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ABSTRACT 
 

Beezly Sultana Groh: A Role For The CRL4-WDTC1 E3 Ligase In The Suppression Of 
Adipogenesis  

(Under the direction of Yue Xiong) 
 

Excess lipid accumulation in fat tissues underlies obesity and a myriad of associated 

pathologies that range from type 2 diabetes to cancer. Lipid synthesis in adipocytes, the 

primary cells of fat tissues, is regulated via extracellular and intracellular mechanisms. 

WDTC1 encodes an evolutionarily conserved suppressor of lipid accumulation in 

multicellular organisms. Decreased WDTC1 expression is associated with obesity in mice 

and humans. Yet, the molecular mechanism underlying its anti-obesity function remains 

elusive. WDTC1 is a candidate DWD protein (DDB1 binding WD40 repeat protein) that 

potentially functions as a substrate specificity factor for a cullin 4 E3 ligase (CRL4) complex. I 

hypothesized that WDTC1 mediates its anti-adipogenic effect through targeting substrates 

for ubiquitylation by the CRL4 complex. In this dissertation, I aim to understand the molecular 

function of WDTC1 in adipogenesis. I demonstrate that WDTC1 is indeed a CRL4 substrate 

receptor and its interaction with a CRL4 complex is central to its function. Using 3T3-L1 cell 

culture model of adipogenesis, I show that WDTC1 mutations disrupting its interaction with 

CRL4 impair the suppression of lipid accumulation and increase adipogenic gene expression. 

Rescue experiments demonstrate that the WDTC1 knockdown phenotypes can be rescued 

by ectopic expression of wild-type but not CRL4 binding mutants, underscoring the critical 

importance of the CRL4-WDTC1 interaction to the observed adipogenic suppression. In 

addition, I found that Cul4a knockout mice exhibit defects analogous to those reported in 

Wdtc1+/- mice, such as adipocyte hypertrophy and poor metabolic parameters. 

Mechanistically, I examined whether WDTC1 plays a role in transcriptional control. I provide 
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evidence that the CRL4WDTC1 complex promotes histone H2AK119 monoubiquitylation, an 

epigenetic modification that is associated with transcriptional silencing. Hence, I propose that 

CRL4WDTC1 E3 ligase may mediate its anti-adipogenic effect, at least in part, by repressing a 

subset of proadipogenic genes through histone H2AK119 monoubiquitylation. I also describe 

proteomic screens in 3T3-L1 cells to identify WDTC1 interacting proteins via mass 

spectrometry. Collectively, this work reveals a function of the CRL4WDTC1 complex in 

adipogenesis and provides a potential mechanism by which WDTC1 suppresses lipid 

accumulation in adipocytes.  
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CHAPTER 1: INTRODUCTION 

 

Summary 

Protein posttranslational modification constitutes a key regulatory mechanism to control the 

function and composition of the proteome and thereby, underlies all biological processes. 

Proteins can be modified by the addition of small chemical groups such as phosphate, 

methyl and acetyl groups or by the addition of small proteins such as ubiquitin, SUMO1 and 

NEDD8. Of particular interest is protein modification with ubiquitin, a highly conserved 76 

amino acid (8.5 KDa) protein that is ubiquitously present in all eukaryotes but absent in 

bacteria and archaea. Ubiquitin can be covalently attached to substrate protein or to another 

ubiquitin through sequential enzymatic activities, a process termed ubiquitylation. Since its 

discovery nearly 40 years ago in the covalent modification of histone H2A, ubiquitylation has 

emerged as a widely utilized modification to alter properties of a protein, including stability, 

activity, localization and interactions. As such, protein ubiquitylation has a critical role in 

essentially all cellular processes. 
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Protein post translational modification with ubiquitin  

In mammals, ubiquitin is encoded by four different genes (UBB, UBC, UBA52 and 

RPS27A). While UBB and UBC encode several copies of ubiquitin in a tandem configuration, 

UBA52 and RPS27A encode a single copy of ubiquitin fused to ribosomal proteins L40 and 

S27a, respectively (Varshavsky, 2006). Accordingly, ubiquitin is initially synthesized as an 

inactive precursor. Specific isopeptidases called deubiquitinases (DUBs) cleave precursor 

ubiquitin fusion proteins at their C-termini into conjugation competent monomeric units 

(Jonnalagadda et al., 1989). Ubiquitin possesses two key functional features, a conserved C-

terminal diglycine motif (G75 and G76) and seven lysine residues (K6, K11, K27, K29, K33, 

K48 and K63). The diglycine motif is required for ubiquitin conjugation since the carboxyl 

group of G76 is the site of covalent conjugation to substrate lysine or lysine residue of 

another ubiquitin (Pickart and Eddins, 2004). All seven internal lysine residues, as well as the 

N-terminal methionine (M1), of the ubiquitin monomer are cellular substrates for conjugation 

to the G76 carboxyl group of a donor ubiquitin, which yield ubiquitin polymers or polyubiquitin 

chains (Kulathu and Komander, 2012). 

Although many mechanistic details of ubiquitylation are still impending, much of the 

identification and characterization of the enzymes involved in the catalysis of the chemical 

steps were carried out by the Hershko laboratory in the early 1980s. Ubiquitylation proceeds 

through a concerted enzymatic cascade comprising an E1 ubiquitin activating enzyme, an E2 

ubiquitin conjugating enzyme, and an E3 ubiquitin ligating enzyme (Hershko, 1983; Pickart, 

2004) (Figure 1.1A). E1 and E2 enzymes catalyze the ATP-dependent activation and 

conjugation of ubiquitin, while E3s confer reaction specificity through substrate recruitment 

and facilitate ubiquitin transfer by bridging the interaction between substrates and E2s.  

Ubiquitylation is initiated by the activation of conjugation competent ubiquitin via a 

two-step reaction catalyzed by the E1 activating enzyme (Kerscher et al., 2006; Pickart, 

2001a). By coupling ATP hydrolysis, E1 first adenylates the C-terminal carboxyl group of 

ubiquitin, leading to the formation of a high energy ubiquitin-adenylate intermediate. This 
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intermediate is subsequently the substrate for attack by the sulfhydryl group of the E1 

catalytic cysteine, and thus resulting in the formation of a thioester linkage between E1 and 

ubiquitin (E1-Ub). Formation of the E1-Ub complex induces structural changes that expose 

cryptic E2 binding sites in E1, promoting its binding to an E2 conjugating enzyme (Ye and 

Rape, 2009). In the second step of the ubiquitylation reaction, ubiquitin is transferred from 

the E1-Ub to E2 through a transthiolation reaction involving the C-terminus of ubiquitin and 

the E2 catalytic cysteine, resulting in the formation of the E2 and ubiquitin thioester complex 

(E2-Ub). In the final enzymatic step of the ubiquitin conjugation reaction, charged E2-Ub can 

directly transfer ubiquitin to a substrate protein, but more commonly, E2-Ub combines with 

an E3 ligase which recruits a specific protein for ubiquitylation. Lastly, ubiquitin is conjugated 

to a lysine residue in target protein or acceptor ubiquitin through the formation of an 

isopeptide bond between the C-terminal glycine carboxyl group of ubiquitin and the target 

lysine ε-amino group of substrate. Although noncanonical, the N-terminal α-NH2 group of the 

substrate can also be modified by ubiquitin, as well as serine and threonine hydroxyl and 

cysteine thiol groups of target proteins (McDowell and Philpott, 2013).  

Substrates can be monoubiquitylated through the conjugation of a single ubiquitin 

monomer, mulitiply monoubiquitylated, or polyubiquitylated through repeated reactions that 

generate polymeric ubiquitin chains of distinct or mixed linkages (Komander and Rape, 2012; 

Ye and Rape, 2009) (Figure 1.1B). Polyubiquitylation generally targets proteins for 

proteolytic degradation via the 26S proteasome, while monoubiquitylation is linked to 

nonproteolytic functions ranging from protein trafficking to chromatin regulation (Hicke, 2001; 

Pickart, 2001b). Modification of substrate lysine without further modification to ubiquitin itself, 

referred to as the specificity of the monoubiquitylation reaction, is thought to be determined 

by a number of factors including structural constraints imposed by a particular substrate-E3 

complex or specificity might be encoded by the distinct E2 or E3 pairings (Komander and 

Rape, 2012). Monoubiquitylation may be confined to a specific lysine residue as in the case 

of K119 in histone H2A or across a defined domain—the DNA binding domain of p53 
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transcription factor, for example. Polyubiquitylation can either proceed through either 

homotypic or heterotypic linkages (Kulathu and Komander, 2012). Polyubiquitin chains are 

homotypic when the donor ubiquitin is successively conjugated to the same residue in each 

acceptor ubiquitin (M1, K6, K11, K27, K29, K33, K48 or K63) during elongation. By contrast, 

polyubiquitin chains are referred to as heterotypic (branched and nonbranched) when 

assembled by mixed linkages or an array of atypical linkages. Although K48 and K63 

linkages remain best characterized, all possible linkage types have been detected in 

mammalian cells and presently, their regulated assembly and biological significance is a 

subject of intensive research.  

Ubiquitylated substrates are recognized by a large number of proteins that contain 

ubiquitin-binding domains (UBDs), which bind discreet interaction surfaces on ubiquitin 

(Husnjak and Dikic, 2012; Komander and Rape, 2012). UBDs may be broadly classified into 

α-helix based, zinc-finger based, plekstrin homology-like and ubiquitin conjugating (UBC)-like 

domains. Many UBDs preferentially bind a specific type of ubiquitin conjugate and can thus 

“decode” information encoded by differentially ubiquitylated substrates into the appropriate 

cellular response—the ubiquitin signal encoded by monoubiquitin versus polyubiquitin chains 

of specific and mixed linkages, for example. Similar to the reversal of phosphorylation by 

protein phosphatases, a family of DUBs (~95 in humans) cleaves conjugated ubiquitin from 

substrates, thus rendering ubiquitylation a highly dynamic and reversible posttranslational 

modification (Kulathu and Komander, 2012). Collectively, the type of ubiquitin modification, 

the ubiquitin binding proteins that decode the signal carried by a distinct conjugate and the 

DUBs that dynamically regulate the ubiquitylated proteome constitute the “ubiquitin code” 

and determine the functional outcome of substrate ubiquitylation (Husnjak and Dikic, 2012; 

Komander and Rape, 2012).  
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Enzymes of the ubiquitylation cascade  

The ubiquitin conjugation system is hierarchically organized with the mammalian 

genome encoding 2 E1s, 28 active E2s and a large array of E3 ligases that is estimated to 

exceed 600 (Deshaies and Joazeiro, 2009; Groettrup et al., 2008; Pickart, 2001a). This 

organizational hierarchy is predicted to increase specificity through additional regulation and 

generate functional diversity in the ubiquitin system. Examples illustrating this include the 

exquisite linkage specificity achieved by several E2 enzymes through differential positioning 

of ubiquitin in their active sites or when the specific E2-E3 interactions dictate substrate 

monoubiquitylation versus polyubiquitylation (Komander and Rape, 2012).  

The canonical cascade for protein ubiquitylation involves ubiquitin activation by the 

E1 UBE1. However, the recent identification of a second E1 enzyme UBE1l2 (Chiu et al., 

2007; Jin et al., 2007; Pelzer et al., 2007), a dual system of ubiquitin activation, adds an 

unexpected level of regulation in the ubiquitin pathway. The two E1s exhibit different 

specificities towards E2s, partly owing to subtle differences in their ubiquitin fold domains 

which recruit E2s. While all E2s except USE1 can be charged by UBE1, UBE1l2 charges a 

small cohort of E2s but specifically charges USE1 with ubiquitin. Consistent with the notion 

that UBE1l2 promotes a discreet subset of ubiquitylation reactions, UBE1l2 mice are 

embryonic lethal likely due to altered neuronal development (Chiu et al., 2007; Lee et al., 

2013).  

The 28 E2 ubiquitin conjugating enzymes (UBE2s) can be grouped into 

monoubiquitylating, chain initiating or chain elongating E2s (Kulathu and Komander, 2012). A 

common feature shared by all active E2s is a core ubiquitin-conjugating domain (UBC) 

comprising ~150 residues, which binds E1s and includes the catalytic cysteine as well as a 

conserved asparagine residue at the active site. Although E2 enzymes are critical to 

ubiquitylation reactions, their substrate affinity in the absence of an E3 is too low for efficient 

and specific ubiquitylation (Rodrigo-Brenni et al., 2010). Most E2s engage a number of 

different E3s to ubiquitylated substrates (UBE2D, for example), but a few exclusive 
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physiological E2-E3 pairs have been characterized (such as APC/C and UBE2S) (Ye and 

Rape, 2009). While some E2s dictate structure of the ubiquitin modification (mono- vs 

polyubiquitylation) and confer linkage specificity to polyubiquitin chains, substrate specificity 

is largely dictated by the E3 ligase. Nevertheless, E2s add functional versatility to the 

ubiquitin system by modulating the type of ubiquitin modification, and therefore the biological 

outcome of substrate ubiquitylation.  

The large number of E3 ligases is thought to reflect the specific targeting of an even 

larger number of cellular proteins by the ubiquitin system (Pickart, 2001a). In addition to 

conferring substrate specificity, E3s generally serve a scaffolding role to bridge the 

interaction between a substrate lysine and the E2-Ub intermediate to facilitate efficient 

ubiquitylation. As such, a shared property of all E3 ligases is distinct substrate and E2 

binding domains, which may be included in a single protein or comprise distinct subunits. 

There are two mechanistically distinct classes of E3 ligases: HECT (homology to E6AP C-

terminus) domain and RING (really interesting new gene) domain families (Figure 1.1A). To 

note, there are at least two other subfamilies of E3s: the U-box (UFD2 homology) which is 

structurally similar to RING E3s and the recently classified RBR (RING-in-between-RING) 

E3s which are RING/HECT hybrids (Kulathu and Komander, 2012). 

Named after the founding member E6AP protein, the mammalian genome encodes 

~30 HECT domain E3 ligases (Metzger et al., 2012). Substrate ubiquitylation by HECT E3s 

follows a covalent mechanism. Their C-termini contain the conserved ~40 kDa (~350 amino 

acids) HECT domain, while variable N-termini mediate substrate recognition. The HECT 

domain has a bilobal architecture consisting of an E2 interacting N-lobe and a C-lobe that 

harbors the active site cysteine. Ubiquitylation proceeds through an obligate transfer of 

ubiquitin from E2-Ub to the catalytic cysteine of HECT E3 by a transthiolation reaction. 

Following the formation of the HECT E3-Ub thioester intermediate, ubiquitin is directly 

conjugated to a target substrate. Nearly a third of the HECT E3s belong to the NEDD4 family 
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and among their diverse functions, HECT E3s regulate the trafficking of many receptors, 

transporters and channels (Rotin and Kumar, 2009).  

The RING family comprises the vast majority of E3 ligases with the mammalian 

genome potentially encoding over 600 RING proteins (Deshaies and Joazeiro, 2009). Unlike 

HECT E3s, RING E3s do not transfer ubiquitin directly to substrate. Instead, RING E3s 

minimally function in “catalysis by proximity” by simultaneously binding the targeted substrate 

and the E2-Ub conjugate (Pickart and Eddins, 2004). The catalytic step involves a 

nucleophilic attack by the substrate lysine ε-amino group on the E2-Ub reactive thioester 

bond, resulting in isopeptide bond formation between substrate and ubiquitin. In addition to 

its scaffolding role, RING E3s may induce subtle conformational changes in E2s to stabilize 

the transition state intermediate (an oxyanion) of the ubiquitin conjugation reaction (Deshaies 

and Joazeiro, 2009; Ye and Rape, 2009). Structurally, RING E3s share a domain (~70 amino 

acids) of distinctively spaced histidine and cysteine residues which coordinate two zinc 

cations, forming a ‘cross-brace’ structure termed the RING domain. RING E3s either 

possess an intrinsic RING domain or contain a separate RING domain subunit. The RING 

domain binds the E2-Ub conjugate while a separate domain or subunit mediates specific 

recruitment of diverse substrates. As such, RING E3s can function as monomers or in the 

context of multisubunit complexes. The cullin family of RING E3 ligases typify multisubunit 

assemblies and is the subject of remaining discussion on E3 ligases.  

 

The cullin family of RING E3 ligases 

The evolutionarily conserved cullin RING ligases (CRLs) represent the largest known 

family of E3 ligases (Deshaies and Joazeiro, 2009; Petroski and Deshaies, 2005; Sarikas et 

al., 2011). The CRL enzymatic core contains a cullin protein which functions as a molecular 

scaffold to assemble a substrate targeting module and a ubiquitin conjugation module into a 

single multisubunit complex. Among their diverse functions, CRLs have key roles in cell cycle 

control, signal transduction, development, and DNA replication, repair and transcription. 
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Mammals encode six canonical (CUL1, CUL2, CUL3, CUL4A, CUL4B and CUL5) and three 

distantly related (CUL7, CUL9 and APC2) cullin proteins. With the exception of CUL7 and 

CUL9—which evolved more recently in the common chordate ancestor, cullin orthologs are 

present in Drosophila melanogaster (5), Caenorhabditis elegans (6), Arabidopsis thaliana (5) 

and yeast (3). Structurally, cullins are characterized by three key features: a highly 

conserved C-terminal cullin-homology domain, an N-terminal domain containing a series of 

cullin repeats along with divergent sequences and a conserved lysine residue proximal to the 

cullin-homology domain (Figure 1.2). The following discussion will focus on the canonical 

cullins. 

Although cullins do not possess an intrinsic RING domain, the CRL catalytic core 

includes ROC1 (for RING of cullins; also known as RBX1/HRT1), a zinc-binding RING-H2 

domain subunit (Kamura et al., 1999b; Ohta et al., 1999; Seol et al., 1999; Tan et al., 1999). 

A notable exception is the CUL5-based complexes which preferentially include the related 

RING subunit ROC2 (discussion will refer to ROC1 for clarity). A highly conserved C-terminal 

globular domain in cullins harbors the cullin homology domain (~180 amino acids). At this 

domain, cullins bind ROC1 through an interlocking mechanism that tightly integrates the 

RING domain (Sarikas et al., 2011). ROC1 in turn recruits E2-Ub to form the active CRL 

conjugation apparatus. This modular assembly of a catalytic core is one of two defining 

structural features of CRL complexes, the substrate targeting module being the other.  

On the basis of the crystal structures of CRL1 and CRL4 complexes (Angers et al., 

2006; Zheng et al., 2002b), cullins have a arched but rigid stalk-like N-terminal domain that 

consists of three helical cullin repeats (CR1-CR3). This rigid architecture presumably 

positions the ROC1 bound E2-Ub at a proper distance from the substrate to promote efficient 

ubiquitin transfer. Indeed, inserting a linker in CUL1 to render flexibility to its N-terminal 

domain abolished CRL1 activity in vitro (Zheng et al., 2002b). Despite the anticipated 

structural conservation among cullin proteins, the very N-terminal sequences in each cullin is 

quite divergent. The latter provides a structural explanation for the most striking feature of 
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cullins proteins—they each assemble distinct substrate targeting modules at their N-termini 

in a combinatorial manner to recruit structurally diverse substrates to a common catalytic 

core. The substrate targeting module comprises an interchangeable substrate receptor that 

binds substrate and thus dictates the substrate specificity of its cognate CRL complex and in 

most cases, a distinct adaptor protein that links the substrate receptor to the core complex. 

The multisubunit organization of the CRL complexes is shown schematically in Figure 1.3. 

CUL1 is the founding member of the CRL E3 ligase family. Independent genetic 

studies on cell cycle control in C. elegans and S. cerevisiae led to the identification of CUL1 

and the cullin gene family (Kipreos et al., 1996; Mathias et al., 1996), and set the stage for 

the subsequent discovery of the CUL1-based CRL1 complexes (also known as SCF 

complexes) (Feldman et al., 1997; Skowyra et al., 1997). CRL1 complexes are composed of 

four subunits: CUL1 scaffold, ROC1 RING subunit, SKP1 adaptor and F-box containing 

proteins as variable substrate receptors. The F-box domain (~40 amino acid motif named 

after cyclin F where it was first identified) in the substrate receptor mediates binding to SKP1, 

which in turn links it to the CRL1 catalytic core (Bai et al., 1996). The human genome 

encodes 69 F-box proteins while the number of F-box proteins in other organisms ranges 

from 20 in S. cerevisiae to an astonishing 700+ in A. thaliana (Gagne et al., 2002; Skaar et 

al., 2009). The different combinations of F-box proteins generate a multitude of distinct CRL1 

complexes and thereby greatly expand the diversity in substrate targeting by the CRL1 E3 

ligase. This general principle applies to other CRLs (discussed below). 

CUL2- and CUL5-based CRLs both utilize Elongin C as the adaptor, which binds the 

two cullins as a heterodimeric complex with Elongin B (Kamura et al., 2004). Although they 

share the same adaptor, CUL2 and CUL5 each assemble distinct complexes by interacting 

with two separate classes of substrate receptors. Elongin C binds proteins with two similar 

motifs: von Hippel-Lindau (VHL)-box and suppressor of cytokine-signaling (SOCS)-box. Yet, 

structural determinants within the VHL-box and SOCS-box direct their interaction with either 

CRL2 or CRL5, respectively, to differentially recruit substrates to cognate complex (Sarikas 
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et al., 2011). Examples of differential substrate recruitment by VHL-box and SOCS-box 

proteins includes proteolytic targeting of hydroxylated HIF-1α transcription factor by CRL2VHL
 

complex (Ivan et al., 2001) and of antiviral protein APOBEC3G by the virally subverted 

CRL5VIF complex (Yu et al., 2003). CUL3-based CRL complexes uniquely omit an adaptor 

protein, instead binding directly to a class of substrate receptors through their Broad complex, 

Tramtrack, Bric-a-brac (BTB) domains (Furukawa et al., 2003; Geyer et al., 2003; Pintard et 

al., 2003; Xu et al., 2003). Although this direct binding may implicate that nearly all BTB 

proteins potentially assemble into CRL3 complexes, as is the apparent case for all three S. 

cerevisiae BTB proteins, this has yet to be experimentally verified for the large number of 

BTB proteins present in higher organisms (humans encode over 400) (Pintard et al., 2004). 

CUL4-based CRLs employ a similar multisubunit assembly with the specific adaptor DDB1 

and a distinct class of DDB1-binding substrate receptors (CRL4 complexes are discussed in 

detail in separate sections). Given their relatively recent discovery and the extraordinary 

number of diverse complexes that cullins potentially assemble in the cell (estimated 300-500 

distinct CRLs), future research should be able to better define the functional repertoire of 

CRL E3 ligases.  

