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ABSTRACT 

Craig A. Cavanaugh:  The Microionizer – A Solid State Ion Source for 

High Pressure Mass Spectrometry 

(Under the direction of J. Michael Ramsey) 

This work describes the development of a novel, microfabricated solid-state ionization 

source (a “microionizer”) for use with high pressure mass spectrometry (HPMS).  HPMS is 

intended for miniature, low-cost, portable instrumentation.  As such, the microionizer is 

designed as a small, low-power ion source compatible with the 1 Torr air-based environment 

of HPMS.  The microionizer is a field effect device based upon silicon-on-insulator 

technology that functions as a dual-source, producing field emission for internal electron 

impact ionization (EI) and external field ionization. 

External ion injection into the miniature cylindrical ion trap (mCIT) was performed in 

helium, nitrogen, or air buffer gases at 1 Torr using traditional ion sources (thermionic 

emitter and glow discharge) for proof-of-concept experiments.  Further studies in helium and 

air examined the effects of pressure, ion kinetic energy, and ion trap potential well depth 

changes with drive radiofrequency (RF) signal frequency and amplitude.  Results indicated 

that mass spectral signal intensity can be maximized at pressures ranging from 10 to 

1000 mTorr by tuning ion kinetic energy between 20 to 250 eV and increasing potential well 

depth aids external ion injection. 

Nine generations of microionizers were fabricated to optimize microionizer performance.  

The first generation microionizer was coupled with HPMS as a field emission source and 

generated helium and air-based high pressure mass spectra.  However, high current draw 
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limited the microionizer lifetime and prevented field strengths necessary for field ionization.  

Generations two through nine encompassed processing variations of device fabrication 

procedures, development of robust electrical contacts, and microionizer device incorporation 

into the ion trap electrode stack, leading to improved microionizer signal intensity and low 

power (< 1 mW average power) consumption. 

The ninth generation microionizer demonstrated operation as both a field emission and 

field ionization source in air buffer gas at 1 Torr.  Electric field strengths for field emission 

were near 1 MV/cm, while field ionization required greater than 1.8 MV/cm. The 

microionizer generated mass spectra of volatile organic compounds (such as benzene and 

dimethylaniline) in both modes and lifetime was found to be 9 h for field emission and 490 h 

for field ionization under continuous mass spectral acquisition. 
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CHAPTER 1:  INTRODUCTION – HIGH PRESSURE MASS SPECTROMETRY 

AND THE MICROIONIZER 

 

1.1  Motivation for Handheld Mass Spectrometry 

Among analytical instrumentation, mass spectrometry (MS) offers a unique combination 

of selectivity, sensitivity, and speed and is often considered the gold standard for chemical 

analysis.
1
  On-site, rapid chemical identification is important in many fields from 

environmental protection to national security with analytes of interest including:  toxic 

industrial compounds (TIC); volatile organic compounds (VOC); explosives; and chemical 

warfare agents (CWA).
2
  Mass spectrometry is the ideal technique for in-field analysis, 

especially when informed (and potentially costly) decisions need to be made in a timely 

manner for health and safety reasons.  A recent example of this occurred in 2014 when 

Freedom Industries spilled 10,000 gal of methylcyclohexane-methanol into the Elk River in 

West Virginia.
3
  The Kanawha Valley water treatment plant attempted to process the 

unknown, excess organics that suddenly appeared at the upstream side of the plant.  

However, the carbon filtration system was quickly overwhelmed and a ‘Do Not Use’ order 

was issued until these could be regenerated, leaving 300,000 residents without tap water for 

weeks.
4
  Had the operators at the treatment plant access to a rapid, detailed chemical analysis, 

quicker, informed decisions could have been made potentially avoiding the extended 

downtime.  Mass spectrometry would have been ideal for this situation; however, it is 

typically confined to the laboratory because of size (kitchen refrigerator), weight (hundreds 

of pounds), and power (kilowatts) as well as cost considerations. 
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Miniature mass spectrometers have been investigated for decades; the first suitcase-sized, 

field portable mass spectrometer was disclosed in 1995
5
 and currently, there are several 

commercial systems available.
6
  Moreover, there is a demonstrated need for in-field mass 

analysis.
7
  Despite availability and demand, mass spectrometry has yet to become ubiquitous 

in the field because of size, cost, lack of robustness, and operator skill required.  Many of the 

field portable systems on the market share an important trait with their lab-sized counterparts 

– cost both in capital (> $100k) and trained personnel to operate the instrument and interpret 

data.   

The Ramsey group at the University of North Carolina at Chapel Hill has focused on 

bridging the divide – attempting to move mass spectrometry out of the laboratory and into 

the field in a cost-friendly manner.  The primary method for accomplishing this is to operate 

the mass spectrometer at pressures negating the need for the most expensive, highest power-

consuming component, the turbomolecular pump.  This pump elimination requires operation 

at pressures greater than 100 mTorr.  In comparison, traditional mass spectrometry requires 

≤ 1 mTorr vacuum conditions and uses a two-stage pumping system, typically roughing + 

turbo pumps.  Operating the mass spectrometer at pressures ≥ 100 mTorr is referred to as 

high pressure mass spectrometry (HPMS), which can be accomplished using simple 

miniature-roughing pump with reasonable flow rates and continuous, atmospheric sampling. 

Operating under HPMS conditions and atmospheric sampling requires that the three 

major subsystems of the mass spectrometer (mass analyzer, ion detector, and ion source) be 

compatible with a vacuum environment composed of ambient air.  Because portability is a 

key goal, these subsystems should each have small footprints and low-power consumption.  

The work presented in this dissertation focuses on one subsystem – the ion source.  The main 
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objective was the development of a silicon-based solid state, field effect ionization source or 

microionizer.  Incorporating the microionizer within the HPMS system requires an 

understanding of internal and external ion trapping under HPMS conditions, which was 

performed with currently available MS ionization sources.  HPMS with the microionizer 

additionally required developing silicon microfabrication procedures; general instrument 

design and construction; ion trap mass spectrometry (ITMS); and finally generating ions and 

characterizing performance.   

This chapter introduces the background necessary to understand the need for a low 

power, field effect microionizer as well as the principle of operation behind the device.  

Section 1.2 begins with a survey of current, miniaturized mass spectrometers.  Section 1.3 

highlights important theoretical details for HPMS as well as the current state of system 

components used in HPMS research.  Section 1.4 covers traditional ion sources that have 

been coupled with mass spectrometry, including field effect devices; providing context for 

the microionizer.  Section 1.5 introduces field effect theory and highlights the progression of 

field emission and field ionization devices.  The microionizer is formally introduced in 

Section 1.6.  Finally, Section 1.7 provides an outline of the objectives for this dissertation. 

1.2  Current Technology in Miniaturized Mass Spectrometers 

Miniaturization of a mass spectrometer balances the needs of the intended application 

(instrument performance) with the requirements for portability (size, weight, and power, 

SWaP).
6
  This performance-portability trade-off covers a broad spectrum.  On one end, when 

resolving power is paramount then portability is sacrificed as seen with the refrigerator-sized, 

miniature Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR).
8
  On the 

other end, where portability is key, instrument performance is tuned to the lowest possible 
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necessary to accomplish the task, such as the palm portable mass spectrometer which 

samples at 0.02 Hz.
9
  The focus of HPMS is to raise instrument performance on the 

portability end of the spectrum where SWaP is a premium.  HPMS does this not only by 

miniaturizing the hardware but also by adapting mass analysis in the high pressure regime (1 

Torr vs. 1 mTorr).
6, 10

  To better understand the HPMS approach, a brief survey of 

miniaturized mass analyzers is useful.  

1.2.1  Miniaturized Mass Analyzers 

Nearly every form of mass analyzer has been miniaturized
8
 and includes time of flight 

(ToF);
11

 electric and magnetic sectors;
12

 linear quadrupole;
13-14

 and three-dimensional ion 

traps.
15-17

  ToF and sector-based analyzers use static (or field-free) regions and require high 

vacuum (less than 10
-6

 Torr) to maintain mass to charge ratio (m/z) separation.  Linear 

quadrupoles use both static DC and dynamic RF voltages to generate electric fields where a 

single m/z is contained in two-dimensions and travels along the third to the detector.  Since 

ions are actively guided, linear quadrupoles can operate at higher pressures than TOF and 

sectors; up to 0.01 Torr for highly miniaturized analyzers.
18

  Three-dimensional ion traps use 

RF voltages to maintain a stable trapping volume at the center of the trap.  Ion traps naturally 

operate at high pressure (10
-3

 Torr) because the ion trajectory is completely defined by the 

electric field, thus performance is less susceptible to ion-neutral scattering than the 

previously mentioned mass analyzers.
19

  This has lead them to be the mass analyzer of choice 

for the majority of miniaturized MS with portability as the key design factor. 

1.2.2  Portable Ion Trap Mass Spectrometers 

The pressure tolerance of three-dimensional ion traps is ideal for portable applications 

because the vacuum systems can be reduced in size, power, and complexity.  In addition to 
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pressure tolerance, ion traps have two more desirable properties: mass resolution is 

independent of trap size
20

 and the ability to perform tandem mass spectrometry (MS
n
).

21-22
  

As such, considerable efforts have been placed into miniaturizing quadrupole ion traps 

(QIT).
23

  One issue with the QIT is that it uses hyperbolic electrodes that become difficult to 

fabricate at smaller scales (radius < 1 cm),
24

  which translates into higher costs for the mass 

analyzer.  An example is the toroidal ion trap, which has a large charge capacity (and hence 

improved sensitivity) relative to a standard QIT, but is more difficult to fabricate.
25

  

Geometric variants have been developed to overcome this issue including the rectilinear ion 

trap (RIT)
26

 and the cylindrical ion trap (CIT).
27

  Each variant has been incorporated into a 

miniature mass spectrometer such as: Guardion GC-MS (Smith Detection, Inc) based upon 

the toroidal ion trap;
28

  the Mini-series of instruments from Purdue based upon the RIT;
29-30

 

and the MMS-1000 (1
st
 Detect, Inc) based upon the CIT.

31-32
  The Guardion GC-MS is a 

ruggedized, briefcase-sized system which weighs > 30 lb and has less than 8 h battery life, 

while the MMS-1000 is a small, lightweight benchtop system designed to be used with wall 

power, thus it is best for stationary settings such as airport security checkpoints.  The Mini-

series has variants covering the spectrum from hand-portable
26

 to benchtop.
30

   

The Mini-instruments offer an interesting view into the miniaturization of the remaining 

subsystems of the mass spectrometer: the vacuum system, ion detector, and ion source.  The 

vacuum system required is defined by the choice of mass analyzer and detector.  The 

resolution of the RIT is best at lower pressures (< 10 mTorr),
33

 which requires the use of a 

turbo pump.  Miniature turbo pumps have been developed specifically for portable MS use, 

but they are specialized, expensive, and fragile.
34-35

  Despite miniaturization, these pumps 

still consume a significant portion of the power and space budget of the instrument.
36

  While 
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the inclusion of a turbo pump increases SWaP, the low pressure enables the use of electron 

multiplier tubes (EMT) or microchannel plates (MCP) for ion detection.  Because these 

devices have high sensitivity and bandwidth,
37

 there has yet to be a significant emphasis on 

incorporating alternative (pressure tolerant) ion detectors.
26, 30

 

Ion sources are a different matter because each source has strengths and weaknesses for 

particular applications.  Most miniature mass spectrometers are geared towards detecting 

gaseous analytes, thus electron impact ionization (EI) is a staple and can be achieved via 

thermionic emitters
26

 or plasma generators.
29

  Lower volatility analytes require ambient 

ionization techniques and the Mini-instruments have been adapted for several methods 

including low temperature plasma (LTP)
35

 and desorption electrospray ionization (DESI).
38

  

However, each of these techniques requires sampling at atmospheric pressure, which strains 

the vacuum system.  The discontinuous atmospheric pressure interface (DAPI) was 

introduced to counteract the increased power consumption caused by a constant gas load on a 

turbo pump.
39

  In DAPI, an inlet is opened and a high gas load is imposed for sampling.  The 

inlet is then closed and a pump-down time is added to achieve < 10 mTorr operating range 

for the RIT and EMT.  Low pressure during mass analysis improves resolution and the 

discontinuous gas flow improves battery life.  However, DAPI limits data acquisition to 

about 1 Hz as well as the maximum RF trapping voltage amplitude during ionization.  This is 

an example of a trade-off made to bridge the gap between person-portable and hand-

portability when a turbo pump is required for operation.
6
 

The palm-portable mass spectrometer (PPMS) is an extreme example of DAPI.  Similar 

to other fieldable systems it uses a low pressure ITMS, but maintains pressure with a 

miniature two-stage vacuum system (roughing + getter pump).
9
  Baseline pressure (≈ 
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10
-6

 Torr) is achieved with a standard benchtop pumping system, then the PPMS is taken into 

the field for use.  The maximum sample rate is only 0.2 Hz.  However, this rate exhausts the 

getter’s limited capacity in under an hour.  In order to achieve day-long operation, the 

sampling rate is further reduced to just 0.02 Hz (≈ 1 sample/minute).  The acquisition rate 

and small sampling volume negatively impacts sensitivity and limits the applications 

available to the PPMS.  However, the PPMS represents a functional departure from 

dependence on high-cost, fragile turbo pumping systems.
30, 35

   

HPMS departs even further from the miniaturization efforts of the past and has been 

successfully realized in a commercial mass spectrometer.  The M908, introduced in 2014 by 

908 Devices, Inc. fulfills the promise of a truly handheld mass spectrometer.  This system is 

based upon the theory of HPMS and is licensed technology from the Ramsey group.
40

  The 

pumping system relies upon a custom, miniature roughing pump that maintains HPMS 

conditions for a CIT-based trap design and pressure tolerant ion generation and detection.  

The end result is a rugged, low-cost unit coming in at just 22.5 x 18.5 x 7.6 cm
3
 and 2.0 kg 

(including battery)
41

 which is already being used in the field for threat detection such as 

explosives and CWAs.
42

  The realization of handheld mass spectrometry has guided research 

efforts to improve the three major subsystems (mass analyzer, ion detector, and ion source) in 

order to continue lowering the cost and expand the utility and ubiquity of HPMS.  

1.3  High Pressure Mass Analysis 

To successfully develop an ionization source, an understanding of how ion traps work at 

higher pressures is necessary.  The historical and theoretical groundwork for ion trap-based 

HPMS has been thoroughly described elsewhere.
43-45

  Key topics regarding quadrupole ion 

trap theory pertinent to ionization are highlighted here.  The QIT consists of three electrically 
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insulated electrodes – two grounded endcaps and a center ring electrode.  For a QIT, the 

electrodes follow a hyperbolic geometry, while a CIT is a cylindrical approximation.  A cross 

sectional view of the QIT vs. CIT can be seen in Figure 1.1.  The critical dimensions of the 

trap are defined as the radius of the ring electrode, r0, and the endcap-to-trap center spacing, 

z0.   A radio frequency (RF) potential applied to the center ring generates a quadrupolar 

electric field and ions can oscillate in stable trajectories inside the field according to axial (az 

and qz) and radial (ar and qr) stability parameters.  These parameters are proportional to the 

DC offset of the RF waveform (an) as well as the RF voltage amplitude (qn).
46

  Regions of 

stable ion trajectory can be viewed using a stability diagram, shown by plotting the axial 

stability parameters, az vs. qz.
47

  The stability diagram for a QIT is plotted in Figure 1.2, 

which highlights the trapping conditions where ions exhibit both stable radial and axial 

trajectories.  HPMS utilizes mass selective instability mode developed by Stafford et al.
48

 

which sets az = 0 and accumulates ions of various m/e (m/z) values inside the trap at low RF 

amplitude according to:   

 
qz = 

8eV

m(r0
2+2z0

2)Ω2
 

(1.1) 

Where the variables are the zero-to-peak RF voltage amplitude, V; RF angular frequency, Ω; 

ion trap critical dimensions, r0 and z0; and inverse mass-to-charge, e/m.  The RF amplitude is 

linearly ramped and ions eject in order of their m/e when qz = 0.908.  Goeringer et al.,
49

 

theoretically determined the proportional relationship between mass resolution, Δm/m; 

pressure, P, and RF angular frequency to be: 

 ∆m

m
 ∝ 

P

Ω
 

(1.2) 
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suggesting that mass resolution could be maintained as buffer gas pressure increases (> 

1 mTorr), provided RF frequency was increased.  Whitten, et al. extended the theoretical 

work to higher pressures and showed resolution could be maintained at pressures upwards of 

1 Torr by reducing the ion trap dimensions and increasing drive RF frequency.
50

  This is the 

core concept underpinning HPMS. 

These theoretical investigations were followed by experimental confirmation.  

Cylindrical ion traps, with sub-millimeter critical dimensions (mCIT, r0 ≤ 0.5 mm) were 

chosen because the QIT geometry is difficult to fabricate in miniature.  Mass spectrometry 

was performed at low pressure helium (≈ 1 mTorr) using a mCIT with r0 = 0.5 mm, a 20-fold 

decrease compared to a standard QIT (r0 = 10.0 mm), and the drive RF frequency was 

5.8 MHz (f = 1.0 MHz for a standard QIT).
15, 19, 51

  These studies confirmed the theoretical 

relationships predicted by Whitten et al.; showing improved resolution and sensitivity by 

increasing RF frequency.
15, 51

  Subsequently, double resonant ejection was shown to reduce 

ejection voltage at both the 1/3 and 2/3 drive RF frequency resonances.
52

  More recently, 

HPMS has been demonstrated at 1 Torr helium, 
53

 nitrogen, and air;
54

 confirming the mass 

analyzer is capable of high pressure operation.   

1.3.1  System Components for HPMS – Mass Analyzer 

The initial high pressure studies used a mCIT with r0 = 0.5 mm and RF drive frequencies 

ranging from 6 to 9 MHz.
43, 45

  They showed that with a constant RF frequency, peak widths 

will increase (as predicted by Equation 1.2) as pressure increases.  This loss in mass 

resolution however can be regained by increasing the RF frequency.
45

  In order to maintain 

stable ion trajectories, Equation 1.1 shows that increased RF frequency must be balanced 

with either increased RF voltage (V) or decreased ion trap size (r0, z0).  Ideally, only the RF 
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amplitude would be increased with the trap size maintained for charge capacity 

considerations.  However, there is a limit to the RF amplitude that can be applied at 1 Torr 

due to electrical breakdown concerns.
55

  Experimentally, using smaller traps reduced the 

applied RF amplitude needed with sub-dalton peak widths attained at 1 Torr in air buffer gas 

at a drive frequency near 60 MHz with an mCIT of r0 = 100 µm.
45

 

A trade-off here is that the reduction in trap size negatively impacts the potential well of 

the ion trap leading to less sensitivity.  For a QIT, the potential well depth, Dz, can be 

approximated for qz less than 0.4:
56

 

 
𝐷𝑧  ≈

𝑞𝑧𝑉

8
 

(1.3) 

where V is the same RF amplitude used in Equation 1.1.    The potential well depth of a QIT 

is a measure of its charge capacity, the maximum number of ions that can be trapped.    For 

reference, a typical, commercial ITMS has r0 = 1.00 cm and z0 = 0.783 cm and operates with 

an RF frequency of 1.05 MHz with amplitude, 757 V0-p.  While, a mCIT has r0 = 0.0500 cm 

and z0 = 0.0645 cm and operates with an RF frequency of 6 MHz with amplitude near 

150 V0-p.  These values yield (roughly) a 4-fold decrease in well depth (10.5 vs. 42.5 V) for 

the mCIT relative to a standard QIT.  Assuming ion ejection and detection are equivalent, the 

sensitivity of the mCIT is reduced compared to a standard QIT. 

Charge capacity and thus sensitivity can be increased through the use of arrays of ion 

traps
57-58

 as well as novel, QIT-based geometries.
17, 25

  Both strategies were used in HPMS 

development:  7 and 19-element arrays of mCITs have demonstrated improved sensitivity 

over single-element ion traps.
44-45

  However to maintain resolution, each element of the array 

must be identical to ensure simultaneous ion ejection.  In order to alleviate this fabrication 

constraint the stretched length ion trap (SLIT) was developed by Schultze and Ramsey and 
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subsequently shown to improve charge capacity over a single-element mCIT under HPMS 

conditions.
44, 59

  Materials and fabrication techniques have also been investigated for 

improved trap operation.
45

 

1.3.2  System Components for HPMS – Ion Detector 

The operational pressure for HPMS, 1 Torr air buffer gas, is a demanding environment in 

which to detect ions.  To date, HPMS has relied upon two types of charge detectors:  electron 

multiplier tubes and faraday plates.  While other charge detectors exist, such as image current 

detectors, these have not been pursued (to date) due to long integration times.
60

  The EMT is 

a staple detector for mass spectrometry because it has high gain, low noise, and high 

bandwidth.
61

  Modern EMTs are continuous dynodes, where a large negative bias (typically -

1600 V) causes ions to impact the surface of the EMT which generates secondary electrons.
62

  

These electrons are driven by the electric field into the tube, constantly colliding with the 

surface and generating further secondary electrons ultimately yielding gains on the order of 

10
6
 electrons/ion.

37, 63
  Ion feedback, the generation of ions inside the EMT via EI, limits the 

upper bounds of the pressure range to 10 mTorr.
64

  Despite the incompatible pressure range, 

the EMT has been used extensively for HPMS development.  This detector utilization was 

accomplished by using a differentially pumped system with the EMT housed in a separate 

detector vacuum chamber away from the mass analyzer (ion source and mCIT).  Thus the 

EMT can be held at pressures < 100 mTorr while the ion source and mCIT can operate at 1 

Torr.  This approach allows high pressure ion trap operation and decouples ion detector 

development from that of the ion source and mass analyzer.
43

  Despite operating above the 

recommended pressure limit, stable, low-noise operation in helium, nitrogen, and air at 
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pressures approaching 100 mTorr
65

 were performed by decreasing the applied voltage (thus 

gain) applied to the EMT.
45, 53

 

In addition to the EMT, pressure tolerant detectors have been shown to work at 1 Torr in 

helium and air.
43-44

  These detectors collect charge using a faraday plate, then amplify and 

convert the charge to a voltage, capable of direct measurement via a standard data acquisition 

system (DAQ).  Unfortunately, these detectors are more sensitive to electrical and 

mechanical sources of noise (such as RF and vibrations) and have lower gains than EMTs.
61

  

To combat these problems, HPMS specific amplifiers have been developed which reduce 

noise, enabling higher gain operation.
44, 66

  There is also considerable interest in a solid state 

equivalent to an EMT, which should combine the pressure tolerance of a faraday plate with 

the high gain and bandwidth of an EMT.
67-68

 

1.3.3  System Components for HPMS – Ion Source 

Figure 1.3 shows images of the workhorse ionization sources (tungsten filament and glow 

discharge) used to bring HPMS from a concept to a functional technique.  Due to the ease 

with which internally generated ions are trapped, internal EI was the preferred ionization 

method during HPMS development.
69

  HPMS development progressed in increments: mass 

spectrometry with mCITs were first demonstrated at low pressure helium;
51

 followed by high 

pressure helium (1 Torr);
43

 then high pressure nitrogen; and finally in high pressure air.
54

  No 

single electron source is compatible over this pressure range and buffer gas compositions.  

Thermionic emitters, such as the tungsten filament (Figure 1.3a) are ideal for low-pressure 

(1 mTorr) inert environments.  They rely upon a heating current to overcome the potential 

barrier (work function) of a material such that electrons in the conduction band can escape 

the surface into vacuum.  To shift the Fermi distribution of the electrons enough to overcome 
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the work function, temperatures must exceed 1000 
o
C.

70
  Thus, thermionic emitters operate 

best at low pressure (due to collisional cooling effects), with gas compositions that avoid 

oxidative reactions.  For HPMS studies, thermionic emitters were pushed to high pressure 

(1000 mTorr) in both helium and nitrogen for proof-of-concept studies but they suffered 

reduced lifetimes – likely a result of surface sputtering caused by ion back streaming.
71

  Air-

based operation required the shift to glow discharge (Figure 1.3b).  The source used for 

HPMS was designed for 1 Torr operation in air, with a 1 cm electrode separation and 1 cm 

electrode radius.  However, a practical operational window of 250 to 2000 mTorr was 

achieved by tuning the voltage.
54

  An image of the characteristic purple glow of air-based 

operation can be seen in Figure 1.3c. 

1.4  Advanced Ion Sources 

To date, HPMS has focused on detecting airborne analytes (e.g. CWAs and VOCs) via 

atmospheric sampling, thus EI via glow discharge-generated electrons has been the 

workhorse ion source.  Glow discharge is a serviceable ionization source for HPMS, but 

there are inconvenient properties from a miniature, HPMS perspective.  GD requires > 500 V 

and a relatively large empty volume (≈ 0.8 cm
3
) to generate the conditions necessary for 

discharge.
72

  While the direct power consumption is on the order of 10 mW, the large volume 

acts as a reservoir increasing the load on the vacuum pump and hence overall power 

consumption of the instrument. 

Alternatives to GD ionization are limited, but field effect devices (FED) hold promise as 

ionization sources that are not only low power but also small in size thus reducing pumping 

volume.  The field effect refers to the behavior of electrons under intense electric fields and 

encompasses both field emission and field ionization.  Field emission describes the tunneling 
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of electrons from a surface into vacuum; while field ionization covers electron tunneling 

from a gas phase neutral into a surface.
73

  The quantum mechanical nature of the field effect 

requires no energy outside of that required to generate the electric field and a small 

displacement current which makes it very attractive for portable and low-power 

applications.
74-75

  The electric field strength necessary for field emission is near 10 MV/cm,
76

 

while the threshold for field ionization is dependent upon the ionization potential of the 

neutral and ranges from 50 MV/cm for volatile organic molecules
77

 to 100 MV/cm for 

helium.
78

  Electric field strengths of this order are achieved via localized geometric field 

enhancement.  A voltage is applied to a surface with a sharp tip creating an electric field 

between it and a counter-electrode.  The presence of the high radius of curvature (< 1 nm) 

locally enhances the electric field and creates a field emission/ionization site dependent upon 

the amplitude and polarity of the applied potential.  Early devices relied upon 

electrochemically sharpened wires or edges that required greater than 5 kV to achieve field 

emission or ionization.
79-80

       

The use of FEDs does not come without a price.  Due to the small surface area, the 

emission current density at the tip can become very large, thus Joule heating limits the 

overall emission intensity.
81-82

  To overcome this, arrays of emission sites can be fabricated 

but require each tip to be nearly identical in order to ensure even field emission across the 

array.  The precision required to produce identical emission tips across the array often 

incorporate time consuming or highly specialized steps into a complicated fabrication 

process.  The end results are devices that are functional but expensive to fabricate, especially 

at commercialized scales.
83
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The microionizer is a solid state, FED designed specifically with ease of fabrication in 

mind and geared toward HPMS operation.  Proposed to fill this role by Dr. Stanley Pau, a 

collaborator at the University of Arizona, it offers two methods of ionization: direct field 

ionization and field emission-based EI.    As designed, the microionizer does not rely upon 

the formation of an array of identical sharp tips.  Instead the inherent surface roughness from 

the microfabrication process generates a massively redundant array of emission sites.  Thus, 

fabrication is based upon standard techniques, such as photolithography and deep reactive 

ion etching.
84

  This should allow the microionizer to be produced at a fraction of the time and 

cost of other microfabricated field effect devices.  In order to better understand the 

microionizer, it is useful to discuss current ionization techniques as well as field effect 

devices used for mass spectrometry.   

1.4.1  Internal vs. External Ionization 

A host of ionization techniques have been developed in order to introduce analytes for 

mass spectral analysis.
85

  To date, HPMS has been focused on threat detection, for example 

CWAs and VOCs, which are typically volatile.  Thus, neutral gas is sampled from the 

atmosphere into the mass analyzer where it is subsequently ionized.  Depending on the 

technique, ion generation occurs either internal or external to the trap.  For an ion trap-based 

mass spectrometer, there is an important distinction between whether an ion is generated 

internal or external of the trapping volume due to the pseudopotential well depth.
86

  In 

addition to defining the charge capacity of the ion trap, it places an upper bound on the 

kinetic energy an externally generated ion can have and still be successfully injected and 

captured by the trap.   Internally generated ions typically have thermal kinetic energies that 

are near 0.025 eV at room temperature.  Even with the reduced well depth of the mCIT (≈ 5 
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to 10 V), these ions are easily trapped.  However, externally generated ions must be 

transferred from the source into the trapping volume.  Due to the dynamic nature of the three-

dimensional trap, this means that the ion must not only be of low enough energy for capture, 

but it must also arrive at the proper phase of the RF cycle. For a traditional QITMS, estimates 

for the successful capture of externally generated ions are roughly 5%.  

