
 

 

INVESTIGATING IMMUNE MODULATION OF MOLECULAR SUBTYPES OF 
BLADDER CANCER IN RESPONSE TO CHEMOTHERAPY 

 
 
 
 

Jordan Kardos 
 
 
 
 
A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill 

in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 
Curriculum of Genetics and Molecular Biology 

 
 
 
 

Chapel Hill 
2018 

 

 

 

 

 

                  Approved by: 

                  William Kim 

                  Ian Davis 

                  Joel Parker 

                  Cyrus Vaziri 

                  Albert Baldwin



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2018 
Jordan Kardos 

ALL RIGHTS RESERVED 
 
 



ii 
 

ABSTRACT 

Jordan Kardos: Investigating immune modulation of molecular subtypes of bladder 
cancer in response to chemotherapy 
(Under the direction of William Kim) 

 

 Urinary bladder cancer is the ninth most common malignancy, with ~77,000 new 

cases and ~16,000 deaths in the United States annually. Muscle-invasive bladder 

cancer has been described as a heterogeneous disease and several groups have 

identified intrinsic molecular subtypes. Here, we characterize the claudin-low, molecular 

subtype of high-grade bladder cancer. Claudin-low bladder tumors are defined by high 

levels of epithelial-to-mesenchymal transition (EMT), enrichment for tumor initiating cell 

(TIC) signatures, and low expression levels of tight-junction claudins. Furthermore, we 

find that claudin-low tumors are highly enriched across all immune gene signatures 

examined, but also express high levels of immune checkpoint molecules. In contrast to 

melanoma and non–small-cell lung cancer, the predicted neoantigen burden does not 

correlate with immune infiltration in bladder cancer. 

 Standard of care for muscle invasive bladder cancer is combination, platinum-

based chemotherapy; however treatment with immune checkpoint inhibitors has also 

been shown to be effective in both platinum refractory as well as platinum ineligible 

patients. We describe the comprehensive genomic characterization of urachal 

adenocarcinoma and the first report of global RNA expression profiling of urachal 

tumors. We find that urachal tumors molecularly resemble colorectal cancer at the level 
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of gene expression and validate previous reports that have shown that urachal tumors 

harbor genomic alterations in KRAS, APC, and SMAD2/SMAD4 found in colorectal 

cancer. Our transcriptome studies reinforce the notion from genomic studies that 

urachal adenocarcinomas resemble colorectal cancer. We further report that these rare 

tumors have mutations in DNA Mismatch Repair (MMR) proteins and POLE and 

describe the successful treatment of a patient with the anti–PD-L1 antibody 

atezolizumab. Our studies and case report highlight the potential utility of precision 

oncology in rare tumor types that have no clear standard of care therapy. 

 Finally, we describe the effects of cisplatin-based chemotherapy on the tumor 

microenvironment. We find that Gemcitabine and Cisplatin (GemCis) and Methotrexate, 

Vinblastine, Adriamycin, and Cisplatin (MVAC) treatment, the two main frontline 

chemotherapeutic regimens approved for muscle invasive bladder cancer, have 

differing effects on the tumor microenvironment and that the luminal and basal 

molecular subtypes have different responses to therapy. MVAC treatment in luminal 

tumors in particular induces significantly higher levels of immune infiltration and 

corresponding immune suppression than GemCis treatment. We further show that this 

effect appears to be induced by a misregulation of the cytokine expression and 

induction of EMT, and that methotrexate treatment alone, through its inhibition of 

dihydrofolate reductase, is sufficient to induce a mesenchymal and immune-infiltrated 

phenotype. In aggregate this work has important implications for how MVAC and 

GemCis are combined with immune checkpoint blockade.  
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CHAPTER 1: Molecular characterization of bladder cancer to better inform patient 

care 

1.1 Clinical assessment of urothelial carcinoma 

 Urinary bladder cancer is the ninth most common malignancy, with ~77,000 new 

cases and ~16,000 deaths in the United States annually (1,2). Urothelial carcinomas 

originating from the epithelium make up the majority of bladder tumors, however variant 

histologies such as adenocarcinomas, small-cell carcinomas, and squamous cell 

carcinomas have been estimated to make up 10% of bladder cancer cases (3). 

Urothelial carcinoma can present as either non-muscle invasive (NMIBC) or muscle-

invasive (MIBC) depending on whether the tumor has invaded into the muscularis 

propria (Figure 1.1). NMIBC patients have a 15-year disease-specific survival estimated 

at 74%-95% and as such generally respond well to standard of care transurethral 

resection and Bacillus Calmette-Guerin treatment (4). However, MIBC patients have a 

median survival of 28 months for standard of care neoadjuvant platinum-based 

combination chemotherapy followed by radical cystectomy treatment (5). Standard 

platinum-based chemotherapy for MIBC patient is a combination of Gemcitabine and 

Cisplatin (GemCis) regimen. However, a combination Methotrexate/ Vinblastine/ 

Adriamycin/ Cisplatin (MVAC) regimen was also commonly used and has been shown 

to have a similar survival benefit (3). As such, research has focused on improving the 

care and treatment of MIBC by better understanding the molecular mechanisms 

underlying the disease.  
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Figure 1.1: Bladder cancer staging: Identifying the progression of urothelial carcinoma 
from non-muscle invasive (Stage 0-I) to muscle-invasive (Stage II-IV) (7). 
 

1.2 Identifying intrinsic molecular subtypes of bladder cancer 

 Muscle-invasive bladder cancer has been described as a heterogeneous 

disease, with several groups identifying intrinsic molecular subtypes within bladder 

cancer. Initial molecular characterization by Sjodahl et al identified 5 distinct subtypes of 

urothelial carcinoma: urobasal A, genomically unstable, urobasal B, squamous cell 

carcinoma like, and an infiltrated class (4). Follow-up work by both our group and the 

McConkey group identified an overarching basal-luminal subtyping scheme that is 

predictive of survival, with the McConkey group further identifying a chemo resistant 

p53-like subtype (5,6). In general, basal tumors present as more mesenchymal and 

aggressive, with a higher frequency of alterations in the RB1 and TP53 pathways, and 

have a significantly worse prognosis than luminal tumors. Furthermore The Cancer 

Genome Atlas (TCGA) group has done a comprehensive genomic and transcriptomic 

characterization of the molecular landscape of bladder cancer (7,8). The most recent 

TCGA publication has identified 5 distinct subtypes within the overarching basal/luminal 
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schema, and has characterized the alterations in cancer-related pathways associated 

with them (Figure 1.2).  

 

Figure 1.2: Genomic alterations in cancer related pathways across TCGA subtypes (7). 
 

1.3 Immunotherapeutic cancer treatment 

 Over the last decade, a novel cancer treatment has been developed that has 

shown incredible promise across several tumor types collectively coined as 

immunotherapy. Immunotherapy harnesses the body’s immune system to attack the 

tumor in treating a patient’s tumor. While the collective terminology of immunotherapy 

currently describes 3 distinct treatment types: immune checkpoint inhibition, neoantigen 

vaccination, and Chimeric antigen receptor (CAR) T-cell therapy, the underlying 
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principle of augmenting an anti-tumor immune response to clear the tumor is the same 

across treatments.  

 In general, tumor cells, by their very nature, accumulate mutations at much 

higher rates than normal cells. Tumor cells can develop mutations in a peptide which is 

altered so that it binds to the class I Major Histocompatibility Complex (MHC) molecules 

and is presented to the immune system as a neoantigen (9). If the neoantigen is 

recognized and bound by a cytotoxic T-cell, the antigen presenting cell is targeted for 

degradation (16). Tumor cells can evade immune-targeted degradation by the cell-

surface expression of immune checkpoint molecules. These molecules, as the name 

suggests, inhibit the immune response and allow the antigen presenting cell population 

to survive.  

 Each immunotherapeutic treatment targets a different component of the immune 

response. Immune checkpoint inhibitors are antibodies designed to bind to the immune 

checkpoint molecules expressed by tumors or immune cells and reinvigorate the 

immune response targeting the tumor cells, most commonly the PD-1/PD-L1 axis (17). 

Neoantigen vaccines involve sequencing the patient tumor, identifying mutations that 

could be recognized as neoantigens and injecting identified neoantigen peptides so that 

the immune system can more readily recognize them (18,19). CAR T-cell therapy 

involves isolating T-cells from cancer patients and genetically engineering the T-cells to 

produce receptors that recognize and attach to neoantigens specific to tumor cells. The 

modified cells are then reintroduced into the patient where they recognize and kill 

cancer cells that harbor the antigen on their surfaces (10). These treatments have been 

shown to be effective across a variety of tumor types (11-13). 
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1.4 Immunotherapy treatment in bladder cancer 

 In bladder cancer, treatment with the PD-L1 antibody atezolizumab was shown to 

be effective in a subset of patients, indicating that immune checkpoint inhibition could 

be a viable treatment (14). Interestingly, they found that response to treatment was 

positively correlated with both immune suppression in the tumor microenvironment as 

measured by PD-L1 expression, and tumor mutation burden. Follow-up studies of PD-

L1 Ab treatment in bladder cancer have found that tumor-infiltrating lymphocytes, T-cell 

receptor clonality, and a post-treatment expansion of T-cell receptor clones is predictive 

of response (15).  This is consistent with immune checkpoint inhibition treatment across 

other tumor types that have found several molecular characteristics to be predictive of 

response to treatment (16-20). The ongoing work in the field is working towards the goal 

of being able to tailor targeted therapies that we can predict patients will respond to, and 

design combination therapies to boost response in patients that would otherwise not 

respond to treatment.  
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Figure 1.3: Cancer Immunotherapy Treatments (32).  
 

1.5 Concluding remarks and contributions of this work 

 Bladder cancer has been shown by several groups to be a heterogeneous 

disease, and yet on a clinical level is still being treated uniformly. Here we hope to 

contribute to the field and show the validity of identifying intrinsic molecular differences 

within bladder cancer and the potential clinical implications of it. In Chapter 2, we 

identify a novel Claudin-low subtype of bladder cancer that we show to be more immune 

infiltrated and immune suppressed than both Basal and Luminal bladder tumors. In 

Chapter 3, we characterize the molecular landscape of urachal adenocarcinoma and 

show that the genomic and transcriptomic similarities to colorectal adenocarcinoma can 

prime urachal adenocarcinomas to respond to immune checkpoint inhibition. Finally, in 

Chapter 4, we show that there is a subtype-specific response to cisplatin-based 
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chemotherapeutic treatment. Specifically, that MVAC-treatment of luminal tumors 

induces higher levels of immune infiltration and immune suppression, and as these 

factors have been shown to correlate with response to immune checkpoint inhibition, 

could potentially prime these tumors to better respond to these treatments.  

 

1.6 Thesis contributions 

 The work described in this thesis could not have been completed without 

contributions and help from many of my collaborators. The project described in Chapter 

2 was a collaboration with the Ben Vincent Lab and the Bioinformatics Group headed by 

Joel Parker. The patient samples analyzed in Chapter 3 were obtained by Sara Wobker 

in collaboration with the UNC- Chapel Hill Oncology department. The project described 

in Chapter 4 was a collaboration with the Fox Chase Cancer Center, MD Anderson 

Cancer Center, and GenomeDx Biosciences with patient samples and data provided by 

each group.   
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CHAPTER 2: Identifying an immune infiltrated subtype of bladder cancer 

2.1 Introduction 

 In the United States, bladder cancer is the fourth most common malignancy in 

men, with approximately 81,000 new cases and 17,000 deaths expected in 2018. 

Bladder cancer is histologically divided into low-grade or high-grade tumors that are 

associated with distinct genomic alterations and differences in prognosis (21). Low-

grade tumors are almost uniformly noninvasive (Ta) and have a 5-year survival rate of 

96%. In contrast, high-grade tumors can become muscle-invasive and metastatic and 

are associated with a 5-year survival rate ranging from 70% (muscle-invasive) to 5% 

(metastatic).  

 Multiple studies have now identified distinct RNA expression subtypes within both 

low- and high-grade bladder cancers (4-6,8,22-24). Building upon the work of our 

colleagues, we and others recently described distinct subtypes of high-grade muscle-

invasive urothelial carcinoma (UC), luminal and basal, which reflect attributes of their 

corresponding breast cancer subtypes. These studies highlight the similarities in the 

underlying biology between breast and bladder cancer (5,6). In addition to the originally 

reported molecular subtypes of breast cancer (luminal A, luminal B, her2 enriched, and 

basal-like), a claudin-low subtype of breast cancer has been more recently identified 

and is characterized by a stromal phenotype, lack of luminal differentiation marker 

expression, enrichment for epithelial-to-mesenchymal transition (EMT) markers, cancer 

stem cell–like features, and immune response genes (25).  
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 Clinical trials using immune checkpoint Abs targeting the PD1/PD-L1 axis have 

recently shown promise in a portion of patients with advanced UC, with the premise that 

activation of immune checkpoint pathways, including PD-L1, results in active 

immunosuppression (14,26-30). Despite the excitement surrounding PD1/PD-L1 axis 

inhibition in treating advanced UC, only approximately 20-30% of patients respond. 

Therefore, the majority of patients display intrinsic resistance to PD1/PD-L1 inhibition, 

and a priori identification of these patients would clearly be beneficial.  

 We report here the discovery of a claudin-low subtype of high-grade, muscle-

invasive UC defined by biologic characteristics of the claudin-low subtype of breast 

cancer. Claudin-low tumors were uniformly enriched for immune gene signatures but 

simultaneously expressed immune checkpoint molecules, demonstrating that, despite 

being immune infiltrated, claudin-low tumors are also actively immunosuppressed. 

Interestingly, the predicted neoantigen burden was not significantly increased in claudin-

low tumors. Instead, they highly expressed cytokines and chemokines associated with 

leukocyte chemotaxis into the tumor immune microenvironment as a result of an 

imbalance between PPARγ and NF-κB signaling. These results highlight the association 

between molecular subtype and the degree of immune infiltration and immune 

suppression and suggest that mechanisms other than neoantigen burden can drive the 

development of immune infiltrated tumors and also that claudin-low tumors are poised 

to respond to immune checkpoint inhibition. 

