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Abstract 

Andrew Nguyen: Towards in silico toxicity prediction: Analyzing superfund chemicals for their biological 

properties using the Toxcast data 

Under the direction of Rebecca Fry 

 

 In 1980, the Superfund program was established in response to the growing concern about hazardous waste 

sites in the United States. Many toxicological exposure assessments, remediation processes and estimation of human 

health risks at Superfund sites depend on animal studies as a model for assessment. However, with the existence of 

thousands of potentially harmful toxicants, using a traditional in vivo approach to prioritize chemicals can become 

time-consuming and expensive. In this project, we set out to prioritize chemicals found at U.S. Superfund sites by 

incorporating a novel computational toxicological modeling tool, ToxPi, and half-maximal activity (AC50) data 

from in vitro assays run by the ToxCast program. Focusing on the biological processes (n=11) defined by ToxCast, 

we defined overall biological potency profiles, derived a rank based on a score for the 244 SPL toxicants which had 

a statistically significant correlation to the ATSDR 2013 SPL Rankings, and identified unique bioactivity trends. 
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INTRODUCTION  

The release of hazardous substances or mixtures onto U.S. lands pose a risk to human health and the 

environment. The Superfund program was developed to clean these hazardous wastes sites and substances identified 

by the U.S. Environmental Protection Agency (EPA). These hazardous waste sites are known as Superfund sites and 

are placed on the National Priorities List (NPL). Both the ATSDR and the EPA are required to prepare a list, the 

ATSDR Substance Priorities List (SPL), which ranks the substances commonly found at facilities on the NPL that 

post the most significant potential threat and exposure to human health. The list was meant to help the Superfund 

program prioritize dangerous toxicants and sites for clean-up. The Superfund program was originally a two billion 

dollar, ten year plan, but it has extended over 35 years and has incurred an estimated trillion dollars in total cost. The 

completion of the Superfund program may be attributed to the presence of too many chemicals for toxicological 

assessments using traditional in vivo methods. 

There are thousands of chemicals that humans and environmental species are exposed to. However, only a 

small percentage of those chemicals have been tested using the standard in vivo test method (Judson R. et al., 2014). 

Thus, the challenge for most toxicology research is that there are too many chemicals for standard in vivo testing 

methods. To address this issue, the EPA developed the ToxCast program. The ToxCast program was developed with 

the intention of testing a large range of environmental chemicals using in vitro high-throughput screening (HTS) and 

high-content screening (HCS) assays to obtain activity profiles for predicting toxicity and prioritizing chemicals (EPA, 

2014). 

The ToxCast database houses thousands of chemicals which are analyzed through thousands of assays to 

establish dose-relationships between chemical and assay as half-maximal activity concentration (AC50). The assays 

contained in ToxCast is meant to collect information that can be used to profile chemicals. The assays provide 

information such as biological process target, intended target family, and target genes. Despite the robust ToxCast 

database, trying to manipulate data from over 800 assays to profile the overall toxicity of a chemical can become 

tedious and difficult to visualize especially when comparing thousands of chemicals. While ToxCast may provide the 

information needed to effectively predict and determine the toxicity of chemicals, a computational method that can 

take advantage of this data was missing. 

 The Toxicological Priority Index (ToxPi) may be the solution and can potentially alleviate some of the 

existing challenges in toxicology research. ToxPi is a flexible, computational tool with several key features: 
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extensibility to incorporate additional types of data, exposure, multivariate assessment of toxicity relative to any set 

of chemicals, differential weighting factors for various information domains and data sources, transparency in score 

deviation and visualization, and flexibility to customize components for diverse prioritization tasks (Reif et al. 2010). 

ToxPi creates a ranking system formatted around a graphical framework for analyzing complex toxicological data 

(Reif et al. 2010). Similar to other computational toxicology approaches, ToxPi showcases the strengths of a cost 

effective method that can accurately assesses and prioritize chemicals based on their effects on biological processes.  

This article describes the implementation of ToxPi for the objective chemical prioritization of Substance 

Priority Listed (SPL) toxicants (n=244) within the ToxCast database to identify and reveal plausible biological 

pathways for predictive toxicology assessments.  

 

MATERIALS AND METHODS 

Data Source 

The data set used to create the prioritization profiles was based on the ToxCast database (n=9076) queried for ATSDR 

2013 SPL toxicants (n=878). Initially, a total of n=158 chemicals were identified in both ToxCast and the ATSDR 

substance priority list but, database updates at the end of 2014 led to an increase of chemical overlap (n=244). The 

primary data set used for data analysis included the 2014 ToxCast data updates, thus the total number of chemical 

overlap (n=244) and their accompanying data was used. 