This capture percentage can be increased by several methods and include:  1) 

Synchronization of the ion injection with the phase of the RF thereby minimizing the chances 

ions are scattered by the electric field as they pass into the ion trap.
87-88

  2) Modulation of the 

drive RF amplitude to better trap ions across a large mass range.
89-90

  3) Use of enhanced ion 

optics, such as ion funnels to increase the flux through the ion trap.
91-92

  4) Raise the buffer 

gas pressure as more buffer gas molecules act as a frictional force to cool ions into the 

potential well of the ion trap
48, 93

 
94

  Of these techniques, the final one is most pertinent for 

HPMS since elevated buffer gas pressure is ever-present. 

1.4.2  Ionization Methods for High Volatility Analytes 

  In-vacuum, ions are commonly generated using techniques such as electron impact 

ionization (EI), photoionization, chemical ionization (CI), plasma, and field ionization.  

Electron impact ionization is widely used throughout mass spectrometry; for example, NIST 

mass spectral standards are recorded with EI.
95

  However, EI requires neutrals to be easily 

introduced to vacuum (i.e. high vapor pressure), making it most useful for gas 

chromatography-mass spectrometry (GC-MS); thermal desorption; headspace sampling; and 

continuous flow monitoring.  It was used as a staple ionization source for the development of 

ITMS because it is capable of producing ions with thermal energy (25 meV assuming room 

temperature) within the trapping volume of the analyzer.
69

  Ionization occurs through 
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electron loss; an electron beam (typically 70 to 200 eV) is generated by a thermionic emitter, 

plasma, or cold cathode (field emitted) and guided through the ion trap.  Electrons that 

interact with neutral analytes can impart enough energy to overcome the ionization potential 

and eject an electron from the neutral.  The result is a positively charged molecular ion and 

two low energy electrons.  Since the interaction is random, the molecular ion typically 

rearranges to access lower energy conformations resulting in a high degree of fragmentation; 

earning EI the status of a hard ionization source.  EI based upon field emission is a 

considered a viable route towards miniaturization.
96

 

Chemical ionization (CI) was developed as an extension to EI.  A gas, usually methane, is 

introduced to the vacuum in excess relative to the analyte.  Subsequent EI of the methane 

produces ions (mainly CH5
+
 and C2H5

+
) that react with neutrals by proton or hydride 

reactions yielding ionized products.
97

  CI increases the range of analytes accessible to mass 

spectral analysis, but still requires a highly volatile analyte.  It also requires a consumable 

(methane), which makes it less amenable to miniaturization.  However, atmospheric pressure 

chemical ionization (APCI) holds promise as an ionization technique for portable 

instrumentation since it relies upon ion-driven chemical reactions with nitrogen-based 

radicals generated from ambient air.
98-99

 

Photoionization utilizes photons to ionize neutral molecules - a photon of energy greater 

than the ionization potential of the neutral (typically ultraviolet) must be absorbed for 

ionization.  To generate mass spectra, high intensity light sources, such as discharge lamps or 

lasers are necessary.  The mass spectra resulting from photoionization are similar to those 

observed with EI (i.e. hard ionization).
100

  Due to the added complexity of the light source, 

photoionization is generally not suitable for miniaturization. 
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In addition to its utility as an electron source for EI, glow discharge plasmas can be used 

as external ion sources as well by directly sampling the plasma.
101

  Two electrodes are 

immersed in a gas (noble, nitrogen, or air) and a voltage is applied between them initiating a 

Townsend discharge.
99, 102

  The discharge will sustain if the field strength, separation 

between electrodes, and pressure meet the Paschen breakdown conditions.
103

  Ions can be 

generated in several ways using GD.  Gaseous analyte can be ionized and sampled directly 

from the plasma or a material can be placed on the cathode and ablated via ion 

bombardment.
101

  GD has gained popularity in mass spectrometry due to its simplicity – a 

feature that translates well to portable instrumentation.
29, 104-105

 

Field ionization relies upon the behavior of electrons at high electric field strengths, 

where electrons can tunnel from a neutral analyte into vacuum in the presence of a sufficient 

electric field (> 50 MV/cm).
78

  The electric field strengths are achieved by applying a large 

voltage (> 5 kV) to a chemically sharpened wire or razor blade (with radius of curvature 

measured in nanometers).
79

  As neutral molecules pass near the tip, the most loosely bound 

electrons can tunnel into the ionization tip, yielding singly charged, positive ions.
77, 106

  This 

technique has been successfully coupled with mass spectrometry,
107-108

 and it is considered 

soft because of the dominant molecular ion peak and lack of fragmentation.
109

 

1.4.3  Field Effect Devices for Mass Spectrometry 

Both field emission and field ionization have been used as ionization methods for mass 

spectrometry for a number of years.
110

  Images of FEDs that have been successfully coupled 

with mass spectrometers are shown in Figure 1.4.  For example, Spindt cathodes (Figure 

1.4a) used as an electron source were first coupled with a linear quadrupole in 1968.
111

  More 

recently, field emitter arrays, based upon Spindt-like emitters, were used as the EI source of 



19 

an ITMS for the European Space Agency’s Rosetta mission that was launched in 2004 and 

began providing results in 2014.
112-113

  Applications of FEDs aimed towards field portability 

include diamond-coated silicon whiskers coupled with a mCIT (Figure 1.4b)
114

 and a carbon 

nanotube-based EI source for a handheld magnetic sector MS (Figure 1.4c).
12, 115

  Field 

ionization sources gained traction with mass spectrometry as the first known soft ionization 

source.
116

  This helped obtain spectra of complex samples using lower resolution 

instrumentation.
109

  

Modern microfabrication procedures (photolithography, reactive ion etching, and thin 

film deposition) have led to the rise of vacuum microelectronics (VME).  Previous FEDs 

were typically sharpened wires or edges and required ≥ 5 kV to generate field strengths 

necessary for the field effect.
76

  At these high potentials, the ions formed acquire significant 

kinetic energy (on the order of keVs) resulting in significant transmission losses into the 

mass analyzer.  With the advent of VMEs, lower potentials (near 500 V) can generate the 

same field strengths, improving ion transmission and opening up the possibility of coupling 

with ITMS.
107

  Microfabricated field ion sources for mass spectrometry have been studied, 

though not quite as prolifically as field emission-based sources.
110

  The micro-volcano 

(Figure 1.4d)
107

 was the first VME field ionizer to be coupled with mass spectrometry.
110

 

The final property of field effect devices that is pertinent is their ability to act as a dual-

role source.  If a structure is capable of field ionization, then it is also capable of field 

emission.
76, 79

  Thus, a single source could be used for both EI and field ionization, which 

could provide two complementary fragmentation patterns.  Such a source would be the ideal 

for a fieldable, handheld mass spectrometer, where sample preparation should be minimal. 
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The combination of small size, low-power, and the ability to perform both EI (based upon 

field emitted electrons) as well as field ionization have made field effect devices a prime 

target for combining with mass spectrometry.  Despite these advantages, field effect devices 

have not displaced traditional sources such as thermionic-based EI because of economics.  

FEDs are simply too expensive relative to their traditional counterparts, except where 

circumstances prioritize performance over price, such as the Rosetta comet exploratory 

mission.
112-113

   

1.5  Field Effect Applications and Theory 

Mass spectrometry is only one of many potential applications for field effect devices.  

Charge generation is important in many research areas and field emission has been applied to 

field effect displays;
83

 x-ray tubes;
117

 field effect transistors;
118

 and vacuum RF amplifiers 

such as the traveling wave tube.
119

  While thermionic emitters suffice for these technologies, 

the general push towards smaller, more efficient devices makes FEDs highly desirable.  For 

example, the power required for the average cellular phone tower could drop by orders of 

magnitude if the microwave amplifiers could utilize cold cathodes in place of thermionic 

electron sources.
119

  Field ionization also has several applications beyond mass spectrometry 

including high resolution ion microscopy;
78, 120

 ion sources;
121-122

 gas detectors;
123-124

 

portable neutron generators;
121

 and  ion thrusters for microsatellites.
125

  Given the array of 

applications that FEDs can help revolutionize, it is important to understand the theory behind 

them. 

1.5.1  Field Emission 

Field emission is often referred to as cold field emission (CFE) because it occurs at room 

temperature and only shows limited dependence upon temperature.
126

  In 1928, Fowler and 
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Nordheim used a triangular barrier approximation for electron emission to quantify field 

emission current density from a planar, metallic surface as a function of electric field strength 

and work function.
127

  The standard, temperature independent form is as follows:
128

 

 
𝑗0 =

𝑎

𝑡𝐹
2𝜑

𝐹2𝑒
−𝑣𝐹 𝑏 𝜑3/2

𝐹  
(1.10) 

where, the subscript ‘0’ refers to the temperature and the variables are: φ, surface work 

function; F, the electric field; tF
-2

 and vF are elliptical functions referring to the Schottky-

Nordheim barrier;
129

  a and b are the Fowler-Nordheim constants which are defined as:
128, 130

 

   
𝑎 ≡

𝑒3

8𝜋ℎ𝑝
 ≈ 1.541 

𝐴 𝑒𝑉

𝑉2
 

(1.11) 

 
𝑏 ≡

8𝜋𝑒ℎ𝑝 

3√2𝑚𝑒

 ≈ 6.831 𝑥 107
𝑉

𝑒𝑉3/2𝑐𝑚
 

(1.12) 

and e is the elementary charge; hp is Plank’s constant; and me is the mass of the electron. 

In 1956, Murphy and Good generalized electron emission from a metallic surface to 

include temperature and found that Fowler-Nordheim was the zero-temperature limit of their 

expression.
129

  In 1976, Spindt approximated the elliptical functions, tF
-2

 and vF in order to 

use field emission current measurements to extract the emitter surface area, α and field 

enhancement factor, β where:
131

 

  
𝑗 =

𝐼

𝛼
 

(1.13) 

 𝐹 =  𝛽 𝑉 (1.14) 

The variables are:  local current density, j (Eq 1.10) and the measured current at the detector, 

I.  This approximation has been widely used throughout field emission research.
132

  However, 

its accuracy is best for ‘flatter’ emission surfaces with a radius of curvature greater than 

10 nm.
133
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The theory presented to this point is also specific to metallic surfaces.  Semiconductor-

based field emission requires additional consideration and depends upon the doping.
76

  

Deviations from standard Fowler-Nordheim field emission are observed for p-type and 

lightly-doped (< 10
18

 dopants/cm
3 

in silicon) n-type semiconductors.  For p-type 

semiconductors, electron emission into vacuum creates an inversion layer at the surface.  

While the surface work function is typically lower for a p-type semiconductor,
134-135

 it does 

not compensate for the alteration of the electric field due to penetration into the crystal and 

emission is reduced relative to an analogous structure in metal.
136

  For lightly doped (high 

resistivity) n-type semiconductors, the rate of carrier (electron) generation is limited and is 

often smaller than the rate at which electrons are emitted into vacuum, again resulting in 

reduced emission relative to a metal surface.
136

  For highly-doped n-type semiconductors (> 

10
18

 dopants/cm
3
 in silicon), field emission typically follows standard Fowler-Nordheim 

theory.
74

   For this reason, highly-doped silicon was predominately used for microionizer 

fabrication. 

A note regarding field emission in general:  due to the highly-localized nature of emission 

sites, quantitative analysis has been described as ‘messy’ by experts in the field.
73

  More 

often than not, several variables in the Fowler-Nordheim (even the elementary version) are 

unknown such as the work function and radius of curvature of the emission site.  As such, 

calculated field enhancement factors, work functions, and emission current densities 

(especially for field emitting arrays) are dependent upon estimates.  While determining β and 

α values may be useful in comparing FEDs within a research group, it is often improper to 

compare values between completely different FEDs or to blindly trust the values reported.
137
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For many field emission sources, the microionizer included, Fowler-Nordheim analysis is 

used simply to verify field emission as the mechanism behind observed electron currents. 

1.5.2  Field Ionization 

Field ionization is a complement to field emission, where an electron from a neutral atom 

or molecule can tunnel into a surface.
76

  Since the Fermi level is nearly full in a conductor, 

the electron must tunnel into an energy level above this, and a simple one-dimensional model 

is used to describe the energy of the neutral orbital, ϵ, relative to the Fermi level:
73

 

 𝜖 = (𝐼1 − 𝜑) + 𝑒𝐹𝑥 (1.15) 

where the variables are: the first ionization potential of the neutral, I1 and the separation 

distance between the nucleus of the neutral and ionization tip, x.  A critical distance, xc, is 

defined when ϵ = 0.  The electron cannot tunnel directly when x < xc, since this would place 

it below the Fermi level of the conductor.  Thus, field ionization occurs outside of this critical 

distance while field desorption and/or tunneling through an adsorbed layer is believed to 

occur within the critical distance:
116

 

 
𝑥𝑐  ≅  

(𝐼1 − 𝜑)

𝑒𝐹
 

(1.15) 

Ionization can be estimated to occur with 1 nm of the critical distance and the efficiency is 

dependent upon the time a neutral spends within this distance of the surface.
124

  Field 

ionization demonstrates a threshold behavior, where neutrals with different ionization 

potentials demonstrate ionization at differing field strengths.
77

  After the appearance potential 

is reached, ionization efficiency quickly approaches unity, and the ion current from the 

emitter saturates.
108
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1.5.3  Pressure Tolerance and Lifetime 

For field emission a large negative potential is typically required to generate the requisite 

electric field.  Many field emitters are designed to be operated at high vacuum (< 10
-6

 Torr), 

and can maintain >50% emission of their original emission intensity after more than 10,000 h 

of operation.
74

  This mark is especially important for applications where the FED cannot be 

easily serviced and/or replaced such as computer displays.
83

  High vacuum reduces sputtering 

damage at the emission site due to ion back streaming.  Back streaming involves ions formed 

via EI events near the FED that are accelerated opposite of the electrons and crash into the 

surface.  This backstream of ions will gain energy equal to the potential applied to the tip, 

thus they can easily hit the threshold for ion-induced surface damage and sputtering
138

 

degrading the emission tip.
81

  Tip degradation is of concern, because it can lead to emission-

induced failure.  The emission current density has an exponential dependence upon work 

function and emitter tip geometry; thus small changes such as adsorbed gases or emitter tip 

deformation can cause large deviations in the field emission current, resulting in emitter 

damage.
139-140

  If the emission is spread across an array (as is common) the failure of a single 

tip results in outgassing which will briefly increase the rate of ion backstream sputtering as 

well as neutral adsorption leading to premature failure in the surrounding tips.
75, 81

  This 

problem can be avoided by adding a current limiting (ballast) resistor in series with each tip, 

which adds complexity and cost to the fabrication process.
141

  At higher pressure, 10
-3

 to 

10
-5

 Torr, surface flashover becomes a concern.  As the name implies, it is a surface effect, 

where charge buildup on the insulator layer of a gated field emitter can aid in the formation 

of a plasma that can result in an arc discharge between the anode and cathode of the field 

emitter.
142-143
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Field ionizers can suffer from many of the same failure mechanisms as field emission 

sources, such as dielectric breakdown and surface flashover.
80, 124, 144

  Due to the increase in 

field strength for field ionization, dielectric breakdown is a more common occurrence than in 

field emission.  Breakdown is accelerated by electron injection into the dielectric, which can 

degrade the insulator over time.
145-147

  Additionally, field desorption can gradually erode the 

tip leading to reduced signal intensity over time.
144

  Despite the greater difficulty of working 

at higher field strengths, field ionization has one advantage over field emission:  the opposite 

polarity of the applied potential prevents ion back streaming damage since ions flow away 

from the ionization tip.
124

  Thus, pressure limitations are more likely to originate from 

standard Paschen-type breakdowns to any nearby ground planes.  Similar to field emission 

sources, well designed field ionization sources have demonstrated lifetimes longer than 

10,000 h.
110

 

1.5.4  Fabrication 

Both field emission and field ionization devices have functional limitations, with some 

materials better suited than others.  For example, refractory metals have high melting points, 

making them ideal for high current density applications where localized Joule heating can 

induce premature tip erosion.
139

  As such a host of materials have been studied including: 

carbon nanotubes;
148-149

 porous silicon carbide;
150

 thin-film semiconductors;
151-152

 metal and 

diamond coated semiconductors;
131, 153-154

 CVD diamond;
137

 among many other examples.
132

 

Prior to the advent of modern microfabrication techniques, FEDs typically required 

> 5 kV to be applied to a chemically sharpened wire or razor-like edge.
79

  The Spindt 

Cathode was the first FED that used modern microfabrication techniques and is considered 

the beginning of vacuum microelectronics (VME).
75, 111

  Microfabrication offers two 
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important properties:  first, the spacing between the emission tip and counter-electrode can be 

precisely controlled on the micrometer scale, reducing the potentials necessary for field 

emission below 1 kV; second, arrays of parallel emission sites or field emission arrays (FEA) 

with nearly identical dimensions can be fabricated.
75, 110

  These FEA of single-point emitters 

produce more consistent field emission and field ionization compared to single points (as 

opposed to large edges).
79

  Despite the ‘ease’ with which microfabrication enables arrays to 

be generated, the exponential dependence of the current density upon tip geometry and work 

function means that the process must be tightly controlled.  Each tip should be identical down 

to the nanometer scale, which is a difficult task that adds time and cost to fabricaiton.
132

  

Techniques have been developed to ‘burn in’ devices, such as quickly ramping the field 

strength up and down in order to burn off the sharpest tips, but the array fabrication must still 

be tightly controlled.
155

 

1.6    Solid State Microionizer 

1.6.1  Design and Operation 

The microionizer is a solid state, field effect device designed specifically for HPMS 

operation. The key to successful operation is that the spacing between electrodes, the high-

field region of the device, must be smaller than the mean free path of both electrons and ions 

at the operational pressure.  This smaller geometry suppresses electrical breakdown by 

avoiding the ionizing collisions necessary for Paschen-type breakdowns.
156-157

   A hard 

sphere collision model using collisional cross sections for electrons
158-159

 and toluene
160-161

 (a 

common VOC) was used to determine the critical dimensions for the microionizer.  At 1 

Torr, the mean free paths are on the order of 10 mm and 100 µm for electrons and toluene 

molecules, respectively.  This places an upper bound on the spacing between electrodes (the 
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high field region) of about 100 µm.  At this thickness, an electric field strength of 1 MV/cm 

necessary for field emission would require a potential of 10 kV.  As the goal is to minimize 

the applied voltage, preferably below 100 V, the spacing between electrodes should be on the 

order of 1 µm or less to produce 1 MV/cm field strengths. 

 The microionizer relies upon silicon-on-insulator (SOI) substrates to achieve ≤ 1 µm 

spacing for the high field region.  SOI is a layered structure, where an insulator, typically 

oxide, separates two, parallel silicon layers (the device and handle).
162

  A cross sectional 

schematic of the microionizer is shown in Figure 1.5; the SOI layers as well as the high-field 

region are highlighted.  SOI can be made-to-order and the thicknesses of all three layers are 

customizable as well as dopant type and concentration.  A 150 mm (6”) SOI substrate can 

have device layers ranging from 2 to 150 µm; insulator layers from 0.1 to 10 µm; and handle 

layers from 400 to 650 µm.
163

  SOI has been primarily used for low-power microprocessors 

because the electrical isolation of the device layer reduces parasitic capacitance during high 

speed switching.
164-165

  However, the wide range of layer thicknesses has also positioned SOI 

as an invaluable substrate in applications ranging from photonics to microelectromechanical 

systems (MEMS).
166-168

  For the microionizer, the insulator layer thicknesses available are 

ideal for sub-100 V operating voltages.   

 The first generation microionizer utilized SOI with highly-doped, n-type silicon, 

separated by a 0.5 µm oxide.  The original layout is shown in Figure 1.6a and consists of a 

1 cm
2
 die with a 4 x 4 array of active features; the device and handle layers are 2 and 400 µm 

thick, respectively.  The vias shown in Figure 1.6b and c are cylindrical with a 20 µm 

diameter.  Other variants (not shown) are cylindrical with 10 and 100 µm diameters as well 

as rectangular trenches with a 2 x 90 µm
2
 footprint.  The operational voltages, pulse and bias, 
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applied to the microionizer are shown in Figure 1.5.  The pulse voltage initiates field 

emission or field ionization while the bias voltage controls the electron/ion energy relative to 

the mCIT.  For the 0.5 µm thick insulating layer, only 50 V is needed to achieve 1 MV/cm 

electric field strength.  Geometric field enhancement due to surface roughness generated by 

the etch process (seen in Figure 1.6c) should boost the macroscopic field into the 10 to 

100 MV/cm necessary for field emission and field ionization.
150

 

1.6.2  Examples of Similar FEDs 

There is precedent in the literature for similar FED devices, but none combine the ease of 

fabrication and dual-role nature of the microionizer.  Planar devices using thin insulating 

layers have been fabricated for field ionization and field emission.  A soft ionization 

membrane (SIM) proposed by Hartley achieves field ionization using the same principles as 

the microionizer but relies upon nanofabrication techniques to form vias in gold-on-silicon 

nitride substrates.
169

  It is capable of generating streams of 100% ionized particles, but the 

nanofabrication techniques and specialized substrates used for the SIM are not amenable to 

mass production.  The edge-to-edge emitter (ETE) is a layered-field emission device, 

proposed by Short, et al.  It uses two tungsten electrodes separated by a composite insulator 

of CVD silicon oxide/nitride/oxide.  While the device is better suited for mass production, it 

showed limited lifetime due to delamination of the tungsten layers during testing.
170

  A 

similar layered structure has been used to produce metal-oxide-semiconductor field effect 

transistors (MOSFET) specifically to increase transistor switching speed through ballistic 

electron transport in the vacuum channel.
118, 171

  While turn on/off potentials have been 

reduced through the use of sub-100 nm insulators, the devices are not suited for electron/ion 

extraction for ionization purposes.   
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1.6.3  Advantages of the Microionizer 

The key to success for the microionizer relative to other FEDs lies in its design.  It is 

specifically meant for HPMS, which means pressure tolerance, power consumption, and 

fabrication costs were key design considerations.  Other field emission devices rarely operate 

at pressures higher than 10
-6

 Torr due to ion back streaming.
132

  For the microionizer, back 

stream-induced sputtering should be minimized.  The thinner insulating layer between handle 

and device layer of the SOI wafer requires smaller potentials to generate the macroscopic 

electric field strengths necessary for field emission.  Thus, ions formed due to EI will only be 

able to gain limited kinetic energy (< 100 eV).  Moreover, the difference in mean free paths 

of electrons and ions means that most of the back stream ions generated by EI will undergo 

collisions prior to impact with the emitter tip.  This should retard their ability to sputter the 

emission tip.  While thinner insulating layers lead to improved pressure tolerance, they also 

reduce power consumption.  Reduction of the insulating layer thickness yields similar 

macroscopic field strengths at lower operating voltages.  Since the displacement current is a 

function of electric field strength, lower voltages will yield lower power consumption.  

Ultimately, the circuitry required to generate the pulse can be simplified as the voltage 

amplitude decreases which will also reduce secondary power consumption.
172

 

The microionizer achieves field effect by geometric enhancement due to the surface 

roughness of the device sidewalls.  Many other FED’s use arrays of identically sharpened 

tips.  By relying upon the surface roughness, the stringent fabrication requirements for 

nanometer-level precision are not necessary.  This also means the process is less susceptible 

to variations in etches and depositions across the entire surface area of a single wafer.  

Additionally, the SOI-based process flow does not require any time consuming or specialized 
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fabrication steps (a list of the tools and techniques used for microionizer fabrication can be 

found in Appendix A).  The end result is that microionizer fabrication can use more surface 

area of the wafer while simultaneously maintaining a better overall yield than other FEDs.  

Thus, the cost per device should be lower for the microionizer. 

1.7  Objectives and Roadmap 

The work presented in this dissertation focuses on developing a pressure and oxygen 

tolerant ion generation source (microionizer) for use with high pressure mass spectrometry. 

The original specific aims proposed in 2012, were: 1) demonstrate field emission and field 

ionization-based high pressure mass spectrometry using a microionizer; 2) determine lifetime 

and controlling parameters for the microionizer; and 3) integrate the microionizer into a 

mCIT trap electrode stack.  

The work began with investigating traditional ionization sources under HPMS conditions 

and finished with successful microionizer-based HPMS.  Chapter 2 reports the results of 

internal and external ionization under HPMS conditions using traditional ionization sources.  

Chapter 3 covers proof of concept experiments with the initial microionizer design providing 

important design and operational condition insights for successful field emission and field 

ionization.  Chapter 4 documents the development of the fabrication process flow for 

producing microionizers capable of field emission and field ionization.  Chapter 5 is devoted 

to HPMS utilizing the microionizer in both field emission and field ionization modes.  The 

final chapter presents conclusions and future directions.  



31 

1.8  Figures 

 

Figure 1.1:  Cross sectional schematic of three-dimensional ion traps:  a) QIT and b) CIT.
17

  

The equipotential lines are shown to highlight the differences between the QIT and CIT.  

Both display quadrupolar fields at the center of the trapping volume, but the CIT has higher 

order fields particularly near the electrode boundaries, introduced by the sharp transitions due 

to the geometry simplification. 
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Figure 1.2:  Stability diagram for the z-dimension of a QIT.  The axes are the stability 

parameters where az is proportional to the DC offset and qz to the RF amplitude.  The β lines 

are thresholds between stable, periodic motion in each direction.  The red line at az = 0 is the 

typical region over which a QITMS operates in mass selective instability mode.  Ions order 

themselves inversely proportional to qz; as the RF amplitude is increased ions eject axially 

from smallest to largest m/z.   
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Figure 1.3:  Thermionic and glow discharge sources used for HPMS.  a) Image of a tungsten 

filament (Kimball Physics, ES-020).  A biased, heating current, ≈ 1.2 A at -70 to -250 V, 

flows through the wire to produce electrons for EI.  b) Schematic of the GD source used in 

the differential chamber.  A pulse voltage, ≈ 500 to 750 V, strikes a DC plasma, a bias 

potential applied to the pulse selects the mode GDe, 0 to -250 V, and GDi, 0 to +250 V.  c) 

Image of the GD source operating at 1 Torr. 
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Figure 1.4:  Examples of field effect devices used for mass spectrometry.  a) An array of 

Spindt cathodes used as an electron source for EI with a linear quadrupole.
75

  b) CVD 

diamond-coated silicon whiskers used as an EI source for a CIT.
114

 c) Carbon nanotube array 

used as an EI source for a magnetic sector.
115

  d) Field ionization ‘volcano’ used as an field 

ion source for a linear quadrupole.
107
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Figure 1.5:  A cross-sectional schematic of the microionizer (not to scale).  The SOI layers, 

device, insulator, and handle are indicated along with their typical thicknesses.  The location 

of the high-field region (●) within each via is also highlighted.  Field emission and field 

ionization mode are selected by the polarity of the pulse and bias voltages:  negative voltages 

access field emission and positive voltages are used for field ionization.  The bias voltage 

controls the electron/ion energy by floating the potential of the microionizer relative to the 

mCIT. 
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Figure 1.6:  Introduction to the microionizer.  a) CAD diagram of the original microionizer 

design provided by Dr. Pau.  b) SEM of a sub-array of 20 µm diameter features and c) a 

single via.  The device layer is the front surface of the device, while the handle layer is only 

seen as the rough, cylindrical sidewalls of the feature.  The insulating layer is 0.5 µm thick 

and separates the device and handle. 
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CHAPTER 2:  THERMIONIC AND GLOW DISCHARGE SOURCES                    

FOR HPMS APPLICATIONS 

 

2.1  Introduction 

Expanding mass spectrometry beyond the lab environment and making it a ubiquitous 

analytical technique is the collective goal of the research performed developing high pressure 

mass spectrometry (HPMS).  HPMS provides a vehicle for miniaturizing the systems 

(ionizer, mass analyzer, detector) of the ion trap mass spectrometer to achieve an 

inexpensive, small form factor (handheld or benchtop) instrument.  Ion traps are the chosen 

mass analyzer because they have several characteristics that are ideal for miniaturization: 

mass resolution does not depend upon their size;
1
 they can operate at higher pressures than 

other mass analyzers;
2-3

 and they have the ability to perform MS
n
.
4-5

 HPMS operates 

miniature cylindrical ion traps at 1 Torr (mCIT, r0 ≤ 500 μm) at high frequency (f > 6 MHz).  

By doing so, the turbo pump is eliminated from the vacuum system decreasing the size, 

weight, and power (SWaP) as well as the cost.
3
  Additionally, HPMS relies upon ambient air 

as the buffer gas, removing the need for an external helium tank further reducing the size and 

weight.  While there are many positive qualities to ion traps, external ion injection is a weak 

point for quadrupole ion traps (QIT); typically as few as 5% of the ions generated external to 

the trapping volume are successfully injected into a 3D trap.
6-8

  With this in mind, early 

HPMS studies relied exclusively upon electron impact ionization (EI).  Mass spectrometry 

with the mCIT was performed in modest pressure helium buffer gas and worked towards the 

1 Torr goal
2-3, 9-10

 before moving to nitrogen and air
11

 buffer gases.  Having achieved these 
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milestones, development of an external ion injection source would add ambient ionization 

methods to the HPMS toolbox. 

