl)benzene and ((1E,3Z)-octa-1,3-dien-1-yl)benzene 

Grubb’s 1st generation catalyst (71 mg, 0.087 mmol, 5 mol%) was weighed into an oven dried 8 

mL vial or 50 mL flask equipped with a stir bar which was then capped using a Teflon lined lid. 

The vial was purged with N2 for 10 min then charged with dichloromethane ([ ] = 0.20). N2 

sparged 1-hexene (0.43 mL, 3.46 mmol) was added via syringe followed by 1,3-phenylbutadiene 

(255 µL, 1.73 mmol). The reaction was allowed to warm to 40 °C and stir for 18 h. The reaction 

was plugged through a plug of silica gel using hexanes then concentrated. The residue was 

purified by column chromatography using 100% hexanes to provide the product in 81% yield. 

Isolated as a 6:1 mixture of ((1E,3E)-octa-1,3-dien-1-yl)benzene and ((1E,3Z)-octa-1,3-dien-1-

yl)benzene.  1H NMR (600 MHz, CDCl3): δ [((1E,3E)-octa-1,3-dien-1-yl)benzene: 7.38 (2H, d, J 

= 7.6 Hz), 7.29 (2H, t, J = 7.4 Hz), 7.19 (1H, t, J = 7.0 Hz), 6.76 (1H, dd, J = 15.5, 10.6 Hz), 6.44 

(1H, d, J = 15.7 Hz), 6.21 (1H, dd, J = 15.8, 9.8 Hz), 5.83 (1H, td, J = 15.2, 7.3 Hz), 2.13-2.17 

(2H, m), 1.30-1.43 (4H, m), 0.91 (3H, t, J = 7.3 Hz)], [((1E,3Z)-octa-1,3-dien-1-yl)benzene: 7.42 
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(2H, d, J = 7.4 Hz), 7.30-7.33 (2H, m), 7.19-7.22 (1H, m), 7.07 (1H, dd, J = 14.6, 12.1 Hz), 6.53 

(2H, d, J = 15.5 Hz), 6.14-6.20 (1H, m), 5.52-5.56 (1H, m), 2.28-2.31 (2H, m) 1.30-1.43 (4H, 

m), 0.91 (3H, t, J = 7.3 Hz)].  13C NMR (150 MHz, CDCl3): δ [((1E,3E)-octa-1,3-dien-1-

yl)benzene: 137.70, 136.03, 130.47, 129.89, 129.49, 128.54, 127.05, 126.11, 32.56, 31.47, 

22.27], [((1E,3Z)-octa-1,3-dien-1-yl)benzene: 133.39, 131.91, 128.66, 128.57, 127.31, 126.31, 

126.12, 124.51, 31.88, 27.73, 22.36].   

 

 

Synthesis of 1-methoxy-4-((1E,3E)-octa-1,3-dien-1-yl)benzene and 1-methoxy-4-((1E,3Z)-

octa-1,3-dien-1-yl)benzene 

Grubb’s 1st generation catalyst (64.2 mg, 0.078 mmol, 5 mol%) was weighed into an oven dried 

8 mL vial or 50 mL flask equipped with a stir bar which was then capped using a Teflon lined 

lid. The vial was purged with N2 for 10 min then charged with dichloromethane ([ ] = 0.20). N2 

sparged 1-hexene (390 µL, 3.12 mmol) was added via syringe followed by (E)-1-(buta-1,3-dien-

1-yl)-4-methoxybenzene (250 mg, 1.56 mmol). The reaction was allowed to warm to 40 °C and 

stir for 18 h. The reaction was plugged through a plug of silica gel using hexanes then 

concentrated. The residue was purified by column chromatography using 20:1 Hex/Et2O to 

provide the product in 50% yield. 

Isolated as a 4:1 mixture of 1-methoxy-4-((1E,3E)-octa-1,3-dien-1-yl)benzene and 1-methoxy-4-

((1E,3Z)-octa-1,3-dien-1-yl)benzene.  1H NMR (600 MHz, CDCl3): δ [1-methoxy-4-((1E,3E)-

octa-1,3-dien-1-yl)benzene: 7.32 (2H, d, J = 8.6 Hz), 6.85-6.88 (2H, m), 6.64 (1H, dd, J = 15.6, 
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10.3 Hz), 6.41 (1H, d, J = 15.7 Hz), 6.19 (1H, dd, J = 24.1, 1.5 Hz), 5.76-5.81 (1H, m), 3.81 (3H, 

s), 2.15 (2H, q, J = 7.2 Hz), 1.33-1.45 (4H, m), 0.92 (3H, t, J = 7.2 Hz)], [1-methoxy-4-((1E,3Z)-

octa-1,3-dien-1-yl)benzene: 7.35 (2H, d, J = 8.6 Hz), 6.93 (1H, dd, J = 15.6, 11.1 Hz), 6.86-6.88 

(2H, m), 6.47 (2H, d, J = 15.5 Hz), 6.11-6.17, (1H, m), 5.46-5.48 (1H, m), 3.81 (3H, s), 2.30 

(2H, q, J = 7.1 Hz), 1.33-1.45 (4H, m), 0.94 (3H, m)].  13C NMR (150 MHz, CDCl3): δ Reported 

as a mixture of 1-methoxy-4-((1E,3E)-octa-1,3-dien-1-yl)benzene and 1-methoxy-4-((1E,3Z)-

octa-1,3-dien-1-yl)benzene: 159.06, 158.86, 134.82, 132.23, 131.45, 130.61, 130.54, 129.43, 

128.81, 127.53, 127.49, 127.27, 122.61, 114.04, 114.01, 55.29, 32.54, 31.92, 31.55, 27.69, 22.36, 

22.26, 13.96.   

 

# General procedure for Intermolecular Hydroarylation Catalyzed by CDC-Rh-Cl 

Complexes 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with the appropriate amount of 

CDC-Rh complex and an equal mol% of AgBF4 when appropriate. The solids were solvated with 

the listed solvent and allowed to stir at room temperature for 1 hour sealed. The appropriate 

indole (0.1 mmol) was added to the reaction, followed shortly by the addition of the listed diene 

(0.1 mmol), and the vial was capped with a Teflon® lined lid or septum cap, taped with electrical 

tape and brought outside the dry box. Any volatile liquids (eg: HBF4.OEt2) were added via 

syringe through the Teflon® septa under an atmosphere of N2. The reaction was allowed to warm 

to the appropriate temperature and stir for 18 to 48 h as appropriate. The reaction was allowed to 

cool and an aliquot was taken to determine the conversion by 1H NMR using DMF as an internal 

standard. The NMR sample was recovered and the solvent evaporated before the products were 

purified by SiO2 column chromatography. 
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Synthesis of (E)-3-(4-phenylbut-3-en-2-yl)-1H-indole  

Following the general procedure for CDC-Rh-Cl catalyzed intermolecular hydroarylation, indole 

(12.9 mg, 0.110 mmol) was added to a solution of PhCDC-Rh-Cl (3.4 mg, 0.0050 mmol, 5 

mol%) and AgBF4 (1.0 mg, 0.0050 mmol, 5 mol%) in chlorobenzene (100 μL, [ ] = 1.0 M). The 

reaction was mixed and (E)-buta-1,3-dien-1-ylbenzene (13.0 mg, 0.100 mmol) was added. The 

reaction was sealed and allowed to stir at 40 °C for 2 h before being allowed to cool and an 

aliquot taken to determine the conversion by 1H NMR using DMF as an internal standard. The 

NMR sample was recovered and the solution concentrated. The resulting oil was purified by 

SiO2 column chromatography (25:1 Pentane/EtOAc) to afford 1 (24.2 mg, 0.098 mmol, 98% 

Yield) as a colorless oil.  

1H NMR (600 MHz, CDCl3) δ 7.69 (dd, J = 8.0, 1.0 Hz, 1H), 7.42 – 7.33 (m, 3H), 7.33 – 7.27 

(m, 3H), 7.23 – 7.15 (m, 2H), 7.10 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.03 (dd, J = 2.5, 0.9 Hz, 1H), 

3.95 (p, J = 6.9 Hz, 1H), 1.58 (d, J = 7.0 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 137.93, 

136.71, 135.57, 128.58, 128.32, 127.02, 126.95, 126.29, 122.13, 120.63, 120.53, 119.78, 119.40, 

111.25, 34.40, 20.84. IR (ν/cm-1): 3025 (s), 2962 (s), 1492 (s), 1456 (s), 1417 (s), 1337 (s), 1221 

(w), 1095 (w) MS (ES+) [M+H]+ calcd for C18H18N+ 248.14, found: 248.18. 
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PhCDC-Rh-Cl (5 mol %)
AgBF4 (5 mol %) 

PhH [0.5 M], 40 °C, 2 h
+ Me

H
N

NH

MeO
MeO

2
89 % Yield  

Synthesis of (E)-3-(4-(4-methoxyphenyl)but-3-en-2-yl)-1H-indole 

Following the general procedure for CDC-Rh-Cl catalyzed intermolecular hydroarylation, indole 

(5.9 mg, 0.05 mmol) was added to a solution of PhCDC-Rh-Cl (1.7 mg, 0.0025 mmol, 5 mol%) 

and AgBF4 (0.5 mg, 0.0025 mmol, 5 mol%) in benzene (100 µL, [ ] = 0.50 M). The reaction was 

mixed and (E)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene (8.0 mg, 0.05 mmol) was added. The 

reaction was sealed and allowed to stir at 40 °C for 2 h before being allowed to cool and an 

aliquot taken to determine the conversion by 1H NMR using DMF as an internal standard. The 

NMR sample was recovered and the solution concentrated. The resulting oil was purified by 

SiO2 column chromatography (40:1 Hex/Et2O) to afford 2 (12.3 mg, 0.0445 mmol, 89% yield) as 

a yellow oil. 

1H NMR (600 MHz, CDCl3): δ 7.96 (1H, bs), 7.68 (1H, d, J = 7.9 Hz), 7.37 (1H, m), 7.29 (2H, 

m), 7.18 (1H, t, J = 7.3 Hz), 7.08 (1H, t, J = 7.3 Hz), 7.03 (1H, d, J = 2.0 Hz), 6.82 (2H, m), 6.45 

(1H, d, J = 15.8 Hz), 6.32 (1H, dd, J = 15.8, 7.0 Hz), 3.91 (1H, m), 3.79 (3H, s), 1.55 (3H, d, J = 

6.8 Hz).  13C NMR (150 MHz, CDCl3): δ 158.70, 136.58, 133.34, 130.62, 127.54, 127.22, 

126.85, 121.96, 120.76, 120.35, 119.69, 119.22, 113.87, 111.09, 55.30, 34.22, 20.82.   

 

PhCDC-Rh-Cl (5 mol %)
AgBF4 (5 mol %) 

PhH [0.5 M], 40 °C, 2 h
+ Me

H
N

NH

F
F

3
92 % Yield  

Synthesis of (E)-3-(4-(4-fluorophenyl)but-3-en-2-yl)-1H-indole 
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Following the general procedure for CDC-Rh-Cl catalyzed intermolecular hydroarylation, indole 

(5.9 mg, 0.05 mmol) was added to a solution of PhCDC-Rh-Cl (1.7 mg, 0.0025 mmol, 5 mol%) 

and AgBF4 (0.5 mg, 0.0025 mmol, 5 mol%) in benzene (100 µL, [ ] = 0.50 M). The reaction was 

mixed and (E)-1-(buta-1,3-dien-1-yl)-4-fluorobenzene (7.4 mg, 0.05 mmol) was added. The 

reaction was sealed and allowed to stir at 40 °C for 2 h before being allowed to cool and an 

aliquot taken to determine the conversion by 1H NMR using DMF as an internal standard. The 

NMR sample was recovered and the solution concentrated. The resulting oil was purified by 

SiO2 column chromatography (40:1 Hex/Et2O) to afford 3 (12.2 mg, 0.046 mmol, 92% yield) as 

a colorless oil. 

1H NMR (600 MHz, CDCl3): δ 7.98 (1H, bs), 7.66 (1H, d, J = 7.9 Hz), 7.37 (1H, d, J = 8.2 Hz), 

7.30 (2H, m), 7.19 (1H, t, J = 7.4 Hz), 7.09 (1H, t, J = 7.5 Hz), 7.03 (1H, d, J = 2.2 Hz), 6.96 

(2H, m), 6.46 (1H, d, J = 15.9 Hz), 6.37 (1H, q, J = 7.7 Hz), 3.93 (1H, m), 1.56 (3H, d, J = 7.0 

Hz).  13C NMR (150 MHz, CDCl3): δ 161.93 (d, J = 243 Hz), 136.58, 135.22, 135.20, 133.92, 

127.57, 127.52, 127.02, 126.78, 122.04, 120.39, 119.59, 119.29, 115.34, 115.20, 111.15, 34.22, 

20.68.  19F NMR (376 MHz): δ -115.76.   

 

PhCDC-Rh-Cl (5 mol %)
AgBF4 (5 mol %) 

PhH [0.5 M], 40 °C, 2 h
n-hexyl +

H
N

n-hexyl Me

NH

4
58 % Yield

2:1 γ:α  

Synthesis of (E)-3-(dec-3-en-2-yl)-1H-indole 

Following the general procedure for CDC-Rh-Cl catalyzed intermolecular hydroarylation, indole 

(5.9 mg, 0.05 mmol) was added to a solution of PhCDC-Rh-Cl (1.7 mg, 0.0025 mmol, 5 mol%) 

and AgBF4 (0.5 mg, 0.0025 mmol, 5 mol%) in benzene (100 µL, [ ] = 0.50 M). The reaction was 
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mixed and (E)-deca-1,3-diene (6.9 mg, 0.05 mmol) was added. The reaction was sealed and 

allowed to stir at 40 °C for 2 h before being allowed to cool and an aliquot taken to determine the 

conversion by 1H NMR using DMF as an internal standard. The NMR sample was recovered and 

the solution concentrated. The resulting oil was purified by SiO2 column chromatography (40:1 

Hex/Et2O) to afford 4 (7.4 mg, 0.029 mmol, 58% yield) as a colorless oil. 

Isolated as a 2:1 mixture of the γ:α regioisomers (E)-3-(dec-3-en-2-yl)-1H-indole and (E)-3-

(dec-2-en-4-yl)-1H-indole. (E)-3-(dec-3-en-2-yl)-1H-indole: [1H NMR (600 MHz, CDCl3) δ 

7.91 (bs, 1H), 7.65 (t, J = 7.3 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.09 (t, 

J = 7.4 Hz, 1H), 6.96 (s, 1H), 5.65 (dd, J = 15.4, 6.8 Hz, 1H), 5.59 – 5.52 (m, 1H), 3.72 (p, J = 

6.8 Hz, 1H), 2.02 (q, J = 7.0 Hz, 2H), 1.45 (d, J = 6.8 Hz, 2H), 1.37 – 1.27 (m, 8H), 0.93 – 0.82 

(m, 3H).] (E)-3-(dec-2-en-4-yl)-1H-indole: [1H NMR (600 MHz, CDCl3) δ 7.91 (bs, 1H), 7.65 

(t, J = 7.3 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.26 (s, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.09 (t, J = 7.4 

Hz, 1H), 6.96 (s, 1H), 5.62 (dd, J = 17.8, 7.3 Hz, 1H), 5.57 – 5.49 (m, 1H), 3.52 – 3.46 (m, 1H), 

1.87 – 1.80 (m, 1H), 1.77 – 1.69 (m, 1H), 1.67 (d, J = 6.2 Hz, 3H), 1.37 – 1.27 (m, 8H), 0.92 – 

0.83 (m, 3H).] 13C NMR (151 MHz, CDCl3) δ 136.59, 136.53, 135.13, 134.86, 128.99, 126.91, 

126.86, 124.11, 121.85, 121.82, 121.39, 120.33, 120.31, 120.07, 119.77, 119.70, 119.02, 119.01, 

111.08, 111.05, 40.18, 35.40, 33.97, 32.51, 31.89, 31.77, 29.58, 29.38, 28.89, 27.72, 22.71, 

22.66, 20.99, 17.90, 14.12, 14.12. 

 

PhCDC-Rh-Cl (5 mol %)
AgBF4 (5 mol %) 

PhH [0.5 M], 100 °C, 9 h
+

H
N

5
40 % Yield
0:0:1 γ:α:δ

Me

Me

NH

MeMe

Me

 

Synthesis of (E)-3-(3,7-dimethylocta-2,6-dien-1-yl)-1H-indole 
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Following the general procedure for CDC-Rh-Cl catalyzed intermolecular hydroarylation, indole 

(5.9 mg, 0.05 mmol) was added to a solution of PhCDC-Rh-Cl (1.7 mg, 0.0025 mmol, 5 mol%) 

and AgBF4 (0.5 mg, 0.0025 mmol, 5 mol%) in benzene (100 µL, [ ] = 0.50 M). The reaction was 

mixed and myrcene (10.2 mg, 0.075 mmol) was added. The reaction was sealed and allowed to 

stir at 100 °C for 9 h before being allowed to cool and an aliquot taken to determine the 

conversion by 1H NMR using DMF as an internal standard, which showed a 40% conversion to 

(E)-3-(3,7-dimethylocta-2,6-dien-1-yl)-1H-indole. The NMR sample was recovered and the 

solution concentrated. The resulting oil was purified by SiO2 column chromatography (40:1 

Hex/Et2O) to afford impure 5 as a colorless oil. 

 

PhCDC-Rh-Cl (5 mol %)
AgBF4 (5 mol %) 

PhH [0.5 M], 80 °C, 2 h
+

H
N

Me

NH

6
51 % Conversion

MeMe

 

Synthesis of (E)-3-(3-methyl-4-phenylbut-3-en-2-yl)-1H-indole 

Following the general procedure for CDC-Rh-Cl catalyzed intermolecular hydroarylation, indole 

(5.9 mg, 0.05 mmol) was added to a solution of PhCDC-Rh-Cl (1.7 mg, 0.0025 mmol, 5 mol%) 

and AgBF4 (0.5 mg, 0.0025 mmol, 5 mol%) in benzene (100 µL, [ ] = 0.50 M). The reaction was 

mixed and (E)-(2-methylbuta-1,3-dien-1-yl)benzene (7.2 mg, 0.05 mmol) was added. The 

reaction was sealed and allowed to stir at 80 °C for 2 h before being allowed to cool and an 

aliquot taken to determine the conversion by 1H NMR using DMF as an internal standard, which 

showed a 40% conversion to (E)-3-(3-methyl-4-phenylbut-3-en-2-yl)-1H-indole. The NMR 

sample was recovered and the solution concentrated. The resulting oil was purified by SiO2 

column chromatography (40:1 Hex/Et2O) to afford impure 6 as a colorless oil. 
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PhCDC-Rh-Cl (5 mol %)
AgBF4 (5 mol %) 

PhCl [1.0 M], 60 °C, 18 h
+

H
N

NH

7
90 % Yield

MeMe

 

Synthesis of (E)-3-(1-phenylpent-1-en-3-yl)-1H-indole 

Following the general procedure for CDC-Rh-Cl catalyzed intermolecular hydroarylation, indole 

(11.7 mg, 0.1 mmol) was added to a solution of PhCDC-Rh-Cl (3.4 mg, 0.005 mmol, 5 mol%) 

and AgBF4 (1.0 mg, 0.005 mmol, 5 mol%) in chlorobenzene (100 µL, [ ] = 1.0 M). The reaction 

was mixed and (1E-penta-1,3-dien-1-yl)benzene (17.3 mg, 0.12 mmol, mixture of 3E/Z isomers) 

was added. The reaction was sealed and allowed to stir at 60 °C for 18 h before being allowed to 

cool and an aliquot taken to determine the conversion by 1H NMR using DMF as an internal 

standard. The NMR sample was recovered and the solution concentrated. The resulting oil was 

purified by SiO2 column chromatography (50:1 Hex/Et2O) to afford 7 (23.5 mg, 0.09 mmol, 90% 

yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.97 (bs, 1H), 7.67 (t, J = 10.6 Hz, 1H), 7.36 (t, J = 8.2 Hz, 3H), 

7.28 (d, J = 7.5 Hz, 2H), 7.18 (dd, J = 12.2, 7.0 Hz, 2H), 7.09 (t, J = 7.5 Hz, 1H), 7.04 (s, 1H), 

6.50 (d, J = 15.8 Hz, 1H), 6.40 (dd, J = 15.8, 7.8 Hz, 1H), 3.64 (q, J = 7.4 Hz, 1H), 2.01 (dp, J = 

14.2, 7.1 Hz, 1H), 1.95 – 1.83 (m, 1H), 1.00 (t, J = 7.3 Hz, 3H).  

 

PhCDC-Rh-Cl (5 mol %)
AgBF4 (5 mol %) 

PhCl [0.5 M], 70 °C, 24 h
+

H
N

8
52 % Conversion

NH
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Synthesis of 3-cinnamyl-1H-indole 

Following the general procedure for CDC-Rh-Cl catalyzed intermolecular hydroarylation, indole 

(11.7 mg, 0.1 mmol) was added to a solution of PhCDC-Rh-Cl (3.4 mg, 0.005 mmol, 5 mol%) 

and AgBF4 (1.0 mg, 0.005 mmol, 5 mol%) in benzene (200 µL, [ ] = 0.50 M). The reaction was 

mixed and (propa-1,2-dien-1-yl)benzene (11.6 mg, 0.1 mmol) was added. The reaction was 

sealed and allowed to stir at 70 °C for 24 h before being allowed to cool and an aliquot taken to 

determine the conversion by 1H NMR using DMF as an internal standard. The NMR sample was 

recovered and the solution concentrated. The resulting oil was purified by SiO2 column 

chromatography (40:1 Hex/Et2O) to afford 8 (12.1 mg, 0.052 mmol, 52% yield) as a colorless 

oil. 

1H NMR (600 MHz, CDCl3) δ 7.97 (bs, 1H), 7.67 (t, J = 7.2 Hz, 1H), 7.36 (t, J = 7.9 Hz, 3H), 

7.28 (t, J = 7.0 Hz, 2H), 7.21 – 7.16 (m, 2H), 7.11 – 7.07 (m, 1H), 7.03 (d, J = 2.2 Hz, 1H), 6.51 

(d, J = 16.0 Hz, 1H), 6.46 (dd, J = 15.9, 6.4 Hz, 1H), 3.94 (p, J = 6.9 Hz, 1H), 1.57 (d, J = 7.0 

Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 137.78, 136.56, 135.42, 128.44, 128.18, 126.87, 

126.81, 126.14, 121.99, 120.50, 120.38, 119.64, 119.25, 111.10, 34.27, 20.70. 

 

PhCDC-Rh-Cl (5 mol %)
AgBF4 (5 mol %) 

PhH [0.5 M], 80 °C, 18 h
+

H
N

Me

NH

9
82 % Yield

11:1 γ:α

Me

 

Synthesis of (E)-3-(1-phenyloct-1-en-3-yl)-1H-indole 

Following the general procedure for CDC-Rh-Cl catalyzed intermolecular hydroarylation, indole 

(11.7 mg, 0.1 mmol) was added to a solution of PhCDC-Rh-Cl (3.4 mg, 0.005 mmol, 5 mol%) 
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and AgBF4 (1.0 mg, 0.005 mmol, 5 mol%) in benzene (200 µL, [ ] = 0.50 M). The reaction was 

mixed and (1E-octa-1,3-dien-1-yl)benzene (11.6 mg, 0.1 mmol, mixture of 3E/Z isomers) was 

added. The reaction was sealed and allowed to stir at 80 °C for 18 h before being allowed to cool 

and an aliquot taken to determine the conversion by 1H NMR using DMF as an internal standard. 

The NMR sample was recovered and the solution concentrated. The resulting oil was purified by 

SiO2 column chromatography (40:1 Hex/Et2O) to afford 9 (24.8 mg, 0.082 mmol, 82% yield) as 

a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.93 (bs, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.40 – 7.36 (m, 3H), 7.33 

– 7.28 (m, 2H), 7.24 – 7.16 (m, 2H), 7.15 – 7.10 (m, 1H), 7.03 (t, J = 2.9 Hz, 1H), 6.52 (d, J = 

15.8 Hz, 1H), 6.43 (dd, J = 15.8, 7.8 Hz, 1H), 3.76 (dd, J = 14.8, 7.6 Hz, 1H), 2.03 – 1.95 (m, 

1H), 1.92 – 1.83 (m, 1H), 1.52 – 1.18 (m, 6H), 0.93 – 0.88 (m, 3H). 

 

NH

10
78 % Yield

28:1 γ:α

Bu
MeO

PhCDC-Rh-Cl (5 mol %)
AgBF4 (5 mol %) 

PhH [1.0 M], 80 °C, 18 h
+

H
N

MeMeO

 

Synthesis of (E)-3-(1-(4-methoxyphenyl)oct-1-en-3-yl)-1H-indole 

Following the general procedure for CDC-Rh-Cl catalyzed intermolecular hydroarylation, indole 

(11.7 mg, 0.1 mmol) was added to a solution of PhCDC-Rh-Cl (3.4 mg, 0.005 mmol, 5 mol%) 

and AgBF4 (1.0 mg, 0.005 mmol, 5 mol%) in benzene (100 µL, [ ] = 1.0 M). The reaction was 

mixed and 1-methoxy-4-(1E-octa-1,3-dien-1-yl)benzene (26.0 mg, 0.12 mmol, mixture of 3E/Z 

isomers) was added. The reaction was sealed and allowed to stir at 80 °C for 18 h before being 

allowed to cool and an aliquot taken to determine the conversion by 1H NMR using DMF as an 
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internal standard. The NMR sample was recovered and the solution concentrated. The resulting 

oil was purified by SiO2 column chromatography (40:1 Hex/Et2O) to afford 10 (26.1 mg, 0.078 

mmol, 78% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.96 (bs, 1H), 7.68 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 

7.31 – 7.27 (m, 2H), 7.21 – 7.16 (m, 1H), 7.11 – 7.06 (m, 1H), 7.03 (d, J = 2.2 Hz, 1H), 6.84 – 

6.80 (m, 2H), 6.43 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 15.8, 7.9 Hz, 1H), 3.79 (s, J = 3.1 Hz, 3H), 

3.70 (q, J = 7.6 Hz, 1H), 2.00 – 1.90 (m, 1H), 1.89 – 1.79 (m, 1H), 1.50 – 1.19 (m, 6H), 0.87 (t, J 

= 7.0 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 158.66, 136.54, 132.36, 130.70, 128.38, 127.21, 

126.96, 121.90, 120.60, 119.70, 119.17, 113.85, 111.10, 55.31, 40.45, 35.32, 31.95, 27.49, 22.67, 

14.16. 

 

N

11
88 % Yield
>20:1γ:α

Me

Me

PhCDC-Rh-Cl (5 mol %)
AgBF4 (5 mol %) 

PhH [1.0 M], 100 °C, 18 h
+

N

Me

Me

 

Synthesis of (E)-1-methyl-3-(1-phenylpent-1-en-3-yl)-1H-indole 

Following the general procedure for CDC-Rh-Cl catalyzed intermolecular hydroarylation, 1-

methyl-1H-indole (13.2 mg, 0.1 mmol) was added to a solution of PhCDC-Rh-Cl (3.4 mg, 0.005 

mmol, 5 mol%) and AgBF4 (1.0 mg, 0.005 mmol, 5 mol%) in benzene (100 µL, [ ] = 1.0 M). The 

reaction was mixed and (1E-penta-1,3-dien-1-yl)benzene (17.3 mg, 0.12 mmol, mixture of 3E/Z 

isomers) was added. The reaction was sealed and allowed to stir at 100 °C for 18 h before being 

allowed to cool and an aliquot taken to determine the conversion by 1H NMR using DMF as an 

internal standard. The NMR sample was recovered and the solution concentrated. The resulting 
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oil was purified by SiO2 column chromatography (50:1 Hex/Et2O) to afford 11 (24.2 mg, 0.088 

mmol, 88% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.67 (dt, J = 8.0, 1.0 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.33 – 7.25 

(m, 7H), 7.22 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.20 – 7.15 (m, 1H), 7.11 – 7.04 (m, 1H), 6.89 (s, 

1H), 6.50 (d, J = 15.9 Hz, 1H), 6.40 (dd, J = 15.8, 7.8 Hz, 1H), 3.77 (s, 3H), 3.63 (m, 1H), 1.99 

(dt, J = 13.9, 7.0 Hz, 1H), 1.88 (dt, J = 13.3, 7.5 Hz, 1H), 1.00 (t, J = 7.3 Hz, 3H). 13C NMR 

(151 MHz, CDCl3) δ 137.35, 134.45, 129.21, 128.55, 127.47, 126.95, 126.26, 125.72, 121.60, 

119.83, 118.75, 117.75, 109.33, 42.37, 32.81, 28.40, 12.62. IR (ν/cm-1): 2958 (m), 2871 (m), 

1471 (m), 1374 (m), 1326 (s), 1333 (m). MS (ES+) [M+H]+ calcd for C20H22N+ 276.17, found: 

276.09. 

 

NH

12
39 % Yield
>20:1 γ:α

Me

Cl

PhCDC-Rh-Cl (5 mol %)
AgBF4 (5 mol %) 

PhH [1.0 M], 100 °C, 18 h
+

H
N

Me

Cl

 

Synthesis (E)-7-chloro-3-(1-phenylpent-1-en-3-yl)-1H-indole 

Following the general procedure for CDC-Rh-Cl catalyzed intermolecular hydroarylation, 7-

chloro-1H-indole (15.2 mg, 0.1 mmol) was added to a solution of PhCDC-Rh-Cl (3.4 mg, 0.005 

mmol, 5 mol%) and AgBF4 (1.0 mg, 0.005 mmol, 5 mol%) in benzene (100 µL, [ ] = 1.0 M). The 

reaction was mixed and (1E-penta-1,3-dien-1-yl)benzene (17.3 mg, 0.12 mmol, mixture of 3E/Z 

isomers) was added. The reaction was sealed and allowed to stir at 100 °C for 18 h before being 

allowed to cool and an aliquot taken to determine the conversion by 1H NMR using DMF as an 

internal standard. The NMR sample was recovered and the solution concentrated. The resulting 
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oil was purified by SiO2 column chromatography (40:1 Hex/Et2O) to afford 12 (11.5 mg, 0.039 

mmol, 39% yield) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 8.21 (s, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.36 (d, J = 7.8 Hz, 2H), 

7.29 (dt, J = 13.3, 7.8 Hz, 2H), 7.22 – 7.17 (m, 2H), 7.10 (t, J = 4.1 Hz, 1H), 7.05 – 6.99 (m, 

1H), 6.49 (d, J = 15.9 Hz, 1H), 6.38 (dd, J = 15.8, 7.7 Hz, 1H), 3.63 (q, J = 7.4 Hz, 1H), 2.06 – 

1.96 (m, 1H), 1.95 – 1.84 (m, 1H), 1.00 (t, J = 7.4 Hz, 3H).  
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Section 2.3: Developing a Cationic Carbodicarbene-Rh Complex 

PhCDC-Rh-styrenePhCDC-Rh-Cl
 

Synthesis of PhCDC-Rh-styrene BAr4
F-24 complex  

In an N2 filled dry box, a 20-mL scintillation vial with a stir bar was charged with PhCDC-Rh-Cl 

(540 mg, 0.788 mmol, 1.0 equiv) and NaBAr4
F-24 (733 mg, 0.827 mmol, 1.05 equiv) 

Tetrahydrofuran (16 mL, [ ] = 0.049 M) was added followed by the addition of styrene (0.451 

mL, 3.94 mmol, 5.0 equiv) via syringe. The vial was capped and the resulting dark orange 

mixture was allowed to stir for 18 h at 22 °C. After the reaction was complete, the NaCl 

precipitate was allowed to settle and the solution was filtered through a Celite® pad followed by 

washing with 5 mL of THF. The orange solution was concentrated and more THF (2.0 mL) was 

added to remove excess styrene. The solvent was removed in vacuo and two more aliquots of 

THF (2.0 mL) and 1 aliquot (2.0 mL) of ether were added to repeat this process. The tacky dark 

orange solid on the side of the vial was crushed into a powder via spatula and left to dry in vacuo 

for 6 h. The dark orange powder was isolated in 90% yield (1.15 g, 0.709 mmol). 1H NMR (600 

MHz, Methylene Chloride-d2) δ 7.81-7.73 (m, 12H), 7.69 – 7.55 (m, 16H), 7.49 (t, J = 7.5 Hz, 

4H), 6.79 (t, J = 7.4 Hz, 1H), 6.58 (t, J = 7.6 Hz, 2H), 5.90 (d, J = 7.7 Hz, 2H), 4.90 (td, J = 8.1, 

4.1 Hz, 1H), 4.06 – 3.94 (m, 4H), 3.44 (m, 5H), 3.27 (m, 4H), 2.99 (d, J = 8.2 Hz, 1H). 13C NMR 

(151 MHz, Methylene Chloride-d2) δ 172.82 (t, J = 21.3 Hz), 162.17 (m), 140.89, 135.22, 133.38 

(dt, J = 60.1, 7.5 Hz), 131.97 (d, J = 47.2 Hz), 130.70 (td, J = 22.3, 13.1 Hz), 129.48 (dt, J = 

19.8, 9.9 Hz), 129.19 (m), 128.45, 127.72, 126.38, 125.92, 125.57, 124.11, 122.31, 117.94 (q, J 
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= 4.2 Hz), 83.76 (dt, J = 34.3, 11.4 Hz), 75.62 (d, J = 6.7 Hz), 58.75, 53.38 (d, J = 8.1 Hz), 

46.85, 41.38. 31P NMR (243 MHz, Methylene Chloride-d2) δ 86.47 (d, J = 164.3 Hz). HRMS 

(ES+) [M]+ calcd for C41H40N4P2Rh+ 753.18 , found: 753.09. 

 

Crystal Structure Data for PhCDC-Rh-styrene 

!

