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ABSTRACT 

WILLIAM R. STEVENS:  

Modeling of Complex Ionic Dissociation Reactions Observed by TPEPICO Spectroscopy 

(Under the direction of Prof. Tomas Baer) 

 

 

TPEPICO spectra of dissociatively ionized chlorobenzene, bromobenzene, and 

iodobenzene have been measured to test the ability of different statistical rate theories to 

accurately calculate rate constants of homolytic bond cleavages of ions. For this purpose 

we have developed a method for extracting experimental rate constants at a single 

internal energy from TPEPICO spectra of thermal ions.  It was determined that, of the 

theories tested, simplified versions of variational transition state theory (VTST) and 

statistical adiabatic channel model (SACM) were both capable of fitting the rate constants 

and predicting the known bond energies of all three halobenzenes. RRKM theory was 

capable of fitting the rate constants but predicted a bond energy that was too low.  PST 

could neither fit the data nor predict the correct E0.  The much simpler to employ 
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simplified SACM (SSACM) was applied in the dissociations of nitrosobenzene and 

neopentane.  

  Chapter 1 is an introduction to the following chapters, dealing with the motivation 

to determine high precision bond energies of complex dissociations.  Chapter 2 is a 

discussion of the experimental methods employed to observe photoionization and 

photodissociation processes.  Chapter 3 describes the study of the simple isopropyl halide 

dissociation to determine the isopropyl ion heat of formation.   In Chapter 4 we discuss 

the measurement of rate constants at specific ion internal energies for the dissociation of 

the halobenzenes in order to compare the ability of different rate theories to model 

homolytic bond cleavages.  Chapters 5 and 6 are applications of the SSACM described in 

Chapter 4 to the dissociations of the nitrosobenzene and neopentane ions. Like the 

halobenzenes in chapter 4, the nitrosobenzene ion dissociation is slow and requires rate 

theories to determine the bond energy.  The thermochemistry of the dissociation of both 

ionic and neutral dissociations of nitrosobenzene are improved using active 

thermochemical tables.  In chapter 6 the bond energy for the methyl loss of neopentane is 

determined. Although this reaction occurs rapidly, there is a lower energy dissociation 

pathway that masks the methyl loss channel at threshold thus requiring extrapolation to 

determine the bond energy.   
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CHAPTER 1: Introduction 

 

1.1 Motivation for studying complex dissociations 

The current state of the art theoretical thermochemical methods such as HEAT
1
 or W4

2
 

theory are able to reliably determine the energetics of smaller molecules to within 1 kJ•mol
-1

.  In 

order to produce relevant results and to help theoreticians improve their models, we must look to 

larger systems with heavier atoms.  However, dissociations of interest from larger molecules tend 

to be more complex, i.e. they are more prone to dissociate at rates that are too slow to be 

measured and/or dissociate via multiple pathways at lower energies, both of which can shift the 

observed dissociation threshold to significantly higher energies. Additionally, large molecules 

with heavier atoms often have poorly defined heats of formation, which makes it difficult to 

derive reaction thermochemistry unless the thermochemistry of the fragments is well known.  

Traditional calorimetric methods have providee high precision values for many 

hydrocarbons but are limited as molecular size increases and especially as functional groups with 

heavier atoms are substituted.  Reported uncertainties in the alkanes range from 0.4 kJ•mol
-1

 for 

methane to  1.3 kJ•mol
-1

 for octane.
3
 The chloro-, bromo-, and iodobenzene are known to 1.3, 

4.1 and 5.9  kJ•mol
-1

 respectively. As the size of the molecule increases, the heats of combustion 

typically become higher, requiring higher precision in temperature measurement to obtain the 

same precision thermochemistry. Additionally these measurements rely upon complete reaction 

of the 
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species which becomes less likely with larger molecules and heavier atoms. For heavier atoms, 

especially metal atoms, multiple oxidation states can be formed, which greatly complicates the 

extraction of reliable thermochemistry.   

Previously overlooked factors also become significant when  determining high precision 

thermochemical values.  Theoretical methods, as well as photoionization techniques (e.g.  

photoionization mass spectrometry (PIMS) and photoelectron-photoion coincidence (PEPICO)) 

rely upon heat capacity functions to convert the 0K to 298 K thermochemistry.  Uncertainty in the 

heat capacity, becomes significant when dealing with sub kJ/mol precision because of uncertainties 

in the calculated vibrational frequencies, their anharmonic corrections, and the treatment of 

multiple internal rotations to determine the heat capacity function. There are several models
4-7

 for 

treating internal rotations however most deal with only a single rotor and, depending on which one 

is used, results for the H298-H0 can differ by 1 kJ•mol
-1

.   

1.1.1 Active Thermochemical Tables (ATcT) 

The ATcT currently in development by Ruscic et al
8,9

 are a network of experimentally 

measured bond energies, heats of combustion, heats of hydrogenation, electron affinities, etc. for 

neutral and ionic species.  By minimizing the error in the network, uncertainties in thermochemical 

values are significantly reduced.  Measuring accurate bond dissociation energies of larger 

molecules to common fragments links these molecules into the thermochemical network.  It is 

especially important to determine accurate energetics for stable ions for which the heats of 

formation have been elusive such as the ones studied here: C6H5
+
, i-C3H7

+
, and t-C4H9

+
. 

1.1.2 Useful values derived from the E0 

1.1.2.1 Heats of formation of Ions 

Mass spectrometry provides a direct route to the heats of formation of gas phase ions.  The 

E0 is related to the thermochemistry of the reaction constituents by the equation below.  
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 HAB   1.1 

Therefore, if the thermochemistry of any two of the reaction participants, HAB, B and HA
+
, are 

known, the heat of formation of the third species can be determined from the measured E0.  Related 

thermochemistry can then be derived from fH(HA+).  If the fH(A) is known, then the proton 

affinity of A can be determined by the following reaction. 

 A+H
+

  1.2 

In Ch. 4 a new value for PA(i-C4H10), which is an important value for the anchoring the proton 

affinity scale, is determined from fH(t-C4H9
+
) 

1.1.2.2 Neutral bond dissociation energies and radical ionization energies 

Neutral thermochemistry can be linked to more easily measured ionic onset energies by the 

ionization energy of the radical product of the neutral dissociation.  The neutral bond dissociation 

energy can be derived from the E0 using Eqn. 1.3.  

  1.3 

However, radical ionization energies are often difficult to determine by conventional methods such 

as PIMS or photoelectron spectroscopy (PES). First, it is often difficult to cool radicals sufficiently 

in a molecular beam, which for large molecules often results in significant population of 

vibrationally excited radicals that ionize at photon energies lower than the ionization energy (i.e. 

hot bands).  Second, it is common for removal of the lone electron of the radical to result in a 

geometry change which will result in poor Franck-Condon factors for the v0→v’0 transition. These 

factors respectively cause underestimation and overestimation of the ionization energy, obscuring 

direct measurement of the adiabatic IE.  Measuring the E0  for systems where the neutral BDE is 

known will yield the IErad.  The IErad can then be used in similar systems where the BDE is 

unknown.   
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1.2 Measurement of Ionic Dissociations 

1.2.1 Photoionization Mass Spectrometry (PIMS) 

In PIMS, the mass analyzed ion signal is measured as the photon energy is scanned. The 

resulting spectrum is called the photoionization efficiency (PIE) curve.  Figure 1- 1 shows that, as 

the photon energy is increased, fragment ions of a particular mass are formed and the mass selected 

signal  for that ion will increases.  The energy at which this begins to occur is called the appearance 

energy (AE).
10

 Figure 1- 1 also shows that the appearance energy is related to the dissociation onset 

E0 by the internal energy (<Evib>+<Erot>) of the neutral precursor.  The AE is determined by 

drawing a line through a linear portion of the PIE curve to the baseline.  The point where this line 

and the baseline intersect is then defined as the AE.  The PIE curve is dependent upon experimental 

conditions such as photon intensity, sample pressure, or a broad internal energy distribution as well 

as Franck-Condon factors and competition from lower energy channels. Often these factors make 

determining the “linear portion” of the PIE curve somewhat subjective and results in impractically 

large uncertainties that are underestimated.   

1.2.2 Photoelectron-Photoion Coincidence (PEPICO)  

PEPICO experiments measure ions in coincidence with their emitted electron.  This allows 

energy selection of ions by use of energy conservation. The excess photon energy, h -IEad, is 

partitioned between the internal energy of the ion and the kinetic energies of the electron and ion.   

  1.4 
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Figure 1- 1 Experimental and Theoretical Definitions of E0 and AET. 
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Due to conservation of momentum, the KEion term is negligible and can be excluded.  For a given 

photon energy, there will be a distribution of electron kinetic energies (i.e. the photoelectron 

spectrum) and therefore a distribution of ion internal energies.   This means that even at photon 

energies well above the E0, some parent ions will be generated because most of the excess energy is 

partitioned into the kinetic energy of the electron.  We can simplify the equation above by only 

collecting ions that are in coincidence with zero kinetic energy electrons (ZEKE).   This eliminates 

the last term in eq. 1.7 making the total ion internal energy: 

  1.5 

where ETh is the thermal energy of the neutral molecule which is determined from the experimental 

sample temperature and calculated vibrational frequencies and rotational constants.  The degree to 

which we know the ion internal energy corresponds directly to the photon energy resolution and 

how effectively we can discriminate against energetic (hot) electrons.  

  PEPICO spectra are TOF spectra consisting of energy selected ions. These spectra are 

acquired at different photon energies and therefore different ion internal energies.  Relative 

abundances of the observed ion from each spectrum are plotted as a function of the photon energy 

to generate a breakdown diagram (see Figure 1- 1).  Unlike a PIE curve, the breakdown diagram 

has the advantage of being independent of Franck-Condon factors and experimental conditions such 

as light intensity and sample pressure.  For simple rapid dissociations, Figure 1- 1 also shows that 

the relative abundances in the breakdown diagram are determined by the fraction of the ion internal 

energy distribution that lies above the dissociation threshold (red portion of the thermal energy 

distribution in Figure 1-1)  and that the photon energy at which the parent ion abundance disappears 

is equal to the observed E0 .  There is, thus, no arbitrariness in establishing the dissociation limit. 

1.3 Kinetic and Competitive Shifts 
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According to unimolecular statistical theory, the dissociation rate is directly proportional to 

the probability that the ion will “find” a dissociative state. The Rice, Ramsperger, Kassel, Marcus 

(RRKM) equation is an improved version of the RRK equation,which assumes incorrectly that the 

molecule is composed of identical oscillators and that internal energy is large enough to treat these 

oscillators classically.   R. A. Marcus (then a post doctoral fellow with O.K. Rice  at the University 

of North Carolina) modified the theory to consider individual oscillators using quantum mechanics. 

The RRKM equation defines the dissociation rate as   

  1.6 

where   is the reaction degeneracy, E is the ion internal energy measured relative to the ion ground 

state, E0 and IE are measured from the neutral ground state, N
‡
(E-E0+IEad) is the transition state 

sum of states (the number of states that will lead to dissociation),  h is Planck‟s constant, and  ρ(E)  

is the ion density of states (the total number of states for an ion of a given internal energy).  The 

minimum rate constant is located at the ion internal energy, E =E0-IEad.  Thus the minimum rate 

constant, kmin, is 

  1.7 

The minimum rate constant is dependent upon the height of the barrier and the energy dependence 

of ρ(E). The latter depends upon the number of vibrational degrees of freedom of the molecule. If 

kmin is too slow to be measured by a particular experiment, as is shown by the experimental window 

in Figure 1- 2, then ions with enough energy to dissociate will not have enough time to do so before 

detection and a false threshold that is dependent upon experimental conditions will be observed.  It 

should be noted the experimental window is determiend by the ion residence time and that trapping 

experiments could extend this indefinitely.  However if kmin is low enough (~10
2
 s

-1
), then radiative 

cooling by emission of infrared photons eventually becomes competitive with the dissociation rate 

and fragmentation at threshold will be impossible  
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Figure 1- 2 Definition of Kinetic Shift. 

  



9 
 

to observe experimentally.
11

 The use of eq. 1.6 to extrapolate to the true E0 is thus required for slow 

dissociations.  Figure 1- 2 shows the kinetic shift as the difference in energy between the observed 

and the true threshold.   

When a dissociation of interest competes with a lower energy dissociation pathway, the 

branching ratios are determined by the ratio of the rate constants of the dissociating channels.   
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1.8 

Higher energy channels only become visible when they are within about 2 orders of magnitude of 

the fastest dissociation pathway.    This results in fragments not being observable at their 

dissociation threshold due to a competitive shift.  For dissociations of interest with a competitive  

shift, the only way to extract energetic information is by modeling the data using eq. 1.3 and 

statistical rate theories to model the experimental data.   

1.3.1 The Various Unimolecular Reaction Rate theories 

In the presence of a shift, either competitive or kinetic, unimolecular rate theories are 

required to extrapolate to the dissociation threshold.  These theories differ in their models of the 

transition state (TS), which determine the energy dependence of N
‡
(E) and k(E ).  Using different 

rate theories will result in different values determined for E0.   

Phase space theory (PST)
12-16

 assumes that (in absence of a centrifugal barrier) the 

transition state is fixed at infinity along the reaction coordinate.  As the molecule dissociates, 

energy in the vibrational modes corresponding to the bending and (if applicable) torsional motion 

of the broken bonds is converted into rotational motion of the fragments. Thus by placing the 

transition state at infinity, PST assumes that the transitional modes have completely converted into 

rotations.   For a polyatomic ion dissociating to non-linear polyatomic fragments, one vibrational 

mode is converted into the reaction coordinate, and five vibrational modes are converted into 
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product rotations.  Because of these free rotors, the energy dependence of N
‡
(E) is very strong..  As 

a result, PST represents the upper limit to k(E) and therefore the extrapolated E0.   

RRKM theory
17

 assumes that the TS is composed entirely of n-1 vibrational oscillators 

(compared to n-6 for PST), where n is the number of vibrational modes in the ion.  The RRKM TS  

is therefore  located further inward on the reaction coordinate (where the ion is still intact) than the 

PST TS. RRKM theory works best for dissociations with an energetic barrier along the reaction 

coordinate, usually associated with a rearrangement process Often, this energetic barrier 

corresponds to a transition state geometry that is tighter (i.e. the vibrational frequencies of the TS 

are higher) than for the ion equilibrium geometry.  Because of these higher vibrational frequencies, 

the energy dependence of N
‡
(E) is weaker, and k(E) rises more slowly with E..   

The two rate theories, which assume that the transition state is located close in (RRKM) 

and at infinite product separation (PST), assume that the TS is independent of the ion internal 

energy.  This is often not true for dissociations that occur homolytically.  For such dissociations, the 

potential energy increases monotonically along the reaction coordinate without an energetic barrier.  

As a result,  the TS is determined by an  entropic bottleneck which, at low energies, is located at 

infinite bond distances and moves inward as the ion internal energy is increased.
17

   

Variational transition state theory (VTST)
18-20

 locates the transition state by determining the 

minimum in N
‡
(E-V(R)) as the molecule moves on the potential energy curve V(R) along the 

reaction coordinate (R).  This minimum results from competing trends in N
‡
(E-V(R)).  Increasing 

the bond distance causes E-V(R) and N
‡
(E-V(R) to decrease.  At the same time, the disappearing 

vibrational modes, which turn into rotations, cause the N
‡
(E-V(R)) to increase.  Determining this 

minimum requires V(R) to be determined, as well as the vibrational frequencies as a function of the 

reaction coordinate. However, there is considerable uncertainty in the calculated potential and 

vibrational frequencies at large R.  Several models have been proposed that use analytical functions 

to describe V(R) and the changing vibrational modes.
18-20

 Depending on which model is used, one 
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or two minima may be observed in N
‡
(E-V(R)), a  tight transition state (TTS) at shorter R and an 

outer orbiting transition state (OTS).
21

  At low energies, the OTS is the global minimum but as the 

internal energy is increased, the tight transition state becomes the global minimum.  It is not clear 

whether this transition state switching is  an artifact of particular approximations used in the 

model.
22

 

Another model is the statistical adiabatic channel model (SACM) in which the quantum 

states of the reactant are assumed not to change (although their energies change as the vibrational 

frequency changes during the reaction) throughout the dissociation.  For a given quantum state 

dissociation is assumed to proceed by an adiabatic potential energy curve that links reactant  and 

product.  Each potential curve has a barrier, the maximum of which moves inward along the 

reaction coordinate as the energy and angular momentum of the channel increase. If the molecule 

has enough energy to dissociate along a particular curve then the rate constant for that quantum 

state is determined using eqn. 1.2.  A total rate constant is obtained by summing these rates over a 

statistical distribution of quantum states.  
17

 

A full implementation of either VTST or SACM requires significant computational effort.  

It is shown in Ch. 4 that both a parameterized version of VTST as well as a simplified  SACM 

(SSACM), which calculates k(E)  using  the much simpler PST with suitable scaling factors,  are 

capable of  extrapolating the k(E) function to within the uncertainty of the correct E0 over nearly 

500 meV.
23

  Additionally, SSACM, has been shown to reproduce  rate constants derived from a full 

SACM-classical trajectory (SACM-CT) treatment. 
24

  It is also shown in Chapter 4 that using PST 

and RRKM theory to extrapolate to the E0 for the halogen loss of the halobenzenes disagree by as 

much as 200 meV, with PST over estimating, and RRKM underestimating the E0.
23,24

   

 

1.3.2 Synchrotron based studies (iPEPICO) 

Synchrotron radiation is tunable over, for our purposes, an essentially unlimited range 

(<8→>4000 eV).  Additionally the photon flux of synchrotron radiation (10
11

-10
12

 photons/s at 10 
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eV
25

)  is  significantly higher than those achieved by tunable monochromatized laboratory emission 

sources.  Because of this high flux, higher photon energy resolution is possible for coincidence 

experiments which are often limited by low signal intensity.  Several new PEPICO apparatuses 

have been built at synchrotrons around the world.  Two have been built in Europe, DELICIOUS II
26

 

at the French Synchrotron Soleil and the iPEPICO apparatus
27

 at the Swiss Light Source (SLS) 

synchrotron and a third in China at the Beijing Synchrotron Radiation Facility.   
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CHAPTER 2: Experimental Description 

2.1 TPEPICO Description 

  The TPEPICO apparatus, which has been described in several publications, 
1-3

 

consists of a VUV light source, a temperature controlled inlet, an electron energy 

analyzer, either a linear or reflectron time of flight (TOF) analyzer, and electronics to 

correlate the ion and electron signals.  The sample gas enters the chamber effusively 

through a stainless steel needle.  A needle valve regulates the flow of gas into the 

chamber so that the chamber pressure is about  10
-5

 mbar (base pressure = 10
-7

 mbar). 

Vacuum ultraviolet (VUV) light emitted from a H2 discharge lamp dispersed by a 1 m 

normal incidence monochromator ionizes the sample gas in a temperature controlled 

ionization region. The width of the entrance and exit slits of the monochromator were set 

to 100 m, providing a resolution of 1 Å. The wavelength was calibrated using the 

Lyman-α emission line.   

Upon ionization, an extraction field of 20 V•cm
-1

 accelerates the electrons and 

ions in opposite directions. Ions travel through either a linear or reflectron TOF analyzer 

before impacting a tandem MCP detector. Velocity focusing optics direct both threshold 

electrons and hot electrons that have zero velocity perpendicular to the extraction axis 

onto a 1.3 mm circular aperture at the end of a 12 cm electron drift region where they are  

detected by a Burle channeltron detector (see Figure 2-1).  A second off-axis channeltron 

detector behind a 3x5 mm rectangular aperture collects the background signal of 
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energetic or hot electrons.  We assume that this hot electron signal is representative of the 

hot electron signal at the center detector.  The hot electron signal is used to correct the 

contaminated center threshold signal for hot electrons whose initial velocity vector is 

perpendicular to the extraction axis. (See Section 2.1.3.3)  

A time-to-pulse height converter (TPHC) converts the time difference between 

the center or cold electron detector signal and ion MCP signal (i.e. the ion TOF) to pulse 

height.  A multichannel pulse height analyzer (MCPHA) generates the center TOF 

spectrum from the TPHC pulses.  A second TPHC and MCPHA generate the hot electron 

TOF spectrum using the off-axis electron detector signal as a start and the ion signal as a 

stop.   

