
NEW STATISTICAL LEARNING APPROACHES WITH APPLICATIONS TO
RNA-SEQ DATA

Patrick K. Kimes

A dissertation submitted to the faculty of the University of North Carolina at
Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of

Philosophy in the Department of Statistics and Operations Research.

Chapel Hill
2015

Approved by:

Yufeng Liu

J. S. Marron

D. Neil Hayes

Jan Hannig

Kai Zhang



©2015
Patrick K. Kimes

ALL RIGHTS RESERVED

ii



ABSTRACT

Patrick K. Kimes: New Statistical Learning Approaches with Applications to RNA-seq Data
(Under the direction of Yufeng Liu, J. S. Marron, D. Neil Hayes)

This dissertation examines statistical learning problems in both the supervised and unsuper-

vised settings. The dissertation is composed of three major parts. In the first two, we address the

important question of significance of clustering, and in the third, we describe a novel framework

for unifying hard and soft classification through a spectrum of binary learning problems.

In the unsupervised task of clustering, determining whether the identified clusters represent

important underlying structure, or are artifacts of natural sampling variation, has been a critical

and challenging question. In this dissertation, we introduce two new methods for addressing this

question using statistical significance. In the first part of the dissertation, we describe SigFuge,

an approach for identifying genomic loci exhibiting differential transcription patterns across many

RNA-seq samples. In the second part of this dissertation, we describe statistical Significance of

Hierarchical Clustering (SHC), a Monte Carlo based approach for testing significance in hierarchical

clustering, and demonstrate the power of the method to identify significant clustering using two

cancer gene expression datasets. Both methods were implemented and made available as open

source packages in R.

In the final part of this dissertation, we propose a spectrum of supervised learning problems

which spans the hard and soft classification tasks based on fitting multiple decision rules to a

dataset. By doing so, we reveal a novel collection of binary supervised learning problems. We

study the problems using the framework of large-margin classification and a class of piecewise

linear surrogate losses, for which we derive statistical properties. We evaluate our approach us-

ing simulations and a magnetic resonance imaging (MRI) dataset from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) study.
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CHAPTER 1

Introduction

With advances in computing and data collection, fields such as genomics are producing larger

and increasingly more complex data. As such, a need for newer and more powerful tools for data

analysis is rapidly growing. The field of statistical machine learning encompasses an expanding

collection of computational methods for uncovering patterns in data, many of which were developed

to address the new and challenging problems encountered in practice.

In statistical machine learning, a distinction is traditionally made between approaches for su-

pervised and unsupervised learning. Supervised tasks involve learning a pattern given both an

outcome and a set of covariates. Typical supervised tasks include the standard regression and

classification problems. In contrast, unsupervised tasks involve learning a pattern from a set of

covariates in the absence of an outcome. Popular unsupervised problems included clustering and

dimension reduction.

In this dissertation, we investigate topics in classification and clustering, two widely popu-

lar tasks of statistical learning. Much of this work is motivated by problems arising in modern

genomic studies. To help frame the completed work, in this chapter we provide a review of classi-

fication (Section 1.1), clustering (Section 1.2) and high-throughput mRNA sequencing (RNA-seq;

Section 1.3). We conclude this chapter by summarizing the major ideas presented in the remainder

of this dissertation (Section 1.4).

1.1 Classification

Classification is one of the most widely applied and well studied problems in supervised learning.

Given a training set of observed covariates and outcomes, the goal of classification is to build

a prediction model. While similar to the usual regression problem (with continuous response),

classification describes the particular setting where the outcome is a discrete class label. In binary

classification, the label takes one of two possible values, typically denoted by −1 and +1. While
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Figure 1.1: A simple example of classification is shown where covariates (x1, x2) were observed for 50 (−1)
class and 50 (+1) class instances. Observations from the −1 and +1 classes are denoted by x’s and o’s,
respectively. The classification boundary separating the two classes may be used to predict the labels of
future observations.

generalizations to more than two classes exist, in this dissertation we focus only on the binary

problem.

In Figure 1.1, we illustrate binary classification using a simple example where the covariates x1

and x2 were measured for a training set of 100 observations, 50 from class −1 and 50 from class +1.

Given the set of points, we want to estimate a rule for predicting the class of an unlabeled (x∗1, x
∗
2)

pair. Consider the line x1 + x2 = 0 passing through the center of the plot. One possible rule is

to predict labels by checking whether an observation falls above or below the line. More formally,

this can be expressed as predicting the class of (x∗1, x
∗
2) to be the sign of (x∗1 + x∗2). The affine

hyperplane partitioning the covariate space according to the predicted label is commonly called a

separating hyperplane or classification boundary.

A closely related problem to classification is that of conditional class probability estimation.

While both problems take covariates and a discrete label as inputs, the two differ by the modeled

output. Rather than simply predict the most likely class, in the probability estimation task we

seek to estimate the probability of each class conditional on an observed covariate value. This

is particularly useful in settings where classification certainty is of interest. Consider again the

example in Figure 1.1 and suppose the class labels −1 and +1 correspond to the status of a severe
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disease. In this case, mild evidence of belonging to the disease positive class, +1 class may still

warrant further follow-up. This type of inference is not possible using standard classification. The

relationship between conditional class probability estimation and class prediction is often studied

as soft vs. hard classification or generative vs. discriminative learning, and will be discussed in more

detail later in this section. First, we briefly introduce some popular approaches to classification,

giving particular attention to margin-based classifiers. For a more thorough treatment of these and

other approaches, we refer the reader to chapters 13 and 14 of Hastie et al. (2011).

Formalizing the description given above, let {xi, yi}ni=1 denote a training set of n i.i.d. covariate–

label pairs drawn from an unknown distribution P(X, Y ) defined over X × Y. Here, X is used to

denote the p-dimensional covariate space and Y = {−1,+1} the binary label space. In classification,

we estimate some rule Ŷ : X → Y to predict the label for an unlabeled X. A natural criterion for

evaluating a classification rule is the corresponding expected prediction error, also known as the

expected 0−1 loss: EX,Y I{Ŷ (X) ̸= Y }, where I{·} is used to denote the indicator function.

The classification rule minimizing the expected prediction error is referred to as the Bayes

optimal rule and can be shown to equal: Y ∗(X) = sign{p(X) − 1
2} where p(X) = P(Y = +1|X)

denotes the conditional probability of belonging to class +1 given the observed X. Note that

since P(Y = −1|X) = 1 − P(Y = +1|X), the conditional class probability at X is completely

characterized by p(X). Simple manipulation of the Bayes rule reveals the following equivalent

form:

Y ∗(X) = sign{p(X)− 1
2} (1.1)

∝ sign{P(Y = +1|X)− P(Y = −1|X)}

= argmax
y

P(Y = y|x).

Thus, the Bayes optimal rule intuitively corresponds to predicting the class with greater theoretical

conditional probability.

Various approaches have been proposed for approximating the Bayes rule in classification in-

cluding likelihood, prototype, and margin-based methods. Likelihood-based approaches include the

classical Fisher’s linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA;

Fisher, 1936; Mardia et al., 1979; Rao, 1973). In LDA, the underlying class conditional distributions
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P(X|Y = +1) and P(X|Y = −1) are assumed to be Gaussian with equal covariance. Maximum

likelihood is used to estimate the class conditional means, common covariance and marginal class

probabilities. Then, applying Bayes’ theorem, the class with larger estimated conditional probabil-

ity is predicted by LDA. QDA generalizes the LDA approach by allowing the covariance matrices

to differ between the two classes. The two methods are named for the shapes of their resulting

decision boundaries. While introduced using a Gaussian formulation, we note that similar to least

squares, LDA may also be derived non-parametrically, i.e. without the Gaussianity assumption

(Mai et al., 2012; Hastie et al., 2011).

Prototype and related methods, such as k-nearest-neighbor (k-NN) and K-means classification

approximate the underlying conditional distributions by groups of prototypes (Fix and Hodges,

1989; Cover and Hart, 1967; Duda et al., 2000). These prototypes may be the set of all training

observations as in 1-NN or the 2K cluster centroids generated by applying K-means to each class.

The label of a new observation is predicted by the class of the nearest prototype. Similar to like-

lihood based methods, prototype methods approximate the underlying class conditional densities,

P(X|Y = y), to estimate a prediction rule.

In contrast to likelihood and prototype based methods, margin-based classifiers directly esti-

mate partially or fully P(Y |X = x). Margin-based classification rules take the form of a function,

f : X → R from which a class label is predicted based on the sign of f . That is, Ŷ (x) = +1 is

predicted if f(x) > 0, and Ŷ (x) = −1 is predicted if f(x) < 0. The discriminant boundary shown

in Figure 1.1 is an example of a margin-based rule, with f(x) = x1 + x2. Typically, we assume

f(x) ̸= 0 almost surely and arbitrary let Ŷ (x) = +1 when f(x) = 0. Commonly, f(x) is referred

to as the margin function.

By definition, the product term yf(x), called the functional margin, is such that yf(x) > 0

and yf(x) < 0 correspond respectively to correct and incorrect classification. Furthermore, the

functional margin may be interpreted as a rough measure of classification accuracy. Using the

functional margin, minimization of the empirical prediction error may be written:

min
f∈F

1

n

n∑
i=1

I
{
yif(xi) < 0

}
,

4



where F is a space of margin functions, and the use of I{·} corresponds to 0−1 loss. However,

optimization with respect to 0−1 loss is typically NP-hard. As such, a surrogate loss, yf(x) 7→ L,

is commonly used in place. Typically, a regularization term J : F → R is also added to control the

complexity of f , with corresponding tuning parameter λ > 0. Combining the two, a margin-based

classifier solves the following optimization problem of the loss + penalty form:

min
f∈F

1

n

n∑
i=1

L
(
yif(xi)

)︸ ︷︷ ︸
loss

+ λJ(f)︸ ︷︷ ︸
penalty

. (1.2)

Some of the most popular methods for classification, including penalized logistic regression (PLR;

Lee and Silvapulle, 1988; Le Cessie and Van Houwelingen, 1992), the support vector machine (SVM;

Cortes and Vapnik, 1995; Wahba, 1999), Adaboost (Freund and Schapire, 1997; Friedman et al.,

2000), and distance-weighted discrimination (DWD; Marron et al., 2007) may be formulated as

margin-based problems of the form (1.2). Some common loss functions, shown in Figure 1.2, are

given as follows:

SVM (hinge) : L(z) = max{0, 1− z},

PLR : L(z) = log(1 + e−z),

squared hinge : L(z) = (max{0, 1− z})2,

Adaboost (exponential) : L(z) = e−z,

DWD : L(z) =


1
4z if z ≥ 1

2

1− z if z < 1
2

.

Margin-based classifiers enjoy substantial popularity in practice for their classification accuracy

in both high and low dimensional settings. The theoretical properties of these methods have been

studied in depth, shedding light on the reason for their success, and further, the relative advantages

of different loss functions (Steinwart and Scovel, 2007; Blanchard et al., 2008; Bartlett et al., 2006;

Cristianini and Shawe-Taylor, 2000). We next discuss the important distinction between hard and

soft margin classifiers.

When considering loss functions for margin-based classification, an important theoretical

property is Fisher consistency (Lin, 2004). A loss function L(·) is called Fisher consistent if
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Figure 1.2: Popular choices for the loss function in (1.2) are plotted as a function of z. Typically, for binary
classification the functional margin, yf , is used for z. Plotted loss functions include: SVM (red), logistic
(light green), squared hinge (blue), exponential (purple), and DWD (dark green) – corresponding line types
are given in the figure legend.

sign{f∗L(X)} = Y ∗(X), where Y ∗ is the Bayes rule given in (1.1) and

f∗L(X) = argmin
f

EY |XL
(
Y f(X)

)
.

By the form of the Bayes rule, Fisher consistency only requires identifying a rule which correctly

estimates whether the conditional class probability, p(x), is greater than or less than 1
2 at any

point x ∈ X . Some loss functions, when optimized, identify rules which provide direct estimation

of p(x). The corresponding classifiers defined by these loss functions which directly target the

conditional class probability estimation problem, are often called soft classifiers. Popular soft

classifiers include PLR and Adaboost. In contrast, loss functions which only produce estimates of

p(x) at 1
2 , i.e. sign(p(x)− 1

2), such as SVM, are referred to as hard classifiers (Wahba, 1999, 2002).

Classification consistency as it relates to hard and soft classification is discussed in greater detail

in Subsection 4.2.2.

Despite the intuitive difference between the two approaches, it is not immediately obvious

how soft and hard classifiers differ in practice. Recently, Liu et al. (2011) introduced the family

of Large-margin Unified Machines (LUM) connecting several popular hard and soft classifiers,

including DWD, SVM, Adaboost and PLR. Through their unified framework, the authors provide

some insight on the relative advantages of partial and full estimation of p(x). In Chapter 4, we
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Figure 1.3: The popular K-means clustering algorithm is used to separate the same set of 90 points into
2, 3 and 4 clusters. Color and shape are used to denote cluster labels in each panel. Clustering algorithms
may be used to identify any number of clusters from a given data set. In this example, K = 3 appears to
identify the most natural set of clusters in the data.

present an alternative framework for connecting hard and soft classification through a range of

supervised learning problems.

1.2 Clustering

We next provide some background on clustering, a popular task in unsupervised learning. In

contrast to the classification setting described above, an outcome variable Y is no longer the focus

of the analysis. Instead, the aim in unsupervised learning is to gain insight with only the n instances

of a p-dimensional variable, X.

Clustering is the specific unsupervised task of partitioning a dataset into subsets, called clusters,

of similar objects. Figure 1.3 shows an example of clustering applied to a single dataset to obtain

K = 2, 3 and 4 clusters. Cluster assignments are denoted by colors and symbols. The clusters

identified by K = 3 appear to capture the most natural structure in the data. In contrast, K = 2

and K = 4 make unnatural and unintuitive splits in the data. The K-means clustering algorithm

used to determine the partitions in Figure 1.3 will be described later in this section.

Fundamental to clustering is the definition of pairwise object dissimilarity. Dissimilarity may

be thought of as a relaxed notion of distance between two points. Occasionally, all pairwise dissim-

ilarities are explicitly defined for a collection of points through a proximity matrix. However, more

commonly, dissimilarity is calculated for a set of points using a symmetric dissimilarity function,

denoted by d : X × X → R+. Assuming X ∈ Rp is a continuous random variable, some popular

choices of this function are:
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• Squared Euclidean distance (L2
2) : d(xi,xi′) =

∑
j(xij − xi′j)

2 ,

• Euclidean distance (L2) : d(xi,xi′) =
(∑

j(xij − xi′j)
2
)1/2 ,

• Manhattan distance (L1) : d(xi,xi′) =
∑

j |xij − xi′j | ,

• 1− Pearson correlation (1− ρ) : d(xi,xi′) = 1−
∑

j(xij−x̄i·)(xi′j−x̄i′·)√∑
j(xij−x̄i·)2

∑
j(xi′j−x̄i′·)

2
.

Using a specified dissimilarity function, clusters can be identified by finding the partition which

minimizes the total within-cluster dissimilarity in the data. However, since the total within-cluster

dissimilarity is highly dependent on the number of clusters, K, optimization must be carried out

conditional on a fixed choice of K. Selection of the optimal K is a difficult but important problem

in cluster analysis. Some popular methods for choosing K include the gap statistic (Tibshirani

et al., 2001) and consensus clustering (Monti et al., 2003; Wilkerson and Hayes, 2010). Briefly, the

gap statistic is a heuristic approach for determining the optimal K based on the decrease in within-

cluster dissimilarity as K increases. The approach chooses the optimal number of clusters to be

the largest K for which a substantial decrease in the total within-cluster dissimilarity is observed.

Consensus clustering is similarly a heuristic approach which was proposed in the microarray analysis

literature as a way of addressing the sensitivity of clustering algorithms to individual samples.

The approach aims to identify robust, or stable, clusters in a dataset by aggregating the results of

clustering on a large number of random subsamples drawn from the data. A closely related problem

to choosing K is that of assessing the significance of the resulting clusters. Intuitively, the K which

produces the most statistically significant set of clusters may be interpreted as the optimal number

of clusters. Existing approaches for assessing significance of clusters include statistical Significance

of Clustering (SigClust; Liu et al., 2008), a bootstrapping approach by Maitra et al. (2012), and

pvclust (Suzuki and Shimodaira, 2006). These approaches, as well as new contributions to the

area of significance of clustering, are described in more detail in Chapter 3.

Clustering algorithms carried out independently for each value of K will be referred to as non-

nested approaches to clustering. Non-nested algorithms enforce no structure between the clusters

produced by different values ofK, and thus provide no intuitive way of studying relationships among

clusters. In addition to non-nested approaches, there also exist hierarchical approaches to clustering.

Unlike non-nested clustering, hierarchical clustering methods produce a nested hierarchy of clusters

through the entire range of K = 1, . . . , n. We next briefly review some non-nested algorithms and

8



describe the general framework for hierarchical clustering. A more complete treatment of these

approaches can be found in Kaufman and Rousseeuw (2009) and Hartigan (1975).

1.2.1 Non-Nested Clustering

For the sake of brevity, we only focus on combinatorial approaches for non-nested clustering. Other

examples of non-nested clustering include mixture modeling and mode seeking approaches. Com-

binatorial methods seek to find an explicit partition of the n observations to K clusters C1, . . . , CK

optimal to an appropriate criterion, where Ck is the set of observation indices in cluster k. Letting

I = {1, . . . , n} denote the complete set of observation indices and | · | denote the cardinality of a

set, for all k ̸= k′, the clusters must satisfy:

• Ck ⊂ I: they form a subset of the data,

• ∪kCk = I: they jointly cover all observations,

• Ck ∩ Ck′ = ∅: they are disjoint,

• |Ck| > 0: they are non-empty.

Since combinatorial approaches specify neither a probabilistic model nor estimable parameters,

solutions are given precisely by the partition of I to C1, . . . , CK . These approaches are aptly

named for the combinatorial nature of the resulting solution space, the size of which grows rapidly

in n and K. As an example, the total number of partitions of 19 observations to 4 clusters is of

the order 1010 (Section 14.3.5, Hastie et al., 2011). As such, exhaustive search for the optimal

partition quickly becomes infeasible. To handle this problem, many algorithms rely on iterative

greedy descent which only requires searching a small subset of the solution space. However, these

algorithms can only guarantee local minima. It is therefore common practice to consider multiple

starting points of the algorithm to avoid highly suboptimal solutions.

Given an appropriately chosen dissimilarity measure and partition C1, . . . , CK , the total dissim-

ilarity, T (C), can be decomposed as the sum of the within-cluster dissimilarity and the between-

cluster dissimilarity, denoted W (C) and B(C), as follows:

T (C) =
1

2

K∑
k=1

n∑
i=1

n∑
i′=1

d(xi,xi′)

9



=
1

2

K∑
k=1

∑
i∈Ck

∑
i′∈Ck

d(xi,xi′)︸ ︷︷ ︸
W (C)

+
1

2

K∑
k=1

∑
i∈Ck

∑
i′ ̸∈Ck

d(xi,xi′)︸ ︷︷ ︸
B(C)

. (1.3)

Since T (C) is independent of the cluster assignments, minimizing within-cluster dissimilarity and

maximizing between-cluster dissimilarity are exactly equivalent. Many combinatorial approaches,

including K-means and K-mediods, minimize some variant of the within-cluster dissimilarity W (C)

(MacQueen et al., 1967; Kaufman and Rousseeuw, 2009).

Briefly, the K-means algorithm seeks to minimize a cluster size-adjusted variant of W (C) using

squared Euclidean dissimilarity. Precisely, the K-means objective is given by:

W ′(C) =
K∑
k=1

∑
i∈Ck

∥xi − x̄k∥22,

where x̄k = 1
nk

∑
Ck
xi is the k-th cluster mean. Given a starting partition, the algorithm solves

for an locally optimal partition by alternating between the following two steps until the clusters

stabilize:

1. solve for x̄k to minimize W ′(C) given current partitions Ck,

2. solve for Ck to minimize W ′(C) given current means x̄k.

At Step 2, new clusters are obtained by reassigning samples to the cluster with the closest mean.

The K-mediods algorithm simply generalizes K-means to dissimilarity measures other than squared

Euclidean distance. Although K-mediods is useful in many situations, the algorithm requires

substantially more computational time than K-means.

1.2.2 Hierarchical Clustering

In contrast to non-nested approaches, hierarchical clustering does not require specifying K. Instead,

the approach estimates all K = 1, . . . , N partitions of the data through a sequential optimization

procedure. The sequence of steps can be implemented as either an agglomerative (bottom-up) or

divisive (top-down) approach to produce the nested hierarchy of clusters. Agglomerative clustering

begins with each observation belonging to one of n disjoint singleton clusters. Then, at each

step, the two most similar clusters are joined to form a single cluster, until after (n − 1) steps

all observations belong to a single cluster of size n. Divisive clustering proceeds in a similar, but

10



Figure 1.4: Hierarchical clustering with squared Euclidean dissimilarity and average linkage is applied to
5 observations of the bivariate variable, x. (A) The actual values of each observation are shown in R2. (B)
The resulting dendrogram is shown with sample indices placed along the horizontal axis and sequentially
connected until all observations are joined at the top of the tree. The vertical axis corresponds to cluster
similarity, such that clusters joined lower along the dendrogram are most similar.

reversed manner, in which a single cluster containing all n observations is sequentially split until

after (n− 1) steps, each observation belongs to a separate singleton cluster.

To determine which clusters to join at each step of the agglomerative procedure, a linkage

function is used to extend the definition of pairwise object dissimilarity to clusters. Let Ck ⊂ I =

{1, . . . , N} denote the set of observation indices belonging to cluster k. Then, given a dissimilarity

function d : Rp × Rp → R+, we similarly denote the linkage function by d : I × I → R+. Often,

linkage is defined as some function of the pairwise dissimilarities of observations belonging to the

two clusters. Examples of linkage functions include:

• Ward’s: dW (Ck, Ck′) =
2|Ck||Ck′ |
|Ck|+|Ck′ |

∥x̄k − x̄k′∥2,

• single: dS(Ck, Ck′) = min{d(xi,xi′) : i ∈ Ck, i
′ ∈ Ck′},

• complete: dC(Ck, Ck′) = max{d(xi,xi′) : i ∈ Ck, i
′ ∈ Ck′},

• average: dA(Ck, Ck′) =

∑
i∈Ck

∑
i′∈Ck′

d(xi,xi′ )

|Ck||Ck′ |
.

Note that Ward’s linkage is specifically defined using squared Euclidean dissimilarity while all

other linkages are defined for general dissimilarity functions (Ward, 1963). As with the choice of

dissimilarity measure, the resulting clusters greatly depend on the chosen linkage function.

Since the work of Eisen et al. (1998), agglomerative hierarchical clustering algorithms have

enjoyed substantial popularity in the analysis of microarray expression data. In several landmark

papers that followed, these methods were successfully used to identify clinically relevant expression

11



subtypes of lymphoma, breast, and other types of cancer (Alizadeh et al., 2000; Perou et al.,

2000; Bhattacharjee et al., 2001). The popularity of hierarchical clustering in practice may be

largely attributed to dendrograms, a highly useful and informative visualization of clustering results.

Specifically, dendrograms represent the results of hierarchical clustering as a binary tree where

clusters are connected at a height corresponding to the value of the objective function at which the

joining or splitting occurred. We next give a simple example of a dendrogram and describe how

agglomerative and divisive approaches determine which clusters to join or split at each step.

In Figure 1.4B we show the dendrogram for five realizations of the bivariate random variable,

X, clustered using squared Euclidean dissimilarity and average linkage. The actual values for the

five observations lying in R2 are given in Figure 1.4A. In Figure 1.4B, the observation indices are

placed evenly along the horizontal axis, such that no two branches of the dendrogram cross. Note

that as a result, several equivalent arrangements of the same dendrogram are possible by flipping

the orientation of branches. The sequential clustering procedure is shown by the joining of clusters

at their respective linkage value, represented by the vertical axis of Figure 1.4B. As such, the most

similar clusters and observations are connected near the bottom of the tree. The spectrum of

clustering solutions can be recovered from the dendrogram by cutting the tree at an appropriate

height, and taking the resulting subtrees as the clustering solution. For example, the corresponding

K = 2 solution is obtained by cutting the dendrogram at the gray horizontal line in Figure 1.4B,

resulting in the red dashed and blue dot-dashed subtrees.

While less popular, divisive approaches to clustering also exist. Unlike agglomerative ap-

proaches, they do not require a linkage function. Instead, they require explicitly defining a splitting

rule, which is then recursively applied to obtain a complete partition of the data. While rules spe-

cific to divisive clustering have been proposed, e.g. Macnaughton-Smith et al. (1964), combinatorial

algorithms, such as K-means for two clusters, may also be used. At each step, a single cluster is

chosen based on a heuristic, such as largest average within-cluster dissimilarity, and split to return

two smaller clusters.
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To help contextualize RNA-seq, we first introduce the central dogma of molecular biol-

ogy, which summarizes the general process of gene expression. Often, the central dogma is

written as:

DNA transcription�����������! RNA translation���������! Protein . (1.4)

For example, the human genome contains approximately 3 billion base pairs (bp) of DNA,

typically denoted as a directed sequence of ‘A’, ‘T’, ‘C’, and ‘G’s. During transcription,

a relatively short segment of DNA is copied into precursor messenger RNA (pre-mRNA).

Following transcription, pre-mRNAmolecules must be processed to produce mature mRNAs

prior to translation. Each pre-mRNA molecule is comprised of protein coding and non-

coding regions, called exons and introns, respectively. During the processing step, introns

are removed from the pre-mRNA molecule, and the remaining exons are selective joined,

or spliced, together to form a variety of mRNA sequences (Figure 1.5A). The process which

results in several distinct mRNAs, or isoforms, from a single DNA template, is called

alternative splicing, and is a major source of protein diversity in vertebrates (Maniatis and

Tasic, 2002). Three examples of alternative splicing are shown in Figure 1.5A, including:

cassette exon inclusion/exclusion, alternative 50 splice-site selection, and intron retention

(Feng et al., 2012). Since the direct quantification of protein products can be di�cult,

more commonly, the mRNA sequences which encode the proteins are measured to quantify

gene expression. RNA-seq, which we describe next, as well as microarrays, are examples of

technologies which have been developed to accomplish this task.

The workflow for a typical RNA-seq experiment is shown in Figure 1.5B (Li et al.,

2012). First, mRNAs collected from a biological sample are randomly fragmented into

short reads or fragments, which are then reverse-transcribed to cDNA. Next, the collection of

cDNA reads/fragments are PCR amplified and sequenced using high-throughput sequencing

methods. Popular sequencing platforms include Illumina, Roche 454 and Life Technologies.

At this point, RNA-seq data is complete and typically stored in a FASTQ file. However,

prior to statistical analysis, the data is usually further processed using bioinformatics tools

and methods. Most often, this involves mapping the sequenced reads back to a reference

genome using an alignment algorithm such as TopHat2 (Kim et al., 2013) or MapSplice
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Figure 1.5: The central dogma of molecular biology.

1.3 RNA-seq Data

In this section, we provide a brief introduction to the analysis of RNA-seq data. We first present

an overview of RNA-seq technologies, and then describe some popular statistical methods which

have been developed for expression analysis using RNA-seq data.

Over the past two decades, microarrays have been the workhorses for data collection in cancer

genomics. However, recent advances in sequencing technology have given rise to high-throughput

second-generation methods, including RNA-seq (Wang et al., 2009; Metzker, 2010). In contrast to

microarrays, which typically measure relative expression levels at the per-gene level, sequencing

data provide integer counts which quantify expression at each base position. For this reason, RNA-

seq is often referred to as a digital measurement of expression. With RNA-seq data, it is now

possible to study the collection of all mRNAs in a sample at higher accuracy and resolution than

before, fundamentally transforming genomic research in cancer as well as other diseases (Meyerson

et al., 2010).

To help contextualize RNA-seq, we first introduce the central dogma of molecular biology, which

summarizes the general process of gene expression within a cell (Figure 1.5). The human genome

contains approximately 3 billion base pairs (bp) of DNA, often represented as a directed sequence

of ‘A’, ‘T’, ‘C’, and ‘G’s. During transcription, a relatively short segment of DNA is copied into pre-

cursor messenger RNA (pre-mRNA). Following transcription, pre-mRNA molecules are processed

to produce mature mRNAs for translation. Each pre-mRNA molecule is comprised of protein cod-

ing and non-coding regions, called exons and introns, respectively. During the processing step,

introns are removed from the pre-mRNA molecule, and the remaining exons are selective joined, or

spliced, together to form a variety of mRNA sequences (Figure 1.5A). The process which results in

several distinct mRNAs, or isoforms, from a single DNA template is called alternative splicing, and

is a major source of protein diversity in vertebrates (Maniatis and Tasic, 2002). Three examples of

alternative splicing are shown in Figure 1.5A, including: cassette exon inclusion/exclusion, alter-
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Figure 1.6: (A) Three modes of mRNA alternative splicing leading to multiple isoforms from a single
gene locus: cassette alternative exon, alternative 5′ splice site, and intron retention. (B) A typical RNA-seq
experiment given a collection of mRNAs from a biological sample, e.g. tumor sample.

native 5′ splice-site selection, and intron retention (Feng et al., 2012). Finally, during translation,

proteins are synthesized from the mRNA strands by ribosomes within the cell. These proteins then

proceed to serve various roles within the body. As such, it is often of interest to quantify the total

production, or expression, of these proteins within different biological samples or states. However,

since the direct quantification of protein products can be difficult, more commonly, the abundance

of mRNA sequences which encode the proteins are measured as a surrogate to quantify gene or

isoform level expression. Microarrays, and more recently, RNA-seq, are examples of technologies

which have been developed to accomplish this task.

