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Background 

In the fields of public health and medicine, many studies are interested in analyzing a 

count of events over a time at-risk, or a rate. Examples of studies where events over a time 

period were the outcome variable of interest include bleeding frequencies in dogs with 

hemophilia B (Nichols 2013), lower respiratory infections in one year old infants (LaVange 

1994), exacerbations in chronic obstructive pulmonary disease (COPD) (Keene 2008), and 

relapses in multiple sclerosis (Kappos 2006). The events are considered as discrete episodes over 

a time at risk; however, the difficulty in defining frequency of events varies by study. Generally, 

the risk time periods are variable and differ randomly between subjects. In some studies, the 

covariates in the study may change over the course of follow-up. This thesis will evaluate the 

different analysis methods that may be appropriate for data in the form of counts over a period of 

follow-up time. Considerations of these characteristics will affect the type of statistical methods 

used to analyze the data and in choosing the most appropriate method.  

This honors thesis topic was motivated by Nichols et al. (2013). The intent of Nichols et 

al. was to design a new study to compare the extent to which a gene-therapy treatment, called 

tolerization, would reduce the frequency of bleeding events in a dog with hemophilia B over two 

years (Nichols 2013). Nichols et al. was based on the data collected by a completed study, 

Russell et al. The original study, Russell et al., was also interested in the extent to which the 

tolerized treatment would reduce the number of bleeding events in a dog each year (Nichols 

2013). The data collected were bleeding frequency of hemophilia A dogs over time segments of 

0-4 months, 0-1 year, 1-2 years, 2-3 years, and 3-3.5 years. Nineteen dogs from the same litter 

were randomly assigned to one of two groups, non-tolerized (control) or tolerized treatment 

(Nichols 2013). Dogs assigned to the tolerized group were treated prophylactically to a trough 

level of 1% human FIX using a gene therapy approach. If the dog passed the retention 

requirements, then the frequency of bleeding events and total time at-risk were recorded. Of the 

nine dogs assigned to the tolerized group, only five achieved tolerance to the human FIX; hence, 

only five dogs were followed for the study. For the purposes of this thesis, the bleeding 

frequency dataset will refer to the first two years of data collected in the original study by 

Russell et al.  

An epidemiological follow-up study of lower respiratory illness (LRI) in children during 

the first year of life is another application of counted outcomes (LaVange 1994). This study was 
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interested in whether passive smoking exposure to tobacco smoke had an effect on incidence of 

LRI and whether this possible difference was due to other covariates. This large study compared 

two groups of infants: exposed to passive smoke and unexposed to passive smoking. The data 

were from a community-based cohort study of respiratory illness during the first year of life of 

284 infants born in town counties in central North Carolina in 1986 and 1988 (LaVange 1994).  

A LRI event was defined as the presence of coughing, wheezing, or rattling in the chest as 

reported by the parents. Covariates included socioeconomic status, seasons, race, breast feeding, 

crowding in the home, and chronic respiratory symptoms at 12 months. In epidemiologic studies 

like these, incidence densities are used to compare incidences across subgroups. LaVange et al. 

(1994) considered the use of the direct sample survey method of ratio estimation to estimate the 

incidence densities and to model their variation, known as the density ratio method. The density 

ratio method requires a large sample size such that the sums comprising of the numerators and 

denominators of the ratios are approximately normal for the risk of groups of interest (LaVange 

1994). Thus, the density ratio method is not applicable for evaluation on the bleeding frequency 

dataset. Instead, the LRI dataset in LaVange et al. (1994) was used to evaluate the density ratio 

method and model-based methods.  

Though not directly used in this paper, COPD exacerbations (Keene 2008) and multiple 

sclerosis relapses (Kappos 2006) are notable examples of studies that utilized different methods 

to analyze counts over a period at risk. Specifically, the COPD study applied methods that 

directly compared rates of each treatment of recurrent events of COPD in a respiratory clinical 

trial (Keene 2008). The study TRISTAN was a year-long double-blind, randomized study 

comparing the effects of different treatments on COPD exacerbation rates of 1465 patients 

(Keene 2008).  The data collected were the counted outcomes of acute exacerbations. 

Exacerbations were defined as worsening of COPD symptoms that required some type of 

treatment. The original analysis on the exacerbation rates used a Poisson regression model 

without correction for over-dispersion. However, the assumptions of a Poisson regression were 

not met for the data of COPD exacerbations (Keene 2008)
. 
Thus, a negative binomial model, 

which assumes a separate Poisson parameter for each subject, was expected to provide a better fit 

for the data (Keene 2008). The investigators also considered non-parametric methods, since non-

parametric methods would also avoid the assumptions of Poisson regression. However, due to 

the discrete and bounded property of the data, it was determined that a non-parametric method 
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would not provide estimates of the treatment effects that represent the extent of risk reduction 

(Keene 2008).  

 As a final example, Kappos et al. aimed to evaluate the treatment effect of the new oral 

immunomodulating agent fingolimod (FTY720) on relapsing multiple sclerosis. The study 

randomly assigned 281 patients to three treatment groups: a daily intake of 1.25 mg of 

fingolimod, 0.5 mg of fingolimod, or placebo (Kappos 2006). Data collected were magnetic 

resonance imaging (MRI) and other clinical evaluations over 6 months. Wilcoxon rank sum tests 

were used to compare the MRI endpoints among the three groups. Poisson regression was also 

used to compare the annualized relapse rates. Investigators found that fingolimod reduced the 

number of lesions detected on MRI and clinical disease activity in patients with multiple 

sclerosis (Kappos 2006). Data from the Sylvia Lawry Centre for Multiple Sclerosis Research 

were used to calculate power and sample size using a non-parametric bootstrap method with a 

two-sided Wilcoxon rank-sum test and a 0.05 significance level (Kappos 2006).  