 

Regulation of CRL RING E3 ligases 

Despite the diversity in subunit composition and cellular function, the assembly and 

ubiquitin ligase activity of CRL complexes are similarly regulated by a regulatory cycle 

involving several mechanisms. All cullins are covalently modified by the ubiquitin-like protein 

NEDD8 (~60% identity with ubiquitin) at a conserved lysine residue in their C-termini, 

proximal to the cullin homology domain (Hori et al., 1999). The NEDD8 conjugation (termed 

neddylation) drives the formation of active CRL E3 complexes and is essential for their 

function in mammalian cells (Bosu and Kipreos, 2008). Underlying the activating function, 

neddylation induces a conformation change in cullins such that it optimally reorients the 

ROC1 bound E2-Ub at the C-terminus towards the N-terminally bound substrate, thereby 
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facilitating ubiquitin transfer across a ~50 Å gap (Duda et al., 2008; Saha and Deshaies, 

2008). Indeed, cullins appear to be the primary substrates of the NEDD8 conjugation 

pathway. Similar to ubiquitylation, neddylation comprises an enzymatic cascade which 

includes the NEDD8-activating E1 enzyme NAE (NAE1/UBA3 heterodimer) and the NEDD8-

conjugating E2 enzymes UBE2M/UBE2F. Although not essential for in vivo neddylation 

reactions, DCN1 interacts with cullin bound ROC1 and possibly functions as a NEDD8 E3 

ligase (Kamura et al., 1999a; Kurz et al., 2008; Yang et al., 2007). Demonstrating the 

importance of neddylation to CRL4 activity, a small molecule inhibitor of NAE, MLN4924, 

was recently developed to disrupt CRL function in human tumor cells and is currently in 

clinical trials (Soucy et al., 2009). 

Analogous to deubiquitylation, cullin neddylation is reversed by the multisubunit 

COP9 signalosome (CSN) complex (termed deneddylation), thus converting active CRLs into 

inactive complexes (Lyapina et al., 2001). The CSN5 subunit encodes a critical 

metalloprotease active site for the isopeptidase activity towards neddylated cullins (Cope et 

al., 2002). Another key player in the regulation of CRL complexes is CAND1 (or TIP120A), 

which interacts with unneddylated cullins and in a mutually exclusive manner with cullin 

substrate receptors (Hwang et al., 2003; Liu et al., 2002; Min et al., 2003; Oshikawa et al., 

2003; Zheng et al., 2002a). Mechanistically, CAND1 was proposed to inactivate cullins 

through a sequestration based mechanism. Indeed, the crystal structure of CAND1-CUL1-

ROC1 complex shows that CAND1 forms an inhibitory complex with CUL1 that 

simultaneously masks the neddylation site and the adaptor binding site (Goldenberg et al., 

2004). In this regulatory cycle, cullin neddylation displaces bound CAND1 and prevents re-

association, thus enabling CRL activation and substrate recruitment by associated substrate 

receptors. 

While biochemical and structural studies demonstrated that CSN and CAND1 

negatively regulate CRL4 complexes, a more complicated and even seemingly paradoxical 

picture emerged from genetic studies. First, genetic ablation of CSN components 
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phenocopies the loss of cullin function in multiple organisms and despite the increase in 

neddylated cullins, CSN inactivation impairs the activity of CUL1, CUL3 and CUL4-based 

complexes (Bosu and Kipreos, 2008; Petroski and Deshaies, 2005). Similarly, CAND1 

inactivation in Arabidopsis and human cells suggested it is a positive regulator of cullin 

function. To reconcile these disparate findings, a number of models have been proposed 

(Bosu and Kipreos, 2008). First, a cycle of neddylation/deneddylation prevents proteolytic 

degradation of substrate receptors, which are frequently autoubiquitylated by their cognate 

CRL after ubiquitylation of target substrate is completed. In this view, sustained neddylation 

of cullins may promote ‘instability’ of select substrate receptors and thereby limit their 

availability. Consistent with this model, depletion of CSN5 resulted in both a failure to 

deneddylate CUL1 and the accumulation of CRL1 substrates, presumably from decreased 

stability of substrate receptors (Cope and Deshaies, 2006). Second, assembly of functionally 

distinct CRL complexes must require regulated substrate receptor exchange. A recent study 

suggests CAND1 facilitates assembly of new and rare CRL1 complexes by promoting the 

dissociation of pre-existing or high affinity F-box substrate receptors in exchange for new or 

less abundant F-box proteins (Pierce et al., 2013). It should be noted that an alternative 

model favors that substrate receptor abundance drives neddylation and the formation of 

active CRL complexes, and suggests neddylation-CSN-CAND1 cycle accounts for a minor 

fraction of CRL regulation (Bennett et al., 2010). Clearly, multiple layers of regulation are 

present to control the assembly of distinct CRL complexes to dynamically respond to cellular 

conditions.  

 

CRL4 complexes 

The core CRL4 complex comprises either CUL4A or CUL4B as the scaffold 

(collectively referred to as CUL4), ROC1 as the RING subunit in trans and DDB1 (DNA 

damage binding 1) as the CUL4 specific adaptor. DDB1 is evolutionarily conserved from 

Arabidopsis to humans, and it is essential in mammals and Drosophila but not in organisms 
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with DDB1 orthologs, such as A. thaliana and S. pombe. DDB1 was first characterized as a 

DNA damage sensor that functions in a heterodimeric complex with DDB2 to recognize UV-

induced DNA lesions in the nucleotide excision repair (NER) pathway (Chu and Chang, 

1988). A decade later, in an attempt to characterize DDB1-DDB2 interacting proteins, DDB1 

was found to interact with CUL4A (Shiyanov et al., 1999). The pleiotropic effects uncovered 

by genetic studies of DDB1 mutants in model organisms implicated that DDB1 is a 

multifunctional protein with roles beyond DNA damage repair (Jackson and Xiong, 2009). 

Finally, the presence of DDB1 in several distinct CUL4 complexes including those containing 

DDB2 and CSA established a role for DDB1 as the adaptor for CUL4 E3 ligases (Groisman 

et al., 2003; Hu et al., 2004; Sugasawa et al., 2005; Wertz et al., 2004), and thus accounted 

for its pleiotropic effects. 

Structurally distinct, DDB1 is a large protein (127 kDa) containing three β-propeller 

domains (BPA-BPC; spanning 100 Å) compared with the small size and structural complexity 

of all other cullin adaptors (<20 kDa) (Li et al., 2006). Additionally, cullin adaptors (SKP1, 

Elongin C or BTB substrate receptors) share sequence homology with each other and share 

a common structural element termed the SKP1/BTB/POZ fold to interact with their cognate 

cullin N-terminus (Sarikas et al., 2011). DDB1 does not contain this recognition fold. The 

flexibly linked BPB domain of DDB1 binds the N-terminus of CUL4, while the BPA-BPC 

domains form a rigid double propeller fold (resembling a clam shell) and was initially believed 

to function in substrate presentation (Li et al., 2006). The structural complexity and variation 

in cullin-adaptor interaction seen with CUL4-DDB1 possibly reflect the requirement for 

multiple interaction surfaces to accommodate structurally diverse receptors, or to bind 

cofactors for efficient CRL4 activity, or both.  

Despite DDB1 firmly established as the adaptor for CRL4 complexes, substrate 

recruitment mechanism for CUL4-based complexes remained elusive. It was reasonably 

anticipated that like other CRLs, CRL4 complexes are assembled with its own class of 

substrate receptors. The discovery that two separate DDB1 binding proteins, WD40 proteins 
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DDB2 and CSA, assembled into identical CRL4 complexes strongly hinted at this possibly 

(Groisman et al., 2003). Further supporting this proposition were the findings that XPC and 

CSB were substrates of CRL4DDB2 and CRL4CSB complexes, respectively (Groisman et al., 

2006; Sugasawa et al., 2005). A pattern emerged that suggested the involvement of a 

shared structural motif when a third WD40 protein, CDT2, was reported to target replication 

licensing factor CDT1 for CRL4-mediated proteolysis (Higa et al., 2006a; Ralph et al., 2006; 

Sansam et al., 2006). Ultimately, combined proteomic, structural and biochemical 

approaches to systematically search for specificity factors led to the identification of a diverse 

family of WD40-repeat proteins as putative substrate receptors of CRL4 complexes (Angers 

et al., 2006; He et al., 2006; Higa et al., 2006b; Jin et al., 2006). These four independent 

studies collectively identified 52 DDB1 binding WD40 proteins (referred to as DWDs 

hereafter; also referred elsewhere as DCAFs for DDB1-CUL4 associated factors or CWDs 

for CUL4-DDB1 associated WDRs).  

WD40 repeats are structural motifs of ~40 amino acids that are characterized by the 

frequent occurrence of a glycine-histidine (GH) dipeptide and a tryptophan-aspartic acid 

(WD) dipeptide at the end of the repeat. WD40 domain proteins typically contain several 

tandem or intervening WD40 repeats that often fold into a circular β-propeller structure. 

Search for a signature motif that defines DWDs led to the identification of a submotif within 

WD40 repeats, termed “WDXR”; comprises the WD dipeptide followed an X (any residue)- 

arginine/lysine dipeptide. More extensive sequence analyses yielded the “DWD-box”, a 16 

residue stretch terminating in the WDXR motif (He et al., 2006). Most DWD proteins contain 

at least one, frequently two tandem and rarely, three DWD boxes. A disease derived 

mutation in the WDXR of DDB2 (R273H) impairs its DDB1 binding (Rapic-Otrin et al., 2003; 

Shiyanov et al., 1999), underscoring the importance of this arginine in WDXR. Surprisingly, 

the crystal structure of the D. rerio DDB1-DDB2 complex revealed that the corresponding 

residue (R309) did not directly contact DDB1 but it may contribute to DNA binding and 

stabilize a propeller blade in DDB2 (Scrima et al., 2008). Although the WDXR is important for 
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the interaction between many DWD proteins and DDB1, not all DWDs contain a WDXR motif 

(Jin et al., 2006). Moreover, mutational analysis revealed that while many DWDs interact with 

DDB1 though its BPC domain, different BPC surfaces are utilized (Jin et al., 2006). These 

observations highlight the possibly that multiple sequence and structural elements determine 

the association between DWDs and DDB1. Indeed, the H-box, a recently discovered 

structural motif found in seven DWD proteins, is likely to be important for their association 

with DDB1 but this has yet to be experimentally tested for all H-box containing DWDs (Li et 

al., 2010).  

Results from the four studies clearly demonstrated that only a subset of the ~300 

WD40 proteins encoded by the human genome interacts with DDB1. Database searches of 

the DWD box motif estimated ~90 unique DWD proteins are present in human cells (He et al., 

2006). Besides WD40 domain, the array of presumptive functional domains in DWDs, 

ranging from bromodomain to tetratricopeptide, predicts the versatility of the CRL4 core 

complex. The interaction between DDB1 and the 52 DWDs has been confirmed, but primarily 

through transient overexpression followed by immunoprecipitation experiments. Importantly, 

the functional interaction between CRL4 and DWDs remains unexplored for the vast majority 

of them. As such, a key question regards whether all or most DWDs function as substrate 

receptors for CRL4 complexes to specify ubiquitylation of distinct substrates. Systematic 

validation of the putative substrate receptors will certainly require linking specific CRL4 

complexes to biological processes and identifying the physiological substrates through 

combined genetic, proteomic and biochemical approaches. Nevertheless, given the 

extraordinary number of distinct CRL4 complexes that may be assembled in the cell, it is 

reasonable to anticipate that these DWDs potentially extend the functional range of the 

CRL4 catalytic core. Elucidating the molecular function of one DWD protein, WDTC1 (also 

known as DCAF9), is the primary focus of my dissertation research. 
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Chromatin related functions of CRL4 complexes 

Besides the well established role for DDB1 in DNA repair, early genetic analysis of 

CUL4 deletion mutants in several organisms overwhelmingly implicated a role for CUL4 in 

chromatin regulation (Jackson and Xiong, 2009). Deleting cul4 (or pcu4) in S. pombe 

resulted in a viable but slow growth phenotype and two obvious phenotypes: abnormally 

elongated cells and decondensed chromatin (Osaka et al., 2000). The later discoveries that 

S. pombe cul4 interacts with Clr4 histone H3K9 methyltransferase to maintain 

heterochromatin and is required for S-phase destruction of Cdt1 at least partially accounts 

for the decondensed chromatin and growth retarded phenotypes of Δcul4 cells, respectively 

(Horn et al., 2005; Jia et al., 2005; Ralph et al., 2006). RNAi-mediated inactivation of cul4 in 

C. elegans causes growth arrest at the L2 larval stage and severe polyploidy arising from 

massive re-replication of the genome (Zhong et al., 2003). A failure to effect S phase-

coupled degradation of CDT1 (replication licensing factor) explained the re-replication in cul4 

RNAi cells. Known CRL4 substrates are listed and those related to chromatin based 

processes are indicated in bold (Table 1.1). The following discussion with focus on reports 

that directly link CUL4 to chromatin related functions: DNA damage repair, replication and 

transcriptional regulation. 

CRL4 in the maintenance of genome integrity 

At least two substrate receptors of CRL4 complexes are mutated in human 

hereditary diseases: DDB2 in xeroderma pigmentosum E group (XPE) and CSA in Cockayne 

syndrome, both diseases are associated with a defect in NER. In response to UV-induced 

helix-distorting DNA damage, DDB2 and CSA each function in separate NER pathways, 

global genome repair (GGR) and transcription coupled repair (TCR), respectively. In GGR, 

CRL4DDB2 is rapidly recruited to site of damage following UV. In turn, DDB2 recruits repair 

factor XPC to chromatin where both are polyubiquitylated by CRL4, but undergo different 

fates (Sugasawa et al., 2005). DDB2 ubiquitylation decreases its affinity for damaged DNA 
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(and presumably CRL4 as well), displaces it from chromatin and targets it for degradation 

(El-Mahdy et al., 2006). In contrast, XPC ubiquitylation increases its DNA binding affinity and 

is protected from degradation to carry out repair. Additionally, CRL4DDB2 also have reported 

roles in histone H2A, H3 and H4 monoubiquitylation following UV irradiation to facilitate GGR, 

possibly through recruitment of repair factors (Kapetanaki et al., 2006; Wang et al., 2006). In 

TCR, CRL4CSA complex is recruited to chromatin through its interaction with CSB, but in a 

CSN bound inactive state (Groisman et al., 2006). The precise mechanism and order of 

events are still unclear but CSB is thought to link the DNA damage signal, marked by stalled 

RNAPII, to the recruitment of NER repair factors. Although it is unknown how CRL4CSA is 

activated following repair, CSB degradation is critical for restoring transcription post-TCR.  

To maintain genome integrity, DNA replication must be restricted to only once per 

cell cycle. Of the checkpoint mechanisms evolutionarily conserved from S. pombe to humans, 

includes CRL4CDT2-mediated degradation of CDT1 after S phase initiation to prevent re-

replication and in response to DNA damage to prevent replication before damage repair. An 

interesting requirement of the CRL4CDT2-mediated degradation of CDT1 is that only PCNA 

bound CDT1 is ubiquitylated (Arias and Walter, 2006; Jin et al., 2006). Through mutational 

analysis, sequences in CDT1 that specify its interaction with PCNA was identified and 

termed the “PIP-box” (for PCNA-interacting motif). Similar to CDT2 depletion, mutating the 

PIP-box results in a loss of CRL4CDT2 chromatin recruitment, CDT1 stabilization and re-

replication, indicating that the PCNA-CDT1 interaction is critical for CRL4CDT2 recruitment to 

chromatin (Arias and Walter, 2006). Following this discovery, the PIP-box was demonstrated 

to be critically important for targeted degradation of other CRL4CDT2 substrates including p21 

CDK inhibitor, E2F1 transcription factor and SET8 histone methyltransferase (Abbas et al., 

2010; Nishitani et al., 2008; Shibutani et al., 2008). As no other CRL4 complexes have been 

reported to require PCNA, this feature may be unique to CRL4CDT2 substrates. It remains to 

be seen if other PIP-box proteins are also CRL4CDT2 substrates and if the PCNA interaction 

is a shared mechanism for recruiting CRL4CDT2 to chromatin.  
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CRL4 complexes in transcriptional regulation 

Apart from directly targeting transcriptional regulators, recent reports indicate a role 

for CRL4 complexes in the direct regulation of chromatin dynamics—histone lysine 

methylation, in particular. Early studies in S. pombe showed that Cul4 recruits histone H3K9 

methyltransferase Clr4 to maintain heterochromatin silencing (Horn et al., 2005; Jia et al., 

2005). Although Cul4 ubiquitin ligase activity is evidently important for H3K9 methylation as 

neddylation defective Cul4 mutant cannot restore heterochromatin silencing, the activity 

linking Cul4 and Clr4 remains unknown. In mammalian cells, at least three DWD proteins 

have established roles in histone methylation: WDR5 and RBBP5 are core components of 

the MLL histone H3K4 methyltransferase complex (activates transcription) and EED is a 

component of EZH2 containing PRC2 H3K27 methyltransferase complex (silences 

transcription). One study reported that WDR5/RBBP5 and EED are functionally linked to 

CRL4 as depletion of DDB1 or CUL4A leads to a dramatic loss of H3K4 and H3K27 

methylation (Higa et al., 2006b). However, the idea that CRL4-WDR5 functionally interact to 

promote H3K4 methylation is challenged by the finding that WDR5 itself is the ubiquitylation 

target of CRL4B and that rather than decreasing, the loss of CRL4B increases H3K4 

trimethylation (H3K4me3) with the concomitant activation of gene transcription (Nakagawa 

and Xiong, 2011). 

A recent study finally shed some light on a probable link between CRL4 activity and 

transcriptional regulation through direct alteration to chromatin structure. Histone H2AK119 

and H2BK120 are the nucleosomal substrates of ubiquitylation, however, while H2AK119ub 

is associated with gene silencing, H2BK120ub activates transcription and is a prerequisite 

modification for H3K4me3 (Hammond-Martel et al., 2012). Polycomb complex PRC1 was 

once believed to be the sole E3 ligase for H2AK119; however, recent findings challenge this 

premise. Indeed, CRL4BRBPB4/7 directly catalyzes H2AK119ub to silence transcription of a set 

of genes, including the tumor suppressor genes PTEN and CDKN2A (p16) (Hu et al., 2012). 

Additionally, this study shows that CRL4BRBPB4/7-dependent H2AK119ub leads to PRC2 
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recruitment and H2K27me3 enrichment, revealing a crosstalk mechanism to tightly enforce 

gene silencing. In this example, the RBPB4/7 DWD protein is speculated to recruit CRL4B to 

chromatin and functions in the downstream recruitment of PRC2, thus connecting two 

distinct enzymatic activities on chromatin. 

 

WDTC1 (Adipose), an anti-obesity factor and a putative CRL4 substrate receptor 

More than half a century ago, Dr. Winifred W. Doane hypothesized that 

environmental conditions with marked nutrient shortage may select for mutations that 

enhance fat storage capacity. The rationale being that although deleterious under normal 

conditions, such alleles could provide a survival advantage in nutrient deprived conditions. 

During course of her doctoral dissertation work at Yale University, she isolated such a 

mutation in a wild D. melanogaster population from Sub-Saharan Kaduna, Nigeria. The most 

obvious phenotype she observed was massive hypertrophy of the fat body (fly fat organ) 

accompanied by “enormous oil globules”, and thus named the mutant “adipose” (adp) 

(Doane, 1960a). Not surprisingly, adp mutants exhibit a selective advantage in starvation 

survival tests (Doane, 1960b).  

About forty years after characterizing the adp mutant phenotype, Dr. Doane 

collaborated with research groups in Germany to identify the adp gene (Hader et al., 2003). 

Comparative sequence analysis of open reading frames (ORFs) was performed between 

mutant and wild-type sequences within a 70 kb candidate region. Compared to the wild-type, 

a frameshift-causing 23 bp deletion was identified in one single ORF, the candidate adp 

gene. This deletion is expected to cause premature termination of the Adp protein; induces a 

stop codon one amino acid following the frameshift. Transgenic expression of the candidate 

wild-type adp ORF in mutant files completely rescued the mutant phonotype and firmly 

established the identify of the adp gene. The adp gene is evolutionarily conserved from 

plants to mammals and encodes a protein with a novel architecture (discussed in detail in 
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Chapter 2). The fly Adp protein shares 37% sequence identity to human Adp but functional 

conservation was unknown.  

To elucidate whether the anti-obesity function of adp is conserved in vertebrates, the 

Graff laboratory generated transgenic mice to study the loss and gain of function phenotypes 

of the mammalian adp homolog (referred to as Wdtc1 hereafter) (Suh et al., 2007). Because 

Wdtc1-/- mice are partially embryonic lethal and enough mice could not be generated, the 

authors evaluated Wdtc1 heterozygous mice. The loss of a single Wdtc1 allele yielded a 

clear obese phenotype, indicating evolutionary conservation of WDTC1 function and dose 

sensitivity. The Wdtc1-/+ mice were obese based on appearance, total body weight and fat 

content, histological assessment of adipocyte size and plasma analysis of metabolites. Quite 

strikingly, transgenic overexpression of Wdtc1 in mature adipocytes produced mice that were 

leaner and showed improved metabolic profiles compared to their wild-type littermates. The 

3T3-L1 cell culture adipogenic model was then utilized to explore potential molecular function 

of WDTC1. WDTC1 overexpression also inhibited 3T3-L1 adipogenesis. Additionally, nuclear 

exclusion of WDTC1, by attaching a nuclear export signal, mimicked the WDTC1 RNAi 

phenotype, suggesting WDTC1 may have a nuclear function. Following this lead, WDTC1 

was shown to bind histones and HDAC3 histone acetyltransferase in coimmunoprecipitation 

experiments. Suh and colleagues speculated that WDTC1 may function in transcriptional 

regulation through regulating chromatin structure. The molecular mechanism underlying the 

anti-obesity function of WDTC1 remains unknown.  

Of the four studies reporting the discovery of DWD proteins, the human WDTC1 

protein (676 amino acids) was first reported to interact with CRL4 components in two 

separate studies (Angers et al., 2006; Jin et al., 2006) and predicted in another through 

sequence analyses with the DWD box (He et al., 2006). In the Angers et al. study, tandem 

affinity purification followed by mass spectrometry identified WDTC1 in DDB1 and CUL4A 

complexes. The reciprocal analysis of WDTC1 complexes confirmed the association, 

including interaction with CUL4B and reported an interaction with histone proteins. Like the 
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vast majority of DWD proteins, the functional interaction between CRL4 and WDTC1 remain 

uncharacterized. 