The workflow for a typical RNA-seq experiment is shown in Figure 1.6B (Li et al., 2012). First,

mRNAs collected from a biological sample are randomly fragmented into short reads or fragments,

which are then reverse-transcribed to complementary DNA (cDNA). Next, the collection of cDNA

reads/fragments are PCR amplified and sequenced using high-throughput methods. Popular se-

quencing platforms include Illumina, Roche 454 and Life Technologies. The sequenced reads or
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fragments are collected and typically stored as FASTA or FASTQ files. At this point, the RNA-seq

data generation and collection process has been completed. However, prior to statistical analysis,

the data is usually further processed using bioinformatics tools and methods. Most often, this in-

volves mapping the sequenced short reads back to a reference genome using an alignment algorithm

such as TopHat2 (Kim et al., 2013) or MapSplice (Wang et al., 2010). Then, the number of aligned

reads at any position may be used to infer the expression at that locus for further analysis. Note

that in Figure 1.6B, a single read (‘TACAATA’) is aligned with space separating the first four and

final three positions. As a result of pre-mRNA splicing, reads which span exon-exon junctions,

called junction reads, map to the genome with a gap corresponding to a spliced intronic region of

the genome. Junction reads are particularly important, as they provide direct insight in to the

alternative splicing patterns present in a sample. Additionally, while for illustrative purposes each

read in Figure 1.6B was only 7bp, in practice, reads are typically 50bp to several hundred bp long.

The development of RNA-seq has made it possible to not only quantify gene expression at

higher accuracy, but also qualify the variety of isoforms being expressed in a sample (Ozsolak and

Milos, 2011). As a result, recent genomic studies using RNA-seq are beginning to shed light on

the sheer prevalence of post-transcriptional events, such as alternative splicing, across the human

genome (Nilsen and Graveley, 2010).

A large number of statistical methods have been developed for the analysis of RNA-seq data.

However, in this review, we only focus on the subset of approaches implemented for differential ex-

pression analysis and expression-based clustering. First, the goal of differential expression methods

is to identify genomic regions at which expression is significantly associated with an outcome or

known stratification across a collection of samples. Some early examples of gene level differential

expression methods developed for RNA-seq data include DEseq (Anders and Huber, 2010) and

edgeR (Robinson et al., 2010). Growing evidence supporting the importance and abundance of al-

ternative splicing has lead to the development of more complex differential expression methods for

RNA-seq data. Examples of these methods include approaches for detecting differential expression

at the exon and isoform level, such as DEXSeq (Anders et al., 2012) and Cuffdiff2 (Trapnell et al.,

2013). Since expression in RNA-seq data is approximated using the number of reads aligned at

a given position, many of these methods use Poisson or Negative-Binomial distributions to model

gene, isoform or exon level expression.
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In addition to the differential expression approaches described above, some work has been done

to develop unsupervised approaches for RNA-seq data. Due to the highly heterogeneous nature

of cancers, there has been great interest in the identification of subtypes of cancers using genomic

data for improving prognoses and developing targeted therapies. As mentioned in Section 1.2, over

the past decade, hierarchical clustering has been successfully used to identify clinically relevant

subtypes of cancers from microarray data. Notably, Witten (2011) proposed an extension of the

hierarchical approaches used in microarray analyses for RNA-seq data. In contrast to the vast

literature on supervised approaches for studying isoform and exon level differences in RNA-seq

data, the literature on unsupervised methods for problems such as subclass discovery is sparse,

leaving much room for development. The help fill this gap, in Chapter 2 we introduce SigFuge, a

method for identifying clusters of samples with differential isoform usage.

1.4 Outline

In this dissertation we consider problems in both supervised and unsupervised learning with par-

ticular interest in applications to next-generation sequencing analysis. These include a method for

clustering in RNA-seq data, an extension of the SigClust methodology to hierarchical clustering,

and a unified framework for hard and soft classification.

First, in Chapter 2 we consider the problem of unsupervised learning in RNA-seq data. We

introduce SigFuge, an approach to clustering RNA-seq samples using per-base expression. The ef-

fectiveness of our approach is shown through simulations and applications of SigFuge to two cancer

datasets obtained from The Cancer Genome Atlas (TCGA) Research Network. An R implementa-

tion of SigFuge has been made available through Bioconductor.

In Chapter 3 we extend the SigClust methodology to hierarchical clustering. In the original

SigClust manuscript, Liu et al. (2008) proposed a divisive approach to applying SigClust based

on iterative 2-means K-means splits. In this chapter, we describe a more general extension of the

SigClust approach for testing along a dendrogram. The approach is implemented as a sequential

testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is

provided for our approach, and its power to detect true clustering structure is illustrated through

several simulation studies and applications to two cancer gene expression datasets. Additionally,
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we describe a modification of the current approach for estimating the parameters of the SigClust

null distribution.

Finally, in Chapter 4 we propose a novel framework for connecting soft and hard classification.

Other frameworks, such as the LUM family (Liu et al., 2011) have helped to shed light on the

different behavior of hard and soft classifiers. However, these approaches relate the two problems

through specific classes of loss functions. We argue that a more natural approach is to relate soft

and hard classification as particular cases of a family of binary learning problems. We study the

problems using the framework of large-margin classifiers and propose a class of piecewise linear con-

vex surrogates for which we derive statistical properties and a corresponding sub-gradient descent

algorithm.
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CHAPTER 2

SigFuge for Discovery in RNA-seq Data

2.1 Introduction

Today, massively parallel next-generation sequencing platforms offer unbiased analysis of transcrip-

tomes at higher accuracy and resolution than microarrays (Marioni et al., 2008). Beyond measuring

expression levels, transcriptome sequencing (RNA-seq) can be used to discover novel transcriptional

events such as splicing patterns (Sultan et al., 2008), alternative untranslated region (UTR) usage

(Ramsköld et al., 2009), and gene fusions (Maher et al., 2009). With the rise of platforms capable

of producing large-scale genomic datasets, unsupervised methods have played an increasingly major

role in the analysis of such data. Arguably, among unsupervised approaches, clustering methods

have had the most visible impact on the field. In past studies, hierarchical clustering has been

applied to microarray expression data to identify clinically relevant subclasses of cancers and other

diseases (Eisen et al., 1998; Perou et al., 2000; Hayes et al., 2006). As such, extensions of these

approaches to modern sequencing platforms could potentially be used to identify unrecognized

structure with applications to a variety of problems.

An emerging area of genomic research is the identification of alternative splicing events, i.e. when

pre-mRNAs are spliced in different ways to produce distinct isoforms, ultimately encoding for

different proteins (Maniatis and Tasic, 2002). Recent estimates suggest that most human genes

are alternatively spliced, with most alternative exons showing tissue-specific regulation (Wang

and Cooper, 2007). Further, alternative splicing and isoform selection have been implicated as

determinants of cell type and specificity (Pan et al., 2008). Within individual samples, multiple

isoforms are often simultaneously expressed at a single gene. Therefore, identifying differential

isoform usage, where multiple isoforms of a single gene are expressed, but at different proportions

between groups of samples, may provide insight into the functional consequences of a disease.
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Throughout this chapter, we will refer to a region of the genome to which a single gene has

been annotated as a locus. Using RNA-seq, expression at a single gene, or locus, can now be

measured at each base-position along the length of the transcript, making the technology sensitive

to isoform level changes in expression. Thus, genome-wide discovery of alternate isoform usage is

an opportunity afforded by RNA-seq, beyond what was possible using gene expression arrays. The

SigFuge (SIGnificant Forms Using per-base Gene Expression) approach introduced in this chapter

is motivated by the desire to realize the full potential of RNA-seq data.

Several methods have been suggested for the detection of alternative splicing or isoform differ-

ences in supervised settings, e.g. in a tumor vs. normal comparison, including Cuffdiff2 (Trapnell

et al., 2013), DEXSeq (Anders et al., 2012), and DiffSplice (Hu et al., 2013). However, differences

in isoform usage may not always correspond to known class labels, e.g. differential usage may exist

between subsets of a single tissue type. As an example, the significant expression of a novel CDH3

splice variant was reported in only a subset (8/20) of adenocarcinoma tumors relative to normal (Xi

et al., 2008). In this case, the differential signal may become lost within the larger tumor vs. normal

comparison, and further, the subtype behavior completely missed. Using existing approaches, it is

not clear how to identify differential isoform usage when the appropriate stratification of samples

is unknown.

To address these problems, unsupervised approaches, including clustering, have complemented

supervised analyses in genomics. Earlier on, approaches to whole-genome clustering, i.e. clustering

by gene expression across all loci, were proposed for RNA-seq data (Witten, 2011). More recently,

SIBER (Tong et al., 2013) and DEXUS (Klambauer et al., 2013) have been proposed for clus-

tering samples at the single gene level, i.e. clustering at each gene separately, to discover novel

subpopulations exhibiting differential expression at individual loci. However, these methods were

not specifically designed to detect differences in isoform usage as they only consider gene-level

expression.

In order to detect subsets, or clusters, of RNA-seq samples with alternative forms or patterns

of isoform usage, we have developed SigFuge. SigFuge aims to identify clusters which express iso-

forms from a single gene locus at differing proportions. That is, we seek to identify clusters with

differing isoform preferences at the level of single genes. This is possible because SigFuge uses

expression levels at each base-position across a gene locus. Briefly, for each locus, the approach
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first requires filtering out lowly expressed samples. Then, among the remaining samples, SigFuge

normalizes expression at the base-pair level. This normalization allows SigFuge to emphasize ex-

pression differences occurring throughout a segment of the gene, e.g. exon-level differences, while

ignoring differences occurring across the entire gene, e.g. whole gene gain/loss, which methods such

as SIBER and DEXUS aim to identify. Next, the samples are clustered into two subpopulations by

the normalized base-pair level expression, and finally, a significance test is performed to quantify

the strength of evidence supporting a difference in isoform usage between the two subpopulations.

SigFuge is available as an R package through Bioconductor.

In Section 2.2, we first describe SigFuge using a simple toy example. We then compare the

performance of the method against the closest competing approaches, DEXUS and SIBER, through

an extensive simulation study in Section 2.3. In Section 2.4, we apply the method to collections of

lung squamous cell carcinoma (LUSC) and head and neck squamous cell carcinoma (HNSC) RNA-

seq samples from The Cancer Genome Atlas (TCGA). We show that SigFuge identifies important

transcriptional alterations including alternative splicing of the tumor suppressor gene CDKN2A.

Finally, we conclude with a discussion in Section 2.5.

2.2 Methodology

We describe the SigFuge method in three major parts: data extraction, processing and analysis.

A pipeline of the complete approach is given in Figure 2.1A, with blue boxes used to distinguish

the three parts. In the next subsections, we describe each part in detail, motivating our approach

using a hypothetical Gene A across a cohort of 60 RNA-seq samples. To replicate true variation

observed in RNA-seq data, the toy dataset was generated using counts obtained from 60 of the

LUSC samples along a subset of the bases within the FAM64A locus.

2.2.1 Data Extraction

Consider Gene A having two known isoforms differing by a single cassette (middle) exon (Fig-

ure 2.1B). We first study three samples which represent important modes of expression in the

larger cohort of 60 samples:

1. low expression across the entire gene,
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Figure 2.1: The SigFuge approach is illustrated through a hypothetical example Gene A with two true
isoforms differing by a single cassette exon. (A) A general outline is given for the complete SigFuge pipeline.
(B) The gene model includes two isoforms. (C) Read count pile-ups for samples 1, 2 and 3 show low expression
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samples (colored red) are first excluded. (H) The remaining samples are normalized, log-transformed and
clustered using K-means clustering. The clusters are clearly visible in the log-transformed raw curve space
(I) as well as the principal components space (J).
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2. primary expression of isoform 1,

3. primary expression of isoform 2.

The differences in mRNA product are clearly reflected in the corresponding per-base read depths,

plotted on the log-scale (Figure 2.1C). From this, we propose characterizing gene expression at

the per-base resolution to study differential isoform usage. More specifically, we define a sample

expression profile at a given gene to be the vector of per-base read depths across the exons of the

union gene. In our toy example, the union gene, formed by combining all isoforms, is simply isoform

2 (Figure 2.1B). The resulting data structure is an expression count matrix with rows corresponding

to samples, and columns corresponding to positions across the gene model (Figure 2.1D). This count

matrix serves as the input to the computational steps of SigFuge, and can be obtained, for example,

from BAM files using the samtools command line package (Li et al., 2009). While read depth is

commonly plotted using separate panels for each sample (Figure 2.1C), we prefer a more compact

visualization where expression profiles are overlaid as curves in a single figure (Figure 2.1E). Note

that the empty regions of Figure 2.1C corresponding to introns are excluded from the expression

profiles of Figure 2.1E.

While exon annotations are not explicitly required for SigFuge, as each base-position is treated

with equal weight, their use leads to more naturally interpretable results by restricting attention

to expressed regions of the locus, e.g. in obtaining Figure 2.1E from Figure 2.1C. Similarly, our

approach does not require information about the possible isoforms composing a gene model. This

is a major strength of the method, as the precise structure of isoforms may be unknown.

2.2.2 Data Processing

In Figure 2.1F-J, we consider the complete collection of 60 expression curves (samples) along Gene

A. The goal of SigFuge is to determine whether the sample-set contains subgroups, or clusters,

exhibiting different isoform usage. An example of differential isoform usage would be a subset of

samples which only express isoform 1 while all remaining samples express both isoforms 1 and 2

in equal proportions. Since we are not interested in whole-gene changes in expression, we first

perform a normalization of the sample curves to make identifying clusters of differential isoform

usage easier. The normalization procedure is broken into the three following steps:
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1. Filtering: removing low-expression samples,

2. Count Normalizing: scaling expression curves to have equal total coverage,

3. Log-Transformation: mapping count data, which vary by orders of magnitude, to a more

natural scale.

Since our interest is in differential isoform usage, samples not expressing any isoforms of the gene are

first removed from the analysis, forming a separate cluster of low-expression samples. Specifically,

at each locus we exclude samples with over 90% of base positions having zero coverage, as well as

samples with median coverage of less than 5 reads across covered positions. In the toy example,

low-expression samples are colored red in Figure 2.1G and completely removed from Figure 2.1H.

Next, count normalization is used to remove differences in overall gene expression between samples.

To do this, each remaining sample is scaled by its total expression across the gene, i.e. by the

corresponding row sum of the count matrix. While several approaches have been proposed for the

normalization of RNA-seq expression data (Mortazavi et al., 2008; Bullard et al., 2010; Robinson

and Oshlack, 2010), these approaches were developed for genome-wide normalization, with the goal

of identifying differentially expressed genes. In contrast, we aim to identify isoform imbalances at

individual gene loci by identifying curves exhibiting different shapes, regardless of overall expression.

Therefore, rather than employing normalization procedures for genome-wide differences (e.g. library

sizes), we instead use a simple per-gene approach. Note that this normalization procedure assumes

that each locus contains a single gene and may not be appropriate for loci containing multiple

genes. Lastly, the scaled count data are log-transformed (Figure 2.1H). Log-transformation is used

to study counts on the scale of relative expression, and is often applied when data vary over several

orders of magnitude, as with read counts. To ensure the log is always well defined, i.e. to handle zero

counts, all scaled values are increased by 1 prior to transformation. Note that zero counts remain

at zero after transformation. As shown in Figure 2.1H, normalization reduces sample variability

across most of the gene (exons 1 and 3), and highlights regions with non-uniform usage across

samples (exon 2).

23



2.2.3 Data Analysis

Following normalization, K-means clustering (MacQueen et al., 1967) for two clusters (K = 2)

using Euclidean distance is applied to the normalized samples to identify clusters corresponding to

differential isoform usage. In Figure 2.1H these clusters, colored blue and green, differ noticeably by

their use of exon 2. Here, SigFuge accurately captures clusters of samples with differing preferences

for isoforms 1 and 2.

Translating the cluster labels to the original expression profiles, i.e. coloring the data by clusters,

verifies that the identified clusters indeed correspond to clear differential patterns across Gene A

(Figure 2.1I). To emphasize the notion of isoform clusters, we visualize the toy example using

principal component analysis (PCA; Jolliffe, 2002), an exploratory analysis tool for identifying low-

dimensional structure in high-dimensional data (Figure 2.1J). The log-transformed raw data are

projected along the first two principal component directions and colored according to the results of

SigFuge. The plot clearly reveals three distinct clusters, showing the protocol accurately captures

the main modes of variation among the samples.

This toy example was generated such that the clusters represent clearly differential patterns of

expression. However, often loci considered in practice will only possess a single expression pattern.

This may correspond to loci with a single dominant isoform or expression of multiple isoforms

in similar proportions across all samples. As an exploratory tool, K-means identifies clusters

regardless of whether they represent true underlying structure. An important, yet difficult task

in cluster analysis is to distinguish natural clustering from artificial clustering generated by the

chosen algorithm. In the present context, this corresponds to identifying the small subset of genes

with clusters exhibiting true differential isoform usage within the large number of genes across the

entire transcriptome. To address this issue, SigFuge calculates a p-value quantifying the statistical

significance of clustering at each locus. The SigFuge p-values can then be used to order a large set

of genes to identify a subset of loci most likely to exhibit true differential isoform usage.

The p-value calculation is carried out using SigClust (Liu et al., 2008). A thorough description

of the approach is provided in Section 3.2.2. SigClust is implemented using the sample covari-

ance matrix estimate of the null Gaussian distribution. Extensive simulation study has shown

that among several proposed SigClust null covariance estimators, the sample covariance approach
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cassette exon (exon 2) spliced out from isoform 1 and only retained in isoform 2. (B) Four exon gene model
containing mutually exclusive cassette exons (exons 2, 3).

produces consistently conservative p-values (Huang et al., 2014). In our genome-wide analysis we

restrict the number of simulations to 100 for each gene. We then fit a Gaussian distribution to the

100 observed null 2-means CIs and report the lower tail probability of this fitted Gaussian as our

approximate p-value, as described in (Liu et al., 2008). Although these p-values are not exact, they

give a good sense of the relative significance of genes which otherwise report equivalent empirical

p-values of 0. While SigFuge may be used to test for the statistical significance of clusters obtained

using any algorithm, K-means clustering is used as it has favorable properties for the SigClust

testing procedure, as noted in (Liu et al., 2008). For the clustering shown in Figure 2.1H, SigFuge

reports a significant p-value of 2.1× 10−7. A more in-depth discussion of the SigClust assumptions

as they pertain to our application can be found in Supplementary Methods S1 and Supplemen-

tary Figure S1. Finally, our analysis is restricted to K = 2 clusters as the SigClust methodology

is currently only capable of testing for statistical significance with two subgroups. However, we

note that other existing unsupervised approaches, such as SIBER and DEXUS, also seek a binary

partition of observations, the later separating between a single major condition and all remaining

minor conditions.

When applying SigFuge to a large number of genes, we suggest using an appropriate statistical

procedure for controlling either the family-wise error rate (FWER) or false discovery rate (FDR).

We use the Benjamini-Hochberg step-up procedure to control the FDR (Benjamini and Hochberg,

1995).
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2.3 Simulations

An extensive simulation study was carried out at the level of single gene loci for varying experimental

conditions. Datasets were simulated with several values of sample size, depth, dispersion and

underlying isoform structure. For each simulation, per-base expression profiles were generated from

an underlying gene model encoding two isoforms. Toy diagrams for the two gene models used in the

simulations are shown in Figure 2.2. These include a three-exon gene model containing a cassette

exon (Figure 2.2A), and a four-exon gene model containing alternate cassette exons (Figure 2.2B).

Expression profiles along a single gene locus were generated from two subpopulations differing only

by their isoform preferences. That is, samples from the two subpopulations were simulated with

the same expected gene-level expression, but with differing expected isoform-level expressions. The

null setting with no differential behavior was also considered by setting the isoform preferences to

be equal between the two subpopulations.

More explicitly, let k denote the subpopulation index. Then, for k ∈ {1, 2} let ψk = (ψk1, ψk2)

denote the corresponding isoform preference of samples in that subpopulation. Without loss of

generality, assume ψk1, ψk2 ≥ 0 and ψk1 + ψk2 = 1. For example, if ψ1 = (0, 1), then samples from

subpopulation 1 will only express isoform 2, and if ψ2 = (.5, .5), then samples from subpopulation

2 will express isoforms 1 and 2 equally. Five combinations of ψ1,ψ2 are given in Table 2.1.

Setting 1 corresponds to the null setting in which isoform preferences are equal between the two

subpopulations (ψ1 = ψ2).

Under each of the settings described in Table 2.1, various simulations were performed to assess

the performance of the methods across different levels of mean read depth (µ ∈ {50, 100, 500}),

dispersion (ϕ ∈ {0.087, 0.179, 0.369}), gene length (d ∈ {1200, 2400}), and subpopulation sizes

((n1, n2) ∈ {(10, 10), (50, 50), (50, 1), (75, 25), (100, 100)}). Candidate values for ϕ were chosen

Table 2.1: Differential expression settings used in SigFuge simulation study.

Setting Gene Model ψ1 ψ2

1 Three-exon (0.50, 0.50) (0.50, 0.50)
2 Three-exon (0.25, 0.75) (0.75, 0.25)
3 Four-exon (0.25, 0.75) (0.75, 0.25)
4 Three-exon (0.67, 0.33) (0.33, 0.67)
5 Four-exon (0.67, 0.33) (0.33, 0.67)
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as the quartiles of a lognormal distribution estimated in Wu et al. (2013) for the Gilad dataset

(Blekhman et al., 2010).

For a fixed simulation setting and values of µ, ϕ, d, n1, n2, a single gene dataset is simulated

as follows. First, to generate subpopulation 1, 2 · n1 isoform level expression values are simulated

from Negative Binomial distributions with means µ · ψ11 and µ · ψ12, with dispersion parameter ϕ.

Similarly, 2 · n2 isoform level expression values are simulated from Negative Binomial distributions

with means µ · ψ21 and µ · ψ22, with dispersion parameter ϕ. Then, to mimic the short-fragment

read sequencing process of RNA-seq data, for each sample and each isoform, 50bp “reads” are

generated randomly (uniformly) across the corresponding isoform model to achieve the necessary

isoform level expression. Finally, at each position along the gene, the number of aligned reads is

counted to produce the per-base level expression profiles passed to SigFuge. Examples of datasets

simulated for the 5 simulation settings are shown in Figure 2.3. Each dataset was simulated with

parameters: µ = 100, ϕ = 0.179, d = 1200, n1 = 50, n2 = 50. The resulting coverage profiles

appear similar to what is observed in real RNA-seq data.

Each simulated single gene dataset was analyzed using SigFuge, DEXUS and SIBER. While

DEXUS and SIBER were originally described for gene-level analysis, to make the approaches more

comparable to SigFuge, both methods were applied to read counts at the following three levels

of aggregation: (1) whole gene, (2) exon, and (3) disjoint 100bp windows. DEXUS results were

called significant according to the default informative/noninformative (I/NI) value threshold of the

accompanying R implementation. Significance for the results of SIBER were determined based on

a bimodality index (BI) cutoff described in Table 1 of Tong et al. (2013) for controlling FDR at

0.05. Results for SIBER are not reported for total sample sizes less than 50, as BI cutoffs were only

provided for sample sizes of 50, 100, 200 and 300. Since no clear approach exists for aggregating

across multiple tests with the respective I/NI and BI output of DEXUS and SIBER, for the exon

and 100bp window implementations of these two methods, loci were determined to be significant if

any exon or window was called significant with no correction for multiple testing. SigFuge results

were called significant at a p-value cutoff of 0.05.

In addition to single gene simulations, a joint simulation of 10,000 genes was also considered,

including 9,000 null genes with no subpopulation behavior and 1,000 non-null genes with varying

levels of differential usage across 100 samples. Of the 9,000 null genes, 4,500 were simulated
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Figure 2.3: Log-transformed expression plots for 5 simulation settings. For each simulated gene locus,
the per-base coverages were simulated from two underlying populations exhibiting differential isoform usage,
denoted used by red and blue. Each dataset plotted was simulated with mean coverage (µ) 100, over-
dispersion (ϕ) 0.179, gene length (d) 1200bp, and (n1, n2) 50 samples in each class. Population medians are
shown in darker lines.
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Table 2.2: Results for select simulation settings, with parameters: n1, n2 (subpopulation sample sizes), d
(gene length), µ (gene-level read depth), ϕ (isoform-level dispersion). Parameter values n1, n2 = 50, 50; d =
1200; µ = 100; ϕ = 0.179 are treated as baseline, and deviations are marked by underlined values. For each
setting, the numbers of significant calls out of 100 replications are reported for the default implementation of
SigFuge, and DEXUS and SIBER at the gene, exon, and 100bp levels of aggregation. The mean (standard
deviation) runtimes for single replications are reported in seconds for SigFuge, and DEXUS and SIBER at
the 100bp level. Occasionally, NAs were reported in the output of SIBER. In this case, we mark the output
with an asterisk (∗m) and report the number of significant calls out of m < 100 simulations. For non-null
simulations (settings 2, 3), the method with highest sensitivity is highlighted in bold.

simulation parameters SigFuge DEXUS SIBER

setting n1, n2 d µ ϕ bp runtime gene exon 100bp runtime gene exon 100bp runtime

1 100 1200 100 0.179 2 6.82 0 0 1 0.58 5 7 14 1.46
1 100 1200 500 0.369 7 6.59 0 2 2 0.58 2 5 9 1.55
1 20 1200 100 0.179 1 3.29 17 48 79 0.16 – – – –

2 50, 50 1200 100 0.179 89 6.77 0 13 21 0.60 1 11 25 1.51
2 75, 25 1200 100 0.179 98 6.86 0 10 17 0.60 2 16 21 1.47
2 10, 10 1200 100 0.179 38 3.24 23 76 86 0.17 – – – –
2 100, 100 1200 100 0.179 98 11.5 0 0 0 1.16 0 9 18 2.51
2 50, 50 1200 100 0.087 100 6.71 0 47 52 0.41 3 86 91 1.08
2 50, 50 1200 100 0.369 62 6.66 0 10 16 0.40 2 3 4∗99 0.94

3 50, 50 1200 100 0.179 99 6.82 0 23 33 0.62 3 26 38 1.50
3 75, 25 1200 100 0.179 60 6.80 0 56 72 0.61 1 13 15 1.40
3 10, 10 1200 100 0.179 29 3.25 14 93 96 0.17 – – – –

according to Setting 1, with the remaining 4,500 as in Setting 1, except with a four-exon gene

model. The 1,000 non-null genes were simulated from Settings 2, 3, 4 or 5 with equal probability.

For each gene, (n1, n2) was randomly selected form {(10, 90), (75, 25), (50, 50)}. The remaining

gene-level parameters (µ, ϕ, d, n1, n2) were randomly selected for each gene from the candidate

values presented above. Each simulated gene was again analyzed using SigFuge, as well as DEXUS

and SIBER applied at the three levels of aggregation. The SigFuge p-value, DEXUS I/NI and

SIBER BI output were recorded for each simulated gene. As above, for the exon and 100bp

window implementations of DEXUS and SIBER, the maximum I/NI and BI output were used to

aggregate across the multiple tests.

Results of representative simulations from the single gene study are presented in Table 2.2.

The table includes results for three simulation settings: (1) no differential behavior, (2) differential

usage with a three-exon gene model, and (3) differential usage with a four-exon gene model. For

each setting and combination of simulation parameters we report the number of significant calls

over 100 replications of a single gene dataset.
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2.3.1 Setting 1

We first considered the null setting with no subpopulation differences. For all parameter values

considered, SigFuge made only the expected number of false positive calls at the 0.05 significance

level. Similarly, SIBER and DEXUS make few false positive calls for the larger sample size (n =

100). However, when the sample size was decreased (n = 20), DEXUS produced a large number

of false significant calls across all levels of aggregation. With both DEXUS and SIBER, more false

significant calls were observed at finer levels of aggregation, i.e. using exon and 100bp windows, as

no correction was made for multiple testing at these levels.

2.3.2 Setting 2

This setting features differential usage across a three-exon gene model encoding for two isoforms,

with samples drawn from subpopulations 1 and 2 expressing the isoforms at proportions 1:3 and 3:1,

respectively. Notably, SigFuge consistently provided high sensitivity, with the exception of when

sample size was decreased (n1, n2 = 10, 10). Furthermore, we observed expected trends across all

methods, with sensitivity decreasing with increasing dispersion (ϕ), and increasing with greater

sample size (n1, n2). In most settings other than low dispersion (ϕ = 0.087), DEXUS and SIBER

showed low sensitivity across all levels of aggregation, with the exception of DEXUS showing high

sensitivity with lower sample size. However, care is needed in interpreting this because of the poor

specificity shown above for DEXUS in this context.

2.3.3 Setting 3

In this setting, we considered similar differential usage as in Setting 2, using a four-exon gene model.

Samples were again drawn from two subpopulations expressing two isoforms at proportions 1:3 and

3:1. Similar results were observed as in Setting 2, with the exception of increased sensitivity by

DEXUS and decreased sensitivity by SigFuge in the unbalanced sample size setting (n1, n2 = 75, 25).

In general, sensitivity for both DEXUS and SIBER were higher in Setting 3, likely due to the regions

of differential usage comprising a larger proportion of the entire gene.
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Figure 2.4: ROC curves are shown for SigFuge and 6 competing approaches applied to 10,000 simulated
gene loci. The corresponding AUC is reported for each method in the legends, and vertical black lines are
used to denote the 95% specificity cutoff. Comparison of ROC curves for SigFuge p-values and (A) DEXUS
I/NI indices and (B) SIBER BI indices at the gene, exon and 100bp window levels.

