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ABSTRACT 

Yasuyuki Akita: Spatial Statistics And Regression Analysis Of Environmental 
Exposure And Disease: From Air Pollution And Microbial Groundwater 

Contamination Assessment To Diarrhea Disease Mapping 
(Under the direction of Marc L. Serre) 

 

Recent technological advances in temporal geographic information systems 

(TGIS) include the Bayesian Maximum Entropy (BME) method, which accounts for 

the composite space/time variability and the wide variety of soft data characterizing 

many environmental and health processes. However, there are still several 

unaddressed implementation issues in the application of BME in environmental and 

health studies. In this work, the BME approach is applied to an air and a water 

environmental exposure assessment study where several unaddressed 

implementation issues are addressed. 

First, a moving-window implementation of the BME method was numerically 

implemented and applied to the assessment of long-term exposure to ambient PM2.5 

across the contiguous U.S.  Results for this work indicate that the moving-window 

BME method provides an efficient framework to account for the non-stationarity of 

the air pollutant variability and for the incompleteness of daily PM2.5 measurements, 

which leads to estimates that are about 10 to 20% more accurate than those of 

classical approaches.
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In a second study a two-stage estimation framework is implemented to 

estimate the concentration of E. coli across the tubewells in Bara Haldia, 

Bangladesh. The first stage of this framework consists in a latrine hydrological 

regression model, while the second BME stage of this estimation framework 

rigorously accounts for the uncertainty associated with the Most Probable Number 

(MPN) estimation of the density of microorganisms using data from multiple dilution 

series. The findings of this work indicate that latrines are a potential source of 

contamination of tubewells and thus have a significant impact on the spatial 

distribution of E. coli across tubewells. 

Both applications show that the estimation framework based on the BME 

method successfully reduces estimation error compared with conventional 

geostatistical methods and provide highly informative maps. 

 

 



v 
 

ACKNOWLEDGEMENTS 

 

This dissertation would not have been possible without the support of a 

number of people. Foremost, I would like to express my sincere gratitude to my 

advisor, Dr. Marc Serre, for his excellent guidance, patience, and encouragement 

throughout my Ph. D. work. His profound insight into science and enthusiasm in 

research had always motivated me. 

I would also like to thank my Ph.D. committee members, Dr. William G. 

Vizuete, Dr. Michael E. Emch, Dr. Jiu-Chiuan Chen, and Dr. Andrew D. Gronewold. 

Without their remarkable assistance, advice, and criticism, this study would not have 

been successful. 

I would acknowledge to all members of EID project. Without their support I 

would not be able to complete my analysis. A special thank goes to Veronica 

Escamilla for her GPS survey data set that I used extensively in my work.  

It is a pleasure to express my gratitude wholeheartedly to all of my friends in 

the U.S. and in Japan for their continuous support and encouragement. I was 

extraordinarily fortunate to have great friends here in Chapel Hill. I also gratefully 

thank former and current lab mates at BMElab for their friendship and their 

willingness to share their thoughts with me during my Ph.D. work. 

Finally, I would like to heartily thank all my family for all the support they 

provided during my Ph.D. period. I would like to express my deepest appreciation to 



vi 
 

my wife, Naomi, for her endless support throughout the entire doctoral process. 

Without her support, I could not complete my Ph.D. work. I also thank my mother, 

Junko Akita, who sincerely raised me with her caring and gently love and my father, 

Yasuhiro Akita, who inspired me to pursue a doctoral degree. He passed away in 

2004 after a long-time battle with cancer. But I believe that he is still living in my 

heart.  