PhCDC-Rh-styrene

 

Empirical formula  C75 H52 B F24 N4 P2 Rh  
Formula weight  1640.87  
Temperature  100K  
Wavelength  0.71073  
Crystal system  triclinic  
Space group  P-1  
Unit cell dimensions  a = 14.5732(5) Å α= 72.9946(16)  
 a = 14.5732(5) Å α= 72.9946(16) 

b = 16.2543(6) Å β= 69.1536(17)   
c = 16.4636(6) Å γ = 78.1710(16) 

Volume                                              3462.92  
Z  2  
Density (calculated)  1.548 g/cm-1  
Absorption coefficient  0.406 (mm-1)  
F(000)  1624.5  
Crystal size  0.193 x 0.238 x 0.283  
Theta max  70.15  
Index ranges  Hmax = 17, kmax = 19, lmax = 20  
Reflections collected  13181  
Independent reflections  12784  
Completeness to theta  97  
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Max. and min. transmission  0.663, 0.753  
Refinement method  XS least squares  
Goodness-of-fit on F2 0  1.019  
R indices  R1 = 0.0336, wR2 = 0.1139  
  
 

Table S3. Bond lengths (Å) for PhCDC-Rh-styrene 

Number  Atom1  Atom2  Length  
1  Rh1  P2  2.2637(6)  
2  Rh1  P1  2.2601(5)  
3  Rh1  C1  2.075(2)  
4  Rh1  C40  2.233(3)  
5  Rh1  C41  2.201(3)  
6  P2  N1  1.707(2)  
7  P2  C10  1.821(2)  
8  P2  C16  1.822(2)  
9  P1  N2  1.704(2)  
10  P1  C22  1.820(3)  
11  P1  C28  1.821(2)  
12  C1  C2  1.404(3)  
13  C1  C3  1.391(3)  
14  N3  C2  1.348(3)  
15  N3  C8  1.453(3)  
16  N3  C5  1.442(4)  
17  N2  C3  1.369(3)  
18  N2  C7  1.470(3)  
19  C2  N1  1.369(3)  
20  N1  C4  1.461(4)  
21  C3  N4  1.354(3)  
22  N4  C6  1.468(3)  
23  N4  C9  1.454(4)  
24  C22  C23  1.397(3)  
25  C22  C27  1.401(3)  
26  C10  C11  1.405(3)  
27  C10  C15  1.398(4)  
28  C6  H6A  0.99  
29  C6  H6B  0.99  
30  C6  C7  1.521(5)  
31  C11  H11  0.95  
32  C11  C12  1.385(3)  
33  C23  H23  0.949  
34  C23  C24  1.394(4)  
35  C15  H15  0.951  
36  C15  C14  1.392(3)  
37  C14  H14  0.95  
38  C14  C13  1.387(3)  
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39  C13  H13  0.95  
40  C13  C12  1.393(4)  
41  C12  H12  0.951  
42  C26  H26  0.95  
43  C26  C27  1.388(4)  
44  C26  C25  1.390(3)  
45  C27  H27  0.95  
46  C29  H29  0.95  
47  C29  C28  1.388(4)  
48  C29  C30  1.390(3)  
49  C28  C33  1.395(4)  
50  C33  H33  0.95  
51  C33  C32  1.388(3)  
52  C30  H30  0.95  
53  C30  C31  1.381(4)  
54  C24  H24  0.95  
55  C24  C25  1.384(3)  
56  C25  H25  0.95  
57  C31  H31  0.95  
58  C31  C32  1.381(5)  
59  C32  H32  0.95  
60  C4  H4A  0.989  
61  C4  H4B  0.99  
62  C4  C5  1.513(4)  
63  C9  H9A  0.99  
64  C9  H9B  0.99  
65  C9  C8  1.513(3)  
66  C8  H8A  0.991  
67  C8  H8B  0.99  
68  C7  H7A  0.99  
69  C7  H7B  0.99  
70  C16  C17  1.392(3)  
71  C16  C21  1.400(4)  
72  C17  H17  0.95  
73  C17  C18  1.394(4)  
74  C21  H21  0.95  
75  C21  C20  1.388(4)  
76  C19  H19  0.95  
77  C19  C18  1.365(5)  
78  C19  C20  1.390(4)  
79  C18  H18  0.95  
80  C20  H20  0.951  
81  C34  C40  1.495(4)  
82  C34  C35  1.375(4)  
83  C34  C39  1.388(4)  
84  C40  H40  1  
85  C40  C41  1.381(5)  
86  C35  H35  0.95  
87  C35  C36  1.377(5)  
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88  C41  H41A  0.95  
89  C41  H41B  0.95  
90  C36  H36  0.949  
91  C36  C37  1.382(5)  
92  C39  H39  0.95  
93  C39  C38  1.377(4)  
94  C38  H38  0.951  
95  C38  C37  1.361(4)  
96  C37  H37  0.949  
97  C5  H5A  0.99  
98  C5  H5B  0.991  
99  F20  C58  1.339(3)  
100  F24  C59  1.321(3)  
101  F22  C59  1.336(4)  
102  F23  C59  1.343(3)  
103  C57  H57  0.95  
104  C57  C56  1.395(3)  
105  C57  C52  1.401(3)  
106  C54  C53  1.396(3)  
107  C54  C55  1.383(3)  
108  C54  C58  1.494(3)  
109  C53  H53  0.95  
110  C53  C52  1.405(3)  
111  C56  C55  1.381(3)  
112  C56  C59  1.505(3)  
113  C55  H55  0.95  
114  C52  B1  1.648(3)  
115  F21  C58  1.329(4)  
116  F19  C58  1.358(3)  
117  B1  C44  1.641(3)  
118  B1  C60  1.640(4)  
119  B1  C68  1.647(3)  
120  C44  C49  1.391(3)  
121  C44  C45  1.404(3)  
122  C60  C61  1.400(3)  
123  C60  C65  1.397(3)  
124  C68  C73  1.399(3)  
125  C68  C69  1.403(3)  
126  C73  H73  0.95  
127  C73  C72  1.398(3)  
128  C62  C61  1.388(4)  
129  C62  C63  1.394(3)  
130  C62  C66  1.486(4)  
131  C71  H71  0.95  
132  C71  C72  1.377(3)  
133  C71  C70  1.390(3)  
134  C69  H69  0.951  
135  C69  C70  1.396(3)  
136  C74  C70  1.501(3)  
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137  C74  F1  1.38(2)  
138  C74  F2  1.340(9)  
139  C74  F3  1.31(1)  
140  C61  H61  0.95  
141  C72  C75  1.499(3)  
142  C65  H65  0.949  
143  C65  C64  1.395(4)  
144  C63  H63  0.95  
145  C63  C64  1.376(5)  
146  C64  C67  1.513(4)  
147  F5  C75  1.340(4)  
148  F4  C75  1.332(3)  
149  F6  C75  1.327(4)  
150  F15  C66  1.328(4)  
151  C66  F13  1.355(3)  
152  C66  F14  1.315(3)  
153  C67  F18  1.28(1)  
154  C67  F16  1.36(1)  
155  C67  F17  1.31(1)  
156  C49  H49  0.95  
157  C49  C48  1.392(4)  
158  C45  H45  0.95  
159  C45  C46  1.390(4)  
160  C48  C47  1.384(3)  
161  C48  C50  1.498(4)  
162  C46  C47  1.388(4)  
163  C46  C51  1.501(3)  
164  C47  H47  0.951  
165  C51  F10  1.336(4)  
166  C51  F11  1.347(3)  
167  C51  F12  1.317(4)  
168  F7  C50  1.39(2)  
169  F8  C50  1.38(2)  
170  F9  C50  1.22(2)  
 

Table S4. Bond angles (°) for PhCDC-Rh-styrene 

Number  Atom1  Atom2  Atom3  Angle  
1  P2  Rh1  P1  162.95(2)  
2  P2  Rh1  C1  81.46(6)  
3  P2  Rh1  C40  82.70(8)  
4  P2  Rh1  C41  112.96(8)  
5  P1  Rh1  C1  81.65(6)  
6  P1  Rh1  C40  114.30(8)  
7  P1  Rh1  C41  83.51(8)  
8  C1  Rh1  C40  159.8(1)  
9  C1  Rh1  C41  163.7(1)  
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10  C40  Rh1  C41  36.3(1)  
11  Rh1  P2  N1  103.37(7)  
12  Rh1  P2  C10  118.04(8)  
13  Rh1  P2  C16  123.63(8)  
14  N1  P2  C10  102.4(1)  
15  N1  P2  C16  100.8(1)  
16  C10  P2  C16  105.0(1)  
17  Rh1  P1  N2  103.01(7)  
18  Rh1  P1  C22  123.85(8)  
19  Rh1  P1  C28  119.51(8)  
20  N2  P1  C22  103.6(1)  
21  N2  P1  C28  100.9(1)  
22  C22  P1  C28  102.5(1)  
23  Rh1  C1  C2  119.3(2)  
24  Rh1  C1  C3  118.9(2)  
25  C2  C1  C3  121.7(2)  
26  C2  N3  C8  126.6(2)  
27  C2  N3  C5  112.1(2)  
28  C8  N3  C5  121.0(2)  
29  P1  N2  C3  117.2(2)  
30  P1  N2  C7  131.3(2)  
31  C3  N2  C7  111.5(2)  
32  C1  C2  N3  133.2(2)  
33  C1  C2  N1  118.6(2)  
34  N3  C2  N1  108.2(2)  
35  P2  N1  C2  117.1(2)  
36  P2  N1  C4  130.8(2)  
37  C2  N1  C4  111.7(2)  
38  C1  C3  N2  118.9(2)  
39  C1  C3  N4  132.6(2)  
40  N2  C3  N4  108.5(2)  
41  C3  N4  C6  110.2(2)  
42  C3  N4  C9  121.8(2)  
43  C6  N4  C9  118.4(2)  
44  P1  C22  C23  119.7(2)  
45  P1  C22  C27  121.1(2)  
46  C23  C22  C27  119.1(2)  
47  P2  C10  C11  122.5(2)  
48  P2  C10  C15  118.4(2)  
49  C11  C10  C15  118.8(2)  
50  N4  C6  H6A  111.2  
51  N4  C6  H6B  111.1  
52  N4  C6  C7  103.0(2)  
53  H6A  C6  H6B  109.2  
54  H6A  C6  C7  111.2  
55  H6B  C6  C7  111.2  
56  C10  C11  H11  119.9  
57  C10  C11  C12  120.2(2)  
58  H11  C11  C12  119.9  



	   472	  

59  C22  C23  H23  119.9  
60  C22  C23  C24  120.2(2)  
61  H23  C23  C24  119.9  
62  C10  C15  H15  119.7  
63  C10  C15  C14  120.6(2)  
64  H15  C15  C14  119.7  
65  C15  C14  H14  120  
66  C15  C14  C13  120.0(2)  
67  H14  C14  C13  120.1  
68  C14  C13  H13  120  
69  C14  C13  C12  119.9(2)  
70  H13  C13  C12  120  
71  C11  C12  C13  120.4(2)  
72  C11  C12  H12  119.8  
73  C13  C12  H12  119.8  
74  H26  C26  C27  119.9  
75  H26  C26  C25  119.9  
76  C27  C26  C25  120.2(2)  
77  C22  C27  C26  120.3(2)  
78  C22  C27  H27  119.8  
79  C26  C27  H27  119.8  
80  H29  C29  C28  119.9  
81  H29  C29  C30  119.8  
82  C28  C29  C30  120.3(2)  
83  P1  C28  C29  121.9(2)  
84  P1  C28  C33  118.9(2)  
85  C29  C28  C33  119.1(2)  
86  C28  C33  H33  119.8  
87  C28  C33  C32  120.3(2)  
88  H33  C33  C32  119.9  
89  C29  C30  H30  119.9  
90  C29  C30  C31  120.2(3)  
91  H30  C30  C31  119.9  
92  C23  C24  H24  119.8  
93  C23  C24  C25  120.3(2)  
94  H24  C24  C25  119.9  
95  C26  C25  C24  119.9(2)  
96  C26  C25  H25  120.1  
97  C24  C25  H25  120  
98  C30  C31  H31  119.9  
99  C30  C31  C32  120.0(3)  
100  H31  C31  C32  120  
101  C33  C32  C31  120.1(3)  
102  C33  C32  H32  119.9  
103  C31  C32  H32  120  
104  N1  C4  H4A  111.2  
105  N1  C4  H4B  111.2  
106  N1  C4  C5  102.7(2)  
107  H4A  C4  H4B  109.2  
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108  H4A  C4  C5  111.2  
109  H4B  C4  C5  111.2  
110  N4  C9  H9A  109.2  
111  N4  C9  H9B  109.3  
112  N4  C9  C8  112.0(2)  
113  H9A  C9  H9B  107.9  
114  H9A  C9  C8  109.2  
115  H9B  C9  C8  109.2  
116  N3  C8  C9  113.1(2)  
117  N3  C8  H8A  109  
118  N3  C8  H8B  109  
119  C9  C8  H8A  108.9  
120  C9  C8  H8B  108.9  
121  H8A  C8  H8B  107.8  
122  N2  C7  C6  101.5(2)  
123  N2  C7  H7A  111.5  
124  N2  C7  H7B  111.4  
125  C6  C7  H7A  111.5  
126  C6  C7  H7B  111.5  
127  H7A  C7  H7B  109.3  
128  P2  C16  C17  123.7(2)  
129  P2  C16  C21  116.9(2)  
130  C17  C16  C21  119.3(2)  
131  C16  C17  H17  120.1  
132  C16  C17  C18  119.8(2)  
133  H17  C17  C18  120.1  
134  C16  C21  H21  119.9  
135  C16  C21  C20  120.0(3)  
136  H21  C21  C20  120.1  
137  H19  C19  C18  119.9  
138  H19  C19  C20  119.9  
139  C18  C19  C20  120.2(3)  
140  C17  C18  C19  120.7(3)  
141  C17  C18  H18  119.6  
142  C19  C18  H18  119.7  
143  C21  C20  C19  120.0(3)  
144  C21  C20  H20  119.9  
145  C19  C20  H20  120.1  
146  C40  C34  C35  113.2(3)  
147  C40  C34  C39  128.1(3)  
148  C35  C34  C39  118.6(3)  
149  Rh1  C40  C34  109.8(2)  
150  Rh1  C40  H40  115.5  
151  Rh1  C40  C41  70.6(2)  
152  C34  C40  H40  115.5  
153  C34  C40  C41  121.6(3)  
154  H40  C40  C41  115.5  
155  C34  C35  H35  119.7  
156  C34  C35  C36  120.7(3)  



	   474	  

157  H35  C35  C36  119.6  
158  Rh1  C41  C40  73.1(2)  
159  Rh1  C41  H41A  108.4  
160  Rh1  C41  H41B  88.5  
161  C40  C41  H41A  120.1  
162  C40  C41  H41B  120  
163  H41A  C41  H41B  120  
164  C35  C36  H36  119.9  
165  C35  C36  C37  120.3(4)  
166  H36  C36  C37  119.9  
167  C34  C39  H39  119.9  
168  C34  C39  C38  120.3(3)  
169  H39  C39  C38  119.9  
170  C39  C38  H38  119.6  
171  C39  C38  C37  120.9(3)  
172  H38  C38  C37  119.5  
173  C36  C37  C38  119.2(3)  
174  C36  C37  H37  120.4  
175  C38  C37  H37  120.4  
176  N3  C5  C4  104.2(2)  
177  N3  C5  H5A  110.9  
178  N3  C5  H5B  110.9  
179  C4  C5  H5A  110.9  
180  C4  C5  H5B  111  
181  H5A  C5  H5B  108.9  
182  H57  C57  C56  119  
183  H57  C57  C52  119.1  
184  C56  C57  C52  121.9(2)  
185  C53  C54  C55  120.8(2)  
186  C53  C54  C58  119.1(2)  
187  C55  C54  C58  120.0(2)  
188  C54  C53  H53  118.9  
189  C54  C53  C52  122.2(2)  
190  H53  C53  C52  118.9  
191  C57  C56  C55  121.2(2)  
192  C57  C56  C59  120.0(2)  
193  C55  C56  C59  118.8(2)  
194  C54  C55  C56  118.2(2)  
195  C54  C55  H55  120.9  
196  C56  C55  H55  120.9  
197  C57  C52  C53  115.7(2)  
198  C57  C52  B1  123.1(2)  
199  C53  C52  B1  121.0(2)  
200  F20  C58  C54  113.3(2)  
201  F20  C58  F21  107.1(2)  
202  F20  C58  F19  106.1(2)  
203  C54  C58  F21  113.7(2)  
204  C54  C58  F19  110.4(2)  
205  F21  C58  F19  105.6(2)  
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206  C52  B1  C44  105.8(2)  
207  C52  B1  C60  112.4(2)  
208  C52  B1  C68  113.9(2)  
209  C44  B1  C60  111.2(2)  
210  C44  B1  C68  111.0(2)  
211  C60  B1  C68  102.7(2)  
212  F24  C59  F22  106.3(2)  
213  F24  C59  F23  106.6(2)  
214  F24  C59  C56  112.4(2)  
215  F22  C59  F23  106.9(2)  
216  F22  C59  C56  112.0(2)  
217  F23  C59  C56  112.3(2)  
218  B1  C44  C49  122.5(2)  
219  B1  C44  C45  121.6(2)  
220  C49  C44  C45  115.8(2)  
221  B1  C60  C61  121.2(2)  
222  B1  C60  C65  122.7(2)  
223  C61  C60  C65  115.8(2)  
224  B1  C68  C73  119.7(2)  
225  B1  C68  C69  123.9(2)  
226  C73  C68  C69  116.1(2)  
227  C68  C73  H73  118.9  
228  C68  C73  C72  122.1(2)  
229  H73  C73  C72  119  
230  C61  C62  C63  120.5(2)  
231  C61  C62  C66  121.5(2)  
232  C63  C62  C66  117.9(2)  
233  H71  C71  C72  120.9  
234  H71  C71  C70  121  
235  C72  C71  C70  118.1(2)  
236  C68  C69  H69  119.2  
237  C68  C69  C70  121.6(2)  
238  H69  C69  C70  119.2  
239  C70  C74  F1  113.2(5)  
240  C70  C74  F2  111.7(5)  
241  C70  C74  F3  111.5(5)  
242  F1  C74  F2  103.4(7)  
243  F1  C74  F3  111.4(7)  
244  F2  C74  F3  105.2(7)  
245  C60  C61  C62  122.3(2)  
246  C60  C61  H61  118.9  
247  C62  C61  H61  118.8  
248  C73  C72  C71  120.9(2)  
249  C73  C72  C75  118.3(2)  
250  C71  C72  C75  120.7(2)  
251  C71  C70  C69  121.1(2)  
252  C71  C70  C74  119.1(2)  
253  C69  C70  C74  119.8(2)  
254  C60  C65  H65  118.9  
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255  C60  C65  C64  122.2(2)  
256  H65  C65  C64  118.9  
257  C62  C63  H63  120.9  
258  C62  C63  C64  118.2(3)  
259  H63  C63  C64  120.9  
260  C65  C64  C63  120.9(3)  
261  C65  C64  C67  119.1(3)  
262  C63  C64  C67  120.0(3)  
263  C72  C75  F5  111.8(2)  
264  C72  C75  F4  113.0(2)  
265  C72  C75  F6  112.9(2)  
266  F5  C75  F4  106.1(2)  
267  F5  C75  F6  105.5(2)  
268  F4  C75  F6  107.0(2)  
269  C62  C66  F15  113.0(2)  
270  C62  C66  F13  112.6(2)  
271  C62  C66  F14  114.0(3)  
272  F15  C66  F13  105.1(2)  
273  F15  C66  F14  108.0(3)  
274  F13  C66  F14  103.4(3)  
275  C64  C67  F18  113.6(6)  
276  C64  C67  F16  109.2(5)  
277  C64  C67  F17  111.1(5)  
278  F18  C67  F16  108.7(7)  
279  F18  C67  F17  109.4(7)  
280  F16  C67  F17  104.4(6)  
281  C44  C49  H49  118.8  
282  C44  C49  C48  122.4(2)  
283  H49  C49  C48  118.8  
284  C44  C45  H45  119.1  
285  C44  C45  C46  121.9(2)  
286  H45  C45  C46  119  
287  C49  C48  C47  121.0(2)  
288  C49  C48  C50  118.5(2)  
289  C47  C48  C50  120.4(2)  
290  C45  C46  C47  121.2(2)  
291  C45  C46  C51  118.9(2)  
292  C47  C46  C51  119.9(2)  
293  C48  C47  C46  117.6(2)  
294  C48  C47  H47  121.2  
295  C46  C47  H47  121.2  
296  C46  C51  F10  112.9(2)  
297  C46  C51  F11  111.8(2)  
298  C46  C51  F12  112.7(2)  
299  F10  C51  F11  105.4(2)  
300  F10  C51  F12  106.9(2)  
301  F11  C51  F12  106.6(2)  
302  C48  C50  F7  110.2(8)  
303  C48  C50  F8  112.4(7)  
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304  C48  C50  F9  113(1)  
305  F7  C50  F8  99(1)  
306  F7  C50  F9  113(1)  
307  F8  C50  F9  109(1)  
 

Table S5. Torsion angles (°) for PhCDC-Rh-styrene 

Number  Atom1  Atom2  Atom3  Atom4  Torsion  
1  P1  Rh1  P2  N1  -10.2(1)  
2  P1  Rh1  P2  C10  102.0(1)  
3  P1  Rh1  P2  C16  -123.1(1)  
4  C1  Rh1  P2  N1  -2.17(9)  
5  C1  Rh1  P2  C10  110.0(1)  
6  C1  Rh1  P2  C16  -115.1(1)  
7  C40  Rh1  P2  N1  165.2(1)  
8  C40  Rh1  P2  C10  -82.7(1)  
9  C40  Rh1  P2  C16  52.3(1)  
10  C41  Rh1  P2  N1  -174.3(1)  
11  C41  Rh1  P2  C10  -62.2(1)  
12  C41  Rh1  P2  C16  72.8(1)  
13  P2  Rh1  P1  N2  10.9(1)  
14  P2  Rh1  P1  C22  -105.5(1)  
15  P2  Rh1  P1  C28  121.6(1)  
16  C1  Rh1  P1  N2  2.91(9)  
17  C1  Rh1  P1  C22  -113.5(1)  
18  C1  Rh1  P1  C28  113.6(1)  
19  C40  Rh1  P1  N2  -164.0(1)  
20  C40  Rh1  P1  C22  79.5(1)  
21  C40  Rh1  P1  C28  -53.3(1)  
22  C41  Rh1  P1  N2  176.2(1)  
23  C41  Rh1  P1  C22  59.8(1)  
24  C41  Rh1  P1  C28  -73.0(1)  
25  P2  Rh1  C1  C2  0.1(2)  
26  P2  Rh1  C1  C3  177.3(2)  
27  P1  Rh1  C1  C2  177.7(2)  
28  P1  Rh1  C1  C3  -5.0(2)  
29  C40  Rh1  C1  C2  -38.8(4)  
30  C40  Rh1  C1  C3  138.5(3)  
31  C41  Rh1  C1  C2  153.4(3)  
32  C41  Rh1  C1  C3  -29.3(4)  
33  P2  Rh1  C40  C34  -95.4(2)  
34  P2  Rh1  C40  H40  37.3  
35  P2  Rh1  C40  C41  147.0(2)  
36  P1  Rh1  C40  C34  83.1(2)  
37  P1  Rh1  C40  H40  -144.2  
38  P1  Rh1  C40  C41  -34.5(2)  
39  C1  Rh1  C40  C34  -56.7(4)  
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40  C1  Rh1  C40  H40  76  
41  C1  Rh1  C40  C41  -174.3(2)  
42  C41  Rh1  C40  C34  117.6(3)  
43  C41  Rh1  C40  H40  -109.7  
44  P2  Rh1  C41  C40  -35.9(2)  
45  P2  Rh1  C41  H41A  -152.7  
46  P2  Rh1  C41  H41B  86.1  
47  P1  Rh1  C41  C40  148.7(2)  
48  P1  Rh1  C41  H41A  31.9  
49  P1  Rh1  C41  H41B  -89.3  
50  C1  Rh1  C41  C40  172.9(3)  
51  C1  Rh1  C41  H41A  56.1  
52  C1  Rh1  C41  H41B  -65.1  
53  C40  Rh1  C41  H41A  -116.8  
54  C40  Rh1  C41  H41B  122  
55  Rh1  P2  N1  C2  4.5(2)  
56  Rh1  P2  N1  C4  176.7(2)  
57  C10  P2  N1  C2  -118.7(2)  
58  C10  P2  N1  C4  53.6(2)  
59  C16  P2  N1  C2  133.1(2)  
60  C16  P2  N1  C4  -54.6(2)  
61  Rh1  P2  C10  C11  -175.0(2)  
62  Rh1  P2  C10  C15  -1.2(2)  
63  N1  P2  C10  C11  -62.3(2)  
64  N1  P2  C10  C15  111.4(2)  
65  C16  P2  C10  C11  42.6(2)  
66  C16  P2  C10  C15  -143.7(2)  
67  Rh1  P2  C16  C17  -113.6(2)  
68  Rh1  P2  C16  C21  62.8(2)  
69  N1  P2  C16  C17  132.3(2)  
70  N1  P2  C16  C21  -51.3(2)  
71  C10  P2  C16  C17  26.2(2)  
72  C10  P2  C16  C21  -157.4(2)  
73  Rh1  P1  N2  C3  -1.1(2)  
74  Rh1  P1  N2  C7  177.2(2)  
75  C22  P1  N2  C3  129.0(2)  
76  C22  P1  N2  C7  -52.8(2)  
77  C28  P1  N2  C3  -125.1(2)  
78  C28  P1  N2  C7  53.1(2)  
79  Rh1  P1  C22  C23  1.8(2)  
80  Rh1  P1  C22  C27  177.6(2)  
81  N2  P1  C22  C23  -114.3(2)  
82  N2  P1  C22  C27  61.4(2)  
83  C28  P1  C22  C23  141.0(2)  
84  C28  P1  C22  C27  -43.3(2)  
85  Rh1  P1  C28  C29  102.5(2)  
86  Rh1  P1  C28  C33  -72.8(2)  
87  N2  P1  C28  C29  -145.6(2)  
88  N2  P1  C28  C33  39.1(2)  
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89  C22  P1  C28  C29  -38.9(2)  
90  C22  P1  C28  C33  145.8(2)  
91  Rh1  C1  C2  N3  -176.3(2)  
92  Rh1  C1  C2  N1  2.8(3)  
93  C3  C1  C2  N3  6.5(4)  
94  C3  C1  C2  N1  -174.3(2)  
95  Rh1  C1  C3  N2  6.0(3)  
96  Rh1  C1  C3  N4  -173.1(2)  
97  C2  C1  C3  N2  -176.9(2)  
98  C2  C1  C3  N4  4.1(4)  
99  C8  N3  C2  C1  -0.3(4)  
100  C8  N3  C2  N1  -179.6(2)  
101  C5  N3  C2  C1  -174.8(3)  
102  C5  N3  C2  N1  5.9(3)  
103  C2  N3  C8  C9  -40.6(3)  
104  C2  N3  C8  H8A  -161.9  
105  C2  N3  C8  H8B  80.7  
106  C5  N3  C8  C9  133.5(3)  
107  C5  N3  C8  H8A  12.2  
108  C5  N3  C8  H8B  -105.2  
109  C2  N3  C5  C4  -9.7(3)  
110  C2  N3  C5  H5A  -129.1  
111  C2  N3  C5  H5B  109.8  
112  C8  N3  C5  C4  175.5(2)  
113  C8  N3  C5  H5A  56  
114  C8  N3  C5  H5B  -65.1  
115  P1  N2  C3  C1  -2.9(3)  
116  P1  N2  C3  N4  176.4(2)  
117  C7  N2  C3  C1  178.6(2)  
118  C7  N2  C3  N4  -2.1(3)  
119  P1  N2  C7  C6  -162.7(2)  
120  P1  N2  C7  H7A  78.5  
121  P1  N2  C7  H7B  -44  
122  C3  N2  C7  C6  15.6(3)  
123  C3  N2  C7  H7A  -103.2  
124  C3  N2  C7  H7B  134.3  
125  C1  C2  N1  P2  -5.0(3)  
126  C1  C2  N1  C4  -178.7(2)  
127  N3  C2  N1  P2  174.4(2)  
128  N3  C2  N1  C4  0.7(3)  
129  P2  N1  C4  H4A  62  
130  P2  N1  C4  H4B  -59.9  
131  P2  N1  C4  C5  -178.9(2)  
132  C2  N1  C4  H4A  -125.4  
133  C2  N1  C4  H4B  112.7  
134  C2  N1  C4  C5  -6.3(3)  
135  C1  C3  N4  C6  165.8(3)  
136  C1  C3  N4  C9  20.3(4)  
137  N2  C3  N4  C6  -13.3(3)  



	   480	  

138  N2  C3  N4  C9  -158.8(2)  
139  C3  N4  C6  H6A  -96.6  
140  C3  N4  C6  H6B  141.6  
141  C3  N4  C6  C7  22.5(3)  
142  C9  N4  C6  H6A  50.2  
143  C9  N4  C6  H6B  -71.6  
144  C9  N4  C6  C7  169.3(2)  
145  C3  N4  C9  H9A  174.4  
146  C3  N4  C9  H9B  56.6  
147  C3  N4  C9  C8  -64.5(3)  
148  C6  N4  C9  H9A  31.6  
149  C6  N4  C9  H9B  -86.2  
150  C6  N4  C9  C8  152.7(2)  
151  P1  C22  C23  H23  -3.9  
152  P1  C22  C23  C24  176.1(2)  
153  C27  C22  C23  H23  -179.8  
154  C27  C22  C23  C24  0.2(3)  
155  P1  C22  C27  C26  -175.2(2)  
156  P1  C22  C27  H27  4.8  
157  C23  C22  C27  C26  0.6(4)  
158  C23  C22  C27  H27  -179.5  
159  P2  C10  C11  H11  -7.5  
160  P2  C10  C11  C12  172.5(2)  
161  C15  C10  C11  H11  178.8  
162  C15  C10  C11  C12  -1.2(3)  
163  P2  C10  C15  H15  6.7  
164  P2  C10  C15  C14  -173.3(2)  
165  C11  C10  C15  H15  -179.3  
166  C11  C10  C15  C14  0.7(3)  
167  N4  C6  C7  N2  -21.7(3)  
168  N4  C6  C7  H7A  97.1  
169  N4  C6  C7  H7B  -140.4  
170  H6A  C6  C7  N2  97.4  
171  H6A  C6  C7  H7A  -143.8  
172  H6A  C6  C7  H7B  -21.3  
173  H6B  C6  C7  N2  -140.7  
174  H6B  C6  C7  H7A  -21.9  
175  H6B  C6  C7  H7B  100.5  
176  C10  C11  C12  C13  0.2(4)  
177  C10  C11  C12  H12  -179.8  
178  H11  C11  C12  C13  -179.8  
179  H11  C11  C12  H12  0.2  
180  C22  C23  C24  H24  178.9  
181  C22  C23  C24  C25  -1.1(4)  
182  H23  C23  C24  H24  -1.1  
183  H23  C23  C24  C25  178.9  
184  C10  C15  C14  H14  -179.3  
185  C10  C15  C14  C13  0.7(4)  
186  H15  C15  C14  H14  0.7  
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187  H15  C15  C14  C13  -179.3  
188  C15  C14  C13  H13  178.3  
189  C15  C14  C13  C12  -1.7(4)  
190  H14  C14  C13  H13  -1.7  
191  H14  C14  C13  C12  178.3  
192  C14  C13  C12  C11  1.2(4)  
193  C14  C13  C12  H12  -178.7  
194  H13  C13  C12  C11  -178.8  
195  H13  C13  C12  H12  1.3  
196  H26  C26  C27  C22  179.5  
197  H26  C26  C27  H27  -0.4  
198  C25  C26  C27  C22  -0.5(4)  
199  C25  C26  C27  H27  179.5  
200  H26  C26  C25  C24  179.6  
201  H26  C26  C25  H25  -0.4  
202  C27  C26  C25  C24  -0.4(4)  
203  C27  C26  C25  H25  179.7  
204  H29  C29  C28  P1  4.7  
205  H29  C29  C28  C33  179.9  
206  C30  C29  C28  P1  -175.3(2)  
207  C30  C29  C28  C33  -0.0(4)  
208  H29  C29  C30  H30  0  
209  H29  C29  C30  C31  180  
210  C28  C29  C30  H30  179.9  
211  C28  C29  C30  C31  -0.1(4)  
212  P1  C28  C33  H33  -4.2  
213  P1  C28  C33  C32  175.7(2)  
214  C29  C28  C33  H33  -179.7  
215  C29  C28  C33  C32  0.3(4)  
216  C28  C33  C32  C31  -0.5(4)  
217  C28  C33  C32  H32  179.5  
218  H33  C33  C32  C31  179.5  
219  H33  C33  C32  H32  -0.5  
220  C29  C30  C31  H31  179.9  
221  C29  C30  C31  C32  -0.1(4)  
222  H30  C30  C31  H31  -0.1  
223  H30  C30  C31  C32  179.9  
224  C23  C24  C25  C26  1.2(4)  
225  C23  C24  C25  H25  -178.9  
226  H24  C24  C25  C26  -178.9  
227  H24  C24  C25  H25  1.1  
228  C30  C31  C32  C33  0.4(4)  
229  C30  C31  C32  H32  -179.6  
230  H31  C31  C32  C33  -179.6  
231  H31  C31  C32  H32  0.4  
232  N1  C4  C5  N3  9.1(3)  
233  N1  C4  C5  H5A  128.5  
234  N1  C4  C5  H5B  -110.3  
235  H4A  C4  C5  N3  128.2  
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236  H4A  C4  C5  H5A  -112.4  
237  H4A  C4  C5  H5B  8.7  
238  H4B  C4  C5  N3  -109.9  
239  H4B  C4  C5  H5A  9.6  
240  H4B  C4  C5  H5B  130.7  
241  N4  C9  C8  N3  74.7(3)  
242  N4  C9  C8  H8A  -164  
243  N4  C9  C8  H8B  -46.7  
244  H9A  C9  C8  N3  -164.3  
245  H9A  C9  C8  H8A  -42.9  
246  H9A  C9  C8  H8B  74.4  
247  H9B  C9  C8  N3  -46.5  
248  H9B  C9  C8  H8A  74.8  
249  H9B  C9  C8  H8B  -167.8  
250  P2  C16  C17  H17  -3.1  
251  P2  C16  C17  C18  176.9(2)  
252  C21  C16  C17  H17  -179.4  
253  C21  C16  C17  C18  0.6(4)  
254  P2  C16  C21  H21  2.3  
255  P2  C16  C21  C20  -177.7(2)  
256  C17  C16  C21  H21  178.9  
257  C17  C16  C21  C20  -1.1(4)  
258  C16  C17  C18  C19  0.3(4)  
259  C16  C17  C18  H18  -179.6  
260  H17  C17  C18  C19  -179.7  
261  H17  C17  C18  H18  0.4  
262  C16  C21  C20  C19  0.7(4)  
263  C16  C21  C20  H20  -179.4  
264  H21  C21  C20  C19  -179.3  
265  H21  C21  C20  H20  0.6  
266  H19  C19  C18  C17  179.1  
267  H19  C19  C18  H18  -1  
268  C20  C19  C18  C17  -0.7(5)  
269  C20  C19  C18  H18  179.2  
270  H19  C19  C20  C21  -179.6  
271  H19  C19  C20  H20  0.5  
272  C18  C19  C20  C21  0.2(5)  
273  C18  C19  C20  H20  -179.7  
274  C35  C34  C40  Rh1  132.8(2)  
275  C35  C34  C40  H40  0.1  
276  C35  C34  C40  C41  -148.3(3)  
277  C39  C34  C40  Rh1  -47.5(4)  
278  C39  C34  C40  H40  179.8  
279  C39  C34  C40  C41  31.4(5)  
280  C40  C34  C35  H35  0.6  
281  C40  C34  C35  C36  -179.3(3)  
282  C39  C34  C35  H35  -179.1  
283  C39  C34  C35  C36  0.9(5)  
284  C40  C34  C39  H39  -0.5  
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285  C40  C34  C39  C38  179.5(3)  
286  C35  C34  C39  H39  179.2  
287  C35  C34  C39  C38  -0.9(4)  
288  Rh1  C40  C41  H41A  101.9  
289  Rh1  C40  C41  H41B  -78.1  
290  C34  C40  C41  Rh1  -101.9(3)  
291  C34  C40  C41  H41A  0  
292  C34  C40  C41  H41B  -179.9  
293  H40  C40  C41  Rh1  109.7  
294  H40  C40  C41  H41A  -148.4  
295  H40  C40  C41  H41B  31.6  
296  C34  C35  C36  H36  179.5  
297  C34  C35  C36  C37  -0.4(6)  
298  H35  C35  C36  H36  -0.5  
299  H35  C35  C36  C37  179.6  
300  C35  C36  C37  C38  -0.2(5)  
301  C35  C36  C37  H37  179.9  
302  H36  C36  C37  C38  179.9  
303  H36  C36  C37  H37  0  
304  C34  C39  C38  H38  -179.6  
305  C34  C39  C38  C37  0.3(5)  
306  H39  C39  C38  H38  0.4  
307  H39  C39  C38  C37  -179.8  
308  C39  C38  C37  C36  0.3(5)  
309  C39  C38  C37  H37  -179.8  
310  H38  C38  C37  C36  -179.9  
311  H38  C38  C37  H37  0  
312  H57  C57  C56  C55  -177.5  
313  H57  C57  C56  C59  0.7  
314  C52  C57  C56  C55  2.4(4)  
315  C52  C57  C56  C59  -179.3(2)  
316  H57  C57  C52  C53  177  
317  H57  C57  C52  B1  2.7  
318  C56  C57  C52  C53  -3.0(3)  
319  C56  C57  C52  B1  -177.2(2)  
320  C55  C54  C53  H53  -179.5  
321  C55  C54  C53  C52  0.5(3)  
322  C58  C54  C53  H53  4.8  
323  C58  C54  C53  C52  -175.2(2)  
324  C53  C54  C55  C56  -1.2(3)  
325  C53  C54  C55  H55  178.8  
326  C58  C54  C55  C56  174.5(2)  
327  C58  C54  C55  H55  -5.6  
328  C53  C54  C58  F20  -165.1(2)  
329  C53  C54  C58  F21  -42.5(3)  
330  C53  C54  C58  F19  76.0(3)  
331  C55  C54  C58  F20  19.1(3)  
332  C55  C54  C58  F21  141.8(2)  
333  C55  C54  C58  F19  -99.7(3)  
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334  C54  C53  C52  C57  1.5(3)  
335  C54  C53  C52  B1  175.9(2)  
336  H53  C53  C52  C57  -178.4  
337  H53  C53  C52  B1  -4.1  
338  C57  C56  C55  C54  -0.2(3)  
339  C57  C56  C55  H55  179.8  
340  C59  C56  C55  C54  -178.5(2)  
341  C59  C56  C55  H55  1.5  
342  C57  C56  C59  F24  36.4(3)  
343  C57  C56  C59  F22  -83.1(3)  
344  C57  C56  C59  F23  156.6(2)  
345  C55  C56  C59  F24  -145.2(2)  
346  C55  C56  C59  F22  95.2(3)  
347  C55  C56  C59  F23  -25.0(3)  
348  C57  C52  B1  C44  86.0(2)  
349  C57  C52  B1  C60  -152.5(2)  
350  C57  C52  B1  C68  -36.2(3)  
351  C53  C52  B1  C44  -87.9(2)  
352  C53  C52  B1  C60  33.6(3)  
353  C53  C52  B1  C68  149.9(2)  
354  C52  B1  C44  C49  -93.5(2)  
355  C52  B1  C44  C45  82.6(2)  
356  C60  B1  C44  C49  144.2(2)  
357  C60  B1  C44  C45  -39.7(3)  
358  C68  B1  C44  C49  30.5(3)  
359  C68  B1  C44  C45  -153.4(2)  
360  C52  B1  C60  C61  39.6(3)  
361  C52  B1  C60  C65  -147.3(2)  
362  C44  B1  C60  C61  158.0(2)  
363  C44  B1  C60  C65  -28.9(3)  
364  C68  B1  C60  C61  -83.2(2)  
365  C68  B1  C60  C65  89.9(2)  
366  C52  B1  C68  C73  163.9(2)  
367  C52  B1  C68  C69  -23.3(3)  
368  C44  B1  C68  C73  44.6(3)  
369  C44  B1  C68  C69  -142.5(2)  
370  C60  B1  C68  C73  -74.3(2)  
371  C60  B1  C68  C69  98.5(2)  
372  B1  C44  C49  H49  -2.9  
373  B1  C44  C49  C48  177.2(2)  
374  C45  C44  C49  H49  -179.2  
375  C45  C44  C49  C48  0.9(3)  
376  B1  C44  C45  H45  2.2  
377  B1  C44  C45  C46  -177.8(2)  
378  C49  C44  C45  H45  178.5  
379  C49  C44  C45  C46  -1.5(3)  
380  B1  C60  C61  C62  174.6(2)  
381  B1  C60  C61  H61  -5.3  
382  C65  C60  C61  C62  1.0(3)  
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383  C65  C60  C61  H61  -178.9  
384  B1  C60  C65  H65  5.7  
385  B1  C60  C65  C64  -174.2(2)  
386  C61  C60  C65  H65  179.2  
387  C61  C60  C65  C64  -0.8(3)  
388  B1  C68  C73  H73  -7  
389  B1  C68  C73  C72  173.0(2)  
390  C69  C68  C73  H73  179.7  
391  C69  C68  C73  C72  -0.4(3)  
392  B1  C68  C69  H69  6  
393  B1  C68  C69  C70  -174.0(2)  
394  C73  C68  C69  H69  179.1  
395  C73  C68  C69  C70  -0.9(3)  
396  C68  C73  C72  C71  1.2(4)  
397  C68  C73  C72  C75  179.6(2)  
398  H73  C73  C72  C71  -178.8  
399  H73  C73  C72  C75  -0.4  
400  C63  C62  C61  C60  -1.0(4)  
401  C63  C62  C61  H61  179  
402  C66  C62  C61  C60  176.7(2)  
403  C66  C62  C61  H61  -3.3  
404  C61  C62  C63  H63  -179.5  
405  C61  C62  C63  C64  0.5(4)  
406  C66  C62  C63  H63  2.8  
407  C66  C62  C63  C64  -177.2(3)  
408  C61  C62  C66  F15  128.1(3)  
409  C61  C62  C66  F13  -113.0(3)  
410  C61  C62  C66  F14  4.4(4)  
411  C63  C62  C66  F15  -54.1(3)  
412  C63  C62  C66  F13  64.8(3)  
413  C63  C62  C66  F14  -177.9(3)  
414  H71  C71  C72  C73  179.1  
415  H71  C71  C72  C75  0.8  
416  C70  C71  C72  C73  -0.8(4)  
417  C70  C71  C72  C75  -179.2(2)  
418  H71  C71  C70  C69  179.6  
419  H71  C71  C70  C74  -3.1  
420  C72  C71  C70  C69  -0.5(4)  
421  C72  C71  C70  C74  176.9(2)  
422  C68  C69  C70  C71  1.4(4)  
423  C68  C69  C70  C74  -175.9(2)  
424  H69  C69  C70  C71  -178.7  
425  H69  C69  C70  C74  4  
426  F1  C74  C70  C71  -78.3(6)  
427  F1  C74  C70  C69  99.1(6)  
428  F2  C74  C70  C71  165.6(6)  
429  F2  C74  C70  C69  -17.1(6)  
430  F3  C74  C70  C71  48.2(5)  
431  F3  C74  C70  C69  -134.4(5)  
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432  C73  C72  C75  F5  -62.7(3)  
433  C73  C72  C75  F4  177.7(2)  
434  C73  C72  C75  F6  56.2(3)  
435  C71  C72  C75  F5  115.7(3)  
436  C71  C72  C75  F4  -3.9(4)  
437  C71  C72  C75  F6  -125.5(3)  
438  C60  C65  C64  C63  0.4(4)  
439  C60  C65  C64  C67  178.7(3)  
440  H65  C65  C64  C63  -179.5  
441  H65  C65  C64  C67  -1.3  
442  C62  C63  C64  C65  -0.3(4)  
443  C62  C63  C64  C67  -178.5(3)  
444  H63  C63  C64  C65  179.7  
445  H63  C63  C64  C67  1.5  
446  C65  C64  C67  F18  35.3(7)  
447  C65  C64  C67  F16  -86.2(5)  
448  C65  C64  C67  F17  159.2(5)  
449  C63  C64  C67  F18  -146.4(6)  
450  C63  C64  C67  F16  92.1(5)  
451  C63  C64  C67  F17  -22.6(6)  
452  C44  C49  C48  C47  0.2(4)  
453  C44  C49  C48  C50  -179.2(2)  
454  H49  C49  C48  C47  -179.7  
455  H49  C49  C48  C50  0.9  
456  C44  C45  C46  C47  1.0(4)  
457  C44  C45  C46  C51  -176.9(2)  
458  H45  C45  C46  C47  -179  
459  H45  C45  C46  C51  3.1  
460  C49  C48  C47  C46  -0.7(4)  
461  C49  C48  C47  H47  179.3  
462  C50  C48  C47  C46  178.6(2)  
463  C50  C48  C47  H47  -1.4  
464  C49  C48  C50  F7  61.5(9)  
465  C49  C48  C50  F8  171.0(7)  
466  C49  C48  C50  F9  -65(1)  
467  C47  C48  C50  F7  -117.8(8)  
468  C47  C48  C50  F8  -8.4(8)  
469  C47  C48  C50  F9  115(1)  
470  C45  C46  C47  C48  0.1(4)  
471  C45  C46  C47  H47  -179.9  
472  C51  C46  C47  C48  178.0(2)  
473  C51  C46  C47  H47  -2  
474  C45  C46  C51  F10  -163.9(2)  
475  C45  C46  C51  F11  -45.2(3)  
476  C45  C46  C51  F12  74.8(3)  
477  C47  C46  C51  F10  18.1(4)  
478  C47  C46  C51  F11  136.8(2)  
479  C47  C46  C51  F12  -103.1(3)  
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PhCDC-Rh-styrene
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PhCDC-Rh-styrene
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APPENDIX 3: SUPPORTING INFORMATION FOR CHAPTER 3 
 

#  General: All reactions were carried out in flame or oven (140 °C) dried glassware that had 

been cooled under vacuum. Unless otherwise stated, all reactions were carried out under an inert 

N2 atmosphere. All reagents were purged or sparged with N2 for 20 min prior to distillation or 

use. All solid reagents were dried by azeotropic distillation with benzene three times prior to use. 

