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ABSTRACT 
 

KRISTEN KING WHITE:  Investigation of a Novel +ACA BRCA1 Promoter 
Polymorphism and Its Impact on the Breast Cancer Susceptibility Phenotype 

(Under the direction of William B. Coleman, Ph.D.) 
 
 
We identified a +ACA BRCA1 promoter polymorphism located -600bp from the 

BRCA1 exon1a transcriptional start site.  The +ACA insertion creates a consensus 

FAC1 transcriptional repressor binding site (AACAACAC).  We determined the 

frequency of the +ACA allele in 1760 DNA samples from the general population and 

breast disease patients.   We observed a significantly higher allelic frequency of the 

+ACA BRCA1 promoter in African-American cases (27%) compared to African-

American controls (17%, P=0.0005), while no significant difference among 

Caucasian cases and controls were observed (34% versus 37%, P=0.50).   

Furthermore, we observed statistically significant reduction in functional activity in 

the +ACA polymorphic promoter in both the absence and presence of exogeneous 

FAC1 compared to the wild-type BRCA1 promoter.  The results of the study enabled 

expansion of the two-hit model of breast cancer susceptibility to include a FAC1-

mediated BRCA1 silencing in patients that carry the BRCA1 promoter 

polymorphism.   
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INTRODUCTION 

Statistics, Epidemiology and Risk Factors for Breast Cancer 

Second to skin cancer, breast cancer is the most frequently occurring cancer in 

women in the United States.  In 2008, approximately 182,000 new breast cancer 

cases will be diagnosed in the United States (American Cancer Society, 2008a).  

The American Cancer Society estimates that the average lifetime risk for developing 

breast cancer in women is 1:8 (American Cancer Society, 2008a).   In 2008, 40,500 

breast cancer-related deaths are expected to occur in the United States.  Mortality 

associated with breast cancer is the second leading cause of cancer-related deaths, 

second only to lung cancer (American Cancer Society, 2008a).   

Factors that contribute to breast cancer risk include gender, age, genetic 

predispositions, family history, previous history of breast cancer, race,  breast 

density, early age of menses (<12 yrs), late menopause (≥55 yrs), radiation 

exposure at a young age, and diethylstilbestrol (DES) drug exposure in utero 

(American Cancer Society, 2008b).  In addition, certain life-style factors are 

associated with increased breast cancer risk, including  late or no parity, use of birth 

control (exposure to exogenous hormones), hormone replacement therapy 

(exposure to exogenous hormones), not breastfeeding, alcohol consumption (≥1 

drink/day), obesity, and lack of exercise (American Cancer Society, 2008b).  Beyond 

these accepted risk factors, more research is required to investigate 



2 
 

uncertain or controversial associations between breast carcinogenesis and high fat 

diets, environmental pollutants, second-hand tobacco smoke, and night work 

(circadian rhythm changes) (American Cancer Society, 2008b). Other factors 

including use of antiperspirants, wearing underwire bras, abortions/miscarriages, 

active tobacco use, and breast implants have not been found to be directly causally-

related to breast carcinogenesis.  However, some of these factors are closely 

associated with known risk factors (for instance, alcohol consumption and tobacco 

smoke exposure), complicating the discernment of causative factors.  Additionally, 

some potentially contributing factors to breast carcinogenesis (such as breast 

implants) may not have been in common use long enough to assess long-term 

exposure risk (American Cancer Society, 2008b).   

Risk of breast cancer increases with age in a manner similar to other 

malignancies.   The median age of breast cancer diagnosis is 61 years-old and 50% 

of all breast cancers occur in women this age or older (American Cancer Society, 

2007).  The clinical behavior of breast cancer varies considerably between younger 

and older patients.  Five-year survival rates are lower for women who are diagnosed 

with breast cancer before the age of 40 (American Cancer Society, 2007). This 

observation suggests that younger women develop more aggressive forms of breast 

cancer, resulting in a poorer prognosis.  Race-associated discrepancies in breast 

cancer incidence have been observed between Caucasian and African-American 

women.  Caucasian women are more likely to develop breast cancer after the age of 

forty.   However, African-American women have a higher breast cancer incidence 

before 40 years of age and a higher breast cancer mortality rate at all ages 
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(American Cancer Society, 2007).  For the years 2001-2005, breast cancer related 

mortality rates in the United States for Caucasian and African American women 

younger than 50 years were 24 and 34 per 100,000 women, respectively (Rieset al, 

2007).  Furthermore, African-American women diagnosed with breast cancer have a 

lower five year survival rate (77% surviving at 5 years-post diagnosis) compared to 

Caucasian women diagnosed with breast cancer (90% surviving at 5 years-post 

diagnosis) (American Cancer Society, 2007; Rieset al, 2007).  Historically, this race-

related difference in survival was largely attributed to a higher prevalence of more 

aggressive forms of breast cancer (basal subtype) among younger African-American 

women (Carey et al, 2006).  

 

Mechanisms of Breast Carcinogenesis 

Cancer development is a multi-step process through which cells acquire increasingly 

abnormal proliferative and invasive behaviors.  Cancer also represents a unique 

form of genetic disease, characterized by the accumulation of multiple somatic 

mutations in a population of cells undergoing neoplastic transformation (Bishop, 

1991; Lengaueret al, 1998).  Genetic lesions represent an integral part of the 

processes of neoplastic transformation, tumorigenesis, and tumor progression, and 

as such represent potentially valuable markers for cancer detection and staging 

(Mao and Sidransky, 1994; Sidransky, 1995).  Several forms of molecular alteration 

have been described in human cancers, including gene amplifications, deletions, 

insertions, rearrangements, and point mutations (Lengauer et al, 1998).  In many 

cases specific genetic lesions have been identified that are associated with 
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neoplastic transformation and/or tumor progression in a particular tissue or cell type 

(Bishop, 1991).  Statistical analyses of age-specific mortality rates for different forms 

of human cancer predict that multiple mutations in specific target genes are required 

for the genesis and outgrowth of most clinically diagnosable tumors (Renan, 1993).  

In accordance with this prediction, it has been suggested that tumors grow through a 

process of clonal expansion driven by mutation (Loeb and Loeb, 2000), where the 

first mutation leads to limited expansion of progeny of a single cell, and each 

subsequent mutation gives rise to a new clonal outgrowth with greater proliferative 

potential.  The idea that carcinogenesis is a multi-step process is supported by 

morphologic observations of the transitions between premalignant (benign) cell 

growth and malignant tumors.  In colorectal cancer (and some other tumor systems), 

the transition from benign lesion to malignant neoplasm can be easily documented 

and occurs in discernible stages, including benign adenoma, carcinoma in situ, 

invasive carcinoma, and eventually local and distant metastasis (Cohen et al, 1997).  

Moreover, specific genetic alterations have been shown to correlate with each of 

these well defined histopathologic stages of tumor development and progression 

(Kinzler and Vogelstein, 2001).  However, it is important to recognize that it is the 

accumulation of multiple genetic alterations in affected cells, and not necessarily the 

order in which these changes accumulate, that determines tumor formation and 

progression.   

 

Genetic Mechanisms of Breast Carcinogenesis 
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Hereditary Breast Cancer Hereditary breast cancers account for approximately 

10% of all breast cancers (American Cancer Society, 2007; American Cancer 

Society, 2008b; Couch and Weber, 1998).  Several breast cancer susceptibility 

genes have been identified, including BRCA1, BRCA2, p53, and ATM, that are 

mutated in many, but not all, hereditary breast cancer (Chapentier, 2002; Hedenfalk 

et al, 2001). Among these breast cancer susceptibility genes, genetic alterations 

affecting BRCA1 and BRCA2 are most frequently associated with the early-onset 

hereditary breast cancer syndromes (Couch and Weber, 1998).  Annually, BRCA1 

and BRCA2 mutations account for approximately 7280 to 9100 (40-50%) and 5460 

to 7280 (30-40%) of the new cases of hereditary breast cancer, respectively (Couch 

and Weber, 1998). This results in 1820-5460 (10-30%) remaining cases of familial 

breast cancer that are not associated with BRCA1 and BRCA2 mutations.   Rarely, 

some of these familial breast cancer cases can be attributed to syndromes such as 

Li-Fraumeni, Ataxia telangiectasia, Peutz-Jehgers and Cowden that are associated 

with mutations in p53, ATM, STK11/LKB1, or PTEN, respectively (Lacroix, and 

Leclercq, 2005). Given that these cancer syndromes occur rarely and do not always 

involve breast cancer, it is difficult to determine the contributions of these syndromes 

to familial breast cancer incidence. However, the family history and clinical 

presentation of breast cancers related to these syndromes differ significantly from 

those of families with suspected BRCA1 mutations.   

 In the mid-1990’s, BRCA1 was the first tumor suppressor gene to be associated 

with a significant increase in risk for developing familial breast cancer (Friedman et 

al, 1994a; Friedman et al, 1994b; Miki et al, 1994).  BRCA1 was discovered to be 
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mutated among families with multiple members that developed early-onset breast 

and ovarian cancer (Friedman et al, 1994a; Friedman et al, 1994b; Miki et al, 1994).   

BRCA1 mutations are autosomal dominant with high penetrance.  The risk for 

women affected with a BRCA1 mutation results in an 80% chance of developing 

breast cancer before the age of 70, compared to a 12% lifetime risk in women who 

do not have a BRCA1 mutation (American Cancer Society, 2007; American Cancer 

Society, 2008b).  Null mutations of BRCA1 have been shown to be embryonic lethal 

in mice suggesting that this gene plays a significant role during development 

(Hakem et al, 1998).  At least 909 BRCA1 mutations, polymorphisms, and variations 

have been reported (Catteau and Morris, 2002).  The majority of these are 

frameshift, missense, and nonsense mutations that result in the production of a 

truncated protein (Catteau and Morris, 2002).  

While mutations in breast cancer susceptibility genes BRCA1 and BRCA2 

account for the majority of hereditary breast cancers, it is now recognized that non-

BRCA1/2 hereditary breast cancers exist (Hedenfalk et al, 2001; Hedenfalk et al, 

2003; Lacroix and Leclercq, 2005).  This group of patients have been designated 

BRCAx and display all of the characteristics expected of a familial cancer (early age 

of onset, bilaterality, family history), but lack detectable mutations in BRCA1 or 

BRCA2 (Hedenfalk et al, 2001; Hedenfalk et al, 2003; Lacroix and Leclercq 2005).  

Despite a lack of detectable mutation, some BRCAx patients demonstrate loss of 

BRCA1 expression.  While it is possible that an undetected BRCA1 mutation may 

account for a portion of the BRCAx patients that have loss of BRCA1 expression, it 

is plausible that alternative mechanisms may govern the loss of BRCA1 expression 
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in some BRCAx patients.  This suggests that the BRCAx breast cancers that also 

demonstrate loss of BRCA1 expression may have an alternative molecular 

mechanism of BRCA1 loss.  

  

Sporadic Breast Cancer  Sporadic breast cancer accounts for approximately 90% 

of all breast cancer cases (American Cancer Society, 2007; Couch and Weber, 

1998).  In contrast to hereditary breast cancers, BRCA1 mutations are extremely 

rare in sporadic breast cancer (Catteau and Morris, 2002; Futreal et al, 1994; Khoo 

et al, 1999; Merajver et al, 1995; Uhrhammer et al, 2008; van der Looij et al, 2000).  

However, BRCA1 expression is down-regulated or lost in approximately 30% of all 

sporadic breast tumors (Thompson et al, 1995; Wilson et al, 1999; Yoshikawa et al, 

1999).   The molecular mechanisms that account for loss of BRCA1 in sporadic 

breast cancer have not been fully elucidated, but may include an epigenetic 

mechanism in some cases. Frequently, loss of heterozygosity (LOH) affecting 17q21 

occurs in sporadic breast cancer, which accounts for the first hit of BRCA1 loss of 

function (Catteau and Morris, 2002; Cropp et al, 1993; Ford et al, 1994).   

 

Polymorphisms, Polygenes, and Breast Cancer   Polymorphisms occur 

frequently throughout the sequence of human DNA.  Some polymorphisms result in 

an altered protein product which in some cases display altered protein function. 

Polymorphisms have been identified in various genes in breast cancer as well as in 

a range of other pathological processes with an associated risk of disease. 

Polymorphisms that occur in coding regions of genes often produce changes in 
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amino acid sequence that could potentially alter protein function.  Twenty-one 

BRCA1 variants from 50 Japanese breast cancer families were described by 

Kawahara et al. (Kawahara et al, 2004).   Four of the BRCA1 single nucleotide 

polymorphisms (SNP’s) were associated with protein-truncating mutations, not 

previously described (Kawahara et al, 2004).    Of the remaining 17 BRCA1 SNP’s, 

13 were observed in healthy volunteers and discounted, perhaps erroneously, from 

association with increased breast cancer risk (Kawahara et al, 2004).   Of the 

remaining 4 BRCA1 SNP’s that were present only in affected Japanese breast 

cancer families, 2 BRCA1 SNP’s (BRCA1 intron 14, IVS14+14A>G and intron 22, 

IVS22+33A>T) were located at the boundaries between introns and exons.   

However, splicing alterations were not detected in the corresponding BRCA1 mRNA 

(Kawahara et al, 2004).  Lastly, 2 BRCA1 SNP’s [BRCA1 exon 11, G275D (824G>A) 

and exon 3, H41R (122A>G)] were substitutions that resulted in an amino acid 

changes.  Functional assays were not perform in order to evaluate if these amino 

acid changes  generated proteins that were variable compared to wild-type protein, 

due to testing limitations (Kawahara et al, 2004). This study indicates that 

polymorphisms occur frequently in the coding region of BRCA1, which are potentially 

altering protein function and contributing to tumorigenesis in breast cancer.   It has 

been suggested that breast cancer syndromes may actually be heritable through 

multiple gene combinations where each allele carries a low to moderate breast 

cancer risk individually, but in combination, risk of breast carcinogensis may become 

more pronounced.  This concept has been termed the polygenic model for cancer 

susceptibility (Cebrian et al, 2006; Dragani et al, 1996; Pharoah et al, 2004; Pharoah 
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et al, 2008).  Certain polymorphisms, in various genes represent an important 

component of this model of multi-gene breast cancer susceptibility.  

 

Epigenetic Mechanisms of Breast Carcinogenesis 

Hereditary Breast Cancer   In addition to genetic mutation, it is now thought that   

DNA methylation-dependant silencing of the BRCA1 promoter may also contribute to 

a portion of familial breast cancer that is associated with loss of BRCA1 expression.  

Tapia et al. observed that the BRCA1 promoter was hypermethylated in 50% of the 

tumors they sampled (these tumors had been determined to lack BRCA1 and 

BRCA2 mutations) (Tapia et al, 2008).   However, there was a subset of tumors with 

loss of BRCA1 expression that did not demonstrate BRCA1 promoter 

hypermethylation (Tapia et al, 2008).  While a portion of these patients may harbor 

an undetected mutated BRCA1 gene, it is possible that a subset of familial breast 

cancer syndrome patients may be associated with loss of BRCA1 through some 

nonmutational mechanism.   

 

Sporadic Breast Cancer   Several studies have shown that loss of BRCA1 

expression in sporadic breast cancers are frequently associated with DNA 

methylation-dependant epigenetic silencing of the BRCA1 promoter (Biancoet al, 

2000; Catteau et al, 1999; Catteau and Morris, 2002; Dobrovic and Simpfendorfer, 

1997; Esteller et al, 2000; Magdinier et al, 2000; Mancini et al, 1998; Niwa et al, 

2000; Rice et al, 2000).  In these studies, the BRCA1 promoter was found to be 

hypermethylated in 11-33% of the sporadic breast cancers analyzed (Catteau and 
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Morris, 2002).  Like the familial breast cancer syndromes, methylation silencing of 

the BRCA1 promoter appears to contribute to a subset of sporadic breast cancers 

that are characterized by loss of BRCA1 expression.  As with hereditary breast 

cancer syndromes, there remains a subset of sporadic breast cancer patients that 

we do not understand the mechanism of BRCA1 function loss. 

