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Abstract
Background: Current measures of the clinical efficacy of antiretroviral therapy (ART) in the
treatment of HIV include the change in HIV RNA in the plasma and the gain in CD4 cells.

Methods: We propose new measures for evaluating the efficacy of treatment that is based upon
combinations of non-nucleoside and nucleoside reverse transcriptase inhibitors. Our efficacy
measures are: the CD4 gain per virion eliminated, the potential of CD4 count restoration and
the viral reproduction number (R0). These efficacy measures are based upon a theoretical
understanding of the impact of treatment on both viral dynamics and the immune reconstitution.
Patient data were obtained from longitudinal HIV clinical cohorts.

Results: We found that the CD4 cell gain per virion eliminated ranged from 10-2 to 600 CD4
cells/virion, the potential of CD4 count restoration ranged from 60 to 1520 CD4 cells/μl, and
the basic reproduction number was reduced from an average of 5.1 before therapy to an average
of 1.2 after one year of therapy. There was substantial heterogeneity in these efficacy measures
among patients with detectable viral replication. We found that many patients who achieved viral
suppression did not have high CD4 cell recovery profiles. Our efficacy measures also enabled us to
identify a subgroup of patients who were not virally suppressed but had the potential to reach a
high CD4 count and/or achieve viral suppression if they had been switched to a more potent
regimen.

Conclusion: We show that our new efficacy measures are useful for analyzing the long-term
treatment efficacy of combination reverse transcriptase inhibitors and argue that achieving a low
R0 does not imply achieving viral suppression.

Introduction
With currently available combination antiretroviral ther-

apy (ART), the majority of patients achieve viral suppres-
sion within 24 weeks of initiation [1]. We hypothesize
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that further characterization of ART outcomes could dif-
ferentiate among the vast majority of patients who
achieve viral suppression but do not reach the immuno-
logic reconstitution that matches their reduction in viral
replication. Such characterizations may help further refine
the guidelines for monitoring ART response.

Within-host HIV modeling has been a cornerstone for
understanding HIV dynamics. Within this modeling para-
digm, every patient is described by a set of fixed immune
and viral parameters. The dynamics of HIV infection take
place on two different timescales: fast viral and CD4 cell
population dynamics that change on the timescale of
months, and slower dynamics on the timescale of years
that describe the decay of the patient's immune system.
For the past decade, a vast amount of modeling work has
been dedicated to understanding the interaction between
the human immune system and HIV. Studies have been
devoted to fitting models to within-host data and build-
ing models to provide both quantitative and qualitative
answers. The principles of the within-host HIV fast
dynamics are now relatively well-understood [2-6]. Fur-
ther developments have focused on incorporating other
elements of interaction between HIV and the immune sys-
tem, such as cytotoxic T lymphocytes [4,7-9] and latently
infected T cells [10-13].

Much effort has also been devoted to modeling the impact
of treatment on the within-host HIV infection [2-4,14-
26]. Major topics have been optimizing treatment for viral
load reduction and CD4 increase [18-20], HIV drug resist-
ance [15,16,24-26], adherence to therapy [15,16,20],
structured treatment interruptions [21-23] and others.
However, clinical applications of the understanding of
fast dynamics have been limited because the necessary
analyses, based upon these models, require detailed data
that are difficult to obtain in large amounts from clinical
trials or routine clinical care.

Here, we show how a mathematical model can be used to
characterize a patient's response to a common ART regi-
men, the combination of nucleoside plus non-nucleoside
reverse transcriptase inhibitors (NRTI/NNRTI). We use
our model and novel data analysis techniques to analyze
data from large longitudinal HIV clinical cohorts in order
to characterize treatment efficacy. We quantify treatment
efficacy by developing new surrogate markers for measur-
ing ART outcomes. Specifically, we quantify the pace of
immune destruction and the impact of therapy on the
viral reproduction number. We discuss the implications of
our analyses for clinical decision making.