 

Assay Selection 

Any chemical submitted to ToxCast undergo a battery of in vitro biological assays (n=342) generating data for 821 

assay endpoints. The assay endpoints are categorized into various descriptors such as biological process target (n=11), 

intended target family assay types (n=22), and different target genes (n=334) indicated in the ToxCast Assay Target 

Info spreadsheet. For data analysis, assay endpoints were selected categorized based on biological process target which 

is related to a cumulative, biological response. After the assays were categorized into the specific biological process 

targets, a reference gene list was obtained based on the gene symbol annotations for each assay. 
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ToxPi Analysis 

Using the ToxCast Annotation Assay Target Info, the assays were identified and categorized based on their biological 

process. The 244 overlapping substances found in both the ATSDR substance priority list and ToxCast were integrated 

into ToxPi as a Microsoft excel comma separated values (CSV) file. The ToxPi GUI was used to organize the assay 

data into slices where each slice represented one of the n=11 different biological process targets. For each slice, the 

slice weight can be scaled from 1 to 25. A slice weight of 1 was applied throughout the analysis. Each slice had a 

defaulted color but was changed individually to help distinguish between slices. After the assays were categorized, 

the component values were scaled using one of six available formulas. Since ToxCast represent their data as AC50 

values a concentration level is considered a “hit” or active for an assay, the formula −1 ∗ log10(𝑥) + log10(max(𝑥)) 

was used. AC50 values that are small is represented as being potent while larger values are representative of non-

active chemicals. The max(𝑥) portion of the equation represented data values that were defined as “not-active”. In 

ToxPi, potency is measured as distance from the center. Therefore, the more potent a chemical is, the larger the ToxPi 

slice. Chemical potency estimates is represented graphically by the size of the ToxPi slice as well as a numerical ToxPi 

value for that indicated slice. Overall, ToxPi produces a quasi-pie or ToxPi profile that can graphically show overall 

potency. However, each ToxPi profile has an overall ToxPi score that represents the ToxPi profiles. Chemicals that 

are more potent should have a larger ToxPi score. ToxPi profiles for the data set (n=244) was conducted for each 

biological process and an overall analysis in which each slice represented a biological process. The ToxPi data output 

from the overall analysis was used to rank the chemicals from 1 to 244 where 1 is considered the most potent. Figure 

1 details the various components in a ToxPi profile and how to interpret the results. 

 

Chemical Rank Comparison 

Based on the overall ToxPi score for each chemical (n=244), chemical rankings were determined. ToxPi profiles with 

larger overall ToxPi scores were considered more potent and should be prioritized over the chemicals with lower 

overall ToxPi scores. Therefore, the chemicals with higher overall ToxPi scores were ranked higher (ie. 1), and 

chemicals with lower overall ToxPi scores were ranked lower (ie. 244). A linear regression model to compare the two 

rankings were made through Microsoft Excel 2013.  
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Heatmap and Hierarchical clustering 

A heatmap was created to graphically represent all 244 chemicals and their ranking across each biological process 

using R-studio (v.3.2.4). Unsupervised, hierarchical clustering analysis using a complete-linkage method was 

performed to determine trends found within the heatmap using R-studio (v.3.2.4). Each cluster group was outlined 

with a red border and labeled as group 1, group 2, and group 3. (Figure 2) The chemicals in each clusters were 

identified with R-studio (v.3.2.4). 

 

Identification and Distribution of Chemical Use 

Once the chemicals were identified, the chemicals were queried for using their Chemical Abstracts Service Registry 

Number (CASRN) identifier through the iCSS ToxCast dashboard (v2). With the iCSS TOxCast dashboard (v2), the 

chemical use category was identified for each chemical (n=244) in the data set. Through Microsoft Excel 2013, the 

overall chemical use count distribution was determined by creating pivot table. A chemical use count distribution was 

determined for each chemical group cluster.  

 

Identifying Bioactive Chemicals 

Chemicals that were considered bioactive were determined based on their overall ToxPi value.  Chemicals which had 

an overall ToxPi value two standard deviations above the mean overall ToxPi value were considered bioactive.  

 

Identification of Target Genes and Biological Relevance 

Using the Comparative Toxicogenomic Database, the top 10 ranking chemicals were individually queried for their 

known gene interactions and cross-referenced to the gene list provided by the ToxCast library. Genes that were not 

found in the cross-referenced gene list were removed and the remaining genes were queried for associated diseases 

that were statistically significant (p<0.01).  