This thesis will focus on evaluating four main methods: non-parametric method 

Wilcoxon rank sum test, model-based methods Poisson regression and negative binomial 

regression, and an alternative density ratio method. The Statistical Methods section compares 

general theory and concepts of these methods, as well as the advantages and disadvantages. In 

the Application section, Wilcoxon rank sum test, Poisson regression, and negative binomial 

regression will be applied and evaluated using the bleeding frequency dataset (Nichols 2013). 

Furthermore, the bleeding frequency data will be used to evaluate sample size calculations for 

the future Nichols et al. (2013) study using the Wilcoxon rank sum test and negative binomial 

regression with a 0.05 two-sided significance level. The density ratio method, Poisson regression, 

and negative binomial regression will be evaluated using the LRI dataset (LaVange 1994). The 

Appendix further elaborates the mathematical expressions of each method. 

 

Statistical Methods  

Non-parametric methods:  

The most commonly used non-parametric method when interested in the difference 

between two independent random samples of subjects is the Wilcoxon rank sum test. The 

Wilcoxon rank sum test is used to test for equality of distributions for two groups versus a shift 

in their location, such as their medians. The application of the Wilcoxon rank sum test assumes 
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each group comes from one of two populations. Given the sample size of a simple random 

sample (SRS) from population 1 is �� and the sample size of a SRS from population 2 is	��, then 

let N be the sum of two sample sizes from both populations. Every observation in N are ranked 

as if all observations were from one large sample. The smallest observation is given a rank of 1 

and the largest observation is given a rank of N. Ties between observations are given an average 

rank of the equal observations. The test statistic, W, is the sum of the ranks in the smaller 

sample	��. An exact p-value of W can be determined from an exact distribution, which assumes 

all possible assignments for ranks to groups are equally likely. If the sample size per group is 

greater than or equal to 10 subjects, the significance of W can also be approximated by a standard 

normal approximation for	�� = �	
��� .  

Since the Wilcoxon rank sum test uses the ranks of the observations instead of the actual 

numerical data, no assumptions about the underlying distributions of the data are needed to make 

inferences. The only needed assumption is that the subjects are independent and identically 

distributed within groups and independent between groups. Another important advantage is that 

the Wilcoxon rank sum test uses the data equally from the respective patients. In other words, the 

data from patients who are enrolled in the study longer will not have more weight in the analysis.  

Furthermore, the Wilcoxon rank sum test is less sensitive to outliers. However, power in the 

Wilcoxon rank sum test can be adversely affected by other differences, such as shape and scale, 

between distributions instead of a shift of location between the two distributions. If the 

assumptions of a two-sample t-test are met, then the Wilcoxon rank sum test will have a lower 

power. In addition, measures of the difference between the groups may not be straightforward to 

obtain or interpret.  

 The Mann-Whitney estimator is a measure of difference generally calculated when a 

Wilcoxon rank sum test is used. It estimates the likelihood that the subjects in group 1 have a 

better outcome than subjects in group 2. In other words, if 
�	is the outcome for a randomly 

selected subject from group 1 and �� is the outcome for a randomly selected subject from group 2 

(with �� and �� total subjects, respectively), then the Mann-Whitney estimator is calculated as 

the number of pairs where 
� has a better outcome than �� divided by (�� ∗ ��), given ties 

between pairs were randomly broken with probability ½. A Mann-Whitney estimator closer to 1 

implies larger ranks for group 1 than group 2 and thus favoring group 1. Alternatively, a Mann-



Zhou 5 

 

Whitney estimator closer to 0 favors group 2. If the Mann-Whitney estimator is around  ½, it 

indicates the distributions between the two groups are equal. The Mann-Whitney estimator is 

related to the ranks of the subjects through the relationship	�� (����� − �����), where (����� − �����) is the 

difference between the mean ranks of group 1 and group 2.  

 Somer’s D is another measure of difference related to the Mann-Whitney estimator that 

also describes ordinaly scaled data. It is related to the Mann-Whitney estimator through the 

equation: Somer’s D = (2*Mann-Whitney)	−1.	Consequently, the range of a Somer’s D falls 

between -1 and 1, and thus the Somer’s D acts like a correlation coefficient. Accordingly, a 

Somer’s D near 1 implies larger ranks for and favoring group 1, whereas a Somer’s D near -1 

comparably implies larger ranks for and favoring group 2. If there is no difference between the 

two groups, then Somer’s D will be about 0. The Somer’s D is of interest, because it is readily 

produced in PROC FREQ in SAS, whereas the Mann-Whitney estimator is not. 

 The Hodges-Lehmann estimate, related to the Mann-Whitney estimator, also attempts to 

estimate the difference between the medians of two groups. The Hodges-Lehmann point estimate 

is the median of the difference between all possible pairs of subjects from group 1 with subjects 

from group 2. Ordering all differences from smallest to largest adjacent to corresponding 

quantiles of the distribution of the Mann-Whitney statistic identifies the confidence intervals of 

the Mann-Whitney statistic. The Hodges-Lehmann is of interest because it provides a method of 

obtaining a confidence interval that corresponds to the Wilcoxon Rank Sum test.   

 When designing a future study, it is possible to use a transformation of power of a 

Wilcoxon rank sum test to calculate the needed sample size. Through arithmetic and derivations 

detailed in the Appendix 1, Power =(1 − �) = � �(���. )�	 !"!#"$%&"!
− �'!(, where ) = *{Mann-Whitney 

estimator}, -
./0
�� −1ℎ34�56	57438
49.	:;<} = �=�>�! ,	the continuity correction	 = ( ��!), 
and � is cumulative density function of N (0, 1). As detailed in Appendix 1, the sample size 

under the assumption	�� = �� can be estimated by approximating N+1 and (2/N
2
) as N and 0, 

respectively. Thus, the sample size per group is approximated by	@�A/� + �DE�/6() − 0.5)�, 

where �A/� is the z-score given an two-sided alpha level, �D is the z-score at a desired power 

level, and ) is the Mann-Whitney statistic. The total sample size N would be two times the 

determined sample size per group. Also, it is worthy to note that if the calculated sample size is 
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used to re-calculate the power, the re-calculated power will be less than desired power because 

the continuity correction was not included in the estimate. Thus, usually an addition of one 

subject per group (or two subjects to the total sample size) is needed to produce the desired 

power and appropriate sample size.  