2.3.4 Joint Setting

A joint simulation of 10,000 genes, including 9,000 null and 1,000 non-null genes was also performed

to further evaluate the sensitivity and specificity of SigFuge, DEXUS and SIBER. The resulting

receiver operating characteristic (ROC) curves for each method are given in Figure 2.4, and corre-

sponding summary statistics are reported in Table 2.3, including area under the ROC curve (AUC),

sensitivity, and the F1-measure (the harmonic mean of precision and recall; Powers, 2011). Across

all metrics, SigFuge performs the best, with DEXUS consistently outperforming SIBER. Although

the exon and 100bp window implementations of DEXUS achieve nearly the same AUC as SigFuge,

the DEXUS-based approaches achieve substantially lower sensitivity when specificity is constrained

to be above 90 or 95 percent.

In general, SigFuge was found to produce higher sensitivity and lower false positive calls than

either DEXUS or SIBER. Additionally, in both Settings 2 and 3, DEXUS and SIBER benefited

substantially from aggregating at the exon and 100bp window level. Finally, we note that for all

settings, SigFuge required the most computational time, with DEXUS requiring the least. This

is a consequence of the simulation based p-value calculation implemented by SigFuge and the
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underlying SigClust algorithm. However, as computational times differ with available hardware, it

may be more appropriate to interpret these results as a relative, rather than absolute, comparison

of computational cost across the evaluated methods. Furthermore, since SigFuge is applied at each

locus separately, the method may be easily parallelized on a cluster to reduce the total computing

time for larger scale analyses.

2.4 Real Data Analysis

To illustrate the power of our approach in real data, SigFuge was applied to two cancer datasets, con-

sisting of 177 LUSC samples and 279 HNSC samples obtained from the TCGA Research Network.

The datasets were processed as described in The Cancer Genome Atlas Research Network (2012).

The samtools depth function was used to obtain per-base read counts. Union gene models and cor-

responding composite exon boundaries for 20,500 genes were obtained from the TCGA generic an-

notation file v2.1 (https://tcga-data.nci.nih.gov/docs/GAF/GAF.hg19.June2011.bundle/outputs/)

based on the December 2009 version of the UCSC Gene annotations. Methylation, mutation, and

copy number calls for the LUSC dataset at the CDKN2A locus were also obtained from the sup-

plementary data for The Cancer Genome Atlas Research Network (2012).

2.4.1 Lung Squamous Cell Carcinoma (LUSC)

Of the 20,500 genes considered, 3,547 genes having less than 10 samples passing the expression

threshold were removed from the analysis. Genes of this type were empirically considered to be

expressed at such low levels in so few samples that clustering results would be of little interest.

The distribution of the remaining 16,953 p-values is shown in Figure 2.5.

Table 2.3: Summary statistics for the joint simulation, including AUC, sensitivity at 90% and 95% specificity
(TPR90, TPR95), and the F1-measure at 90% and 95% specificity (F190, F195).

Method AUC TPR95 TPR90 F195 F190

SigFuge-bp 0.73 0.41 0.49 0.44 0.41
DEXUS-gene 0.51 0.06 0.11 0.08 0.11
DEXUS-exon 0.66 0.25 0.34 0.29 0.30
DEXUS-100bp 0.68 0.24 0.34 0.28 0.30
SIBER-gene 0.51 0.03 0.06 0.04 0.06
SIBER-exon 0.62 0.13 0.17 0.16 0.17
SIBER-100bp 0.56 0.12 0.17 0.15 0.16
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Figure 2.5: Distribution of SigFuge p-values for 16,953 genes with more than 10 highly expressed samples.
A dashed red line is used to denote the p-value significance cutoff for controlling FDR at 5%. (A) Empirical
cumulative distribution function (CDF) of p-values and (B) zoomed in view of the empirical CDF for the
range of p-values < 0.05.

Controlling FDR at 5%, 322 genes were identified as showing significant differential patterns

of expression. Manual review of the expression at these genes suggested that SigFuge identified a

limited number of recurring patterns. Thus, the set of 322 genes was separated into 6 categories

by visually inspecting the corresponding expression plot at each locus (Table 2.4). Genes placed in

the same category were determined to exhibit similar patterns of differential isoform usage. While

these categories do not necessarily correspond to unique regulatory events, they help summarize

the various types of differences detectable by SigFuge.

The first five categories, containing potentially biologically meaningful behavior, include: (1)

skipping of a cassette exon, (2) outlier behavior, i.e. differential usage in less than 5 samples, (3)

differential use of the 5′- end, (4) differential use of the 3′-end, and (5) alternative start sites.

Table 2.4: Six consistent patterns of differential isoform usage were identified across the set of 322 significant
LUSC genes.

Cat. Name Count Representative Genes
1 cassette exon 27 CDKN2A, KLK12, FAM64A
2 outliers 67 APRT, RABAC1, TSPO
3 diff. use of 5′- exons 50 SPATA21, SMN1, CKMT1A
4 diff. use of 3′- exons 15 RPL22L1, CRHR1, ECE2
5 alternative start sites 53 RPS8, RPL7A, RPL35A
6 likely mapping artifacts 110 S100A7, HLA-DRB1, RPL27
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outlier sample (Cat. 2), APRT and (B) an unmapped short starting exon (Cat. 6), S100A7. Alternating
orange and blue are used to denote annotated exon boundaries. Red, blue and green represent clusters of
low expression, isoform usage 1 and isoform usage 2. Bold lines denote cluster median expression.

In Figure 2.7, we show the expression plots for three genes with differential usage of a cassette

exon (Cat. 1), each described in detail later in this section. In each plot, the region of differential

expression along the transcript is highlighted in purple. Additionally, in Figure 2.6A, we show

APRT, an example of a gene with one clear outlier sample (Cat. 2). We primarily focus on the set

of genes in Category 1, as their functional impact is most directly predicted.

Events deemed likely to be artifacts of current RNA-seq technologies and alignment algorithms,

such as short unmapped exons (S100A7, Figure 2.6B), are included in Category 6. Previous studies

have shown that many split-read alignment algorithms have difficulty aligning reads to short exons,

especially when overall gene expression is low (Cabanski et al., 2013). Thus, it is highly likely that

the identified clusters at S100A7 simply correspond to samples falling above and below the threshold

for properly aligning reads to the first exon.

The set of Category 1 genes include 27 loci identified based on apparent gain or loss of a middle

exon. We will now describe in detail three notable genes from this category for which differential

isoform usage may play a role in tumor development and growth: CDKN2A, FAM64A, and KLK12.

First, consider CDKN2A, a tumor suppressor gene known to code for two proteins, p16INK4a

and p14ARF. Recently, CDKN2A was identified as one of the most highly altered genes in LUSC

(The Cancer Genome Atlas Research Network, 2012). In the union gene model shown in Fig-
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Figure 2.7: Three genes identified as being significant by SigFuge with differential usage of middle exons
(Cat. 1). For each gene, the SigFuge clusters are shown using separate colors and panels. Each red, green and
blue curve represents an individual sample and darker bold curves are used to denote the cluster medians.
Regions of differential usage, identified by visual inspection, are highlighted in the figure for each gene.
Alternating orange and blue are used to denote annotated exon boundaries.

ure 2.7A, expression of exons 1−3−5 encodes for p14ARF, and expression of exons 2−3−5 encodes

for p16INK4a. Thus, the SigFuge classes correspond to expression of neither protein due to low

expression (red class), expression of p16INK4a and p14ARF (green class) and expression of p14ARF

only (blue class).

Table 2.5 compares the SigFuge clusters against the three major modes of CDKN2A inacti-

vation identified by the TCGA integrative analysis: homozygous deletion, epigenetic silencing by

methylation, and inactivation by point mutation. As can be seen by the clear diagonal structure

of the table, the SigFuge clusters approximately capture the three classes of alterations. Notably,

64% of samples in the blue class were methylated, including all but one methylated sample in the

cohort. Furthermore, 96% of samples identified as low expression (red class) were homozygous

deleted, comprising 82% of homozygous deleted samples in all clusters, confirming the validity of

our proposed filtering scheme. Pearson’s chi-square (χ2) tests were applied to each row of Table 2.5

and the entire table. The highly significant p-values further confirm the strong association between

our SigFuge clusters and the previously identified alterations.
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SigFuge also identified FAM64A, a gene that has been implicated in the regulation of cell

proliferation, suggesting a possible role in cancer (Archangelo et al., 2008). FAM64A has been

shown to be highly expressed in leukemia, lymphoma and other tumor cell lines (Archangelo et al.,

2006). The plot of FAM64A expression shows clustering based on an unannotated splice junction,

resulting in lower expression for a large proportion of the final exon (Figure 2.7B). Although the

event has been previously reported as a retained intron (Coulombe-Huntington et al., 2009), the

implication of the isoform difference has yet to be described. This supports our use of per-base

expression, as analysis based on aggregation along exon or whole gene boundaries would have likely

missed this event.

The final Category 1 gene which we focus on, KLK12, is part of a family of 15 kallikrein-related

peptidases (KLK genes) encoding secreted serine proteases. KLK splice variants are receiving

increased attention as potential biomarkers in cancer, and have been studied in epithelial ovarian,

prostate, and lung cancers (Dong et al., 2003, 2005; Planque et al., 2010). The KLK12 locus

is known to produce multiple isoforms, largely differing by the use of a cassette exon, exon 4

(Figure 2.7C exon 4). A recent study has shown expression of the exon 4 skipping isoform to be

clinically relevant in breast cancer (Talieri et al., 2012). The identified KLK12 expression clusters

capture evidence of similar differential usage in our cohort of 177 samples. These results support

the potential of KLK12 and other KLK splice variants as markers in LUSC.

To confirm our identified clusters were not an artifact of sequencing, we performed PCR at the

KLK12 gene locus on representative samples from each of the green and blue classes in Figure 2.7C.

The results of PCR were visualized by agarose gel electrophoresis (Figure 2.8). The coverage plot

shown in Figure 2.8A suggests clear differential expression at exon 4 between the two representative

Table 2.5: SigFuge label and genomic alteration agreement at CDKN2A

SigFuge Label
Red Green Blue Total χ2 p-value

Homozygous Deleted 46 0 8 54 3× 10−15

Mutated 0 29 3 32 4× 10−11

Methylated 1 0 41 42 ≈ 0
None 1 36 12 49 3× 10−9

Total 48 65 64 177 ≈ 0
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Figure 2.8: (A) The expression curves are shown for two samples selected for validation. Sample TCGA-
51-4079 shows a drop in expression at exon 4. (B) The inclusion or exclusion of exon 4 within KLK12 gene
transcripts was assessed by PCR and results were visualized by agarose gel electrophoresis.

samples. Primers for PCR were chosen such that isoforms which include exon 4 produce 541bp

fragments, and isoforms which splice out exon 4 produce 261bp fragments. Thus, the absence of

a band at the 541bp mark for the sample from the blue cluster (TCGA-51-4079) in Figure 2.8B

validates the hypothesis that samples of this cluster do not express KLK12 isoforms which include

exon 4. However, note that both samples show expression of the exon 4 skipping isoforms, as

observed by the bands at 281bp.

2.4.2 Head and Neck Squamous Cell Carcinoma (HNSC)

As an attempt to confirm the results identified in LUSC, SigFuge was also applied to an independent

set of 279 HNSC samples, a biologically similar tumor type. Controlling FDR at 5%, 335 genes

were identified as exhibiting significant differential usage. Notably, similar clusters of differential

isoform usage were identified at the CDKN2A, KLK12 and FAM64A loci. The clustered expression

plots for the 279 HNSC samples at these genes are shown in Figure 2.9. Of the three, KLK12

and FAM64A were included in the set of 335 significant HNSC genes with p-values 1.99e− 15, and

6.76e − 6. While not included in the top 335 genes, CDKN2A was also found to exhibit strong

evidence of differential isoform usage (p-value 0.0021, 381st most significant). Furthermore, of the
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Figure 2.9: SigFuge clusters in a cohort of HNSC samples for three genes identified as highly significant
in the LUSC samples. All three genes were found to be highly significant HNSC, with clustering patterns
strongly resembling those identified in LUSC (Figure 2.7). Alternating orange and blue are used to denote
annotated exon boundaries.

27 Category 1 genes identified in LUSC, 21 (78%) were also identified as significant in HNSC,

suggesting the reproducibility of most interesting events across different datasets.

2.5 Discussion

The introduction of RNA-seq has fundamentally transformed genomic research in cancer by making

it possible to study transcriptomes at the resolution of base positions. Concurrently, the impor-

tance of studying isoform regulatory behavior beyond whole gene events has become increasingly

clear. SigFuge is presented as a novel method capable of unsupervised discovery of differential iso-

form events in RNA-seq. Our approach to studying gene expression as per-base expression curves

along transcriptome coordinates makes it possible to identify differential events without strictly

constraining our analysis to proposed exon or transcript boundaries.

Through simulation study, we have shown that SigFuge is often capable of detecting true differ-

ential isoform usage with higher sensitivity than DEXUS and SIBER across various experimental

conditions. This may be attributed to the unique multivariate approach taken by SigFuge, in

which all base positions and exons are considered simultaneously to detect and assess clustering. In
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contrast, DEXUS and SIBER cluster marginally at individual genes or exons, thus rendering the

approaches less sensitive to isoform differences which occur non-uniformly, but in concert, across

the entire gene. In addition to having high sensitivity, we have shown that in the absence of sub-

population differences, SigFuge does not make more than the expected number of false positive

calls.

Applying SigFuge to a cohort of LUSC samples, we identified CDKN2A, a tumor suppressor

gene known to be highly altered in LUSC, and KLK12, a gene recently shown to have differential

isoform usage in breast cancer. To our knowledge, SigFuge is the only unsupervised approach

for identifying loci with significant differential isoform usage. All other genome-wide methods

for identifying genes with differential isoform usage require a priori knowledge of the differential

class labels, and therefore could not be used to identify these events. The biological relevance

of our CDKN2A clusters was validated by observed high concordance with homozygous deletion,

methylation and point mutation events at the locus. Further, the predicted isoforms of KLK12

were confirmed by PCR as a validation of the method. Additionally, many of the clusters identified

in LUSC were found to reproduce in an independent analysis of 279 HNSC samples, suggesting

that our discoveries relate to biologically meaningful events.

The importance of alternative splicing in the development of diseases, including cancer, is well

recognized (Faustino and Cooper, 2003; Venables, 2004). SigFuge shows promise as a tool for

identifying biologically relevant cases of aberrant isoform usage. Given clinical outcomes, testing

clusters of differential isoform usage for significant associations with survival could potentially reveal

novel therapeutic targets.

A major benefit of SigFuge is the calculation of a p-value to quantify significance of clustering.

Using the p-value, it becomes possible to screen a large set of genes to identify a small subset

of potentially biologically interesting loci. However, our post-hoc analysis makes it clear that

identifying truly interesting events is not simply a statistical endeavor, i.e. finding significant

SigFuge p-values. That is, some loci identified by SigFuge as statistically significant, may on

manual review appear to be artifacts introduced by sequencing and mapping challenges beyond our

control. Therefore, manual review of statistically significant results is strongly recommended. To

this end, our approach to visualizing expression profiles makes it possible to quickly gain intuition

at each locus to determine the nature of the underlying event.
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Recent genomics studies using RNA-seq are beginning to shed light on the sheer prevalence

and importance of post-transcriptional events across the human genome. In this chapter, we have

proposed the first approach for the unsupervised discovery of differential isoform usage in RNA-seq

data. By taking the novel approach of clustering by per-base expression, we believe SigFuge is a

step in the right direction for realizing the full potential of RNA-seq for understanding the genomic

complexity of diseases.
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CHAPTER 3

Statistical Significance for Hierarchical Clustering (SHC)

3.1 Introduction

Clustering describes the unsupervised learning task of partitioning observations into homogenous

subsets to uncover subpopulation structure in a dataset. As an unsupervised learning task, cluster

analysis makes no use of label or outcome data. A large number of methods have been proposed

for clustering, several of which were described in detail in Section 1.2, including both hierarchical

and non-nested approaches. Since the work of Eisen et al. (1998), hierarchical clustering algo-

rithms have enjoyed substantial popularity for the exploratory analysis of gene expression data. In

several landmark papers that followed, these methods were successfully used to identify clinically

relevant expression subtypes in lymphoma, breast, and other types of cancer (Perou et al., 2000;

Bhattacharjee et al., 2001).

While non-nested clustering algorithms typically require pre-specifying the number of clusters

of interest, K, hierarchical algorithms do not. Instead, hierarchical approaches produce a single

nested hierarchy of clusters from which a partition can be obtained for any possible choice of K.

As a result, hierarchical clustering provides an intuitive way to study relationships among clusters

not possible using non-nested approaches. The popularity of hierarchical clustering in practice may

also be largely attributed to dendrograms (Figure 1.4B), a highly informative visualization of the

clustering as a binary tree.

As described in Section 1.2, while dendrograms provide an intuitive representation for studying

the results of hierarchical clustering, the researcher is still ultimately left to decide which partitions

along the tree to interpret as biologically important subpopulation differences. Often, in genomic

studies, the determination and assessment of subpopulations are left to heuristic or ad hoc meth-

ods (Verhaak et al., 2010; Wilkerson et al., 2010; Bastien et al., 2012). To provide a statistically

sound alternative to these methods, in this chapter we introduce statistical Significance of Hier-
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archical Clustering (SHC), a Monte Carlo based approach for assessing the statistical significance

of clustering along a hierarchical partition. The approach makes use of the ordered and nested

structure in the output of hierarchical clustering to reduce the problem to a sequence of hypothesis

tests descending the tree. Each test is formulated such that the procedure may be applied even

in the high-dimension low-sample size (HDLSS) setting, where the number of variables is much

greater than the number of observations. This is of particular importance, as the number of mea-

sured variables in genomic studies continues to grow with advances in high-throughput sequencing

technologies, such as RNA-seq (Marioni et al., 2008; Wang et al., 2009). A stopping rule along

the sequence of tests is also provided to control the family-wise error rate (FWER) of the entire

procedure.

Several approaches have been proposed to address the question of statistical significance in the

non-nested setting. The SigClust hypothesis test mentioned in Chapters 1 and 2 was introduced by

Liu et al. (2008) for assessing the significance of clustering in HDLSS settings using a Monte Carlo

procedure. While well-suited for detecting the presence of more than a single cluster in a dataset, the

approach was not developed with the intention of testing in hierarchical or multi-cluster settings.

This approach is described in greater detail in Section 3.2. More recently, Maitra et al. (2012)

proposed a bootstrap based approach capable of testing for any number of clusters in a dataset.

However, in addition to not directly addressing the hierarchical problem, their approach has not

been evaluated in the important HDLSS setting. As such, neither approach provides a solution for

handling the structure and multiplicity of nested tests unique to hierarchical clustering.

For assessing statistical significance in the hierarchical setting, Suzuki and Shimodaira (2006)

developed the R package pvclust. The hypothesis tests used in pvclust are based on bootstrapping

procedures originally proposed for significance testing in the context of phylogenetic tree estima-

tion (Efron et al., 1996; Shimodaira, 2004). Since the procedure is based on a nonparamateric

bootstrapping of the covariates, while pvclust can be used in the HDLSS setting, it cannot be

implemented when the dataset is of low-dimension. In contrast, SHC may be used in either setting.

The overall approach of pvclust differs fundamentally from that of SHC and is discussed briefly in

Section 3.6. To our knowledge, no other approaches have been proposed for assessing the statistical

significance of hierarchical clustering.
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The remainder of this chapter is organized as follows. In Section 3.2 we first review hierarchical

clustering and describe the SigClust hypothesis test of Liu et al. (2008). Then, in Section 3.3, we

introduce our proposed SHC approach. In Section 3.4, we present theoretical justifications for our

method under the HDLSS asymptotic setting. In Section 3.5, we describe a simple improvement

to the null estimation procedures of SigClust and SHC. We then evaluate the performance of our

SHC method as well as our improved null estimation procedure under various simulation settings in

Section 3.6. In Section 3.7, we apply our method to two cancer gene expression datasets. Finally,

we conclude with a discussion in Section 3.8. All technical proofs are included in Section 3.9, and

complete simulation results are presented in Section 3.10. The SHC procedure is implemented in

R, and is available at http://github.com/pkimes/.

3.2 Clustering and Significance

We begin this section by first providing a brief review of hierarchical clustering. We then describe

the K-means based SigClust approach of Liu et al. (2008) for assessing significance of clustering in

HDLSS data.

3.2.1 Hierarchical Clustering

Given a collection of N unlabeled observations, X = {xi, . . . ,xN}, algorithms for hierarchical

clustering estimate all K = 1, . . . , N partitions of the data through a sequential optimization

procedure. The sequence of steps can be implemented as either an agglomerative (bottom-up)

or divisive (top-down) approach to produce the nested hierarchy of clusters. In this chapter we

focus on agglomerative approaches which are more often used in practice. Common choices of

dissimilarity and linkage functions used for agglomerative hierarchical clustering are provided in

Section 1.2. The sequence of clustering solutions obtained by hierarchical clustering is naturally

visualized as a binary tree, commonly referred to as a dendrogram. An example of hierarchical

clustering is shown in Figure 1.3. For a more complete review of hierarchical clustering, we refer

the reader to Subsection 1.2.2.
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3.2.2 Statistical Significance

We next describe the SigClust hypothesis test of Liu et al. (2008) for assessing significance of

clustering. To make inference in the HDLSS setting tractable, SigClust makes the simplifying

assumption that a cluster may be characterized as a subset of the data which follows a single

Gaussian distribution. While no universal definition for a “cluster” exists, the Gaussian definition

is often used as a reasonable approximation (McLachlan and Peel, 2000; Fraley and Raftery, 2002).

While potentially restrictive, the Gaussian definition and SigClust approach have provided sensible

results in real high-dimensional datasets (Verhaak et al., 2010; Bastien et al., 2012). Therefore,

to determine whether a dataset is comprised of more than a single cluster, the approach tests the

following hypotheses:

H0 : the data follow a single Gaussian distribution

H1 : the data follow a non-Gaussian distribution.

The corresponding p-value is calculated using the 2-means cluster index (CI), a statistic sensitive to

the null and alternative hypotheses. Letting Ck denote the set of indices of observations in cluster

k and using x̄k to denote the corresponding cluster mean, the 2-means CI is defined as

CI =
∑2

k=1

∑
i∈Ck

∥xi − x̄k∥22∑N
i=1 ∥xi − x̄∥22

=
SS1 + SS2
TSS

, (3.1)

where TSS and SSk are the total and within-cluster sum of squares. Smaller values of the 2-

means CI correspond to tighter clusters, and provide stronger evidence of clustering of the data.

The statistical significance of a given pair of clusters is calculated by comparing the observed 2-

means CI against the distribution of 2-means CIs under the null hypothesis of a single Gaussian

distribution. Since a closed form of the distribution of CIs under the null is unavailable, it is

empirically approximated by the CIs computed for hundreds, or thousands, of datasets simulated

from a null Gaussian distribution estimated using the original dataset. An empirical p-value is

calculated by the proportion of simulated null CIs less than the observed CI. Approximations to

the optimal 2-means CI for both the observed and simulated datasets can be obtained using the

K-means algorithm for two clusters.
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In the presence of strong clustering, the empirical p-value may simply return 0 if all simulated

CIs fall above the observed value. This can be particularly uninformative when trying to compare

the significance of multiple clustering events. To handle this problem, Liu et al. (2008) proposed

computing a Gaussian fit p-value in addition to the empirical p-value. Based on the observation

that the distribution of CIs appears roughly Gaussian, the Gaussian fit p-value is calculated as the

lower tail probability of the best-fit Gaussian distribution to the simulated null CIs.

An important issue not discussed above is the estimation of the covariance matrix of the null

distribution, a non-trivial task in the HDLSS setting. A key part of the SigClust approach is the

simplification of this problem, by making use of the invariance of the 2-means CI to translations and

rotations of the data in the Euclidean space. It therefore suffices to simulate data from an estimate

of any rotation and shift of the null distribution. Conveniently, by centering the distribution at the

origin, and rotating along the eigendirections of the covariance matrix, the task can be reduced to

estimating only the eigenvalues of the null covariance matrix. As a result, the number of parameters

to estimate is reduced from p(p+1)/2 to p. However, in the HDLSS setting, even the estimation of

p parameters is challenging, as N ≪ p. To solve this problem, the additional assumption is made

that the null covariance matrix follows a factor analysis model. That is, under the null hypothesis,

the observations are assumed to have been drawn from a single Gaussian distribution, N(µ,Σ),

with Σ having eigendecomposition Σ = UΛUT such that

Λ = Λ0 + σ2b Ip,

where Λ0 is a low rank (< N) diagonal matrix of true signal, σ2b is a relatively small amount of

background noise, and Ip is the p-dimensional identity matrix. Letting w denote the number of

non-zero entries of Λ0, under the factor analysis model, only w + 1 parameters must be estimated

to implement SigClust. Several approaches have been proposed for estimating σ2b and the w non-

zero entries of Λ0, including the hard-threshold, soft-threshold, and sample-based approaches (Liu

et al., 2008; Huang et al., 2014). Briefly, given the eigenvalues of the sample covariance matrix, λ̂j ,

and an estimate of the background noise, σ̂2b , the hard and soft approaches estimate the diagonal

entries of Λ to be max{λ̂j , σ̂2b} and max{λ̂j − τ, σ̂2b}, respectively, with tuning parameter τ ≥ 0.

The sample-based approach simply estimates the diagonal entries of Λ by the λ̂j . In the simulation

studies presented in Section 3.6, we implement SigClust using the soft-thresholding approach, as
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suggested in Huang et al. (2014). In the original SigClust paper, Liu et al. (2008) proposed to

estimate the background noise by:

σ̂Raw =
MADp·N data
MADN(0,1)

, (3.2)

where MADp·N data is used to denote the median absolute deviation about the median (MAD)

computed from the p ·N total entries of the original data matrix, and similarly, MADN(0,1) is used

to denote the MAD of a standard Gaussian distribution. In Section 3.5, we propose an alternative

background noise estimator, σ̂PC , using scaled principal component (PC) scores.

3.3 Methodology

To assess significance of clustering in a hierarchical partition, we propose a sequential testing

procedure in which Monte Carlo based hypothesis tests are preformed at select nodes along the

corresponding dendrogram. In this section, we introduce our SHC algorithm in two parts. First,

using a toy example, we describe the hypothesis test performed at individual nodes. Then, we

describe our sequential testing procedure for controlling the FWER of the algorithm along the

entire dendrogram.

3.3.1 SHC Hypothesis Test

Throughout, we use j ∈ {1, . . . , N − 1} to denote the node index, such that j = 1 and j = (N − 1)

correspond to the top-most (root) and bottom-most merges along the dendrogram, respectively.

In Figure 3.1, we illustrate one step of our sequential algorithm using a toy dataset of N = 150

observations drawn from R2 (Figure 3.1A). Agglomerative hierarchical clustering was applied using

Ward’s linkage to obtain the dendrogram in Figure 3.1B. Consider the second node from the top, i.e.

j = 2. The corresponding observations and subtree are highlighted in panels A and B of Figure 3.1.

Here, we are interested in whether the sets of 43 and 53 observations joined at node 2, denoted by

dots and ×’s, more naturally define one or two distinct clusters. Assuming that a cluster may be

well approximated by a single Gaussian distribution, we propose to test the following hypotheses

at node 2:

H0 : The 96 observations follow a single Gaussian distribution
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Figure 3.1: The SHC testing procedure illustrated using a toy example. Testing is applied to the 96
observations joined at the second node from the root. (A) Scatterplot of the observations in R2. (B)
The corresponding dendrogram. (C) Hierarchical clustering applied to 1000 datasets simulated from a null
Gaussian estimated from the 96 observations. (D) Distributions of null cluster indices used to calculate the
empirical SHC p-values.

H1 : The 96 observations do not follow a single Gaussian distribution.

The p-value at the node, denoted by pj , is calculated by comparing the strength of clustering in the

observed data against that for data clustered using the same hierarchical algorithm under the null

hypothesis. We consider two cluster indices, linkage value and the 2-means CI, as natural measures

for the strength of clustering in the hierarchical setting. To approximate the null distribution of

cluster indices, 1000 datasets of 96 observations are first simulated from a null Gaussian distribution

estimated using only the 96 observations included in the highlighted subtree. Then, each simulated

dataset is clustered using the same hierarchical algorithm as was applied to the original dataset

(Figure 3.1C). As with the observed data, the cluster indices are computed for each simulated

dataset using the two cluster solution obtained from the hierarchical algorithm. Finally, p-values

are obtained from the proportion of null cluster indices indicating stronger clustering than the

observed indices (Figure 3.1D). For the linkage value and 2-means CI, this corresponds to larger

and smaller values, respectively. As in SigClust, we also compute a Gaussian approximate p-value
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in addition to the empirical p-value. In this example, the resulting empirical p-values, 0.020 and 0,

using linkage and the 2-means CI, both suggest significant clustering at the node.

In estimating the null Gaussian distribution, we first note that many popular linkage functions,

including Ward’s, single, complete and average, are defined with respect to the pairwise dissimilar-

ities of observations belonging to two clusters. As such, the use of these linkage functions with any

dissimilarity satisfying translation and rotation invariance, such as Euclidean or squared Euclidean

distance, naturally leads to the invariance of the entire hierarchical procedure. Thus, for several

choices of linkage and dissimilarity, the SHC p-value can be equivalently calculated using data

simulated from a simplified distribution centered at the origin, with diagonal covariance structure.

To handle the HDLSS setting, as in SigClust, we further assume that the covariance matrix of the

null Gaussian distribution follows a factor analysis model, such that the problem may be addressed

using the hard-threshold, soft-threshold and sample approaches previously proposed in Liu et al.

(2008) and Huang et al. (2014).

Throughout this chapter we derive theoretical and simulation results using squared Euclidean

dissimilarity with Ward’s linkage, an example of a translation and rotation invariant choice of

dissimilarity and linkage function. However, our approach may be implemented using a larger class

of linkages and appropriately chosen dissimilarity functions. We focus on Ward’s linkage clustering

as the approach may be interpreted as characterizing clusters as single Gaussian distributions, as in

the hypotheses we propose to test. Additionally, we have observed that Ward’s linkage clustering

often provides strong clustering results in practice.