2.1.1 Linear Time of Flight Mass Configuration 

In the linear time of flight configuration, a field voltage of 20 V•cm
-1

 is used to 

accelerate the ions over 5 cm to 100 eV. The ions are accelerated again from 100 eV to 

250 eV over 2 mm before entering a 25 cm drift region.  The ions then enter a second 

shorter drift region of 8 cm, the voltage of which can be varied to separate fragment ions 

formed in the first drift region before impacting a tandem MCP detector. When the 

voltage applied to the second drift region is 250 V, the same as the first drift region, the 

voltages meet the Wiley-McLaren space focusing condition.
4
  The peak width is  This 

means that all ions of the same mass will have the same time of flight regardless of 

starting position and  therefore determined by the sample‟s thermal translational energy. 

  Figure 2-1 shows the dependence of the total time of flight of a fragment ion 

upon the position in the spectrometer where it was formed as well as the kinetic 

information available from its TOF spectrum.  Dissociations with k(E) greater than 10
7
 s

-1
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occur essentially instantaneously.  For instance, an ion with an m/z of 50  travels only 

0.02 mm in the first 10
-7 

s in a 20 V/cm field.  
 
As a result these rapidly formed fragment 

ions appear at the time of flight corresponding to the mass of the fragment ion.  Fragment 

ions that are formed in the first acceleration region have a time of flight that corresponds 

to the position in the acceleration region at which they were formed. Ions that dissociate 

sooner have shorter times of flight than those that dissociate later in the acceleration 

region. This dependence results in an asymmetric fragment peak (peak a, Figure 2-1). 

The shape of the fragment peak corresponds to the decay of the parent ion abundance. If 

fragments are formed in the first drift region of the spectrometer then the lighter ions will 

have the same velocity as the parent ion and therefore less kinetic energy.  These slow 

moving fragment ions can be separated from the parent ions by setting the second drift 

region to a higher potential than the first drift  region.   The potential difference between 

the two drift regions provides a barrier over which the slow moving fragment ions must 

cross.  Because the fragment ions are lighter, they are decelerated more and thus have a 

longer time of flight than the parent ion (peak b, Figure 2-1).  The drift peak area 

provides a point significantly further along parent ion decay curve than the asymmetric 

fragment peak. This extends the window over which we can determine kinetic 

information to rates below 10
3
 s

-1
 for m/z=100.  Decelerating the ions between the first 

and second drift region moves the Wiley-McLaren focal point away from the detector 

and therefore causes an increase in the TOF peak widths. However, this was not a 

problem for the metastable systems studied because the mass difference between the  
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Figure 2-1 TPEPICO experimental apparatus with linear TOF analyzer.  The fragment 

ion time of flight is dependent upon the location at which it dissociates. (a) If  the 

fragment is formed in the first acceleration region (blue) then the fragment ion will 

appear as part of the asymmetric fragment peak. (b) if the fragment ion is formed int 

the first drift region (green) then the fragment will appear as a drift peak at longer 

times of flight than the parent ion.  (c) Lastly if the fragment ion does not dissociate 

before the end of the first drift region, then the fragment ions will appear as parent. 

(red) 



19 
 

the fragment peak corresponds to the decay of the parent ion abundance. If fragments are 

formed in the first drift region of the spectrometer then the lighter ions will have the same 

parent and fragment ions was large.  Lastly the peak area of the parent ion (peak c, Figure 2-1) 

corresponds to ions that either dissociated in the second drift region or did not dissociate at all. 

The peak area of the parent allows normalization of the parent ion decay curve. 

2.1.2 Reflectron TOF Configuration 

 Figure 2- 2 shows the PEPICO apparatus with the reflectron TOF configuration.  

As in the linear TOF configuration, ions are accelerated to 100 eV over 5 cm before 

entering the 40 cm long drift region without a second acceleration.  Ions starting from 

different points in the ionization region come into focus near the front of the reflectron.  

The ions then travel through a 35 cm drift region before coming back into focus as they 

are detected on a tandem MCP detector.  Voltages are once again determined using the 

Wiley-McLaren space focusing conditions. Similar to the linear TOF configuration, 

kinetic information is present in the TOF spectra of metastable ions in the form of an 

asymmetric fragment peak. However lower velocities and longer flight paths in the drift 

region mean that the metastable ions have more time to dissociate and that slower rate 

constants can therefore be determined from the reflectron drift peak.   

The primary advantage the reflectron TOF configuration is its mass resolution of 350 

which is better than the linear TOF by a factor of about 3.5. This is due to the longer 

flight times of the ions in the reflectron. These longer flight times result in a disadvantage 

due to the fact that fragment ions formed in the drift region that are significantly lighter 

than the parent ion have much less kinetic energy. These ions are not efficiently reflected 

toward the detector and can be lost.  
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Figure 2- 2 TPEPICO experimental apparatus with reflectron TOF analyzer.  The 

fragment ion time of flight is dependent upon the location at which it dissociates. (a) If  

the fragment is formed in the first acceleration region (blue) then the fragment ion will 

appear as part of the asymmetric fragment peak. (b) if the fragment ion is formed in 

the first drift region (green) then the fragment will appear as a drift peak at the end of 

the fragment peak.  (c) Lastly if the fragment ion does not dissociate before the end of 

the first drift region, then the fragment ions will appear as parent. (red) 
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2.1.3 Detailed Experimental information 

2.1.3.1 Temperature Controlled Inlet 

A temperature controlled inlet is used to control the temperature of the neutral 

sample gas flowing into the chamber.  The inlet consists of a 1.5” x 1.5” x 5” copper 

block housing which contains a sample line, cooling line, and cartridge heater.  The 

sample line runs through the center of the block and terminates in a stainless steel 

capillary just above the ionization region. The first extraction plates of both the electrons 

and the ions are located 6 mm away from the ionization spot.  They are each copper 

plates with a central hole 0.5” in diameter. These plates are in thermal contact with the 

copper block so that the entire ionization region is isothermal, however Teflon spacers 

serve as electrical insulators so that voltages can be applied.  A thermocouple placed 

between the Teflon sheet and copper block allows direct monitoring of the sample 

temperature. Temperatures below room temperature are maintained by a Neslab ULT-80 

ultralow temperature circulating bath containing denatured ethanol which is capable of 

maintaining constant temperatures at the copper block over a range from 240 K to 300 K.  

Using this method, the temperature drift was less than 1  over the course of an 

experiment.   

2.1.3.2 Velocity Focusing 

Threshold PEPICO experiments must compromise between electron energy resolution, 

which increases with decreasing electric field, and mass resolution, which increases with 

increasing electric field.   Traditionally, fields of about 1 V/cm were used for adequate electron 

energy resolution while typical fields for mass spectrometry were at least an order of magnitude 

greater. A major breakthrough for PEPICO techniques has been the use of velocity focusing 
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optics for the energy analysis of electrons. Velocity focusing of the electrons is 

accomplished by extracting them from the ionization region through an electrostatic lens, 

consisting of extraction plates with no grids. Figure 2- 4 shows that by properly adjusting 

the voltages, threshold electrons are focused to a central spot at the end of the flight tube 

while energetic or hot electrons are focused to concentric rings around the central spot.  

The radius of the rings is determined by their velocity perpendicular to the extraction 

axis.  Velocity focusing allows for the use of larger extraction fields without sacrificing 

electron energy resolution.   Velocity focusing optics permits threshold electrons to be 

focused from a much larger ionization region than was previously possible with an 

electrostatic analyzer and gridded extraction plates which do not focus the electrons.  

Additionally it allows for extraction fields as high as 40 V/cm.  Electron and ion 

collection efficiencies are often 35% and 25% respectively.   

2.1.3.3 Correction for energetic electron contamination in TOF spectra. 

PEPICO spectra consist of TOF spectra from energy selected ions.  These spectra 

must be corrected for contamination from ions with lower internal energy due to emitting 

an energetic electron directly toward the detector. This is done by subtracting a fraction 

of the off-axis TOF spectrum from the center TOF spectrum.   The peak areas in the 

spectra are corrected using eq. 2.1 

  2.1 

Where Ti is the true threshold peak area of ion i, Ci is the peak area of ion i in the center 

spectrum, f  is an experimentally determined factor, and Hi is the peak area of ion i in the 

off-axis (hot electron) spectrum.   The magnitude of f depends upon both the relative  
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  Figure 2- 4 Velocity focusing of electrons.  When the velocity focusing condition is 

met, electrons without velocity perpendicular to the extraction axis are focused onto a 

central spot.  Electrons with velocity perpendicular to the extraction axis are focused 

into concentric rings with radius corresponding to their velocity in this direction.  
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areas of the electron detectors, which is determined by the apertures through which 

electrons must travel to be detected, and the efficiencies of the two detectors. These 

efficiencies are hard to determine a priori therefore f is determined empirically. At high 

photon energies, well above the dissociation limit,  the parent ion abundance in the center 

TOF spectrum must be due to hot electrons.   f  is thus determined by setting  fHi =Ci.  

Figure 2- 5 shows adequate hot electron correction by the dissapearnce of the parent at 

13.6 eV, 4.5 eV above the ionization energy. This photon energy also corresponds to a 

region of low intensity in the PES (i.e. a Franck-Condon gap) where few threshold 

electrons are formed thereby causing hot electrons signal to be significant.   Figure 2- 5 

demonstrates the effect of the factor f on the breakdown diagram for chlorobenzene. The 

red curve indicates f =0 or no correction and the blue curve represents adequate 

correction for the hot electrons.  If rate information is present in the TOF distribution, 

(i.e. 10
3
<k(E)<10

7
) then the asymmetric peak shape must be preserved during correction 

of the center spectrum for hot electrons.  In order to do this, the spectra are subtracted 

channel by channel. Because two different TPHCs and MCPHAs are used to collect the 

center and hot electron TOF spectra, the time width of a single channel is different for the 

two TOF spectra. As a result, the off-axis spectrum must be scaled to align with the 

center spectrum using the equation below. 

  2.2 

Where s is the number of peaks used to align the two spectra and is usually 2 or 3, i'H is 

the channel number of the hot electron (H) TOF spectrum that corresponds to the channel 

number of the cold electron (C) TOF spectrum ic, and ai  are fitting parameters used to 

align the two spectra.  The scaled off axis channel numbers i’c  will be non-integer  
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channel numbers. To determine these intensities the ring spectrum is interpolated using a 

cubic spline algorithm.  The scaled and interpolated hot electron spectrum can be 

subtracted from the center spectrum using eq. 2.1 where i now refers to center spectrum 

channel number. 

2.2 iPEPICO Apparatus 

The recently built imaging photoelectron-photoion coincidence (iPEPICO) 

spectrometer located at the X04DB VUV beam line at the Swiss Light Source 

Synchrotron of the Paul Scherrer Institute has been described in detail recently.
5,6

   Pure 

sample is effusively introduced at room temperature into the ionization region through a 

Teflon tube.  A needle valve is used to control the flow of sample gas into the 

experimental chamber so that the pressure was between 5x10
-6 

and 1x10
-5 

mbar.  

Synchrotron radiation ionizes the sample in a 2 x 4 mm interaction region after passing 

through an inline monochromator and gas filter which filters higher order harmonics. The 

well known Ar 11s´-14s´ and Ne 13s´,14s´, 12d´, and   13 d‟ autoionization lines are used 

to calibrate the photon energy.  Upon ionization, a 40-80 V•cm
-1

 electric field accelerates 

the electrons and ions in opposite directions.  The electrons travel vertically into a 26.5 

cm flight tube. Velocity map imaging is used to focus the electrons onto a 40 mm 

diameter DLD40 Roentdek position sensitive delay-line detector. At 80 V•cm
-1

, threshold 

electrons were focused to a spot size of 0.9 mm x 0.4 mm which corresponds to 0.2 meV 

, much less than the photon resolution of 1 meV at 10 eV.   After acceleration, the ions 

pass through a second acceleration region followed by a linear time of flight mass 

analyzer and are space focused onto a Jordan TOF C-726 MCP detector.  
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Electron and ion signals as well as electron positions are recorded in the 

triggerless mode of a high performance time to digital converter card. The electron and 

ion hit times are measured relative to a master clock. All ions detected within a defined 

time window of an electron are correlated to obtain time-of-flight distributions This 

multiple start/multiple stop data acquisition scheme
7
 enables data acquisition at ionization 

rates in excess of 100 kHz, which is beneficial at a high intensity light source, such as the 

synchrotron. 

 The experimental data may be analyzed and plotted in many ways: at a single 

photon energy, the radial distribution of electrons positions on the image in Figure 2- 6 

yields a portion of the photoelectron spectrum (PES); the threshold electron signal as a 

function of the photon energy yields a TPES; the threshold electron signal detected in 

coincidence with an ion in a particular TOF range yields a mass-selected TPES; the total 

ions in coincidence with all electrons as a function of photon energy yields the total ion 

curve; and the fractional ion abundances in the TOF spectra as a function of the photon 

energy yield the breakdown diagram.   

Similar to TPEPICO, contamination of the threshold electron signal from hot 

electrons must be subtracted.  Figure 2- 6 shows the regions on the electron image that 

are defined as the center and energetic electron background or „ring‟. The TPES is 

corrected for hot electrons by subtracting the number of counts in the ring region of the 

image multiplied by the same factor discussed in section 2.1.3.3 from the number of 

electron counts in the center region.  With the imaging detector however, the efficiencies 

of the threshold and background regions are identical and therefore f is determined 

exclusively by the ratio of the center and ring areas. The ions that are in coincidence with 
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the electrons defined as either center or ring are used to generate center and ring TOF 

spectra. Threshold TOF spectra can then be generated using eq. 2.1 where i corresponds 

to channel number.  Because hit times for both the ring and center electrons are recorded 

on a master clock and corresponding TOF spectra from these data post acquisition using 

software, the channel/TOF calibrations are the same for the center and ring TOF spectra 

and therefore do not require alignment prior to correction as described in section 2.1.3.3. 

Using this scheme, the energy resolution was ultimately limited by the photon energy 

resolution of 2.5 meV.  

2.3 Modeling of experimental data  

In order to determine reaction energetics and kinetics as precisely as possible, we model 

the experimental PEPICO data.  Our approach to determining reaction energetics depends upon 

whether the ions dissociate rapidly on the timescale of our apparatus (k(E)>10
7
 s

-1
) or the ions 

dissociate slowly (k(E)<10
7
 s

-1
).  If the dissociation is fast, then only the breakdown diagram is 

required to determine E0. For slow dissociations, the individual TOF distributions are modeled to 

determine the k(E) curve. In both cases, ions are produced from a room temperature sample of 

neutral molecules and therefore have a distribution of internal energies.  It is approximated that 

the neutral internal energy distribution is transposed to the ionic manifold. To determine the ion 

internal energy distribution, the electron energy resolution, the spectral width of our light 

source (ca 12 meV) and the energy distribution of our room temperature sample (30 to 

more than140 meV depending on the number of degrees of freedom of the molecule) 

were convoluted with the thermal energy distribution. 

2.3.1 Fast dissociation 

When the dissociation rate is fast, the E0 for the lowest energy dissociation 

pathway is located at the energy at which the parent ion disappears. (See Figure 1-1)  
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Threshold e-

Background e-

Figure 2- 6 Electron image with defined threshold (blue, center) and energetic background (red, 

ring) regions.  
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However, for large ions with many vibrational degrees of freedom, the internal energy 

distribution is broad and the precise energy at which the parent ion disappears is poorly 

defined. As a result, modeling is necessary to determine this 0 K dissociation energy.  

The ion internal energy, relative to the ground state of the ion, is given by Eion(h ) = h  – 

IE + Eth, where IE is the adiabatic ionization energy and h  is the photon energy.  If 

fTh(E) is the normalized internal energy distribution of the ion, then the relative 

abundance of the parent ion, BDparent(h ),  is determined by the portion of the ion internal 

energy distribution that lies below the 0 K dissociation threshold E0: 

 

 (2.3) 

The relative fragment ion abundance is then  

 ((h ) = 1 – (h ) (2.4) 

When the photon energy exceeds E0, the fractional parent and daughter ion signals 

remain 0 and 1, respectively.   The neutral sample temperature is measured at the 

ionization region by a thermocouple.  Thus, the E0 can be determined by varying only a 

single parameter 

2.3.2 Slow dissociation 

For slow dissociations, kinetic information available in the TOF spectra, (see 

Figure 2-1 and Figure 2- 2) is modeled to determine the E0.  The ion internal energy 

distribution fTh(ETh) is taken into account when determining the relative abundances of 

the peaks in the TOF spectra as well as the asymmetric shape of the fragment peak.  

Figure 2- 7 shows that at a given photon energy the amount of parent detected slowly 

decreases as the ion internal energy, ETh, and therefore k(E), increases.  The fractional  
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Figure 2- 7  The relative abundances of parent and fragment ion are determined by 

both the ion internal energy distribution fTh and the rate curve k(E). At a specific ion 

internal energy the parent abundance is determined by k(E).  To determine the k(E) 

and relative abundances for all ion internal energies at a certain photon energy, these 

abundances are weighted by the internal energy distribution and summed. (eq. 2.6) 
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abundances, A,  are determined by summing the parent ion decay and fragment ion 

growth over ETh , weighted by fTh(ETh) as is shown by eq. 2.5 and 2.6. 

  (2.5) 

   (2.6) 

Where k(E) is the dissociation rate as a function of the ion internal energy measured 

relative to the ground state of the ion and  is the time that the parent ion, after being 

formed, has to dissociate and still be detected as a fragment (i.e. the time required for the 

parent ion to travel from the ionization region to the end of the first drift region). 

 In the TOF spectra, the asymmetric fragment peak is modeled by calculating the 

TOF spectrum denoted by F(E,t), for each k(E) over range of fTh(ETh) and summing these 

spectra  weighted by fTh(ETh). The summed  TOF spectrum, Feff(h ,t), is given by 

    (2.7) 

The E0 is determined by adjusting the parameters that determine k(E) which, as is 

discussed in detail in chapter 4 depend upon the rate theory employed, to fit the 

experimental TOF distributions and breakdown diagram.  

2.4 Computational Methods 

2.4.1 Modeling 

Molecular parameters used in the modeling of experimental data such as 

vibrational frequencies, rotational constants and geometries used in this paper were 

determined using the Gaussian 03
8
 computer software.  Geometry optimizations and  
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normal mode analyses, unless otherwise specified, were determined using the B3LYP 

hybrid functional with  the 6-311++G(d,p) basis set for H, C, N, Cl and Br, and 6-

311G(d,p) for iodine.
9,10

  A scaling factor of 1 was used
11

 for vibrational frequencies and 

anharmonicity corrections. For the molecules where internal rotations may have 

significant contributions to the molecular heat capacity, the Ayala-Schlegel
12

 method was 

used to determine a correction to the harmonic treatment of these modes when 

determining H298-H0.  Thermochemical values were calculated using the G3, W1, and 

CBS-APNO methods.  

2.4.1.1 Ionization Energies 

The adiabatic IE is the energy difference between the ground state of the ion and 

the ground state of the neutral.  For fast dissociations, the IEad is not necessary because, 

as shown by eq. 2.3, the parent ion abundance is determined by the integral of fTh (ETh) 

from 0 to E0-hν.   For slow dissociations however, k(E)  must be calculated,  where E is 

the ion internal energy relative to the ground state of the ion (i.e. hν-IEad+ETh). Often an 

experimental value is available but sometimes the adiabatic IE  must be calculated.  

Optimized the periodic table.  The difference between the atomization energies of the 

ground and neutral states provides the adiabatic IE. 

2.4.1.2 Calculated thermochemistry from isodesmic reactions. 

We have supported several of our reported fH using high level energy 

calculations.  The calculated atomization energies of molecules and ions of interest can 

be converted to heats of formation.  However, there is some error in these values due to 

approximations built into the calculations.  This error can be diminished using isodesmic 
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reactions.  An isodesmic reaction is one where the products and reactants have the same 

number of the same types of bonds, an example is shown in eq. 2.8.    