Materials and methods
Patients and sampling
We analyzed data from a random group of 83 ART naïve
patients receiving initial treatment with a NNRTI/NRTI

regimen. Each patient had viral load and CD4 counts
measured both before treatment and after approximately
one year of treatment. Data were collected through the
San Francisco General Hospital AIDS Program Database
that was contained in the Healthcare Electronic Record
Organizer (HERO) and from the UNC CFAR HIV Clinical
Cohort Study. We defined the threshold of viral suppres-
sion to be 400 HIV RNA copies/ml.

Mathematical methods
We consider a simple mathematical model that character-
izes the fast viral dynamics of HIV infection

where X denotes the number of uninfected CD4 cells, Y
denotes the number of infected CD4 cells and V denotes
the infectious viral load. The parameters are as follows: β
is the infectiousness of the HIV virus, 1/δ is the average
lifetime of uninfected CD4 cells, 1/α is the average life-
time of infected CD4 cells, and σ is the ratio between viral
load and the infected CD4 cells that we assumed to be
constant. Our assumption is justified by the fact that the
average lifetime of the virus in the blood is significantly
shorter than either 1/α or 1/δ [3]. Thus, model (1) repre-
sents a good description of the within-host dynamics at
timescales larger than the average lifetime of the virus, but
smaller than the timescale of the destruction of the
immune system. All the parameters in the model [equa-
tion (1)] given for a certain patient are expected to change
only slowly with time, due to the slow destruction of the
patient's immune system on the timescale of 10-15 years.
We considered the model (1) for the interval of time of
one to two years, so that the model's assumptions would
hold. Such models of HIV dynamics have been previously
used by Bonhoeffer and others [6,27]. The model is
reduced to two dimensions when the third equation is
used to replace the free-virus variable in the ordinary dif-
ferential equations (ODEs) and express them only in
terms of infected and uninfected CD4 cell populations.
This approach has helped understand the foundations of
HIV within-host dynamics [6,27]. However, the ODEs
expressed in the CD4 population variables are difficult to
interface with patient-specific clinical data that typically
provide only the total CD4 count (C = X+Y) and the viral
load (V) of the patient.

Here, we have thus adopted a different approach to a two-
dimensional reduction of the model: we applied a change
of variables in model (1) and obtained
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The system described by model (2) has two time inde-
pendent states (i.e., equilibria). One of them is the dis-
ease-free state (Ch = π/δ, Vh = 0) and the other is the viral
set-point

Viral load is reduced in the presence of ART and a new
viral set-point is reached. This effect is modeled by chang-
ing the model's parameters. Changing β mimics the effect
of NNRTI/NRTI treatments [6,14], whilst changing σ
mimics the effect of PI treatments. Thus, NNRTI/NRTI reg-
imen types are modeled by changing only the parameter
β, whilst NNRTI/NRTI and PI regimens necessitate chang-
ing both β and σ. In the case of NNRTI/NRTI therapy,
there exists a linear relation between the total CD4 cell
count, Ce, and the viral load, Ve, at the viral set-point dur-
ing treatment; see Figure 1. We obtained this relation as
follows. Using equation (3), we solved the Ve formula for
α/β, substituted the result in the Ce formula and obtained

Equation (4) is independent of β, and describes the viral
set-points that are reached during various NNRTI/NRTI
regimens corresponding to various values of β.

Since equation (4) is linear, knowledge of the endemic
equilibrium (i.e., the viral set-point) of a patient before
treatment and during a particular NNRTI/NRTI treatment
is enough to predict the patient's response to all NNRTI/
NRTI treatments. Our model assumes that drug-naïve
patients do not develop drug resistance before reaching
their viral set-points during therapy. This assumption is
reasonable since most patients reach their new viral set-
point within one year of therapy [28]. Figure 2 of [28]
shows clinical trial data on how the CD4 count varies with
time under various NNRTI/NRTI regimens. The featured
variation approaches a plateau after approximately one
year of treatment. Analysis of the HIV RNA count is less
reliable, as HIV patients become virally suppressed and
their viral load is hard to measure accurately. It is impor-
tant to note that our model can cope with certain patterns
of slight non-adherence that do not accelerate the devel-
opment of drug resistance [15,16]; non-adherence can be
modeled by using an effective parameter β that is higher
than the β value of the completely adherent patient.