 



10 
 

2.2 Results 

2.2.1 Identification of a claudin-low subtype in bladder cancer 

 Previous studies have identified a claudin-low molecular subtype of breast 

cancer (25). Given the previously documented similarities in gene expression patterns 

between breast and bladder cancer (5,6), we asked whether a claudin-low subtype also 

exists in bladder cancer. To this end, we performed unsupervised hierarchical clustering 

on 408 high-grade, muscle-invasive bladder tumors from The Cancer Genome Atlas 

(TCGA) urothelial bladder carcinoma (BLCA) data set using gene signatures 

representative of biologic characteristics that are known to define breast cancer claudin-

low tumors such as an enrichment for tumor-initiating cells (TICs) and an EMT (Figure 

2.1A) (25,31). Specifically, we used gene lists of the tight-junction claudins (CLDN3, 

CLDN4, and CLDN7) and a previously published bladder cancer–derived TIC signature 

(32). In addition, we derived a bidirectional (EMT_UP and EMT_DOWN), bladder 

cancer–specific, notch-dependent EMT gene signature from the publicly available Gene 

Expression Omnibus (GEO) gene expression data set (GEO GSE60564). Unsupervised 

hierarchical clustering with these gene signatures revealed a distinct cluster that had 

characteristics of a claudin low subtype (Figure 2.1A, highlighted in green).  

 To ensure that the set of tumors within the presumed claudin-low cluster were 

homogeneous and distinct from adjacent clusters of tumors, we performed a Gaussian 

distribution analysis, starting with the smallest cluster and iteratively repeated the 

analysis with the addition of adjacent clusters using SigClust software. This method 

identified a conserved node of 48 tumors that had consensus enrichment for claudin-low 

features, and these tumors were therefore defined as claudin-low. All 48 claudin-low 
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tumors were classified as basal by our BASE47 subtype classifier (Fisher’s exact P = 

1.18 × 10–16) (6), and when examined for their correlation to the BASE47 basal or 

luminal centroid, they were found to be highly basal (Figure 2.1B). Further supporting 

the notion that these tumors exhibit features of claudin-low breast cancer, we applied 

the previously defined breast cancer–specific claudin-low classifier to the TCGA BLCA 

tumors and found a significant enrichment (Fisher’s exact P = 1.10 × 10–18) of the 

breast cancer–defined claudin-low tumors within the bladder claudin-low cluster. Given 

these findings, we propose a 3-subtype classification of bladder cancer consisting of 

basal (~40%), luminal (~50%), and claudin-low (~10%) tumors. While basal-like bladder 

cancer consistently has a worse clinical outcome (5,6,22,24), consistent with previous 

work on breast cancer (31), we did not find an observable significant difference in 

overall survival rates between patients with claudin-low tumors and those with basal 

tumors (Figure 2.1C). 
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Figure 2.1: Identification of a claudin-low subtype in bladder cancer. (A) Unsupervised 
clustering of TCGA muscle-invasive UC samples. Samples were clustered on the basis 
of expression of tight-junction claudins, a bidirectional EMT signature, and a TIC 
signature. The tumors identified as claudin-low are highlighted in green on the 
dendogram. n = 408. (B) Waterfall plot showing correlation with the basal and luminal 
centroids as defined by BASE47 classification; claudin-low tumors are highlighted in 
green. Claudin-low tumors were significantly enriched in the BASE47 basal subtype 
(Fisher’s exact test P = 1.18 × 10–16) and were highly correlated with the basal centroid 
(Pearson’s correlation P = 9.33 × 10–15). n = 408. (C) Kaplan-Meier plot showing overall 
survival of bladder cancer by molecular subtype. Significance was determined by log-
rank testing with a Bonferroni correction. n = 408. (D and E) Bar graphs showing the 
classification of TCGA UC tumors by TCGA mRNA cluster subtype (x axis) and our 
subtype classifications (y axis) by count and percentage. n = 129. EMT, epithelial-to-
mesenchymal transition; TCGA, The Cancer Genome Atlas; TIC, tumor-initiating cell; 
UC, urothelial carcinoma. 
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2.2.2 A 40-gene classifier, bladder claudin-low 40, accurately predicts claudin-low 

tumors 

 To define a minimal set of genes that could accurately classify claudin-low 

bladder tumors, we applied prediction analysis of microarrays (PAMs) to the TCGA 

BLCA tumors and derived a 40-gene signature, bladder claudin-low 40 (BCL40), which 

accurately classifies bladder tumors into claudin-low and non–claudin-low subtypes, 

with a training error rate of 0.23 and 0.13, respectively. When combined with the 

previously validated bladder cancer analysis of subtypes by gene expression (BASE47) 

predictor (6), this provides a 3-class predictor that can accurately classify bladder 

tumors as claudin-low, basal, or luminal.  

 In order to validate the predictor, we compiled a 130-tumor metadata set from 2 

previously compiled published data sets (GEO GSE48277) (5). The BASE47 and 

BCL40 predictors identified 36 claudin-low tumors (~30%), 27 basal tumors (~20%), and 

67 luminal tumors (~50%). We found that these subtypes were phenotypically similar to 

the initially derived subtypes in our discovery set of TCGA bladder tumors as measured 

by expression of the EMT, TIC, and claudin gene signatures. Furthermore, we ran a 

transcriptome-wide correlation analysis between the basal, luminal, and claudin-low 

tumors identified in the discovery (TCGA BLCA) and validation data sets (GEO 

GSE48277) and found a strong correlation in gene expression between the subtypes 

identified in the discovery and validation data sets (basal [Pearson’s R = 0.459, P < 2.2 

× 10–16], claudin-low [Pearson’s R = 0.805, P < 2.2 × 10–16], and luminal [Pearson’s R 

= 0.809, P < 2.2 × 10–16]). This further confirmed that the subtypes identified across 

separate data sets had consistent genome-wide RNA expression profiles.  
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 We next examined whether our claudin-low subtype merely recapitulated any of 

the existing molecular subtypes of UC published by MD Anderson or TCGA. We 

compared our claudin-low, basal, and luminal predictions on the 129 published TCGA 

BLCA tumors with TCGA 4-subtype classification (clusters I, II, III, and IV) (8). Our 

claudin-low tumors were primarily found in TCGA clusters III and IV (Figure 2.1, D and 

E). A comparison of our claudin-low, basal, and luminal predictions on the 408 

provisional TCGA BLCA tumors with the MD Anderson oneNN classification system 

(p53-like, basal, and luminal) (5) re-demonstrated the high concordance of luminal 

subtype designations (33) as well as the notion that claudin-low tumors arise primarily 

from basal tumors. These comparisons further strengthen the notion that claudin-low 

tumors do not merely recapitulate a previously described molecular subtype of bladder 

cancer. 

 

2.2.3 The claudin-low subtype displays unique, intrinsic genomic alterations and 

gene expression patterns 

 We next examined the association between molecular subtype and genomic 

events within significantly mutated or copy number–altered genes identified as being 

altered at a greater than 5% frequency within TCGA BLCA data set (8). A comparison of 

claudin low and basal subtypes revealed that claudin-low tumors had significantly 

increased rates of RB1, EP300, and NCOR1 mutations, an increased percentage of 

tumors with EGFR amplification, as well as decreased rates of mutations in FGFR3 and 

ELF3 (Figure 2.2, A and B). Relative to the luminal subtype, claudin-low tumors 

revealed a significantly higher rate of mutation of TP53, RB1, and EP300 and an 
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increased percentage of tumors with EGFR amplification. Conversely, luminal tumors 

(compared with claudin-low tumors) had a significantly higher rate of PPARG 

amplification and mutation of KDM6A, ELF3, and FGFR3. These results are in keeping 

with the notion that genomic alterations and their subsequent effects on signal 

transduction and transcription may be partially responsible for differences in gene 

expression subtypes. 

 To further understand the gene expression patterns that differentiate claudin-low 

tumors, we performed 2-class significance analysis of microarrays (SAMs), comparing 

each subtype against all of the other tumors (e.g., claudin-low vs. basal plus luminal). 

We detected a significant number of differentially expressed genes (FDR = 0.05) by this 

comparison as well as by a direct comparison of each subtype with another (e.g., 

claudin-low vs. basal) (Figure 2.3A). Ingenuity Pathway Analysis (IPA) revealed that, 

compared with both basal and luminal tumors, claudin-low tumors had significant 

enrichment in the upstream regulators IFNG, TNF, and TGFB1, which are well-known 

proinflammatory cytokines (IFN-γ and TNF-α) and pro-EMT (TGF-β) growth factors. 

Additionally, claudin-low tumors had higher levels of IL4 and IL13 signaling relative to 

signaling levels in basal and luminal tumors, respectively. Further IPA analysis 

demonstrated enrichment of other immune-associated pathways in claudin-low tumors. 

These observations are in keeping with the EMT phenotype, which is a defining 

characteristic of claudin low tumors, but also strongly suggest that these tumors are 

heavily immune infiltrated. 
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Figure 2.2: Genomic characterization of bladder cancer subtypes. (A) Oncoprint of 
genomic copy number alterations and mutations by bladder cancer subtype for genes 
previously identified as significantly mutated or copy number altered in more than 5% of 
bladder tumors. n = 408. (B) Bar plots of genes that were identified to have a significant 
(P < 0.05) difference in either gene mutation or copy number alteration (CNA) between 
the claudin-low and basal and/or luminal subtypes. *P < 0.05, **P < 0.01, and ***P < 
0.001, by Fisher’s exact test. 
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2.2.4 Claudin-low tumors are enriched in immune gene signature expression.  

 To better characterize the immune cell populations present within claudin-low 

tumors, we used previously defined gene signatures indicative of specific cellular 

immune populations (34) and examined their expression by molecular subtype. All 

examined signatures appeared to be and were statistically enriched in the claudin-low 

subtype when each signature was collapsed into a single z-score value per tumor 

(Figure 2.3B). To assess the level of immunosuppression, we examined the expression 

of a panel of immune checkpoint molecules (immunosuppression score) derived from 

the literature and found that they were uniformly highly expressed in claudin-low tumors 

compared with expression levels in both basal and luminal tumors, respectively (Figure 

2.3C and D).  

 Bladder cancer as a whole expressed moderate levels of PD-L1 and our 

immunosuppression score relative to the spectrum of 12 tumors in TCGA Pan-Cancer 

analysis. When broken down by subtype, however, claudin-low tumors in particular had 

very high levels of PD-L1 expression (Figure 2.3E) and high expression of the 

immunosuppression score (Figure 2.3F). In aggregate, these findings indicate that 

claudin-low tumors consistently harbor a high level of immune infiltration that is matched 

by a high level of active immune suppression. Basal tumors, in contrast, have a more 

heterogeneous phenotype, while luminal tumors appear to have a paucity of immune 

cells or immune checkpoint expression. In keeping with this notion, there was a strong 

correlation between the immune signatures and the immunosuppression signature 

across all tumors.  
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 The presence of an immune infiltrate has been shown to be prognostic in other 

cancers (35). In muscle-invasive bladder cancer, specifically, the presence of CD8+ 

tumor-infiltrating lymphocytes (TILs) (28) and a low ratio of FOXP3 to CD4 or CD8 

expression on TILs (36) have been associated with improved disease-free and overall 

survival rates. In keeping with the work by Sharma et al. (28), Cox proportional hazards 

(Cox PH) modeling for each immune gene signature across all tumors in TCGA BLCA 

data set showed that only the CD8_T_Cell signature was prognostic (Cox PH = 0.846, P 

= 0.047) (Figure 2.4A), further supporting the unique importance of CD8+ TILs. When 

Cox PH modeling was performed within each subtype, none of the signatures were 

prognostic within the claudin-low and luminal subtypes. However, within the basal 

subtype, numerous signatures were prognostic, including the Ig signature, macrophage 

signature, T cell signature, CD8+ T cell signature, and immunosuppression signature 

(Figure 2.4B). We believe these findings are consistent with immune gene signatures 

being consistently upregulated in the claudin-low subtype and downregulated in the 

luminal subtype, respectively, while the basal subtype has a more heterogeneous range 

of gene signature expression, allowing for a more dynamic range across which these 

subtypes can be prognostic. Supporting this, the basal subtype had the largest SD of 

immune signature expression across all signatures (basal vs. claudin: P = 0.007; basal 

vs. luminal: P = 0.097, Bonferroni corrected Student’s t-test). 
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Figure 2.3: Immune characterization of bladder cancer subtypes. (A) Volcano plot of 
log2 fold change of median gene expression and –log10 P value of gene expression 
across bladder tumor subtypes. Dashed line across the plots corresponds to a 
significance threshold of P = 0.05. n = 408. Significance was calculated using Student’s 
t test with a Bonferroni correction. (B) Heatmaps of supervised clustering of bladder 
tumor subtypes across previously identified immune signatures. n = 408. (C) Heatmap 
of supervised clustering of bladder tumor subtypes across an immune suppression gene 
signature. n = 408. (D) Box plot of immune suppression gene signature z score across 
bladder tumor subtypes. n = 408. (E) Box plot of PD-L1 gene expression across the 
Pan-Cancer tumor types. n = 3,602. (F) Box plot of immune suppression gene signature 
z scores across the Pan-Cancer tumor types. n = 3,602. The box plots denote the 
interquartile range (IQR), with the box representing Q1 to Q3, the line denoting Q2, and 
the whiskers extending an additional 1.5 times the IQR beyond Q1 and Q3. The dots 
represent data points. BLCA, bladder urothelial carcinoma; BRCA, breast cancer; 
COAD, colon adenocarcinoma; GBM, glioblastoma multiforme; HNSC, head and neck 
squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; LAML, acute 
myeloid leukemia; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; 
OV, ovarian serous cystadenocarcinoma; READ, rectum adenocarcinoma; UCEC, 
uterine corpus endometrial carcinoma; LUM, luminal; TCGA, The Cancer Genome 
Atlas; PanCan, Pan-Cancer. 
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Figure 2.4: Immune gene signatures have prognostic value across bladder cancer 
subtypes. (A) Forest plot of Cox PH ratios of the immune gene signatures across all 
tumors, with a 95% CI indicated around the values. n = 408. (B) Forest plot of Cox PH 
ratios of the immune gene signatures within defined tumor subtypes, with a 95% CI 
indicated around the values. n = 408. *P < 0.05, prognostically significant signatures by 
Cox PH modeling. Cox PH, Cox proportional hazard. 
 