Note that at each node, the procedure requires fitting a null Gaussian distribution using only

the observations contained in the corresponding subtree. We therefore set a minimum subtree size,

Nmin, for testing at any node. For the simulations described in Section 3.6, we use Nmin = 10.

In this subsection, we have described only a single test of the entire SHC procedure. For

a dataset of N observations, at most (N − 1) tests may be performed at the nodes along the

dendrogram. While the total possible number of tests is typically much smaller due to the minimum

subtree criterion, care is still needed to account for the issue of multiple testing. In the following

subsection, we describe a sequential approach for controlling the FWER to address this issue.
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3.3.2 Multiple Testing Correction

To control the FWER of the SHC procedure, one could simply test at all nodes simultaneously,

and apply an equal Bonferroni correction to each test. However, this approach ignores the clear

hierarchical nature of the tests. Furthermore, the resulting dendrogram may have significant calls

at distant and isolated nodes, making the final output difficult to interpret. Instead, we propose to

control the FWER using a sequential approach which provides greater power at the more central

nodes near the root of the dendrogram, and also leads to more easily interpretable results.

To correct for multiple testing, we employ the FWER controlling procedure of Meinshausen

(2008) original proposed in the context of variable selection. For the SHC approach, the FWER

along the entire dendrogram is defined to be the probability of at least once, falsely rejecting the

null at a subtree of the dendrogram corresponding to a single Gaussian cluster. To control the

FWER at level α ∈ (0, 1), we perform the hypothesis test described above at each node j, with the

modified significance cutoff:

α∗
j = α · Nj − 1

N − 1
,

where Nj is used to denote the number of observations clustered at node j. Starting from the

root node, i.e. j = 1, we descend the dendrogram rejecting at nodes for which the following two

conditions are satisfied: (C1) pj < α∗
j , and (C2) the parent node was also rejected, where the parent

of a node is simply the one directly above it. For the root node, condition (C2) is ignored. As

the procedure moves down the dendrogram, condition (C1) and the modified cutoff, α∗
j , apply an

increasingly stringent correction to each test, proportional to the size of the corresponding subtree.

Intuitively, if the subtree at a node contains multiple clusters, the same is true of any node directly

above it. Condition (C2) formalized this intuition by forcing the set of significant nodes to be well

connected from the root. Furthermore, recall that the hypotheses tested at each node assess whether

or not the two subtrees were generated from a single Gaussian distribution. While appropriate when

testing at nodes which correspond to one or more Gaussian distributions, the interpretation of the

test becomes more difficult when applied to only a portion of a single Gaussian distribution, e.g.

only half of a Gaussian cluster. This can occur when testing is performed at a node which falls

below a truly null node. In this case, while the two subtrees of the node correspond to non-Gaussian
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distributions, they do not correspond to interesting clustering behavior. Thus, testing at such nodes

may result in truly positive, but uninteresting, significant calls. By restricting the set of significant

nodes to be well connected from the root, in addition to controlling the FWER, our procedure also

limits the impact of such undesirable tests.

3.4 Theoretical Development

In this section, we study the theoretical behavior of our SHC procedure with linkage value as the

measure of cluster strength applied to Ward’s linkage hierarchical clustering. We derive theoretical

results for the approach under both the null and alternative hypotheses. In the null setting, the data

are sampled from a single Gaussian distribution. Under this setting, we show that the empirical

SHC p-value at the root node follows the U(0, 1) distribution. In the alternative setting, we consider

the case when the data follow a mixture of two spherical Gaussian distributions. Since SHC is a

procedure for assessing statistical significance given a hierarchical partition, the approach depends

heavily on the algorithm used for clustering. We therefore first provide conditions for which Ward’s

linkage clustering asymptotically separates samples from the two components at the root node.

Given these conditions are satisfied, we then show that the corresponding empirical SHC p-value

at the root node tends to 0 asymptotically as both the sample size and dimension grow to infinity.

All proofs are included in Section 3.9.

We first consider the null case where the data, X = {X1, . . . ,XN}, are sampled from a single

Gaussian distribution, N(0,Σ). The following proposition describes the behavior of the empirical

p-value at the root node under this setting.

Proposition 3.1. Suppose X were drawn from a single Gaussian distribution, N(0,Σ), with

known covariance matrix Σ. Then, the SHC empirical p-value at the root node follows the U(0, 1)

distribution.

The proof of Proposition 3.1 is omitted, as it follows directly from an application of the prob-

ability integral transform. We also note that the result of Proposition 3.1 similarly holds for

any subtree along a dendrogram corresponding to a single Gaussian distribution. Combining this

with Theorem 1 of Meinshausen (2008), we have that the modified p-value cutoff procedure of

Section 3.3.2 controls the FWER at the desired level α.
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We next consider the alternative setting. Suppose the data, X, were drawn from a mixture

of two Gaussian subpopulations in Rp, denoted by N(µ1, σ
2
1Ip) and N(µ2, σ

2
2Ip). Let X(1) =

{X(1)
1 , . . . ,X

(1)
n } and X(2) = {X(2)

1 , . . . ,X
(2)
m } denote the N = n+m observations of X drawn from

the two mixture components. In the following results, we consider the HDLSS asymptotic setting

where p→ ∞ and n = pα + o(p), m = pβ + o(p) for α, β ∈ (0, 1) (Hall et al., 2005). As in Borysov

et al. (2014), we assume that the mean of the difference (X
(1)
i −X(2)

j ) is not dominated by a few

large coordinates in the sense that for some ϵ > 0,
p∑

k=1

(µ1,k − µ2,k)
4 = o

(
p2−ϵ

)
, p→ ∞. (3.3)

Given this assumption, the following theorem provides necessary conditions for Ward’s linkage

clustering to correctly separate observations of the two mixture components.

Theorem 3.1. Suppose (3.3) is satisfied and the dendrogram is constructed using the Ward’s

linkage function. Let n,m be the number of observations sampled from the two Gaussian mixture

components, N(µ1, σ
2
1Ip) and N(µ2, σ

2
2Ip), with σ1 ≤ σ2. Additionally, suppose n = pα + o(p),

m = pβ + o(p) for α, β ∈ (0, 1), and let µ2 denote p−1∥µ1 − µ2∥22. Then, if lim sup n−1(σ2
2−σ2

1)
µ2 < 1,

X(1) and X(2) are separated at the root node with probability converging to 1 as p→ ∞.

Theorem 3.1 builds on the asymptotic results for hierarchical clustering described in Borysov

et al. (2014). The result provides a theoretical analysis of Ward’s linkage clustering, independent of

our SHC approach. In the following result, using Theorem 3.1, we show that under further assump-

tions, the SHC empirical p-value is asymptotically powerful at the root node of the dendrogram.

That is, the p-value converges to 0 as p, n,m grow to infinity.

Theorem 3.2. Suppose the assumptions for Theorem 3.1 are satisfied. Furthermore, suppose σ21
and σ22 are known. Then, using linkage as the measure of cluster strength, the empirical SHC

p-value at the root node along the dendrogram equals 0 with probability converging to 1 as p→ ∞.

By Theorem 3.2, the SHC procedure is asymptotically well powered to identify significant

clustering structure in the presence of multiple Gaussian components. While in this section we

only considered the theoretical behavior of SHC using linkage value as the measure of cluster

strength, empirical results presented in Section 3.6 provide justification for alternatively using the

2-means CI.
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Figure 3.2: (A) Estimation using vectorized (p ·N) entries. (B) Estimation by vectorized
(
N(N − 1)

)
PC

scores scaled by a factor (p/(N−1))1/2. While the raw data diverges substantially from the true background
noise distribution, the scaled PCs approximate the noise distribution fairly well. Further, the scaled PC
scores include a small number of large observations corresponding to true signal.

3.5 Background Noise Estimation

Accurate estimation of the background noise for the null Gaussian distribution is a critical part of

both SigClust and SHC in the HDLSS setting. Liu et al. (2008) proposed using the robust estimator

σ̂Raw defined in (3.2). This approach relies on the assumption that a majority of the p variables

are pure noise, as in microarray studies where expression is measured for thousands of genes, most

of which are of no interest. However, in this section, we show that when this assumption does not

hold, (3.2) can vastly overestimate the noise level and produce poor estimates of Λ, even when the

underlying distribution follows a factor analysis model.

Consider the following motivating example with N = 100 observations drawn from a p = 1024

dimensional Gaussian distribution, N(0,Σ), where the 5 leading eigendirections of Σ corresponding

to true signal are spread evenly across all 1024 dimensions. That is, the distribution lies stretched

along 5 diagonals of the 1024 dimensional space. More formally, the covariance matrix Σ has
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eigendecomposition Σ = UΛUT with eigenvalues λj , and corresponding eigenvectors u·j :

λj =


1000 for j ≤ 5

1 for j > 5

, uT·j ∝


e210 for j = 1

e210−j ⊗ [e2j−1 ,−e2j−1 ] for j = 2, 3, 4, 5

arbitrary for j > 5

, (3.4)

where ea denotes the (1×a) row vector of ones. We do not explicitly define the final 1019 directions

spanned by the background noise, as their specific orientation is of no consequence. In Figure 3.2A,

we show the distribution of all (p ·N) values used to calculate σ̂Raw as in (3.2). A kernel density

estimate (KDE) is overlaid in solid blue. Additionally, the true background distribution, N(0, 1),

is overlaid with a dashed red line. In this toy example, the approach of Liu et al. (2008) esti-

mates σ̂Raw = 2.42. Since the few directions of signal are spread over all dimensions, σ̂Raw vastly

overestimates the true background noise, σb = 1.

Estimating σ2b using the input data fails in the current example since the true signal spans a

non-trivial proportion of dimensions in the data. To address this problem, we propose estimating

σb from the
(
N(N − 1)

)
non-zero principal component (PC) scores of the p × N data matrix, X

(Figure 3.2B). Intuitively, since the directions of true signal approximately lie within the first few

PC directions, a robust estimate of spread based on the PC scores should accurately target the

background noise. Specifically, we propose the estimator:

σ̂PC =
MADN(N−1) scaled PC scores

MADN(0,1)
. (3.5)

using PC scores scaled by ( p
N−1)

1/2. The scaling factor is obtained from the following derivation

under the trivial setting with identity covariance Σ = σ2b I.

Let Λ̃ = diag(λ̃1, . . . , λ̃p) denote the eigenvalues of the sample covariance matrix Σ̃ of the

p × N row-centered sample matrix Xc. Further, let Xc = U
(
N Λ̃

)1/2
V T be the singular value

decomposition of Xc. Note that only the first (n − 1) diagonal elements of Λ̃1/2 and first (N − 1)

columns of V are non-zero. Thus, the collection of PC scores are given by the first (N−1) non-zero

rows of (nΛ̃)1/2V T , denoted P(N−1)×N = {pij}. Then, the variance of the vectorized set of PC

scores, pij , is given by:

E
(
(N(N − 1))−1

∑
i,j
p2ij
)
= (N(N − 1))−1 E

(
tr(PP T )

)
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= (N(N − 1))−1 E
(

tr((N Λ̃)1/2V TV (N Λ̃)1/2)
)

= (N − 1)−1 E
(

tr(Λ̃)
)

= (N − 1)−1 E
(

tr(Σ̃)
)

= (N − 1)−1 tr(Σ) =

(
p

N − 1

)
σ2b ,

since tr(Σ̃) is an unbiased estimator of tr(Σ). However, it is not immediately obvious whether

similar results hold under a factor model. Furthermore, since our proposed estimator σ̂PC relies on

rescaling by MADN(0,1), the estimator may fair poorly if the PC scores, pij , do not approximately

follow a Gaussian distribution. For the example shown in Figure 3.2, σ̂PC provides a significant

improvement over σ̂Raw. The PC score based estimator, σ̂PC , is used in all simulations and analyses

reported in Sections 3.6 and 3.7. In the next section, we evaluate the power and level of SHC and

other approaches through several simulation studies.

3.6 Simulations

In this section we illustrate the performance of our proposed SHC approach using simulation studies.

In Section 3.3, we described SHC as the combination of two elements: (1) a sequential testing scheme

for controlling the FWER applied to the results of hierarchical clustering, and (2) a simulation-

based hypothesis test for assessing the statistical significance of hierarchical clustering at a single

node. To evaluate the advantage of tuning the test at each node for hierarchical clustering, we

consider two implementations of our SHC approach, denoted by SHC1 and SHC2. In SHC1, we

combine our proposed iterative testing scheme with the classical SigClust test applied at each

node. In SHC2, we implement our complete procedure, which directly accounts for the effect of

hierarchical clustering in the calculation of the p-value. Two implementations of SHC2 are further

considered, denoted by SHC2L and SHC22, differing by whether the linkage value or the 2-means

CI is used to measure the strength of clustering. Note that both SHC1 and SHC2 may be viewed

as contributions of our work with differing levels of adjustment for the hierarchical setting.

The performance of SHC1 and SHC2 are compared against the existing pvclust approach. In

each simulation evaluating the performance of SHC, Ward’s linkage clustering was applied to a

dataset drawn from a mixture of Gaussian distributions in Rp. A range of simulation settings were
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considered, including the null setting with K = 1 and alternative settings with K = 2, K = 3, and

K = 4. A representative set of simulation results for K = 1, K = 3 and K = 4 are reported in

this section. As the K = 2 setting reduces to a non-nested clustering problem, these results are

omitted from this section. However, complete simulation results, including the entire set of K = 2

results (Table 3.5), may be found in Section 3.10.

In all simulations evaluating the performance of SHC, SHC1 and SHC2 p-values were calculated

using 100 simulated null cluster indices, and the corresponding Gaussian-fit p-values are reported.

When p > n, the covariance matrix for the Gaussian null was estimated using the soft-threshold

approach described in Huang et al. (2014). The pvclust approach was implemented using 1000

bootstrap samples, as suggested in Suzuki and Shimodaira (2006). However, to keep the total

computational time of the entire set of simulations manageable, the complete set of simulations

reported in Section 3.10 were completed using 100 bootstrap samples. Results for pvclust are only

reported for high dimensional simulations, as the approach does not appear to be able to handle

datasets in lower dimensions, e.g. p = 2. All simulation settings were replicated 100 times. Before

presenting the simulation results, we first provide a brief review of the fundamental difference

between pvclust and our proposed SHC method.

The pvclust method of Suzuki and Shimodaira (2006) computes two values: an approxi-

mately unbiased (AU) p-value based on a multi-step multi-scale bootstrap resampling procedure

(Shimodaira, 2004), and a bootstrap probability (BP) p-value calculated from ordinary bootstrap

resampling (Efron et al., 1996). Similar to SHC, pvclust also tests at nodes along the dendrogram.

However, no test is performed at the root node, and the corresponding hypotheses tested at each

node is given by:

H0 : the cluster does not exist

H1 : the cluster exists.

The difference between the two approaches can be understood by examining the dendrogram pre-

sented in Figure 3.1B. Using SHC, significant evidence of the three clusters is obtained if the null

hypothesis is rejected at the top two nodes of the dendrogram. In contrast, to identify the three
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Table 3.1: Simulation 3.6.1 (K = 1). Number of false positives at α = 0.05, mean p-value, median
computation time over 100 replications. ∗: pvclust times scaled by 1/10.

parameters |p-value < 0.05| (mean p-value) median time (sec.)
N w v pvAU pvBP SHC1 SHC2L SHC22 pv SHC1 SHC2L SHC22

50 0 − 0 (0.99) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 30.61∗ 20.56 12.33 14.59
50 1 100 2 (0.48) 0 (0.98) 0 (0.59) 0 (0.49) 0 (0.47) 30.54∗ 22.31 13.35 15.60
50 5 100 1 (0.61) 0 (1.00) 0 (0.83) 0 (0.73) 0 (0.65) 30.52∗ 21.11 12.68 14.82

100 0 − 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 108.52∗ 48.18 29.19 35.04
100 1 100 2 (0.89) 0 (1.00) 0 (0.69) 0 (0.49) 0 (0.49) 108.70∗ 50.49 30.73 36.85
100 5 100 1 (0.98) 0 (1.00) 0 (0.96) 0 (0.72) 0 (0.72) 108.85∗ 51.04 30.74 37.01

clusters using pvclust, the null hypothesis must be rejected at the three nodes directly above each

cluster, denoted by their respective cluster symbol.

3.6.1 Null Setting

We first considered the null setting to evaluate the ability of SHC to control for false positives. In

these simulations, datasets of size N = 50 and 100 were sampled from a single Gaussian distribution

in p = 1000 dimensions with diagonal covariance structure given by:

Σ = diag{v, . . . , v︸ ︷︷ ︸
w

, 1, . . . , 1︸ ︷︷ ︸
p−w

},

where the first w diagonal entries represent low dimensional signal in the data, of magnitude v > 1.

A subset of the simulation results are presented in Table 3.1, with complete results provided in

Table 3.4.

For pvclust AU and BP values, summaries are reported for tests at the second and third nodes

from the root, i.e. j = 2 and j = 3. For both SHC1 and SHC2, summaries are reported for the p-

value at the root node of each simulated dataset. Under each set of simulation parameters, for each

method, we report the number of replications with false positive calls using a significance threshold

of 0.05, as well as the mean p-value, and the median computing time of a single replication. For

pvclust, a false positive was recorded if either of the two nodes was significant, and the mean p-

value was calculated using both nodes. For a fair comparison of the computational times required

by pvclust using 1000 bootstraps and the SHC procedures using 100 Monte Carlo simulations, we

report the computational times of pvclust after scaling by 1/10. Only a single computing time is

reported for pvclust, as the implementation computes both AU and BP values simultaneously.

56



Table 3.2: Simulation 3.6.2 (K = 3). Number of replications identifying the correct number of significant
clusters, median computation time over 100 replications. ∗: scaled by 1/10.

parameters |K̂ = 3| median time (sec.)
p δ arr. pvAU pvBP SHC1 SHC2L SHC22 pv SHC1 SHC2L SHC22

2 3 · · · − − 18 0 29 − 2.42 1.08 1.95
2 4 · · · − − 84 6 87 − 2.39 1.08 1.92

1000 8 · · · 0 0 0 5 66 231.62∗ 79.85 48.87 59.33
1000 12 · · · 0 0 16 93 100 231.53∗ 79.35 49.14 59.21
1000 20 · · · 13 0 70 79 99 231.55∗ 78.62 48.67 58.71

2 4 △ − − 26 32 84 − 2.40 1.07 1.97
2 5 △ − − 96 93 99 − 2.40 1.06 1.94

1000 8 △ 0 0 0 4 84 231.84∗ 79.76 49.19 59.21
1000 12 △ 0 0 100 100 100 231.75∗ 80.06 49.43 59.17
1000 20 △ 52 0 100 100 100 232.54∗ 80.71 49.29 59.58

Since the data were generated from a single Gaussian distribution, we expect the SHC2 p-value

at the root node to be approximately uniformly distributed over [0, 1]. In Table 3.1, all methods

show generally conservative behavior, making less false positive calls than expected by chance.

The pvclust BP value (pvBP) shows the most strongly conservative behavior, reporting mean

p-values close to 1 for most settings. The remaining approaches, including the pvclust AU value

(pvAU), and both SHC1 and SHC2, are consistently conservative across all settings considered.

The conservative behavior of the classical SigClust procedure was previously described in Liu et al.

(2008) and Huang et al. (2014) as being a result of the challenge of estimating the null eigenvalues

and the corresponding covariance structure in the HDLSS setting (Baik and Silverstein, 2006). As

both SHC1 and SHC2 rely on the same null covariance estimation procedure, this may also explain

the generally conservative behavior similarly observed with our proposed approaches. Both SHC

approaches required substantially less computational time than pvclust, even after correcting for

the larger number of bootstrap samples required by the method.

3.6.2 Three Cluster Setting

We next considered the alternative setting in which datasets were drawn equally from three spherical

Gaussian distributions each with covariance matrix Ip. The setting illustrates the simplest case for

which significance must be attained at multiple nodes to discern the true clustering structure from

the dendrogram using SHC. Two arrangements of the three Gaussian components were studied. In

the first, the Gaussian components were placed along a line with distance δ between the means of
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neighboring components. In the second, the Gaussian components were placed at the corners of

an equilateral triangle with side length δ. Several values of δ were used to evaluate the relative

power of each method across varying levels of signal. Both low (p = 2) and high (p = 1000)

dimensional settings were also considered. For each dataset, 50 samples were drawn from each of

the three Gaussian components. As in Simulation 3.6.1, to make timing results comparable between

pvclust and SHC, pvclust times are reported after scaling by 1/10. Select simulation results are

presented in Table 3.2, with complete results presented in Tables 3.6 and 3.7. We report the number

of replications out of 100 for which each method detected statistically significant evidence of three

(K̂ = 3) clusters, as well as the median computation time across replications. For the two pvclust

approaches, the numbers of predicted clusters were determined by the number of significant subtrees

with at least ⌈(3/4) · 50⌉ = 38 observations. This criterion was used to minimize the effect of small

spurious clusters reported as being significant by the methods. For SHC1 and SHC2, the numbers of

predicted clusters were determined by the resulting number of subtrees after cutting a dendrogram

at all significant nodes identified while controlling the FWER at 0.05.

In both arrangements of the components, the pvclust based methods showed substantially

lower power than the proposed three approaches, with pvBP achieving no power at all. Across

all settings reported in Table 3.2, SHC22 consistently achieves the greatest power. The relative

performance of SHC2L and SHC1 appears to depend on both the arrangement of the cluster com-

ponents and the dimension of the dataset. When the components are arranged along a line, SHC2L

outperforms SHC1 in the high dimensional setting, while the performance is reversed in the low

dimensional setting. In contrast, when the components are placed in the triangular arrangement,

SHC2L shows a slight advantage in both high and low dimensional settings. Timing results were

comparable to those observed in Simulation 3.6.1, with pvclust requiring substantially more time

than the other approaches, even after scaling. Again, SHC2L required the least amount of compu-

tational time.

3.6.3 Four Cluster Setting

Lastly, we considered the alternative setting in which datasets were drawn equally from four spher-

ical Gaussian distributions each with covariance matrix Ip. Two arrangements of the Gaussian

components were studied. In the first, the four components were placed at the vertices of a square
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Table 3.3: Simulation 3.6.3 (K = 4). Number of replications identifying the correct number of significant
clusters, median computation time over 100 replications. ∗: scaled by 1/10.

parameters |K̂ = 4| median time (sec.)
p δ arr. pvAU pvBP SHC1 SHC2L SHC22 pv SHC1 SHC2L SHC22

2 3 square − − 3 0 17 − 2.54 1.16 2.06
2 4 square − − 78 12 90 − 2.57 1.16 2.07

1000 8 square 0 0 0 0 75 401.83∗ 110.50 69.01 82.59
1000 10 square 0 0 97 100 100 400.36∗ 110.79 69.30 82.67

3 4 tetra. − − 0 9 33 − 2.84 1.28 2.25
3 5 tetra. − − 24 86 99 − 2.40 1.09 2.03

1000 8 tetra. 0 0 0 0 31 402.00∗ 113.49 71.03 85.27
1000 10 tetra. 0 0 50 99 100 399.85∗ 113.67 71.17 85.19

with side length δ. In the second, the four components were placed at the vertices of a regular

tetrahedron, again with side length δ. As in Simulation 3.6.2, for each dataset, 50 samples were

drawn from each of the Gaussian components. A representative subset of simulation results are

presented in Table 3.3 for several values of p and δ, with complete results presented in Tables 3.8

and 3.9. In Section 3.10, we also include simulation results for a rectangular arrangement with

side lengths δ and (3/2) · δ (Table 3.10), and a stretched tetrahedral arrangement, also having side

lengths δ and (3/2) · δ (Table 3.11).

The results presented in Table 3.3 largely support the results observed in Simulation 3.6.2.

Again, the pvAU and pvBP values provide little power to detect significant clustering in the data,

while SHC22 consistently achieves the greatest power. Additionally, the relative performance of

SHC2L and SHC1 again depends on the arrangement of the components and the dimension of the

dataset. In the square arrangement, while SHC1 performs better in the low dimensional setting,

the approaches perform equally well in high dimensions. In the tetrahedral arrangement, SHC2L

achieves substantially greater power than SHC1 in both high and low dimensional settings.

3.7 Real Data Analysis

To further demonstrate the power of SHC, we applied the approach to two cancer gene expression

datasets. We first considered a dataset of 300 tumor samples drawn from three distinct cancer

types: head and neck squamous cell carcinoma (HNSC), lung squamous cell carcinoma (LUSC),

and lung adenocarcinoma (LUAD). As distinct cancers, we expect observations from the three

groups to be easily separated by hierarchical clustering and detected by SHC. For the second

59



Figure 3.3: Analysis of gene expression for 300 LUAD, LUSC, and HNSC samples. (A) Heatmap of log-
transformed gene expression for the 300 samples (columns), clustered by Ward’s linkage. (B) Dendrogram
with corresponding SHC p-values (red) and α∗ cutoffs (black) given only at nodes tested according to the
FWER controlling procedure at α = 0.05.

dataset, we considered a cohort of 337 breast cancer (BRCA) samples, previously categorized into

five molecular subtypes (Parker et al., 2009). The greater number of subpopulations, as well as the

more subtle differences between them, makes this dataset more challenging than the first. In both

examples, the data were clustered using Ward’s linkage and the SHC22 approach was implemented

as described in Section 3.6 using 1000 simulations at each node. The FWER controlling procedure

of Section 3.3.2 was applied with α = 0.05.

3.7.1 Multi-Cancer Gene Expression

A dataset of 300 samples was constructed by combining 100 samples from each of HNSC, LUSC

and LUAD made publicly available by the TCGA Research Network (The Cancer Genome Atlas

Research Network, 2012, 2014). Gene expression was estimated for 20,531 genes from RNA-seq

data using RSEM (Li and Dewey, 2011), as described in the TCGA RNA-seq v2 pipeline (https:

//wiki.nci.nih.gov/display/TCGA/RNASeq+Version+2). To adjust for technical effects of the

data collection process, expression values were first normalized using the upper-quartile procedure

of Bullard et al. (2010). Then, all expression values of zero were replaced by the smallest non-zero

expression value across all genes and samples. A subset of 500 most variably expressed genes were

selected according to the median absolute deviation about the median (MAD) expression across

all samples. Finally, SHC was applied to the log-transformed expression levels at the 500 most
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variable loci. Similar results were also obtained when using the 100, 1000, and 2000 most variable

genes.

In Figure 3.3A, the log-transformed expression values are visualized using a heatmap, with

rows corresponding to genes, and columns corresponding to samples. Lower and higher expression

values are shown in blue and red, respectively. For easier visual interpretation, rows and columns

of the heatmap were independently clustered using Ward’s linkage clustering. The corresponding

dendrogram and cancer type labels are shown above the heatmap. The dendrogram and labels in

Panel A of Figure 3.3 are reproduced in Panel B, along with the SHC p-values (red) and modified

significance cutoffs (black) at nodes tested according to the FWER controlling procedure. Branches

corresponding to statistical significant nodes and untested nodes are shown in red and blue, respec-

tively. Ward’s linkage clustering correctly separates the three cancer types, with the exception of

seven LUSC samples clustered with the LUAD samples, one LUSC sample clustered with HNSC,

and one HNSC sample clustered with LUSC. Interestingly, the LUSC and HNSC samples cluster

prior to joining with the LUAD samples, suggesting the greater molecular similarity between squa-

mous cell tumors of different sites, than different cancers of the lung. This agrees with the recently

identified genomic similarity of the two tumors reported in Hoadley et al. (2014). Furthermore, we

note that no HNSC and LUAD samples are jointly clustered, highlighting the clear difference be-

tween tumors of both distinct histology and site. As shown in Figure 3.3B, statistically significant

evidence of clustering was determined at the top two nodes, with respective Gaussian-fit p-values

9.18e−8 and 1.52e−5 at the modified significance cutoffs, α∗
1 = 0.05 and α∗

2 = 0.032. Additionally,

the three candidate nodes corresponding to splitting each of the cancer types all give insignificant

results, suggesting no further clustering in the cohort. Finally, we note that when analyzed using

pvclust, no statistically significant evidence of clustering was found, with AU p-values of 0.26,

0.28, and 0.13 obtained at the three nodes corresponding to primarily LUAD, LUSC and HNSC

samples.

3.7.2 Breast Cancer (BRCA) Gene Expression

As a second example, we considered a microarray gene expression dataset from 337 BRCA samples.

The dataset was compiled, filtered and normalized as described in Prat et al. (2010) and obtained

from the University of North Carolina (UNC) Microarray Database (https://genome.unc.edu/
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Figure 3.4: Analysis of gene expression for 337 BRCA samples. (A) Heatmap of gene expression for the
337 samples (columns) clustered by Ward’s linkage. (B) Dendrogram with corresponding SHC p-values (red)
and α∗ cutoffs (black) given only at nodes tested according to the FWER controlling procedure at α = 0.05.

pubsup/clow/). Gene expression was analyzed for a subset of 1645 well-chosen intrinsic genes

identified in Prat et al. (2010). We evaluate the ability of our approach to detect biologically

relevant clustering based on five molecular subtypes: luminal A (LumA), luminal B (LumB), basal-

like, normal breast-like, and HER2-enriched (Parker et al., 2009). The dataset is comprised of 97

LumA, 54 LumB, 91 basal-like, 47 normal breast-like, and 48 HER2-enriched samples.