A standard QIT has a 1 cm radius and operates at 1 MHz RF with amplitudes ramping 

from 0.5 to 10 kV0-p and helium buffer gas at ≤ 1 mTorr pressure.
12

  Because efficient ion 

injection is difficult to achieve under these conditions, early commercial ITMS systems 

relied upon in situ (internal) ionization such as EI and chemical ionization (CI) and were 

mainly employed as gas chromatograph detectors.
13

  Studies showed that external ion 

injection is particularly dependent upon the ion kinetic energy and drive RF phase
14

 as well 

as higher order fields due to geometric imperfections of the QIT.
15

  In order to expand the 

analyte range of ITMS beyond small molecules, much research was devoted to coupling 

external ionization techniques such as atmospheric pressure glow discharge ionization 

(APGDI), electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), 

secondary ion mass spectrometric source (SIMS), laser desorption (LD), and matrix assisted 

laser desorption (MALDI) with the QIT.
16-19

  This research pushed the boundaries of ITMS 

and expanded its utility well beyond volatile, low mass analytes to include peptides and 

proteins.
20

 

Several techniques were found to boost the efficacy of external ion injection into QITs.  

Maximizing ion transmission makes the most of the low trapping efficiency inherent to QIT 

operation and is typically used in conjunction with either waveform modulation or collisional 

cooling.  The RF ion funnel is a particularly successful example of ion optics that can be 

employed to this end.
21

  Waveform gating is employed with pulsed sources such as LD
22

 and 

MALDI,
23

 where ion injection is precisely synchronized to the pulsed or modulated RF drive 

field which improves external trapping efficiency.
24

  Finally, buffer gas pressure can simply 
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be increased.
13

  Collisional cooling due to ion-neutral interactions acts like friction on the 

walls of the ion trap’s potential well improving trapping efficiency.
6, 25

  Of these techniques, 

collisional cooling is a natural consequence of operating at high pressures so it does not 

require additional instrumentation to implement. 

Prior to the studies presented in this chapter, external ion injection under HPMS 

conditions had not been attempted with a mCIT.  Internal EI is a more predictable method for 

producing ions and generally better suited for demonstrating mass analysis at 1 Torr.  

However, external ion injection should expand the utility of the technique, so the efficacy of 

ion injection with a mCIT at both high (1 Torr) and low (< 250 mTorr) pressures was 

undertaken.  A custom, off-axis EI source was developed for the purpose of generating 

external ions for injection into the mCIT.  It was used to probe the low pressure properties of 

ion injection with the mCIT and helium buffer gas.  Furthermore, external ion injection 

across a wide range of pressures, ion kinetic energies, and trapping conditions was done with 

an on-axis glow discharge (GD) ionization source. The GD source was used in both positive 

(GDi) and negative (GDe) modes.  These experiments lay the groundwork for coupling 

ambient ionization techniques such as ESI with HPMS. 

2.2  Experimental Section 

A custom, high pressure mass spectrometer similar to that used for previous HPMS 

studies was employed.
3, 26

  Figure 2.1a shows an exploded view of the differentially pumped 

vacuum chambers with the location of the ion source, mass analyzer, and detector 

highlighted.  The components of the ‘trap-side’ vacuum chamber are shown in Figure 2.1b.  

It is maintained at high pressure (≈1000 mTorr) and houses the ionization source and mass 

analyzer (mCIT).  The ‘detector-side’ is shown in Figure 2.1c.  It houses the electron 
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multiplier (EMT) and is held at low pressures (< 50 mTorr) suitable for EMT operation.  

Each chamber was pumped with an Agilent TPS Benchtop pumping system consisting of an 

SH110 scroll pump and TV-81M turbomolecular pump.  With this configuration, the 

pressure on the mass analyzer-side can be ranged from 1 to 1000+ mTorr while the EMT 

pressure remains below 50 mTorr preventing autoionization within the detector.
27

  Pressure 

in each chamber was monitored with a full range pressure gauge (FRG-700, Agilent, Inc).  In 

addition, trap-side pressure was measured absolutely using a NIST traceable capacitance 

manometer (Baratron 627D, MKS Instruments, Inc). 

The miniature cylindrical ion trap had critical dimensions of r0 = 500 μm and 

z0 = 645 μm.  The ring electrode was electrochemically etched from 790 μm thick copper 

(Towne Labs, Somerville, NJ).  Two types of endcaps were used:  aperture and mesh.  

Standard apertures were etched from 250 μm thick beryllium copper with a radius of 200 μm 

(Towne Labs).  Mesh endcaps were assembled by soldering 400 lpi copper mesh TEM grids 

(SPI, Inc) over a 3 mm diameter aperture in a printed circuit board endcap (Advanced 

Circuits, Inc).  The mCITs were assembled with 125 μm polyimide washers (#002, 

McMaster-Carr, Inc).  An image of an assembled, aperture-endcap mCIT is shown in Figure 

2.1b. 

The RF trapping potential was generated using an Agilent E4428C signal generator 

driving a custom, tanked amplifier arrangement.  The trap was driven at 8.0 ± 1.5 MHz.  The 

amplitude of the drive potential (RF voltage) is frequency dependent.  RF amplitude ranged 

from 200 to 800 V0-p, depending on the RF frequency and mass range.  The RF amplitude 

was ramped during mass analysis with scan speeds between 15 to 25 kDa/s.  Both boundary 

ejection (mass selective instability) and double resonant ejection were used.  For boundary 
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ejection, both endcaps were grounded, while axial RF was applied asymmetrically near 1/3 

drive frequency for resonant ejection.  Axial RF was applied to the detector side endcap only 

at 2.5 ± 0.5 MHz and pressure-dependent amplitude 2.5 to 10 Vpp.  The drive RF and axial RF 

were both monitored with 10X probes and a 4-channel, digital oscilloscope (P6139A and 

TDS 3034B, Tektronix). 

Helium and nitrogen buffer gases (UHP Grade, National Welders, Inc) were introduced 

to the chamber via a 0-50 sccm mass flow controller (FMA 5402, Omega, Inc).    Ambient 

air was also used as a buffer gas and introduced through a needle valve inlet to the mass 

spectrometer.  Pressure was controlled by a combination of flow rate and conductance limits.  

The analyte, mesitylene (1, 3, 5-trimethyl benzene) from Sigma Aldrich (St Louis, MO), was 

introduced to the chamber at 0.01 mTorr via an ultrahigh vacuum leak valve (MDC, Inc). 

Two ion sources were used for this study:  a custom off-axis, EI source and an on-axis 

glow discharge (GD).  Both were placed approximately 10 mm from the mCIT.  A schematic 

of the off-axis, EI source and its pertinent operating voltages is shown in Figure 2.2a.  A 

tungsten filament (ES-020, Kimball Physics, Inc) was used to generate ions via EI internal to 

the chassis volume.  Thermionic emission was powered with a continuous, current controlled 

voltage, 1.9 to 2.1 A with a bias voltage, -20 to -70 V applied to control electron kinetic 

energy.  In addition to the filament, the external ion source has three controlling voltages:  

the repeller, chassis, and gate.  The repeller plate, situated opposite the gate, collected excess 

electrons and provided a field to direct ions towards the gate.  Ion flux to the mCIT was 

controlled by the gate electrode.  Nominally, the gate voltage equaled the chassis voltage and 

was pulsed below the chassis to illuminate the mCIT.  The gate voltages defined the field 

between the source and ion trap and were used to control the ion kinetic energy.  Typical 
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values for the repeller and chassis were +110 and +90 V and the gate was pulsed 40 V below 

the chassis, giving the ions 50 eV (ignoring collisional cooling). 

The second source employed was a glow discharge.  This source has been used 

extensively for HPMS operations.
11, 26, 28

  It consists of two, 1.5 cm radius plates (either steel 

or brass) with a small aperture between 0.1 to 0.5 mm in radius at the center of each plate.   

They are placed on either end of a 1 cm long hollow, cylindrical Teflon spacer.  The glow 

discharge  is capable of either positive (GDi) or negative (GDe) mode.
26

  The glow was 

struck by applying a 500 to 750 V pulse across the plates, where the pulse length determines 

the ion accumulation time.  Positive mode applied a positive float to the entire source, while 

a negative float was applied for negative mode.  Both GDi and GDe were studied using the 

ion trap as a faraday plate.  In this configuration, the ring electrode acted as the collector 

while the endcap was used to shield the current preamplifier (SR570, Stanford Research) 

from capacitive coupling.  It was also biased to perform gating studies to determine ion 

kinetic energy.  The electric field between the GD and mCIT was controlled by the float 

voltage and dominated ion and electron kinetic energy.  The float voltage ranged from -250 

to +250 V relative to the mCIT (ground).  Assuming singly-charged ions and electrons, the 

kinetic energy is directly proportional to the bias voltage, thus +100 Vbias yields ion energies 

of 100 eV and -100 Vbias corresponds to 100 eV electrons. 

Ion detection was performed using an electron multiplier (Model 2300, Detech) pulsed 

to -1600 V during the RF ramp.  A current preamplifier voltage converted and amplified the 

EMT current output.  Hardware control and data collection were performed with a custom 

LabVIEW program interfaced with analog/digital I/O cards (PXIe-6356 and PXI-6733, 

National Instruments).  Data acquisition was performed at 500 kHz.  After acquisition, the 
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data was low pass filtered at 30 kHz to remove high frequency noise.  Mass to charge 

conversions used two-point calibration based upon NIST standards.
29

  Baseline corrected 

signal integration and signal-to-noise calculations were performed with a custom LabVIEW 

program. 

2.3  Results and Discussion 

Pressure, buffer gas composition, and ion kinetic energy all play roles in the efficacy of 

external ion injection.  However, these parameters also impact the operation of the ion 

source.  As such, a single ion source is unable to cover the range from low to high pressure 

(≈ 0.01 to 1 Torr) in helium, nitrogen, and air.  The off-axis, EI source is based upon 

thermionic emission and can operate in helium across the entire pressure range but it suffers 

reduced lifetime above 100 mTorr in nitrogen and is incompatible with air.  As such, proof-

of-concept and low pressure studies utilized the off-axis source.  The on-axis GD source used 

a fixed geometry that was optimized for 1 Torr air operation and therefore unsuitable for 

helium-based operation using reasonable voltages.
30

  Thus, GD operation was limited to 

0.25 to 1.0 Torr in nitrogen and air.  High pressure studies in these buffer gases utilized on-

axis GD. 

Ion injection into an aperture-based mCIT was undertaken with both helium and nitrogen 

buffer gases.  The drive RF was 7.24 MHz held at 190 V0-p during ion accumulation and 

ramped to 350 V0-p for the mass instability scan.  Resonant ejection was utilized with axial 

RF at 2.46 MHz at 3.0 V (helium) and 7.4 V (nitrogen).  The off-axis EI source was pulsed 

for 10 ms during ion accumulation and the chassis, repeller, and gate voltages were adjusted 

for optimal mass spectral signal strength at each pressure.  Representative spectra using the 

off-axis EI source are shown in Figure 2.3 with both helium and nitrogen buffer gases.  The 
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helium spectrum was recorded at 1030 mTorr using 60 eV ions, while the nitrogen spectrum 

was recorded at 405 mTorr and 40 eV. Filament lifetime concerns at higher pressures limited 

the operational pressure for nitrogen.  Both spectra display strong signal for the molecular 

ion at 120 m/z, with SNR of 455 and 1100 in helium and nitrogen, respectively.  The 

nitrogen spectrum is unable to detect fragments smaller than 91 m/z and peak broadening is 

observed.  Both of these effects were also observed using internal EI across a constant drive 

RF frequency when increasing the buffer gas mass.
26

  While the differences in pressure make 

direct comparisons difficult, these spectra demonstrate that external ion injection at least 

functions under HPMS pressures. 

In order to better compare the buffer gas mass effects, the gases were studied at low 

pressure.  Mesitylene mass spectra were recorded as a function of pressure using the same 

ion trap and ion source parameters as described for Figure 2.3.  Figure 2.4 shows the 

integrated mass spectral intensity vs. buffer gas pressure in both helium and nitrogen.  The 

pressure range was 1 to 500 mTorr; the high end was limited in order to suppress pressure-

dependent ion source variations from the results.  Both helium and nitrogen show a linear 

increase in signal intensity with pressure.  Mass spectra are only observed above 200 mTorr 

in helium, while external ion injection yielded mass spectra starting at 20 mTorr in nitrogen.  

For each point, the mass spectra were optimized and the kinetic energy for helium at the 

cutoff was 20 eV vs. 15 eV in nitrogen.  There is a 10-fold difference in the lowest pressure 

observable for external ion injection between helium and nitrogen buffer gases.  This is likely 

a result of helium and nitrogen’s mass relative to mesitylene, which are 4, 28, and 120 amu, 

respectively.  Nitrogen can remove more kinetic energy per ion-neutral interaction than 

helium.  Thus, at pressures below 200 mTorr, nitrogen is able to trap externally injected ions 
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whereas in helium there is insufficient collisional cooling and the ions pass directly through 

the ion trap.  Only when the pressure has been increased by 10-fold does a mesitylene ion 

interact with enough helium neutrals for successful trapping.  Assuming mesitylene ion 

generation via EI is constant in helium and nitrogen buffer gases, the absolute signal intensity 

as well as the relative rate of increase of signal observed in Figure 2.4 support the 

conclusions regarding buffer gas mass.  The nitrogen-based signal intensity at 100 mTorr 

exceeds helium’s at 500 mTorr by a factor of 3.  Unfortunately, nitrogen’s external ion 

injection efficacy comes at the cost of resolution (relative to helium).  However, as seen in 

Figure 2.3, despite the loss in resolution the overall increase in signal intensity leads to 

improved SNR in nitrogen versus helium under identical trapping conditions.  Since nitrogen 

and ambient air operate interchangeably from an HPMS standpoint;
11, 26

 this increase in SNR 

is an advantage for a handheld, portable system that would utilize air as the buffer gas. 

Having used the off-axis EI source to validate external ion injection with the mCIT, 

several studies were performed using air buffer gas since it is the preferred buffer gas for 

HPMS operation due to SWaP concerns.  For these studies, an on-axis GD source was used 

in place of the off-axis thermionic source as the thermionic source is not oxygen tolerant.  

GD is capable of operating as both an electron (GDe) and ion (GDi) source.
30

  Pulsed GDe is 

a simple, strong-intensity, long-lifetime electron source for EI and has been relied upon 

heavily for HPMS studies.
26

  Reversing the source’s bias voltage from negative to positive 

polarity changes it from GDe to GDi.  The bias controls the electric field between the source 

and ion trap; gating experiments (data not shown) determined that the ion and electron 

kinetic energy is directly proportional to the electric field strength.  A faraday plate study was 

performed with the GD source in both positive and negative modes at 1015 mTorr of air.  
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The current density as a function of particle kinetic energy (read bias voltage) is plotted in 

Figure 2.5.  Negative mode (GDe) operation shows a linear, 16-fold increase in current 

density (more negative signal) to -1.0 μA/cm
2
 from 10 to 125 eV.  Beyond 120 eV, the signal 

rate changes to an exponential with a final current density approaching -10 μA/cm
2
.  This is 

likely due to the production of secondary electrons via EI interactions between the source and 

faraday plate, which is a consequence of operating an electron beam at high buffer gas 

pressures.  The mean free path for electrons at 1 Torr in nitrogen (surrogate for air) is 

approximately 10 mm.  There is a non-zero chance of an EI event between the source and 

detector.  Upon occurrence, any ions generated will be pulled into the negatively biased GD 

front plate while secondary electrons will be accelerated towards the detector.  The 

exponential rise in signal is a sign that electrical discharge is approaching (which was 

observed above 250 eV).
31

  The current density in positive mode (GDi) has the opposite 

polarity and behavior.  It ramps quickly at lower energies; increasing by over 4-fold to 

4.7 μA/cm
2
 from 5 to 50 eV before leveling off at 5.6 μA/cm

2
.  This indicates the current 

density is limited by scattering between the source and detector.  Similar to GDe mode, the 

ion beam interacts with the buffer gas between the source and detector.  Below 50 eV, ions 

have insufficient energy and can be scattered/lost without being collected – likely in the 

small (250 µm) field free-region between the endcap and ring electrode.  Above 50 eV, ion 

kinetic energy is sufficient to overcome the interactions between the source and detector and 

most ions are collected at the detector with varying degrees of residual kinetic energy.  Thus, 

the current density will asymptotically approach the maximum ion flux the GDi source is 

capable of producing. 
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The GD source proved to be more reproducible (and simple) to operate across pressure 

ranges than the off-axis EI source.  As such, external ion injection was explored using 

mesitylene across the GD source’s operable pressure range.  Mesitylene mass spectra in air 

buffer gas were recorded as a function of ion energy at 375, 630, and 1015 mTorr.  The 

mCIT RF frequency was 9.24 MHz with resonant ejection at 2.98 MHz.  The axial RF for 

double-resonance ejection has been shown to be pressure dependent.
2, 32

  Axial RF amplitude 

was adjusted to maximize resolution at each pressure with voltages of 3.75, 6.25, and 

10.00 Vpp, respectively going from low to high pressure.  The mass spectra with maximum 

signal intensity at each pressure, corresponding to 30, 35, and 70 eV, respectively, are plotted 

in Figure 2.6a.  Typical HPMS behavior can be identified by a couple of observations about 

the mass spectra.  The peak width increases as pressure increases due to the increased 

collisional frequency.
1, 33

  Second, the mCIT’s low mass cutoff decreases with pressure,
11

 

which is seen by the appearance of a fragment peak at approximately 78 m/z at 375 mTorr. 

The integrated mass spectral signal intensity as a function of kinetic energy for each 

pressure is shown in Figure 2.6b.  The plot is normalized to focus on the interaction of 

pressure and energy with external ion injection.  At low energy, all three pressures show a 

steady increase from low signal intensity upwards to a maximum.  This feature can be 

attributed to the ramp of the GDi output as a function of energy, seen in Figure 2.5.  The rate 

of increase during the GDi ramp at 1015 mTorr is slower than the lower pressures, which is 

attributed to the reduced mean free path.  The maximum signal intensity for each pressure 

represents the balance between ion kinetic energy and the mCIT’s potential well depth; the 

ions have enough energy to overcome scattering between the source and ion trap, but not so 

much energy that the collisional cooling – the frictional forces on the sidewalls of the 
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potential well – cannot reduce the energy for a successful trapping event.  As energy 

increases beyond the maximum, ions start to skip through the ion trap and external trapping 

efficacy decreases.  The rate of decay is also pressure dependent.  At 150 eV, the signal 

intensity at 375 mTorr is just 10.8% of the maximum while at 675 mTorr only 30.1% of its 

maximum signal is retained.  The signal at 1015 mTorr maintains 71.8% of its maximum 

signal.  This shows that external ion injection is actually more efficient as pressure increases.  

This ion injection behavior is consistent with observations made regarding the discontinuous 

atmospheric inlet (DAPI) on the Mini-series of miniature MS instruments from Purdue.
34

  

However, by performing the mass analysis at high pressure, HPMS with the mCIT avoids the 

loss in sampling rate that DAPI imposes on the Mini system. 

Having demonstrated ion injection into the mCIT under optimal HPMS conditions, 

1 Torr in air buffer gas, it is informative to compare with the more traditional HPMS ion 

source, GDe.  Mesitylene mass spectra were recorded at 1015 mTorr of air buffer gas using 

both GDi and GDe ionization as a function of kinetic energy (bias voltage).  The mCIT was 

operated at 8.13 MHz using boundary ejection (grounded endcaps).  Ion accumulation was 

held at 5 ms for both GDi and GDe.  The mass spectra plotted in Figure 2.7a show the 

strongest signal intensity for each mode of operation: for GDi, the ion kinetic energy is 

150 eV, while GDe peaks at 175 eV.  The mass spectra themselves are nearly identical in 

terms of fragmentation pattern, except the integrated signal for external ion injection is 

69% that of internal GDe.  Examining the integrated mass spectra vs. kinetic energy plotted 

in Figure 2.7b, GDi shows a similar pattern as seen at 1015 mTorr in Figure 2.6b.  From 5 to 

110 eV, mass spectral intensity increases (roughly) linearly before rolling off and peaking at 

150 eV, after which signal decays because collisional cooling is no longer sufficient for the 
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highest energy ions.  The rate of decay is slow though as by 250 eV, the signal is still 76.6% 

of the maximum.  GDe on the other hand demonstrates a rapid rise in signal intensity from 

10 to 50 eV before it plateaus, eventually showing maximum signal at 175 eV.  The reason 

for the strong increase is the EI mechanism; EI requires sufficient energy transfer between 

the ion and neutral to ensure ionization.
35

  At low kinetic energy, electrons survive the transit 

between source and detector (as seen in Figure 2.5) but with insufficient kinetic energy for 

EI.  As the GDe bias is increased, the population of electrons arriving at the trap with 

sufficient energy increases and the trap approaches saturation above 60 eV.  While the peak 

signal intensity of GDi is 31% lower than GDe, both modes operate on the same order of 

magnitude under these controlled conditions.  In a practical application, the ionization time 

of GDi could easily be increased to compensate for the difference in signal intensity.  The 

cost is a slight loss in sampling rate (less than 1 Hz), which is reasonable for the added utility 

ambient ionization brings to HPMS. 

In addition to pressure and buffer gas effects, it is important to understand how ion trap 

operation affects trapping efficacy.  Studies documented in Chapter 1 showed dynamic ion 

trapping is a relatively involved process; operation is dependent upon RF frequency, RF 

amplitude, ion trap critical dimensions, as well as the analyte mass to charge ratio (among 

many parameters).  Thus, studying external ion injection with respect to voltage and 

frequency is a difficult endeavor.  However, this does not prevent a general analysis of trap 

operation in order to place guidelines for implementing external ion injection.  External ion 

trapping was shown to yield improved signal intensity with increased pressure (Figure 2.6).  

It is believed that signal improved because of the collisional frequency:  increased ion-neutral 

interactions results in a greater degree of collisional cooling leading to more ions falling into 
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the trap’s potential well.  Adjusting the voltage and frequency of the drive RF alters the 

potential well depth of the ion trap.  While the qz and well depth of the mCIT cannot be 

absolutely calculated, it should still follow the same general trends of QIT theory.  Mainly, at 

the same frequency, the well depth should increase with voltage. 

Mesitylene mass spectra were recorded using on-axis GD in air buffer gas with a total 

pressure of 1020 mTorr.  The mCIT was operated at 7.46 MHz using boundary ejection 

conditions with two different RF amplitude ramps.  Two voltage ramps were chosen to 

highlight a ‘low’ and ‘high’ potential well depth (280-610 V0-p and 340 to 660 V0-p).  Internal 

ion generation, GDe at 250 eV, was used to saturate the ion trap in order to highlight the 

effects of altering the low and high ramps on mass spectral quality.  The mass spectra plotted 

in Figure 2.8a represent the best-case scenario for mCIT operation under these conditions.  It 

is apparent that increasing the operating voltage positively impacts the signal intensity.  If the 

mass spectra are integrated (20.5 and 70.0 au, respectively), the high voltage ramp has 

3.6-times more ions than the low voltage ramp; all as a result of a 20% increase in RF 

amplitude on the potential well depth of the mCIT. 

To understand the RF amplitude effects on external ion injection, the ion source was 

switched to GDi and mesitylene mass spectra were recorded vs. kinetic energy.  These 

spectra for the high and low ramps were integrated and plotted in Figure 2.8b.  Compared 

with the internal ionization, a similar difference in signal intensities is observed between the 

two RF ramp amplitudes; the ratio of the maximum recorded signal in high and low voltage 

ramps is 3.9, which is within 10% of that observed in saturated, internal mode.  The key 

difference between the RF amplitudes is observed at higher ion kinetic energies.  The high 

voltage ramp shows a linear increase through 250 eV, while the low voltage rolls off; ions 
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with 250 eV are trapped at the high RF amplitude, while at lower voltages they are not.  This 

suggests that the mCIT well depth has been increased because there is no change in the 

collisional frequency or energy of these ions between the two RF amplitudes.  At no point 

did signal intensity prove insufficient to produce high pressure mass spectra, but the RF 

amplitude study does indicate that external ionization should be re-optimized for signal 

intensity when the RF amplitude is changed. 

The final trapping parameter studied was RF frequency.  The frequency is an important 

parameter for HPMS because the more often the electric field interacts with the ion, the less 

likely it is to be affected by ion-neutral scattering.  Unfortunately, increased frequency comes 

at two costs:  RF amplitude and power both scale to the 2
nd

 power with respect to frequency.  

The increased voltage leads to deeper potential well depth at the same qz-value, but it also 

brings the possibility of electrical arcing (especially as pressure approaches and exceeds 

1 Torr).  Practically, the RF amplitude is limited to 0.8 kV0-p by HPMS conditions.  The high 

power draw is also not attractive for portable applications.  In order to keep the RF amplitude 

in check, 1.0 mm diameter mCIT frequency is typically held between 6 and 10 MHz. 

The same experimental setup used to study RF amplitude (Figure 2.8) was used for 

testing frequency effects.  In order to compare mass spectra across frequencies, the qz-values 

should be as similar as possible.  This was achieved by aligning the m/z ejection times at the 

two frequencies.  Mesitylene mass spectra vs. kinetic energy were recorded at 8.89 MHz 

using boundary ejection in air buffer gas at 1020 mTorr total pressure.  The RF ramp at 

8.89 MHz was 440 to 770 V0-p, which overlaps temporally with the low-voltage mass spectra 

recorded at 7.46 MHz (Figure 2.8b).  The integrated mass spectra for each frequency are 

plotted in Figure 2.9a.  The 8.89 MHz data increases linearly with ion kinetic energy.  This 
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mimics the trend observed for the high RF amplitude data shown in Figure 2.8b.  And 

indeed, it is due to the same reason, the potential well depth.  While qz was tuned to be as 

similar as possible between the two frequencies, the well depth is proportional to the RF 

amplitude, which is about 37% larger at 8.89 MHz. 

With this in mind, the low and high RF voltage test was repeated at 8.89 MHz.  The RF 

ramps were 410 to 740 and 470 to 800 V0-p, respectively.  Again, internal EI was used to 

saturate the ion trap in order to detect mCIT differences across the ramp, and the integrated 

mass spectral signal intensity ratio of high RF voltage to low was 1.4 (data not shown).  

Recall, this ratio for 7.46 MHz was 3.6.  The decrease in this ratio at 8.89 MHz is because the 

mass spectra generated at low RF amplitudes lose less signal intensity relative to the high RF 

amplitude spectra.  This is attributable to the increased well depth at 8.89 MHz; suggesting 

the mCIT should display improved ion injection characteristics as well.  The integrated mass 

spectra vs. ion kinetic energy are plotted in Figure 2.9b.  The integrated intensities of both 

high and low RF amplitude increases across the entire kinetic energy range, and only at 

250 eV does the low-voltage ramp show signs of a plateau.  Given that 250 eV requires GD 

bias voltages that verge on electrical discharge at 1 Torr, 8.89 MHz represents a minimum 

RF drive frequency to ensure a predictable response across RF amplitudes.  While this is a 

single study for a small m/z range, it highlights the importance of ion trap operation, 

particularly well depth, on the efficacy of external ion injection and the same reasoning 

presumably extends to the larger m/z values available by ambient ionization techniques.  

2.4  Conclusions 

External ion injection was studied using mCITs under HPMS conditions and found to be 

dependent upon the ion kinetic energy, buffer gas composition, buffer gas pressure, and ion 
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trap potential well depth.  Collisional cooling, the friction on the sidewalls of the ion trap’s 

potential well, is key to ion injection.  Cooling is increased by raising the buffer gas pressure 

and/or using a heavier buffer gas.  Pressure increases the ion-neutral interaction rate while 

buffer gas composition alters the energy change per collisions.  Buffer gas composition had a 

significant impact on overall signal amplitude, showing superior amplitude in nitrogen and 

air vs. helium at the cost of resolution.  Moreover, ion kinetic energy had a less significant 

impact on overall signal intensity as pressure increased towards 1 Torr.  This final 

observation is a welcome result from an HPMS perspective.  Much of the development of 

HPMS has been devoted to overcoming some of the tradeoffs necessary in order to operate at 

1 Torr with loss in resolution a primary one.  It is nice to have a property of ITMS (ion 

injection) that scales positively with the high pressure operation required for portable, 

HPMS.  Additionally it was shown that higher RF frequencies (and their corresponding 

amplitudes) are preferable for ion injection.  This ensures a predictable signal across the 

range of kinetic energies due to the differing m/z values of ions in a given scan range. 