2.2.5 Specific T-cell receptor and B-cell receptor gene segment expression levels 

are prognostic in bladder cancer subtypes 

 An antigen-driven T cell and/or B cell response would be expected to drive clonal 

expansion of T cells and/or B cells, resulting in decreased diversity of T cell receptor 

(TCR) and/or B cell receptor (BCR) repertoires. In addition, if a clonally expanded 

immune response was active intra-tumorally, this should be reflected in associations of 
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specific TCR and/or BCR gene segment expression with improved survival. For 

example, decreased TCR diversity has been associated with response to immune 

checkpoint inhibition in melanoma (37) and has been shown to be prognostic in bladder 

cancer (38). To evaluate this concept in TCGA bladder samples, we fit Cox PH models 

to test the association of expression of each TCR or BCR gene segment with survival 

and calculated the number of prognostic gene segments by subtype. To establish null 

distributions for the number of gene segments expected in each subtype, we used the 

bootstrap resampling method previously published by our group (34). For both TCR 

gene segments (Figure 2.5A) and BCR gene segments (Figure 2.5B), a significantly 

higher number of gene segments than expected by chance were prognostic in the basal 

subtype, but not in the claudin-low or luminal subtype. Figure 2.5C and D show the 

specific gene segments that were prognostic in each subtype. Prognostic segments 

were found in multiple TCR and BCR families, with a small number of gene segments 

discovered in multiple subtypes (i.e.TRBV11-2). This suggests that adaptive immune 

responses important in endogenous antitumor immunity are not uniform in TCR and 

BCR usage between the subtypes.  

 Despite the presumed importance of assessing T cell and B cell clonality in tumor 

immunology, at present, this can only be done by direct TCR or BCR sequencing. Our 

group developed a bioinformatics method (VDJician) to accurately and efficiently 

reconstruct rearranged BCR V(D)J sequence repertoires from short-read RNA-

sequencing data. We applied this to TCGA bladder data to evaluate whether overall 

BCR expression (Figure 2.5E) and/or repertoire diversity (Figure 2.5F) varied by 

subtype. BCR expression was higher and repertoire diversity lower (indicative of clonal 
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expansion) in the claudin-low subtype relative to that observed in the luminal subtype, 

which is consistent with the presence of a selective antigen directed response in 

claudin-low tumors. These results, in conjunction with our previous findings, indicate 

that claudin-low tumors are immune infiltrated and have an active immune response 

within the tumor microenvironment. 

 

Figure 2.5: BCR and TCR segment expression is prognostic. (A) Number of TCR gene 
segments by subtype in which increased expression was significantly associated with 
improved survival by Cox PH model fit. Null distributions (gray bars) with 95% CIs were 
generated for each by bootstrap resampling of non-TCR genes and calculation of the 
number of significant P values that were similarly associated with prolonged survival. n 
= 292. (B) Number of BCR gene segments by subtype in which increased expression 
was significantly associated with improved survival by Cox PH model fit. Null 
distributions (gray bars) with 95% CIs were generated for each by bootstrap resampling 
of non-TCR genes and calculation of the number of significant P values that were 
similarly associated with prolonged survival. n = 292. (C) Specific TCR gene segments 
in which increased expression was significantly associated with improved survival by 
Cox PH model fit for all tumors (gray boxes), basal tumors (red boxes), claudin-low 
tumors (green boxes), and luminal tumors (blue boxes). (D) Specific BCR gene 
segments in which increased expression was significantly associated with improved 
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survival by Cox PH model fit for all tumors (gray boxes), basal tumors (red boxes), 
claudin-low tumors (green boxes), and luminal tumors (blue boxes). (E) Log base 10 
number of reads supporting any BCR V(D)J rearrangement are shown by subtype. n = 
181. Mann-Whitney U–Wilcoxon test with an FDR multiple testing correction was used 
to determine significance. (F) Repertoire diversity by subtype. The box plots in E and F 
denote the interquartile range (IQR), with the box representing Q1 to Q3, the line 
denoting Q2, and the whiskers extending an additional 1.5 times the IQR beyond Q1 
and Q3. The dots represent data points. n = 150. Mann-Whitney U–Wilcoxon test with 
an FDR multiple testing correction was used to determine significance. BCR, B cell 
receptor; Cox PH, Cox proportional hazard; TCR, T cell receptor. 
 

2.2.6 Predicted neoantigen burden does not vary significantly by bladder cancer 

subtype but is selectively associated with survival in basal tumors 

 Neoantigens are altered peptides derived from tumor-intrinsic mutant proteins 

that are presented by MHC molecules and can drive robust antitumor T cell responses 

(39). This is in contrast to self-antigens that may be overexpressed in tumors but have 

been subjected to central immune tolerance (40). Neoantigens derived from tumor-

specific genomic aberrations can be predicted using whole-exome sequencing of paired 

tumor and matched normal samples, and expression is confirmed by incorporation of 

RNA expression data. The predicted neoantigen number has been positively associated 

with favorable clinical outcomes in multiple tumor types (41) as well as with response to 

immune checkpoint inhibition in melanoma (18,42) and non–small-cell lung cancer (20). 

These results suggest an important protective role for the endogenous repertoire of T 

cells able to target tumor cells. In order to determine whether neoantigen burden varied 

by bladder tumor subtype, we implemented an informatics pipeline based on the 

approach published by Rajasagi et al. (43) and applied this to TCGA bladder data 

(Figure 2.6). There was a noisy but clear correlation between predicted neoantigen 

burden and the number of somatic mutations (Figure 2.6A) (Spearman’s R = 0.79, P < 2 
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× 10–16, Figure 2.6B). Interestingly, claudin-low tumors, despite having a high level of 

immune infiltration and active immunosuppression, did not have a significantly different 

level of predicted neoantigens compared with that of basal or luminal subtypes (Figure 

2.6C).  

 To assess the association between predicted neoantigen burden and subtype, 

we performed Cox PH analysis with the predicted neoantigen count as the potential 

explanatory variable. In the basal but not claudin-low or luminal subtypes, an increased 

number of predicted neoantigens was associated with prolonged survival (P = 0.025). 

For all bladder tumors taken together, the association was significant as well (P = 

0.005). Figure 2.6D shows survival curves for all bladder tumors divided by the median 

predicted neoantigen count into high versus low neoantigen burden. Analyzed in this 

way as well, high neoantigen burden was associated with prolonged overall survival. 

Therefore, while there is a high correlation between bladder cancer molecular subtype 

and immune signature expression, this does not appear to be explained by the 

predicted neoantigen number. 
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Figure 2.6: Predicted neoantigen burden by bladder cancer subtype. (A) Stacked bar 
plot showing the number of predicted neoantigens in each bladder tumor with a 
predicted IC50 of less than 50 nm (red bars) and less than 150 nm (yellow bars). 
Numbers of predicted neoantigens are shown in the left y axis. Blue line and right y axis 
show the number of missense mutations per tumor. n = 289. (B) Scatter plot of somatic 
missense mutations (log2) versus predicted neoantigen burden (log2) across TCGA data 
set. Significance and correlation were determined using Spearman’s rank test. n = 289. 
(C) Box plot showing the number of predicted neoantigens with an IC50 of less than 50 
nm by tumor molecular subtype. Subtypes were not significantly different (P > 0.05). 
Significance was determined by 1-way ANOVA. n = 289. The box plots denote the 
interquartile range (IQR), with the box representing Q1 to Q3, the line denoting Q2, and 
the whiskers extending an additional 1.5 times the IQR beyond Q1 and Q3. The dots 
represent data points. (D) Kaplan-Meier plot showing survival of bladder cancer patients 
with high (greater than median value, blue line) versus low (less than median value, red 
line) predicted numbers of neoantigens. Vertical hash marks indicate censored data. 
Significance was determined by log-rank test. n = 289. TCGA, The Cancer Genome 
Atlas. 
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2.2.7 Claudin-low tumors express high levels of cytokines and chemokines 

normally repressed by PPARG 

 Given that predicted neoantigen burden was relatively similar across molecular 

subtypes, we explored the possibility that claudin-low tumors harbor an immune infiltrate 

because of increased production of proinflammatory cytokines and chemokines. To this 

end, we examined the relative expression of a panel of cytokines and chemokines and 

their receptors among bladder subtypes and found that the majority of them were 

significantly upregulated in claudin-low tumors relative to expression levels in both basal 

and luminal tumors (Figure 2.7A and B). We noted that NF-κB target genes in particular 

were significantly upregulated in the claudin-low subtype compared with expression in 

both the basal and luminal subtypes (Fisher’s exact P value = 1.885 × 10–8).  

 A defining transcriptional program of urothelial differentiation and of luminal 

bladder tumors is activation of peroxisome proliferator-activated receptor γ (PPARG) 

signaling (44). Consistent with this, we noted that PPARG was significantly amplified in 

luminal relative to claudin-low tumors (Figure 2.2B). Because PPARG is known to 

directly inhibit NF-κB signaling (45), we hypothesized that heightened PPARG activity 

might play a role in restraining the proinflammatory effects of NF-κB. Using a publicly 

available gene expression data set (GEO GSE48124), we noted that the expression 

changes induced by treatment with rosiglitazone, a PPARγ agonist, in UMUC7 and 

UMUC9 bladder cancer cells predicted suppression of the upstream regulator NFKB1 

as well as a number of genes known to be activated by NF-κB (STAT5A, IL6, TNF, 

CCL5). Furthermore, rosiglitazone-treated UMUC7 and UMUC9 cells had 

downregulation in gene signatures of NF-κB activation as assessed by gene set 
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enrichment analysis (GSEA) (Figure 2.7C). Interestingly, we saw that rosiglitazone 

treatment resulted in significant downregulation of immune checkpoint molecules (such 

as PDL1, PDL2, IL12, and PGSL2) found in our immunosuppression signature (Figure 

2.7D). In aggregate, these data support the notion that downregulation of PPARγ 

activity results in unopposed NF-κB signaling, which contributes to the proinflammatory 

milieu of claudin low tumors as well as to their high level of active immune suppression. 

 Finally, in keeping with recent work demonstrating that EMT is associated with 

immune checkpoint molecule expression (46,47), we observed a strong correlation 

between our bladder cancer–derived EMT signatures and multiple immune signatures 

including our immunosuppression score: R = 0.462 [EMT (Up)] and R = –0.471 [EMT 

(Down)]; P < 2.2 × 10–16 (both “Up” and “Down”) (Figure 2.7E). Furthermore, given the 

important role of PPARγ in terminal urothelial differentiation (48), we hypothesized that 

it may be a critical regulator of epithelial-mesenchymal balance in urothelial cancers. 

Indeed, we found that PPARγ activation (by rosiglitazone) in UMUC7 and UMUC9 cells 

decreased levels of our EMT (Up) signature (Figure 2.7F). 



28 
 

 

Figure 2.7: Cytokine and chemokine regulation across bladder cancer subtypes. (A-B) 
Volcano plots of log2 fold change of median gene expression and –log10 P value of gene 
expression for cytokines and chemokines across claudin-low/basal and claudin-
low/luminal subtypes. Dashed lines across plots correspond to P = 0.05. Significance 
was calculated using Student’s t test with a Bonferroni correction. n = 408. (C) GSEA 
enrichment plots indicating that NF-κB signatures were decreased in rosiglitazone-
treated UMUC7 and UMUC9 bladder cancer cell lines. Significance was determined 
using GSEA software. (D) Box plots showing that immunosuppression gene signature 
expression was significantly decreased across UMUC7 and UMUC9 cell lines after 
rosiglitazone treatment. Significance was determined using Student’s t test. n = 6. (E) 
Correlation plot of immunosuppression and EMT gene signature expression. n = 408. 
Significance and correlation were calculated using a Spearman’s rank test. (F) Box plots 
showing that EMT gene signature expression was decreased across UMUC7 and 
UMUC9 cell lines after rosiglitazone treatment. Significance was determined using 
Student’s t test. n = 6. The box plots in D and F denote the interquartile range (IQR), 
with the box representing Q1 to Q3, the line denoting Q2, and the whiskers extending 
an additional 1.5 times the IQR beyond Q1 and Q3. The dots represent data points. ES, 
enrichment score; EMT, epithelial-to-mesenchymal transition; GSEA, gene set 
enrichment analysis. 
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2.3 Discussion 

 Herein, we characterize the claudin-low, molecular subtype of high-grade UC. 

Claudin low bladder tumors are defined by high levels of EMT, enrichment for TIC 

signatures, and low expression levels of tight-junction claudins. In addition, claudin-low 

tumors are enriched in specific genomic alterations (e.g., mutations in EP300 and 

NCOR1 as well as amplification in EGFR) and have a distinct transcriptional profile. 

Furthermore, we found that claudin-low tumors are highly enriched in all immune gene 

signatures examined, but also express high levels of immune checkpoint molecules. In 

contrast to melanoma and non–small-cell lung cancer, the predicted neoantigen burden 

did not appear to correlate with immune infiltration in bladder cancer. Instead, claudin-

low tumors appeared to downregulate PPARγ signaling, resulting in unopposed NF-κB 

activity and contributing to a proinflammatory milieu.  