 



vii 
 

TABLE OF CONTENTS 

 

LIST OF TABLES ...................................................................................................... xii 
 
LIST OF FIGURES ...................................................................................................xv 
 
LIST OF ABBREVIATIONS ................................................................................... xviii 

CHAPTER 

1: Introduction ............................................................................................................ 1 

 
2: Moving-window Bayesian maximum entropy space/time  

mapping of annual PM2.5 ambient concentration across the U.S. .......................... 7 

2.1. Background ..................................................................................................... 7 

2.2. Materials and Methods .................................................................................. 10 

2.2.1. PM2.5 Monitoring Data ............................................................................. 10 

2.2.2. The Moving-window Approach ................................................................ 11 

2.2.3. The Bayesian Maximum Entropy Method ............................................... 11 

2.2.4. The hard and soft PM2.5 yearly average concentration data ................... 14 

2.2.5. Estimation of spatial autocorrelation ....................................................... 17 

2.2.6. Cross-validation analysis ........................................................................ 17 

2.2.7. Simulation ............................................................................................... 19 

2.2.8. Space/Time Sensitivity Analysis ............................................................. 19



viii 
 

2.3. Result ............................................................................................................ 21

2.3.1. PM2.5 yearly average concentration ........................................................ 21 

2.3.2. Cross-validation analysis ........................................................................ 24 

2.3.3. Space/Time Sensitivity Analysis ............................................................. 26 

2.3.4. Simulation Study ..................................................................................... 27 

2.3.5. Estimation Map ....................................................................................... 28 

2.4. Discussion ..................................................................................................... 30 

3: Influence of rainfall on the spatial variability of fecal indicator bacteria  
across tubewells in a village of Matlab, Bangladesh ............................................ 36 

3.1. Background ................................................................................................... 36 

3.1.1. Diarrheal disease in the developing countries ........................................ 36 

3.1.2. Drinking water source and microbial contamination in Bangladesh ........ 37 

3.1.3. Groundwater and rainfall ......................................................................... 38 

3.2. Material and Method ...................................................................................... 39 

3.2.1. Study Area .............................................................................................. 39 

3.2.2. Rainfall Data ........................................................................................... 41 

3.2.3. Tubewell Water Sample and Enumeration of Fecal Indicator Bacteria ... 42 

3.2.4. Covariance function ................................................................................ 45 

3.2.5. Statistical analysis .................................................................................. 46 

3.3. Results .......................................................................................................... 47 

3.3.1. Quality Control Statistical Tests .............................................................. 47 

3.3.2. Seasonal Variation of E. coli concentration ............................................. 50 

3.3.3. Covariance Model Parameters ............................................................... 52 

3.3.4. Statistical analysis .................................................................................. 54 



ix 
 

3.4. Discussion ..................................................................................................... 55 

4: Space/Time Statistical Estimation of Fecal Indicator Bacteria across  
Drinking Wells in Bangladesh using Latrine Locations and Rainfall ..................... 61 

4.1. Background ................................................................................................... 61 

4.2. Material and Method ...................................................................................... 63 

4.2.1. Study Area/ Tubewell Water Sample/Precipitation Data ......................... 63 

4.2.2. Latrine hydrological regression model .................................................... 63 

4.2.3. Hyperparameter Selection ...................................................................... 67 

4.2.4. Estimation at unmonitored location ......................................................... 68 

4.3. Results .......................................................................................................... 71 

4.3.1. Hyperparameter Selection ...................................................................... 72 

4.3.2. Covariance Function ............................................................................... 74 

4.3.3. Cross validation ...................................................................................... 76 

4.3.4. Estimation at unmonitored location ......................................................... 77 

4.4. Discussion ..................................................................................................... 80 

5: Inter annual variability of community surveyed diarrheal disease  
among children from 2000 to 2002 in Matlab, Bangladesh .................................. 85 

5.1. Background ................................................................................................... 85 

5.2. Material and Method ...................................................................................... 86 

5.2.1. Study Area .............................................................................................. 86 

5.2.2. Demographic and health data ................................................................. 86 

5.2.3. Risk factors for diarrheal disease ............................................................ 87 

5.2.4. Arsenic monitoring wells ......................................................................... 88 

5.2.5. Meteorological Data and Average Rainfall Variables .............................. 88 



x 
 

5.2.6. Population Density Calculation ............................................................... 89 

5.2.7. Socioeconomic status ............................................................................. 90 

5.2.8. Statistical Analysis .................................................................................. 93 

5.3. Results .......................................................................................................... 94 