Finally, studies using on-axis, glow discharge showed ion injection can operate with 

similar signal intensity as internal EI.  This is an important observation because it opens up 

the possibility of coupling HPMS with ambient ionization.  Prior to the implementation of 

the off-axis EI source, HPMS was limited to internal ionization via EI.  This limited the 

range of analytes detectable with HPMS to easily volatilized chemicals.  Ambient ionization 

offers multiple ionization routes for larger molecules with efforts already proving successful 

in coupling nano-electrospray ionization with HPMS.
36
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2.5  Figures 

 
 

Figure 2.1:  a) An exploded rendering of the differentially pumped mass spectrometer 

(HPMS).  This setup decouples ion source/mass analyzer development from ion detection.   

b) A schematic of the high pressure, trap-side of the HPMS.  A standard (ro = 500 μm and zo 

= 645 μm) mCIT is shown.  c) Schematic of the detector-side of the HPMS.  EMT detectors 

are used for their superior bandwidth and signal amplification relative to a faraday cup-based 

detector. 
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Figure 2.2:  a) Schematic of the off-axis EI source.  Ions are generated internal to the chassis 

via EI and gated to the CIT by a pulse at the gate mesh.  b) Schematic of the on-axis GD 

source.  The polarity of the source is controlled by the bias which is used to float the entire 

source relative to the CIT. 
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Figure 2.3:  Normalized mass spectra of mesitylene generated using the off-axis EI source.  

a) Helium buffer gas at 1030 mTorr (▬) and nitrogen buffer gas at 405 mTorr (▬).   

Nitrogen pressure was limited by the off-axis EI source’s pressure instability.  The helium 

SNR is 455 while nitrogen is 1100 suggesting nitrogen is a better buffer gas for external ion 

injection, but with reduced resolution and low mass cutoff. 
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Figure 2.4:  Mass spectral pressure series of mesitylene in helium (■) and nitrogen (■) buffer 

gases recorded using the off-axis EI source, optimized for maximum signal at each pressure.  

Each buffer gas displayed a different low-pressure cutoff under these trapping conditions; 

mass spectral intensity was lost below 200 mTorr in helium, while mass spectra were 

observed down to 20 mTorr in nitrogen.  Nitrogen’s efficacy as a buffer gas for external ion 

injection is highlighted by the mass spectral signal intensity relative to helium. 
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Figure 2.5:  Faraday plate measurement of the current density as a function of GD bias in 

both ion (■) and electron (■) modes at 1015 mTorr in air buffer gas.  Ion mode ramps 

towards a steady intensity as ions overcome scattering between the source and detector.  

Electron mode current density increases in magnitude linearly from 10 to 120 eV, after which 

signal begins an exponential increase towards discharge above 250 eV. 
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Figure 2.6:  a) Plot of the strongest amplitude mesitylene mass recorded during a pressure vs. 

kinetic energy experiment:  1015 mTorr (■, 70 eV); 630 mTorr (■, 35 eV); and 375 mTorr 

(■, 30 eV).  Despite a 3-fold buffer gas pressure change, all spectra are within 45% of one 

another.  b) Integrated mass spectral signal intensity of mesitylene in air buffer gas at 1015, 

630, and 375 mTorr recorded with on-axis GDi.  Normalization removes variation due to 

pressure-dependent GD operation.  As pressure increases, externally injected ions of larger 

kinetic energy can be trapped and the range beyond the maximum signal intensity extends as 

well.   
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Figure 2.7:  a) Comparison of mesitylene mass spectra recorded with GDi (▬) vs. GDe (▬) 

under identical HPMS conditions at 1015 mTorr.  The GD bias was optimized for maximum 

signal intensity for each spectrum, which directly corresponds to kinetic energy (assuming 

singularly charged species).  The maximum signal in GDi was observed at 150 eV (+150 

Vbias) and GDe peaked at 175 eV (-175 Vbias).  b) Integrated mass spectral data of mesitylene 

for GDi (■) and GDe (■) across multiple kinetic energies.  GDi is limited by the trapping 

efficiency of external generated ions, peaking near 150 eV, while GDe saturates the ion trap 

near 70 eV. 
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Figure 2.8:  Drive RF amplitude effects on ion injection with the mCIT.  a) Mesitylene mass 

spectra recorded via GDe using low voltage RF ramp (▬) and high voltage RF ramp (▬) at 

7.46 MHz.  The 3.4 ratio of high:low integrated signal intensity highlights drive RF 

amplitude effects when the trap is saturated.  b) Integrated mass spectra using GDi with high 

(▲) and low (▼) RF amplitude.  The high RF amplitude has a larger potential well and 

shows a linear increase in signal intensity across kinetic energies; while the decreased 

potential well depth at low RF amplitude limits the mCIT response above 150 eV. 
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Figure 2.9:  Drive RF frequency effects on ion injection with the mCIT.  a) Integrated mass 

spectra recorded at similar qz-values for two different RF frequencies:  8.89 MHz (■) and 

7.46 MHz (■).  Signal intensity is increased across the entire ionic kinetic energy range at the 

higher potential well depth afforded by 8.89MHz.  b) Integrated mass spectra recorded at 

high (▲) and low (▼) RF amplitudes at 8.89 MHz.  The linear response across the entire 

ionic kinetic energy range shows improved ion injection over 7.46 MHz, especially at the 

lower RF amplitude.  
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CHAPTER 3:  INITIAL MICROIONIZER DEVELOPMENT 

3.1  Introduction 

Handheld high pressure mass spectrometry (HPMS) requires the major components (ion 

source, mass analyzer, and detector) to be: small in size, low power, pressure tolerant 

(upwards of 1 Torr), and oxygen compatible.
1
  Mass analyzers and detectors for HPMS 

described elsewhere
2-4

 are components that would be complementary with the microionizer 

source investigated here.  The microionizer was conceived as a field effect device (FED), 

capable of both field emission and field ionization, and as such, is compatible with the 

stringent requirements of HPMS. 

The intrinsic properties of FEDs align with the first two requirements of HPMS – small 

size and low power.  In terms of size, the active features of silicon FEDs easily scale to 

micron-dimensions and microfabrication methods are well established.
5-6

  They are also 

capable of low voltage operation
7
 which can reduce the size and complexity of the supporting 

electronics.
8
  For power concerns, they are attractive for portable applications because their 

power consumption is lower than comparable thermionic devices thus extending operational 

runtime.
9-10

  The remaining two requirements, the degree of pressure and oxygen tolerance, is 

unknown and the idea that they can be pressure and oxygen tolerant is not obvious based on 

current applications of FEDs.  Most research involving field emission and ionization 

maintains pressures well below 1 Torr, in the 10
-6

 to 10
-9

 Torr range.
11-12

 Additionally, many 

researchers’ definition of atmospheric compatibility is whether the device can be exposed to 

atmosphere and still operate when placed under vacuum again.
13

  Despite this, there have 
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been strides in producing high pressure tolerant FEDs.
14-15

  It has been shown that pressure 

tolerance can be designed into the device if the length scale over which the electric field is 

generated is reduced below the mean free path of the intended operating pressure (roughly 

100 μm at 1.0 Torr).  With this design feature, Paschen breakdown can be avoided while still 

generating high electric fields.
16

  In terms of oxygen tolerance, there has been some limited 

success operating carbon nanotube-based field emission sources in a low-pressure, oxygen 

containing environment.
17

  There are also reports of field effect transistors (FET) that boost 

switching frequency through ballistic transport of electrons through conduction channels at 

virtual vacuum.
7
  The critical dimensions are below 50 nm, the mean free path of electrons at 

atmospheric pressure, such that the FETs can operate at atmospheric pressure.
18

  Combining 

the small size and low power operation with pressure and oxygen tolerance were primary 

motivators for the microionizer’s design.   

Conceptually, the microionizer is similar to a parallel plate capacitor – two electrodes 

separated by a thin insulating layer.  However, unlike a capacitor, the microionizer is 

perforated to expose as much of the interfacial layer as possible.  If the insulating layer is 

made thin enough (< 1 μm), then a modest voltage (on the order of 10 to 100 V) can be 

applied between the electrodes to generate electric fields on the order of 1 MV/cm.  For the 

first generation microionizer, the device layer was 2 μm and the insulating layer was 0.5 μm.  

These values were chosen because of the mean free path at the intended operating pressure of 

1 Torr.  Hard sphere calculations yield mean free paths on the order of 10 mm for electrons 

and 100 μm for ions.  Electrical breakdown in micron-sized gaps can be enhanced by field 

emitted electrons.
19

  By reducing the thickness of the layers, ion generation due to EI in the 

vicinity of the emission site can be minimized which should suppress electrical discharge via 
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plasma formation.
20

  Silicon-on-insulator substrates (SOI) with their micron to submicron 

insulating layer between silicon layers were chosen to implement this design.  Bonded SOI 

was chosen over buried oxide (such as SIMOX) wafers for superior insulating layer 

uniformity and quality.
21

  A typical wafer has a single, thin (< 200 μm) Si device layer 

separated from a thick Si handle wafer (> 400 μm) by a thin insulating layer (< 2 μm).  

Moreover, the choice of SOI as a substrate opens up all standard microfabrication techniques 

for development of the microionizer. 

Utilizing an SOI wafer, a first generation microionizer was designed at the University of 

Arizona (UA).  The die was 1 cm
2
, and contained a 4x4 array of through-etched features (or 

vias) with either 5, 20, or 100 μm radius circular features as well as one design that used 5 x 

90 μm
2
 rectangular trenches. A representative die with 20 μm features is shown in Figure 

3.1a.  The SOI substrate had 2 μm of n-type (Sb) silicon (0.01 to 0.02 1 Ω-cm); 500 nm of 

silicon oxide insulator and 400 μm of n-type (Sb) silicon (0.01 to 0.02 Ω-cm) handle. The 

highlight in Figure 3.1a shows one of the 20 μm circular via subarrays and the subsequent 

SEM images show one subarray (Figure 3.1b) plus magnification of an individually etched 

via (Figure 3.1c).  Also shown in Figure 3.1d is a cross sectional SEM of a trench device, 

where the three SOI layers are identified. 

The operating conditions of the SOI-based microionizer depend on the desired ionization 

mechanism. The field mechanisms are complimentary – field emission (FE) generates ions 

inter-trap via electron impact ionization (EI) while field ionization (FI) produces ions 

external to the trap via direct electron removal.
22

  The onset of FE is expected at field 

strengths on the order of 10 MV/cm, and is affected by the work function of the emitting 

material.  Field ionization can require field strengths upwards of 100 MV/cm for helium 



86 

 

ions.
23

  However, the ionization potential of helium is 24.6 eV while for many VOCs and 

CWAs this value is closer to 9 eV,
24

 reducing the needed field strength closer to 50 MV/cm.  

The microionizer field strength is fundamentally limited by the dielectric breakdown of the 

insulating layer; for silicon dioxide it is in the range of 5 to 11 MV/cm
25-26

 and depends on 

many factors including device area,
27

 oxide thickness,
28

 insulator quality,
29

 as well as the 

method of testing.
30

   Therefore, to operate as a low-voltage FED, the microionizer needs to 

rely upon geometric field enhancement to generate ions.
31-32

  Typically, a low voltage FED 

has a carefully crafted emission tip, which is separated by microns from its counter 

electrode
23, 33

 with the geometric field enhancement a function of the radius of curvature of 

the tip and its height.
11

 A modest bias (< 200 V) is applied and the macroscopic field between 

the tip and counter electrode is enhanced to generate field strengths in excess of 10 MV/cm.  

Field enhancement in the microionizer differs in that the macroscopic field is maximized 

requiring only modest geometric enhancement at the emission site.  This approach has been 

shown to work in nanoporous silicon carbide.
34

  The microionizer does not use crafted tips, 

instead it relies upon the surface roughness left behind by the deep reactive ion etch 

process.
35

  Thus, the emission ‘tips’ are randomly distributed at the interface of the silicon 

and silicon dioxide layers, which can be seen in Figure 3.1c.  With this surface roughness, 

voltages of 10 to 100 V that generate electric fields of 0.1 to 1.0 MV/cm can be enhanced to 

the larger field strengths necessary for field emission and ionization.
36

 

Design, fabrication, and initial testing of the first generation of microionizers were 

performed at UA and Oak Ridge National Laboratory (ORNL).  This collective effort 

produced the first generation of microionizers capable of ion generation using the field 

ionization mode at low pressures.  Further integration and testing of the first generation 
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microionizer as an ionization source for HPMS with a focus on lifetime, power draw, size, 

and pressure tolerance is explored in this chapter. 

3.2  Experimental 

The first generation microionizer was used as the ion source with the high pressure mass 

spectrometer described in Chapter 2.  Six microionizers fabricated at Arizona State 

University’s Nanofab Laboratory were delivered to UNC for testing.  The six devices had the 

following features:  two with 100 μm, two with 20 μm, and one with 5 μm circular features, 

and one with 5 x 90 μm
2
 trench features.  A rail mounted holder, similar to that used at 

ORNL, shown in Figure 3.2a, was used for mounting the microionizer.  Electrical contact to 

the front and backsides were made by pressure mounting the die to printed circuit boards 

(PCB) (not shown in figure).  The devices proved sensitive to mounting force, and spring 

loading was used to ensure a strong clamp without over-tightening the die. 

A schematic of the electrical connections as well as the identifying terminology used 

regarding the microionizer is shown in Figure 3.2b with the voltages used to operate the 

microionizer.  Ionization was initiated using a pulse voltage, Vp, applied to the ionizer.  Vp 

ranged from ± 20 to 50 V depending upon microionizer geometry and length of use.  Vbias, a 

constant voltage placed on the entire microionizer, controlled the electric field between 

ionization source and ion trap.  Bias strengths of -70 to -150 V were used to control electron 

energy for optimal mass spectrometry signal strength.  Field emission mode operated 

optimally with a negative Vbias constantly applied to both sides of the microionizer and a 

negative Vp applied for less than 5 ms during ionization. 

The voltage pulse was generated with a simple relay circuit.  A control signal from the 

LabVIEW interface triggered an arbitrary waveform generator (AFG3022B, Agilent). The 
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generator provided a square wave to drive a PVA3354N phototransistor that switched the 

pulse supply between the microionizer and the bias supply.  The power supply current and 

voltages for both pulse and bias were read directly from the digital readout of the supplies 

(E3612A, Agilent).  Both the voltage pulse and the bias were monitored with 10X probes and 

a digital oscilloscope (P6139A and TDS 2022B, Tektronix). 

The differentially pumped mass spectrometer setup as described in Chapter 2 was used, 

except the thermionic emitter was replaced with a microionizer.  Buffer gases included 

helium (UHP grade, National Welders) and ambient air.  Helium was introduced by a mass 

flow controller while air was introduced by an atmospheric inlet and metered with a needle 

valve.  Analytes included xenon gas (99.999%, Nova Gas Technologies) and mesitylene 

(Sigma Aldrich, Milwaukee, WI) and were introduced at 0.01 to 0.1 mTorr (uncalibrated).   

Hardware control and data collection were performed with a custom LabVIEW program 

interfaced with analog/digital I/O cards (PXIe-6356 and PXI-6733, National Instruments).  

Ion detection was performed with an electron multiplier tube (EMT) (EMT2300, DeTech) 

pulsed to –1600 V during the RF ramp.  EMT signal was amplified and converted at 200 

nA/V with a preamplifier (SR570, Stanford Research).  Data acquisition was performed at 

500 kHz.  After acquisition, the data was low pass filtered at 30 kHz to remove high 

frequency noise.  Mass to charge conversions used two-point calibration based upon NIST 

standard mass spectra.
37

  Baseline corrected signal integration and signal-to-noise 

calculations were performed with a custom LabVIEW program. 

3.3  Results and Discussion 

As the results from the experiments performed at ORNL with the microionizer helped 

define this project a brief summary of their results is beneficial.  The microionizer was 
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clamped in a pressure-mounted holder, where the clamping plates provided electrical contact 

to the device and ion counts were monitored with an EMT.  The microionizer was operated 

in field ionization mode (positive voltages relative to the detector) with a 10% duty cycle 

using a 10 ms pulse length.
38

  The results are presented in Figure 3.3.  Ion count vs. 

microionizer pulse voltage were measured for the analytes triethylamine (Figure 3.3a), 

diisopropylmethane phosphonate (DIMP) (Figure 3.3b) and toluene Figure 3.3c).  Finally, 

the current draw as a function of voltage is shown in Figure 3.3d.  As would be expected, the 

ion counts for all three analytes increased with microionizer voltage amplitude.  The voltages 

explored correspond to field strengths from 0.4 to 1.4 MV/cm.  Triethylamine and DIMP, 

Figure 3.3a and b, showed pressure independent ionization while toluene, Figure 3.3c did 

not.  Signal from a field ionization source should only depend upon the partial pressure of the 

analyte, provided the field strength does not ionize background gas.
39

  The IE for helium,
24

 

triethylamine,
40

 toluene
41

, and DIMP 
42

 are 24.6, 7.5, 8.5, and < 10.6 eV.  The toluene ion 

counts are thus inconsistent with field ionization.  Moreover, the current draw of the device 

approached 150 mA at 40 Vpulse.  This current draw was unexpected, because the 

corresponding power is 6 W, which is equivalent to a thermionic emission source.  While 

these results were not ideal, the microionizer showed signs of what appeared to be field 

ionization during this initial evaluation.  The testing performed at ORNL was the springboard 

for microionizer work and impacted the trajectory followed at UNC for integrating the 

microionizer with HPMS.  

3.3.1  1st Generation Microionizer as a Field Emission Source 

Initial work with the microionizer emulated the ORNL experiments and placed the 

ionizer directly in line with the EMT.  Xenon analyte was leaked into the chamber at 
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0.01 mTorr with a balance of helium buffer gas to less than 10 mTorr, near traditional ion 

trap operating pressures.
43

  The microionizer was operated in field ionization mode and ion 

signal was observed for pulses of +25 to +35 V applied to the front side of the device.  

Having confirmed signal in a field ionization mode similar to that seen at ORNL, HPMS was 

attempted with a full-size, ro = 500 μm and zo = 645 μm, CIT.  The microionizer was able to 

generate ions, but efforts to trap these ions with the ion trap MS (ITMS) system proved 

unsuccessful.  Trapped ions were never observed. 

As a field ionization source, the ions are generated externally and then injected into the 

ion trap.  At traditional ITMS pressure near 1 mTorr, ion injection efficiency is low (≈ 5%) 

and is dependent upon the ion kinetic energy; buffer gas pressure; and the ion trap potential 

well depth.
44

  Ion kinetic energy is particularly important because of the reduced potential 

well depth of the miniature CIT.
2
  A simple DC gating experiment was performed with the 

microionizer in order to determine the kinetic energy distribution of the generated ions, 

where a gate lens was placed between the microionizer and the EMT.  Xenon was leaked into 

the chamber at 0.1 mTorr.  A positive 25.5 Vp was applied to the gate-side of a 20 μm 

microionizer and the gate potential varied from 0 to +125 V.  The pulse was 2.5 ms long at a 

6% duty cycle.  Interestingly, no signal was observed between 0 and +27 V.  Starting at 

+27 V, a few ions reach the detector and as the gate voltage is increased, signal continued to 

rise until it saturated near +125 Vgate.  This trend is opposite of what is expected for a field 

ionization source since the field between the source and gate lens is tilted in favor of negative 

charge transport.  A negative ion current was ruled out because of xenon and helium electron 

affinity values (-1894 and -5 kJ/mol, respectively)
24

 and the electric field polarity.  The most 

plausible explanation is that the microionizer was instead acting as a field emission source.  
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The emitted electrons were accelerated towards the gate lens and underwent EI in the vicinity 

of the gate lens, with the resulting positively charged ions detected by the EMT.  In terms of 

power consumption, the signal was being produced with an average of 4.5 mA measured 

between the microionizer conductive layers.  Extrapolated for duty cycle, this represents a 

peak current and power of 75 mA and 1.9 W which is on the same order of magnitude as a 

thermionic source.
45

  While the power draw was not much improved compared to the results 

obtained at ORNL, the conditions for ion generation and thus potential HPMS were 

identified. 

3.3.2  Mass Spectrometry in Helium Buffer Gas 

Once the conditions for consistent electron-mode operation were determined; the 

microionizer was integrated into an HPMS instrument as a drop-in replacement for the 

thermionic emission source.  The mass spectra shown in Figure 3.4 are of xenon in helium 

buffer gas at 4.9 and 960 mTorr.  Both were taken with a 20 μm microionizer in electron 

mode using a -34.0 Vpulse of 1.0 ms at a 1.2% duty cycle and -75 Vbias.  This operating mode 

resulted in the peak power approaching 17 W but averaging approximately 180 mW.  In the 

low pressure spectrum, six of xenon’s seven isotopic peaks are easily identified with 250 

scan averaging.  As buffer gas pressure is increased to 960 mTorr, the peaks broadened as 

expected for a constant RF frequency, but still retained five isotopic peaks.
2, 46

  Signal 

intensity decreased at the higher pressure so averaging was increased to 500 scans to 

compensate.  It is worth noting that this was the very first ca. 1 Torr high pressure mass 

spectrum produced at UNC, and was an important step towards developing handheld HPMS.  

The pressure for this mass spectrum was two orders of magnitude higher than previously 

reported for ITMS
47

 and three orders of magnitude above other field emission-based mass 
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spectrometers.
12, 23, 48

  The diamond-coated silicon whiskers used by Kornienko et al. are the 

closest in operating pressure at 1 mTorr, however these devices require upwards of 700 V to 

operate.
14

 

3.3.3  Mass Spectrometry in Air Buffer Gas 

The mass spectra recorded in helium buffer gas proved the microionizer is pressure 

tolerant in an inert environment.  However, air is the preferred buffer gas for HPMS 

operation because it eliminates the need for an external tank of buffer gas.  Air buffer gas 

would help reduce the size, weight, and complexity of a handheld instrument.   Using a 5 μm 

microionizer and ambient air as the buffer gas, a mesitylene mass spectrum was generated 

and shown in Figure 3.5.  In this case, mesitylene was introduced via a UHV leak valve and 

room air was leaked into the chamber to 510 mTorr (pressure was limited by the detector).  

The microionizer was operated in field emission mode with a 0.3% duty cycle.  The -40 V 

pulse was 0.25 ms in length and biased to -140 V.  The peak current was limited to 10 mA, 

yielding peak powers of 0.4 W.  These results are significant, because they demonstrate 

microionizer oxygen tolerance.  Oxygen tolerance was attributed to the pressure itself and to 

the low duty cycle.  The mean free path of electrons at 0.5 Torr is on the order of 10 

millimeters, while for ions it is on the order of 200 μm.  The maximum energy an ion could 

attain was 180 eV, which is capable of physical sputtering.
49

  However, the ions would likely 

be generated many mean free paths away from the electrode surface and be subject to 

collisions prior to reaching the microionizer surface.  This would reduce the ion kinetic 

energy and protect the surface from bombardment damage.
50
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3.3.4  1
st
 Generation Microionizer Characterization 

With the proven ability to generate ions and thus mass spectra, HPMS was used to study 

properties of interest, mainly signal intensity as a function of pulse and bias voltages.  

Fowler-Nordheim tunneling describes electron behavior in high fields and predicts an 

exponential increase in field emission with field strength.
51

 Signal intensity of xenon ions as 

a function of field strength is shown in Figure 3.6 for a 20 μm microionizer.  The data points 

represent the integrated ramp portion of the mass spectrum in helium buffer gas.  The field 

range, 0.53 to 0.70 MV/cm, corresponds to the onset of observable mass spectral signal and 

the maximum field strength attempted during these experiments.  The voltage pulses ranged 

from 26.5 to 35.0 V.  There is a 60-fold signal increase for the 32% increase in field strength 

with a relatively linear trend over the range.  This is contrary to the exponential trend 

predicted by Fowler-Nordheim.  This discrepancy is believed to be an experimental artifact 

because field emission intensity does not necessarily translate one-to-one with mass spectral 

signal intensity.  Unfortunately, the ionization pulse intensity was not recorded at the time 

due to potential damage to the EMT.
52

  Subsequent studies with improved devices addressed 

this issue (see Chapter 4), but for the first generation microionizer the primary focus was 

placed upon function, i.e. generating mass spectra.   

Beyond the electric field strength, a second adjustment for improving ion production with 

an EI source is the electron energy.
46, 53

  The bias voltage of the microionizer controls the 

electric field between the electron source and the cylindrical ion trap (CIT).  Larger bias 

voltages impart more energy to electrons.  The mean free path increases as a result because 

the collisional cross section with the helium buffer gas decreases with energy.
54

  This has two 

consequences – both of which increase mass spectral signal intensity.  First for a fixed 
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source-to-CIT distance, the electron flux through the trap will increase due to fewer 

collisions.   Second, the electrons that arrive at the trap will have more energy, providing a 

greater chance of a successful EI event.
55-56

 A 20 μm microionizer operated in field emission 

mode with increasing microionizer bias generated xenon mass spectra in helium buffer gas 

with the integrated mass spectra signal plotted in Figure 3.7.  The ionizer was pulsed for 

1.0 ms with -34 V, and the bias was varied from ground to -125 V.  The integrated signal had 

a general upward trend with bias; increasing over 7.5-fold between ground and -125 Vbias. 

There was a dip in intensity between -50 and -100 V and while tempting to explore the 

physics that may be responsible for the dip, the reality was that the signal intensity from the 

first generation microionizers was inconsistent.  Trends could be observed in the short term 

using single scan modes but upon averaging, the microionizer did not maintain steady 

emission on the minutes time scale.  The most likely explanations for these variations were 

geometry changes in individual emitter tips;
57

 adsorbed gases on the tips surface;
58

 and 

thermal fluctuations induced by the oxide leakage current.
59

   

With only six devices and a focus on generating active mass spectra, microionizer 

lifetime was difficult to characterize as potential lifetime was used up in optimizing 

conditions.  The devices however showed similar patterns where field emission would begin 

strongly and then drop to unusable levels; this process typically took about ten hours of 

instrument time – translating to only 6 min of ionizer lifetime at a 1% duty cycle.  Another 

drawback was that the duty cycles were short and the mass spectrometer acquisition had to 

be slowed down in order to provide the ionizer sufficient time to recover between scans.  

Thermionic emitters yielded acquisition rates near 65 Hz, while the microionizer required 

60 ms of cool time slowing the rate to 14 Hz.    Once a device’s signal level decayed below 
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where mass spectrometry was no longer feasible, it was found that an RCA, silicon 

cleaning
60-61

 could regenerate the device for another few hours of instrument runtime but this 

process is time intensive and only delays the inevitable – a short across the insulating layer.  

Once a device developed a major breakdown and short, there was less than 1 kΩ of resistance 

across the electrodes and ionizers would be unrecoverable. 

3.4  Conclusions 

Handheld HPMS requires an ion source that is small, low-power, pressure tolerant, and 

oxygen compatible.  Preliminary results at ORNL with a first generation microionizer helped 

identify stable-operating conditions transferable for potential use with UNC’s differentially 

pumped HPMS.  Mass spectra were demonstrated in helium at both low and high pressures, 

as well as high pressure air; and the first generation microionizer satisfied the pressure and 

oxygen tolerances needed for HPMS along with a small instrumental footprint.  The power 

draw was comparable to thermionic levels by operating at reduced duty cycles.  This came at 

the price of mass spectral acquisition rate and was the main area targeted for future 

development.    Additionally, studies of the microionizer’s emission properties revealed 

other, less desirable aspects – in particular, the lack of field ionization, short lifetime, and 

poor emission stability.  It was postulated that excess heat generated by the current flowing 

during the ionization pulse contributed to these issues.  Field ionization was inaccessible due 

to device overheating before sufficient field strengths could be attained.  Lifetime was 

shortened by the excess heat which could accelerate emitter tip degradation as well as oxide 

breakdown.
62

  Field emission is also a function of temperature, thus uncontrolled thermal 

runaways could be more likely with the microionizer operating at elevated temperature in 

vacuum.
63

  While heat sinking could potentially solve these issues, it would not increase the 
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appeal of the microionizer as an ion source for a handheld HPMS.  Thus, armed with the 

early success of the microionizer and the goal of reducing the power draw; improved designs 

and fabrication techniques were undertaken in developing HPMS compatible microionizers.   
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3.5  Figures 

 

Figure 3.1:  a) Optical image of a microionizer.  The device layer is only 2 μm thick and 

transparent to optical frequencies.  The iridescence is due to interference from reflections off 

the oxide surface.  b) SEM of the highlighted sub-array of 20 μm vias in the SOI.  c) SEM of 

a single, 20 μm feature.  d) A cross sectional SEM of a microionizer, where the three layers 

of the SOI are identified.  This ionizer is a trench device featuring an array of rectangular 

vias that are 5 x 90 μm
2
. 
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Figure 3.2:  a) Image of the microionizer mount used at UNC.  The device is pressure-

mounted between two PCB for electrical contact. b) Diagram of the microionizer electrical 

connections; voltage pulse was applied to the handle or backside and bias voltage was 

applied to both sides.  Note - the front side is facing the ion trap.   
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Figure 3.3:  Summary of ORNL microionizer results for a single trench device operated at 

various bias voltages.  Analyte concentrations were held constant and helium bath gas 

pressure was changed for: a) Triethylamine ion count at 16 mTorr helium () and 36 mTorr 

helium (); b) DIMP ion count at residual pressure () and 13 mTorr helium (); c) 

Toluene ion count at 25 mTorr helium () and 80 mTorr helium (); and d) current versus 

voltage trace. 
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Figure 3.4:  Mass spectra of xenon in helium buffer gas at 4.9 mTorr (▬) and 960 mTorr 

(▬) as well as the NIST standard ( ).  The microionizer field strength was 0.68 MV/cm and 

was biased to -75 V.  A full-size CIT (r0 = 500 μm and z0 = 645 μm) was driven at 6.62 MHz 

with resonant ejection at 4.44 MHz at 0.7 and 5.5 Vpp (4.9 and 960 mTorr). 
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Figure 3.5:  Mass spectrum of mesitylene in 510 mTorr of room air (▬) and the NIST 

mesitylene standard ( ).  The microionizer was pulsed at 0.8 MV/cm for 0.25 ms.  The full-

size CIT was operated at 8.28 MHz with axial resonance at 2.79 MHz at 2.6 Vpp . 
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Figure 3.6:  Integrated mass spectral signal intensity versus microionizer electric field 

strength.  For a 500 μm insulating layer, these fields correspond to voltage pulses of 26.5 to 

35 V.  The spectra were of xenon analyte in helium buffer gas at 3.1 mTorr. 
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Figure 3.7:  Integrated mass spectral signal intensity versus microionizer bias potential.  