 In our study, as in previous studies, expression of the various immune gene 

signatures was highly correlated, including high correlations between gene signatures 

associated with specific cellular subpopulations (CD8+ T cells, B cell lineage, Th1-

polarizing macrophages) and the immunosuppression gene signature. This supports the 

claim that tumors growing in the presence of immune cell influx must adaptively 

suppress the antitumor response in order to survive. Immune gene signature expression 

levels, the prognostic value of immune gene signatures, and TCR and BCR gene 

segment expression divide the bladder cancer subtypes into 3 groups: (a) low infiltrate 

with nonsignificant prognostic value (luminal); (b) heterogeneous infiltrate with 

significant prognostic value (basal); and (c) high infiltrate with nonsignificant prognostic 

value (claudin-low). We hypothesize that the lack of prognostic benefit in claudin-low 
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and luminal tumors is driven by different mechanisms. Luminal tumors were sparsely 

infiltrated and showed low expression levels of molecules associated with 

immunosuppression. In contrast, claudin-low tumors showed a substantial but 

ineffective infiltrate in the context of high expression levels of immunosuppression 

markers. Immune features may fail to be prognostic in luminal tumors because no 

infiltrate is present, whereas they fail in claudin-low tumors because, despite a dense 

infiltrate, the level of immunosuppression overwhelms active antitumor immunity. Basal 

tumors have the highest degree of variability in immune gene signature expression, and 

in this model, some basal tumors will have generated an immune response that is 

competing more effectively (though ultimately insufficiently to clear tumor) with tumor 

driven immune suppression. While additional studies are required to test this 

hypothesis, our data suggest that claudin-low tumors as a whole, as well as a subset of 

basal tumors, are poised for response to immune checkpoint blockade.  

 The different molecular aberrations that characterize the bladder cancer 

subtypes may yield differential exposure of antigens to the immune system, resulting in 

skewing of the tumor-infiltrating TCR and/or BCR repertoires in predictable ways should 

the antigens be public (i.e., shared between multiple patients). Though our study was 

not designed to formally test this, we report here a high degree of variability, in which 

adaptive immune gene segments were prognostic among the bladder cancer subtypes, 

an effect that would be expected if TCR/BCR repertoire features associated with tumor 

targeting were to vary by tumor subtype. Interestingly, in the basal subtype, multiple 

TCR gene segments associated with γδ T cells were found to be significantly prognostic 

(P < 0.05 by Cox PH). As this specific subset of T cells is involved in adaptive immunity 
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at mucosal surfaces and able to respond to mycobacteria, γδ T cells may be involved in 

antitumor immunity and an attractive target for the development of biomarkers of 

response to bladder cancer immunotherapy, including Bacille Calmette-Guérin (BCG), 

which is commonly given for non-muscle invasive disease.  

 We report here the VDJician algorithm that performs de novo assembly of 

repertoires of fully rearranged BCR VDJ sequences. When analyzed, the claudin-low 

subtype showed the highest expression levels but the lowest repertoire diversity 

compared with basal and luminal subtypes. This is consistent with the presence of an 

antigen-driven response in the claudin-low tumors, leading to clonal expansion of 

antigen-reactive B cell–lineage cells. Plasma cells are known to express high levels of 

BCR mRNA, and these results would also be consistent with a restricted plasma cell 

infiltrate. In addition, as plasma cells represent a terminal differentiation in the B cell 

lineage in response to antigenic stimulation, their presence would also be expected in 

an antigen-driven response. Future experiments will be necessary to confirm these 

findings and attempt to map immunogenic epitopes in claudin-low tumors.  

 In melanoma and a subset of solid tumors, neoantigen burden correlates with 

expression of perforin and granzyme A (a measure of cytolytic activity) (42,49) and 

tumors with these attributes appear to be more responsive to CTLA4 checkpoint 

blockade. In bladder cancers examined in that study, there was a trend toward 

increased cytolytic activity, with increased predicted neoantigen burden (49). In 

contrast, we did not see significant correlations between neoantigen burden and 

predicted features such as T cell or CD8+ T cell gene signatures, immunosuppression 

score, or molecular subtype, suggesting that alternate etiologies exist to explain the 
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proinflammatory state of claudin-low and basal tumors relative to that of luminal tumors. 

In this regard, we observed significant upregulation of cytokines and chemokines in 

claudin-low tumors and hypothesize that this cytokine milieu is favorable to a 

proinflammatory state and immune cell influx. We propose that PPARγ activity, through 

its ability to repress NF-κB, is inversely correlated with this proinflammatory milieu and, 

therefore, that luminal tumors, which are enriched in PPARG amplification and 

activation of PPARG gene signatures, have very little inflammation. Conversely, we 

found that claudin-low tumors, which have relatively low levels of PPARG pathway 

activation, have high levels of immune infiltration. Therefore, in contrast to the inflamed 

tumors found in melanoma and non–small-cell lung cancer, which appear driven by 

neoantigen expression, inflamed bladder cancers have a proinflammatory state induced 

by an enhanced cytokine/chemokine milieu. Further work has shown that PPARy 

signaling impairs T-cell infiltration and confers a partial resistance to immunotherapies 

(50). 

 Finally, while immune checkpoint inhibition holds great promise, the response 

rates of various solid tumors remain approximately 20% to 30%, suggesting that many 

patients will not derive benefit. Our BASE47 and BCL40 gene classifiers, which can 

accurately subtype high-grade bladder tumors, may serve to identify useful predictive 

biomarkers of response (i.e., claudin-low) or lack of response (i.e., luminal) to PD1 axis 

inhibition. Moreover, our studies further validate the notion of subtype-specific therapy in 

bladder cancer (i.e., basal = chemotherapy; claudin-low = immune checkpoint blockade) 

and advance the possibility that claudin-low breast tumors may have similar immune 

features. 
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2.4 Methods 

2.4.1 TCGA data set manipulation 

 TCGA Bladder Urothelial Carcinoma RNA Expression data set was downloaded 

from the Broad Institute Firehose Pipeline (http://gdac.broadinstitute.org) on August, 27, 

2015. RNA expression was downloaded in a normalized RSEM file. Expression values 

were log2 transformed, and genes with less than 80% expression across all samples 

were filtered out. Missing values were imputed using the K-nearest neighbor imputation 

method. Tumor-adjacent normal samples were removed, and gene expression values 

were median centered across each gene. TCGA Pan-Cancer data set was downloaded 

from the Synapse website (https://www.synapse.org) from data set syn2468297 (51). 

Genes with less than 80% expression across all samples were filtered out. Missing 

values were imputed using K-nearest neighbor imputation. 

 

2.4.2 Gene signatures 

 Bladder TIC, EMT, and tight-junction claudin gene signatures were used in the 

classification of a claudin-low subtype. The TIC signature was derived by Chan et al. 

(32). The set of claudins used was identified by Prat et al. (31). The EMT signature is a 

bidirectional signature derived on the GEO GSE60564 data set of Notch2 

overexpression in a urinary bladder RT4V6 cell line. The data set was mean collapsed 

onto genes. Genes were filtered for a significant difference (Student’s t test, P < 0.05) 

between the control and Notch2-overexpressed (EMT-induced) cell lines and also for 

their presence in TCGA bladder UC data set. Genes were then ranked on the basis of 

median difference between the 2 groups. The top 50 genes with the most increased 
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expression in the EMT-induced cells and the top 50 genes with the most decreased 

expression in the EMT-induced cells were used to create the bladder cancer– specific 

EMT_UP and EMT_DOWN signatures, respectively. Immune gene signatures used to 

describe immune cell processes were derived by Iglesia et al. (34). Z scores were 

calculated for each claudin, basal, and luminal subtype and box plots made of the 

distributions. Gene signature z scores were obtained by calculating the z score of each 

gene within a signature across all samples and taking the median of all gene z scores 

within a gene signature as the z score of the gene signature. 

 

2.4.3 Identification of a claudin-low class 

 Bladder basal and luminal predictions and centroid distances were made using 

the BASE47 PAM Classifier derived by Damrauer et al. (6). Breast cancer claudin 

predictions were made using the Distance-Weighted Discrimination (DWD) Claudin 

Classifier provided by Prat et al (31). Data were clustered on the TIC/EMT (Up and 

Down)/claudin gene sets using average linkage clustering with a centered correlation 

similarity metric on the Cluster 3.0 platform. Each gene set was individually clustered 

across genes using average linkage clustering. Gene sets were collapsed down to z 

scores, and a conservative node with high TIC/high EMT UP/low EMT DOWN/low 

claudin gene set was selected. SigClust was run on the node, expanding out to the 

entire gene set for each increasing node. Differences in gene expression subtypes were 

determined using SAMs run on R, with an FDR of 0.05. A PAM predictor (BCL40) was 

derived on the 408 tumor TCGA data set for a claudin/other subtype classifier. A 

threshold of 6.4 was selected, giving a 40-gene predictor with an overall error rate of 
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0.14. A validation data set of 130 muscle-invasive UC samples was compiled from 73 

sample and 57-sample data sets from GEO (GEO GSE48277] (5). Each data set was 

mean collapsed onto genes. The data set was combined and batch effect adjusted 

using parametric empirical Bayesian adjustments through the ComBat function in the 

sva R package and was then median centered. Genome-wide correlations and 

significance were calculated using a Pearson’s correlation test. 

 

2.4.4 Clinical, mutation, and copy number alteration analysis 

 Mutation, copy number, and clinical data were downloaded as mutation packager 

calls through the Broad Institute Firehose Pipeline (http://gdac.broadinstitute.org) on 

September 3, 2015. Survival status and overall survival were determined on the basis of 

the data provided. Oncoprint figures were produced using the downloaded TCGA 

mutation and copy number alteration (CNA) data. Genes were selected on the basis of 

previously being identified as having significant mutations or CNAs within the gene (8). 

Significance in CNA and mutation across subtypes was determined using Fisher’s exact 

test. Cox PH ratios and CIs were derived using the survival package on the R platform. 

 

2.4.5 Pathway and gene signature expression analysis 

 Cellular pathway analysis across subtypes was performed using QIAGEN’s IPA 

(www.qiagen.com/ingenuity). Comparison across subtypes was done using the gene list 

with an FDR of 0.00 as determined by SAM analysis across subtypes. Supervised 

clustering of samples was performed across all tumor samples by claudin, basal, and 

luminal subtypes. Genes within each signature were clustered using average linkage on 
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Cluster 3.0. Significance across gene signature z scores was calculated using Student’s 

t test. Cytokines and chemokines were identified using a RegEx search to capture all 

members of the molecular families. Volcano plots were produced using Bonferroni-

adjusted Student’s t test P values, and fold change was calculated using normalized 

RSEM expression values. NF-κB gene signatures were accessed through Molecular 

Signatures Database (MSigDB) or compiled by the Broad Institute. GSEA software was 

used to produce enrichment plots (http://www.broad.mit.edu/gsea/) (52). UMUC7 and 

UMUC9 cell line data were accessed through GEO data sets GSE48124 and 

GSE47993, respectively. Expression values were mean collapsed onto genes. Gene 

signatures were compiled on the basis of existing gene lists. Significance was 

calculated by collapsing gene signatures into z scores as described above, and 2-tailed 

Student’s t tests were performed across gene signatures. 

 

2.4.6 TCR and BCR gene segment expression analysis 

 Expression levels of 353 BCR gene segments and 240 TCR gene segments 

were determined for TCGA bladder tumor samples with available TCGA mRNA 

sequencing data and survival data using bedtools (version 2.17.0). Gene expression 

values were normalized to the upper quartile of total reads within a sample as 

previously described (53). Survival analyses were performed using a Cox PH model to 

derive P values and coefficients for each gene segment using the Cox PH function in 

the survival package in R. The number of gene segments that were significantly 

associated with improved survival (P < 0.05 and coefficient <0) was calculated for each 

bladder tumor subtype. Null distributions describing the expected number of prognostic 
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gene segments for each subtype were estimated with 95% CIs according to the 

bootstrap method previously published by our group (34). Fisher’s exact test was used 

to compare the number of BCR segments and TCR segments significantly associated 

with improved survival among all subtypes. 

 

2.4.7 Analysis of rearranged BCR repertoires using VDJician 

 The VDJician software accepts mRNA-sequencing data mapped to the genome 

as input and builds a deBruijn graph of read pairs that map to IgH loci or have similarity 

with germline IgH alleles as well as all unmapped reads. The graph is traversed 

exhaustively, resulting in a set of putative contigs. Anchor sequences near the 3′ end of 

V segments and the 5′ end of J segments are identified in an up-front indexing step. If a 

contig contains a sequence within a configurable distance of a V anchor and a J anchor, 

the anchors are a reasonable distance apart, and conserved amino acids that typically 

bind a CDR3 segment are present (cysteine and tryptophan for IgH), the contig is 

considered a candidate. The original set of reads is mapped to candidate contigs, which 

are then further filtered on the basis of coverage and read pair information. VDJician 

outputs a final set of contigs along with alignments of the original reads mapped to 

these contigs. This output was passed to RSEM for transcript quantification. The total 

BCR count was calculated by summing the read count values for all predicted BCR 

sequences for each sample. Evenness was calculated by dividing the Shannon-Wiener 

diversity index by the number of BCR sequences for each sample (example expression 

in R): -sum((read count/sum(read count))*log(read count/sum(read count))))/log(number 

of BCR sequences). P values were determined using a Mann-Whitney U–Wilcoxon test. 
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2.4.8 Neoantigen prediction 

 The bladder cancer data set used for neoantigen prediction consisted of 289 

samples with available TCGA mRNA-sequencing data, exome-sequencing data, and 

tumor specific mutation annotation data (8). Neoantigens were predicted using a 

bioinformatics pipeline similar to that developed by Rajasagi et al (43). Tumor-specific 

single nucleotide variant annotation data were downloaded from the Broad Institute 

Firehose Pipeline (http://gdac.broadinstitute.org). Pysam was used to determine RNA 

sequencing read coverage of missense mutations, and bedtools (version 2.17.0) was 

used to determine the exome-sequencing read coverage of missense mutations. Nine- 

and ten-mer peptides derived from 3 ORFs with all possible combinations of missense 

mutations that overlap the genomic location of peptide in the ENCODE reference 

transcript set were considered in the peptide generation pipeline. DNA sequences 

corresponding to peptides were retrieved and translated in silico into protein sequences. 

The expression levels of each peptide generated were determined by the lowest 

missense mutation RNA-sequencing read coverage. PHLAT was used to identify the 

HLA class I (HLA-A, HLA-B, HLA-C) type of each tumor sample (54). Binding affinity to 

MHC molecules expressed by the tumor for all possible 9- and 10-mer peptides 

generated from missense mutations was predicted using NetMHCpan (version 2.8). 