 

Chemical Properties 

Chemical property descriptors such as the octanol/water partition coefficient, cell membrane permeability, and 

predicted percent human absorption were determined by QikProp. In some cases, values for logP and other chemical 

properties were unavailable. 



6 

Results 

Overlap between Tox Cast data and ATSDR 

The ToxCast data presented n=9076 chemicals and n=821 different assay endpoints was obtained from the EPA 

ToxCast site (https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data), and queried for ATDSR 

2013 (n=1000) chemicals. A total of n=244 chemicals were identified that were assayed in ToxCast (Table S1). 

 

General Biological Processes Enrichment 

The 244 chemicals that overlapped with ATSDR toxicants were analyzed in ToxPi to visualize a general effective-

enrichment of each chemical for 11 different biological processes: cell cycle, cell death, cell morphology, cell 

proliferation, mitochondrial depolarization, oxidative phosphorylation, protein stabilization, receptor binding, 

regulation of catalytic activity, regulation of gene expression, and regulation of transcription factor activity. Overall 

ToxPi values ranged from 0 to 6.437 (Table S2). Based on the overall ToxPi value, approximately 10% of the 

chemicals (n=22) were considered bioactive across all biological processes. However, a total of 63 chemicals were 

identified as bioactive in at least one biological process. Across each biological process, 50% or more of the top 10% 

bioactive chemicals showed significant perturbations in 6 of the 11 biological processes: cell death, protein 

stabilization, mitochondrial depolarization, oxidative phosphorylation, regulation of gene expression, and cell 

morphology. Among the top 10% bioactive chemicals (n=22), 10 different chemical use categories were identified: 

11 insecticides, 3 fungicides, 2 plasticizers, 2 degradates, 1 bactericide, 1 flame retardant, 1 herbicide, 1 natural, and 

1 wood preservative (Table 1). 

 

Hierarchical clustering 

A heatmap was created which show trends among the chemicals based on their ranks. Chemicals that are ranked the 

highest or more active are colored red while the chemicals that are considered moderately active are colored yellow 

and the chemicals that are considered least active are colored gray (Figure 2). Three distinct clusters are identified: 

group 1, group 2, and group 3. Group 1 consisted of 72 chemicals, group 2 consisted of 89 chemicals, and group 3 

consisted of 83 chemicals (Figure 3). Based on ToxPi rankings, group 1 contained the most toxic chemicals, group 2 

consisted of chemicals that are considered moderately toxic in comparison to the other chemicals within the dataset, 

while group 3 consisted of the least toxic chemicals within the dataset. The iCSS ToxCast database was used to identify 

https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
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the different chemical use annotation terms (n=61) for each chemical (n=244). The overall chemical use distribution 

is shown in Figure 4 in which the major chemical use categories are highlighted with a red arrow in the figure and 

boxed in red in Table 2. 

 

Hierarchical clustering-Group 1 

Group 1 included 22 different chemical use annotation terms identified as: insecticide, herbicide, intermediate, 

plasticizer, natural, fungicide, degradate, coal tar product, reactant, emulsifier, unassigned, pharmaceutical, 

antioxidant, flame retardant, research, preservative, bactericide, captive consumption only, impurity, irritant, 

restricted, and wood preservative. Of the chemical use categories identified in group 1, insecticides (n=31) are the 

most abundant and represented 73.8% of all chemicals identified as an insecticide in the dataset (Figure 5, Table 3). 

The next abundant identifier are herbicides (n=10) which represented 35.7% of all chemicals identified as an herbicide 

in the dataset. 

 

Hierarchical clustering-Group 2 

Cluster group 2 contained 35 different chemical use terms which are identified as: solvent, intermediate, reactant, 

herbicide, insecticide, precursor, fragrance, industrial, plasticizer, flavor, antioxidant, pesticide other, natural, 

fungicide, fumigant, catalyst, coal tar product, pharmaceutical, flame retardant, preservative, disinfectant, additive, 

fuel, reagent, surfactant, antifoam, cleaner, cosmetic, essential oil, explosives/weapons, filler, heat transfer medium, 

not assigned, pesticidal inert, propellant, and textile coatings. Of the chemical use categories identified (n=35) in group 

2, solvents (n=20), intermediate (n=17), reactant (n=15) and herbicide (n=14) are the most abundant and represented 

46.5%, 39.5%, 35.7%, and 50% of all chemicals, respective to their chemical use in the dataset (Figure 6, Table 4). 