Infrared (IR) spectra were obtained using a Jasco 460 Plus Fourier transform infrared 

spectrometer or a ASI ReactIR 1000, Model: 001-1002 for air sensitive rhodium carbonyl 

complexes. Mass spectra were obtained using a Thermo LTqFT mass spectrometer with 

electrospray ionization and external calibration. All samples were prepared in MeOH, MeCN or 

CHCl3 for metal complexes. Proton and carbon magnetic resonance spectra (1H NMR and 13C 

NMR) were recorded on a Bruker model DRX 400 or a Bruker AVANCE III 600 CryoProbe (1H 

NMR at 400 MHz or 600 MHz, 13C NMR at 100 or 151 MHz, 31P NMR at 160 or 243 MHz and 

19F NMR at 376 or 564 MHz) spectrometer with solvent resonance as the internal standard (1H 

NMR: Chloroform-d at 7.26 ppm, CD2Cl2 at 5.32 ppm, CD3CN at 1.94 ppm; 13C NMR: 

Chloroform-d at 77.16 ppm, CD2Cl2 at 53.84 ppm, CD3CN at 1.32 ppm). NMR data are reported 

as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, dd = 

doublet of doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of doublet of 

doublets, m = multiplet, bs = broad singlet, bm = broad multiplet, etc.), and coupling constants 

(Hz). X-ray diffraction studies were conducted on a Bruker-AXS SMART APEXII 

diffractometer. Crystals were selected and mounted using Paratone oil on a MiteGen Mylar tip. 

 

#  Solvents: Solvents were purged with argon and purified under a positive pressure of dry argon 

by a SG Waters purification system: dichloromethane (EMD Millipore), diethyl ether (EMD 
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Millipore, hexanes (EMD Millipore), benzene (EMD Millipore), and THF (EMD Millipore) 

were passed through activated alumina columns. Chloroform – d1 and Dichloromethane – d2 

were purchased from Cambridge Isotope Labs, distilled over CaH2 and stored in a dry box over 

activated 4 Å molecular sieves. 

 

Section 3.2: Intermolecular Diene Hydroalkylation with 1,3-Diketo Nucleophiles 

# General Procedure for Intermolecular Hydroalkylation with 2,4-pentanedione 

Catalyzed by CDC-Rh-styrene 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with the PhCDC-Rh-styrene 

complex (8.1 mg, 0.005 mmol, 5 mol%), the appropriate Lewis acid activator (0.0025 mmol, 2.5 

mol%), and 1,3-phenylbutadiene (13.0 mg, 0.10 mmol). The reagents were solvated with the 

listed solvent and the reaction was sealed with a Teflon® lined septum cap before being allowed 

to stir at room temperature for 1 hour. Any additional additives were added before the vial was 

taped with electrical tape and the reactions brought outside the dry box. A vial of 2,4-

pentanedione (20.5 μL, 0.20 mmol) was sparged with N2 for a minimum of 10 minutes before 

being added via syringe. The reaction was allowed to warm to the appropriate temperature and 

stir for 18 h before being allowed to cool to room temperature and an aliquot was taken to 

determine the conversion by 1H NMR using DMF as an internal standard. The NMR sample was 

recovered and the solvent evaporated before the products were purified by SiO2 column 

chromatography. 
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PhCDC-Rh+-Styrene (5 mol %) 
LiPF6 (2.5 mol %)

PhMe (1.0 M), 50 °C, 18 h
Ph

+ Ph

Me
Me

O

Me

O

O Me
MeO

(2 equiv)
88% Yield  

Synthesis of (E)-3-(4-phenylbut-3-en-2-yl)pentane-2,4-dione 

Following the general procedure for CDC-Rh-styrene catalyzed intermolecular hydroalkylation, 

(E)-buta-1,3-dien-1-ylbenzene (13.0 mg, 0.10 mmol) was added to a solution of PhCDC-Rh-

styrene (8.1 mg, 0.0050 mmol, 5 mol%) and LiPF6 (0.4 mg, 0.0025 mmol, 2.5 mol%) in toluene 

(100 μL, [ ] = 1.0 M). The reaction was sealed and allowed to stir for 1 hour before being 

removed from the dry box. Outside the dry box N2 sparged 2,4-pentanedione (20.5 μL, 0.20 

mmol) was added via syringe under N2 and the reaction sealed and allowed to stir at 50 °C for 18 

h. The reaction was cooled and an aliquot taken to determine the conversion by 1H NMR using 

DMF as an internal standard. The NMR sample was recovered and the solution concentrated. 

The resulting oil was purified by SiO2 column chromatography (20:1 Hexanes/Et2O) to afford 3 

as a colorless oil.  

1H NMR (600 MHz, CDCl3) δ 7.33 – 7.27 (m, 4H), 7.24 – 7.20 (m, 1H), 6.44 (d, J = 15.8 Hz, 

1H), 5.99 (dd, J = 15.8, 8.6 Hz, 1H), 3.69 (d, J = 10.4 Hz, 1H), 3.25 – 3.16 (m, 1H), 2.23 (s, 3H), 

2.13 (s, 3H), 1.08 (d, J = 6.7 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 203.62, 203.53, 136.77, 

130.97, 130.95, 128.58, 127.59, 126.24, 75.65, 37.90, 30.04, 29.75, 18.88. 

 

PhCDC-Rh+-Styrene (5 mol %) 
LiPF6 (2.5 mol %)

PhMe (1.0 M), 50 °C, 18 h
Ph

+ Me

O

OMeO
(2 equiv)

Ph

Me

Me

O

O OMe
4

71% Yield
1.4:1 dr, 4.5:1 γ:α  

Synthesis of methyl (E)-2-acetyl-3-methyl-5-phenylpent-4-enoate 
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Following the general procedure for CDC-Rh-styrene catalyzed intermolecular hydroalkylation, 

(E)-buta-1,3-dien-1-ylbenzene (13.0 mg, 0.10 mmol) was added to a solution of PhCDC-Rh-

styrene (8.1 mg, 0.0050 mmol, 5 mol%) and LiPF6 (0.4 mg, 0.0025 mmol, 2.5 mol%) in toluene 

(100 μL, [ ] = 1.0 M). The reaction was sealed and allowed to stir for 1 hour before being 

removed from the dry box. Outside the dry box N2 sparged methyl 3-oxobutanoate (21.5 μL, 

0.20 mmol) was added via syringe under N2 and the reaction sealed and allowed to stir at 50 °C 

for 18 h. The reaction was cooled and an aliquot taken, which showed that methyl (E)-2-acetyl-

3-methyl-5-phenylpent-4-enoate (71% NMR yield, 1.4:1 dr, 4.5:1 γ:α isomer) was formed by 1H 

NMR using DMF as an internal standard. The NMR sample was recovered and the solution 

concentrated.  

 

PhCDC-Rh+-Styrene (5 mol %) 
LiPF6 (2.5 mol %)

Et2O (1.0 M), 80 °C, 18 h
Ph

+ OEt

O

OEtO
(2 equiv)

Ph

Me

OEt

O

O OEt
5

25% Yield  

Synthesis of diethyl (E)-2-(4-phenylbut-3-en-2-yl)malonate 

Following the general procedure for CDC-Rh-styrene catalyzed intermolecular hydroalkylation, 

(E)-buta-1,3-dien-1-ylbenzene (13.0 mg, 0.10 mmol) was added to a solution of PhCDC-Rh-

styrene (8.1 mg, 0.0050 mmol, 5 mol%) and LiPF6 (0.8 mg, 0.005 mmol, 5.0 mol%) in diethyl 

ether (100 μL, [ ] = 1.0 M). The reaction was sealed and allowed to stir for 1 hour before being 

removed from the dry box. Outside the dry box N2 sparged diethyl malonate (31 μL, 0.20 mmol) 

was added via syringe under N2 and the reaction sealed and allowed to stir at 80 °C for 18 h. The 

reaction was cooled and an aliquot taken, which showed that diethyl (E)-2-(4-phenylbut-3-en-2-
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yl)malonate (25% NMR yield) was formed by 1H NMR using DMF as an internal standard. The 

NMR sample was recovered and the solution concentrated.   

 

Ph

Me

O

O

O

O
6

0% Yield

Me
Me

PhCDC-Rh+-Styrene (5 mol %) 
LiPF6 (2.5 mol %)

PhMe (1.0 M), 50 °C, 18 h
Ph

+ O

O

OO
(2 equiv)

Me
Me

 

Synthesis of (E)-2,2-dimethyl-5-(4-phenylbut-3-en-2-yl)-1,3-dioxane-4,6-dione 

Following the general procedure for CDC-Rh-styrene catalyzed intermolecular hydroalkylation, 

(E)-buta-1,3-dien-1-ylbenzene (13.0 mg, 0.10 mmol) was added to a solution of PhCDC-Rh-

styrene (8.1 mg, 0.0050 mmol, 5 mol%) and LiPF6 (0.4 mg, 0.0025 mmol, 2.5 mol%) in toluene 

(100 μL, [ ] = 1.0 M). The reaction was sealed and allowed to stir for 1 hour before being 

removed from the dry box. Outside the dry box N2 sparged 2,2-dimethyl-1,3-dioxane-4,6-dione 

(28.8 mg, 0.20 mmol) was added via syringe under N2 and the reaction sealed and allowed to stir 

at 50 °C for 18 h. The reaction was cooled and an aliquot taken to determine the conversion by 

1H NMR (0% NMR yield) using DMF as an internal standard.  
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Section 3.3: Diastereoselective Synthesis of Vicinal Tertiary and N-Substituted Quaternary 

Stereogenic Centers via Intermolecular Diene Hydroalkylation  

# Reagents:   

(R)-(+)-1,1’-Bi(2-napthol) was purchased from Chem Impex, dried by azeotropic distillation 

with benzene, stored in a dry box and used without further purification. 

Chloro(1,5-cyclooctadiene)rhodium(I) dimer was purchased from Pressure Chemicals, stored 

in a dry box and used as received. 

(S,S)-1,2-Diphenylethylenediamine was purchased from Ivy Chemicals, dried by azeotropic 

distillation with benzene, stored in a dry box and used without further purification. 

Hexamethyldisiloxane was purchased from Sigma Aldrich, stored over 4Å molecular sieves, 

and used without further purification. 

(S,S)-Hydrobenzoin was purchased from Sigma Aldrich, dried by azeotropic distillation with 

benzene, stored in a dry box and used without further purification. 

Isopropanol was purchased from Fischer Scientific, distilled over CaH2, stored in a flask over 

4Å molecular sieves and sparged with N2 before use. 

Lithium tetrafluoroborate was purchased from Sigma Aldrich, stored in the dry box after 

overnight heating over P2O5 under vacuum and used without further purification. 

Lithium hexafluorophosphate was purchased from Sigma Aldrich, stored in the dry box and 

used as received. 

Lithium tetrakis(pentafluorophenyl)borate - ethyl ether complex was purchased from 

Boulder Scientific, stored in a dry box, and used as received. 

m-Chloroperoxybenzoic acid was purchased from Alfa-Aesar as 50-55% purity by weight and 

used as received without further pufication. 
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Methanol was purchased from Fischer Scientific, distilled over CaH2, stored in a flask over 4Å 

molecular sieves and sparged with N2 before use. 

Menthol was purchased from Sigma Aldrich, dried by azeotropic distillation with benzene, 

stored in a dry box and used without further purification.  

Potassium carbonate was purchased from Fischer Scientific and used as received. 

Silver chloride was purchased from Strem, stored in a dry box, and used without further 

purification. 

Silver tetrafluoroborate was purchased from Strem, stored in a dry box, and used without 

further purification. 

Sodium methoxide was purchased from Strem, stored in a dry box, and used without further 

purification. 

Styrene was purchased from Alfa Aesar, distilled over CaH2, and stored at – 20 oC in a dry box. 

t-Butanol was purchased from Sigma Aldrich, distilled over CaH2, stored in a flask over 4Å 

molecular sieves and melted before use. 

 

The following substrates were prepared according to literature method or a modified literature 

method and matched reported characterization data: (E)-phenyl-1,3-butadiene,125 (E)/(Z)-2-

methyl-phenyl-1,3-butadiene,126 (E)/(Z)-3-methyl-phenyl-1,3-butadiene,126 (E)/(Z)-4-methyl-

phenyl-1,3-butadiene,126 (E)/(Z)-1-buta-1,3-dien-1-ylcylohexane,126 (E)-4-methoxy-phenyl-1,3-

butadiene,126 (E)/(Z)-2-nitro-phenyl-1,3-butadiene,126 (E)/(Z)-4-chloro-phenyl-1,3-butadiene,127 

(E)/(Z)-4-fluoro-phenyl-1,3-butadiene,127 (E)-2-(buta-1,3-dien-1-yl)furan,126 (E)-tert-butyl(hexa-

3,5-dien-1-yloxy)dimethylsilane,128 (E)-dodeca-1,3-diene,129 4-methyl-2-phenyloxazol-5(4H)-

one,130 2-phenyl-4-propyloxazol-5(4H)-one,131 4-isobutyl-2-phenyloxazol-5(4H)-one,132 4-
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phenethyl-2-phenyloxazol-5(4H)-one,131 4-allyl-2-phenyloxazol-5(4H)-one,133 2-(4-

chlorophenyl)-4-methyloxazol-5(4H)-one,130 sodium tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate,134 complex PhCDC-Rh-Cl,1 complex PhCDC-Rh-styrene,135 

and (R,R)-TADDOL-P(O)OH136.  

 

# General procedure for the (CDC)-Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones in Tables 3.3.2-1, 3.3.2-2, 3.3.2-3, 3.3.3-1, 3.3.4-1: 

In a N2 filled glove box, an 8 mL reaction vial with a stir bar was charged with (CDC)-

Rh(I)styrene BArF
4, the appropriate additive and the listed diene. The appropriate solvent was 

added by syringe, the reaction vial capped with a Teflon® lined septum cap and the reaction 

allowed to stir at 22 °C for 10 minutes. The cap was removed and the nucleophile was added 

directly to the solution as a solid or as a liquid via syringe. The reaction was resealed with the 

septum cap, the lid secured with electrical tape to ensure a tight seal, and the reaction removed 

from the glove box. Outside the glove box, a vial of alcohol was sparged for 10 minutes with N2 

and added to the reaction via syringe under an atmosphere of N2. The reaction was allowed to stir 

at the appropriate temperature for the listed time before being cooled to room temperature, 

unsealed, and 5 µL of hexamethyldisiloxane added as an internal standard. The solution was 

diluted with CDCl3 and analyzed by NMR spectroscopy to determine the conversion and 

diastereoselectivity. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo before being purified by SiO2 gel chromatography. Products eluted with 

similar retention times in the following order: 1) the 1,4-addition products, 2) the anti-1,2-

addition products, and 3) the syn-1,2-addition products. 
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8  

Synthesis of 4-methyl-2-phenyl-4-(E-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (8). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and 

phenylbutadiene (13.0 mg, 0.100 mmol) were combined in the glove box, solvated with toluene 

(200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-methyl-2-

phenyloxazol-5(4H)-one (26.3 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 18 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 19:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (20:1 

Hex/Et2O) to afford 8 (26.0 mg, 0.085 mmol, 85% yield, >20:1 dr) as a colorless oil.  

1H NMR (600 MHz, CDCl3) δ 8.06 – 8.02 (m, 2H), 7.61 – 7.55 (m, 1H), 7.51-7.48 (m, 2H), 7.40 

(d, J = 7.3 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.23 (t, J = 7.3 Hz, 1H), 6.53 (d, J = 15.9 Hz, 1H), 

6.25 (dd, J = 15.9, 9.3 Hz, 1H), 2.80 (dq, J = 13.7, 6.9 Hz, 1H), 1.50 (s, 3H), 1.05 (d, J = 6.8 Hz, 

3H). 13C NMR (151 MHz, CDCl3) δ 181.0, 160.1, 137.0, 132.8, 132.7, 129.3, 128.8, 128.5, 

128.0, 127.5, 126.4, 125.9, 72.5, 45.1, 22.7, 15.8. IR (ν/cm-1): 3060 (w), 3028 (w), 2973 (m), 

2930 (m), 2872 (w), 1821 (s), 1654 (s), 1494 (w), 1450 (m), 1320 (w), 1291 (m), 1173 (m), 1001 

(s), 969 (w), 889 (m). HRMS (ES+) [M–H]+ calcd for C20H20NO2
+ 306.1489, found: 306.1488. 
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12

 

Synthesis of 4-(E-4-(4-chlorophenyl)but-3-en-2-yl)-4-methyl-2-phenyloxazol-5(4H)-one (12). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and p-

chloro-phenylbutadiene (16.5 mg, 0.100 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-methyl-

2-phenyloxazol-5(4H)-one (26.3 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 18 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 19:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (20:1 

Hex/Et2O) to afford 12 (22.8 mg, 0.067 mmol, 67% yield, 19:1 dr) as a colorless oil. The product 

was isolated with less than 5% of the inseparable 1,4-addition product.  

1H NMR (600 MHz, CDCl3) δ 8.05 – 8.02 (m, 2H), 7.61 – 7.56 (m, 1H), 7.50 (t, J = 7.8 Hz, 2H), 

7.32 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 6.49 (d, J = 15.9 Hz, 1H), 6.22 (dd, J = 15.9, 

9.3 Hz, 1H), 2.79 (dq, J = 13.7, 6.8 Hz, 1H), 1.49 (s, 3H), 1.05 (d, J = 6.8 Hz, 3H). 13C NMR 

(151 MHz, CDCl3) δ 180.9, 160.4, 135.6, 132.9, 131.7, 130.2, 129.0, 128.8, 128.2, 127.7, 125.9, 

72.5, 45.1, 22.8, 15.9. IR (ν/cm-1): 2972 (m), 2930 (m), 1820 (s), 1654 (s), 1492 (m), 1451 (m), 

1320 (w), 1291 (m), 1173 (m), 1091 (m), 1001 (s), 971 (w), 890 (m). HRMS (ES+) [M–H]+ 

calcd for C20H19ClNO2
+ 340.1099, found: 340.1099. 
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13

 

Synthesis of 4-(E-4-(4-fluorophenyl)but-3-en-2-yl)-4-methyl-2-phenyloxazol-5(4H)-one (13). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and p-

fluoro-phenylbutadiene (29.6 mg, 0.200 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-methyl-

2-phenyloxazol-5(4H)-one (17.5 mg, 0.100 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 9:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (20:1 

Hex/Et2O) to afford 13 (22.6 mg, 0.070 mmol, 70% yield, 6:1 dr) as a colorless oil. The product 

was isolated with less than 5% of the inseparable 1,4-addition product.   

1H NMR (600 MHz, CDCl3) δ 8.05 – 8.01 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 

2H), 7.36 (dd, J = 8.6, 5.5 Hz, 2H), 7.00 (t, J = 8.6 Hz, 2H), 6.49 (d, J = 15.9 Hz, 1H), 6.16 (dd, J 

= 15.9, 9.3 Hz, 1H), 2.79 (td, J = 13.7, 6.8 Hz, 1H), 1.50 (s, 3H), 1.04 (d, J = 6.8 Hz, 3H). 13C 

NMR (151 MHz, CDCl3) δ 180.9, 160.2, 132.7, 131.6 129.0, 128.8, 128.0, 127.9, 127.8, 126.4, 

125.9, 115.4 (d, J = 21.5 Hz) 72.4, 45.0, 22.7, 15.8. IR (ν/cm-1): 2974 (m), 2930 (m), 1821 (s), 
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1783 (m), 1654 (s), 1603 (w), 1508 (s), 1451 (m), 1291 (m), 1229 (m), 1158 (m), 1001 (s), 970 

(w), 890 (m), 819 (m). HRMS (ES+) [M–H]+ calcd for C20H19FNO2
+ 324.1394, found: 324.1395. 
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Synthesis of 4-(E-4-(4-nitrophenyl)but-3-en-2-yl)-4-methyl-2-phenyloxazol-5(4H)-one (7). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and p-nitro-

phenylbutadiene (17.5 mg, 0.100 mmol) were combined in the glove box, solvated with toluene 

(200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-methyl-2-

phenyloxazol-5(4H)-one (26.3 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 18 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 8:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (20:1 

Hex/Et2O) to afford 14 (16.8 mg, 0.048 mmol, 48% yield, 8:1 dr) as a light yellow oil.  

1H NMR (500 MHz, CDCl3) δ 8.18 (d, J = 8.8 Hz, 2H), 8.06 – 8.01 (m, 2H), 7.60 (t, J = 7.4 Hz, 

1H), 7.54 – 7.48 (m, 4H), 6.61 (d, J = 15.9 Hz, 1H), 6.46 (dd, J = 15.9, 9.2 Hz, 1H), 2.86 (dq, J = 

13.7, 6.8 Hz, 1H), 1.51 (s, 3H), 1.08 (d, J = 6.8 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 180.6, 

160.6, 147.1, 143.5, 134.7, 133.0, 131.1, 129.0, 128.2, 127.1, 125.9, 124.2, 72.3, 45.2, 22.8, 15.7. 

IR (ν/cm-1): 3062 (w), 2975 (m), 2932 (m), 2851 (w), 1822 (s), 1653 (s), 1596 (m), 1519 (s), 
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1456 (m), 1342 (s), 1290 (w), 1174 (m), 1002 (m), 891 (m). HRMS (ES+) [M–H]+ calcd for 

C20H19N2O4
+ 351.1339, found: 351.1338. 
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Synthesis of 4-(E-4-(4-methoxyphenyl)but-3-en-2-yl)-4-methyl-2-phenyloxazol-5(4H)-one 

(15). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and p-

methoxy-phenylbutadiene (16.0 mg, 0.100 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-methyl-

2-phenyloxazol-5(4H)-one (26.3 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 18 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 4:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (20:1 

Hex/Et2O) to afford 15 (19.4 mg, 0.058 mmol, 58% yield, 7:1 dr) as a colorless oil.  

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 8.03 (d, J = 7.2 Hz, 2H), 7.58 (t, J 

= 7.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 6.47 (d, 

J = 15.8 Hz, 1H), 6.09 (dd, J = 15.8, 9.3 Hz, 1H), 3.80 (s, 3H), 2.82 – 2.72 (m, 1H), 1.49 (s, 3H), 

1.03 (d, J = 6.8 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 181.1, 160.1, 159.1, 132.7, 132.2, 



	   507	  

129.8, 128.8, 128.0, 127.5, 127.0, 125.9, 113.9, 72.5, 55.3, 45.1, 22.7, 15.9.] syn-Diastereomer 

(minor): [1H NMR (600 MHz, CDCl3) δ 8.01 (d, J = 7.2 Hz, 2H), 7.59 – 7.53 (m, 1H), 7.38 (t, J 

= 7.2 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 6.82 (d, J = 8.7 Hz, 2H), 6.28 (d, J = 15.9 Hz, 1H), 5.73 

(dd, J = 16.0, 8.4 Hz, 1H), 3.80 (s, J = 6.8 Hz, 3H), 3.12 – 3.07 (m, 1H), 2.22 (s, 3H), 1.07 (d, J = 

6.9 Hz, 3H).] IR (ν/cm-1): 3062 (w), 3033 (w), 2972 (m), 2933 (m), 2836 (m), 1820 (s), 1782 

(m), 1654 (s), 1607 (m), 1511 (s), 1450 (m), 1297 (m), 1250 (s), 1175 (m), 1033 (m), 1001 (s), 

969 (m), 889 (m). HRMS (ES+) [M–H]+ calcd for C21H22NO3
+ 336.1594, found: 336.1593. 

 

16
 

Synthesis of 4-methyl-2-phenyl-4-(E-4-(o-tolyl)but-3-en-2-yl)oxazol-5(4H)-one (16). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and o-

methyl-phenylbutadiene (14.4 mg, 0.100 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-methyl-

2-phenyloxazol-5(4H)-one (26.3 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 18 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a >20:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (20:1 

Hex/Et2O) to afford 16 (18.8 mg, 0.059 mmol, 59% yield, >20:1 dr) as a colorless oil.  
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1H NMR (400 MHz, CDCl3) δ 8.04 – 8.02 (m, 2H), 7.62 – 7.53 (m, 1H), 7.51 – 7.47 (m, 2H), 

7.46 – 7.39 (m, 1H), 7.20 – 7.04 (m, 3H), 6.74 (d, J = 15.7 Hz, 1H), 6.08 (dd, J = 15.7, 9.3 Hz, 

1H), 2.83 (dq, J = 13.7, 6.9 Hz, 1H), 2.32 (s, 3H), 1.52 (s, 3H), 1.09 (d, J = 6.8 Hz, 3H). 13C 

NMR (100 MHz, CDCl3) δ 181.0, 160.2, 136.4, 135.4, 132.8, 131.0, 130.9, 130.3, 128.9, 128.1, 

127.6, 126.2, 126.1, 126.0, 72.5, 45.4, 22.8, 19.9, 15.9. IR (ν/cm-1): 3062 (w), 3022 (w), 2973 

(m), 2930 (m), 2872 (w), 1821 (s), 1653 (s), 1451 (m), 1320 (w), 1291 (m), 1173 (m), 1001 (s), 

970 (w), 889 (m). HRMS (ES+) [M–H]+ calcd for C21H22NO2
+ 320.1645, found: 320.1645. 

 

17

 

Synthesis of 4-methyl-2-phenyl-4-(E-4-(m-tolyl)but-3-en-2-yl)oxazol-5(4H)-one (17). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and m-

methyl-phenylbutadiene (14.4 mg, 0.100 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-methyl-

2-phenyloxazol-5(4H)-one (26.3 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 18 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a >20:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (20:1 

Hex/Et2O) to afford 17 (21.1 mg, 0.066 mmol, 66% yield, 20:1 dr) as a colorless oil.  
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1H NMR (600 MHz, CDCl3) δ 8.07 – 7.98 (m, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 

2H), 7.23-7.20 (m, 3H), 7.05 – 7.04 (m, 1H), 6.50 (d, J = 15.8 Hz, 1H), 6.23 (dd, J = 15.8, 9.3 

Hz, 1H), 2.81 – 2.77 (m, 1H), 2.35 (s, 3H), 1.50 (s, 3H), 1.04 (d, J = 6.8 Hz, 3H). 13C NMR (151 

MHz, CDCl3) δ 181.0, 160.1, 138.1, 136.9, 132.9, 132.7, 129.1, 128.8, 128.4, 128.3, 128.0, 

127.0, 125.9, 123.61, 72.5, 45.1, 22.7, 21.4, 15.9. IR (ν/cm-1): 3060 (w), 3030 (m), 2974 (m), 

2930 (m), 2872 (w), 1821 (s), 1653 (s), 1494 (m), 1451 (m), 1375 (m), 1292 (m), 1174 (m), 1093 

(m), 1001 (s), 970 (w), 888 (s). HRMS (ES+) [M–H]+ calcd for C21H22NO2
+ 320.1645, found: 

320.1644. 

 

18

 

Synthesis of 4-methyl-2-phenyl-4-(E-4-(p-tolyl)but-3-en-2-yl)oxazol-5(4H)-one (18). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and p-

methyl-phenylbutadiene (28.8 mg, 0.200 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-methyl-

2-phenyloxazol-5(4H)-one (17.5 mg, 0.100 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 6:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (20:1 
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Hex/Et2O) to afford 18 (28.4 mg, 0.089 mmol, 89% yield, 6:1 dr) as a colorless oil. The product 

was isolated with 5% of the inseparable 1,4-addition product. 

anti-Diastereomer (major): [1H NMR (500 MHz, CDCl3) δ 8.05 – 8.02 (m, 2H), 7.59 – 7.56 

(m, 1H), 7.51 – 7.48 (m, 2H), 7.29 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 6.50 (d, J = 15.8 

Hz, 1H), 6.18 (dd, J = 15.8, 9.3 Hz, 1H), 2.83 – 2.72 (m, 1H), 2.33 (m, 3H), 1.49 (s, 3H), 1.03 (d, 

J = 6.8 Hz, 3H).] syn-Diastereomer (minor): [1H NMR (500 MHz, CDCl3) δ 7.55 (d, J = 7.1 

Hz, 2H), 7.41 – 7.32 (m, 3H), 7.17 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 7.9 Hz, 2H), 6.30 (d, J = 15.9 

Hz, 1H), 5.82 (dd, J = 15.9, 8.4 Hz, 1H), 3.15 – 3.06 (m, 1H), 2.32 (s, 3H), 2.22 (s, 3H), 1.07 (d, 

J = 6.9 Hz, 3H).] 13C NMR (151 MHz, CDCl3) δ 181.2, 165.6, 160.2, 159.9, 137.7, 137.6, 137.5, 

134.3, 134.2, 134.0, 132.8, 132.8, 129.4, 129.4, 128.9, 128.8, 128.4, 128.3, 128.1, 126.5, 126.4, 

126.3, 126.2, 126.1, 109.3, 72.6, 47.0, 45.3, 22.8, 21.3, 16.0, 15.3, 14.0. IR (ν/cm-1): 3026 (w), 

2974 (m), 2930 (m), 2873 (w), 1820 (s), 1783 (m), 1653 (s), 1513 (m), 1451 (m), 1291 (m), 1173 

(m), 1001 (s), 971 (m), 889 (m). HRMS (ES+) [M–H]+ calcd for C21H22NO2
+ 320.1645, found: 

320.1646. 

 

19

 

Synthesis of 4-(E-4-(furan-2-yl)but-3-en-2-yl)-4-methyl-2-phenyloxazol-5(4H)-one (19). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and 2-

(buta-1,3-dien-1-yl)furan (24.0 mg, 0.200 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-methyl-

2-phenyloxazol-5(4H)-one (17.5 mg, 0.100 mmol) was added. The reaction was sealed with a 
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Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 9:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (20:1 

Hex/Et2O) to afford 19 (26.9 mg, 0.091 mmol, 91% yield, 9:1 dr) as a colorless oil.  

1H NMR (600 MHz, CDCl3) δ 8.07 – 8.01 (m, 2H), 7.61 – 7.56 (m, 1H), 7.53 – 7.46 (m, 2H), 

7.38 – 7.32 (m, 1H), 6.39 – 6.33 (m, 2H), 6.23 (d, J = 3.3 Hz, 1H), 6.20 (dd, J = 16.0, 9.4 Hz, 

1H), 2.77 – 2.72 (m, 1H), 1.50 (s, 3H), 1.03 (d, J = 6.8 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 

181.1, 160.3, 152.6, 142.0, 132.8, 128.9, 128.2, 128.2, 126.0, 121.3, 111.4, 107.7, 72.6, 44.9, 

22.8, 15.9. IR (ν/cm-1): 3062 (w), 2976 (m), 2933 (w), 2874 (w), 1820 (s), 1655 (s), 1451 (m), 

1291 (m), 1173 (m), 1002 (s), 887 (m). HRMS (ES+) [M–H]+ calcd for C18H19NO3
+ 296.1287, 

found: 296.1282. 

 

21

 

Synthesis of 4-(E-dodec-3-en-2-yl)-4-methyl-2-phenyloxazol-5(4H)-one (21). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and 1,3-

dodecadiene (33.3 mg, 0.200 mmol) were combined in the glove box, solvated with toluene (200 

µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-methyl-2-

phenyloxazol-5(4H)-one (17.5 mg, 0.100 mmol) was added. The reaction was sealed with a 
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Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 12:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (100% 

Hex to 20:1 Hex/Et2O) to afford 21 (22.5 mg, 0.066 mmol, 66% yield, 12:1 dr) as a colorless oil.  

1H NMR (600 MHz, CDCl3) δ 8.05 – 8.00 (m, 2H), 7.61 – 7.54 (m, 1H), 7.50 – 7.47 (m, 2H), 

5.58 (dt, J = 13.8, 7.9 Hz, 1H), 5.40 (dd, J = 15.3, 9.1 Hz, 1H), 2.58 (dq, J = 13.8, 6.9 Hz, 1H), 

2.02 – 1.99 (m, 2H), 1.47 (s, 3H), 1.34 – 1.17 (m, 12H), 0.98 (d, J = 6.9 Hz, 3H), 0.88 (t, J = 7.1 

Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 181.0, 159.8, 134.4, 132.6, 129.0, 128.7, 127.9, 126.0, 

72.3, 44.6, 32.6, 31.9, 29.4, 29.4, 29.3, 29.1, 22.7, 22.4, 15.6, 14.1. IR (ν/cm-1): 3063 (w), 3033 

(w), 2957 (w), 2926 (s), 2854 (m), 1822 (s), 1654 (s), 1452 (m), 1321 (w), 1292 (m), 1175 (m), 

1000 (s), 972 (w), 886 (m). HRMS (ES+) [M–H]+ calcd for C22H32NO2
+ 342.2428, found: 

342.2428. 

 

22

 

Synthesis of 4-(E-4-cyclohexylbut-3-en-2-yl)-4-methyl-2-phenyloxazol-5(4H)-one (22). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and 

cyclohexylbutadiene (27.2 mg, 0.200 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-methyl-
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2-phenyloxazol-5(4H)-one (17.5 mg, 0.100 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 3:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (100% 

Hex to 20:1 Hex/Et2O) to afford 22 (13.3 mg, 0.043 mmol, 43% yield, 6:1 dr) as a colorless oil. 