 CH3Cl + C2H5
+
 →CH3

+
 + C2H5Cl 2.8 

In eq 2.8, both products and reactants have 8 H-C bonds, 1 C-Cl bond, and 1 C-C bond .  

This sort of “symmetry” results in a cancellation of the intrinsic error when the heat of 

reaction is determined.  This heat of reaction is used in combination with experimentally 

determined heats of formation for the constituents to determine the heat of formation of 

the species of interest.  By cleverly selecting reaction constituents that can be calculated 

to a high precision and also have high precision thermochemistry available, uncertainty in 

the desired heat of formation can be minimized.   
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CHAPTER 3:  Photodissociation of C3H8
+
 observed by iPEPICO:  

Accurate Heats of Formation of i-C3H7
+
, i-C3H7Cl  i-C3H7Br, and i-

C3H7I 

 

3.1 Introduction 

Due to its stability, the isopropyl ion is a common product of the dissociative 

photoionization of alkanes. However, a reliable high accuracy determination of its heat of 

formation has yet to be determined.  One route to determining fH (i-C3H7
+
) is via 

dissociative photoionization: 

 i-C3H7X + hv  i-C3H7
+
 + X + e

-
 (X=H, Cl, Br, I)  3-1 

It is known that these systems have stable parent ions that rapidly dissociate to form i-

C3H7
+
 which makes determination of their photoionization onset relatively easy.  

The 298 K photodissociation of C3H8 to form i-C3H7
+
 was first observed by 

Steiner et al.
1
 in 1961 and measured again by Chupka and Berkowitz

2
 in 1967 using 

photoionization mass spectrometry (PIMS). The 298 K appearance energy (AE298) of 

11.53  0.01 eV reported by Steiner
1
 appears to be quite reasonable, however the 

extrapolated AE0 was significantly underestimated in both of these studies. The 

photodissociation of the isopropyl halides have been reported several times but the 

derived fH (i-C3H7
+
) are scattered over nearly 10 kJ•mol

-1
.
3-6

  The first study was by 
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Traeger
3
 in 1980 using PIMS which yielded a value for fH298 (i-C3H7

+
) of 802.5  1.7 

kJ•mol
-1

.
7
 However, the onsets in these measurements are poorly defined and the 

uncertainty is believed to be underestimated.  In 1982, Rosenstock et al used 

photoelectron-photoion coincidence (PEPICO) spectroscopy to report a fH 298(i-C3H7
+
) 

of 798.8  2 kJ•mol
-1 

from the 0 K photoionization onset of i-C3H7Br.
4
 In this study, it 

was reported that the dissociation was metastable which has not been observed in 

subsequent studies.  Accounting for a nonexistent kinetic shift would certainly cause the 

determined fH 298(i-C3H7
+
) to be underestimated.  In 2000, the 0 K dissociation onsets 

(E0) of isopropyl ion from isopropyl chloride, isopropyl bromide and isopropyl iodide 

were measured using pulsed field ionization-photoelectron photoion coincidence 

spectroscopy (PFI-PEPICO) by Baer et al
5
 to be 11.085  0.005 eV,10.505  0.008 eV 

and 9.851  0.025 eV. This resulted in a composite fH 298(i-C3H7
+
) of 807.7  1.5 

kJ•mol
-1

.  However,  as pointed out recently,
8
 these experiments were plagued by dimers 

which caused the reported onsets to be too high.  In 2004 Brooks et al
6
 reported a value 

of 803.9  1.5 kJ•mol
-1

 using threshold photoelectron-photoion coincidence spectroscopy 

(TPEPICO) to determine the photoionization onset of isopropyl ion from isopropyl 

chloride. In this study, the sample was not cooled in an expansion, eliminating the 

possibility of dimer formation.  However, it was recently determined that the photon 

energies of the isopropyl chloride data were not properly calibrated and, as a result, 

reported a 0K dissociation onset (and therefore fH (i-C3H7
+
))  that was 0.030 meV too 

low.   

Another possible route to fH (i-C3H7
+
) is measurement of the ionization energy 

of the isopropyl radical.  In 1979 Houle and Beauchamp measured the IE(i-C3H7) to be 
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7.36  0.02 eV.
9
 This value was later confirmed by Dyke et al.

10
 Beauchamp, relying 

upon fH (i-C3H7), reported a value of 783  4.6 kJ•mol
-1

 for fH (i-C3H7
+
). A value for 

fH (i-C3H7) that was  too low, in combination with the IE(i-C3H7) being underestimated 

due to hot bands in the observed photoelectron spectra, caused Beauchamp‟s reported 

value for fH (i-C3H7
+
) to be lower than subsequent photoionization studies by nearly 20 

kJ•mol
-1

.   

The proton affinity of propene plays an important role in calibrating the proton 

affinity scale. The heats of formation of H
+
 and C3H6 are very well known.

11
 Most of the 

uncertainty in PA(C3H8) is therefore due to the fH 298(i-C3H7
+
). As a result of the scatter 

in fH 298(i-C3H7
+
), PA(C3H8) has oscillated between 746 kJ•mol

-1
 and 743 kJ•mol

-1
.  

Calculations can also be used to determine fH 0 K(i-C3H7
+
).  Lau and Ng

12
 have 

recently determined values of 90.0 and 806.4 kJ•mol
-1

 for the isopropyl radical and ion 

298 K heats of formation at the CCSD(T)/CBS level.  These values appear to be within 

the scatter of previously reported values. The 0 K values provide an ionization energy of 

7.437 eV, significantly higher than the experimentally observed IE.
9,10

  

3.2 Results  

 The data are shown in the forms of threshold photoelectron spectra (Figure 3- 3 

through Figure 3- 4 ) and breakdown diagrams (Figure 3-5 through Figure 3-8) for C3H8, 

i-C3H7Cl, i-C3H7Br and i-C3H7I. It is shown in Figure 3-5 that the formation of i-C3H7
+
 is 

the lowest energy dissociation channel for propane.   The breakdown diagrams for the 

isopropyl halides (Figure 3- 6 through Figure 3- 8) show that the only fragment ion 

formed over the energy range of interest is i-C3H7
+
.  For all compounds studied it was   
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Figure 3- 1 Propane TPES 
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Figure 3- 2 i-C3H7Cl TPES  
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Figure 3- 3 TPES of i-C3H7Br 
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Figure 3- 4 TPES of i-C3H7Br 
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Figure 3- 5 Breakdown Diagram for C3H8
+
.  The open circles indicate the C3H8

+ 

abundance and the solid squares represent i-C3H7
+
 abundance. The inset is an expanded 

view of the breakdown diagram near the E0.    
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Figure 3- 6 Breakdown Diagram for i-C3H7Cl
+
 .  The open circles indicate the of the i-

C3H7Cl
+ 

abundance and the solid squares represent i-C3H7
+
 abundance. The inset is an 

expanded view of the breakdown diagram near the E0.  The grey line indicates the threshold 

photoelectron spectrum (arbitrary units). 
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expanded view of the breakdown diagram near the E0.  The grey line indicates the threshold 

photoelectron spectrum (arbitrary units). 
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observed that the i-C3H7
+
 peaks in the TOF spectra were symmetric at low energies, 

indicating that the dissociation rates for i-C3H7
+
 formation were faster than the timescale 

of our apparatus (k(E)>10
7
 s

-1
).    

The improved energy resolution of the iPEPICO apparatus reveals some structure 

in the breakdown diagrams for i-C3H7Br and i-C3H7I. Similar features have been 

observed in the case of CH3I.
8
  In Figure 3- 7 and Figure 3- 8 the i-C3H7Br and i-C3H7I 

abundance is lower than expected in the region of the Franck-Condon gaps in the TPES.    

The production of threshold electrons in Franck-Condon gaps is not well understood. 

Guyon et al 
13

 and Chupka et al
14

 proposed a mechanism that relies upon the existence of 

long-lived neutral Rydberg states. Because there is a quasi continuum of these Rydberg 

states converging to various ion states, it is possible for the neutral molecule to absorb a 

photon and access these neutral Rydberg states in regions where the probability of direct 

ionization is low (i.e. a Franck-Condon Gap). From these states the neutral molecule can 

cross over to a neutral dissociative surface. As the molecule dissociates the molecule may 

cross over to a lower energy ion state, generating a threshold electron. Because energy 

must be conserved, the kinetic energy of the dissociating neutral fragments becomes 

vibrational energy in the ion. It was suggested in the study of CH3I that the warmer ion 

internal energy distribution observed as an increase in fragment ion abundance, is a result 

of this process being aided by rotational excitation.
8
 A similar effect appears operatie in 

the isopropyl halide ion dissociation.  Observed in Figure 3- 8 are peaks in the i-C3H7Br 

abundance that coincide perfectly with peaks in the TPES.  Most notable is the peak at 

10.35 eV.  When a neutral molecule is excited to a Rydberg state that is close in energy to 

an ion state, the Rydberg molecule can autoionize and generate a threshold electron.  
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However rotationally excited neutral molecules can also begin to dissociate, the majority 

of which will not form a threshold electron.  This results in a warmer ion internal energy 

distribution observed as an increase in fragment ion abundance.  It is important to 

mention that, because the dissociation is fast, these features do not shift the location of 

the E0. 

When the dissociation rate is fast, the E0 for the lowest energy dissociation 

pathway is located at the energy where the parent ion disappears. To precisely determine 

the E0, modeling is necessary.  The ion internal energy, relative to the ground state of the 

ion, is given by Eion(hν) = hν– IE + Eth, where IE is the adiabatic ionization energy and hν 

is the photon energy.  If P(E) is the normalized thermal energy distribution of the ion, 

then the relative abundance of i-C3H7X
+
, BDC3H7X(hν),  is determined by the portion of 

the ion internal energy distribution that lies below the 0 K dissociation threshold E0(i-

C3H7
+
) (See Figure 1-1): 

 

 (3.2) 

The relative fragment ion abundance is then  

  (3.3) 

When the photon energy exceeds the E0, the fractional parent and daughter ion 

signals remain 0 and 1, respectively.   We use the neutral frequencies here to determine 

the ion internal energy distribution.  The internal energy distribution of the neutral 

molecule is often faithfully transposed to the ionic manifold upon ionization.
15

 However, 

this is not always the case and the temperature is therefore used as a fitting parameter.  

The best fit onset for C3H8 was 11.639  0.002 eV with a Temperature of 270  15 K.   

For i-C3H7Cl and i-C3H7Br, the best fit onsets were 11.064  0.004 and 10.454  0.008 
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eV with best fit temperatures of 305 10 K and 298  20 K, respectively.  The larger 

uncertainty in the temperature for i-C3H7Br is due to the enhanced structure in the 

breakdown diagram.  For i-C3H7I, the best fit E0 and temperature was 9.812  0.008 eV 

and 320  15 K. The elevated temperature of the ion internal energy distribution may be a 

result of the Franck-Condon gap coinciding with a large portion of the breakdown 

diagram.  The reported E0 for i-C3H7I is within the experimental error of the previous 

TPEPICO measurement by Baer et al
16

 (9.818 ± 0.010 eV) and slightly lower than the 

laser based MATI value of 9.818  0.004 eV.
17

 Table 3-1 summarizes the current and 

previously measured onset energies. 

Table 3-1. Comparison of E0(i-C3H7
+
) with previous values. 

  E0 AE298 AE0-AE298 

C3H8 11.64 ± 0.03a 11.58 
b 0.11 

 

11.63  a 
11.52  0.02

c 

   11.639 ± 0.002
d 

    

i-C3H7Cl 11.05 ± 0.02
a 

10.92
e 

0.13 

 

11.085 ± 0.005
f
 

  

 

11.036 ± 0.010
g
 

  

 
11.065 ± 0.004

d
 

  i-C3H7Br 10.47 ± 0.02
a 

10.33
e
 0.14 

 

10.42 ± 0.01
g 

  

 

10.505 ± 0.020
f 

  

 
10.454 ± 0.008

d 

  i-C3H7I 9.84 ± 0.02
a 

9.7
e
 0.14 

 

9.77 ± 0.02
h 

  

 

9.851 ± 0.025
f 

  

 

9.8180 ± 0.0036
i 

    9.818 ± 0.010
d 

    
a
These values were converted from an AE298 by adding  AE0-AE298=<Erot>+<Evib>.  

b
Steiner et al. 1961

1
; 

c
Chupka 1967

2,2-6
; 

d
This work; 

e
Traeger 1980

3
;  

f
Baer et al 2000

5
; 

g
Brooks et al 2004

6
; 

h
Rosenstock et al 1982

4
; 

i
Kim et al

17 
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3.3 Derived Thermochemistry of i-C3H7
+
, i-C3H7Cl i-C3H7Br and i-C3H7I 

In the absence of a reverse barrier, the E0 is equal to the thermochemical onset.  

That is,  

 - -    (3.3) 

where X = H, Cl, Br, and I. Thus, the uncertainty in fH(i-C3H7
+
) is dependent upon the 

uncertainty in the  fH 0K(i-C3H7X), fH 0K(X), and E0.   The 298 K heats of formation 

of C3H8, i-C3H7Cl, i-C3H7Br, and i-C3H7I reported in the literature must be converted to 0 

K heats of formation.  This requires the H0-H298 of the constituents of the formation 

reaction.  The H0-H298 for H2 (g), Cl2 (g), Br2 (g), I2 and C(s) are reported by Chase,
11

  but the 

H0-H298 for i-C3H7X must be calculated. Usually, H298-H0 is calculated using the 

harmonic oscillator-rigid rotor approximation. However these molecules contain two 

methyl groups which should be treated as hindered rotors.  To account for this we use the 

method  outlined by Ayala and Schlegel
18

 to calculate a correction to the H0-H298 

determined using the rigid rotor-harmonic oscillator approximation. These corrections 

were 0.34, 0.24, 0.24, and 0.22 kJ•mol
-1

 for C3H8, i-C3H7Cl, i-C3H7Br, and i-C3H7I. 
 
The 

values determined for H0-H298 and fH 0K (i-C3H7X) are listed in Table 3-2  From i-

C3H7Cl, i-C3H7Br, and i-C3H7I the fH 0K(i-C3H7
+
) was determined to be 823.9  1.4 

kJ•mol
-1

, 819.3  2.5 kJ•mol
-1

,  and 821.3  3.9 kJ•mol
-1, 

respectively.  The value for 

fH 0 K(i-C3H7
+
) determined from propane is known better than the heats of formation of 

the isopropyl halides.  We can therefore use Eqn. 3.3 and the reported fH 0K(i-C3H7
+
) to 

determine more precise values for these molecules.  These values are determined to be -

144.2  0.7 kJ•mol
-1

, -94.1  0.9 kJ•mol
-1

, and -37.0  0.9 kJ•mol
-1

 for i-C3H7Cl, i-

C3H7Br, and i-C3H7I respectively.  
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Table 3-2 Derived and Ancillary Thermochemical Values (kJ•mol
-1

) 

  fH298K fH0K H0-H298 

C3H8 -104.7 ± 0.5
b 

-82.4 ± 0.5 14.70 

i-C3H7Cl -144.2 ± 0.7
a 

-123.4 ± 0.7 16.57 

i-C3H7Br -94.1 ± 0.9
a 

-66.2 ± 0.9 17.07 

i-C3H7I -37.0 ± 0.9
a 

-15.0 ± 0.9 17.32 

H 

 

216.035
b 

 Cl 

 

119.621
b 

 Br 

 

117.92
b 

 I 

 

107.161
b 

 
H

+
 1530.049

d 

  i-C3H7 20.0 ± 0.7
e 

 

15.86 

i-C3H7
+
 807.4 ± 0.5

a,f 
824.6 ± 0.5

a,f 15.57 

PA298(C3H6) 742.7  0.8
a   

a
This Work; 

b
Pittam 1972;

19
  

c
Pedley 1994;

20
 

d
Chase 1998;

21
 

e
Seakins et al 1992;

22
 

f
Determined using the convention that excludes the enthalpy of an electron at room 

temperature.  

3.3.1 Isodesmic Calculations of i-C3H7
+
 

In support of the experimentally derived i-C3H7
+
 heat of formation, we calculated 

the G3, CBS-APNO, and W1 energies for the following isodesmic reactions: 

 -  

 - -  

The i-C3H7
+
 heat of formation is determined from the calculated reaction energy and the 

experimental heats of formation for the other reaction constituents.  The methane heat of 

formation
23

 and the corresponding E0(CH4  CH3
+
 + H

 
)
24

 are very well known and 
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provide a value of 1099.37 ± 0.1 kJ•mol
–1

 for fH  0K(CH3
+
).  The heats of formation of 

the neutral hydrocarbons are all reported by Pedley
20

 to within 1 kJ•mol
-1

.

   Table 3-3 shows the fH
o
0K(i-C3H7

+
)  determined by calculations of the above 

isodesmic reaction energies.  The G3 values are the least expensive calculation and 

provides results that agree with each other to within 4 kJ•mol
-1

, yielding an average value 

of xxx. The W1 and CBS-APNO results provide values in better agreement with each 

other as well as in much better agreement with the experimental value of 823.9  1.4 

kJ•mol
-1

.  The average of the W1 and CBS-APNO calculations is 825.1  1.0 kJ•mol
-1

. 

These results rely upon the accuracy of the experimentally determined heats of formation 

of the reaction constituents.  It is observed that the values for fH
o

0K(i-C3H7
+
)  determined 

for Y=C2H5 are 1kJ•mol
-1

 higher than the values determined for Y=CH3.  The methyl ion 

heat of formation is known much better than the ethyl. As a result, the ethyl ion heat of 

formation may require further study.  This value is difficult to obtain experimentally due 

to the dearth of systems that dissociate simply to form ethyl ion.  This ion is small and is 

closed shell, thus making it a good candidate for state of the art ab initio calculations 

such as W4
25

 or HEAT
26

.  

Table 3-3. fH 0K(i-C3H7
+
) determined from ab initio isodesmic reaction energies  

(kJ•mol
-1

) for the reaction:  i-C3H7-X + Y+ →i-C3H7+ + XY 

 

Y Method X = H X = CH3 

CH3 G3 828.8 828.0 

 

CBS-APNO 823.5 825.3 

 

W1 824.7 

 C2H5 G3 824.0 824.0 

 

CBS-APNO 826.2 826.0 

  W1 825.2   
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3.3.2 Ionization Energy of i-C3H7 and Proton Affinity of C3H6  

 The adiabatic ionization energy of the i-C3H7 can be determined from the 0 K 

heats of formation of the isopropyl ion and radical. Bodi et al
27

 reported the fH 298K(i-

C3H7) to  be 90  1.7 kJ •mol
-1

. With a hindered rotor correction
18

 of -0.31 kJ•mol
-1

 the 

H0-H298 was calculated to be 15.57 kJ•mol
-1

. Using this value, a fH 0K(i-C3H7) of 106.9 

kJ•mol
-1

 is determined.   Using the experimentally determined value for fH 0K(i-C3H7
+
) 

the IE(i-C3H7) was determined to be 7.438  0.020 eV.  This is in excellent agreement 

with the theoretical IE(i-C3H7) of  7.436 eV calculated by Lau and Ng
12

.  This value 

disagrees, however with previous attempts to measure the adiabatic ionization energy 

from photoelectron spectra by Houle and Beauchamp
9
 and by Dyke et al

10
.  This is not 

surprising as the first peak in the PES of isopropyl radical is very small and broad due to 

poor Franck-Condon factors at threshold.  

 The absolute proton affinity of propene can be determined by converting the 0K 

heat of formation of the isopropyl ion to 298 K.  The hindered rotor correction was 

determined to be 0.32 kJ•mol
-1

 with a value of H298-H0 of 15.57 kJ•mol
-1

, the fH 298K(i-

C3H7
+
) is determined to be 806.7  1.4 kJ•mol

-1
.  Using this value, we calculate a 

PA298(C3H6) of 743.4   1.5 kJ•mol
-1

. This value is in excellent agreement with the 

composite value reported by Meot-Ner
28

of 743.4  1.3 kJ•mol
-1

 who took a simple 

average of relative PA298‟s reported by Szulejko and McMahon,
29

Meot-Ner and Sieck,
30

 

and Smith and Radom.
31
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3.4 Conclusions 

fH
o
0K(i-C3H7

+
) has been determined to be 824.6  0.6 kJ•mol

-1
  from 

measurement of the E0(i-C3H7
+
) by  modeling TPEPICO breakdown diagram of propane.  