 

Model-based Methods: 

The most common and traditional approach to analyzing discrete counted outcome rates 

is Poisson regression, especially when dealing with rare events. Poisson regression is applied to 

generate a model fit to predict the count and comparison of groups given a set of predictors 

(Stokes 2012).  It assumes that the counts of event are independent and have a Poisson 

distribution, in which the expected value and variance are equal. When subjects have different 

exposure times, the expected value and variance for count of events (6�) for subject i is μ� = λ� ∗
4�. The likelihood function for Poisson regression is ∏ exp	(−λ�4�) (λNON)PNQN!S�T�  and the usual model 

for λ�	is loglinear. One advantage of Poisson regression is it can be applied to counts that do not 

have a limit on how large the count can be; for instance, when the variable does not have a 

known “denominator” or is not a proportion.  

 However, the Poisson method has many assumptions about the underlying distribution of 

the data which limits its applicability. The methodology assumes that the outcome variable has a 

Poisson distribution with the same Poisson parameter λ for all subjects. A common rate 

assumption for all subjects means the distribution of rates for each subject has the same mean for 

the same follow-up time. The biggest disadvantage of this assumption is the variability between 

patients is not satisfactorily accounted for (Kotz-Johnson 1986). It also does not account for 

correlation of events within a subject as a potential source of over-dispersion. Since a Poisson 

analysis weighs the unit of time equally, the model will not appropriately account for situations 

where subjects withdraw from the study earlier, assuming subjects who leave the study have a 

higher frequency of events than subjects who continue to the end of the study (Keene 2008). If 

the data do not follow these assumptions, the Poisson regression tends to under-estimate the 

underlying true rate (Stokes 2012). 

When the observed variance is larger than the nominal variance for the assumed 

distribution, over-dispersion occurs (Stokes 2012). Over-dispersion is common in analysis of 

proportions or discrete counts because variances for binomial and Poisson distributions are fixed 
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by the mean, a single parameter (Stokes 2012). In regression, the ratio of the goodness-of-fit chi-

square statistic versus degrees of freedom can indicate the presence of over-dispersion by 

exceeding 1. An over-dispersion correction attempts to account for variability between patients 

not explained by the Poisson regression by increasing the standard errors of the estimates.  There 

are three main over-dispersion corrections; however, there is no universal consensus or method 

of determining which correction to use (Keene 2008). The simplest correction is multiplying the 

variance by a scaling factor. The scaling factor φ is theχ�	statistic divided by its degrees of 

freedom (Stokes 2012). The covariance matrix will be pre-multiplied by the scaling factor, and 

the scaled deviance and log likelihoods will be divided by the scaling factor. The Poisson 

regression is then performed as usual with the scaled values. In the scaled Poisson regression, φ 

is equal to 1. Another over-dispersion correction is using generalized estimating equations (GEE) 

as described in Chapter 15 of Stokes et al. (2012).  The GEE estimation comes from a variance 

estimation process that uses subject-to-subject measures instead of the model-based variance and 

involves aggregates at the subject level. Therefore, the GEE estimation method is more robust to 

misspecification of the covariance structure and can be applied by using PROC  GENMOD in 

SAS (Stokes 2012). However, generally, the corrected Poisson regression is still not applicable 

because the variance of the dataset is much larger than assumed.  

Negative binomial regression is a more appealing correction method, because it corrects 

for over-dispersion with a better model. The negative binomial regression model combines the 

idea behind Poisson regression with a model error that follows a gamma distribution (Keene 

2008). The negative binomial regression assumes that each subject conditionally has their own 

underlying rate λ�, which allows for a more flexible variance. Given an underlying rate (U�) and 

time at risk (4�) for each subject i, the outcome variable 6� 	has a Poisson distribution with an 

expected value of U�4�, where U� has a gamma distribution with parameters (V�, W�). The expected 

value of U�	is V�W� and the variance is V�W��. Through explanations given in Appendix 2, the 

expected value of the outcome variable for every subject is X� 	and the variance is X� +YX��,	where k is the negative binomial dispersion parameter (Stokes 2012). When k=0, the 

negative binomial distribution equals the Poisson distribution. Negative binomial regression 

more effectively accounts for increased rates among subjects who withdraw earlier, which is one 

of Poisson regression’s biggest disadvantages. If over-dispersion is present, a negative binomial 

regression will produce more precise confidence intervals compared to a Poisson regression. 
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However, since the negative binomial regression still assumes that each subject has an 

underlying conditional Poisson distribution, it is not applicable to cases where the underlying 

distribution is not known.  

For prospective studies, sample size can be determined based on the results in a negative 

binomial regression. The sample size per group can be determined through a relationship 

between the means for group 1 and group 2 (X�	and X�,	respectively) and the negative binomial 

dispersion value Y (Keene 2007). The sample size per group is calculated as 

� = @Z'=Z[E!{ %\%= %\!=�]}{^_`a(\%\!)}!	 , where �A is the z-score given a two-sided alpha and �D is the z-score at a 

desired power level (Keene 2007). Similar to the variance parameter, if a sample size calculation 

based on a Poisson distribution was desired, then this equation can be used with  k=0. 