Signal intensity generally increases with electron energy, however this data highlights the 

inconsistent operation of the first generation microionizer.  Spectra are xenon analyte in 

helium buffer gas at 960 mTorr.  The microionizer field strength was pulsed at 0.68 MV/cm 

for 1 ms. 
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CHAPTER 4:  MICROIONIZER FABRICATION AND DEVELOPMENT 

4.1  Introduction 

The integration of the first generation microionizer with HPMS was considered 

successful enough to warrant further development.  Both positive and negative aspects of the 

first generation’s performance were considered in designing subsequent ionizer generations.  

The most important aspect of the initial integration was that it successfully generated ions for 

HPMS.  An ion source for HPMS must be small, low-power, and oxygen tolerant in 

pressures upward of 1 Torr.  The first generation with a small footprint achieved two out of 

three objectives by generating mass spectra in high pressure air, but with high power 

consumption and inconsistent performance from device-to-device. This chapter documents 

an in-house developed fabrication process and improvements to both the device interface and 

HPMS for lowering power consumption and increasing consistency of operation between 

microionizers. 

Thermal fluctuations in the first generation caused by high power consumption lead to 

suboptimal performance in terms of achieving field ionization, device-to-device 

reproducibility, and lifetime.  The microionizer should behave as an ideal capacitor with only 

displacement current and no leakage current.  However, the first generation microionizer 

easily pulled milliamp-levels of leakage current.  There are several mechanisms responsible 

for this leakage current into and through thin film dielectrics and they can be broken down 

into either interfacial or bulk-related phenomena.
1
 Current and dielectric breakdown studies 

of thin film insulators are most often considered in terms of field effect transistors where a 



111 

 

‘large’ device area is 0.0005 cm
2
.
2
  The microionizer, on the other hand, has a 1 cm

2
 surface 

area, thus insulator quality (bulk conduction) is paramount for reducing the leakage current.  

Higher quality insulators offer fewer traps, defects, and ions for field-driven current 

conduction.
3-4

  Given the encouraging field emission results of the first generation, 

subsequent generations focused on reduction of leakage current through the choice of 

insulating layer. 

The initial microionizer was designed with simplicity in mind so that fabrication costs 

could be held to a minimum.  This fabrication approach relies upon deep reactive ion etching 

(DRIE) and is straightforward compared with other field effect device fabrication methods. 

DRIE utilizes a two-step process (passivation and etch) developed by engineers at Bosch, 

GMBH.
5
  The Bosch process alternates passivation and etching to generate anisotropic 

features with aspect ratios approaching 50.
6
  A single, simple field effect transistors (FET) 

commonly requires an extensive process flow.
7
  Spindt-emitters for field emission have an 

ever more complex flow due to the addition of arrays of carefully crafted field enhancing 

tips.
8-9

  By contrast, the microionizer perforates a silicon-on-insulator (SOI) substrate using 

DRIE and relies upon minor field enhancements of a macroscopically generated field 

(~ 1 MV/cm) across the thin insulating layer.  The surface roughness of the silicon sidewalls 

at the interface of the insulating layer is responsible for the geometric enhancement necessary 

to achieve 10 to 100 MV/cm electric fields. 

The general process for fabrication of the first generation microionizer (Gen 1) is shown 

in Figure 4.1a.  The process starts with a SOI substrate consisting of three layers: device, 

insulator, and handle.  In step 1, a photoresist masking layer is deposited on the handle layer 

and patterned via photolithography, defining an open window area (~ 1 mm
2
).  2) The 
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window is etched by DRIE into the handle to within approximately 20 μm of the insulator 

layer after which the photoresist is stripped and the wafer cleaned.  3) A masking layer is 

deposited on the device side and patterned with the active ionizer features and aligned with 

the backside window using fiducial marks.  4) The wafer is through-etched from the device 

side layer-by-layer:  DRIE through the device layer; DRIE or wet chemical etch through the 

insulator; and DRIE through the handle layer and finally, 5) the wafer is cleaned and diced.  

A cross-section SEM of a completed device is shown in Figure 4.1b.  The 

device/insulator/handle layers form a membrane on the order of 25 μm thick.  The device 

layer (2 μm) and insulator (0.5 μm) are located at the top of the SEM.  The active region is 

the silicon-insulator interface with the handle layer for mechanical support.  An optical image 

of the front side of a 100 μm Gen 1 device is shown in Figure 4.1c.  The color is due to 

bonding fringes that are a result of optical interference from reflections off the insulating 

layer. 

Microionizer development at UNC using this process flow as a starting point was 

undertaken and can be divided into three stages:  Early, Optimization, and Final.  Early 

development focused on reproducing Gen 1 devices however with one departure from the 

design – the through-etch. A single-side etch (starting at step 3 in Figure 4.1a) exposes the 

silicon-insulator interface where field emission or field ionization occur.  Etching through the 

remainder of the handle layer would only act to enhance field ionization when forcing neutral 

analyte molecules to pass through the active region (from handle to device layer) on their 

way to the ion trap (rather than relying upon diffusion). Additionally, since Gen 1 devices 

were only capable of field emission, etching through the handle layer is unnecessary.  This 

decision reduces the process development complexity and enhances the rate at which devices 



113 

 

can be produced and characterized.  The Optimization stage was transitional as device 

fabrication became consistent enough to produce microionizers with similar device-to-device 

behavior improving characterization results.  As part of the optimization process, the die 

layout changed and electrical contact to the device and handle layers was made to the front of 

the device.  The through-etch was also attempted to determine the difficulties of 

incorporating it with the front side processing.  The lessons learned from these two stages 

culminated in the Final development stage.  The Final process was used to fabricate both 

single-side and through-etch microionizers characterized for their leakage current and 

emission intensity under HPMS conditions across an array of geometries and materials.   

During the fabrication optimization time frame, the HPMS testing platform evolved as 

well with improvements made through the combined efforts of the research group.  Most of 

the improvements have been documented
10-11

 and were used to maximum benefit for 

microionizer development.  A couple of advances regarding the development of a high 

voltage pulsing circuit and vacuum chamber miniaturization are highlighted in this chapter 

because they were crucial to successful implementation of the microionizer.   

4.2  Fabrication 

A full array of microfabrication tools, as detailed in Appendix 1, was available for device 

development.  Access to this equipment was crucial; from photolithography mask design and 

fabrication to device processing up through to device bonding.  Based upon the lack of field 

ionization seen in the Gen 1 devices at ORNL, the first UNC devices were only front side 

etched to just beyond the insulator layer.  Since field emission is not dependent upon mass 

transport of neutrals through the high field region, these microionizers should operate 

similarly to the Gen 1 devices despite not being through-etched. 



114 

 

The first generation was defined as those devices fabricated at Arizona State University 

while the additional generations developed at UNC were divided into the three stages of 

fabrication:  Early development (Gen 2 to 6), Optimization (Gen 7 and 8), and Final (Gen 9.1 

to 9.6).  A representative device from each generation is shown in Figure 4.2.  Device 

generations were numbered when either the photolithographic mask was updated or major 

changes to the fabrication sequence were made.  Table 4.1 displays substrate physical 

characteristics for each microionizer generation.  There were three categories of substrates 

used for these studies:  SOI (Ultrasil Corporation, Hayward, CA), polysilicon-on-insulator 

(Pau Research Group, UA), and metal-on-insulator (Rogue Valley Microdevices, Medford, 

OR).  All substrates had four key features:  the handle and device layers were always highly 

doped; device layer thickness never exceeded 12 µm; the insulating layer was always less 

than 1 µm thick; and the handle thickness was between 400 and 500 μm.  The early 

generations attempted to reproduce Gen 1 and remained faithful to those SOI specifications 

until Gen 5, after which, device and insulating layer thicknesses were investigated.  Thinner 

device layers should yield improved signal intensity, while insulating layer thickness affects 

the leakage current
12

 and operating voltage; 1.0 μm requires 100 V to generate 1.0 MV/cm. 

The handle thickness balances robustness for handling and thin film stresses with etch time.  

The handles were 10 to 30% thinner than normal for 100 and 150 mm diameter wafers.
13

 

The material choice for each layer has consequences for device operation and fabrication.  

Field emission is dependent upon the work function of a material;
14

 for silicon it ranges from 

4.7 to 4.9 eV, depending on doping type and level.
15

  For reference, cesium has a work 

function of 2.1 eV and can be coated on electrodes to enhance field emission from devices 

but quickly degrades.
16

  Tungsten on the other hand, has a work function near 5 eV and is 
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used in high power devices because of its high melting point.
17

  Field emission from p-type 

semiconductors is more complex than metals due to carrier inversion and field penetration.
18

  

Both dopants were tested, but n-type silicon (> 10
18

 atoms/cm
3
) was the focus of this study 

since it exhibits metal-like field emission.
19

 

Internal crystal stress is influenced by the high dopant concentrations used, however the 

insulating layer dominates the durability of the SOI structure.
6
  Silicon wafers less than 

400 μm thick can actually warp under the stress induced by thin films such as oxide and 

nitride.  Wet, thermal oxides are preferred for bonded SOI because they grow quickly and 

have residual ions for anodic bonding.
20

  However, they are prone to trapped charge states at 

the silicon interface that can lead to charge conduction at high electric field strengths.
21-22

  As 

such, alternatives were investigated including dry thermal oxide, oxide/nitride/oxide as well 

as multi-layered, low-stress silicon nitride.  Dry thermal oxide is of higher quality, yielding 

higher dielectric breakdown than wet oxide.
23

  The layered materials were chosen because 

the additional interfaces in the insulating layer suppress leakage current
24

 and with proper 

annealing have lower stress than a single layer of insulating material of the same thickness.
25

  

4.2.1  Early Development – Generations 2 to 6 

Early development focused on reproducing Gen 1 devices for continued field emission-

based HPMS testing.  As fabrication progressed towards Gen 6, the active ionizer feature 

layouts changed to better align with the cylindrical ion traps (CIT) and stretched length ion 

traps (SLIT) being developed in other parts of the HPMS program.  The geometry of via 

architecture also shifted away from the variety of circular features towards trench-only 

layouts.  A 10 μm trench width was chosen for superior etch results and to reduce variability 
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across the wafer.  These devices adhered to the original design with the clamp-style holder 

for electrical contact.   

4.2.2  Optimization – Generations 7 through 8 

Gen 7 and 8 were the first to depart from their predecessors in terms of device layout.  

These also represent the first attempts at through-etching since Gen 1.  These microionizers 

used an ‘island’ configuration as seen in Figure 4.2g and h.  The unused portions of the 

device and insulator layers were removed to decrease the area available for leakage current 

conduction.  The island configuration encouraged a change in microionizer holder because 

both device and handle layers could be accessed from the front side of the device.  The 

clamp-style holder was abandoned and printed circuit boards (PCBs) were employed.  These 

gave more flexible microionizer positioning relative to the CIT.  The use of PCBs also helped 

electrical contact evolve from silver epoxy to soldering and wire bonding.   

4.2.3  Final Process – Generation 9 

The optimization stage culminated in the final process and development of Gen 9 

devices.  The major steps of the final process flow can be found in Table 4.1.  This process 

blended every advance and lesson learned during fabrication, testing, and HPMS operation to 

yield the microionizer as seen in Figure 4.2i.  This design was overhauled such that the active 

features, 10 x 90 μm
2
 trenches were laid out lengthwise in seven, 5 x 20 rectangular arrays.  

Alignment was then ensured to overlap the 4 mm SLIT (an image of which is shown in 

Figure 4.4a).  The die layout was also changed to 2.5 x 20 mm
2
 in order to lay flat against the 

compact ion trap electrodes. 

Six versions of Gen 9 were fabricated, 9.1 to 9.6 with Figure 4.3a to f showing an optical 

image of each.  The first five versions were single-side etched starting at Step #8 in Table 
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4.2.  These devices were fabricated to test the effect of device layer thickness, insulating 

layer thickness, and material choice.  Three variants were based on SOI substrates.  The 

remainder used layered substrates with cheaper material cost compared to bonded SOI:   

metal-insulator-silicon and polysilicon-insulator-silicon.  The final version, Gen 9.6, was 

through-etched using the best performing substrate.  The device layers of all variants except 

9.3 and 9.5 are thin enough to be optically translucent.  The colors and patterns observed in 

Figure 4.3 are representative of the SOI bond quality, device layer thickness, insulating 

material, and overall surface roughness.  A Gen 9.6 device mounted and wire bonded to a 

PCB is shown in Figure 4.3g.  The die is secured to the PCB with epoxy before wire 

bonding.  

4.3  Experimental 

4.3.1  HPMS Updates 

Over the course of microionizer development, there were advances in nearly every aspect 

of HPMS with most of these achievements incorporated into the microionizer test bed.  One 

key change that influenced the microionizer design was the miniaturization of the vacuum 

chamber.  This design was implemented to minimize parasitic capacitance for optimal CIT 

operation at high frequencies (> 10 MHz) and was accomplished by reducing the ion trap 

electrode surface area as well as the amount of coaxial cabling.
11, 26

  A comparison of an 

original ion trap electrode next to a compact ion trap electrode is shown in Figure 4.4a where 

the compact electrode has roughly half the surface area.  The reduction in surface area 

brought the mounting screws closer to the center (location of the ion trap), leaving only 

3 mm between the heads of the mounting screws.  This limited space required a redesign of 

the microionizer, with the width of Gen 9 reduced from 10 to 2.5 mm.  While both electrodes 
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can be used in the original HPMS differential chamber, shown in Figure 4.4b, only the 

compact electrodes are compatible with the mini-chamber and the trap-mounted chamber as 

shown in Figure 4.4c and d, respectively.  The differential chamber was employed for the 

external ion trapping results presented in Chapters 2; the first generation microionizer results 

in Chapter 3, as well as testing Gen 2 through 7.  The large volume of this chamber gave 

great flexibility in experimental design.  However, operation was often limited by discharge 

(RF or DC) to the grounded chamber walls.  The mini-chamber, shown in Figure 4.4c, was 

used to test the 8
th

 generation microionizer.   This chamber reduced the incidence of RF 

discharge, easing mass analyzer operation, and reduced the gas loads on the pumping system 

at the cost of flexibility.
11, 26

  The trap-mounted chamber, Figure 4.4d, was a purpose-built 

version of the mini-chamber to provide room for the PCB mounted microionizer as well as 

its associated electrical feedthroughs. 

4.3.2  Microionizer Operation 

While the ion traps and vacuum chamber received improvements, the majority of the 

support electronics such as current preamplifier, data acquisition, and RF generation 

remained constant throughout the testing of the microionizer.  However, the pulsing circuit 

received an overhaul between Gen 5 and 6.  The original pulsing circuit relay was a simple 

photorelay IC (PVA3354N) that was upgraded to a high-voltage single-pull, double-throw 

switch (HV Switch).  The HV Switch was custom designed and based upon N-channel 

MOSFETS (Model STP6N95K5).  The HV switch improved every aspect of voltage pulsing 

over the optical relay – maximum amplitude (950 V versus 300 V), bias range (1 kV vs 300), 

and ease of switching pulse polarity.  The improvements are demonstrated in the oscilloscope 

traces in Figure 4.5.  The yellow traces are an 80 μs square, control pulse and the blue traces 
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are each circuit’s attempt to reproduce the control pulse with +125 V amplitude.  The 

photorelay response is shown in Figure 4.5a and shows a delay of 80 μs.  More importantly, 

it only outputs +88 V due to the slow rise time and requires over 200 μs to return to baseline.  

Early microionizer operation used pulse lengths between 1 to 10 ms; at these time scales the 

relay’s faults are evident but not disruptive to operation.  As shorter pulse lengths were 

investigated, a new pulsing circuit to overcome the photorelay’s limitations is required.  

Figure 4.5b shows the performance of the HV Switch under the same operating conditions as 

the relay.  The HV Switch accurately reproduces the control pulse at +125 V amplitude, and 

it displays a 200-fold decrease in rise time and a 1000-fold decrease in fall time compared to 

the photorelay. 

The mount interfacing the microionizer to the HPMS also evolved over the course of 

development.  A clamp-style holder previously discussed in Chapter 3 was used exclusively 

with the differential chamber.  As such, Gen 1 through 6 were tested with this style holder.  

Beginning with Gen 7, the holder was updated to a PCB mount, three versions of which are 

shown in Figure 4.6.  The PCB shown in Figure 4.6a was used with Gen 7 and fabricated by 

SAE Circuits Colorado, Inc. (Gunbarrel, CO).  Electrical contact between the PCB and 

microionizer was made by either silver epoxy, soldering, or copper tape.  When the vacuum 

chamber was switched to the mini-chamber, the PCB was updated as seen in Figure 4.6b.  

This PCB was used as a vacuum bulkhead by an o-ring seal between the aluminum chamber 

and PCB.  The white, circular ring in the soldermask of the PCB was used to guide o-ring 

placement when mounting the PCB to the vacuum chamber.  The final version of the PCB 

mount is shown in Figure 4.6c and used wire bonding to make electrical contact.  Fabrication 

was by Sierra Circuits, Inc (Sunnyvale, CA) for their superior, wire-bondable gold finish.  It 



120 

 

was mounted in the vacuum chamber as shown in Figure 4.4d.  The spacing between the 

microionizer and SLIT could be controlled to 50 μm. 

4.3.3  Characterization and Testing 

Fabrication results were primarily assessed in three ways:  profilometry (P-6 Stylus 

Profilometer, KLA-Tencor); optical microscopy (VHX-2000, Keyence Corporation and 

Eclipse LV-150, Nikon Corporation); and SEM (FEI Quanta 200 ESEM or FEI Helios 600 

Nanolab, FEI Corporation).  Any reference to physical dimensions such as etch depth was 

measured with one or more of these techniques.  Profilometry and optical microscopy were 

crucial for monitoring etch depth to gauge DRIE etch rates.  Additional observations by SEM 

were critical in determining a number of device physical attributes including: the fidelity of 

the final etch features with the mask; notching at the silicon-insulator interface; and surface 

roughness. 

Both field emission and field ionization used 1 ms voltage pulses, a 3.6% duty cycle.  An 

operational schematic is shown in Figure 4.7a using an SEM image to highlight how the 

voltages are applied to the device as well.  For field emission, the microionizer was pulsed 

and biased negatively; positive mode reversed the polarities of the pulse and bias.  The 

voltage pulse generates the electric field across the insulating layer while the bias voltage 

aids in extracting the charge once emitted.   Figure 4.7b shows a high-magnification SEM of 

the surface roughness of the handle layer at the insulator-handle interface.  This roughness is 

likely responsible for the geometric field enhancement necessary to achieve field emission 

and field ionization.  The voltage pulse was monitored using an oscilloscope (Model 

DPO3034, Tektronix, Inc), while the bias was measured with a digital multimeter (Model 

179, Fluke, Inc).  The pulse and bias supplies were ballasted with 100 kΩ and 1 MΩ 
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resistors, respectively.  Average current was measured via digital multimeter (Model 

U1272A, Agilent, Inc.) operated in DC-Current mode on the μA scale.  Microionizer 

operation was characterized under HPMS conditions as both a field emission and field 

ionization source.  Air was leaked into the ionization-side chamber with a needle valve, and 

the pressure measured ranged from 350 to 1000 mTorr.  A schematic of the ionizer test setup 

is shown in Figure 4.8.  The ionizer was spaced approximately 100 μm from a voltage-

controlled aperture electrode.  The aperture mimicked a SLIT with xo = 100 μm and length = 

4.0 mm and was controlled between ± 250 V.  The aperture throttled gas flow into the 

detection chamber, keeping the EMT chamber pressure below 100 mTorr.  Signal was 

detected using an EMT (Model 2300, Detech, Inc.) biased to -1200 V; the output of which 

was amplified (2 nA/V) by a current preamplifier (SR570, Stanford Research, Inc).  In 

positive mode, the detected signal was a direct measure of the microionizer’s emission.  In 

field emission mode, the signal was a measure of the ions generated via EI, where the rate of 

ion generation was assumed to be proportional to the field emission intensity.
27

  Ambient air 

provided the background neutrals for both modes of operation.  Signal was acquired at 

250 kHz using the same interface described in Chapter 2.  It was averaged over 250 scans, 

low pass filtered at 30 kHz, and integrated to produce data points for plotting purposes. 

4.4  Results and Discussion 

4.4.1  Fabrication and Leakage Current 

The final process flow described in Table 4.2 evolved from the lessons learned 

fabricating Gen 2 through Gen 8 microionizers.  In the Early development phase, these 

lessons pertained to developing and optimizing silicon microfabrication techniques.  

Eventually, procedure refinements led to reproducible device performance (Optimization 
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phase) and progressed towards the final process flow.  While many lessons were learned, two 

dealing with DRIE and final device preparation in particular were crucial to success. 

Deep reactive ion etching (DRIE) is a well-established technique in micro-electrical-

mechanical systems (MEMS).
28-29

  However, its implementation is highly specific to the 

fabrication tool, the loading area of the pattern, and masking material employed.  In the Early 

and Optimization stages of device development, broken wafers in the DRIE were a common 

occurrence.  Many reasons were posited:  seeking to maximize yield the early mask design 

patterned the entire wafer; thinned wafers lacked robustness; and the thin films in use 

(chromium masking, SiO2 insulators, etc.) simply added too much stress to the wafer causing 

it to break.  While any combination of these issues could have contributed to wafer breakage, 

the real culprit was heat.  When optimized, a 100 μm etch depth required 14 min of etch time 

at approximately 7 μm/min.  The ceramic mechanical chuck of the Alcatel AMS-100 DRIE 

was unable to adequately remove the heat generated during this etch time, resulting in mask 

degradation and wafer breakage.  This overheating was overcome by adding a delay step to 

the etch process.  The final etch was a loop of 30 s of Bosch etch followed by 60 s of dead 

time, yielding an effective etch rate near 4 μm/min.  The heat released during etching is 

dissipated in this 60 s dead time, greatly increasing the selectivity of the masking material 

(particularly towards the perimeter) and reducing the risk of wafer breakage.  For reference, 

15 wafers were processed for Gen 2 through 8 with most of these wafers suffering breakage 

during the etch process, primarily due to thinning at the perimeter.  Whereas, Gen 9 that 

utilized the delay loop, had no wafers broken during the DRIE step.  Moreover, most wafers 

retained sufficient structural rigidity for the follow-up wet cleaning, contact pad deposition, 

annealing, and dicing. 
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The second major obstacle overcome during development was the device to HPMS 

interface.  Gen 1 through 6 utilized a clamp style holder, mainly because it was simple and 

the ionizers were capable of producing mass spectra and their inconsistent performance was 

thought to be a result of insulator quality.  Only when the device layout was updated for Gen 

7 and 8 and electrical contact made by wire bonding was poor electrical contact determined 

as a major issue. The disadvantage of the clamp-style holder is evident in Figure 4.9 where a 

comparison of current draw versus field strength for clamp-style contact and wire bonded 

contact is shown.  The black squares in Figure 4.10a are a Gen 5 device that used the clamp-

style holder and have current draws above 0.5 mA.  The leakage current however was held in 

check using a low duty cycle (less than 1%) and by current limiting the power supply to 

4 mA.  The wire bonded Gen 8 (red squares) and Gen 9 (blue squares) generation devices 

both have a dramatic drop in leakage current compared to the clamped-style Gen 5 device.  

Figure 4.10b shows a magnified view of these results.  Relative to the maximum current of 

Gen 5, Gen 8 is 2500-fold lower and Gen 9 is over 11,000-fold lower.  Moreover, higher 

duty cycles are possible – the Gen 9 trace used a 22% duty cycle; thus increasing the mass 

spectral acquisition rate by more than 3-fold to 44 Hz.  The current draws shown in these 

traces are also closer to what is expected from a FED
30-31

 and are directly attributable to 

electrical contact by wire bonding. 

Examples of wire bonds used with Gen 8 and 9 devices are shown in Figure 4.10.  In 

manufacturing, wire bonding is a staple for establishing stable electrical contact to silicon 

dies.
32

  It requires a metallized, contact pad be deposited onto the silicon surface.  Bonding is 

achieved with thermosonic compression – a combination of ultrasonic agitation, 

compression, and heat welds the wire to the contact pad. The pad material must be chosen 
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such that it creates an ohmic contact with the silicon while also alloying with the wire.
32-33

  

The bond system used in Gen 8 shown in Figure 4.10a were titanium/copper contact pads 

with 1 mil aluminum wire bonded to the front and back side pads.
34

  Figure 4.10b shows a 

Gen 9 bond system with titanium/palladium/gold metallized pads and 1.5 x 0.5 mil
2
 gold 

ribbon.
35

 The drastic reduction in current draw introduced by wire bonding suggests that the 

‘leakage’ current had less to do with the insulating layer than the electrical contact. The 

likely candidate for the intermittent electrical contact with the clamp-style holder would be 

the native surface oxide.
36

  The clamp-style holder likely functioned when a perfect balance 

of surface abrasion and clamp pressure was attained. 

Microionizer development progress accelerated once the fabrication and electrical contact 

procedures were established such that wafer-level failure analysis was possible.  Six variants 

of Gen 9 were produced, with a sample completed wafer shown in Figure 4.11a.  The Gen 9 

mask produces 208 devices from a single, 150 mm wafer. Operable vs. non-operable devices 

are distinguished by measuring the microionizer’s capacitance, with operable devices 

measuring nF capacitance and non-operable devices measured as short circuits.  Thirty 

devices from a wafer processed for a single variant were chosen at random across and 

measured.  The device yield and average capacitance categorized by variant were determined 

and are shown in Figure 4.11b.  Gen 9.2 and 9.4 both show sub-standard yields compared to 

the others with only 43 and 73% yields, respectively.  The probable cause for the low yield is 

that both Gen 9.2 and 9.4 have polySi device layers. SOI is a very reliable substrate, but it is 

also expensive from a manufacturing standpoint so alternatives were explored.  Thin polySi 

films can be sequentially deposited on wafers in a parallel fashion reducing costs, while SOI 

wafers requires an anodic bonding step performed on single wafer-to-wafer pairs.  The 
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polySi wafers pushed the boundaries in terms of maximum insulating layer thickness 

(300 nm, dry-thermal SiO2 for Gen 9.2 and 1000 nm Si3N4 for Gen 9.4) to try and minimize 

the leakage current when it was thought to be a result of insulating layer quality. 

Unfortunately, the stresses in these thin films when combined with that of the poly-Si device 

layer, which was deposited at 0.5 μm thicknesses, resulted in fragile wafers. As a result, the 

fabrication process for these two variants consumed multiple wafers due to breakage during 

the lithography steps.  Lithography is an early process step and breaks at this point are 

unusual from a MEMS perspective, suggesting the thin-film induced stress was very high for 

these substrates.  Moreover, successfully fabricated devices broke down and shorted before 

any significant ion current could be collected with some even showing visible fractures after 

testing. Due to their poor yield, these devices were not further characterized. 

Despite the failures of the polySi-based devices, the remaining Gen 9 devices provided 

insight into the operation of the microionizer.  Gen 9.5 had a titanium/chromium device layer 

on oxide that was investigated as another alternative to SOI.  The remaining variants, Gen 

9.1, 9.3, and 9.6 were based upon Ultrasil SOI. The key features and main differences 

between each variant are listed in Table 4.3.  Briefly, Gen 9.1 was the first wafer to use the 

trap-mounted configuration as well as gold wire bonding.  Gen 9.3 used the same substrate 

SOI as 9.1, only the device layer was left unaltered at 10 μm.  Gen 9.6 also used the same 

substrate SOI and was meant to be as similar as possible to Gen 9.1 only with a through-etch.  