 

Hierarchical clustering-Group 3 

Cluster group 3 contained 40 different chemical use categories which include: reactant, solvent, intermediate, flavor, 

precursor, plasticizer, natural, herbicide, fragrance, coal tar product, pharmaceutical, flame retardant, disinfectant, 

research, insecticide, industrial, antioxidant, fungicide, fumigant, preservative, additive, fuel, reagent, surfactant, 

bactericide, accelerator, antifreeze, antimicrobial, antiseptic, biocide, breakdown product, combustion product, curing 

dielectric flued, metabolite, plant growth regulator, repellant, slimicide, sterilizing, and water treatment. Of the 
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chemical use categories identified in group 1, reactants (n=25) are the most abundant and represented 59.5% of all 

chemicals identified as a reactant in the dataset. Solvents (n=23), intermediates (n=19), and flavor (n=10) are the next 

most abundant chemical use identifier and represented 53.4%, 44.18%, and 76.9% of all chemicals, respective to their 

chemical use in the dataset (Figure 7, Table 5).  

 

Top 10 Predicted Chemicals in ToxPi  

The top 10 ranking chemicals were chlordane, thiram, heptachlor, p,p’-DDD, mercuric chloride, dinoseb, o,p’-DDT, 

captan, tannic acid, and naled respectively (Figure 8). Based on the ToxPi profiles, the top 10 ranking chemicals 

showed a high degree of activity for a majority of the biological processes (Figure 8). Significant perturbations for 

each chemical was determined based on their biological processes enrichment. To specify, chlordane was shown to 

significantly disrupt cell proliferation, cell death, protein stabilization, mitochondrial depolarization, oxidative 

phosphorylation, regulation of transcription factor activity, regulation of gene expression, cell morphology, and 

receptor binding. Thiram was shown to significantly disrupt cell proliferation, mitochondrial depolarization, 

regulation of gene expression, cell morphology, regulation of catalytic activity, and receptor binding. Heptachlor was 

shown to significantly disrupt cell cycle, cell death, protein stabilization, mitochondrial depolarization, oxidative 

phosphorylation, regulation of gene expression, and cell morphology. p,p’-DDD was shown to significantly disrupt 

cell cycle, cell death, mitochondrial depolarization, oxidative phosphorylation, regulation of transcription factor 

activity, regulation of gene expression, and cell morphology. Mercuric chloride was shown to significantly disrupt 

protein stabilization, mitochondrial depolarization, oxidative phosphorylation, regulation of gene expression, cell 

morphology, regulation of catalytic activity, and receptor binding. Dinoseb was shown to significantly disrupt cell 

cycle, cell death, protein stabilization, mitochondrial depolarization, oxidative phosphorylation, regulation of 

transcription factor activity, and cell morphology. o,p’-DDT was shown to significantly disrupt cell proliferation, cell 

cycle, cell death, protein stabilization, mitochondrial depolarization, oxidative phosphorylation, regulation of gene 

expression, and cell morphology. Captan was shown to significantly disrupt mitochondrial depolarization, oxidative 

phosphorylation, cell morphology, regulation of catalytic activity, and receptor binding. Tannic acid was shown to 

significantly disrupt protein stabilization, mitochondrial depolarization, oxidative phosphorylation, cell morphology, 

regulation of catalytic activity, and receptor binding. Naled was shown to significantly disrupt protein stabilization, 

oxidative phosphorylation, regulation of gene expression, cell morphology, and receptor binding.  
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Chemical Properties-Top 10 

The top 10 ranking chemicals are mainly used as pesticides except for tannic acid, which was categorized as a natural 

substance. Based on the octanol/water partition coefficient (logP) values and chemical category, a majority of the 

compounds are structurally different except for p,p’-DDD and o,p’-DDT or chlordane and heptachlor. The top ten, 

logP values for mercuric chloride and tannic acid could not be obtained. Based on QikProp analysis, a majority of the 

chemicals were determined to have a high human oral absorption percentage, high predicted apparent MDCK cell 

permeability, and moderate central nervous system activity with two having high activity and one having no activity. 

The logP values of the top 10 chemicals showed significant differences among the top 10. Chlordane, heptachlor, p,p’-

DDD, and o,p’-DDT had similar logP values with the lowest being 5.835 and the highest being 6.882 while the 

remaining chemicals were between -1.417 and 2.839. 

 

ATSDR/ToxPi Differences 

Surprisingly, the top 10 ranking chemicals in ToxPi had low SPL rankings. For example, chlordane ranked 1 in ToxPi 

but only ranked 22 in ATSDR. Thiram ranked 2 for ToxPi but only ranked 271 for ATSDR. A regression model 

comparing ToxPi Rank and SPL rank showed that the F-statistic is 39.572 with a p-value of 1.468E-9. The p-value 

suggests that the parameters are jointly statistically significant. (Figure 9, Table 6). 