5.3.1. Univariate Logistic Regression Analysis ................................................. 94 

5.3.2. Multivariate Logistic Regression Analysis ............................................... 98 

5.3.3. Estimated probability and disease rate map ......................................... 101 

5.4. Discussion ................................................................................................... 103 

6: Conclusion Remarks .......................................................................................... 109 
 
Appendix A: Cross-validation statistics .................................................................. 114 
 
Appendix B: Shape of Powered Exponential Covariance Model ............................ 116 

 
Appendix C: Rainfall and covariance range based on the levels of WHO 

classification scheme ......................................................................................... 117 
 
Appendix D: Details of MPN Calculation ................................................................ 119 

D.1. Basic assumptions of MPN method ............................................................ 119 

D.2. MPN for a single dilution set ....................................................................... 119 

D.3. MPN for multiple dilution sets ..................................................................... 121 

D.4. MPN for IDEXX Quanti-Tray®/2000 ........................................................... 123 

D.5. Likelihood Ratio Test .................................................................................. 125 

Appendix E: Space/Time Estimation Map of E. coli Concentration ........................ 128 

 
Appendix F: Rainfall Variable ................................................................................. 129 

F.1. Background ................................................................................................. 129 

F.2. Data Acquisition and cleaning ..................................................................... 129 

F.3. Mean trend model and Residual field .......................................................... 130 



xi 
 

F.4. The BME Estimation ................................................................................... 131 

Appendix G: Multivariate Logistic Regression Model-1 .......................................... 132 

 
Appendix H: Multivariate Logistic Regression Model-2 .......................................... 133 
 
Reference .............................................................................................................. 135 

 

 



xii 
 

LIST OF TABLES 

 

Table 2.1: Cross validation statistics obtained by the following three 
methods based on exponential covariance model: 
method (1) the BME hard data only analysis assuming 
stationarity across the U.S. (first column), method (2) 
moving-window BME hard data only analysis (second 
column), and method (3) moving-window BME soft data 
analysis ................................................................................................... 25 

Table 2.2: Mean square error (MSE) of three estimation methods (1) 
ï (3) based on four covariance functions; exponential 
(first row), Gaussian (second row), spherical (third row), 
and best fit model (forth row), ................................................................. 26 

Table 2.3: Mean square error (MSE) of spatial only estimation 
methods (1) ï (3) and space/time estimation methods (4) 
ï (6) based on the exponential covariance model. The 
change in MSE (in percent,%) relative to method (1) and 
to corresponding spatial only (SO) method are shown in 
column 3 and 4, respectively. ................................................................. 27 

Table 2.4: Fraction of the PM2.5 yearly concentration soft data (in %) 
and MSEs for methods (1) ï (3) obtained for the true (i.e. 
uncensored) dataset (first row) and for the simulated 
datasets generated by randomly censoring 5% (second 
row), 10% (third row), 15% (fourth row), and 20% (fifth 
row) of the daily PM2.5 observations ....................................................... 28 

Table 3.1: Results of the likelihood ratio test classifying whether 
each of the 1052 individual samples were well mixed 

within sample at a significance level of ‌= 0.05 .................................... 49 

Table 3.2: Results of the likelihood ratio test classifying whether 
each of the 526 pairs of duplicate samples had the same 
concentration across duplicates at a significance level of 

‌= 0.05 .................................................................................................. 50 

Table 3.3: WHO classification scheme .................................................................... 51 

Table 3.4: Covariance parameters during the study period ..................................... 53 

Table 4.1: The optimal hyperparameter values, R2, and AIC for 
LHM1 and LHM2 ..................................................................................... 72 



xiii 
 

Table 4.2: Regression coefficients and associated p-value for LHM1 
and LHM2 ............................................................................................... 72 

Table 4.3: Covariance parameters for LHM1 and LHM2 .......................................... 75 

Table 4.4: The cross-validation RMSE of three estimation methods 
using a mean trend obtained from either LHM1 or LHM2 ....................... 76 