 

Polymorphism, Polygenes, and Breast Cancer Polymorphisms that occur in 

transcriptional control regions (such as gene promoters or enhancers) could result in 

the alteration of transcriptional activator binding sites, introduce aberrant 

transcriptional repressor binding sites, or inhibit cis-acting enhancer elements. A 

study of promoter polymorphisms in genes expressed in the brain found that the 

presence of specific polymorphisms was associated with altered transcriptional 

activity (Buckland et al, 2004).  These investigators characterized polymorphisms in 

8 genes that were associated with significant increases in functional activity 

(Buckland et al, 2004).  This study illustrates that promoter polymorphisms can affect 

the regulation of transcription.  Another study characterized a DNMT3b promoter 

polymorphism (C46359T), which represents a T to C nucleotide change at -149 bp 

from the transcriptional start site (Montgomery et al, 2004).    This polymorphism 

was found to be associated with a marginal increase in breast cancer risk (OR=1.5) 

among subjects of a British cohort (Montgomery et al, 2004).   The Montgomery et 

al. observation of an association between the DNMT3b C allele and breast cancer 

risk conflicts with the results of two additional studies.  Shen et al. observed an 

association of the T allele of DNMT3b with an increased risk of lung cancer (all T 
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allele OR=2) and Wang et al. observed a 30% increase in DNMT3b promoter 

functional activity compared to the C allele in vitro (Shen et al, 2002; Wang et al, 

2004).  The likely consequence of aberrantly increased DNMT3b activity is DNA 

hypermethylation, which is associated with epigenetic gene-silencing.  However, 

there are several possible explanations for the discrepancy between these studies, 

including variable roles of DNMT3b in different cell types or linkage disequilibrium.   

Nevertheless, these studies illustrate that promoter polymorphisms can functionally 

alter promoter activity that confers risk of multiple diseases.   Polymorphic variants 

that dysregulate methylation machinery genes, such as DNMT3b could affect 

methylation status of the BRCA1 promoter or BRCA1 promoter transcriptional 

regulators, resulting in the epigenetic silencing of BRCA1 (Cebrian et al, 2006; Roll 

et al, 2008).  Several BRCA1 promoter polymorphisms have been identified and 

characterized in breast cancer (Catteau et al, 1999; Chan et al, 2008).  Catteau et al. 

reported a C/G BRCA1 promoter polymorphism that was associated by linkage 

disequilibrium with another BRCA1 exon 11 polymorphism where neither 

polymorphism contributed to increased breast cancer risk (Catteau et al, 1999).   

However, they concluded, that the strength of linkage disequilibrium between the 

C/G and exon 11 polymorphisms allowed for the potential use as a screening tool to 

detect LOH (Catteau et al, 1999).  Four BRCA1 promoter polymorphisms were 

discussed by Chan et al.   Notably, they focused on a c.-2265 C/T polymorphism 

that they suggested was associated with a decreased breast cancer risk in Chinese 

women (Chan et al, 2008).   At present, no BRCA1 promoter polymorphisms have 

been reported to be associated with increased breast cancer risk.   
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Molecular Classification of Breast Cancer 

In this era of specialized medicine, classification of breast cancer has been evolving 

rapidly towards better prediction of patient outcome and improved guidance for 

treatment.  The basal breast cancer subtype was first identified using  

immunohistochemistry for cytokeratin proteins that are typically associated with the 

basal cells of the breast, which are located in the cell layer closest  to the basement 

membrane (Wetzels et al, 1989)  More recently, microarray-based gene expression 

studies uncovered a gene expression signature that is associated with basal breast 

cancer (Perou et al, 2000).  These gene expression studies also identified several 

other molecular subtypes characterized by the distinction of estrogen receptor (ER) 

expression status and human epidermal growth factor receptor 2 (Her2) expression 

status (Perou et al, 1999; Perou et al, 2000; Sorlie et al, 2001)   ER-positive 

expressing neoplasms are classified as a luminal subtype and can be further 

subdivided into luminal A and luminal B based on Her2 expression status (negative 

and positive, respectively).  Neoplasms that are negative for ER expression are 

divided into two categories, based on Her2 expression status, basal tumors are Her2 

negative (triple negative) and Her2 expressing tumors are aptly designated the 

Her2+ subtype.  Luminal-type tumors express cytokeratins (CK8/18) that are 

associated with upper layers of more differentiated breast epithelia while basal 

tumors express CK5/6 (Hu et al, 2006; Sorlie et al, 2006).   Based on numbers from 

the Carolina Breast Cancer Study, the distribution of breast cancer subtypes are 

estimated to be: 67% luminal, 20% basal, and 13% Her2 positive (Brenton et al, 
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2005).  Luminal A tumors are associated with the best prognosis for breast cancer 

and represent the most prevalent breast cancer subtype. The basal tumor subtype is 

associated with poor breast cancer prognosis.   It is interesting to note that a large 

portion of breast cancers from patients with BRCA1 mutations are of the basal 

subtype (Lacroix and Leclercq, 2005; Millikan et al, 2007).  Furthermore, basal 

breast cancer incidence is highest among pre-menopausal African-American 

women.  These women tend to have several basal breast cancer risk factors (multi-

parity, parity prior to <26 years, never having breastfed, and a waist to hip ratio of 

>0.77) (Millikan et al, 2007).    

 

Functions of the BRCA1 Protein Product 

BRCA1 is a relatively large gene located at 17q21.  BRCA1 is composed of 24 

exons that span over 100 kb genomic DNA resulting in a 1863 amino acid protein 

that normally localizes to the nucleus (Scully et al, 1997a; Yang and Lippman, 1999). 

The BRCA1 gene encodes for a multifunctional protein that interacts with numerous 

other proteins in the cell and plays primary roles in cell cycle regulation and DNA 

repair (Figure 1) (Venkitaraman, 2001).     Increasing evidence suggests that BRCA1 

is involved in all phases of the cell cycle and interacts with over 50 molecules (Deng 

and Brodie, 2000; Deng, 2006).  Consistent with the expectation that BRCA1 is 

involved in many cell-cycle processes, cells that have loss of BRCA1 function exhibit 

slowing of growth, increased apoptotic activity, inefficient repair of DNA damage, 

defective cell-cycle checkpoints, and chromosomal abnormalities (Brodie, and Deng, 

2001; Deng, 2002; Venkitaraman, 2002).    
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Structural features of BRCA1 include a N-terminus RING finger and an acidic 

residue-rich C-terminus which are domains that are associated with transcription 

factors and trans-activators (Figure 2) (Kerr and Ashworth, 2001; Starita and Parvin, 

2003; Welcsh et al, 2000).  Additionally, the BRCA1 RING finger domain has been 

shown to bind to BRCA1-associated protein-1 (BAP1), a de-ubiquitinating enzyme 

(Jensen et al, 1998).  The presence of these structures suggests that transcriptional 

regulation and ubiquitination are functions of BRCA1 (Chapman and Verma, 1996; 

Lovering et al, 1993; Miki et al, 1994; Yang and Lippman, 1999).  Additionally, 

BRCA1 has been shown to act as a p53 co-activator and complex with RNA 

polymerase II holoenzyme, which further supports BRCA1 involvement in 

transcription regulation (Ouchi et al, 1998; Scully et al, 1997a).  Therefore, loss of 

BRCA1 function could result in aberrant reduction in transcription of genes that are 

involved DNA damage repair, cell-cycle checkpoints, and apoptosis. 

 BRCA1 interacts with BRCA1 C-terminal repeats (BRCT), which are motifs found 

in other proteins, such as BRCA2 and p53 (Figure 2) (Kerr and Ashworth, 2001).    

Furthermore, p53 is involved in DNA repair and metabolism, suggesting that BRCA1 

may associate with p53 during DNA repair (Callebaut and Mornon, 1997).  DNA 

repair pathway functional involvement is also supported by biochemical interaction 

between BRCA1 with BRCA2, RAD51, and RAD50, all of which are required in the 

DNA damage repair process (Chen et al, 1998; Scully et al, 1997c; Zhong et al, 

1999). Additionally, BRCA1 becomes phosphorylated via ATM in response to DNA 

damage, which allows BRCA1 to complex with other proteins involved in the DNA 

damage repair pathways (Cortez et al, 1999; Scully et al, 1997b). However, a  
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common error that occurs in studies examining BRCA1 function is the incapacity to 

promote double stranded break repair (Scully et al, 1999).  Many genes have been 

associated with BRCA1 in the G1/S, S, G2/M, and the spindle checkpoints, including 

RB, p21, Chk1, ATM, ATR, and Chk2 (Deng, 2006).   If BRCA1 is lost, DNA 

replication cell-cycle checkpoints that occur to correct replication DNA errors will not 

function appropriately possibly resulting in genetic errors or general genetic 

instability. With BRCA1 involved in several different levels of cell cycle checkpoint, 

DNA repair, and chromosomal stability, tumorigenesis occurs as a result of errors in 

multiple pathways.   

 

Goals 

In the study described in this thesis we aimed to identify BRCA1 promoter sequence 

variations that potentially impact on the transcription of the BRCA1 gene and that 

might contribute to alternative mechanisms for loss of BRCA1 transcription in breast 

cancer.  This investigation led to the discovery of a +ACA insertional polymorphism 

in the BRCA1 promoter that creates a binding site for the FAC1 transcriptional 

repressor protein. We determined the frequency of the +ACA BRCA1 promoter 

polymorphism in both the general population and in patients with breast disease.  

Furthermore, we examined functional differences between the wild-type BRCA1 

promoter and the +ACA polymorphic promoter.  The results of the study enabled 

expansion of the two-hit model of breast cancer susceptibility to include a FAC1-

mediated BRCA1 silencing in patients that carry the BRCA1 promoter 

polymorphism.   



 
 

EXPERIMENTAL PROCEDURES 

Experimental Subjects  

Genomic DNA samples were collected from subjects representing patients with 

breast cancer (sporadic and hereditary), patients with ductal carcinoma in situ 

(DCIS), and various control subjects that represented the general population and 

were not known to be at increased risk for breast carcinogenesis.  Protection of 

patient privacy and handling of tissue specimens followed strict policies of the 

Institutional Review Board of the University of North Carolina School of Medicine.  

 

Patients with Malignant Breast Cancer  

Patients with Sporadic Breast Cancer  Four cohorts of patients with sporadic 

breast cancer were utilized.  These cohorts include (i) patients from the UNC 

archives, (ii) patients from the UNC 9830 study, (iii) patients from the Carolina 

Breast Cancer Study (CBCS), and (iv) patients from the tissue archives of the 

Dartmouth-Hitchcock Medical Center (Lebanon, NH).   Characteristics of sporadic 

breast cancer patients are described in Table 1. 

UNC Archived Tumor Samples.  Forty-one cases of sporadic breast cancer were 

selected from UNC tumor archive and provided with the assistance of Dr. Ruth 

Lininger and Dr. William Funkhouser (Department of Pathology and Laboratory 

Medicine). The patients in this cohort ranged in age from 43-94, with 64 and 65 

years being the median and the mean, respectively.  39/41 (95%) of sporadic breast 
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cancer subjects were women and 2 were men.  Most of the patients with sporadic 

breast cancer were Caucasian (28/41), with the other 13 patients comprised of one 

Native American, eight African-Americans, and four subjects of unknown race.  All of 

the cases were classified as invasive ductal carcinomas. 

UNC 9830 Study Subjects.   A forty-six patient subset of the UNC 9830 study 

sporadic breast cancer cohort were derived from patients from UNC Hospitals that 

were newly diagnosed with invasive primary breast cancer cases.  The patients in 

this cohort ranged in age from 28-82, with 54 years being both the median and the 

mean, respectively.  The majority of these women (40/46) were Caucasian, with the 

remainder including one Hispanic, one Asian, and four African-American females.  

The majority of the cases (44/46) were invasive ductal carcinomas and the other 

cases were classified as tubular carcinoma or carcinoma not otherwise specified.  

ER, PR, Her2, Her1, and CK5/6  tumor marker status was analyzed and the patients 

were distributed into the following categories: luminal A (ER+, PR+, Her2-), luminal 

B (ER+, PR+, Her2+), Her2 positve PR-, Her2+), basal (ER-, PR-, Her2-, with either 

CK5/6+, or Her1+), and unclassified (samples that did not match the previous 

combinations).  The distribution of molecular subtype categories among these 

patients was 21 luminal A (46%), 6 luminal B (13%), 8 basal (17%), 6 Her2+ (13%), 

and 5 unclassified cases (11%).     

Carolina Breast Cancer Study Subjects.  The Carolina Breast Cancer Study 

(CBCS) cohort of experimental subjects consisted of six hundred and twenty cases 

from Phase 1 of the study (Carey et al, 2006).  Access to these patients was 

provided by Dr. Robert Millikan (Department of Epidemiology and UNC Lineberger 
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Comprehensive Cancer Center).  The CBCS samples were obtained after informed 

consent from patients ranging in age from 20-74 years.   These patients had been 

diagnosed with invasive breast carcinoma between 1993-1996 (Millikan et al, 2007).  

Patient recruitment intentionally oversampled for African-American cases so that 

both Caucasian (372/620, 60%) and African-American (248/620, 40%) women were 

equally represented (Millikan et al, 2007).  Additionally, the patient recruitment 

intentionally oversampled for younger women in order to equally represent pre-

menopausal (276/555, 50%) and post-menopausal women (279/555, 50%).  The 

molecular subtypes of 350 of the CBCS cases were determined based upon 

immunohistological analysis of ER, PR, Her2, Her1, and CK5/6.  The distribution of 

molecular subtypes among these 350 women, consisted of 179 luminal A (51%), 53 

luminal B (15%), 24 Her2+ (7%), and 74 basal tumors (21%).  Twenty cases with 

immunohistological data could not be classified (6%). 

Dartmouth Tissue Microarray.  Two tissue microarrays were commissioned from 

the Dartmouth-Hitchcock Medical Center through Dr. Gregory J. Tsongalis and Dr. 

Wendy A. Wells (Department of Pathology and Laboratory Medicine, Dartmouth-

Hitchcock Medical Center, Lebanon, NH).  These two microarrays (DTMA1 and 

DTMA2) contain 92 and 83 invasive primary human breast tumors, respectively.   

Tumors were categorized based on the results of the immunohistological molecular 

subtype markers (ER, PR, Her2, Her1, and CK-5/6 status).  These microarrays are 

composed of 122 luminal A, 17 Her2+, and 30 basal tumors, as well as 15 

unclassified cases.  Breast cancers of the luminal B subtype were not represented in 

this cohort.   
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Patients with BRCA1 Mutation  Fifteen female and three male patients with 

documented BRCA1 mutations were identified.  The BRCA1 mutations affecting 

these patients include point mutations, small insertions, and small deletions 

(described in Table 2).  Access to these patients was provided by Dr. Jessica 

Booker (McClendon Clinical Laboratory, Department of Pathology and Laboratory 

Medicine). The majority of these mutations were detected by protein truncation 

assays at UNC Hospitals. The race for these BRCA1 mutant patients was not 

available. 

 

BRCAx Patients Twenty-four breast cancer subjects with characteristics of 

hereditary cancer (based on age of onset, bilaterality, and/or family history), but 

lacking documented BRCA1 mutations were included in our analysis of the BRCA1 

promoter sequence (Table 3).  One additional unaffected BRCAx patient was 

included (Table 3).  Access to these patients was provided by Dr. Jessica Booker 

(McClendon Clinical Laboratory, Department of Pathology and Laboratory Medicine). 

Among the twenty-four patients that were diagnosed with breast cancer, age of 

onset was between the ages of 29-65 years old (average = 43 years old).  Seven 

patients (29%) had bilateral breast cancer (concurrent in three patients; 

metachronous in four patients, with 1, 7, 8, and 17 year intervals).  Two patients 

(8%) were diagnosed with ovarian cancer prior to the onset of breast cancer.  15 

patients (63%) had primary breast cancer affecting one breast. BRCAPRO scores 

were calculated to predict the likelihood of a patients risk for a BRCA1 mutation 

(Berry et al, 2002).   A BRCAPRO score is derived from a statistical model and  



Table 2.  Characteristics of Subjects with a BRCA1 Mutation.