 

Gene Interactions 

The reference gene list (n=334) were queried for known interacting genes associated for the top 10 ranking chemicals 

individually. Chlordane resulted in a gene list of n=19, thiram resulted in a gene list of n=34, heptachlor resulted in a 

gene list of n=19, p,p’-DDD resulted in a gene list of n=45, mercuric chloride resulted in a gene list of n=73, o,p’-

DDT resulted in a gene list of n=42, captan resulted in a gene list of n=6, and naled resulted in a gene list of n=4. Both 

tannic acid and dinoseb had known gene interactions. However, the known interacting genes were not found in the 

reference gene list (n=334). Therefore, tannic acid and dinoseb were removed from the analysis for disease 

associations. 

The gene list for chlordane resulted in n=120 statistically significant diseases associations (p<0.01). The gene list for 

thiram resulted in n=300 statistically significant disease associations. The gene list for heptachlor resulted in n=156 

statistically significant diseases associations. For p,p’-DDD, there were n=310 statistically significant diseases 
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associations, mercuric chloride resulted in n=419 statistically significant diseases associations, o,p’-DDT resulted in 

n=285 statistically significant diseases associations, captan resulted in n=55 statistically significant diseases 

associations, and naled resulted in n=19 statistically significant diseases associations (Table 7). 

The top 10 ranking chemicals, excluding dinoseb and tannic acid, and their gene-disease associations showed that 

cancer was the predominant disease category for each chemical. There are many potential avenues to discuss the 

biological relevancies for each chemical gene list and their associated diseases. One example could be broadly focused 

around cardiovascular diseases. Results showed that n=3 chemicals: chlordane, captan and naled, did not have a 

statistically significant (p<0.01) association with hypertension. In comparison, n=5 chemicals: thiram, heptachlor, 

p,p’-DDD, mercuric chloride, and o,p’-DDT showed significant associations with hypertension. 
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Discussion 

In the present study, we aimed to assess the capabilities of ToxPi as a computational modeling tool for 

predicting the propensity of SPL chemicals to disrupt biological processes based on in vitro data provided by ToxCast. 

Based on the available ToxCast data for SPL chemicals, a unique approach for identifying patterns found from the 

bioassay response for each chemical was carried-out using ToxPi. ToxPi graphically represents data in a quasi-pie 

chart where the individual slices vary their distance from the center of the circle. The distance of the slices are 

proportional to a normalized interval [0,1] (Reif et al. 2010). These values represent the amount of activity or potency 

a chemical has towards a specific slice (Reif et al. 2010). With each slice, a scaling factor can be applied to increase 

the importance of a slice in comparison to the other slices within the pie. Upon scaling, ToxPi results would show the 

scaled slice as having a larger width compared to other slices. Within the study, each slice (n=11) were equally scaled 

to reduce bias when assessing the chemicals’ ability to perturb a biological process based on their ToxPi values and 

slice size.  

A chemical was considered enriched if their ToxPi value was two standard deviations above the mean ToxPi 

value in each biological process. For example, the ToxPi mean for cell proliferation is 0.09832 and the standard 

deviation was 0.1896. Therefore, any chemical with a ToxPi value of 0.47752 or greater was considered bioactive and 

lead to significant perturbation. The ToxPi value for each slice is determined in respect to the values of the other 

chemicals within the dataset analyzed. Along with the ToxPi values for each individual slice, ToxPi provides an overall 

ToxPi value for the whole pie which was used to determine the chemicals’ potency to disrupt biological processes 

overall. Similar to the individual slices, the overall ToxPi value captures the chemicals’ potency compared to the other 

chemicals. Although this study presented a chemicals’ propensity to disrupt the biological processes overall, ToxPi 

can be used to examine specific events such as the endocrine disruption capabilities of the chemicals (Reif et al. 2010). 

Based on the ToxPi profiles and overall ToxPi scores, we determined that ToxPi can be used as a computational tool 

for ranking SPL toxicants. 

Once we determined that ToxPi can be used as a computational tool to rank SPL toxicants, we assessed 

whether the ToxPi rankings were comparable to the ATSDR SPL rankings. While the number of SPL chemicals 

(n=878) is drastically smaller than the number of chemical in the ToxCast database (n=1858), there was only ToxCast 

data for the 244 SPL toxicants. Of the 244 chemicals, the top ranking chemicals on the 2013 SPL such as arsenic, 

lead, mercury, and cadmium were not included. The chemical rankings based on the overall ToxPi values were found 
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to be significantly different from the rankings assigned on the 2013 SPL (Figure 9, Table 1). Despite the large 

discrepancies between the absolute rankings in ToxPi and SPL, the linear regression model indicated a significant 

relationship with a p-value of 1.468E-9. Many chemicals considered most toxic within the data set was not reflected 

in the 2013 SPL. Chemicals such as thiram, which ranked 2 in the dataset analyzed was only ranked 271 for ATSDR. 