Breakdown diagrams were also modeled for i-C3H7Cl, i-C3H7Br, and i-C3H7I and the 

E0(i-C3H7
+
)) was determined for each species.  Using the currently determined value for 

fH
o

0K(i-C3H7
+
), fH 298K(i-C3H7Cl), fH 298K(i-C3H7Br) and fH

o
298K(i-C3H7I)  were 

determined to be -144.9  0.7 kJ•mol
-1

, -94.1  1.0 kJ•mol
-1 

and -37.0  1.0 kJ•mol
-1

, 

respectively. The new value for fH
o

0K(i-C3H7
+
)  corresponds to an IE(i-C3H7) of 7.438  

0.020 eV which is in good agreement with the theoretical value of Lau and Ng.
12

 Using 

the fH
o
298K(i-C3H7

+
) , the PA298(C3H6) was determined to be 742.7  0.9 kJ•mol

-1
.  
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CHAPTER 4:  Specific Rate Constants k(E) of the Dissociation of the 

Halobenzene Ions:  Analysis by Statistical Unimolecular Rate Theories 

4.1 Introduction 

Unimolecular dissociation reactions provide an important access to the threshold 

energies E0 for bond breaking. The specific rate constants k(E) of these reactions (apart 

from some fine structure) decrease with decreasing energy E and approach their 

minimum value as E  E0.  In order to derive E0 from k(E), this quantity must be 

measured experimentally at energies close enough to E0 that a unique extrapolation is 

feasible.  In addition to the limited range of specific experimental methods, in 

dissociations with rate constants at threshold slower than about 10
2
 s

-1
 it is not possible to 

directly measure these low energy rates due to competition from radiative decay.
1,2

  In 

these cases, the difference between the experimental appearance energy of the fragments 

and the bond energy E0, the so-called “kinetic shift”,
3,4

 needs to be determined by fitting 

the measured part of k(E) to a model from unimolecular rate theory.
5
  Larger molecules 

have minimum rate constants well below 10
2
 s

-1
 and thus require rate constants to be 

accurate over several orders of magnitude to correctly extrapolate to E0. For energy 

selected reactants, a commonly used model for the specific unimolecular rate constants 

(k(E)) is the Rice-Ramsperger-Kassel-Marcus (RRKM) equation:
5
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 (4.1) 

where  N
‡
(E-E0) is the sum of states of the transition state, is the ion density 

ostates,  is the reaction degeneracy, and h is Planck‟s constant.  In evaluating N
‡
(E-E0), 

it is useful to separate conserved vibrational modes from the transitional modes, which 

are converted from vibrations into rotational and translational degrees of freedom as the 

reaction coordinate R goes to infinity.  Differences arise in the various rate theories from 

their treatment of these transitional modes in calculating N
‡
(E-E0).    

Phase space theory (PST) as advanced by Light, Pechukas, Klots, Chesnavich and 

Bowers
6-10

 treats N
‡
(E-E0) by  locating the transition state at either  along the reaction 

coordinate R, or at the centrifugal barrier.  In our treatment we assume the low J limit, for 

which both models place the transition state at R = , at which point the transitional 

modes have become rotations.  Thus, k(E) is determined by the phase space available to 

the products. This treatment is appropriate for reactions where the interaction potential 

between the products is isotropic at large separations.  At the other extreme is rigid 

activated complex RRKM theory (RAC-RRKM), in which the transitional modes are 

treated as vibrations with fixed frequencies.  This is appropriate for reactions with real 

barriers, in which the transition state structure is located at this barrier and does not 

change with internal energy.  However, it is well known that for reactions with no barrier, 

the effective transition state, which is related to an entropic minimum, shifts from R =  

when E = E0 to progressively smaller values as the energy is raised.
5
  Several statistical 

unimolecular rate models have been developed to account for this feature.   
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In variational transition state theory (VTST), the entropic minimum mentioned 

above is found by locating the global minimum in the sum of states N(E-V(R)) along the 

reaction coordinate.
11-13

  Depending on the implementation of the model, two minima 

may be found, corresponding to a tight transition state (TTS) at smaller values of R and 

an orbiting transition state (OTS) at large R.
14

  Both minima shift inward as the energy 

increases, but at some energy an abrupt switch from OTS to TTS may occur. There has 

been some debate as to whether this transition state switching is physically meaningful in 

a single-well ionic dissociation, or if only the more gentle transition state shifting occurs, 

and the two entropic wells are merely an artifact of the approximations used in the 

interpolation.
15

    

An alternative approach to this problem is the statistical adiabatic channel model 

(SACM) in which the rovibrational quantum states of the reactant are treated as invariant 

throughout the dissociation by following adiabatic potential curves linking the reactant 

states and the equivalent product states.  Each potential curve has a barrier, the maximum 

of which moves inward along the reaction coordinate as the energy and angular 

momentum of the channel increase.
5
  A full implementation of either VTST or SACM 

requires considerable computational effort.  Rate constants derived from a full SACM-

classical trajectory (SACM-CT) treatment however, have been shown to be reproduced 

by the much simpler PST with suitable rigidity factors incorporated.
16

   Such simplified 

versions of SACM (SSACM) require no more effort than PST as will be demonstrated 

below. 

It has become clear that in barrierless neutral-neutral dissociations the inward 

movement of the transition state is significant and RAC-RRKM and PST are insufficient 
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to model the reaction rate.
17

  Instead, the extra effort of VTST or SACM is required.  The 

need is less clear, however, in barrierless ionic dissociations.  The stronger long range 

attraction due to ion-induced dipole interactions causes the transition state to be located at 

larger values of R.  The question then arises whether PST is still insufficient to accurately 

model the rates.    

Troe et al
16

  recently showed that RAC-RRKM fails to predict accurate E0‟s in the 

case of the dissociations of the benzene and butylbenzene cations.  However these 

systems are not ideal for an analysis of kinetic shifts. The former involves a Renner-

Teller type avoided curve-crossing between a ground 
2
B1 and an electronically excited 

2
A1 state of C6H6

+
 .

16,18,19
 For the latter system, experimental data

20,21
 only exist at higher 

rates (k(E)>10
5
 s

-1
) which require a large  extrapolation to E0.  Additionally, the structure 

of C7H7
+
 is not known with certainty and the energetics are thus not firmly established. 

For this reason, we have chosen to investigate other systems which are more suitable for 

an analysis of kinetic shifts and for the study of energy dependences of specific rate 

constants k(E). Such systems should fulfill a number of conditions: (i) k(E) should be 

measurable over a large range; (ii) the thermochemistry of the system should be 

established sufficiently well by other than kinetic means; (iii) the potential along the 

dissociating bond should correspond to a simple bond fission, and not show 

complications such as avoided crossings, small barriers, or reefs.  

 The halobenzene ion dissociations (2) appear to be suitable systems for the 

described analysis.  

 C6H5X
+
  C6H5

+
 + X   (X = Cl, Br, and I) (4.2) 
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The dissociation does not involve a curve crossing although both singlet and triplet states 

of C6H5
+
 may be produced.  Experimental values of k(E) can be measured over 

sufficiently large ranges, in the present work over 3–5 orders of magnitude, and the 

thermochemistry of the reactions is relatively well known. Additionally, the polarizability 

of the halogens, and therefore the strength of the long-range attraction in the dissociation, 

increases from Cl to Br to I.  

 Previous measurements of halobenzene ion dissociation rates  have been obtained 

by numerous workers
22-35

 with varying methods, precisions, and ranges of k(E).  In this 

paper we use threshold photoelectron-photoion coincidence (TPEPICO) to accurately 

measure the dissociation rate constants over a large range for these three ions and then 

compare the modeling of these rates with the statistical theories mentioned above in order 

to determine which methods are appropriate to extrapolate the measured rate constants to 

their dissociation thresholds.   

4.2 Experimental Results 

Examples of TOF distributions corrected for hot electrons are shown in Figure 4-

1.  The isotopic pattern of the parent ion peaks for chlorobenzene is clearly evident at 

12.806 eV, where the two chlorine isotopes (35 and 37) as well as the 
13

C peaks are fully 

resolved.  At higher energies, the subtraction of the hot electron TOF spectrum eliminates 

these parent ions (in some cases imperfectly because of the sharp peaks).  The broad peak 

to the right of the parent ion is due to fragment ions that were born in the long drift 

region. 

To extend the experimental range of the bromobenzene data, spectra were taken 

using a temperature-controlled inlet
36

 set to 256 K and an extraction field of 50 V cm
-1

.  
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The lowered temperature and steeper gradient improved mass resolution and decreased 

the time spent in the first acceleration region where we obtain our kinetic information 

allowing for rates as fast as 10
7 

s
-1

 to be observed for bromobenzene.  Threshold 

photoelectron spectra of argon were taken to ensure that the electron energy resolution 

was not significantly reduced by the increased extraction fields.    

4.3 Thermochemistry of the Dissociations of Halobenzene Ions 

Before presenting and analyzing our kinetic data, we briefly inspect the available 

thermochemical data for the reactions described in equation 4.2. Assuming that there are 

no energy barriers for the reverse reactions, the E0‟s of the halobenzene dissociations are 

derived from known heats of formation of the participating species through  

 )XHC()HC()X( 56

0

0,56

0

0,

0

0,0 KfKfKf HHHE  (4.3) 

The heats of formation of the neutral halobenzene molecules  C6H5X are given in  

Table 4- 1. They are accurate to  1.3 kJ •mol
-1

 ( 13 meV) for chlorobenzene and 

somewhat less certain for bromo- and iodobenzene. The ionization energies for all three 

halobenzenes have recently been determined by ZEKE spectroscopy
37

 and are accurate 

within 0.05 kJ mol
-1

. The values for the halogen atoms are well established.
38

  The heat of 

formation of the phenyl cation was obtained from the Active Thermochemical Tables 

(ATcT)
39,40

 by private communication
41

 as 1149.1  1.8 kJ•mol
-1

.  This value is in good 

agreement with  a derived value of 1148.5  3.4 kJ•mol
-1

 determined from the heat of 

formation of the phenyl radical
42

 and a phenyl ionization energy calculated by Lau and  
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Figure 4-1a-c: Time of flight distributions for the three halobenzene ions at selected 

photon energies.  All spectra have been corrected for energetic electron contamination 

which accounts for the noise in the region of the parent peak at higher energies.  The 

peak at 28.5 s in 2c is due to remnant bromobenzene in the sample line, however the 

bromobenzene ion does not dissociate at these photon energies and does not affect the 

fragment peak area. 

 



67 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

11.8 12.0 12.2 12.4 12.6 12.8
0

20

40

60

80

100

R
e

la
ti
v
e

 A
b
u

n
d

a
n
c
e

Photon Energy (eV)

 26.3 s 

   8.2 s 

Figure 4- 2 Breakdown curves for bromobenzene.  Experimental points indicate 

abundance of ions dissociating to C6H5
+
 within 8.2 s (squares) or within 26.3 s 

(circles).  The respective open points indicate the relative abundance of ions that did 

not dissociate within that time window. Lines are obtained by fitting the experimental 

fragment peak shape and relative ion abundances at each photon energy using RAC-

RRKM theory at 8.2 s (---) and 26.3 s (—)at each photon energy. 

  

 

 



68 
 

Ng
43

.  On the basis of these data, the values E0 = 3.381  0.038, 2.812  0.046, and 2.382 

 0.064 eV are obtained for the dissociations of chloro-, bromo- and iodo- benzene ions, 

respectively. 

Table 4- 1. Literature thermochemical values used to determine reference E0s. (kJ mol
-1

) 

Molecule 
o

Kf H 298
 o

Kf H 0
 

IE (eV) 

C6H5Cl 

 

C6H5Br 

 

C6H5I 

 

Cl  

52.0  1.3
44 

 

105.4  4.9
44

 

 

164.9  5.9
44

 
 

121.302(6)
 38 

66.42  1.3 

 

127.0 4.1 

 

180.7  5.9 

 

119.621(6)
 38

 

117.92(6)
 38

 

9.0728(6)
37

 

 

8.9976(6)
37

 

 

8.7580(6)
37

 

Br  111.86(6)
 38

 

106.76(4)
 38

 I  

C6H5
+
 

107.16(4)
 38

 

1149.1  1.8
41 

 

4.4 Experimental Determination of Specific Rate Constants k(E) 

The specific rate constants k(E) of the dissociation determine both the abundance 

of dissociated ions and the shape of the asymmetric fragment peak in the TOF spectrum. 

However, while our photon resolution is as narrow as 12 meV, our “energy-selected” 

ions are produced from a room temperature sample of neutrals and therefore correspond 

to a room temperature thermal energy distribution.  Consequently, our experimentally 

observed dissociation rates are averages over the internal energy distributions of the ions 

such as illustrated in Figure 4- 3.  In order to extract the rate constants as a function of ion 

internal energy, we convoluted an assumed k(E) function with the thermal energy 

distribution.  
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At the lowest experimental energies little information is available from the shape 

of the fragment peak in the TOF distribution because this distribution is very flat (see 

Figure 4-1).  At these energies, the rate is mainly determined from the relative peak areas 

of the parent ions, the asymmetric peak, and the drift peak after the parent ion.   

However, at higher energies the asymmetric shape of the first peak provides the bulk of 

the rate information.  The largest range of rate constants was accessible for the 

bromobenzene ion because there are large Franck-Condon factors in the photoelectron 

spectrum over the full range, which permitted us to obtain rate constants over almost 5 

orders of magnitude.  In the case of the chlorobenzene ion, the experimental range was 

limited at high energies by a Franck-Condon gap and the low photon intensity of our light 

source.  At low energies, the range was less than for bromobenzene because of the shorter 

chlorobenzene ion time of flight.  

The convolution of the k(E) function with the spectral width of our light source 

(ca 12 meV) and the energy distribution of our room temperature sample (ca 140 meV) 

was carried out for the TOF distribution and the relative abundances of parent and 

fragment ions. Denoting a calculated TOF distribution at an energy E by F(E,t) and the 

thermal internal energy distribution by fth(Eth), the convoluted TOF distribution Feff(h ,t) 

is given by 

  (4.4) 

 

The TOF distribution F(h +Eth,,t), where t is the ion TOF, is directly given by the 

specific rate constants k(E) at an energy E = h +Eth, while Feff(h ,t ) is the observable 
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TOF distribution. The fractional abundances A of the parent and fragment ions observed 

up to a time , are given by 

  (4.5) 

and 

  (4.6) 

k(E) has to be chosen in such a way that the convoluted TOF distributions Feff(h ,t) and 

the fractional ion abundances from the experiment are reproduced in an internally 

consistent manner. We achieve this by using an RRKM trial function for k(E)  

which is locally optimized around the energy of the data point. The procedure provides a 

unique and correct k(E) at an energy that corresponds to the peak of the thermal energy 

distribution (Figure 4- 3) and is independent of the trial function. As an example of the 

analysis of our experimental data, Figure 4- 4 shows a comparison of measured and fitted 

TOF distributions in the bromobenzene system for a series of excitation energies. 

The reported rate constants are those evaluated at the peak of each ion internal energy 

distribution. They are shown, along with their uncertainties, in Table 4-2, Table 4- 3, and 

Table 4-4 and in Figure 4- 5 and Figure 4- 6. The given errors were established by 

observation of the fit to the experimental TOF distributions and breakdown diagrams. 

The larger errors in the chlorobenzene rates from 3.893 to 4.163 eV and in the 
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Figure 4- 3 Depiction of the ion thermal energy distribution (f(ETh)) and corresponding 

variation in the dissociation rate at a single photon energy.  Experimental k(E) for a 

single ion internal energy are determined from the RRKM k(E) evaluated at the most 

probable (MP) energy in the ion internal energy distribution ( - IE + EMP)  as 

described in the text where EMP=56 meV, 61 meV, and 61 meV for chloro-, bromo-, 

and iodobenzene. 
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bromobenzene rates from 3.136 to 3.323 eV reflect a discrepancy between the rate 

constants derived from the fragment peak shapes and those derived from the relative 

areas of the fragment and parent peaks.  Before comparing the measured rate constants to 

the calculated dissociation rate constants, it is important to establish whether at low 

energies the ions could be stabilized by IR emission.  Such an emission would effectively 

stabilize the parent ions and yield a daughter to parent ratio that is too low.  The IR 

emission rates, calculated using the method described by Dunbar
45

 with frequencies and 

IR emission intensities calculated using Gaussian 03,
46

 were similar for all three systems 

and ranged from about 100 photons∙s
-1

 at 2.4 eV internal energy to  450 photons∙s
-1

 at 5 

eV.  Although IR emission is competitive with dissociation at the lowest experimental 

energies, the effect on the extracted rate constants is much smaller than the reported error 

bars. 

The measured rate constants range from 3x10
2
 s

-1
 to 10

7
 s

-1
, a range of over 4 

orders of magnitude.  A number of groups have previously determined halobenzene ion 

dissociation k(E) rates using a variety of techniques and covering selected regions of the 

k(E) curve (Figure 4- 5).
22-33,35,47

  Baer et al
22

 reported rate constants for all three 

molecular ions that were obtained by fitting  the TPEPICO TOF distributions for the 

room temperature sample with a single exponential decay.  These points have rates that 

are too high. In a subsequent paper
35

 the rates for the bromobenzene ion were analyzed in 

terms of a distribution of single exponential decays over the thermal energy distribution, 

resulting in rate constants that are in agreement with the current measurements.  In a 

series of three papers, Rosenstock et al.
23-25

 measured k(E) for the three ions by fitting an 

RRKM curve to breakdown diagrams obtained by TPEPICO at two ion extraction times.   
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Figure 4- 4 Experimental and modeled fragment peaks for bromobenzene at various 

photon energies. 
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Table 4-2. Experimental and Calculated Log(k(E)) / s
-1

 for chlorobenzene. 
hν E(eV) exp.

a
 RRKM PST SSACM VTST 

12.753 3.736 2.79
10.0

09.0
 2.80 2.34 2.77 2.75 

12.806 3.789 3.07
10.0

09.0  3.07 2.71 3.06 3.09 

12.872 3.855 3.33
09.0

05.0  3.38 3.13 3.39 3.43 

12.932 3.915 3.68
32.0

11.0  3.55 3.35 3.56 3.59 

12.987 3.970 4.00
30.0

20.0  3.87 3.76 3.89 3.91 

13.062 4.045 4.09
46.0

01.0  4.17 4.12 4.19 4.20 

13.117 4.100 4.34
40.0

07.0  4.37 4.37 4.39 4.39 

13.180 4.163 4.52
29.0

08.0  4.58 4.64 4.60 4.60 

13.222 4.205 4.74
18.0

13.0  4.72 4.80 4.74 4.74 

13.264 4.247 4.85
10.0

07.0  4.86 4.96 4.87 4.87 

13.314 4.297 5.05
07.0

08.0  5.01 5.15 5.03 5.02 

13.314 4.297 5.02
15.0

06.0      

13.357 4.340 5.18
04.0

09.0  5.14 5.30 5.15 5.14 

13.415 4.398 5.33
09.0

05.0  5.30 5.49 5.31 5.30 

13.481 4.464 5.46
10.0

04.0  5.48 5.70 5.48 5.47 

13.495 4.478 5.57
19.0

11.0  5.52 5.75 5.52 5.51 

13.522 4.505 5.59
24.0

08.0  5.59 5.83 5.59 5.58 

13.569 4.552 5.64
15.0

06.0  5.71 5.97 5.70 5.69 

13.569 4.552 5.76
35.0

08.0      

13.719 4.702 5.97
14.0

07.0  6.07 6.38 6.04 6.03 

a
The superscripts and subscripts represent the upper and lower uncertainties in the experimental    

values respectively.  
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Table 4- 3 As in Table 4-2 except for bromobenzene. 