 

Density Ratio Method:   

An alternative method that can be used to analyze counts over a risk time period is the 

density ratio method outlined in LaVange et al. (1994). An incidence density is defined as the 

number of new cases divided by the time at risk. The density ratio method is interested in 

estimating λ = XQ/Xb, the ratio of the two mean parameters for the variables of interest in the 

target population, by R with a random sample (LaVange 1994). Measures c̅	and 6	eestimate the 

population parameters Xb	and XQ, and � = (6�/c̅). The variance of R can be approximated by the 

variance of f	through the relationship ∑ (hN	h̅)!S	� = 	∑ (QN	ibN)!S(S	�)b̅!S�T�S�T� ,	where	f� = (QN	ibN)b̅ . Thus, 

the 95% confidence interval of R can be determined by 5cj	{k9lm 	� ± 1.96√(q_k9lm 	�		)}, 
where q^_`ai = -
.{logm �} = vwx(h)i! . The density ratio method provides a direct approach to 

analyzing disease incidence while adjusting for confounding. Like non-parametric methods, the 

density ratio method has minimal assumptions on the underlying distribution of the variables of 

interest. This method also provides a more convenient way to construct confidence intervals for 

estimated incidence densities and for comparison across groups (LaVange 1994). Unfortunately, 

the ratio method is only applicable when there is a large sample size, or that the sums for 

numerators and denominators of ratios are approximately normal for the groups of interest 

(LaVange 1994). This method is also less flexible in the number and types of covariates or 

confounders that can be accommodated (LaVange 1994).  
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Application of Methods 

Bleeding Frequency dataset (Nichols 2013):  

A rate of bleeds per year over the first two years was computed for each dog by dividing 

the total number of bleeds in the first two years by the total years of follow-up time. The total 

years of follow-up time was not the same for all dogs, because some were euthanized or died 

before the end of two years.  Table 1 and Table 2 summarize the data used to design the new 

study (Nichols et al.) and descriptive statistics of the data respectively.  

 

Table 1: Bleeding frequency raw dataset (Nichols et al.) 

 

ID Group 

 

Sex Bleeds in 

Year 0-1 

Bleeds in 

Year 1-2 

Total bleeds 

(Year 0-2) 

Total years 

of follow-

up 

Rate of bleeds per 

year (over total 

follow-up time) 

X02 Non-tolerized M 3 9 12 2 6 

X06 Non-tolerized M 8 21 29 2 14.5 

Y21 Non-tolerized M 3 8 11 2 5.5 

E19 Non-tolerized F 13 9 22 1.38 15.9 

Z100 Non-tolerized F 7 2 9 2 4.5 

Z58 Non-tolerized F 4 2 6 1.27 4.7 

Y24 Non-tolerized F 7 1 8 1.27 6.3 

Z91 Non-tolerized M 3 4 7 2 3.5 

E30 Non-tolerized M 3 0 3 2 1.5 

C20 Non-tolerized M 4 2 6 2 3.0 

C22 Tolerized  M 2 0 2 2 1.0 

C23 Tolerized  M 2 0 2 2 1.0 

C25 Tolerized  F 2 1 3 2 1.5 

C26 Tolerized  F 2 5 7 2 3.5 

X02 Tolerized  F 1 2 3 2 1.5 

 

Table 2: Descriptive statistics of outcome variables total bleeds in first year and rate of bleeds 

per year over total follow-up time of bleeding frequency dataset (Nichols 2013) 

 

Group Frequency of bleeds in 

first year (YR 0-1) 

Rate of bleeds per year 

(over total follow-up time) 

Non-tolerized 

   Mean 

   Standard dev. 

 

5.50 

3.27 

 

6.55 

4.80 

Tolerized  
   Mean 

   Standard dev. 

 

1.80 

0.45 

 

1.70 

1.04 
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Non-parametric Methods 

The small sample size in the original study and new study lends itself well to non-

parametric methods, such as the Wilcoxon rank sum test. The Wilcoxon rank sum test was 

applied to the outcome variables of frequency of bleeds in the first year and rate of bleeds per 

year over total follow-up time. Measures of differences produced for the two outcome variables 

included Somer’s D, Mann-Whitney Estimator, and Hodges-Lehmann estimate. The Somer’s D 

was determined through the MEASURES option of PROC FREQ in SAS 9.3 and the Mann-

Whitney statistic was manually calculated using the relationship 
y<zmx{|	}=��  from the SAS 

produced Somer’s D. Similarly, the standard error of the Mann-Whitney statistic was calculated 

as the standard error of the Somer’s D value divided by 2. Due to the small sample size of 

bleeding frequency dataset, a normal approximation of the significance of W in the Wilcoxon 

rank sum test may not be appropriate. Therefore, an exact Wilcoxon rank sum test was also 

computed for bleeding frequency dataset. The non-parametric results are summarized in Table 3.  

 

Table 3. Non-parametric results for outcome variables frequency of bleeds in Year 0-1 and rate 

of bleeds per year (over total follow-up time) in bleeding frequency dataset (Nichols 2013) 

 

Outcome variable Frequency of bleeds in 

Year 0-1 
Rate of bleeds per year 

(over two years) 

Wilcoxon statistic  15.00 18.50 

      P-value (approx.) 0.0085 0.0216 

      P-value (exact) < 0.0003 0.0060 

Hodges-Lehmann  

      95%Confidence Interval 

-2.0 

(-6.0, -1.0) 

-3.5 

(-11.0, -1.5) 

Somer’s D (SE) - 1.00 (0.00) - 0.86 (0.12) 

Mann-Whitney Estimator (SE)   0.00 (0.00)      0.07 (0.06) 
 

For both outcome variables, the Wilcoxon rank sum test produced a significant p-value at 

the 0.05 significance level, indicating that the two distributions between the non-tolerized group 

and tolerized group were not equal. In other words, the two distributions are shifted in location. 

Furthermore, for both outcome variables, the Somer’s D was near -1, the Mann-Whitney 

estimator was near 0, and the Hodges-Lehmann confidence interval did not contain 0, thus 

indicating the difference strongly favors the tolerized group with less bleeds. In other words, a 

dog in a non-tolerized group has a higher likelihood of having more bleeds than dog in tolerized 

group. Conversely, a tolerized treated dog will have a higher likelihood of having less bleeds 
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than a non-tolerized dog. This supports the hypothesis that tolerized treatment can reduce the 

number of bleeds a hemophilia B dog has.  