Subject Sex
History/Age at

Diagnosis
BRCAPRO

Score Mutation Detected

BRCA1mut 1 F No information Not given IVS5-11 T>G

BRCA1mut 2 M Unaffected at 57 Not given 188 deletion 111BRCA1mut 2 M Unaffected at 57 Not given 188 deletion 11

BRCA1mut 3 F Unaffected at 23 40 5296 deletion 4

BRCA1mut  4 F BrCa at 66 Not given 2508 deletion AG

BRCA1mut  5 F Bilateral BrCa at 37 Not given 4603 G>T(R1459M) 
splicing error

BRCA1mut 6 M No information Not given 3430 NT deletion
loss exon 21&22 

BRCA1mut 7 F No information Not given 5404 insertion G

BRCA1mut 8 M No information Not given 5661 C>T

BRCA1mut 9 F BrCa at 27 Not given 3450 deletion 14g

BRCA1mut 10 F BrCa at 47 Not given 3490 deletion TC

BRCA1mut 11 F Unaffected at 22 Not given 4603 G>T1

BRCA1mut 12 F Bilateral BrCa at 
31,32 70 2800 deletion AA

BRCA1mut 13 F Unaffected at 38 Not given E908X 1

BRCA1mut14 F Unaffected at 29 Not given 185 deletion AG1

BRCA1mut 15 F Unaffected at 43 Not given Exon 21/22 deletion 1

BRCA1mut 16 F Unaffected at 54 Not given 5193 G>C1

BRCA1mut 17 F BrCa at unknown 
age Not given IVS5-11 T>G 1

BRCA1mut 18 F Unaffected at 29 Not given 5191 C>T1

1 Specific diagnostic testing for known familial mutation, as opposed to full BRCA1
mutation screening.
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Table 3 Characteristics of BRCAx Subjects

Subject History/Age at Diagnosis BRCAPRO Score Mutation Diagnostic Facility

BRCAx 1 Breast Cancer at 42 64 UNC Hospitals

BRCAx 2 Breast Cancer at 44 57 UNC Hospitals

Table 3.  Characteristics of BRCAx Subjects.

BRCAx 3 Bilateral Breast Cancer at 43,43 90 Myriad

BRCAx 4 Ovarian Cancer at 49, Breast Cancer at 50 56 Myriad

BRCAx 5 BrCa at 33 74 UNC Hospitals

BRCAx 6 BrCa at 32 95 UNC Hospitals

BRCAx 7 Bilateral BrCa at 29,46 56 UNC Hospitals

BRCAx 8 OvCa at 33,BrCa at 54 Not given Mryiad

BRCAx 9 BrCa at 39 89 UNC Hospitals

BRCAx 10 Bilateral BrCa at 46 Not given UNC Hospitals

BRCAx 11 Bilateral BrCa at 34,41 89 UNC Hospitals

BRCAx 12 BrCa at 40 78 UNC Hospitals

BRCAx 13 BrCa at 42 90 UNC Hospitals

BRCAx 14 BrCa at 36 64 UNC Hospitals

BRCAx 15 BrCa at 38 50 UNC Hospitals

BRCAx 16 Bilateral BrCa at 61 62 20 UNC HospitalsBRCAx 16 Bilateral BrCa at 61,62 20 UNC Hospitals

BRCAx 17 3 synchronous BrCa 61 10 UNC Hospitals

BRCAx 18 BrCa at 44 17 UNC Hospitals

BRCAx 19 BrCa at 57 10 UNC Hospitals

BRCAx 20 Bilateral BrCa at 65.73 20 UNC Hospitals

BRCAx 21 BrCa at 29 10 UNC Hospitals

BRCAx 22 Unaffected at 31 25 UNC Hospitals

BRCAx 23 BrCa at 48 9 UNC Hospitals

BRCAx 24 BrCa 31 10 UNC Hospitals

BRCAx 25 BrCa at 65 32 UNC Hospitalsp
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software that takes into account family history and population genetics (Berry et al, 

2002).   The average BRCAPRO score was 50, with 54% of these patients having 

BRCAPRO scores 50 or higher.   All BRCAx patients were evaluated for BRCA1 

mutation using a protein truncation assay (n=22, UNC Hospitals) or DNA sequencing 

(n=3, Myriad Genetics). No BRCA1 mutations were detected in any of the BRCAx 

patients (0/25, 0%). The racial distribution for the BRCAx patients was not disclosed. 

 

Patients with Ductal Carcinoma In Situ (DCIS)  

Fourteen female patients with ductal carcinoma in situ (DCIS) were identified. 

Access to DCIS patients was provided by Dr. Gregory Tsongalis and Dorothy Belloni 

(Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical 

Center).  No additional patient information was obtained. 

 

Control Subjects     

Four different cohorts totaling nine-hundred and ninety-seven unaffected individuals, 

identified among patients having standard well care testing or attending the genetics 

clinic for screening for other conditions.  These patients do not have breast cancer, 

have no history of breast cancer, and have no known elevated risk for development of 

breast cancer.  

 Mayo Clinic Controls.  Two hundred and eighty-five patients representing 

unaffected individuals were from a cohort at the Mayo Clinic (Rochester, Minnesota).  

Access to these control subjects was provided with the assistance of Dr. W. Edward 

Highsmith. The Mayo study was comprised of Caucasian control subjects that had 
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samples submitted to the Mayo Clinic Molecular Genetics Laboratory for cystic 

fibrosis carrier screening. After completion of the ordered service, samples annotated 

from patients with Caucasian or Northern European ethnicity were selected and 

strictly anonymized.  Although no information other than the ethnicity of the individuals 

corresponding to these samples was retained, this group of individuals was composed 

primarily of females of childbearing age. 

 UNC Hospital Connexin 26 Study Controls.   Sixty-four individuals who were 

previously evaluated for Connexin 26 mutation at UNC Hospitals (which causes a 

non-syndromic hearing loss) were identified and access to these patients was 

provided by Dr. Jessica Booker.  The age, sex, and racial distributions for the UNC 

Hospital control subjects were not disclosed. 

 UNC 9830 Study Controls.  Forty-six unaffected individuals were indentified 

through the UNC 9830 study as age and race matched subjects corresponding to the 

sporadic breast cancer patients in the UNC 9830 study.  This cohort of control 

subjects ranged in age from 27-86, with 54 and 53 years being the median and the 

mean, respectively.  The race of the UNC 9830 control subjects matched that of the 

cases: forty Caucasian, one Hispanic, one Asian, and four African American females.   

 Carolina Breast Cancer Study Controls.  Six hundred and two CBCS unaffected 

individuals (age, race, and pre/post-menopause matched) were included in our 

analysis of the BRCA1 promoter sequence.  These CBCS study control subjects were 

recruited using lists from the NC Drivers’ License and medicare beneficiary (Millikan 

et al, 2007).  
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Cell Lines and General Culture Conditions  

Nineteen human breast cancer cell lines were obtained from the UNC Lineberger 

Comprehensive Cancer Center Tissue Culture Facility:  BT20 (ATCC # HTB 19), 

BT549 (ATCC # HTB 122), Hs578T (ATCC # HTB 126),  MCF7 (ATCC # HTB 22), 

MDA-MB-134 (ATCC # HTB 23) MDA-MB-175C VII (ATCC # HTB 25), MDA-MB-

231 (ATCC # HTB 26), MDA-MB-415 (ATCC # HTB 128), MDA-MB-435S (ATCC #  

HTB 129), MDA-MB-436 (ATCC # HTB 130), MDA-MB-453 (ATCC # HTB 131), 

MDA-MB-468 (ATCC # HTB 132), SKBR3 (ATCC # HTB 30), UACC812 (ATCC # 

CRL 1897), and ZR751 (ATCC # CRL 1500).  Human breast cancer cell lines 

HCC1937 and SUM149 were provided as a kind gift from the laboratory of Dr. 

William K. Kaufmann (Department of Pathology and Laboratory Medicine). Likewise, 

human breast cancer cell lines SUM102 and SUM185 were a kind gift from the 

laboratory of Dr. Carolyn I. Sartor (Department of Radiation Oncology).  Additionally, 

two cultures established from normal breast epithelium were purchased from the 

American Type Culture Collection (ATCC) for control purposes:  MCF10-2a (ATCC #   

CRL 10781), MCF12a (ATCC # CRL 10782).  Cell line culture conditions, tissue 

origin, patient race, and tumor classification are included in Table 4.  Cells were 

grown in 5% carbon dioxide at 37°C.  When the cell cultures grew to 80-100% 

confluency, the cells were passaged.   

A tissue array was constructed in the UNC Anatomical Pathology Translational 

Core Lab by Courtney Boyd (Department of Pathology and Laboratory Medicine) 

containing a subset of 16 breast cancer cell lines.  This subset included BT20, 

BT549, Hs578t, MCF7, MDA-MB-134, MDA-MB-231, MDA-MB-415, MDA-MB-435s,  



Table 4.  Breast Cancer Cell Lines, Race, Origin, Tumor Type, 

Breast Cancer 
Cell Line Race1 Origin Tumor Type Medium2

BT-20 C Breast Ductal Carcinoma
EMEM, NEAA, 
NaPyr, insulin

BT-549 C Breast Ductal Carcinoma RPMI

and Culture Conditions.

Hs578T C Breast Carcinosarcoma
EMEM, NEAA, 
NaPyr, insulin, 

MCF7 C Pleural Effusion Adenocarcinoma
EMEM, NEAA,
NaPyr, insulin

MDA-MB-134 C Pleural Effusion Ductal Carcinoma
EMEM, NEAA,
NaPyr, insulin

MDA-MB-175C AA Pleural Effusion Ductal Carcinoma DMEM-H, insulin

MDA-MB-231 C Pleural Effusion Adenocarcinoma
EMEM, NEAA,
NaPyr, insulin

MDA-MB-415 C Pleural Effusion Adenocarcinoma DMEM-H, insulin, 2mM 
glutathione

MDA-MB-435S C Pleural Effusion Ductal Carcinoma DMEM-H, insulin

MDA-MB-436 C Pleural Effusion Adenocarcinoma DMEM-H, insulin, 15% FBS*

MDA-MB-453 C Pericardial 
Effusion Adenocarcinoma DMEM-H, insulin

MDA-MB-468 AA Pleural Effusion Adenocarcinoma Leibovitz’s L-15

SKBR3 C Pleural Effusion Ductal Carcinoma McCoy’s 5A

UACC812 NI Breast Ductal Carcinoma DMEM-H, insulin

ZR751 C Ascites Ductal Carcinoma RPMI

SUM102 NI NI NI
DMEM/F12, 

*5% Horse Serum

SUM149 NI NI NI
DMEM/F12, 

*5% Horse Serum

SUM185 NI NI NI
DMEM/F12, 

*5% Horse Serum

HCC1937 NI Breast Ductal Carcinoma RPMI

MCF12 3 DMEM/F12MCF12a3

(Normal)
C Breast Reduction Mammoplasy

DMEM/F12, 
*5% Horse Serum

1C = Caucasian, AA = African American, NI = not indicated
2 Each medium (Gibco/Invitrogen Life Technologies, Carlsbad, CA) contains 10% fetal
bovine serum (Hyclone, Logan, UT) and 1% Antibiotic-Antimycotic (PSF = penicillin,
streptomycin, and fungicide) (Gibco/Invitrogen) unless otherwise noted (*). Other
additives concentrations are: 10 μg/ml insulin (GIBCO/Invitrogen), 1% NEAA = Non
essential amino acids (Gibco/Invitrogen), 1% NaPry = Sodium pyruvate
(Gib /I it )(Gibco/Invitrogen).
3 Normal breast epithelial cells
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MDA-MB-436, MDA-MB-453, MDA-MB-468, SKBR3, UACC812, ZR751, 

SUM102, SUM149, SUM185, and HCC 1937.   Additionally, MCF12a, a normal 

breast epithelial cell line was included. Confluent cultures of MCF12a and breast 

cancer cell lines were harvested by trypsinization and pelleted by centrifugation.  

Cell pellets were clotted by sequential addition of 200 µl of Ci-trol reagent (Dade 

Behring/Siemens, Deerfield, IL) and 200 µl of Thrombin reagent (Dade 

Behring/Siemens).  After 2 minutes at room temperature, the clotted cell pellets were 

transferred to a nylon biopsy bag, placed in a labeled cassette, and fixed in 10% 

buffered formalin. Fixed cell pellets were transferred to a molding tray filled with 

paraffin and appropriately oriented.  Once the paraffin had solidified, the embedded 

cell pellet paraffin block was cored and assembled in the cell line array block.  5 µm 

sections of the cell array were prepared and used for immunohistological analysis.    

 

DNA Preparation and Purification from Blood Samples, Tumor Samples and 

Breast Cell Lines   

Constitutional DNA samples from whole blood of the BRCAx subjects, BRCA1 

mutant subjects, CBCS sporadic cases, CBCS controls, UNC controls, and Mayo 

Clinic controls were prepared using QIAamp DNA Blood Mini kit for whole blood 

(Buffers: AL, AW1, AW2, AE; and RNase A;   Qiagen/Gentra Inc., Valencia, CA).  

Briefly, 20 µl of proteinase K was added to the bottom of a microcentrifuge tube, 

followed by the addition of 200 µl of whole blood.  4 µl of RNase A solution (100 

mg/ml) to the sample and was mixed.  200 µl of Buffer AL was added to the sample 

and vortexed for 15 seconds, incubated for 10 minutes at 56°C, and pulse 
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centrifuged to remove any sample from the lid.  200 µl of 100% ethanol was added, 

mixed for 15 seconds, and pulse centrifuged.  The sample was transferred to a 

QIAamp spin column/ collection tube and centrifuged at 6,000 rcf for 1 minute.  After 

centrifugation, the spin column was transferred to a new collection tube, 500 µl of 

Buffer AW1 was added, and was centrifuged at 6000 rcf for 1 minute.   500 µl of 

Buffer AW2 was added to the spin column and was centrifuged at 20,000 rcf for 3 

minutes.  The spin column was transferred to a new collection tube and centrifuged 

for an additional minute at 20,000 rcf.  To elute the DNA, the spin column was 

transferred to a 1.5 ml microcentrifuge tube, 200 µl of Buffer AE was added, 

incubated at room temperature for 5 minutes and centrifuge at 6,000 rcf for 1 minute.  

DNA was kept at -20°C for long term storage.   

Lymphocytic cell lines corresponding to patients and controls from the UNC 9830 

study were established by Dr. Steve Oglesbee of the Lineberger Comprehensive 

Cancer Center’s tissue culture facility. Immortalization of these cell lines was 

achieved using Epstein-Barr virus transformation (Ryan et al, 2006).  Dr. Patricia 

Basta isolated DNA from Epstein-Barr virus immortalized lymphocytic cell lines by 

processing the cell lysate DNA on the Autopure, automated DNA isolation system 

(Qiagen/GentraInc., Valencia, CA).  Briefly, samples are loaded in an automated 

rack, the appropriate program for the concentration of cells is selected, cultured cells 

are lysed and the protein is precipitated.  The DNA containing supernatant is 

separated, and the DNA is precipitated, washed and hydrated. 

In order to isolate DNA from paraffin-embedded DCIS tissue and UNC tumor 

sections, tissue was micro-dissected from the slide, collected in a microcentrifuge 
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tube, and processed using the QiaAmp® DNA Mini Kit (Buffers:  ATL, AL, AW1, 

AW2, and AE;  Qiagen/Gentra Inc.) following the manufacturer’s tissue protocol.  To 

the tissue, 180 µl of room temperature ATL buffer (Qiagen/Gentra Inc.) and 20 µl of 

proteinase K was added, pulse vortexed for 15 seconds and held at 56°C overnight.  

Following the overnight incubation, 200 µl of AL buffer (Qiagen/Gentra Inc.) was 

added, mixed by pulse vortexing for 15 seconds, 200 µl of 100% ethanol was added, 

mixed thoroughly and held at 25°C for 5 minutes.  The DNA lysate was transferred 

to a QiaAmp MinElute column/collection tube and centrifuged at 6,000 rcf for 1 

minute and transferred to a new collection tube.  500 µl of AW1 buffer 

(Qiagen/Gentra Inc) was added, centrifuged at 6,000 rcf for 1 minute and transferred 

to a new collection tube.  AW2 buffer (500 µl) (Qiagen/Gentra Inc.) was added, the 

sample was centrifuged at 6,000 rcf for 1 minute, transferred to a new collection tube 

and was followed by a 3 minute 20,000 rcf centrifugation to completely remove all 

ethanol.  The MinElute column was transferred to a collection tube, 35 µl of room 

temperature AE buffer was added to the column, incubated at 25°C for 5 minutes 

and centrifuged for 1 minute at 20,000 rcf and stored at -20°C.    