hν E(eV) exp.
a
 RRKM PST SSACM VTST 

11.931 2.994 2.64
27.0

39.0  2.94 2.11 2.68 2.57 

12.04 3.103 3.51
13.0

13.0  3.60 3.10 3.47 3.45 

12.134 3.197 4.03
11.0

12.0  4.09 3.77 4.02 4.06 

12.194 3.257 4.35
11.0

09.0  4.37 4.14 4.32 4.40 

12.240 3.303 4.58
14.0

13.0  4.57 4.40 4.54 4.62 

12.266 3.329 4.74
09.0

09.0  4.68 4.54 4.66 4.73 

12.321 3.384 4.97
13.0

13.0  4.90 4.82 4.89 4.95 

12.372 3.435 5.20
12.0

12.0  5.09 5.05 5.10 5.14 

12.457 3.520 5.49
09.0

09.0  5.39 5.42 5.41 5.43 

12.527 3.590 5.69
09.0

09.0  5.62 5.70 5.65 5.65 

12.590 3.653 5.92
08.0

06.0  5.82 5.93 5.85 5.84 

12.655 3.718 6.13
07.0

07.0  6.00 6.15 6.04 6.03 

12.681
b 

3.722 6.02
10.0

05.0  6.01 6.54 6.37 6.35 

12.778 3.841 6.43
10.0

07.0  6.34 6.71 6.52 6.49 

12.845 3.908 6.56
16.0

13.0  6.49 6.16 6.05 6.04 

12.919
b 

3.960 6.62
10.0

10.0  6.63 6.88 6.66 6.63 

12.976
b 

4.017 6.72
09.0

07.0  6.76 7.03 6.79 6.76 

13.022
b 

4.063 6.81
07.0

08.0  6.86 7.14 6.89 6.86 

13.069
b 

4.110 6.89
09.0

05.0  6.97 7.27 7.00 6.96 

13.145
b 

4.186 6.93
07.0

06.0  7.12 7.44 7.15 7.11 

a
The superscripts and subscripts represent the upper and lower uncertainties in the experimental    values 

respectively. 
b
Measurements taken at 40 V/cm  and 256 K. 
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Table 4-4. As in Table 4-2 except for Iodobenzene 

h  E(eV) exp.
a
 RRKM PST SSACM VTST 

11.188 2.491 2.64
34.0

25.0  2.73 2.45 2.75 2.63 

11.234 2.537 3.16
09.0

22.0  3.21 3.03 3.22 3.13 

11.275 2.578 3.61
19.0

16.0  3.59 3.48 3.59 3.54 

11.326 2.629 4.00
17.0

07.0  4.00 3.94 4.01 3.98 

11.378 2.681 4.42
04.0

14.0  4.37 4.34 4.39 4.37 

11.404 2.707 4.53
07.0

07.0  4.53 4.53 4.56 4.55 

11.431 2.734 4.72
07.0

10.0  4.70 4.71 4.73 4.73 

11.457 2.760 4.86
07.0

13.0  4.86 4.87 4.88 4.89 

11.484 2.787 5.03
07.0

13.0  5.01 5.04 5.03 5.05 

11.537 2.840 5.27
06.0

10.0  5.29 5.34 5.31 5.34 

11.586 2.889 5.56
03.0

10.0  5.53 5.59 5.55 5.57 

11.640 2.943 5.74
09.0

03.0  5.77 5.85 5.79 5.78 

11.706 3.009 6.04
09.0

09.0  6.05 6.14 6.06 6.02 

11.756 3.059 6.19
11.0

08.0  6.25 6.35 6.25 6.19 

11.914 3.217 6.73
27.0

12.0  6.80 6.92 6.79 6.67 

a
The superscripts and subscripts represent the upper and lower uncertainties in the experimental    

values respectively. 
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 Figure 4- 5 Comparison of current experimental data with previously reported data.  

SSACM curves are calculated using the parameters that best describe the data 

presented in this paper. The names in the legend are those of the corresponding 

authors who reported the data and superscripts refer to their citations.  For a detailed 

discussion of previous data see text. All k(E) data have been adjusted to reflect the 

most current ionization energies reported in table 1.  
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These rate constants, which extend between 2 to 3 orders of magnitude, agree well with 

the current data. In 1984, Durant et al.
27

 used a supersonically cooled sample of 

chlorobenzene to investigate the ion dissociation rates in the vicinity of k(E)~10
6
 s

-1
 by 

multi-photon ionization time of flight mass spectrometry.  A few years later, Castleman 

et al.
28

 used a similar technique to study the chlorobenzene ion dissociation over a 

similarly limited range of rate constants by varying the reflector voltage in a reflectron-

time of flight apparatus. None of these investigations reported rate measurements below 

about 5x10
4
 s

-1
, which means that they were not very useful for extrapolating the rate 

measurements to the dissociation threshold.  However, Lifshitz et al.
30,31

 performed a 

series of measurements using an ion trap, which could store the ions for up to 

milliseconds and could thus explore the critical low rate constant region for the case of 

bromo- and iodobenzene.  Although the ions were not energy selected, the ion internal 

energy distribution obtained by single photon ionization was modeled and the ratios of 

the fragment and parent ions as a function of both photon energy and ion extraction time 

where reproduced using RRKM rate curves.  This provided rates in the 10
2
 to 10

5
 s

-1 

range, which as shown in Figure 4- 5, agree quite nicely with our reported rate constants.  

Finally, Kim et al.
32,33,48

 measured the k(E)s of iodo-, chloro-, and bromobenzene by 

mass-analyzed ion kinetic energy spectrometry (MIKES) in which ions prepared by 

charge transfer were photodissociated as they were traveling at high velocity toward an 

electric sector of a double focusing mass spectrometer.  With the exception of one 

measurement for bromobenzene at a rate of 10
7
 s

-1
, which agrees with our rate constants, 

this yielded rates in the region of about k(E)~10
8
 s

-1
, which for bromo- and 

chlorobenzene are clearly higher than the extrapolated rate constants using the SSACM 
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model.  Because we did not measure rate constants up to 10
8
 s

-1
, we cannot be certain that 

the Kim rate constants are in error.  However, it is worth mentioning that ion energy 

selection by charge transfer depends upon the assumption that the ionizing ion (Xe
+
 for 

chlorobenzene and CS2
+
 for bromo- and iodobenzene) be in the ground state and that the 

charge transfer process is strictly resonant so that no energy is lost to translation. 

4.5 Modeling the Rate Constants k(E) by Statistical Unimolecular Rate Theories 

The lowest energy rate points measured are between 0.1 and 0.4 eV above E0.  In 

order to extrapolate the rate curves down to threshold we model the dissociations using 

several forms of statistical unimolecular rate theory: RAC-RRKM, PST, SSACM, and 

VTST (Figure 4- 6).  These approaches all use the same density of states in the 

denominator of Eq. (4.1), but differ in the manner in which the sum of states is 

calculated.  We have made the assumption that the various excited electronic states 

initially populated in the ionization process rapidly interconvert to the ground ionic state, 

thereby converting their electronic energy into vibrational energy of the ground state.  

However, ions are free to interconvert electronic and vibrational energy among the 

several electronic states that lie below the dissociation limit.  We tested the contribution 

of the excited electronic state to the total density of states and found that even for the case 

of chlorobenzene, in which the upper spin orbit state lies only 100 meV above the ground 

state, the contribution is less than 10%.  Such small differences are negligible and are 

generally compensated by assumed transition state frequencies.     
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4.5.1 Rigid Activated Complex RRKM Theory (RAC-RRKM): 

In RAC-RRKM
5
 theory, N

‡
 is a function of just the vibrational frequencies of the 

transition state, which we express by means of the calculated equilibrium frequencies of 

the halobenzene ion.  The frequency corresponding to the C-X stretch is assumed to 

correspond to the reaction coordinate and is omitted from the transition state.  The 27 

vibrational modes of the phenyl ring are assumed to be conserved along the reaction 

coordinate, and the frequencies of the remaining 2 modes, corresponding to C-X bends, 

are scaled by a common factor.  Two parameters, this frequency scaling factor and E0, are 

optimized to find a best-fit to the experimental data.  

The molecular parameters and the parameters used in the fitting are summarized 

in the Appendix. One should note that there are ambiguities even in this simple RAC-

RRKM approach because, apart from the uncertainties in the frequency set, the 

contribution of anharmonicity can only be guessed. An energy-independent 

anharmonicity factor Fanh = 1.4 was adopted by Klippenstein et al
18

 for the case of H loss 

from benzene ions.  However, this ignores the fact that Fanh is energy dependent
5
.  Here 

we take Fanh = 1.0 and include the effects of anharmonicity in the fitted transition state 

frequency scaling parameter. The experimental k(E) curves can be fit well by this RAC-

RRKM modeling, however, the resulting bond energies underestimate the chloro- and 

bromobenzene thermochemical values from section 3 by 0.13 eV, well outside the 

thermochemical uncertainties. Of the fitted values, only the iodobenzene value is within 

the uncertainty of the literature value. Tables 2-4 compare the RAC-RRKM k(E) results 

with the experimental data. 
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The good agreement between the RAC-RRKM derived E0 and the 

thermochemical value for the iodobenzene ion dissociation is the result of the low E0 

which causes the minimum rate k(E0) to be larger and therefore the kinetic shift to be 

smaller.  For bromobenzene, in addition to inaccurately predicting the E0, the described 

RAC-RRKM modeling was unable to provide good agreement simultaneously at the 

upper and lower extremes of the data set.  The results for chlorobenzene demonstrate 

most clearly the shortcomings of the RAC-RRKM method.  The experimental 

chlorobenzene data set extends over the smallest experimental range (three orders of 

magnitude), and requires the largest extrapolation to E0.  These two factors allow for a 

„worst case scenario‟ where the modeling in  Figure 4- 6 reproduces the chlorobenzene 

data deceivingly well over the entire data set but nevertheless predicts a dissociation 

energy that is too low by 0.13 eV. 

4.5.2 Phase Space Theory (PST) 

The underestimation of E0 by RAC-RRKM theory agrees with the observations 

made by Troe et al.,
16

 namely that RAC-RRKM fails because it treats the activated 

complex with a set of vibrational oscillators, resulting in a k(E) function with too weak an 

energy dependence.  One then might think that PST is more appropriate for ionic 

dissociations, because it considers the activated complex at R = , where the transitional 

modes are rotations and the energy dependence of k(E) is much stronger.  In this case, the 

activated complex frequencies are those of the phenyl product ion.  The density of states 

of these “conserved oscillators” is then convoluted with the relevant number of states 

Norb(E) of the orbital motion of the fragments.  We simplify any rotational effects by 

using only k(E,J=0) for which Norb(E) (E-E0)/Beff and Beff = (ABC)
1/3

,
49

 thereby treating 

the phenyl ion as a spherical top. The J-dependence of k(E,J) in this case is known to be 
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small and can practically be neglected if E is identified with the vibrational energy.
16

  

However, it must be accounted for through E0(J) when thermal rate constants for 

dissociation or the reverse combination are calculated. We again neglect anharmonicity 

(Fanh = 1.0) and note that there are considerable uncertainties in the frequencies of the 

phenyl cation
 
(see Appendix). The two frequency sets determined by Klippenstein

19
 lead 

to differences in k(E) by about a factor of 2. Regardless of this ambiguity, using the 

frequencies determined here, the PST k(E) (Figure 4- 6) provides a good fit to the 

iodobenzene ion experimental k(E), but not to the chloro- or bromobenzene ion data.  The 

only parameter, E0, is varied in order to fit the PST rates at an energy near the middle of 

the experimental data set.  This leads to values of E0 that are larger than the 

thermochemical values. Apart from the uncertainties in the frequency set and the 

anharmonicity factor, the PST model of k(E,J=0) is a single-parameter fitting approach 

which provides upper limits of E0. We note that the PST rate curve anchored at the 

literature value of E0 provides a good fit to the experimental rates below 10
5
 s

-1
 for the 

bromobenzene ion and below 10
4
 s

-1
 for the chlorobenzene ion, but significantly 

overestimates the higher energy rates.  

The overestimation of k (E) by PST, if the true E0 is chosen, is a general 

phenomenon which, within the framework of the SACM, is attributed to the anisotropy of 

the potential energy surface and is characterized by a “rigidity factor” frigid being smaller 

than unity. One might try to represent this effect by an increased value of Beff in Norb(E), 

which corresponds to an energy-independent value of frigid such as was proposed in the 

simplest version of a “simplified SACM” (SSACM)
50

.  Adopting this approach here and 

fitting the scaling factor of Beff in the middle of the experiments still overestimates the 

true E0. Although this approach accounts for some rigidity of the activated complexes, it 
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does not do this in an adequate manner when large energy ranges are considered. A more 

realistic procedure requires energy-dependent rigidity factors such as discussed in the 

following section. Alternatively variational transition state theory (VTST) may be used 

such as also described in the following. In these models, there will be a gentle “shifting” 

or a more abrupt “switching” of the effective transition states from larger fragment 

distances at lower energies to smaller distances at higher energies. As a result, k(E) with 

increasing energy falls increasingly below the PST values. 

4.5.3 Simplified SACM(SSACM) for Ion Dissociation 

Rigidity factors frigid(E) reflect the anisotropy of the potential and, in addition, the 

subtle interplay between the anisotropic and attractive properties of the potential, i.e. they 

are specific for particular types of potential energy surfaces of the dissociation process.
51

 

In some cases, like ion fragmentations dominated by long range ion-permanent dipole 

forces,
52

 frigid is energy independent, but strongly depends on angular momentum J. In 

other cases like ion fragmentations governed by a superposition of polarizability and 

permanent dipole contributions, E- and J-dependences of frigid(E,J) arise.
53

 Energy-

dependent rigidity factors frigid(E) are also typical for ion fragmentations which at short 

range are dominated by valence forces and at long range by comparably weak ion-

induced dipole forces. A detailed SACM/CT treatment was applied
16

 to systems of this 

type. The results could approximately be described by a functional form of k(E) in which 

Norb(E) is used from PST and is multiplied by an energy-dependent rigidity factor given 

approximately by 

 frigid(E) = exp[-(E-E0)/c] (4.7) 

This version of a SSACM was shown to mimic the transition state shifting or 

switching and found to reproduce quite well the results of the full SACM/CT calculations 
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on modelled potential energy surfaces for the fragmentations of benzene and n-

butylbenzene cations. 

Similar to RAC-RRKM theory, this version of SSACM contains two adjustable 

parameters, E0 and c.  In order to determine the best-fit E0 and the corresponding 

uncertainty, we calculate a least-linear squares error between the calculated and 

experimentally determined rate curves for all reasonable combinations of E0 and c. The 

results are recorded in Figure 4- 5 and Figure 4- 6 and Table 4-2, Table 4- 3, Table 4-4, 

and Table 4- 5.  Our best fits correspond to values of E0 = 3.355
030.0

040.0 , 2.783
026.0

029.0 , and 

2.415
020.0

027.0 eV, where the superscripts and subscripts respectively correspond to the upper 

and lower uncertainties, and c = 71, 77, and 194 meV for chloro-, bromo-, and 

iodobenzene, respectively.  The meaning of the c parameter will be discussed later.  

We obtain the error limits for the onset energies by calculating a least squares 

error between the calculated and experimentally determined rate curves for all reasonable 

combinations of E0 and the fit parameter c (Figure 4- 7).  The reported E0 corresponds to 

the best fit value, while the uncertainties correspond to the limits of a goodness-of-fit 

contour (Figure 4- 7, bold contour) beyond which the agreement of the rate curves is 

determined to be poor.  The relationship between E0, the fit parameter c and the resulting 

error bars are plotted in Figure 4- 8 for the three halobenzenes. Figure 4- 7 and Figure 4- 

8 show the origins of the sometimes asymmetric error bars.  The nearly vertical line in 

the case of iodobenzene indicates that, within the experimental window, k(E) is 

independent of c and is therefore described well by PST.   
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4.5.4 Microcanonical Variational Transition State Theory (VTST) 

Microcanonical VTST locates the transition state at the minimum in the N(E,R) 

along the reaction coordinate R, which moves to shorter bond distances with increasing 

E.  Obtaining N(E,R) requires knowledge of both the interaction potential and transitional 

modes along R.  elow is a simplified approach to obtaining N(E,R)  proposed by 

Chesnavich et al
14

.  For this version of VTST, the potential is approximated by 

  (4.8)  

where X is the reduced length, X = R/Re, of the dissociating bond, De is the dissociation 

energy corrected for the zero point energy, c2 = q
2
/2Re

4
De with the polarizability  of 

the halogen atoms, q is the ionic charge, and c1 is determined by the force constant of the 

C-X stretch. These quantities are calculated and given in the Appendix. We note that the 

corresponding quantum-chemical potentials for chloro- and bromobenzene
19

 are more 

repulsive than this empirical potential in the important region between 3 and 5 Å.  We 

will return to this point below and highlight the relative unimportance of an accurate 

reaction coordinate potential in the VTST scheme. 

 The contribution of the transitional modes, which for the halobenzene 

dissociation are the two C-X bending modes, to Ntot(E,R) was determined using a 

hindered rotor potential of the form 

 )2cos1(
2

)(
)( 0 rV

V  (4.9) 

The rotational barrier V0 is a function of the bond length R of the form  

  (4.10) 
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where a is a fit parameter that determines how quickly the rotational barrier decays as a 

function of bond length, and therefore the rate of “loosening” of the transitional modes. 

The equilibrium barrier heights Ve were calculated from the geometrical means of the 

equilibrium C-X bending frequencies and were derived to be 7.85, 5.92, and 4.85 eV for 

chloro-, bromo-, and iodobenzene, respectively.  The exponent in (10) differs from the 

Gaussian form proposed by Chesnavich and used in previous studies.
14,29

   In modelling 

the k(E) data with VTST, we found that raising the (R-Re) function to the third power 

provided a better fit over the full range of the data, and more importantly, provided a 

much tighter fit (with uncertainties of ±3 kJ mol
-1

 as opposed to ±7 kJ mol
-1

).  Energy 

levels for the transitional modes, Ei, were calculated using a harmonic oscillator Ei <V-

0(R) and a Pitzer rotor model for Ei>0.75 V0(R).  Ntot(E,R) was determined by 

convoluting the phenyl cation density of states with the contribution from the transitional 

modes.  In all three reactions we found two minima of N(E,R) along the reaction 

coordinate R, an outer TS at very large bond distances (r > 15Å), where N(E,R) is 

independent of the parameter a, and a tight TS in the range 3 < r < 5 Å where N(E,r) 

strongly depends on a. At small E, the outer minimum is the global minimum, as E 

increases, the inner minimum increases at a slower rate and eventually determines the 

rate.  

We obtained an optimum fit to the experimental k(E) with the parameters E0 = 

3.401
017.0

062.0 , 2.829
012.0

030.0 , and 2.420
010.0

011.0  eV and a = 0.38, 0.28, and 0.22 Å
-2

 for chloro-, 

bromo-, and iodobenzene, respectively. The VTST results are plotted with experimental 

k(E) for comparison in Figure 4- 6 and listed in and Table 4-2, Table 4- 3, Table 4-4, and 
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Table 4- 5.  The uncertainties in E0 were determined in the same way as for the present 

SSACM, and are included in Figure 4- 8.   

Table 4- 5 compares the E0 values obtained by the different approaches. In the 

cases of chloro- and bromobenzene, RAC-RRKM extrapolates to too low a barrier, 

PSTextrapolates to too high a barrier, while both VTST and SSACM extrapolate to 

barriers within mutual uncertainty of the literature values.  All four methods correctly the 

uncertainty of the literature value of the iodobenzene ion dissociation. 