Table 4.5: The number of days during the study period in each WHO 
category .................................................................................................. 79 

Table 5.1: Regression coefficients and associated 95% confidence 
interval for the univariate logistic regression models .............................. 96 

Table 5.2: Regression coefficients and associated 95% confidence 
intervals for shallow aquifer (depth < 100ft) based on the 
univariate logistic regression model ........................................................ 96 

Table 5.3: Regression coefficients and associated 95% confidence 
interval for deep aquifer (depth > 100ft) based on the 
univariate logistic regression model ........................................................ 97 

Table 5.4: Regression coefficients and associated 95% confidence 
intervals based on the multivariate logistic regression 
model ...................................................................................................... 99 

Table 5.5: Regression coefficients and associated 95% confidence 
intervals based on the multivariate logistic regression 
model with temperature ........................................................................ 100 

Table A.1: Cross validation statistics obtained by the following three 
methods based on best fit covariance model: method (1) 
the BME hard data only analysis assuming stationarity 
across the U.S. (first column), method (2) moving-window 
BME hard data only analysis (second column), and 
method (3) moving-window BME soft data analysis ............................. 114 

Table A.2: Cross validation statistics obtained by the following three 
methods based on Gaussian covariance model: method 
(1) the BME hard data only analysis assuming 
stationarity across the U.S. (first column), method (2) 
moving-window BME hard data only analysis (second 
column), and method (3) moving-window BME soft data 
analysis ................................................................................................. 115 

Table A.3: Cross validation statistics obtained by the following three 
methods based on Spherical covariance model: method 
(1) the BME hard data only analysis assuming 



xiv 
 

stationarity across the U.S. (first column), method (2) 
moving-window BME hard data only analysis (second 
column), and method (3) moving-window BME soft data 
analysis ................................................................................................. 115 

Table C.1: Covariance parameters during the study period ................................... 117 

Table G.1: Regression coefficients and associated 95% confidence 
interval based on the multivariate logistic regression 
model for baris using shallow tubewells ................................................ 132 

Table G.2: Regression coefficients and associated 95% confidence 
intervals based on the multivariate logistic regression 
model for baris using deep tubewells .................................................... 132 

Table H.1: Regression coefficients and associated 95% confidence 
intervals based on multivariate logistic regression model 
for baris using shallow tubewells .......................................................... 133 

Table H.2: Regression coefficients and associated 95% confidence 
intervals based on multivariate logistic regression model 
for baris using deep tubewells .............................................................. 134 

 

 

  



xv 
 

LIST OF FIGURES 

 

Figure 2.1: (a) PM2.5 monitoring sites over the continental U.S. and 
(b) PM2.5 yearly average concentration on December 31, 
2003 ........................................................................................................ 22 

Figure 2.2: Time series of PM2.5 daily and yearly average 
concentrations at monitoring site (a) 41-029-2129 and (b) 
41-029-1001. .......................................................................................... 23 

Figure 2.3: Histogram of all PM2.5 yearly average concentrations 
obtained in 2003. .................................................................................... 24 

Figure 2.4: Map of the estimated PM2.5 yearly average 

concentrations (mg/m3) in California on December 31st, 
2003 obtained by (a) method (1) and (b) method (3) .............................. 29 

Figure 2.5: Map of the estimated PM2.5 yearly average 

concentrations (mg/m3) across the U.S. obtained using 
method (3) on December 31st, 2003. The U.S. EPA 
AirData annual summary of PM2.5 concentration shown in 
colored circles. ........................................................................................ 30 

Figure 3.1: (a) The location of Matlab within Bangladesh and (b) A 
satellite image of the Matlab subdistrict and Bara Haldia 
study area ............................................................................................... 40 

Figure 3.2: Satellite image of the Bara Haldia study area showing 
locations of monitoring tubewells, latrines, and 
households that were GPS surveyed ...................................................... 41 