While the number of chemicals may influence the absolute rank of a given chemical, the difference between the two 

rankings was alarming.  

Although absolute rankings may change and be influenced by the type of data included, the quantile regions 

along the entire ToxPi distribution should be more important in determining the relative toxicity. The differences in 

rankings may be affected by the type of data included within the ToxPi analysis. Having missing data or very small 

number of slices (eg. two or three) may affect the stability of ToxPi and what the slices imply. Furthermore, only 

bioassay data was included in the overall ToxPi analysis. Including another slice to describe chemical properties of 

each chemical such as logP values which describes the lipophilicity of a chemical would improve the accuracy of the 

ToxPi analysis for the overall biological processes ranking. Inclusion of logP values may have revealed additional 

novel findings in term of activity based on the assumption that similar molecular have similar activities. ToxPi analysis 

that included logP values was conducted however, some chemicals did not have a logP value recorded and therefore 

skewed the data. Since some chemicals did not have logP values and there was not another type of data source available 

which can also represent chemical properties, logP values were excluded in the analysis. 

 The statistically significant association found between the ToxPi rankings and the SPL rankings raised 

suspicion as to what type of relationships were found among the chemical rankings and biological processes. To assess 

the relationship between the ranks and biological processes among the chemicals, a heatmap was created to visualize 

the chemical rankings and hierarchical clustering analysis using a complete linkage method was applied to find similar 

clusters in the heatmap generated using R (v.3.2.4). (Figure 2, Figure 3). The clustering revealed three distinct groups 

(group 1, group 2, and group 3) where a majority of chemicals with high activity were clustered together (group 1), 

chemicals with moderate bioactivity grouped together (group 2), and mostly chemicals with low bioactivity were 

grouped together (group 3) (Figure 3). Across each biological process, the chemicals in the same group shared similar 

biological perturbations. This was an interesting pattern which suggested that the chemicals may share similar 

chemical structures or classifications (Figure 5, Figure 6, Figure 7). Figure 5-7 revealed that a majority of the 

chemicals found in each group shared relatively similar chemical use purposes. Although the absolute ranks differ 



13 

between ToxPi and SPL dramatically, the results suggest there is some association found between the two. Group 1, 

which contained the most active chemicals also contained the top 10% bioactive chemicals. Based on the chemical 

use count distribution, we found the major chemical use category was insecticides for both Group 1 overall as well as 

within the top 10% bioactive chemicals (Figure 5, Table 3). In group 2, the major chemical use category distribution 

widened but included insecticides and herbicides (Figure 6, Table 4). Finally, in group 3 which contained the least 

active chemicals did not contain many chemical uses as seen in group 1. Group 3 predominately contained reactants, 

solvents, and intermediates (Figure 7, Table 5). The results from the chemical use categories is very interesting. Using 

this information can help inform doctors as well as risk assesses identify populations at risk of exposure. By identifying 

that an individual comes from an agricultural community that frequently uses certain types of pesticides or insecticides, 

doctors can screen for the most active chemicals to help with diagnosing disease and identifying disease pathologies.   

 After identifying that there was a trend among the chemicals, we wanted to identify if the top 10 ranking 

chemicals had any significant biological relevance. There are many potential avenues to discuss the biological 

relevancies for each chemical gene list and their associated diseases. One example could be broadly focused around 

cardiovascular diseases or specifically hypertension. Besides the known risk factors associated with hypertension, few 

studies have suggested that exposure to environmental toxicants may increase the risk of hypertension. Some studies 

suggested that exposure to organic pollutants led to a positive but not statistically significant association to 

hypertension (Ha et al. 2009; Lind et al. 2014). Other studies showed that there was a positive association between 

hypertension and polychlorinated biphenyls (PCBs) while exposure to organochlorine pesticides showed varying 

associations (Valera et al. 2013).  A meta-analysis study which examined the association between exposure to 

persistent organic pollutants (POPs) and hypertension found that exposure to both non-dioxin-like polychlorinated 

biphenyls (PCBs), and dioxin-like PCBs as well as organochlorine pesticides such as chlordane showed increased risk 