As mentioned earlier, Nichols et al. (2013) intended to design a new study based on the 

first two years of the data collected by Russell et al. Thus, sample size was calculated for the 

future Nichols et al. (2013) study based on the Wilcoxon rank sum test results of the bleeding 

frequency dataset. Assuming that the number of subjects in each group are equal, the sample size 

needed for 0.90 power was calculated for different Mann-Whitney estimators around 0.07 (the 

Mann-Whitney statistic for bleeds per year over total follow-up time). Table 4 summarizes the 

sample size needed for Mann-Whitney estimators around 0.07 for 0.90 power and a two-sided 

alpha 0.05. In order to match the data for the formulas and methods described in Appendix 1, the 

reverse ranks were implicitly used. This is feasible as ranks are symmetric; consequently, a theta 

of 0.07 corresponds to a theta of 0.93 in the power calculation. The power of the test was also 

calculated using the previously calculated sample sizes in Table 4 to re-confirm 0.90 power . As 

expected, the power was lower than the intended 0.90. One subject was added to each group and 

the power calculation was repeated to produce powers above 0.90. Table 5 displays the power 

calculations with the corrected sample size of an additional subject per group at a two-sided 

alpha of 0.05. 

 

Table 4. Calculated Sample Size via Wilcoxon rank sum test for 0.90 power and two-sided alpha 

of 0.05 
 ~(� − ~) �� = �� � Power 

0.05 (0.95) 9 18 0.888 

0.075 (0.925) 10 20 0.888 

0.1 (0.90) 11 22 0.882 

0.125 (0.875) 13 26 0.897 

 

Table 5. Re-calculated Power for the Wilcoxon rank sum test after adding one subject per group. 
 ~	(� − ~)  N Power 

0.05 (0.95) 20 0.920 

0.075 (0.925) 22 0.917 

0.10 (0.90) 24 0.909 

0.125 (0.875) 28 0.918 
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Model-based Methods 

 For comparison to the non-parametric results, model-based methods were also applied to 

the bleeding frequency dataset. Poisson regression, and over-dispersion corrections scaled 

Poisson regression and negative binomial regression were computed on the outcome variables 

total bleeds in the first year of observation and rate of bleeds per year (over total follow-up time). 

Table 6 and Table 7 display the results from these three model-based methods for each of the 

two outcome variables. The c-variable is the treatment group the dog was assigned to and 6 is 

the outcome variable.   

 

Table 6. Model-based method results for outcome variable frequency of bleeds in first year 

 

Test Poisson Scaled Poisson Negative binomial 

φφφφ	[��/(�� = ��)] 2.22 1.00 1.19 

Dispersion ---- ---- 0.16 

LR Statistic 15.28 6.89 8.50 

p-value <0.0001 0.0087 0.0036 

Model log
e
(y)= -1.23x + 1.13 log

e
(y)= - 1.23x + 1.13 log

e
(y)= - 1.27x + 1.16 

95%CI for ��/�� (0.14, 0.59) (0.10, 0.84) (0.12, 0.64) 

 

Table 7. Model-based results for outcome variable rate of bleeds per year (over two years) 

 

Test Poisson Scaled Poisson Negative binomial 

φφφφ	[��/(�� = ��)] 4.74 1.00 1.24 

Dispersion ---- --- 0.27 

LR Statistic 34.29 7.24 9.15 

p-value < 0.0001 0.0071 0.0025 

Model log
e
(y)= -1.31x + 1.84 log

e
(y)= - 1.31x + 1.84 log

e
(y)= - 1.34x + 1.87 

95%CI for ��/�� (0.16, 0.45) (0.09, 0.82) (0.12, 0.56) 

 

When Poisson regression was applied, φ	 = ��/(�� = 13)	was 2.22 and 4.74 for the two 

outcome variables respectively. This strongly indicates the presence of over-dispersion and 

therefore, an unadjusted Poisson regression is not an appropriate test to perform. After scaling 

the Poisson regression, φ was equal to 1 which indicated correction for over-dispersion. For both 

outcome variables, the 95% confidence interval for X�/X� was narrower in the Poisson 

regression than in the scaled Poisson, as expected. The negative binomial regression had φ of 

1.19 and 1.24 for total bleeds in the first year and rate of bleeds per year (over two years), 



Zhou 13 

 

respectively, also indicating correction for over-dispersion. The 95% confidence interval for the 

negative binomial is narrower than the scaled Poisson, indicating that it is a more appropriate 

model for the data.   

Sample size via the negative binomial model can also be calculated using the estimated 

means of group 1 and group 2. Since the observed mean rate of bleeds per year (over total 

follow-up time) for the non-tolerized dogs was 6.55, the observed mean rate of bleeds per year 

(over total follow-up time) for the tolerized dogs was 1.70, and the dispersion factor was 0.27, 

conservatives estimates of 6.0, 2.0, and 0.33 were used. The calculated sample size per group for 

Nichols et al. (2013) via the negative binomial model was 12 per group.  

 

LRI dataset (LaVange 1994) : 

  For this paper, explanatory variable passive smoking (one or more smokers in the 

household) and covariate crowding in the household were of interest. The time at-risk was 

converted from weeks to years for the analysis. Crowding was defined as present if there was 

greater than or equal to 0.5 persons per room in a household; conversely, if there was less than 

0.5 persons per room then there was no crowding. The main effect of interest was the effect of 

passive smoking adjusted for crowding. Additional analysis of the effect of passive smoking at 

both levels of crowding (present and absent) and the unadjusted effect of passive smoking on the 

count of LRI events were also of interest.  

 

Model-based Methods  

 Model based methods, such as Poisson regression and negative binomial regression, were 

performed on all outcomes. When Poisson regression was applied in the four models, the 

deviance divided by degrees of freedom and the Pearson Chi-Square statistic divided by degrees 

of freedom were much greater than one, which indicated over-dispersion in the data. 