Figure 3.3: (a) temporal plot of WHO categories and spatial 
distribution of E. coli categories in (b) August, 2008, (c) 
November, 2008, and (d) March, 2009. .................................................. 52 

Figure 3.4: (a) Pearsonôs correlation coefficient and (b) associated 
p-value between the covariance range and the 1- to 21-
day antecedent rainfalls (c) Temporal plot of covariance 
range and the 13-days antecedent rainfall. ............................................. 55 

Figure 4.1: (a) Daily rainfall observed at the Bara Haldia weather 

station (b) Map of the population variable, ὴὺ, calculated 
over the study area using ὶὴὺ= 25 m (c) Latrine variable 

calculated at a tubewell as the sum of the exponentially 
decaying contribution from two latrines (d) Map of the 



xvi 
 

latrine variable ὰὺ calculated over the study area using 
ὶὰὺ= 120 m. ............................................................................................ 65 

Figure 4.2: (a) Plot of the R2 and p-values of the regression model 
LHM1 as a function of the latrine microbial range 

hyperparameter ὶὰὺ while fixing the other 
hyperparameters to their optimal values. The 
corresponding plots as a function of the population radius 
hyperparameter ὶὴὺ and the rainfall lag parameter ὰὥὫ1 

are shown in (b) and (c), respectively. (d) Map of the E. 
coli concentration the by LHM1 ............................................................... 74 

Figure 4.3: Space/time experimental covariance of the residual log 

transformed E. coli concentration ὢ(▬) based on LHM1 
(red circle) and fitted covariance function (green line). ........................... 75 

Figure 4.4: Map of E. coli concentration estimated by LHM1 and 
BME estimation with hard/soft data on (a) November 30, 
2008 and (b) March 10, 2009.................................................................. 77 

Figure 4.5: Plots of the E. coli concentration and associated 95% 
confidence interval predicted by LHM1 and BME 
estimation with hard/soft data at tubewell (a) 21783 and 
(b) 21772. ............................................................................................... 79 

Figure 4.6: Graph showing the fraction of the monitoring tubewells in 
each WHO risk category ......................................................................... 80 

Figure 4.7: Effect of latrine on tubewell due to (a) indirect 
contamination from an intermediate pond, (b) overland 
runoff, (c) transportation by human, and (d) direct 
underground transport ............................................................................ 82 

Figure 5.1: Map of explanatory variables: (a) arsenic concentration, 
(b) well depth, (c) inside/outside embankment, (d) SES 
score, (e) population density at ὶὴὺ= 40 m, and (f) 

population density at ὶὴὺ= 2700 m ......................................................... 91 

Figure 5.2: Temporal plot of (a) 2-month, (b) 12-month, and (c) 6-
month average rainfall averaged over the study area, and 
(d) temperature averaged over the country. ........................................... 92 

Figure 5.3: Regression coefficient and 95% confidence bound for (a) 
the rainfall variable as a function of rainfall duration and 
for (b) the population density variable as a function of 
population radius. ................................................................................... 97 



xvii 
 

Figure 5.4: Plots of the observed rates of baris with childhood 
diarrhea (circles) and the corresponding probabilities 
(line) estimated using (a) the model without temperature 
and on (b) the model with temperature. ................................................ 102 

Figure 5.5: Estimated rate of childhood diarrhea averaged over the 
study period .......................................................................................... 103 

Figure B.1: Shape of the powered exponential model with sill 

ὅ1 = 1.0, spatial range ὥὶ= 5.0, and several different 
power parameter ὦ. ............................................................................... 116 

Figure C.1: (a) Pearsonôs correlation coefficient and (b) Temporal 
plot of covariance range and 9-days antecedent rainfall ....................... 118 

Figure E.1: A Series of contour maps of E. coli concentration during 
the study period estimated by LHM1 and BME estimation 
with hard/soft data ................................................................................ 128 

 

  



xviii 
 

LIST OF ABBREVIATIONS 

 