Gen 9.5 had the thinnest device layer and insulator of the 4 variants at 0.25 and 0.3 μm, 

respectively. 
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4.4.2  Field Emission Mode Operation 

The field emission signal intensity as a function of field strength is shown for each 9th 

generation microionizer in Figure 4.12.  The data was collected at 1 Torr of room air buffer 

gas in a gated configuration (as shown in Figure 4.8).  The electric field range varied from 

device to device, beginning where measurable emission was observed and ending short of 

electrical discharge.  The raw signal intensity is shown in Figure 4.12a. As expected for a 

field emission source, the signal of all four devices increases exponentially with field 

strength.
37

  To highlight this fact, the data is reevaluated in Fowler-Nordheim coordinates 

and shown in Figure 4.12b.  The linear relationship indicates Fowler-Nordheim tunneling is 

responsible for the electron emission; assuming that the ions detected by the EMT are 

directly proportional to the field emission intensity.  For a well-defined field emission tip 

(radius of curvature and aspect ratio), these plots can be used to estimate the emission area 

and geometric field enhancement of the device, but that would be improper for the 

microionizer because the emission sites are not well defined.
38

  

Returning to Figure 4.12a, a range of maximum field emission strengths is observed 

among the variants.  Gen 9.5 has the largest overall signal intensity as well as the thinnest 

insulating layer at 0.3 μm and the thinnest device layer at 0.25 μm.  It produced a measurable 

signal at 1.0 MV/cm and a slow emission ramp over 0.8 MV/cm.  Gen 9.3 had the next 

largest signal intensity and a 1 μm insulating layer and 3 μm device layer.  It ranged from 1.4 

to 1.8 MV/cm.  Gen 9.6, which should be identical to Gen 9.1 except for the extra processing 

required to fabricate a through-etch; demonstrated moderate field emission at the highest 

field strengths observed, 1.8 to 2.2 MV/cm.  Finally, Gen 9.3 showed a small amount of field 

emission from 1.5 and 2.0 MV/cm.  This device should be identical to Gen 9.1, except with a 
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10 μm device layer.  The observed signal intensity of Gen 9.3 was over 24-fold lower than 

Gen 9.1, suggesting that the device layer thickness plays an important role in charge 

extraction from the microionizer.  Given the operating conditions, this is not surprising.  The 

device layer is a field-free region, and electrons must drift through it.  Any interactions will 

remove energy and reduce the electron’s probability of transiting this region.  Another factor 

that may contribute to this drop in signal is the angular dependence of the field emission.
37

  

Thus, the device layer may serve to ‘clip’ signal that does not exit the emission site 

orthogonal to the silicon surface.   

The difference in both signal intensity and field strength between Gen 9.1 and 9.6 was 

unexpected because the insulating layers were identical and device layer thickness near 3 μm 

for both.  Gen 9.6 showed a 4.8-fold reduction in maximum signal intensity, while requiring 

a 22% higher field strength to achieve it.  The measured device layers of the two variants are 

2.6 μm for Gen 9.1 and 3.1 μm for Gen 9.6.  While there is a 20% difference in device layer 

thickness, this alone should not account for the entire disparity in signal intensity, given that 

a 400% difference between Gen 9.1 and 9.3 yielded a 24-fold decrease in signal intensity.  

Moreover, device layer thickness should not contribute to the increased field strength 

required in Gen 9.6.  The SEMs of Gen 9.1 and Gen 9.6 shown in Figure 4.13 reveal a major 

difference at the insulator interface.  The device layer of Gen 9.6 was notched nearly 1.5 μm 

from the edge of the insulating layer.  This notching was likely a result of the through-etch 

since the other Gen 9 variants do not display it (images not shown).  The overhanging 

insulating layer likely acts to hinder field emitted electrons from exiting the device.  Thus, 

the larger field strength needed for emission was likely required to overcome this 

inefficiency.  Unfortunately, this insulating layer contains a nitride which is difficult to wet 
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etch
39

 without affecting the silicon or wire bonding pads.  A pure oxide could be etched back 

with a simple buffered oxide etch which might then shift the field strength range back in-line 

with Gen 9.1. 

The maximum field strengths possible are limited by electrical discharge, which is 

observed as an overload of signal from the electron multiplier.  Comparisons of the 

maximum field strengths generated for each variant lend insight into the discharge 

mechanism.  Insulator breakdown was unlikely because the ballast resistors prevent current 

surges capable of instantly breaking down the insulator.  Moreover, after the field limit was 

found, each device was operated for at least 1 hour afterwards with no signs of signal 

degradation or increased leakage current.  Thus, discharge is likely a result of a 

microdischarge plasma aided by surface flashover.
40-41

  In a microdischarge, field emission 

typically contributes to atypical Paschen breakdown by generating ions (via EI) in the gap 

between electrodes, which in this case is the insulating layer.  Gen 9.1 and 9.5 each had 

maximum field strengths near 1.8 MV/cm, while still producing a strong signal, meaning 

there is sufficient charge in the vicinity to generate a discharge pathway.  However, Gen 9.3 

and 9.6 have the same insulating layer as 9.1 but discharge limits that are 11 and 22% higher 

than 9.1.  The thick device layer of 9.3 likely acted as a charge sink, suppressing the 

conditions for flashover and neutralizing a portion of the ions generated via EI in the vicinity 

of surfaces.  Gen 9.6 has a nearly identical device layer thickness as gen 9.1 and the highest 

limit on discharge field strength.  This is likely due to a geometric suppression of the surface 

flashover by the notch seen in Figure 4.13b.
42

  While the notch was not planned for, it may 

have shown a way to intentionally design the microionizer to sustain higher field strengths at 

the cost of field emission current.  
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The plots in Figure 4.14 show further evidence of the microionizer working as a field 

emission source.  The results of a gating experiment are plotted in in Figure 4.14a for a Gen 

9.5 microionizer at 1 Torr.  The field strength was held constant at 2.0 MV/cm by applying a 

voltage of -60 V across the 0.3 μm insulating layer.  An additional bias of -25 V was applied, 

therefore the maximum kinetic energy of the electrons leaving the surface of the emission 

source was -85 eV.  As the gate potential was changed from 0 to -75 V, the signal decreases 

to zero, indicating the microionizer is a source of negative charge.  It is important to note that 

the EMT detects positive ions, thus the loss in signal is because electrons arriving at the gate 

electrode no longer have sufficient energy to perform EI.  This conclusion is also consistent 

with the mass spectrometry-based results shown in Chapter 3.   

While field emission has been demonstrated, one key aspect has been ignored, power 

consumption.  Figure 4.14b plots each Gen 9 microionizer’s average current draw as a 

function of field strength. All four variants demonstrate a similar improvement in leakage 

current over the Early stage microionizers as shown in Figure 4.9.  In particular, Gen 9.1 and 

9.5 demonstrated their maximum field emission strengths at 1.8 MV/cm, which required 

voltage pulses of -180 and -55 V, respectively.  The corresponding current for each was 0.6 

and 0.2 μA; yielding an average power consumption of 110 and 11 μW.  With a duty cycle of 

3.6% (1 of 28 ms), the peak powers were 3.0 and 0.3 mW.  An important note is the 

amplitude of Gen 9.5.  It had the thinnest insulating layer and was able to operate at only 

55 V of amplitude.  This low power consumption is advantageous for use in a portable 

instrument that most likely will be powered by a battery.  In comparison to the alternative 

glow discharge ionization source operating at 1 Torr of air under identical duty cycle 

conditions, the GD source runs with a pulse of 625 V and draws 35 μA, yielding average and 
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peak powers of 21.8 and 605 mW.  The glow discharge consumes over 1900 times more 

power than the microionizer. 

4.4.3  Positive Mode Operation 

Positive mode operation is believed to produce field ionization.  Early stage devices were 

periodically operated in positive mode operation but the insulating layers typically suffered 

fatal breakdown before ion generation was observed.  This breakdown was believed to be a 

consequence of the high leakage current combined with the increased field strength required 

for field ionization versus field emission.  With the reduced leakage current of the Gen 9 

devices, positive mode operation was revisited.  Using the same experimental setup as 

described in Figure 4.8, the polarity of the pulse and bias voltages were reversed with the 

results plotted in Figure 4.15.  Signal intensity as a function of field strength is shown in 

Figure 4.15a for each Gen 9 device.  The applied electric field was investigated from 

observable signal to values just shy of electric discharge.  Ambient air was leaked into the 

chamber to monitor ionization and assumed to be constant with time.  Each device shows an 

exponential increase in signal strength with the electric field.  This behavior is expected 

under low-field conditions near the threshold for field ionization.  For a single analyte at low 

pressures (< 0.1 mTorr), one would expect to see signal plateau as the probability of 

ionization approaches one.
43

  However, the atmospheric sample is a mixture and each 

compound has a different ionization potential.  Thus signal is not expected to plateau under 

these conditions.  The current draw and power requirements under positive mode were also 

similar to field emission mode.  The largest average current was measured at 2.7 μA for Gen 

9.6, yielding average and peak power of 0.68 mW and 18 mW, respectively. 
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The results of a gating experiment performed in positive mode are shown in Figure 4.15b.  

The experiment is identical to that shown in Figure 4.14b, except a positive gate voltage was 

used to block the ion current.  The gating experiment was performed with a Gen 9.5 device, 

pulsed with +70 V for an electric field of 2.3 MV/cm.  An additional +25 V bias yielded a 

maximum ion kinetic energy of +95 eV.  The signal dropped to zero as the gate potential 

increased from ground to +90 V.  These results are consistent with ion generation occurring 

at the microionizer.  However, it cannot differentiate whether the ion current is a result of 

field ionization or electron impact ionization. 

The mechanism behind positive ion mode is believed to be field ionization though the 

gate aperture experiment cannot distinguish how the ions are generated – by direct field 

ionization or EI localized near the microionizer’s surface.  The electric field strength 

necessary for field ionization should be five to ten times greater than field emission, however 

for the microionizer this is not the case.  For an emitter with well-defined geometry (radius of 

curvature and aspect ratio), an enhancement factor can be calculated assuming the work 

function is known. When the emission site is not defined as in our case, only a rough 

estimate of the enhancement can be made.
44

  Theoretically, field emission should initiate at 

10 MV/cm though it can range as high as 50 MV/cm for higher work functions.
18, 37

  The 

microionizer initiates field emission near 1.4 MV/cm, thus a field enhancement factor is 

estimated at 8 to 35.  The field ionization threshold also depends upon the ionization 

potential of an analyte.
43

  Many compounds of interest (VOC, CWA, and explosives) have 

ionization potentials from 7 to 12 eV.
45

  The threshold field strengths of these compounds are 

closer to 50 to 70 MV/cm.
46-47

  Positive mode operation only requires a 10 to 50% increase in 

field strength (relative to field emission) to generate ions, yielding an estimated field 
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enhancement of 25.  Because field emission and field ionization sources can operate with less 

than an order of magnitude between the modes,
48

  the exact mechanism under positive mode 

operation is not known.  To fully determine the mechanism, HPMS experiments looking at 

ion generation are needed. 

4.5  Conclusions 

The first generation microionizer produced mass spectra under HPMS conditions – 

showing that the microionizer design could operate in an oxygen-containing environment at 

1 Torr.  However, it failed one important test:  low power operation.  The mA-level leakage 

current was thought to negatively impact device-to-device reproducibility, signal intensity, 

and access to field ionization mode.  This chapter documented the development from mask to 

device testing of a process flow that is capable of producing through-etched microionizers.  

The leakage current was reduced to the μA-level by combining proper metal-semiconductor 

contact pads with wire bonding.  The microionizer demonstrated consistent operation from 

day-to-day and device-to-device, enabling studies of field emission and positive mode 

operation for several Gen 9 variants.  Each variant demonstrated field emission confirmed by 

Fowler-Nordheim and gating experiments, as well as a positive mode of operation confirmed 

via emission studies and gating.  The variants demonstrated that a thin device layer is key to 

charge extraction.  The best performing variant, Gen 9.1, had high fabrication yield with 

consistent field emission and positive mode operation.  The mechanism behind positive mode 

operation could not be confirmed as either field ionization or device-localized electron 

impact ionization.  Regardless, the microionizer demonstrated its utility as a dual-role 

ionization source.  Moreover, it did so under all the requirements for portable, HPMS:  1 Torr 
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of atmospheric buffer gas and low power.  Lifetime and mass spectral-level signal intensity 

are investigated in Chapter 5 documenting microionizer use with HPMS.   
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4.6  Figures 

 

Figure 4.1:  a) Process flow steps for Gen 1 devices beginning with a prime SOI substrate 

with device, insulator, and handle layers.  1) Handle layer mask is deposited and 

photolithographically patterned.  2)  DRIE of handle layer window features as seen in b).  3) 

Resist is stripped and wafer cleaned, then the device layer mask is deposited before 

photolithographically defining the active features.   4) Device layer etch using DRIE for 

silicon and/or wet etch for insulating layer.  5) Masking removed and wafer cleaned before 

dicing.  b) Cross-sectional SEM of the membrane produced by the fabrication process.  The 

location of the silicon-insulator interface of the SOI is near the device layer and the 

supporting handle layer has been thinned to ~ 25 μm.  c) Optical image of the device layer of 

a completed 100 μm diameter Gen 1 device.   
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Figure 4.2:  Optical image of representative microionizers.  The three eras of development 

from UNC Chapel Hill are highlighted:  Early (■); Optimization (■); and Final (■).  a) Gen 1, 

100 μm radius features b) Gen 2, 100 μm radius features c) Gen 3, 10 x 90 μm
2
 trench d) Gen 

4, 10 x 90 μm
2
 trench e) Gen 5, 10 x 90 μm

2
 trench f) Gen 6, 3-SLIT array of 10 μm width 

trenches g) Gen 7, 19-element, CIT array of 10 μm width trenches h) Gen 8 with identical 

elements as Gen7.  The device layer is expanded (relative to Gen 7) to facilitate device layer 

electrical contact.  i) Gen 9, single-SLIT compatible 10 x 90 μm
2
 trenches.  Early generations 

mimicked the Gen 1 with 5, 20, and 100 μm circular features as well as 5 x 90 μm
2
 trenches.  

Subsequent generations used only trench features, 10 μm in width of varying lengths that 

were arrayed to match the ion traps’ layout.  Gen 1, 7, 8, and 9 were all through-etched. 
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      Device Insulator Handle 

Generation(s) Type 

Diameter 

(mm) 

Type 

(Dopant) 

Thick 

(μm) Type 

Thick 

(μm) 

Si 

(Dopant) 

Thick 

(μm) 

1 SOI 100 Si (Sb) 2 Oxide 0.5 Sb 400 

2, 3, 4 SOI 76.2 Si (Sb) 2 Oxide 0.5 Sb 400 

5.1 SOI 100 Si (Sb) 12 Oxide 0.5 Sb 450 

5.2 SOI 150 Si (B) 5 Nitride 0.5 B 600 

6, 9.1, 9.3, 9.6 SOI 150 Si (Sb) 10 Ox/Ni/Ox 0.4/0.3/0.3 Sb 450 

7 Alt 150 Ti/Cr 0.015/.25 Nitride 0.6 B 500 

8.1 SOI 150 Si (B) 5 Oxide 1 B 500 

8.2, 9.5 Alt 150 Ti/Cr 0.015/.2 Oxide
*
 0.3 Sb 420 

8.3, 8.4, 9.4 Alt 150 PolySi (As) 0.5 Nitride 1 Sb 450 

9.2 Alt 150 PolySi (As) 0.5 Oxide
*
 0.3 Sb 420 

 

Table 4.1:  Substrate characteristics for each generation of microionizer. 

* denotes dry, thermal oxide.  Alt = alternative to SOI.  All silicon is single-crystal, <100> unless specified.   
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Step # Wafer Side Description Fab Tool Notes 

1 Back Ti/Cr Mask Deposition e- Beam Pump down at least 4 h 

2 Back Photolithography - AZ9260 Resist Lithography Spin Coater/Mask Aligner. Resist thickness 7 µm. 

3 Whole Chrome etch N/A Transfer resist pattern into the chrome mask 

4 Back Isotropic Si etch of backside windows RIE 375 µm etch depth 

5 Whole Heated Nanostrip 2X N/A Strip any remaining organics 

6 Whole Chrome etch N/A Strip chrome mask 

7 Whole RCA Cleaning N/A Remove particles, organics, and metals 

8 Front Photolithography - AZ9260 Resist Lithography Double-side aligned.  Resist thickness 7 µm. 

9 Front Anisotropic Si etch of device layer  DRIE Etch is looped for 30 s on and 35 s off.  Depth 

depends on device layer thickness 

10 Front Anisotropic Insulator etch DRIE Etch is looped, mainly a physical sputtering 

11 Front Anisotropic Si etch of handle DRIE Same etch as device layer, ~75µm depth 

12 Front Oxygen plasma clean DRIE Strip photoresist 

13 Front Anisotropic Si etch, thin device layer DRIE Same etch as device layer, aiming for < 3 µm device 

layer thickness 

14 Front Oxygen plasma clean DRIE Strip leftover passivation fluoropolymer 

15 Whole Heated Nanostrip 2X N/A Strip any remaining photoresist 

16 Whole RCA Cleaning N/A Remove particles, organics, and metals 

17 Front Ti/Pd/Au electrical contact deposition e- Beam Pump down at least 5 h.  Contact pads defined by 

kapton shadow mask (< 100 µm thick) 

18 Whole Anneal contacts at 450
o
 C Furnace Under forming gas to prevent oxidation 

19 Whole Dicing Dicer Diced completely, 2 cuts/street 

20 N/A Affix die to PCB with epoxy Oven EpoTek LHC epoxy 

21 N/A Au-Ribbon Bonding Wire Bonder Ribbon is 0.5 x 1.5 mil
2
 

Table 4.2:  Final process flow from wafer to microionizer.  
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Figure 4.3:  Optical images of 9th generation silicon dies (2.5 x 20 mm
2
).  a) through f) are 

Gen 9.1 to 9.6, respectively.  g) Image of a wire-bonded Gen 9.6 microionizer.  Gen 9.1 to 

9.5 are single-side etched.  Gen 9.6 is a through-etched version of the best performing 

variant, Gen 9.1.  The active features for all six variants are 5 x 90 μm
2
 trenches.  The 

circular features are gold wire bonding pads deposited by e-beam evaporation.  The pad at 

the bottom of each device is for handle layer electrical contact, the remaining pads are for 

device layer contact. 
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Figure 4.4:  Evolution of the HPMS.  a) Image of the SLIT ring electrodes used.  The full-

size electrode (left) was used in the differentially pumped system while the compact 

electrode (right) was compatible with all versions of the HPMS.  b) Original differentially 

pumped chamber used for Chapter 2 and Chapter 3 experiments.  The labeled features:  1, 2, 

and 3, highlight the ionization source, mass analyzer, and detector, respectively.  c) The 

mini-chamber, shown with an electron multiplier detector housing.  The SMA feedthroughs 

are vacuumed sealed and soldered directly to the ion trap.  d) A microionizer-specific 

variation of the minichamber; the trap-chamber volume was adapted to include the entire 

microionizer-PCB-SLIT assembly.   
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Figure 4.5:  Oscilloscope screen shot of voltage pulse generation by the a) PVA 3354n relay 

and b) the Single-Pull, Double-Throw High-Voltage Switch.  The control pulse (▬) for both 

circuits is 80 μs TTL.  The output (▬) pulse is each circuits’ attempt to reproduce the control 

pulse at +125 V amplitude.  While the relay has an inherent delay of about 80 μs, the real 

problem is in the rise and fall times that are longer than the pulse length, preventing the pulse 

from achieving full amplitude.  The HV Switch has virtually no delay as well as 200 to 1000-

fold faster rise and fall times.    
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Figure 4.6:  Evolution of the microionizer PCB mount.  1 and 2 refer to device layer and 

handle electrical contact locations, respectively.  a) The PCB was used with Gen 7 inside the 

differential chamber.  A wire was soldered at point 1, which would then be silver 

pasted/epoxied to the front side of the device.  b) The mini-chamber compatible PCB used 

with the Gen 8 microionizer.  It was with wire/epoxy bonding as well as wire bonding.  c) 

The trap-mounted microionizer PCB exclusively used for Gen 9 and designed for gold wire 

bonding.  The bond pads are approximately 1.5 cm from the ionizer features in order to clear 

the ion trap electrodes when laid face-down for trap mounting. 
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Figure 4.7:  a) Cross-sectional SEM of Gen 9.3 device, the bias and pulse voltages are 

schematically shown.  Field emission uses negative bias and pulse, while positive mode uses 

positive polarity.  b) High-resolution SEM of field enhancement sites. 
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Figure 4.8:  Schematic of the ionizer test setup (not to scale).  An aperture was used to 

maintain differential pressure between two chambers, ionization and detector.  The 

microionizer and aperture were operated at high pressure (~ 1 Torr) and the EMT detector 

was held at low pressure.  The spacing between the ionizer and aperture was 100 μm, and the 

aperture was electrically isolated in order to be used as a gate electrode. 
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Figure 4.9:  a) Representative current draws as a function of electric field strength for three 

generations of microionizers:  Gen 5 (■); Gen 8 (■); and Gen 9 (■).  b) A magnified view of 

Gen 8 and Gen 9 results.  These traces were recorded in field emission mode and the duty 

cycles were 0.1, 0.2, and 4.43%, respectively.   
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Figure 4.10:  Images of a) Gen 8 wire bonds utilizing 1 mil diameter aluminum wire and 

titanium/copper bond pads and b) Gen 9 wire bonds consisting of 0.5 x 1.5 mil
2
 gold ribbon 

and titanium/palladium/gold bond pads. 
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Figure 4.11:  a) Image of processed Gen 9.6 wafer.  b) Results of wafer-level failure analysis.  

The Gen 9 mask afforded 208 devices per 150 mm silicon wafer.  The capacitance of 30 

devices from each variant was measured to determine the fabrication yield and average 

capacitance.  Low yields were the result of shorted devices, likely due to stress fractures in 

the insulating layer.  
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Gen Etch Device Insulator Tests 

9.1 Single 3 μm, SC-Si 
0.3/0.4/0.3 μm, 

SiO2/Si3N4/SiO2 

Thinned device layer, proven 

insulator 

9.2 Single 0.5 μm, poly-Si 0.3 μm, SiO2 Polysilicon on proven insulator 

9.3 Single 10 μm, SC-Si 0.3/0.4/0.3 μm, 

SiO2/Si3N4/SiO2 

Thick device layer on proven 

insulator 

9.4 Single 0.5 μm, poly-Si 1.0 μm, Si3N4 Polysilicon on custom insulator 

9.5 Single 0.25 μm, Cr 0.3 μm, SiO2 
Metal device layer on proven 

insulator 

9.6 Through 3 μm, SC-Si 0.3/0.4/0.3 μm, 

SiO2/Si3N4/SiO2 

Through-etch of best 

combination 

 

Table 4.3:  List of the substrates used for Gen 9 devices. ‘Tests’ denotes the key feature(s) of 

the wafer for differentiation.   

. 
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Figure 4.12:  a) Field emission as a function of electric field strength for Gen 9.1 (■), 9.3 (■), 

9.5 ( ), and 9.6 (■).  Field emission is an exponential function of applied field.  b) Fowler-■

Nordheim plots of the field emission shown in part a).  A linear fit has been applied to each 

(dashed lines).  A linear FN relationship is indicative of field effect-based electron emission. 
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Figure 4.13:  Cross sectional SEM of Gen 9.1 a) and Gen 9.6 b).  There is an obvious 

notching as a result of the through-etch process.  This is the likely cause of the increased 

threshold field strengths seen in the Gen 9.6 field emission and positive mode operation 

relative to the other variants.  
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Figure 4.14:  a) Field emission signal (■) as a function of a gating potential at 1 Torr for a 

Gen 9.5 microionizer.  The electrons obtain 85 eV from the microionizer and interactions 

with the buffer gas decrease it.  Eventually, near -75 V on the gate, electrons do not have 

sufficient energy to generate signal at the detector. b) Average current draws versus field 

emission pulse voltage as measured for representative devices from Gen 9.1 (■), 9.3 (■), 9.5 

(■), and 9.6 (■).  The pulse duration is 1 ms and duty cycle is 4.2%.  The points are 

connected to aid viewing (dashed lines). 
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Figure 4.15:  a) Field ionization signal as a function of electric field strength for Gen 9.1 (■), 

9.3 (■), 9.5 ( ), and 9.6 (■).  a) Field ionization signal as a function of a gating potential for a ■

Gen 9.5 microionizer at 1 Torr.  The ions obtain 105 eV from the microionizer.  As gate 

potential increases, they are deflected from the detector.  The microionizer is a source of 

positive charge in this mode, indicative of field ionization.   
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CHAPTER 5:  MICROIONIZER-BASED HIGH PRESSURE MASS 

SPECTROMETRY  

 

5.1  Introduction 

The first generation microionizer proved capable of field emission mass spectra in high 

pressure helium and air (Chapter 3).  However, the high power consumption, device-to-

device reproducibility, and lifetime limitations posed serious obstacles for a reliable, portable 

HPMS ionization source.  Chapter 4 documented the advances made in fabrication and 

operation to overcome these obstacles.  These advances culminated in the 9
th

 generation 

microionizer, which was shown capable of low-power, field emission and positive mode 

operation.  This chapter will focus on applying the 9
th

 generation (Gen 9) as the ionization 

source for HPMS. 

While microionizer performance improved with advances in design and operation from 

the first generation, the realm of high pressure mass spectrometry also advanced.  Some of 

this advancement was documented in Chapter 4 – mainly with the switch from a 

differentially pumped chamber to a miniature chamber.
1
  This change proved effective in 

reducing gas loads and also simplifies ion trap installation, which helped pinpoint sources of 

RF discharge, increasing the uptime of the HPMS instruments.  Moreover, it significantly 

reduces the capacitance of the drive RF electrical feedthrough enabling high frequency 

characterization of ion traps with smaller critical dimensions.  Evidence suggests that smaller 

traps, 100 < r0 < 500 μm, driven at increased RF drive frequencies, f > 6 MHz, aids in 

trapping and retention of ions as well as increasing resolution relative to our standard r0 = 
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500 μm traps.
2
  In addition to the instrument updates, the mass analyzer was upgraded from a 

standard CIT to a stretched length ion trap (SLIT).
1
  The SLIT trap operates identically to a 

CIT, only it has an expanded charge capacity relative to a CIT.
3
  While these HPMS 

advances were not vital to the success of the microionizer as a charge source, they were key 

to applying the microionizer as an HPMS ion source. 

As stated in Chapter 4, Gen 9 microionizers deviated from the symmetric die layout of 

the prior generations and corresponded with use of the mini-chamber HPMS.  The mini-

chamber is limited to compact ion trap electrodes only (see Chapter 4), which reduces the 

area available for aligning the microionizer’s active features with the ion trap.  Thus, 

alignment is critical for maximizing the signal intensity as either an electron source or ion 

source.  It was shown in Chapter 2 that external ion trapping for HPMS is mainly a function 

of pressure and ion kinetic energy.  Combining this experience with that from electrospray 

ionization
4
 show external ion trapping is a balance between ensuring an ion has enough 

energy to enter the ion trap but not so much that it cannot be captured by the electric field.  In 

order to maximize the microionizer’s signal intensity, particularly in positive ion mode, it 

needs to be placed in close proximity to the ion trap.  By trap-mounting the microionizer, the 

separation distance between ionizer and trap is controllable on the order of the mean free 

path length (100 μm at 1 Torr).  This proximal mounting is important because the collisions 

that induce scattering loss outside the trap are crucial to successfully trapping an externally 

generated ion once inside the trap. 

Four 9
th

 gen microionizers (9.1, 9.3, 9.5, and 9.6) have successfully operated at high 

pressure as both air-based field emission and positive ion mode ionizers. These ionizers are 

further characterized for their ability to generate mass spectra under HPMS conditions. Of 



 

159 

 

the four, two (Gen 9.1 and 9.5) will be discussed here. The former was based upon Ultrasil 

SOI, with a 3 μm device layer and a 1 μm insulating layer, while the latter had a device layer 

of 0.25 μm titanium/chrome and a 0.3 μm insulating layer – both were single-side etched.  Of 

the remaining variants, Gen 9.3 did not generate sufficient signal intensity (in either field 

emission or positive mode) for consistent HPMS operation.  Gen 9.6 is a through-etched 

version of Gen 9.1, designed to be an atmospheric inlet to the mass spectrometer.  In trap-

mounted configuration, it operates similarly to Gen 9.1, but as an atmospheric interface it 

serves better as a vision into future microionizer work and as such will be discussed in 

Chapter 6.  Mass spectral characterization of the two 9
th

 generation microionizers drew upon 

all of the advances made in both microionizer and high pressure mass spectrometry 

development - from hardware to operation - in order to examine the ionizer’s behavior under 

both field emission and positive ion mode. 