Consequently, negative binomial regression was used to correct the over-dispersion. For all 

models, the likelihood ratio (LR) statistics for Type 3 analysis showed passive smoking, and 

crowding when applicable, were statistically significant. The estimate of the parameter 

corresponding to passive smoking will be used to compare the incidence density ratios calculated 

below. Tables 8 to 11 summarize the Poisson regression and negative binomial regression 

models for all four outcomes. The parameter estimate for passive smoking is of interest for 

comparison between methods.  
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Table 8a. Poisson regression model of counts of LRI events adjusted for effect of passive 

smoking which was adjusted for crowding 

 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald Chi-

Square Pr > ChiSq 

Intercept 1 -0.5936 0.1418 -0.8716 -0.3157 17.52 <.0001 

passive 1 0.5407 0.1533 0.2403 0.8411 12.44 0.0004 

crowding 1 0.6214 0.1489 0.3295 0.9133 17.41 <.0001 

 

Table 8b. Negative binomial regression model of counts of LRI events adjusted for effect of 

passive smoking which was adjusted for crowding 

 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 

0.95onfidence 

Limits 

Wald Chi-

Square Pr > ChiSq 

Intercept 1 -0.562 0.176 -0.907 -0.216 10.15 0.0014 

passive 1 0.570 0.200 0.178 0.963 8.10 0.0044 

crowding 1 0.608 0.197 0.223 0.994 9.55 0.0020 

Dispersion 1 1.035 0.268 0.623 1.718   

 

 

 

Table 9a. Poisson regression model of counts of LRI events adjusted for effect of passive 

smoking where crowding is not present (i.e. crowding=0) 

 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald Chi-

Square Pr > ChiSq 

Intercept 1 -0.641 0.174 -0.982 -0.300 13.55 0.0002 

passive 1 0.625 0.230 0.173 1.076 7.36 0.0067 
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Table 9b. Negative binomial regression model of counts of LRI events adjusted for effect of 

passive smoking where crowding is not present (i.e. crowding=0) 

 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 95% 

Confidence Limits 

Wald 

Chi-

Square Pr > ChiSq 

Intercept 1 -0.581 0.230 -1.031 -0.132 6.42 0.0113 

passive 1 0.656 0.324 0.022 1.290 4.11 0.0427 

Dispersion 1 1.864 0.634 0.957 3.631   

 

 

 

Table 10a. Poisson regression model of counts of LRI events adjusted for effect of passive 

smoking where crowding is present (i.e. crowding=1) 

 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald 

Chi-

Square Pr > ChiSq 

Intercept 1 0.076 0.172 -0.260 0.412 0.20 0.6597 

passive 1 0.474 0.203 0.076 0.872 5.44 0.0207 

 

Table 10b. Negative binomial regression model of counts of LRI events adjusted for effect of 

passive smoking where crowding is present (i.e. crowding=1) 

 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald 

Chi-

Square Pr > ChiSq 

Intercept 1 0.090 0.212 -0.325 0.505 0.18 0.6713 

passive 1 0.494 0.257 -0.010 0.997 3.69 0.0546 

Dispersion 1 0.678 0.257 0.322 1.425   
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Table 11a. Poisson regression model of counts of LRI events adjusted for effect of passive 

smoking 

 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald Chi-

Square Pr > ChiSq 

Intercept 1 -0.340 0.122 -0.580 -0.101 7.76 0.0054 

passive 1 0.658 0.150 0.362 0.953 19.02 <.0001 

 

Table 11b. Negative binomial regression model of counts of LRI events adjusted for effect of 

passive smoking 

 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 95% 

Confidence 

Limits 

Wald 

Chi-

Square Pr > ChiSq 

Intercept 1 -0.302 0.156 -0.608 0.004 3.75 0.0527 

passive 1 0.680 0.202 0.284 1.075 11.32 0.0008 

Dispersion 1 1.194 0.288 0.745 1.914   

 

Density Ratio Method 

 The incidence density ratio method described in LaVange et al. (1994) was used to 

determine the density ratios for the four different outcomes. The average count (6�) and average 

time at-risk (c̅) were determined through PROC MEANS in SAS to produce an estimate of R for 

each model by exposure to passive smoking and no exposure to passive smoking. The variable 

f� = (QN	ibN)b̅  was computed, and the relationship between the variance of logm � and the variance 

of f was calculated to determine the 95% confidence intervals for λ in both the exposed group 

and the non-exposed group. The incidence density ratios, on the natural log scale, were then 

calculated by �mb�<|m�/�S<Smb�<|m�. The 95% confidence intervals for the incidence density 

ratios were calculated by 

5cj �k9lm(�mb�<|m�/�S<Smb�<|m�) ± 1.96#q�<�a ia����a� + q�<�a i����a����a��.  
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Table 12 summarizes the results obtained from the density ratio method and the model-based 

methods. All results in Table 12 have been converted from the natural log (loge) scale. 

 

Table 12. Comparison between results from density ratio method and model-based methods 

(Poisson regression and Negative binomial regression) 

 

Method Effect of passive 

smoking, 

adjusted for 

crowding 

Effect of 

Passive 

smoking 

Effect of 

Passive 

smoking, where  

crowding = 0 

Effect of 

Passive 

smoking, where  

crowding = 1 

Density Ratio  
    Estimate 

    95%CI 

    p-value 

 

1.70 

(1.17, 2.47) 

0.0054 

 

1.93 

(1.33, 2.81) 

0.0006 

 

1.87 

(1.01, 3.44) 

0.0454 

 

1.61 

(1.00, 2.58) 

0.0496 

Poisson (unadjusted) 

    Estimate 

    95%CI 

    p-value 

 

1.72 

(1.27, 2.32) 

<0.0001 

 

1.93 

(1.44, 2.59) 

< 0.0001 

 

1.87 

(1.19, 2.93) 

0.0063 

 

1.61 

(1.08, 2.39) 

0.0163 

Negative Binomial 
    Estimate 

    95%CI 

    p-value 

 

1.77 

(1.19, 2.62) 

0.0046 

 

1.97 

(1.33, 2.93) 

0.0008 

 

1.93 

(1.02, 3.63) 

0.0438 

 

1.64 

( 0.99, 2.71) 

0.0545 

 

 

Discussion  
 

 This thesis evaluated different statistical methods for comparing counts of events for at-

risk time periods across two groups, such as the Wilcoxon rank sum test, Poisson regression, 

negative binomial regression, and the density ratio method. The bleeding frequency dataset 