The expression dataset is shown as a heatmap in Figure 3.4A, with the corresponding dendro-

gram and subtype labels reproduced in Figure 3.4B. The corresponding SHC p-values (red) and

modified significance thresholds (black) are again given at only nodes tested while controlling the

FWER at α = 0.05. SHC identifies at least three significantly differentiated clusters in the dataset,

primarily corresponding to luminal (LumA and LumB), basal-like, and all remaining subtypes. At

the root node, the LumA and LumB samples are separated from the remaining subtypes with a

p-value of 5.72e− 4 at a threshold of α∗
1 = 0.05. However, Ward’s linkage clustering and SHC are

unable to identify significant evidence of clustering between the two luminal subtypes. The diffi-

cultly of clustering LumA and LumB subtypes based on gene expression was previously described in

Mackay et al. (2011). Next, the majority of basal-like samples are separated from the remaining set

of observations, with a p-value of 0.0172 at a cutoff of α∗
2 = 0.027. The remaining HER2-enriched,

normal breast-like and basal-likes samples show moderate separation by Ward’s linkage clustering.

However, controlling the FWER at α = 0.05, the subsequent node is non-significant, with a p-value

of 0.0293 against a corrected threshold of α∗
3 = 0.0180. This highlights the difficulty of assessing
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statistical significance in the presence of larger numbers of clusters, while controlling for multiple

testing.

3.8 Discussion

While hierarchical clustering has become widely popular in practice, few methods have been pro-

posed for assessing the statistical significance of a hierarchical partition. SHC was developed to

address this problem, using a sequential testing and FWER controlling procedure. Through an

extensive simulation study, we have shown that SHC provides competitive results compared to

existing methods. Furthermore, in applications to two gene expression datasets, we showed that

the approach is capable of identifying biologically meaningful clustering.

In this chapter, we focused on the theoretical and empirical properties of SHC using Ward’s

linkage. However, there exist several different approaches to hierarchical clustering, and Ward’s

linkage may not always be the most appropriate choice. In these situations, as mentioned in

Section 3.3, SHC may be implemented with other linkage and dissimilarity functions which satisfy

mean shift and rotation invariance. Further investigation is necessary to fully characterize the

behavior of the approach for different hierarchical clustering procedures.

Some popular choices of dissimilarity, such as those based on Pearson correlation of the co-

variates between pairs of samples, fail to satisfy the necessary mean shift and rotation invariance

properties in the original covariate space. As a consequence, the covariance of the Gaussian null

distribution must be fully estimated, and cannot be approximated using only the eigenvalues of

the sample covariance matrix. When N ≫ p, the SHC method can still be applied by estimating

the complete covariance matrix. However, in HDLSS settings, estimation of the complete covari-

ance matrix can be difficult and computationally expensive. A possible direction of future work is

the development of a computationally efficient procedure for non-invariant hierarchical clustering

procedures.
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3.9 Proofs

3.9.1 Proof of Theorem 3.1

Let dW (·, ·) denote the Ward’s linkage function defined over sets of observation indices. Additionally,

let X(1) and X(2) denote n and m samples drawn from two Gaussian components with distributions

N(µ1, σ
2
1Ip) and N(µ2, σ

2
2Ip), with corresponding observation index sets, C(1) and C(2). For k =

1, 2, let C(k)
0 , C(k)

1 and C
(k)
2 denote subsets of C(k), where C(k)

1 and C
(k)
2 are necessarily disjoint.

Let n0 = |C(1)
0 |, n1 = |C(1)

1 |, n2 = |C(1)
2 |, m0 = |C(2)

0 |, m1 = |C(2)
1 | and m2 = |C(2)

2 | denote the size

of each subset. Finally, let X(k)
0 , X(k)

1 , and X(k)
2 , denote the corresponding subsets of X(k), with

corresponding sample means, X(k)
0 , X(k)

1 , and X(k)
2 .

Consider the two events: A = {max dW (C
(1)
1 , C

(1)
2 ) < min dW (C(1), C(2))}, and B =

{max dW (C
(2)
1 , C

(2)
2 ) < min dW (C(1), C(2))}, where maxima and minima are taken with respect

to the possible values of C(k)
1 , C(k)

2 , and C(k). Note that the joint occurrence of A and B is suffi-

cient for correctly separating observations from the two components at the root node. It therefore

suffices to show that P (A ∩B) → 1 as p→ ∞.

For some 0 < a1 ≤ a2, define the following events: E1 = {max dW (C
(1)
1 , C

(1)
2 ) < a1 · p},

E2 = {max dW (C
(2)
1 , C

(2)
2 ) < a1 · p}, E3 = {min dW (C

(1)
0 , C

(2)
0 ) > a2 · p}. Note that the probability

of the joint event (A ∩B) can be bounded below by:

P (A ∩B) = 1− P (AC ∪BC)

≥ 1−
(
P (EC

1 ) + P (EC
2 ) + P (EC

3 )
)
.

We complete the proof by showing that P (EC
1 ), P (EC

2 ), P (EC
3 ) all tend to 0 as p→ ∞.

By Lemmas 3 and 4 of Borysov et al. (2014) for a1 > 2σ21, we have

P (EC
1 ) = P (max dW (C

(1)
1 , C

(1)
2 ) > a1 · p)

= P

(
max 2n1n2

n1 + n2

∥∥∥X(1)
1 −X(1)

2

∥∥∥2 > a1 · p
)

≤ 3nP

∥∥∥∥∥
(

2n1n2
n1 + n2

)1/2 (
X

(1)
1 −X(1)

2

)∥∥∥∥∥
2

> a1 · p


≤ e−c1p+n log 3,
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where c1 = a1/σ
2
1 − (1+ log(a1/σ21)). Note that since c1 > 0 and n = o(p) + pα for some α ∈ (0, 1),

P (EC
1 ) → 0 as p→ ∞. Similarly, for a2 > 2σ22, we have

P (EC
2 ) ≤ e−c2p+m log 3,

where c2 = a2/σ
2
2 − (1 + log(a2/σ22)), such that P (EC

2 ) → 0 as p → ∞. Finally, to bound P (EC
3 ),

we make use of Lemmas 2 and 4 of Borysov et al. (2014):

P (EC
3 ) = P (min dW (C

(1)
0 , C

(2)
0 ) < a2 · p)

≤
n∑

i=1

m∑
j=1

P

(
2ij

i+ j

∥∥∥X(1)
0 −X(2)

0

∥∥∥2 < a2 · p
)

≤ 2n+m max
i≤n, j≤m

P

(
2ij

i+ j

∥∥∥X(1)
0 −X(2)

0

∥∥∥2 < a2 · p
)
.

Suppose that i and j are fixed, and let µ2 = p−1( 2ij
i+j )∥µ1 −µ2∥2, µk = ( 2ij

i+j )
1/2(µ1,k −µ2,k), σ2 =

( 2ij
i+j )(

iσ2
2+jσ2

1
ij ). Then, using the result of Lemma 2 of Borysov et al. (2014), for 0 < a2 < σ2 + µ2,

we have

P

(
2ij

i+ j

∥∥∥X(1)
0 −X(2)

0

∥∥∥2 < a2 · p
)

≤ e−c3p,

where c3 = (a2 − σ2 − µ2)2/(6σ4 + 12σ2µ2 + 2p−1
∑p

k=1 µ
4
k).

Using the fourth moment bound of (2), and the fact that n = o(p) + pα, m = o(p) + pβ, we

have that P (EC
3 ) → 0 as p → ∞. Thus, for a1 > 2σ21, P (EC

1 ) → 0, for a1 > 2σ22, P (EC
2 ) → 0, and

for a2 < ( 2nm
n+m)(

σ2
1
n +

σ2
2
m + ∥µ1−µ2∥2

p ), P (EC
3 ) → 0. Combining the necessary inequalities on a1, a2,

we obtain the stated condition:

2σ22 < a1 ≤ a2

<
2nm

n+m

(
σ21
n

+
σ22
m

+
∥µ1 − µ2∥2

p

)
1

n
(σ22 − σ21) <

∥µ1 − µ2∥2

p
.

3.9.2 Proof of Theorem 3.2

Let dW (·, ·) denote the Ward’s linkage function. Further, let X(1) and X(2) denote the n and m

observations from the first and second Gaussian components with distributions N(µ1, σ
2
1Ip) and
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N(µ2, σ
2
2Ip). Assume that µ1, µ2, σ21 and σ22 are known. Then, the theoretical best fit Gaussian

to the mixture distribution is equivalent (up to a mean shift and rotation) to N(0, Σ̂), where

Σ̂ = diag{λ̂k}pk=1

λ̂1 =
nm

n+m

(
(n+m)−1∥µ1 − µ2∥2 +

σ21
m

+
σ22
n

)
λ̂k =

nm

n+m

(
σ21
m

+
σ22
n

)
, for k ≥ 2,

where the λ̂k are derived by the formula for the variance of a univariate mixture of Gaussians. Let

X(3) denote a sample of n+m observations drawn from N(0, Σ̂). Let C(k) denote the corresponding

observation indices for k = 1, 2, 3. Additionally, let C(3)
1 and C

(3)
2 denote disjoint subsets of C(3),

and let r1 = |C(3)
1 | and r2 = |C(2)

2 | denote the size of the subsets. Finally, let X(3)
1 and X(3)

2 denote

the corresponding subsets of X(3) with means X(3)
1 and X(3)

2 .

Consider the event: D = {max dW (C
(3)
1 , C

(3)
2 ) < dW (C(1),C(2))}, where the maximum is taken

with respect the possible values of C(3)
1 and C

(3)
2 . By Theorem 1 we have that, asymptotically,

Ward’s linkage clustering achieves the correct partition of C(1) and C(2). Therefore, D is precisely

the event that a linkage value simulated from the null distribution is less than the observed linkage

value. The proof is completed by showing P (D) → 1 as p→ ∞. That is, we wish to show that the

empirical p-value tends to 0 as p→ ∞.

For some a > 0, define the following events: E4 = {max dW (C
(3)
1 , C

(3)
2 ) < a · p}, and E5 =

{dW (C(1),C(2)) > a · p}. Note that P (D) can be bounded below by:

P (D) = 1− P (DC)

≥ 1−
(
P (EC

4 ) + P (EC
5 )
)
.

Thus, it suffices to show the probabilities of EC
4 , EC

5 ,both tend to 0 as p→ ∞.

First, we state a generalization of Lemma 3 from Borysov et al. (2014) for Gaussian distributions

with diagonal covariance.

Lemma 3.1. Suppose n independent observations, X, are drawn from the p-dimensional Gaussian

distribution, N(µ,Σ), where Σ is a diagonal matrix with diagonal entries {λk}pk=1. Define scalars
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µ2 = p−1∥µ∥2, λ = p−1
∑p

k=1 λk, and let a > λ+ µ2. Then, for any 0 < i ≤ n,

P (∥Xi∥2 > a · p) ≤ e−cp,

where c =
[
a+ µ2 −

√
λ
2
+ 4µ2a+ λ

(
λ+

√
λ
2
+4µ2a

2a

)]
/λ.

The proof of Lemma 3.1 is omitted as it follows exactly as that of Lemma 3 from Borysov et al.

(2014). By Lemma 3.1 given above and Lemma 4 of Borysov et al. (2014) , for a > 2λ̂, where

λ̂ = p−1
∑p

k=1 λ̂k, we have

P (EC
4 ) = P (max dW (C

(3)
1 , C

(3)
2 ) > a · p)

= P

(
max 2r1r2

r1 + r2

∥∥∥X(3)
1 −X(3)

2

∥∥∥2 > a · p
)

≤ 3n+mP

∥∥∥∥∥
(

2r1r2
r1 + r2

)1/2 (
X

(3)
1 −X(3)

2

)∥∥∥∥∥
2

> a · p


≤ e−c4p+(n+m) log 3,

where c4 = a/λ̂ − (1 + log(a/λ̂)). As for P (EC
1 ) from the proof of Theorem 2, we have that as

p → ∞, P (EC
4 ) → 0 as p → 0. Next, using an argument similar to the one presented above for

P (EC
3 ) → 0, we show that P (EC

5 ) → 0. Let µ2 = p−1( 2nm
n+m)∥µ1−µ2∥2, µk = ( 2nm

n+m)1/2(µ1,k−µ2,k),

σ2 = ( 2nm
n+m)(

iσ2
2+jσ2

1
nm ). Then, by Lemmas 2 and 4 of Borysov et al. (2014), for 0 < a < σ2 + µ2, we

have

P (EC
4 ) = P (dW (C(1),C(2)) < a · p)

= P

(
2nm

n+m

∥∥∥X(1) −X(2)
∥∥∥2 < a · p

)
≤ e−c5p,

where c5 = (a− σ2 − µ2)2/(6σ4 + 12σ2µ2 + 2p−1
∑p

k=1 µ
4
k). As for P (EC

3 ) from the proof of

Theorem 2, we have P (EC
5 ) → 0 as p → ∞. Thus, for a > 2λ̂, P (EC

4 ) → 0, and for

a < ( 2nm
n+m)(

σ2
1
n +

σ2
2
m + ∥µ1−µ2∥2

p ), P (EC
5 ) → 0. Combining the two inequalities on a, we obtain

the stated condition:

2p−1
p∑

k=1

λ̂k < a

67



<

(
2nm

n+m

)(
σ21
n

+
σ22
m

+
∥µ1 − µ2∥2

p

)
σ21
m

+
σ22
n

+ (n+m)−1 · ∥µ1 − µ2∥2

p
<
σ21
n

+
σ22
m

+
∥µ1 − µ2∥2

p

(m2 − n2)(σ22 − σ21)

nm(n+m− 1)
<

∥µ1 − µ2∥2

p
.
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3.10 Additional Simulation Results

Table 3.4: Complete results for Simulation 3.6.1. Number of false positives at α = 0.05, mean p-value,
median computation time over 100 replications.

parameters |p-value < 0.05| (mean p-value) median time (sec.)
n w v pvAU pvBP SHC1 SHC2L SHC22 pv SHC1 SHC2L SHC22

50 1 1 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 25.17 17.48 9.62 11.98
50 1 10 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 25.69 16.75 9.58 11.91
50 1 25 0 (0.95) 0 (1.00) 0 (0.89) 0 (0.91) 0 (0.70) 24.16 15.87 9.40 11.32
50 1 100 3 (0.61) 0 (0.98) 0 (0.60) 0 (0.49) 0 (0.46) 24.59 17.24 9.96 12.22
50 1 500 4 (0.28) 0 (0.85) 0 (0.53) 0 (0.47) 1 (0.44) 24.46 17.53 9.93 12.03
50 1 1000 13 (0.19) 0 (0.74) 0 (0.57) 0 (0.50) 0 (0.47) 23.40 16.97 9.81 11.42

100 1 1 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 85.48 37.28 21.69 26.12
100 1 10 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (0.98) 88.23 38.71 21.95 26.97
100 1 25 0 (1.00) 0 (1.00) 0 (0.88) 0 (0.59) 0 (0.46) 81.09 38.12 22.19 26.86
100 1 100 0 (0.95) 0 (1.00) 0 (0.65) 0 (0.46) 0 (0.45) 87.60 37.86 22.18 28.07
100 1 500 4 (0.50) 0 (0.95) 0 (0.63) 0 (0.49) 0 (0.47) 82.48 38.35 23.46 27.62
100 1 1000 5 (0.37) 0 (0.91) 1 (0.62) 0 (0.49) 1 (0.46) 84.30 39.03 22.65 27.49

200 1 1 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 318.44 83.78 51.00 63.95
200 1 10 0 (1.00) 0 (1.00) 0 (1.00) 0 (0.86) 1 (0.68) 313.89 86.42 51.24 63.27
200 1 25 0 (1.00) 0 (1.00) 0 (0.97) 0 (0.50) 0 (0.49) 300.94 86.42 50.56 63.38
200 1 100 0 (1.00) 0 (1.00) 0 (0.77) 0 (0.49) 0 (0.48) 290.64 81.59 48.98 59.55
200 1 500 0 (0.93) 0 (1.00) 0 (0.69) 0 (0.49) 0 (0.46) 270.83 80.69 47.29 59.16
200 1 1000 0 (0.76) 0 (0.98) 0 (0.72) 0 (0.51) 1 (0.49) 264.99 80.24 46.28 58.00

50 5 10 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 21.40 14.53 8.24 9.72
50 5 25 0 (0.97) 0 (1.00) 0 (0.92) 0 (0.92) 0 (0.76) 21.45 14.66 8.29 9.80
50 5 100 4 (0.85) 0 (1.00) 0 (0.84) 0 (0.73) 0 (0.68) 21.25 14.48 8.27 9.91
50 5 500 7 (0.66) 0 (0.99) 0 (0.91) 0 (0.77) 0 (0.79) 21.30 14.53 8.28 9.82
50 5 1000 6 (0.58) 0 (0.99) 0 (0.92) 0 (0.75) 0 (0.79) 21.31 14.60 8.40 9.95

100 5 10 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (0.92) 73.15 33.96 18.93 23.42
100 5 25 0 (1.00) 0 (1.00) 0 (0.96) 0 (0.73) 1 (0.67) 72.81 34.26 19.04 23.45
100 5 100 0 (1.00) 0 (1.00) 0 (0.95) 0 (0.72) 0 (0.72) 72.71 34.30 19.06 23.54
100 5 500 0 (0.98) 0 (1.00) 0 (0.97) 0 (0.76) 0 (0.78) 72.99 34.25 19.15 23.53
100 5 1000 1 (0.88) 0 (1.00) 0 (0.97) 0 (0.73) 0 (0.76) 72.41 34.49 19.78 23.81

200 5 10 0 (1.00) 0 (1.00) 0 (1.00) 0 (0.89) 0 (0.82) 259.63 76.34 44.28 55.53
200 5 25 0 (1.00) 0 (1.00) 0 (1.00) 0 (0.72) 0 (0.71) 259.76 76.57 44.01 55.23
200 5 100 0 (1.00) 0 (1.00) 0 (1.00) 0 (0.73) 0 (0.73) 274.21 77.72 45.59 56.19
200 5 500 0 (1.00) 0 (1.00) 0 (0.99) 1 (0.74) 1 (0.75) 281.71 77.21 46.14 56.43
200 5 1000 0 (1.00) 0 (1.00) 0 (1.00) 0 (0.73) 0 (0.74) 275.00 76.04 45.95 55.88
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Table 3.5: Complete results for the K = 2 alternative setting. Number of replications identifying the
correct number of significant clusters, mean p-value, median computation time over 100 replications.

parameters |p-value < 0.05| (mean p-value) median time (sec.)
nk p δ pvAU pvBP SHC1 SHC2L SHC22 pv SHC1 SHC2L SHC22

50 2 1 − − 0 (0.81) 0 (0.55) 0 (0.55) − 1.37 0.54 1.13
50 2 2 − − 1 (0.56) 1 (0.36) 13 (0.32) − 1.37 0.55 1.13
50 2 3 − − 67 (0.10) 18 (0.13) 77 (0.04) − 1.42 0.56 1.12
50 2 4 − − 98 (0.00) 81 (0.04) 99 (0.00) − 1.42 0.54 1.21
50 2 5 − − 100 (0.00) 98 (0.01) 100 (0.00) − 1.36 0.51 1.08

100 2 1 − − 0 (0.88) 0 (0.56) 0 (0.56) − 2.89 1.20 2.50
100 2 2 − − 2 (0.59) 1 (0.31) 14 (0.27) − 3.02 1.16 2.62
100 2 3 − − 80 (0.07) 53 (0.07) 86 (0.03) − 2.85 1.27 2.31
100 2 4 − − 100 (0.00) 98 (0.01) 100 (0.00) − 2.92 1.25 2.37
100 2 5 − − 100 (0.00) 100 (0.00) 100 (0.00) − 2.86 1.18 2.52

50 1000 2 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 79.05 35.82 20.92 24.98
50 1000 4 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 78.60 34.99 20.49 24.73
50 1000 6 0 (1.00) 0 (1.00) 0 (0.99) 0 (1.00) 1 (0.81) 78.51 34.41 20.05 24.20
50 1000 8 1 (0.99) 0 (1.00) 18 (0.23) 28 (0.14) 97 (0.01) 78.51 34.95 20.51 24.41
50 1000 10 1 (0.68) 0 (0.92) 99 (0.00) 100 (0.00) 100 (0.00) 78.76 35.35 20.62 24.57
50 1000 12 1 (0.50) 0 (0.68) 100 (0.00) 100 (0.00) 100 (0.00) 78.68 35.03 20.51 24.64
50 1000 14 6 (0.25) 0 (0.52) 100 (0.00) 100 (0.00) 100 (0.00) 78.36 35.04 19.92 24.41
50 1000 16 48 (0.11) 0 (0.42) 100 (0.00) 100 (0.00) 100 (0.00) 77.75 34.63 19.76 24.12
50 1000 18 75 (0.07) 0 (0.39) 100 (0.00) 100 (0.00) 100 (0.00) 75.94 34.79 19.69 24.11
50 1000 20 84 (0.12) 0 (0.42) 100 (0.00) 100 (0.00) 100 (0.00) 74.95 34.55 19.61 23.76

100 1000 2 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 342.34 85.62 51.24 62.91
100 1000 4 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 329.18 86.59 50.56 62.71
100 1000 6 0 (1.00) 0 (1.00) 0 (0.95) 21 (0.29) 57 (0.10) 320.53 86.29 49.44 62.58
100 1000 8 0 (1.00) 0 (1.00) 84 (0.03) 100 (0.00) 100 (0.00) 311.57 86.83 51.29 65.07
100 1000 10 0 (0.81) 0 (0.97) 100 (0.00) 100 (0.00) 100 (0.00) 314.98 90.41 50.89 63.54
100 1000 12 1 (0.58) 0 (0.75) 100 (0.00) 100 (0.00) 100 (0.00) 321.48 85.76 50.40 60.86
100 1000 14 0 (0.29) 0 (0.51) 100 (0.00) 100 (0.00) 100 (0.00) 314.38 86.93 50.78 63.36
100 1000 16 43 (0.15) 0 (0.44) 100 (0.00) 100 (0.00) 100 (0.00) 311.31 84.92 50.30 61.36
100 1000 18 78 (0.10) 0 (0.41) 100 (0.00) 100 (0.00) 100 (0.00) 315.93 84.87 50.21 63.05
100 1000 20 89 (0.09) 0 (0.40) 100 (0.00) 100 (0.00) 100 (0.00) 295.15 81.43 48.60 59.26
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Table 3.6: Complete results for the “line” arrangement considered in Simulation 3.6.2. Number of replica-
tions identifying the correct number of significant clusters, median computation time over 100 replications.

parameters |K̂ = 3| median time (sec.)
nk p δ pvAU pvBP SHC1 SHC2L SHC22 pv SHC1 SHC2L SHC22

50 2 1 − − 0 0 0 − 2.22 0.99 1.77
50 2 2 − − 0 0 1 − 2.17 0.98 1.73
50 2 3 − − 20 0 30 − 2.23 0.99 1.77
50 2 4 − − 79 3 85 − 2.24 0.99 1.80
50 2 5 − − 98 9 99 − 2.23 1.00 1.78

100 2 1 − − 0 0 0 − 4.88 2.41 3.92
100 2 2 − − 0 0 3 − 4.78 2.37 3.85
100 2 3 − − 46 8 60 − 4.85 2.40 3.92
100 2 4 − − 93 44 96 − 4.87 2.42 3.93
100 2 5 − − 100 72 100 − 4.90 2.42 3.95

50 1000 2 0 0 0 0 0 200.13 72.28 41.60 49.02
50 1000 4 0 0 0 0 0 199.97 62.44 38.41 45.68
50 1000 6 0 0 0 0 0 200.07 63.92 40.08 47.30
50 1000 8 0 0 0 2 69 199.51 63.79 39.84 47.00
50 1000 10 0 0 5 91 97 199.88 66.00 40.53 48.15
50 1000 12 0 0 19 93 100 199.34 65.57 41.28 48.58
50 1000 14 0 0 20 87 100 199.98 65.49 41.16 48.18
50 1000 16 3 0 48 84 98 199.62 66.19 40.76 48.14
50 1000 18 9 0 56 81 100 199.78 65.33 40.78 48.09
50 1000 20 8 0 73 71 100 200.12 65.53 41.47 48.91

100 1000 2 0 0 0 0 0 762.83 155.28 101.07 120.10
100 1000 4 0 0 0 0 0 763.74 154.52 97.56 116.54
100 1000 6 0 0 0 2 26 768.71 153.66 98.31 117.24
100 1000 8 0 0 1 99 98 768.34 160.74 101.88 119.63
100 1000 10 0 0 71 100 100 775.47 176.17 101.00 131.41
100 1000 12 0 0 98 100 100 881.97 153.13 99.08 118.12
100 1000 14 0 0 99 100 100 882.03 175.52 113.72 121.56
100 1000 16 1 0 100 100 100 883.02 152.94 97.92 135.61
100 1000 18 12 0 100 100 100 883.94 180.11 100.53 120.02
100 1000 20 6 0 100 100 100 881.96 153.88 113.75 118.49
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Table 3.7: Complete results for the “triangle” arrangement considered in Simulation 3.6.2. Number of
replications identifying the correct number of significant clusters, median computation time over 100 repli-
cations.

parameters |K̂ = 3| median time (sec.)
nk p δ pvAU pvBP SHC1 SHC2L SHC22 pv SHC1 SHC2L SHC22

50 2 1 − − 0 0 0 − 2.22 1.00 1.77
50 2 2 − − 0 0 0 − 2.13 0.98 1.76
50 2 3 − − 0 0 8 − 2.22 1.00 1.78
50 2 4 − − 28 29 81 − 2.18 0.98 1.76
50 2 5 − − 98 94 99 − 2.22 1.00 1.76

100 2 1 − − 0 0 0 − 4.86 2.44 3.94
100 2 2 − − 0 0 0 − 4.84 2.40 3.94
100 2 3 − − 2 11 32 − 4.81 2.40 3.89
100 2 4 − − 72 89 100 − 4.93 2.44 3.93
100 2 5 − − 100 100 100 − 4.86 2.43 3.92

50 1000 2 0 0 0 0 0 232.70 75.08 46.81 56.06
50 1000 4 0 0 0 0 0 232.78 75.45 47.00 56.05
50 1000 6 0 0 0 0 0 232.53 76.34 47.24 56.53
50 1000 8 0 0 0 1 78 232.41 75.60 46.97 56.26
50 1000 10 0 0 89 100 100 232.28 76.72 47.90 57.14
50 1000 12 0 0 100 100 100 232.50 76.51 47.84 57.37
50 1000 14 0 0 100 100 100 232.32 75.86 47.16 56.51
50 1000 16 12 0 100 100 100 232.47 75.57 47.38 56.62
50 1000 18 48 0 100 100 100 232.28 76.29 47.43 57.08
50 1000 20 33 0 100 100 100 232.46 75.72 47.29 56.83

100 1000 2 0 0 0 0 0 885.44 176.23 113.44 137.73
100 1000 4 0 0 0 0 0 885.49 179.78 115.81 140.23
100 1000 6 0 0 0 0 5 885.93 181.16 116.15 140.19
100 1000 8 0 0 2 100 100 885.79 182.45 117.99 142.00
100 1000 10 0 0 100 100 100 885.94 183.59 118.18 142.90
100 1000 12 0 0 100 100 100 885.36 181.59 116.98 141.46
100 1000 14 0 0 100 100 100 886.11 184.46 117.54 141.82
100 1000 16 4 0 100 100 100 886.11 182.38 117.42 142.67
100 1000 18 39 0 100 100 100 886.50 181.53 116.95 140.76
100 1000 20 47 0 100 100 100 886.73 179.93 116.39 140.08
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Table 3.8: Complete results for the “square” arrangement considered in Simulation 3.6.3. Number of repli-
cations identifying the correct number of significant clusters, median computation time over 100 replications.

parameters |K̂ = 4| median time (sec.)
nk p δ pvAU pvBP SHC1 SHC2L SHC22 pv SHC1 SHC2L SHC22

50 2 1 − − 0 0 0 − 2.47 1.09 2.08
50 2 2 − − 0 0 0 − 2.29 1.04 1.95
50 2 3 − − 3 0 17 − 2.54 1.16 2.06
50 2 4 − − 78 12 90 − 2.57 1.16 2.07
50 2 5 − − 100 84 100 − 2.70 1.22 2.16

100 2 1 − − 0 0 0 − 5.31 2.69 4.61
100 2 2 − − 0 0 0 − 5.14 2.60 4.32
100 2 3 − − 18 4 53 − 5.33 2.54 4.42
100 2 4 − − 98 85 99 − 4.87 2.43 4.11
100 2 5 − − 100 100 100 − 5.04 2.37 4.39

50 1000 2 0 0 0 0 0 305.45 81.27 49.64 59.28
50 1000 4 0 0 0 0 0 299.88 80.44 48.94 58.58
50 1000 6 0 0 0 0 0 299.85 80.59 48.69 57.49
50 1000 8 0 0 0 1 67 300.88 81.43 49.38 58.52
50 1000 10 0 0 95 100 100 301.08 82.16 50.41 59.38
50 1000 12 0 0 100 100 100 300.91 82.17 49.69 59.50
50 1000 14 1 0 100 100 100 298.67 81.54 49.50 58.98
50 1000 16 77 0 100 100 100 405.38 109.32 68.26 81.71
50 1000 18 97 0 100 100 100 402.78 109.64 68.78 82.11
50 1000 20 99 0 100 100 100 403.52 110.56 68.81 82.55

Table 3.9: Complete results for the “tetrahedron” arrangement considered in Simulation 3.6.3. Number
of replications identifying the correct number of significant clusters, median computation time over 100
replications.

parameters |K̂ = 4| median time (sec.)
nk p δ pvAU pvBP SHC1 SHC2L SHC22 pv SHC1 SHC2L SHC22

50 3 1 − − 0 0 0 − 2.54 1.10 1.98
50 3 2 − − 0 0 0 − 2.57 1.12 2.02
50 3 3 − − 0 0 0 − 2.43 1.10 1.91
50 3 4 − − 0 9 33 − 2.84 1.28 2.25
50 3 5 − − 24 86 99 − 2.40 1.09 2.03