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 8.00 – 7.98 (m, 2H), 7.58 – 7.54 

(m, 1H), 7.50 – 7.45 (m, 2H), 5.51 (dd, J = 15.0, 6.9 Hz, 1H), 5.33 (ddd, J = 15.4, 9.1, 1.1 Hz, 

1H), 2.57 – 2.51 (m, 1H), 1.95 – 1.90 (m, 1H), 1.67 – 1.56 (m, 6H), 1.45 (s, 3H), 1.28 – 1.13 (m, 

2H), 1.07 – 0.98 (m, 2H), 0.96 (d, J = 6.8 Hz, 3H).  13C NMR (151 MHz, CDCl3) δ 181.2, 159.9, 

140.4, 132.7, 128.9, 128.1, 128.0, 126.6, 126.2, 72.5, 44.8, 40.8, 33.2, 33.1, 26.3, 26.1, 22.4, 

15.8.] syn-Diastereomer (minor): [1H NMR (600 MHz, CDCl3) δ 8.01 – 7.98 (m, 2H), 7.58 – 

7.54 (m, 1H), 7.50 – 7.46 (m, 2H), 5.48 (dd, J = 14.5, 6.9 Hz, 1H), 5.23 (ddd, J = 15.4, 9.0, 1.1 

Hz, 1H), 2.57 – 2.51 (m, 1H), 1.88 – 1.81 (m, 1H), 1.69 – 1.54 (m, 6H), 1.47 (s, 3H), 1.27 – 1.13 

(m, 2H), 1.11 (d, J = 6.9 Hz, 3H), 1.09 – 0.98 (m, 2H). 13C NMR (151 MHz, CDCl3) δ 180.7, 

159.9, 140.1, 132.7, 128.9, 128.1, 128.0, 126.4, 126.2, 73.1, 44.5, 40.6, 33.2, 33.0, 26.2, 26.0, 

22.1, 15.1.] IR (ν/cm-1): 2973 (w), 2925 (s), 2851 (m), 1822 (s), 1653 (s), 1508 (s), 1457 (m), 

1291 (m), 1228 (m), 1158 (m), 1001 (s), 890 (m). HRMS (ES+) [M–H]+ calcd for C20H25NO2
+ 

312.1964, found: 312.1958. 
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23

 

Synthesis of 4-(E-6-((tert-butyldimethylsilyl)oxy)hex-3-en-2-yl)-4-methyl-2-phenyloxazol-

5(4H)-one (23). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and tert-

butyl(hexa-3,5-dien-1-yloxy)dimethylsilane (42.5 mg, 0.200 mmol) were combined in the glove 

box, solvated with toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this 

solution, 4-methyl-2-phenyloxazol-5(4H)-one (17.5 mg, 0.100 mmol) was added. The reaction 

was sealed with a Teflon® septum cap and removed from the glove box. Outside the glove box, 

N2 sparged isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The 

reaction was cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal 

standard. The reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 4:1 

mixture of the anti:syn diastereomers. The NMR sample was recombined with the reaction and 

the solvents removed in vacuo. The resulting oil was purified by SiO2 gel column 

chromatography (100% Hex to 20:1 Hex/Et2O) to afford 23 (26.4 mg, 0.068 mmol, 68% yield, 

4:1 dr) as a colorless oil. 

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 8.02 – 7.99 (m, 2H), 7.60 – 7.53 

(m, 1H), 7.51 – 7.46 (m, 2H), 5.64 – 5.56 (m, 1H), 5.48 (dd, J = 15.4, 9.0 Hz, 1H), 3.58 (t, J = 

6.8 Hz, 2H), 2.68 – 2.50 (m, 1H), 2.30 – 2.20 (m, 2H), 1.46 (s, 3H), 0.96 (d, J = 6.9 Hz, 3H), 

0.88 (s, 9H), 0.03 (s, 6H). 13C NMR (151 MHz, CDCl3) δ 181.2, 160.0, 132.8, 131.2, 130.6, 

128.9, 128.1, 126.1, 72.4, 63.1, 44.8, 36.3, 26.1, 22.6, 18.5, 15.8, -5.1.] syn-Diastereomer 

(minor): [1H NMR (600 MHz, CDCl3) δ 8.01 – 7.98 (m, 2H), 7.60 – 7.53 (m, 1H), 7.51 – 7.46 
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(m, 2H), 5.61 – 5.53 (m, 1H), 5.38 (dd, J = 15.4, 9.0 Hz, 1H), 3.56 – 3.52 (m, 2H), 2.68 – 2.50 

(m, 1H), 2.19 – 2.15 (m, 2H), 1.48 (s, 3H), 1.11 (d, J = 6.9 Hz, 3H), 0.85 (s, 9H), 0.00 (s, 3H), 

0.00 (s, 3H).] IR (ν/cm-1): 2954 (m), 2929 (s), 2857 (m), 1823 (s), 1653 (s), 1452 (m), 1292 (m), 

1255 (m), 1174 (m), 1099 (s), 1002 (s), 886 (m). HRMS (ES+) [M–H]+ calcd for C22H34NO3Si
+ 

388.2308, found: 388.2302. 

 

24
 

Synthesis of 4-(E-4-(furan-2-yl)but-3-en-2-yl)-2-phenyl-4-propyloxazol-5(4H)-one (24). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and 2-

(buta-1,3-dien-1-yl)furan (12.0 mg, 0.100 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 2-phenyl-4-

propyloxazol-5(4H)-one (30.5 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 6:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (40:1 

Hex/Et2O) to afford 24 (28.8 mg, 0.089 mmol, 89% yield, 6:1 dr) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 8.05 – 8.03 (m, 2H), 7.60 – 7.56 (m, 1H), 7.52 – 7.48 (m, 2H), 

7.34 (d, J = 1.5 Hz, 1H), 6.37 (dd, J = 3.3, 1.8 Hz, 1H), 6.34 (d, J = 15.9 Hz, 1H), 6.24 – 6.18 (m, 



	   516	  

2H), 2.76 (dq, J = 9.1, 6.8 Hz, 1H), 2.00 – 1.92 (m, 1H), 1.84 – 1.76 (m, 1H), 1.27 – 1.16 (m, 

1H), 1.16 – 1.07 (m, 1H), 1.01 (d, J = 6.8 Hz, 3H), 0.86 (t, J = 7.3 Hz, 3H). 13C NMR (151 MHz, 

CDCl3) δ 180.7, 160.4, 152.6, 141.9, 132.8, 128.9, 128.5, 128.2, 125.9, 120.9, 111.4, 107.6, 76.9, 

44.7, 38.3, 17.4, 16.0, 14.0. IR (ν/cm-1): 3446 (br, w), 2964 (s), 2933 (m), 2874 (m), 1811 (s), 

1653 (s), 1493 (m), 1452 (m), 1320 (m), 1293 (m), 1163 (m), 1020 (m), 944 (m), 883 (m). 

HRMS (ES+) [M–H]+ calcd for C20H22NO3
+ 324.1600, found: 324.1610. 

 

25  

Synthesis of 4-(E-dodec-3-en-2-yl)-2-phenyl-4-propyloxazol-5(4H)-one (25). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and 1,3-

dodecadiene (16.6 mg, 0.100 mmol) were combined in the glove box, solvated with toluene (200 

µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 2-phenyl-4-

propyloxazol-5(4H)-one (30.5 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 7:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (100% 

Hex to 40:1 Hex/Et2O) to afford 25 (20.3 mg, 0.055 mmol, 55% yield, 7:1 dr) as a colorless oil. 
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1H NMR (600 MHz, CDCl3) δ 8.04 – 7.98 (m, 2H), 7.61 – 7.53 (m, 1H), 7.50 – 7.47 (m, J = 7.5, 

4.1, 2.5 Hz, 2H), 5.59 – 5.50 (m, 1H), 5.42 – 5.37 (m, 1H), 2.65 – 2.53 (m, 1H), 2.02 – 1.98 (m, 

2H), 1.95 – 1.88 (m, 1H), 1.78 (ddd, J = 13.7, 12.1, 4.8 Hz, 1H), 1.35 – 1.16 (m, 13H), 1.17 – 

1.05 (m, 1H), 0.95 (d, J = 6.9 Hz, 3H), 0.87 (t, J = 7.2 Hz, 6H). 13C NMR (151 MHz, CDCl3) δ 

180.8, 160.1, 134.1, 132.7, 129.4, 128.9, 128.1, 126.1, 76.7, 44.5, 38.1, 32.7, 32.0, 29.6, 29.5, 

29.4, 29.3, 22.8, 17.5, 15.9, 14.3, 14.1. IR (ν/cm-1): 2960 (m), 2926 (s), 2873 (w), 2854 (m), 

1812 (s), 1654 (s), 1452 (m), 1321 (m), 1293 (m), 1165 (w), 1040 (m), 1020 (m), 942 (m), 881 

(m). HRMS (ES+) [M–H]+ calcd for C24H36NO2
+ 370.2746, found: 370.2751. 

 

26
 

Synthesis of 2-phenyl-4-propyl-4-(E-4-(o-tolyl)but-3-en-2-yl)oxazol-5(4H)-one (26). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and o-

methyl-phenylbutadiene (14.4 mg, 0.100 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 2-phenyl-4-

propyloxazol-5(4H)-one (30.5 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 10:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (40:1 
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Hex/Et2O) to afford 26 (19.8 mg, 0.057 mmol, 57% yield, 10:1 dr) as a colorless oil. The product 

was isolated with less than 5% of the inseparable 1,4-addition product. 

1H NMR (500 MHz, CDCl3) δ 8.06 – 8.02 (m, 2H), 7.61 – 7.55 (m, 1H), 7.52 – 7.47 (m, 2H), 

7.48 – 7.43 (m, 1H), 7.20 – 7.12 (m, 3H), 6.72 (d, J = 15.7 Hz, 1H), 6.10 (dd, J = 15.7, 9.4 Hz, 

1H), 2.85 (dq, J = 9.1, 6.8 Hz, 1H), 2.61 – 2.47 (m, 1H), 2.32 (s, 3H), 1.96 (ddd, J = 13.5, 12.4, 

4.6 Hz, 1H), 1.85 (ddd, J = 13.7, 12.1, 4.9 Hz, 1H), 1.77 – 1.63 (m, 1H), 1.29 – 1.10 (m, 2H), 

1.06 (d, J = 6.8 Hz, 3H), 0.87 (t, J = 7.3 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 180.71, 160.31, 

136.32, 135.38, 132.78, 131.14, 130.50, 130.34, 128.92, 128.12, 127.52, 126.19, 125.95, 125.93, 

76.75, 45.16, 38.34, 19.94, 17.44, 16.00, 14.04. IR (ν/cm-1): 3062 (w), 3022 (w), 2963 (s), 2932 

(w), 2874 (m), 1812 (s), 1782 (m), 1653 (s), 1456 (m), 1292 (m), 1162 (m), 1020 (m), 944 (m), 

882 (m). HRMS (ES+) [M–H]+ calcd for C23H26NO2
+ 348.1964, found: 348.1971. 

 

27
 

Synthesis of 4-(E-4-(furan-2-yl)but-3-en-2-yl)-4-isobutyl-2-phenyloxazol-5(4H)-one (27). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and 2-

(buta-1,3-dien-1-yl)furan (12.0 mg, 0.100 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-isobutyl-

2-phenyloxazol-5(4H)-one (32.6 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 
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reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 19:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (40:1 

Hex/Et2O) to afford 27 (32.4 mg, 0.096 mmol, 96% yield, 19:1 dr) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 8.06 – 8.02 (m, 2H), 7.61 – 7.56 (m, 1H), 7.50 (t, J = 7.7 Hz, 2H), 

7.34 (d, J = 1.5 Hz, 1H), 6.36 (dd, J = 3.2, 1.8 Hz, 1H), 6.31 (d, J = 15.9 Hz, 1H), 6.22 (d, J = 3.2 

Hz, 1H), 6.16 (dd, J = 15.9, 9.3 Hz, 1H), 2.71 (dq, J = 9.1, 6.8 Hz, 1H), 2.05 (dd, J = 14.2, 5.8 

Hz, 1H), 1.76 (dd, J = 14.2, 6.9 Hz, 1H), 1.56 – 1.47 (m, 1H), 1.01 (d, J = 6.8 Hz, 3H), 0.84 (d, J 

= 6.7 Hz, 3H), 0.83 (d, J = 6.6 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 181.2, 160.1, 152.6, 

141.9, 132.8, 128.9, 128.5, 128.1, 126.0, 121.1, 111.4, 107.6, 76.1, 45.9, 44.8, 25.2, 24.2, 23.4, 

15.6. IR (ν/cm-1): 2961 (s), 2934 (w), 2908 (w), 2873 (m), 1812 (s), 1653 (s), 1456 (m), 1319 

(w), 1291 (m), 1153 (m), 1022 (m), 961 (m), 882 (m). HRMS (ES+) [M–H]+ calcd for 

C21H24NO3
+ 338.1756, found: 338.1763. 

 

28  

Synthesis of 4-(E-dodec-3-en-2-yl)-4-isobutyl-2-phenyloxazol-5(4H)-one (28). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and 1,3-

dodecadiene (16.6 mg, 0.100 mmol) were combined in the glove box, solvated with toluene (200 

µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-isobutyl-2-

phenyloxazol-5(4H)-one (32.6 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 
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isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 8:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (100% 

Hex to 40:1 Hex/Et2O) to afford 28 (19.6 mg, 0.051 mmol, 51% yield, 8:1 dr) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 8.04 – 7.98 (m, 2H), 7.60 – 7.55 (m, 1H), 7.51 – 7.48 (m, 2H), 

5.57 – 5.46 (m, 1H), 5.37 – 5.29 (m, 1H), 2.58 – 2.53 (m, 1H), 2.07 – 1.99 (m, 1H), 1.99 – 1.92 

(m, 2H), 1.80 – 1.64 (m, 1H), 1.61 – 1.46 (m, 1H), 1.33 – 1.13 (m, 13H), 0.97 (d, J = 6.8 Hz, 

2H), 0.89 – 0.83 (m, 6H), 0.82 (d, J = 6.6 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 181.3, 159.7, 

134.5, 132.6, 129.3, 128.9, 128.0, 126.2, 75.9, 45.7, 44.6, 32.7, 32.0, 29.6, 29.5, 29.4, 29.2, 25.2, 

24.3, 23.2, 22.8, 15.4, 14.3. IR (ν/cm-1): 2957 (m), 2925 (s), 2871 (w), 2854 (m), 1813 (s), 1654 

(s), 1452 (m), 1320 (w), 1292 (m), 1160 (w), 1023 (m), 954 (m), 881 (m). HRMS (ES+) [M–H]+ 

calcd for C25H38NO2
+ 384.2903, found: 384.2905. 

 

29
 

Synthesis of 4-isobutyl-2-phenyl-4-(E-4-(o-tolyl)but-3-en-2-yl)oxazol-5(4H)-one (29). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and o-

methyl-phenylbutadiene (14.4 mg, 0.100 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-isobutyl-

2-phenyloxazol-5(4H)-one (32.6 mg, 0.150 mmol) was added. The reaction was sealed with a 
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Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 10:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (40:1 

Hex/Et2O) to afford 29 (32.2 mg, 0.089 mmol, 89% yield, 8:1 dr) as a colorless oil. The product 

was isolated with less than 5% of the inseparable 1,4-addition product. 

1H NMR (600 MHz, CDCl3) δ 8.05 – 8.01 (m, 2H), 7.60 – 7.55 (m, 1H), 7.51 – 7.48 (m, 2H), 

7.45 – 7.40 (m, 1H), 7.18 – 7.10 (m, 3H), 6.69 (d, J = 15.7 Hz, 1H), 6.05 (dd, J = 15.7, 9.4 Hz, 

1H), 2.80 (dq, J = 13.6, 6.8 Hz, 1H), 2.30 (s, 3H), 2.07 (dd, J = 14.2, 5.7 Hz, 1H), 1.81 (dd, J = 

14.2, 7.0 Hz, 1H), 1.58 – 1.51 (m, 1H), 1.07 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.6 Hz, 3H), 0.84 (d, 

J = 6.6 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 181.2, 160.0, 136.4, 135.4, 132.7, 131.2, 130.8, 

130.3, 128.9, 128.1, 127.5, 126.2, 126.1, 126.0, 76.0, 46.3, 44.8, 25.2, 24.2, 23.4, 19.9, 15.6. IR 

(ν/cm-1): 3062 (w), 3021 (w), 2960 (s), 2872 (m), 1812 (s), 1781 (m), 1653 (s), 1452 (m), 1292 

(m), 1159 (m), 1023 (m), 956 (m), 882 (m). HRMS (ES+) [M–H]+ calcd for C24H28NO2
+ 

362.2120, found: 362.2123. 

 

30
 

Synthesis of 4-(E-4-(furan-2-yl)but-3-en-2-yl)-4-phenethyl-2-phenyloxazol-5(4H)-one (30). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and 2-
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(buta-1,3-dien-1-yl)furan (12.0 mg, 0.100 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-

phenethyl-2-phenyloxazol-5(4H)-one (39.8 mg, 0.150 mmol) was added. The reaction was 

sealed with a Teflon® septum cap and removed from the glove box. Outside the glove box, N2 

sparged isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The 

reaction was cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal 

standard. The reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 5:1 

mixture of the anti:syn diastereomers. The NMR sample was recombined with the reaction and 

the solvents removed in vacuo. The resulting oil was purified by SiO2 gel column 

chromatography (40:1 Hex/Et2O) to afford 30 (22.0 mg, 0.057 mmol, 57% yield, >20:1 dr) as a 

colorless oil. 

1H NMR (600 MHz, CDCl3) δ 8.10 – 8.04 (m, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.7 Hz, 

2H), 7.33 (d, J = 1.3 Hz, 1H), 7.22 (t, J = 7.5 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H), 7.12 (d, J = 7.1 

Hz, 2H), 6.35 (dd, J = 3.2, 1.8 Hz, 1H), 6.31 (d, J = 15.9 Hz, 1H), 6.24 – 6.17 (m, 2H), 2.80 (dq, 

J = 13.6, 6.8 Hz, 1H), 2.53 – 2.48 (m, 1H), 2.42 – 2.37 (m, 1H), 2.32 – 2.27 (m, 1H), 2.16 – 2.11 

(m, 1H), 1.04 (d, J = 6.8 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 180.5, 160.8, 152.5, 141.9, 

140.6, 132.9, 129.0, 128.6, 128.6, 128.2, 128.2, 126.3, 125.8, 121.1, 111.4, 107.8, 76.6, 44.9, 

38.1, 30.6, 16.0. IR (ν/cm-1): 3063 (w), 3029 (m), 2966 (m), 2929 (m), 2873 (w), 1816 (s), 1653 

(s), 1455 (m), 1320 (w), 1292 (m), 1059 (w), 997 (m), 877 (m). HRMS (ES+) [M–H]+ calcd for 

C25H24NO3
+ 386.1756, found: 386.1761. 

 

31  
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Synthesis of 4-(E-dodec-3-en-2-yl)-4-phenethyl-2-phenyloxazol-5(4H)-one (31). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and 1,3-

dodecadiene (16.6 mg, 0.100 mmol) were combined in the glove box, solvated with toluene (200 

µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-phenethyl-2-

phenyloxazol-5(4H)-one (39.8 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 7:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (100% 

Hex to 40:1 Hex/Et2O) to afford 31 (9.1 mg, 0.021 mmol, 21% yield, 8:1 dr) as a colorless oil. 

1H NMR (500 MHz, CDCl3) δ 8.05 – 8.01 (m, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.6 Hz, 

2H), 7.23 (d, J = 7.5 Hz, 2H), 7.16 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 7.1 Hz, 2H), 5.59 – 5.50 (m, 

1H), 5.40 (dd, J = 15.3, 9.1 Hz, 1H), 2.65 (dq, J = 13.8, 6.9 Hz, 1H), 2.56 – 2.50 (m, 1H), 2.43 – 

2.37 (m, 1H), 2.31 – 2.22 (m, 1H), 2.16 – 2.09 (m, 1H), 1.98 (q, J = 6.8 Hz, 2H), 1.33 – 1.14 (m, 

12H), 0.98 (d, J = 6.8 Hz, 3H), 0.87 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 180.5, 

160.4, 140.9, 134.4, 132.8, 129.6, 129.1, 128.9, 128.6, 128.1, 126.3, 126.0, 76.4, 44.5, 37.8, 32.7, 

32.1, 30.5, 29.6, 29.5, 29.4, 29.3, 22.8, 15.8, 14.3. IR (ν/cm-1): 3437 (br, m), 2957 (w), 2925 (s), 

2854 (m), 1818 (s), 1653 (s), 1455 (m), 1321 (w), 1292 (m), 1059 (m), 995 (m), 877 (m). HRMS 

(ES+) [M–H]+ calcd for C29H38NO2
+ 432.2903, found: 432.2906. 
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32
 

Synthesis of 4-phenethyl-2-phenyl-4-(E-4-(o-tolyl)but-3-en-2-yl)oxazol-5(4H)-one (32). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and o-

methyl-phenylbutadiene (14.4 mg, 0.100 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-

phenethyl-2-phenyloxazol-5(4H)-one (39.8 mg, 0.150 mmol) was added. The reaction was 

sealed with a Teflon® septum cap and removed from the glove box. Outside the glove box, N2 

sparged isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The 

reaction was cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal 

standard. The reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 10:1 

mixture of the anti:syn diastereomers. The NMR sample was recombined with the reaction and 

the solvents removed in vacuo. The resulting oil was purified by SiO2 gel column 

chromatography (40:1 Hex/Et2O) to afford 32 (20.5 mg, 0.050 mmol, 50% yield, 10:1 dr) as a 

colorless oil. 

1H NMR (600 MHz, CDCl3) δ 8.08 – 8.05 (m, 2H), 7.62 – 7.58 (m, 1H), 7.53 – 7.50 (m, 2H), 

7.47 – 7.43 (m, 1H), 7.24 – 7.21 (m, 2H), 7.18 – 7.09 (m, 6H), 6.71 (d, J = 15.7 Hz, 1H), 6.11 

(dd, J = 15.7, 9.4 Hz, 1H), 2.94 – 2.85 (m, 1H), 2.58 – 2.50 (m, 1H), 2.46 – 7.41 (m, 1H), 2.34 – 

2.29 (m, 1H), 2.28 (s, 3H), 2.23 – 2.15 (m, 1H), 1.09 (d, J = 6.8 Hz, 3H). 13C NMR (151 MHz, 

CDCl3) δ 180.4, 160.7, 140.6, 136.2, 135.4, 132.9, 130.8, 130.7, 130.4, 129.0, 128.6, 128.5, 

128.2, 127.6, 126.3, 126.2, 125.9, 125.9, 76.4, 45.2, 38.0, 30.5, 19.9, 16.0. IR (ν/cm-1): 3062 (w), 

3027 (m), 2967 (m), 2929 (m), 2866 (w), 1816 (s), 1653 (s), 1496 (w), 1456 (m), 1292 (m), 1118 
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(m), 1058 (m), 996 (s), 877 (m). HRMS (ES+) [M–H]+ calcd for C28H28NO2
+ 410.2121, found: 

410.2124. 

 

33
 

Synthesis of 4-(E-4-(furan-2-yl)but-3-en-2-yl)-4-phenethyl-2-phenyloxazol-5(4H)-one (33). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and 2-

(buta-1,3-dien-1-yl)furan (12.0 mg, 0.100 mmol) were combined in the glove box, solvated with 

toluene (200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-allyl-2-

phenyloxazol-5(4H)-one (30.2 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 70 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 5:1 mixture of the 

anti:syn diastereomers. The NMR sample was recombined with the reaction and the solvents 

removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography (40:1 

Hex/Et2O) to afford 33 (9.0 mg, 0.028 mmol, 28% yield, 9:1 dr) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 8.04 – 8.03 (m, 2H), 7.62 – 7.57 (m, 1H), 7.51 – 7.48 (m, 2H), 

7.35 (d, J = 1.5 Hz, 1H), 6.39 – 6.32 (m, 2H), 6.25 – 6.19 (m, 2H), 5.60 – 5.53 (m, 1H), 5.14 (d, J 

= 17.0, 1H), 5.06 (d, J = 10.2 Hz, 1H), 2.80 (dq, J = 9.2, 6.9 Hz, 1H), 2.75 (dd, J = 13.7, 6.4 Hz, 

1H), 2.53 (dd, J = 13.8, 8.3 Hz, 1H), 1.02 (d, J = 6.8 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 

179.9, 160.5, 152.5, 142.0, 132.8, 131.0, 128.9, 128.2, 128.2, 125.9, 121.2, 120.7, 111.4, 107.8, 
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44.3, 40.5, 16.0. IR (ν/cm-1): 2968 (m), 2927 (m), 1815 (s), 1654 (s), 1451 (m), 1322 (m), 1292 

(m), 1152 (w), 1055 (m), 998 (m), 964 (m), 927 (m). HRMS (ES+) [M–H]+ calcd for 

C20H20NO3
+ 322.1443, found: 322.1438. 

 

34-(1,2) 34-(1,4)

 

Synthesis of 4-isobutyl-2-phenyl-4-(E-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (34). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and 

phenylbutadiene (13.0 mg, 0.100 mmol) were combined in the glove box, solvated with toluene 

(200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-isobutyl-2-

phenyloxazol-5(4H)-one (32.6 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 2:1 mixture of the 

anti:syn diastereomers and a 20:1 mixture of the (1,2):(1,4) regioisomers. The NMR sample was 

recombined with the reaction and the solvents removed in vacuo. The resulting oil was purified 

by SiO2 gel column chromatography (20:1 Hex/Et2O) to afford 34 (33.4 mg, 0.0960 mmol, 96% 

yield, 2:1 dr, 19:1 (1,2):(1,4)) as a colorless oil. 
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anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 8.05 – 8.04 (m, 2H), 7.60 – 7.56 

(m, 1H), 7.52 – 7.49 (m, 2H), 7.39 – 7.37 (m, 2H), 7.32 – 7.30 (m, 2H), 7.25 – 7.21 (m, 1H), 

6.49 (d, J = 15.9 Hz, 1H), 6.21 (dd, J = 15.9, 9.3 Hz, 1H), 2.77 (dq, J = 9.1, 6.8 Hz, 1H), 2.43 

(dd, J = 7.0, 4.3 Hz, 1H), 2.05 (dd, J = 14.2, 5.8 Hz, 1H), 1.78 (dd, J = 14.2, 6.9 Hz, 1H), 1.55 – 

1.49 (m, 1H), 1.03 (d, J = 6.8 Hz, 3H), 0.83 (t, J = 7.0 Hz, 6H).] syn-Diastereomer (minor): [1H 

NMR (600 MHz, CDCl3) δ 8.05 – 8.03 (m, 2H), 7.60 – 7.57 (m, 1H), 7.51 – 7.49 (m, 2H), 7.39 – 

7.36 (m, 2H), 7.28 – 7.23 (m, 2H), 7.23 – 7.18 (m, 1H), 6.35 (d, J = 15.9 Hz, 1H), 5.91 (dd, J = 

15.9, 8.5 Hz, 1H), 3.18 – 3.11 (m, 1H), 2.43 (dd, J = 7.0, 4.3 Hz, 1H), 2.15 – 2.08 (m, 1H), 2.04 

(dd, J = 14.2, 5.8 Hz, 1H), 1.77 (dd, J = 14.3, 6.8 Hz, 1H), 1.09 (d, J = 6.9 Hz, 3H), 0.90 (d, J = 

6.7 Hz, 3H), 0.88 (d, J = 6.7 Hz, 3H).] (1,4)-Regioisomer (minor): [1H NMR (600 MHz, 

CDCl3) δ 7.99 – 7.96 (m, 2H), 7.56 – 7.54 (m, 1H), 7.50 – 7.46 (m, 2H), 7.38 – 7.32 (m, 2H), 

7.30 – 7.26 (m, 2H), 7.23 – 7.18 (m, 1H), 5.69 – 5.58 (m, 2H), 3.61 (d, J = 8.9 Hz, 1H), 2.49 (dd, 

J = 7.0, 2.0 Hz, 1H), 2.24 – 2.16 (m, 1H), 1.68 (dd, J = 14.3, 5.9 Hz, 1H), 1.60 (d, J = 5.1 Hz, 

3H), 0.78 (d, J = 6.6 Hz, 3H), 0.76 (d, J = 6.6 Hz, 3H).] 13C NMR (151 MHz, CDCl3) δ 181.1, 

165.5, 162.2, 159.9, 138.0, 137.0, 136.8, 133.8, 132.6, 129.7, 129.1, 128.8, 128.7, 128.5, 128.5, 

128.3, 128.0, 127.6, 127.5, 127.3, 126.5, 126.4, 126.3, 125.9, 109.2, 76.0, 47.0, 46.0, 44.7, 36.5, 

26.3, 25.1, 24.1, 23.3, 22.6, 22.4, 15.5, 15.2. IR (ν/cm-1): 3028 (w), 2960 (s), 2934 (w), 2872 

(m), 1812 (s), 1781 (m), 1653 (s), 1495 (m), 1450 (m), 1320 (w), 1292 (m), 1158 (m), 1023 (w), 

960 (s), 882 (m). HRMS (ES+) [M–H]+ calcd for C23H26NO2
+ 348.1964, found: 348.1958. 
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35-(1,2) 35-(1,4)

 

Synthesis of 2-(4-chlorophenyl)-4-methyl-4-(E-4-phenylbut-3-en-2-yl)oxazol-5(4H)-one (35). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiBArF
4 (3.4 mg, 0.005 mmol), and 

phenylbutadiene (13.0 mg, 0.100 mmol) were combined in the glove box, solvated with toluene 

(200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 2-(4-chlorophenyl)-

4-methyloxazol-5(4H)-one (31.4 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (5 µL) was added and the reaction allowed to stir at 50 °C for 48 h. The reaction was 

cooled to room temperature and 5 µL of hexamethyldisiloxane added as an internal standard. The 

reaction was diluted with CDCl3 and analyzed by NMR spectroscopy as a 3:1 mixture of the 

anti:syn diastereomers and a 11:1 mixture of the (1,2):(1,4) regioisomers. The NMR sample was 

recombined with the reaction and the solvents removed in vacuo. The resulting oil was purified 

by SiO2 gel column chromatography (20:1 Hex/Et2O to 10:1 Hex/Et2O) to afford 35 (24.1 mg, 

0.0710 mmol, 71% yield, 3:1 dr, 11:1 (1,2):(1,4)) as a colorless oil. 

anti-Diastereomer (major): [1H NMR (400 MHz, CDCl3) δ 7.99 – 7.95 (m, 2H), 7.51 – 7.44 

(m, 2H), 7.42 – 7.37 (m, 2H), 7.33 – 7.30 (m, 2H), 7.29 – 7.22 (m, 1H), 6.53 (d, J = 15.9 Hz, 

1H), 6.22 (dd, J = 15.9, 9.3 Hz, 1H), 2.80 (dq, J = 13.7, 6.9 Hz, 1H), 1.50 (s, 3H), 1.04 (d, J = 6.8 

Hz, 3H).] syn-Diastereomer (minor): [1H NMR (400 MHz, CDCl3) δ 7.99 – 7.95 (m, 2H), 7.51 

– 7.44 (m, 2H), 7.42 – 7.37 (m, 2H), 7.34 – 7.30 (m, 2H), 7.26 – 7.20 (m, 1H), 6.33 (d, J = 16.0 
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Hz, 1H), 5.88 (dd, J = 16.0, 8.4 Hz, 1H), 3.12 – 2.98 (m, 1H), 1.59 (s, 3H), 1.07 (d, J = 6.9 Hz, 

3H).] (1,4)-Regioisomer (minor): [1H NMR (400 MHz, CDCl3) δ 7.96 – 7.90 (m, 2H), 7.84 – 

7.77 (m, 2H), 7.44 – 7.41 (m, 2H), 7.34 - 7.27 (m, 1H), 7.14 - 7.12 (m, 2H), 5.78 – 5.57 (m, 2H), 

3.66 (d, J = 9.8 Hz, 1H), 2.24 (s, 3H), 1.76 (dd, J = 6.4, 1.5 Hz, 3H).] 13C NMR (151 MHz, 

CDCl3) δ 181.0, 165.5, 163.2, 161.6, 160.3, 160.0, 137.6, 133.2, 133.1, 132.9, 132.8, 131.7, 

129.1, 129.1, 128.9, 128.9, 128.5, 128.1, 127.9 (dd, J = 20.7, 8.0 Hz), 127.1, 127.1, 126.6, 126.0, 

115.6 (dd, J = 21.6, 10.7 Hz), 109.2, 72.5, 47.0, 45.1, 22.8, 15.9, 15.1, 14.0. IR (ν/cm-1): 3028 

(m), 2976 (m), 2933 (m), 2873 (w), 1823 (m), 1783 (s), 1653 (m), 1490 (m), 1403 (w), 1311 (m), 

1171 (m), 1092 (m), 1000 (m), 967 (m), 840 (m). HRMS (ES+) [M–H]+ calcd for C20H19ClNO2
+ 

340.1104, found: 340.1099. 

 

# General procedure for  hydrolysis of oxazolone products in Table 3.3.5-1 (44-48): 

An 8 mL reaction vial with a stir bar was charged with the oxazolone  and potassium carbonate 

with no effort to exclude oxygen or water. The reaction was solvated with wet methanol and the 

headspace purged with N2 for 5 minutes. The reaction was sealed and allowed to stir at room 

temperature for a minimum of 2 hours before being concentrated by rotary evaporation to 

remove the solvent. The resulting powder was purified by SiO2 gel chromatography to yield the 

hydrolyzed product.  

 

8 44
 

Synthesis of methyl (E)-2-benzamido-2,3-dimethyl-5-phenylpent-4-enoate (44). 
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Following the general procedure for hydrolysis, 4-methyl-2-phenyl-4-((E)-4-phenylbut-3-en-2-

yl)oxazol-5(4H)-one (12.1 mg, 0.0396 mmol, 19:1 dr) and K2CO3 (27.4 mg, 0.198 mmol, 5 

equiv) were solvated in methanol (400 µL) and allowed to stir at 22 °C for 2 h. The solution was 

concentrated to an off white solid which was purified by SiO2 gel column chromatography (10:1 

Hex/Et2O) to afford 44 (11.1 mg, 0.0344 mmol, 87% yield, 20:1 dr) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.73 – 7.70 (m, 2H), 7.48 – 7.45 (m, 1H), 7.39 – 7.37 (m, 2H), 

7.37 – 7.33 (m, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.3 Hz, 1H), 6.84 (s, 1H), 6.52 (d, J = 

15.8 Hz, 1H), 6.17 (dd, J = 15.8, 9.3 Hz, 1H), 3.79 (s, 3H), 3.00 (dq, J = 14.0, 7.0 Hz, 1H), 1.80 

(s, 3H), 1.22 (d, J = 7.0 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 173.5, 166.9, 136.9, 134.8, 

132.6, 131.7, 130.3, 128.7, 128.7, 127.8, 127.0, 126.5, 62.8, 52.6, 45.3, 20.8, 15.9. IR (ν/cm-1): 

3410 (br, m), 3334 (br, m), 3027 (m), 2975 (m), 2949 (m), 1739 (s), 1653 (s), 1521 (s), 1488 (m), 

1373 (m), 1263 (m), 1127 (m), 970 (m). HRMS (ES+) [M–H]+ calcd for C21H24NO3
+ 338.1756, 

found: 338.1750. 

 

27 45

 

Synthesis of methyl (E)-2-benzamido-5-(furan-2-yl)-2-isobutyl-3-methylpent-4-enoate (45). 

Following the general procedure for hydrolysis, 4-((E)-4-(furan-2-yl)but-3-en-2-yl)-4-isobutyl-2-

phenyloxazol-5(4H)-one (8.5 mg, 0.025 mmol, 9:1 dr) and K2CO3 (17.4 mg, 0.126 mmol, 5 

equiv) were solvated in methanol (2 mL) and allowed to stir at 22 °C for 2 h. The solution was 

concentrated to an off white solid which was purified by SiO2 gel column chromatography (10:1 

Hex/Et2O) to afford 45 (8.3 mg, 0.0248 mmol, 89% yield, >20:1 dr) as a colorless oil. 
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1H NMR (600 MHz, CDCl3) δ 7.78 – 7.74 (m, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 

2H), 7.37 (s, 1H), 7.28 (d, J = 1.2 Hz, 1H), 6.30 (dd, J = 3.2, 1.8 Hz, 1H), 6.18 (d, J = 15.7 Hz, 

1H), 6.07 (d, J = 3.2 Hz, 1H), 5.94 (dd, J = 15.7, 9.1 Hz, 1H), 3.84 (s, 3H), 3.57 – 3.49 (m, 1H), 

2.73 (dd, J = 14.1, 4.3 Hz, 1H), 1.95 (dd, J = 14.0, 9.0 Hz, 1H), 1.68 – 1.55 (m, 1H), 1.21 (d, J = 

7.0 Hz, 3H), 0.93 (d, J = 6.7 Hz, 3H), 0.77 (d, J = 6.6 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 

174.5, 166.6, 152.7, 141.8, 135.6, 131.5, 129.3, 128.7, 127.0, 120.4, 111.2, 107.4, 67.2, 52.7, 

43.1, 41.0, 25.2, 24.3, 22.0, 15.8. IR (ν/cm-1): 3413 (w), 2962 (s), 2923 (m), 2866 (w), 1731 (m), 

1669 (s), 1508 (m), 1488 (w), 1260 (s), 1095 (br, s), 1021 (br, s), 799 (s). HRMS (ES+) [M–H]+ 

calcd for C22H28NO4
+ 370.2018, found: 370.2013. 

 

25 46

 

Synthesis of methyl methyl (E)-2-benzamido-3-methyl-2-propyltridec-4-enoate (46). 

Following the general procedure for  hydrolysis, 4-((E)-dodec-3-en-2-yl)-2-phenyl-4-

propyloxazol-5(4H)-one (17.1 mg, 0.0463 mmol, 9:1 dr) and K2CO3 (320 mg, 2.31 mmol, 5 

equiv) were solvated in methanol (4 mL) and allowed to stir at 22 °C for 18 h. The solution was 

concentrated to an off white solid which was purified by SiO2 gel column chromatography (5:1 

Hex/Et2O) to afford 46 (14.9 mg, 0.0371 mmol, 80% yield, 9:1 dr) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.77 – 7.75 (m, 2H), 7.50 – 7.47 (m, 1H), 7.44 – 7.41 (m, 2H), 

7.09 (s, 1H), 5.51 – 5.43 (m, 1H), 5.26 (dd, J = 15.2, 9.1 Hz, 1H), 3.79 (s, 3H), 3.12 (dq, J = 

14.2, 7.1 Hz, 1H), 2.54 (ddd, J = 13.8, 12.1, 4.6 Hz, 1H), 2.10 (ddd, J = 13.8, 12.1, 4.5 Hz, 1H), 

1.96 – 1.92 (m, 2H), 1.38 – 1.14 (m, 14H), 1.10 (d, J = 7.0 Hz, 3H), 0.90 (t, J = 7.3 Hz, 3H), 0.87 
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(t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 174.02, 166.20, 135.41, 133.46, 131.48, 

130.64, 128.66, 126.95, 67.31, 52.61, 42.29, 34.06, 32.68, 32.03, 29.68, 29.59, 29.39, 29.24, 

22.81, 17.96, 16.05, 14.27, 14.25. IR (ν/cm-1): 3415 (m), 2956 (m), 2925 (s), 2854 (m), 1730 (s), 

1669 (s), 1515 (m), 1486 (w), 1232 (m), 971 (w). HRMS (ES+) [M–H]+ calcd for C25H39NO3
+ 

402.3008, found: 402.3006. 