 

Research summary 

The main goal of my dissertation research was to study the molecular mechanism underlying 

the anti-adipogenic function of WDTC1. In Chapter 2 (modified from a first author manuscript 

currently in revision), I characterized the functional interaction between CRL4 and WDTC1 

and I elucidated a potential mechanism, histone H2AK119 monoubiquitylation, by which 

CRL4WDTC1 complex suppresses adipogenesis. In Chapter 3, I describe the data obtained 

from screening for WDTC1 interacting proteins via mass spectrometry and include 

characterization of a putative CRL4WDTC1 substrate, fatty acid synthase. Finally, in Chapter 4, 

I provide perspective on the outstanding questions in WDTC1 research and discuss future 

prospects for investigating WDTC1 cellular function. 
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Figure 1.1. The ubiquitin conjugation system and the types of ubiquitin linkages. 
Figure and modified figure legend from Husnjak and Dikic, 2012.  

(A) The E1-E2-E3 enzymatic cascade is required for ubiquitin conjugation to target protein 
(ubiquitylation). The catalytic activities of HECT and RING E3 ligases, and deubiquitinases 
(DUBs; enzymes that reverse ubiquitylation) are shown schematically. Substrates can be 
modified by a single ubiquitin monomer (monoubiquitylation) or multiple ubiquitin monomers 
(multi-monoubiquitylation) or by the sequential addition of multiple ubiquitin monomers to one 
of eight residues (M1, K6, K11, K27, K29, K33, K48, or K63) of a previously conjugated 
ubiquitin (polyubiquitylation).  

(B) Summary of the various types of ubiquitylation and the major cellular processes 
regulated by specific linkages.  
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Figure 1.2. Schematic representation of cullin protein domain organization.  
Figure and modified figure legend from Sarikas et al., 2011.  
The N-terminal Cullin repeat 1 (CR1) binds a specific adaptor and the C-terminal cullin 
homology domain (CH) binds the RING subunit ROC1/2. The neddylation site is indicated by 
the red vertical line; CUL7 and CUL9 neddylation site has not been experimentally 
determined; based on consensus sequence analyses.  
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Figure 1.3. Composition of multisubunit CRL E3 ligase complexes.  
Each cullin protein functions as a molecular scaffold to assemble distinct complexes via 
interchangeable substrate receptors, which recruit diverse substrates to a common catalytic 
core. Specific composition of the different complexes is described in text. Cullins either 
directly interact (CUL3) or bind a specific adaptor protein at their N-termini (light blue) to 
interact with a family of substrate receptors that share a common sequence motif (dark blue). 
At their C-termini, cullins assemble the conjugation apparatus with ROC1/2 RING subunit 
(light grey) which recruits E2 enzymes for substrate ubiquitylation. Cullins are activated by 
neddylation (ND8). Abbreviations: Elon, Elongin; BC-box, Elongin-BC interacting VHL-box or 
SOCS-box proteins. 
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Receptor Substrate Substrate function Reference
BRWD3 dCRY1 Transcriptional repressor of circadian genes (Ozturk et al. 2013)
CDT2 CDT1 DNA replication licensing factor

CDT2 SET8 Histone methyltransferase (Abbas et al. 2010)
CDT2 E2F1 Transcription factor (Shibutani et al. 2008)
CDT2 p21 CDK inhibitor

CDT2 p53 Transcription factor (Banks et al. 2006)
CDT2 MDM2 E3 ligase (Banks et al. 2006)
CDT2 PCNA Translesion DNA synthesis (Terai et al. 2010)
CDT2 CHK1 Cell cycle checkpoint (Huh and Piwnica-Worms 2012)
CDT2 Pol η Translesion DNA polymerase (Kim and Michael 2008)
CSA CSB Nucleotide excision repair (TCR) (Groisman et al. 2006)
DDB2 XPC Nucleotide excision repair (GGR) (Sugasawa et. al. 2005)
DDB2 DDB2 Nucleotide excision repair (GGR) Sugasawa et. al. (2005)
DDB2 H2A Chromatin function (Kapetanaki et. al. 2006)
DDB2 H3, H4 Chromatin function (Wang et al. 2006) 
FBXW5 TSC2 Inhibitor of mTOR signaling (Hu et al. 2008)
RbAp46/48 H2A Chromatin function (Hu et al. 2012)
β-TrCP REDD1 Inhibitor of mTOR signaling (Katiyar et al. 2009; Regazzetti et al. 2012)
TRPC4AP N-Myc, C-Myc Transcription factor (Choi et al. 2010)
VprBP RORα Nuclear hormone receptor (Lee et al. 2012)
VprBP MCM10 DNA replication initiation and elongation factor (Kaur et al. 2012)
WDR5 WDR5** Subunit of SET1 histone methyltransferase (Nakagawa and Xiong 2011)
WDR23 SKN-1 Transcription factor (Choe et al. 2009)
AhR (TBL3?) ER-α** Estrogen receptor (Ohtake et al. 2007)
DET1* c-Jun Proto-oncogenic transcription factor (Wertz et al. 2004)
HOXB4* Geminin Inhibitor of DNA replication (Ohno et al. 2010)
HOXA9* Geminin Inhibitor of DNA replication (Ohno et al. 2013)
Not required? GRK5 Kinase for desensitizing GPCR signaling (Wu et al. 2012)
Not required? RASSF1A Inhibitor of Ras signaling (Jiang et al. 2011)
Unknown Cyclin E** Cell cycle progresion (Higa et al. 2006; Zou et al. 2009)
Unknown Dacapo/p27 CDK inhibitor (Higa et al. 2006)
Unknown HOXA9 Tanscription factor (Zhang et al. 2003)
Unknown PRDX3** ROS scavenger (Li et al. 2011)
Unknown Topo I DNA topoisomerase (Kerzendorfer et al. 2010)
Proteins in bold indicate chromatin related substrates
*Not a WD40 domain protein
**CRL4B specific

(Nishitai et al. 2008; Kim et al. 2008; Abbas 
et al., 2008)

(Higa et al., 2003, 2006; Hu et al., 2004; 
Arias and Walter, 2005, 2006; Hu and 
Xiong, 2006; Jin et al., 2006; Nishitani et al., 
2006; Sansam et al., 2006; Senga et al., 
2006; Zhong et al., 2003)

Table 1.1. Substrates of CRL4 E3 ligase complexes. 
Table adapted and modified from Jackson and Xiong, 2009. 

 



CHAPTER 2: BIOCHEMICAL ANALYSIS OF WDTC1 IN ADIPOGENESIS 

 

SUMMARY 
 

WDTC1, an anti-adipogenic gene product and a putative substrate receptor of a cullin 4 

RING E3 ligase (CRL4), suppresses adipogenesis by an unknown mechanism. I 

hypothesized that the anti-adipogenic function of WDTC1 is mediated through CRL4 activity. 

In this study, I characterized the interaction between WDTC1 and CRL4, and delineated the 

molecular function of WDTC1 using 3T3-L1 cell culture model of adipogenesis. I 

demonstrated that WDTC1 mutations that disrupt DDB1 binding mimic the loss of function 

defects observed in WDTC1 knockdown cells, impaired suppression of triglyceride 

accumulation and increased adipogenic gene expression. Rescue experiments showed that 

WDTC1 RNAi defects can be restored by wild-type WDTC1 but not CRL4 binding mutants, 

confirming that the CRL4 interaction is critical for WDTC1 function. Furthermore, I found that 

Cul4a knockout mice exhibit adipocyte hypertrophy and metabolic defects, these phenotypes 

are analogous to Wdtc1 heterozygous mice. Mechanistically, CRL4WDTC1 complex promotes 

H2AK119 monoubiquitylation, an epigenetic modification linked to transcriptional repression. 

Collectively, the results in this chapter identify CRL4WDTC1 E3 ligase as a suppressor of 

adipogenesis and implicate a role for this complex in transcriptional repression during 

adipogenesis. 



 27

BACKGROUND 

Over 50 years ago, Dr. Winifred Doane isolated and extensively characterized a 

naturally-derived D. melanogaster mutant, which she termed adipose (adp) (Doane, 1960a; 

Doane, 1960b). The most obvious mutant phenotype observed was hypertrophy of the fly fat 

organ due to excessive lipid storage (Doane, 1960a). Recently, Doane and colleagues 

identified the fly adp gene, which is evolutionarily conserved from files to humans as a single 

copy gene (Hader et al., 2003). The mammalian adp ortholog is WD40 and tetratricopeptide 

repeats 1 (WDTC1), encoding a protein that contains WD40 repeat and TPR repeat domains. 

Specifically, the fat suppressive function of Wdtc1 is evolutionarily conserved in mammals 

(Suh et al., 2007). Loss of a single Wdtc1 allele results in obese mice with poor metabolic 

parameters, and conversely, transgenic Wdtc1 expression in fat cells yields skinnier mice 

(Suh et al., 2007). Further, population studies have recently linked intronic WDTC1 single 

nucleotide polymorphic gene variants (Lai et al., 2009) and reduced WDTC1 gene 

expression (Galgani et al., 2013) to human obesity. Despite the strong genetic evidence 

linking WDTC1 to anti-adipogenic function, its molecular function remains elusive. 

In eukaryotic cells, covalent attachment of the 76 amino acid protein ubiquitin to 

substrate proteins, known as ubiquitylation, has a critical role in virtually all cellular 

processes. Perturbations in this system have been linked to diseases ranging from cancers 

to neurodegeneration (Petroski, 2008). Proteins can be polyubiquitylated, which typically 

targets it for proteolytic degradation, or monoubiquitylated, which regulates the property and 

thus the function of the protein (Hicke, 2001; Pickart, 2001b). Ubiquitylation proceeds via an 

enzymatic cascade where E1 and E2 enzymes catalyze the activation and conjugation of 

ubiquitin, while E3s confer reaction specificity through substrate recruitment (Hershko, 1983; 

Pickart, 2004). Belonging to the largest family of E3 ligases—the cullins, cullin 4-RING 

ubiquitin ligases (CRL4s) are a large subclass of multisubunit E3 enzymes. The core 

complex comprises either CUL4A or CUL4B paralog as the scaffold, the E2 interacting RING 

domain protein ROC1 (RBX1/HRT1) and the adaptor protein DDB1 (Jackson and Xiong, 
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2009). Substrate targeting to the catalytic core typically requires the interaction between 

DDB1 and substrate receptors. As recently elucidated, a subset of DDB1 binding WD40 

repeat (DWD) proteins likely function as substrate receptors for CRL4 complexes (Angers et 

al., 2006; He et al., 2006; Higa et al., 2006b; Jin et al., 2006). The human genome encodes 

~90 DWD proteins (He et al., 2006), but their function remain vastly unexplored. CRL4 E3 

ligases are strongly linked to chromatin-related processes through ubiquitylation of histones 

and factors controlling DNA repair, replication and transcription protein (Jackson and Xiong, 

2009; O'Connell and Harper, 2007). 

Indeed, WDTC1 (DCAF9) is a DWD protein and as such, a putative substrate 

receptor of CRL4 E3 ligases (Angers et al., 2006; He et al., 2006; Jin et al., 2006). However, 

the in vivo interaction between WDTC1 and CRL4 has not yet been explored. I hypothesized 

that WDTC1 functions as a substrate receptor of the CRL4 E3 ligase to mediate its anti-

adipogenic activity. The aim of this chapter is to examine the functional significance of the 

WDTC1 and CRL4 interaction, and elucidate the molecular mechanism underlying the anti-

adipogenic function of WDTC1. I demonstrated that WDTC1 functions as part of a CRL4 

complex to suppress adipogenesis. I also uncovered a function of the CRL4WDTC1 E3 

complex in promoting histone H2AK119 monoubiquitylation, a modification associated with 

transcriptional repression and thus a potential mechanism by which WDTC1 suppresses 

adipogenesis.  

 

RESULTS 

WDTC1 is a substrate receptor of CRL4 E3 ubiquitin ligases 

To begin to characterize the interaction between WDTC1 and CRL4, I compared a 

few key structural and sequence elements. WDTC1 encodes a protein with a novel structure, 

and its linear domain organization is predicted to be conserved from mammals to 

Arabidopsis (Figure 2.1A, top). The modeled human WDTC1 structure depicts the unique 

combination of a classic seven-bladed β-propeller with antiparallel α-helices of the TPR 
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repeats which are spatially separated by unstructured regions (Figure 2.1B). Of note, the 

structural basis of the interaction between WDTC1 and DDB1 is predicted to include a short 

N-terminal α-helical motif termed the H-box (Li et al., 2010). Although not strictly conserved 

at the primary sequence level, the H-box is a shared structural feature among a few DWD 

proteins, and surprisingly, several viral proteins that hijack the CRL4 complex. The alignment 

of H-box sequences revealed substantial sequence homology among vertebrates, consistent 

with their shared mode of DDB1 interaction (Figure 2.1A, bottom left). Additionally, the 

signature motif present in nearly all DWD proteins is the DWD box, a highly conserved 16 

residue sequence positioned within WD40 repeats (He et al., 2006). Similar to most DWD 

proteins, WDTC1 contains two tandem DWD boxes with conserved WDXR submotifs (Figure 

2.1A, bottom right). Interestingly, although the H-box of the DWD protein DDB2 makes a 

large contribution to DDB1 binding (Jin et al., 2006; Li et al., 2010), the importance of the 

arginine in the WDXR of DDB2 is indicated by its mutation (R273H) in some human XPE 

patients and its loss of DDB1 binding (Rapic-Otrin et al., 2003; Shiyanov et al., 1999). In fact, 

this arginine in WDXR submotifs is critically important for the interaction between many DWD 

proteins and DDB1 (Higa and Zhang, 2007). These observations therefore underscore the 

presence of multiple binding determinants for the functional interaction between DWD 

proteins and CRL4 complexes.  

To experimentally confirm the prediction that WDTC1 and CRL4 interact in vivo, 

endogenous CUL4A or CUL4B complexes were immunoprecipitated from HEK293T cells, 

and the presence of WDTC1 in the immunoprecipitates was determined by immunoblot 

analysis. I found that WDTC1 forms both CUL4A and CUL4B endogenous complexes 

(Figure 2.2A). While in vitro binding assays suggested that the H-box of WDTC1 is the key 

determinant of binding to DDB1 (Li et al., 2010), this has not been experimentally verified in 

cells. Additionally, in line with the aim to characterize WDTC1 molecular function, I sought to 

determine the contribution of the tandem WDXR motifs in WDTC1 to CRL4 complex 

assembly. I generated two WDTC1 mutants, one deleted the N-terminal 25 amino acid 
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residues spanning the H-box (referred to as ΔH) and the other substituted the arginine 

residues in the tandem WDXR motifs to alanines (referred to as RARA). I first confirmed their 

expression and determined that their relative stability is similar by cycloheximide chase 

(Figure 2.2B). I then examined their effect on binding CRL4 components by 

coimmunoprecipitation assays. 

As expected, wild-type (WT) Flag-tagged WDTC1 (Flag-WDTC1-WT) 

coimmunoprecipitated all CRL4 proteins tested (Figure 2.2C, lane 6). Consistent with the 

reported importance of the H-box, its deletion in WDTC1-ΔH completely ablated complex 

formation (lane 7). Interestingly, WDTC1-RARA mutant showed a marginal decrease in 

DDB1 binding but its interaction with CUL4 and ROC1 was markedly reduced (lane 8), 

indicating that the WDXR motifs in WDTC1 are required for forming stable CRL4 complexes. 

A superimposed structure of WDTC1 is shown in complex with CRL4 (Figure 2.2D). WDTC1 

is anchored through its H-box into the DDB1 BPC domain. As in the case of DDB2-DDB1 

binding (Fischer et al., 2011), the tandem WDXR residues of WDTC1 are not predicted to 

make direct contact with DDB1 but are solvent-exposed on the bottom surface of the 

propeller fold.  

Besides DDB2 (Nag et al., 2001; Sugasawa et al., 2005), the Xiong laboratory 

recently reported the second example of a DWD protein, WDR5, that is ubiquitylated by its 

cognate CRL4B complex and targeted for proteolysis (Nakagawa and Xiong, 2011). I 

therefore tested whether WDTC1 is a CRL4 substrate by an in vivo ubiquitylation assay. I 

found that although WDTC1 was extensively ubiquitylated, its ubiquitylation status was 

unchanged by either DDB1 knockdown or ΔH mutation that disrupts DDB1 binding (Figure 

2.2E). Finally, the steady state levels of transiently expressed Flag-WDTC1 protein are 

largely unaltered by knockdown of DDB1 or either CUL4A or B (Figure 2.2F), indicating that 

CRL4 does not regulate WDTC1 protein stability. Although DDB1 depletion resulted in a 

slight decrease in WDTC1 protein (lane 2), this is possibly due to instability arising from the 

loss of its primary binding partner. Together, these results demonstrate that WDTC1 is a 
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component of CRL4 complexes and likely functions as a substrate receptor of CRL4 E3 

ligases. 

 

The interaction of WDTC1 with CRL4 is critical for WDTC1-mediated adipogenic 
suppression 
 

To determine the biological significance of the CRL4-WDTC1 interaction, I 

hypothesized that the fat suppressive role of WDTC1 is mediated through CRL4. I first 

confirmed expression of CRL4 proteins in adipose tissues out of a panel of adult mouse 

tissues (Figure 2.3A). In addition to adipose tissues, WDTC1 protein appears to be broadly 

expressed, in agreement with a previous report on Wdtc1 mRNA expression pattern (Suh et 

al., 2007). To test my hypothesis, I assayed the adipogenic differentiation of 3T3-L1 

preadipocytes, the best characterized and most extensively used cell culture model to study 

adipogenesis. Originally derived from mouse embryonic fibroblasts (Green and Meuth, 1974), 

3T3-L1 adipogenesis is thought to closely recapitulate adipogenesis in mice. Treating 3T3-L1 

cells to an adipogenic media triggers transcriptional activation of the terminal differentiation 

program and morphological changes following lipogenic accumulation of triglycerides 

(MacDougald and Lane, 1995).  

I first confirmed the endogenous interaction between WDTC1 and CRL4 subunits 

during the course of 3T3-L1 differentiation, which I monitored by phenotypic changes (data 

not shown) and Fatty Acid Synthase (FAS) protein induction. WDTC1 was 

immunoprecipitated from cells collected at specific time points and the presence of CRL4 

proteins in the immunoprecipitates was determined by immunoblot analysis (Figure 2.3B). 

Although anti-WDTC1 antibody shows low immunoprecipitation efficiency, the results show 

that WDTC1 forms both CUL4A and CUL4B endogenous complexes. The levels of CRL4 

proteins remained relatively constant during differentiation (Figure 2.3B, input lanes), 

consistent with the notion that CRL4 has diverse roles in the process of 3T3-L1 proliferation, 

differentiation and lipid accumulation. Unexpectedly, WDTC1 protein levels also remained 
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constant during differentiation, although its mRNA expression was reported to be 

downregulated in differentiated 3T3-L1 cells (Suh et al., 2007). It is unclear whether WDTC1 

activity is downregulated during adipogenesis to enable cells to acquire and maintain the 

adipocyte phenotype via lipid accumulation. I predict an as yet unknown upstream factor 

suppresses WDTC1 activity to promote adipogenesis. 

A substrate receptor role for WDTC1 would predict that disruption of CRL4 binding 

would affect adipogenic suppression by WDTC1. I therefore evaluated the effects of 

disrupting the CRL4-WDTC1 interaction on WDTC1 function during adipogenesis. For this 

purpose, I generated stable cells that expressed a vector control (EV), Flag-WDTC1-WT or -

ΔH and -RARA mutants of WDTC1. I confirmed that ectopically expressed WDTC1 forms 

CRL4 complexes in these cells (Figure 2.3C; lane 6) and confirmed the expected total 

disruption and reduced binding of the WDTC1 mutants with CRL4, although ΔH and RARA 

expression is lower than WT (lanes 7 and 8). When these cells were adipogenically induced, 

WDTC1-WT suppressed adipogenesis as assessed by Oil Red O staining (ORO) (Figure 

2.3D), consistent with previous reports on the anti-adipogenic function of WDTC1 (Hader et 

al., 2003; Suh et al., 2007; Teague et al., 1986). In striking contrast, WDTC1-ΔH expression 

enhanced adipogenesis compared to EV, suggesting that it may function as a dominant 

negative form of WDTC1. Further, the expression of the WDTC1-RARA mutant, partially 

defective in binding DDB1, also promoted adipogenesis, but at a lower efficiency than 

WDTC1-ΔH. Consistent with the phenotypes assessed by ORO, ectopic expression of 

WDTC1-WT suppressed triglyceride accumulation, while expression of the WDTC1-ΔH (3.5 

fold) and WDTC1-RARA (2.4 fold) mutants resulted in significantly higher triglyceride levels 

compared to control cells (Figure 2.3E). Finally, consistent with its role as a suppressor of 

adipogenesis, expression of WDTC1-WT resulted in decreased adipogenic marker 

expression but this decrease is absent in the WDTC1-RARA expressing cells while marker 

expression is significantly increased in WDTC1-ΔH cells (Figure 2.3F). Together, these 
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results support the idea that CRL4 interaction is critically important for WDTC1 function in the 

suppression of adipogenesis. 

 

CRL4 binding mutants of WDTC1 cannot rescue WDTC1 function 

To further validate the functional link between WDTC1 and CRL4 in the suppression 

of 3T3-L1 adipogenesis, I attempted to generate DDB1, CUL4A or CUL4B stable knockdown 

cells by RNAi. I failed to obtain DDB1 knockdown cells, but was able to generate stable 

CUL4A and CUL4B knockdown cells (Figure 2.4A). However, I was unable to make clear 

phenotypic assessment of the adipogenic capacity of CUL4A or B knockdown cells. This is 

not surprising considering the expected pleiotropic effect of the CRL4 core components 

(Jackson and Xiong, 2009) and as speculated earlier, their potential involvement in multiple 

processes associated with 3T3-L1 adipogenesis. Specifically, given the well established role 

of CRL4 complexes in cell cycle regulation, depletion of CUL4A resulted in a cell proliferation 

defect while depletion of CUL4B resulted in a cell cycle defect. CUL4A depletion enhanced 

3T3-L1 proliferation rate (Figure 2.4B) but cell cycle distribution, as determined by flow 

cytometry analysis following propidium iodide staining of DNA, appeared to be normal 

(Figure 2.4C). The faster proliferation rate of CUL4Ai cells was unexpected since CUL4A 

depletion in MEFs impedes cell cycle progression through the S and early M phases, leading 

to slow proliferation rate (Kopanja et al., 2009). In contrast, the proliferation rate of CUL4Bi 

cells appeared to be normal when compared to control cells (Figure 2.4B), but analysis of 

DNA content indicated drastic alteration of the cell cycle; >2N in G1 phase and >4N in S 

phase (Figure 2.4C). When adipogenically induced, CUL4A depletion promoted 

adipogenesis, and on the contrary, CUL4B depletion suppressed adipogenesis (Figure 2.4D). 