5.2  Experimental 

The 9
th

 generation devices were tested in a trap-mounted configuration with a cross- 

sectional schematic of the mounted trap shown in Figure 5.1.  The PCB-mounted 

microionizer was separated from the endcap by 200 or 400 μm Teflon spacers.  It was 

secured in-place with the same screws and alignment pins (not shown) used to align and 

mount the ion trap.  Figure 5.2a shows a rendering of a sample inlet plate, mass analyzer 

chamber and detection chamber designed to fit the entire PCB-microionizer-trap assembly 

into a compact vacuum system.  The mass analyzer chamber was an adaptation of the mini-

chamber HPMS,
1
 designed to fit the entire ionizer-trap assembly inside the vacuum.  Figure 

5.2b shows an image of the assembly inside the compact system with the sample inlet plate 

removed. 
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The ion traps employed for these studies were two SLITs:  full-size and half-size.  The 

full-size SLIT had critical dimensions x0 = 500 μm, y0 = 4.0 mm, and z0 = 645 μm, while the 

half-size SLIT had x0 = 250 μm, y0 = 4.0 mm, and z0 = 320 μm.  Two types of endcaps were 

used:  mesh endcaps with 250 lpi spacing and aperture endcaps with x0 = 100 μm.  All trap 

electrodes were electrochemically etched beryllium copper (Towne Labs).  The full-size 

SLIT was operated near 9 MHz (± 0.5 MHz), and the half-size SLIT was driven at near 

20 MHz (± 0.5 MHz).  Operation of the SLIT for HPMS is identical as for the CIT as 

previously described. 

Three methods of analyte introduction were used.  The UHV leak valve and atmospheric 

sampling methods were previously described.  The third method utilized Tedlar sampling 

bags (10 L w/septum, Fisher Scientific).  These gas-sampling bags were used in order to 

introduce known concentrations of gas to the mass spectrometer.  The bags were filled, 

heated, and purged three times with nitrogen to reduce trace contaminants.
5
  Bags were filled 

to capacity with nitrogen or air (UHP, National Welders), then heated to about 70 
o
C with a 

heat gun, and the gas was expelled.  The bag was then filled just above capacity with buffer 

gas and allowed to equalize to room pressure.  A syringe and septum were used to introduce 

volatile, liquid analytes.  Concentrations were calculated by volume in parts per million 

(ppm).  The analytes included benzene, toluene, o-xylene, p-xylene, mesitylene, aniline, 

methylaniline, and dimethylaniline (Sigma-Aldrich, Milwaukee, WI).  Trap chamber 

pressure was maintained near 1.0 Torr by metering flow rate with a needle valve. 

The 9
th

 generation microionizer was employed as both field emission-based EI and 

positive mode ion source.  They were mechanically secured to the PCB with epoxy and wire 

bonded for electrical contact.  Charge production from the microionizer was electrically 
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gated with a voltage pulse (Vp) placed on the handle layer (farthest from trap) of the 

microionizer.  An additional bias potential (Vb) was continuously applied to aid in control of 

the electrons or ions.  Previous characterization showed that electron and ion energy are 

equal to the total potential during generation: bias + pulse voltages.  The pulse and bias were 

ballasted with 0.1 to 1 MΩ, 1/2 W resistors.  Power supplies for the pulse and bias were high 

voltage (Series 230, Bertan-Spellman) and moderate voltage (E3612A, Agilent) models.  

Pulse polarity was negative for field emission mode and positive for field ionization mode 

and ranged from -300 V to +300 V.  Typical field strengths for field emission were near 

0.8 MV/cm and for field ionization mode near 2.0 MV/cm.  A 4.5 digit multimeter (U1272A, 

Agilent) was placed in series with the voltage pulse and operated in DC, μA mode to monitor 

the current.  The reading varied due to duty cycle, thus the maximum value observed over a 

three second visual window was recorded as the average value.  This method of measurement 

was checked by measuring the voltage across a series resistor (R = 10 kΩ) using an 

oscilloscope and found to be within close agreement.  Peak current was back calculated by 

dividing by the duty cycle of the pulse.  Average and peak powers were calculated by taking 

the product of the appropriate current and the voltage pulse.   

Instrument and data acquisition under LabVIEW control has been described previously.  

For the HPMS studies, mass spectra were recorded at 500 kHz acquisition rate for at least 

250 averaging and then low pass filtered at 30 kHz.  Mass axis calibration was performed 

with a LabVIEW program and based upon NIST EI standards.  For lifetime studies, file size 

became a consideration; therefore signal averaging was increased to 1000 and data 

acquisition rate was slowed to 250 kHz.  Data was processed with a LabVIEW program, 

(SignalIntegrator_v4.vi).  The time axis (abscissa) was constructed from the timestamp of 
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each averaged spectrum.  MS signal was low pass filtered at 30 kHz and baseline subtracted 

assuming a linear offset.  The signal-to-noise ratio (SNR) was calculated using the maximum 

signal intensity divided by the root mean square noise value calculated between two user-

controlled cursors.  Integration of the signal during the ionization pulse and RF ramp portions 

of the scan was also performed.  Due to the use of an EMT detector, negative charge was not 

directly measured.  For field emission mode, the integrated ionization pulse was considered 

to be directly proportional to the electron emission intensity. 

5.3   Results and Discussion 

The microionizer was evaluated at 1 Torr air buffer gas in both field emission-based EI as 

well as positive ion source mode. Each mode successfully generated mass spectra but with 

differing operating characteristics, particularly in regards to emission stability and lifetime.  

As such, the results for each mode are discussed separately. 

5.3.1  Field Emission HPMS Characterization 

Chapter 3 documented mass spectral results with the Gen 1 microionizer operating as a 

field emission source in high pressure helium and air buffer gases – though with power draws 

on the order of watts and at low duty cycles (less than 2%).  Before fully characterizing the 

Gen 9 devices, the ability to achieve HPMS with field emission and air buffer gas was 

undertaken.  Figure 5.3 shows a mass spectrum of o-xylene, sampled via the atmospheric 

inlet, where a sample vial was held at the needle valve inlet to the mass spectrometer for 

1-2 s.  The valve was throttled to 1.0 Torr of room air.  This spectrum was taken with a full-

size SLIT at 8.84 MHz.  The Gen 9.1 microionizer was trap mounted and spaced 200 μm 

from the trap endcap.  Field emission was initiated with five, 1 ms pulses of -80 V, yielding a 

field strength of 0.8 MV/cm, and a -100 V bias was applied to the ionizer.  The average 
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current draw was less than 3 μA, consuming an average of 240 μW.  The duty cycle of the 

microionizer was 22%, which scales the peak current and power to 13.5 μA and 1.1 mW, 

respectively.  These power figures represent a decrease of over four orders of magnitude 

compared to a thermionic emitter.
6
  However, they also contrast the Gen 9 microionizer 

operation relative to Gen 1. For comparison, Gen 1 microionizers drew a peak of 10 mA of 

current (limited by the supply) requiring a low duty cycle of 0.3% to generate field emission 

at 0.8 MV/cm. Gen 9 devices accomplished the same role while drawing nearly 400 times 

less power.  Moreover, because the power draw is low, the duty cycle can be increased.  In 

this case, the Gen 9 duty cycle is 73 times greater than the Gen 1, meaning there is less dead 

time for each mass spectral scan length.  This decreased dead time directly impacts the 

acquisition rate of the mass spectrometer, which was 12 Hz for Gen 1 and 44 Hz for Gen 9.  

The improved acquisition rate is crucial in time sensitive applications such as chemical 

warfare agent detection
7
 as well as when the HPMS is coupled to a rapid separation 

techniques such as gas chromatography where higher DAQ rates are needed to accurately 

define peaks.
1
 

Generating consistent, predictable mass spectra scan-to-scan is necessary for an 

ionization source that will be used in a setting requiring not only detection but quantification; 

as a result the source must also present a predictable signal decay in order to compare mass 

spectra over time.
8
  Prior to the 9

th
 generation, microionizers rarely exceeded more than a few 

hours of mass spectral acquisition.  Their lifetime was difficult to quantify, because much of 

operational time was spent in search for signal intensity, which typically ended in device 

over-voltage and shorting before a stable emission point was reached.  Inconsistent device-

to-device operation (turn-on voltage, overall emission, discharge threshold) complicated 
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matters further.  The 9
th

 generation overcame the device-to-device inconsistencies through a 

combination of wire bonding, ballast resistors, and optimized HPMS operation, opening a 

window to measure device lifetimes under conditions that would be seen in a handheld mass 

spectrometer application. 

Field emission lifetime was evaluated by monitoring the ionization pulse of a Gen 9.1 

microionizer.  The device was used as a field emission-based EI source for the HPMS and 

held at 0.77 Torr (limited by the EMT).  A -80 V pulse was applied for 0.9 ms, generating a 

0.8 MV/cm electric field biased to -86 V.  The duty cycle was 4% (0.9/22.55 ms).  The 

results of a five-hour field emission lifetime test are shown in Figure 5.4, where each data 

point represents the integrated ionization pulse of 500 averaged mass spectra; as such they 

are spaced approximately 20 seconds apart.  The analyte, o-xylene, was periodically 

introduced at the atmospheric inlet to correlate the ionization pulse intensity to a mass 

spectral signal strength, as shown in the inset of Figure 5.4.  For the first hour, an erratic 

signal from point-to-point with an overall decay occurred during the ionization pulse.  At 1 

hour, signal intensity recovers (with no external intervention) and continues a similar decay 

seen in the first hour, only with a slower overall decay rate.  At no point during the five hours 

does the signal drop to zero, however from the inset showing the mass spectra, it is obvious 

the ionization pulse decay negatively impacts the mass spectral performance of the device. 

In terms of lifetime, this particular device was operated at various field strengths 

(between 0.7 and 1.0 MV/cm) for a total of 9.3 h of instrument time (data not shown).  Each 

field strength produced a similar pattern – a general decay over the course of hours with 

erratic point-to-point reproducibility.  At a 4% duty cycle, this corresponds to only 22 

minutes of emitter lifetime, but it is spread over 730,000 individual mass spectra.  While this 
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lifetime would not be feasible for a portable HPMS operating in a continuous monitoring 

mode, it could be used in an instrument that operates on an infrequent basis by spending the 

730,000 mass spectra as-needed. 

The most concerning feature of Figure 5.4 is the inconsistent nature of the ionization 

pulse from point-to-point.  Field emission intensity is a strong function of emitter tip 

geometry.
9
  Tip geometry is subject to change over time for two main reasons:  ion 

bombardment and field desorption.
10

  Electron impact ionization can occur anywhere along 

the electron beam’s path; ions generated within a mean free path length (order of 100 μm at 

1 Torr).
11

 of the emission site will gain energy equivalent to the total potential (pulse plus 

bias), which for the data shown in Figure 5.4 was 166 eV.  At these energies, ion 

bombardment can result in physical sputtering of the tips.
12

  This sputtering is unpredictable 

and can either serve to enhance emission by sharpening the emission site or degrade it by 

erosion.  Moreover, thermal runaway at the sharpened tips is a concern where Joule heating 

promotes electrons into the conduction band, leading to further field emission and higher 

intensities.  This process, however can feedback until temperatures are sufficient for the tip to 

desorb, destroying the emission site and can occur over the nanosecond to microsecond 

timeframe.
10

  Given the 0.9 ms pulse duration of the microionizer, thermal runaway could 

account for both the erratic signal from random activation of emission sites and signal decay 

from reductions in emission sites across the device.  Conversely, working at high pressure 

may have increased the ionizer’s lifetime by slowing ions formed in the vicinity of the 

ionizer.  Most field emission sources operate at pressures below 10
-6

 Torr, where the mean 

free path length is greater than 10 mm.  Thus, an ion will experience little or no collisional 

cooling and impact with the surface will likely yield sputtering damage.  However, at 1 Torr, 
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ions must be generated within 100 μm to avoid collisional cooling.  Given the mean free path 

for electrons is 2.5 mm
13

 at this pressure, the rate of ion generation within the 100 μm 

threshold is low.  But, even a low probability event when spread across the entire 

microionizer could be enough to cause erratic signal intensity. 

As higher field strengths should lead to improved performance, the microionizer was 

operated at a field strength of 1.0 MV/cm (data not shown).  After 35 min of operation, the 

device suffered insulator breakdown that proved consistent with other tested microionizers.  

The breakdown consisted of several bursts of significant instantaneous signal intensity (100 

to 1000 times typical signal level) followed by a short circuit across the insulating layer.  

Depending upon preparation, silicon dioxide thin films should breakdown near 11 ± 2 

MV/cm.
14

  The observed field strength at breakdown was only 1.0 MV/cm.   This 

discrepancy was attributed to surface flashover at the vacuum-insulator interface.
15-16

   

The ability to generate mass spectra for an extended time period is paramount for an ion 

source.  Field emission devices, particularly for display technologies have 10,000+ hour 

lifetimes, defined as the time-to-half emission intensity, however these devices require 

pristine vacuum environments to achieve these lifetimes.
17-18

  Field emission mode with the 

Gen 9 microionizers generated HPMS with impressive lifetimes with low power 

consumption at 1 Torr of air.
19

  However, the utility of the microionizer in field emission 

mode is ultimately limited by two factors:  the inconsistent scan-to-scan signal and the 

overall signal decay.  

5.3.2  Field Ionization HPMS Characterization 

The 9
th

 generation delivered low-power field emission-based mass spectrometry in a high 

pressure air environment.  While this was encouraging, the inconsistency of the signal 
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intensity limits its use in potential analytical applications so its use as a field ionization 

source was explored.  Previous attempts at field ionization with Gen 1 through 8 produced 

device failure before ionization was detected.  This was attributed to insulator breakdown due 

to thermal contributions from the leakage current.
20

  Having reduced the leakage current by 

four orders of magnitude, positive mode operation was demonstrated with the Gen 9 

microionizer using a gate aperture discussed in Chapter 4.  It was shown in Chapter 2 that 

external ion injection into the ion trap at high pressure is a balancing act.  The ion must have 

enough energy to transit from the source-to-trap without scattering, however with not so 

much energy that collisional cooling cannot reduce its energy below the potential well depth 

of the ion trap.  Experimentally, ion injection is dependent upon the ion kinetic energy as 

well as the buffer gas pressure.  In addition, the high pressures involved in HPMS provide a 

wide window of acceptable kinetic energies for successful ion injection. 

The experience gained from external ion injection experiments was utilized to couple the 

microionizer in positive mode with the HPMS to generate mass spectra.  A Gen 9.5 

microionizer (300 nm insulating layer) was mounted 400 μm from a full-size SLIT trap.  The 

field strength was pulsed at 1.63 MV/cm for 1 ms and biased to +50 V.  Mass spectra of 

several volatile organic compounds (VOC) introduced at the atmospheric inlet needle valve 

are plotted in Figure 5.5.  Overall, the signal intensities and fragmentation patterns are very 

similar to those seen with the microionizer acting as a field emission source.  However, the 

scan-to-scan signal fluctuations that were observed in field emission mode are not present 

(see lifetime results, Figure 5.10).  At this point, the ionization mechanism behind positive 

mode was thought to be field ionization but not proved conclusively based on the 

experiments performed.  The aperture experiments documented in Chapter 4 showed the 
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microionizer is indeed a source of positive charge.  However, these experiments could not 

discriminate between localized field emission-induced EI and direct field ionization.  HPMS 

offers a powerful tool to examine the ions generated in positive mode to determine their 

origins.   

Evidence for distinguishing field emission and positive mode operation includes 

comparing the relative intensities of the ionization pulses.  A Gen 9.1 microionizer was 

operated in field emission (0.91 MV/cm and -150 Vb) mode followed by  positive mode 

(1.12 MV/cm and 0 Vb) without breaking vacuum.  Mesitylene was leaked at a constant rate 

for both ionization modes and the signal intensities during the ionization pulse and resulting 

mass spectra are plotted in Figure 5.6.  The ionization pulses are 3 ms in duration (between t 

= 3 and 6 ms), while the mass spectra are also 3 ms in duration (between t = 14.5 and 

17.5 ms).  The ion kinetic energy was adjusted in positive mode such that the mass spectral 

signal intensity was similar to field emission mode.  Performance can be compared with 

integrated mass spectra and ionization pulse signals.  The integrated mass spectrum for field 

emission mode is 0.55 V*ms, while for positive mode it is 0.47 V*ms.  The corresponding 

integrated ionization pulses are 205.35 and 5.87 V*ms, respectively.  There is a significant 

difference in the charge generation efficiency seen for a field emission mass spectrum vs. a 

positive mode spectrum.  Field emission mode clearly generated more ions than positive 

mode.  However, only 0.3% of those ions were trapped and detected versus 8.0% for positive 

mode.  This is further evidence that field ionization is the mechanism behind the positive 

mode operation.  Field ionization has a threshold behavior; i.e. neutrals with too great an 

ionization potential will not ionize
21

  whereas field emission generates electrons for 

subsequent electron impact ionization.  EI also does not discriminate between buffer gas and 
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analyte(s) as it will ionize both.
22

  This is an inefficient process at high pressures when one 

considers that analyte concentrations range in the ppb to 100 ppm levels and the buffer gas 

comprises over 99% of the neutral molecules in a sample.   Therefore, the ionization pulse is 

mainly comprised of ionized buffer gas in field emission mode, explaining the discrepancy 

between the magnitudes of the ionization pulse and mass spectrum.  Consequently, field 

ionization generates less wasted charge and targets analytes with lower ionization potentials 

than the buffer gas. 

Targeted field ionization was demonstrated with a mixture of DMA and benzene 

introduced at the atmospheric inlet of the HPMS and various microionizer field strengths.  

These compounds were chosen because of the large spread between their ionization 

potentials, 7.1 (DMA) and 9.2 eV (benzene) respectively and because of their mass range 

(molecular ions at 121 and 78 m/z) and lack of interfering fragments.  A series of mass 

spectra are shown in Figure 5.7 using a Gen 9.5 device where the electric field was increased 

from 1.17 to 1.80 MV/cm.  A sample container was wafted at the inlet and the pulse voltage 

was slowly increased.  When the field strength was 1.17 MV/cm, it is below the ionization 

threshold of benzene and near that of DMA so only a slight peak was observed at 121 m/z.  

As the field strength increased, the DMA peak at 121 m/z increased in intensity.  Benzene 

(m/z 78) began to ionize as the field strength approached 1.67 MV/cm with a slight peak 

evident.  By 1.80 MV/cm the field strength exceeded both analytes’ ionization potentials and 

both showed SNR > 50.  This ionization field strength dependence is further proof this mode 

of operation is field ionization.  The benzene spectra in Figure 5.7 add an additional piece of 

evidence.  HPMS of benzene with EI-based ionization sources are typically dominated by a 

fragment peak at 63 amu.
23

  The benzene mass spectrum at 1.80 MV/cm is clearly dominated 
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by the molecular ion peak at 78 amu.  The lack of fragmentation suggests that the ionization 

mechanism behind positive mode is softer than EI, further supporting field ionization.
24

 

The emission intensity of a field ionization source is directly proportional to the partial 

pressure of the analyte.  A typical field ionizer is operated in an environment where the 

signal intensity is dominated by the analyte such as in high vacuum
25

 or in a controlled 

atmosphere.
26

  However, HPMS operates in ambient air, where the analyte represents only a 

small fraction of a complex mixture of small molecules.  Fortunately, the mass spectrometer 

offers a tool to gain insight into the microionizer’s field ionization as a function of partial 

pressure.  A Gen 9.1 microionizer was used in field ionization mode under optimal 

conditions with a constant field strength of 2.4 MV/cm and +35 V bias.  Mesitylene 

concentrations between 520 and 2080 ppm were achieved by leaking saturated air (2600 

ppm) into the vacuum chamber from 0.4 to 1.0 Torr, while a second atmospheric inlet was 

adjusted to maintain 1.0 Torr total pressure.  The SNR of the mesitylene mass spectra 

recorded between 520 and 2080 ppm are plotted in Figure 5.8a.  The SNR linearly increases 

between 500 and 1300 ppm, above which it plateaus.  The plateau is most likely due to space 

charge limitations in the ion trap.  Further insight can be gained by looking at the total 

integrated ionization signal, the ion pulse plus mass spectral intensity.  This information is 

plotted in Figure 5.8b with the total signal increasing linearly by 21% over a 4-fold increase 

in mesitylene concentration.  Extrapolating a linear fit to 0 ppm mesitylene reveals a y-

intercept at 21.3 au.  Assuming this accounts for field ionization of the buffer gas, then the 

mesitylene ionization can be determined by subtracting this baseline from the points in 

Figure 5.8b.  The increase in mesitylene signal is 4.4-fold, which is close to the increase in 

mesitylene concentration, demonstrating a linear response to concentration.  The mass 
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spectral results in Figure 5.8a did not reveal the presence of an unknown due to the ionized 

buffer gas, however the low mass cutoff at this frequency is near 60 m/z, so smaller 

constituents are observable during the ionization pulse but not in the mass spectrum.
27

   Of 

the major ambient air components (nitrogen, oxygen, argon, carbon dioxide, and water 

vapor), oxygen has the lowest ionization potential at 12.1 eV.
28

  With oxygen making up 

21% of air, if the field strength were sufficient for oxygen ionization, a discharge would 

likely be observed thereby setting the maximum high end field strength.  This extends the 

microionizer’s usable range beyond typical UV ionization sources with 10.6 eV limits.
29

  

Having determined that positive mode operation is in fact field ionization, it was used to 

study external ion injection with the SLIT ion trap, specifically the ion kinetic energy (KE) 

effect on HPMS performance at 0.5 and 1.0 Torr.  A Gen 9.1 device was trap-mounted 

125 μm from a full-size SLIT.  Mesitylene partial pressure was held constant along with a 

field ionization strength of 2.1 MV/cm and ranging the bias from -200 to -12 V (low to high 

KE).  The ion KE was calculated from the addition of the Vpulse and Vbias and was limited by 

electric discharge.  The total integrated ionization (ion pulse plus mass spectrum) is plotted in 

Figure 5.9a with the integrated mass spectra plotted in Figure 5.9b.  In Figure 5.9a, a linear 

increase in total ionization intensity is seen for both pressures as ion kinetic energy is 

increased.  Moreover, the intensities nearly overlap with 0.5 Torr having a slightly higher 

signal intensity that diminishes at higher kinetic energies.  A hard sphere approximation 

determines the mean free path for mesitylene at 1.0 Torr to be 160 μm and 320 μm at 

0.5 Torr.
30

  Since both path lengths are shorter than the spacing between the microionizer and 

trap, we expect similar signal intensities for each pressure.  However, the mean free path at 

1.0 Torr is similar to the ionizer/trap spacing, so losing a small percentage of the ions to 
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scattering collisions is expected. This difference should diminish as the ions gain enough 

kinetic energy to overcome the scattering effect due to the buffer gas. 

Interestingly, the same scattering mechanism that is responsible for this difference 

improves ion trap operation.  The integrated mass spectral portions of the total ionization are 

plotted in Figure 5.9b.  Below 30 eV, signal is essentially zero because ions do not have 

sufficient KE to traverse the field between the ionizer and ion trap.  As KE increases, mass 

spectral signal does as well with a unique optimal energy, 50 and 150 eV at 0.5 and 1.0 Torr, 

respectively with the peak signal at 1.0 Torr 3.5-fold greater than the peak observed at 

0.5 Torr.  Between 30 and 200 eV, the mass spectral intensity at 1 Torr is 40 to 350% greater 

than the peak intensity at 0.5 Torr.  This data reinforces the conclusions reached in Chapter 2: 

external ion injection is dependent upon both pressure and ion KE where it is more effective 

at higher pressure because the increased collisional frequency acts to cool the ions into the 

ion trap’s potential well depth.  This trend was previously observed at the mTorr level with 

helium buffer gas in a QITMS.
31

  Chapter 2 extended these results to miniature CIT’s 

operated at 1 Torr buffer gas and this data extends it to SLIT-based mass analyzers.   

The last characteristic evaluated for field ionization mode of operation is lifetime.  Field 

emission mode with the 9
th

 generation microionizer utilized a short duty cycle to produced 

devices with cumulative lifetimes approaching 25 minutes which were used to achieve 

HPMS instrument times near 10 h of continuous scanning.  Overall, the scan-to-scan stability 

in field emission mode was difficult to control and likely contributed to the short lifetime.  

This shortened lifetime was attributed to ion bombardment, which is inevitable due to the 

negative potentials required to generate and extract negative charge.  The results of field 

ionization mode lifetime stand in stark contrast.  A Gen 9.1 microionizer was trap mounted 



 

173 

 

400 μm from a full-size SLIT with critical dimensions x0 = 500 μm and z0 = 645 μm operated 

at 8.86 MHz.  The microionizer electric field was 2.06 MV/cm, set by a 10 ms, 206 V pulse.  

The device was biased to -100 V for optimal mass spectral signal strength at 1.05 Torr of 

ambient air.  Mesitylene was leaked at constant partial pressure via UHV leak valve.  Mass 

spectra were recorded with 1000 scan averaging yielding about 40 seconds between each 

spectrum.  The instrument operated for nearly 500 h and was monitored in-person during the 

day and remotely overnight.  The SNR of the nearly 500 h of continuous operation is plotted 

in Figure 5.10.  The duty cycle was 44.4%, translating to 220 h of cumulative lifetime for the 

microionizer.  Over the course of the experiment, the average current and power 

consumption never exceeded 3 μA and 0.8 mW, respectively.  The discontinuities at 240 and 

325 h were due to computer errors, where a DAQ hardware restart was required which could 

not be performed remotely.  There was significant fluctuation in the signal over the course of 

the first 10 h of operation with SNR ranging from 50 to 145.  Afterwards, the SNR varied in 

an envelope of about ±15 units around an average value.  At about 10 h, the average SNR 

settled near 100 followed by an asymptotic decay.  At 50 h, the SNR had decreased to 50, 

roughly 50% of its starting value.  At the end of the test (t = 500 h), the device was operating 

on average at 20% of its original SNR though at no point did the microionizer cease field 

ionizing.  While the overall lifetime figures may not be as impressive as other field ionization 

sources,
25

  it is important to note that that the microionizer was tested under HPMS 

conditions.  It operated for nearly 10 days of cumulative ionization at 1 Torr of air buffer gas 

with constant analyte introduction under much harsher conditions than most field ionization 

sources are tested.
26, 32

  Moreover, it achieved this lifetime as both a low power and low 

voltage field ionizer – meeting the original project goals. 
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5.3.3  Modes of Failure 

The cause of failure in field ionization mode also contrasted with field emission failures.  

While both modes suffered failures via insulator breakdown, the field strengths were 

different.  In field ionization mode, breakdown typically manifested above 2.5 MV/cm, with 

some devices approaching 3.5 MV/cm; whereas, field emission mode showed signs of 

discharge and breakdown near 1.0 MV/cm.  This difference was attributed to surface 

flashover – where trapped charges at the insulator-vacuum interface facilitate current flow 

along the surface.  Surface flashover was observed in field emission mode because of charge 

enhancement.  Ions produced near the surface of the emission tip act to enhance the electric 

field,
10

 which in turn increases field emission intensity, creating a positive feedback which 

enhances the conditions for flashover.  In field ionization mode, the bias of the microionizer 

repels ions from the surface suppressing the conditions for surface flashover. 

In terms of extended operation, signal decays for both field emission and field ionization 

as observed in Figures 5.4 and 5.10.  However, the decay rate for field emission was much 

greater than for field ionization.  In order to maintain adequate signal intensity with field 

emission, the field strength would have to be increased eventually leading to breakdown of 

the insulator and microionizer failure.  Field ionization decay was much slower and similar to 

field emission, the field strength could be increased to maintain signal intensity as well. Also 

like the field emission source, it is possible for a device to bump up against the field 

breakdown strength (near 2.6 MV/cm) and display zero ionization intensity.  The cause of 

breakdown was not thought to be due to ion bombardment.  The next likely culprit 

considered was a thin film barrier preventing neutrals from accessing the field strengths 

necessary for ionization.  Device recovery was attempted by operating in field emission 
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mode but without success (data not shown).  Venting to atmosphere as well as pumping to 

low pressure (~10
-5

 Torr) also failed to recover field ionization as did rinses in mild organic 

solvents. Harsh chemical cleanings and etches were not possible due to the exposed wire 

bonds.  As such the mechanism behind signal decay was undetermined, but is believed to be 

a thin film buildup. 