 

4.6 Discussion 

Neither the RAC-RRKM nor PST approaches correctly extrapolate to the reaction 

barriers for the chloro- and bromobenzene ion dissociations explored here or the benzene 

and n-butylbenzene ions previously studied.
16

  Of particular concern is the fact that the 

RAC-RRKM theory is perfectly capable of fitting data over a broad range of rates from 

10
3
 to 10

7
 s

-1
 and provides no clues about its inability to extrapolate to the onset.   Thus, 

if the predicted kinetic shift is greater than about 0.2 eV, it is best not to apply RAC-

RRKM for extrapolation.  In contrast, both the VTST approach correctly determines the  

E0 for not only the iodobenzene but also the chloro- and bromobenzene ion dissociations  

 

Table 4- 5 Dissociation energies E0  (eV) for C6H5X
+
  C6H5

+
 + X (see text) 

 Reference E0 RRKM PST
†
 SSACM

*
 VTST

* 

C6H5Cl
+
 3.381  0.023 3.253  0.05 3.457 3.355

030.0

040.0  3.401
017.0

062.0  

C6H5Br
+
 2.812  0.046 2.684   0.06 2.874 2.783

026.0

029.0  2.829
012.0

030.0  

C6H5I
+
 2.382  0.070 2.387  0.05 2.435  0.01 2.415

020.0

027.0  2.420
010.0

011.0  

*The superscripts and subscripts represent the upper and lower uncertainties in the 

experimental    values respectively. †Due to poor fits to the experimental data, uncertainties 

are not reported for chlorobenzene and bromobenzene. 
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Figure 4- 6. Comparison of rate curves predicted by several models (see text) of 

statistical unimolecular dissociation fit to experimentally determined rate points.  

Literature dissociation thresholds (E0) are indicated by black arrows.  Dotted 

vertical lies for iodo and bromobenzene are to guide the eye from lowest k(E0) 

point to the horizontal axis.  The determination of errors bars in rate points and E0 

is described in the text. 
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while SSACM determines the E0 to within the uncertainty of bromobenzene and is just 

outside the limit of uncertainty for the chlorobenzene E0. 

The VTST and SSACM models produce nearly identical rate curves over the 

experimental range, along with similar E0s and uncertainties.  The VTST calculation 

requires knowledge of the potential energy surface along the entire reaction coordinate, 

whereas the SSACM requires only the product vibrational and rotational frequencies.   

Additionally, the SSACM rate curve can be calculated using 2 orders of magnitude less 

computational effort than our VTST curve.  In fact, it requires no more effort than the 

RAC-RRKM method. 

What physical insight does the functional form of eq. 4.7 and the values of the 

parameter c provide? The energy-dependence of frigid(E) signals a potential with changing 

anisotropy character, being strongly anisotropic at short range where valence forces 

dominate and being nearly isotropic at long range where ion-induced dipole forces are 

relevant. The values of the parameters c, being 71, 77, and 194 meV for chloro, bromo, 

and iodobenzene, respectively, are of the same order as observed in benzene and n-

butylbenzene cation dissociations.
16

 In an intricate manner they reflect the transition from 

the anisotropic to the isotropic region of the potential. The larger value of c for 

iodobenzene indicates that the relative contribution of the isotropic long range part of the 

potential in comparison to the anisotropic short range part is larger than for chloro- and 

bromobenzene, due to the smaller value of E0.  However, a more quantitative connection 

to details of the potential would require the full SACM/CT treatment on the complete 

potential energy surface. This is beyond the scope of our present work. 

It might appear that our version of VTST provides more dynamical information 

than SSACM because we identify the entropy bottle neck directly by minimizing the sum 
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of states.  However, we found that our empirical potential, fitted to some of the molecular 

properties of the ion, does not correspond well with a DFT calculated interaction 

potential.  Furthermore, when we replace the empirical potential with a DFT calculated 

curve, or even a simple Morse potential, the a parameter changes, but the overall fit of 

the rates to the data and its ability to extrapolate to the onset is not affected.  This means 

that our approach is simply a procedure that reproduces the data using an adjustable 

parameter.  The empirical VTST approach also does not lend much insight into the 

question of transition state switching versus a smooth transition from PST at low energy 

to RRKM at high energy.  For instance, we observe an abrupt transition-state switch at 

10
4
 s

-1
 for chlorobenzene and at 10

5
 s

-1
 for the bromobenzene ion dissociations.  

However, the energy at which the switch occurs is highly dependent on the specifics of 

the model.  The data can be well fit and the switch occur inside the experimental range, 

outside that range, or not at all depending on the treatment of the transitional modes (i.e. 

the value of the a parameter and the form of  eq. 4.10).  Further insight about the issue of 

transition state switching can be found in discussions by Klippenstein
19

 and Hase
15

.  On 

the basis of our results, we conclude that the a parameter is effectively a catch-all fitting 

parameter, much like the c parameter in the SSACM or the frequency scaling factor in 

RAC-RRKM.  On the one hand this robustness lends confidence in the results of the 

calculation in that incorrect assumptions about the potential energy surface do not bias 

the results, but on the other hand, it means that a does not have a precise meaning.   

 Because both VTST and the SSACM provide similar results and similarly limited 

physical insight into the dissociations, the considerably simpler SSACM is the preferred 

approach.  Although VTST and SSACM both predict E0s that are within the experimental 

error, the error limits are smaller than those of the experiment, and the two theories 
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systematically differ in that the VTST approach yields slightly lower E0s than does the 

SSACM, and their predictions in the case of chloro- and bromobenzene are just beyond 

the error of each method.  Both methods predict a considerably higher E0 for 

iodobenzene, which means that the experimental values for the heat of formation of 

iodobenzene should probably be lowered by 3 kJ mol
-1

.  If the precision of the 

thermochemistry of the halobenzene ion dissociations could be improved, it could decide 

whether VTST or SSACM approaches are more accurate.   Finally, it is worth noting that 

the version of SSACM used is essentially a first order correction to the PST and is thus 

most accurate at low energies.  As the energy is increased, the employed rigidity factor 

decreases faster than the PST k(E) increases and the calculated reaction rates become too 

slow, even decreasing at higher energies, which is clearly not in accord with experiment.  

This can be corrected for by adding a small energy independent term to eq. 4.7. The 

VTST rate curves do not suffer from this same problem, however their accuracy at higher 

energies are untested. 

Whether the VTST or SSACM method is used, the accuracy of the derived E0 

values is highly dependent on the quality and range of the experimentally determined rate 

curves.  The uncertainties in E0 scale roughly linearly with the uncertainties in the 

experimental rates and are very sensitive to the range of the experimental data. For 

chlorobenzene, excluding rates below 10
4
 s

-1
 from our analysis doubles the uncertainty in 

the derived E0 and excluding rates below 10
5 

s
-1

 increases the uncertainty beyond 

reasonable limits.  However, the effect of increasing the experimental range at higher 

energies is marginal.  Excluding all rates above 10
4
 s

-1
 only doubles the uncertainty.  The 

VTST analysis of Lifshitz et al.
29

 of the bromobenzene ion dissociation illustrates this 

point.  The modeled rate curve, fit to experimental PIE data ranging from 10
3 

s
-1

 to 10
5
 s

-
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1
, is wholly inaccurate at higher rates, but the extrapolated E0 is nearly as accurate and 

precise as the results presented here. 

4.7 Conclusions 

  Rate constants for energy selected dissociation of the halobenzene ions have been 

measured by TPEPICO over four orders of magnitude from 4x10
2
 to 9x10

6
 s

-1
.  Rate 

curves calculated by RAC-RRKM, PST, SSACM, and VTST were fitted to the 

experimental rate data and used to extrapolate the rates down to the threshold energy, E0.  

The derived dissociation onsets were compared to the known E0s as determined from 

literature thermochemical values. While RAC-RRKM provided good fits to the 

experimental rate curves, the predicted E0s were significantly lower than the literature 

values for the chloro- and bromobenzene ion dissociations.  PST provided neither good 

fits to the experimental rate curves for chloro- and bromobenzene, nor the correct E0s.  

Although both models correctly predict the E0 of the iodobenzene ion dissociation, PST 

and RAC-RRKM should not be used for barrierless ionic dissociations.  Both simplified 

2-parameter versions of VTST and SSACM properly fit the experimental rate curves and 

extrapolate to the correct E0 for all three halobenzene ion dissociations with VTST 

appearing to do better for the case of chlorobenzene. However, SSACM is significantly 

simpler to employ.   

Finally, the range and quality of the experimental rate points are critical to any 

method of extrapolating the rate curve down to threshold.  The uncertainty in the derived 

E0 scales approximately linearly with the uncertainty in the experimental data points, 

while extending the experimental range to the lowest rates possible is vital for an accurate 

determination. 
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CHAPTER 5: The heats of formation of C6H5  C6H5
+
 and C6H5NO by 

TPEPICO and Active Thermochemical Tables Analysis 

5.1 Introduction 

The development of the active thermochemical tables, in which the directly 

measured reaction energy differences are used to determine optimal heats of formations 

for the relevant species, has reinforced the importance of alternative routes that relate the 

various species.  In this study we focus on the nitrosobenzene molecule, which 

dissociatively ionizes to form C6H5
+
.  The monosubstituted benzenes are often difficult 

systems to study by dissociative photoionization (C6H5X + hν  C6H5
+
 + X) because of 

slow dissociation near threshold and/or large uncertainties in the thermochemistry of the 

constituents.  The active thermochemical tables
1,2

 provide a reasonably accurate value for 

fH(C6H5
+
) and fH(C6H5) and the neutral bond dissociation energy has been measured 

for nitrosobenzene.
3
 Figure 5-1 shows that by measuring E0(C6H5

+
) from nitrosobenzene, 

new values for IE(C6H5) and fH(C6H5NO) can be determined.    

A precise ionization energy of the phenyl radical has been difficult to determine 

experimentally.  This is due to the poor Franck-Condon factors associated with the 

adiabatic transition from the ground electronic state of the radical to the ground singlet 

state of the phenyl ion.  Difficulties in determining the phenyl radical and cation heats of 

formation have hindered thermochemical determination of IE(C6H5).  As a result, the two
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Figure 5-1 Energy diagram showing that the phenyl radical ionization energy is the 

difference between the onsets for C6H5 and C6H5
+
. 
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previously reported measurements of the adiabatic IE(C6H5) differ by 200 meV, well 

outside of their mutual uncertainty.
4,5

 The first attempt to directly measure IE(C6H5) was 

in 1972 by Sergeev et al.
4
 who measured the appearance energy of the phenyl ion from 

the phenyl radical, generated  by pyrolysis of azobenzene , by photoionization mass 

spectrometry to be 8.1   0.1 eV.  In 1987, Butcher et al.
5
 determined the best 

experimental value to date using photoelectron spectroscopy to measure an IE(C6H5) of 

8.32   0.04 eV.  Low intensity due to low concentrations of the phenyl radical and poor 

Franck Condon factors limited the precision of this measurement. 

Previous attempts to calculate the IE(C6H5) have also been inconclusive in 

determining the  IE(C6H5) .  In 1997 Hrusak et al. calculated, using single point CCSD(T) 

calculations on B3LYP optimized geometries of the phenyl radical and cation, an IE of 

8.1  0.1 eV,
6
 identical to the experimental value by Sergeev et al.

4
  However, Lau and 

Ng recently calculated a value of 8.261 eV
7
  with an estimated uncertainty of  0.035 eV 

by CBS extrapolation using the CCSD(T)/6-311++G method.  This value is in mutual 

agreement with the photoionization value reported by Butcher et al yet is well outside the 

uncertainty of the value by Sergeev et al.  Clearly this value merits further study.  

Figure 5-1 demonstrates that the IE(C6H5) can be determined from the neutral bond 

dissociation energy ED(C6H5) and phenyl ion dissociation onset E0(C6H5
+
) from the same 

precursor.  This has the advantage of not being dependent upon the thermochemistry 

associated with the phenyl radical and ion or the benevolence of Franck-Condon factors.  

The neutral BDE of nitrosobenzene (C6H5NO) has been determined by Park et al. to be 

226.8  2.1 kJ•mol
-1

.
3
  It is possible to determine E0(C6H5

+
) using photoelectron-photoion 

coincidence spectroscopy. However, the homolytic dissociation to the phenyl ion from 
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C6H5NO is immeasurably slow at threshold, requiring an extrapolation to determine E-

0(C6H5
+
). This extrapolation requires the use of unimolecular rate theory. 

 
It has recently 

been shown that for the dissociation of the benzene, butyl benzene, and halobenzene 

cations, which also have immeasurably slow rate constants at threshold and no well 

defined transition state, the extrapolated zero Kelvin dissociation onset (E0) is strongly 

dependent upon the rate model used.
8,9

  For these systems Rice-Ramsperger-Kassel-

Marcus (RRKM) theory, although capable of fitting the data over 4-5 orders of 

magnitude, significantly underestimates the E0, while phase space theory (PST) does not 

fit the data very well, and tends to overestimate the E0.  On the other hand, a semi-

empirical variational transition state theory (VTST)
10

 and the simplified statistical 

adiabatic channel model (SSACM)
11,12

 both were both capable of fitting the data and 

predicting the correct onset.  However, the SSACM was found to be much easier to 

employ and is used here. More recent studies
13,14

 have successfully employed this model 

to extrapolate accurate E0 for both kinetic and competitive shifts. 

Figure 5-1 shows that, in addition to using E0(C6H5
+
) to determine IE(C6H5),  we 

can use the experimentally determined E0(C6H5
+
) and fH 0K (C6H5

+
) from the active 

thermochemical tables
15

 to determine a new value for fH 0K (C6H5NO).   Prior to this 

study, the only route to fH 0K (C6H5NO) has been by reported measurement of the bond 

dissociation energy of neutral C6H5NO.
3,16

 Large uncertainties in both the BDE(C6H5NO) 

and fH 0K (C6H5)
17

 have limited the uncertainty in fH 0K (C6H5NO) to about 3 kJ•mol
-1

.   

5.2 Thermochemistry and Energetics 

Determining absolute thermochemistry of the constituents of the cycle in Figure 

5-1 requires a species with known thermochemistry for calibration. Furthermore, the 
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uncertainty in that calibration species will propagate to any derived thermochemistry.  

Until recently, the uncertainty in fH0K(C6H5
+
) has been too large (  4 kJ•mol

-1
) to 

significantly improve the thermochemistry of this cycle by measuring the E0. However, a 

value of 1149.8  2.1 kJ•mol
-1 

has been obtained by private communication
15

 of results 

obtained using the Active Thermochemical Tables  (ATcT).
1,18

 Additionally, ATcT 

provides a value for fH0K(C6H5) of 350.5  0.8 kJ•mol
-1

.
15

    Lastly, the fH0K(NO) is 

well known and is reported by Chase
19

 to be 89.77  0.17 kJ•mol
-1

.   

Figure 5-1 shows that the E0 can be determined from the sum of IE(C6H5) and 

ED(C6H5). Using the ATcT values for fH0K(C6H5
+
) and fH0K(C6H5), in combination 

with the ED determined by Lin et al., an E0  of 10.584  0.032 eV is obtained.  

5.3 Results 

Figure 5-2 shows the threshold photoelectron spectrum for C6H5NO.   A detail of 

the first band shows some vibrational structure with a spacing of 205 cm
-1

 which we 

ascribe to a single vibrational mode.  The reason for this is that if two or more modes had 

significant Franck-Condon factors for v > 1 transitions, the structure would disappear 

due to dephasing of the two or more slightly different vibrational modes.  The electronic 

configuration of the ion is produced predominantly by the loss of the noboning lone pair 

electron from the nitrogen atom.  This is confirmed by the calculated C-N-O bending 

mode which changes from 257 to 221 cm
-1

 and the corresponding angle change  116 to 

134 . , The experimentaly measured spacing of the PES peask is 200 cm
-1

, which is close 

to the calculated ion frequency of 221 cm
-1

.  We therefore rely upon the IE predicted  
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Figure 5-2 TPES of nitrosobenzene with zoom in of threshold region in inset.  The red 

line corresponds to the modeled TPES (see text) and the arrow corresponds to the IE 

calculated by CBS-APNO with an estimated uncertainty of   0.05 eV.  
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to the calculated ion frequency of 221 cm
-1

.  We therefore rely upon the IE predicted  

using CBS-APNO determined to be 8.50  0.05 eV. As a check, we have taken a linear 

combination of Gaussian functions with widths and centroids optimized to fit the  

 experimental TPES.  The coefficients were determined by assuming that each peak 

corresponds to a single transition (i.e. the peaks at 8.475 eV and 8.525 eV are due solely 

to the v1→v0‟ and v0→v1‟transitions respectively) and that the Franck-Condon factors for 

vi→vj‟ transitions are equal to vj→vi’ transitions.  This allows us to predict the intensity 

of the hot bands independent of the Franck Condon factors by taking the ratio of the 

vi→vj‟ peak intensity to the vj→vi’ intensity  The results from this approach are shown in 

the inset of Figure 5-2.  It is observed that this method somewhat underestimates the hot 

band intensities which may be due to the assumption that each peak corresponds to a 

single transition.  Performing a similar analysis assuming a higher energy IE results in a 

worse fit while a lower IE results in a better fit to the TPES.  However it is not clear 

whether this is due to an incorrect IE assignment, faulty assumptions in the model, or the 

fact that at lower IE‟s the fit is less sensitive. A more sophisticated analysis of the TPES 

may eliminate this ambiguity but is outside of the scope of this paper. We account for the 

uncertainty in the IE(C6H5NO) by assigning a somewhat large error bars of 0.05 eV.  

This error will be used in the modeling of the dissociative photoionization of the 

C6H5NO. 

Figure 5-3 shows representative TOF distributions of the parent fragment ions of 

C6H5NO
+
 at various photon energies, corrected for contamination from ionization events 

that generated energetic electrons.  The parent peak (C6H5NO
+
) is observed at 24.0 μs.  

The shoulder at slightly longer times of flight, observed in the TOF distribution at 10.58  

Figure 5-2 TPES of nitrosobenzene at the IE.   Inset: Black line corresponds to the 

experimental TPES. Red line is a linear combination of Gaussians used to fit the TPES 

assuming that the IE is at the CBS-APNO value of 8.5  0.05 eV (indicated in the inset 

by an arrow).   
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Figure 5-3 TOF distributions for nitrosobenzene over experimental window.  Black 

Dots represent the experimental TOF distributions that have been corrected for ions 

that generated energetic electrons. Red lines indicate simulated TOF distributions. 
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eV, is due to the 
13

C isotope peak.  The rapidly dissociated fragment ions have a TOF of 

20.32 μs.  Slowly dissociating fragment ions in the first acceleration region show up as 

asymmetric daughter ion time of flight distributions as shown in the data for the top three  

TOF distributions in Figure 5-3.  If the parent ion lives sufficiently long to enter the first 

drift region, it will produce a fragment ion that has the same velocity, but a lighter mass, 

thus less kinetic energy.  These daughter ions are separated from their parent ions by 

slowing them down in the last 10 cm of the drift region.  Their reduced translational 

energy causes them to be slowed down more than the parent ions and results in the 

daughter ion peak at 24.5 μs.  By analyzing the whole TOF distribution, it is possible to 

derive a dissociation rate constant, which can be measured in the range between 10
3
 and 

10
7
 s

-1
. 

Figure 5-4 shows the relative abundances of the fragment and parent peaks from 

10.30 to 10.9 eV.  The C6H5NO
+
 intensity remains zero at photon energies greater than 

10.8 eV.  The two breakdown diagrams plotted in Figure 5-4 differ in how the fragment 

peak at 24.5 μs is treated.  In one case , labeled „7.0 μs‟ , this drift peak is added to the 

parent peak area.  The drift peak area is added  to the fragment ion peak for the 

breakdown diagram labeled „19.5 μs‟.  These two breakdown diagrams differ in the time 

scale of the experiment. 