HIV-infected drug-naïve patients have a high viral load
and a low CD4 count at their viral set-point; see Figure 1.
Due to treatment, their viral set-point shifts, and the
patient reaches a new viral set-point with a lower viral
load and a higher CD4 count. We used our model to ana-
lyze patient data from these two viral set-points: one pre-
treatment viral set-point and one following a year of
NNRTI/NRTI treatment. The slope of the CD4-viral load
graph (i.e., a graph obtained from equation 4) gives a
measure of how each patient's immune system could
recover if the virus were eliminated. Mathematically, the
slope, s, is specified by

and its magnitude, |s|, represents the CD4 gain per virion
eliminated.

The intercept, i, is specified by

Note that the intercept satisfies i = Ch, which is the CD4
cell count of the disease-free state. Therefore, the intercept
identifies the maximum CD4 count that a patient could
attain if the virus were eliminated (i.e., the potential for
CD4 count reconstitution). We quantified the patient
responses to NNRTI/NRTI therapy by calculating the slope
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Schematics of the theoretical linear relation between the endemic equilibrium (i.e., viral set-point) values of the CD4 count and the viral load of patients on NNRTI/NRTI regi-mensFigure 1
Schematics of the theoretical linear relation between 
the endemic equilibrium (i.e., viral set-point) values 
of the CD4 count and the viral load of patients on 
NNRTI/NRTI regimens.
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s and the intercept i of the CD4/viral-load linear relation
for each patient. We also assessed a third efficacy measure,
the basic reproduction number R0 [29]. For our model, R0
is given by

This formula was obtained through stability analysis of
the uninfected state and provides a threshold parameter
for signaling the spread of HIV infection in patients. We
can justify the biological meaning of this R0 formula by
constructing a Crump-Mode-Jagers branching process as
an individual level model which yields the same predic-
tions as our model given by equation (1). For such con-
structs, see [30] and [31]. R0 represents the average
number of HIV virions produced by an infected CD4 cell
that succeed in infecting other CD4 cells in the case when
all CD4 cells were uninfected. Thus, R0 can be used to
assess the severity of the infection. For a given patient, if
R0 < 1, the infection will die out, but if R0 > 1 the infection
will increase to a viral set-point. Since R0 depends on β, we
can calculate two different values for R0 (i.e., one for the
viral set-point pre-therapy and one for the viral set-point
after one year of therapy). Using equations (3) and (6), we

rewrote the expression for R0 [equation (7)] in terms of
the data which were available from the two viral set-
points:

where Ce is the CD4 count at the viral set-point, i is the
intercept of the linear relation between the two viral set-
points and δ/α is a dimensionless parameter that repre-
sents the ratio of the lifetime of an infected CD4 cell to the
lifetime of an uninfected CD4 cell. This dimensionless
parameter is not available from the viral set-point data.
However, literature estimates provide 1/δ > 50 days [17]
and 1/α H 2.2 days [3], thus leading to δ/α < 0.045. Since
δ/α is small, we expanded the R0 formula with respect to
this parameter:

R0 = βπσ
δα

. (7)
R

i
Ce i0
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βπσ
δα
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, (8)

Graph of the potential for CD4 count recovery (i.e., intercept) versus the CD4 gain per virion eliminated (i.e., the magnitude of the slope)Figure 2
Graph of the potential for CD4 count recovery (i.e., intercept) versus the CD4 gain per virion eliminated (i.e., 
the magnitude of the slope). Notice that the patients split into four categories: (a) patients with a high slope magnitude and 
high intercept, (b) patients with a high slope magnitude and low intercept, (c) patients with a low slope magnitude and high 
intercept, and (d) patients with a low slope magnitude and low intercept. The red dots represent patients that did not reach 
viral suppression after one year of therapy. The continuous green line marks the AIDS threshold. The dotted green curve 
marks the set of parameters for which individuals reach viral suppression (i.e., Ve = 400 HIV RNA copies/ml) and low R0 (i.e., R0 
= 1.1) simultaneously. Patients with parameters in the region to the right of the dotted curve would first reach a low R0 and 
then viral suppression while the converse holds to the left of the dotted curve. For very potent regimens, both viral suppres-
sion and low R0 are achieved by patients with parameters throughout this space.
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The first term of this expression has been proposed as an
R0 formula by Anderson and May (see [29], equation
(2.1), pages 17-19) in an elementary host-parasite model:

Here, we accounted for the fact that infected and unin-
fected CD4 cells have different lifetimes and obtained a
small correction to this formula. It may be argued that, in
general, R0

AM represents the bulk of the numerical esti-
mate of R0 for many models where additional factors (e.g.,
different lifetimes for infected and uninfected CD4 cells,
latently infected cell populations, preferential infection of
activated and HIV-specific T cells [11-13,32-34]) bring rel-
atively small corrections. Thus, equation (9) acquires a
special status of generality and great practical importance.
To estimate patient-specific R0 values, we used equation
(9) where the second term in the expansion over δ/α rep-
resented an estimate of the modeling error.

It is important to note that becoming virally suppressed
and achieving an R0 close to 1 are two independent condi-
tions that do not imply each other. We now explain in
detail why this is the case. First, let us consider a target R0
value that is close to one, R0*, which helps us formulate a
condition for the patient being close to the elimination of
the infection (i.e., condition of reduced viral dynamics)

Second, choosing a viral suppression threshold Vs, the
viral suppression condition is simply

However, writing s as

solving for Ve, and using the fact that

equation (11) becomes

(Note that s is always negative.)

Analyzing equations (10) and (12), we obtain that,
depending on his/her measures of NNRTI/NRTI treatment
efficacy i and s, and the potency of the regimen, a patient
may achieve both viral suppression and low R0, one or
neither of these conditions. In particular, when

R0* < 1/[1+Vs/(i/s)]: The patient may not have a low R0,
yet achieve viral suppression for some NNRTI/NRTI treat-
ment regimens.

1/[1+Vs/(i/s)] <R0*: The patient may not be virally sup-
pressed, yet have a low R0 for some NNRTI/NRTI treat-
ment regimens.

R0* = 1/[1+Vs/(i/s)]: In this case low R0 and viral suppres-
sion imply each other. However, these patients represent
special cases and their values of NNRTI/NRTI treatment
efficacy measures are related by the following linear rela-
tion

which divides the (i, |s|) space in the two regions specified
above. (For Vs = 400 HIV RNA copies/ml and R0* = 1.1, we
obtain [Vs/(1-1/R0*)] = 4400 HIV RNA copies/ml.
Regions 1) and 2) are to the left and to the right of the dot-
ted green curve in Figure 2, respectively.)

We emphasize that all patients are able to achieve both
viral suppression and a low R0, provided that the NNRTI/
NRTI treatment regimen is potent enough. The situations
described above may occur for NNRTI/NRTI treatment
regimens of intermediate strength.

Results
We analyzed data from a random sample of 83 ART-naïve
patients from two HIV clinical cohorts. All patients initi-
ated a NNRTI/NRTI regimen with measured plasma HIV
RNA values and CD4 cell counts before treatment and
after approximately one year of treatment. We used these
data to calculate two distinct R0 values: one R0 value
before treatment was initiated and one value after one
year of treatment. Our calculated formula shows that R0 is
a function of the potential for CD4 count reconstitution.
We calculated that the R0 before treatment was initiated
had an average value of 5.1 and, after one year of combi-
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nation NNRTI/NRTI therapy, the average R0 had decreased
to 1.2. In Figure 3 we show the frequency distributions of
R0 before treatment was initiated (blue bars) and after one
year of treatment (purple bars) for the patients who
reached viral suppression (panel (a)) and for the patients
who did not reach viral suppression (panel (b)). A com-
parison between panels (a) and (b) of Figure 3 reveals that
all patients who attained viral suppression reached R0 <
1.1 after one year of treatment (Figure 3(a)). However, it
can be seen that there are patients who do not achieve
viral suppression, but, nevertheless, reached R0 < 1.1 after
one year of therapy (Figure 3(a)). We estimated that the
modeling errors in our calculated values of R0 are no larger
than 1%. To our knowledge, this is the first time that the
value of the basic reproduction number (R0) for HIV for
an individual patient has been calculated from patient
clinical care data.