 

28 46

 

Synthesis of methyl (E)-2-benzamido-2-isobutyl-3-methyltridec-4-enoate (46). 

Following the general procedure for hydrolysis, 4-((E)-dodec-3-en-2-yl)-4-isobutyl-2-

phenyloxazol-5(4H)-one (9.2 mg, 0.024 mmol, 11:1 dr) and K2CO3 (16.6 mg, 0.120 mmol, 5 

equiv) were solvated in methanol (2 mL) and allowed to stir at 22 °C for 2 h. The solution was 

concentrated to an off white solid which was purified by SiO2 gel column chromatography (20:1 

Hex/Et2O) to afford 46 (8.4 mg, 0.020 mmol, 84% yield, 10:1 dr) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.78 – 7.75 (m, 2H), 7.49 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.5 Hz, 

2H), 7.29 (s, 1H), 5.45 – 5.39 (m, 1H), 5.17 (dd, J = 15.2, 9.0 Hz, 1H), 3.80 (s, 3H), 3.31 – 3.25 

(m, 1H), 2.63 (dd, J = 14.1, 4.2 Hz, 1H), 1.96 (dd, J = 14.1, 9.0 Hz, 1H), 1.92 – 1.89 (m, 2H), 

1.64-1.59 (m, 1H), 1.28 – 1.13 (br m, 12H), 1.10 (d, J = 7.0 Hz, 3H), 0.92 (d, J = 6.7 Hz, 3H), 

0.87 (t, J = 7.2 Hz, 3H), 0.76 (d, J = 6.6 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 174.7, 166.3, 

135.7, 133.4, 131.4, 130.4, 128.7, 126.9, 66.9, 52.5, 42.7, 40.8, 32.7, 32.0, 29.6, 29.6, 29.4, 29.2, 

25.1, 24.4, 22.8, 22.1, 15.9, 14.3. IR (ν/cm-1): 3416 (br, s), 2955 (m), 2925 (s), 2854 (m), 1726 

(m), 1669 (s), 1514 (m), 1485 (m), 1366 (m), 1235 (m), 970 (w). HRMS (ES+) [M–H]+ calcd for 

C26H42NO3
+ 416.3165, found: 416.3160. 
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32 47
 

Synthesis of (E)-2-benzamido-3-methyl-2-phenethyl-5-(o-tolyl)pent-4-enoic acid (47). 

To an 8 mL vial was added 4-phenethyl-2-phenyl-4-(E-4-(o-tolyl)but-3-en-2-yl)oxazol-5(4H)-

one (6.4 mg, 0.016 mmol, 10:1 dr), dioxane (1 mL) and 1M HCl (1 mL). The reaction was sealed 

with a septum cap and the headspace flushed with N2 before being heated to 80 °C. The reaction 

was allowed to stir at 80°C for 8 h before being cooled to room temperature and extracted three 

times with EtOAc (1 mL). The organic layers were dried with Na2SO4 and filtered before being 

concentrated. The resulting oil was dried by rotoray evaporation with additional chloroform to 

remove residual dioxane to yield 47 as a clear film (5.9 mg, 0.014 mmol, 87% yield, >20:1 dr). 

The product required no further purification. 

1H NMR (600 MHz, CDCl3) δ 7.77 – 7.75 (m, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.7 Hz, 

2H), 7.39 – 7.38 (m, 1H), 7.24 (d, J = 7.4 Hz, 2H), 7.20 (d, J = 7.0 Hz, 2H), 7.18 – 7.14 (m, 2H), 

7.13 – 7.09 (m, 2H), 7.08 – 7.06 (m, 1H), 6.66 (d, J = 15.5 Hz, 1H), 6.00 (dd, J = 15.5, 9.3 Hz, 

1H), 3.51 (dq, J = 14.0, 7.0 Hz, 1H), 3.06 – 2.97 (m, 1H), 2.75 – 2.67 (m, 1H), 2.56 – 2.47 (m, 

2H), 2.16 (s, 3H), 1.29 (d, J = 7.0 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 176.1, 167.3, 141.3, 

136.3, 135.4, 134.7, 132.0, 131.6, 130.6, 130.3, 128.9, 128.8, 128.6, 127.6, 127.0, 126.2, 126.2, 

126.1, 67.8, 43.2, 34.3, 31.2, 19.8, 15.9. IR (ν/cm-1): 3384 (br, m), 3220 (br, m), 3062 (w), 3027 

(m), 2972 (m), 2930 (m), 2561 (br, m), 1715 (s), 1625 (s), 1523 (s), 1488 (m), 1455 (w), 1231 

(m), 1192 (m), 1122 (w), 967 (m), 909 (m). HRMS (ES+) [M–H]+ calcd for C25H40NO4
+ 

428.2226, found: 428.2237. 
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48

 

Synthesis of methyl 2-benzamido-2-(1-(3-octyloxiran-2-yl)ethyl)pentanoate (48). 

To an 8 mL vial was added 4-((E)-dodec-3-en-2-yl)-2-phenyl-4-propyloxazol-5(4H)-one (8.9 

mg, 0.022 mmol, 9:1 dr) and meta-chloroperoxybenzoic acid 50-55% by weight (7.6 mg, 0.22 

mmol, 1 equiv). The headspace was flushed with N2 and the reaction solvated with dry benzene 

(500 µL), the reaction sealed and allowed to stir at 22 °C for 18 h. The solution was concentrated 

to an oily solid which was purified by SiO2 gel column chromatography (8:1 Hex/EtOAc to 4:1 

Hex/EtOAc) to afford 48 (5.4 mg, 0.013 mmol, 58% yield, 9:1 dr) as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.82 – 7.79 (m, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 

2H), 7.42 (s, 1H), 3.85 (s, 3H), 2.86 (ddd, J = 13.5, 12.0, 4.6 Hz, 1H), 2.82 – 2.80 (m, 1H), 2.72 

(dd, J = 7.8, 2.2 Hz, 1H), 2.39 (dt, J = 14.5, 7.1 Hz, 1H), 1.93 – 1.86 (m, 1H), 1.55 – 1.50 (m, 

1H), 1.47 – 1.38 (m, 1H), 1.38 – 1.15 (m, 14H), 1.07 (d, J = 7.0 Hz, 3H), 1.00 – 0.94 (m, 1H), 

0.90 (t, J = 7.2 Hz, 3H), 0.87 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 174.6, 166.2, 

135.1, 131.8, 128.8, 127.0, 67.2, 60.0, 59.8, 53.3, 42.8, 34.3, 32.2, 32.0, 29.6, 29.6, 29.3, 26.0, 

22.8, 18.0, 14.3, 14.1, 12.6. IR (ν/cm-1): 3410 (br, m), 2960 (w), 2928 (s), 2855 (m), 1732 (s), 

1671 (s), 1518 (s), 1487 (m), 1271 (w), 1234 (m). HRMS (ES+) [M–H]+ calcd for C25H40NO4
+ 

418.2957, found: 418.2951. 

 

# General procedure for exploring the effect of the alcohol additive on hydroalkylation 

Table 6: 
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Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with 

oxazalones, PhCDC-Rh-styrene (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and 

phenylbutadiene (13.0 mg, 0.100 mmol) were combined in the glove box, solvated with toluene 

(200 µL, 0.5 M) and allowed to stir at 22 °C for 10 minutes. To this solution, 4-methyl-2-

phenyloxazol-5(4H)-one (26.3 mg, 0.150 mmol) was added. The reaction was sealed with a 

Teflon® septum cap and removed from the glove box. To this reaction the appropriate alcohol 

additive was added either: 1) Inside the glove [eg: menthol (9.4 mg, 0.06 mmol), (R)-BINOL 

(17.0 mg, 0.060 mmol), TADDOL-P(O)OH (31.7 mg, 0.060 mmol), (S,S)-hydrobenzoin (12.9 

mg, 0.060 mmol) or (S,S)-diphenylethylenediamine (12.7 mg, 0.060 mmol)], or 2) Outside the 

glove box via syringe after sparging the alcohol with N2 [eg: methanol (2.4 µL, 0.060 mmol), 

isopropanol (4.6 µL, 0.060 mmol), tert-butanol (5.7 µL, 0.060 mmol)]. The reaction were 

allowed to stir at 50 °C for 18 h. The reaction was cooled to room temperature and 5 µL of 

hexamethyldisiloxane added as an internal standard. The reaction was diluted with CDCl3 and 

both the conversion and diastereoselectivity analyzed by NMR spectroscopy. Reactions with a 

chiral additive were purified by by SiO2 gel column chromatography (20:1 Hex/Et2O) before 

being assayed on an Agilent 1220 LC System with a Daicel ChiralPak IA column (99:1 

Hexanes/Isopropanol, 1 mL/min, 210 nm). 



	   536	  

(CDC)-Rh 1 (5 mol %)
Activator (x mol %)

alcohol

solvent, 50 °C, 18 h

entry yield (%)c; drb

1

2

3

4

5

6

7

8

9

10e

0; -

8; 4:1

17; 10:1

21; 6:1

21; 4:1

20; 3:1

26; 3:1

85; 19:1

29; 5:1

0; -

alcohold

-

-

-

-

-

-

MeOH
iPrOH
tBuOH
iPrOH

Table 1. Survey of Conditions for (CDC)-Rh-Catalyzed Diastereo- and 
Siteselective Hydroalkylation of 1,3 Diene 3.a

activator; mol %

AgCl; 5

LiBF4; 5

LiPF6; 5

LiPF6; 5

LiPF6; 5

LiPF6; 5

LiPF6; 5

LiPF6; 5

LiPF6; 5

LiPF6; 5

solvent

PhMe

PhMe

PhMe

PhCl

THF

DCM

PhMe

PhMe

PhMe

PhMe

+
2 3 4
N

O

O
Me

Ph
Ph

Me

N
O Me

O

Ph

Ph

aAll reactions performed under N2 atm. bValues determined by analysis of 400 
or 600 MHz 1H NMR spectra of unpurified mixtures with trimethylsilyl ether 
as an internal standard. cYields of purified products are an average of two runs. 
dA solvent ratio of 40:1 PhMe:alcohol used. eReaction run with [Rh(cod)Cl]2 as 
catalyst with NaBArF

4 additive.  

 

Racemic Trace: 
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Menthol: 

 

 

(R)-BINOL: 

 

 

(S,S)-hydrobenzoin: 

 

 

(R,R)-TADDOL-P(O)OH: 
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Note: Purification resulted in a 1:1 mixture of diastereomers. Both the syn and anti diastereomers 

show no significant enantioselectivity. 

 

(S,S)-diphenylethylenediamine: 
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APPENDIX 4: SUPPORTING INFORMATION FOR CHAPTER 4 
 

# General: All reactions were carried out in flame or oven (140 oC) dried glassware that had 

been cooled under vacuum.  Unless otherwise stated, all reactions were carried out under an inert 

N2 atmosphere. All reagents were purged or sparged with N2 for 20 min prior to distillation or 

use.  All solid reagents were dried by azeotropic distillation with benzene twice prior to use.  

Mass spectra were obtained using a Thermo LTqFT mass spectrometer with electrospray 

ionization and external calibration.  Proton and carbon magnetic resonance spectra (1H NMR and 

13C NMR) were recorded on a Bruker model DRX 400, a Bruker model AVANCE III 500, or a 

Bruker AVANCE III 600 CryoProbe (1H NMR at 400 MHz, 500 MHz or 600 MHz, 13C NMR at 

100 or 151 MHz, 31P NMR at 160 or 243 MHz and 19F NMR at 376 or 564 MHz) spectrometer 

with solvent resonance as the internal standard (1H NMR: CDCl3 at 7.26 ppm, CD2Cl2 at 5.32 

ppm, CD3CN at 1.94 ppm; 13C NMR: CDCl3 at 77.16 ppm, CD2Cl2 at 53.84 ppm, CD3CN at 1.32 

ppm).  NMR data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d 

= doublet, t = triplet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, 

ddd = doublet of doublet of doublets, m = multiplet, bs = broad singlet, bm = broad multiplet, 

etc.), and coupling constants (Hz).   

 

# Solvents:  Solvents were purged with argon and purified under a positive pressure of dry 

argon by a SG Waters purification system: dichloromethane (EMD Millipore), diethyl ether 

(EMD Millipore), hexanes (EMD Millipore), benzene (EMD Millipore), and THF (EMD 

Millipore) were passed through activated alumina columns.  CDCl3 and   CD2Cl2 were purchased 

from Cambridge Isotope Labs, distilled over CaH2 and stored in a dry box over activated 4 Å 

molecular sieves. 
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Section 4.2: Hydroalkylation with Enolate Nucleophiles to Diastereoselectively Generate 

Allylic Butenolide Products 

PhCDC-Rh-Styrene (5 mol %)
Activator (mol %)
Alcohol (equiv)

PhCl (1.0 M), Temp, 18 h

Ph
+

O

OOTMS
O

Me

Ph

50  

# General screening Conditions for Forming 5-(E-4-phenylbut-3-en-2-yl)furan-2(5H)-one 

in Table 4.2.1-1, 4.2.1-2, 4.2.1-4, 4.2.1-5, 4.2.2-1 and 4.2.2-2. 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with the PhCDC-Rh-styrene 

complex (8.1 mg, 0.005 mmol, 5 mol%), the appropriate amount of the listed Lewis acid 

activator, and 1,3-phenylbutadiene (13.0 mg, 0.10 mmol). The reagents were solvated with the 

listed solvent and the reaction sealed with a Teflon® lined septum cap before being allowed to 

stir at room temperature for <1 hour and removed from the dry box. A vial of the listed furan 

nucleophile was sparged with N2 for a minimum of 10 minutes before the appropriate amount 

was added via syringe. The listed alcohol was sparged with N2 for more than 10 minutes before 

being added via syringe. The reaction was allowed to warm to the appropriate temperature and 

stir for 18 h before being allowed to cool to 22 °C and an aliquot taken to determine the 

conversion by 1H NMR using DMF as an internal standard. The NMR sample was recovered and 

the solvent evaporated before the product was purified by SiO2 column chromatography to yield 

50 as a colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.49 (dd, J = 5.7, 1.5 Hz, 1H), 7.38 – 7.29 (m, 4H), 7.26 – 7.22 

(m, 1H), 6.49 (d, J = 15.8 Hz, 1H), 6.16 (dd, J = 5.8, 2.0 Hz, 1H), 6.08 (dd, J = 15.9, 8.4 Hz, 

1H), 4.97 (dt, J = 6.7, 1.7 Hz, 1H), 2.72 – 2.65 (m, 1H), 1.24 (d, J = 6.8 Hz, 3H). 13C NMR (151 
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MHz, CDCl3) δ 173.1, 173.1, 155.1, 154.8, 136.7, 136.7, 132.4, 132.4, 128.9, 128.8, 128.8, 

128.3, 127.9, 127.9, 126.4, 126.4, 122.8, 122.6, 86.7, 86.6, 41.3, 40.0, 16.4, 15.5.  
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50
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50
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Section 4.3: Diene Hydroalkylation with Benzoyl-Derived Furan Nucleophiles 

O

O
O

ClEt3N
MeCN, 0 to 22 °C, 14 h

O

Cl

Cl

O

O

 

Synthesis of furan-2-yl 4-chlorobenzoate 

A vial was charged with furanone (1.0 g, 11.9 mmol) and solvated with acetonitrile (4 mL, 

benchtop) before dry triethylamine (1.7 mL, 12.5 mmol) was added and the reaction sealed with 

a septa and the headspace purged with N2. The reaction was cooled to 0 °C and 4-chlorobenzoyl 

chloride (1.6 mL, 12.5 mmol) added via syringe under N2. The brown solution was warmed to 

room temperature and allowed to stir for 14 h during which time a white precipitate formed. The 

reaction was filtered and the solid rinsed with Et2O before the organic layers were combined and 

washed with a saturated solution of aqueous NaHCO3, water and brine. The resulting solution 

was dried with Na2SO4, filtered, and concentrated to a brown oil that was purified by SiO2 gel 

chromatography (10:1 Hex/Et2O) to yield furan-2-yl 4-chlorobenzoate as a yellow oil.  

1H NMR (400 MHz, CDCl3) δ 8.16 – 8.09 (m, 2H), 7.54 – 7.44 (m, 2H), 7.12 (dd, J = 2.1, 1.0 

Hz, 1H), 6.42 (dd, J = 3.3, 2.2 Hz, 1H), 6.04 (dd, J = 3.3, 1.0 Hz, 1H). 

 

O

O
O

OMeEt3N
MeCN, 0 to 22 °C, 14 h

O

OMe

Cl

O

O

 

Synthesis of furan-2-yl 4-methoxybenzoate 

A vial was charged with furanone (1.0 g, 11.9 mmol) and solvated with acetonitrile (4 mL, 

benchtop) before dry triethylamine (1.7 mL, 12.5 mmol) was added and the reaction sealed with 
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a septa and the headspace purged with N2. The reaction was cooled to 0 °C and 4-

methoxybenzoyl chloride (2.1 mL, 12.5 mmol) added via syringe under N2. The brown solution 

was warmed to room temperature and allowed to stir for 14 h during which time a white 

precipitate formed. The reaction was filtered and the solid rinsed with Et2O before the organic 

layers were combined and washed with a saturated solution of aqueous NaHCO3, water and 

brine. The resulting solution was dried with Na2SO4, filtered, and concentrated to a brown oil 

that was purified by SiO2 gel chromatography (10:1 Hex/Et2O) to yield furan-2-yl 4-

methoxybenzoate as a yellow oil.  

1H NMR (400 MHz, CDCl3) δ 8.18 – 8.07 (m, 2H), 7.11 (dd, J = 2.1, 1.1 Hz, 1H), 7.04 – 6.93 

(m, 2H), 6.41 (dd, J = 3.3, 2.2 Hz, 1H), 6.00 (dd, J = 3.3, 1.1 Hz, 1H), 3.90 (s, 3H). 

 

O

O
O

Et3N
MeCN, 50 °C, 18 h

O

Cl

O

O

Me
Me

 

Synthesis of furan-2-yl 2-methylbenzoate 

A vial was charged with furanone (500 mg, 5.95 mmol) and solvated with acetonitrile (5 mL, 

benchtop) before dry triethylamine (870 μL, 6.24 mmol) was added and the reaction sealed with 

a septa and the headspace purged with N2. 2-methylbenzoyl chloride (770 μL, 5.95 mmol) was 

added at room temperature via syringe under N2. The brown solution was warmed to 50 °C and 

allowed to stir for 18 h during which time a white precipitate formed. The reaction was filtered 

and the solid rinsed with Et2O before the organic layers were combined and washed with a 

saturated solution of aqueous NaHCO3, water and brine. The resulting solution was dried with 
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Na2SO4, filtered, and concentrated to a brown oil that was purified by SiO2 gel chromatography 

(10:1 Hex/Et2O) to yield furan-2-yl 2-methylbenzoate as a yellow oil.  

1H NMR (400 MHz, CDCl3) δ 8.22 – 8.10 (m, 1H), 7.56 – 7.43 (m, 1H), 7.32 (t, J = 6.9 Hz, 

2H), 7.13 (dd, J = 2.1, 1.1 Hz, 1H), 6.42 (dd, J = 3.3, 2.2 Hz, 1H), 6.00 (dd, J = 3.3, 1.0 Hz, 1H), 

2.67 (s, 3H). 

 

O

O
O

Et3N
MeCN, 50 °C, 18 h

O

Cl

O

O

Me
Me

MeMe
MeMe

 

Synthesis of furan-2-yl 2,4,6-trimethylbenzoate 

A vial was charged with furanone (500 mg, 5.95 mmol) and solvated with acetonitrile (5 mL, 

benchtop) before dry triethylamine (870 μL, 6.24 mmol) was added and the reaction sealed with 

a septa and the headspace purged with N2. 2,4,6-trimethylbenzoyl chloride (990 μL, 5.95 mmol) 

was added at room temperature via syringe under N2. The brown solution was warmed to 50 °C 

and allowed to stir for 18 h during which time a white precipitate formed. The reaction was 

filtered and the solid rinsed with Et2O before the organic layers were combined and washed with 

a saturated solution of aqueous NaHCO3, water and brine. The resulting solution was dried with 

Na2SO4, filtered, and concentrated to a brown oil that was purified by SiO2 gel chromatography 

(10:1 Hex/Et2O) to yield furan-2-yl 2,4,6-trimethylbenzoate as a yellow oil.  

1H NMR (400 MHz, CDCl3) δ 7.12 (dd, J = 2.1, 1.1 Hz, 1H), 6.92 (s, 2H), 6.42 (dd, J = 3.3, 2.2 

Hz, 1H), 6.03 (dd, J = 3.3, 1.1 Hz, 1H), 2.43 (s, 6H), 2.32 (s, J = 8.5 Hz, 3H). 

 



	   606	  

O

O
O

Me
Me

Et3N
MeCN, 22 °C, 18 h

O
Me

Me
Cl

O

O

MeMe

 

Synthesis of furan-2-yl 2,4,6-trimethylbenzoate 

A vial was charged with furanone (500 mg, 5.95 mmol) and solvated with acetonitrile (2 mL, 

benchtop) before dry triethylamine (870 μL, 6.24 mmol) was added and the reaction sealed with 

a septa and the headspace purged with N2. pivaloyl chloride (730 μL, 5.95 mmol) was added at 

room temperature via syringe under N2. The brown solution was allowed to stir for 18 h during 

which time a white precipitate formed. The reaction was filtered and the solid rinsed with Et2O 

before the organic layers were combined and washed with a saturated solution of aqueous 

NaHCO3, water and brine. The resulting solution was dried with Na2SO4, filtered, and 

concentrated to a brown oil that was purified by SiO2 gel chromatography (10:1 Hex/Et2O) to 

yield furan-2-yl pivalate as a clear oil. Characterization matched that reported in J. Med. 

Chem., 2005, 48 (8), 2822. 

1H NMR (400 MHz, CDCl3) δ 7.05 (dd, J = 2.1, 1.1 Hz, 1H), 6.36 (dd, J = 3.3, 2.2 Hz, 1H), 5.86 

(dd, J = 3.3, 1.0 Hz, 1H), 1.34 (s, 9H). 

 

O

O
O

Et3N
DCM, 22 °C, 18 h

O

O

Me
N

O

O

O

Me
N

O

O
Cl

 

Synthesis of furan-2-yl (S)-2-(1,3-dioxoisoindolin-2-yl)propanoate 

A vial was charged with furanone (250 mg, 2.97 mmol) and solvated with dry dichloromethane 

(6 mL) before dry triethylamine (456 μL, 3.27 mmol) was added and the reaction sealed with a 
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septa and the headspace purged with N2. (S)-2-(1,3-dioxoisoindolin-2-yl)propanoyl chloride (706 

μL, 2.97 mmol) was added at room temperature via syringe under N2. The brown solution was 

allowed to stir for 18 h during which time a white precipitate formed. The reaction was filtered 

and the solid rinsed with Et2O and the resulting solution was dried with Na2SO4, filtered, and 

concentrated to a red oil that was purified by SiO2 gel chromatography (10:1 Hex/Et2O) to yield 

furan-2-yl pivalate as a yellow crystalline solid.  

1H NMR (400 MHz, CDCl3) δ 7.96 – 7.84 (m, H), 7.82 – 7.69 (m, 2H), 7.02 (dd, J = 2.1, 1.1 Hz, 

1H), 6.33 (dd, J = 3.3, 2.2 Hz, 1H), 5.92 (dd, J = 3.3, 1.1 Hz, 1H), 5.21 (q, J = 7.3 Hz, 1H), 1.78 

(d, J = 7.3 Hz, 3H). 
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Section 4.4: Synthesizing Sterically and Electronically Modified CDC-Rh(I) Catalysts 

N N

N
H

N
H

BF4
BnK; ClP(tBu)2

THF, rt, 48 h

N N

N N

BF4

P P

63
>98% Yield  

Synthesis of 63  

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 1,2,3,5,6,8,9,10-

octahydrodiimidazo[1,2-d:2',1'-g][1,4]diazepin-4-ium tetrafluoroborate (50 mg, 0.188 mmol), 

and benzyl potassium (61.3 mg, 0.47 mmol). The reagents were solvated with THF (1 mL) and 

the reaction sealed with a Teflon® lined cap before being allowed to stir at room temperature for 

1 hour. To the resulting white suspension was added di-tert-butylchlorophosphine (107 µL, 

0.564 mmol) and the reaction was allowed to stir for 48 h. The product was triturated with  

hexanes and filtered through a Celite® plug before being recovered by dissolving off the plug 

with MeCN. The solution was concentrated to yield 63 (102 mg, 0.184 mmol, 98% yield) as an 

off-white powder.  

1H NMR (400 MHz, CD3CN) δ 6.12 (t, J = 8.3 Hz, 1H), 3.92 (t, J = 8.4 Hz, 4H), 3.64 (t, J = 8.4 

Hz, 4H), 3.56 (s, 4H), 1.26 (d, J = 12.8 Hz, 36H). 31P NMR (162 MHz, CD3CN) δ 80.69. 

 

N N

N
H

N
H

BF4

DCM/Et3N (1:1) 
40 °C, 18 h

N N

N N

BF4

P P

65
37% Yield

OMeMeO

MeO OMe

ClP

Me

Me

OMe

2

 

Synthesis of 65  
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In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 1,2,3,5,6,8,9,10-

octahydrodiimidazo[1,2-d:2',1'-g][1,4]diazepin-4-ium tetrafluoroborate (50 mg, 0.0752 mmol), 

and bis(3,5-di-tert-butyl-4-methoxyphenyl)chlorophosphine (76 mg, 0.226 mmol). The reagents 

were solvated with DCM (0.5 mL) and the reaction sealed with a Teflon® lined septa cap before 

being removed from the dry box. Dry triethylamine (0.5 mL) was added via syringe under N2 

and the reaction allowed to stir at 40 °C for 18 h. The reaction was cooled and concentrated 

before being passed through a Celite® plug with benchtop benzene. The flowthrough was 

concentrated and purified by SiO2 gel chromatography (100:1 DCM/iPrOH) to provide 65 (24.3 

mg, 0.0278 mmol, 37% yield) as an off-white solid foam.  

1H NMR (400 MHz, CDCl3) δ 7.03 (d, J = 7.9 Hz, 8H), 6.12 (td, J = 7.4, 3.1 Hz, 1H), 3.80 – 

3.73 (m, 12H), 3.73 – 3.64 (m, 8H), 3.34 (dd, J = 20.7, 12.4 Hz, 4H), 2.28 (s, J = 3.5 Hz, 12H), 

1.19 (d, J = 6.1 Hz, 12H).  

 

N N

N
H

N
H

BF4
N N

N N

BF4

P P

66
80% Yield

ClCl

Cl Cl

ClP Cl
1) BnK
2)

2

THF [0.2 M] 
-20 °C to rt, 40 h

 

Synthesis of 66  

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 1,2,3,5,6,8,9,10-

octahydrodiimidazo[1,2-d:2',1'-g][1,4]diazepin-4-ium tetrafluoroborate (60 mg, 0.226 mmol), 

and benzyl potassium (58.8 mg, 0.451 mmol). The reagents were solvated with THF (1.1 mL) 

and the reaction sealed with a Teflon® lined cap before being allowed to stir at room 

temperature for 1 hour. To the resulting white suspension was added bis(4-
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chlorophenyl)chlorophosphine (196 µL, 0.677 mmol) at -20 °C and the reaction allowed to stand 

in the dry box freezer at -20 °C for 40 h. The reaction was concentrated to dryness and then 

resolvated in minimal DCM before being triturated with excess hexanes. The suspension was 

filtered through a Celite® plug and washed with excess hexanes before being reisolated by 

solvation in DCM. The solution was concentrated to yield 66 (140 mg, 0.181 mmol, 80% yield) 

as a yellow foaming solid that was used crude without further purification.  

1H NMR (400 MHz, CDCl3) δ 7.40 – 7.22 (m, 16H), 5.91 (bs, 1H), 3.65 – 3.58 (m, 4H), 3.44 – 

3.34 (m, 4H), 3.26 (bs, 4H). 31P NMR (162 MHz, CDCl3) δ 39.07. 

 

N N

N N

BF4

P P

66

ClCl

Cl Cl

[Rh(ethylene)2Cl]2;

CDCl3 
50 °C, 18 h

N N

N N
P P

67
95% Yield

ClCl

Cl Cl

Rh
Cl

 

Synthesis of 67 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 66 (32.7 mg, 0.0423 mmol), 

and [Rh(ethylene)Cl]2 (8.2 mg, 0.0212 mmol). The reagents were solvated with CDCl3 (400 µL) 

and the reaction sealed with a Teflon® lined cap before being allowed to stir at 22 °C for 5 

hours. The solution was transferred to an NMR tube and analyzed by NMR spectroscopy before 

being returned to the dry box and heated to 50 °C for 18 h. The reaction was cooled and 

concentrated to dryness before being resolvated in minimal DCM and triturated with excess 

hexanes. The suspension was filtered through a Celite® plug and washed with excess hexanes 

before being reisolated by solvation in DCM. The solution was concentrated to yield 67 (33.1 

mg, 0.0402 mmol, 98% yield) as a tan powder that was used crude without further purification. 
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1H NMR (400 MHz, CDCl3) δ 7.85 – 7.80 (m, 8H), 7.37 (d, J = 8.0 Hz, 8H), 4.18 – 3.99 (m, 

4H), 3.83 – 3.66 (m, 4H), 3.55 (s, J = 12.5 Hz, 4H). 31P NMR (162 MHz, CDCl3) δ 69.94 (d, J = 

107.1 Hz). 

 

°

 

Synthesis of 68 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 1,2,3,5,6,8,9,10-

octahydrodiimidazo[1,2-d:2',1'-g][1,4]diazepin-4-ium tetrafluoroborate (10 mg, 0.0376 mmol), 

and benzyl potassium (9.8 mg, 0.0752 mmol). The reagents were solvated with THF (188 µL) 

and the reaction sealed with a Teflon® lined cap before being allowed to stir at room 

temperature for 1 hour. To the resulting white suspension was added bis(4-

chlorophenyl)chlorophosphine (56 mg, 0.113 mmol) at -20 °C and the reaction allowed to stand 

in the dry box freezer at -20 °C for 40 h. The reaction was concentrated to dryness and then 

resolvated in minimal CHCl3 before being triturated with excess hexanes. The solvent was 

pipetted off and the remaining white powder dried under vacuum to yield 68 as a 3:1 mixture of 

the bis- and mono-phosphorylated products. This material was used crude without further 

purification. 

1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 16.4 Hz, 8H), 7.90 – 7.78 (m, 8H), 6.05 (t, J = 7.3 

Hz, 1H), 5.66 (d, J = 6.4 Hz, 1H, characteristic peak of the mono-phosphorylated impurity), 4.02 



	   618	  

– 3.86 (m, 4H), 3.83 – 3.65 (m, 4H), 3.39 (t, J = 8.3 Hz, 4H). 31P NMR (162 MHz, CDCl3) δ 

37.75. 

 

°

 

Synthesis of 69 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with impure 68 (33 mg, 0.0376 

mmol), and [Rh(ethylene)Cl]2 (5.5 mg, 0.0141 mmol). The reagents were solvated with CHCl3 

(200 µL) and the reaction sealed with a Teflon® lined cap before being allowed to stir at 22 °C 

for 3 hours and then heated to 60 °C and allowed to stir for 18 h. The solution was cooled to 

room temperature, concentrated and analyzed by NMR spectroscopy before being returned to the 

dry box. The NMR sample was triturated with excess hexanes and the suspension filtered 

through a Celite® plug to remove any soluble phosphine impurities. The product was reisolated 

by dissolving in CHCl3 and concentrating to yield 69 (7.0 mg, 0.0113 mmol, 40% yield) as a tan 

powder that was used crude without further purification. 

1H NMR (400 MHz, CDCl3) δ 8.36 (t, J = 5.1 Hz, 8H), 8.02 (s, J = 13.0 Hz, 4H), 4.26 (t, J = 8.1 

Hz, 4H), 3.79 (d, J = 12.8 Hz, 8H). 31P NMR (162 MHz, CDCl3) δ 71.14 (d, J = 110.8 Hz). 
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Synthesis of 70 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 1,2,3,5,6,8,9,10-

octahydrodiimidazo[1,2-d:2',1'-g][1,4]diazepin-4-ium tetrafluoroborate (39.4 mg, 0.148 mmol), 

and bis(4-methoxyphenyl)chlorophosphine (104 mg, 0.371 mmol). The reagents were solvated 

with DCM (0.5 mL) and the reaction sealed with a Teflon® lined septa cap before being 

removed from the dry box. Dry triethylamine (0.5 mL) was added via syringe under N2 and the 

reaction allowed to stir at 22 °C for 18 h. The reaction was concentrated and purified by SiO2 gel 

chromatography (100:1 DCM/iPrOH) to provide 70 (68 mg, 0.0903 mmol, 61% yield) as an off-

white solid foam. The product was azeotroped with benzene to remove water before being used. 

1H NMR (400 MHz, CDCl3) δ 7.31 (t, J = 8.0 Hz, 8H), 6.94 (dd, J = 15.8, 6.0 Hz, 8H), 6.11 (t, J 

= 7.4 Hz, 1H), 3.83 (s, 12H), 3.76 – 3.62 (m, 8H), 3.32 (t, J = 8.7 Hz, 4H).  

 

 

Synthesis of 71 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 70 (20 mg, 0.0265 mmol), 

and [Rh(cod)Cl]2 (6.5 mg, 0.0133 mmol). The reagents were solvated with THF (1 mL) and the 
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reaction sealed with a Teflon® lined cap before being allowed to stir at 22 °C for 18 hours before 

being concentrated and analyzed by NMR spectroscopy to observe the Rh-hydride intermediate. 

The NMR sample was reisolated by concentration to generate a tan powder (10 mg, 0.0124 

mmol, 47% yield).  

1H NMR (600 MHz, CD3CN) δ 7.89 (dd, J = 12.9, 6.0 Hz, 4H), 7.46 (dt, J = 16.1, 7.9 Hz, 4H), 

7.10 (d, J = 8.3 Hz, 4H), 7.04 (d, J = 8.2 Hz, 4H), 4.09 (dd, J = 18.4, 9.3 Hz, 2H), 3.91 (dt, J = 

9.7, 6.2 Hz, 2H), 3.86 (d, J = 11.0 Hz, 6H), 3.84 – 3.77 (m, 6H), 3.65 – 3.60 (m, 4H), 3.50 – 3.40 

(m, 2H), 3.29 – 3.18 (m, 2H), -16.46 – -16.67 (m, 1H). 

A vial was charged with a portion of the Rh-hydride intermediate (5.0 mg, 0.0056 mmol) and 

NaHMDS (1.0 mg, 0.0056 mmol) before being solvated with THF (400 µL). The solution was 

allowed to stir at 22 °C for 2 h before being concentrated and plugged through Celite® with 

excess THF to provide an orange solution. The solution was concentrated to provide 71 (2.7 mg, 

0.0159 mmol, 60% yield) as a red/tan powder. 

1H NMR (400 MHz, CD3CN) δ 7.62 – 7.52 (m, 8H), 7.02 (d, J = 8.5 Hz, 8H), 4.00 – 3.90 (m, 

4H), 3.82 (s, 12H), 3.39 (d, J = 6.3 Hz, 4H), 3.23 (dd, J = 16.5, 8.6 Hz, 4H). 31P NMR (162 

MHz, CD3CN) δ 77.87 (dd, J = 248.7, 91.7 Hz). 

 

 

Synthesis of 72 
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In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 1,2,3,5,6,8,9,10-

octahydrodiimidazo[1,2-d:2',1'-g][1,4]diazepin-4-ium tetrafluoroborate (20 mg, 0.0752 mmol), 

and bis(3,5-dimethylphenyl)chlorophosphine (52 mg, 0.188 mmol). The reagents were solvated 

with DCM (0.5 mL) and the reaction sealed with a Teflon® lined septa cap before being 

removed from the dry box. Dry triethylamine (0.5 mL) was added via syringe under N2 and the 

reaction allowed to stir at 22 °C for 18 h. The reaction was concentrated and purified by SiO2 gel 

chromatography (100:1 DCM/iPrOH) to provide 72 (60 mg, 0.0421 mmol, 56% yield) as an off-

white solid foam. The product was azeotroped with benzene to remove water before being used. 

1H NMR (400 MHz, CDCl3) δ 7.38 – 7.27 (m, 4H), 7.13 – 7.04 (m, 4H), 7.00 (d, J = 8.2 Hz, 

4H), 6.15 (t, J = 7.4 Hz, 1H), 3.78 (s, 4H), 3.77 – 3.69 (m, 4H), 3.36 (t, J = 8.7 Hz, 4H), 2.32 (s, 

J = 10.1 Hz, 24H).  

 

 

Synthesis of 73 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 72 (50 mg, 0.0704 mmol), 

and [Rh(ethylene)Cl]2 (13.7 mg, 0.0352 mmol). The reagents were solvated with THF (200 µL) 

and the reaction sealed with a Teflon® lined cap before being allowed to stir at 22 °C for 4 hours 

before being concentrated and analyzed by NMR spectroscopy to observe the Rh-hydride 

intermediate. The NMR sample was reisolated by concentration to generate a tan powder.  
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1H NMR (600 MHz, CD3CN) δ 7.63 (t, J = 6.1 Hz, 4H), 7.37 – 7.30 (m, 4H), 7.25 – 7.16 (m, 

4H), 4.16 (q, J = 9.4 Hz, 1H), 4.00 – 3.90 (m, 2H), 3.75 – 3.61 (m, 2H), 3.58 – 3.46 (m, 4H), 

3.30 (q, J = 9.6 Hz, 2H), 2.41 (d, J = 9.7 Hz, 3H), 2.34 (d, J = 4.6 Hz, 3H), 2.11 (s, 6H), -16.35 

(dt, J = 19.1, 9.6 Hz, 1H). 