Although I interpret these data cautiously, it is unclear exactly why knockdown of CUL4A and 

CUL4B have the opposite effect on 3T3-L1 adipogenesis. As CUL4A and CUL4B paralogs 

are not completely redundant, I speculate that this may relate to additional nuclear role of 

CUL4B protein and its impact on cell cycle control.  
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To counter limitations discussed above, I designed a rescue experiment to 

demonstrate the specificity of the WDTC1-CRL4 interaction in adipogenic suppression. 

Utilizing a lentiviral knockdown-rescue vector strategy developed by James Bear’s laboratory 

(Uetrecht and Bear, 2009), I generated 3T3-L1 stable cell lines that simultaneously 

knockdown endogenous Wdtc1 mRNA and replace WDTC1 protein expression to near 

endogenous levels with shRNA refractory open reading frames encoding either WDTC1-WT, 

WDTC1-ΔH or WDTC1-RARA (Figure 2.5A). Consistent with the reported RNAi phenotype 

of WDTC1 (Suh et al., 2007), WDTC1 knockdown dramatically enhanced 3T3-L1 

adipogenesis as assayed by ORO (Figure 2.5B), triglyceride quantitation (Figure 2.5C) and 

adipogenic marker expression (Figure 2.5D). While the addition of WDTC1-WT almost 

completely rescued the loss of adipogenic suppression in cells depleted of endogenous 

WDTC1 in all three assays, both CRL4 binding mutants failed to fully rescue the RNAi 

phenotype. The phenotype and the adipogenic marker expression of the WDTC1-RARA 

rescue cells were an intermediate between control cells and shWDTC1 cells, indicating 

partial rescue. In sharp contrast, WDTC1-ΔH rescue expression closely mimicked the RNAi 

phenotype, demonstrating that the loss of adipogenic suppression is primarily due to the loss 

of CRL4 binding. Considering the genetic evidence indicating that adp/Wdtc1 exhibits dose 

sensitivity (Doane, 1960a; Suh et al., 2007), I interpret the WDTC1-RARA mutant to 

represent a hypomorphic form of WDTC1. Collectively, these findings demonstrate a 

remarkable parallel between CRL4WDTC1 complex formation and WDTC1 function in the 

negative regulation of adipogenesis. 

 

Cul4a-/- mice exhibit adipocyte hypertrophy and poor metabolic profiles 

I next sought genetic evidence to support an in vivo role of CRL4 in adipogenic 

regulation. Cul4b, Ddb1 and Roc1 knockout mice are embryonic lethal (Cang et al., 2006; 

Jiang et al., 2012a; Tan et al., 2009). Additionally, an adipose specific conditional mouse 

knockout model has not yet been reported for any of the CRL4 subunits. Although it is 
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interesting to note that central obesity is frequently observed in X-linked mental retardation 

(XLMR) patients carrying CUL4B mutations (Tarpey et al., 2007), but the basis for this 

apparent association is unclear. However, Cul4a systemic knockout mice are viable and 

display no detrimental developmental defects throughout their lifespan with the exception of 

mice being sensitive to liver toxins and having enhanced UV-induced DNA damage response 

(Kopanja et al., 2009; Liu et al., 2009). The availability of this reagent therefore provided an 

exciting but preliminary opportunity to investigate a potential role of CUL4A in mammalian 

adipocyte biology. To this end, I focused on the visceral gonadal white adipose tissue 

(GWAT) and the subcutaneous inguinal white adipose tissue (IWAT) fat depots of normally 

fed mice. To rule out the possibility that genetic ablation of the Cul4a gene leads to altered 

expression of WDTC1 or its paralog CUL4B, I checked their protein expression in wild-type 

(WT) and Cul4a-/- mice fat pads by immunoblotting (Figure 2.6A).There was no obvious 

change in either WDTC1 or CUL4B expression, thus permitting a clearer phenotypic 

assessment of Cul4a-/- mice. Visually, WT and Cul4a-/- mice were similar in appearance and 

there were no significant differences in their body weight (Figure 2.6B). 

Despite the similarity in body weight, I observed that the Cul4a-/- mice had noticeably 

larger GWAT and IWAT fat depots compared to their wild-type counterparts (Figure 2.6C), 

and as expected, these tissues weighed significantly more while the weights of other organs 

were unchanged (Figure 2.6D). Importantly, histological analyses revealed a striking 

adipocyte hypertrophy phenotype in both fat depots of Cul4a-/- mice (Figure 2.6E). I noted 

that the number of adipocytes was similar between wild-type and Cul4a-/- mice by nuclei 

counting. Therefore, adipocyte hypertrophy (increase in cell size), but not adipocyte 

hyperplasia (increase in total adipocytes), accounted for the overall increase in adiposity or 

fat mass. Lastly, serum levels of glucose, triglycerides, insulin and leptin in overnight fasted 

mice were measured. Cul4a-/- mice had significantly elevated levels of these metabolites 

(Figure 2.6F), with the exception of insulin, although it followed the same trend. Adipocyte 

hypertrophy and altered metabolic parameters of the Cul4a-/- mice are remarkably 
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comparable to the phenotypes observed in Wdtc1+/- mice (Suh et al., 2007), consistent with 

these proteins functioning in the same molecular pathway.  

 

CRL4WDTC1 promotes histone H2AK119ub in a lineage specific manner 

To gain insight into the mechanism by which CRL4WDTC1 suppresses adipogenesis, I 

considered a potential role for this complex in transcriptional repression. This is an intriguing 

possibility since the only example of WD40 and TPR domains functioning collectively is in 

transcriptional corepression by the well characterized yeast Tup1-Ssn6 heterodimer (Malave 

and Dent, 2006). In fact, based on three observations reported by Suh et al., 2007, a 

transcriptional repressor function leads the suggested role for WDTC1. First, WDTC1 

expression is associated with reduced adipogenic marker expression (confirmed by me) and 

inhibition of PPARγ reporter gene transcription. Second, its adipogenic suppressive function 

is lost upon nuclear exclusion. Third, WDTC1 physically interacts with ectopically expressed 

histones and HDAC3, a component of many corepressor complexes. Separately, despite the 

established role for CRL4 in transcriptional regulation, a direct role in transcriptional 

repression has been demonstrated only recently for the CRL4BRBBP4/7 complex (Hu et al., 

2012), raising the possibility that other DWD proteins may have similar biochemical function.  

I first examined the distribution of Flag-WDTC1 in subcellular fractions by 

immunoblotting (Figure 2.7A), and its cellular localization by immunoflourescence 

microscopy in 3T3-L1 cells (Figure 2.7B). I found that while WDTC1 is primarily recovered in 

the cytosolic fraction, it is also present in the nuclear fractions, and importantly, the MNase-

digested chromatin fraction (Figure 2.7A, lane 4). Although WDTC1 is expected to bind 

histones, it is unclear whether it binds nucleosomal histones (Angers et al., 2006; Suh et al., 

2007). I therefore performed a nuclear immunoprecipitation with soluble chromatin extracts 

from HEK293T cells transiently expressing Flag-WDTC1 and HA-tagged core histones. All 

core histones except histone H4 were recovered in Flag-WDTC1 immunoprecipitates, 

indicating that WDTC1 binds nucleosomal histones (Figure 2.7C). I noted that WDTC1 
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interacted with histone H2A, but not the presumably ubiquitylated form of H2A (lane 3), 

which prompted me to test whether CRL4WDTC1 regulates histone H2A ubiquitylation, a 

modification linked to transcriptional repression (Kouzarides, 2007). 

Because WDTC1-ΔH disrupts DDB1 binding and thus disrupts probable 

ubiquitylation activity, and appears to functionally antagonize WDTC1 during adipogenesis, I 

took advantage of this mutant to investigate the effect of WDTC1 expression on histone H2A 

ubiquitylation. Histone H2A monoubiquitylated at the highly conserved K119 residue 

(H2AK119ub) represents the primary form of ubiquitylated H2A in cells, although 

polyubiquitination of H2A has been reported (Goldknopf and Busch, 1977; Nickel and Davie, 

1989). I first examined the global level of H2AK119ub in preadipocyte and induced 3T3-L1 

cells stably expressing either a vector control (EV), Flag-WDTC1-WT or -ΔH by 

immunoblotting with a H2AK119ub specific antibody. I did not detect any significant changes 

in H2AK119ub levels among these cell lines in the preadipocyte state (Figure 2.7D). In 

contrast, expression of WDTC1-WT resulted in a modest, but significant increase in 

H2AK119ub while WDTC1-ΔH expression resulted in a slight decrease. However, ectopic 

expression of either WDTC1-WT or WDTC1-ΔH in two non-adipogenic cell lines, HEK293T 

and HCT116, had no detectable effect on H2AK119ub levels whether DDB1 was depleted or 

not (Figures 2.7E and 2.7F). Minimally, this suggests WDTC1 promotes H2AK119ub in an 

adipocyte-linage specific manner. The global change in H2AK119ub in 3T3-L1 induced cells 

was modest, implicating that perhaps CRL4WDTC1 regulates H2AK119ub locally at a subset of 

genes rather than globally. Nevertheless, WDTC1-mediated increase of H2AK119ub is 

dependent on the CRL4 interaction. I speculated that perhaps WDTC1 recruits CRL4 to 

specific targets to monoubiquitylate H2A, similar to CRL4B recruitment by RBBP4/7 DWD 

proteins to target promoters (Hu et al., 2012). I tested the interaction between WDTC1 and 

endogenous histones by chromatin coimmunoprecipitation assays, confirming nucleosomal 

histone binding at physiologic levels (Figure 2.7G). Supporting the recruitment hypothesis, I 
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found that while ΔH deletion in WDTC1 abolishes CRL4 binding, this mutant retained histone 

binding activity (lane 3).  

Finally, to test weather H2A is a direct target of CRL4WDTC1 E3 ligase, I performed in 

vitro ubiquitylation assays. I affinity purified Flag-WDTC1-WT or Flag-WDTC1-ΔH complexes 

from HEK293T cells and confirmed the presence of CRL4 components in WT, but not in ΔH, 

eluted fraction by immunoblotting and Coomassie Blue staining (Figure 2.8A). Recombinant 

histone H2A protein was incubated with either purified WDTC1-WT or WDTC1-ΔH 

complexes in a reaction mix containing ubiquitin, recombinant E1, E2-UBE2D3 and ATP. 

Reaction products were resolved by SDS-PAGE and detected by H2AK119ub specific 

antibody. The results show that H2A is robustly ubiquitylated by WDTC1 in a CRL4 

dependent manner (Figure 2.8B; compare lanes 1 and 2), demonstrating that H2A was a 

specific substrate of CRL4WDTC1 in this in vitro system. Multiple H2AK119 ubiquitylated 

species were detected, but their identity has not been determined and I suspect that they 

represent non-specific ubiquitylation at additional sites, perhaps reflecting the high efficiency 

of H2A ubiquitylation in vitro. Shorter exposure of the blot showed that the primary reaction 

product is the monoubiquitylation detected by the H2AK119ub antibody (Figure 2.8C). To 

determine whether K119 residue is the primary target of CRL4WDTC1, wild-type H2A and its 

mutants, H2AK118R and H2AK119R, were tested in in vitro ubiquitylation assay. While 

purified Flag-WDTC1-WT enhanced wild-type H2A ubiquitylation compared to control, 

disrupting the K118 residue had very little effect (Figure 2.8D; compare lanes 2 and 3). In 

contrast, K119R mutation resulted in a substantial loss of H2A ubiquitylation, indicating that 

K119 is the primary CRL4WDTC1-dependent ubiquitylation site (lane 4). These results 

collectively suggest CRL4WDTC1 promotes H2AK119ub in vitro, and in vivo in an adipocyte 

lineage specific manner.  
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CRL4WDTC1-mediated H2AK119ub is linked to altered levels of H3K4me3 

Referred to as crosstalk, H2AK119ub is typically combinatorial with other 

transcription repressive modifications such as H3K27 and H3K9 trimethylation, and acts 

dominantly over modifications linked to gene activation such as H3K4 trimethylation (Vissers 

et al., 2008; Zhang, 2003). Although the mechanistic details are not entirely clear, crosstalk 

is a probable mechanism by which H2AK119ub-enriched chromatin is rendered 

transcriptional silent. To expand on the finding that CRL4WDTC1 promotes H2AK119ub, I 

considered the effect of WDTC1 expression on other histone modifications—histone 

trimethylation (me3), in particular. After adipogenic induction, I prepared chromatin extracts 

from 3T3-L1 cells stably expressing EV control, Flag-WDTC1-WT or -ΔH and examined the 

global level of various histone modifications by immunoblotting with modification specific 

antibodies.  

As expected, WDTC1-WT expression, but not WDTC1-ΔH, resulted in a global 

increase in H2AK119ub but had no apparent effect on H2BK120ub, the primary site of 

histone H2B monoubiquitylation (Figure 2.9A). While no obvious change in H3K9me3 was 

observed, a slight decrease in H3K27me3 was detected in cells expressing WDTC1-ΔH. 

Because H3K27me3 is thought to be upstream of H2AK119ub in Polycomb-mediated gene 

repression (Cao et al., 2005) and WDTC1-WT had no apparent effect on this modification, 

the significance of this decrease is not immediately clear but implies decreased gene 

silencing in WDTC1-ΔH cells. The most obvious change concomitant with the increase in 

H2AK119ub was the marked decrease in H3K4me3 in WDTC1-WT expressing cells. I 

confirmed this finding in cells depleted of WDTC1 proteins by two independent shRNAs, 

which resulted in decreased H2AK119ub but a considerable increase in H3K4me3 levels 

(Figure 2.9B). Together, these results demonstrate that WDTC1, through its function as a 

CRL4 E3 ligase component, promotes H2AK119ub during adipogenesis and that reduced 

WDTC1 function is associated with reduced H2AK119ub and increased H3K4me3. 
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DISCUSSION 

The primary goal of this study was to elucidate the molecular mechanism underlying 

WDTC1 anti-adipogenic function. In this chapter, I showed that WDTC1 functions as a 

component of a CRL4 E3 ligase to suppress adipogenesis, possibly through epigenetic 

regulation of transcription via H2AK119ub. First, the interaction of WDTC1 with CRL4 is 

essential for its function in suppressing adipogenesis. Disruption of WDTC1-DDB1 binding 

results in defects in 3T3-L1 cell adipogenesis similar to that observed in WDTC1 deficient 

cells. Second, I sought genetic evidence supporting a role for CRL4 in adipocyte biology. I 

found that Cul4a knockout mice develop phenotypes in fat tissues that are very similar to that 

reported in Wdtc1+/- mice. Finally, I showed that CRL4WDTC1 complex regulates histone 

H2AK119 monoubiquitylation during adipogenesis and is likely to function as adipocyte 

lineage specific E3 ligase for histone H2AK119.  

Representing one of the most abundant modifications in higher eukaryotes (5-15% of 

total H2A), H2A was the first protein identified to be ubiquitylated with the site mapped to the 

highly conserved K119 residue (Goldknopf and Busch, 1977; Goldknopf et al., 1975). The 

most extensively characterized H2A E3 ligase is the RING1B of PRC1 complex which plays 

a critical and evolutionarily conserved role in developmental control in flies and mammals 

(Schuettengruber and Cavalli, 2009). While RING1B has been found in additional protein 

complexes besides PRC1 (Zhou et al., 2009), it has been conceptually unclear how a single 

E3 ligase regulates different biological processes that involve epigenetic silencing. More 

specifically, considering the abundance of H2AK119ub in cells, it is intriguing as to whether 

RING1B singularly catalyzes H2AK119ub or distinct E3 ligases exist for H2AK119. Two 

reports support the latter possibility. First, 2A-HUB (DZIP3/hRUL138) mediates selective 

repression of a specific set of chemokine genes in macrophages through functional 

interactions with a histone deacetylase complex (Zhou et al., 2008). Second, CRL4BRBBP4/7 

collaborates with PRC2 to repress various target genes involved in cell growth and migration 

(Hu et al., 2012). Both 2A-HUB and CRL4BRBBP4/7 appear to be devoid of an association with 
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PRC1 subunits. The results presented in this study suggest CRL4WDTC1 is a novel and 

lineage specific H2AK119 E3 ligase. This supports the notion that in addition to the iconic 

PRC1, multiple H2AK119 E3 ligases that function in epigenetic repression may exist. It is 

interesting to note that this study and the study by Hu et al. identify two homologous 

H2AK119 E3 ligases, CRL4WDTC1 and CRL4BRBBP4/7, which only differ in the substrate 

recognition DWD subunit. Given the ~90 estimated DWD proteins in mammalian cells (He et 

al., 2006), it is tempting to speculate that additional DWD proteins may target H2AK119ub 

through CRL4 E3 ligases, a notion that is consistent with the observed function of CUL4 

gene in chromatin regulation. 

Studies on transcriptional regulation of adipogenesis have traditionally focused on a 

cascade of sequentially expressed transcriptional factors (Rosen and MacDougald, 2006), 

but epigenetic regulation is emerging as a critical regulator of adipogenesis, especially on the 

control of such key adipogenic factors as PPARγ and C/EBP family members (Cristancho 

and Lazar, 2011). Specifically, the genome-wide changes of multiple histone acetylation and 

methylation marks, many of which are involved in transcriptional activation, have been 

detected and some functionally linked to adipogenesis. By contrast, epigenetic repression of 

adipogenesis remains poorly understood. The CRL4WDTC1-dependent correlation between 

increased H2AK119ub and decreased H3K4me3 levels uncovered in this study has 

functional implication in adipogenic transcriptional repression. In vitro evidence indicates that 

H2AK119ub blocks transcription initiation by inhibiting H3K4 di- and trimethylation by MLL3 

histone methyltransferase (Nakagawa et al., 2008), a recently characterized positive 

regulator of adipogenesis in mice (Lee et al., 2008). To the best of my knowledge, WDTC1 

represents the first factor that links H2AK119ub, which has long been associated with gene 

silencing, to adipogenesis. Collectively, the results in this chapter suggested a model in 

which WDTC1 recruits the CRL4 complex at a subset of adipogenic genes to 

monoubiquitylate H2AK119, which consequently prevents H3K4me3, and thus repressing 

transcriptional activation of adipogenic genes (Figure 2.10). I predict transcriptional control of 
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these genes is dynamically regulated by the action of CRL4WDTC1 E3 ligase and upstream 

signals that prevent CRL4WDTC1 activity. Conceivably, transcriptional activation of these 

promoters requires coordinated action of histone deubiquitinases and methyltransferases. 

Undoubtedly, identifying CRL4WDTC1 target genes through future genome-wide studies is the 

critical next step in exploring an in vivo role for CRL4WDTC1 in transcriptional repression.
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EXPERIMENTAL PROCEDURES 

WDTC1 cloning and plasmids 

The human WDTC1 (NM_015023.4) coding sequence was PCR amplified from a HepG2 

cDNA library and cloned into pENTR™/D-TOPO (Invitrogen) to generate a WDTC1 entry 

vector for Gateway cloning or conventional subcloning. The DDB1 binding deletion mutant 

WDTC1-ΔH was subcloned from pENTR-WDTC1 and WDTC1-RARA was generated by 

sequential QuikChange site-directed mutagenesis (Stratagene) to pENTR-WDTC1. To 

generate expression constructs, WDTC1 entry vectors were recombined with Gateway 

adapted destination vector p3XFLAG for transient and pMX-FLAG-puro for stable expression 

(destination vectors were a gift of Dr. K. I. Nakayama). HA-tagged ubiquitin expression 

plasmid has been described previously (Nakagawa and Xiong, 2011). Mouse Wdtc1, Cul4a 

and Cul4b shRNA sequences were designed using BLOCK-IT RNAi tool (Invitrogen) and 

cloned into pMKO.1-puro retroviral vector (Addgene plasmid 8452) for stable knockdown of 

respective mRNAs in 3T3-L1 cells. To generate WDTC1 knockdown-rescue vectors, shRNA 

sequences targeting mouse Wdtc1 and shRNA refractory human WDTC1 coding sequences 

were cloned into a bicistronic lentiviral vector, pLL-5.5-IRES-EGFP (a gift of Dr. J. Bear), as 

described previously (Cai et al., 2007; Uetrecht and Bear, 2009). A minimum of 2-3 shRNA 

constructs were screened and 1 or 2 were selected based on knockdown efficiency; shRNA 

sequences are listed in Table 2.1. All plasmids were sequence verified.  

Cell culture and adipocyte differentiation 

HEK293T cells and 3T3-L1 preadipocytes were cultured in DMEM supplemented with 1X 

penicillin-streptomycin solution (Corning) and 10% (v/v) fetal bovine serum (FBS) or fetal calf 

serum (FCS), respectively. HCT116 cells were cultured in McCoy's 5A FBS media; 

supplemented as above. 3T3-L1 cells were differentiated with modifications to protocol 

described previously (Student et al., 1980). To induce differentiation, 2 day post confluent 

3T3-L1 cells (day 0) were treated with an induction media containing 1 mM dexamethasone, 
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0.5 mM isobutylmethylxanthine, and 1 µg/ml insulin (all from Sigma) in 10% FBS 

supplemented DMEM. Two days later, induction media was replaced with 1 µg/ml insulin 

only for the duration of the experiment and media was changed every 2 days. A schematic 

summarizing 3T3-L1 differentiation with time points indicated for different experimental 

procedures is shown (Figure 2.11). 