of hypertension but suggested that the concentration of the environmental toxicant was associated with the risk of 

hypertension (Park et al. 2016). While the association between exposure to environmental toxicants such as pesticides 

and the risk for hypertension remains controversial, the results of this study suggests the top ranking chemicals, many 

of which are pesticides, affect genes associated with hypertension (p<0.01). Surprisingly, the top ranking chemical, 

chlordane, did not show a statistically significant association (p<0.01) with the genes associated with hypertension 

while a similar compound, heptachlor, did show a statistically significant association. The CTD showed that 

heptachlor and chlordane share n=21 common interacting genes which makes the results more puzzling. However, 
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using a larger p-value threshold shows that the association between hypertension and chlordane’s gene list is 

statistically significant (p<0.05). 

While the extent of this study examined the cumulative biological effects, preliminary ToxPi analysis 

examining the effects of chemicals on intended target families within each biological processes was performed and 

was found to be unstable due to the low number of slices. Further in-depth analysis of these chemicals and their 

intended target families should be conducted to establish adverse outcome pathways (AOP) for health diseases using 

an in silico approach. Overall, this study revealed a unique approach to: identify and visualize bioassay response trends 

within and between chemicals, categorize chemicals based on chemical use which showed the majority of pesticides 

found on Superfund sites being the most toxic and bioactive across each biological process, index a diverse selection 

of chemicals based on their propensity to disrupt biological processes which was shown to be statistically significant 

when compared to the SPL rankings, and found several statistically significant gene-disease associations related to 

the top 10 ranking chemicals which opens the possibilities to explore various disease pathways. With data based 

mainly on high-throughput screening, we may not be able to replicate the actual responses in a human system. 

However, we can strive to examine the underlying mechanisms resulting in the patterns we observed by identifying 

genes for gene-pathway mapping, incorporating pathway perturbation scores in ToxPi, including additional 

parameters in our ToxPi models to provide a more accurate representation of the chemicals, and identifying predictive 

chemical signatures for adverse outcome pathways (AOP) which would contribute to the growing field of 

computational toxicology. 
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Figure 1 Interpreting ToxPi Results 

 

 

Figure 2 Heatmap of ToxPi Chemical Rankings (rows) and Biological Processes (columns) 

 

 

CASRN Chemical Name Chemical Use Categories 

133-06-2 * Captan fungicide 

57-74-9 * Chlordane insecticide 

88-85-7 * Dinoseb herbicide 
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76-44-8 * Heptachlor insecticide 

7487-94-7 * Mercuric chloride bactericide 

300-76-5 * Naled insecticide 

789-02-6 * o,p'-DDT insecticide 

72-54-8 * p,p'-DDD insecticide 

1401-55-4 * Tannic acid natural 

137-26-8 * Thiram fungicide 

95-95-4 ¥ 2,4,5-Trichlorophenol fungicide 

534-52-1 ¥ 2-Methyl-4,6-dinitrophenol insecticide 

309-00-2 ¥ Aldrin insecticide 

80-05-7 ¥ Bisphenol A plasticizer 

510-15-6 ¥ Chlorobenzilate insecticide 

143-50-0 ¥ Kepone insecticide 

72-43-5 ¥ Methoxychlor insecticide 

72-55-9 ¥ p,p'-DDE degradate 

50-29-3 ¥ p,p'-DDT insecticide 

87-86-5 ¥ Pentachlorophenol wood preservative  

78-42-2 ¥ Tris(2-ethylhexyl) phosphate flame retardant, plasticizer 

1024-57-3 ¥Heptachlor epoxide degradate 
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Table 1 Top 10% Bioactive Chemicals-Chemical Use Categories; "*" represents chemicals ranked in top 10; "¥" represent 

chemicals ranked 11-22 

 

 

Figure 3 Hierarchical Clustering of Chemicals; Hierarchical clustering overlapped with heatmap (top); Hierarchical 

clustering with 3 identified clusters (bottom) 

 

Figure 4 Overall Chemical Use Count Distribution 
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Chemical Use Categories # of chemicals 

solvent 43 

intermediate 43 

reactant 42 

insecticide 42 

herbicide 28 

flavor 13 

plasticizer 13 

natural 12 

precursor 10 

fungicide 8 

Table 2 Overall Chemical Use Count Distribution 
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Figure 5 Group 1 Chemical Use Distribution; highest chemical use frequency highlighted with red arrow 