DNA was isolated from breast cell lines using a PureGene DNA Isolation Kit for 

cell and tissues (Qiagen/Gentra Inc.).  Briefly, cells were washed using Hank’s 

Balanced Salt Solution (Cellgro, Lawrence, KS), and released from the plate using 

0.05% trypsin-EDTA (Sigma, St. Louis, MO).  The cells in 0.05% trypsin-EDTA was 

neutralized with the addition of standard growth medium.  Subsequently, the medium 

containing cells was transferred to a centrifuge tube.  The cells were centrifuged at 

1,000 rcf for 5 minutes, the medium was removed from the cell pellet, and the cells 
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were resuspended 300 µl of Cell Lysis Solution by inversion mixing (Puregene DNA 

Isolation Kit, Gentra Systems, Minneapolis, MN).  3 µl of a 20 mg/ml proteinase K 

was added to the lysate, inverted 25 times and incubated at 55°C overnight.  RNA 

was removed from the cell lysate using 1.5 µl of a 4 mg/ml RNase A solution 

(Puregene DNA Isolation Kit), inverting 25 times, and incubated at 37°C for 1 hour.  

Protein Precipitation Solution was added to the lysate and incubated for 5 minutes 

on ice.  Subsequently, the cell lysates were centrifuged at 20,000 rcf for 5 minutes.  

DNA was precipitated by adding 300 µl 100% isopropanol, followed by a 300 µl 70% 

ethanol wash.  DNA was resuspended in nuclease free water, held at 65°C for 30 

minutes and stored at -20°C.   

For all methods of DNA isolation, DNA concentrations were determined using a 

Beckman DU-600 (Beckman Coulter Inc., Fullerton, CA) UV/Vis spectrophotometer. 

 

Preparation of RNA from Cell Lines 

RNA was prepared using either a standard Trizol isolation procedure 

(Gibco/Invitrogen Life Technologies, Carlsbad, CA) or the Zymo Mini RNA Isolation 

II Kit (Zymo Research Corp., Orange, CA).  For RNA isolation using the Trizol 

protocol, Dulbecco’s phosphate buffered saline (PBS) without calcium chloride or 

magnesium chloride (1x concentration Gibco/Invitrogen Life Technologies,) was 

added to a 100 mm plate of adherent cells and removed.  5 ml of Trizol was added 

to each plate, agitated by pipette mixing, and incubated for 5 minutes at room 

temperature.   The cell extract was transferred to a 50 ml collection tube and 1 ml of 

chloroform was added.  The tube was shaken vigorously for 15 seconds to mix the 
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chloroform and Trizol and incubated at room temperature for 3 minutes.  Tubes were 

centrifuged at 4ºC for 20 minutes at 2,850 rcf.  The aqueous phase (was transferred 

to a new 15 ml tube, 2.5 ml of 100% isopropanol was added, incubated for 10 

minutes at room temperature, and centrifuged at 4ºC for 40 minutes at 2,850 rcf.  

The supernatant was removed and the RNA was resupsended in Diethyl 

Pyrocarbonate (DEPC)-treated water for immediate quantitation with a Beckman 

DU-600 (Beckman Coulter Inc.) spectrophotometer.  RNA was either used 

immediately for conversion to cDNA or stored at -80°C for future use. 

For isolation of RNA using the Zymo Mini RNA Isolation II Kit all centrifugation 

steps were at 12,000 rcf (Zymo Research Corp.).   600 µl of ZR RNA buffer was 

added to a washed cell culture plate.  Cell lysates were scraped from the plate, 

transferred to a Zymo-Spin Column/Collection Tube, centrifuged for 1 minute and 

flow-through was discarded.   350 µl of RNA Wash Buffer was added, the sample 

was centrifuged for 1 minute, and the flow-through was discarded.   A DNase 

cocktail master mix was prepared by mixing (per sample) 6 µl of RNase-free DNase 

I, 5 µl of 10X Reaction Buffer, and 39 µl of RNA Wash Buffer.  To each sample, 50 µl 

of the DNase I cocktail was added directly to the column and incubated for 15 

minutes at room temperature.  Following the DNase I cocktail treatment incubation, 

100 µl of RNA Binding Buffer was added to the column, centrifuged for 1 minute, 

followed by the addition of 350 µl RNA Wash Buffer, and centrifuged for 1 minute.  

The wash step was repeated and the column was transferred to a new 1.5 ml 

centrifuge tube.  50 µl of Elution Buffer was added to the column, incubated at room 

temperature for 2 minutes, and centrifuged for 1 minute.  RNA was quantified by 
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NanoDrop spectrophotometer (Thermo Scientific, Wilmington, DE).  RNA was either 

used immediately for conversion to cDNA or stored at -80°C for future use. 

 

Experimental Procedures Related to Genotyping of Experimental Subjects 

BRCA1 Promoter PCR and Primers   

Primers were designed based upon the known DNA sequence U37574 (Genbank, 

www.ncbi.nih.gov) to analyze 1526 bp of the 1581bp BRCA1 promoter in three 

segments (BPP-1, BPP-2, BPP-3) (Table 5 and Figure 3) (Xuet al, 1995). These 

primers were synthesized by the UNC Oligodeoxynucleotide Synthesis Core Facility 

(Chapel Hill, NC).    BRCA1 promoter segments were scanned for variants through 

PCR amplification, cloning, and DNA sequencing.  The BPP-1 primer set amplified 

the 5’ end of the BRCA1 promoter and spanned 515 bps.  The BPP-2 primer set 

amplified the middle segment of the BRCA1 promoter and spanned 699 bps. The 

BPP-3 primer set amplified the 3’ end of the BRCA1 promoter and spanned 349 bps.   

The amplicons generated using these primer sets overlapped for sequencing of the 

BRCA1 promoter. 

A 3 bp BRCA1 promoter polymorphism was detected at -600 bp from the exon 

1a transcription start site and BPP-99 bp, BPP-132 bp, and BPP-250 bp primer sets 

were designed for specific and rapid screening of this insertion (Table 5 and Figure 

3).  The BPP-99 bp, BPP-132 bp, and BPP-250 bp primers (± 5’ Hex) were designed 

using Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3 _www.cgi) 

(Rozen, and Skaletsky, 2000) and were synthesized by MWG-Biotech AG (High 

Point, NC).  PCR reactions were performed in a 50 μl total volume of buffer  
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containing 50 mM KCl, 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl2, 0.001% gelatin, 200 

μM of each dNTP (EasyStart Micro 50 PCR mix in a tube, Molecular BioProducts, 

San Diego, CA), 0.4 μM of each primer, and 1.25 units GoTaq® Flexi DNA 

Polymerase (Promega, Madison, WI), and 50 ng of sample.  Amplifications were 

carried out using a 9700 Perkin-Elmer step-cycle program consisting of multiple 

cycles of 94°C for denaturing (1 minute), variable (59°C to 63°C range) annealing 

temperature (1 minute 30 seconds), and 72°C for extension (2 minutes).  Specific 

cycles and annealing temperatures are given in Table 5.  Two final extension cycles, 

a 72°C (10 minutes) and 60°C (60 minutes), followed the 40 step cycle.   A portion of 

each PCR product was analyzed on a 2% agarose gel containing 40 mM Tris-

acetate/1.0 mM EDTA (pH 8.0) and visualized by ethidium bromide staining.  The 

remaining PCR sample was used for cloning and sequencing, and/or capillary 

electrophoresis.  

 

High Resolution Analytical Agarose Gel Electrophoresis  

PCR products resulting from amplifications using +ACA polymorphism 99 bp and 

250 bp primers were analyzed on 3% Super Fine Resolution (SFR) agarose gel 

(Amresco, Solon, OH) containing 40 mM Tris-acetate/1.0 mM EDTA (pH 8.0) and 

visualized by ethidium bromide staining.  SFR gel analysis facilitated the resolution 

of BRCA1 PCR product size polymorphisms (99 bp versus 102 bp, and 247 bp 

versus 250 bp, respectively), allowing for the visual detection of the presence of the 

amplicon representing the +ACA polymorphic allele.  Select patient samples were 

cloned and sequenced to verify the results of SFR gel electrophoresis.   
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Cloning and DNA Sequencing  

PCR products were ligated into pGEM-T Easy plasmid vector following the 

manufacturer’s protocol (Promega).  Recombinant plasmids were transformed into 

competent JM109 cells (Promega).   At least four clones were selected through blue-

white colony screening for each patient-amplicon.  Plasmid DNA was purified from 

selected clones using the Wizard DNA purification system (Promega, Madison, WI).  

Verification of cloned inserts was accomplished through restriction enzyme digestion  

in 20 μl total volume consisting of 2 μl NEB Buffer 2, 10 U NcoI, 20 U NdeI restriction 

enzyme (New England Biolabs, Beverly, MA), and 1 μg of purified clone.   

Restriction enzyme digests were resolved on a 0.8% agarose gel containing 40 mM 

Tris-acetate/1.0 mM EDTA (pH 8.0) and visualized by ethidium bromide staining.   

Cloned PCR products were sequenced using the MI3R3 primer and automated DNA 

sequencing performed by the UNC Genomic Analysis Facility.  

Sequences generated from each clone were compared to the known DNA 

sequence for the BRCA1 promoter region using Genbank submission U37574 as the 

standard (Xu et al., 1995).   

 

Capillary Electrophoresis 

A 5’ Hex-labeled BPP-250 sense primer was synthesized and used in conjunction 

with the unlabeled BPP-99 bp, BPP-132 bp, or BPP-250 bp anti-sense primer 

(177/180 bp, 129/132 bp, and 247/250 bp amplicons, respectively) for analysis on 

the ABI 3130 Genetic Analyzer (Applied Biosystems Inc., Foster City, CA) (Table 5).  
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1.5 µl of each PCR amplicon was mixed with 12 µl of molecular biology grade 

formamide and 0.75 µl of ROX-HD internal standard (Applied Biosystems Inc.), 

denatured at 95°C for 3 minutes, cooled to 4°C for 2 minutes and loaded on the 

instrument.  Size of the PCR amplicons were determined by capillary electorphoresis 

with a 16 capillary (36 cm length) ABI PRISM 3130 Genetic Analyzer using POP6 

and buffer supplied by manufacturer at 60°C.  Electrophoresis conditions using dye 

set D were 10 second injection time, 1.2 kV injection voltage, 15.0 kV 

electrophoresis voltage, 6500 steps of polymer fill volume, 180 second preinjection 

electrophoresis, and 20 minute collection time for each sample.   Electronic images 

were analyzed by Gene Mapper analysis software ver.3.7 (Applied Biosystems Inc.).  

Select patient samples were cloned and sequenced to confirm the results of the ABI 

3130 genetic analyzer.  A representative result of capillary electrophoretic analysis 

of the BRCA1 promoter PCR products is shown in Figure 4. 

 

Electrophorectic Mobility Shift Assay 

Protein extracts were prepared by detergent lysis on ice in a buffer containing 0.1% 

Nonidet P-40, 10 mM Tris-Cl (pH 8.0), 10 mM MgCl2, 15 mM NaCl, 0.5 mM 

phenylmethylsulfonyl fluoride, 2 µg/ml pepstatin A, and 1 µg/ml leupeptin (Jordan-

Sciutto et al, 1999b). After centrifugation at 800 rcf for 5 minutes, the nuclei were 

collected and the supernatant was saved as the cytosolic extract. The pellet 

containing the nuclei was further extracted using a high salt buffer containing 0.42 M 

NaCl, 20 mM HEPES (pH 7.9), 20% glycerol, 0.5 mM phenylmethylsulfonyl fluoride, 

2 µg/ml pepstatin A, and 1 µg/ml leupeptin and incubating on ice for 10 minutes.  To  
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remove residual insoluble material, centrifugation at 14,000 rcf was carried out for 

5 minutes. The supernatant fraction was collected as the nuclear extract.  Protein 

concentrations were determined using the Bio-Rad Protein Assay kit (Bio-Rad 

Laboratories, Hercules, CA). 

 For purified fusion protein, ~50 ng of protein and 0.5 ng of 32P-end-labeled 

double-stranded oligonucleotides was incubated in 20 µl of EMSA buffer containing 

200 mM KCl, 20 mM Hepes (pH 7.9), 20% glycerol, 0.2 mM EDTA, 0.2 mM PMSF, 

and 0.5 mM dithiothreitol for 20 minutes at room temperature (Jordan-Sciutto et al, 

1999b).  Prior to addition of labeled probe to reduce nonspecific DNA-protein 

interactions, 20-30 µg of protein was incubated with salmon sperm DNA as a 

nonspecific competitor (1 µg of competitor/10 µg of protein) in EMSA buffer.  For 

competition reactions, unlabeled competitive molecules were preincubated with the 

protein for 5 minutes on ice before adding labeled probe. The reaction mixture was 

run on 4% nondenaturing polyacrylamide gel and electrophoresed at 100 V.  After 

1.5 hours, the polyacrylamide gel was removed from the apparatus, dried, and 

exposed to autoradiography film.   

 

Gene Expression Analysis of BRCA1 and FAC1 

RT-PCR 

RNA was converted using SuperScript™ First-Strand Synthesis System for RT-PCR 

(Gibco/Invitrogen Life Technologies, Carlsbad, CA).  2 μg of total RNA was 

resuspended with DEPC-treated water to give a final volume of 4.0 μl.  1 μl of a 1:40 

dilution of 1 μM Oligio cDNA Synthesis primer was added to each RNA sample, 



42 
 

incubated at 70ºC for 3 minutes and then cooled on ice.  Following cooling, 2 μl of 

5X First Strand Buffer, 2 μl of 5 mM dNTP mix, and 1 μl Superscript II reverse 

transcriptase was added to each RNA sample and incubated for 42ºC  for 1 hour.  

The reaction was stopped by heating to 75ºC for 10 minutes, and cooled on ice.  

Subsequently, 90 μl of DEPC-treated water was added to the 2 μg/10 μl cDNA 

sample to result in a 20 ng/μl working concentration. Gene-specific oligonucleotide 

primers were designed using Primer3 software and were synthesized by MWG-

Biotech (High Point, NC) based upon the known cDNA sequences (Genbank, 

www.ncbi.nih.gov) for mRNAs of interest (Rozen and Skaletsky, 2000). The RT-PCR 

primer sequences for gene-specific primers are given in Table 6.  Verification of 

equal cDNA template concentrations between samples was accomplished using 

either mouse GAPDH or human β-actin primers Table 6.  PCR reactions were 

performed in a 50 μl total volume of buffer containing 50 mM KCl, 10 mM Tris-HCl 

(pH 8.3), 1.5 mM MgCl2, 0.001% gelatin, 200 μM of each dNTP (EasyStart Micro 50 

PCR-mix-in-a-tube, Molecular BioProducts, San Diego, CA), 0.4 μM of each primer, 

and 1.25 units GoTaq® Flexi DNA Polymerase (Promega).  Reactions were carried 

out in an 9700 Perkin-Elmer (Perkin Elmer/Cetus, Foster City, CA) step-cycle 

program as follows: 30-40 cycles at 94°C for denaturing (1 minute), 58-62°C for 

annealing (1 minute 30 seconds), and 72°C for extension (2 minutes) (Table 6).  

PCR products were fractionated on 2% agarose gels containing 40 mM Tris-

acetate/1.0 mM EDTA and visualized by ethidium bromide staining. 