Transfections, retroviral and lentiviral infections 

HEK293T cells were transfected at 1:3 plasmid to reagent ratio using Fugene 6 transfection 

reagent (Promega) for transient overexpression or transfected with 50 nM of siRNA for 

knockdown using Lipofectamine 2000 reagent (Invitrogen) according to manufacturers’ 

protocol. In experiments requiring both plasmid and siRNA transfections, siRNA transfection 

was preceded by plasmid transfection to counter differential transfection efficiencies of 

siRNA knockdown cells. Cells were incubated for 72 h for knockdown by siRNA; siRNA 

sequences were described previously (Hu et al., 2004) and listed in Table 2.1. For retroviral 

or lentiviral production, HEK293T cells were cotransfected with various plasmids for viral 

packaging as described (Kotake et al., 2007). Viral media was collected 48 h 

posttransfection at two 12 h intervals, syringe filtered through 0.45 µm filter and polybrene (8 

µg/ml) supplemented. Preconfluent 3T3-L1 preadipocytes were infected with the viral media 

twice within a 24 h interval. Cells were split to maintain preconfluency. Retrovirally 

transduced cells were selected with 4 µg/ml puromycin and maintained in selection media 

until adipogenic induction. Infection of 3T3-L1 cells by the lentivirus encoding pLL-5.5-IRES-

EGFP WDTC1 knockdown-rescue constructs was assessed by real-time qPCR and 

immunoblotting. 

Antibodies, immunoprecipitation and immunoblotting  

Our laboratory made two separate attempts to generate an antibody against WDTC1 but 

failed to obtain a high affinity WDTC1-specific antibody. I later obtained an anti-WDTC1 

rabbit monoclonal antibody (Abcam) and an anti-WDTC1 polyclonal antibody (Abgent) that 
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gave WDTC1 specific signals. The polyclonal antibody appeared to be limited to 

immunoblotting and showed within lot variations in detecting WDTC1 protein; therefore, most 

experiments utilized the monoclonal antibody. DDB1, CUL4A and ROC1 antibodies were 

generated by our laboratory as described previously (Hu et al., 2004), a commercially 

available antibody was used for the detection of mouse CUL4A and all other antibodies used 

in this study were from commercial sources and listed in Table 2.2. For preparing cell 

extracts, cells were lysed on ice in NP-40 lysis buffer [50 mM Tris (pH 8.0), 150 mM NaCl, 

10% glycerol, 1 mM EDTA and 0.1% NP-40] supplemented with HaltTM (Thermo Sci.) 

protease/phosphatase inhibitor cocktail (PPIC). For immunoprecipitation experiments, 

clarified cell extracts were immunoprecipitated by overnight incubation with primary antibody 

at 4 °C. For nuclear immunoprecipitation, Triton X-100 insoluble nuclear fractions were 

treated with deoxyribonuclease (DNase) to prepare soluble chromatin extracts essentially 

following method described previously (Day et al., 2010). Immunoprecipitates were washed 

3-5 times in lysis buffer with rotation, eluted by boiling in Laemmli buffer, resolved by SDS-

PAGE, transferred to PVDF membrane (Millipore) and detected by immunoblotting with 

indicated antibodies. Immunoblotting was performed following standard protocols and blots 

were developed using ECL reagent (GE Amersham). Protein band densitometry analyses 

were performed using ImageJ software (U.S. National Institutes of Health). 

Oil Red O staining and triglyceride assay 

To stain lipid droplets, differentiated cells were fixed in 3.7% buffered paraformaldehyde for 

0.5 h and stained with 0.3% Oil Red O stain (ORO) in isopropanol for 1 h. After staining, cells 

were washed in distilled water and photographed using a digital camera and a dissecting 

microscope. Intracellular triglyceride levels were measured in induced cell lysates with an 

enzymatic assay using the Triglyceride Quantitation Kit and manufacturer’s protocol 

(BioVision). Triglyceride levels are normalized to sample protein concentrations by a BCA 

assay (Thermo Sci.).  
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Real-Time quantitative PCR 

Total RNA was isolated from cells using Trizol (Invitrogen) and further purified to remove 

residual phenol/chloroform using RNAeasy Mini cleanup (Qiagen). First strand cDNA was 

synthesized with 800 ng of RNA using Superscript II reverse transcriptase kit (Invitrogen). 

Quantitative PCR (qPCR) was performed in duplicate or triplicate using 1 μl of cDNA and 

SYBR Green PCR master mix (Applied Biosystems) in an Applied Biosystems 7900HT Fast 

Real-Time PCR system. Gene expression was normalized to TPB levels and analyzed by 

the ΔΔCt method. qPCR primers for WDTC1 and SREBP1c was designed using Primer-

BLAST (NCBI) and all other primers were described previously (Choi et al., 2010) and listed 

in Table 2.2.  

Animal experiments 

C57BL/6 control and Cul4a conventional knockout mice were a gift of Dr. P. Raychaudhuri. 

All animal experiments were performed in accordance with University of North Carolina 

(UNC) animal care and use committee. Total body weight was measured for approximately 

age matched control and Cul4a-/- adult male and female mice (~1 year old); all other 

experiments utilized male mice aged 6-12 months old. Mice were fed a regular fat diet (10% 

kcal fat; Research Diets) ad libitum. Mouse tissues were harvested and weighed before 

formalin fixation and paraffin embedding. For histological analyses, 8 µm sections were 

hematoxylin and eosin (HE) stained. For analyses of metabolites, overnight fasted mice were 

euthanized and blood was collected by cardiac puncture and kept on ice until serum was 

separated by centrifugation and stored at -80 °C until analysis. Serum glucose, triglycerides, 

insulin and leptin levels were measured at the UNC Animal Clinical Chemistry Core Facility. 

Insulin and leptin levels were measured by metabolism multiplex immunoassay (Millipore).  

Subcellular fractionation and chromatin extraction 

Cells were fractionated and soluble chromatin extracts were prepared by micrococcal 

nuclease (MNase) digestion as described previously (Mendez and Stillman, 2000). Pelleted 
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3T3-L1 cells (8 x 106) were resuspended and incubated on ice for 5 min in 200 µl buffer A 

[10 mM HEPES (pH 7.9), 10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 10% glycerol, 1 mM 

DTT and HaltTM PPIC] plus 0.1% Triton X-100. Nuclei were recovered in pellet 1 (P1) after 

centrifugation (4 min, 1,300 g, 4 °C), and the supernatant (S1) was further clarified by 

centrifugation to obtain cytosolic fraction (S2). For nucleoplasmic fraction, P1 pellet was 

washed once in buffer A and lysed in 100 µl buffer B (3 mM EDTA, 0.2 mM EGTA, 1 mM 

DTT and HaltTM PPIC), centrifuged and the supernatant was recovered (S3). For chromatin 

enriched fraction, P1 pellet was resuspended in buffer A and treated with 2 U MNase (1 min, 

37 °C) and centrifuged; treated nuclei were then lysed in 100 µl buffer B and the chromatin 

fraction was recovered in the supernatant (S3) of MNase treated nuclei.  

In vivo ubiquitylation assays  

For the detection of ubiquitylated proteins in vivo, HEK293T cells were first transfected with 

HA-ubiquitin and split ~10 h later. HA-ubiquitin transfected cells were transfected again with 

various combinations of plasmids 24 h and then siRNAs 32 h post HA-ubiquitin transfection 

to minimize variations in HA-ubiquitin expression across cells. At 67 h post siRNA 

transfection, cells were treated with MG132 (10 uM) and collected 5 h later. Cells were lysed 

under denaturing conditions in 1% SDS buffer [50 mM Tris (pH 7.5), 0.5 mM EDTA, 1% SDS, 

1 mM DTT] by boiling for 10 min and then sonicating at 15% amplitude for 15” (0.5” pulse 

on/2” pulse off). Extracts were clarified by centrifugation and immunoprecipitated in 0.1% 

SDS by 10-fold dilution with NP-40 buffer as described previously (Hu et al., 2008). Flag-

tagged WDTC1 was immunoprecipitated by anti-FLAG M2 agarose beads, resolved by SDS-

PAGE and ubiquitylated WDTC1 proteins were detected by immunoblotting with anti-HA 

antibodies.  

In vitro ubiquitylation assays  

In vitro ubiquitylation assays were performed according to manufacturer’s protocol (Enzo Life 

Sci.) and as described previously (Hu et al., 2012). WDTC1 immunocomplexes were 
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immunoaffinity purified from transfected HEK293T cells expressing either Flag-WDTC1-WT 

or Flag-WDTC1-WT-ΔH. Flag-WDTC1 proteins were immunoprecipitated with anti-FLAG M2 

agarose beads overnight at 4 °C. Immunocomplexes were washed three times in lysis buffer 

and twice in TBS followed by elution with molar excess of FLAG peptide (Sigma). In 50 µl 

reaction volume, 100 nM of either WDTC1-WT or WDTC1-ΔH immunocomplexes (source of 

E3) and 200 nM of human recombinant histone H2A substrate (New England Biolabs) were 

combined with a ubiquitylation buffer containing 100 nM E1 (UBE1), 1 uM E2 (UBE2D3), 1 

uM human recombinant ubiquitin Mutant No K (Boston Biochem), 1 U inorganic 

pyrophosphatase, 1 mM DTT and 5 mM Mg-ATP. Reactions were incubated at 37 °C for 30 

min and terminated by addition of SDS sample buffer. Reaction products were resolved by 

SDS-PAGE and detected by immunoblotting with anti-H2AK119ub or anti-ubiquitin 

antibodies. 

Molecular modeling 

Modeling was performed at the UNC R. L. Juliano Structural Bioinformatics Core facility. 

Suitable templates for the H-box, WD40 and TPR domains of WDTC1 were identified using 

HHpred (Soding, 2005). The Hbox and WD40 domains were modeled simultaneously using 

the Modeller software package (Fiser and Sali, 2003) and two template structures. One 

template was of the WDTC1 H-box in complex with DDB1 [PDB ID 3I7N; (Li et al., 2010)], 

and the second template was of the H-box and WD40 domains of DDB2 in complex with 

DDB1, CUL4A and ROC1 [PDB ID 4A0K; (Fischer et al., 2011)]. The TPR domains were 

modeled separately based on the template structure of Sgt2, a TPR structure from 

Aspergillus fumigatus [PDB ID 3SZ7 (Chartron et al., 2011)]. The model of the CRL4-

WDTC1 complex was based on the structure of the CRL4-DDB2 complex (PBD 4A0K) with 

WDTC1 superimposed based on its H-box (PBD 317N) and then replacing DDB2. The TPR 

domains were manually moved to a location near their insertion within the β-propeller. 

Models were rendered using Pymol. 
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Statistical analyses 

The data are expressed as means ± SD or means ± SEM from the number of experiments 

indicated in figure legends. Statistical significance of differences between control and 

experimental samples was analyzed by two-tailed t tests using GraphPad Prism 5.1 Software. 
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Figure 2.1. WDTC1 encodes a DWD protein with a novel structure. 
(A) Domain structure of human WDTC1 with locations of the H-box motif and tandem WDXR 
residues indicated (top). Alignment of WDTC1 H-box motifs in different species (bottom left; 
boxed in grey) and bolded orange represents key residues contacting DDB1 as revealed by 
co-crystal structure of DDB1 and human WDTC1 H-box motif. Alignment of DWD boxes in 
different DWD proteins (bottom right) with WDXR submotif indicated and tandem DWD 
boxes are shown only for WDTC1 (indicated by a -1 or -2).  

(B) Modeled structure of the human WDTC1 protein. WD40 repeats form a classic seven-
bladed β-propeller (light blue) with protruding antiparallel α-helices of the TPR motifs (green) 
linked by unstructured regions (dashed lines). The solvent-exposed arginine residues of 
tandem WDXRs, rendered in dark blue ball-and-sticks, are located on the bottom surface of 
the propeller fold. WDTC1 modeling was based on DDB2 (PDB 4A0K), Sgt2 (PDB 3SZ7) 
and the WDTC1 H-box (PDB 3I7N) structural templates. The structure was color coded 
according to the linear domain organization presented in (A). 
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Figure 2.2. WDTC1 is a substrate receptor of CRL4 complexes. 
(A) Endogenous CUL4A and -B complexes were isolated from HEK293T cell lysates by 
immunoprecipitation (IP) with CUL4A or CUL4B antibodies and associated proteins were 
detected by immunoblotting (IB) with indicated antibodies; IgG, control antibodies.  

(B) Flag-tagged wild-type and mutant WDTC1 proteins were transiently expressed in 
HCT116 cells. Cells were treated with 50 μg/ml protein synthesis inhibitor cycloheximide 
(CHX) for 0, 2, 4 and 8 hours. Cells lysates were prepared and protein levels were analyzed 
by immunoblotting as indicated (top) and quantified by normalizing to α-tubulin and plotted 
as relative to 0 h (bottom).  

(C) Flag-tagged wild-type and mutant WDTC1 proteins were transiently expressed in 
HEK293T cells. Flag-WDTC1 complexes were isolated from cell lysates by 
immunoprecipitation with anti-FLAG and their associated proteins were detected by 
immunoblotting as indicated; EV, empty vector control.  

(D) Top, the modeled structure of WDTC1 in complex with CRL4 (PDB 4A0K): DDB1 (dark 
blue), CUL4A (grey) and ROC1 (pink). WDTC1 structure is described in Figure 2.1B. 
WDTC1 superimposition was based on its H-box structural template (PDB 3I7N). Bottom, 
schematic representation of wild-type and mutant WDTC1 summarizing the results 
presented in (C). Binding of WDTC1 proteins to CRL4 is indicated by +; –, binding not 
detected.  

(E) HEK293T cells transfected with HA-ubiquitin plasmid along with various combinations of 
Flag-WDTC1-WT or Flag-WDTC1-ΔH plasmid and scramble (–) or DDB1 siRNA were lysed 
under denaturing conditions and immunoprecipitated with anti-FLAG. The levels of WDTC1 
ubiquitylation were evaluated by immunoblotting with indicated antibodies.  

(F) HEK293T cells transiently expressing Flag-WDTC1 were transfected with scramble 
(scrm) siRNA or siRNAs against DDB1, CUL4A or CUL4B. Flag-WDTC1 protein levels and 
knockdown efficiency were assessed by immunoblotting with indicated antibodies. Lysates 
were also immunoblotted with p21 and cyclin E antibodies to validate the functional depletion 
of CUL4A or CUL4B, respectively. 
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Figure 2.3. WDTC1 suppresses adipogenesis in a CRL4-dependent manner. 
(A) Expression of CRL4 and WDTC1 proteins in a panel of adult mouse tissues was 
assessed by immunoblotting with indicated antibodies; brown adipose tissue (BAT), inguinal 
white adipose tissue (IWAT), mesenteric white adipose tissue (MWAT) and gonadal white 
adipose tissue (GWAT).  

(B) 3T3-L1 preadipocytes were adipogenically induced and lysates were prepared from cells 
collected at indicated days post induction, including an uninduced (0D) control. Endogenous 
WDTC1 interaction with CRL4 subunits was evaluated by immunoprecipitation with anti-
WDTC1 followed by immunoblot analyses with indicated antibodies.  

(C) 3T3-L1 preadipocytes were retrovirally transduced to generate stable cell lines 
expressing vector control (EV) or Flag-tagged wild-type (WT) and mutant WDTC1 proteins. 
Protein expression and CRL4 binding were confirmed by immunoprecipitation followed by 
immunoblotting with antibodies as indicated.  

(D-F) 3T3-L1 stable cells described in (B) were adipogenically induced. Their adipogenic 
potential was assessed by Oil Red O (ORO) staining (D); plate view (top) and microscopic 
view (bottom). (E) Triglyceride levels were quantified by an enzymatic assay. (F) Adipogenic 
gene expression was evaluated by real-time qPCR analysis. The data in (E) and (F) were 
derived from three replicate experiments and plotted relative to EV control levels (mean 
±SEM, *P< 0.05, **P< 0.005 for cells expressing WDTC1 proteins, compared with EV).  
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Figure 2.4. CUL4A and CUL4B RNAi phenotype cannot be clearly assessed in 3T3-L1 
differentiation. 
(A) 3T3-L1 preadipocytes were stably transfected with either retroviral-based shRNAs 
targeting GFP control or either Cul4a or Cul4b. Knockdown efficiency and the expression 
levels of various proteins were analyzed by immunoblotting as indicated. 

(B) To measure proliferation, cells in (A) were plated at equal density (1.5x105). The cell 
number was counted every day for 7 days. An average from two experiments is plotted. 

(C) To analyze cell cycle distribution, cells in (A) were plated at equal density (1x106). After 
24 hours, cells were trypsinized and fixed overnight in 75% ethanol at 4 °C. Fixed cells were 
stained with propidium iodide and then analyzed by flow cytometry to measure DNA content.  

(D) 3T3-L1 stable cells described in (A) were adipogenically induced. Their adipogenic 
potential was assessed by Oil Red O (ORO) staining; plate view (top) and microscopic view 
(bottom). 
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Figure 2.5. Wild-type WDTC1, but not CRL4 binding mutants, rescues the WDTC1 
knockdown phenotype. 
(A) Schematic of the WDTC1 knockdown-rescue lentiviral vector (top). 3T3-L1 preadipocytes 
were lentivirally transduced to generate stable cells expressing a non-specific (NS) control 
shRNA, shWDTC1 targeting endogenous Wdtc1 mRNA, or cells simultaneously expressing 
shWDTC1 and shRNA refractory forms of WDTC1 protein coding sequences. Bottom, 
depletion of endogenous Wdtc1 mRNA by shWDTC1 was confirmed by real-time qPCR and 
expression of endogenous WDTC1 and ectopically expressed WDTC1 proteins were 
detected by immunoblotting with anti-WDTC1.  

(B-D) 3T3-L1 stable cells described in (A) were adipogenically induced. Their adipogenic 
potential was assessed by ORO staining (B), triglyceride quantitation (C) and adipogenic 
gene expression (D). The data in (C) and (D) were derived from three replicate experiments 
and plotted as relative to NS control (mean ±SEM, *P< 0.05, **P< 0.005, compared with cells 
expressing NS).  
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Figure 2.6. Cul4a-/- mice exhibit adipocyte hypertrophy and poor metabolic profiles. 
(A) Lysates were prepared from gonadal and inguinal white adipose tissues (GWAT and 
IWAT, respectively) of wild-type (WT) or Cul4a knockout mice. Protein expression was 
evaluated by immunoblotting with antibodies as indicated.  

(B) Average body weights of age-matched female WT (n = 4) and Cul4a-/- (n = 6) or male WT 
(n = 27) and Cul4a-/- (n = 18) mice. 

(C) Photograph of representative GWAT and IWAT from two different WT (n = 7) and Cul4a-/- 
(n = 8) age-matched or littermate mice. Scale bar, 10 mm. 

(D) Average weights of indicated tissues or organs of WT (n = 6) and Cul4a-/- (n = 4) age-
matched or littermate mice. 

(E) Histological analysis of representative GWAT and IWAT of WT and Cul4a-/- age-matched 
or littermate mice by HE stain. Scale bar, 0.05 mm.  

(F) Analysis of indicated serum metabolites from age-matched or littermate controlled WT (n 
= 6) and Cul4a-/- (n = 8) mice (except insulin; n = 4 WT, n = 3 Cul4a-/-). 

The data in (B), (D) and (F) represent mean ±SEM, * P< 0.05 for Cul4a-/- compared with WT 
for each comparison; ns is non-significant.  
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Figure 2.7. WDTC1 binds histones and promotes histone H2AK119 monoubiquitylation. 
(A) 3T3-L1 cells stably expressing Flag-WDTC1 were subjected to subcellular fractionation. 
Chromatin-enriched fraction (S3*) was prepared by micrococcal nuclease (MNase) digestion 
to release mononucleosomes from insoluble nuclear fraction. Aliquots of total cell extract 
(TCE) and subcellular fractions were analyzed by immunoblotting (IB) with indicated 
antibodies; fraction purity was assessed by α-tubulin and histone H3 antibodies.  

(B) Cells in (A) were fixed and protein localization was detected by immunofluorescence 
microscopy with an anti-FLAG antibody (red) and anti-DDB1 antibody (green). Nuclei were 
stained with DAPI and images were merged to show colocalization of WDTC1 and DDB1 in 
the cytoplasm and nucleus (yellow).  

(C) Chromatin enriched nuclear extracts were prepared from HEK293T cells cotransfected 
with Flag-WDTC1 and HA-tagged core histones and immunoprecipitated (IP) with anti-FLAG 
and immunoblotted as indicated. The probable H2AK119ub band detected in nuclear extract 
is indicated by an asterisk.  

(D) Soluble chromatin extracts were prepared as in (A) from preadipocyte or induced 3T3-L1 
cells stably expressing control (EV) and Flag-WDTC1 proteins. Histone H2A 
monoubiquitylation was detected by H2AK119ub-specific antibody (anti-H2AK119ub) and 
total histone H2A served as loading control. Relative intensity represents ratio of H2AK119ub 
over total H2A signal normalized to EV; data derived from two (preadipocyte) or three 
(induced) independent experiments (mean ±SD, *P< 0.05 for WDTC1-WT or WDTC1-ΔH, 
compared with EV control).  

(E) Chromatin extracts were prepared by MNase digestion from HEK293T cells transiently 
expressing either EV control or the indicated Flag-WDTC1 proteins. Histone H2AK119 levels 
were evaluated by immunoblotting with anti-H2AK119ub (H2Aub) and total histone H2A 
served as loading control.  

(F) Chromatin extracts were prepared as in (E) from HCT116 cells transiently expressing EV 
control or Flag-WDTC1 proteins along with siRNAs against scramble (scrm) control or DDB1. 
Levels of H2AK119ub were assessed by immunoblotting as indicated. 

(G) Nucleosomal proteins were released from insoluble chromatin preparation from cells in 
(D) by deoxyribonuclease (DNase) digestion and the resulting extract was used for 
immunoprecipitation by anti-FLAG and immunoprecipitated proteins were detected by 
immunoblotting as indicated.  
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Figure 2.7. (continued) 
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Figure 2.8. CRL4WDTC1 catalyzes histone H2AK119 monoubiquitylation in vitro. 
(A) Immunoaffinity purification of Flag-WDTC1 complexes from HEK293T cells transiently 
expressing Flag-WDTC1-WT or Flag-WDTC1-ΔH. Cell lysates were immunopurified by anti-
FLAG M2 resin and eluted with 3XFLAG peptide. The eluted fractions were resolved by 
SDS-PAGE followed by Coomassie staining and immunoblotting as indicated to confirm 
copurification of CRL4 proteins. 

(B) In vitro ubiquitylation assay with recombinant histone and WDTC1 complexes purified in 
(A) as the source of E3 ligase. Reactions were incubated in a buffer containing ubiquitin, 
recombinant E1 (UBE1), E2 (UBE2D3) and ATP. Reaction products were resolved by SDS-
PAGE. Ubiquitylated H2A was detected by anti-H2AK119ub. 