5.4  Conclusions 

Both field emission and field ionization sources were successfully developed for HPMS 

applications. Strong mass spectra were recorded with a field emission microionizer however 

signal fluctuations and lifetime issues reduce its efficacy as an ionization source. The longest 

lasting field emission device ran for an accumulated 9 h of instrument time – roughly 22 

minutes of cumulative ionizer lifetime.  After thorough testing, the positive ion mode was 

attributed to field ionization.  Due to the more favorable electric field polarity and selective 

ionization of the analyte, field ionization displayed over a 50-fold increase in lifetime over 

field emission mode.  The longest lasting device provided 20.6 days of instrument time and 

9.1 days of cumulative ionization.  Moreover, both modes were shown to operate with 

average currents draws on the order of microamps and average power consumption between 

0.5 and 5.0 mW, depending upon insulating layer thickness.  Overall, the 9
th

 generation 

microionizers accomplished each goal set forth at the beginning of the project under the 

specified HPMS conditions for a portable instrument. 
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5.5  Figures 

 

Figure 5.1:  Cross sectional schematic of the mini-chamber HPMS with a trap mounted 

microionizer.  The entire assembly fits into the trap chamber and is held at 1.0 Torr with the 

EMT on the Detector-side held a < 100 mTorr.  In order to maximize signal, the active 

features of the microionizer are laid out to match the length of the SLIT.  The microionizer is 

aligned and mounted with the same hardware as used to build the SLIT. 
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Figure 5.2:  The mini-chamber HPMS adapted to work with the trap-mounted microionizer.  

a)  Solidworks schematic of the chamber showing the sample inlet, microionizer and detector 

placement relative to the SLIT (mass analyzer).  b) Image of the assembled vacuum chamber 

with the sample inlet plate removed showing the mounted microionizer.  The microionizer is 

positioned about 400 μm from the SLIT.   

  



 

178 

 

 

Figure 5.3:  High pressure mass spectrum of o-xylene in field emission mode (▬) and NIST 

standard (■).  The spectrum was taken in room air at 1.0 Torr with a x0 = 500 μm and z0 = 

645 μm SLIT operated at 8.84 MHz drive RF.  A series of five, 1 ms pulses (with 1 ms 

periodicity) were used for ionization.  Gain on the current preamplifer was 1 μA/V. 
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Figure 5.4:  a) The lifetime of a Gen 9.1 microionizer operated in field emission mode was 

investigated by plotting the integrated ionization pulse as a function of time (■).  Analyte was 

introduced at the atmospheric inlet. b)Three of the resulting mass spectra are shown from t = 

0 (*), 3.4 (*), and 5.0 (*) hours.   The electric field strength was 0.8 MV/cm, generated with a 

-80 V pulse applied for 0.9 ms (4% duty cycle).  The average current never exceeded 1 μA 

for an average power of 80 μW.   
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Figure 5.5:  Offset high pressure mass spectra of several VOCs acquired in field ionization 

mode:  mesitylene (▬); toluene (▬); benzene (▬); and aniline, methylaniline, and 

dimethylaniline (▬).  HPMS pressure was 0.93 Torr of room air and the analytes were 

introduced by wafting from open containers.  The field strength was 1.63 MV/cm, pulsed for 

1 ms (4.5% duty cycle), and biased +50 V relative to the trap endcap.  The SLIT (x0x0 

 = 500 μm and z0 = 645 μm) was operated at 8.74 MHz using double resonance at 2.95 MHz. 
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Figure 5.6:  Overlay of mass spectra recorded in field emission (▬) and positive mode (▬) 

including both the ionization pulse and mass spectrum for each mode.  The spectra were 

taken with the same ion trap, analyte concentration, and ion pulse length of 3 ms ionization 

pulse.  The mass spectra were tuned near the same integrated signal intensity in order to 

demonstrate the difference in ionization pulses between the two modes.   
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Figure 5.7:  Mass spectra of a dimethylaniline and benzene mixture using field ionization 

with increasing field strengths of 1.17 MV/cm (▬); 1.53 MV/cm (▬); 1.67 MV/cm (▬); 

and 1.80 MV/cm (▬), the mass spectra are offset for clarity. Dimethylaniline has a m/z = 

121 amu and ionization energy of 7.1 eV and benzene has a m/z = 78 amu and ionization 

energy of 9.2 eV. 
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Figure 5.8:  a) SNR of mass spectra taken in field ionization mode increasing concentrations 

of mesitylene at a constant 1 Torr total pressure.  The HPMS response is linear between 520 

and 1320 ppm, above which the ion trap appears to saturate.  b) Total integrated ion signal 

(ion pulse plus MS ramp) for the same experiment, showing a linear response from the 

microionizer across the entire pressure range. 
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Figure 5.9:  HPMS performance as a function of ion kinetic energy at 1.0 Torr (■) and 

0.5 Torr (■).  a) Total integrated signal (ion pulse plus MS) shows a linear increase in signal 

as ions overcome scattering between the microionizer and ion trap.  b) Integrated mass 

spectra of the same data as a).  At 1.0 Torr, the ion injection efficiency is higher, yielding 

stronger signal intensity than at 0.5 Torr.  The electric field was set to 2.1 MV/cm and 

mesitylene was introduced via UHV leak valve. 
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Figure 5.10:  Signal to noise ratio of a single microionizer operated in field ionization mode.  

The Gen 9.1 device was pulsed for 10 ms with constant field strength at 2.06 MV/cm and 

biased to -100 V.  The duty cycle was 44.4%.  The discontinuities in the plot are due to 

computer errors which halted acquisition.  The ionizer operated for approximately 220 h 

when corrected for duty cycle, and 495 h of HPMS total uptime. 
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CHAPTER 6:  CONCLUSIONS AND FUTURE WORK 

6.1  Conclusions 

The development of the microionizer was undertaken to help develop and advance high 

pressure mass spectrometry (HPMS).  The ultimate goal is to not only release mass 

spectrometry from the confines of the laboratory but also to reduce hardware costs.  This 

would help make mass spectrometry a ubiquitous technique bringing its chemical informing 

power to as many toolboxes as possible.  The research presented in this dissertation began in 

earnest in 2011.  Since then, a low-cost, portable HPMS instrument has been 

commercialized
1
 and used in the field to target volatile organic chemicals.

2
  In this sense, the 

overall goal of producing a handheld mass spectrometer has been achieved.  However, 

continued advancement and refinements are necessary to improve the performance of HPMS 

in terms of resolution,
3
 sensitivity,

4
 range of detectable analytes,

5
 as well as cost-effective 

miniaturization.
6
   

The project began with three, simple objectives: 

1. Demonstrate HPMS with the microionizer in air. 

2. Maximize microionizer lifetime under HPMS conditions. 

3. Minimize overall microionizer/mass analyzer footprint. 

At the outset of the project, HPMS was in its early stage of development.  The tenets of 

HPMS – high-pressure, high-frequency, miniature ion trap-based mass spectrometry – had 

been shown to work in helium at relatively high pressures (≈ 10 mTorr) of helium.
7-8

  The 

goals of 1 Torr operation in helium,
9-10

 nitrogen
3
, and air

11
 were achieved using proven 
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internal, electron impact ionization (EI) sources.  As an external ion source, the microionizer 

was not guaranteed to be compatible with the miniature cylindrical ion trap (mCIT) under 

HPMS conditions due to potential well depth concerns of the mCIT relative to a standard 

QIT.
12-13

  Thus, initial studies focused on coupling traditional, external ion sources with the 

mCIT under HPMS conditions to determine operational boundaries.  Using both off and on-

axis external ion sources, helium, nitrogen, and air were studied from 0.01 to 1.0 Torr.  The 

trends in the signal intensity of mass spectra revealed several important points:  the potential 

well depth and small trap dimensions of HPMS are indeed compatible with external ion 

injection.  External ion trapping was shown to be dependent upon buffer gas composition and 

pressure, ion kinetic energy, and ion trap operation.  The window of acceptable ion kinetic 

energies was widest at 1 Torr of air buffer gas; and under these conditions, it was shown that 

deeper well depth also aids external ion trapping.  These studies provided operational 

boundaries for the microionizer.  Deeper well depths, achieved by increasing the drive RF 

frequency and amplitude, provide the best opportunity for external ion injection.  Buffer gas 

composition and pressure are both related to collisional cooling.  Larger buffer gases (air or 

nitrogen vs. helium) can remove more energy per collision than lighter ones, while pressure 

controls the collisional frequency.  Ion kinetic energy needs to be high enough to overcome 

collisional cooling and scattering between the source and trap, but not so large that the ion 

skips through the trap.  Most importantly, it was found that increased pressure (1 Torr) 

provides the best trapping efficiency.  While this must be balanced with ion trap resolution, it 

provides a wide range to tune the parameters relative to one another.  Thus, source-to-trap 

spacing, ion kinetic energy, operational pressure, and RF drive frequency and amplitude can 
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be optimized based upon instrument design constraints as well as analyte properties (m/z, 

etc).   

Studies of the microionizer began with first generation devices provided via collaboration 

with Dr. Pau at the University of Arizona.  These devices were successfully coupled with 

HPMS and produced internal, EI-based mass spectra in both helium and air at pressures 

ranging from a few mTorr to 1 Torr.  Field emission was achieved at field strengths below 

1 MV/cm, but field ionization was never realized.  Although successful in producing spectra, 

this generation of microionizer had high-current draw (current limited to 10 mA); a short 

lifetime (a few hours of instrument time); and poor field emission stability making it 

unsuitable for potential hand held use.  These drawbacks were addressed with improvements 

in design, materials, fabrication, and operation procedures and culminated in a 9
th

 generation 

microionizer. 

The 9
th

 generation devices utilized every advance in HPMS, fabrication, and microionizer 

operation learned throughout the course of this research project.  The active features were 

designed to align with a stretched length ion trap (SLIT) to maximize signal intensity.
4, 6

  The 

microionizer-to-ion trap spacing was minimized by the use of a printed circuit board (PCB) 

based microionizer mount.  The result was an ion source capable of mounting within one, 

ionic mean free path length (≈ 100 µm) of the ion trap.  Optimal electrical contact to the 

silicon was achieved by combining metallized contact pads and wire-bonding.  The current 

draw was reduced from milliamps to microamps yielding, sub-milliwatt average power.  

Moreover, both field emission and field ionization modes were possible:  electric field 

strengths for field emission were less than 1.0 MV/cm while field ionization began near 

1.5 MV/cm and was observed upwards of 3.0 MV/cm.  A study of several variants using 
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different materials and geometries were compared using current draw, emission currents 

(both electron and ion), mass spectra, and lifetimes as the criteria.  Two variants, bonded 

silicon-on-insulator (SOI) and metal-on-insulator substrates were the best performers.  Both 

yielded emission currents (electron and ion) as well as mass spectra at 1 Torr of air buffer 

gas, with the longest observed lifetime to be over 20 days of HPMS instrument time for the 

SOI-based variant.  Fabrication yield and HPMS performance showed SOI to be the better 

material, but metal-on-insulator is a lower-cost alternative and could be worth additional 

investigation. 

The data gathered with the 9
th

 generation microionizer brought the project around full-

circle.  Not only did the microionizer corroborate the initial conclusions regarding external 

ion injection under HPMS conditions; but in doing so, all three of the major objectives:  air-

based HPMS; maximum lifetime; and minimum footprint were achieved. 

6.2  Future Work 

While the microionizer has successfully demonstrated HPMS operation, there are several 

aspects including signal intensity, operational voltage, field emission mode and signal loss 

over time that could be addressed to improve on its strengths.  In comparison to glow 

discharge, the microionizer displays both reduced power consumption and mass spectral 

signal intensity by about two orders of magnitude.
11

  The microionizer does have a smaller 

footprint and hence a reduction in pumping capacity required for the smaller volume relative 

to the GD.  However, the lower sensitivity may not be worth the power gains in a portable 

instrument designed for rapid chemical detection.
14

  Improvement in sensitivity is an area in 

need of future research with three possible design changes that could improve sensitivity 

worth investigating:  1) use the microionizer as the atmospheric inlet of the MS; 2) combine 
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the microionizer and endcap of the ion trap; 3) further reduce the insulating layer thickness 

for reduced voltage operation.  

6.2.1  Microionizer as Atmospheric Inlet 

Many field ionization sources force the gas flow through their high field regions resulting 

in near 100% ionization of neutral analytes.
15-17

  Combining this efficiency with the 

improved trapping of externally injected ions at 1 Torr (as demonstrated in Chapter 2) could 

increase signal intensity generated by the microionizer.  

Preliminary studies using the microionizer as an atmospheric inlet were attempted where 

the gas flow was forced through the active regions of a Gen 9.6 microionizer.  Figure 5.2a 

shows a cross-sectional diagram of the atmospheric inlet version of the mini-chamber and 

Figure 6.1b shows the microionizer mounted to the coverplate of the mass analyzer chamber.  

In this configuration, the microionizer was sealed to the PCB with epoxy ensuring all gas 

flow into the chamber passed through the high-field region of the microionizer.  This 

configuration moved the microionizer away from the ion trap so a tube lens was incorporated 

to ensure maximum ion transmission into the ion trap.
5
  The tube lens, 5 mm in length and 

5 mm in diameter, was mounted on top of the ion trap endcap and spaced 140 μm from the 

endcap using a Teflon spacer.  The focusing field was generated by a DC potential ranging 

from -135 to +135 V.   

Pressure measurements on either side of the microionizer (14.6 Torr inlet side and 1 Torr 

outlet side) suggest the microionizer was indeed acting to limit conductance into the ion trap 

chamber. With the gas flow forced through the high-field region, both field emission and 

field ionization modes were tested.  Field emission proved to be unstable, resulting in 

uncontrollable discharges.  Field ionization mode with mesitylene as the test analyte 
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performed slightly better, generating mass spectra for nearly 1 hour of instrument time.  A 

steady stream of field ionization was present, but it was generally masked by random 

discharges, similar to (but less frequent) than those observed in field emission mode.  The 

discharges point towards the need to investigate thinner insulating layers as this would lower 

the voltages needed to create sufficient field strengths.  The field strength for these 

experiments was near 3.0 MV/cm, requiring a 300 V pulse voltage, which approaches 

Paschen breakdown under these conditions.
18

  While these preliminary studies showed 

limited success for the microionizer as an atmospheric inlet, the fact that any mass spectra 

under these conditions were produced is an encouraging first step down this path.  Further 

pursuit is warranted, because of the possible gains in sensitivity.  As the atmospheric inlet, 

virtually all of the analyte sampled from the air can be ionized and efficient ion injection at 

high pressure will ensure the analyte ions are retained.  This would lead to either more signal 

at the existing atmospheric sampling flow rate, or the ability to reduce the flow rate and 

vacuum pump power consumption.  

6.2.2  Microionizer as Ion Trap Endcap 

A second method for potentially improving the sensitivity is to substitute the 

microionizer for one (or both) of the mCIT endcap(s).  With this configuration, gas flow is 

forced through the microionizer/endcap (similar to the atmospheric inlet) with the ions 

exiting the microionizer directly into the ion trap.  Because of the short travel distance (≤ 250 

m) between microionizer and trap, ion transmission losses should be minimized thereby 

maximizing sensitivity. Note the insulating layer thickness would need to be chosen such that 

the potential required for field ionization does not produce ions with too much kinetic energy 

for injection.  
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Additionally, this arrangement could reduce the vacuum volume and thus pumping 

requirements.  The ‘trap chamber’ could consist of the internal volume of the mCIT which 

would reduce overall power consumption of the vacuum system.  Finally, it could be used in 

tandem with an ambient source such as ESI with the ions sprayed through the 

microionizer/endcap into the ion trap.  The same ion trap assembly could be used to sample 

both highly volatile compounds via atmospheric sampling or thermal desorption as well as 

less volatile compounds via ambient techniques.   

6.2.3  Further Microionizer Development 

Early development of the microionizer was plagued by high leakage current, which was 

combated with SOI wafers containing thick insulating layers (≈ 1 µm).  Improvements in 

fabrication and wire bonding reduced the leakage current, and it is likely that SOI substrates 

with thinner insulating layers could be used.  Insulating layers as thin as 300 nm in SOI-

alternatives were able to generate field ionization with potentials near 50 V; about one-third 

the applied potential required for field ionization with thick, 1 µm insulators.  Further 

thinning of the insulating layer could drop the potentials for field emission and field 

ionization even further, which would simplify the pulsing circuity necessary for ionizer 

operation and reduce the risk of arc discharge.  The latter benefit would also align very well 

in efforts to use the microionizer as an atmospheric inlet. 

Decreasing the insulator thickness should offer better lifetime – both for field emission 

mode as well as field ionization signal intensity vs. time. Both modes showed a general 

decrease in signal intensity over time, with field emission mode decaying much faster than 

field ionization mode.  For field emission mode, this was attributed to emitter tip erosion due 

to ion back streaming.  For field ionization mode, the decay in signal intensity is most likely 
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the result of adsorbed neutrals on the microionizer.  By reducing insulator thickness, field 

emission could be achieved with smaller potentials (e.g. 10 V or less).  This would reduce the 

maximum possible kinetic energy of stray ions and limit damage due to back streaming.  The 

end result would be a smooth, predictable field emission current.  Moreover, short pulses of 

field emission mode can be used to clear the adsorbed layer off of the surface of field 

ionizers.
19

  Thus, periodic field emission mode pulses or even alternating field emission and 

field ionization MS scans could reduce the rate of signal decay for field ionization mode – 

potentially increasing lifetime.  

6.3  Applications Beyond HPMS 

More traditional field effect devices rely upon Spindt cathodes (or similar geometries) 

and tend to require rather complicated fabrication processes.
20-21

  The strength of the 

microionizer is its simple design and fabrication.
22

  This should translate to lower costs upon 

scaling up fabrication.  As such, the microionizer might find use beyond HPMS.  Thus, it 

could prove to be a low cost alternative to other field effect devices that have been developed 

for applications ranging from RF amplifiers
23

 to field effect transistors
24

 and even 

microsatellite ion thrusters.
25

  These applications would be best approached via 

collaborations, where proof of concept experiments could be achieved by tailoring the PCB 

mount to each application.  Further development could then utilize more advanced designs 

similar to that proposed for the endcap-based microionizer. 
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6.4  Figures 

 

Figure 6.1:  Solidworks schematic and images of the atmospheric inlet mini-chamber and 

coverplate.  a) Cross-sectional view of the mini-chamber which highlights the inlet, 

microionizer, tube lens, and SLIT positions.  b) An image of a microionizer mounted in 

coverplate ready for atmospheric inlet operation; the ionizer is sealed to the PCB with epoxy 

and a Viton o-ring (not shown) between the aluminum cover plate and PCB ensures gas flow 

through the high-field region. 
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APPENDIX 1:   LIST OF MICROFABRICATION TECHNIQUES, TOOLS, AND 

GENERAL RESOURCES 

 

A1.1  Tools and Techniques Used During Fabrication Development 

Tool/Technique Purpose Location 

Karl Suss MA6/BA6 

Photolithography – 

Exposure UNC/CHANL 

Laurell WS-650 Spin Coater 

Photolithography – 

Photoresist Application UNC/CHANL 

Kurt J Lesker PVD-75 

Magnetron Sputter Coater 

Thin Metallic Film 

Deposition UNC/CHANL 

Electron Beam Evaporator 

Thin Metallic Film 

Deposition UNC/CHANL 

Tempress LPCVD Furnace 

Si3N4 and Polysilicon 

Deposition UA/TMNFC 

Cricut Explore Xerography UNC 

Furnace Annealing UNC 

Alcatel AMS-100 DRIE 

Anisotropic Etching and 

Plasma Cleaning UNC/CHANL 

Trion Mini-lock Phantom III 

RIE/ICP 

Isotropic Etching and 

Plasma Cleaning UNC 

AGS RIE Isotropic Etching UA/TMNFC 

Trion Phantom II RIE Isotropic Etching Duke/SMIF 

SPTS Pegasus Deep Silicon 

Etcher Anisotropic Etching Duke/SMIF 

Transene Chromium Etch 1020 Chrome Etch UNC 

Transene Buffered Oxide Etch Isotropic SiO2 Etching UNC 

Heated Phosphoric Acid Si3N4 Etching UNC 

Scribe and Break Dicing UNC 

Disco-XXX Dicing UNC 

WestBond 7KE Wire Bond UNC 

Cyantek Nanostrip 2X Cleaning UNC 

SC1/SC2 (RCA Series) Cleaning UNC 

Table A1.1:  List of fabrication tools and techniques employed. 
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A1.2  Notes and Resources 

The following information is a list of useful hints, tricks, and resources accumulated 

during the development of the process flow for microionizer fabrication.  This list is not 

meant to be exhaustive but should be a good starting point for future deep, anisotropic 

etching with or without SOI substrates. 

A1.2.1    General Resources 

There are many resources for semiconductor (specifically silicon) theory and fabrication.  

This project relied heavily upon Madou’s series on micro and nanofabrication for 

introductory information as well as citations for further research.
1
  The classic book by Sze, 

Physics of Semiconductors Devices, was also very useful.
2
  Several other books were used for 

more specific aspects of the project including metal-semiconductor contacts,
3
 wire bonding,

4
 

and silicon-on-insulator technology.
5
  There were also several research articles and reviews 

regarding insulating layers that are worth mentioning: conduction in insulators;
6-8

 silicon 

dioxide characteristics and breakdown;
9-11

 and materials for field emission devices.
12

  Finally 

two articles by Williams, et al were crucial for practical microfabrication.  These articles 

report the etch rates of many common semiconductors, metals, and polymers under different 

etch and cleaning processes.
13-14

 

A1.2.2    Cleaning and Wet Etches 

Photoresist removal is best done with oxygen plasma or Nanostrip 2X (Cyantek 

Corporation).  150 mm wafers do not fit into either of the oxygen plasma cleaners at UNC; 

the DRIE and RIE can substitute but will leave behind resist along the edge.  Nanostrip 2X   

is a stabilized piranha solution (sulfuric acid + hydrogen peroxide + peroxymonosulfuric 

acid), and it is less likely to result in explosive hydrogen outgassing than standard piranha.  It 
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is best for removing organics, certain metals, and photoresists.  If heated to ≈ 75 
o
C, it can 

even remove stubborn negative resists such as KMPR or SU-8.  Heating will significantly 

deplete the strength of the solution and it is not recommended to be reused afterwards. 

The SC1/SC2 cleaning series, developed by Kern at RCA, should be used whenever the 

surface of the substrate needs to be pristine.
15-16

  Examples of when it would be appropriate 

are to prep a wafer that is no longer ‘prime’ for spin coating (e.g. double-sided processing) or 

for a thin film deposition where adhesion and/or electrical contact are important (e.g. wire 

bonding pad deposition). 

A typical cleaning series:   

 Nanostrip 2X at 75 
o
C for 10 min (for photoresist and organics) 

 SC1 at 70 
o
C for 10 min (for organics) 

 2% HF Dip for 30 s (strips oxide left behind by SC1) 

 SC2 at 65 
o
C for 10 min (for metal ion removal) 

Times and temperature can vary within reason (except the HF dip, where 15 to 30 sec is 

sufficient).  The wafer should be rinsed with deionized water between steps and thoroughly 

dried with N2 gas after cleaning.  And as always, make sure you use containers appropriate to 

the solution.  Certain glasses (pyrex and borosilicates) can release potassium ions into 

solution which can affect insulator behavior.  PTFE and PFA beakers were used for nearly 

every cleaning (just make sure the hotplate is pre-heated!).  Quartz is an acceptable, but 

expensive alternative for SC1 and SC2 (but not HF). 

Silicon dioxide etching via buffered oxide etch solution (BOE, 5:1) was the most 

successful wet etch employed at UNC.  For small features (< 50 µm), surface tension can be 
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an issue and a short oxygen-plasma cleaning is suggested to ensure wetting at the bottom of 

etch trenches. 

Heated phosphoric acid (85% at 125 to 180 
o
C) for silicon nitride requires careful control 

of the temperature and concentration, if either gets out of range the etch rate of silicon and 

silicon dioxide become non-neglible.
17

 

Silicon can be wet etched with several solutions including potassium hydroxide in 

isopropyl alcohol (KOH); tetramethyl ammonium hydroxide (TMAH); and 

hydrofluoric/nitric/acetic acid (HNA).
1
  KOH and TMAH yield anisotropic etches because 

they selectively etch crystal planes at different rates, while HNA is an isotropic etchant.
1, 18

 

A1.2.3    AZ-9260 Guidelines 

AZ-9260 (MicroChem GMBH) became the workhorse photoresist for microionizer 

fabrication.  It is a thick, positive resist which can be spin coated upwards of 24 µm thick.  A 

typical recipe for 6.5 to 7.0 µm was: 

 Dehydrate wafer in oven for 10 min 

 Spin at 3k RPM for 30 s (004 acceleration) 

 Softbake on hotplate for 3 min at 115 
o
C 

 Cool to RT (≈ 1 min) 

 Soak in H2O for 5 min (rehydration step) 

 Rinse and Dry 

 Expose for 19.5 s (same for silicon, SOI, and chromed silicon) 

 Develop in AZ-400K (1:3 dilution) for 1 to 2 min  

 Rinse and Dry 
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This thickness was adequate for silicon and SOI (up to 1 µm insulator) DRIE for at least 

200 µm total depth (provided dead time cooling steps were included).  When working with 

AZ-9260 (or any thick, positive resist), it is good to use a rehydration time between the 

softbake and exposure.
19

 

A1.2.4    Thin Metallic Films 

Metallic thin films can be used for electrical contact and/or etch masks.  Electrical 

contacts for wire bonding were exclusively deposited using the e-beam evaporator, which 

was always given an overnight pumpdown to ensure high quality thin films.  The sputter 

coater (Lesker PVD 75) was used for solderable contacts and masking layers. 

Titanium is a great, all-purpose base-layer for silicon metallization; typically a thin 

flashing of 5 to 25 nm.  It acts as a getter for the deposition chamber, helping to remove 

residual gases such as oxygen (often you will see chamber pressure decrease after titanium 

deposition has started).  Moreover, it adheres to silicon (and silicon oxide) as well as most 

metals (such as gold and chromium).  If annealed, it will form an Ohmic contact with either 

n- or p-type silicon.
3
 

Chromium and aluminum were both used as masking materials for DRIE.  Chromium 

was preferred for the microionizer because it is compatible with Nanostrip 2X which was 

used to strip the photoresist used to transfer mask patter into the chromium layer.  Compared 

to photoresist, chromium demonstrated a strong tendency to micro-mask, which increased 

surface roughness for both sidewalls and trench bottoms.  For masking, a 25 nm of titanium 

followed by 100 to 250 nm of chromium were used. 

In the early days of microionizer fabrication development, electrical contact was 

overlooked.  This was a mistake which lead to inconsistent results (one device would work 
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fairly well while others would not even turn on) and slowed progress.  Electrical contact to 

silicon is difficult to achieve, because an insulating layer of native oxide forms in seconds.
20-

21
  Metallic pads for electrical contact are the most reliable way to overcome the oxide.

3
  

There are many methods to produce high quality pads and many are sensitive to the doping 

of the silicon.  The two processes highlighted should work most of the time; one is for 

soldering and the other is for gold wire bonding.   

 Solderable Pads (also good for aluminum wire bonding)
22

 

o 25 nm Titanium (adhesion) 

o 250 nm Copper (solder bond) 

 Wire bondable Pads (for gold wire bonding)
23-24

 

o 50 nm Titanium (adhesion) 

o 65 nm Palladium (diffusion barrier) 

o 250 nm Gold (wire bond) 

 Anneal at 450 
o
C for 30 minutes under forming gas (95% N2, 5% H2) 

Thicker copper will allow for multiple solder attempts (the copper dissolves on each 

attempt).  For wire bonding, this recipe is close to the minimum – usually a thicker gold layer 

(closer to 400 nm) is recommended for strong bonds.
4
  The last reference, by Harman is also 

a good guide for other bonding systems.  Other electrical contacts include indium soldering
25

 

as well as direct wire bonding to silicon.
26

  These were attempted for the microionizer, but 

proved inferior to gold wire bonding. 

A1.2.5    Dry Etching 

There are many resources for dry etching (both standard RIE and DRIE), however every 

tool and process is a little different, so there is no substitute for experience and a working 
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knowledge of plasma/reactive ion chemistry.  Some good resources to get started are 

Madou,
1
 the back silicon process,

27-29
 as well as the following review articles.

18, 30-31
  Several 

articles were useful for specific aspects of DRIE such as aspect ratio dependent etch rate;
31

 

notching at an insulating layer;
32-33

 and deep, anisotropic etching.
18, 34

  Ideas for etch recipes 

were found at: 

 BYU Cleanroom website:  http://www.cleanroom.byu.edu/rie_etching.phtml 

 Trion Technology:  http://www.triontech.com/applications.htm  

 Etch Rates for Micromachining
13-14

 

The Alcatel AMS-100 was the main tool used for DRIE.  It relies upon the Bosch process
35

 

to generate deep, anisotropic etches by alternating an isotropic etch with a passivation step.  

The AMS-100 etches between 6 and 15 µm/min depending upon etch conditions.  During 

continuous etching, it was found the substrate heated significantly (worse at higher etch 

rates) and mask selectivity was an issue (even for chromium and thick resists).  This was 

overcome by adding a cooling step between short etch times, typically 30 s of etch time + 

35 s of cool time.  Note, the AMS-100 requires a minimum of 35 s to reestablish the plasma.  

Using this looped recipe, anistotropic etches up to 250 µm in depth were achieved with 

6.5 µm of AZ-9260 photoresist.   

  

http://www.cleanroom.byu.edu/rie_etching.phtml
http://www.triontech.com/applications.htm
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