Binding affinity of peptides to null alleles, alternatively expressed alleles, and alleles not 

supported by NetMHCpan were not predicted. Peptides were then filtered by their 

binding affinities (IC50 nM) to each class I allele in the tumor sample’s HLA type and 

RNA expression level of the predicted source transcript(s). Peptides with an IC50 value 
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of less than 150 nM for at least 1 class I allele and RNA read support of at least 2 reads 

were considered predicted neoantigens.  
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CHAPTER 3: Targeted immune checkpoint inhibition therapy in a rare form of 

bladder cancer 

3.1 Introduction 

 In the United States, bladder carcinoma is the 4th most common malignancy in 

men and the 9th most common in women (67). Overall, an estimated 17,000 people will 

die of bladder cancer in 2018. Bladder cancer takes on a spectrum of histomorphologic 

appearances. The predominant histologic subtype is urothelial carcinoma (90% to 95%) 

and, less frequently, adenocarcinoma (2%) or squamous cell carcinoma (2.5%). Urachal 

carcinomas are a subtype of bladder adenocarcinoma that arises from the urachus, an 

embryologic remnant that connects the bladder and the allantois during fetal 

development (55). Postnatally, it fuses to become a fibrous cord known as the median 

umbilical ligament. Urachal tumors comprise approximately one third of all bladder 

adenocarcinomas and usually develop in the 5th to 6th decade of life, with a male 

predominance (56,57). Because of their frequent presentation at the dome of the 

bladder, urachal adenocarcinomas are clinically and pathologically grouped with bladder 

neoplasms and are typically seen by urologic oncologists and genitourinary 

pathologists. Evidence-based treatment of this disease is hindered by its rarity; thus, 

current treatment paradigms for urachal adenocarcinoma are primarily anecdotal in 

nature. 

 As a result of the complex embryology of the allantois and cloaca, the cellular 

origin and molecular pathogenesis that drive the development of urachal 
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adenocarcinoma are speculative (55). Intestinal metaplasia or enteric rests are 

hypothesized as the histogenetic precursor of these tumors. Although the genetics of 

urachal adenocarcinoma have been investigated by multiple groups, no reports on the 

global gene expression patterns of urachal adenocarcinoma have been published. One 

study selectively examined the prevalence of KRAS and BRAF mutations in high-stage 

urachal adenocarcinomas and, although they found no BRAF mutations, 42% harbored 

KRAS mutations (58). The study also noted a high rate of loss of protein expression for 

a number of genes that are correlated with microsatellite instability. A more recent study 

found a high rate of NF1 mutations via whole-exome sequencing of seven urachal 

adenocarcinomas (59). Finally, another recent study showed that urachal 

adenocarcinomas harbor mutations in mitogen-activated protein kinase (MAPK) 

pathways, similar to colorectal adenocarcinoma, and showed the potential for treatment 

with the anti–epidermal growth factor receptor antibody cetuximab (60). 

 Herein, we report, to our knowledge, the first transcriptome analysis of urachal 

adenocarcinoma using whole-transcriptome profiling by RNA sequencing. A pan-cancer 

transcriptomic analysis of urachal tumors comparing them with 12 cancers of different 

tissue origins suggest that their RNA expression patterns most closely resemble 

colorectal adenocarcinoma and glioblastoma (GBM). Our work also validates reports 

that urachal adenocarcinomas harbor alterations that are typically found in colorectal 

carcinoma—that is, APC, SMAD4, and KRAS mutation—but extends those 

observations to show that a subset of urachal cancers has inactivation of genes that are 

involved in microsatellite instability (MSH2, MSH6) or hypermutation (POLE), and that 

all urachal tumors invariably have mutations of TP53 (100%). One patient with an MSH6 
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mutation was treated with the anti–programmed death-ligand 1 (PD-L1) antibody 

atezolizumab, which resulted in stable disease. In aggregate, our studies demonstrate 

that urachal tumors harbor a high molecular resemblance to colorectal adenocarcinoma 

and suggest a novel therapeutic option: immune checkpoint blockade. 

 

Table 3.1: Clinical Characteristics of Urachal Tumors used in this study 
 

3.2 Results 

3.2.1 Urachal adenocarcinomas molecularly resemble colorectal adenocarcinoma 

and glioblastoma in a pan-cancer analysis 

 Thirteen urachal adenocarcinomas were identified from a search of the University 

of North Carolina surgical pathology database (Table 3.1). All were confirmed to be 

urachal adenocarcinomas on the basis of standard criteria (Methods). We first 

performed global transcriptome profiling of 13 urachal adenocarcinomas using RNA 

sequencing. Transcript abundance was estimated by RNA-seq by expected 
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maximization on the basis of University of California, Santa Cruz, known genes 

annotation (GAF2.1) (74). To assess the similarity of urachal adenocarcinomas to other 

cancers, after normalization and correction for batch effect by using surrogate variable 

analysis, we performed hierarchical clustering using the top 10% of differentially 

expressed genes within the previously described TCGA Pan-Cancer data set, which 

includes tumors from 12 different tissues of origin (51). Five of 13 urachal tumors 

clustered with the TCGA colon and rectal (COADREAD) cancers, while four clustered 

most closely with the TCGA GBM tumors, which suggests that urachal tumors have 

global gene expression patterns that significantly resemble these two tumor types 

(Figure 3.1A). Next, we more quantitatively assessed the level of similarity between 

each urachal tumor and the TCGA Pan-Cancer tumor types across all genes. To this 

end, using all expressed genes, we derived centroid values for each gene within a 

TCGA Pan-Cancer tumor type and determined the correlation between each TCGA 

Pan-Cancer tumor type and each individual urachal sample (Figure 3.1B). Similar to 

hierarchical clustering results (Figure 3.1A), we observed that a subset of urachal 

tumors had high similarity (R = 0.45 to 0.65) to the TCGA COADREAD tumors, whereas 

others had more moderate similarity to the TCGA GBM samples (R = 0.15 to 0.35). In 

aggregate, these results support the notion that subsets of urachal tumors are 

molecularly similar to either colorectal cancer or GBM. 

 Urachal adenocarcinomas arise from an embryologic remnant of the allantois 

that is formed when the cloaca divides into an anterior and posterior portion. Whereas 

the anterior portion becomes the urogenital sinus, the posterior portion goes on to form 

the rectum (56). Of note, urachal remnants are lined by urothelium with varying 
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numbers of columnar and/or mucus-secreting cells (75); therefore, to more specifically 

compare urachal tumors with bladder and colorectal tumors, we hierarchically clustered 

the urachal tumors using the top 10% of the most differentially expressed genes 

between TCGA COADREAD and TCGA BLCA tumors (8,61). The large majority of the 

urachal tumors (n = 12) clustered with the COADREAD tumors (Figure 3.1C), which 

suggests a higher molecular similarity with colorectal cancer than with bladder cancer 

and further supports our findings from the TCGA Pan-Cancer analysis. 
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Figure 3.1: Pan-cancer analysis reveals that urachal adenocarcinomas molecularly 
resemble colorectal adenocarcinoma. (A) Unsupervised clustering of The Cancer 
Genome Atlas (TCGA) Pan-Cancer tumors and UNC urachal adenocarcinomas. (B) 
Correlation matrix of urachal adenocarcinoma samples to TCGA Pan-Cancer 
transcriptome centroids. (C) Unsupervised clustering of TCGA colorectal 
adenocarcinomas, TCGA urothelial carcinomas, and UNC urachal carcinomas. BLCA, 
bladder urothelial carcinoma; BRCA, breast invasive carcinoma; COAD, colon 
adenocarcinoma; GBM, glioblastoma; HNSC, head and neck squamous cell carcinoma; 
KIRC, kidney renal clear cell carcinoma; LAML, acute myeloid leukemia; LUAD, lung 
adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous 
cystadenocarcinoma; READ, rectum adenocarcinoma; UCEC, uterine corpus 
endometrial carcinoma; URAC, urachal adenocarcinoma. 
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3.2.2 Targeted exon sequencing reveals genomic alterations that parallel 

colorectal cancer 

 We next performed targeted exon capture sequencing of approximately 800 

genes using the UNCseq panel of genes for 11 urachal tumors. There was universal 

inactivation of TP53 by mutation (Figure 3.2A). Of interest, other genes that mutated at 

a high frequency included APC (25%), ARID4B (25%), MLL3 (25%), NF1 (25%), and 

MTOR (33%). APC mutations were of particular interest, given it is uniquely mutated in 

colorectal cancers (51). Although none of the MTOR mutations has been previously 

reported, of interest, two of four of these mutations occur in the focal adhesion kinase 

targeting domain, where activating mutations have been previously described and 

shown to impart sensitivity to rapamycin (62). Moreover, colorectal cancers have one of 

the highest rates of MTOR mutations across the published TCGA data sets. In contrast, 

there did not seem to be a significant number of mutations in genes that are typically 

altered in bladder cancer, such as FGFR3, ARID1A, KDM6A, CDKN1A, or E2F3 (8). 

Moreover, hierarchical clustering of TCGA BLCA (n = 127), TCGA COADREAD (n = 

224), and UNCseq urachal tumors, on the basis of the percentage of mutation of each 

gene using significantly mutated gene lists from the TCGA BLCA and COADREAD data 

sets, demonstrated that urachal tumors clustered more closely with colorectal tumors 

(Figure 3.2B). 

 Colorectal cancers are typified by alterations in several pathways, including β-

catenin—by APC loss—as well as activation of the RAS/MAPK signaling pathway—

typically by KRAS mutation—and TGFB (by SMAD4 inactivation) pathways. We noted 
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that urachal tumors harbored high levels of genomic alterations of all three of these 

canonical colorectal cancer pathways, including β-catenin activation by APC mutation 

as well as mutations in CTNNB1 and AMER1 (APC membrane recruitment protein 1), 

MAPK activation by KRAS mutation or NF1 loss, and TGFB activation by SMAD2, 

SMAD3, or SMAD4 mutations (Figure 3.2C). Indeed, urachal tumors had mutational 

frequencies of these pathways that were near that of the TCGA COADREAD data set 

(Figure 3.2D), which reinforces the notion that a subset of urachal adenocarcinomas 

genomically resembles colorectal cancer. 

 To analyze the genomic landscape of urachal adenocarcinomas, we performed 

cohort-level copy number alteration analysis by using GISTIC 2.0 (63). No regions of 

the genome had significant copy number amplification; however, several regions 

showed significant focal deletions (Figure 3.2E). The 16p13.3 and 19p13.3 cytoband 

deletions were the only significant genomic alterations that urachal adenocarcinoma 

shares with either bladder or colorectal cancer, and both regions are significantly 

deleted across all three cancer types; however, no other regions of the genome show 

similarities in copy number alteration between urachal adenocarcinomas and the other 

two cancers, which indicates that, whereas transcriptomic profiling indicates that urachal 

adenocarcinomas are similar to colorectal adenocarcinomas, the genomic landscape of 

urachal adenocarcinoma is distinct. Of interest, the 17q25.3 cytoband, which is 

significantly deleted in urothelial adenocarcinomas, contains RNF213, one of the genes 

mutated in 25% of urachal adenocarcinomas and that is involved in the inhibition of 

noncanonical Wnt/calcium signaling, which further supports similarities with colorectal 

adenocarcinoma (79).  
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Figure 3.2: Targeted exon sequencing reveals that genomic alterations of urachal 
adenocarcinoma parallel those of colorectal adenocarcinoma. (A) Oncoprint of 
significantly mutated genes (> 10%) in urachal adenocarcinoma samples. (B) 
Unsupervised clustering of urachal, colorectal, and bladder mutation frequency across 
BLCA and COADREAD significantly mutated genes as defined by the The Cancer 
Genome Atlas (TCGA). (C) Oncoprints of transforming growth factor (TGF)-β, mitogen-
activated protein kinase (MAPK), and β-catenin pathway mutations in colorectal 
(TCGA), bladder (TCGA), and urachal (UNCSeq) tumors. (D) A supervised heatmap of 
the frequency of TFG-β, MAPK, and β-catenin pathway mutations in colorectal (TCGA), 
bladder (TCGA), and urachal (UNCSeq) tumors. (E) Genomic Identification of 
Significant Targets in Cancer (GISTIC) plot identifies significant DNA copy number 
alterations. Gains and losses are depicted in gold and blue, respectively, ordered by 
genomic position, and a significance threshold (false discovery rate < 0.25) is indicated. 
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3.2.3 Urachal adenocarcinomas have inactivation of genes associated with 

microsatellite instability and hypermutation 

 Microsatellite instability is a hypermutable phenotype that is caused by the loss of 

DNA MMR activity and is detected in approximately 15% of all colorectal cancers (64). 

We detected inactivating mutations in MSH2 and MSH6 as well as mutation of the 

catalytic subunit of the DNA polymerase epsilon complex (POLE), which has been 

demonstrated to result in a hypermutable phenotype in 25% (3 of 12) of urachal tumors 

(Figure 3.3A) (65). A comparison of both the mutational burden and the number of 

indels across UNCseq urachal tumors, UNCseq colorectal (n = 67), and UNCseq 

bladder tumors (n = 51) demonstrated that urachal tumors with inactivation of MSH2 or 

MSH6 had high mutation burdens and indel (insertion/deletion) rates (Figure 3.3B and 

C); therefore, a subset of urachal tumors harbors mutations in either DNA MMR genes 

or DNA polymerases that are associated with hypermutation. These urachal tumors 

have a hypermutable phenotype and are associated with increased mutational loads 

and indel rates comparable to those observed in DNA MMR–deficient colorectal and 

bladder cancers. 
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Figure 3.3: Urachal adenocarcinomas have inactivation of genes that are associated 
with microsatellite instability and hypermutation. (A) Oncoprints of DNA mismatch repair 
gene pathways across UNCSeq colorectal, urachal, and bladder samples. (B) 
Supervised bar plot of the mutations/Megabase (MB) across UNCSeq bladder, 
colorectal, and urachal samples, with samples that contain mutations in the DNA 
mismatch repair (MMR) pathway indicated. (C) Supervised bar plot of the ratio of 
insertions to deletions (InDel)/mutation for UNCSeq bladder, colorectal, and urachal 
samples, with samples that contain mutations in the DNA mismatch repair pathway 
indicated. 
 