(C) Lower exposure of lane 1 of H2A ubiquitylation blot in (B); scaling is preserved for ladder 
reference in (B) and monoubiquitylated H2A band is indicated. 

(D) In vitro ubiquitylation assay with wild-type and mutant histone proteins. Assay details are 
described in (B). H2A ubiquitylation was assessed by immunoblotting with anti-ubiquitin and 
other antibodies as indicated. Substrate H2A was detected by anti-H2A. 
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Figure 2.9. CRL4WDTC1-dependent increase in H2AK119 monoubiquitylation is 
associated with reduced H3K4 trimethylation. 
(A) Chromatin extracts from adipogenically induced 3T3-L1 cells stably expressing vector 
control (EV) or Flag-WDTC1 proteins were prepared by MNase digestion. The levels of 
various histone modifications were evaluated by immunoblotting with indicated antibodies.  

(B) Chromatin extracts from adipogenically induced 3T3-L1 cells stably expressing control 
shRNA (GFPi) or two different Wdtc1 shRNAs were prepared as in (A). Extracts were 
subjected to immunoblot analysis with indicated antibodies (Top). The specificity of the 
Wdtc1 shRNAs was confirmed by ORO staining and immnoblotting with anti-WDTC1 
(bottom).  
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Figure 2.10. A model of CRL4WDTC1-dependent transcriptional repression. 
This model predicts CRL4WDTC1 E3 ligase negatively regulates adipogenesis through 
transcriptional repression. During adipogenesis, CRL4WDTC1 promotes H2AK119ub at a 
subset of proadipogenic gene promoters. H2AK119ub consequently prevents H3K4me3 at 
these promoters, thus maintaining transcriptional repression. To promote adipogenesis, an 
upstream signal inhibits CRL4WDTC1 E3 ligase activity. Subsequently, H2AK119ub silenced 
promoters are predicted to be antagonized by histone H2A deubiquitylases (DUBs), which 
remove H2AK119ub to facilitate histone methytransferase (HMT) activity, establishing 
H3K4me3 promoters. H3K4me3 in turn drives preinitiation complex (PIC) formation to 
activate transcription at CRL4WDTC1 repressed genes. 
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Figure 2.11. Schematic summary of experimental procedures performed with 3T3-L1 
cells. 
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Gene Oligo type Sequence* (5′–3′)
Mouse Wdtc1 -1 shRNA (pMKO.1) GCTCTTCCTAAGGACCCTTTG
Mouse Wdtc1 -2 shRNA (pMKO.1) GGAGAGACACATAAGCCTTAC
Mouse Cul4a shRNA (pMKO.1) GCTTCTGTAAATCAGGTTTCT
Mouse Cul4b shRNA (pMKO.1) GCTGTAGCCATTGGATAAACT
Mouse Wdtc1 -1 shRNA (pLL5.5) GGGTGACACAATTGATTAA
Mouse Wdtc1 -2 shRNA (pLL5.5) GCACCATCTCATTGCTTTA
Non-specific (NS) shRNA (pLL5.5) GATCGACTTACGACGTTAT
Human DDB1 siRNA CCUGUUGAUUGCCAAAAAC
Human CUL4A siRNA GAACUUCCGAGACAGACCU
Human CUL4B siRNA AAGCCUAAAUUACCAGAAA
Hs/ms WDTC1 qPCR forward CTGCACCACAAGAAGCTGCT
Hs/ms WDTC1 qPCR reverse ATGCGCTTCACCCGGTTTGTG
Mouse Wdtc1 qPCR forward GGCGTCTGGTTCCGACGACC
Mouse Wdtc1 qPCR reverse GCCGTGGCAATGCGCTTCAC
Mouse PPARγ qPCR forward GCATGGTGCCTTCGCTGA
Mouse PPARγ qPCR reverse TGGCATCTCTGTGTCAACCATG
Mouse C/EBPα qPCR forward CAAGAACAGCAACGAGTACCG
Mouse C/EBPα qPCR reverse GTCACTGGTCAACTCCAGCAC
Mouse SREBP1c qPCR forward CTGGCTGAGGCGGGATGA
Mouse SREBP1c qPCR reverse TACGGGCCACAAGAAGTAGA
Mouse aP2 qPCR forward AAGGTGAAGAGCATCATAACCCT
Mouse aP2 qPCR reverse TCACGCCTTTCATAACACATTCC
Mouse Adipsin qPCR forward CATGCTCGGCCCTACATGG
Mouse Adipsin qPCR reverse CACAGAGTCGTCATCCGTCAC
Mouse TBP qPCR forward ACCCTTCACCAATGACTCCTATG
Mouse TBP qPCR reverse TGACTGCAGCAAATCGCTTGG

*Only sense strands are shown for shRNA and siRNA oligos.

Table 2.1. List of oligos used in this study. 
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Antibody Provider Catalog number
WDTC1 Abcam 174294
WDTC1 Abgent AP4944b
CUL4A (mouse) Abcam ab72548
CUL4B Sigma HPA011880
FAS Abcam ab22759
GAPDH Abcam ab8245
α-TUBULIN Thermo Sci. MS-581
Ubiquitin Dako Z 0458
Ubiquityl-Histone H2A (Lys119) (D27C4) Cell Signaling 8240
Ubiquityl-Histone H2B (Lys120) (D11) Cell Signaling 5546
Tri-Methyl-Histone H3 (Lys4) (C42D8) Cell Signaling 9751
Tri-Methyl-Histone H3 (Lys9) Abcam ab8898
Tri-Methyl-Histone H3 (Lys27) (C36B11) Cell Signaling 9733
Histone H2A Cell Signaling 12349
Histone H2B Cell Signaling 8135
Histone H3 Cell Signaling 4499
HA-peroxidase (3F10) Roche 12013819001
FLAG-peroxidase (M2) Sigma A8592

Table 2.2. List of antibodies used in this study. 
 

 



CHAPTER 3: PROTEOMIC SCREEN FOR CRL4WDTC1 SUBSTRATES 

 

SUMMARY 

WDTC1 gene, encoding a WD40 protein of undefined molecular function, has an 

evolutionarily conserved role in suppressing lipid accumulation in multicellular organisms. In 

the previous chapter, results demonstrated that WDTC1 protein is a substrate receptor of 

cullin 4 RING E3 ligase (CRL4) complexes. Central to WDTC1 function is its interaction with 

CRL4, suggesting WDTC1 may target a key proadipogenic substrate(s) to mediate 

adipogenic suppression. In this chapter, I aimed to characterize WDTC1 interacting proteins 

to search for candidate substrates of the CRL4WDTC1 complex using 3T3-L1 cell culture 

model of adipogenesis. Here I describe the results from two separate proteomic based 

screens for WDTC1 interactors using immunopurified wild-type and CRL4 binding mutant 

WDTC1 complexes. From these screens emerged a candidate substrate, fatty acid synthase 

(FAS), a key enzyme in lipid storage pathway. I characterized the interaction between 

WDTC1 and FAS, but ultimately the data conclusively show that FAS is not a substrate of 

the CRL4WDTC1 complex. However, I observed that while FAS expression is largely under 

transcriptional control, FAS ubiquitylation appears to be dynamically altered upon adipogenic 

induction. The functional consequence of FAS ubiquitylation is presently unclear but 

implicates that its activity maybe regulated posttranslationally by ubiquitylation.  
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BACKGROUND 

Adipose tissues or depots, composed primarily of adipocytes, are energy reservoirs 

of vertebrate animals. Under metabolic homeostasis, adipocytes store excess energy in the 

form of triglycerides (lipogenesis), which is balanced by triglyceride release in the form of 

free fatty acids (lipolysis) to meet physiological energy requirements. By comparison, when 

energy consumption greatly exceeds expenditure or when other factors contribute to 

adipocyte dysfunction, total adipose tissue mass increases and can eventually lead to 

obesity and associated pathologies such as cardiovascular diseases and type 2 diabetes. 

Two factors can contribute to adipose tissue expansion: an increase in adipocyte size due to 

increased lipogenesis (hypertrophy) or an increase in adipocyte cell number due to 

deregulated differentiation of preadipocytes (hyperplasia), or both. Evidently, adipocyte 

hypertrophy underlies obesity, while the potential contribution of hyperplasia is still being 

debated (Sun et al., 2011). Adipocyte differentiation, preadipocyte to adipocyte transition, 

however has a critical role in adipose tissue maintenance as adult humans have a ~10% 

annual turnover rate, thus requiring continual replacement (Jiang et al., 2012b). In this 

chapter, adipogenesis is often used to generally refer to lipid accumulation, but in the strict 

sense, adipogenesis encompasses differentiation of preadipocytes and lipogenesis in mature 

adipocytes.  

As with any biological process, adipogenesis is under complex regulation. Nutrition 

and hormone induced signaling cascades converge on transcriptional activation of key 

regulators of adipogenesis. While transcriptional mechanisms primarily regulate adipocyte 

function, posttranslational mechanisms such as ubiquitylation certainly play a role. Notably, 

the CRL1FBXW7 complex targets two adipogenic transcription regulators for degradation: 

C/EBPα and SREBP1c transcriptional factors (Bengoechea-Alonso and Ericsson, 2010; 

Sundqvist et al., 2005). C/EBPα, together with PPARγ (master regulator of adipogenesis) 

transcription factor, is part of a feed-forward autoregulatory loop that is essential for 

adipocyte differentiation (Farmer, 2006). SREBP1c controls de novo lipid biosynthesis 
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through transcriptional activation of fatty acid synthase and also promotes PPARγ 

expression (Rosen and MacDougald, 2006). In 3T3-L1 cell culture, FBXW7 inactivation 

increases C/EBPα and SRBP1c protein stability, thus promoting adipogenesis as evidenced 

by increased adipogenic gene expression and lipid accumulation (Bengoechea-Alonso and 

Ericsson, 2010; Sundqvist et al., 2005). In both of these studies, the substrates were 

identified by a candidate approach based on their phosphorylation-dependent degradation 

and the presence of a FBXW7 phosphodegron, which mediates recognition and binding of 

phosphorylated substrates. The role of FBXW7 in adipocyte biology has not been examined 

in an animal model, but by targeting key proadipogenic substrates, these results minimally 

suggest FBXW7 is a negative regulator of adipogenesis.  

WDTC1 has an established role in the negative regulation of lipid accumulation in 

multicellular organisms. To the best of my knowledge, it is the first factor that links CRL4 to 

adipocyte biology as uncovered in this study (Chapter 2). I demonstrated that adipogenic 

suppression by WDTC1 is dependent on its interaction with the CRL4 complex. Supporting 

an in vivo role for CRL4 in adipocyte biology, Cul4a knockout mice show adipocyte 

hypertrophy and metabolic defects similar to Wdtc1+/- mice. This also provided genetic 

support for their function in the same molecular pathway. Additionally, the discovery that 

CRL4WDTC1 promotes histone H2AK119ub in an adipocyte specific manner is in line with 

experiments showing that Wdtc1 transgenic expression in mature adipocytes yielded leaner 

mice (Suh et al., 2007). This suggests WDTC1 mediates its anti-adipogenic effect in 

differentiated fat cells rather than by regulating the differentiation program itself. As such, I 

favor a model wherein CRL4WDTC1 targets a key proadipogenic protein(s) for degradation to 

mediate its anti-adipogenic function, at least in part. In chapter 2, I used a candidate 

approach to identify histone H2A as a CRL4WDTC1 substrate in vitro and showed that WDTC1 

expression affects H2AK119ub levels in vivo. In this chapter, I used an unbiased proteomic 

based screen to identify candidate substrates to provide further mechanistic insights into 

CRL4WDTC1 function. 
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The interaction between a substrate and its E3 ligase is frequently weak, possibly to 

promote product release (Harper and Tan, 2012). Moreover, unlike CRL1 substrate 

receptors, which recognize substrates by phosphodegron motifs, whether CRL4 substrate 

receptors generally use targeting motifs is unclear, except CDT2 which targets PIP box 

proteins. Surely a large number of proteins may be identified in a proteomic screen and there 

has to be some means of selecting candidates. It was therefore a practical consideration to 

include a substrate trapping tool to maximize detection and aid selection of candidate 

substrates from contaminating proteins. As such, I immunopurified wild-type WDTC1 and 

CRL4 binding mutant WDTC1-ΔH complexes to obtain parallel analysis of their composition 

by mass spectrometry. Additionally, composition of WDTC1 complexes from two different 

3T3-L1 cell states, undifferentiated and differentiated, was examined for comparison of 

differentiation-regulated interactions. Each screen included immunoprecipitates from control 

cells to eliminate nonspecific contaminants. Based on relevance to adipocyte biology and 

abundant interaction with WDTC1-ΔH, a candidate substrate emerged from this analysis: 

fatty acid synthase (FAS). FAS is a multifunctional enzyme that catalyzes the last step in de 

novo fatty acids synthesis from acetyl-CoA substrates, a process that contributes to 

adipocyte function—triglyceride storage (Jiang et al., 2012b). This chapter describes the 

results from the two screens and experiments to validate the interaction between WDTC1 

and FAS. 

 

RESULTS 

WDTC1 interacting proteins in preadipocyte and induced 3T3-L1 cells 

To search for WDTC1-associated proteins in 3T3-L1 uninduced cells, cells stably 

expressing an empty vector control (EV), or Flag-tagged wild-type WDTC1 (WDTC1-WT) 

and the CRL4 binding mutant WDTC1 (WDTC1-ΔH) were subjected to immunopurification 

followed by identification of associated proteins by mass spectrometry. The list of proteins 

associated with WDTC1-WT and WDTC1-ΔH complexes was manually refined by excluding 
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proteins that were indentified in the EV control sample and several ribosomal and 

cytoskeleton proteins that appeared to be common contaminants. This analysis revealed a 

large number of proteins in both WDTC1-WT and WDTC1-ΔH complexes (Figure 3.1A). The 

known interacting proteins, DDB1, CUL4A, CUL4B, ROC1 and the CRL4 associated COP9 

signalosome complex and DDA1, were indentified in WDTC1-WT (Figure 3.1B) but not in 

WDTC1-ΔH complexes (Figure 3.1C), indicating the presence of cellular binding partners in 

purified WDTC1 complexes and the specificity of the screen. Although a larger number of 

WDTC1-WT associated proteins were identified, this is most likely due to the higher 

expression of WDTC1-WT than WDTC1-ΔH protein. Notably, WDTC1 does not appear to 

interact with any other protein complexes in 3T3-L1 cells and except histone H2A, WDTC1-

WT associated proteins appeared to be unrelated to WDTC1 function in adipogenic 

suppression. Additionally, ~40% of the proteins in the WDTC1-ΔH complex overlapped with 

proteins identified in the WDTC1-WT complex, but no specific pathway enrichment is readily 

apparent either (Figure 3.1D). Quite remarkably, fatty acid synthase (FAS) was the most 

abundant protein in the WDTC1-ΔH complex (43 peptide spectrum matches, ~10% 

coverage) and it is clearly visible by silver stain (Figure 3.1E).  

Similar to the search described above, I next immunopurified control and WDTC1 

complexes from 3T3-L1 cells that were induced to undergo differentiation. In the first screen 

with uninduced cells, one problem that arose was high background from actin contamination 

in the purified complexes. Since the interacting proteins in purified complexes frequently 

range widely in abundance, it is likely that some low abundance proteins were missed in the 

previous screen due to signal masking from strong contaminants. To circumvent this problem, 

the protein complexes were fractionated by SDS-PAGE based on their molecular weight 

(Figure 3.2A) and in gel trypsin digestion was preformed for 43 gel slices which were then 

subjected to LC-MS. More than three times as many total number of proteins were identified 

in WDTC1-WT and WDTC1-ΔH complexes using this approach (Figure 3.2B). Notably, FAS 

was identified again with high confidence in WDTC1-ΔH complex but this time it was also 
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identified in the WDTC1-WT complex (Figure 3.2C). However, the total number of peptides 

(peptide spectral matches; PSM) and the number of unique FAS peptides (corresponding to 

~30% coverage) revealed that while it was present abundantly in the WDTC1-ΔH complex, 

only one peptide was confidently indentified in the WDTC1-WT complex (Figure 3.2D). If 

FAS is a bona fide substrate of CRL4WDTC1, this is indeed consistent with the notion that the 

interaction between the E3 ligase and substrate is intrinsically weak. Thus, perhaps reflecting 

the decreased probability of copurifying a substrate by WDTC1-WT, FAS is detected by 

immunoblotting in WDTC1-ΔH eluted fraction only (Figure 3.2E).  

In summary, although a very large number of proteins were identified, a careful 

survey of the data sets yielded only one promising candidate that is clearly linked to 

adipogenesis. In addition, majority of the proteins that were identified are housekeeping 

proteins and due to their high abundance in the cell, these likely represent contaminants of 

the immunopurification process rather than physiologic binding partners. One notable 

absence from either screen was any other DWD proteins, consistent with the idea that 

WDTC1 binds CRL4 mutually exclusive of other substrate receptors to form a distinct 

complex. The one promising candidate that emerged from these screens is FAS. Because 

FAS activity is essential for lipid accumulation (lipogenesis) in maturing 3T3-L1 adipocytes, it 

fits well with the original hypothesis and may indeed be an adipogenic factor targeted by the 

CRL4WDTC1 complex. In addition, since FAS was identified abundantly in the WDTC1-ΔH 

complex, it also fits with the dominant negative effect of WDTC1-ΔH. Since WDTC1-ΔH 

cannot bind CRL4, it may promote adipogenesis, at least in part, by sequestering a 

proadipogenic substrate such as FAS, and thereby prevent its ubiquitylation by CRL4 E3 

ligase. I decided to further characterize the interaction between WDTC1 and FAS and 

determine whether it is indeed a CRL4 substrate.  
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Fatty acid synthase interacts with dominant negative WDTC1 but its protein level is 
not regulated by WDTC1 
 

To begin to assess the functional significance of the interaction between WDTC1 and 

FAS, I first confirmed in vivo binding by immunoprecipitation and determined the effect of 

WDTC1 expression on FAS steady state protein levels by immunoblot analyses. In these 

experiments, I included the disrupted WDXR motifs mutant WDTC1-RARA which is defective 

in CRL4 binding and acts as a hypomorphic allele of WDTC1 (Chapter 2). In 3T3-L1 cells 

stably expressing Flag-WDTC1 proteins, immunoprecipitation by anti-FLAG revealed that 

endogenous FAS coimmunoprecipitated with WDTC1-ΔH mutant but not wild-type or 

WDTC1-RARA mutant (Figure 3.3A). I reasoned that if WDTC1-ΔH binds FAS 

nonspecifically, then in principle, spurious binding could also be detected in other cells that 

express FAS. However, FAS was not detected in WDTC1-ΔH complex from HCT116 cells 

(Figure 3.3B), suggesting that the interaction between WDTC1-ΔH and FAS is cell type 

specific. I next asked if WDTC1 regulates FAS protein stability in 3T3-L1 cells. While WDTC1 

overexpression or knockdown did not appear to alter FAS protein levels in uninduced 

preadipocytes (Figures 3.3C and 3.3D), but after 3T3-L1 cells were induced to differentiate, 

FAS levels were decreased in WDTC1-WT cells and markedly increased in cells expressing 

mutant WDTC1 (Figure 3.3E), suggesting WDTC1 may regulate FAS stability in an adipocyte 

specific manner. 

To better assess whether WDTC1 regulates FAS stability, I monitored FAS steady 

state protein levels over the course of 3T3-L1 differentiation. Indeed, this analysis revealed 

that FAS protein levels increased during differentiation and this increase was further 

enhanced in WDTC1 mutant expressing cells, especially WDTC1-ΔH cells (Figure 3.4A). To 

determine if this was indeed due to an increase in FAS protein stability rather than gene 

expression, I first looked at Fasn mRNA expression. It is evident from this experiment that 

the increase in FAS protein levels is related to a corresponding increase in Fasn mRNA 

expression (Figure 3.4B). In addition, FAS appears to be a very stable protein in 3T3-L1 cells 
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with a half-life longer than 12 hours, as estimated by cycloheximide chase experiment 

(Figure 3.4C). I learned later that FAS half-life is over 32 hours in 3T3-L1 cells (Student et al., 

1980). In fact, these results are consistent with previous reports that increased Fasn mRNA 

expression directly correlates with FAS protein induction during 3T3-L1 differentiation 

(Moustaid and Sul, 1991; Student et al., 1980). It is therefore highly unlikely that WDTC1 

regulates FAS stability during 3T3-L1 differentiation, and the increased FAS induction in cells 

expressing WDTC1 mutants likely reflects enhanced adipogenic potential of these cells 

(Chapter 2).  

 

Fatty acid synthase is not a CRL4WDTC1 substrate 

FAS is ubiquitylated by an as yet to be identified E3 ligase and its proteolytic 

degradation was demonstrated to be critical for promoting apoptosis in prostate cancer cells 

(Graner et al., 2004). Although WDTC1 does not appear to regulate FAS protein levels, I 

tested whether FAS is a nonproteolytic substrate of the CRL4WDTC1 complex. HCT116 cells 

were transiently transfected with HA-tagged ubiquitin and either WDTC1-WT or WDTC1-ΔH 

mutant. The level of FAS ubiquitylation was detected by immunoblotting following 

immunoprecipitation of FAS. While there was no detectable difference in FAS protein stability, 

FAS ubiquitylation was markedly enhanced by WDTC1-WT but not the CRL4 binding mutant 

WDTC1-ΔH (Figure 3.5A). Encouraged by this preliminary result, I predicted that if 

CRL4WDTC1 targets FAS ubiquitylation, then WDTC1 can only enhance FAS ubiquitylation in 

the presence of CRL4 core components. To test this idea, FAS ubiquitylation was evaluated 

in cells transfected with either control or DDB1 targeting siRNAs followed by cotransfection 

with HA-ubiquitin and Flag-WDTC1 plasmids. While FAS ubiquitylation was enhanced in 

WDTC1 overexpressing cells, its ubiquitylation was dramatically reduced in DDB1 depleted 

cells regardless of WDTC1 expression (Figure 3.5B; compare lanes 4 with 5 and 6). While 

this strongly supports the notion that CRL4WDTC1 mediates FAS ubiquitylation, there is one 
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major caveat. I found that HA-ubiquitin expression was not uniform across different cells and 

importantly, FAS ubiquitylation levels correlate with HA-ubiquitin expression levels.  