In order to calculate our two other efficacy measures, we
calculated the slope and the intercept of the relation
between CD4 count and viral load at two viral set-points
for each patient; see Figure 4. We found that the CD4 gain
per virion eliminated (i.e., the magnitude of the slope)
ranged from 10-2 to 600 CD4/virion and the potential for
CD4 count reconstitution (i.e., the intercept) ranged from
60 to 1520 CD4/μl. The average intercept (464 CD4 cell/
μl) was lower than the average CD4 count of a non-
infected individual. Thus, our results show that, even if all
replicating virus were eliminated, the CD4 cells of these
patients would not be able to return to a normal level.
Calculating the potential for CD4 count reconstitution,
we are thus able to quantify the slow immune destruction
which individuals undergo since HIV infection.

For a better illustration of the values that we found for our
efficacy measures, we graphed the potential for CD4
count reconstitution versus the CD4 gain per virion elim-

(a) The histograms of the basic reproduction ratios, R0, before and after one year of treatment for patients who reached viral suppressionFigure 3
Analysis of the basic reproduction ratios of the patients. (a)The histograms of the basic reproduction ratios, R0, before 
and after one year of treatment for patients who reached viral suppression. (b) The histograms of the R0 values before and 
after one year of treatment for patients who did not reach viral suppression.
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inated; see Figure 2. A fair amount of correlation is
observed between the potential for CD4 count reconstitu-
tion and the logarithm of the CD4 gain per virion elimi-
nated (Pearson correlation coefficient ~0.675). Patients
could be divided into four categories: (a) patients with a
potential for both a high CD4 count reconstitution and a
high CD4 gain per virion eliminated, (b) patients with a
potential for only a low CD4 count reconstitution but a
high CD4 gain per virion eliminated, (c) patients with a
potential for a high CD4 count reconstitution but only a
low CD4 gain per virion eliminated, and (d) patients with
a potential for only a low CD4 count reconstitution and a
low CD4 gain per virion eliminated. Surprisingly, many
patients who attained viral suppression did not have high
CD4 cell recovery profiles (the blue dots in the regions (b)
and (d) of Figure 2). The other data (red dots) in Figure 2
also show substantial heterogeneity in our efficacy meas-
ures among the patients who were not virally suppressed.
The red points are spread throughout the plane of poten-
tial of CD4 count reconstitution - CD4 gain per virion
eliminated. This spread indicates that our new efficacy
measures are not correlated with viral suppression. Most
importantly, Figure 2 also shows that there was a sub-
group of patients who were not virally suppressed but had
the potential to reach a high CD4 count and/or achieve
viral suppression if they had been switched to a more
potent regimen (the red dots in region (a)).

Our results also imply that NNRTI/NRTI treatment regi-
mens can have substantial impact on reducing viral
dynamics (i.e., the R0) and that this effect can occur even
in patients who do not seem to be responding well to
treatment. This paradoxical situation may occur for indi-

viduals who have low CD4 gain per virion eliminated and
high potential of CD4 count reconstitution. In particular,
it is possible that, due to treatment, a patient does not
reach viral suppression yet his/her CD4 count very much
approaches his/her potential of CD4 count reconstitu-
tion, implying an R0 close to 1. Using our model, we pre-
dict that patients with NNRTI/NRTI treatment efficacy
measures in the region which is to the left of the dotted
green curve in Figure 2 may have an R0 close to 1 yet will
nevertheless not reach viral suppression. The patients with
treatment efficacy measures in the complementary region
may achieve viral suppression yet maintain a high R0
which places them far from the elimination of the infec-
tion. In our case, all patients that become virally sup-
pressed reach a low R0 (Figure 3(a), blue dots in Figure 2).
However, we identify a group of 12 patients that do not
become virally suppressed although they reach a low R0
and reduced viral dynamics (Figure 3(b)). All of them are
placed to the left of the dotted curve in Figure 2.