The impure Rh-hydride intermediate was azeotroped twice with benzene before KHMDS (14.0 

mg, 0.0704 mmol) was added and the solids solvated with THF (400 µL) to generate a deep red 

solution. The solution was allowed to stir at 22 °C for 2 h before being diluted with diethyl ether 

and plugged through Celite® to provide a red solution. The solution was concentrated to provide 

73 (39.3 mg, 0.0493 mmol, 70% yield) as a tan powder. 

1H NMR (400 MHz, CD3CN) δ 7.29 (t, J = 5.5 Hz, 8H), 7.21 (s, 4H), 4.07 – 3.99 (m, 4H), 3.46 

(d, J = 6.0 Hz, 4H), 3.37 – 3.29 (m, 4H), 2.36 (s, 24H). 31P NMR (162 MHz, CD3CN) δ 79.38 

(dd, J = 220.7, 68.0 Hz). 

 

N N

N
H

N
H

BF4
N N

N N

BF4

P P

73
66% Yield

ClP
2

O1) BnK
2)

THF [0.5 M] 
22 °C, 18 h O

O

O
O

 

Synthesis of 73 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 1,2,3,5,6,8,9,10-

octahydrodiimidazo[1,2-d:2',1'-g][1,4]diazepin-4-ium tetrafluoroborate (40 mg, 0.150 mmol), 

and benzyl potassium (39.2 mg, 0.301 mmol). The reagents were solvated with THF (300 µL) 

and the reaction sealed with a Teflon® lined cap before being allowed to stir at room 

temperature for 1 hour. To the resulting white suspension was added bis(2-furyl)chlorophosphine 
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(58.6 µL, 0.376 mmol) at 22 °C and the reaction allowed to stir for 40 h. The reaction was 

concentrated to dryness and resolvated in minimal THF before being triturated with excess 

hexanes. The liquid was pipeted off leaving a tan solid that was dried to yield impure 73 (57.2 

mg, 0.099 mmol, 66% yield) as a yellow foaming solid that was used crude without further 

purification.  

1H NMR (600 MHz, CDCl3) δ 7.85 – 7.59 (m, 4H), 7.08 – 6.87 (m, 4H), 6.63 – 6.31 (m, 4H), 

5.91 (t, J = 7.0 Hz, 1H), 3.79 – 3.68 (m, 12H).  
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Section 4.5: Applications of Modified CDC-Rh(I) Complexes to the Hydroalkylation of 

Dienes 

# General screening Conditions for Forming 5-(E-4-phenylbut-3-en-2-yl)furan-2(5H)-one 

with Modified CDC-Rh(I) Complexes in Scheme 4.5.1-1, 4.5.1-2, and 4.5.2-1. 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with the listed catalyst complex 

(0.005 mmol, 5 mol%), the appropriate amount of the listed Lewis acid activator, and 1,3-

phenylbutadiene (13.0 mg, 0.10 mmol). The reagents were solvated with the listed solvent and 

the reaction sealed with a Teflon® lined septum cap before being allowed to stir at room 

temperature for <1 hour and removed from the dry box. A vial of the listed furan nucleophile 

was sparged with N2 for a minimum of 10 minutes before the appropriate amount was added via 

syringe. The listed alcohol was sparged with N2 for more than 10 minutes before being added via 

syringe. The reaction was allowed to warm to the appropriate temperature and stir for 18 h 

before being allowed to cool to 22 °C and an aliquot taken to determine the conversion by 1H 

NMR using hexamethyldisiloxane as an internal standard. The NMR sample was recovered and 

the solvent evaporated before the product was purified by SiO2 column chromatography to yield 

50 as a colorless oil. 

See Section 4.2 for characterization of 50. 

 

Section 4.7: Diastereoselective Synthesis of Substituted 2-Butanones through 

Carbodicarbene-Rh Catalyzed Additions of Silyloxyfurans 

# Procedure and characterization for the CDC-Rh(I) catalyzed hydroalkylation of dienes 

with silyloxyfurans: 
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PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [1.0 M], 50 °C, 18 h Me

O
O

50 68% Yield
4:1 dr
γ:α 5:1

O
TIPSO

TIPSO-furan
(4 equiv)

+

 

Synthesis of 5-(E-4-phenylbut-3-en-2-yl)furan-2(5H)-one (50). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and 1,3-

phenylbutadiene (13.0 mg, 0.100 mmol) were combined in the glove box, and solvated with 

toluene (100 µL, 1.0 M). The reaction was sealed with a Teflon® septum cap and removed from 

the glove box. Outside the glove box, N2 sparged isopropanol (30.6 µL, 0.4 mmol) was added via 

syringe and the sealed reaction pumped back into the glove box. Inside the glove box (furan-2-

yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction via syringe and the 

solution allowed to stir at 50 °C for 1 h. A second aliquot of (furan-2-yloxy)triisopropylsilane 

(25 µL, 0.1 mmol) was added to the sealed reaction at 50 °C via syringe and the reaction allowed 

to stir for an additional hour. This aliquot addition was repeated twice more (2x25 µL) on the 

hour before the reaction was allowed to stir at 50 °C for 18 h. The reaction was removed from 

the glove box, cooled to room temperature, and 5 µL of hexamethyldisiloxane added as an 

internal standard. The reaction was diluted with CDCl3 and analyzed by NMR spectroscopy. The 

NMR sample was recombined with the reaction and the solvents removed in vacuo. The 

resulting oil was purified by SiO2 gel column chromatography (5:1 Hex/EtOAc) to afford 50 

(14.6 mg, 0.068 mmol, 68% yield, 4:1 dr, 5:1 γ:α regioselectivity) as a colorless oil.  

1H NMR (600 MHz, CDCl3) δ 7.49 (dd, J = 5.7, 1.5 Hz, 1H), 7.38 – 7.29 (m, 4H), 7.26 – 7.22 

(m, 1H), 6.49 (d, J = 15.8 Hz, 1H), 6.16 (dd, J = 5.8, 2.0 Hz, 1H), 6.08 (dd, J = 15.9, 8.4 Hz, 

1H), 4.97 (dt, J = 6.7, 1.7 Hz, 1H), 2.72 – 2.65 (m, 1H), 1.24 (d, J = 6.8 Hz, 3H). 13C NMR (151 
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MHz, CDCl3) δ 173.1, 173.1, 155.1, 154.8, 136.7, 136.7, 132.4, 132.4, 128.9, 128.8, 128.8, 

128.3, 127.9, 127.9, 126.4, 126.4, 122.8, 122.6, 86.7, 86.6, 41.3, 40.0, 16.4, 15.5.  

 

PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [1.0 M], 50 °C, 18 h Me

O
O

75 87% Yield
5:1 dr

γ:α >20:1

O
TIPSO

TIPSO-furan
(4 equiv)

+

Cl
Cl

 

Synthesis of 5-(E-4-(4-chlorophenyl)but-3-en-2-yl)furan-2(5H)-one (75). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and (E)-

1-(buta-1,3-dien-1-yl)-4-chlorobenzene (16.5 mg, 0.100 mmol) were combined in the glove box, 

and solvated with toluene (100 µL, 1.0 M). The reaction was sealed with a Teflon® septum cap 

and removed from the glove box. Outside the glove box, N2 sparged isopropanol (30.6 µL, 0.4 

mmol) was added via syringe and the sealed reaction pumped back into the glove box. Inside the 

glove box (furan-2-yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction 

via syringe and the solution allowed to stir at 50 °C for 1 h. A second aliquot of (furan-2-

yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction at 50 °C via syringe 

and the reaction allowed to stir for an additional hour. This aliquot addition was repeated twice 

more (2x25 µL) on the hour before the reaction was allowed to stir at 50 °C for 18 h. The 

reaction was removed from the glove box, cooled to room temperature, and 5 µL of 

hexamethyldisiloxane added as an internal standard. The reaction was diluted with CDCl3 and 

analyzed by NMR spectroscopy. The NMR sample was recombined with the reaction and the 

solvents removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography 



	   647	  

(5:1 Hex/EtOAc) to afford 75 (21.6 mg, 0.087 mmol, 87% yield, 5:1 dr, >20:1 γ:α 

regioselectivity) as a colorless oil.  

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.49 (dd, J = 5.7, 0.7 Hz, 2H), 7.33 

(s, 2H), 6.37 – 6.36 (m, 1H), 6.30 (d, J = 15.8 Hz, 1H), 6.21 (d, J = 3.3 Hz, 1H), 6.00 (dd, J = 

15.8, 8.4 Hz, 1H), 4.94 – 4.93 (m, 1H), 2.67 – 2.59 (m, 1H), 1.24 (d, J = 6.8 Hz, 3H).] syn-

Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.44 (d, J = 5.7 Hz, 2H), 7.33 (s, 2H), 

6.37 – 6.35 (m, 1H), 6.30 (d, J = 15.9 Hz, 1H), 6.21 (d, J = 3.3 Hz, 1H), 6.04 (dd, J = 16.5, 8.2 

Hz, 1H), 5.06 – 5.05 (m, 1H), 2.89 – 2.81 (m, 1H), 1.13 (d, J = 6.9 Hz, 3H).] 13C NMR (151 

MHz, CDCl3) δ 173.0, 173.0, 154.9, 154.5, 152.2, 152.1, 142.0, 142.0, 127.3, 126.9, 122.8, 

122.5, 120.7, 120.6, 111.4, 111.4, 108.1, 108.0, 86.5, 86.2, 41.0, 39.6, 16.4, 14.8. IR (ν/cm-1): 

2971 (m), 2930 (m), 2873 (w), 1749 (s), 1653 (m), 1507 (m), 1162 (m), 1091 (m), 1013 (m), 983 

(m). HRMS (ES+) [M–H]+ calcd for C14H14ClO2
+ 249.0682, found: 249.06778. 

 

PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [1.0 M], 50 °C, 18 h Me

O
O

76 73% Yield
4:1 dr
γ:α 17:1

O
TIPSO

TIPSO-furan
(4 equiv)

+

F
F

 

Synthesis of 5-(E-4-(4-fluorophenyl)but-3-en-2-yl)furan-2(5H)-one (76). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and (E)-

1-(buta-1,3-dien-1-yl)-4-fluorobenzene (14.8 mg, 0.100 mmol) were combined in the glove box, 

and solvated with toluene (100 µL, 1.0 M). The reaction was sealed with a Teflon® septum cap 

and removed from the glove box. Outside the glove box, N2 sparged isopropanol (30.6 µL, 0.4 

mmol) was added via syringe and the sealed reaction pumped back into the glove box. Inside the 
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glove box (furan-2-yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction 

via syringe and the solution allowed to stir at 50 °C for 1 h. A second aliquot of (furan-2-

yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction at 50 °C via syringe 

and the reaction allowed to stir for an additional hour. This aliquot addition was repeated twice 

more (2x25 µL) on the hour before the reaction was allowed to stir at 50 °C for 18 h. The 

reaction was removed from the glove box, cooled to room temperature, and 5 µL of 

hexamethyldisiloxane added as an internal standard. The reaction was diluted with CDCl3 and 

analyzed by NMR spectroscopy. The NMR sample was recombined with the reaction and the 

solvents removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography 

(5:1 Hex/EtOAc) to afford 76 (17.0 mg, 0.073 mmol, 73% yield, 4:1 dr, 17:1 γ:α 

regioselectivity) as a colorless oil.  

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.48 (dd, J = 5.8, 1.5 Hz, 1H), 7.33 

– 7.28 (m, 2H), 7.03 – 6.96 (m, 2H), 6.45 (d, J = 15.9 Hz, 1H), 6.16 (dt, J = 6.6, 3.3 Hz, 1H), 

5.98 (dd, J = 15.9, 8.3 Hz, 1H), 4.98 – 4.97 (m, 1H), 2.74 – 2.64 (m, 1H), 1.22 (d, J = 6.9 Hz, 

3H). 13C NMR (151 MHz, CDCl3) δ 172.9, 162.4 (d, J = 247.0 Hz), 154.8, 132.8, 131.1, 128.6 

(d, J = 2.2 Hz), 127.8 (d, J = 8.1 Hz), 122.5, 115.5 (d, J = 21.6 Hz), 86.5, 40.93, 16.09.] syn-

Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.47 (dd, J = 5.8, 1.5 Hz, 1H), 7.23 – 

7.18 (m, 2H), 7.05 – 6.99 (m, 2H), 6.46 (d, J = 15.9 Hz, 1H), 6.19 – 6.18 (m, 1H), 6.02 (dd, J = 

16.7, 8.3 Hz, 1H), 5.09 – 5.06 (m, 1H), 2.90 – 2.82 (m, 1H), 1.21 (d, J = 6.9 Hz, 3H). 13C NMR 

(151 MHz, CDCl3) δ 173.0, 161.9 (d, J = 246.0 Hz) 154.7, 132.8, 131.0 (d, J = 9.3 Hz), 129.6 (d, 

J = 8.0 Hz), 128.0 (d, J = 2.2 Hz), 122.7, 115.6 (d, J = 21.4 Hz), 86.4, 40.0, 15.5.] α-

Regioisomer (major): [1H NMR (600 MHz, CDCl3) δ 7.44 (dd, J = 5.8, 1.5 Hz, 1H), 7.27 (dd, J 

= 5.8, 1.5 Hz, 2H), 7.05 – 6.99 (m, 2H), 6.08 (dd, J = 5.8, 2.0 Hz, 1H), 5.74 – 5.58 (m, 2H), 5.27 
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– 5.24 (m, 1H), 3.64 (t, J = 6.7 Hz, 1H), 1.74 (d, J = 5.2 Hz, 3H).] α-Regioisomer (minor): [1H 

NMR (600 MHz, CDCl3) δ 7.36 – 7.30 (m, 2H), 7.24 – 7.22 (m, 1H), 7.05 – 6.99 (m, 2H), 6.11 

(dd, J = 5.7, 2.0 Hz, 1H), 5.75 – 5.58 (m, 2H), 5.24 – 5.21 (m, 1H), 3.57 (t, J = 7.0 Hz, 1H), 1.72 

(d, J = 6.4 Hz, 3H).] IR (ν/cm-1): 3080 (w), 3039 (w), 2971 (m), 2932 (m), 1749 (s), 1602 (m), 

1508 (s), 1227 (m), 1160 (m), 1094 (m), 1016 (m), 970 (m), 897 (m). HRMS (ES+) [M–Na]+ 

calcd for C14H13FO2Na+ 255.0797, found: 255.0795. 

 

PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [1.0 M], 50 °C, 18 h Me

O
O

77 90% Yield
4:1 dr
γ:α 2:1

O
TIPSO

TIPSO-furan
(4 equiv)

+

OMe
OMe

 

Synthesis of 5-(E-4-(4-methoxyphenyl)but-3-en-2-yl)furan-2(5H)-one (77). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and (E)-

1-(buta-1,3-dien-1-yl)-4-methoxybenzene (16.0 mg, 0.100 mmol) were combined in the glove 

box, and solvated with toluene (100 µL, 1.0 M). The reaction was sealed with a Teflon® septum 

cap and removed from the glove box. Outside the glove box, N2 sparged isopropanol (30.6 µL, 

0.4 mmol) was added via syringe and the sealed reaction pumped back into the glove box. Inside 

the glove box (furan-2-yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed 

reaction via syringe and the solution allowed to stir at 50 °C for 1 h. A second aliquot of (furan-

2-yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction at 50 °C via 

syringe and the reaction allowed to stir for an additional hour. This aliquot addition was repeated 

twice more (2x25 µL) on the hour before the reaction was allowed to stir at 50 °C for 18 h. The 

reaction was removed from the glove box, cooled to room temperature, and 5 µL of 
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hexamethyldisiloxane added as an internal standard. The reaction was diluted with CDCl3 and 

analyzed by NMR spectroscopy. The NMR sample was recombined with the reaction and the 

solvents removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography 

(5:1 Hex/EtOAc) to afford 77 (22.0 mg, 0.090 mmol, 90% yield, 4:1 dr, 2:1 γ:α regioselectivity) 

as a colorless oil.  

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.49 (dd, J = 5.7, 1.4 Hz, 2H), 7.28 

(d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.8 Hz, 1H), 6.42 (d, J = 15.8 Hz, 1H), 6.15 (dd, J = 5.7, 2.1 Hz, 

1H), 5.92 (dd, J = 15.8, 8.4 Hz, 1H), 4.96 – 4.95 (m, 1H), 3.81 (s, J = 1.1 Hz, 3H), 2.68 – 2.60 

(m, 1H), 1.23 (d, J = 6.8 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 173.1, 159.3, 155.1, 131.7, 

129.4, 127.5, 126.6, 122.4, 114.0, 86.8, 55.4, 41.2, 16.5.] syn-Diastereomer (major): [1H NMR 

(600 MHz, CDCl3) δ 7.44 (dd, J = 5.8, 1.4 Hz, 2H), 7.27 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 9.0 Hz, 

1H), 6.42 (d, J = 15.8 Hz, 1H), 6.15 (dd, J = 5.1, 3.0 Hz, 1H), 5.94 (dd, J = 15.6, 7.2 Hz, 1H), 

5.07 – 5.06 (m, 1H), 3.78 (s, 3H), 2.89 – 2.81 (m, 1H), 1.16 (d, J = 6.9 Hz, 3H). 13C NMR (151 

MHz, CDCl3) δ 173.1, 158.7, 154.8, 131.6, 129.1, 127.8, 126.0, 122.7, 114.1, 86.6, 55.4, 39.9, 

15.4.] α-Regioisomer (major): [1H NMR (600 MHz, CDCl3) δ 7.41 (dd, J = 5.8, 1.4 Hz, 2H), 

7.14 – 7.13 (m, 2H), 6.86 – 6.82 (m, 1H), 6.07 – 6.02 (m, 1H), 5.73 – 5.55 (m, 2H), 5.23 – 5.22 

(m, 1H), 3.79 (d, J = 2.6 Hz, 3H), 3.62 (t, J = 6.5 Hz, 1H), 1.71 (d, J = 4.9 Hz, 3H).] α-

Regioisomer (minor): [1H NMR (600 MHz, CDCl3) δ 7.30 – 7.26 (m, 2H), 7.23 (dd, J = 5.7, 

1.4 Hz, 2H), 6.89 – 6.84 (m, 1H), 6.07 – 6.05 (m, 1H), 5.75 – 5.53 (m, 1H), 5.20 – 5.17 (m, 2H), 

3.80 (s, J = 1.1 Hz, 3H), 3.46 (t, J = 7.3 Hz, 1H), 1.69 (d, J = 7.8 Hz, 3H).] IR (ν/cm-1): 2966 

(m), 2926 (m), 2839 (w), 1749 (s), 1607 (m), 1508 (m), 1250 (m), 1163 (m), 1033 (m), 968 (w). 

HRMS (ES+) [M–H]+ calcd for C15H17O3
+ 245.1178, found: 245.1180. 
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PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [1.0 M], 50 °C, 18 h Me

O
O

78 75% Yield
4:1 dr
γ:α 18:1

O
TIPSO

TIPSO-furan
(4 equiv)

+

Me
Me

 

Synthesis of 5-(E-4-(m-tolyl)but-3-en-2-yl)furan-2(5H)-one (78). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), (E)-1-

(buta-1,3-dien-1-yl)-3-methylbenzene (14.4 mg, 0.100 mmol) were combined in the glove box, 

and solvated with toluene (100 µL, 1.0 M). The reaction was sealed with a Teflon® septum cap 

and removed from the glove box. Outside the glove box, N2 sparged isopropanol (30.6 µL, 0.4 

mmol) was added via syringe and the sealed reaction pumped back into the glove box. Inside the 

glove box (furan-2-yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction 

via syringe and the solution allowed to stir at 50 °C for 1 h. A second aliquot of (furan-2-

yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction at 50 °C via syringe 

and the reaction allowed to stir for an additional hour. This aliquot addition was repeated twice 

more (2x25 µL) on the hour before the reaction was allowed to stir at 50 °C for 18 h. The 

reaction was removed from the glove box, cooled to room temperature, and 5 µL of 

hexamethyldisiloxane added as an internal standard. The reaction was diluted with CDCl3 and 

analyzed by NMR spectroscopy. The NMR sample was recombined with the reaction and the 

solvents removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography 

(5:1 Hex/EtOAc) to afford 78 (17.2 mg, 0.075 mmol, 75% yield, 4:1 dr, 18:1 γ:α 

regioselectivity) as a colorless oil.  

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.49 (dd, J = 5.7, 1.4 Hz, 1H), 7.24 

– 7.11 (m, 3H), 7.06 (d, J = 7.4 Hz, 1H), 6.46 (d, J = 15.9 Hz, 1H), 6.16 (dd, J = 5.7, 2.0 Hz, 
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1H), 6.06 (dd, J = 15.9, 8.4 Hz, 1H), 4.97 – 4.96 (m, 1H), 2.71 – 2.61 (m, 1H), 2.34 (s, 3H), 1.24 

(d, J = 6.8 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 173.0, 155.0, 138.2, 136.5, 132.3, 128.6, 

128.6, 128.6, 127.0, 123.5, 122.4, 86.6, 41.2, 21.4, 16.4.] syn-Diastereomer (major): [1H NMR 

(600 MHz, CDCl3) δ 7.45 (dd, J = 5.7, 1.5 Hz, 1H), 7.24 – 7.11 (m, 3H), 7.02 (d, J = 8.8 Hz, 

1H), 6.46 (d, J = 15.9 Hz, 1H), 6.16 (dd, J = 5.7, 2.0 Hz, 1H), 6.07 (dd, J = 15.9, 7.7 Hz, 1H), 

5.08 – 5.07 (m, 1H), 2.92 – 2.83 (m, 1H), 1.18 (d, J = 6.9 Hz, 3H). 13C NMR (151 MHz, CDCl3) 

δ 173.1, 154.7, 138.2, 136.5, 132.3, 128.6, 128.6, 128.0, 126.9, 123.5, 122.7, 86.5, 39.9, 21.4, 

15.3.] IR (ν/cm-1): 3024 (m), 2970 (s), 2926 (m), 2873 (w), 1756 (s), 1603 (m), 1456 (m), 1339 

(m), 1161 (s), 1088 (m), 969 (m). HRMS (ES+) [M–H]+ calcd for C15H17O2
+ 229.1229, found: 

229.1234. 

 

PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [1.0 M], 50 °C, 18 h Me

O
O

79 39% Yield
5:1 dr

γ:α >20:1

O
TIPSO

TIPSO-furan
(4 equiv)

+
Me

Me

 

Synthesis of 5-(E-4-(o-tolyl)but-3-en-2-yl)furan-2(5H)-one (79). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), (E)-1-

(buta-1,3-dien-1-yl)-2-methylbenzene (14.4 mg, 0.100 mmol) were combined in the glove box, 

and solvated with toluene (100 µL, 1.0 M). The reaction was sealed with a Teflon® septum cap 

and removed from the glove box. Outside the glove box, N2 sparged isopropanol (30.6 µL, 0.4 

mmol) was added via syringe and the sealed reaction pumped back into the glove box. Inside the 

glove box (furan-2-yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction 

via syringe and the solution allowed to stir at 50 °C for 1 h. A second aliquot of (furan-2-
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yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction at 50 °C via syringe 

and the reaction allowed to stir for an additional hour. This aliquot addition was repeated twice 

more (2x25 µL) on the hour before the reaction was allowed to stir at 50 °C for 18 h. The 

reaction was removed from the glove box, cooled to room temperature, and 5 µL of 

hexamethyldisiloxane added as an internal standard. The reaction was diluted with CDCl3 and 

analyzed by NMR spectroscopy. The NMR sample was recombined with the reaction and the 

solvents removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography 

(5:1 Hex/EtOAc) to afford 79 (8.9 mg, 0.039 mmol, 39% yield, 5:1 dr, >20:1 γ:α 

regioselectivity) as a colorless oil.  

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.53 (dd, J = 5.8, 1.4 Hz, 1H), 7.41 

– 7.39 (m, 1H), 7.21 – 7.15 (m, 3H), 6.72 (d, J = 15.7 Hz, 1H), 6.19 (dd, J = 5.7, 1.9 Hz, 1H), 

5.94 (dd, J = 15.7, 8.4 Hz, 1H), 5.01 – 5.00 (m, 1H), 2.79 – 2.71 (m, 1H), 2.35 (s, 3H), 1.28 (d, J 

= 6.8 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 173.0, 154.8, 135.8, 135.4, 130.4, 130.3, 130.2, 

127.7, 126.2, 125.6, 122.5, 86.6, 41.3, 19.9, 16.5.] syn-Diastereomer (major): [1H NMR (600 

MHz, CDCl3) δ 7.48 (dd, J = 5.8, 1.4 Hz, 1H), 7.40 – 7.37 (m, 1H), 7.22 – 7.13 (m, 3H), 6.72 (d, 

J = 15.8 Hz, 1H), 6.22 – 6.17 (m, 1H), 5.96 (dd, J = 16.2, 8.1 Hz, 1H), 5.12 – 5.11 (m, 1H), 2.97 

– 2.89 (m, 1H), 2.35 (s, 3H), 1.22 (d, J = 6.9 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 173.1, 

154.7, 135.9, 135.3, 130.4, 130.3, 130.3, 129.7, 126.2, 125.7, 122.7, 86.5, 40.1, 19.8, 15.5.] IR 

(ν/cm-1): 3020 (w), 2970 (m), 2930 (m), 1750 (s), 1457 (m), 1162 (m), 1087 (m), 1016 (m), 969 

(m), 896 (m). HRMS (ES+) [M–Na]+ calcd for C15H16O2Na+ 251.1048, found: 251.1046. 
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PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [1.0 M], 50 °C, 18 h Me

O
O

80 83% Yield
5:1 dr
γ:α 8:1

O
TIPSO

TIPSO-furan
(4 equiv)

+ O
O

 

Synthesis of 5-(E-4-(furan-2-yl)but-3-en-2-yl)furan-2(5H)-one (80). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and (E)-

2-(buta-1,3-dien-1-yl)furan (12.0 mg, 0.100 mmol) were combined in the glove box, and 

solvated with toluene (200 µL, 0.5 M). The reaction was sealed with a Teflon® septum cap and 

removed from the glove box. Outside the glove box, N2 sparged isopropanol (30.6 µL, 0.4 

mmol) was added via syringe and the sealed reaction pumped back into the glove box. Inside the 

glove box (furan-2-yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction 

via syringe and the solution allowed to stir at 50 °C for 1 h. A second aliquot of (furan-2-

yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction at 50 °C via syringe 

and the reaction allowed to stir for an additional hour. This aliquot addition was repeated twice 

more (2x25 µL) on the hour before the reaction was allowed to stir at 50 °C for 18 h. The 

reaction was removed from the glove box, cooled to room temperature, and 5 µL of 

hexamethyldisiloxane added as an internal standard. The reaction was diluted with CDCl3 and 

analyzed by NMR spectroscopy. The NMR sample was recombined with the reaction and the 

solvents removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography 

(5:1 Hex/EtOAc) to afford 80 (17.0 mg, 0.083 mmol, 83% yield, 5:1 dr, 8:1 γ:α regioselectivity) 

as a colorless oil.  

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.46 (dd, J = 5.7, 1.2 Hz, 1H), 7.28 

– 7.24 (m, 3H), 6.43 (d, J = 15.9 Hz, 1H), 6.16 (dd, J = 5.7, 1.9 Hz, 1H), 6.04 (dd, J = 15.9, 8.3 
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Hz, 1H), 5.00 – 4.94 (m, 1H), 2.76 – 2.63 (m, 1H), 1.21 (d, J = 6.8 Hz, 3H). 13C NMR (151 

MHz, CDCl3) δ 173.0, 154.8, 135.2, 133.5, 131.2, 129.6, 128.9, 127.6, 122.7, 86.5, 41.0, 16.1.] 

syn-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.44 (dd, J = 5.8, 1.2 Hz, 1H), 7.31 

– 7.25 (m, 2H), 7.14 (d, J = 8.4 Hz, 1H), 6.42 (d, J = 15.9 Hz, 1H), 6.16 – 6.15 (m, 1H), 6.09 – 

6.02 (m, 1H), 5.04 (dd, J = 3.5, 1.7 Hz, 1H), 2.85 – 2.80 (m, 1H), 1.18 (d, J = 6.9 Hz, 3H). 13C 

NMR (151 MHz, CDCl3) δ 173.0, 154.7, 135.2, 133.5, 131.2, 129.6, 129.1, 129.0, 122.8, 85.4, 

40.1, 15.6.] α-Regioisomer (major): [1H NMR (600 MHz, CDCl3) δ 7.40 (dd, J = 5.7, 1.3 Hz, 

1H), 7.30 – 7.26 (m, 2H), 7.16 (d, J = 8.4 Hz, 1H), 6.10 – 6.07 (m, 1H), 5.75 – 5.52 (m, 2H), 

5.21 (d, J = 6.3 Hz, 1H), 3.58 (t, J = 6.9 Hz, 1H), 1.71 (d, J = 5.4 Hz, 3H).] α-Regioisomer 

(minor): [1H NMR (600 MHz, CDCl3) δ 7.40 (dd, J = 5.7, 1.3 Hz, 1H), 7.30 – 7.26 (m, 2H), 

7.16 (d, J = 8.4 Hz, 1H), 6.10 – 6.07 (m, 1H), 5.75 – 5.52 (m, 2H), 5.19 (d, J = 6.4 Hz, 1H), 3.53 

(t, J = 6.9 Hz, 1H), 1.69 (d, J = 6.1 Hz, 3H).] IR (ν/cm-1): 3118 (br, w), 2971 (m), 2927 (m), 

2871 (w), 1749 (s), 1653 (m), 1521 (m), 1164 (m), 1089 (m), 1013 (m), 984 (m). HRMS (ES+) 

[M–H]+ calcd for C12H13O3
+ 205.0865, found: 205.0862. 

 

PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [0.5 M], 50 °C, 18 h Me

O
O

81 37% Yield
1:1 dr
γ:α 9:1

O
TIPSO

TIPSO-furan
(4 equiv)

+

 

Synthesis of 5-(E-4-cyclohexylbut-3-en-2-yl)furan-2(5H)-one (81). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), (E)-buta-

1,3-dien-1-ylcyclohexane (13.6 mg, 0.100 mmol) were combined in the glove box, and solvated 

with toluene (200 µL, 0.5 M). The reaction was sealed with a Teflon® septum cap and removed 
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from the glove box. Outside the glove box, N2 sparged isopropanol (30.6 µL, 0.4 mmol) was 

added via syringe and the sealed reaction pumped back into the glove box. Inside the glove box 

(furan-2-yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction via syringe 

and the solution allowed to stir at 50 °C for 1 h. A second aliquot of (furan-2-

yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction at 50 °C via syringe 

and the reaction allowed to stir for an additional hour. This aliquot addition was repeated twice 

more (2x25 µL) on the hour before the reaction was allowed to stir at 50 °C for 18 h. The 

reaction was removed from the glove box, cooled to room temperature, and 5 µL of 

hexamethyldisiloxane added as an internal standard. The reaction was diluted with CDCl3 and 

analyzed by NMR spectroscopy. The NMR sample was recombined with the reaction and the 

solvents removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography 

(5:1 Hex/EtOAc) to afford 81 (8.2 mg, 0.037 mmol, 37% yield, 1:1 dr, 9:1 γ:α regioselectivity) 

as a colorless oil.  

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.43 (dd, J = 5.7, 1.4 Hz, 1H), 

6.13-6.11 (m, 1H), 5.51 – 5.45 (m, 1H), 5.26 – 5.17 (m, 1H), 4.83 – 4.82 (m, 1H), 2.45 – 2.37 

(m, 1H), 1.91 (m, 1H), 1.74 – 1.60 (m, 6H), 1.30 – 1.18 (m, 4H), 1.12 (d, J = 6.8 Hz, 3H).] syn-

Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.37 (dd, J = 5.8, 1.4 Hz, 1H), 6.13-6.11 

(m, 1H), 5.51 – 5.45 (m, 1H), 5.26 – 5.17 (m, 1H),  4.97 – 4.96 (m, 1H), 2.68 – 2.62 (m, 1H), 

1.91 (m, 1H), 1.74 – 1.60 (m, 6H), 1.30 – 1.18 (m, 4H), 1.02 (d, J = 6.9 Hz, 3H).] 13C NMR (151 

MHz, CDCl3) δ 173.4, 173.3 155.3, 155.0, 139.8, 139.6, 126.4, 125.8, 122.5, 122.3, 87.1, 86.9, 

40.9, 40.8, 40.8, 39.3, 33.2, 33.2, 33.1, 33.1, 26.2, 26.1, 16.8, 15.3. IR (ν/cm-1): 2925 (s), 2851 

(m), 1758 (s), 1457 (m), 1161 (m), 1086 (m), 1016 (m), 971 (m). HRMS (ES+) [M–H]+ calcd for 

C14H21O2
+ 221.1542, found: 221.1539. 
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PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [0.5 M], 50 °C, 18 h Me

O
O

82
22% Yield

2:1 dr
γ:α 2:1

O
TIPSO

TIPSO-furan
(4 equiv)

+

Me
Me

 

Synthesis of 5-(E-dodec-3-en-2-yl)furan-2(5H)-one (82). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), (E)-1,3-

dodecadiene (16.6 mg, 0.100 mmol) were combined in the glove box, and solvated with toluene 

(200 µL, 0.5 M). The reaction was sealed with a Teflon® septum cap and removed from the 

glove box. Outside the glove box, N2 sparged isopropanol (30.6 µL, 0.4 mmol) was added via 

syringe and the sealed reaction pumped back into the glove box. Inside the glove box (furan-2-

yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed reaction via syringe and the 

solution allowed to stir at 50 °C for 1 h. A second aliquot of (furan-2-yloxy)triisopropylsilane 

(25 µL, 0.1 mmol) was added to the sealed reaction at 50 °C via syringe and the reaction allowed 

to stir for an additional hour. This aliquot addition was repeated twice more (2x25 µL) on the 

hour before the reaction was allowed to stir at 50 °C for 18 h. The reaction was removed from 

the glove box, cooled to room temperature, and 5 µL of hexamethyldisiloxane added as an 

internal standard. The reaction was diluted with CDCl3 and analyzed by NMR spectroscopy. The 

NMR sample was recombined with the reaction and the solvents removed in vacuo. The 

resulting oil was purified by SiO2 gel column chromatography (10:1 Hex/EtOAc) to afford 82 

(5.5 mg, 0.022 mmol, 22% yield, 2:1 dr, 2:1 γ:α regioselectivity) as a colorless oil.  

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.48 – 7.41 (m, 1H), 6.16 – 6.06 

(m, 1H), 5.58 – 5.48 (m, 1H), 5.25 (dd, J = 16.2, 9.0 Hz, 1H), 4.82 (d, J = 7.0 Hz, 1H), 2.46 – 
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2.38 (m, 1H), 1.98 (q, J = 7.0 Hz, 2H), 1.38 – 1.19 (m, 12H), 1.12 (d, J = 6.8 Hz, 3H), 0.89 – 

0.85 (m, 3H).] syn-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.48 – 7.41 (m, 1H), 

7.40 – 7.33 (m, 1H), 6.15 – 6.07 (m, 1H), 5.58 – 5.47 (m, 1H), 5.31 – 5.25 (m, 1H), 4.85 (d, J = 

7.3 Hz, 1H), 2.70 – 2.62 (m, 1H), 1.98 (q, J = 7.0 Hz, 2H), 1.37 – 1.17 (m, 12H), 1.02 (d, J = 6.9 

Hz, 3H), 0.87 (t, J = 7.0 Hz, 3H).] α-Regioisomer (major): [1H NMR (600 MHz, CDCl3) δ 7.48 

– 7.40 (m, 1H), 7.41 – 7.33 (m, 1H), 6.16 – 6.06 (m, 1H), 5.10 (dddd, J = 32.1, 30.4, 13.1, 7.7 

Hz, 1H), 4.96 (dt, J = 4.6, 1.5 Hz, 1H), 1.98 (q, J = 7.0 Hz, 2H), 2.28 – 2.18 (m, 1H), 1.68 (dd, J 

= 6.5, 1.5 Hz, 3H), 1.37 – 1.17 (m, 12H), 0.87 (t, J = 7.0 Hz, 3H).] α-Regioisomer (minor): [1H 

NMR (600 MHz, CDCl3) δ 7.48 – 7.40 (m, 1H), 7.41 – 7.33 (m, 1H), 6.16 – 6.06 (m, 1H), 5.10 

(dddd, J = 32.1, 30.4, 13.1, 7.7 Hz, 1H), 5.02 – 4.98 (m, 1H), 1.98 (q, J = 7.0 Hz, 3H), 1.65 (dd, J = 

6.5, 1.5 Hz, 3H), 1.37 – 1.17 (m, 12H), 0.87 (t, J = 7.0 Hz, 3H).]  13C NMR (151 MHz, CDCl3) δ 

173.4, 173.2, 173.2, 173.2, 155.5, 155.4, 155.2, 154.9, 133.8, 133.6, 129.8, 129.5, 128.8, 128.6, 

128.2, 128.1, 122.5, 122.1, 122.1, 122.0, 86.9, 86.7, 86.2, 86.2, 46.9, 45.5, 40.8, 39.3, 36.7, 36.5, 

36.2, 35.7, 32.6, 32.5, 31.9, 31.9, 31.1, 30.4, 29.5, 29.5, 29.5, 29.4, 29.3, 29.3, 29.2, 29.1, 27.2, 

26.9, 22.7, 22.7, 18.1, 18.0, 16.7, 15.2, 14.2, 14.2. IR (ν/cm-1): 2956 (w), 2926 (s), 2855 (m), 

1758 (s), 1457 (m), 1160 (m), 1093 (m), 1017 (m), 970. HRMS (ES+) [M–H]+ calcd for 

C16H27O2
+ 251.2011, found: 251.2010. 