 

Quantitative Real-time PCR      
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20 μg of RNA, isolated from human breast cancer cells lines, was treated with RQ1 

RNase-free DNase and RNasin Plus RNase inhibitor (Promega, Madison, WI) to 

remove any residual DNA.  Briefly, in a final total volume of 50 μl, 20 μg of RNA was 

mixed with 5 μl 10x RQ1 buffer, 1 μl RQ1 DNase, and 1 μl RNasin Plus RNase 

Inhibitor and held at 37ºC for 30 minutes.   The sample volumes were adjusted to 

100 μl by adding 50 μl of nuclease-free water (Promega) and the RNA samples were 

processed with the RNeasy Mini RNA Cleanup kit (Qiagen Inc., Valencia, CA) 

according to standard protocol.  Briefly, 350 μl of freshly prepared buffer RLT/beta-

mercaptoethanol (β-ME) mix was added to the 100 μl RNA samples (1% β-ME into 

buffer RLT) followed by the addition of 250 μl 100% ethanol.  RNA samples were 

transferred to a mini column/collection tube and centrifuged at 8,000 rcf for 15 

seconds and flow through was discarded.  500 μl of buffer RPE was added to the 

column, transferred to a second collection tube, and centrifuged for 2 minutes at 

8,000 rcf.  The column was transferred to a third 1.5 ml collection tube and 

centrifuged for 1 minute at 8,000 rcf to remove residual buffer RPE.  RNA was eluted 

by transferring the spin column to a 1.5 ml microcentrifuge tube, adding 20 μl of 

nuclease-free water, and centrifuging for 8,000 rcf for 1 minute for a final 

concentration of 1 μg/μl. The DNA-free, purified RNA was converted to cDNA using 

a High-Capacity cDNA reverse transcriptase kit from Applied Biosystems.  Briefly, 10 

μg of RNA (10 μl) was mixed with 10 μl 10X RT buffer, 4 μl of 25X dNTP (100 mM), 

10 μl of 10X random primer, 5 μl of Reverse Transcriptase and 61 μl of nuclease-

free water, and processed at 25ºC for 10 minutes, 37ºC for 120 minutes, 85ºC for 5 

seconds, and cooled to 4ºC.  A volume of 200 μl of nuclease-free water was added 
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and cDNA stored at -20ºC.   For real-time analysis of cDNA, 5 μl of either BRCA1 

(Hs00173233_m1) or FAC1 (Hs00189461_m1) TaqMan® Gene Expression Assay 

primer was mixed with 12.5 μl TaqMan® Universal PCR Master Mix, No AmpErase®  

UNG (Applied Biosystems Inc.), and 7.5 μl of cDNA.  Each sample was run in 

triplicate on the Applied Biosystems 7500 Real-time PCR system for a 10 minute 

95°C enzyme activation and 40 cycles of 95°C for 15 seconds and 60°C for 1 

minute. 

 

Immunohistochemcial Analysis of BRCA1 and FAC1 Expression and 

Localization 

5 μm paraffin sections of normal and tumor tissues were prepared and analyzed by 

immunohistochemistry for CK18, BRCA1, and FAC1 protein.  Antibody host, 

clonality, staining region, controls, working dilutions, and antibody manufacturer are 

provided in Table 7.  Tissue sections were deparaffinized by incubating slides at 

60°C for 30 minutes followed by two 5 minute xylene baths.  Tissue sections were 

rehydrated in a step down series of ethanol washes (100%, 95%, and 70%) for 10 

rapid submersions, followed by 3 minutes at each level.  Following the 70% ethanol 

rehydration, sections were placed for 10 minutes in a final concentration of 0.3% 

hydrogen peroxidase in methanol, to block endogenous peroxidase activity.  Slides 

were rinsed in distilled water followed by a hydration for 5 minutes in Dulbecco’s 

PBS.   Antigen retrieval citrate buffer (pH 6.1) was warmed for 50 seconds in the 

microwave at high power, slides were placed in the warmed citrate buffer, steamed 

for thirty minutes, and allowed to cool for thirty minutes (Dako North America,  
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Carpinteria, CA).   Sections were removed from the antigen retrieval citrate buffer, 

placed in a humid box with 4 drops of serum-free protein block (Dako) for 10 

minutes, and rinsed in PBS.  300 μl primary antibody was applied at a dilution shown 

in Table 7 using Dako antibody diluent and incubated for 2 hours at room 

temperature.  Excess unbound primary antibody was removed with a PBS wash, 

followed by a 10 minute application of LSAB-2 biotinylated link IgG secondary 

antibody (Dako) to the sections.  Sections were rinsed in PBS, covered for 10 

minutes with LSAB-2 Streptavidin Horseradish Peroxidase (HRP) enzyme, rinsed in 

PBS, covered for 2 minutes with DAB (3,3’-diaminobenzidine) chromogen substrate, 

then rinsed in distilled water, and counterstained with Mayer’s hematoxylin for 2 

minutes.  Following counterstaining, slides were rinsed in distilled water, dipped in 

PBS for 15 seconds, and returned to distilled water.  The sections were then 

dehydrated in 3 consecutive ethanol washes (70%, 95%, and 100%) for 3 minutes 

each, followed by two xylene washes (2 minutes and 5 minutes), and coverslips 

were mounted.  Digital images were captured using light microscopy and viewed on 

the computer for side by side scoring comparison by a single evaluation.  Tissue 

quality control (CK18/pan-cytokeratin) antibodies were scored negative or positive, 

BRCA1 and FAC1 scoring was graded from 0-4+:  0 = no staining, 1+ = light staining 

(<40%), 2+ = medium staining (40-60%), 3+ = moderate staining (61-80%), and 4+ = 

heavily stained (80-100%).  Additionally, FAC1 antibody localization was 

documented (mostly nuclear, nuclear and cytoplasmic, or mostly cytoplasmic).  

Tumors were classified as negative/reduced for BRCA1 and FAC1 with staining of 

1+ or less, whereas 2+ or greater BRCA1 and FAC1 staining was considered 
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positive.  Cores were excluded from grading if the tissue quality control antibodies 

(CK18/pan-cytokeratin) sample was missing, negative, or greatly reduced, or if one 

or both of the BRCA1 or FAC1 antibody stained core was missing.  Normal adjacent 

breast tissue served as internal positive controls, and slides of normal breast tissue 

from reduction mammoplasty were included as external BRCA1 positive controls 

and generally scored ≥2+.  Histologic sections of human hippocampus were included 

as a positive control for FAC1 and stained in conjunction with the subject samples.  

Sections of hippocampus were provided by Dr. Kinuko Sukuzi and Courtney Boyd 

(Department of Pathology and Laboratory Medicine).   

 

Functional Analysis of Wild-type and +ACA BRCA1 Promoters 

BRCA1 Promoter Luciferase Constructs  

PCR products from two UNC Hospital control subjects that were homozygous for 

either the wild-type or +ACA BRCA1 promoter allele were ligated independently into 

pGL4.17 luciferase reporter vector following the manufacturer’s protocol (Promega, 

Madison, WI).  Briefly, the BPP-850 sense primer was designed to include a 5’ Bgl II 

restriction enzyme cut site while the anti-sense primer was designed with a 5’ Hind 

III restriction enzyme cut site that amplified an 847 base pair sequence containing 

the putative minimal BRCA1 promoter (Thakur and Croce, 1999) and extended 137 

bases into exon 1a, to result in a forward directional vector (Figure 5.  The BPP-850 

sense primer was designed by Visaac et al., the BPP-850 anti-sense primer was 

designed using Primer3 software, and both sense and antisense primer were 

synthesized by MWG-Biotech (High Point, NC) (Table 5) (Rozen and Skaletsky,  
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2000; Vissac et al, 2002).  Recombinant pGL4.17 luciferase reporter vector 

constructs were transformed into JM109 competent cells (Promega), and successful 

transfectants were selected and purified.  Verification of cloned inserts was 

accomplished through DNA sequencing, capillary electrophoresis comparison to 

known wild-type and +ACA BRCA1 promoter controls, and restriction enzyme 

digestion.  Restriction enzyme digestion was performed in 15 μl total reaction 

volume of buffer containing with 10 U Bgl II, 20 U Hind III restriction enzymes, and 1 

μg of each purified clone.  Samples  were resolved on a 0.8% low melting 

temperature agarose gel containing 40 mM Tris-acetate/1.0 mM EDTA (pH 8.0) and 

visualized by ethidium bromide staining for either the 847 and 850 bp amplicon 

corresponding to the wild-type or +ACA BRCA1 promoter allele, respectively.  The 

wild-type or +ACA BRCA1 promoter pGL4.17 luciferase constructs were linearized 

using Bsu 361 restriction enzyme digestion, prior to transfection (1 µg/transfection 

condition) of NIH-3T3 cells.   

 

FAC1 Expression Construct  

A Zeo-resistant FAC1 pcDNA3.1(+) expression construct was generated, by 

subcloning an 810 amino acid coding region of FAC1 from a Neo-resistant 

pcDNA3.1(+) reporter construct (a generous gift from Dr. Robert Bowser’s 

laboratory, Department of Pathology and Laboratory Medicine, University of 

Pittsburgh, Pittsburgh, PA) into the pcDNA3.1(+)/Zeo vector (Figure 6).  The FAC1 

excision was performed utilizing the Not I and Hind III restriction enzyme digestion 

sites in the Neo-resistant pcDNA3.1(+) reporter construct.  In parallel 2 μg of  
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pcDNA3.1(+)/Zeo vector was digested to create matching Not I/Hind III sticky end in 

preparation for the ligation of the 2.4 kb FAC1 insert.  Restriction enzyme digestion 

was completed in 30 μl total reaction volume of 10 U Not I, 20 U Hind III restriction 

enzymes, 3 μl Buffer 2, 3 μl 10X BSA, and 17 or 18 μl of deionized water, 

respectively.  The FAC1 insert was verified by DNA sequencing using a universal T7 

sequencing primer that was synthesized by MWG-Biotech (High Point, NC).  

Subcloning was accomplished with the assistance of Dean Staus (Department of 

Pathology and Laboratory Medicine). 

 

Stable Transfection of BRCA1 Promoter Luciferase Reporter Constructs into 

NIH-3T3 Cell Lines  

NIH-3T3 mouse fibroblasts were utilized in these studies because they do not 

express FAC1.  Non-transfected cells were maintained in DMEM-H growth medium 

prepared as described in Table 4 (Gibco/Invitrogen Life Technologies).  An empty 

vector control was transfected with a promoter-less luciferase/Neomycin resistant 

pGL4.17 vector.  Additionally, the NIH-3T3 fibroblasts were transfected with a 

luciferase/Neomycin resistant pGL4.17 vector containing either an 847 bp wild-type 

or 850 bp +ACA section of the BRCA1 promoter.  Transfections were performed 

when cells reached 50-70% confluency.  Briefly, for each transfection, 250 µl of Opti-

MEM medium (Gibco/Invitrogen Life Technologies) was mixed with 7.5 µl of TransIT-

3T3 transfection reagent (Mirus, Madision, WI) and incubated at 25°C for 15 

minutes.  Transfection complex formation was completed by adding 1 µg of 

plasmid/DNA constructs to the Opti-MEM/TransIT-3T3 mixture for 20 minutes at 
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25°C.  Liposome-coated transfection complexes were added dropwise to the 

appropriate cells and were incubated at 37°C overnight.  24 hours post-transfection, 

the medium was removed from the transfected cells and non-transfected control 

cells, and was replaced with medium containing 600 μg/ml Neomycin [Geneticin (G-

418), Gibco/Invitrogen Life Technologies].  Cells were observed and selection 

medium was refreshed every 3-4 days, until the non-transfected Neomycin treated 

NIH-3T3 cells were no longer viable. 

 

Stable Transfection of FAC1 Expression Construct into NIH-3T3 Cells 

Contianing Wild-type and +ACA BRCA1 Luciferase Reporter Constructs  

Zeo-resistant FAC1 pcDNA3.1(+) expression construct was transfected as described 

above into both NIH-3T3 cells containing the wild-type or +ACA BRCA1 promoter-

driven luciferase constructs.  24 hours post-transfection, the medium was removed 

from the transfected cells and non-transfected control cells, and medium containing 

50 μg/ml Zeocin was added to the cells (Gibco/Invitrogen Life Technologies).  Cells 

were observed and selection medium was refreshed every 3-4 days, until the non-

transfected Zeocin treated NIH-3T3 cells were no longer viable. 

 

Luciferase Assay 

Transfected cells were plated in quadruplicate at an equal dilution density in twenty-

four well plates and grown to 75-90% confluency.  Luciferase activity was measured 

in triplicate and averages were calculated. Medium was removed from the wells, 

sterile Dulbecco’s PBS was applied to rinse residual medium and removed.  To each 
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test well, 300 μl of Glo lysis buffer was added and lysates were incubated at room 

temperature with mixing for 12 minutes.  Steady Glo substrate assay buffer was 

prepared during this incubation as follows:  Steady Glo substrate (10 mg/ml final 

concentration) was added to 300 μl/well Steady Glo assay buffer.  Following the 

room temperature incubation, 300 μl of the 10 mg/ml Steady Glo substrate assay 

buffer was added to each well.  In triplicate, 200 μl of the protein lysate/substrate 

buffer mix was transferred to a translucent microplate, covered to protect from light, 

and incubated at room temperature for 7 minutes with mixing.   Immediately 

following this incubation, the microplate was placed on a Berthold Detection System 

reader and sample luminescence was measured using the Simplicity 2.1 program 

(Berthold Detection Systems, Oak Ridge, TN).   Luciferase activities corresponding 

to each construct were determined for each transfected cell line. 

 

MTT Cell Viability Assay 

Transfected cells were plated in duplicate as described above for MTT cell viability 

assay (used to normalize luciferase activity among repeats and conditions).  Medium 

was removed from the transfected cells and 1 ml of MTT (500 μg/ml final 

concentration) in culture medium was added and incubated in the dark at 37°C for 4 

hours.   After the incubation, 1 ml of solubilizing solution was added to each well and 

mixed until no precipitate remained.  From each MTT assay well, 200 μl of sample 

was transferred in triplicate to a 96 well flat bottom transparent microplate and read 

on a spectrophotometer at 570 nm wavelength.  Results for each condition were 

averaged.  Averages were divided into 1.0 to establish a multiplication correction 
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factor for the luciferase activity in order to normalize the results among transfected 

cell lines. 

 

Statistical Analysis 

Statistical descriptive tests included simple ranges, means, medians, and standard 

error of the mean (SEM). Error bars depicted in graphs represent the standard error 

of the mean (SEM).    Unpaired two tailed t-test (p< 0.05) were performed using 

KaleidaGraph® (Synergy Software, Reading, PA).  Statistical analyses for the 

Carolina Breast Cancer Study including Fisher’s Exact test, odds ratio, p-values 

were performed by Dr. Robert Millikan (Department of Epidemiology) using version 

8.2 SAS software (SAS Institute Inc., Cary, NC). Chi-square and Fisher’s exact test, 

for samples outside of the CBCS, were performed using GraphPad (GraphPad 

Software, La Jolla, CA).   