3.2.4 Atezolizumab treatment results in stable disease 

 Programmed death-1 (PD-1) blockade has resulted in significant responses in 

tumors with MMR deficiency (66). One of the patients whose urachal tumor was found 

to harbor an MSH6 mutation was treated with the anti–PD-L1 antibody, atezolizumab. 

The patient received atezolizumab every 3 weeks with initial progression in target 

lesions (two lung nodules and one hilar lymph node), followed by regression in the two 
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lung nodules and an increase in the left hilar node associated with necrosis at second 

assessment (Figure 3.4A and B). This pattern of initial growth followed by response is 

consistent with immune-related responses—that is, flare—observed during immune-

checkpoint inhibitor therapy (83). Given the rarity of urachal adenocarcinoma, clinical 

trials of immune checkpoint inhibition are unlikely; however, the successful treatment 

with atezolizumab of a patient who harbors a DNA MMR pathway mutation provides 

anecdotal evidence of the efficacy of this therapy in urachal adenocarcinoma. 
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Figure 3.4: Evaluation of a patient with urachal adenocarcinoma who was treated with 
atezolizumab. (A) Spider plot of individual lesions and combined tumor burden of the 
atezolizumab-treated patient. Arrow indicates start of atezolizumab treatment. (B) 
Images of target lesions at imaging time points. 
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3.3 Discussion 

 Here, we describe the comprehensive genomic characterization of urachal 

adenocarcinoma and the first report, to our knowledge, of global RNA expression 

profiling of urachal tumors. We find that urachal tumors molecularly resemble colorectal 

cancer at the level of gene expression and validate previous reports that have shown 

that urachal tumors harbor genomic alterations—that is, KRAS, APC, and 

SMAD2/SMAD4 mutations—found in colorectal cancer (58-60). In aggregate, this work 

strengthens the links between these two seemingly disparate cancers. 

 A major novelty of our work is the finding that 25% (3 of 12) of urachal tumors 

harbor inactivating mutations of genes that are involved in DNA MMR, MSH6 and 

MSH2, or the DNA polymerase, POLE. These mutations are particularly interesting 

given their potential to predict response to immune checkpoint blockade. Perhaps most 

importantly, because clinical trials are next to impossible for rare tumors, patients with 

these tumors are most likely to benefit from precision oncology. Much like colorectal 

cancers with inactivating mutations in DNA MMR genes or POLE, we demonstrate that 

urachal adenocarcinomas with inactivation of these genes harbor a higher mutational 

burden and a higher rate of indels than those with an intact DNA MMR pathway. 

Emerging evidence suggests that tumors with higher mutational load have enhanced 

response to immune checkpoint blockade, likely because mutational load correlates 

robustly with predicted neoantigen burden (14,20,42,67). Along these lines, tumors with 

defective DNA MMR have heightened clinical benefit from anti–PD-1 therapy (66). 

Successful treatment of our patient with an MSH6 mutation with atezolizumab 
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demonstrates the potential utility of precision oncology in this rare tumor type with a lack 

of clearly defined therapeutic options. Nonetheless, our case report remains anecdotal. 

 Whereas we demonstrate that there are striking similarities between urachal 

adenocarcinomas and colorectal cancers, we also note that some urachal 

adenocarcinomas seemed to have gene expression patterns that also more closely 

resembled GBMs. Of interest, the mesenchymal subtype of GBM seems to be enriched 

for inactivation of NF1 as well as gene expression of mesenchymal markers, such as 

MET (68). Additional exploration of whether urachal tumors truly resemble GBM should 

be considered. 

 In summary, to our knowledge, our study is the first to perform global 

transcriptome profiling of urachal adenocarcinomas. When placed in the context of a 

Pan-Cancer data set, urachal adenocarcinomas seem to most highly resemble 

colorectal cancer. Our transcriptome studies therefore reinforce the notion from 

genomic studies that urachal adenocarcinomas resemble colorectal cancer; however, 

our studies report that these rare tumors have mutations in DNA MMR proteins and 

POLE and describe the successful treatment of a patient by using the anti–PD-L1 

antibody atezolizumab. Overall, our studies and case report highlight the potential utility 

of precision oncology in rare tumor types that have no clear standard of care therapy 

and are unlikely to have sufficient numbers of patients to complete large clinical trials. 
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3.4 Methods 

3.4.1 Sample and Data Acquisition 

 Samples and clinical data were obtained after approval by the University of North 

Carolina institutional review board. Thirteen primary urachal adenocarcinomas with 

formalin-fixed, paraffin-embedded (FFPE) tissue available at University of North 

Carolina, Chapel Hill, were identified by using CoPath Natural Language Search 

(Cerner Corporation, Kansas City, MO). Hematoxylin and eosin–stained slides and 

clinical history were reviewed by a board-certified pathologist (S.E.W.) to confirm the 

diagnosis on the basis of the following criteria: tumor in the dome or posterior wall of the 

bladder, sharp demarcation between tumor and surface epithelium, and exclusion of 

primary adenocarcinoma located elsewhere. The surgical procedure, tumor location 

within the bladder, histologic subtype, and tumor stage were all recorded from the 

accompanying pathology reports. 

 

3.4.2 RNA Expression 

 For RNA sequencing, RNA was extracted from 10-µm-thick unstained sections of 

FFPE blocks that were isolated from urachal tumors. Macrodissection was used for 

tumor enrichment. RNA was extracted by using the High-Pure FFPE RNA Extraction 

Protocol (Roche, Indianapolis, IN). A minimum of 2 µg of total RNA was isolated from 

FFPE tissues. Extracted RNA was converted to double-stranded cDNA, and sequencing 

adapters were ligated by using the Illumina RNA Access Library Prep Protocol (Illumina, 

San Diego, CA). Samples were sequenced by paired-end, 100-bp sequencing on an 

Illumina HiSEquation 2000 at the High Throughput Sequencing Core Facility at the 
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University of North Carolina. Sequence reads were aligned to the human reference 

transcriptome, and gene expression was generated as reads per kilobase of exon 

model per million mapped reads per gene by using MapSplice (University of Kentucky 

Bioinformatics Labs, Lexington, KY). RNA sequencing data were normalized for 

variations in read counts, log2 transformed and median centered before analysis. When 

combining data sets, we adjusted for batch effects using the surrogate variable analysis 

R package (version 3.12.0; R Foundation, Vienna, Austria). 

 Clustering with the combined Urachal (sequenced urachal tumors) and PanCan 

(TCGA Pan-Cancer Dataset) (51) data set was performed by using average linkage 

clustering with a centered correlation similarity metric with Cluster 3.0 (Human Genome 

Center, Tokyo, Japan) software on the top 10% most differentially expressed genes (as 

determined by standard deviation) across the combined PanCan and Urachal data set. 

PanCan subtype centroids were derived by determining the median expression of each 

gene in the transcriptome across each of the PanCan tumor types. A Pearson 

correlation was calculated between each of the PanCan tumor type centroids and each 

Urachal tumor. Clustering between The Cancer Genome Atlas (TCGA) bladder 

urothelial carcinoma (BLCA), TCGA colorectal adenocarcinoma (COADREAD), and 

Urachal samples was performed using average linkage clustering with a centered 

correlation similarity metric with Cluster 3.0 software on the top 10% most differentially 

expressed genes after adjusting for batch effects as described above. 
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3.4.3 Targeted Exon Sequencing 

 Targeted exon sequencing was conducted through the UNCseq pipeline as 

previously described (86). Twelve of 13 urachal samples had both tumor and tumor-

adjacent normal tissue submitted to the UNCseq pipeline that passed quality control 

standards and were included in the DNA analysis. Analysis to identify significantly 

mutated genes, altered pathways, and clustering was confined to mutations that were 

classified as either having a moderate or high impact on protein function through 

UNCseq. Clustering of TCGA BLCA, TCGA COADREAD, and UNCseq Urachal 

samples was performed on the basis of a compilation of the mutation frequency of the 

previously identified significantly mutated genes in the TCGA BLCA and TCGA 

COADREAD data sets that were present in the UNCseq targeted regions (8,61). I’m 

convinced no one actually reads most of this so if you read this sentence, email me and 

I’ll buy you a beer. Pathway mutation frequency was calculated on the basis of the 

number of samples in each cohort that contained at least one mutation in the gene list 

associated with that pathway. The transforming growth factor (TGF)-β pathway was 

represented by the SMAD2, SMAD3, SMAD4, and TGFBR1 genes. The β-catenin 

pathway was represented by the APC, CTNNB1, and AMER1 genes. The MAPK 

pathway was represented by the NF1, KRAS, BRAF, HRAS, NRAS, RAF1, MEK1, 

MEK2, ERK1, and ERK2 genes. Copy number alteration on a cohort level was derived 

by running Genomic Identification of Significant Targets in Cancer (GISTIC) 2.0 on the 

Gene Pattern online platform (63). The DNA mismatch repair (MMR) pathway was 

represented by the MLH1, MLH3, MSH2, MSH3, MSH6, and PMS2 genes, with the 

POLE gene included and separately identified. Mutation frequency was calculated using 
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all identified mutations in each sample and dividing it by the total Megabase region of 

30× coverage within each sample. The insertion-to-deletion ratio was calculated by 

identifying the mutations that were identified as either nucleotide insertion or deletion 

events and dividing it by the total number of insertion and deletion events and single-

nucleotide variant events (total mutations) in each sample.  
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CHAPTER 4: Immune infiltration in the tumor microenvironment in response to 

cisplatin-based chemotherapy 

4.1 Introduction 

 Urinary bladder cancer is the ninth most common malignancy, with ~77,000 new 

cases and ~16,000 deaths in the United States annually (2). Muscle-invasive bladder 

cancer has been described as a heterogeneous disease, with several groups identifying 

intrinsic molecular subtypes within bladder cancer. There is a general consensus on a 

more aggressive, mesenchymal, and immune infiltrated basal subtype and a more 

differentiated luminal subtype of as overarching subtypes of bladder cancer (6). The 

luminal subtype has a better overall and disease-specific survival than the basal 

subtype, and there are distinct genomic and transcriptomic characteristics of each 

subtype. Our group has developed a UPPL mouse model of bladder cancer that 

accurately recapitulates the luminal subtype of bladder cancer, while the carcinogen-

induced BBN mouse model of bladder cancer recapitulates the basal subtype of bladder 

cancer (69).  

 In bladder cancer, treatment with the PD-L1 antibody atezolizumab is effective in 

a subset of patients (14). Response to treatment was positively correlated with immune 

suppression in the tumor microenvironment as measured by PD-L1 expression, which is 

of particular interest as we have previously identified subtype-specific differences in 

both immune infiltration and immunosuppression (67). 
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 The standard of care for MIBC is a combination Gemcitabine/Cisplatin (GemCis) 

regimen followed by a cystectomy. However, a combination Methotrexate/ Vinblastine/ 

Adriamycin/ Cisplatin (MVAC) regimen was also commonly used and has been shown 

to have a similar survival benefit, but was largely discontinued because of adverse side 

effects relative to GemCis treatment (3). More recently MVAC has been modified into a 

dose dense (ddMVAC) regimen that utilizes granulocyte-colony stimulating factor (G-

CSF) and has shown promising results and less toxicity than historical standard MVAC, 

reviving interest in the use of MVAC based regimens (70,71).  Other groups have found 

that cisplatin-based chemotherapy induces mutational heterogeneity while not 

increasing the overall tumor mutational burden (72,73). No studies have been 

conducted on the differing effects of MVAC and GemCis treatment on the tumor 

microenvironment in bladder cancer, and whether the treatment has a differential effect 

on tumor subtypes. 

 

4.2 Results 

4.2.1 RNA expression analysis reveals differential transcriptomic effects of 

GemCis/MVAC Treatment 

 Previous groups have studied the clinical response of bladder cancer patients to 

MVAC and GemCis treatment and have found that GemCis treatment provides a similar 

overall survival to MVAC treatment but with a better safety profile and patient tolerability 

(3). Recently, a ddMVAC treatment schedule has shown lower levels of toxicity, and has 

revived interest in the use of MVAC-based treatments. However, the effect that these 

different cisplatin-based chemotherapeutic regiments have on the tumor 
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microenvironment has not sufficiently been explored. To this end, we compiled cohorts 

of patients from multiple institutions including the Fox Chase Cancer Center (FCCC), 

GenomeDx Biosciences (GDx), MD Anderson Cancer Center (MDA), and UNC 

Lineberger Comprehensive Cancer Center (UNC) who had been treated with either 

GemCis or MVAC neoadjuvant chemotherapy (Table 4.1). Each patient had paired pre 

(transurethral resection) and post-chemotherapy (cystectomy) tumor tissue available for 

analysis. These paired tumor samples from both pre- and post-treatment, provided us 

with a unique opportunity to assess the effect of GemCis or MVAC treatment on the 

transcriptomes of patient tumors.  