100 3 1 − − 0 0 0 − 5.24 2.61 4.44
100 3 2 − − 0 0 0 − 5.79 2.74 4.77
100 3 3 − − 0 1 2 − 5.80 2.95 4.55
100 3 4 − − 2 84 94 − 5.99 2.92 4.76
100 3 5 − − 88 99 100 − 5.11 2.63 4.19

50 1000 2 0 0 0 0 0 370.14 94.85 58.06 69.12
50 1000 4 0 0 0 0 0 363.98 92.81 57.70 69.67
50 1000 6 0 0 0 0 0 367.20 95.37 57.39 75.23
50 1000 8 0 0 0 0 37 385.62 93.53 58.15 71.01
50 1000 10 0 0 56 98 100 364.72 98.81 60.74 72.49
50 1000 12 0 0 100 100 100 383.10 98.10 61.74 78.22
50 1000 14 0 0 100 100 100 368.79 98.68 60.75 77.42
50 1000 16 16 0 100 100 100 403.31 114.20 71.40 85.96
50 1000 18 53 0 100 100 100 402.61 112.10 70.47 84.58
50 1000 20 68 0 100 100 100 404.02 113.07 70.92 85.09
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Table 3.10: Complete results for the “rectangle” arrangement considered in Simulation 3.6.3. Number
of replications identifying the correct number of significant clusters, median computation time over 100
replications.

parameters |K̂ = 4| median time (sec.)
nk p δ pvAU pvBP SHC1 SHC2L SHC22 pv SHC1 SHC2L SHC22

50 2 1 − − 0 0 0 − 2.19 0.99 1.76
50 2 2 − − 0 0 0 − 2.20 0.97 1.78
50 2 3 − − 10 0 22 − 2.20 0.99 1.75
50 2 4 − − 88 26 94 − 2.49 1.11 1.95
50 2 5 − − 100 96 100 − 2.49 1.07 1.97

100 2 1 − − 0 0 0 − 5.12 2.66 4.30
100 2 2 − − 0 0 0 − 5.03 2.58 4.12
100 2 3 − − 43 7 54 − 4.77 2.36 3.98
100 2 4 − − 98 89 99 − 4.78 2.38 3.98
100 2 5 − − 100 100 100 − 4.80 2.37 3.93

50 1000 2 0 0 0 0 0 402.83 108.12 67.98 81.53
50 1000 4 0 0 0 0 0 402.46 107.61 67.66 81.23
50 1000 6 0 0 0 0 0 402.53 108.08 67.88 81.06
50 1000 8 0 0 0 1 78 401.98 109.30 68.57 81.89
50 1000 10 0 0 98 99 100 401.32 107.70 67.78 81.17
50 1000 12 0 0 100 100 100 401.78 108.67 68.35 81.28
50 1000 14 22 0 100 100 100 401.97 108.83 68.82 81.95
50 1000 16 58 0 100 100 100 401.86 108.93 68.57 81.90
50 1000 18 66 0 100 100 100 401.78 107.34 67.93 80.97
50 1000 20 64 0 100 100 100 401.13 108.17 68.24 81.58

Table 3.11: Complete results for the “stretched tetrahedron” arrangement considered in Simulation 3.6.3.
Number of replications identifying the correct number of significant clusters, median computation time over
100 replications.

parameters |K̂ = 4| median time (sec.)
nk p δ pvAU pvBP SHC1 SHC2L SHC22 pv SHC1 SHC2L SHC22

50 3 1 − − 0 0 0 − 2.30 1.04 1.83
50 3 2 − − 0 0 0 − 2.41 1.09 1.95
50 3 3 − − 0 0 5 − 2.38 1.07 1.91
50 3 4 − − 8 12 72 − 2.33 1.06 1.89
50 3 5 − − 88 96 100 − 2.45 1.09 1.93

100 3 1 − − 0 0 0 − 4.96 2.54 4.14
100 3 2 − − 0 0 0 − 5.04 2.59 4.13
100 3 3 − − 0 9 29 − 5.13 2.65 4.22
100 3 4 − − 40 90 98 − 5.23 2.63 4.21
100 3 5 − − 100 99 100 − 5.06 2.61 4.15

50 1000 2 0 0 0 0 0 300.42 79.91 48.80 57.90
50 1000 4 0 0 0 0 0 298.10 80.43 49.44 58.76
50 1000 6 0 0 0 0 0 297.97 81.65 49.68 59.07
50 1000 8 0 0 0 2 62 301.60 82.63 50.71 60.76
50 1000 10 0 0 87 99 100 300.92 83.61 51.22 61.01
50 1000 12 0 0 100 100 100 298.19 82.12 50.50 59.58
50 1000 14 3 0 100 100 100 401.31 111.78 70.41 84.39
50 1000 16 6 0 100 100 100 401.12 111.20 70.38 84.10
50 1000 18 2 0 100 100 100 401.11 110.89 70.20 84.63
50 1000 20 0 0 100 100 100 403.34 114.01 71.74 86.03
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CHAPTER 4

Large-Margin Classification with Multiple Decision Rules

4.1 Introduction

Classification is one of the most widely applied and well studied problems in supervised learning.

Given a training set of observed covariates and outcomes, in classification, the outcome is modeled

as a function of the set of covariates. However, in contrast to standard regression with a continuous

response, classification describes the setting where the outcome is a discrete class label. While

generalizations to more than two classes exist, in this chapter we focus on the standard binary

problem where the label takes one of two possible values, typically denoted by +1 and −1.

Given such a dataset, commonly, the goal is to build a model, either to predict the class

of a new observation from the covariate space, or to estimate the probably of each class as a

function of the covariates. The tasks correspond respectively to hard and soft classification, as

described in Section 1.1. Briefly, we refer to methods which only target the optimal prediction

rule as hard classifiers, and those which produce estimates of class probability as soft classifiers.

Examples of hard classifiers include the support vector machine (SVM) (Vapnik, 1995, 1998) and

ψ-learning (Shen et al., 2003; Liu and Shen, 2006), and examples of soft classifiers include logistic

regression and other likelihood-based approaches. Often, soft classifiers are also used to obtain

hard classification rules by predicting the class with greater estimated probability. These rules are

commonly referred to as plug-in classifiers. While hard classification rules do not directly provide

conditional class probability estimates, several approaches have been proposed for estimating class

probabilities based on hard classifiers, including those of Platt (1999) and Wang et al. (2008). As

such, methods which may be traditionally viewed as soft and hard classifiers are often used for

either task. Naturally, a question of interest is: how are hard and soft classifiers related, and how

do they differ in practice?
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Recently, Liu et al. (2011) introduced the Large-margin Unified Machines (LUM) family of

margin-based classifiers, shedding some light on the the relationship between hard and soft clas-

sifiers. The LUM family connects several popular margin-based classification methods, including

SVM, distance-weighted discrimination (DWD; Marron et al., 2007), and a new hybrid logistic

loss. Their approach was further extended to the multi-category case by Zhang and Liu (2013).

Margin-based approaches to classification are popular in practice for their accuracy and computa-

tional efficiency in both low and high-dimensional settings. While a flexible family of margin-based

classifiers, the LUM approach examines only a specific parameterized collection of classifiers along

the gradient of soft to hard classification. In this chapter, we similarly focus on connecting hard and

soft margin-based methods. However, we consider a more natural approach based on connecting

the tasks of hard and soft classification rather than specific hard and soft classifiers. We propose a

novel framework of binary learning problems which may be formulated as partial or full estimation

of the conditional class probability based on fitting an arbitrary number of boundaries to the data.

As an example, suppose we are interested in separating patients into four disease risk groups based

on clinical measurements. One possible approach is to group patients according to whether their

conditional probability of being positive for the disease is less than 25%, between 25% to 50%,

between 50% to 75%, or greater than 75%. In this setting, the emphasis is not on the accuracy of

class probability estimates, but instead, on the correct stratification of individuals into risk groups.

Therefore, only partial estimation of the conditional class probability is required; in particular, at

the three boundaries, 25%, 50%, and 75%. While stratification of the patient classes is possible

using a soft classifier, an approach directly targeting the three boundaries may provide improved

stratification by requiring weaker assumptions on the entire form of the underlying conditional class

probability.

In addition to hard and soft classification, the proposed framework also encompasses rejection-

option classification (Herbei and Wegkamp, 2006; Bartlett and Wegkamp, 2008; Yuan and

Wegkamp, 2010; Wegkamp and Yuan, 2011) and weighted classification (Lin et al., 2002; Qiao

and Liu, 2009), two other well-studied binary learning problems. Briefly, the rejection-option prob-

lem expands on standard binary classification by introducing a third option to reject, where neither

label is predicted. Notably, it can be shown that the decision to reject directly corresponds to a

prediction that the probability of belonging to either class does not exceed a specified threshold.
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Since the task requires estimation of more than a single classification boundary, but less than the

full class conditional probability, it may be viewed as an intermediate problem to hard and soft

classification, as in the example given above. Applications of rejection option classification include

certain medical settings where predictions should only be made when a level of certainty is obtained.

Additionally, weighted classification extends the standard classification problem by accounting for

differences or biases in class populations. We define these problems more formally, along with hard

and soft classification, in Section 4.2.

The remainder of this chapter is organized as follows. In the first part of Section 4.2 we provide

a review of margin-based learning previously introduced in Section 1.1. Then, in the remainder

of Section 4.2, we define our family of binary learning problems and introduce a corresponding

theoretical loss, which generalizes the standard misclassification error to connect class prediction

with probability estimation. In Section 4.3 we provide necessary and sufficient conditions for con-

sistency of a surrogate loss function, and propose a class of consistent piecewise linear surrogates

akin to the SVM hinge loss for binary classification. In Section 4.4, we present theoretical bounds

on the empirical performance of classification rules obtained using surrogate loss functions. In

Section 4.5, we provide a sub-gradient descent (SGD) algorithm for solving the corresponding op-

timization problem using the proposed piecewise linear surrogates. We then illustrate the behavior

of our generalized family of classifiers using simulation in Section 4.6, and a real data example from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database in Section 4.7. We conclude

in Section 4.8 with a discussion of the proposed framework. All technical proofs are included in

Section 4.9.

4.2 Methodology

In this section, we first briefly review margin-based classifiers, and formally define the notion of

classification consistency for loss functions. We then state the general form of our unified framework

of problems and introduce a corresponding family of theoretical loss functions which encompasses

the standard misclassification error as a special case.
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4.2.1 Margin-Based Classifiers

Let {(xi, yi)}ni=1 denote a training set of n covariate–label pairs drawn from X × Y according to

some unknown distribution P(X, Y ). For binary problems, Y = {−1,+1} is used to denote the

label space, and often X ⊂ Rp, with p ≥ 1. Given a training set, margin-based classifiers minimize

a penalized loss over a class, F , of margin functions, f : X → R. Typically, the corresponding

optimization problem is written as:

min
f∈F

1

n

n∑
i=1

L
(
yif(xi)

)︸ ︷︷ ︸
loss

+ λJ(f)︸ ︷︷ ︸
penalty

, (4.1)

where L : R → R is a loss function defined with respect to the functional margin, yf(x), and

J : F → R is some roughness measure on F with corresponding tuning parameter λ ≥ 0. Both

hard and soft classification may be formulated as margin-based problems. In the case of hard

classification, with a little abuse of notation, we use Ŷ ∈ Y to denote a predicted class label, and

Ŷ : R → Y to denote a prediction rule on R. In margin-based classification, Ŷ (·) is combined with

a margin function, f ∈ F , to obtain predictions in Y. Most commonly, in hard classification the

sign rule, Ŷ (f(X)) = sign(f(x)), is used assuming f(x) ̸= 0 almost surely (a.s.). Thus, given a

new (x∗, y∗) pair with f(x∗) ̸= 0, correct classification is obtained if and only if y∗f(x∗) > 0. Since

the functional margin, yf(x), serves as an approximate measure for classification correctness, the

loss function, L, in (4.1) is often chosen to be a non-increasing function over yf(x). A natural

choice of L in hard classification is the misclassification error, or 0−1 loss, given by:

ℓ0−1(Y, Ŷ ) = I{Ŷ ̸= Y }, (4.2)

where I{·} is used to denote the indicator function. Using the sign rule, the loss may be equivalently

written over the class of margin functions as: L0−1(Y f(X)) = I{Y f(X) < 0}. However, direct

optimization of the non-convex and discontinuous loss, L0−1, is NP-hard and often infeasible in

practice. Thus, continuous convex losses, called surrogates, are commonly used instead. Choices

of the surrogate loss function corresponding to existing margin-based classifiers include the SVM

hinge loss, L(z) = max{0, 1 − z}, logistic loss, L(z) = log(1 + e−z), and the DWD loss, L(z) =

1
4z · I{z ≥ 1

2} + (1 − z) · I{z < 1
2} (Figure 1.2). Finally, the penalty term, J(·) is used to prevent

over-fitting and improve generalizability of the resulting classifier. The amount of penalization is
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commonly determined by cross-validation over a grid of λ values. Here, we note that while in the

literature there exists a natural theoretical loss for hard classification, i.e. the 0−1 loss, there is

no equivalent theoretical loss targeting consistent probability estimation for soft classification. In

addition to providing a spectrum of theoretical loss functions covering soft and hard classifications

at the two extremes, our proposed framework also naturally defines precisely such a theoretical loss

for the soft classification problem (Figure 4.2C).

In Section 4.1, we briefly discussed the learning tasks of rejection-option and weighted classifi-

cation. As with hard and soft classification, these tasks may also be formulated as margin-based

problems. We next describe how rejection-option classification may be formulated as a problem

of the form (4.1). Borrowing the notation of Yuan and Wegkamp (2010), we use 0 to denote the

rejection option such that a prediction, Ŷrej , takes values in Yrej = {+1, 0,−1}. Then, for some

pre-specified rejection cost π ∈ (0, 12), they propose the following theoretical loss for rejection-option

classification:

ℓrej,π(Y, Ŷrej) =


1 if Ŷrej ̸= Y, Ŷrej ̸= 0

π if Ŷrej = 0

0 otherwise

. (4.3)

To express the loss as a function over Y f(X), Yuan and Wegkamp (2010) propose the prediction

rule Ŷrej(f(X); δ) = I{|Y f(X)| > δ} · sign(Y f(X)) for some appropriately chosen δ > 0. Then,

ℓrej,π may be written as the following generalized 0−1 loss on Y f(X):

Lrej,π(Y f(X); δ) = (1− π)I{Y f(X) ≤ −δ}+ πI{Y f(X) < δ}.

We finally consider the task of weighted classification. In contrast to the problems mentioned

thus far, to fit the form of (4.1), weighted classification requires specifying separate theoretical loss

functions for observations from the +1 and −1 classes, denoted by ℓ+w,π and ℓ−w,π. For simplicity,

we use ℓYw,π to denote the loss for both classes. Similar to hard classification, the task is to predict

class labels in Y = {+1,−1}. The loss function depends on a weight parameter, π, which accounts

for imbalances between the two classes. Commonly, π is constrained to the interval (0, 1) without
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loss of generality. Then, for fixed weight π, the weighted loss is given by:

ℓYw,π(Y, Ŷ ) = I{Y = +1} · ℓ+w,π(Ŷ ) + I{Y = −1} · ℓ−w,π(Ŷ ), (4.4)

ℓ+w,π(Ŷ ) = (1− π) · I{Ŷ ̸= +1},

ℓ−w,π(Ŷ ) = π · I{Ŷ ̸= −1}.

Note that the standard 0−1 loss corresponds to the special case of the weighted loss (4.4) when

equal weight is assigned to the two classes with π = 1
2 . Using the same prediction rule as for hard

classification, Ŷ (f(x)) = sign(f(x)), the loss over the functional margin may be written:

LY
w,π(Y f(X)) = I{Y = +1} · L+

w,π(Y f(X)) + I{Y = −1} · L−
w,π(Y f(X)),

L+
w,π(Y f(X)) = (1− π) · I{Y f(X) < 0},

L−
w,π(Y f(X)) = π · I{Y f(X) < 0}.

As with the usual 0−1 loss, optimization of Lrej,π and LY
w,π is NP-hard, and in practice should

be approximated using a convex surrogate loss. In the next section, we introduce the notion of

consistency, an important statistical property of surrogate loss functions.

4.2.2 Classification Consistency

Much work has been done to study the statistical properties of classifiers of the loss+penalty form

given in (4.1) (Steinwart and Scovel, 2007; Blanchard et al., 2008; Bartlett et al., 2006; Cristianini

and Shawe-Taylor, 2000). Of these, consistency of loss functions is one of the most fundamental.

In general, a loss function is called consistent for a margin-based learning problem if it recovers

in expectation the optimal rule, often called the Bayes rule, to the theoretical loss function, e.g.

ℓ0−1, ℓrej,π or ℓYw,π. More formally, for a theoretical loss function, ℓ, and a surrogate loss, ϕ, let

Y ∗
ℓ (X) = argminY ∗ EY |X{ℓ(Y, Y ∗)} and f∗ϕ(X) = argminf EY |X{ϕ(Y f(X))} denote the Bayes rule

and ϕ-optimal margin function, respectively. Then, we call ϕ consistent for ℓ if Ŷℓ(f∗ϕ(X)) = Y ∗
ℓ (X),

where Ŷℓ is the appropriate prediction rule, e.g. the sign function. Equivalently, using the margin-

based formulation of the theoretical loss, L, and letting f∗L(X) = argminf EY |X{L(Y f(X))} denote

the L-optimal margin function, consistency may be expressed as Ŷℓ(f∗ϕ(X)) = Ŷℓ(f
∗
L(X)). For
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rejection-option classification, the Bayes optimal rule is given by:

Y ∗
rej,π(X) =


+1 if p(X) ≥ 1− π

0 if p(X) ∈ (π, 1− π)

−1 if p(X) ≤ π

. (4.5)

The Bayes optimal rule for weighted classification is given by:

Y ∗
w,π(X) =


+1 if p(X) > π

−1 if p(X) ≤ π

. (4.6)

For hard classification, the Bayes optimal rule corresponds to Yw,0.5 , and consistency is often

referred to as Fisher consistency or classification calibrated (Bartlett et al., 2006). While no the-

oretical loss has been proposed for soft classification, using p(X) = P(Y = +1|X) to denote the

conditional class probability at X ∈ X , commonly, ϕ is called consistent for soft classification if

there exists some monotone mapping, C : R → [0, 1] such that C(f∗ϕ(X)) = p(X). Naturally,

C(·) may be viewed as an extension of the prediction rules Ŷ (·) and Ŷrej(·; δ) given for hard and

rejection-option classification. Necessary and sufficient conditions for Fisher, rejection-option, and

probability estimation consistency have been described in Lin (2002); Yuan and Wegkamp (2010);

Zhang et al. (2013).

In this chapter, we propose a novel framework for unifying hard, soft, rejection-option, and

weighted classification through a generalized formulation of their corresponding theoretical losses,

corresponding Bayes optimal rules, and necessary and sufficient conditions for consistency. Our

generalized formulation not only provides a platform for comparing existing binary classification

tasks, but also introduces an entire family of new tasks which fills the gap between these problems.

We next formally introduce our unified framework of binary learning problems.

4.2.3 Unified Framework

First, we note that all of the classification tasks described in Section 4.2.1 may be formulated as

learning problems which target partial or complete estimation of the conditional class probability,

p(x). We propose our framework of unified margin-based learning problems based on this insight.

Let Ωπ denote the ordered (K + 1) partition of the interval [0, 1] obtained by splitting at π =
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Figure 4.1: Boundaries are shown separating the input space, R2 into the K + 1 prediction sets, Ωπ. A
sample of 100 observations drawn from the underlying class populations are overlaid to show the distribution
over the space. (A) The K = 1 boundary for π = {0.5} corresponding to hard classification is shown by the
separating hyperplane corresponding to the set {x ∈ R2 : p(x) = 0.5}. (B) The set of K = 3 boundaries are
shown for π = {0.2, 0.4, 0.6} separating the 4 prediction sets. (C) The soft classification results are shown
spanning the entire set of πk ∈ (0, 1). As K → ∞, moving from hard to soft classification, the set of learning
problems becomes increasingly complex.

{π1, . . . , πK}, where 0 < π1 < . . . < πK < 1. Assume p(x) ̸= πk a.s. for all k, such that

observations belong to only a single region of interval. Letting π0 = 0 and πK+1 = 1 for ease of

notation, we write:

Ωπ =
{
ω0, . . . , ωK

}
,

where ω0 = [π0, π1], and ωk = (πk, πk+1], for k ≥ 1. As our framework, we propose the class

of problems which target a partition of the covariate space, X , into the K + 1 regions, {x :

p(x) ∈ ωk}. In Figure 4.1, we show a sample of 100 observations drawn from the same underlying

distribution, P(X, Y ), along with optimal solutions to three representative problems from our

proposed framework. Note that the extreme cases of K = 1 with π = {0.5} (Figure 4.1A), and

K = ∞ with π dense on (0, 1) (Figure 4.1C) correspond to hard and soft classification, respectively.

We discuss these connections in more detail later in this section. To illustrate the spectrum of

problems in our framework, we also show a new intermediate problem in Figure 4.1B, with K = 3

and π = {0.2, 0.4, 0.6}.

Formally, we define our framework as the collection of minimization tasks of a theoretical loss

which generalizes the 0−1 loss, over the collection of rules Gπ = {g : X → Ωπ}. Recall the
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weighted 0−1 loss, ℓw, for weighted classification described above. For positive and negative class

weights (1 − π) and π where π ∈ (0, 1), the weighted 0−1 loss has corresponding Bayes boundary

at {x : p(x) = π}. Problems under our framework may be viewed as the task of simultaneously

estimating K such boundaries. Intuitively, we formulate our theoretical loss as the average of

K weighted 0−1 loss functions with corresponding weights π. Throughout, we use ℓ+π(g(x)) and

ℓ−π(g(x)) to denote the loss for positive and negative class observations, respectively. As with the

weighted loss, we use ℓYπ to denote the loss for both classes:

ℓYπ (g(X)) =
2

K

K∑
k=1

ℓYπk
(g(X)), (4.7)

where

ℓ+πk
(g(X)) = (1− πk) · I{g(X) ≤ πk},

ℓ−πk
(g(X)) = πk · I{g(X) > πk},

and the notion of inequalities is extended to elements of Ωπ such that (πj , πj+1] ≤ πk if πj+1 ≤ πk

and (πj , πj+1] > πk if πj ≥ πk. Our theoretical loss encompasses the usual 0−1 loss, its weighted

variant, and the rejection-option loss proposed by Yuan and Wegkamp (2010). The multiplicative

constant, 2, is included in (4.7) such that ℓYπ reduces precisely to the usual 0−1 loss when π = {0.5}.

Note that since ℓYπ is effectively the average of K indicator functions scaled by 2, the function takes

values in the interval [0, 2]. In Figure 4.2, we show ℓYπ as a function of g(x) 7→ Ωπ, corresponding

to the problems in Figure 4.1. Along the horizontal axis, the range [0, 1] is split into corresponding

ωj = (πj , πj+1] intervals. Note that the loss function is constant within each interval, giving the

appearance of a step function, except in the extreme case when K = ∞. As K increases, the

theoretical loss becomes smoother, with the limit at π = (0, 1) corresponding to the proposed

theoretical loss for consistent soft classification mentioned in Subsection 4.2.1. Additionally, note

that while the loss functions, ℓ+π and ℓ−π , are symmetric in Panels A and C of Figure 4.2, the same

is not true for the loss functions in Panel B. This is due to the fact that the boundaries of interest,

π, are symmetric between the two classes, i.e. π = 1− π, when π = {0.5} and π = (0, 1), but not

when π = {0.2, 0.4, 0.6}.
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Figure 4.2: Examples of the theoretical loss functions, ℓYπ , for observations from the positive and negative
classes over g(x) are shown for boundaries, π at (A) {0.5}, (B) {0.2, 0.4, 0.6}, and (C) (0, 1), corresponding
to the problems shown in Figure 4.1. The theoretical loss generalizes the standard 0−1 loss given in (A) by
incorporating K steps. As K increases and the problem approaches soft classification, the theoretical loss
becomes noticeably smoother.

The following result states that the class of problems defined by our theoretical loss indeed

corresponds to the proposed framework of learning tasks. That is, the Bayes optimal rule given by

W ∗
π(X) = argming EY |X

{
ℓYπ (g(X))

}
, is precisely the partitioning task described above.

Theorem 4.1. For fixed K and π defined as above, the Bayes optimal rule for the theoretical

loss (4.7) is given by:

W ∗
π(X) = argmin

g∈Gπ

EY |X
{
ℓYπ (g(X))

}
=

K∑
k=0

ωk · I{p(X) ∈ ωk}.

In addition to the results of Theorem 4.1, the theoretical loss functions for hard (4.2), rejection-

option (4.3), and weighted (4.4) classification can be derived as special cases of (4.7). This is shown
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by first noting the equivalence of Ωπ to Y and Yrej based on the Bayes optimal rules, (4.5) and (4.6).

From this equivalence, (4.3) and (4.4) can be obtained directly from (4.7). For soft classification,

we derive a new theoretical loss from the limiting form of (4.7):

ℓYπ (g(X)) = lim
K→∞

2

K

K∑
k=1

ℓYπk
(g(X)),

=
(
I{Y = +1} − g(X)

)2
.

The resulting theoretical loss is shown in Figure 4.2C. Since Ωπ = (0, 1), the Bayes rule is simply

the conditional class probability, g(X) = p(X), corresponding to soft classification.

As with the problems described in Section 4.2.1, optimization of ℓπ with respect to g ∈ Gπ

is NP-hard. Thus, we first reformulate ℓπ as a function on R to express the optimization over a

collection of margin functions, F . We then propose in Section 4.3 to solve the approximate problem

using convex surrogate loss functions. Generalizing the approach of Yuan and Wegkamp (2010) for

rejection-option classification, we frame the optimization task over the class of margin functions,

F , using a prediction rule C : R× RK → Ωπ of the form:

C(f(x); δ) =

K∑
k=0

ωk · I{f(x) ∈ (δk−1, δk]}, (4.8)

for monotone increasing δ = {δ1, . . . , δK}, and δ0 = −∞, δK+1 = ∞. Intuitively, each δk cor-

responds to the πk-boundary along the range of the margin function, f(X). As is common in

margin-based learning, we write the theoretical loss as the following function over Y f(X):

LY
π (Y f(X); δ) = ℓYπ (C(f(X); δ))

=


2
K

∑K
k=1(1− πk) · I{Y f(X) ≤ δk} if Y = +1

2
K

∑K
k=1 πk · I{Y f(X) < −δk} if Y = −1

. (4.9)

In Figure 4.3, we plot the corresponding margin-based formulations of the theoretical loss

functions shown in Figure 4.2, with well chosen δ. Intuitively, both L+
π(· ; δ) and L−

π(· ; δ) are non-

increasing on yf(x). We also note that ℓ−π and L−
π(· ; δ) differ by a reflection along the vertical axis

since L−
π(· ; δ) is defined with respect to yf(x) = −f(x). Given the margin-based formulation (4.9),

we propose to solve our class of problems using convex surrogate loss functions. In the following
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Figure 4.3: Examples of the margin-based formulation of the theoretical loss function, LY
π (· , δ), for

observations from the positive and negative classes over yf(x) are shown for boundaries, π, at (A) {0.5},
(B) {0.2, 0.4, 0.6}, and (C) (0, 1), using well-chosen δ.

section, we first present necessary and sufficient conditions for a surrogate loss to be consistent to

(4.7). We then introduce a class of consistent piecewise linear surrogates, which includes the SVM

hinge loss as a special case.

4.3 Convex Surrogate Loss Functions

Since the proposed theoretical loss function (4.7) and its margin-based reformulation (4.9) are

discontinuous and non-convex for any finite choice of K and π, empirical minimization can quickly

become intractable. Therefore, we propose to instead minimize a convex surrogate loss over a class

of margin functions, as in hard and soft classification. In this section, we first provide necessary

and sufficient conditions for a surrogate loss to be consistent for (4.7) with fixed K and π. Then,

we introduce a class of convex piecewise linear surrogates which includes the SVM hinge loss as

a special case. Intuitively, the piecewise linear surrogates each consist of K non-zero segments,
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corresponding to the K boundaries, π. In the limit, as π becomes dense on (0, 1), the piecewise

linear surrogate tends towards a smooth loss, as in Panel C of Figures 4.2 and 4.3.

4.3.1 Consistency

Throughout this section, we assume K and π to be fixed. First, let ϕ+ and ϕ− denote a pair

of convex surrogate loss functions for ℓ+π and ℓ−π . Further, let f∗ϕ = argminf EY |X{ϕY (Y f(X))}

denote the ϕY -optimal rule over the class of all measurable functions. We call ϕY consistent if there

exists δ ∈ RK such that the prediction rule (4.8) satisfies C(f∗ϕ(x); δ) =W ∗
π(x), i.e. if there exists

a known monotone mapping from the ϕY -optimal rule to the K + 1 partition of X to Ωπ. The

following result provides necessary and sufficient conditions for the consistency of the surrogate loss

ϕY to ℓYπ .