 

 

 

 

 



 
 

RESULTS 

Discovery of the +ACA BRCA1 Promoter Polymorphism  

PCR amplification, cloning, and DNA sequence analysis was performed to identify 

BRCA1 promoter sequence alterations in constitutional DNA from BRCAx breast 

cancer patients.   We sequenced 1526 bp of the 1581 bp BRCA1 promoter from 7 

BRCAx patients and a commercial pooled normal human control (Promega, 

Madision,WI).  Sequencing of the BRCA1 promoter was accomplished secondary to 

PCR amplification of multiple replicate clones for each of three BRCA1 promoter 

segments and patients (ranging from 1-4 and averaged 3 per subject).  In total, 72 

BRCA1 promoter sequences were analyzed (28 from the BPP-1 segment, 29 from 

the BPP-2 segment, and 15 from the BPP-3 segment).  All patient and control 

samples were analyzed for the BPP-1 and BPP-2 segments (8/8, 100%), while 

analysis of the entire promoter sequence was completed in 5 of the BRCAx subjects 

(BRCAx 2, 3, 8, 13, and 15) and the normal human control sample.  Cloned DNA 

sequences were analyzed and the GenBank sequence for the BRCA1 promoter 

(U37574) was used for comparison (Xu et al, 1995).  A comparative sequence 

analysis is shown in Figure 7.  In many of the BRCA1 promoter segment clones, 

slight sequence variations were observed including deletions, insertions, and 

substitutions compared to the prototype sequence.  The majority of these variations 

were neither consistent between subjects nor clones from an individual, and may 

reflect an expected level of sequencing infidelity. However, we identified a novel 
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+ACA insertion in 3/7 (43%) of the patients’ samples (BRCAx 2, 13, 15) and in the 

normal human control DNA.  This +ACA insertion is located in the BPP-2 segment at 

-600 nucleotides from the exon 1a transcription start site of the BRCA1 promoter 

(Figures 3 and 8)  (White et al, 2006; White et al, 2005; Xu et al, 1995).  We 

observed the +ACA insertion in 2/4 clones corresponding to pooled normal human 

control DNA, suggesting the +ACA allele is carried by some portion of unaffected 

individuals.  The +ACA insertion was present in all of the clones from BRCAx 

subjects 2 and 13 suggesting that these patients are homozygous for the +ACA 

BRCA1 promoter sequence.   In contrast, 3/4 clones corresponding to BRCAx 

subject 15 contained the +ACA insert, suggesting that this patient is heterozygous 

for the +ACA BRCA1 promoter sequence.  Additionally, the +ACA insertion was 

absent in all clones sequenced from BRCAx subjects 3 and 8, suggesting that these 

patients are homozygous for the wild-type BRCA1 promoter sequence.  Overall, the 

+ACA insertion was present in 11/29 (38%) of all BPP-2 segment clones analyzed.  

To verify that this three base pair insertional polymorphism was a real sequence 

variation rather than a result of PCR infidelity,  we employed three additional primer 

sets (BPP-99, BPP-132, and  BPP-250, Figure 7) to specifically and rapidly screen 

subjects by PCR for the +ACA insertion.  We confirmed all genotypes that were 

generated by DNA sequencing, using PCR amplification followed by either capillary 

electrophoresis and/or high resolution agarose.  Representative results of these 

techniques are shown in Figures 4 and 9, respectively.   

 

BRCA1 Promoter Genotyping Analysis 
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Figure 9. Detection of the +ACA BRCA1 Promoter
Polymorphism in Patients with Ductal Carcinoma in situ
(DCIS). Representative 3% SFR agarose gel of PCR products
from patients with DCIS. Expected PCR amplicon size is 247p p p
bp (wild-type homozygotes), 247 and 250 bp (heterozygotes),
and 250 bp (ACA homozygotes). Samples: Lanes 1 and 18,
DNA molecular size ladder; Lane 2 – Lane 11, Genotype
analysis for 10 individual DCIS patients; Lane 12, known wt/wt
genotype template; Lane 13, known WT/ACA genotype
template; Lane 14, known ACA/ACA genotype template; Lane
15, cloned wt BRCA1 promoter template; Lane 16, cloned ACA
BRCA1 promoter template; Lane 17, no DNA template control.
Samples were resolved at 125 volts for 1 hour and 30 minutes.
This analysis was provided by Dorothy Belloni and Greg
Tsongalis, Dartmouth-Hitchcock Medical Center, Lebanon, NH.
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Frequency of the +ACA BRCA1 Promoter Polymorphism in Unaffected 

Individuals 

We analyzed the genotypic distribution of the BRCA1 promoter polymorphism in 

unaffected individuals from four separate cohorts (Mayo Clinic Study, Minneapolis, 

MN;  UNC Hospital Connexin 26, UNC 9830 Study, and the Carolina Breast Cancer 

Study, Chapel Hill, NC) to estimate of the frequency of the +ACA allele in the 

general population. The overall genotypic distribution in the 997 unaffected 

individuals was 481/997 (48%) WT/WT, 432/997 (43%) WT/ACA, and 91/997 (9%) 

ACA/ACA (Figure 10). This distribution was similar among the individual cohorts of 

unaffected individuals:  Mayo Clinic Study [119/285 (42%) WT/WT, 133/285 (47%) 

WT/ACA, and 33/285 (11%) ACA/ACA]; UNC Hospital Connexin 26 Study [38/64 

(59%) WT/WT, 24/64 (38%) WT/ACA, and 2/64 (3%) ACA/ACA]; UNC 9830 Study 

[23/46 (50%) WT/WT, 17/46 (37%) WT/ACA, and 6/46 (13%) ACA/ACA]; and the 

Carolina Breast Cancer Study [301/602 (50%) WT/WT, 258/602 (43%) WT/ACA, 

and 43/602 (7%) ACA/ACA].  Genotypic frequencies for the BRCA1 promoter +ACA 

polymorphism corresponding to individual cohorts are represented in Figure 10.  

Hardy-Weinberg Equilibrium values were calculated for the expected genotypic 

distribution and compared to the observed genotypic distribution (Table 8).  No 

deviations from the Hardy-Weinberg equilibrium were found between the observed 

and expected values for the unaffected individuals (p=0.7).   

 

Frequency of the +ACA BRCA1 Promoter Polymorphism in Breast Disease 
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We analyzed the genotypic distribution of the BRCA1 promoter polymorphism in 

individuals with breast disease from four breast disease classifications (DCIS 

patients; BRCAx subjects; BRCA1 mutant patients; and sporadic breast cancer 

patients from the UNC archival tumor bank, the UNC 9830 Study, and the Carolina 

Breast Cancer Study).   

 The genotypic frequency distribution of the BRCA1 promoter polymorphism 

among DCIS [6/14 (43%) WT/WT, 5/14 (36%) WT/ACA, and 3/14 (21%) ACA/ACA] 

and BRCAx patient cohorts [12/25 (48%) WT/WT, 9/25 (36%) WT/ACA, and 4/25 

(16%) ACA/ACA] had a statistically significant variation compared to the overall 

control cohort genotypic frequency distribution (Chi-squared p-value, p= 0.0001 and 

p=0.04, respectively).  In contrast, there were no significant genotypic frequency 

distribution changes between the controls and BRCA1 mutants [9/17 (53%) WT/WT, 

7/17 (41%) WT/ACA, and 1/17 (6%) ACA/ACA] or sporadic breast cancer cases 

[321/707 (45%) WT/WT, 322/707 (46%) WT/ACA, and 64/707 (9%) ACA/ACA].   

The allelic frequency of the +ACA BRCA1 promoter polymorphism among 

different breast disease groups were analyzed and compared to the allelic frequency 

of the controls.  The +ACA allelic distribution corresponding to the DCIS [5/8 (63%) 

WT/ACA and 3/8 (37%) ACA/ACA, p=0.002] and BRCAx [9/13 (69%) WT/ACA and 

4/13 (31%) ACA/ACA, p=0.03] cohorts varied significantly from the control +ACA 

allelic distribution [432/523 (83%) WT/ACA and 91/523 (17%) ACA/ACA] (Figures 10 

and 11).  The allelic frequency of the +ACA BRCA1 promoter polymorphism among 

BRCA1 mutant [7/8 (88%) WT/ACA and 1/8 (12%) ACA/ACA, p=0.4] and sporadic 

breast cancer [322/386 (83%) WT/ACA and 64/386 (17%) ACA/ACA, p=1.0]  
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subjects did not deviate from the control group allelic distribution (Figures 10 and 

11).   No deviations from the Hardy-Weinberg equilibrium were detected between 

observed and expected values for the total breast disease group (p=0.6) or any of 

the four individual breast disease groups (DCIS p=0.5, BRCAx p=0.7, BRCA1 

mutant p=1.0, sporadic breast cancer p=0.4) (Table 8).    

 

Frequency of the +ACA BRCA1 Promoter Polymorphism in the Carolina Breast 

Cancer Study (CBCS) 

BRCA1 Promoter Genotypic Distribution in the CBCS.  We analyzed the BRCA1 

promoter polymorphism genotypic distribution in the CBCS study independently of 

the other data sets described.   The CBCS has a large sample size, age and race 

matched controls, and oversampled for African-American subjects in order to equally 

represent African-American and Caucasian cases and controls.  Additionally, pre-

menopausal and post-menopausal cases/controls were selected to achieve equal 

representation in both racial categories.  We performed genotypic analysis on 620 

sporadic breast cancer cases and 602 controls.  The genotypic frequency of the 

BRCA1 promoter polymorphism distribution of the sporadic breast cancer cases 

[286/620 (46%) WT/WT, 283/620 (46%) WT/ACA, and 51/620 (8%) ACA/ACA] does 

not significantly deviate from that of the control population [301/602 (50%) WT/WT, 

258/602 (43%) WT/ACA, and 43/602 (7%) ACA/ACA] (Figure 12).   

 

BRCA1 Promoter Genotypic Distribution Comparison of African-American 

Women to Caucasian Women.  We examined variation in the genotypic distribution  
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of the BRCA1 promoter polymorphism stratified by Caucasian cases and controls, 

versus African-American cases and controls.   The BRCA1 promoter genotypes 

among Caucasian women with sporadic breast cancer [165/372 (44%) WT/WT, 

170/372 (46%) WT/ACA, and 37/372 (10%) ACA/ACA] and the Caucasian women 

controls [147/344 (43%) WT/WT, 160/344 (47%) WT/ACA, and 37/344 (10%) 

ACA/ACA] were similar.  However, the frequency of the homozygous +ACA 

genotype and +ACA allelic frequency is significantly increased among the African-

American women with sporadic breast cancer [121/248 (49%) WT/WT, 113/248 

(45%) WT/ACA, and 14/248 (6%) ACA/ACA] compared to the African-American 

control cohort [154/258 (60%) WT/WT, 98/258 (38%) WT/ACA, and 6/258 (2%) 

ACA/ACA] (Fisher’s Exact two-tailed p-value, p=0.02 and p=0.01, respectively) 

(Figure 13).  Homozygous +ACA African-American females have a 3-fold increased 

relative risk (p=0.03) for breast cancer development and heterozygous African-

American women have a 1.5-fold increased breast cancer risk (p=0.03) compared to 

wild-type African-American individuals.  The relative risk for breast cancer 

development among Caucasian subjects that are homozygous (OR=0.9, p=0.8) and 

heterozygous (OR=1.0, p=0.95) for the +ACA allele did not significantly deviate from 

WT/WT Caucasian subjects. 

For the CBCS, the Hardy-Weinberg Equilbrilium was calculated for African-

American and Caucasian sporadic breast cancer cases and African-American and 

Caucasian controls.  Of these four groups, the African-American controls observed 

values were the only group to conflict with the expected Hardy-Weinberg equilibrium 

values (Table 8).   This divergence would be expected if there was a shift in  
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population dynamics that reflects the movement of homozygous for the + ACA 

BRCA1 promoter polymorphism from the African-American control group to the 

African-American sporadic breast cancer case group. 

 

BRCA1 Promoter Genotypic Distribution Comparison with Pre-Menopausal 

and Post-Menopausal Women.  To examine possible relationships between the 

+ACA BRCA1 promoter polymorphism and age of breast cancer onset, we 

compared the variation in genotypic distribution for the BRCA1 +ACA promoter 

polymorphism among pre-menopausal cases and pre-menopausal controls, and 

post-menopausal cases and post-menopausal controls.  The BRCA1 promoter 

genotypes for pre-menopausal sporadic breast cancer cases [143/313 (46%) 

WT/WT, 140/313 (45%) WT/ACA, and 30/313 (9%) ACA/ACA] and post-menopausal 

sporadic breast cancer cases [143/307 (47%) WT/WT, 143/307 (47%) WT/ACA, and 

21/307 (6%) ACA/ACA] did not deviate from the pre-menopausal control population 

[149/283 (53%) WT/WT, 112/283 (40%) WT/ACA, and 22/283 (7%) ACA/ACA] or 

post-menopausal control population [152/319 (48%) WT/WT, 146/319 (46%) 

WT/ACA, and 21/319 (6%) ACA/ACA] (Figure 14).  The relative risk for breast 

cancer development among pre-menopausal (OR=1.4, p=0.3) or post-menopausal 

(OR=1.1, p=0.8) cases that are homozygous for the +ACA allele did not significantly 

deviate from WT/WT pre-menopausal and post-menopausal controls.  Likewise, the 

breast cancer risk among pre-menopausal (OR=1.3, p=0.1) or post-menopausal 

(OR=1.1, p=0.7) cases that are heterozygous compared to the WT/WT pre-

menopausal and post-menopausal controls did not significantly deviate.  Hardy- 
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Weinberg Equilbrilium was not calculated for the pre-menopausal or post-

menopausal cases or controls. 

 

BRCA1 Promoter Genotypic Distribution Comparison of Breast Cancer 

Molecular Classification.   To determine if the +ACA BRCA1 promoter 

polymorphism segregated with any of the molecular subtypes of breast tumors we 

evaluated the variation in genotypic distribution for the +ACA BRCA1 promoter 

polymorphism among luminal A, luminal B, basal, and Her2+ sporadic breast cancer 

tumors.  We did not observe any significant distribution changes between the 

controls and luminal A [82/179 (46%) WT/WT, 83/179 (46%) WT/ACA, and 14/179 

(8%) ACA/ACA], luminal B [26/53 (49%) WT/WT, 25/53 (47%) WT/ACA, and 2/53 

(4%) ACA/ACA], basal [37/74 (50%) WT/WT, 31/74 (42%) WT/ACA, and 6/74 (8%) 

ACA/ACA], and Her2+ [15/24 (62%) WT/WT, 7/24 (30%) WT/ACA, and 2/24 (8%) 

ACA/ACA] breast tumors (Figure 15).  A subset of breast cancers from the CBCS 

was not classifiable.  These unclassified breast tumors were distributed 11/20 (55%) 

WT/WT, 6/20 (30%) WT/ACA, and 3/20 (15%) ACA/ACA.  The relative risk for breast 

cancer development among the molecular subtypes that are homozygous for the 

+ACA allele did not significantly deviate from the WT/WT controls [luminal A 

(OR=1.16, p=0.7), luminal B (OR=0.48, p=0.3), basal (OR=1.63, p=0.3), and Her2+ 

(OR=1.1, p=0.9)].  Hardy-Weinberg Equilibrium was not calculated for any of the 

breast cancer molecular subtypes. 

 

FAC1 Binds to the +ACA BRCA1 Promoter  
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The +ACA BRCA1 promoter polymorphism introduces a recognized consensus 

binding sequence for the fetal ALZ-50 reactive clone 1 (FAC1) transcriptional 

repressor protein (Figure 16) (Bowser, 1996; Jordan-Sciutto et al, 1999a; Jordan-

Sciutto et al, 1999b).  The +ACA BRCA1 promoter polymorphism varies from the 

FAC1 consensus binding site by one base pair on the 5’ end.     In collaboration with 

Dr. Robert Bowser (University of Pittsburgh, Pittsburgh, PA) we have shown that 

FAC1 binds to the +ACA BRCA1 promoter sequence (Figure 17).  In contrast, FAC1 

does not bind the wild-type BRCA1 promoter sequence with any appreciable affinity. 

The specific binding of FAC1 to the +ACA BRCA1 promoter sequence was sensitive 

to competition using a cold competitor (Figure 17).   These results suggest that the 

+ACA insertion in the BRCA1 promoter creates a functional and specific FAC1 

binding site.   

 

BRCA1 and FAC1 Protein Expression in Breast Cancer Samples 

BRCA1 Protein Expression  

BRCA1 expression in tumors was scored based on expression in normal breast 

epithelial cells.  The majority of normal breast tissues [7/8, (88%)] stained ≥2+ and 

staining was primarily localized to the nucleus of the epithelial cells.  After the 

exclusion of tumor and normal breast tissue cores that were negative for the tissue 

quality control antibody or lacked data for either the BRCA1 or FAC1 antibody, the 

protein expression analysis included 111/121 luminal A tumor cores, 21/23 basal 

tumor cores,15/18 Her2+ tumor cores, and 6/9 normal tissues.  Examples of 

BRCA1-positive staining tumors are shown in Figures 18 and 19 (B5-B8).   69%  
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(25/36) of UNC archive tumors and 63% (102/161) DTMA tumors were positive for 

BRCA1 expression.  Examples of negative/reduced staining for BRCA1 protein in 

tumors are shown in Figures 19 and 20 (B1-B4).   