(Nichols 2013) was used to evaluate the first three methods. The primary outcome of interest was 

the rate of bleeds per year (over total follow-up time) and the secondary outcome of interest was 

the frequency of bleeds in the first year. The mean and the standard deviations of the mean 

bleeds for both outcome variables suggested that tolerized treatment reduced the frequency of 

bleeds in dogs with hemophilia B. Due to the small sample size of the bleeding frequency dataset, 

applying the Wilcoxon rank sum test was of particular interest to test the inference suggested by 

the means and standard deviations, because it does not have any underlying distribution 

assumptions. For both outcome variables, the Wilcoxon rank sum test had a significant two-sided 

p-value (0.0003 and 0.0060, respectively). Thus, there is sufficient evidence to suggest that there 

is a difference between the distribution of bleeds between the non-tolerized dogs and tolerized 
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dogs for both outcomes. The Somer’s D, Mann-Whitney estimator, and Hodges-Lehmann 

confidence interval were also in agreement with the Wilcoxon rank sum test results. For both 

outcome variables, Somer’s D was close to -1, the Mann-Whitney estimator was close to 0, and 

the Hodges-Lehmann confidence interval did not contain 0, indicating the comparisons between 

randomly selected subjects in the non-tolerized group and randomly selected subjects in the 

tolerized group strongly favor the tolerized group. In other words, the dogs in the non-tolerized 

group had a higher likelihood of having more bleeds than dogs in the tolerized group. This 

supports the notion the tolerized treatment reduces the likelihood of having a bleed in hemophilia 

B dogs. 

Generally, when data are in the form of counts over a period of time at-risk, the model-

based method of Poisson regression is used because it is easily applied to this type of data. 

However, the Poisson regression model assumes that there is a common rate for all subjects, and 

thus it will under-estimate the variance of the parameter if this assumption is not met. To correct 

for over-dispersion in the bleeding frequency dataset (Nichols 2013), scaled Poisson regression 

and negative binomial regression were applied.  

 These three model-based methods produce similar models. As expected, the Poisson 

regression model incorrectly had the narrowest 95% confidence interval since over-dispersion 

was a factor in the bleeding frequency dataset. The 95% confidence interval for the negative 

binomial regression model was narrower than the scaled Poisson regression model for both 

outcome variables (respectively, (0.10, 0.84) versus (0.12, 0.64) for frequency of bleeds in first 

year, and (0.09, 0.82) versus (0.12, 0.56) for rate of bleeds per year over two years of follow-up). 

This indicates that the scaled Poisson model, which intended to correct for over-dispersion, over-

estimated the variance. Consequently, the negative binomial regression model is a more 

appealing option than other corrections because it corrects for over-dispersion in a Poisson 

regression with a better model. However, since it still assumes that each subject has an 

underlying conditional Poisson distribution, it is not appropriate to use in the case of a small 

sample size (less than or equal to 10 subjects per group) or any time that assumption is not met. 

 Sample size for a future study based on the results of a Wilcoxon rank sum test and a 

negative binomial regression were calculated. Assuming that there will be an equal number of 

subjects in the two groups and 0.90 power is desired, the sample size via the negative binomial 

regression model was 12 per group. Using a conservative Mann-Whitney statistic, the sample 
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size via the Wilcoxon rank sum method was approximately 11 subjects per group. Since the 

sample size approximation assumed the continuity correction was about 0, the adjusted sample 

size per group to achieve the desired power produced a sample size of 12 subjects per group.  

The sample sizes calculated from both methods agree with each other.  

 The density ratio method provides an additional method that, like the Wilcoxon rank sum 

method, has minimal assumptions for the underlying distributions. Furthermore, it provides a 

direct way to analyze disease incidence. Unfortunately, the density ratio method requires large 

sample size; therefore, it is not applicable to the bleeding frequency dataset. Instead, the dataset 

of lower respiratory incidence (LRI) in infants during their first year from LaVange et al. (1994) 

was used. The main effect of interest was passive smoking adjusted for crowding, though the 

effect of passive smoking on LRI and the effect of passive smoking by crowding status (i.e., the 

presence of crowding and no crowding) were also analyzed.   

 Poisson regression and negative binomial regression were also applied as model-based 

methods. Over-dispersion was present in the LRI dataset, and thus negative binomial regression 

was more appropriate than Poisson regression. As expected, for all four models, the 95% 

confidence interval from Poisson regression was inappropriately narrower than from the negative 

binomial model. The estimated standard errors for the parameters in all models were higher in 

the negative binomial regression than in Poisson regression.  

 When the density ratio method was applied to estimate the four effects, the estimates 

were more similar to the Poisson regression models. However, the 95% confidence intervals 

were wider than the Poisson models. Instead, they were more similar to the negative binomial 95% 

confidence intervals. A narrower 95% confidence interval than the negative binomial regression 

model indicates that the density ratio method adequately adjusts for the over-dispersion, but is a 

more precise method than negative binomial regression.  

From these statistical considerations of different methods that deal with data of counts 

over a time at-risk, it can be concluded that even though Poisson regression is most readily 

applied to this type of data, it may not be the most appropriate model. When its distributional 

assumptions are not met, Poisson regressions will inappropriately under-estimates the variance. 

In the case of over-dispersion, the correction scaled Poisson regression may over-correct and 

thus over-estimate the variance. Negative binomial regression provides a more appealing method 

for correcting over-dispersion in a Poisson regression and produces more precise estimates. 
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However, in datasets where the assumption that every subject has an underlying Poisson 

regression is not met, the negative binomial model is also not the most appropriate method.  