5.3.1 Modeling of the TOF distributions and the breakdown diagrams.  

The experimental data are modeled using experimental parameters and either 

RRKM or SSACM.  For both RRKM and SSACM the vibrational frequencies of the ion 

were used to determine density of states, (E).  For the RRKM treatment, the vibrational 

frequencies of the ion equilibrium geometry were used for transition state frequencies  
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Figure 5-4Breakdown diagram for nitrosobenzene.  The points represent the 

experimental relative abundances of the parent (open) and fragment (solid) ion at each 

photon energy. The lines are the simulated results.   The squares and dashed lines 

consider all fragment ions formed after 7 μs to be parent while the circles and solid 

lines consider fragment ion formed after 19.5 μs to be parent.  
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less the C-N stretching mode.  In addition to the E0, the 4 vibrational frequencies 

corresponding to the transitional modes were scaled to fit the data. For SSACM, the 

product vibrational frequencies and rotational constants are used to determine the phase 

space theory transition state.  The rotational contribution to the transition state sum of 

states is scaled by an energy dependent rigidity factor f(E):  

  (5.1) 

In addition to the E0 and the IE, the variable, c, which is determined by the anisotropy of 

the interaction potential between the leaving neutral and fragment ion, was optimized to 

fit the data and to extract the limits of uncertainty for E0.   The modeled RRKM and 

SSACM curves are shown in Figure 5-5.  The time of flight distributions are modeled by 

taking into account the thermal energy distribution of the room temperature sample.  The 

RRKM and SSACM  rate curves are essentially identical throughout the experimental 

window which extends over 4 orders of magnitude,  but diverge at both higher and lower 

energies.   At lower energies, the SSACM transition state is at the phase space limit and 

therefore has much stronger energy dependence than does the RRKM, so that SSACM 

predicts a higher E0 than RRKM.   Figure 5-5 also shows the calculated ion internal 

energy distribution for a single photon energy, which is obtained by  assuming that the 

neutral thermal energy distribution is transposed to the ionic manifold.  Because the ion 

internal energy distribution covers nearly the entire experimental window, it is impossible 

to obtain accurate k(E) information without accounting for the ion internal energy 

distribution.  This is done by calculating TOF distributions at each ion internal energy 

and combining them, weighted by the ion internal energy distribution.  The extrapolated  
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Figure 5-5 RRKM and SSACM rate curves and ion internal energy distribution used 

to fit the experimental data.  The arrow indicates the location of the E0 determined 

from current literature values (see text). The error bars represent uncertainties in the 

extrapolated onset by SSACM and RRKM. 
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E0s are 10.533  0.02 eV and 10.607  0.02  eV for RRKM and SSACM respectively.  

For both rate models, the somewhat large uncertainty in IE(C6H5NO) was taken into 

account when computing the uncertainties in the E0’s. However, because the ionic 

dissociation energy (E0-IE(C6H5NO)) changes to offset changes in the IE(C6H5NO),  this  

had a negligible effect on the uncertainty in E0.  SSACM fits to the data were obtained 

with a fitting parameter c of 100 meV.  For RRKM, fits were obtained by scaling the 

transitional frequencies by 0.12, indicating a very loose transition state with an entropy of  

activation of 66 J/mol•K.   Although good agreement between the two models is observed 

within the experimental window, they extrapolate to different E0’s.  Previous studies have 

shown that the RRKM model extrapolates to E0 values that are to low, and so we utilize 

the SSACM results for extracting thermochemical information.   

5.3.2 The  heat of formation of C6H5NO 

The determined E0 (10.607  0.02) provides access to the fH(C6H5NO) from the 

known C6H5
+
 and NO heats of formation.  Using these values we obtain a 

fH0K(C6H5NO) of 216.1  2.6 kJ•mol
-1

.  This value is within mutual uncertainty of the 

fH(C6H5NO) derived from the neutral BDE of C6H5NO and C6H5 and NO heats of 

formation of 213.5  2.25 kJ•mol
-1

 and the higher value determined by Choo et al. of 

218.3  4.2 kJ•mol
-1

.
16

   

5.3.3 The  ionization energy of C6H5 

According to Figure 5-1, there are two paths for determining the IE(C6H5).  The 

first route is to take the difference between the Active Tables heats of formation of the 

phenyl radical and ion. Using the values reported in Table 5- 1 results in an IE(C6H5) of 

8.284  0.023 eV.   The second route is by taking the difference between the E0 and the 
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neutral BDE reported by Lin et al., which  results in an IE(C6H5) of 8.257  0.029 eV.  

These values are independent of one another, we can therefore reduce the uncertainty in 

the fH(C6H5NO) by taking an uncertainty weighted mean of the two values using the 

equation below. 

  (5.2a)  

  (5.2b) 

Where xi corresponds to the individual values of IE(C6H5) and I are the uncertainties in 

those values.  This method results in an IE of 8.273  0.018 eV.  This value is within 

mutual uncertainty of the IE(C6H5) determined by Butcher et al
5
 and in good agreement 

with the IE(C6H5) calculated by Lau andNg.
7
  

Table 5- 1. Derived and Ancillary Thermochemistry and Energetics. 

  
fH0K  

(kJ•mol
-1

) 
fH298K 

(kJ•mol
-1

) 

H298-H0 

(kJ•mol
-1

) 
IE  

(eV) 

E0  

(eV) 

D0  

(eV) 

C6H5NO 216.1 ± 2.6
a 

198.8 ± 2.6 18.8 8.50 ± 0.05
b 

10.607 ± 0.02 
a 

2.350 ± 0.022
c 

C6H5 350.5 ± 0.8
d 

337.2 ± 0.8
 

15.7 8.273 ± 0.018
a 

  
C6H5

+
 1149.8 ± 2.1

d 
1138.0 ± 2.1

 
14.2 

   NO 89.775 ± 0.17
e 

     a Determined in the present study. 
b Calculated using CBS-APNO  
cPark 19973 
dATcT value15 
eChase 199819 
 

5.4 Conclusion 

The 0 K dissociation onset for nitrosobenzene has been determined by SSACM 

modeling of data obtained by TPEPICO to be 10.607  0.02 eV.   Using this value the 

heat of formation of nitrosobenzene has been determined to be 216.1   2.6 kJ•mol
-1

.   

Using the E0 determined in this study and the previously determined neutral bond energy 
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of nitrosobenzene,
3
 in combination with the ATcT values for fH0K(C6H5) and 

fH0K(C6H5
+
), a new value for the phenyl radical IE  has been determined to be 8.273  

0.018 eV. This is in good agreement with the value calculated by Ng. et al and with 

mutual uncertainty of the IE experimentally determined by Butcher et al. 
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CHAPTER 6: Dissociative Photoionization Study of Neopentane: A path to an 

accurate heat of formation of the t-butyl ion, t-butyl iodide, and t-butyl 

hydroperoxide 

 

6.1 Introduction 

The t-butyl cation is a very stable ion, yet a high precision (± 1-2 kJ•mol
-1

) direct 

determination of its heat of formation, fH (t-C4H9
+
), has proven to be difficult.  An 

attractive route for obtaining ionic heats of formation is via dissociative photoionization, 

t-BuR + hv  t-Bu
+
 + R + e

-
.  If the precursor molecule, t-BuR, and the neutral fragment, 

R, have known energetics, an onset energy can be used to obtain the heat of formation of 

t-Bu
+
. However, the high stability of the ion actually causes a complication in that the 

parent ion is in many cases unbound, causing the dissociative photoionization onset to 

reflect only the ionization energy of the neutral. 

Another approach involves measuring the ionization energy of the t-butyl 

radical
1,2

  and obtaining the ion heat of formation using the t-butyl radical as the anchor.  

However, the large geometry change from tetrahedral to trigonal planar causes the 

Franck-Condon factors for the vi →vi
’
 transition to be very weak, thus enhancing hot band 

transitions.  Making matters even worse, the t-butyl radical is typically formed via 
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pyrolysis at temperatures in excess of 800 K, thus making an accurate determination of 

the IE of the t-butyl radical problematic.  These difficulties are illustrated in the various 

reported IE‟s which are, in chronological order, 6.58± 0.01  eV,
1
 6.70 ± 0.03 eV,

2
 and a 

recent unpublished result of 6.77 ± 0.02 eV
3
 

The final route to the t-butyl ion heat of formation is via calculations.
4
  Its closed 

shell structure makes this an attractive alternative to experimental approaches.  However, 

in order to improve upon experimental values for fH  0K(t-C4H9
+
), such calculations 

would have to be reliable to within 2.5 kJ•mol
-1

.  Such precision would require the 

highest level of theory (e.g. W4
5
 or HEAT

6
 methods). To date no such calculations have 

been reported.   

The best experimental measurements of the t-butyl ion heat of formation have 

come from dissociative photoionization measurements with neopentane,
7,8

 t-butyl 

iodide,
9-11

 and possibly isobutane,
8,12

 all of which have stable parent ions and yield t-

butyl ions as products.  The first such measurement was reported by Steiner et al.
7
 in 

which they measured the onset of the t-butyl ion from neopentane at various temperatures 

using photoionization mass spectrometry (PIMS).  The problem with such experiments is 

that the onset energy is ill defined because the shape of the PI curve is a function of the 

molecule‟s thermal energy, the shape of the photoelectron spectrum, the rate at which the 

ion dissociates, and competition with lower energy dissociation channels. Usually, a 

“straight line” portion of the fragment ion PI signal is extrapolated to intersect with the 

energy axis.  This phenomenological appearance energy must then be related to the 0 K 

dissociation limit.  By observing the shift in this appearance energy with temperature, 

Steiner et al. derived a 0 K CH3 loss onset energy of 10.56 ± 0.020 eV. The lower energy 
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CH4 loss onset was reported as 10.39 ± 0.020 eV.
7
  A rather strange finding in these 

neopentane data was that the onsets hardly shifted as the temperature was varied.  In the 

case of the CH3 loss reaction, The 0 K onset of 10.56 ± 0.02 eV was extrapolated from 

the 10.53 (150
o
C) and 10.55 (28

o
C) eV onsets.  As they pointed out, this 15 meV shift 

was only 11 % of the expected shift if all the neopentane thermal energy were available 

for dissociation.  The only other PIMS study of neopentane was carried out by Traeger
8
 

in 1996 who reported 298 K onsets of 10.38 ± 0.02 and 10.33 ± 0.01 eV for CH3 and CH4 

loss steps.  It is instructive to note that the 0.17 eV discrepancy between the Inghram and 

Traeger 298 K methyl loss onsets stems from the choice of the straight line portion of the 

PIMS curve chosen by the two groups.   However, because Traeger used the full thermal 

correction, whereas Inghram et al. used their measured extrapolation, the two 0 K values 

(10.56 and 10.54 eV, respectively) end up being quite similar.  Neither group took into 

account any correction for the interference of the lower energy CH4 loss channel. 

For a number of years, the isobutene proton affinity (PA)  accepted by the 

thermochemical community
13

 was based on the 1979 Houle and Beauchamp
2 

adiabatic 

ionization energy of the t-butyl radical (6.70 ± 0.03 eV) by  HeI photoelectron 

spectroscopy (PES), and a 1979 PIMS study of the H loss reaction from isobutane.
12 

   

Their derived heats of formation of 681.5  5 kJ •mol
-1

 and 678.5  3 kJ•mol
-1

 agreed to 

within their mutual uncertainty.  However, a decade later Radom and co-workers 

undertook an extensive theoretical study defining the PA scale using the G2 method.
14

  

The study noted a significant and systematic discrepancy between calculated and 

experimental values, which would be rectified were the accepted isobutene PA anchor 

too positive by roughly 20 kJ•mol
-1

.  Further G2 calculations suggested a t-butyl cation 
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298 K heat of formation  of 716 kJ•mol
-1

,
4
 prompting a reevaluation of the experimental 

results.  Apparently, an uncertain IE measurement of the t-butyl radical coupled with an 

even less certain t-butyl radical heat of formation caused the resulting t-butyl ion heat of 

formation to be in error.  The PIMS measurement on isobutane, later corrected by 

Traeger,
8
  suffered from t-C4H9Cl contamination in addition to the fact that the H loss 

reaction accounts for less than 1% of the yield because of competition with methane loss, 

which makes its PIMS onset determination very unreliable. 

In search of another route for establishing the t-butyl ion heat of formation, 

Keister et al.
10

 used a supersonically cooled beam of t-butyl iodide and collected 

threshold photoelectron photoion coincidence (TPEPICO) spectra at energies near the 

dissociation limit for I atom loss.  They extracted a 0 K onset energy of 9.180 ± 0.015 eV, 

which yielded a 298 K t-butyl cation heat of formation of 711  3.6 kJ•mol
-1

, in good 

agreement with the calculated G2 results for Radom.  However, this analysis was marred 

by low signal level due to the molecular beam, a significant contribution of hot electrons 

to the spectrum, and the ± 3.3 kJ•mol
-1 

uncertainty in the t-butyl iodide heat of formation.  

Although the data were modeled by taking into account the contaminating hot electrons, 

the derived onset is less than firm.    More recently, Kim et al.
11

 determined the I loss 

onset from t-butyl iodide ions by mass analyzed threshold ionization (MATI) in which t-

butyl iodide cooled in a molecular beam was ionized by a vacuum UV laser and the 

parent and daughter ion signals monitored as a function of the laser energy.  Although the 

data are somewhat less than convincing, they derived an onset of 9.176 ± 0.004 eV, 

which agrees well with the 9.180 ± 0.015 eV TPEPICO onset of Keister et al.
10

  These 

two measurements are probably the most consistent and best values for determining the t-
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butyl ion heat of formation.  However, the t-butyl iodide heat of formation is known to 

only 3.3 kJ•mol
-1

, an uncertainty that is then transferred to the t-butyl ion.  So, this route 

is also not optimum for obtaining an accurate value for the t-butyl ion heat of formation. 

The fundamental problem in establishing an accurate heat of formation of the t-

butyl ion by dissociative photoionization is that of the few systems that dissociate simply 

to form t-C4H9
+
 (i.e. no lower energy pathways, stable parent ion, etc.) none have 

established heats of formation.  Two reactions, the previously mentioned t-butyl iodide 

and the not yet investigated t-butyl hydroperoxide, yield the t-butyl ion fall into this 

category.  On the other hand, neopentane has a very  well established heat of formation of 

167.9 ± 0.8 kJ•mol-1,15
 which is based on  a bomb calorimetry measurement.  In addition, 

high level quasi W4 level calculations by Karton et al.
16

 on a variety of hydrocarbons, 

including neopentane, have reported a value of -166.0 kJ/mol, which agrees reasonably 

well with the experimental value of Good.  However, the methyl loss reaction for this ion 

is in competition with a lower energy methane loss, which makes the extraction of the 

higher energy onset difficult.    Fortunately, recent progress in our laboratory in modeling 

complex dissociation paths involving both parallel and sequential reactions
17

 gives us the 

opportunity to extract a high quality onset for the methyl loss reaction in the presence of 

the slightly lower energy methane elimination.   An accurate heat of formation for the t-

butyl ion then allows us to obtain an accurate heat of formation of the t-C4H9I and t-

C4H9OOH, as well as a more reliable proton affinity of the isobutene molecule.   
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6.2 Results 

We begin with the more easily analyzed t-butyl iodide and t-butyl hydroperoxide 

results. Both dissociations proceed through a single channel at a rate much faster than 

the microsecond time scale of the experiment. 

6.2.1 t-Butyl Iodide 

The relative abundances of the parent and fragment peaks are plotted as a function 

of photon energy in Figure 6-1 for t-C4H9I (i.e. a breakdown diagram).  The only product 

ion observed over this energy range is the t-C4H9
+
 ion.   Additionally the t-C4H9

+
 peak is 

symmetric at low energies, indicating that the dissociation rate is faster than the timescale 

of our apparatus (>10
7
 s-1).    

When the dissociation rate is fast, the E0 for the lowest energy dissociation 

pathway is located at the energy at which the parent ion disappears.  However, for large 

ions with many vibrational degrees of freedom, the precise energy at which the parent ion 

disappears is poorly defined and modeling is necessary to determine this 0 K dissociation 

energy.  The ion internal energy, relative to the ground state of the ion, is given by 

Eion(h ) = h  – IE + ETh, where IE is the adiabatic ionization energy and h  is the photon 

energy.  If P(E) is the normalized thermal energy distribution of the ion, then the relative 

abundance of t-C4H9I
+
, BDC4H9I(h ),  is determined by the portion of the ion internal 

energy distribution that lies below the 0 K dissociation threshold E0(t-C4H9
+
): 

 

 (6.1) 

The relative fragment ion abundance is then  

 BDC4H9(hν)= 1 – BDC4H9I(hν) (6.2) 
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When the photon energy exceeds E0, the fractional parent and daughter ion signals 

remain 0 and 1, respectively.    

It is often possible to assume that the internal energy distribution of the neutral 

molecule is faithfully transposed to the ionic manifold upon ionization.
18

  However, this  

assumption may fail when the ion and neutral geometries are significantly different. This 

geometry change causes low Franck-Condon factors for vi →vi
‟
 transitions and therefore a 

different internal energy distribution for the ion.  Such a case was found in the ionization 

of SiCl3H 
19

 for which the ion structure has an elongated Si-H bond and a nearly planar 

SiCl3 subgroup, relative to the neutral.  As a result, the ion vibrational modes are much 

looser, and the ion internal energy distribution is best described by a temperature 22 K 

higher than that of the neutral.  Similar results are observed for all three systems studied 

here.  Unfortunately, we are unable to describe these changes quantitatively in order to 

predict the ion energy distribution and must treat the distribution as an additional fitting 

parameter.   This extra parameter increases the uncertainty in the E0 by about a factor of 

two for the case of t-butyl iodide.  The best fit E0 (Figure 6-1) was 9.170  0.007eV with 

an optimized temperature of 280 K for the nominal temperature of 260 K.  This is within 

the experimental error of the previous TPEPICO measurement by Keister et al.
10

 (9.18 ± 

0.015 eV) as well as the laser based MATI value of 9.176 ± 0.004 eV.
11

  Table 6-1 

summarizes the current and previously measured onset energies. 

6.2.2 t-Butyl hydroperoxide 

The breakdown diagram for t-C4H9OOH is shown in Figure 6-2.  As with t-C4H9I,   

eq. 6.1 can be used to determine E0(t-C4H9
+
).  The B3LYP optimized structures of the ion 
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Figure 6-1 t-butyl iodide breakdown diagram acquired at 260 K.  Points are 

experimentally measured ion abundances.  Solid line is the best-fit simulation of the 

data (see text); dashed lines are the simulated fits at the edges of the reported 

uncertainty. The inset graph is an expanded view of the breakdown diagram in the 

energy range of the determined onset.  
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a
 McLoughlin and Traeger 1979;

12
  

b
Traeger 1996;

8 c
These values reflect the ionization 

energy of t-C4H9I and were therefore not converted to E0; 
d
Oliveira, Olesik, Almoster 

Ferreira and Baer 1988;
9
  

e
Keister, Riley and Baer 1993;

10
  

f
Park, Kim and Kim 2001;11  

g
These values were obtained in the current study; 

h
Steiner, Giese and Inghram 1961;

7
  

i
Only AE298 values were reported, an E0 was determined by adding the neutral internal 

energy (<Evib>+<Erot>)  of 0.15 eV to AE298 .and neutral molecules show a change in ion 

geometry where the central carbon moves into the same plane as the methyl groups and 

the C-O bond length increases.  As with t-butyl iodide, the temperature used to fit the 

experimental breakdown diagram was higher than the neutral temperature.  The 

determined E0 was 9.904  0.012 eV with a temperature of 330 K for a nominal 

temperature of 298 K. 

Table 6-1 Comparison of E0(t-C4H9
+
) (in eV) with previously determined studies.  

Precursor Ion AE298K E0 

t-C4H9I t-C4H9
+
  8.98

a,c 

 
0.01 

    

8.99
b,c

 

 
 

 

9.16
d 

0.01 

0.03 

      9.18
e
 0.015 

     
 

9.176
f
 0.005 

 

  

9.170
g
 0.010 

t-C4H9OOH t-C4H9
+
 

 

9.904
g 

0.012 

(CH3)4C t-C4H9
+
 10.55

h 
10.56

h
 0.02 

    10.38
b
 10.53

i 
0.02 

      10.564
g 

0.025 

 C4H8
+
 10.37

h
 10.39

h 
0.02 

  10.33
b
 10.48

i
 0.01 

   10.397
g 

0.010 
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6.2.3 Neopentane 

TOF spectra of (CH3)4C taken at 223 K (LinTOF), 260 K (Re TOF), and 298 K 

(LinTOF) are shown in Figure 6-2.  Spectra taken with the ReTOF with its resolution of 

350 have clearly resolved m/Z 56 (C4H8
+
) and m/Z 57 (t-C4H9

+
 and 

13
C4H8

+
) peaks.  

Spectra taken with the LinTOF mass analyzer, resolution of 100, have these peaks less 

well resolved so that the peak areas are determined by fitting the spectra with a linear 

combination of Gaussian functions. 