I later discovered that the order of transfection matters for evaluating ubiquitylation 

with HA-ubiquitin in HCT116 cells. In the above experiment, I first transfected scramble or 

siDDB1 and then did the plasmid transfection the following day to achieve 72 hour 

knockdown and 48 hour plasmid expression. For reasons not entirely clear, I found that 

transfection efficiency is markedly reduced in HCT116 cells after DDB1 depletion (data not 

shown), perhaps this is related to impaired cell cycle control after DDB1 knockdown. 

Following this discovery, I evaluated FAS ubiquitylation by transfecting HA-ubiquitin in a 

single dish first and then splitting these cells into separate dishes for subsequent 

transfections. Using this approach, I found that FAS ubiquitylation was largely unaffected in 

cells overexpressing either WDTC1 or CUL4 proteins (Figure 3.5C). Consistent with this 

result, DDB1 or CUL4A depletion also did not have a significant effect on FAS ubiquitylation, 

although CUL4B depleted cells appeared to have slightly increased levels of ubiquitylated 

FAS (Figure 3.5D).  

To conclude my study on FAS, I sought to determine whether endogenous FAS is 

ubiquitylated in 3T3-L1 cells as this could indicate FAS activity, localization or protein-protein 

interaction is potentially regulated by ubiquitylation. FAS ubiquitylation was evaluated over a 

24 hour course of 3T3-L1 differentiation by immunoblotting with an antibody against ubiquitin 

following immunoprecipitation of FAS. FAS ubiquitylation appears to be quite dynamic as it 

declines hours post induction, but recovers within 24 hours (Figure 3.6A). Although the 

significance of this finding is unclear, it is possible that FAS ubiquitylation is cell cycle 

regulated since induced preadipocytes undergo several rounds of cell division before 

terminal differentiation into adipocytes. Another final consideration regarding FAS 

ubiquitylation is whether FAS is mono- or multi-monoubiquitylated or polyubiquitylated. Due 

to its high molecular weight, ubiquitylated FAS was not efficiently resolved by SDS-PAGE. A 

panel of HA-tagged ubiquitin mutants, each encoding a single lysine mutation or a no lysine 
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mutant (K0), was transfected in HCT116 cells to evaluate FAS ubiquitylation type. While the 

band corresponding to ubiquitylated FAS shows a characteristic smear in wild-type HA-

ubiquitin transfected cells, a distinct FAS ubiquitylation band is detected in the HA-Ubiquitin-

K0 mutant cells, indicating that FAS is polyubiquitylated (Figure 3.6B; compare lanes 2 and 

3). The low expression level of HA-Ubiquitin-K48R mutant compared to other plasmids 

makes it difficult to conclude whether K48-linkage, associated primarily with proteasome 

mediated degradation, is important for FAS ubiquitylation. Interestingly, FAS ubiquitylation 

was significantly reduced in HA-Ubiquitin-K6R transfected cells (lane 4). Presently, the 

functional significance of K6-linkage is unknown but it has been linked to DNA repair and 

polyubiquitylation by this linkage may have a nonproteolytic role in the cell (Kulathu and 

Komander, 2012). Collectively, these results demonstrate that FAS is not a CRL4WDTC1 

substrate and although unlikely to regulate protein levels, FAS ubiquitylation in 3T3-L1 cells 

merits future investigation. 

 

DISCUSSION 

The results described in this chapter suggest WDTC1 potentially interacts with a 

large number of proteins. The proteomic based screen was designed to profile WDTC1 

interacting proteins and hopefully identify candidate substrates. I characterized one 

candidate which was confidently identified in mutant WDTC1-ΔH complexes, FAS. As a 

critical and positive regulator of lipid accumulation, FAS appeared to be a perfect candidate 

that might have largely accounted for the anti-adipogenic function of the CRL4WDTC1 complex. 

However, I have shown conclusively that WDTC1 does not regulate FAS protein levels or 

target it for ubiquitylation by the CRL4 E3 ligase. I favor the conclusion that nonspecific 

binding, possibly arising from the expression of a mutant protein in the cell, explains the 

interaction between FAS and WDTC1-ΔH.  

FAS ubiquitylation is nevertheless interesting. Despite what appears to be a readily 

detectable modification (HCT116 and 3T3-L1 cells), FAS ubiquitylation is vastly unexplored 
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and not surprisingly, the presence of ubiquitylated FAS in 3T3-L1 cells has not been reported 

previously. That posttranslational regulation (phosphorylation) is critically important for the 

activity of two other key enzymes of de novo lipogenesis, ATP-citrate lyase (ACL) and 

Acetyl-CoA carboxylase (ACC), is well established. By comparison, the prevailing view that 

FAS is almost entirely, if not entirely, transcriptionally regulated in response to hormones or 

nutritional status remains largely unaltered (Liu et al., 2010; Semenkovich, 1997). Indeed, a 

recent study demonstrating that FAS is regulated by the ubiquitin-proteasome pathway in 

prostate cancer cells is a first (Graner et al., 2004). Separate from its anabolic function in 

energy storage, FAS is a metabolic oncogene as it confers growth and survival advantage to 

tumor cells by meeting their enhance lipid metabolism for energy and membrane 

biosynthesis (Menendez and Lupu, 2007). Search for proteins that interact with the prostate 

specific deubiquitinase USP2a led to FAS being identified as an USP2a substrate (Graner et 

al., 2004). USP2a, overexpressed in prostate cancer, prevents FAS proteasome-mediated 

degradation and in turn, enhanced FAS protein stability promotes tumor cell growth.  

Does FAS ubiquitylation serve a regulatory role in 3T3-L1 cells or perhaps in other 

cells as well? It is interesting to note that around the same time that I was examining FAS 

ubiquitylation, its ubiquitylation was reported in two separate proteomic studies. In a global 

screen of the ubiquitin-modified proteome, FAS was found to be ubiquitylated but not 

stabilized by proteasome inhibition in HCT116 cells (Kim et al., 2011), consistent with my 

data showing that FAS ubiquitylation does not serve a proteolytic function in these cells. In 

the second paper, the authors utilized stable isotope labeling with amino acids in cell culture 

(SILAC) combined with pharmacological inactivation of cullin proteins by MLN4924 to identify 

proteins that are ubiquitylated by CRLs in HEK293T cells (Emanuele et al., 2011). Results 

from this study suggested that FAS is a candidate substrate of a CRL complex but unlikely to 

be a proteolytic substrate as changes in its ubiquitylation status does not correspond to a 

change in protein levels. Future studies may clarify the role of FAS ubiquitylation in different 
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cell types, but particularly in lipogenic cells such as 3T3-L1 cells where FAS function is not 

linked to cancer pathogenesis. 

Since CRL4 was not previously linked to adipogenic control, my initial hope was to 

identify an adipogenic substrate(s) of CRL4WDTC1 to further validate a role for this complex in 

a new biological process. I had hoped that eliminating interaction with the cognate E3 ligase 

would strengthen the binding between WDTC1 and a candidate substrate; instead it led to 

the false discovery of FAS in WDTC1-ΔH complex. While disappointing, FAS ubiquitylation 

may yet have an interesting role in 3T3-L1 adipogenesis. Ultimately, I was unable to identify 

any new potential substrates of the CRL4WDTC1 complex. Clearly, future efforts will have to 

modify or change the approach I used: immunopurification of ectopically expressed WDTC1 

complexes followed by identification of associated proteins by mass spectrometry. Michele 

Pagano’s laboratory has reported success with identifying CRL1 substrates by 

straightforward immunoprecipitation of F-box substrate receptors followed by mass 

spectrometry (D'Angiolella et al., 2010; Kuchay et al., 2013). However, substrate assignment 

by this approach is rare given that substrate abundance is frequently low in the cell and the 

E3-substrate interaction is expected to be transient, thereby limiting copurification (Harper 

and Tan, 2012).  

Despite considerable progress in identifying ubiquitylated proteins at a global level 

and mapping ubiquitylation sites (the two studies mentioned above, for example), systematic 

identification of E3 ligase and physiologic substrate pairs remains a challenge and likely no 

single method can efficiently tackle this task. I suggest an alternative approach for future 

efforts aimed at identifying CRL4WDTC1 substrates: SILAC-based quantitation with mass 

spectrometry. By differentially labeling control cells and cells with altered WDTC1 expression, 

it may be possible to identify candidate substrates by quantitatively comparing changes in 

protein stability. A more direct method that would also help identify nonproteolytic substrates 

is enrichment of ubiquitylated proteins with an ubiquitin remnant antibody combined with 

SILAC. However, I suspect tedious validation may ensue and the general utility of this 



 78

method to identity candidate substrates is as yet uncertain. On a final note, if interaction 

based methods are to be utilized in the future, a minimum requirement for tandem affinity 

purification (TAP) is underscored by the vast number of apparently nonspecific interactions 

that were detected in this study. 
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EXPERIMENTAL PROCEDURES 

Immunopurification and mass spectrometry 

Details of generating stable cells, 3T3-L1 cell culture and induction can be found in Chapter 

2 under Experimental procedures. WDTC1 associated proteins were isolated from cells 

stably expressing Flag-WDTC1-WT and Flag-WDTC1-ΔH proteins by FLAG affinity 

purification (Figure 3.7A-B). WDTC1 complexes were purified from uninduced 3T3-L1 

preadipocytes and 3T3-L1 cells that were induced to undergo differentiation, representing 

two separate screens (Figure 3.7C). Cell stably transfected with an empty vector (EV) served 

as purification control in these experiments. Due to the lower expression of WDTC1-ΔH 

compared to WDTC1-WT, twice the number of cell plates were used for purifying associated 

proteins. Cells from five (EV and WDTC1-WT) or ten (WDTC1-ΔH) 15 cm plates were 

collected and cell pellets were stored in -80 °C until lysis. The general workflow is listed in 

(Figure 3.7D-E). Cell pellets were lysed for 30 min on a rotator at 4 °C in NP-40 lysis buffer 

[50 mM Tris (pH 8.0), 150 mM NaCl, 10% glycerol, 1 mM EDTA and 0.1% NP-40] 

supplemented with HaltTM (Thermo Sci.) protease/phosphatase inhibitor cocktail. Cell 

extracts were clarified by centrifugation and the soluble fractions were incubated with anti-

FLAG M2 agarose beads (Sigma) overnight on a rotating platform at 4 °C. 

Immunoprecipitated proteins were washed ten times by inverting tubes in 10 ml wash 

volumes; five times in NP-40 buffer followed by five times in PBS. Protein complexes were 

eluted with 50 µl of 3XFLAG peptide (200 µg/ml) for 5 min by shaking (800 rpm) on a 

Thermomixer (Eppendorf) at 37 °C; each sample was eluted three times and fractions were 

combined in a single tube on ice. A small amount of total purified protein (~2-5%) was 

resolved by SDS-PAGE and visualized by either silver staining or Coomassie Blue staining 

for confirmation. Eluted fractions were either in solution digested (uninduced cells) or in-gel 

digested (induced cells) at 37 °C using trypsin (Promega). Digested peptides were desalted 

and purified by C18 resin (C18 columns or Zip-Tip from Pierce or Millipore, respectively) 

following manufacturers’ instructions. The identities of eluted proteins were determined by 
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mass spectrometry analysis carried out by Dr. Yanbao Yu (Xian Chen laboratory) at the UNC 

Proteomics Technology Development Core Facility using a LTQ-Velos-Orbitrap (Thermo 

Sci.) mass spectrometer coupled to a 2D nano ultra liquid chromatography system (Eksigent). 

Dr. Yu processed the data using MaxQuant software and searched the MS/MS data sets 

against UniProt mouse database. 

Plasmids, antibodies, immunoblotting and in vivo ubiquitylation assay 

A detailed description of reagents and additional experimental procedures can be found in 

Chapter 2 under experimental procedures. qPCR primers for Fasn (fwd: 

GCTGGCATTCGTGATGGAGTCGT; rev: AGGCCACCAGTGATGATGTAACTCT) was 

reported previously (Choi et al., 2010).  

 



 81

B
DDB1 
CUL4B 
CUL4A 
ROC1 
CSN* 
DDA1 
SPTC2 
ASPH 
H2A2C 
EIF1 
GAPR1 
GHC1 
SPTC1 
4F2 
FAK1 

CD003 
CL023 
THIO 
IFM3 
GMFG 
PPIA 
SKP1 
SSRD 
SPAG7 
HDHD1 
F173B 
PSME3 
MEMO1 
SURF6 
ST17B 

SCML4 
EKI1 
IFT57 
OST48 
PLVAP 
PCOC1 
PRUNE 
IRAK4 
MOT1 
MDM2 
SPAS2 
FACR1 
KAD5 
PSL1 
RPN2 

PEX5 
SCNNB 
A16A1 
HCN3 
CPT1A 
AMPD3 
ACE2 
K0562 
TRI37 
AT1A1 
IPO8 
SEM6D 
DI3L1 
ZCHC2 
AEBP1 

TPC10 
PHLB1 
MYOM3 
M3K4 
SMCA2 
P3C2A 
ESPL1 
RP1 
PK1L3 
SPTB1 
ACACA 
USMG5 

C FAS 
RFX6 
PHLP 
AMRA1 
ADCY2 
AP3M2 
ERC6L 
RD21L 
RN133 
NKX26 

DUS27 
IL6RB 
NDUS1 
OBSCN 
FKBP8 
THMS1 
PCD15 
DHX57 
GDIR1 
SEM3G 

SESN3 
CHIP 
TBCD8 
TAB3 
CI14B 

D FKBPL 
TMOD2 
MARHB 
SYT10 
NGEF 
MYOME 
BPA1 

WDTC1 
NUDC 
SUGT1 
NDUA4 
CALU 
DDX3Y 
GBG12 
AIF1L 
SEP15 
SRSF2 

A 

79

WDTC1-WT

WDTC1-ΔH

17 25
79

WDTC1-WT

WDTC1-ΔH

17 25

E

250

130

95

kDa

DDB1

FAS

EV ΔH

IP: ANTI-FLAG M2

WT

250

130

95

kDa

DDB1

FAS

EV ΔH

IP: ANTI-FLAG M2

WTEV ΔH

IP: ANTI-FLAG M2

WT

FIGURES 

Figure 3.1. Proteomic analysis of WDTC1 interacting proteins in uninduced 3T3-L1 
cells. 
(A) Schematic representation of the number of unique and overlapping proteins that were 
identified in WDTC1-WT and WDTC1-ΔH complexes. 

(B) List of proteins identified in WDTC1-WT complexes; CRL4 subunits and associated 
proteins are highlighted in bold, *CSN complex listed instead of individual subunits. 

(C) List of proteins identified in WDTC1-ΔH complexes; FAS is highlighted in bold. 

(D) List of overlapping proteins from both complexes; bait protein is highlighted in bold. 

(E) DDB1 and FAS bands were visualized by silver staining in WDTC1-WT and WDTC1-ΔH 
immunoprecipitates, respectively; indicated by blue arrowheads.  
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Figure 3.2. Proteomic analysis of WDTC1 interacting proteins in induced 3T3-L1 cells. 
(A) Control and WDTC1 complexes were immunopurified by anti-FLAG, resolved by SDS-
PAGE on a 4%-12% gradient gel and followed by Coomassie staining. Gel slices that were 
submitted for mass spectrometry are indicated. 

(B) Schematic representation of the number of unique and overlapping proteins that were 
identified in WDTC1-WT and WDTC1-ΔH complexes. 

(C) List of overlapping proteins identified in both complexes; bait protein and FAS are 
highlighted in bold. 

(D) Comparison of FAS coverage, number of unique peptides and peptide spectrum matches 
(PSMs) between WDTC1-WT and WDTC1-ΔH complexes. 

(E) Verification of FAS interaction by immunoblot analysis of eluted fractions from complexes 
analyzed.  
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Figure 3.3. Dominant negative WDTC1 binds FAS and WDTC1 expression alters FAS 
protein expression in adipogenically induced 3T3-L1 cells. 
(A) Flag-WDTC1 complexes were isolated from 3T3-L1 cell lysates by immunoprecipitation 
with anti-FLAG and associated proteins were detected by immunoblotting as indicated; EV, 
empty vector control. 

(B) Flag-tagged WDTC1 proteins were transiently expressed in HCT116 cells and 
immunoprecipitated with anti-FLAG and associated proteins were detected by 
immunoblotting as indicated.  

(C-D) Cell lystates were prepared from uninduced 3T3-L1 preadipocytes that stably 
expressed Flag-WDTC1 (C) or shRNA targeting WDTC1 (D), and FAS protein levels were 
detected by immunoblotting as indicated. 

(E) 3T3-L1 preadipocytes stably expressing Flag-WDTC1 proteins were adipogenically 
induced to differentiate and cell lysates were prepared to detect FAS protein levels by 
immunoblotting as indicated. 
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Figure 3.4. FAS protein expression is transcriptionally regulated in 3T3-L1 cells. 
(A-B) 3T3-L1 preadipocytes stably expressing empty vector (EV) control and Flag-WDTC1 
proteins were adipogenically induced to differentiate. Cells were collected at zero time point 
(0D) and at indicated days post induction to prepare cell extracts and isolate mRNAs. FAS 
protein levels and Fasn mRNA expression were monitored by immunoblot analyses with 
indicated antibodies (A) and real-time qPCR analysis (B), respectively.  

(C) 3T3-L1 cells were treated with 50 μg/ml protein synthesis inhibitor cycloheximide (CHX) 
in the absence or presence of 10 μM protease inhibitor (MG132) for 0, 4, 8 and 12 hours. 
Cell extracts were prepared and protein levels were analyzed by immunoblotting as indicated 
(left) and quantified by normalizing to α-tubulin and plotted as relative to 0 h (right). 
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Figure 3.5. FAS is not a CRL4WDTC1 substrate. 
(A) Empty vector (EV) control and Flag-tagged WDTC1-WT and WDTC1-ΔH along with HA-
ubiquitin were transiently expressed in HCT116 cells for 48 h. Cells were lysed under 
denaturing conditions (1% SDS), cell extracts were immunoprecipitated by anti-FAS and 
FAS ubiquitylation was evaluated by immunoblotting with indicated antibodies. 

(B) HCT116 cells were transfected by scramble (scrm) control or DDB1 targeting siRNAs. 
These cells were transfected again after a 24 h interval with HA-ubiquitin plasmid along 
various combinations of control and Flag-WDTC1-WT plasmids. Levels of FAS ubiquitylation 
were evaluated same as (A). 

(C) HCT116 cells were first transfected with HA-ubiquitin plasmid in a single dish, split ~10 h 
later to carry out subsequent transfections. Following 24 h after first transfection, cells were 
transfected again along with various combinations of control and expression plasmids. 
Levels of FAS ubiquitylation were evaluated as in (A). 

(D) Same as (C) except cells were transfected with siRNAs targeting CRL4 subunits 
following transient transfection of HA-ubiquitin plasmid. Levels of FAS ubiquitylation were 
evaluated as in (A). 
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Figure 3.5 (continued) 
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Figure 3.6. FAS polyubiquitylation is rapidly altered following 3T3-L1 induction.  
(A) 3T3-L1 preadipocytes were adipogenically induced and cells were collected within a 24 
hour time course of differentiation, including an uninduced control at 0 h. Cell lysates were 
prepared under denaturing conditions and subjected to immunoprecipitation using anti-FAS. 
FAS ubiquitylation was evaluated by anti-ubiquitin antibody. FAS protein expression and 
equal loading were confirmed by immunoblotting of whole cell extract (WCE) as indicated. 

(B) Empty vector (EV) control, and HA-tagged wild-type ubiquitin (WT), no lysine ubiquitin 
(K0) and various single lysine ubiquitin mutants were transiently expressed in HCT116 cells. 
Cell lysates were prepared under denaturing conditions and subjected to 
immunoprecipitation by anti-FAS. Levels of FAS ubiquitylation was evaluated by 
immunoblotting with indicated antibodies. 



 88

FLAG-WDTC1-WT

H
 b

ox WT

CUL4

E2

ROC1

N
D

8

DDB1

ub

ub
ub

ub
ub

Substrate

FLAG-WDTC1-ΔH

CUL4

E2

ROC1

N
D

8
DDB1

ub

Substrate

ΔH

Substrate

ΔH

ΔH

Substrate

FLAG-WDTC1-WT

H
 b

ox WT

CUL4

E2

ROC1

N
D

8

DDB1

ub

ub
ub

ub
ub

Substrate

FLAG-WDTC1-WT

H
 b

ox WT

CUL4

E2

ROC1

N
D

8

DDB1

ubH
 b

ox WT

H
 b

ox WT

CUL4

E2

ROC1

N
D

8

DDB1

ub

CUL4

E2

ROC1

N
D

8

DDB1DDB1

ub

ub
ub

ub
ub

Substrate
ub

ub
ub

ub
ub

ub
ub

ub
SubstrateSubstrate

FLAG-WDTC1-ΔH

CUL4

E2

ROC1

N
D

8
DDB1

ub

Substrate

ΔH

Substrate

ΔH

ΔH

Substrate

FLAG-WDTC1-ΔH

CUL4

E2

ROC1

N
D

8
DDB1

ub

CUL4

E2

ROC1

N
D

8
DDB1DDB1

ub

SubstrateSubstrate

ΔH

SubstrateSubstrate

ΔH

ΔH

SubstrateSubstrate

A

adipocyte 
phenotype

mature
adipocyte 

Insulin only

MATURE ADIPOCYTEPREADIPOCYTE

Confluence Differentiation Lipid accumulation

0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d 8 d-2 d -1 d

Insulin
Dexamethasone

IBMX

Induced Uninduced

adipocyte 
phenotype

mature
adipocyte 

Insulin only

adipocyte 
phenotype

mature
adipocyte 

Insulin only

MATURE ADIPOCYTEMATURE ADIPOCYTEPREADIPOCYTEPREADIPOCYTE

Confluence Differentiation Lipid accumulation

0 d 1 d 2 d 3 d 4 d 5 d 6 d 7 d 8 d-2 d -1 d

Insulin
Dexamethasone

IBMX

Induced Uninduced

C

B

FLAG-WDTC1

DDB1

FLAG-WDTC1

DDB1

130

95

95

130
kDa

WDTC1-ΔHWDTC1-WT

3T3-L1: pMX-FLAG-puro

3

10
%

 E
lu

at
e

4

10
%

 B
ea

ds

1

5%
 In

pu
t

6

5%
 S

up
e

7

10
%

 E
lu

at
e

5

5%
 In

pu
t

2

5%
 S

up
e

8

10
%

 B
ea

ds

IB: FLAG

IB: DDB1

IB: FLAG

IB: DDB1

Elution: 
1xFLAG peptide 
(200 ng/μl)

Elution: 
3xFLAG peptide 
(200 ng/μl)

FLAG-WDTC1

DDB1

FLAG-WDTC1

DDB1

130

9595

9595

130
kDa

WDTC1-ΔHWDTC1-WT

3T3-L1: pMX-FLAG-puro

3

10
%

 E
lu

at
e

4

10
%

 B
ea

ds

1

5%
 In

pu
t

6

5%
 S

up
e

7

10
%

 E
lu

at
e

5

5%
 In

pu
t

2

5%
 S

up
e

8

10
%

 B
ea

ds

IB: FLAG

IB: DDB1

IB: FLAG

IB: DDB1

Elution: 
1xFLAG peptide 
(200 ng/μl)

Elution: 
3xFLAG peptide 
(200 ng/μl)

D 3T3-L1 stable cells
(EV, WT and ΔH)

IP: M2 agarose (FLAG)

Elution: 3xFLAG peptide

In solution trypsin digest

Desalt peptides (C18 resin) 

LC-MS/MS (Core facility)

3T3-L1 stable cells
(EV, WT and ΔH)

IP: M2 agarose (FLAG)

Elution: 3xFLAG peptide

In solution trypsin digest

Desalt peptides (C18 resin) 

LC-MS/MS (Core facility)

E 3T3-L1 stable cells
(EV, WT and ΔH)

Induce differentiation

IP: M2 agarose (FLAG)

Elution: 3xFLAG peptide

SDS-PAGE, Coomassie

Excise bands, wash, 
destain, dehydrate

In gel trypsin digest
Extract peptides

Zip-tip (C18 resin) purification

LC-MS/MS (Core facility)

3T3-L1 stable cells
(EV, WT and ΔH)

Induce differentiation

IP: M2 agarose (FLAG)

Elution: 3xFLAG peptide

SDS-PAGE, Coomassie

Excise bands, wash, 
destain, dehydrate

In gel trypsin digest
Extract peptides

Zip-tip (C18 resin) purification

LC-MS/MS (Core facility)

Figure 3.7. Experimental overview of proteomic based screen for WDTC1 interacting 
proteins. 
(A) Schematic representation of Flag-tagged WDTC1-WT and WDTC1-ΔH proteins depicted 
in the context of CRL4 binding. 