In cases where assumptions about the underlying distribution are not met, the non-

parametric Wilcoxon rank sum test and alternative density ratio method are more appropriate to 

apply than the model-based methods mentioned above. When the sample size is small, the non-

parametric Wilcoxon rank sum test is most commonly used. However, the power of a Wilcoxon 

rank sum test can be adversely affected by other differences, such as shape and scale, instead of 

just location. Furthermore, measures of differences for groups, such as Hodges-Lehmann and 

Mann-Whitney estimators, may not be straightforward to obtain or interpret. The density ratio 

method, on the other hand, cannot be used with small datasets and it is not as flexible in regard to 

the number and types of covariates allowed in the model. However, with large sample sizes, the 

density ratio method provides a direct method to evaluate incidence densities and produces more 

precise estimates than the model-based methods. These considerations and other aspects are 

important to evaluate because it will inform use of the most appropriate method to produce valid 

estimates and inferences from the data.  
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Appendix 1: Sample Size via Wilcoxon rank sum method 
 

We will use a transformation of the power definition to calculate the needed sample size. The 

following calculations are for the normal approximation of the Wilcoxon rank sum test.  

For the Wilcoxon rank sum test, �i = (����� − �����) is the difference between mean ranks for group 

1 and group 2.  

The null hypothesis, H0, is the distributions for Group 1 and Group 2 are equal. Let � =(�� + ��),	then *{(����� − �����)|; } = 0 and 

-
.{(����� − �����)|; , �9	4357} = ¡ 1n� + 1n�£∑ (Y − (� + 1) 2)⁄ ��]T� (� − 1)  

    = �	�(�=�)S%S!��  

If �� = n� = ¦��§ , 	then Var{(����� − �����)|; } = �=�> .  

 

We know that ¨¦ ©S%S!§ − 0.5ª = i%����	i!����� , 		where 
©S%S! is the Mann-Whitney Statistic.  

If	�� = �� = ��  , then -
. ¨¦ ©S%S!§ «; ª = �=�>�!  

The alternative hypothesis, HA, is that the two distributions are not equal. In other words,  

HA: * ¨¦ ©S%S!§ª = ), where ) > 0.5. 
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­9®5.	 = (1 − β) 	= 	­. ¯(°%�����°!����)" 		%!¦ %�%= %�!§#"$%&"!
> �A±;²³, where 

�� ( �S% + �S!) is the continuity 

correction.  

If �� = �� = ��, then ­9®5.	 = 	1 − 	β	 ≡ ­.	� ©	µ¶(�=�)/>�! > �'! − (���. )� !"!#("$%)/&"!·;²( 
	� is cumulative density function of N(0,1), then  

1 − � = � �(���. )�	 !"!#"$%&"!
− �A/�( 

where	) = *{Mann-Whitney estimator} and ¦ ��!§ is the continuity correction.	 
@�A/� + �DE� ¡� + 13�� £ = »() − 0.5) − 2��¼� 

Since � + 1	≅	� and ( ��!) ≅ 0, @�A/� + �DE� ¦ �>�§ = () − 0.5)� 

�N= �� + �� = ½Z'!=Z[¾
!

>(µ	 .¿)!  

��� = �� = ½Z'!=Z[¾
!

À(µ	 .¿)!  

To determine a sample size needed for 0.90 power at two-sided	V = 0.05, Zα/2 = 1.96, Zβ = 1.282.  

The power for a given calculated sample size N can be verified with (1). It is expected that the 

power calculated with calculated N will be less than the power desired so one subject per group 

is added.  

 

Appendix 2: Poisson Regression and Negative Binomial Regression 
 

Subjects are assumed to represent a population comparable, in a sense, to a random sample. Let 6 denote the count of events and 4 denote time at-risk.  

Let Y = 1,2 denote two groups of subjects and 3 = 1,2, … , �� denote subjects in the k
th

 group.  

 

Poisson regression:  

For 3 = 1,2, … �, 	let 6� be the count of events for subject 3	and	4� be the exposure (time at-risk) 

for subject 3 

(1) 
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Poisson regression assumes that each subject’s respective 	6� has an independent Poisson 

distribution. Thus,  

E(6�)=Var(6�) = μ� = λ� ∗ 4�. 
The likelihood function is ∏ exp	(−λ�4�) (�NON)PNQN!S�T� . 

The usual model for the λ� is loglinear with λ� = 5cj	(c�’ ∗ �)	with c�’ as the vector of 

explanatory variables and β as the vector of unknown parameters. β is estimated by the 

maximum likelihood. 

When	λ� = λ	for all	3, λ	Ã = ∑6� ∑4�Ä 	, thus 

	-
.@λÅE = ¦λ ∑ 4�Æ § 

                 =Ç ÈλÅ ∑ 4�Ä É 

                     = 	∑ 6�/(∑ 4�)� = 	qλÅ  
 

Negative Binomial:  

A negative binomial model combines Poisson regression with a model error that follows a 

gamma distribution. 

For 3 = 1,2, … , �, 6� has the Poisson distribution with a given	λÊ	and	tÊ, where 4� is the fixed 

duration of follow-up and U� has gamma distribution with parameters (V�, W�). Thus,  

E(6�)= U�4�, 
Furthermore,  

E(U�)= V�W� and Var(U�) = V�W�� . 

 

The usual model for negative binomial regression is exp(X�) = c′� ∗ � with offset logm(4�), 
where c� ’ is the vector of explanatory variables and β is the vector of unknown parameters 

estimated by maximum likelihood. 

Assume V� = V for all patients, then U� has density function  

Ï(U� )= λ�A	� ÐÑÒ¡	
ÓNÔN£ÕN'Ö(A)	              for U�>0. 
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Then, 

 *(6�|U�) = U�4�	and	*(6�) = *@*(6�|U�)E 
                                    = *(U�4�) 

                                           = VW�tÊ = μ�. 	 
and Var(yÊ) = -
.{*(6�|U�)} + *{-
.(6�|U�)} = -
.{U�4�} + *{U�4�} 

 = 	αW��4�� + αW�4� 
                                                           	= 
N!

α
+ X� 

                                                            = X� + YX��, 

where Y	is the negative binomial dispersion factor. 

 

For fixed U, as α gets large (or as Y approaches 0), the negative binomial distribution converges 

to a Poisson distribution 