   

FAC1 Protein Expression 

FAC1 expression was categorized by subcellular localization:  nuclear (n), 

cytoplasmic (c), or equal nuclear and cytoplasmic localization (n=c).  FAC1 

expression was observed in 86% (31/36) of UNC tumors and 85% (137/161) of 

DTMA tumors.  Conversely, the remaining 5/36 (14%) of the UNC archive tumors 

and 24/161 (15%) of the DTMA tumors were FAC1 negative/reduced.   FAC1 

expression was observed in 4/8 (50%) normal breast tissue sections.  In 3/4  FAC1-

positive normal breast tissue sections, the localization of FAC1 was primarily in the 

cytoplasm, while 1/4 showed equal levels of nuclear and cytoplasmic FAC1.  

Examples of FAC1 expression in UNC archive tumors are shown in Figures 18 and 

20, and selected FAC1 expression examples in DTMA tumors are shown in Figure 

19.  In 16/36 (44%) of the UNC archive tumors and 19/161 (12%) of the DTMA 

tumors, FAC1 was localized to the nucleus.  In 15/36 (42%) of the UNC archive 

tumors and 51/161 (32%) of the DTMA tumors FAC1 was primarily localized in the 

cytoplasm.  Additionally, 41% (67/161) of the DTMA tumors were also categorized 

as equal nuclear and cytoplasmic localization.  

Among DTMA sporadic tumors, nFAC1-positivity was observed in 29/59 (49%) of 

tumors with reduced or negative BRCA1 expression, and 57/102 (56%) of BRCA1-

positive tumors.  The association of FAC1 localization and BRCA1 expression  
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stratified by breast cancer molecular subtype is illustrated in Figure 21.   No clear 

patterns emerged from the analysis of the DTMA tumors in comparing protein 

expression with molecular breast tumor classification.  Summaries of the distribution 

of FAC1 localization in BRCA1-positive and BRCA1-negative normal breast tissue 

and DTMA sporadic breast tumors are provided in Tables 9-13. 

 

Correlative Analysis of BRCA1 Genotype and Protein Expression Status in 

Breast Tumors  

Thirty-one sporadic tumors from UNC (unknown molecular classification) and five 

BRCAx tumor sections were examined to determine if there is an association 

between tumor genotype and BRCA1 protein expression.  We observed an 

association in the UNC sporadic tumors between genotype, BRCA1 expression, and 

localization of FAC1.  Of the 16 sporadic breast cancer tumors with strong nFAC1 

expression, eight (50%) had low levels of BRCA1 expression. Additionally, of the 

nine tumors genotyped +ACA/+ACA, 4/9 (44%) expressed normal BRCA1 and 5/9 

(56%) expressed low levels of BRCA1, compared to 4/14 (29%) and 2/13 (15%) of 

the tumors genotype WT/WT and WT/ACA, respectively (Figure 22).     

 

BRCA1 and FAC1 mRNA and Protein Expression in Cell Lines 

BRCA1 and FAC1 Real-time PCR analysis in Breast Cancer Cell Lines 

In order to determine if genotype, BRCA1 expression, and FAC1 localization are 

correlated, mRNA from twelve breast cell lines with known genotypes were analyzed 

for the expression of BRCA1 and FAC1 by Real-time PCR.   Relative quantitation of  
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BRCA1 and FAC1 from the breast cancer cells line mRNA was normalized to the 

mRNA from MCF12a normal breast cell line, a WT/ACA cell line.  Interestingly, 

11/12 and 10/12 breast cancer cell lines exhibit BRCA1 and FAC1 expression levels 

that are greater than that observed in MCF12a normal breast epithelial cell line, 

respectively.   Notably, all cell lines having one or more +ACA allele are on the low 

end of BRCA1 expression, although none less than MCF12a (Figure 23).  MDA-MB-

436, an ACA/ACA cell line, had relatively low levels of both BRCA1 and FAC1 

mRNA expression.  SKBR3, an ACA/ACA cell line, had the third highest level of 

FAC1 mRNA expression and the third lowest levels of BRCA1 expression.   These 

results support the suggestion that the homozygous +ACA BRCA1 promoter 

polymorphism in the presence of increased FAC1 expression could result in a 

reduction of BRCA1 expression.     

 

BRCA1 Protein Expression  

MCF12a cells (WT/ACA) stained positively for BRCA1, which was primarily localized 

to the nucleus. Among breast cancer cell lines, 14/16 (88%) were positive for 

nuclear BRCA1 expression (Table 14) suggesting that BRCA1-negative cells are 

underrepresented compared to the general BRCA1-negative tumor population (31% 

of the UNC archive tumors and 37% of the DTMA tumors).  BRCA1 protein 

expression results for breast cell lines having one or more +ACA BRCA1 promoter 

polymorphic alleles are shown in Figure 24.  There were three breast cancer cells 

lines that have at least one +ACA allele.  SUM102 is a heterozygous cell line that 

stained positively for BRCA1 expression.  Two homozygous +ACA cell lines, SKBR3  



3540

R
el

at
iv

e 
Ex

pr
es

si
on

 o
f B

R
C

A
1

an
d 

FA
C

1
in

 B
re

as
t C

el
l L

in
es

*

20253035
Quantitation

B
R

C
A

1
*

51015

Relative Q

B
R

C
A

1
FA

C
1

*

++

+
++

*

*

*
*

*

*
*

94

0

Fi
gu

re
23

.
B

R
C

A
1

an
d

FA
C

1
R

el
at

iv
e

Ex
pr

es
si

on
in

B
re

as
t

C
an

ce
r

C
el

lL
in

es
.

B
R

C
A

1
an

d
FA

C
1

re
la

tiv
e

ex
pr

es
si

on
sh

ow
n

in
in

cr
ea

si
ng

le
ve

ls
of

B
R

C
A

1
ex

pr
es

si
on

.T
he

ex
pr

es
si

on
le

ve
lo

fe
ac

h
ge

ne
w

as
no

rm
al

iz
ed

to
M

C
F1

2a
br

ea
st

ep
ith

el
ia

l
ce

ll
lin

e.
G

en
ot

yp
es

ar
e

de
no

te
d

as
th

e
fo

llo
w

in
g:

*=
W

T/
W

T,
+=

W
T/

A
C

A
,+

+=
A

C
A

/A
C

A



Table 14. Correlation of Genotype, BRCA1 Expression, and
FAC1 Localization in Breast Cancer Cell Lines Normalized to

Cell line Genotype BRCA1
RT-PCR1

FAC1 
RT-PCR

BRCA1 
qPCR2

FAC1 
qPCR

BRCA1 
IHC3,4

FAC1 
IHC3,4

BT20 WT/WT ++ w+ 9.3 4.0 POS N>

BT549 WT/WT + + 3.8 0.9 POS N=C

FAC1 Localization in Breast Cancer Cell Lines Normalized to
MCF12a.

Hs578t WT/WT ++ ++ 0.4 0.9 NEG N=C

MCF7 WT/WT + - 2.4 19.1 POS N=C

MDA-MB-231 WT/WT ++ - 5.1 5.7 POS C>

MDA-MB-415 WT/WT ++ - 6.7 7.2 POS N=C

MDA-MB-435s WT/WT ++ + 12.6 8.3 POS N=CMDA MB 435s WT/WT 12.6 8.3 POS N C

MDA-MB-436 ACA/ACA w+ w+ 2.6 1.7 POS N=C

MDA-MB-453 WT/WT + + 3.2 37.1 POS N>

MDA-MB-468 WT/WT ++ + 3.6 1.8 POS N=C

SKBR3 ACA/ACA ++ w+ 1.8 13.0 POS C>

UACC812 WT/WT + - NT5 NT NT NTUACC812 WT/WT NT NT NT NT

ZR751 WT/WT ++ + 2.8 9.9 POS C>

SUM102 WT/ACA NT NT NT NT POS C>

SUM149 WT/WT NT NT NT NT POS N=C

SUM185 WT/WT NT NT NT NT POS N>

HCC1937 WT/WT NT NT NT NT NEG C>HCC1937 WT/WT NT NT NT NT NEG C>

MCF12a6

(Normal)
WT/ACA ++ ++ 1.0 1.0 POS C>

1   RT-PCR = reverse transcriptase PCR
2  qPCR = real-time PCR
3 IHC = Immmunohistochemisty
4  BRCA1 POS > 40% staining, NEG <40% staining;  FAC1 N> =staining is 

predominantly nuclear; C>= staining is predominantly cytoplasmic; and N= Cpredominantly nuclear; C>  staining is predominantly cytoplasmic; and  N  C, 
staining localization is both nuclear and cytoplasmic

5  NT = not tested
6 Normal breast epithelial cells 
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and MDA-MB-436, were also positive for BRCA1 expression.   The two cells lines 

that were BRCA1-negative, Hs578t and HCC1937, were both WT/WT genotype.   

 

FAC1 Protein Expression  

MCF12a cells were positive for cytoplasmic FAC1 expression.  16/16 (100%) of the 

breast cancer cells lines stained positively for FAC1 (Table 14).  Images of BRCA1 

and FAC1 protein expression in breast cell lines having one of more +ACA allele are 

shown in Figure 24.  SUM102 and SKBR3 were positive for cytoplasmic FAC1 

expression, while MDA-MB-436 displayed equal nuclear and cytoplasmic FAC1 

distribution (Figure 24).  Overall the FAC1 localization for the breast cell lines (n=17) 

was distributed:  3 nFAC1, 8 n=c FAC1, 6 cFAC1.     

 

Correlative Analysis of BRCA1 Promoter Genotype and Protein Expression 

Status in Breast Cancer Cell Lines 

The three breast cancer cell lines containing a +ACA allele were all positive for 

BRCA1 expression as analyzed by immunohistochemistry, real-time PCR, and RT-

PCR.  However, in each of these cancer cell lines, FAC1 expression was either 

relatively low or localization was in the cytoplasm (Table 14).  18% of the breast cell 

lines have one or more +ACA allele.  Unfortunately, this suggests the +ACA allele is 

underrepresented in the cell lines we have analyzed.    

 

Functional Analysis  

FAC1 mRNA Analysis in Transfected NIH-3T3 Cell Lines  
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NIH-3T3 cells do not express detectable levels of FAC1 mRNA (Jordan-Sciuttoet al, 

1999b).  To verify the successful transfection of NIH3T3 cells with the FAC1 

expression vector, all transfected cell lines were analyzed for FAC1 mRNA 

expression by RT-PCR (Figure 25).  NIH-3T3 cells transfected with luciferase 

vectors show little to no detectable FAC1 mRNA expression.  This result is 

consistent with previous reports that NIH-3T3 cells do not express FAC1.  Hs578t 

breast cancer cell line previously had detectable FAC1 by RT-PCR.  Therefore, we 

utilized Hs578t cells as a positive control for RT-PCR analysis of FAC1 mRNA 

(Figure 25).  A RT-PCR using primers for GAPDH amplification was used for a 

quality and loading control for the NIH-3T3 transfected cell lines (Figure 25). 

. 

Wild-type and +ACA BRCA1 Luciferase Promoter Activity in the Absence of 

Exogenous FAC1 

We utilized a cell culture model system to examine basal levels of transcriptional 

activity from wild-type or +ACA BRCA1 promoter sequences in NIH-3T3 cell lines.  

The NIH-3T3 mouse fibroblast cell line was selected because it has been reported to 

be FAC1-negative (Jordan-Sciuttoet al, 1999b).  NIH-3T3 cells and NIH-3T3 cells 

containing control promoter-less luciferase vector had very low levels of luciferase 

activity, demonstrating that the vector itself was not generating luciferase protein in 

the absence of a functional promoter (Figures 26 and 27).  Both the wild-type and 

+ACA BRCA1 promoter-driven luciferase constructs demonstrated transcriptional 

activity in the NIH-3T3 cells.  The wild-type BRCA1 promoter-driven luciferase 

construct produced 64,448 ± 9,125 units of luciferase activity (relative light units),  



A.
8 91 2 3 4 5 6 7 10 11 12 13

B.
8 91 2 3 4 5 6 7 10 11 12 13

Figure 25. FAC1 mRNA Expression in Transfected NIH-3T3 Cells. A.
RT-PCR for FAC1 mRNA expression in NIH-3T3 transfected cell lines. B.
Control RT-PCR for GAPDH mRNA expression in NIH-3T3 transfected cell
lines Lane 1 Molecular size ladder (100 bp-1 kb range 100 bplines. Lane 1, Molecular size ladder (100 bp 1 kb range, 100 bp
increments); Lane 2, No DNA template PCR control, Lane 3, FAC1-
positive control (Hs578t breast cancer cell line); Lane 4, NIH-3T3 cells;
Lane 5, NIH-3T3 promoter-less luciferase vector cells; Lane 6, NIH-3T3
wild-type BRCA1 luciferase vector cells; Lane 7, NIH-3T3 +ACA BRCA1
luciferase vector cells; Lane 8, NIH-3T3 empty expression vector cells;
Lane 9, NIH-3T3 empty luciferase vector with FAC1 expression vector
cells; Lanes 10-12, NIH-3T3 wild-type BRCA1 luciferase vector with FAC1
expression vector-clone 1, clone 2, clone 3 cells; Lane 13, NIH-3T3 +ACA
BRCA1 luciferase vector with FAC1 expression vector cells.
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(FAC1 Negative). Averaged luciferase activity of untransfected NIH-3T3 cells,
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and the +ACA BRCA1 promoter-driven luciferase construct produced 30,567 ± 2,568 

units.  Notably, the +ACA BRCA1 promoter-driven luciferase construct expressed a 

significantly reduced level of transcriptional activity (53% reduction, p=0.004) 

compared to the wild-type BRCA1 promoter-driven luciferase construct (Figures 26 

and 27).  These results suggest that the basal transcriptional activity of the +ACA 

BRCA1 promoter allele is approximately half that observed with the wild-type 

BRCA1 promoter allele.   

 

Wild-type and +ACA BRCA1 Luciferase Promoter Activity in the Presence of 

Exogenous FAC1 

We utilized the NIH-3T3 BRCA1 promoter-driven luciferase construct cell lines, to 

examine the effects of exogenous FAC1 protein expression on the wild-type and the 

+ACA BRCA1 promoter sequence.  There was no significant difference in the 

luciferase activity between either the wild-type BRCA1 promoter-driven luciferase 

construct with FAC1 expression vector clones producing 64,655 ±4,592 and 67,466 

± 6,057 relative light units, respectively.  Likewise, there was no significant 

difference from the wild-type BRCA1 promoter-driven luciferase construct cell line 

compared to the wild-type BRCA1 promoter-driven luciferase construct with FAC1 

expression vector (Figures 27 and 28).    Strikingly, we observed a 79% and 90% 

reduction of luciferase activity (p<0.0001 for both) in NIH-3T3 cells containing the 

+ACA BRCA1 promoter-driven luciferase and FAC1 expression vectors compared to 

the transcriptional activity levels in +ACA and wild-type BRCA1 promoter-driven 

luciferase constructs, respectively (Figures 27 and 28).  These results suggest that  
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Figure 28. Transcriptional Activity of Wild-type and +ACA BRCA1 Promoter-
Driven Luciferase Reporter Constructs in NIH-3T3 Cell Lines Co-Transfected with
FAC1 Expression Construct. Averaged luciferase activity of untransfected NIH-3T3
cells, NIH-3T3 cells containing control pGL4.17 luciferase construct, NIH-3T3 cells
containing the wild-type BRCA1 promoter with the FAC1 expression construct clone
2, NIH-3T3 cells containing wild-type BRCA1 promoter with the FAC1 expression
construct clone 3, and NIH-3T3 cells containing the +ACA BRCA1 promoter with the
FAC1 expression construct (n = 12 for each cell type). The +ACA BRCA1 promoter
with FAC1 compared to both wild-type BRCA1 promoter with FAC1 clone 2 and 3 haswith FAC1 compared to both wild type BRCA1 promoter with FAC1 clone 2 and 3 has
statistically significant reduction of transcriptional activity (*P < 0.0001). Error bars show
standard error of the mean.
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the basal transcriptional activity of the +ACA BRCA1 promoter allele in the presence 

of FAC1 is functioning at 10% capacity the wild-type BRCA1 promoter allele.  These 

results strongly suggest that FAC1 can silence the +ACA BRCA1 promoter allele.   