Chemical Use Categories Total Group 1 % in Group 1 

insecticide 42 31 73.80952 

herbicide 28 10 35.71429 

intermediate 43 7 16.27907 

plasticizer 13 5 38.46154 

natural 12 5 41.66667 

fungicide 8 5 62.5 

degradate 4 4 100 

coal tar product 7 3 42.85714 

reactant 42 2 4.761905 

emulsifier 2 2 100 

unassigned 2 2 100 
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pharmaceutical 5 1 20 

antioxidant 5 1 25 

flame retardant 4 1 33.33333 

Table 3 Group 1 Chemical Use Count Distribution; highest frequency chemical use group highlighted in red box 

 

 

 

 

Figure 6 Group 2 Chemical Use Distribution; major chemical use categories indicated by red arrow 

Chemical Use Categories Total Group 2  % in Group 2 

solvent 43 20 46.51163 

intermediate 43 17 39.53488 

reactant 42 15 35.71429 

herbicide 28 14 50 

insecticide 42 10 23.80952 

precursor 10 5 50 

fragrance 7 4 57.14286 

industrial 5 4 80 

plasticizer 13 3 23.07692 

flavor 13 3 60 
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antioxidant 5 3 23.07692 

pesticide other 3 3 100 

fungicide 8 2 25 

fumigant 3 2 66.66667 

Table 4  Group 2 Chemical Use Count Distribution; major chemical use categories indicated by red box 

 

Figure 7 Group 3 Chemical Use Distribution; major chemical use categories indicated by red arrow 

Chemical Use Categories Total Group 3 % in Group 3 

reactant 42 25 59.523 

solvent 43 23 53.488 

intermediate 43 19 44.186 

flavor 13 10 76.923 

precursor 10 5 50 

plasticizer 13 5 38.461 

natural 12 5 41.667 

herbicide 28 4 14.286 

fragrance 7 3 42.857 

coal tar product 7 3 42.857 

pharmaceutical 5 3 60 
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flame retardant 4 2 50 

disinfectant 3 2 66.667 

insecticide 42 1 2.381 

industrial 5 1 20 

antioxidant 5 1 20 

fungicide 8 1 12.5 

Table 5  Group 3 Chemical Use Count Distribution; major chemical use categories indicated by red box 

 

Figure 8 Top 10 Ranking Chemicals and their ToxPi profiles; A-J: chlordane, thiram, heptachlor, p,p’-DDD, mercuric 

chloride, dinoseb, o,p’-DDT, captan, and tannic acid 
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Figure 9 ToxPi Chemical Ranking vs. SPL Ranking 

 

Regression Statistics 

R Square 0.1405381 

P-value 1.468E-9 

Table 6 Linear Regression Statistics for ToxPi Chemical Rankings vs. SPL Ranking (Figure 9) 

 
 

Chlordane 

(n=19) 

Thiram (n=34) Heptachlor 

(n=19) 

p,p’-DDD 

(n=45) 

Mercuric 

chloride (n=73) 

o,p’-DDT 

(n=42) 

Captan (n=6) Naled (n=4) 
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Cardiovascular 

Diseases 

Pathologic 

Processes 

Hypertrophy Carcinoma 

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300

SP
L 

R
an

k

ToxPi Rank

ToxPi Rank vs. SPL Rank



26 

Signs and 

Symptoms 

Signs and 

Symptoms 

Disease ID MESH:D007247 MESH:D013568 MESH:D007247 MESH:D013568 MESH:D002318 MESH:D010335 MESH:D006984 MESH:D002277 

Disease 

Categories 

Urogenital 

disease (female) 

 
Urogenital 

disease (female) 

 
Cardiovascular 

disease 

Pathology 

(process) 

Pathology 

(anatomical 

condition) 

Cancer 

P-value 1.10E-18 3.72E-28 8.01E-22 1.49E-35 7.95E-61 1.03E-34 9.16E-10 2.00E-07 

Corrected 

P-value 

4.82E-16 3.15E-25 4.93E-19 1.31E-32 8.07E-58 8.50E-32 2.66E-07 5.16E-05 

Annotated 

Genes 

Quantity 

7 27 8 35 51 29 4 4 

Genome 

Frequency 

27/41269 genes: 

0.07% 

2285/41269 

genes: 5.54% 

27/41269 genes: 

0.07% 

2285/41269 

genes: 5.54% 

1231/41269 

genes: 2.98% 

1245/41269 

genes: 3.02% 

117/41269 

genes: 0.28% 

874/41269 

genes: 2.12% 

Table 7 Gene-Disease Associations for top 10 ranking chemical based on lowest p-value; total number of overlapping gene 
interactions for each chemical in parenthesis below chemical name 

 

 

 

 

 

 

 

 

 

 