The breakdown diagrams corresponding to the three different temperatures for 

neopentane are shown in Figure 6-3.  Because the dissociation is fast, the breakdown 

diagrams are not dependent upon the total flight time, and therefore independent of which 

apparatus (the LinTOF or the ReTOF) was used.   Poor Franck-Condon factors and low 

photon intensity at the ionization threshold cause the increased scatter at lower photon 

energies observed in the breakdown diagrams.    

Figure 6-3 shows that the appearance of t-C4H9
+
 is slightly higher in energy than 

C4H8
+
.  This means that in order to obtain E0(t-C4H9

+
), both dissociation channels must 

be modeled simultaneously.  Methane loss is the lowest energy channel and as a result the 

0K dissociation energy, ECH4, is obtained as was described above for t-C4H9I.  However, 

the higher energy competitive loss of the methyl group is more complicated because there  
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Figure 6-2  Experimental neopentane mass spectra acquired at various temperatures.  

The 260 K spectrum used a ReTOF analyzer at a photon energy of 10.365 eV while 

spectra acquired at 220 K and 298 K used the LinTOF mass analyzer at 10.345 and 

10.373 eV.  The 260 K spectrum has been scaled so that the masses are aligned with 

the linear TOF spectra 
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Figure 6-3 Breakdown Diagrams for neopentane acquired at 220 K, 260 K and 300 K.  

The arrows indicate the best fit E0(t-C4H9+) and the whiskers indicate their 

uncertainties.  The dotted line indicates the weighted average of the three E0(t-

C4H9+).   The dashed lines represent the upper and lower limits of acceptability of the 

fit to the data. 
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is no feature in the breakdown diagram (e.g. the energy at which the parent ion 

disappears) from which the E0 (t-C4H9
+
) can be directly measured.  Instead, the 

breakdown diagram reflects only the relative rates of the competing dissociation 

channels.
17

 Using the statistical theory, the branching ratio at an ion energy, E, measured 

relative to the ground state ion, can be calculated using eqn. 6.3: 

  (6.3) 

 

where the IE is assumed to be 10.21 eV,
20

   represents the reaction symmetry numbers, 

which are 3 and 1 for C4H8
+
 and t-C4H9

+
 formation, respectively, and  N

‡ 
is the transition 

state sum of states for the two dissociation pathways.  Because the branching ratio is 

known over the experimental range, if k(E) for C4H8
+
 formation  is known then, according 

to eqn. 6.3, the k(E) over the same energy range for t-C4H9
+
 is also known.    

The best fit ECH4’s were 10.396  0.014, 10.391  0.019 and 10.408  0.021 eV 

with optimized temperatures of  280  20 K,  300  30 K and 370  30 K for the nominal 

temperatures of 220 K, 260 K, and 298 K respectively.  The uncertainties in the ECH4 

were obtained by varying the assumed temperatures by the indicated amounts.  The ECH4 

and the assumed temperature are quite independent of each other in that changing ECH4 

translates the modeled curve, while the temperature varies its slope.  These uncertainties 

are somewhat larger than those obtained for the t-butyl iodide and t-butyl hydrogen 

peroxide because of the scatter in the parent ion abundance at low energies.  However, 

we can reduce the uncertainty in the derived onset energy by treating the three 

experiments as independent. We obtain a weighted average value and uncertainty using 

equations 6.4a and 6.4b.
21
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 i i

i iix
x

2

2

 (6.4a) 

  (6.4b) 

where xi represents the experimental onset energy and i is the uncertainty in that value.  

The average value of 10.397 ± 0.010 eV, shown in Table 6-1, agrees very nicely with the 

0K value of 10.39 eV of Steiner et al.
7
, but differs considerably from the Traeger value of 

10.48 ± 0.010 eV.
8
 

The heats of formation of both C4H8
+ 22,23

 and methane
24

 co-products are well 

known from which we can calculate the thermochemical dissociation threshold to be 9.91 

eV, which is well below the observed onset of 10.397 eV.  The methane-loss channel 

must have a significant reverse barrier, a conclusion supported by DFT calculations 

(Figure 6-4).    It is evident from this figure why the methyl reaction, which is in 

competition with the lower energy methane loss reaction, will not have a sharply defined 

onset.  At its energy threshold, the number of open channels via the methane loss reaction 

will be huge so that the methyl loss signal is negligibly small.  Its threshold energy thus 

requires fitting the breakdown diagram with eq. 6.3 for which we need to know the sum 

of states for both channels.  Although we do not have experimental information about the 

absolute rates, we can calculate the methane loss reaction rate constant using RRKM 

theory
25

 if the transition state for this reaction can be established.  The geometry of the 

transition state at the top of this barrier was found using the STQN method at the 

B3LYP/6-311++G(d,p) level.  The vibrational frequencies for this tight transition state 

were thus used to calculate N
‡
(E) for the CH4 loss reaction.

 
It is possible for tunneling to 

contribute significantly to the dissociation rate, including at higher energies where 
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Figure 6-4. Experimental energies and calculated structures of neopentane ion 

dissociation.  
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accurately modeling the C4H8
+
 rate is critical to determining the C4H9

+ 
rate.  We 

attempted to model the methane-loss channel including tunneling through an Eckart 

barrier treating critical frequency as an optimizable parameter,
25

 however no acceptable 

fit to the data could be found except at conditions where the tunneling contribution was 

negligible.  The calculated rate curve ignoring tunneling and using the calculated 

transition state frequencies appears in Figure 6-5.  To account for uncertainty in the 

calculated frequencies, rate curves were calculated with the transition state frequencies 

scaled by 0.8 and 1.2 when determining the upper and lower limits of uncertainty in E0(t-

C4H9
+
).  

With the methane loss reaction rate constant established, we can use the 

experimentally determined branching ratios to determine the methyl loss reaction rate 

using eqn. 6.3.  In so doing, we must again take into account the full thermal energy 

distribution of the neopentane ion.  The 0 K dissociation onset can then be obtained by 

extrapolating the methyl loss rate constant to its threshold energy.  The formation of t-

C4H9
+
 occurs via homolytic bond cleavage without a barrier along its dissociation path.  

As a result, there is no fixed location and energy for the transition state that leads to t-

C4H9
+
. It has been shown

26,27
 that the use of a fixed transition state with RRKM theory 

fails to accurately extrapolate to the E0.  More appropriate treatments are variational 

transition state theory
28,29

  or the statistical adiabatic channel model,
25

 however both 

require arduous calculation and ultimately, for larger molecules, require some sort of 

fitting parameter.  An alternative is the simplified statistical adiabatic channel model 

(SSACM) which has recently been shown
26,27

 to accurately model the specific rate curves 

of several barrierless ionic dissociations.   Details of the model may be found 
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elsewhere.
25

 In brief, SSACM is a first-order correction to the orbiting transition state 

phase space theory, accounting for anisotropy along the reaction coordinate by scaling 

the number of states of the transitional modes by an energy dependent rigidity factor 

(frigid) and then convoluting this with the density of states of the rest of the molecule to 

get a total transition state sum of states.   Troe et al.
30

  have suggested various forms for 

the rigidity factor including:  

 
3

2

01
c

IEEE
frigid  (6.5)  

where c is a fitting parameter used to model the branching ratios.  SSACM tends to 

underestimate dissociation rates at ion internal energies well above threshold;
19 

the form 

of frigid used in (5) appears to mitigate this issue relative to other functional forms.  Using 

the N
‡
(E) defined by SSACM, the branching ratios can be calculated using eqn.6.3.    

E0(t-C4H9
+
) and „c‟ are varied to determine the best fit to the data.   To determine the 

overall uncertainty in the derived E0(t-C4H9
+
),  the temperature, ECH4, and CH4 loss 

transition state frequencies were all varied.  The best fit E0’s for the three data sets were 

10.560  0.036 eV, 10.560   0.043 eV, and 10.582  0.059 eV, which, using equations 

4a and 4b result in an average 0 K onset energy of 10.564  0.025 eV.  It is interesting 

that this value does not differ much from the previous determinations, in which the 

quoted error limits were smaller (see Table 6-1).  However, the current value is much 

more trustworthy as it has been determined using the statistical theory with lower energy 

dissociation channels taken into account and error limits that reflect a more realistic 

uncertainty. 
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6.2.4 Derived t-C4H9
+
, t-C4H9I, and t-C4H9OOH heats of formation 

The three 0 K onset energies for t-C4H9
+
 formation from t-C4H9I, t-C4H9OOH, 

and (CH3)4C can now be used in the thermochemical cycle below. 

 

  (6.6) 

 

The precision with which we can determine fH
o

0K(t-C4H9
+
)  using the 

neopentane cycle is better than the uncertainty in the heats of formation of t-C4H9I and t-

C4H9OOH.  We will therefore use the t-C4H9
+
 heat of formation determined from 

neopentane in the other 2 cycles to obtain better values for the t-butyl iodide and t-butyl 

hydroperoxide heats of formation.  

The first task is to establish the 0 K heat of formation for neopentane.  We must 

therefore determine H298-H0 for the constituents of the formation reaction. H298-H0 for the 

reactants, C(s) and H2 (g) , are reported by Chase.
24

  Although the H298-H0 for neopentane is 

listed in the 1974 compilation of Scott
31

 as 23.2 kJ/mol,  there is no indication as to 

whether this is an experimental value or calculated on the basis of assumed vibrational 

frequencies.  This is troubling because neopentane, as well as a number of other 

molecules in this study, has multiple methyl rotors, whose motion should be considered 

in terms of hindered rotors rather than vibrations.  Karton et al.
16

 recently reported a 

theoretical H298 –H0 value corrected for internal rotations based on the method described 

by Ayala and Schlegel
32

 which is 3 kJ/mol lower than the Scott value.  This discrepancy 

must be primarily due to the assumed vibrational frequencies of neopentane because the 

hindered rotor correction is only 0.5 kJ/mol.  The average deviation of the H298-H0 
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calculated by Karton et al from those reported by Scott for the other 16 linear and 

branched isomers of alkanes containing 4-8 carbon atoms was 0.25 kJ •mol
-1

.  Because 

we have no way of knowing on what basis the Scott conversion for neopentane was 

reported, and because other calculations in the same study by Karton et al. were shown to 

be quite reliable, we choose to adopt the theoretical H298 –H0 value. The fH
o

0K((CH3)4C) 

is therefore -132.2  0.8 kJ •mol
-1

. 

These 0 K heats of formation can now be used in Eqn. 6.6 to determine a 

fH
o

0K[t-C4H9
+
] of 737.1 ± 2.5 kJ•mol

-1
.  Converting this value to 298 K requires the 

calculation of H298 – H0 for the t-butyl ion, which we did using the same method as 

described by Karton et al., which yielded a 298 K value of 714.3 ± 2.5 kJ•mol
-1

.   We 

used the stationary electron convention in which the electron energy is 0 regardless of 

temperature.  This t-butyl ion heat of formation is somewhat higher than the 1993 

PEPICO study of t-butyl iodide,
10

 which reported  the generally accepted value for 

fH 298K(t-C4H9
+
) of  711 ± 3.6 kJ•mol

-1
. The new t-C4H9

+
 heat of formation with realistic 

error limits, and which is firmly based on neopentane as an anchor, can now be employed 

to obtain the heats of formation of the t-butyl iodide and t-butyl hydroperoxide, which are 

listed in Table 6-2.  The t-butyl iodide value of -68.5 ± 2.6 kJ•mol
-1

 is considerably lower 

than the Pedley value of -72.1 ± 3.3 kJ•mol
-1

, although it falls within the combined error 

limits  The heat of formation for the t-butyl hydroperoxide of -233.2 ± 2.5 kJ•mol
-1

 

complements a 1964 heat of combustion measurement by  Kozlov and Rabinovich
33

 of -

246. ± 5.0 kJ•mol
-1

.  The NIST Chemistry WebBook
34

 lists a second value of -234.9 

kJ•mol
-1 

with no error limits quoted by  Khursan and Marten‟yanov.
35

  This value is taken 

from a compilation in preprint form by Komissarov, whose book we cannot find.    
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A new and preliminary value for IEad (t-C4H9) of 6.77 0.02  eV has been 

determined by Fischer et al
3
 from a threshold photoelectron spectrum using 

supersonically cooled t-butyl radicals formed from the pyrolysis of di-tert-butyldiazine 

seeded in argon.  This value is significantly higher than previous values (6.58
1
 and 6.70 

eV
2
), indicating perhaps that the radicals are colder than in the other experiments. 

However, when our new t-C4H9
+
 heat of formation is combined with the accepted value 

for the radical fH
o

298K(t-C4H9) of 51.5  1.3 kJ•mol
-1 

,
 36

  we predict an adiabatic IE of 

6.87  0.02 eV, which is a 0.10 eV (10 kJ/mol) higher still.   What is clearly required is a 

vibrationally resolved PES of the t-butyl radical. 

 

 

 

 

 

 

 

 

 

a
 Good, W. D. 1970;

15
 

b
Karton, Gruzman, and Martin, 2009;

16
 

 c
These values were 

obtained in the current study;
 d

 Pedle 1994;
37

 
e
Chase 1998

24
; 

f
Obtained using the 

convention that excludes the enthalpy of the electron at room temperature.   

 

Table 6-2 Derived and Ancillary Thermochemical values. (kJ•mol
-1

) 

 
fH  298K fH  0K H298-H0

(CH3)4C -168.0 ± 0.8
a
 -132.2 ± 0.8 20.3 

 
-166.0

b
 

 
 

t-C4H9I -68.5 ± 2.8
c 

-40.5 ± 2.6 20.9 

t-C4H9OOH -233.2 ± 2.8
 c 

-203.3 ± 2.8 24.3 

t-C4H9
+
 714.3 ± 2.5

c,f 
737.1 ± 2.5 19.0 

OOH 
 

15.2 ± 0.3
d
  

CH3  
149.9

d 
 

I 
 

107.2
d
  

H
+ 

1530.0
e,f 

 
 

i-C4H8 -16.9  0.9
d
   

PA(i-C4H8
+
) 798.8  2.5   
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6.3 Isodesmic Calculations of the t-C4H9
+
 heat of formation 

In support of the experimentally derived t-C4H9
+
 heat of formation, we calculated the 

G3 and CBS-APNO energies for the following isodesmic reactions: 

 

The t-C4H9
+
 heat of formation is determined from the calculated reaction energy 

and the experimental heats of formation for the other reaction constituents.  The methane 

heat of formation
38

 and the corresponding E0(CH4  CH3
+
 + H

 
)
39

 are very well known 

and provide a value of 1099.37 ± 0.1 kJ•mol
–1

 for fH  0K(CH3
+
).  Using fH  0K(i-

C3H7Cl)
37

 and a recently measured photoionization onset for the isopropyl ion from i-

C3H7Cl of 11.065  0.003 eV,
40

 which is very close to a calculated value reported by 

Brooks et al. of 11.061 eV,
41

 the fH
o
0K(i-C3H7

+
) has been determined by us to be 824.1  

1.3 kJ•mol
-1

 .  The heats of formation of the neutral hydrocarbons are all reported by 

Pedley
37

 to within 1 kJ•mol
-1

.

Table 6-3shows the fH
o

0K(t-C4H9
+
)  determined by calculations of the above 

isodesmic reaction energies. The scatter in the G3 values is somewhat high, however the 

average of 738.7 kJ•mol
-1

 is in excellent agreement with the experimental value of 737.1 

 2.5 kJ•mol
-1

.    The higher level CBS-APNO method provides results that exhibit less 

scatter and whose average value of 736.2 kJ/mol agrees equally with the experimental 

value.  When we take the average of the G3 and CBS-APNO values, we obtain a 
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fH
o

0K(t-C4H9
+
) = 737.5 kJ/mol.  These calculated results thus provide strong support of 

the new experimental t-butyl ion heat of formation. 

 

6.4 Proton Affinity of isobutene 

The proton affinity of isobutene and its use as an anchor for the proton affinity 

scale has played an important role in the history of the t-C4H9
+
 heat of formation.  Using 

the currently reported value of the  fH
o

298K(t-C4H9
+
) provides a value for PA298K(C4H8) of 

798.8  2.5 kJ•mol
-1

   This value is outside of the uncertainty of the previously accepted 

value of 801.7  1.4 kJ•mol
-1

.
8
 However, it is probable that these uncertainties were 

significantly underestimated.   

6.5 Conclusion 

fH
o
298K(t-C4H9

+
) has been determined to be 714.3  2.5 kJ•mol

-1
  from 

measurement of the E0(t-C4H9
+
) by  modeling TPEPICO breakdown diagrams of 

neopentane at 220 K, 260 K, and 300 K.  The higher than previously reported uncertainty 

reflects the true uncertainty in the value rather than sensitivity of fit as reported in PIMS 

measurements.  Breakdown diagrams were also modeled for t-butyl iodide and t-butyl 

hydroperoxide and the E0(t-C4H9
+
) was determined for both species.  Using the currently 

determined value for fH
o

298K(t-C4H9
+
), fH 298K(t-C4H9I) and fH

o
298K(t-C4H9OOH)  

were determined to be -68.5  2.6 kJ•mol
-1

 and -233.2  2.8 kJ•mol
-1

, respectively.  A 

Table 6-3 fH  0K(t-C4H9
+
) determined from ab initio isodesmic reaction energies. 

(kJ•mol
-1

) 

t-C4H9-X + Y
+ 

→t-C4H9
+
 + XY 

  Y= CH3-G3 i-C3H7-G3 CH3-CBS-APNO i-C3H7-CBS-APNO 

X= 
H 740.0 735.8 736.6 734.8 

CH3 741.5 737.6 737.4 736.1 
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new proton affinity of isobutene is 798.8  2.5 kJ•mol
-1

 .  These new results do not 

remove the discrepancy between the well established t-C4H9  radical heat of formation 

and its ionization energy.  Two PES and one TPES measurement of this radical yield 

adiabatic IE‟s that are about 0.1 eV below the predicted value.  This problem will 

probably not be resolved until a vibrationally resolved photoelectron spectrum is 

collected.  
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CHAPTER 7: Conclusions 

 

The work described in this dissertation deals with the dissociation energetics and 

dynamics of three types of ionic reactions, which include a case of a fast dissociation, 

two systems in which the dissociation rates are slow compared to the experimental time 

scale, and one case where competing dissociation paths required the use of detailed 

modeling of the reaction rates.    The data for the fast dissociation of halogen loss from 2-

propyl halide ions was one of the first experimental data sets determined at the new 

iPEPICO end station at the VUV beamline of the Swiss Light Source (SLS).  These 

results have resolved a long standing conflict in the literature concerning the dissociative 

photoionization onsets.  The slow dissociation of halobenzene ions were used to test 

various unimolecular dissociation rate theories.  This required careful measurement of 

reaction rates over a range of 4-5 order of magnitude.  A special effort was made to 

extend this range to very slow rates, to about 3x10
2
 s

-1
. These results have shown clearly 

that flexible transition state models such as VTST and SACM are required to reliably 

model the rates of homolytic bond cleavages. In chapter 5, SSACM was used to 
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extrapolate to the E0 for the formation of phenyl ions from nitrosobenzene.   The 

E0  was then used to determine  more precise values for the ionization energy of the 

phenyl radical and the heat of formation of nitrosobenzene.   In chapter 6, RRKM 

wasappropriate for the CH4 loss which occurs via rearrangement and SSACM was used 

for the homolytic CH3 loss. The bond energy for CH3 loss was then used to determine the 

heat of formation of the t-butyl ion which is used to anchor the gas phase proton affinity 

scale.  

A different form of the rigidity factor was used in chapter 6 from the one in 

chapters 4 and 5.  Both forms of the rigidity factor as well as a third have been previously 

reported in the literature by Troe.
1
 The functional form is chosen based on which one best 

describes the data.  Because the rigidity factor has little to no effect at low internal 

energies, changing the functional form of the rigidity factor  results in a similar value for 

the extrapolated E0 but with a larger uncertainty and worse fit to the data.  However, a 

significant improvement to this model would be an a priori method of determining the 

most appropriate functional form of the rigidity factor.  
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