 

Localization and Expression of FAC1 in BRCA1 Luciferase Promoter NIH-3T3 

Cell Lines Co-Transfected with FAC1 Expression Vector  

We performed an immunohistochemical analysis to observe the presence and 

localization of FAC1 protein in the NIH-3T3 cell lines co-transfected with expression 

vectors for FAC1 and luciferase reporter constructs.  NIH-3T3 cells containing the 

FAC1 expression vector expressed nFAC1 very intensely and displayed increased 

levels of cFAC1.   We observed negligible levels of cFAC1 staining in the control 

NIH-3T3 cells.  Additionally, the sections that lacked primary antibody, which 

controlled for nonspecific background staining (negative control) was negative 

(Figure 29).    
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DISCUSSION 

Summary of Findings  

We identified a +ACA insertional polymorphism in the BRCA1 promoter.  This +ACA 

insertion is located -600bp from the BRCA1 exon1a transcriptional start site.  The 

+ACA insertion creates a consensus binding site (AACAACAC) for the 

transcriptional repressor, FAC1.  The frequency of the +ACA allele was analyzed in 

1760 DNA samples from the general population and breast disease patients.  

African-American cases had a significantly higher allelic frequency of the +ACA 

BRCA1 promoter (27%) compared to African-American controls (17%, P=0.0005), 

No significant difference were observed between Caucasian cases and controls 

(34% versus 37%, P=0.50).   Statistically significant reduction in functional activity in 

the +ACA polymorphic promoter in both the absence and presence of exogeneous 

FAC1 was observed compared to the wild-type BRCA1 promoter.  These results 

suggest that +ACA BRCA1 promoter is susceptible to FAC1 transcriptional 

repression.   

 

Mechanism for Loss of BRCA1 and Breast Cancer 

Hereditary breast cancer makes up approximately 10% of all breast cancer and the 

remaining 90% are classified as sporadic.  Loss of BRCA1 expression occurs in 

more than half of the hereditary breast cancer cases and in approximately 30% of 

sporadic breast cancers (Couch and Weber, 1998; Hedenfalk et al, 2001; 
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Hedenfalk et al, 2003; Lacroix and Leclercq, 2005; Thompson et al, 1995; Wilson et 

al, 1999; Yoshikawa et al, 1999).  Germline mutations in BRCA1 account for 40-50% 

of the BRCA1 expression loss in hereditary breast cancer (Couch, and Weber, 

1998).  The majority of BRCA1 coding region genetic errors create frameshift or 

nonsense mutations that result in an absent or trunctated protein in 87% of cases.  

On the other hand, very few BRCA1 mutations have been detected in sporadic 

breast cancer (Catteau and Morris, 2002; Dobrovic and Simpfendorfer, 1997; Futreal 

et al, 1994; Khoo et al, 1999; Merajver et al, 1995; Uhrhammer et al, 2008; van der 

Looij et al, 2000).  However, BRCA1 frameshift mutations and deletions have been 

reported to contribute to loss of BRCA1 expression in both hereditary and sporadic 

breast cancers (Catteau and Morris, 2002; Couch and Weber, 1998). BRCA1 loss of 

heterogosity (LOH) occurs as a result of a deletion of a portion of chromosome 17 

that generates a loss of the wild-type allele, secondary to the other allele having 

already been inactivated (Couch and Weber, 1998).  LOH has been observed and 

contributes to loss of BRCA1 both hereditary and sporadic breast cancer.  BRCA1 

methylation gene-silencing occurs in 10-30% of sporadic breast cancers (Catteau 

and Morris, 2002).  Until recently, few studies had investigated hypermethylation of 

BRCA1 in hereditary breast tumors.  However, Tapia et al reported hypermethylation 

in hereditary breast cancer with a correlative loss of BRCA1 expression.  These 

results suggest that hypermethylation of BRCA1 could be contributing to the second 

BRCA1 allelic loss in hereditary breast cancers and the loss of one or both BRCA1 

alleles in sporadic breast cancers (Tapia et al, 2008).   
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BRCA1 expression is lost in approximately 35% of all breast cancers (~5% in 

hereditary and ~30% in sporadic).  In a recent study BRCA1 expression was 

examined in 1,940 consecutive cases of invasive breast tumors that were collected 

from 1986-1998.   15% of these tumors had loss of nuclear BRCA1 expression, 

while an additional 37% exhibited cytoplasmic BRCA1 localization.  This observation 

supports that negative, reduced or aberrantly localized BRCA1 expression may be 

contributing to the genesis of 52% of breast tumors (Rakha et al, 2008).  Rakha et 

al. reported that alteration in BRCA1 localization (absence, reduction or cytoplasmic 

translocation) was found to be associated a shorten interval until recurrence.   

cBRCA1 expression correlated with recurrence of breast cancer, and a decrease in 

survival, most specifically in patients with low-grade, small in size, and ER+ tumors 

(Rakha et al, 2008).  A portion, perhaps even as high as 17%, of breast cancers with 

loss of BRCA1 expression do not have clear mechanism to account for the loss of 

BRCA1 expression.  The evidence to date suggests that genetic variants (mutation 

or LOH) do not account for these cases.  Thus, it is likely that some alternative 

mechanism may govern loss of BRCA1 in this subset of patients.  We have 

suggested that FAC1-mediated silencing of the +ACA BRCA1 promoter may 

account for some of these patients.  In fact, the +ACA BRCA1 promoter 

polymorphism produces lower than normal levels of BRCA1 expression even in the 

absence of FAC1.  The reduced activity of the +ACA BRCA1 promoter appears to 

represent an interesting characteristic of this sequence.  This may be especially true 

for the homozygous +ACA individual, who may have BRCA1 expression that is 

functionally equivalent to an individual with a BRCA1 allele loss.  Strikingly, in an in 
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vitro model, the +ACA BRCA1 promoter polymorphism in the presence of 

exogeneous FAC1, had greatly reduced functional levels of the BRCA1 promoter 

compared to the wild-type BRCA1 promoter in both the absence and presence of 

exogeneous FAC1.  This result strongly suggests that a homozygous +ACA 

individual in the presence of FAC1 would exhibit negligible levels of BRCA1 

expression and very low levels of BRCA1 protein.  Such an individual may be 

phenotypically similar to a patient with two affected (mutated) alleles of BRCA1.     

 

BRCA1 Promoter Polymorphisms  

To date, few BRCA1 promoter polymorphisms have been reported or investigated. 

An evaluation of a C to G base pair substitution polymorphism in the BRCA1 

promoter located at nucleotide 1802 based upon sequence of GenBank accession 

number U37574 (Catteau et al, 1999; Xu et al, 1995).   This study found the allelic 

frequency of the G to be 35% (101/292) (Catteau et al, 1999).  However, no 

correlation between the C/G BRCA1 promoter polymorphism and decreased BRCA1 

expression was observed (Catteau et al, 1999).   Notably, the C/G (heterozygote) 

closely associates with another mutation Pro871Leu, that does not confer increase 

breast or ovarian cancer risk, but allowed for its use as a deletion screening tool 

(Catteau et al, 1999).   

 More recently, Chan et al. reported four BRCA1 promoter polymorphisms [c.-

2804T>C, c.-2265C>T, c.-2004A>G, and c.-1896(ACA1)/(ACA2)], located at -1508, -

969, -708, and -600 bp from the BRCA1 transcriptional exon1a start site, 

respectively.   c.-1896(ACA1)/(ACA2) represents the same +ACA three base pair 
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insert that we report in this thesis and their study confirms its presence in Chinese 

women (Chan et al, 2008).  The genotypic frequency for the c.-1896(ACA1)/(ACA2) 

among 375 Hong Kong Chinese women with breast cancer was [126/375 (34%) 

WT/WT, 185/375 (49%) WT/ACA, and 64/375 (17%) ACA/ACA], suggesting the 

genotypic distribution in Chinese women, differs from the distribution we have 

observed in both Caucasian and African-American cases and controls (Chan et al, 

2008).   However, their study focused on the c.-2265C>T SNP, in the context of 

haplotypes with the other 3 polymorphisms.   Functional studies were performed 

using constructs with the 4 polymorphism haplotype promoter model (Chan et al, 

2008).    Haplotypes containing the +ACA allele had higher BRCA1 promoter-driven 

luciferase activity than haplotypes containing the wild-type BRCA1 promoter.   

Unfortunately, it is difficult to compare these two studies functional activity results, 

because the lengths of the promoter are so variable.   Many promoter-related 

regulators could be altered by the addition of promoter sequence.  Interestingly, the 

haplotypes that are present in Chinese women may be unique or occur at a different 

frequency in the Chinese population.   Further studies evaluating the presence, 

prevalence, and function of these haplotypes in Caucasian and African-American 

women would be interesting to perform.   Notably, Chan et al. suggested that the c.-

2265C>T SNP to confer a decrease associated risk for breast cancer in Chinese 

women, while the other three polymorphisms weren’t fully evaluated (Chan et al, 

2008).   

We have investigated a novel +ACA BRCA1 promoter polymorphism, which has 

recently been confirmed by Chan et al. (Chanet al, 2008).  Overall, the +ACA allele 
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occurred with high prevalence in the general population and we observed 931/1760 

(53%) individuals that had one or more +ACA allele.   Strikingly, we observed a 

significantly higher genotypic and allelic frequency of the +ACA BRCA1 promoter in 

African-American cases compared to the African-American controls.  This is 

interesting, since the African-American women are the demographic that is more 

frequently diagnosed with the basal subtype breast cancer which is often associated 

with loss of BRCA1 expression.   We hypothesize that the +ACA BRCA1 promoter 

polymorphism could negatively affect BRCA1 expression, contributing to loss of 

BRCA1 function and breast cancer induction.  However, due to the high frequency in 

the general population we do not expect that it would inactivate promoter function, 

but rather that it renders the BRCA1 promoter susceptible to cis-acting elements that 

could lead to changes in transcriptional regulation.  The +ACA BRCA1 promoter 

polymorphism that we have identified may contribute to inactivation of the BRCA1 

gene and loss of BRCA1 protein function in several different ways. It is possible that 

the +ACA insertion into the BRCA1 promoter has created or deleted a transcriptional 

regulator binding site.  A deletion of a transcriptional activator or the creation of a 

transcriptional repressor binding site would directly inhibit transcription.  Additionally, 

if the transcriptional regulator directs methylation machinery, it is plausible that 

aberrant promoter methylation could prevent transcription, indirectly.  

 

Inactivation of the +ACA BRCA1 Promoter Through FAC1-Mediated 

Transcriptional Repression in Human Breast Cancer 
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The +ACA BRCA1 promoter polymorphism creates a binding site for the fetal ALZ-

50 reactive clone 1 (FAC1) transcriptional repressor protein (Bowser, 1996; Jordan-

Sciutto et al, 1999a; Jordan-Sciutto et al, 1999b).   In studies aimed at identifying the 

FAC1 binding element, a GST-FAC1 pull down assay was utilized (Jordan-Sciutto et 

al, 1999b).   The majority of the sequences that were analyzed contained an AACA 

core and revealed that the CACAACAC sequence was the consensus site.  While 

occasionally there was a single bp change, overall there was no more than three 

nonconsecutive single bp changes (Jordan-Sciutto et al, 1999b).  FAC1 is a member 

of the PHD/LAP zinc finger family and its nuclear expression has been observed in 

the developing fetal brain (Jordan-Sciutto et al, 1999b).  There is a translocation of 

FAC1 to the cytoplasm in the healthy adult brain, but in Alzeheimer’s progression, 

FAC1 gets localized to dystrophic neurites and neuritic components of the β-amyloid 

plaques (Jordan-Sciutto et al, 1999b).  In patients that have both a wild-type and 

+ACA BRCA1 promoter alleles, the loss of expression of the +ACA BRCA1 allele 

from FAC1 repression increases the risk of breast carcinogenesis.  A breast 

tumorigenesis prone status would result from loss of function from the remaining 

wild-type allele (through mutation, deletion, or methylation).  Likewise, in 

homozygous +ACA BRCA1 polymorphic patients, both BRCA1 alleles would be 

sensitive to FAC1-mediated repression.  Thus, in the presence of nuclear FAC1 

expression (or overexpression), the homozygous patient may be rendered 

functionally BRCA1-negative (Figure 30).   Additionally, the polymorphic allele may 

be more susceptible to methylation silencing.  These observations suggest a 

putative novel mechanism for BRCA1 gene silencing.  
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With the exception of microarray gene expression data mining, FAC1 status in 

breast tissue has not been reported.  We observed that FAC1 expression in normal 

breast and breast tumor is quite common and like its expression in the brain, is 

variable. Although there are studies, that have documented FAC1 protein 

interactions, there is not much data about the regulation of FAC1 intracellular 

transport or by what mechanism it becomes dysregulated. Investigation of the 

mechanism by which FAC1 translocates from the cytoplasm to the nucleus, may 

begin to elucidate targets for monitoring or treating, not only in individuals with 

breast cancer but perhaps in neurodegenerative disorders as well. 

 

Knudson’s Two-Hit Hypothesis  

For a normal breast epithelial cell to convert to a neoplastic cell, multiple aberrant 

genetic and/or epigenetic events must occur.  Knudson’s two hit hypothesis 

suggests that the general progression of a healthy cell to a cancer cell, must sustain 

a minimal of two damaging events.  Loss of function in one allele does not assure 

tumor initiation, only confers an increased susceptibility of carcinogenesis (Carter, 

2001; Knudson, 2001).     BRCA1 has been defined as a tumor suppressor gene, 

and loss of function of both alleles is thought to be necessary in order for a cell to 

transition to a malignant state (Carter, 2001).   For individuals with a BRCA1 

mutation, every cell starts out containing only one copy of BRCA1, otherwise in a 

sporadic event, a deletion, frameshift or point mutations, methylation or a 

functionally-detrimental polymorphism contributes to the first copy or hit of BRCA1.  

Cells that are derived from a cell with a BRCA1 hit, will also have one remaining 
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BRCA1 allele, and are considered breast cancer susceptible.  Should any cell from 

the BRCA1 mutant individual or a descendant of a cell with loss of BRCA1 

expression acquire a second BRCA1 allele loss, through LOH, frameshift or point 

mutations, methylation or a functionally-detrimental BRCA1 polymorphism, then that 

cell and its descendants will be breast cancer prone.  The risk of tumorigenesis 

becomes greatly increased through dysregulation of the pathways where BRCA1 is 

not present to interact with other proteins that maintain genetic stability through cell-

cycle checkpoints, DNA damage repair, and transcription regulation (Couch and 

Weber, 1998; Deng, 2006).  

We have observed that FAC1 is capable and preferentially binds to the +ACA 

BRCA1 promoter, that FAC1 is expressed in our FAC1-expression vector 

transfected cell lines, and that FAC1 is localized to the nucleus in our transfected 

cell lines.  Our functional studies suggest that a patient with one +ACA allele, even in 

the absence of nuclear FAC1, may functionally be equal to quarter less than a 

homozygous wild-type patient.  Likewise, a homozygous +ACA may effectively be 

similar to a patient that has a BRCA1 mutation, deletion, or promoter methylation 

gene-silencing.  Additionally, the heterozygous individual in the presence of nuclear 

FAC1 may be functionally equivalent to a BRCA1 mutation carrier or the 

homozygous +ACA patient in the absence of FAC1.  A homozygous +ACA 

individual, in the presence of nuclear FAC1 potentially be functionally null (Figure 

31).   Additionally, the functional data suggests a patient with homozygous wild-type 

BRCA1 promoter alleles will not be functional different in the presences of FAC1.  

Together these results suggest that a WT/ACA or ACA/ACA individual may be  
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breast cancer susceptible even in the absence of nuclear FAC1.  Additionally, a 

heterozygous or homozygous +ACA individual in the presence of aberrant FAC1 

may result in the FAC 1-mediated silencing of the +ACA BRCA1 promoter.  We 

suggest that this mechanism of FAC1-dependant silencing of the +ACA BRCA1 

promoter can be included in an expanded version of Knudson’s two hit hypothesis 

and putative mechanisms, and a adapted flow chart illustrates this in Figure 32.   
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