 

PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [0.5 M], 50 °C, 18 h 83
29% Yield

O
TIPSO

TIPSO-furan
(4 equiv)

+
Me

Me
Me

OTBS Me
OTBS

O

O

 

Synthesis of 5-(E-6-((tert-butyldimethylsilyl)oxy)-5,5-dimethylhex-3-en-2-yl)furan-2(5H)-

one (83). 
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Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), (E)-tert-

butyl((2,2-dimethylhexa-3,5-dien-1-yl)oxy)dimethylsilane (24.0 mg, 0.100 mmol) were 

combined in the glove box, and solvated with toluene (200 µL, 0.5 M). The reaction was sealed 

with a Teflon® septum cap and removed from the glove box. Outside the glove box, N2 sparged 

isopropanol (30.6 µL, 0.4 mmol) was added via syringe and the sealed reaction pumped back 

into the glove box. Inside the glove box (furan-2-yloxy)triisopropylsilane (25 µL, 0.1 mmol) was 

added to the sealed reaction via syringe and the solution allowed to stir at 50 °C for 1 h. A 

second aliquot of (furan-2-yloxy)triisopropylsilane (25 µL, 0.1 mmol) was added to the sealed 

reaction at 50 °C via syringe and the reaction allowed to stir for an additional hour. This aliquot 

addition was repeated twice more (2x25 µL) on the hour before the reaction was allowed to stir 

at 50 °C for 18 h. The reaction was removed from the glove box, cooled to room temperature, 

and 5 µL of hexamethyldisiloxane added as an internal standard. The reaction was diluted with 

CDCl3 and analyzed by NMR spectroscopy. The NMR sample was recombined with the reaction 

and the solvents removed in vacuo. The resulting oil was purified by SiO2 gel column 

chromatography (5:1 Hex/EtOAc) to afford 83 (9.4 mg, 0.029 mmol, 29% yield, 0:0:1 γ:α:δ 

regioselectivity) as a colorless oil.  

1H NMR (600 MHz, CDCl3) δ 7.48 (dd, J = 5.7, 1.3 Hz, 1H), 6.15 (dd, J = 5.7, 1.9 Hz, 1H), 5.67 

– 5.55 (m, 1H), 5.41 – 5.30 (m, 1H), 5.11 – 5.02 (m, 1H), 3.22 (s, J = 9.7 Hz, 2H), 2.61 – 2.51 

(m, 1H), 2.49 – 2.38 (m, 1H), 1.96 (d, J = 7.6 Hz, 2H), 0.91 (s, 9H), 0.82 (s, 6H), 0.04 (s, 6H). 

13C NMR (151 MHz, CDCl3) δ 173.0, 156.0, 132.8, 124.4, 122.0, 83.0, 71.3, 41.7, 36.4, 35.7, 

25.9, 23.9, 23.9, 18.3, -5.5. IR (ν/cm-1): 2955 (s), 2929 (m), 2856 (m), 1759 (s), 1472 (m), 2352 
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(m), 1161 (m), 1100 (s), 852 (m). HRMS (ES+) [M–Na]+ calcd for C18H32O3SiNa+ 347.2018, 

found: 347.2023. 

 

PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [1.0 M], 50 °C, 18 h 85 76% Yield
2:1 dr
γ:α 1:1

O
TIPSO

84
(4 equiv)

+
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Me

OMe
O

O
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Me

 

Synthesis of 5-(E-4-(4-methoxyphenyl)but-3-en-2-yl)-3-methylfuran-2(5H)-one (85). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and (E)-

1-(buta-1,3-dien-1-yl)-4-methoxybenzene (16.0 mg, 0.100 mmol) were combined in the glove 

box, and solvated with toluene (100 µL, 1.0 M). The reaction was sealed with a Teflon® septum 

cap and removed from the glove box. Outside the glove box, N2 sparged isopropanol (30.6 µL, 

0.4 mmol) was added via syringe and the sealed reaction pumped back into the glove box. Inside 

the glove box triisopropyl((3-methylfuran-2-yl)oxy)silane (28 µL, 0.1 mmol) was added to the 

sealed reaction via syringe and the solution allowed to stir at 50 °C for 1 h. A second aliquot of 

triisopropyl((3-methylfuran-2-yl)oxy)silane (28 µL, 0.1 mmol) was added to the sealed reaction 

at 50 °C via syringe and the reaction allowed to stir for an additional hour. This aliquot addition 

was repeated twice more (2x28 µL) on the hour before the reaction was allowed to stir at 50 °C 

for 18 h. The reaction was removed from the glove box, cooled to room temperature, and 5 µL of 

hexamethyldisiloxane added as an internal standard. The reaction was diluted with CDCl3 and 

analyzed by NMR spectroscopy. The NMR sample was recombined with the reaction and the 

solvents removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography 
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(5:1 Hex/EtOAc) to afford 85 (19.6 mg, 0.076 mmol, 76% yield, 2:1 dr, 1:1 γ:α regioselectivity) 

as a colorless oil. 

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.31 – 7.29 (m, 1H), 7.05 – 7.02 

(m, 2H), 6.83 (dd, J = 4.9, 3.4 Hz, 2H), 6.44 (d, J = 15.9 Hz, 1H), 5.95 (dd, J = 15.8, 8.4 Hz, 

1H), 4.83 – 4.79 (m, 1H), 3.83 (s, 3H), 2.65 – 2.49 (m, 1H), 1.94 (t, J = 1.8 Hz, 3H), 1.23 (d, J = 

6.8 Hz, 3H).] syn-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.33 – 7.29 (m, 1H), 

7.11 – 7.09 (m, 2H), 7.07 – 7.05 (m, 2H), 6.44 (d, J = 15.9 Hz, 1H), 5.97 (dd, J = 15.9, 7.7 Hz, 

1H), 4.93 – 4.90 (m, 1H), 3.83 (s, 3H), 2.85 – 2.76 (m, 1H), 1.94 (t, J = 1.8 Hz, 3H), 1.15 (d, J = 

6.9 Hz, 3H).] α-Regioisomer (major): [1H NMR (600 MHz, CDCl3) δ 7.32 – 7.29 (m, 1H), 7.15 

(dd, J = 8.6, 1.1 Hz, 2H), 6.91 – 6.85 (m, 2H), 5.75 – 5.69 (m, 1H), 5.69 – 5.62 (m, 1H), 5.10 – 

5.03 (m, 1H), 3.82 (s, 3H), 3.58 – 3.53 (m, 1H), 1.87 (dt, J = 3.6, 1.8 Hz, 3H), 1.73 – 1.72 (m, 

3H).] α-Regioisomer (minor): [1H NMR (600 MHz, CDCl3) δ 7.34 – 7.29 (m, 1H), 7.15 (dd, J 

= 8.6, 1.1 Hz, 2H), 6.91 – 6.85 (m, 2H), 5.69 – 5.63 (m, 1H), 5.61 – 5.51 (m, 1H), 5.10 – 5.03 

(m, 1H), 3.81 (s, 3H), 3.40 (t, J = 7.5 Hz, 1H), 1.87 (dt, J = 3.6, 1.8 Hz, 3H), 1.71 (dd, J = 7.0, 

0.6 Hz, 3H).] 13C NMR (151 MHz, CDCl3) δ 174.3, 174.3, 174.2, 174.1, 159.3, 159.2, 158.7, 

158.6, 147.8, 147.6, 147.2, 147.1, 131.5, 131.4, 131.3, 131.2, 131.1, 131.0, 130.7, 130.7, 129.6, 

129.5, 129.4, 129.2, 129.2, 129.1, 129.0, 128.7, 128.1, 127.4, 127.1, 126.6, 114.1, 114.0, 114.0, 

113.8, 84.5, 84.3, 83.8, 83.6, 55.4, 55.3, 55.3, 55.3, 51.9, 51.5, 41.5, 40.1, 18.2, 18.1, 16.5, 15.2, 

10.8, 10.8, 10.7, 10.7. IR (ν/cm-1): 3502 (br, m), 2962 (m), 2933 (m), 2837 (w), 1758 (s), 1609 

(m), 1513 (m), 1455 (m), 1301 (m), 1251 (s), 1179 (m), 1096 (m), 1034 (m), 971 (m). HRMS 

(ES+) [M–H]+ calcd for C16H19O3
+ 259.1334, found: 259.1329. 
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PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [1.0 M], 50 °C, 18 h 86 52% Yield
2:1 dr
γ:α 2:1

O
TIPSO

84
(4 equiv)

+

Cl

Me

Cl
O

O

Me
Me

 

Synthesis of 5-(E-4-(4-chlorophenyl)but-3-en-2-yl)-3-methylfuran-2(5H)-one (86). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and (E)-

1-(buta-1,3-dien-1-yl)-4-chlorobenzene (16.5 mg, 0.100 mmol) were combined in the glove box, 

and solvated with toluene (100 µL, 1.0 M). The reaction was sealed with a Teflon® septum cap 

and removed from the glove box. Outside the glove box, N2 sparged isopropanol (30.6 µL, 0.4 

mmol) was added via syringe and the sealed reaction pumped back into the glove box. Inside the 

glove box triisopropyl((3-methylfuran-2-yl)oxy)silane (28 µL, 0.1 mmol) was added to the 

sealed reaction via syringe and the solution allowed to stir at 50 °C for 1 h. A second aliquot of 

triisopropyl((3-methylfuran-2-yl)oxy)silane (28 µL, 0.1 mmol) was added to the sealed reaction 

at 50 °C via syringe and the reaction allowed to stir for an additional hour. This aliquot addition 

was repeated twice more (2x28 µL) on the hour before the reaction was allowed to stir at 50 °C 

for 18 h. The reaction was removed from the glove box, cooled to room temperature, and 5 µL of 

hexamethyldisiloxane added as an internal standard. The reaction was diluted with CDCl3 and 

analyzed by NMR spectroscopy. The NMR sample was recombined with the reaction and the 

solvents removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography 

(5:1 Hex/EtOAc) to afford 86 (13.7 mg, 0.052 mmol, 52% yield, 2:1 dr, 2:1 γ:α regioselectivity) 

as a colorless oil.  

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.34 – 7.29 (m, 2H), 7.20 – 7.14 

(m, 2H), 7.08 (dd, J = 6.3, 4.8 Hz, 1H), 6.45 (d, J = 15.9 Hz, 1H), 6.08 (dd, J = 15.9, 8.3 Hz, 
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1H), 4.87 – 4.80 (m, 1H), 2.69 – 2.59 (m, 1H), 1.60 (s, 3H), 1.22 (d, J = 6.8 Hz, 3H).] syn-

Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.37 – 7.30 (m, 2H), 7.21 – 7.14 (m, 

2H), 7.07 – 7.05 (m, 1H), 6.44 (d, J = 15.9 Hz, 1H), 6.10 (dd, J = 15.9, 7.6 Hz, 1H), 4.95 – 4.88 

(m, 1H), 2.85 – 2.72 (m, 1H), 1.95 (dd, J = 3.4, 1.6 Hz, 3H), 1.17 (dd, J = 15.2, 6.8 Hz, 3H).] α-

Regioisomer (major): [1H NMR (600 MHz, CDCl3) δ 7.35 – 7.30 (m, 2H), 7.21 – 7.14 (m, 2H), 

7.05 – 7.02 (m, 1H), 5.73 – 5.50 (m, 2H), 5.11 – 5.04 (m, 1H), 3.53 (t, J = 7.0 Hz, 1H), 1.91 – 

1.86 (m, 3H), 1.74 (d, J = 5.2 Hz, 3H).] α-Regioisomer (minor): [1H NMR (600 MHz, CDCl3) 

δ 7.35 – 7.30 (m, 2H), 7.21 – 7.14 (m, 2H), 6.86 – 6.82 (m, 1H), 5.73 – 5.50 (m, 1H), 5.11 – 5.04 

(m, 2H), 3.48 (t, J = 7.2 Hz, 1H), 1.91 – 1.86 (m, 3H), 1.71 (d, J = 6.3 Hz, 3H).] 13C NMR (151 

MHz, CDCl3) δ 174.1, 174.1, 174.0, 173.9, 147.2, 147.1, 146.9, 146.9, 138.0, 137.7, 135.3, 

135.2, 133.3, 133.2, 133.1, 133.0, 131.3, 131.2, 131.1, 131.0, 130.8, 130.7, 130.0, 129.6, 129.6, 

129.5, 128.9, 128.8, 128.8, 127.9, 127.7, 127.5, 84.1, 84.1, 83.3, 83.1, 51.9, 51.9, 41.2, 40.2, 

18.2, 18.0, 16.0, 15.3, 10.8, 10.8, 10.7, 10.7.] 13C NMR (151 MHz, CDCl3) δ IR (ν/cm-1): 2969 

(m), 2926 (m), 1758 (s), 1491 (m), 1339 (m), 1092 (m), 1049 (m), 976 (m). HRMS (ES+) [M–

H]+ calcd for C15H16ClO2
+ 262.0389, found: 263.0833. 

 

PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [1.0 M], 50 °C, 18 h 87 95% Yield
2:1 dr
γ:α 5:1

O
TIPSO

84
(4 equiv)

+

Me

O
O

Me
Me

O O

 

Synthesis of 5-(E-4-(furan-2-yl)but-3-en-2-yl)-3-methylfuran-2(5H)-one (87). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and (E)-

2-(buta-1,3-dien-1-yl)furan (12.2 mg, 0.100 mmol) were combined in the glove box, and 
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solvated with toluene (100 µL, 1.0 M). The reaction was sealed with a Teflon® septum cap and 

removed from the glove box. Outside the glove box, N2 sparged isopropanol (30.6 µL, 0.4 

mmol) was added via syringe and the sealed reaction pumped back into the glove box. Inside the 

glove box triisopropyl((3-methylfuran-2-yl)oxy)silane (28 µL, 0.1 mmol) was added to the 

sealed reaction via syringe and the solution allowed to stir at 50 °C for 1 h. A second aliquot of 

triisopropyl((3-methylfuran-2-yl)oxy)silane (28 µL, 0.1 mmol) was added to the sealed reaction 

at 50 °C via syringe and the reaction allowed to stir for an additional hour. This aliquot addition 

was repeated twice more (2x28 µL) on the hour before the reaction was allowed to stir at 50 °C 

for 18 h. The reaction was removed from the glove box, cooled to room temperature, and 5 µL of 

hexamethyldisiloxane added as an internal standard. The reaction was diluted with CDCl3 and 

analyzed by NMR spectroscopy. The NMR sample was recombined with the reaction and the 

solvents removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography 

(5:1 Hex/EtOAc) to afford 87 (20.7 mg, 0.095 mmol, 95% yield, 2:1 dr, 5:1 γ:α regioselectivity) 

as a yellow oil. 

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.34 (t, J = 4.9 Hz, 1H), 7.12 – 

7.08 (m, 1H), 6.38 (dt, J = 3.2, 2.1 Hz, 1H), 6.31 (d, J = 15.8 Hz, 1H), 6.22 (d, J = 3.0 Hz, 1H), 

6.02 (dd, J = 15.9, 8.4 Hz, 1H), 4.81 – 4.75 (m, 1H), 2.60 – 2.51 (m, 1H), 1.97 – 1.92 (m, 3H), 

1.23 (d, J = 6.8 Hz, 3H).] syn-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.34 (t, J 

= 4.9 Hz, 1H), 7.12 – 7.09 (m, 1H), 6.40 – 6.36 (m, 1H), 6.31 (d, J = 15.9 Hz, 1H), 6.22 (d, J = 

3.0 Hz, 1H), 6.07 (dd, J = 15.9, 7.5 Hz, 1H), 4.92 – 4.89 (m, 1H), 2.85 – 2.74 (m, 1H), 1.96 – 

1.93 (m, 3H), 1.12 (d, J = 6.9 Hz, 3H).] α-Regioisomer (major): [1H NMR (600 MHz, CDCl3) 

δ 7.39 – 7.36 (m, 1H), 7.07 – 7.05 (m, 1H), 6.35 – 6.33 (m, 1H), 6.16 (dd, J = 3.2, 0.6 Hz, 1H), 

5.73 – 5.57 (m, 2H), 5.17 – 5.13 (m, 1H), 3.83 (dd, J = 8.7, 5.5 Hz, 1H), 1.91 (t, J = 1.8 Hz, 3H), 
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1.73 (d, J = 5.4 Hz, 3H).] α-Regioisomer (minor): [1H NMR (600 MHz, CDCl3) δ 7.38 – 7.36 

(m, 1H), 6.97 – 6.94 (m, 1H), 6.35 – 6.33 (m, 1H), 6.16 (dd, J = 3.2, 0.6 Hz, 1H), 5.71 – 5.59 (m, 

1H), 5.46 – 5.40 (m, 1H), 5.10 (dq, J = 8.6, 1.8 Hz, 1H), 3.64 (t, J = 6.8 Hz, 1H), 1.90 (t, J = 1.8 

Hz, 3H), 1.71 (dd, J = 6.5, 1.5 Hz, 3H).] 13C NMR (151 MHz, CDCl3) δ 174.2, 174.2, 174.0, 

174.0, 152.6, 152.6, 152.3, 152.2, 147.3, 147.3, 146.8, 146.7, 141.9, 141.9, 141.9, 141.8, 131.3, 

131.2, 131.2, 130.8, 130.8, 130.3, 127.8, 127.5, 125.5, 124.3, 120.5, 120.3, 111.3, 111.3, 110.4, 

110.4, 107.9, 107.7, 107.2, 107.0, 84.2, 84.0, 82.1, 81.7, 46.2, 45.8, 41.2, 39.8, 18.1, 17.6, 16.4, 

14.7, 10.8, 10.8, 10.7, 10.7. IR (ν/cm-1): 3117 (m), 2969 (m), 2927 (m), 2973 (w), 1758 (s), 1660 

(m), 1456 (m), 1339 (m), 1256 (m), 1208 (m), 1150 (m), 1095 (m), 1013 (m), 977 (m). HRMS 

(ES+) [M–H]+ calcd for C13H15O3
+ 219.1021, found: 219.1018. 

 

PhCDC-Rh-styrene (5 mol%)
LiPF6, (5 mol%)
iPrOH (4 equiv)

PhMe [0.5 M], 50 °C, 18 h 88 37% Yield
1:1 dr
γ:α 1:1

O
TIPSO

84
(4 equiv)

+

Me

O
O

Me
Me

 

Synthesis of 5-(E-4-cyclohexylbut-3-en-2-yl)-3-methylfuran-2(5H)-one (88). 

Following the general procedure for the Rh(I) catalyzed hydroalkylation of dienes with silyl enol 

ethers, CDC-Rh(I)-styrene BArF
4 1 (8.1 mg, 0.005 mmol), LiPF6 (0.8 mg, 0.005 mmol), and (E)-

buta-1,3-dien-1-ylcyclohexane (13.6 mg, 0.100 mmol) were combined in the glove box, and 

solvated with toluene (200 µL, 0.5 M). The reaction was sealed with a Teflon® septum cap and 

removed from the glove box. Outside the glove box, N2 sparged isopropanol (30.6 µL, 0.4 

mmol) was added via syringe and the sealed reaction pumped back into the glove box. Inside the 

glove box triisopropyl((3-methylfuran-2-yl)oxy)silane (28 µL, 0.1 mmol) was added to the 

sealed reaction via syringe and the solution allowed to stir at 50 °C for 1 h. A second aliquot of 
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triisopropyl((3-methylfuran-2-yl)oxy)silane (28 µL, 0.1 mmol) was added to the sealed reaction 

at 50 °C via syringe and the reaction allowed to stir for an additional hour. This aliquot addition 

was repeated twice more (2x28 µL) on the hour before the reaction was allowed to stir at 50 °C 

for 18 h. The reaction was removed from the glove box, cooled to room temperature, and 5 µL of 

hexamethyldisiloxane added as an internal standard. The reaction was diluted with CDCl3 and 

analyzed by NMR spectroscopy. The NMR sample was recombined with the reaction and the 

solvents removed in vacuo. The resulting oil was purified by SiO2 gel column chromatography 

(5:1 Hex/EtOAc) to afford 88 (8.7 mg, 0.037 mmol, 37% yield, 1:1 dr, 1:1 γ:α regioselectivity) 

as a yellow oil. 

anti-Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.01 – 6.97 (m, 1H), 5.53 – 5.43 

(m, 1H), 5.29 – 5.18 (m, 1H), 4.72 – 4.65 (m, 1H), 2.42 – 2.30 (m, 1H), 1.93 (s, J = 5.7 Hz, 3H), 

1.95 – 1.89 (m, 1H), 1.77 – 1.63 (m, 6H), 1.33 – 1.19 (m, 4H), 1.16 – 1.05 (m, 3H).] syn-

Diastereomer (major): [1H NMR (600 MHz, CDCl3) δ 7.06 – 7.02 (m, 1H), 5.53 – 5.43 (m, 

1H), 5.29 – 5.17 (m, 1H), 4.84 – 4.79 (m, 1H), 2.64 – 2.56 (m, 1H), 2.20 (s, 3H), 1.95 – 1.87 (m, 

1H), 1.76 – 1.62 (m, 6H), 1.32 – 1.20 (m, 4H), 1.13 – 1.05 (m, 3H).] 13C NMR (151 MHz, 

CDCl3) δ 178.61, 174.45, 174.37, 151.90, 148.43, 147.58, 147.29, 139.65, 139.30, 139.15, 

134.28, 130.78, 130.50, 126.64, 126.09, 123.44, 110.90, 91.93, 84.67, 84.53, 80.74, 66.59, 40.91, 

40.68, 40.63, 39.42, 39.13, 37.74, 36.52, 33.06, 33.00, 32.96, 31.00, 28.88, 28.07, 26.54, 26.32, 

26.12, 25.97, 17.72, 17.57, 16.66, 15.20, 12.32, 12.27, 10.72, 10.68, 8.47. IR (ν/cm-1): 2925 (s), 

2867 (m), 1761 (s), 1661 (m), 1457 (m), 1267 (m), 1093 (w), 1025 (m), 975 (m), 884 (m). 

HRMS (ES+) [M–H]+ calcd for C15H23O2
+ 235.1698, found: 235.1695. 
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75γ 75α

5:1 dr
>20:1 γ:α
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75γ 75α

5:1 dr
>20:1 γ:α
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76γ 76α

4:1 dr
17:1 γ:α
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76γ 76α

4:1 dr
17:1 γ:α



	   673	  

77γ 77α

4:1 dr
5:1 γ:α
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77γ 77α

4:1 dr
5:1 γ:α
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78γ 78α

4:1 dr
18:1 γ:α
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78γ 78α

4:1 dr
18:1 γ:α
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79γ 79α

5:1 dr
>20:1 γ:α
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79γ 79α

5:1 dr
>20:1 γ:α
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80γ 80α

5:1 dr
8:1 γ:α
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80γ 80α

5:1 dr
8:1 γ:α
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81γ 81α

1:1 dr
9:1 γ:α
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81γ 81α

1:1 dr
9:1 γ:α
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82γ 82α

2:1 dr
2:1 γ:α
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82γ 82α

2:1 dr
2:1 γ:α
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83δ
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83δ
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85γ 85α
2:1 dr

1:2 γ:α
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85γ 85α
2:1 dr

1:2 γ:α
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86γ 86α
1:1 dr
2:1 γ:α
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86γ 86α
1:1 dr
2:1 γ:α
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87γ 87α
2:1 dr
4:1 γ:α
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87γ 87α
2:1 dr
4:1 γ:α

 



	   693	  

88γ 88α
1:1 dr
4:1 γ:α
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88γ 88α
1:1 dr
4:1 γ:α
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APPENDIX 5: SUPPORTING INFORMATION FOR CHAPTER 5 
 

Section 5.2: Enantiocontrol with Chiral Additives 

# General Procedure for Enantioselective Intermolecular Hydroarylation with 1,3-

Pentanedione and 1-Methylindole Using Chiral Additives (Table 5.2.1-1, 5.2.2-1, and 5.2.3-

1) 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with the PhCDC-Rh-styrene 

complex (4.1 mg, 0.0025 mmol, 5 mol%), the appropriate amount of the listed lewis acid and/or 

chiral additive, and 1,3-phenylbutadiene (6.5 mg, 0.05 mmol). The reagents were solvated with 

the listed solvent (50 μL, [ ] = 1.0 M) and the reaction was sealed with a Teflon® lined septum 

cap before being allowed to stir at room temperature for 1 hour. 1-methylindole (6.6 mg, 0.05 

mmol) was added to the reaction and the vial sealed with black electrical tape before being 

removed from the glovebox. The reaction was heated to 60 °C and allowed to stir for 18 hours 

before being allowed to cool to room temperature and an aliquot taken to determine the 

conversion by 1H NMR using DMF as an internal standard. The NMR sample was recovered and 

the solvent evaporated before the products were purified by SiO2 column chromatography. A 

pure sample was then assayed on an Agilent 1220 LC System with a Daicel ChiralPak IA 

column (100% Hexanes, 1 mL/min, 210 nm). 

1H NMR (600 MHz, CHCl3-d) δ 7.67 (dd, J = 7.9, 1.1 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.33 – 7.26 

(m, 4H), 7.22 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.21 – 7.17 (m, 1H), 7.09 (ddd, J = 7.9, 6.9, 1.1 Hz, 

1H), 6.88 (d, J = 0.8 Hz, 1H), 6.56 – 6.43 (m, 2H), 3.94 (m, 1H), 3.77 (s, 3H), 1.56 (d, J = 7.0 

Hz, 4H). 13C NMR (151 MHz, CHCl3-d) δ 137.95, 137.39, 135.72, 128.58, 128.15, 127.30, 

126.99, 126.27, 125.43, 121.67, 119.82, 119.03, 118.81, 109.34, 34.35, 32.79, 20.99. IR (ν/cm-1): 
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2925 (m), 2870 (s), 1472 (m), 1374 (w), 1328 (w), 1134 (s). MS (ES+) [M+H]+ calcd for 

C19H20N+ 262.16, found: 262.00. 

Racemic Trace: 

 

 

PhCDC-Rh-styrene (5 mol %)
2 (5 mol %) 

PhCl (1.0 M), 60 °C, 18 h

Ph
+ Me

N Ph

Me

NMe6
92% NMR Yield

2% ee  

Chiral Trace: 

  

 

PhCDC-Rh-styrene (5 mol %)
2 (5 mol %) 

THF (1.0 M), 60 °C, 18 h
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N Ph
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NMe6
91% NMR Yield

1% ee  

Chiral Trace: 
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PhCDC-Rh-styrene (5 mol %)
3 (5 mol %) 

PhCl (1.0 M), 60 °C, 18 h

Ph
+ Me

N Ph

Me

NMe6
10% NMR Yield

0% ee  

Chiral Trace: 

 

 

PhCDC-Rh-styrene (5 mol %)
11 (5 mol %) 

PhCl (1.0 M), 60 °C, 18 h

Ph
+ Me

N Ph

Me

NMe6
95% NMR Yield

1% ee  

Chiral Trace: 

 

 

PhCDC-Rh-styrene (5 mol %)
11 (5 mol %) 

THF (1.0 M), 60 °C, 18 h

Ph
+ Me

N Ph

Me

NMe6
93% NMR Yield

2% ee  

Chiral Trace: 
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Section 5.3: Enantioselective Hydrofunctionalization Controlled by P-Stereogenic 

Carbodicarbene Ligands 

N N

N
H

N
H

BF4 1) BnK
    THF, 22 °C, 1 h

2) 13
    -20 to 22 °C, 1 h

N N

N N

BF4

P P

14
80% Yield  

Synthesis of 14 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 1,2,3,5,6,8,9,10-

octahydrodiimidazo[1,2-d:2',1'-g][1,4]diazepin-4-ium tetrafluoroborate (10 mg, 0.0376 mmol), 

and benzyl potassium (9.8 mg, 0.0752 mmol). The reagents were solvated with THF (1 mL) and 

the reaction sealed with a Teflon® lined cap before being allowed to stir at room temperature for 

1 hour. To the resulting white suspension was added (2R,5R)-1-chloro-2,5-dimethylphospholane 

(17 mg, 0.113 mmol) at -20 °C and the reaction allowed to stir a 22 °C for 1 h. The reaction was 

triturated with excess hexanes to generate a precipitate which was isolated by washing with 

hexanes and pipetting off the solvent. The precipitate was characterized by NMR spectroscopy, 

recovered, and dried to yield 14 (14.9 mg, 0.0301 mmol, 80% yield) as an impure mixture of the 

bis- and mono-phosphine (5:1), which was used without further purification.  
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1H NMR (400 MHz, Chloroform-d) δ 5.84 (t, J = 7.5 Hz, 1H), 3.91 – 3.70 (m, 8H), 3.69 – 3.43 

(m, 4H), 2.59 – 2.43 (m, 2H), 2.38 – 2.20 (m, 2H), 2.21 – 1.90 (m, 4H), 1.61 – 1.44 (m, 2H), 

1.33 (dd, J = 20.3, 7.3 Hz, 6H), 1.30 – 1.17 (m, 2H), 1.17 (dd, J = 11.2, 7.1 Hz, 6H). 31P NMR 

(162 MHz, CDCl3) δ 69.53. 

 

N N

N N

BF4

P P

14

1) [Rh(ethylene)2Cl]2;
    CHCl3, 22 °C, 18 h

2) NaOMe
    THF, 22 °C, 2 h

N N

N N
P P

15
56% Yield

Rh
Cl

 

Synthesis of 15 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 14 (22.8 mg, 0.0461 mmol), 

and [Rh(ethylene)Cl]2 (9.0 mg, 0.0231 mmol). The reagents were solvated with CDCl3 (600 µL) 

and the reaction sealed with a Teflon® lined cap before being allowed to stir at 22 °C for 18 

hours. The soluble material was transferred to a second vial and the remaining solid rinsed with 

excess CHCl3 and also transferred. The solution was concentrated and sodium methoxide (2.5 

mg, 0.0461 mmol) added before the solids were resolvated in THF (600 µL) and allowed to stir 

at 22 °C for 2 hours. The reaction precipitated a dark red/brown solid, which was isolated by 

filtration through a celite® plug using excess THF to rinse the solid. The product was then 

reisolated by dissolving off the plug with DCM and the resulting solution concentrated to yield 

15 (14.2 mg, 0.0258 mmol, 56% yield) as a brown powder. 

1H NMR (500 MHz, CDCl3) δ 4.06 – 3.87 (m, 4H), 3.79 (dd, J = 19.7, 10.7 Hz, 2H), 3.66 – 3.33 

(m, 6H), 3.20 (bd, J = 7.7 Hz, 2H), 2.80 (bs, 2H), 2.38 – 2.23 (m, 2H), 2.15 (dd, J = 13.6, 6.4 Hz, 

2H), 1.76 (dt, J = 16.7, 7.6 Hz, 6H), 1.67 – 1.45 (m, 4H), 1.48 – 1.34 (m, 6H). 31P NMR (202 

MHz, CDCl3) δ 31P NMR (202 MHz, CDCl3) δ 104.13 (d, J = 103.8 Hz). 
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N N

N
H

N
H

BF4

1) BnK
    THF, 22 °C, 1 h
2) 16
    -20 to 22 °C, 1 h

17

NN

NN

BF4

PP

 

Synthesis of 17 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 1,2,3,5,6,8,9,10-

octahydrodiimidazo[1,2-d:2',1'-g][1,4]diazepin-4-ium tetrafluoroborate (4.0 mg, 0.0150 mmol), 

and benzyl potassium (4.9 mg, 0.0376 mmol). The reagents were solvated with THF (200 μL) 

and the reaction sealed with a Teflon® lined cap before being allowed to stir at room 

temperature for 1 hour. To the resulting white suspension was added (11bR)-4-chloro-4,5-

dihydro-3H-dinaphtho[2,1-c:1',2'-e]phosphepine (13.0 mg, 0.0376 mmol) at -20 °C and the 

reaction allowed to stand for 10 minutes before being triturated with hexanes. The solvent was 

pipeted off and the solid resolvated with CHCl3, triturated again with hexanes and the solvent 

removed by pipet. The remaining solid was dried in vaccuo and characterized by NMR 

spectroscopy. The NMR sample was recovered and dried to yield 17 as an impure mixture of the 

bis- and mono-phosphine (2.5:1), which was used without further purification.  

1H NMR (400 MHz, CDCl3) δ Diagnostic peak for 17: 5.71 (t, J = 7.1 Hz, 1H); Diagnostic peak 

for mono-phosphorylated: 5.29 (d, J = 6.0 Hz, 1H). 31P NMR (162 MHz, CDCl3) δ Diagnostic 

peak for 17: 51.69; Diagnostic peak for 50.06. 
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17

1) [Rh(ethylene)2Cl]2;
    CHCl3, 22 °C, 18 h
2) NaOMe
    THF, 22 °C, 2 h

18
33% Yield 
(2 steps)

NN

NN

BF4

PP

NN

NN
PP Rh

Cl

 

Synthesis of 18 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 17 (19.0 mg, 0.0214 mmol), 

and [Rh(ethylene)Cl]2 (4.2 mg, 0.0107 mmol). The reagents were solvated with CDCl3 (400 µL) 

at -20 °C and the reaction allowed to stand for 1 h at 22 °C sealed with a Teflon® lined cap. The 

solution was concentrated and sodium methoxide (1.2 mg, 0.0214 mmol) added before the solids 

were resolvated in THF (400 µL) and allowed to stir at 22 °C for 1 hour. The solution 

concentrated to yield 18 (6.6 mg, 0.00706 mmol, 33% yield) as a brown powder. 

1H NMR (400 MHz, CDCl3) δ Diagnostic peak for hydride in 18: -19.29 (dt, J = 28.9, 14.4 Hz, 

1H). 31P NMR (162 MHz, CDCl3) δ 100.60 (dd, J = 566.6, 117.8 Hz). 

 

# General Procedure for Surveying Enantioselectivity with CDC-Rh(I) Catalyst 18 

(Scheme 5.3.2-1) 

18 (5 mol %)
AgBF4 (5 mol %) 

PhCl, 60 °C, 18 h 19
20% Yield

9% ee

Ph Ph
NHBn NBn

Me

Ph
Ph

 

Synthesis of 19 Catalyzed by CDC-Rh(I) Complex 18 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 18 (4.7 mg, 0.005 mmol, 5 

mol%) and AgBF4 (1.0 mg, 0.005 mmol, 5 mol%) before being solvated with chlorobenzene 

(100 μL, [ ] = 1.0 M). The brown heterogeneous solution was allowed to stir at room temperature 

for 1 hour before N-benzyl-2,2-diphenylpent-4-en-1-amine (32.7 mg, 0.1 mmol) was added. The 
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reaction was sealed with a Teflon® lined lid, taped with electrical tape and removed from the 

glove box before being heated to 60 °C for 18 h. The reaction was cooled and an aliquot taken to 

determine the conversion by 1H NMR using DMF as an internal standard. The NMR sample was 

recovered and the solution concentrated. The resulting oil was purified by SiO2 column 

chromatography (50:1 Hexanes/Et2O) to afford 19 (6.5 mg, 0.02 mmol, 20% yield) as a colorless 

oil. A pure sample was assayed on an Agilent 1220 LC System with a Daicel ChiralPak IA 

column (99:1 Hexanes/Isopropanol, 0.5 mL/min, 210 nm) to find that the product was formed in 

9% ee. 

1H NMR (600 MHz, CDCl3) δ 7.38 (d, J = 7.4 Hz, 2H), 7.33 (dd, J = 17.8, 10.8 Hz, 2H), 7.30 – 

7.23 (m, 5H), 7.23 – 7.15 (m, 5H), 7.11 (dd, J = 19.2, 12.1 Hz, 1H), 4.10 (d, J = 13.2 Hz, 1H), 

3.65 (d, J = 9.9 Hz, 1H), 3.27 (d, J = 13.2 Hz, 1H), 2.93 (dd, J = 12.6, 7.8 Hz, 1H), 2.89 – 2.82 

(m, 1H), 2.80 (d, J = 9.9 Hz, 1H), 2.22 (dd, J = 12.6, 8.0 Hz, 1H), 1.18 (d, J = 5.6 Hz, 3H). 13C 

NMR (151 MHz, CDCl3) δ 150.67, 148.76, 140.12, 128.62, 128.23, 128.15, 127.84, 127.46, 

127.27, 126.79, 125.81, 125.42, 66.46, 59.68, 58.03, 52.54, 48.02, 19.54. 

Racemic Trace: 

 

Chiral Trace: 
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# General Procedure for Surveying Enantioselectivity with CDC-Rh(I) Catalyst 15 

(Scheme 5.3.2-2) 

 

15 (5 mol %)
AgBF4 (5 mol %) 

PhCl, 60 °C, 18 h 19
98% Yield

30% ee

Ph Ph
NHBn NBn

Me

Ph
Ph

 

Synthesis of 19 Catalyzed by CDC-Rh(I) Complex 15 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 15 (4.7 mg, 0.00863 mmol, 

5 mol%) and AgBF4 (1.7 mg, 0.00863 mmol, 5 mol%) before being solvated with chlorobenzene 

(350 μL, [ ] = 0.5 M). The brown heterogeneous solution was allowed to stir at room temperature 

for 1 hour before N-benzyl-2,2-diphenylpent-4-en-1-amine (32.7 mg, 0.1 mmol) was added. The 

reaction was sealed with a Teflon® lined lid, taped with electrical tape and removed from the 

glove box before being heated to 60 °C for 48 h. The reaction was cooled and an aliquot taken to 

determine the conversion by 1H NMR using DMF as an internal standard. The NMR sample was 

recovered and the solution concentrated. The resulting oil was purified by SiO2 column 

chromatography (50:1 Hexanes/Et2O) to afford 19 (32.1 mg, 0.098 mmol, 98% yield) as a 

colorless oil. A pure sample was assayed on an Agilent 1220 LC System with a Daicel ChiralPak 

IA column (99:1 Hexanes/Isopropanol, 0.5 mL/min, 210 nm) to find that the product was formed 

in 30% ee. 

Racemic Trace: 
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Chiral Trace: 

 

Chiral Trace: 
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Section 5.4: Enantioselective Hydrofunctionalization with Chiral Carbodicarbene-Rh 

Complexes Derived from Chiral Diazepinium Ligands 

# General Procedures for Amide Formation with Diethylenediamine to Form 24 

(Scheme 5.4.2-1) 

A flask was charged with the listed Boc-protected amino-succinimide, the flask evacuated then 

backfilled with N2 and the solid solvated with THF before being cooled to 0 °C. To the cool 

solution was added ethylenediamine and the reaction was warmed to the listed temperature and 

allowed to stir for 48 h before being cooled and concentrated. The resulting solid was purified by 

SiO2 gel chromatography to yield the expected diamide 24. Characterization data was matched to 

that reported in the literature or analyzed by analogy to known compounds. 