Theorem 4.2. A pair of convex surrogate loss functions, ϕY , are consistent for ℓYπ if and only

if there exists δ ∈ RK such that for each k = 1, . . . ,K: ϕ+′(δk) and ϕ−′(−δk) exist, ϕ+′(δk) and

ϕ−′(−δk) < 0, and

ϕ−′(−δk)
ϕ−′(−δk) + ϕ+′(δk)

= πk. (4.10)

Naturally, any surrogate loss satisfying the conditions of Theorem 4.2 for some π, must also

satisfy the set of conditions for any subset of the boundaries, π′ ⊆ π. Thus, for surrogate loss

functions consistent for soft classification, i.e. when π = (0, 1), there exists an appropriate δ for

any possible K and π. Similar intuition is used to justify the use of soft classification based plug-in

classifiers described in Section 4.1. Examples of surrogate losses consistent for soft classification

include the logistic, squared hinge, exponential, and DWD losses. Values of δk such that the

conditions of Theorem 4.2 are met for these loss functions are provided in Corollaries 3-8 of Yuan

and Wegkamp (2010). In the next section, we introduce a class of piecewise linear surrogates which,

similar to the SVM loss for hard classification, satisfy consistency for the π of interest, but not

for any π′ ⊃ π. We refer to such a piecewise linear surrogate as being minimally consistent for a

corresponding set of boundaries, π. In contrast to soft classification losses which satisfy consistency

for all π ⊆ (0, 1), minimally consistent surrogates are well-tuned for a given ℓYπ , and may provide

improved stratification of X to the sets, Ωπ.
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Figure 4.4: Examples of piecewise linear surrogates are shown along with the corresponding theoretical
loss, Lπ,δ for (A) π = {0.5} (hard classification), (B) π = {0.2, 0.8} (rejection-option classification), and
(C) π = {0.2, 0.4, 0.6}.

4.3.2 Piecewise Linear Surrogates

Throughout, we use φ+ and φ− to denote piecewise linear surrogates. To build intuition, in the

columns of Figure 4.4, we show examples of φY for K = 1, 2, 3, corresponding to hard classifica-

tion, rejection-option classification, and the new problem shown in Figure 4.1B. Circles are used to

highlight the hinges, i.e. non-differentiable points, along the piecewise linear loss functions. The

corresponding margin-based theoretical loss, LY
π (· ; δ), is also shown in each panel using appro-

priately chosen δ. First, note that the losses in Panels A and B of Figure 4.4 correspond to the

standard SVM hinge loss and generalized hinge loss of Bartlett and Wegkamp (2008), respectively.

Consider the new surrogate losses in Figure 4.4C for boundaries at π = {0.2, 0.4, 0.6}. Note that

φ+ and φ− each consist of K non-zero linear segments. Furthermore, each linear segment only

spans a single δk or −δk for φ+ and φ−, respectively. We will refer to these pairs of linear segments

as the πk-consistent segments. This construction allows for the consistency of the surrogate loss
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for each πk ∈ π to be controlled separately by the K pairs of πk-consistent segments along the

piecewise linear loss.

We formulate our collection of piecewise linear surrogate losses as the maximum of the K linear

segments and 0. Consider first the surrogate loss for positive observations, φ+. Using A+(π), B+(π)

to denote the intercept and slope of the πk-consistent segment, we express the piecewise linear loss

as:

φ+(z) = max{0, A+(π1) +B+(π1) · z, . . . , A+(πK) +B+(πK) · z}. (4.11)

We similarly use A−(π) and B−(π) to denote the intercept and slope of the πk-consistent segment

for the negative class loss such that:

φ−(z) = max{0, A−(π1) +B−(π1) · z, . . . , A−(πK) +B−(πK) · z}. (4.12)

By construction, the resulting piecewise linear losses are non-negative, convex and continuous.

While (4.11) and (4.12) define a general class of piecewise linear losses, we focus on a subset of

minimally consistent piecewise linear surrogates. In the following theorem, we provide a set of

sufficient conditions for a piecewise linear loss to be minimally consistent for a specified π.

Theorem 4.3. Let HY (π, π′) = (AY (π) − AY (π′))
/
(BY (π′) − BY (π)) denote the location of the

hinges along the respective loss functions between consecutive boundaries, π < π′. Then, φY is a

minimally consistent piecewise linear surrogate for π if the intercept and slope parameters, AY (π)

and BY (π), satisfy the following conditions:

(C1) B+(π) is non-decreasing, and B−(π) is non-increasing in π.

(C2) The hinge points are such that:

−H−(πk−1, πk) = H+(πk−1, πk) for k = 2, . . . ,K,

H+(πk−1, πk) < H+(πk, πk+1) for k = 2, . . . ,K − 1,

A−(π1)/B
−(π1) < H+(π1, π2),

A+(πK)/B+(πK) > H−(πK−1, πK).

89



-4 -2 0 2 4

0.0

1.0

2.0

3.0

4.0

–1 class loss+1 class loss

-4 -2 0 2 4

0.0

1.0

2.0

3.0

4.0

yf(x) yf(x)

losses

logistic loss

tangent loss

Figure 4.5: A pair of piecewise linear loss functions, φY , obtained from the logistic loss for π = {0.2, 0.4, 0.6}
is shown along with the logistic loss (dotted lines), and the set of tangent lines used to derive AY (π) and
BY (π) (dashed lines).

(C3) B+(π), B−(π) satisfy:

B−(πk)

B−(πk) +B+(πk)
= πk for 1 ≤ k ≤ K.

Conditions (C1) and (C2) guarantee that the linear segments are well-ordered and non-

degenerate along Y f(X) with appropriately aligned hinge points. Condition (C3) guarantees

the consistency of φY to the corresponding ℓπ. Most importantly, by aligning the hinge points,

−H−(πk−1, πk) and H+(πk−1, πk), we ensure that there does not exist a δ ∈ R such that (4.10) is

satisfied for any π ̸∈ π. Next, we present an approach to obtaining AY (π) and BY (π) which satisfy

the conditions of Theorem 4.3 using the logistic loss as an example.

4.3.3 Logistic Derived Surrogates

In this subsection, we propose to construct piecewise linear losses by choosing AY (πk)+B
Y (πk)·z to

be the tangent lines to the logistic loss at Y · log( πk
1−πk

). A similar approach was used by Grandvalet

et al. (2009) to construct a piecewise linear loss for the rejection-option problem. The following

Proposition states that piecewise linear loss functions constructed using this approach satisfy the

conditions of Theorem 4.3 for any choice of K and π.

90



Proposition 4.1. For fixed K and π, let φY be the piecewise linear loss constructed from the

tangent lines to the logistic loss such that AY (π) and BY (π) are defined as:

A+(π) = A−(1− π) = −π log(π)− (1− π) log(1− π),

B+(π) = B−(1− π) = −(1− π).

Then, φY is a minimally consistent piecewise linear surrogate for π satisfying the conditions of

Theorem 4.3.

In Figure 4.5, we illustrate the logistic-derived piecewise linear loss for π = {0.2, 0.4, 0.6}. The

logistic loss is shown by dotted lines, with the piecewise linear surrogate functions for the positive

and negative classes shown in solid black. Thin vertical lines are used to denote the tangent

points where the losses are equal, and thin dashed lines give the tangent lines to the logistic

loss corresponding to AY (πk) + BY (πk) · yf(x) for πk ∈ π. Additionally, the non-differentiable

hinge points are highlighted by circles. While the loss functions appear roughly equivalent within

the region of the tangent points, the difference is non-negligible above and below these bounds.

Notably, the piecewise linear losses diverge slower as yf(x) tends to −∞, suggesting the losses

may be more robust to outliers (Liu et al., 2011). Additionally, the logistic derived loss functions

provide a natural spectrum for comparing the impact of targeting different partitions, Ωπ, on the

same dataset. We explore these issues using simulation in Section 4.6.

4.4 Statistical Properties

We next derive statistical properties for surrogate loss functions to the theoretical loss, ℓYπ . In

Subsection 4.4.1, we first show that the excess risk with respect to ℓYπ may be bounded by the

excess risk of a consistent surrogate loss. Then, in Subsection 4.4.2, we use these risk bounds

to derive convergence rates for the empirical minimizer of a surrogate loss to the Bayes optimal

rule. Our results generalize and extend those derived for the particular case of rejection-option

classification in Herbei and Wegkamp (2006); Bartlett and Wegkamp (2008); Yuan and Wegkamp

(2010), to an arbitrary number of boundaries.
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4.4.1 Excess Risk Bounds

For a rule g ∈ Gπ, we define the ℓYπ -risk of g to be the expected loss of the rule, denoted by R(g) =

EY,X{ℓYπ (g(X))}. In statistical machine learning, a natural measure of the performance of a rule

is its excess risk: ∆R(g) = R(g)−R(W ∗
π), where R(W ∗

π) = ming∈Gπ R(g) such that ∆R(g) ≥ 0. In

this subsection, we derive convergence rates on ∆R(g) for rules obtained using consistent surrogate

loss functions. For a surrogate loss ϕY , we similarly define the ϕ-risk and excess ϕ-risk over the

class of margin functions, F , to be Q(f) = EY,X{ϕY (Y f(X))} and ∆Q(f) = Q(f) − Q(f∗ϕ). To

obtain convergence rates on ∆R(g), we first show that under certain conditions, the excess ϕ-risk

of a margin function f can be used to bound the corresponding excess ℓYπ -risk of g = C(f ; δ).

Using this bound, we then derive rates of convergence on ∆R(g) through rates of convergence on

∆Q(g). The following additional notation is used to denote excess conditional ℓYπ -risk and excess

conditional ϕ-risk:

Rp(g) := EY |X{ℓYπ (g(X))}, Qp(f) := EY |X{ϕY (Y f(X))},

∆Rp(g) := Rp(g)−Rp(W
∗
π), ∆Qp(f) := Qp(f)−Qp(f

∗
ϕ).

In the following results, we provide conditions under which there exists some function, ρ : R →

R, such that ρ(∆Q(f)) can be used to bound the corresponding ∆R(C(f ; δ)).

Theorem 4.4. Let ϕY be a consistent surrogate loss for ℓYπ satisfying the conditions for Theorem 4.2

at δ. Furthermore, suppose there exist constants C > 0 and s ≥ 1 such that for all k,

|p(X)− πk|s ≤ Cs∆Qp(δk). (4.13)

Then,

∆R
(
C(f ; δ)

)
≤ C[2 ·∆Q(f)]1/s.

The above bound may be tightened as in Yuan and Wegkamp (2010) by the additional assump-

tion:

P{|p(X)− πk| ≤ t} ≤ Atα, k = 1, . . . ,K, (4.14)
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for some α ≥ 0, A ≥ 1. The bound (4.14) generalizes the margin condition introduced by Mammen

and Tsybakov (1999) and used in Herbei and Wegkamp (2006).

Theorem 4.5. In addition to the assumptions of Theorem 4.4, assume that there exists α ≥ 0 and

A ≥ 1, such that (4.14) holds for t ∈ [0,mink{πk −πk−1, πk+1−πk}). Then, for some D depending

on A,α,

∆R
(
C(f ; δ)

)
≤ D ·∆Q(f)1/(s+β−βs)

where β = α/(1 + α).

Note that when α = 0, Theorem 4.5 provides the same bound as Theorem 4.4. However, as

α→ ∞, the bound becomes tighter, with 1/(s+β−βs) limiting to 1. While neither result depends

explicitly on π, Theorem 4.5 suggests that tighter bounds may be achieved by only targeting π

such that the margin condition is satisfied with large α. This reiterates the motivating intuition

for our proposed framework, in which we formalize a class of learning problems for settings where

more information than hard classification is desired, but soft classification may not be appropriate.

Corresponding values of C and s for the exponential, logistic, squared hinge and DWD losses,

are provided in Corollaries 13–16 of Yuan and Wegkamp (2010). In the following result, we derive

values of C and s for our class of minimally consistent piecewise linear surrogates presented in

Subsection 4.3.2.

Corollary 4.1. For minimally consistent piecewise linear loss, φY , defined as in (4.11) and (4.12)

and satisfying the conditions of Theorem 4.3 for boundaries π, the inequality (4.13) is satisfied by

s = 1 and

C = max
{
− πk
B−(πk) · |δk −Hj |

: k = 1, . . . ,K; j = 0, . . . ,K

}
,

where H0 is used to denote A−(π1)/B
−(π1), Hj to denote H+(πj , πj+1) for j = 2, . . . ,K − 1, and

HK to denote A+(πK)/B+(πK).

Consider now a sequence of margin functions, {fn}n≥1. By Theorems 4.4 and 4.5, to show that

the excess ℓYπ -risk, ∆R(C(fn; δ)), converges to 0 as n→ ∞, it suffices to show that ∆Q(fn) → 0 as

n → ∞. In the following results, we derive convergence rates for ∆R
(
C(·; δ)

)
for the sequence of

functions, {f̂n}n≥1, where f̂n is used to denote the empirical minimizer of the surrogate loss over a

training set of size n.
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4.4.2 Rates of Convergence

In this subsection, we derive convergence results for two classes of surrogate loss functions separately.

We first consider Lipschitz continuous and differentiable surrogate loss functions which satisfy

a modulus of convexity condition specified below. Examples of such loss functions include the

exponential, logistic, squared hinge and DWD losses. We then separately consider the class of

piecewise linear surrogates described in Section 4.3.

Let ϕY denote a Lipschitz continuous and differentiable surrogate loss function. Assume that

the corresponding ϕ-risk, Q(·), has modulus of convexity,

δ(ϵ) = inf
{
Q(f) +Q(g)

2
−Q

(
f + g

2

)
: E[(f − g)2(X)] ≥ ϵ2

}
(4.15)

satisfying δ(ϵ) > cϵ2 for some c > 0. Furthermore, let L < ∞ denote the Lipschitz constant, such

that |ϕy(x) − ϕy(x′)| ≤ L|x − x′| for all x,x′ ∈ R and y = +1,−1. Letting FB denote the class

of uniformly bounded functions such that |f | ≤ B for all f ∈ FB, we use Nn = N( 1n , L∞,FB) to

denote the cardinality of the set of closed balls with radius 1
n in L∞ needed to cover FB. Finally, as

stated above, let f̂n = argminf∈FB

∑n
i=1 ϕ

yi(yif(xi)) denote the empirical minimizer of ϕY over the

training set {(xi, yi)}ni=1. For the following corollary, we make use of Theorem 18 from Yuan and

Wegkamp (2010) which provides a bound on the expected estimation error, Q(f̂n)− inff∈FB
Q(f),

for consistent loss functions satisfying the modulus of convexity condition stated above. Combining

Theorem 18 of Yuan and Wegkamp (2010) with the excess risk bounds of Theorems 4.4 and 4.5,

we obtain the following result.

Corollary 4.2. If ϕY satisfies the assumptions of Theorems 4.2 and 4.4, and has modulus of

convexity (4.15) satisfying δ(ϵ) > cϵ2 for some c > 0, then with probability at least 1− γ,

∆R
(
C(f̂n; δ)

)
≤ C · 21/s

{
inf

f∈FB

∆Q(f) +
3L

n
+ 8

(
L2

2c
+
LB

3

)
log(Nn/γ)

n

}1/s

.

Furthermore, if the generalized margin condition of Theorem 4.5 holds, then with probability at least

1− γ,

∆R
(
C(f̂n; δ)

)
≤ D

{
inf

f∈FB

∆Q(f) +
3L

n
+ 8

(
L2

2c
+
LB

3

)
log(Nn/γ)

n

}1/(s+β−βs)

, (4.16)

for constants C,D > 0 defined as in Theorems 4.4 and 4.5.

94



From the bound on excess risk obtained in Corollary 4.2, corresponding rates of convergence

can be derived based on the cardinality, Nn, of the class of functions, FB.

Due to the non-differentiability of the loss at hinge points, our class of piecewise linear surrogates

do not satisfy the modulus of convexity condition (4.15). The following theorem provides separate

convergence results for our class of minimally consistent piecewise linear surrogates. Again, we use

FB to denote a class of uniformly bounded functions, and let f̂n = argminf∈FB

∑n
i=1 φ

yi(yif(xi))

denote the empirical minimizer of φY .

Theorem 4.6. If φY is a minimally consistent piecewise linear loss satisfying the conditions of

Theorem 4.3, satisfying the generalized margin condition of Theorem 4.5, then with probability at

least 1− γ,

∆Q(f̂n) ≤
3L

n
+

4LB

3
·G(γ) +

((
4LB

3
·G(γ)

)2

+ 8 ·B′ ·G(γ)

)1/2

,

where G(γ) = log(Nn/γ)/n, and B′ > 0 is some constant depending on B, φY , and margin constants

A,α.

Combining Theorems 4.4, 4.5, and 4.6, we obtain the following corollary.

Corollary 4.3. If φY is a minimally consistent piecewise linear loss satisfying the assumptions of

Theorems 4.2, 4.4, and 4.5, then with probability at least 1− γ,

∆R
(
C(f̂n; δ)

)
≤ D

3L

n
+

4LB

3
·G(γ) +

((
4LB

3
·G(γ)

)2

+ 8 ·B′ ·G(γ)

)1/2


1/(s+β−βs)

,

(4.17)

for constants C,D > 0 defined as in Theorems 4.4 and 4.5.

As in Theorem 4.5, while the convergence rate of Theorem 4.6 does not depend on π explicitly,

it does depend on the parameters of the margin condition (4.14). Therefore, Theorem 4.6 further

suggests the advantage of targeting π for which the data show strong separation with large α.

Furthermore, in contrast to Theorem 18 of Yuan and Wegkamp (2010) which provides a bound on

the expected estimation error, Theorem 4.6 bounds the total φY -risk, including both the expected

estimation error, and expected approximation error of the class of functions FB. As a result, while
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the bounds in Corollary 4.2 include the separate approximation error term, inff∈FB
∆Q(f), the

piecewise linear bound in Corollary 4.3, does not.

Based on the bounds in (4.16) and (4.17), rates of convergence can be obtained as in Yuan and

Wegkamp (2010). As an example, we consider the case when FB is the class of linear combinations

of decision stumps, fλ,

fλ(x) =

M∑
j=1

λjfj(x)

where
∑

j |λj | ≤ B, and |fj | < 1. By (4.16) and (4.17), the same rate, (M logn/n)1/(s+β−βs), can

be obtained as in Yuan and Wegkamp (2010) for both classes of surrogate losses considered above.

4.5 Computational Algorithm

For a piecewise linear surrogate, φY , and convex penalty, J(f), the objective (4.1) is a non-

differentiable convex problem. Several approaches have been proposed for solving the similar non-

differentiable and convex SVM objective, most commonly by reformulating (4.1) as a quadratic

program (QP) with 2n constraints. The penalized objective (4.1) with φY may also be formulated

as a QP with (K+1)n constraints. However, as with the SVM problem, the complexity of the prob-

lem grows almost cubically with the number of constraints, making the problem computationally

intensive for moderately large K and n (Bottou and Lin, 2007). We therefore propose a projected

sub-gradient descent algorithm similar to the PEGASOS algorithm (Shalev-Shwartz et al., 2010).

We first rewrite (4.1) with piecewise linear surrogate, φY defined as in (4.11) and (4.12) as:

min
h,b

1

n

n∑
i=1

(
max

k=1,...,K
{Ayi(πk) +Byi(πk) · yi(h(xi) + b)}

)
+
+
λ

2
∥h∥2H, (4.18)

where (z)+ = max{0, z}, and H is some Reproducing Kernel Hilbert Space (RKHS) with norm

∥ · ∥H and corresponding kernel function K : X × X → R. Commonly, the margin function is

formulated with a non-penalized intercept parameter, b. A more complete review of RKHS may

be found in Aronszajn (1950) and Wahba (1999). In margin-based learning, kernel methods are

commonly used to estimate non-linear classification boundaries. In the case of linear learning, i.e.
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h(x) = ⟨w,x⟩ for w ∈ Rp, the penalty ∥h∥2H reduces to ∥w∥2 and (4.18) may be written as:

min
w,b

1

n

n∑
i=1

(
max

k=1,...,K
{Ayi(πk) +Byi(πk) · yi(⟨w,xi⟩+ b)}

)
+
+
λ

2
∥w∥2.

We next describe our iterative algorithm for the linear learning setting. Let w(m) and b(m) denote

the estimated parameters at the m-th iteration. Furthermore, at each iteration, let B∗
i denote the

sub-gradient of φyi at ⟨w(m),xi⟩ + b(m) for i = 1, . . . , n. Using a decreasing step-size parameter,

ηm = (λm)−1, we iterate the following updates until w(m) and b(m) converge:

1. w(m) = w(m−1) + ηm( 1n
∑

iB
∗
i yixi − λw(m−1)),

2. b(m) = b(m−1) + ηm( 1n
∑

iB
∗
i yi),

3. [w(m), b(m)] = min{1, λ−1/2

∥[w(m),b(m)]∥}[w
(m), b(m)],

where B∗
i is used to denote the sub-gradient of φyi at yi(⟨xi,w⟩ + b). The final projection step is

included to ensure ∥[w(m), b(m)]∥2 ≤ λ−1 at each iteration (Calamai and Moré, 1987; Shalev-Shwartz

et al., 2010). In the following section, we apply our projected sub-gradient descent algorithm to

simulated datasets to illustrate the utility of our class of problems.

4.6 Simulations

In this section, we use simulations to illustrate the performance achieved by targeting different

binary learning problems. Namely, we compare the performance of several minimal consistent

piecewise linear losses against the standard logistic classifier, when the underlying conditional

class probability, p(X), is piecewise constant. Piecewise linear loss functions are derived from the

logistic loss as described in Section 4.3.3, and the sets of boundaries, δ, are chosen by the tangent

points to the logistic loss. In each simulation, we consider piecewise linear losses with π1 = {1/2},

π2 = {1/3, 2/3}, and π3 = {1/4, 2/4, 3/4}. All methods are tuned over a grid of penalty parameters

λ ∈ {2−15, 2−14, . . . , 210}, using training and tuning sets of 100 observations each. Piecewise linear

classifiers and the logistic classifier are tuned with respect to the correspond theoretical loss (4.7)

and likelihood function, respectively. The performance of each estimated model is evaluated using

a test set of 10,000 observations. Each simulation was replicated 100 times.
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Figure 4.6: (A) Sample dataset of 1000 observations drawn from the generating distribution for Setting 1.2.
The two Bayes optimal boundaries separating the three regions of constant p(X) are shown with black lines.
(B) Comparison of the performance of the piecewise linear and logistic classifiers for the three settings of
Setting 1 across varying dimension. In each panel, the median loss and standard error over 100 replications
is shown along with the Bayes minimal loss in black.

4.6.1 Setting 1

In this setting, data are simulated uniformly from [−8, 8]× [−1, 1]p−1 for p = 2, 10, 50, subject to a

random rotation in the p-dimensional space. We consider three variations of this setting, in which

the data were simulated with underlying conditional class probability, defined with respect to the

sampling space prior to rotation:

1.1 p(X) = 1
4I{x1 ∈ [−8, 0)}+ 3

4I{x1 ∈ [0, 8]},

1.2 p(X) = 1
6I{x1 ∈ [−8,−8

3)}+
3
6I{x1 ∈ [−8

3 ,
8
3)}+

5
6I{x1 ∈ [83 , 8]},

1.3 p(X) = 1
8I{x1 ∈ [−8,−4)}+ 3

8I{x1 ∈ [−4, 0)}+ 5
8I{x1 ∈ [0, 4)}+ 7

8I{x1 ∈ [4, 8]}.

Settings 1.1, 1.2, and 1.3 have one, two and three natural boundaries due to the piecewise constant

form of p(X). In Figure 4.6A, we show 1000 observations drawn from Setting 1.2, with observations

from the positive and negative class shown in orange and green. The Bayes optimal boundaries

are also shown in black. For Settings 1.1, 1.2, and 1.3, we use the piecewise linear losses with

boundaries at π1, π2, and π3, respectively. In each setting, the performance of the piecewise linear

and logistic classifiers is evaluated using the theoretical loss for boundaries at π1, π2, and π3. In

98



●

●

●

●●●

●●●

●●●
●

●

●

●●●

●●●

●●●

●

●

●

●●●

●●●

●●●

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

sim 2.1 (K = 2) sim 2.2 (K = 2) sim 2.3 (K = 3)

Method

● Piecewise

Logistic

2 10 50 2 10 50 2 10 50

Dimension
G

e
n

e
ra

li
ze

d
 L

o
ss

B

x
1

x
2

A sim 2.3 (K = 3) example

−4

−2

0

2

4

−4 −2 0 2 4

Class label

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

● +1

×

×

×

×

×
×

×

×

×
×

×

××

×

× ×

×

×
×

×

×

××

×

×

×

×

×

×

×

×
×

×

××

×

×

×
×

×
×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

× ×

×

×

××
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
××

×

×

×
×

×
×

×

×

××

×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×
×

××

×

××

×

×

×

×

×

×

×

×
×

×

×

×

×
×
×

×

×

×

×

×

×
×

×

×

××

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

× ×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

××

×

× ×

×

×

×
×

×

×

×

×

×

×

× ×

×

××

×

×

×

×

×

×

×

×

×
×

×

×

× ×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×
×

×

×

×
×

×

×

××
×

×

×

× ×
×

×

××

×

×
×

×

×
×

×

×

×

×

×

×

×
× ×

×

×

×

×× ×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

× ××

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

× ××

× ×
×

×

×
×

×

×

×

×

×

×

×

×

×

×

× ×

×

× ×

×
×

×

×

×

×
×

×

×

×

×

×

×
××

×
×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

×

×

×
×
×
×

×

×
×

×

×

×

× ×
×

×

×

× ×
×

×

×

×

×
×

×

× × ××

×

×

×

×
×

×

×

×

×

×

×

×

×
×

×
×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

× × −1
x

x

x

x

x

x

x

x

x

x

Figure 4.7: (A) Sample dataset of 1000 observations drawn from the generating distribution for Setting 2.3.
The three Bayes optimal boundaries separating the four regions of constant p(X) are shown with black lines.
(B) Comparison of the performance of the piecewise linear and logistic classifiers for the three settings of
Setting 2 across varying dimension. In each panel, the median loss and standard error over 100 replications
is shown along with the Bayes minimal loss in black.

these simulations, we aim to illustrate the advantage of minimizing and tuning with respect to an

appropriate theoretical loss, which matches the underlying form of the data.

The results are shown in Figure 4.6B, along with the Bayes minimal loss, which provides a

lower bound on the theoretical loss in each setting. In all settings, the piecewise linear classifier

outperforms the logistic classifier, with the improvement decreasing as the number of boundaries,

K increases. This makes intuitive sense, as the piecewise linear loss converges to the logistic loss

as K → ∞. The most significant improvement is seen in Setting 1.1, in which the piecewise linear

classifier and theoretical loss correspond to the standard SVM and misclassification error. These

results confirm previous results highlighting the advantage of hard classifiers over soft classifiers

when the underlying p(X) is piecewise constant (Liu et al., 2011). Furthermore, the complete set

of results illustrates the transition of this behavior as the number of boundaries increases.

4.6.2 Setting 2

In Setting 1, the piecewise constant regions of p(X) were of equal size. In our second set of simu-

lations, we consider unequally spaced conditional class probabilities. Observations were uniformly

sampled over [−4, 4]× [−1, 1]p−1, for p = 2, 10, 50, again subject to a random rotation. The follow-
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ing conditional class probabilities were considered, again, with respect to the sampling space prior

to rotation:

2.1 p(X) = 1
6I{x1 ∈ [−4,−0.6)}+ 3

6I{x1 ∈ [−0.6, 0.6)}+ 5
6I{x1 ∈ [0.6, 4]},

2.2 p(X) = 1
6I{x1 ∈ [−4,−2)}+ 3

6I{x1 ∈ [−2, 0)}+ 5
6I{x1 ∈ [0, 4]},

2.3 p(X) = 1
8I{x1 ∈ [−4,−0.8)}+ 3

8I{x1 ∈ [−0.8, 0)}+ 5
8I{x1 ∈ [0, 0.8)}+ 7

8I{x1 ∈ [0.8, 4]}.

In Settings 2.1 and 2.3, we consider p(X) with heavy tails, and in Setting 2.2, we consider the

case with asymmetric p(X). A sample of 1000 observations drawn from Setting 2.3 is shown in

Figure 4.7A, with the Bayes optimal boundaries in black. For Settings 2.1, 2.2, and 2.3, we use the

piecewise linear losses with boundaries at π2, π2, and π3, respectively. The performance of the

piecewise linear and logistic classifiers is again evaluated using the corresponding theoretical loss

function. Simulation results are shown in Figure 4.7B. As in Setting 1, the piecewise linear classifier

outperforms the logistic classifier in all cases. Again, the improvement is greater in Settings 2.1

and 2.2 than in Setting 2.3, as the piecewise linear loss converges to the logistic loss with increasing

K.

4.7 Real Data Analysis

In this section, we apply the proposed interval estimation procedure to a MRI dataset of healthy

normal control (NC) and early Alzheimer’s disease (AD) subjects. Data were obtained from the

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 by the National Institute

on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the

Food and Drug Administration (FDA), private pharmaceutical companies and non-profit organi-

zations as a $60 million, 5-year public-private partnership.

The dataset we use consists of 93 MRI features measured for 225 NC and 186 AD subjects,

and was processed as described in Yu et al. (2014). As in Section 4.6, the logistic-derived piecewise

linear loss is used to target the conditional class probability of AD at π = {1/4, 2/4, 3/4}. Two-

fold cross validation is used to determine the optimal λ over {2−15, 2−14, . . . , 25}. The first two

principal components (PCs) of the 411 NC and AD subjects are shown in Figure 4.8A, along with
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Figure 4.8: Analysis of ADNI MRI dataset with π = {0.25, 0.5, 0.75}. (A) Scatterplot of first two PCs for
AD and NC subjects colored by estimated interval. (B) Density plots of predicted f̂(x) for AD, NC, and
two intermediary subject groups, sMCI and pMCI. Corresponding interval cutoffs are shown with vertical
lines.

the estimated interval for each subject. Interestingly, the four distinct probability groups appear

to separate along the first PC direction.

In addition to NC and AD subjects, the dataset also includes subjects with mild cognitive

impairment (MCI), further classified as either progressive MCI (pMCI, 167 subjects) or stable

MCI (sMCI, 226 subjects), depending on whether or not the subject progressed to develop AD

during the study. The sMCI and pMCI may be considered as intermediary states between the NC

and AD subjects. As such, in Figure 4.8B, we show the distribution of margin values, f̂(x), for

NC, sMCI, pMCI, and AD subjects to investigate the transition between the four distinct groups.