 

Table 4.1: Clinical characteristics by cohort for patient datasets used in the study 
  

 To understand the changes in gene expression patterns that occur in patient 

tumors, RNA was isolated from each FFPE sample and transcriptomic RNA expression 
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was quantified across patient cohorts (Figure 4.1A).  We next performed 2-class 

significance analysis of microarray (SAM) analysis in each patient cohort. Across 

datasets, we found that a greater number of genes were differentially expressed post-

treatment in the MVAC treated cohorts than in the GemCis treated cohorts (Figure 4.1B, 

GemCis n=523, MVAC n=2438). To see what pathways were misregulated by Gem/Cis 

and MVAC we compared genes that were differentially regulated post-treatment in the 

GemCis and MVAC cohorts respectively (Figure 4.1C). We excluded the MDA GemCis 

samples from the analysis as the small number of samples in the cohort (n=12) made 

the results relatively unreliable. Genes that were consistently differentially regulated 

across all cohorts in the GemCis and MVAC treated conditions were assessed via 

Ingenuity Pathways Analysis (IPA). Interestingly, while GemCis treatment misregulated 

general cancer pathways such as tight junction and protein kinase A signaling, MVAC 

treatment misregulated macrophage and STAT3 signaling, indicating that MVAC 

treatment could have a unique effect on immune infiltration within the tumor 

microenvironment (Figure 4.1D). 
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Figure 4.1: Differential transcriptomic effects of GemCis/MVAC Treatment on bladder 
tumors. (A) Workflow of sample collection and processing. (B) Volcano plots of 
differentially expressed genes in post- vs pre- treatment samples in GemCis (left) and 
MVAC (right) treated cohorts. (C) Venn diagram showing the overlapping differentially in 
the GemCis (left) and MVAC (right) treated datasets. (D) Ingenuity Pathway Analysis 
plots of dysregulated pathways in the GemCis (left) and MVAC (right) treated datasets. 
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4.2.2 MVAC treatment induces an increase in immune infiltration in the tumor 

microenvironment 

 To determine the effect of cisplatin-based chemotherapy on macrophage activity, 

we measured the post-treatment change in CD68 RNA expression and the levels of a 

validated CD68 macrophage gene signature. While GemCis treatment either decreased 

or did not change either metric, MVAC treatment resulted in an increase in both CD68 

RNA expression and macrophage gene signature score (Figure 4.2A). Assessing 

changes on an individual patient level further showed an increase in both metrics in the 

MVAC treated cohorts, while GemCis treatment did not affect expression levels (Figure 

4.2B). We noted that tumor samples with the lowest expression levels seemed to have 

the greatest post-treatment increase in expression. To test this, we found that there was 

a significant inverse correlation between pre-treatment expression and post-treatment 

change in both CD68 expression and macrophage signature score (Figure 4.2C). This 

was particularly interesting as our previous work has shown that luminal tumors are less 

immune infiltrated than other bladder cancer subtypes (67).  We therefore hypothesized 

that the change in macrophage activity induced by MVAC treatment could be modulated 

more profoundly in luminal than basal tumors.  

 There are now two well defined macrophage subpopulations termed M1 and M2. 

To assess whether GemCis or MVAC promoted differences in macrophage polarization 

we derived 2 macrophage polarization signatures from published gene sets (92,93) and 

assessed their relative change between pre and post-treatment samples. We found no 

consistent change in the M1/M2 polarization across treatment cohorts (Figure 4.3), 
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indicating that while MVAC treatment increases overall macrophage activity within the 

tumor microenvironment, it does not affect the macrophage polarization.  

 To assess if other components of the cytotoxic immune response were altered by 

MVAC treatment, we measured the post-treatment change in CD8A & CD8B RNA 

expression and the levels of a validated CD8 T-cell gene signature (34). We found that 

MVAC treatment consistently increased the expression of CD8A, CD8B (Figure 4.3A-B), 

and a validated CD8+ T-cell gene signature (Figure 4.3C), while GemCis treatment did 

not have a consistent effect on expression levels.  
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Figure 4.2: Markers of macrophage infiltration and activity increase post-MVAC 
treatment. (A) Bar plots of change in CD68 RNA expression (left) and CD68 
Macrophage gene signature score (right) in GemCis (blue) and MVAC (red) treated 
datasets. (B) Boxplots of pre- (light blue) and post-treatment (pink) levels of CD68 RNA 
expression (left) and CD68 Macrophage gene signature score across datasets (C) 
Correlation plot comparing the pre-treatment level (x-axis) to the change in expression 
(y-axis) of CD68 RNA expression (left) and CD68 Macrophage gene signature score 
(right) across datasets. 
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Figure 4.3: Cisplatin-based chemotherapy does not change macrophage polarization in 
the tumor microenvironment. Distribution plots of macrophage polarization gene 
signature scores from Murray et al. (left) and Martinez and Gordin et al. (right). 
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Figure 4.3: Markers of CD8+ T-cell infiltration and activity increase post-MVAC 
treatment. (A-B) Barplots of change in CD8 RNA expression and boxplots of pre- 
(lightblue) and post-treatment (pink) levels of CD8 RNA expression across datasets. (C) 
Barplot of change in CD8+ T-cell signature score and boxplots of pre- (light blue) and 
post-treatment (pink) levels of CD8+ T-cell signature score across datasets. 
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4.2.3 Creation of a merged metadataset 

 To directly compare the effects of MVAC and GemCis treatment on the tumor 

microenvironment, we created a merged metadataset of samples from all of the patient 

cohorts (Figure 4.4). An initial comparison of sample expression data by principal 

component analysis (PCA) showed that samples from different centers had vastly 

differing RNA expression profiles, likely due to differences in transcriptomic profiling 

platforms (Figure 4.5A). RNA expression was corrected across cohorts using Q3 

normalization while accounting for platform and treatment effects (94). After correction, 

the expression ranges of samples across cohorts was comparable and platform-related 

sample bias were removed (Figure 4.5B). To further characterize the clinical 

characteristics of the merged metadataset, we performed BASE47 subtype 

classification on the pre-treatment samples and found a roughly even distribution of 

basal and luminal tumors that is consistent with previous analysis of bladder subtypes 

(Figure 4.5C). 



70 
 

Figure 4.4: Workflow of batch effect correction across datasets. 
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Figure 4.5: Batch effect removal adjusts for platform and sample effects across 
datasets. (A) RNA expression level and PCA plot of samples across individual datasets. 
(B) Batch effect corrected RNA expression levels and PCA plot of samples in the 
merged metadataset. (C) BASE47 classification of pre-treatment samples in the merged 
metadataset. 
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4.2.4 MVAC treatment more profoundly induces immune gene signature 

expression, immunosuppression, and immunogenic cell death in luminal tumors 

 To directly compare the relative effects of MVAC and GemCis treatment on 

macrophage activity within the tumor microenvironment, we assessed the expression of 

CD68 RNA and a macrophage gene signature (Figure 4.6A). We found that MVAC-

treated luminal tumors have a significantly greater increase in macrophage activity by 

both metrics than either GemCis-treated luminal tumors or MVAC-treated basal tumors 

(Figure 4.6B). To test the reproducibility of this finding, we assessed subtype and 

treatment specific changes in expression across a diverse panel of immune gene 

signatures. Across a large portion of these gene signatures, we saw a similar phenotype 

with MVAC-treated luminal tumors having a consistently higher level of immune 

infiltration than the other subtype and treatment conditions (Figure 4.6C).  

 We further looked at how signatures of CD8+ T-cell activity change in response 

to treatment (Figure 4.7A). We found that much like for macrophage activity, MVAC-

treated luminal tumors have a significantly greater increase in CD8+ T-cell activity than 

either GemCis-treated luminal tumors of MVAC-treated basal tumors (Figure 4.7B). Our 

previous work has shown that an increase in immune infiltration within the tumor 

microenvironment is accompanied by an increase in immune checkpoint signaling (67). 

To assess whether MVAC-treatment has a corresponding effect on immune checkpoint 

signaling, we measured the expression of an immunosuppression signature across 

treatment conditions. Consistent with our earlier findings, MVAC-treated luminal tumors 

showed significantly higher levels of immunosuppression than either GemCis-treated 

luminal tumors of MVAC-treated basal tumors, and we similarly found a significant, 
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strong correlation between CD8+ T-cell activity and immunosuppression across all 

samples (Figure 4.7C). To see if any individual components of the signatures were 

biasing our results, we measured changes in individual gene levels across treatment 

conditions. In line with our previous findings, both gene sets were consistently 

upregulated in MVAC-treated luminal tumors (Figure 4.7D). 

 Our previous work has shown that there are subtype-specific differences in the 

CD8+ T-cell: Regulatory T-Cell ratio between the basal and luminal subtypes of bladder 

cancer (69). We measured the ratio of a CD8+ T-cell signature: Treg signature across 

treatment conditions. We found that MVAC-treated luminal tumors had a significant 

increase in CD8: Treg ratio post-treatment, indicating an activation of a cytotoxic 

immune response, while other treatment conditions showed no significant change in 

CD8: Treg ratio (Figure 4.8). This further shows that MVAC-treatment of luminal tumors 

preferentially induces an increase in immune infiltration that is not seen across other 

subtype and treatment combinations.  

 Immunogenic cell death (ICD) is another mechanism of immune activation that 

has recently been shown to be prognostic of patient survival. ICD induces the activation 

of danger signaling pathways leading to anti-tumor immunity. We explored the subtype-

specific treatment effect on intra-tumor ICD signaling using a validated ICD gene 

signature (95). Consistent with our previous findings, we saw a significantly greater 

increase ICD score in MVAC-treated luminal tumors than in either MVAC-treated basal 

tumors or GemCis-treated luminal tumors (Figure 4.9A). We further wanted to see what 

individual components of the ICD signature were most affected treatment-specific 

manner (Figure 4.9B). Interestingly, 2 of the genes most misregulated in MVAC-treated 
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luminal tumors, IL10 and IL6, are cytokines regulating immune response and 

inflammation, indicating that the phenotypic increase in immune infiltration and immune 

suppression induced by MVAC-treatment in luminal tumors could be regulated by 

cytokine signaling. 
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Figure 4.6: MVAC treatment increases macrophage infiltration and activity in luminal 
bladder tumors. (A) Grouped boxplot of CD68 RNA and gene signature expression by 
treatment and subtype. (B) Barplots of change in CD68 RNA expression and 
macrophage gene signature score by MVAC/GemCis treatment and BASE47 subtype. 
(C) Heatmap showing the post-treatment change in expression of a panel of immune 
gene signatures  across both treatment and subtype. 
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Figure 4.7: MVAC treatment increases CD8+ T-cell activity and corresponding 
immunosuppression in luminal bladder tumors. (A) Boxplots of CD8 RNA expression 
and CD8+ T-cell gene signature score by treatment and tumor subtype.  (B) Barplots of 
change in  CD8 RNA expression and CD8+ T-cell gene signature score by treatment 
and tumor subtype. (C) Plots of immunosuppression score by treatment and subtype 
and a correlation plot of CD8+ T-cell signature score with immunosuppression signature 
score. (D) Heatmap of genes in the CD8+ T-cell and immunosuppression gene 
signature sets. 
 

 

 

Figure 4.8: MVAC treatment increases the prevalence of CD8+ T-cells compared to 
regulatory T-cells in the tumor microenvironment. Distribution plots of the pre- and post-
treatment ratio of CD8+ T-cell signature to regulatory T-cell signature by treatment type 
and subtype.  
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Figure 4.9: MVAC treatment increases immunogenic cell death within luminal bladder 
tumors. (A) Plots showing both expression levels (left) and change in the expression 
(right) of an immunogenic cell death (ICD) signature by treatment and subtype. (B) 
Heatmap of post-treatment change in expression of genes in the ICD signature.  
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4.2.5 MVAC treatment induces dysregulation of cytokine expression and 

epithelial-to-mesenchymal transition 

 To assess whether cytokine signaling is misregulated in a treatment specific 

manner, we measured post-treatment changes in individual components of the 

cytokinome across treatment conditions. We found that several cytokines regulating 

inflammation and immune response, including IL6 and IL32, are significantly 

upregulated in MVAC-treated luminal tumors (Figure 4.10 A-B).  

 As the cytokine-regulated inflammation and epithelial-mesenchymal transition 

(EMT) of tumors are intricately linked, we wanted to investigate whether there was a 

corresponding treatment-specific effect on tumor EMT status (96). We measured tumor 

EMT status using two previously validated EMT signatures (67). Across both EMT 

signatures we saw a consistent transition to a more mesenchymal phenotype in luminal 

tumors post-MVAC treatment (Figure 4.11A-B). Interestingly, GemCis treatment of 

basal tumors seemed to induce a more epithelial tumor phenotype, indicating that 

GemCis treatment may be affecting different molecular regulatory mechanisms than 

MVAC treatment.  
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Figure 4.10: Cisplatin-based chemotherapy dysregulates the expression of cytokines 
within the tumor microenvironment. (A) Heatmap of change in RNA expression of the 
cytokinome supervised by treatment type and tumor subtype. (B) Plots showing 
correlation of change in RNA expression of individual cytokines by treatment type in 
luminal (left) and basal (right) tumors.  
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Figure 4.11: MVAC treatment induces a more mesenchymal phenotype in luminal 
bladder tumors. Plots showing expression values (A) and post-treatment change (B) of 
the Byers EMT signature and an internally derived EMT signature.  
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4.2.6 Change in gene signature expression is more predictive of survival than 

both pre- and post-treatment levels 

 To assess the prognostic relevance of molecular differences in GemCis and 

MVAC treatment, we performed clinical analysis of treatment outcomes. We first 

validated the clinical relevance of our merged dataset by recapitulating previously 

known predictors of survival. Consistent with previous work, pathological stage and 

BASE47 subtype were significantly correlated with patient survival, while gender and 

MVAC/GemCis treatment were not predictive of outcome. Furthermore, there was no 

difference in response to MVAC/GemCis treatment across subtypes (Figure 4.12). As 

pathological stage is known to be predictive of patient outcome, we accounted for stage 

while performing multivariate Cox-Proportional Hazards modeling of our panel of 

immune gene signatures both across all patients within our cohort and broken down by 

MVAC and GemCis treatment. Interestingly, we found that across all patients (Figure 

4.13A), GemCis treated patients (Figure 4.13B), and MVAC treated patients (Figure 

4.13C), the post-treatment change in signature score is more predictive of patient 

survival than either the pre- or post-treatment levels alone and is positively associated 

with better patient survival. This indicates that a positive response to cisplatin-based 

chemotherapy can be predicted by an increase in immune gene signature score, 

indicative of a corresponding post-treatment increase in immune infiltration within the 

tumor microenvironment. Interestingly, while several immune gene signatures were 

prognostic across all patients (Figure 4.14A), when accounting for MVAC/GemCis 

treatment, the majority of signatures were only prognostic in MVAC-treated patients, 

and not in the GemCis-treated patients (Figure 4.14B), indicating that post-treatment 
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immune infiltration uniquely correlates with better treatment outcome in MVAC-treated 

patients.  