(B) Elution check for WDTC1 complexes using 1XFLAG or 3XFLAG peptides by 
immunoblotting. Greater elution efficiency was obtained with 3XFLAG peptide as indicated 
by less protein retention on beads (lanes 4 and 8). 

(C) Schematic representation of 3T3-L1 differentiation with time points of uninduced and 
induced cell collection times circled. 

(D-E) Outline of workflow for mass spectrometry based identification of WDTC1 interacting 
proteins from uninduced and induced 3T3-L1 cells by in solution or in gel trypsin digest, 
respectively. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4: CONCLUSIONS AND PERSPECTIVES 

 

Summary 

When I started my dissertation research in Dr. Yue Xiong’s laboratory, the substrate 

targeting mechanism of CRL4 complexes had already been elucidated and the focus of the 

field shifted to functionally characterizing distinct CRL4 complexes, identifying associated 

cellular pathways and substrates. Among the vast majority of DWD proteins that remained 

uncharacterized, I chose to characterize WDTC1. Besides the potential therapeutic 

relevance of WDTC1 in suppressing fat accumulation, I was intrigued by its unique structural 

organization. The latter played a key role in my exploration of a nuclear function for 

CRL4WDTC1. I document two main findings in this dissertation: WDTC1 mediates adipogenic 

suppression through a CRL4 complex and histone H2A is a CRL4WDTC1 substrate in vitro, 

suggesting a role in transcriptional repression may underlie the biochemical function of 

CRL4WDTC1 in vivo. Given that virtually nothing was known about the molecular action of 

WDTC1, the work presented here provides the first mechanistic insight into its function. This 

study also prompts new and exciting questions for future research. In this final chapter, I 

discuss some outstanding questions in WDTC1 research and suggest future directions that 

may be pursued for this fascinating protein.  
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Is WDTC1 the mammalian ortholog of yeast TUP1-SSN6 transcriptional repressor? 

From the very beginning, the unique structure of WDTC1 held a fascination for me. 

So when I began to explore mechanisms underlying WDTC1 function, I considered 

transcriptional repression by WDTC1 a possibility since the only example of WD40 and TPR 

domains functioning collectively is in transcriptional corepression by the well characterized 

yeast TUP1 (WD40 domain) and SSN6 (TPR domain) heterodimer (Malave and Dent, 2006). 

TUP1 and SSN6 do not have homologs in higher eukaryotes, and given the structural 

parallel between WDTC1 and TUP1-SSN6, I hypothesized that WDTC1 may function as a 

vertebrate counterpart. In retrospect, extending the TUP1-SSN6 corepressor analogy to 

WDTC1 was not only conceptually satisfying, but this idea has support in a number of 

observations: (1) WDTC1 expression is associated with decreased adipogenic gene 

expression (Suh et al., 2007 and my data in Chapter 2), (2) nuclear exclusion of WDTC1 

mimics functional loss of WDTC1 (Suh et al., 2007), (3) WDTC1 is a histone binding protein 

(Figures 2.7C and 2.7G; Angers et al., 2006; Suh et al., 2007), (4) WDTC1 expression is 

associated with increased histone H2AK119ub (Figure 2.7D), (5) CRL4WDTC1 ubiquitylates 

histone H2A in vitro (Figures 2.8B and 2.8D), (6) WDTC1 exhibits intrinsic transcription 

repressive activity in luciferase reporter gene assays (Suh et al., 2007), and finally, (7) the 

reported interactions between WDTC1 and HDAC3 histone deacetylase (Suh et al., 2007), 

and the association of WDTC1 with transcription regulators in screen studies (Krebs et al., 

2010; Nakayama et al., 2002). Below I expand on the idea that WDTC1 potentially 

represents an evolutionarily conserved mechanism of transcriptional corepression by WD40 

and TPR domains in mammals.  

TUP1-SSN6 heterodimer functions in the global corepression pathway since it 

regulates the expression of a diverse get of genes (Malave and Dent, 2006). Its promoter 

specificity is conferred by sequence-specific DNA binding proteins as neither subunit 

possesses intrinsic DNA binding activity. The TPR containing SSN6 protein is thought to 

mediate the interaction with DNA binding protein while the WD40 containing TUP1 
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possesses the transcription repressive activity. Sequences N-terminal to the WD40 β-

propeller of TUP1 binds histone tail regions whereas the TPR motifs of SSN6 mediate 

interaction with HDACs. Once targeted to a specific promoter, the exact mechanism of 

repression is unclear. However, mutational analyses firmly established that histone binding 

and recruitment of histone deacetylases are critical to transcriptional repression by TUP1-

SSN6 (Davie et al., 2002; Edmondson et al., 1996; Watson et al., 2000). TUP1-SSN6 

colocalize with hypoacetylated histones at targeted promoters and loss of HDAC activity 

results in enriched histone acetylation and a loss of TUP1-SSN6-dependent gene repression. 

Thus the available evidence indicates that TUP1-SSN6 mediated transcriptional repression 

involves the establishment of a repressive chromatin state through reinforced binding and 

recruitment of other transcriptional repressors, HDACs. 

Although TUP1and SSN6 proteins do not have sequence homologs in higher 

organisms, there is precedence for evolutionary conservation through structurally similar 

proteins. The strongest candidate for a homolog is D. melanogaster Groucho (Gro) protein 

and its mammalian homologs, transducin-like Enhancer of split (TLE) proteins. Gro and TLE 

are global repressors that regulate a number of developmental pathways and share few key 

features of TUP1-SSN6 mediated repression: (1) recruited to target promoters by sequence 

specific DNA binding proteins, (2) histone binding is critical for function, and (3) histone 

deacetylation likely plays a role in their mechanism of repression (Flores-Saaib and Courey, 

2000; Malave and Dent, 2006). Although Gro and TLEs have WD40 domains but not TPR 

motifs, TLE1 has demonstrated ability to interact with yeast SSN6 in mammalian cells and 

mediate transcriptional repression in luciferase reporter gene assays (Grbavec et al., 1999). 

While this suggests functional conservation of WD40 and TPR domains in transcriptional 

repression, how exactly Gro/TLEs inhibit transcription remains unclear and likely involves 

multiple mechanisms that are unrelated to that of TUP1-SSN6 (Jennings and Ish-Horowicz, 

2008). It is interesting to note, however, that TLE proteins are putative substrate receptors 
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for CRL4 complexes and may offer additional opportunities for studying CRL4 function in the 

regulation of gene expression. 

Like TUP1-SSN6, WDTC1 binds histones and was found to interact with HDAC3. 

However, histone ubiquitylation does not appear to contribute to TUP1-SSN6 mediated 

repression (Malave and Dent, 2006). On the basis of structural resemblance and the noted 

similarities, I believe it is possible that WDTC1 represents an evolutionarily conserved factor 

that mediates gene repression via WD40 and TRP domains but acquired distinct functional 

mechanisms through specific interactions, CRL4 in this case. It remains formally possible 

that WDTC1 may share functional properties with TUP1-SSN6; I did not examine the effect 

of WDTC1 expression on histone acetylation in 3T3-L1 differentiation. However, exploring 

the evolutionary relationship between CRL4WDTC1 and TUP1-SSN6 complexes may provide 

important insight into the proposed transcription repressor role of the CRL4WDTC1 complex. 

Importantly, number of key questions will have to be addressed experimentally regarding this 

proposed role. First, while CRL4WDTC1 has an effect on H2AK119ub and H3K4me3 in cells, 

one critical question concerns whether the CRL4WDTC1 complex directly catalyzes histone 

H2AK119ub to inhibit transcription in vivo and what are the target genes? Second, WDTC1 

appears to bind histones independent of DDB1 (Figure 2.7G) and it does not have an 

apparent DNA binding domain, therefore, how is WDTC1 recruited to chromatin? On a 

related note, it will be important to determine if WDTC1 mutations that abolish histone 

binding negatively impact transcriptional inhibition and consequently, adipogenic suppression. 

Lastly, does CRL4WDTC1 interact with other histone modifiers such as histone deacetylases 

and methyltransferases to establish transcriptionally silent chromatin through crosstalk? 

These and other associated questions will be discussed in more detail below. 

 

Regulation of adipogenesis through H2AK119ub 

Upon induction of differentiation, preadipocyte to adipocyte transition is controlled by 

coordinated expression of adipocyte-specific genes. While much is known about the complex 
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cascade of transcription factors that activate their gene expression programs, very little is 

known about the chromatin states underlying transcriptional activation or repression. 

However, details of epigenetic mechanisms that control adipocyte differentiation are 

beginning to emerge. Results from genome-wide studies indicate the presence of an 

epigenomic transition state, which refers to dynamic alterations in localization of 

transcriptional regulators, DNA methylation and histone modifications during differentiation 

(Cristancho and Lazar, 2011). Histone modifications driving adipocyte-specific gene 

expression, primarily histone H3 acetylation and methylation marks, have received the most 

attention in the literature (Mikkelsen et al., 2010; Steger et al., 2010). Consequently, the role 

of many histone modifying enzymes such as methyltransferases, acetyltransferases and 

deacetylases has also come into focus (Fu et al., 2005; Lee et al., 2008; Picard et al., 2004; 

Steger et al., 2010; Wang et al., 2010; Wang et al., 2013). By comparison, epigenomic 

alterations that block transcriptional activation, thereby adipogenesis, remain poorly 

understood. Notably, the functional significance of H2AK119ub in adipogenesis is virtually 

unknown.  

The data I presented here suggest adipogenic suppression by CRL4WDTC1 is 

mediated through histone H2AK119ub, and to the best of my knowledge, demonstrate the 

first link between H2AK119ub and adipogenesis (Chapter 2). Despite firmly established role 

in transcriptional silencing, how exactly H2AK119ub inhibits transcription is unclear. At least 

three non-mutually exclusive models have been proposed: (1) H2AK119ub alters chromatin 

structure and limits accessibly of transcription regulators to underlying DNA, (2) ubiquitin acts 

as a platform for recruitment of downstream repressors, possibly containing ubiquitin binding 

domains, and (3) H2AK119ub impacts other histone modifications to reinforce gene silencing, 

referred to as crosstalk (Hammond-Martel et al., 2012). Although I did not test all three 

proposed mechanisms, my data is consistent with crosstalk being a contributing factor. In 

fact, the interaction between CRL4 and histone methyltransferases in yeast and mammalian 

cells implicates crosstalk is critical to CRL4 mediated transcriptional regulation (Chapter 1). 
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I observed that the effect of CRL4WDTC1 on H2AK119ub inversely correlated with 

H3K4me3, suggesting H2AK119ub blocks transcription initiation (Figures 2.9A and 2.9B). 

While this could be an indirect effect, in vitro evidence supports a crosstalk between 

H2AK119 and H3K4me3. In vitro transcription assays on reconstituted chromatin templates 

showed that H2AK119ub inhibits transcription initiation by blocking modifications associated 

with promoter activation, MLL3-catalyzed histone H3K4me2/3, but does not appear to have 

an effect on H3K9 or H3K27 methylation (Nakagawa et al., 2008). Their data suggested that 

blocking H3K4 methylation prevents preinitiation complex formation, but this inhibition on 

transcription initiation is relived by the addition of the USP21 deubiquitinase. While 

correlative, my results predict a model whereby CRL4WDTC1 E3 ligase complex represses a 

subset of adipogenic genes through H2AK119ub, which then prevents H3K4me3 and thus 

transcriptional activation and adipogenesis (Figure 2.10). In vivo support for this model will 

require a few critical pieces of evidence; below I suggest possible experiments to test this 

model. 

A key question concerns the relative contribution of H2AK119ub to the adipogenic 

suppression mediated by CRL4WDTC1. Does CRL4WDTC1-catalyzed H2AK119ub account for 

transcriptional repression of adipogenic genes in vivo? Presently, it cannot be ruled out that 

the altered levels of H2AK119ub and H3K4me3, resulting from the modulation of WDTC1 

expression, is not secondary to altered adipogenesis. I suggest comprehensive chromatin 

immunoprecipitation and sequencing (ChIP-Seq) analyses combined with microarray 

analyses for quantitative gene expression profiling to conclusively ascertain the anti-

adipogenic function of CRL4WDTC1 through epigenetic modulation. First, the effect of WDTC1 

expression on the genome-wide profile of H2AK119ub and H3K4me3 should be obtained to 

determine the in vivo targets of CRL4WDTC1. It will also be important to determine WDTC1 

localization to identify specific genes that are targeted and to compare with H2AK119ub and 

H3K4me3 enrichment profiles. Lastly, the effect of CRL4WDTC1 activity on specific gene 

promoters should be evaluated by gene expression profiling experiments. Other key 
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remaining questions that may be addressed by future studies is how WDTC1 is targeted to 

specific promoters and what other corepressor complexes CRL4WDTC1 potentially interact 

with to contribute to distinct transcriptional repression. Additionally, the identity of 

deubiquitinases that activate adipogenic gene transcription is another important 

consideration. In summary, although my research has progressed our understanding of 

WDTC1 molecular function, the extent to which the model I favor or alternative mechanisms 

explain the anti-adipogenic function of CRL4WDTC1 remains to be experimentally determined.  

 

How many histone H2AK119ub E3 ligases are there? 

Since the initial discovery of a ubiquitylated protein (Goldknopf et al., 1975), histone 

H2AK119ub now represents one of the most abundant post translational modifications in 

higher eukaryotes (~5-15% of total H2A). At least three different H2A E3 ligases have been 

linked to transcriptional regulation: RING1B of Polycomb repressive complex PRC1 (Wang et 

al., 2004), 2A-HUB (Zhou et al., 2008), and most recently, CRL4BRBBP4/7 (Hu et al., 2012). 

RING1B is the first identified and best characterized E3 ligase for H2AK119ub, and is linked 

to heritable gene silencing and X-inactivation (de Napoles et al., 2004; Wang et al., 2004). 

Recruited by the NCoR/HDAC1/3 corepressor complex, 2A-HUB appears to function in a 

lineage specific manner. In response to TLR activation in macrophages, 2A-HUB 

ubiquitylates H2A at a subset of chemokine gene promoters, which blocks transcriptional 

elongation (Zhou et al., 2008). CRL4BRBBP4/7 on the other hand interacts with PRC2 complex 

to repress cell growth and migration genes through possible crosstalk between H2AK119ub 

and H3K27me3, although the specific details are unclear (Hu et al., 2012).  

While Ring1b deletion results in a dramatic loss of H2AK119ub in mouse ES cells 

and mouse embryonic fibroblasts (van der Stoop et al., 2008) and RING1B protein is present 

in two additional protein complexes besides PRC1, E2F6.com-1 and FBXL10-BcoR (Zhou et 

al., 2009), it is unclear how and whether a single E3 ligase regulates all biological processes 

involving H2AK119ub. Following the discovery of 2A-HUB, it has been proposed that distinct 
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H2A E3 ligases, through their selective interactions with different corepressor complexes, 

target specific gene promoters (Zhou et al., 2009). In addition to CRL4BRBBP4/7, my data that 

CRL4WDTC1 promotes H2AK119ub in vivo and possesses E3 ligase activity in vitro not only 

supports the notion that distinct H2A E3 ligases are present in cells, but raises the possibility 

that additional CRL4-based H2AK119 E3 ligases may exist. CRL4WDTC1 and CRL4BRBBP4/7 

only differ in the DWD subunit and given the ~90 estimated DWD proteins in humans, it is 

tempting to speculate that additional DWD may function analogously. Testing this hypothesis 

for DWD proteins associated with gene regulation could potentially strengthen our 

mechanistic understanding of CRL4 complexes in chromatin related processes. 

 

Additional cellular substrates and functions of CRL4WDTC1 E3 ligase 

I speculate WDTC1 may target additional substrates to regulate adipogenesis or 

other biological processes, or both. I base this prediction on two pieces of evidence: (1) 

WDTC1 is present in both CRL4A and CRL4B complexes (Figures 2.2A and 3.1B), and (2) 

WDTC1 is primarily localized in the cytoplasm (Figures 2.7A and 2.7B). In this study, a 

distinction was not made regarding whether CUL4A or its paralog CUL4B is the 

physiologically relevant cullin scaffold interacting with WDTC1 to regulate adipogenesis. 

Structurally, CRL4A and CRL4B are nearly indistinguishable except for an N-terminal 

unstructured region in CUL4B that contains a nuclear localization signal and forms the basis 

for its preferential localization in the nucleus (Fischer et al., 2011; Nakagawa and Xiong, 

2011; Zou et al., 2009). Functionally, CUL4A and CUL4B are not completely redundant as 

Cul4a-/- mice are viable but Cul4b-/- mice are embryonic lethal, indicating CUL4A cannot fully 

compensate the loss of CUL4B (Jackson and Xiong, 2009). That a single substrate receptor 

can target multiple substrates to the CRL4 catalytic core is well known and best exemplified 

by CDT1 and DDB2 (Table 1.1). However, since a distinction has rarely been made in the 

literature, it is unclear whether distinct CUL4A and CUL4B complexes regulate different 

cellular pathways. The available evidence indicates CRL4A and CRL4B complexes function 
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redundantly in many processes. In the case of NER, both CRL4ADDB2 and CRL4BDDB2 

complexes ubiquitylate histone H2A, but CUL4B exhibits greater efficiency in in vitro 

ubiquitylation assays with purified H2A (Guerrero-Santoro et al., 2008; Kapetanaki et al., 

2006). Similarly, CDT1 degradation is mediated by both CUL4A and CUL4B since both 

isoforms have to be codepleted to detect CDT1 accumulation (Higa et al., 2006a; Hu et al., 

2004). In contrast, WDR5 (Nakagawa and Xiong, 2011), cyclin E (Zou et al., 2009) and 

PDRX3 (Li et al., 2011) are solely targeted by CRL4B. While WDR5 is itself a DWD protein, 

the CRL4B substrate receptors for cyclin E and PDRX3 are currently unknown, thus whether 

their corresponding substrate receptors also form CRL4A complexes is currently unknown. 

The relative contribution of H2AK119ub to the CRL4WDTC1-dependent adipogenic 

suppression and the molecular mechanism underlying the adipocyte-specific defect in Cul4a-

/- mice should help clarify whether WDTC1 functions in different CRL4 complexes, and 

potentially identify additional cellular targets. 

I focused exclusively on the anti-adipogenic function of WDTC1 in this study. But 

does WDTC1 play a role in other biological pathways, and utilize similar or different 

mechanisms? This is indeed a strong possibility based on two lines of evidence: (1) partial 

embryonic lethality of the WDTC1 knockout mice (Suh et al., 2007), and (2) WDTC1 is 

broadly expressed in flies, mice and humans. Although the adipose tissue starts to develop 

in late gestation, the real expansion does not occur until after birth (MacDougald and Lane, 

1995). Therefore, it can be inferred from the partial embryonic lethality that WDTC1 has 

adipocyte-independent roles and minimally in embryogenesis. Because Wdtc1+/- mice have 

not been fully characterized yet, it remains to be determined whether additional cellular 

phenotypes are associated with altered WDTC1 expression. Although correlative, WDTC1 

expression in both adipogenic and non-adipogenic tissues of adult mice (Figure 2.3A and 

Suh et al., 2007) is consistent with its involvement in diverse cellular processes. If Wdtc1+/- 

mice have additional phenotypes, then targeted Wdtc1 deletion in specific tissues should 
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circumvent the partial embryonic lethality and enable linking WDTC1 to different cellular 

functions, and potentially identify downstream effector proteins through molecular analyses.  

A final consideration regarding WDTC1 is whether it has CRL4-independent function. 

While it is probable, I favor a model wherein CRL4 activity underlies the primary function of 

WDTC1 in anti-adipogenic suppression and potentially in other cellular process as well. 

Given the limited knowledge we have of WDTC1 biology, I base this on the absence of 

WDTC1 in protein complexes other than CRL4, as revealed by the screen for WDTC1 

interacting proteins through mass spectrometry analyses (Chapter 3). It is also of note that 

WDTC1 was readily detected in DDB1 and CUL4 immunocomplexes from three separate 

studies (Angers et al., 2006; Bennett et al., 2010; Jin et al., 2006), indicating that WDTC1 

containing CRL4 complexes are frequently assembled in cells. I suggest an as yet to be 

identified CRL4-independent function plays a minor role in WDTC1-dependent adipogenic 

suppression.
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