The corresponding interval boundaries are shown by vertical lines. Interestingly, while not well-

differentiated, the four groups appear to peak within each of the four intervals, with the densities

shifting in the expected order. Overall, our method appears to appropriately divide the subject

according to the severity of the disease.

4.8 Discussion

Supervised learning tasks with a discrete class label are commonly encountered in practice. Sev-

eral problems have been formally defined and studied within this context, including hard, soft,

and rejection-option classification. In this chapter, we introduce a unified framework of binary
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learning tasks targeting partial or complete estimation of the conditional class probability, p(X),

which encompassing these problems. In contrast to previous frameworks connecting hard and soft

classification, our approach spans a space of learning problems, rather than specific loss functions

or classification methods. Our approach thus provides a unique perspective to study the transition

between hard and soft classification.

We formalize our family of binary learning problems through a unified theoretical loss (4.7), a

corresponding margin based relaxation (4.9), and a proposed class of minimally consistent piecewise

linear surrogates. Simulation studies using the class of piecewise linear loss functions reinforce

previous results on hard and soft classification, and illustrate the transitional behavior between the

class of problems. Finally, an application of our interval estimation approach to a MRI dataset

from the ADNI study further illustrates the utility of our proposed class of problems.

4.9 Proofs

4.9.1 Proof of Theorem 4.1

Let π = {π1, . . . , πK} for some K ≥ 1 such that 0 < π1 < . . . < πK < 1. Furthermore, let

h ∈ {0, . . . ,K} denote the index for some predicted ωh ∈ Ωπ. Then,

EY |X
{
ℓYπ (ωh)

}
= p(X) · ℓ+π(ωh) + (1− p(X)) · ℓ−π(ωh).

∝ p(X)

K+1∑
k=h+1

(1− πk) + (1− p(X))

h∑
k=1

πk,

Letting π0 = 0, πK+1 = 1, we can express the above as:

EY |X
{
ℓYπ (ωh)

}
=

K+1∑
k=0

{
p(X)(1− πk) · I{k>h} + πk(1− p(X)) · I{k≤h}

}
.

The sum is minimized by choosing h such that p(X)(1 − πk) ≥ πk(1 − p(X)) for all k ≤ h

and p(X)(1 − πk) ≤ πk(1 − p(X)) for all k > h. Thus, the optimal solution is given by h∗ =

argmaxk{πk < p(X)}. The equivalence between ωh∗ and
∑K

k=0 ωk · I{p(X) ∈ ωk} is immediate

from the fact that p(X) ∈ (πh∗ , πh∗+1] = ωh∗ , and the additional assumption that p(X) ̸= πk a.s.

for all k.
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4.9.2 Proof of Theorem 4.2

Let π and δ be appropriately defined boundaries in (0, 1) and R. Note that surrogate losses, ϕ+,

ϕ− are consistent for boundaries at π with δ, i.e. π, δ-consistent, if and only if they are πk, δk-

consistent for each k separately. Thus, conditions for π, δ-consistency are simply the union of the

conditions for πk, δk-consistency. Necessary and sufficient conditions for ϕY to be πk, δk-consistent

were provided by Theorem 1 of [12].

4.9.3 Proof of Theorem 4.3

Let π be an appropriately defined set of boundaries in (0, 1). Assume φY to be defined as in (4.11)

and (4.12) such that (C1)–(C3) are satisfied. We wish to show that for all πk ∈ π, there exists some

δk such that (4.10) is satisfied, and furthermore, that there does not exist any δ such that (4.10) is

satisfied for π ∈ (0, 1) \π. Equivalently, we wish to show that φ−′(x)/(φ−′(x) +φ+′(x)) only takes

values in π over the set of x such that φ−′(x) < 0 and φ+′(x) < 0 are defined. Note that φ+′ and

φ−′ are only undefined at the hinge points, HY (πk, πk+1), A−(π1)/B
−(π1), and A+(πK)/B+(πK).

By (C2), the set of possible φ+′, φ−′ pairs are given by:

φ+′: B+(π1) B+(π1) · · · B+(πK) 0

φ−′: 0 B−(π1) · · · B−(πK) B−(πK)

Excluding the cases when φ+′(x) = 0 or φ−′(x) = 0, the set of possible consistent boundaries

satisfying (4.10) are given by:

φ−′(x)

φ−′(x) + φ+′(x)
=

B−′(πk)

B−′(πk) +B+′(πk)
= πk for k = 1, . . . ,K,

where the final equality is given by (C3).

4.9.4 Proof of Proposition 4.1

Let π be an appropriately defined set of boundaries in (0, 1). We wish to show that (C1)–(C3) of

Theorem 4.3 are satisfied for A+(π) = A−(1 − π) = −π log(π) − (1 − π) log(1 − π), and B+(π) =

B−(1− π) = −(1− π).

Trivially, (C1) is satisfied, as B+(π) = π − 1 and B−(π) = −π are non-decreasing and non-

increasing, respectively, in π. To show that (C2) is satisfied, we derive the hinge points for the
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positive and negative class losses:

H+(π, π′) =
A+(π)−A+(π′)

B+(π′)−B+(π)
=
A+(π)−A+(π′)

π′ − π

H−(π, π′) =
A−(π)−A−(π′)

B−(π′)−B−(π)
= −A

+(π)−A+(π′)

π′ − π
,

where the final equality is obtained by noting A+(π) = A+(1 − π). The first equality of (C2) is

clearly satisfied by the above derivations. We next show that the remaining three inequalities of

(C2) are also satisfied. Let k ∈ {2, . . . ,K − 1}. By the concavity of A+(π):

H+(πk−1, πk) =
A+(πk−1)−A+(πk)

πk − πk−1

= −A
+(πk)−A+(πk−1)

πk − πk−1

< −(A+)′(πk)

< −A
+(πk+1)−A+(πk)

πk+1 − πk
= H+(πk, πk+1),

Similarly, by the convexity of A−(π) and the fact that limπ→0A
+(π) = limπ→1A

+(π) = 0, we have:

A−(π1)

B−(π1)
= −A

−(π1)− limπ→0A
−(π)

π1 − 0

< −(A−)′(π1)

< −A
−(π1)−A−(π2)

π1 − π2
= H+(π1, π2)

A+(πK)

B+(πK)
= −A

+(πK)− limπ→1A
+(π)

πK − 1

> −(A+)′(πK)

> −A
+(πK−1)−A+(πK)

πK−1 − πK
= H−(πK−1, πK).

Thus (C2) is satisfied. Finally, (C3) holds, since for any k = 1, . . . ,K:

B−(πk)

B−(πk) +B+(πk)
=

−πk
−πk − (1− πk)

= πk.
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4.9.5 Proof of Theorem 4.4

Let ϕY be a consistent surrogate loss for appropriately defined boundaries π in (0, 1) at δ. First,

note that the excess condition ϕ-risk for a rule g ∈ G may be written as:

Rp(g(x)) =
2

K

[
(1− p(x))

∑
k

πkI{g(x) > πk}+ p(x)
∑
k

(1− πk)I{g(x) ≤ πk}
]
.

Consider a candidate rule g ∈ G, and recall the Bayes optimal rule over G, W ∗
π(x), defined in

Theorem 4.1. Suppose that x ∈ X is such that g(x) > W ∗
π(x). Then, letting

K =


{k : g(X) ≤ πk < W ∗

π(X)} if W ∗
π(X) > g(X)

{k :W ∗
π(X) ≤ πk < g(X)} if W ∗

π(X) < g(X)

∅ otherwise

,

the excess condition ϕ-risk may be expressed as:

∆Rp(g) =
2

K

[
(1− p(x))

∑
k

πkI{πk :W ∗
π(x) ≤ πk < g(x)}

− p(x)
∑
k

(1− πk)I{πk :W ∗
π(x) ≤ πk < g(x)}

]
=

2

K

∑
K

[
(1− p(x))πk − p(x)(1− πk)

]
=

2

K

∑
K

[
πk − p(x)

]
.

Similarly, for g(x) < W ∗
π(x), ∆Rp(g) = 2

K

∑
K
[
p(x) − πk

]
. If g(x) = W ∗

π(x), we have that

∆Rp(g) = 0, such that:

∆Rp(g) =
2
K

∑
K

∣∣p(x)− πk
∣∣,

for all x ∈ X .

By the stated assumptions, for g(x) = C(f(x); δ) ∈ G, we immediately have the following

result:

(∆Rp(g))
s =

( 2

K

∑
K

|p(X)− πk|
)s

≤ 2

K

∑
K

|p(X)− πk|s
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≤ 2

K
Cs
∑
K

∆Qp(δk)

∆Rp(g) ≤ C
( 2

K

∑
K

∆Qp(δk)
)1/s

.

Since ∆Qp ≥ 0, it suffices to show that
∑

K ∆Qp(δk) ≤ K ·∆Qp(f). Since |K| ≤ K, we complete

the proof by showing ∆Qp(f) ≥ ∆Qp(δk) for all k ∈ K. Without loss of generality, suppose x is

such that g(x) < W ∗
π(x) and let k ∈ K. Note that πk < g(x) is equivalent to δk < f(x). By this

fact and the convexity and consistency of ϕY , the following inequalities hold:

ϕ+(f(x))− ϕ+(δk)

f(x)− δk
≥ ϕ+′(δk)

ϕ−(−f(x))− ϕ−(−δk)
−f(x) + δk

≤ ϕ−′(−δk).

Thus,

Qp(f)−Qp(δk) = p(x)(ϕ+(f(x))− ϕ+(δk)) + (1− p(x))(ϕ−(−f(x))− ϕ−(−δk))

≥ p(x)(f(x)− δk)ϕ
+′(δk)− (1− p(x))(f(x)− δk)ϕ

−′(−δk)

≥ (f(x)− δk)
{
p(x)

(
ϕ+′(δk) + ϕ−′(−δk)

)
− ϕ−′(−δk)

}
≥ (f(x)− δk)

{
p(x)ϕ

−′(−δk)
πk

− ϕ−′(−δk)
}

≥ (f(x)− δk) ϕ
−′(−δk) (p(x)πk

− 1).

Since f(x) − δk > 0, ϕ−′(−δk) < 0, and p(x) < πk, Qp(f) − Qp(δk) ≥ 0. The case when g(x) <

W ∗
π(x) follows similarly, and the proof is complete.

4.9.6 Proof of Theorem 4.5

Let ϕY be a consistent surrogate loss for appropriately defined boundaries π in (0, 1) at δ. Through-

out, we use g = C(f ; δ) to denote the corresponding rule in G for some margin function f ∈ F .

From the proof of Theorem 4.4, we have that:

∆R(g) =
2

K
· E
{∑

K
|p(X)− πk|

}
=

2

K
· E
{ K∑

k=1

|p(X)− πk| · I{k ∈ K}
}

=
2

K
·

K∑
k=1

E
{
|p(X)− πk| · I{k ∈ K}

}
,
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where K is defined as in the proof of Theorem 4.4 (Section 4.9.5). Additionally, note that for fixed

k ∈ {1, . . . ,K}:

E
{
|p(X)− πk| · I{k ∈ K}

}
≥ t · P

{
(k ∈ K) ∩ |p(X)− πk| > t

}
= t · P

{
|p(X)− πk| > t

}
− t · P

{
(k ̸∈ K) ∩ |p(X)− πk| > t

}
≥ t · (1−Atα)− t · P{k ̸∈ K}

= t ·
(
P{k ∈ K} −Atα

)
.

Combining the above inequalities, we have:

∆R(g) ≥ 2t

K
·
( K∑

k=1

P{k ∈ K} −KAtα
)

≥ 2t

K
·
(
P{f ̸= f∗} −KAtα

)
.

Letting t = (P{f ̸=f∗}
2KA )1/α and using β to denote α/(1 + α),

∆R(g) ≥ 2

K
·
(P{f ̸= f∗}

2KA

)1/α
·
(P{f ̸= f∗}

2

)
=

P{f ̸= f∗}(1+α)/α

(2A)1/αK(1+α)/α

P{f ̸= f∗}
K

≤
(
(2A)1/α∆R(g)

)β
.

Now consider,

∆R(g) =
2

K
·

K∑
k=1

E
(
|p(X)− πk| · I{k ∈ K}

)
=

2

K
·

K∑
k=1

E
(
|p(X)− πk| · I{k ∈ K} · I{|p(X)− πk| > ϵ}

)
+

2

K
·

K∑
k=1

E
(
|p(X)− πk| · I{k ∈ K} · I{|p(X)− πk| ≤ ϵ}

)
.

Using the inequality: |x| · I{|x| ≥ ϵ} ≤ |x|s · ϵ1−s for s ≥ 1, we have:

∆R(g) ≤ 2

K
·

K∑
k=1

E
(
|p(X)− πk|s · ϵ1−s · I{k ∈ K}

)
+

2ϵ

K
·

K∑
k=1

P{k ∈ K}.

107



From the proof of Thoerem 4.4 (Section 4.9.5), |p(X)−πk|s ≤ Cs∆Qp(δk) ≤ Cs∆Qp(f) for k ∈ K.

Therefore,

∆R(g) ≤ 2ϵ1−sCs∆Q(f) +
2ϵ

K
· P{f ̸= f∗}.

Combining with the previous bound on P{f ̸= f∗},

∆R(g) ≤ 2ϵ1−sCs∆Q(f) + 2ϵ ·
(
(2A)1/α∆R(g)

)β
Further choosing ϵ = ∆R(g)1−β,

∆R(g) ≤ 2∆R(g)(1−β)(1−s)Cs∆Q(f) + 2(2A)1/α∆R(g)

(1− 2(2A)1/α)∆R(g)s+β−sβ ≤ 2Cs∆Q(f)

∆R(g) ≤
( 2Cs

1− 2(2A)1/α

)1/(s+β−sβ)
·∆Q(f)1/(s+β−sβ)

Letting D denote the exponentiated fraction on the right of the inequality,

∆R(g) ≤ D ·∆Q(f)1/(s+β−sβ).

4.9.7 Proof of Corollary 4.1

Let φY be a minimally consistent piecewise linear surrogate loss for appropriately defined boundaries

π in (0, 1) at δ. The φY -optimal margin function, denoted by f∗φ, is given by:

f∗φ(X) = argmin
f

EY |X{φY (Y f(X))}

= argmin
f

{
p(X)φ+(f(X)) + (1− p(X))φ−(−f(X))

}

=



A−(π1)/B
−(π1) if p(X) ∈ [0, π1)

H+(π1, π2) if p(X) ∈ (π1, π2]

· · ·

H+(πK−1, πK) if p(X) ∈ (πK−1, πK ]

A+(πK)/B+(πK) if p(X) ∈ (πK , 1]

.
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For any k ∈ {1, . . . ,K},

∆Qp(δk) = Qp(δk)−Qp(f
∗
φ(X))

= p(X)(φ+(δk)− φ+(f∗φ(X))) + (1− p(X))(φ−(−δk)− φ−(−f∗φ(X)))

= p(X)B+(πk)(δk − f∗φ(X))− (1− p(X))B−(πk)(δk − f∗φ(X))

= p(X)(B+(πk) +B−(πk))(δk − f∗φ(X))−B−(πk)(δk − f∗φ(X))

= p(X)(B−(πk) · π−1
k )(δk − f∗φ(X))−B−(πk)(δk − f∗φ(X))

= B−(πk) · π−1
k · (p(X)− πk)(δk − f∗φ(X)).

Since f∗φ(X) > δk when p(X) > πk, and similarly f∗φ(X) < δk when p(X) < πk, (p(X)− πk)(δk −

f∗φ(X)) ≤ 0 must always hold. Therefore,

∆Qp(δk) = −
B−(πk) · |δk − f∗φ(X)|

πk
· |p(X)− πk|

≥ C−1 · |p(X)− πk|,

where C = max
{
− πk

B−(πk)·|δk−Hj | : k = 1, . . . ,K; j = 0, . . . ,K
}
> 0. Letting s = 1, the desired

bound is achieved.

4.9.8 Proof of Theorem 4.6

Let φY be a minimally consistent piecewise linear surrogate loss for appropriately defined boundaries

π in (0, 1) at δ. We first show that H = {hf (x, y) = φy(yf(x))−φy(yf∗φ(x)) : f ∈ F} is a Bernstein

class of functions, i.e. that there exists some B > 1, β ∈ (0, 1] such that:

E{hf (X, Y )2} ≤ B · E{hf (X, Y )}β.

Then, given that hf is a Bernstein class, we complete the proof by obtaining a tail bound on

Ehf (X, Y )− 2 1
n

∑
i hf (xi, yi). Following the approach of [11], to derive the Bernstein property of

hf , we first show that ∆Qp(f) can be bounded below by a pseudo-norm between f and f∗φ, denoted

ρX(f, f∗φ). Then, we show that E{hf (X, Y )2} can bounded above by E{ρX(f, f∗φ)}, and combine
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the two results to show the Bernstein property of hf . Let ρX(f, f∗φ) be defined as:

ρX(f, f∗φ) =


p(X)|f − f∗φ| if p(X) < π1, f < H0

(1− p(X))|f − f∗φ| if p(X) > πK , f > HK

|f − f∗φ| otherwise

.

Lemma 4.1. For p(X) ∈ [0, 1],

∆Qp(f) ≥ D∗ · min{|p(X)− π1|, |p(X)− πK |, (1− π1), πK} · ρX(f, f∗φ).

Proof. Since Qp(f) is convex, Qp(f) ≥ Qp(f
∗
φ) + r · (f − f∗φ) for any subgradient, r, of Qp(·) at f∗φ.

Since φY is piecewise linear, and f∗φ is as defined above, the set of subgradients are given by:

r =



p(X)B+(π1)

and p(X)B+(π1) + (1− p(X))B−(π1)
for f∗φ = H0

p(X)B+(π1) + (1− p(X))B−(π1)

and p(X)B+(π1) + (1− p(X))B−(π1)
for f∗φ = H1, . . . ,HK−1

(1− p(X))B−(πK)

and p(X)B+(πK) + (1− p(X))B−(πK)
for f∗φ = HK

.

Therefore,

Qp(f) ≥ Qp(f
∗
φ) + r · (f − f∗φ)

∆Qp(f) ≥ r · (f − f∗φ)

≥



(
p(X)B+(π1)

)
·
(
f − f∗φ

)
if p(X) < π1, f < H0(

p(X)B+(π1)− (1− p(X))B−(π1)
)
·
(
f − f∗φ

)
if p(X) < π1, f > H0(

p(X)B+(πk)− (1− p(X))B−(πk)
)
·
(
f − f∗φ

)
if p(X) ∈ [πk, πk+1), f < Hk(

p(X)B+(πk+1)− (1− p(X))B−(πk+1)
)
·
(
f − f∗φ

)
if p(X) ∈ [πk, πk+1), f > Hk(

p(X)B+(πK)− (1− p(X))B−(πK)
)
·
(
f − f∗φ

)
if p(X) > πK , f < HK

(1− p(X))B−(πK) ·
(
f − f∗φ

)
if p(X) > πK , f > HK

.
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Since by definition, B+(π1) ≤ B+(π2) ≤ · · · ≤ B+(πK) and B−(π1) ≥ B−(π2) ≥ · · · ≥ B−(πK),

we have:

−p(X)B+(πk) + (1− p(X))B−(πk) ≥ −p(X)B+(πK) + (1− p(X))B−(πK)

p(X)B+(πk+1)− (1− p(X))B−(πk+1) ≤ p(X)B+(π1)− (1− p(X))B−(π1).

Therefore, the bound on ∆Qp(f) may be rewritten as:

∆Qp(f) ≥



∣∣p(X)B+(π1)
∣∣ · ∣∣f − f∗φ

∣∣ if p(X) < π1, f < H0∣∣p(X)B+(π1)− (1− p(X))B−(π1)
∣∣ · ∣∣f − f∗φ

∣∣ if p(X) < π1, f > H0∣∣p(X)B+(πK)− (1− p(X))B−(πK)
∣∣ · ∣∣f − f∗φ

∣∣ if p(X) > πK , f < HK∣∣(1− p(X))B−(πK)
∣∣ · ∣∣f − f∗φ

∣∣ if p(X) > πK , f > HK

min
{∣∣p(X)B+(π1)− (1− p(X))B−(π1)

∣∣,∣∣p(X)B+(πK)− (1− p(X))B−(πK)
∣∣} · ∣∣f − f∗φ

∣∣ otherwise

.

By the consistency of φY , B−(πk)/(B
+(πk) + B−(πk)) = πk for all k. Thus, letting D∗ =

mink=1,...,K{|B+(πk) +B−(πk)|} > 0, p(X)B+(πk)− (1− p(X))B−(πk) = (p(X)− πk)(B
+(πk) +

B−(πk)) ≥ D∗ · |p(X)− πk|. Therefore,

∆Qp(f) ≥



∣∣B+(π1)
∣∣ · ρX(f, f∗φ) if p(X) < π1, f < H0

D∗ · |p(X)− π1| · ρX(f, f∗φ) if p(X) < π1, f > H0

D∗ · |p(X)− πK | · ρX(f, f∗φ) if p(X) > πK , f < HK∣∣B−(πK)
∣∣ · ρX(f, f∗φ) if p(X) > πK , f > HK

D∗ · min
{
|p(X)− π1|, |p(X)− πK |

}
· ρX(f, f∗φ) otherwise

.

Since |B+(π1)| ≥ D∗ · (1− π1), |B−(πK)| ≥ D∗ · πK , we have for p(X) ∈ [0, 1]:

∆Qp(f) ≥ D∗ · min
{
|p(X)− π1|, |p(X)− πK |, (1− π1), πK

}
· ρX(f, f∗φ).
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Lemma 4.2. If |f | < B for all f ∈ F ,

EY |X{hf (X, Y )2} ≤ L2(B +M) · ρX(f, f∗φ)

for L,M ≥ 0.

Proof. We first decompose the conditional expectation as:

EY |X{hf (X, Y )2} = EY |X

{(
φY (Y f(X))− φY (Y f(X))

)2}
= p(X)

(
φ+(f(X))− φ+(f∗φ(X))

)2
+ (1− p(X))

(
φ−(f(X))− φ−(f∗φ(X))

)2
.

Note that if f(X) ≤ H0 and p(X) ≤ π1, then φ−(f(X)) = 0 and φ−(f∗φ(X)) = 0. Similarly, if

f(X) ≥ HK and p(X) ≥ πK , then φ+(f(X)) = 0 and φ+(f∗φ(X)) = 0. Therefore,

EY |X{hf (X, Y )2} =



p(X)
(
φ+(f(X))− φ+(f∗φ(X))

)2 if f(X) ≤ H0, p(X) ≤ π1

(1− p(X))
(
φ−(f(X))− φ−(f∗φ(X))

)2 if f(X) ≥ HK , p(X) ≥ πK

p(X)
(
φ+(f(X))− φ+(f∗φ(X))

)2
+ (1− p(X))

(
φ−(f(X))− φ−(f∗φ(X))

)2 otherwise

.

Let L = max{B+(π1), B
−(πK)} denote the Lipschitz constant for φY , and let M =

max{|H0|, |HK |} denote the bound on f∗φ, such that |f∗φ(X)| ≤M for all X. Then,

EY |X{hf (X, Y )2} ≤ L2(B +M) · ρX(f, f∗φ),

where ρX is as defined above.

Lemma 4.3. If p(X) satisfies the margin condition (4.14) at π = {π1, . . . , πK} with parameters

A,α, then for any class F of measurable uniformly bounded functions, the class H = {hf (X, Y ) :

f ∈ F} is a Bernstein class with exponent β = α/(1 + α).

Proof. Let E1 denote the event that |p(X)−π| is the minimizer over the set
{
|p(X)−π1|, |p(X)−

πK |, (1− π1), πK
}

, and let E2, E3, E4 similarly denote the corresponding events for |p(X)− πK |,

(1− π1) and πK . Using IE to denote the indicator for event E, by Lemma 4.2 we have:

E{hf (X, Y )} ≥ D∗ · E
{

min{|p(X)− π1|, |p(X)− πK |, (1− π1), πK} · ρX(f, f∗φ)
}
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= D∗ · E
{
ρX(f, f∗) · {IE1 · |p(X)− π1|+ IE2 · |p(X)− πK |

+ IE3 · (1− π1) + IE4 · πK}
}
.

Let tmax = mink=1,...,K+1{πk − πk−1}, where π0 = 0, πK+1 = 1. Given the margin condition, for all

k, there exists some A ≥ 0, α ≥ 0 such that for all t ∈ [0, tmax),

P{|p(X)− πk| ≤ t} ≤ Atα,

for k = 1, . . . ,K. Therefore, letting B and M denote the bounds on f and f∗φ given in the proof of

Lemma 4.2,

E
{
ρX(f, f∗φ) · |p(X)− π1| · IE1

}
≥ t · E

{
ρX(f, f∗φ) · I{|p(X)− π1| > t} · IE1

}
≥ t ·

[
E
{
ρX(f, f∗φ) · IE1

}
− (B +M) ·Atα

]
,

and similarly,

E
{
ρX(f, f∗φ) · |p(X)− πK | · IE2

}
≥ t ·

[
E
{
ρX(f, f∗φ) · IE2

}
− (B +M) ·Atα

]
E
{
ρX(f, f∗φ) · (1− π1) · IE3

}
≥ t ·

[
E
{
ρX(f, f∗φ) · IE3

}
− (B +M) · I{(1− π1) < t, (1− π1) ≤ πK}

]
E
{
ρX(f, f∗φ) · πK · IE4

}
≥ t ·

[
E
{
ρX(f, f∗φ) · IE4

}
− (B +M) · I{πK < t, πK < (1− π1)}

]
.

Assume without loss of generality that πK < (1− π1). Let

t =

(
E
{
ρX(f, f∗φ)

}
C · 2A(B +M)

)1/α

,

where C ≥ max{2, (2AπαK)−1}. Then, since E{ρX(f, f∗φ)} ≤ (B+M), we have t < πK . Combining

the above inequalities, we have:

E{hf (X, Y )} ≥ D∗ · t ·
[
E
{
ρX(f, f∗φ)

}
− (B +M)(2Atα)

]
≥ D∗ ·

(
E
{
ρX(f, f∗φ)

}
C · 2A(B +M)

)1/α [
E{ρX(f, f∗φ)} − C−1E

{
ρX(f, f∗φ)

}]
≥ D∗ ·

(
C − 1

C

)
·
(

1

C · 2A(B +M)

)1/α

· E
{
ρX(f, f∗φ)

}(1+α)/α

E
{
ρX(f, f∗φ)

}
≤
[(

C

C − 1

)
·D∗ · (C · 2A(B +M))1/α

]α/(1+α)

· E{hf (X, Y )}α/(1+α).
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Combining with the result of Lemma 4.2, and noting that E{ρX(f, f∗φ)} = EX{ρX(f, f∗φ)}, we

have:

E
{
hf (X, Y )2

}
= EX

{
EY |X{hf (X, Y )2}

≤ L2(B +M) · EX

{
ρX(f, f∗φ)

}
≤ L2(B +M) ·

[(
C

C − 1

)
·D∗ · (C · 2A(B +M))1/α

]α/(1+α)

· E{hf (X, Y )}α/(1+α),

such that hf is a Bernstein class.

Let B′ and β be defined such that E
{
hf (X, Y )2

}
≤ B′ · E{hf (X, Y )}β. Let f̂n denote the

empirical minimizer in F of φy(yf(x)) over a training sample of size n. We first bound the excess

φ-risk by:

∆Q(f̂n) = E{hf̂n(X, Y )}

= 2
( 1
n

n∑
i=1

h
f̂n
(xi, yi)

)
+
(
E{h

f̂n
(X, Y )} − 2

( 1
n

n∑
i=1

h
f̂n
(xi, yi)

))
≤ sup

f∈FB

(
E{hf (X, Y )} − 2

( 1
n

n∑
i=1

hf (xi, yi)
))
.

Note that,

sup
f∈FB

(
E{hf (X, Y )} − 2

( 1
n

n∑
i=1

hf (xi, yi)
))

≤ 3L

n
+ sup

f∈Fn

(
E{hf (X, Y )} − 2

( 1
n

n∑
i=1

hf (xi, yi)
))
,

where Fn is a minimal 1/n-net of FB. Now applying Bernstein’s inequality,

P
{

sup
f∈Fn

(
E{hf (X, Y )} − 2

( 1
n

n∑
i=1

hf (xi, yi)
))

≥ t
}

≤ Nn · exp
{
−

n(t+ E{hf (X, Y )})2/8
E{hf (X, Y )2}+ (2LB)(t+ E{hf (X, Y )})/6

}
.

Using the fact that hf is a Bernstein class, and noting that for β ∈ [0, 1), zβ ≤ 1 + z for all z > 0,

E{hf (X, Y )2}
t+ E{hf (X, Y )}

≤ B′ ·
E{hf (X, Y )}β

t+ E{hf (X, Y )}
.

≤ B′ ·
1 + E{hf (X, Y )}
t+ E{hf (X, Y )}

≤ B′ · t−1.
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Therefore,

P
{

sup
f∈Fn

(
E{hf (X, Y )} − 2

( 1
n

n∑
i=1

hf (xi, yi)
))

≥ t
}

≤ Nn · exp
{
− n

8
·
(t+ E{hf (X, Y )})

B′ + LB
3

}
≤ Nn · exp

{
− nt

8
·
(B′

t
+
LB

3

)−1}
.

The proof is complete by noting that the necessary bound holds with probability γ for:

t = 4 · LB
3

· log(Nn/γ)

n
+

((
4 · LB

3
· log(Nn/γ)

n

)2

+ 8 ·B′ · log(Nn/γ)

n

)1/2

.
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