 

Figure 4.12: The merged metadataset recapitulates the known clinical characteristics of 
bladder cancer. Kaplan-Meier plots of relevant clinical characteristics. 
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Figure 4.13: Change in gene signature expression is more predictive of survival than 
pre- or post-treatment expression levels. Heatmaps of significance (left) and hazard 
ratio (right) across all patients (A), GemCis treated patients (B), and MVAC treated 
patients (C) after accounting for tumor stage and grade.  
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Figure 4.14: Change in immune gene signatures are predictive of survival in MVAC 
treated patients. Volcano plot of the hazard ratio and p-value of Cox-PH modeling of 
gene signature scores across all patients (A) and within GemCis/MVAC treated cohorts 
(B) after accounting for tumor stage and grade.  
 

4.2.7 In vitro treatment with Methotrexate is sufficient to induce epithelial to 

mesenchymal transition in murine bladder cancer cell lines 

 Our lab has previously developed murine bladder cancer cell line models that 

accurately recapitulate the intrinsic molecular subtypes of bladder cancer (69). One of 

these cell lines is BBN963.  To assess differences in the effect of MVAC and GemCis 

treatment on bladder cancer cells we treated a BBN963 cell line with concentrations of 

MVAC/GemCis and each of their individual component drugs for 72hr, and measured 

changes in cellular markers of EMT. We found that MVAC treatment induces a greater 

increase in Vimentin expression than GemCis treatment, and that Methotrexate 

treatment was sufficient to induce an increase in Vimentin expression (Figure 4.15A). 

Methotrexate is a dihydrofolate reductase inhibitor which is necessary for the synthesis 
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of tetrahydrofolate, a key precursor for purine and pyrimidine synthesis (98). We treated 

both BBN963 and UPPL1694 murine bladder cancer cell lines with a combination of 

methotrexate and leucovorin (the drug name for tetrahydrofolate). We found that across 

both cell lines, treatment with methotrexate increased Vimentin expression, and 

treatment with a combination of methotrexate and leucovorin restores lower levels of 

vimentin expression (Figure 4.15B). This supports the notion that the inhibition of 

dihydrofolate reductase by methotrexate is the driving mechanism of the induction of a 

mesenchymal phenotype and the corresponding increase in immune infiltration in 

MVAC-treated tumors.  
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Figure 4.15: Methotrexate treatment is sufficient to induce a mesenchymal phenotype in 
murine bladder cancer cell lines. (A) Western blot of EMT markers after treatment with 
MVAC, GemCis, and the individual drug components in a BBN963 cell line. (B) Western 
blot of EMT markers after methotrexate/leucovorin treatment in BBN963 and UPL1694 
cell lines.  
 

4.2.8 In vivo treatment of murine bladder cancer models with MVAC/GemCis 

reveals differences in the effect on the tumor immune microenvironment 

 To assess the effects of MVAC and GemCis treatment on the immune 

microenvironment, we used previously developed murine models of bladder cancer 

(69). Bladder cell lines were subcutaneously injected in immune-competent B6 mice. 
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Once the tumor had reached a volume of 200mm3, mice were enrolled in a treatment 

condition for 2 weeks, after which tumors were isolated and analyzed (Figure 4.16A). 

Both GemCis and MVAC treated tumors progressed slower and had smaller tumor 

endpoint volumes than saline treated mice (Figure 4.16B-C), indicating that we were 

dosing with biologically relevant concentrations of chemotherapeutic regimens. 

 Tumors were analyzed through a T-cell flow cytometry panel across treatment 

conditions. The percentage of CD8 effector memory T-cells was significantly higher in 

MVAC-treated cells compared with both GemCis and saline treated tumors across both 

cell lines (Figure 4.17A). Furthermore, MVAC treatment also induced significantly higher 

levels of the percentage of CD4 effector memory T-cells across both cell lines (Figure 

4.17B). Interestingly, treatment with just methotrexate was sufficient to induce the same 

phenotype as the combination MVAC treatment (Figure 4.17A-B). This further supports 

that MVAC treatment preferentially induces an activated immune response in the 

bladder cancer microenvironment that is not activated in response to GemCis treatment.  
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Figure 4.16: Treatment of murine bladder cancer models accurately recapitulate 
treatment of basal and luminal subtypes of bladder cancer. (A) A workflow of study 
design for treatment of murine bladder cancer models. (B) Plots of change in tumors 
volume after treatment start date of UPPL1541 (left) and BBN963 (right) tumors. (C) 
Plots of final tumor volume of UPPL1541 (left) and BBN963 (right) tumors. 
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Figure 4.17: MVAC treatment has differential effect on the murine tumor immune 
microenvironment than GemCis treatment. Boxplots by treatment condition for 
percentage of CD8+ cytotoxic effector memory T-cells (A), percentage of CD4+ helper 
effector memory T-cells (B), and the overall CD8+ cytotoxic T-cell to regulatory t-cell 
ratio (C) within the tumor microenvironment.  
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4.3 Discussion 

 Here we describe the effects of cisplatin-based chemotherapy on the tumor 

microenvironment. We find that GemCis and MVAC treatment, the two main frontline 

chemotherapeutic regimens approved for the treatment of muscle invasive bladder 

cancer, have differing effects on the tumor microenvironment. MVAC treatment of 

luminal tumors in particular appears to induce significantly higher levels of immune 

infiltration and corresponding immune suppression than GemCis treatment. We further 

show that this effect appears to be induced by a misregulation of the cytokine 

production and EMT induction, and that methotrexate treatment alone, through its 

inhibition of dihydrofolate reductase, is sufficient to induce a mesenchymal and immune-

infiltrated phenotype. In aggregate this work shows that while MVAC and GemCis have 

the same clinical response in patients with bladder cancer, they have differing effects on 

the tumor microenvironment that has important implications on how immune checkpoint 

therapy is combined or sequenced with chemotherapy. 

 This could have potential implications for patient care as response to immune 

checkpoint inhibition in bladder cancer has been shown to be correlated with immune 

suppression. Immune checkpoint inhibition is becoming more prevalent as a treatment 

for refractory tumors after frontline neoadjuvant chemotherapy and cystectomy 

treatment. As both MVAC and GemCis are approved as frontline treatments of bladder 

cancer we should explore the possibility of treating patients in a subtype-specific 

manner. Patients with basal tumors, who show no significant change in the immune 

microenvironment in response to MVAC treatment, could receive GemCis treatment. 

Patients with luminal tumors, in which immune infiltration is significantly increased with 
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MVAC treatment, could receive MVAC treatment to potentially prime them for follow-up 

immune checkpoint inhibition therapy if they do not respond to frontline chemotherapy. 

 Furthermore, we have found that the change in the immune microenvironment 

induced by MVAC appears to be mediated by methotrexate. Methotrexate inhibits 

dihydrofolate reductase, an enzyme that functions in nucleotide synthesis. Thus, 

methotrexate induces replicative stress within tumor cells, and the transition to a more 

mesenchymal and immune infiltrated phenotype appears to be in response to this 

stress. In line with this, previous studies have shown that inhibition of folate production 

is associated with EMT and oncogenesis across tumor types (99,100). Of note, a recent 

clinical trial of combination platinum-based chemotherapy plus pemetrexed, another 

dihydrofolate inhibitor, with follow-up immune checkpoint inhibition was shown to have 

significantly better patient response than chemotherapy alone, indicating that inhibition 

of folate synthesis can potentially be used to improve the efficacy of immune checkpoint 

inhibitors (101). The effects of other drugs and therapies on the tumor 

microenvironment that target this mechanism should be further explored. 

 Interestingly, we also found that the post-treatment change in several immune 

gene signatures between TURBT and RC samples is correlated with response to both 

GemCis and MVAC therapy. This could potentially better inform patient care by being 

able to predict at cystectomy whether a patient will respond to treatment, and if a patient 

will not respond they can more quickly be transitioned to secondary therapies. 

Additional exploration of incorporating both immune biomarkers and patient tumor 

subtyping into patient care should be considered. 
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4.4 Methods 

4.4.1 Sample Data Processing and Sequencing 

 Patient sample clinical characteristics and RNA expression matrices were 

provided by collaborators at MD Anderson Cancer Center (70), Fox Chase Cancer 

Center (71), and GenomeDx Biosciences. The UNC cohort of tissue samples was 

collected from patients at UNC who underwent neoadjuvant gemcitabine and cisplatin 

chemotherapy followed by cystectomy between 2012 and 2017. Clinical information was 

annotated for all patients, including patient demographics (age, gender, race, and 

smoking status) and tumor stage and grade. All included patients had FFPE tissue 

available with adequate quality and amount. This study was reviewed and approved by 

the Institutional Review Board at UNC. 

 RNA was isolated from 10uM FFPE slides from all patient samples using the 

Roche High Pure RNA Paraffin Kit according to protocol. Isolated RNA was eluted in 

50uL volume and tested using a Nanodrop One spectrophotometer to ensure it met 

both Nanodrop and our previous sequencing specifications for concentration (>15 

ng/uL) and purity (OD 260/280 & 260/230 nm >1.6). For RNA sequencing, a minimum of 

2 µg of total RNA was isolated from FFPE tissues. Extracted RNA was converted to 

double-stranded cDNA, and sequencing adapters were ligated by using the Illumina 

RNA Access Library Prep Protocol (Illumina). Samples were sequenced by paired-end, 

150-bp sequencing on an Illumina NextSeq500 in the Kim Lab at UNC. Sequence reads 

were aligned to the human reference transcriptome, and gene expression was 

generated as reads per kilobase of exon model per million mapped reads per gene by 

using MapSplice. RNA sequencing data were normalized for variations in read counts, 
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and log2 transformed before analysis. When combining data sets, we adjusted for batch 

effects using the surrogate variable analysis R package (version 3.12.0; R Foundation, 

Vienna, Austria). 

  

4.4.2 Gene Expression and Signature Analysis 

 Differential gene expression analysis was performed using SAMR analysis. 

Cellular pathway analysis across treatment conditions was performed using QIAGEN’s 

IPA (www.qiagen.com/ingenuity). Comparison across conditions was done using the 

gene list with an FDR of 0.00 as determined by SAM analysis. Gene signatures were 

compiled from previously validated publications (32,34,52,67,69). Cytokines were 

identified using a RegEx search to capture all members of the molecular families. 

Signature scores were generated for gene signatures as previously described (74). All 

figures were generated using a locally designed script. 

 

4.4.3 In vitro treatment analysis 

 BBN963 and UPPL1541 cell lines were cultured according to standard protocol. 

Cell lines were treated for 72 hours with either MVAC (Methotrexate 13.8nm, 

Vinblastine 0.8nm, Doxorubicin 11.9nm, Cisplatin 49.4nm) or GemCis (Gemcitabine 

29.6nm, Cisplatin 1.9nm) regimens consistent with clinical dosing regimens. Cells were 

collected and a western blot was run according to standard laboratory protocol. 

Antibodies used were from Abcam. 

 

http://www.qiagen.com/ingenuity
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4.4.4 In vivo treatment analysis 

 BBN963 and UPPL1541 cell lines were injected subcutaneously in C57BL/6J 

mice at 1e7 and 1.5e6 respectively. Once tumors reached 200mm3 in tumor volume, 

treatment with either MVAC, GemCis, Methotrexate, or Saline began (Gemcitabine: 200 

mpk.  Resuspended with saline to 40 mg/mL day of dosing (ip qwk), Cisplatin:  3 mpk 

with Gemcitabine and 4 mpk in MVAC cocktail (stock @ 1mg/mL) (ip qwk), 

Methotrexate: 2 mpk in saline (ip qwk) (stock @ 25mg/mL  dilute to 0.5mg/mL), 

Vinblastine:  0.2 mpk in saline (ip qwk) (stock @ 1mg/mL), Adriamycin (aka 

Doxorubicin):  4 mpk in saline (ip qwk) (stock @ 2mg/mL)). Treatment was administered 

once per week and tumor size was measure accordingly. Tumors were taken down and 

tissue samples collected 3 hours after that last treatment on day 14.  

 

4.4.5 Flow cytometry analysis  

Tissues were homogenized in cold media using the GentleMACs Dissociator and 

the samples were passed through a 70 µM cell strainer, followed by homogenization 

using a 5 mL syringe plunger.  The samples were centrifuged for 7 minutes at 1200 

RPM, 4°C, decanting the supernatant.  The remaining pellet was resuspended into 1 mL 

of ACK lysis buffer (150 mM NH4Cl, 10 mM, KHCO3, 0.1 nM Na2EDTA in DPBS, pH 

7.3) for 2 minutes at room temperature before quenching with 10 mL of cold media.  

The samples were centrifuged for 7 minutes at 1200 RPM, 4°C, resuspended in 10 mL 

of cold media, and passed through a 40 µM cell strainer.  Cell counting was performed 

by running a diluted aliquot of sample on a MACSQuant flow cytometer, counting 

lymphocytes as gated by forward scatter area versus side scatter area. 
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Samples were washed and resuspended in cold DPBS, normalized by count, and 

transferred onto a 96 well V-bottom plate at 2.5 million lymphocytes per well.  Cells 

were resuspended in FVS700 viability stain (BD, 1:1000 dilution in 100 µL DPBS) for 40 

minutes on ice.  Wells not receiving viability staining were resuspended in DPBS.  Cells 

were washed twice in staining buffer (0.02% NaN3, 2% BSA in DPBS), resuspended in 

50 µL Fc block (1:50 dilution in staining buffer), and incubated on ice for 15 minutes.  

Antibody master mix was added to samples at 50 µL per sample with final antibody 

concentrations of (All mAbs from BD Biosciences): 

T-cell panel: CD3e APC (1:100; 145-2C11), CD8a APC-H7 (1:100; 53-6.7), CD4 

FITC (1:200; RM4-5), CD44 PerCP-Cy5.5 (1:200; IM7), CD62L BV421 (1:200; MEL-14), 

CD45 BV510(1:200; ), FoxP3 PE (1:100;).  

Cells were incubated on ice in the dark for 45 minutes and washed twice with 

staining buffer.  Cells were fixed in 2% paraformaldehyde overnight.  The following 

morning, a minimum of 100,000 events were collected for each sample on a BD 

LSRFortessa flow cytometer.  FlowJo flow cytometry software Version 10 (Treestar) 

was used for analyses.  Fluorescence Minus One (FMO) controls were used to guide 

gating strategies.  
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