Discussion
We restricted our analyses to patients receiving the com-
mon ART combination of nucleoside plus non-nucleoside
reverse transcriptase inhibitors. We concentrated on this
treatment regimen for two major reasons. Firstly, NRTI
plus NNRTI regimens are likely to remain popular as first-
line therapy because of their demonstrated efficacy, sim-
plicity of therapy, pill number and tolerability [1]. Sec-
ondly, NNRTI/NRTI therapy is likely to remain the
dominant regimen for first-line therapy in resource-con-
strained countries. Among the 42 antiretroviral products
whose price the Clinton foundation negotiated for
resource-constrained countries only two contain PIs [35].

Examples of patient response to NNRTI/NRTI treatmentFigure 4
Examples of patient response to NNRTI/NRTI treatment. The right end of a line segment represents the viral set-
point of the patient before treatment and the left end represents the viral set-point during treatment.
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There are 71 countries (including the vast majority of sub-
Saharan countries) that can now benefit from this negoti-
ation, representing more than 92% of the people living
with HIV globally [36,37]. It is important to note that, as
a general trend, PIs are likely to remain prohibitively
expensive for resource-constrained countries in the short
term [38]. In fact, in their third annual report on the cur-
rent rollout of treatment in Africa, PEPFAR cautions
against poor management of first-line NNRTI/NRTI treat-
ment regimens that would require an early introduction
of more costly PI-based second-line regimens [39]. PEP-
FAR reports that only 10% of the treatment regimens that
they currently sponsor in Africa are second line [39].
Therefore, it is expected that NNRTI/NRTI treatment regi-
mens will remain the first and most important line of
defense against the HIV pandemic in resource-constrained
settings.

The need for developing new accurate and reliable surro-
gate markers for evaluating the clinical efficacy of antiret-
roviral agents has become a major focus of HIV clinical
care. Surrogate markers have been used by regulatory
agencies to approve new agents, by consensus panels to
develop clinical guidelines and by investigators to deter-
mine clinical efficacy. In this paper, we have presented
new methodologies for generating surrogate marker data
in order to quantify new measures of treatment efficacy.
Unlike previous efficacy measures, our efficacy measures
are based upon a theoretical understanding of the impact
of treatment on both viral dynamics and the immune
response. We have shown that our methodology can be
used to analyze data collected during routine clinical care.
The advantage of our surrogate markers for measuring
treatment efficacy is that they are patient-specific in con-
trast to the surrogate markers that have been developed
previously from aggregate clinical trial data. Thus, we
found that two of our surrogate markers have a moderate
degree of correlation indicating that a low CD4 gain per
virion eliminated may be associated with a low potential
for CD4 count reconstitution. We have also developed for
the first time a methodology for calculating patient-spe-
cific R0 estimates and used these values to quantify the
efficacy of the NNRTI/NRTI treatment therapy. Thus, we
showed that achieving a low R0 does not imply achieving
viral suppression. Our new efficacy measures have also
shown two important new results that have significant
clinical implications. Our efficacy measures enabled us to
identify a subgroup of patients who achieved viral sup-
pression, but did not have a high likelihood of achieving
a high CD4 cell count. Most importantly, our efficacy
measures enabled us to identify a subgroup of patients
who were not virally suppressed, but had the potential to
reach a high CD4 count and/or achieve viral suppression
if they had been switched to a more potent regimen.

Conclusion
Based upon a theoretical understanding of the impact of
HIV treatment on viral dynamics and immune reconstitu-
tion, we propose new measures for evaluating the efficacy
of treatment with reverse transcriptase inhibitors. Our
efficacy measures are: the CD4 gain per virion eliminated,
the potential of CD4 count restoration and the viral repro-
duction number (R0). We show that our new efficacy
measures are useful for analyzing the long-term treatment
efficacy of combination reverse transcriptase inhibitors
and argue that achieving a low R0 does not imply achiev-
ing viral suppression.
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