AIC  Akaike information criterion 

APE  Arithmetic mean of the Prediction Error 

AQS   Air Quality System 

ASE  Arithmetic mean of the Standard Error 

ASPE  Arithmetic mean of the Standard Prediction Error 

BME  Bayesian Maximum Entropy 

EID   Ecology of Infectious Disease 

FIB  Fecal Indicator Bacteria 

GIS  Geographical Information Systems 

HDSS Health and Demographic Surveillance System 

ICDDR,B the International Centre for Diarrhoeal Disease Research, 

Bangladesh 

MPN  Most Probable Number 

MSE  Mean Square prediction Error 

PDF  Probability Density Function 

RMSE Root Mean Square Error 

RMSS   Root Mean Square Standardized 

S/TRF  Space/Time Random Field 

SRF  Spatial Random Field 

WHO World Health Organization 

 



CHAPTER 1 

Introduction 

 

Spatial information is one of the key components of many environmental 

epidemiological researches. Generally both environmental exposures and 

associated disease outcomes depend heavily on the location where the study 

subjects reside. Thus an analysis ignoring spatial information tends to lead to 

erroneous results. Geographical Information Systems (GIS) play an important role in 

the analysis of spatial environmental and epidemiological data. They provide useful 

basic functions such as address geocoding and overlay operations to enhance the 

use of spatial information in the analysis (Vine, Degnan, and Hanchette 1997), as 

well as advanced data analysis functions such as surface creation and spatial 

statistics. In environmental epidemiological research, a GIS is primarily used in 

exposure assessment and disease mapping. Outputs are used as inputs for 

regression analysis to evaluate the strength of associations between exposure and 

disease. The general usage of GIS in the environmental epidemiology field is 

summarized in several studies (Elliott, and Wartenberg 2004; Jarup 2004; Nuckols, 

Ward, and Jarup 2004). 

In exposure assessment, many studies have implicitly assumed a 

homogeneous distribution of the exposure field. For example, the average 

concentration of all the data within an area surrounding a study subject, or the 
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concentration of the nearest monitoring location to that study subject, are often used 

as measures of exposure. Recently the local scale variability in exposure has been 

taken into account in environmental epidemiologic studies. This local scale variability 

is often estimated using spatial interpolation methods. These methods are generally 

divided into two categories; deterministic and geostatistical methods. Inverse 

distance weighted interpolation and polynomial interpolation, which are both 

implemented in common GIS packages, are examples of deterministic methods. 

These methods interpolate the measurement values based on simple functions of 

the distance between an unmonitored point and its surrounding data points. One of 

the disadvantages of deterministic methods is, however, that they do not provide any 

measure of uncertainty associated with prediction. 

Geostatistical methods provide estimates of the value at unmonitored 

locations, together with standard errors quantifying the associated estimation 

uncertainty. Kriging methods of linear geostatistics have, for instance, been widely 

used to estimate concentrations of environmental contaminants across space. 

Several types of kriging methods have been developed in order to take into account 

the underlying characteristics of the observational data. Unlike deterministic 

methods, kriging uses not only the distances but also the autocorrelation among 

spatial data in the estimation process. Thus, geostatistical methods generally 

outperform deterministic spatial interpolation methods. However, conventional 

kriging approaches have two major limitations. First, kriging methods rely only on 

exact measurements (referred to as hard data) and on data with normally distributed 

errors. However, in general, data with associated errors, which is referred to as soft 
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data, are generally not normally distributed. For example ambient air pollutant 

concentrations, which cannot take negative values, may be best represented using a 

normal distribution truncated below zero, which leads to a type of soft data that 

cannot be processed with linear kriging methods. Second, most of the kriging 

methods implemented in the common GIS packages do not fully take into account 

the temporal aspect of the data and only focus on the spatial distribution of the data. 

However many environmental monitoring data display composite spatial and 

temporal variability. Thus, accounting for the temporal dynamics of environmental 

and health data is indispensable in improving the accuracy of estimation.  