  

BocHN

Ph

O

O
N

O

O

HNNH

BocHNNHBoc

OO

Ph Ph
H2N

NH2

THF, 50 °C, 18 h

24a
53% Yield

23a
 

Synthesis of 24a 

24a was synthesized according to the general procedure for amide formation and the resulting 

solid was purified by SiO2 gel chromatography (9:1 DCM/MeOH) to yield 24a (4.1 g, 7.8 mmol, 

53% yield) as an off-white powder. Characterization matched those reported in Dalton Trans., 

2012, 41, 6764-6776. 

1H NMR (400 MHz, CDCl3) δ 7.34 (d, J = 2.5 Hz, 10H), 6.46 (d, J = 47.5 Hz, 1H), 6.21 (d, J = 

55.3 Hz, 1H), 5.70 (d, J = 16.0 Hz, 2H), 5.01 (d, J = 47.0 Hz, 2H), 3.62 – 3.05 (m, 4H), 1.42 (s, 

18H). 
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BocHN

tBu

O

O
N

O

O

HNNH

BocHNNHBoc

OO

tBu tBu
H2N

NH2

THF, 50 °C, 18 h

24b
87% Yield

23b
 

Synthesis of 24b 

24b was synthesized according to the general procedure for amide formation and the resulting 

solid was purified by SiO2 gel chromatography (6:1 Hex/EtOAc) to yield 24b (265 g, 0.55 mmol, 

93% yield) as an off-white powder. This material was used without further characterization, but 

was characterized in later steps. 

 

BocHN

Bn

O

O
N

O

O

HNNH

BocHNNHBoc

OO

Bn Bn
H2N

NH2

THF, 50 °C, 18 h

24d
>95% Yield

23d
 

Synthesis of 24d 

24d was synthesized according to the general procedure for amide formation and purified by 

extraction from brine with DCM and EtOAc to generate 24d (10.7 g, 9.0 mmol, 64% yield). 

Characterization matched that reported in Tetrahedron Letters, 2008, 49, 5746–5750. 

 

BocHN

Me

O

O
N

O

O

HNNH

BocHNNHBoc

OO

Me Me
H2N

NH2

THF, 50 °C, 18 h

24e
>95% Yield

23e
 

Synthesis of 24e 

24e was synthesized according to the general procedure for amide formation and the resulting 

solid was purified by SiO2 gel chromatography (9:1 DCM/MeOH) to yield 24e (3.9 g, 9.7 mmol, 

95% yield) as an off-white powder. Characterization matched that reported in United States 
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Patent: 5461176 - Processes for preparing bis-naphthalimides containing amino-acid derived 

linkers. 5461176, October 24, 1995. 

 

# General Procedures for Deprotection and Reduction to Form 25 (Scheme 5.4.2-2) 

A flask was charged with the listed diamide 24 and solvated with an equal volume of DCM and 

trifluoroacetic acid (12 equiv). The solution was allowed to stir at room temperature with a N2 

inlet and outlet needle for 18 h. During this stir, the solvent and trifluoroacetic acid was blown 

off. The remaining material was dried by rotary evaporation, basified with a 1M solution of 

sodium hydroxide and extracted with DCM. The organic layers were concentrated and used in 

the following step without further purification. A flask was charged with the crude material from 

the deprotection, evacuated and backfilled with N2. The material was suspended in toluene and 

the reaction cooled to 0 °C before a 1M solution of diisobutylaluminum hydride (6 equiv) was 

added. The solution was heated to 80 °C and allowed to stir for 18 h before being cooled and 

quenched with 2M sodium hydroxide and sat. Rochelle’s salt. The solution was extracted with 

DCM and the organic layers concentrated. The resulting semi-solid was purified by SiO2 gel 

chromatography to provide the tetramine 25. 

 

HNNH

BocHNNHBoc

OO

Ph Ph
HNNH

H2NNH2

Ph Ph

1) TFA
    DCM, 22 °C, 18 h

2) DIBAL
    Toluene, 80 °C, 48 h

25a
41% Yield

24a
 

Synthesis of 25a 

25a was synthesized according to the general procedure for amide formation and the resulting 

semi-solid was purified by SiO2 gel chromatography (9:1 DCM/MeOH with 1% NH4OH) to 

provide 25a (95 mg, 0.32 mmol, 44% yield) as a yellow oil. 
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HNNH

BocHNNHBoc

OO

tBu tBu
HNNH

H2NNH2

tBu tBu

1) TFA
    DCM, 22 °C, 18 h

2) DIBAL
    Toluene, 80 °C, 48 h

25b
38% Yield

24b
 

Synthesis of 25b 

25b was synthesized according to the general procedure for amide formation and the resulting oil 

was purified by SiO2 gel chromatography (9:1 DCM/MeOH with 1% NH4OH) to provide 25b 

(14 mg, 0.049 mmol, 38% yield) as a clear oil. 

1H NMR (400 MHz, CDCl3) δ 2.89 – 2.74 (m, 4H), 2.74 – 2.54 (m, 2H), 2.54 – 2.38 (m, 2H), 

2.24 (t, J = 11.0 Hz, 2H), 1.78 (d, J = 51.3 Hz, 6H), 0.88 (s, 18H). 

 

HNNH

BocHNNHBoc

OO

Bn Bn
HNNH

H2NNH2

Bn Bn

1) TFA
    DCM, 22 °C, 18 h

2) DIBAL
    Toluene, 80 °C, 48 h

25d
59% Yield

24d
 

Synthesis of 25d 

25d was synthesized according to the general procedure for amide formation and the resulting oil 

was purified by SiO2 gel chromatography (9:1 DCM/MeOH with 1% NH4OH) to provide 25d 

(539 mg, 1.65 mmol, 59% yield) as a yellow oil. 

1H NMR (400 MHz, CDCl3) δ 7.29 (t, J = 6.2 Hz, 6H), 7.24 – 7.13 (m, 4H), 3.09 (ddd, J = 13.0, 

8.6, 4.4 Hz, 2H), 2.91 – 2.65 (m, 8H), 2.60 – 2.36 (m, 4H), 1.29 (s, 4H). 

 

HNNH

BocHNNHBoc

OO

Me Me
HNNH

H2NNH2

Me Me

1) TFA
    DCM, 22 °C, 18 h

2) LiAlH4
    THF, 70 °C, 48 h

25e
12% Yield

24e
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Synthesis of 25e 

25e was synthesized according to the general procedure for amide formation and the resulting 

semi-solid was purified by distillation (<1 torr, >150 °C) to provide 25e (225 mg, 1.22 mmol, 

12% yield) as a clear oil. 

1H NMR (500 MHz, CDCl3) δ 3.62 – 3.57 (m, 2H), 3.02 – 2.91 (m, 2H), 2.80 – 2.62 (m, 2H), 

2.59 (dd, J = 11.7, 4.2 Hz, 2H), 2.36 (dd, J = 11.6, 8.5 Hz, 2H), 1.67 (dt, J = 11.1, 5.5 Hz, 2H), 

1.57 (dt, J = 12.6, 6.1 Hz, 2H), 1.05 (d, J = 6.4 Hz, 6H). 

 

# General Procedures for Cyclization to Form 26 (Scheme 5.4.2-2) 

A flask fitted with a reflux condenser was charged with tetramine 25 (1 equiv), NH4BF4 (10 

equiv), and malononitrile (2-4 equiv) before being evacuated and backfilled with N2. The solids 

were solvated with the listed solvent and the solution heated to the listed temperature while 

stirring for the appropriate duration. The reaction was cooled and concentrated to remove 

residual ammonia. The remaining solution was triturated with Et2O and the solution removed 

repeatedly (3x) to remove the remaining solvent. The resulting sludge was purified by SiO2 gel 

chromatography to yield 26. 

HNNH

H2NNH2

Ph Ph
N N

N
H

N
H

BF4

Ph Ph
CNNC

NH4BF4
2-(2-methoxyethoxy)ethanol, 

180 °C, 1.5 h 26a
39% Yield

25a
 

Synthesis of 26a 

26a was synthesized according to the general procedure for amide formation and the resulting 

yellow precipitate was purified by SiO2 gel chromatography (8:1 DCM/MeOH with 1% NH4OH) 

to yield 26a (11 mg, 0.026 mmol, 39% yield) as a yellow solid. 
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 1H NMR (400 MHz, MeOD) δ 7.43 – 7.27 (m, 10H), 5.02 – 4.93 (m, 2H), 4.86 (s, 1H), 4.18 – 

4.07 (m, 2H), 3.65 (t, J = 4.9 Hz, 2H), 3.63 – 3.58 (m, 2H), 3.55 (dt, J = 4.2, 3.1 Hz, 2H). 

 

HNNH

H2NNH2

tBu tBu
N N

N
H

N
H

BF4

tBu tBu
CNNC

NH4BF4
1,2,4-trichlorobenzene,

180 °C, 3 h 26b
30% Yield

25b
 

Synthesis of 26b 

26b was synthesized according to the general procedure for amide formation and the resulting 

yellow precipitate was purified by SiO2 gel chromatography (10:1 DCM/MeOH with 1% 

NH4OH) to yield 26b (3 mg, 0.008 mmol, 30% yield) as an off-white solid. 

1H NMR (600 MHz, CDCl3) δ 4.88 (s, 1H), 3.67 – 3.55 (m, 2H), 3.49 (s, 4H), 3.46 (d, J = 2.2 

Hz, 2H), 3.41 – 3.33 (m, 2H), 0.90 (s, 18H). 

 

HNNH

H2NNH2

Bn Bn
N N

N
H

N
H

BF4

Bn Bn
CNNC

NH4BF4
2-methoxyethanol, 

120 °C, 18 h 26d
60% Yield

25d
 

Synthesis of 26d 

26d was synthesized according to the general procedure for amide formation and the resulting 

white precipitate was purified by SiO2 gel chromatography (10:1 DCM/MeOH with 1% NH4OH) 

to yield 26d (51 mg, 0.114 mmol, 60% yield) as an off-white solid. 

1H NMR (400 MHz, CDCl3) δ 7.43 – 7.20 (m, 6H), 7.16 (d, J = 6.9 Hz, 4H), 5.99 (s, 2H), 4.37 

(s, 1H), 4.18 – 3.95 (m, 2H), 3.60 (t, J = 9.2 Hz, 2H), 3.44 – 3.33 (m, 2H), 3.30 (s, J = 5.8 Hz, 

4H), 2.83 (ddd, J = 20.6, 13.6, 6.5 Hz, 4H). 
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HNNH

H2NNH2

Me Me
N N

N
H

N
H

BF4

Me Me
CNNC

NH4BF4
2-methoxyethanol, 

120 °C, 18 h 26e
13% Yield

25e
 

Synthesis of 26e 

26e was synthesized according to the general procedure for amide formation and the resulting 

yellow precipitate was purified by SiO2 gel chromatography (10:1 DCM/MeOH with 1% 

NH4OH) to yield 26e (55.6 mg, 0.189 mmol, 13% yield) as a solid. 

1H NMR (400 MHz, CDCl3) δ 6.35 (s, 2H), 5.30 (s, 1H), 4.08 – 3.93 (m, 2H), 3.76 (t, J = 8.9 

Hz, 2H), 3.49 (d, J = 5.1 Hz, 4H), 3.27 – 3.18 (m, 2H), 1.30 (dt, J = 15.1, 7.2 Hz, 6H). 

 

N N

N
H

N
H

Bn Bn

BF4 BnK; ClPPh2

THF 
22 °C, 1 h

-78 to 22 °C, 4 h

N N

N NBn Bn

BF4

Ph2P PPh226d 29d
12% Yield  

Synthesis of 29d 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 26d (20 mg, 0.0448 mmol), 

and benzyl potassium (11.7 mg, 0.0896 mmol). The reagents were solvated with THF (1 mL) 

and the reaction sealed with a Teflon® lined septa cap before being allowed to stir at room 

temperature for 1 hour before being removed from the dry box. Outside the dry box 

chlorodiphenylphosphine (15.2 μL, 0.0896 mmol) was added under N2 via syringe at -78 °C and 

the reaction allowed to stir at room temperature for 4 hours before being triturated with hexanes. 

The solvent was removed by syringe without exposure to oxygen or water and the orange solid 

dried under high vacuum. The product was purified by SiO2 gel chromatography with attempts to 
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minimize O2 and H2O exposure to provide 29d (4 mg, 0.0054 mmol, 12% yield) as an impure 

mixture.  

1H NMR (400 MHz, CDCl3) δ 7.85 – 7.03 (m, 30H), 5.67 (t, J = 5.9 Hz, 1H), 4.03 (s, 2H), 3.87 

– 3.74 (m, 2H), 3.42 (d, J = 9.8 Hz, 4H), 3.32 (t, J = 13.9 Hz, 2H), 2.25 – 1.97 (m, 4H).  

 

N N

N
H

N
H

Me Me

BF4 BnK; ClPPh2

THF 
22 °C, 1 h

-78 to 0 °C, 5 min

N N

N NMe Me

BF4

Ph2P PPh226e 29e
>95% Yield  

Synthesis of 29e 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 26e (5.0 mg, 0.0170 mmol), 

and benzyl potassium (4.4 mg, 0.0340 mmol). The reagents were solvated with THF (200 μL) 

and the reaction sealed with a Teflon® lined septa cap before being allowed to stir at room 

temperature for 1 hour before being removed from the dry box. Outside the dry box 

chlorodiphenylphosphine (12.2 μL, 0.0680 mmol) was added under N2 via syringe at -78 °C and 

the reaction allowed to stir at 0 °C for 5 minutes before being triturated with Et2O. The solvent 

was removed by syringe without exposure to oxygen or water and the orange solid dried under 

high vacuum and returned to the dry box. NMR analysis showed that the reaction had cleanly 

generated 29e (4.9 mg, 0.0167 mmol, >95% yield).  

1H NMR (600 MHz, CDCl3) δ 7.42 (dd, J = 16.1, 7.8 Hz, 12H), 7.35 (t, J = 18.6 Hz, 8H), 5.49 

(t, J = 5.5 Hz, 1H), 4.14 (dd, J = 16.1, 6.0 Hz, 4H), 3.95 (d, J = 13.7 Hz, 2H), 3.86 (s, 2H), 3.41 

(dd, J = 10.3, 3.1 Hz, 2H), 0.78 (d, J = 6.3 Hz, 6H). 
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N N

N
H

N
H

Bn Bn

BF4 BnK; ClP(iPr)2

THF 
22 °C, 1 h

-78 °C, 5 min

N N

N NBn Bn

BF4

(iPr)2P P(iPr)226d 30d
18% Yield  

Synthesis of 30d 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 26d (30 mg, 0.0672 mmol), 

and benzyl potassium (17.5 mg, 0.134 mmol). The reagents were solvated with THF (1 mL) and 

the reaction sealed with a Teflon® lined septa cap before being allowed to stir at room 

temperature for 1 hour before being removed from the dry box. Outside the dry box 

chlorodiisopropylphosphine (21.4 μL, 0.134 mmol) was added under N2 via syringe at -78 °C 

and allowed to stir for 5 minutes before being triturated with hexanes. The solvent was removed 

by syringe without exposure to oxygen or water. The trituration and solvent removal was 

repeated twice before the resulting tan solid dried under high vacuum and returned to the dry 

box. NMR analysis showed that the reaction had generated 30d (8.2 mg, 0.0121 mmol, 18% 

yield) as the majority of the sample. This material was used without further purification. 

1H NMR (600 MHz, CDCl3) δ 7.31 (dd, J = 17.6, 10.2 Hz, 4H), 7.19 (d, J = 7.0 Hz, 6H), 5.15 (s, 

1H), 4.03 (bs, 2H), 3.90 (d, J = 12.3 Hz, 2H), 3.82 – 3.63 (m, 4H), 3.51 (d, J = 8.0 Hz, 2H), 3.20 

(bs, 2H), 2.69 (bs, 2H), 2.48 (s, 2H), 1.30 – 1.11 (m, 24H). 31P NMR (243 MHz, CDCl3) δ 

55.68. 

 

N N

N
H

N
H

iPr iPr

BF4 BnK; ClP(iPr)2

THF 
22 °C, 1 h

-78 °C, 5 min

N N

N NiPr iPr

BF4

P P

31c
85% NMR Yield

O

O

O O

26c

 

Synthesis of 31c (Scheme 5.4.3-2) 
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In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 26c (10 mg, 0.0286 mmol), 

and benzyl potassium (7.4 mg, 0.0571 mmol). The reagents were solvated with THF (300 L) and 

the reaction sealed with a Teflon® lined septa cap before being allowed to stir at room 

temperature for 1 hour before being removed from the dry box. Outside the dry box 

chlorodifurylphosphine (8.9 μL, 0.0571 mmol) was added under N2 via syringe at -78 °C and 

allowed to stir for 5 minutes before being triturated with hexanes. The solvent was removed by 

syringe without exposure to oxygen or water. The trituration and solvent removal was repeated 

twice before the resulting tan solid dried under high vacuum and returned to the dry box. NMR 

analysis showed that the reaction had generated 31c (16.5 mg, 0.0243 mmol, 85% yield) as a 

10:1 mixture of the bis- and mono-phosphorylated products. This material was used without 

further purification. 

1H NMR (400 MHz, CDCl3) δ 7.77 (dt, J = 18.0, 4.3 Hz, 4H), 7.02 (dd, J = 12.1, 3.1 Hz, 4H), 

6.61 – 6.50 (m, 4H), 5.80 (t, J = 5.4 Hz, 1H), 4.04 – 3.87 (m, 4H), 3.75 (dd, J = 20.5, 10.6 Hz, 

2H), 3.72 – 3.62 (m, 2H), 3.53 – 3.38 (m, 2H), 1.76 – 1.57 (m, 2H), 0.80 – 0.69 (m, 6H), 0.58 (d, 

J = 6.8 Hz, 6H). 31P NMR (162 MHz, CDCl3) δ -9.24. 

 

N N

N NBn Bn

BF4

(iPr)2P P(iPr)2

1) [Rh(ethylene)Cl]2 
CHCl3, -20 °C, 3 h

2) NaOMe
THF, 22 °C, 2 h

N N

N N
P PRh

Cl

Bn Bn

30d 33d
60% Yield  

Synthesis of 33d 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 30d (8.0 mg, 0.0118 mmol), 

and [Rh(ethylene)Cl]2 (2.3 mg, 0.00589 mmol). The reagents were solvated with CDCl3 (500 

µL) at -20 °C and the reaction allowed to stir for 3 h at -20 °C sealed with a Teflon® lined cap. 
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The solution was concentrated and sodium methoxide (0.6 mg, 0.012 mmol) added before the 

solids were resolvated in THF (400 µL) and allowed to stir at 22 °C for 2 hour. The solution was 

concentrated and redissolved in DCM before being plugged through Celite® and reconcentrated 

to yield 33d (5.2 mg, 0.0071 mmol, 60% yield) as a tan solid. 

1H NMR (600 MHz, CDCl3) δ 7.32 – 7.27 (m, 6H), 7.24 (dd, J = 10.1, 7.5 Hz, 4H), 4.10 – 4.00 

(m, 2H), 3.92 – 3.84 (m, 2H), 3.52 (dd, J = 13.9, 7.1 Hz, 2H), 3.48 (d, J = 9.4 Hz, 2H), 3.23 (q, J 

= 11.5 Hz, 4H), 3.13 (t, J = 11.4 Hz, 2H), 2.99 (qd, J = 14.2, 6.5 Hz, 4H), 1.97 (dd, J = 16.9, 9.2 

Hz, 6H), 1.68 (dd, J = 16.0, 8.4 Hz, 6H), 1.61 (dd, J = 12.6, 6.2 Hz, 6H), 1.56 (dd, J = 15.1, 7.5 

Hz, 6H). 31P NMR (243 MHz, CDCl3) δ 90.91 (d, J = 101.4 Hz). 

 

1) [Rh(ethylene)Cl]2 
CHCl3, 22 °C, 4 h

2) NaOMe
THF, 22 °C, 2 h

N N

N NiPr iPr

BF4

P P

31c

O

O

O O

N N

N NiPr iPr

P P

34c
36% Yield

O

O

O O

Rh
Cl

 

Synthesis of 34c (Scheme 5.4.4-3) 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 31c (19.4 mg, 0.0286 

mmol), and [Rh(ethylene)Cl]2 (5.6 mg, 0.0143 mmol). The reagents were solvated with CHCl3 (1 

mL) and the reaction allowed to stir for 2 h at 22 °C sealed with a Teflon® lined cap. The 

solution was concentrated and sodium methoxide (1.5 mg, 0.0143 mmol) added before the solids 

were resolvated in THF (1 mL) and allowed to stir at 22 °C for 2 hour. The THF solution was 

filtered through a plug of Celite® and the product reisolated by dissolving off the plug with 

DCM and concentrating to yield 34c (7.6 mg, 0.0103 mmol, 36% yield) as a tan solid. 



	   724	  

1H NMR (400 MHz, CDCl3) δ 7.64 (dd, J = 66.2, 42.1 Hz, 8H), 6.63 (d, J = 91.3 Hz, 4H), 4.14 

(d, J = 15.6 Hz, 2H), 3.81 (d, J = 11.9 Hz, 4H), 3.58 (s, 4H), 1.03 – 0.47 (m, 14H). 31P NMR 

(162 MHz, CDCl3) δ 37.15 (d, J = 114.4 Hz). 

 

# General Procedure for Surveying Intramolecular Hydroamination with Chiral 

Diazepinium CDC-Rh(I) Catalysts (Table 5.4.5.1-1) 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with the listed chiral CDC-Rh(I) 

complex (0.005 mmol, 5 mol%) and AgBF4 (1.0 mg, 0.005 mmol, 5 mol%) before being 

solvated with the listed solvent (100 μL, [ ] = 1.0 M). The solution was allowed to stir at room 

temperature for 1 hour before N-benzyl-2,2-diphenylpent-4-en-1-amine (32.7 mg, 0.1 mmol) was 

added. The reaction was sealed with a Teflon® lined lid, taped with electrical tape and removed 

from the glove box before being heated to 60 °C for 18 h. The reaction was cooled and an aliquot 

taken to determine the conversion by 1H NMR using DMF as an internal standard. The NMR 

sample was recovered and the solution concentrated. The resulting oil was purified by SiO2 

column chromatography (50:1 Hexanes/Et2O) to afford the listed yield of 19 as a colorless oil. A 

pure sample was assayed on an Agilent 1220 LC System with a Daicel ChiralPak IA column 

(99:1 Hexanes/Isopropanol, 0.5 mL/min, 210 nm) to find that the product was formed in the 

listed enantiomeric excess. 

1H NMR (600 MHz, CDCl3) δ 7.38 (d, J = 7.4 Hz, 2H), 7.33 (dd, J = 17.8, 10.8 Hz, 2H), 7.30 – 

7.23 (m, 5H), 7.23 – 7.15 (m, 5H), 7.11 (dd, J = 19.2, 12.1 Hz, 1H), 4.10 (d, J = 13.2 Hz, 1H), 

3.65 (d, J = 9.9 Hz, 1H), 3.27 (d, J = 13.2 Hz, 1H), 2.93 (dd, J = 12.6, 7.8 Hz, 1H), 2.89 – 2.82 

(m, 1H), 2.80 (d, J = 9.9 Hz, 1H), 2.22 (dd, J = 12.6, 8.0 Hz, 1H), 1.18 (d, J = 5.6 Hz, 3H). 13C 
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NMR (151 MHz, CDCl3) δ 150.67, 148.76, 140.12, 128.62, 128.23, 128.15, 127.84, 127.46, 

127.27, 126.79, 125.81, 125.42, 66.46, 59.68, 58.03, 52.54, 48.02, 19.54. 

Chiral Trace: 

 

NHBn
Ph

Ph Chiral Catalyst (5 mol %)
AgBF4 (5 mol %) 

Solvent, Temperature, 18 h

Entry % eeNMR Yield (%)Chiral Catalyst

1

2

3

4

5

0

0

17

0

0

0

56

40

0

0

34c

33d

32c

33d

32c

19

NBn

Me

Ph
Ph

Solvent; M

MeCN; 1.0

MeCN; 1.0

MeCN; 1.0

PhCl; 1.0

PhCl; 1.0

Temp (°C)

60

80

60

60

60  

Entry 3: Catalyst 33d, MeCN, 80 °C 

 

Entry 4: Catalyst 32c, MeCN, 60 °C 
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# General Procedure for Surveying Intermolecular Hydroarylation with Chiral 

Diazepinium CDC-Rh(I) Catalyst 32c (Table 5.4.5.2-1) 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 32c (1.9 mg, 0.0025 mmol, 5 

mol%), the appropriate chiral additive (0.0025 mmol, 5.0 mol%), and NaBArF
4 (2.2 mg, 0.0025 

mmol, 5 mol%) when appropriate, and 1,3-phenylbutadiene (6.5 mg, 0.05 mmol). The reagents 

were solvated with the listed solvent (50 μL, [ ] = 1.0 M) and the reaction was sealed with a 

Teflon® lined septum cap before being allowed to stir at room temperature for 1 hour. 1-

methylindole (6.6 mg, 0.05 mmol) was added to the reaction and the vial sealed with black 

electrical tape before being removed from the glovebox. The reaction was heated to 60 °C and 

allowed to stir for 18 hours before being allowed to cool to room temperature and an aliquot 

taken to determine the conversion by 1H NMR using DMF as an internal standard. The NMR 

sample was recovered and the solvent evaporated before the products were purified by SiO2 

column chromatography (100:1 Hex/Et2O) to provide 6 in the listed yeild. A pure sample was 

then assayed on an Agilent 1220 LC System with a Daicel ChiralPak IA column (100% Hexanes, 

1 mL/min, 210 nm) to determine the listed enantiomeric excess. 

1H NMR (600 MHz, CHCl3-d) δ 7.67 (dd, J = 7.9, 1.1 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.33 – 7.26 

(m, 4H), 7.22 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.21 – 7.17 (m, 1H), 7.09 (ddd, J = 7.9, 6.9, 1.1 Hz, 

1H), 6.88 (d, J = 0.8 Hz, 1H), 6.56 – 6.43 (m, 2H), 3.94 (m, 1H), 3.77 (s, 3H), 1.56 (d, J = 7.0 

Hz, 4H). 13C NMR (151 MHz, CHCl3-d) δ 137.95, 137.39, 135.72, 128.58, 128.15, 127.30, 

126.99, 126.27, 125.43, 121.67, 119.82, 119.03, 118.81, 109.34, 34.35, 32.79, 20.99. IR (ν/cm-1): 

2925 (m), 2870 (s), 1472 (m), 1374 (w), 1328 (w), 1134 (s). MS (ES+) [M+H]+ calcd for 

C19H20N+ 262.16, found: 262.00. 

Racemic Trace: 
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32c (5 mol %)
Additive (5 mol %) 

Solvent, Temperature, 48 h

Entry % eeNMR Yield (%)

1

2

3a

4a

23

29

7

5

22

50

54

26

Solvent; M

PhH; 1.0

PhCl; 1.0

PhCl; 1.0

PhCl; 1.0

Temp (°C)

50

60

60

60

Ph + Ph

Me

6

Me
N

NMe
Additive; mol%

AgBF4; 5

AgBF4; 5

CuCl; 5

AgF; 5

a Reaction run with 5 mol% NaBArF4 to generate the cationic CDC-Rh(I) catalyst.  

Entry 1: Toluene, 50 °C, AgBF4 

 

 

Entry 2: Chlorobenzene, 60 °C, AgBF4 

 

 

Entry 3: Chlorobenzene, 60 °C, CuCl 



	   728	  

 

 

Entry 4: Chlorobenzene, 60 °C, AgF 
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Section 5.5: Enantioselective Hydrofunctionalization with a Chiral Tridentate Cyclic Bent 

Allene 

N N

ClCl

BF4

Et3N
DCM/MeCN 2:1

-78 to 22 °C, 18 h

N N

ClN

BF4

HO

HN
HO

95% Yield

PhPh

Ph
Ph

Et3N
DCM/MeCN 2:1

-78 to 22 °C, 18 h

HN
Ph2P

N N

NN

BF4

Ph
37

24% Yield

OH
Ph PPh2

 

Synthesis of 37 

A dry flask with a stir bar was charged with 3,5-dichloro-1,2-diphenyl-1H-pyrazol-2-ium 

tetrafluoroborate (200 mg, 0.531 mmol) and (S)-diphenyl(pyrrolidin-2-yl)methanol (135 mg, 

0.531 mmol) before being evacuated and backfilled with N2. The reaction was solvated with dry 

DCM (4 mL) and benchtop MeCN (2 mL) before dry triethylamine (370 μL, 2.65 mmol) was 

added and the reaction allowed to stir at 22 °C for 18 h. The reaction was concentrated and the 

resulting solid purified by SiO2 gel chromatography (40:1 CHCl3/iPrOH to yield (S)-3-chloro-5-

(2-(hydroxydiphenylmethyl)pyrrolidin-1-yl)-1,2-diphenyl-1H-pyrazol-2-ium tetrafluoroborate 

(301 mg, 0.504 mmol, 95% yield).  

1H NMR (400 MHz, CDCl3) δ 7.61 – 7.24 (m, 20H), 6.11 (s, 1H), 5.08 (dd, J = 8.7, 2.2 Hz, 1H), 

3.38 – 3.21 (m, 1H), 2.98 (bs, 1H), 2.60 – 2.36 (m, 1H), 2.04 – 1.89 (m, 1H), 1.79 (ddq, J = 17.6, 

8.8, 4.3 Hz, 1H), 1.40 – 1.28 (m, 1H). 

A dry 20 mL vial with a stir bar was charged with (S)-3-chloro-5-(2-

(hydroxydiphenylmethyl)pyrrolidin-1-yl)-1,2-diphenyl-1H-pyrazol-2-ium tetrafluoroborate (100 

mg, 0.168 mmol) and (S)-2-((diphenylphosphanyl)methyl)pyrrolidine (45.2 mg, 0.168 mmol) 

before being evacuated and backfilled with N2. The reaction was solvated with dry DCM (4 mL) 

and benchtop MeCN (2 mL) before dry triethylamine (118 μL, 0.842 mmol) was added and the 
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reaction sealed under N2. The reaction was heated to 80 °C and allowed to stir for 18 h before 

being cooled to room temperature, concentrated, and the resulting solid purified by SiO2 gel 

chromatography (40:1 DCM/iPrOH to yield 37 (34 mg, 0.0403 mmol, 24% yield).  

1H NMR (400 MHz, CDCl3) δ 7.67 – 7.12 (m, 28H), 6.95 (t, J = 12.0 Hz, 2H), 6.85 (s, 2H), 4.81 

(d, J = 6.7 Hz, 1H), 4.70 (s, 1H), 3.46 (s, 1H), 3.23 (tt, J = 18.4, 9.2 Hz, 1H), 3.13 (d, J = 16.0 

Hz, 1H), 2.63 (d, J = 14.4 Hz, 3H), 2.36 (td, J = 17.9, 8.8 Hz, 1H), 2.11 (dt, J = 18.9, 9.5 Hz, 

1H), 2.07 – 1.89 (m, 2H), 1.83 (dt, J = 17.0, 8.9 Hz, 5H), 1.55 – 1.41 (m, 1H). 31P NMR (162 

MHz, CDCl3) δ -23.50. 

 

N N

NN

BF4

Ph
37

OH
Ph PPh2

LiTMP; PdBr2

THF, 22 °C, 18 h PO Pd

NN

NN

Ph Ph

Ph

Br
41

>90% Yield

Ph

Ph

 

Synthesis of 41 

An 8 mL vial with a stir bar in the dry box was charged with 37 (20 mg, 0.0242 mmol), and 

LiTMP (7.1 mg, 0.0484 mmol) before being solvated with THF (200 μL) and allowed to stir at 

22 °C for 30 minutes. PdBr2 (6.4 mg, 0.0242 mmol) was added to the solution and the reaction 

allowed to stir at 22 °C for 18 h. The reaction was triturated with Et2O and plugged through 

Celite with excess Et2O before being recovered by redissolving off the plug with THF. The THF 

solution was concentrated to provide 41 (22.2 mg, 0.0240 mmol, 99% yield).  

1H NMR (500 MHz, CD3CN) δ 7.90 (d, J = 36.4 Hz, 2H), 7.77 (s, 2H), 7.57 (dd, J = 46.5, 21.3 

Hz, 8H), 7.41 (s, 6H), 7.27 (dd, J = 28.6, 21.5 Hz, 6H), 7.12 – 6.98 (m, 6H), 5.84 (d, J = 44.1 Hz, 

1H), 5.52 (d, J = 43.1 Hz, 1H), 3.22 – 2.94 (m, 4H), 2.83 (d, J = 12.7 Hz, 1H), 2.41 (d, J = 31.0 
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Hz, 1H), 2.31 (s, 1H), 2.24 (d, J = 3.9 Hz, 2H), 1.68 (dd, J = 15.6, 8.4 Hz, 2H), 1.32 (d, J = 21.2 

Hz, 1H), 1.21 – 0.99 (m, 2H). 31P NMR (202 MHz, CD3CN) δ 28.54. 

 

# General Procedure for Surveying Hydroalkylation with Chiral CBA Complexes 40, 

and 41 (Scheme 5.5.3-1) 

In a N2 filled dry box, an 8 mL vial with a stir bar was charged with 38, 40, or 41 (0.005 mmol, 5 

mol%), the listed Lewis acid (0.005 mmol, 5.0 mol%), NaBArF
4 (4.4 mg, 0.005 mmol, 5 mol%), 

and 1,3-phenylbutadiene (13 mg, 0.1 mmol). The reagents were solvated with the listed solvent 

(200 μL, [ ] = 0.5 M) and the reaction was sealed with a Teflon® lined septum cap before being 

removed from the dry box and allowed to stir at room temperature for 10 minutes. Outside the 

dry box sparged 2,4-pentanedione (10 mg, 0.1 mmol) was added under N2 via syringe. The 

reaction was heated to 50 °C and allowed to stir for 18 hours before being allowed to cool to 

room temperature and an aliquot taken to determine the conversion by 1H NMR using 

hexamethyldisiloxane as an internal standard. The NMR sample was recovered and the solvent 

evaporated before the products were purified by SiO2 column chromatography (4:1 Hex/Et2O) to 

provide 42 in the listed yield. A pure sample was then assayed on an Agilent 1220 LC System 

with a Daicel ChiralPak IC column (98:2 Hexanes/isopropanol, 1 mL/min, 210 nm) to determine 

the listed enantiomeric excess. 

1H NMR (600 MHz, CDCl3) δ 7.33 – 7.27 (m, 4H), 7.24 – 7.20 (m, 1H), 6.44 (d, J = 15.8 Hz, 

1H), 5.99 (dd, J = 15.8, 8.6 Hz, 1H), 3.69 (d, J = 10.4 Hz, 1H), 3.25 – 3.16 (m, 1H), 2.23 (s, 3H), 

2.13 (s, 3H), 1.08 (d, J = 6.7 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 203.62, 203.53, 136.77, 

130.97, 130.95, 128.58, 127.59, 126.24, 75.65, 37.90, 30.04, 29.75, 18.88. 

Racemic Trace: 
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Ph + Ph

Me
40 or 41 (5 mol %)
NaBArF4 (5 mol %)

LiPF6 (5 mol%) 

Solvent, Temperature, 18 h

O

Me

O Me

O

Me

O Me42

Entry Catalyst Solvent; M Temp (°C) Yield (%) %ee

1

2

40

41

THF; 0.5

Et2O; 0.5

22

50

45

13

9

3  

Entry 1: Catalyst 40, THF, 22 °C 

 

Entry 2: Catalyst 41, Et2O, 50 °C 
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Ph +
Ph

Me38 (5 mol %)
NaBArF4 (5 mol %)

Lewis Acid (5 mol%) 

DCM (0.5 M), 50 °C, 18 h

O

Me

O Me

O

Me

O Me42

Entry Lewis Acid; mol% Yield (%) %ee

1

2

3

4

5

6

LiBArF4; 5

LiBF4; 5

LiPF6; 5

CuCl; 5

AuCl; 5

AgCl; 5

67

53

34

26

16

32

22

0

-8

-23

-13

0

γ:α

1:1

3:1

2:1

2:1

1:1

2:1

α γ

 

Entry 1: Catalyst 38, LiBArF
4 

 

Entry 2: Catalyst 38, LiBF4 

 

Entry 3: Catalyst 38, LiPF6 

 

Entry 4: Catalyst 38, CuCl 
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Entry 5: Catalyst 38, AuCl 

 

Entry 6: Catalyst 38, AgCl 

 

 

Ph +
Ph

Me38 (5 mol %)
NaBArF4 (5 mol %)
LiBArF4(5 mol%) 

Solvent, Temperature, 18 h

O

Me

O Me

O

Me

O Me42

Entry Solvent; M Temp (°C) Yield (%) %ee

1

2

3

4

5

6

7

8

9a

DCM; 0,5

Et2O; 0.5

PhCl; 0.5

CHCl3; 0.5

PhMe; 0.5

DCM; 0.5

DCM; 0.1

DCM; 0.05

DCM; 0.05

50

50

50

50

50

22

50

50

50

67

40

34

0

50

15

45

33

31

22

<5

15

-

9

10

50

55

60

γ:α

1:1

2:1

2:1

-

2:1

2:1

2:1

5:1

2:1
a Reaction was run with 2 equiv of 1,3-phenylbutadiene.

α γ
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Entry 1: Catalyst 38, DCM; 0.5 M, 50 °C 

 

 

Entry 2: Catalyst 38, Et2O; 0.5 M, 50 °C 

 

 

Entry 3: Catalyst 38, PhCl; 0.5 M, 50 °C 

 

 

Entry 5: Catalyst 38, PhMe; 0.5 M, 50 °C 

 

 

Entry 6: Catalyst 38, DCM; 0.5 M, 22 °C 
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Entry 7: Catalyst 38, DCM; 0.1 M, 50 °C 

 

 

Entry 8: Catalyst 38, DCM; 0.05 M, 50 °C 

 

 

Entry 9: Catalyst 38, DCM; 0.05 M, 50 °C, 2 equivalents 1,3-phenylbutadiene 
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