The Bayesian Maximum Entropy (BME) method provides a rigorous 

mathematical framework that overcomes the limitations described above (Christakos 

2000; Christakos, Bogaert, and Serre 2001; Christakos, and Li 1998). The BME 

method together with space/time random field (S/TRF) theory (Christakos 1992) 

takes into account the composite space/time variability and processes all available 

monitoring data distributed over space and time. Moreover, the BME method 

provides an efficient framework to rigorously assimilate any type of soft data into the 

estimation procedure. By using the BME framework, we can integrate data coming 

from multiple data sources with various levels and types of uncertainty. This 

approach has been used in several exposure assessment studies and was shown to 

successfully reduce estimation error (Akita, Carter, and Serre 2007; Puangthongthub 

et al. 2007). Because of these capabilities, the BME framework is an indispensable 

tool for environmental epidemiological research. 
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Even though the BME approach provides a powerful framework for 

space/time estimation, there are several unaddressed implementation issues in its 

application to environmental and health studies. In this study, the BME approach is 

applied to an air and a water environmental epidemiologic study where these 

unaddressed implementation issues are addressed.  

In chapter 2, exposure to long-term ambient PM2.5 concentration across the 

contiguous U.S. was modeled using the BME approach. A major issue for applying 

the geostatistical techniques to large geographic scale spatial process is that spatial 

dependency of the data is often assumed to be stationary over the study domain. In 

other words, spatial autocorrelation is assumed to remain the same across locations, 

and a single covariance model calculated from the whole data set is used for entire 

estimation domain. If the study area is sufficiently small, this assumption is generally 

appropriate. However, in a country-wide study, spatial dependency is expected to 

vary with locations, and the stationary assumption is inappropriate. To address this 

implementation issue, a moving-window BME approach is developed to take into 

account the non-stationarity of long-term PM2.5 concentrations across the contiguous 

U.S. 

From chapter 3 to 5, the BME approach was employed in an environmental 

epidemiologic study to investigate microbial contamination in groundwater and 

diarrheal disease occurrence in Bangladesh. These works were performed as part of 

an Ecology of Infectious Disease (EID) project, which tries to elucidate the 

complicated relationships between groundwater arsenic concentration, 

hydrogeological and environmental microbiological factors, and diarrheal diseases in 



5 
 

Bangladesh. In order to assess these relationships, collaborators were brought 

together with expertise in a wide range of topics including hydrogeology, 

microbiology, geography, and environmental sciences. The following institutions 

were involved in this project: Columbia University; University of Tennessee, 

Knoxville; the International Centre for Diarrheal Disease Research, Bangladesh 

(ICDDR, B); University of Dhaka; and University of North Carolina at Chapel Hill. 

As a preliminary analysis for the subsequent chapters, we examine in chapter 

3 the influence of rainfall on the spatial variability of fecal indicator bacteria (FIB) in 

tubewell water. The data used consisted in the E. coli concentrations measured from 

samples collected in Matlab, Bangladesh.  

We then conduct in chapter 4 a detailed space/time mapping analysis of FIB 

concentrations in tubewell water over the same study site. When estimating the 

value at unmonitored location, a global mean trend is generally removed from the 

data before performing a geostatistical analysis. To estimate this global mean trend, 

polynomial functions and local smoothing methods are widely used. Both of these 

data driven approaches are solely based on the measurement values and their 

locations. However, environmental processes are sometimes governed by 

extraneous factors, resulting in trends that cannot be adequately captured by the 

data-driven approaches. In order to model such environmental processes, we need 

to build a global mean trend model that accounts for the effects of these extraneous 

factors.  

Hence, in chapter 4, the concentration of E. coli, one of the commonly used 

FIB, is estimated across tubewells in Matlab, Bangladesh, using a latrine 
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hydrological regression model. In the latrine hydrological regression model, location 

of latrines, population density and short term rainfall are considered as extraneous 

factors governing the global trend of FIB across space and time. In addition, to 

further improve the quality of the estimation, a space/time knowledge synthesis 

framework based on the BME approach was developed and implemented. In this 

framework, soft data models for the measurement error due to the E. coli sampling 

procedure were integrated into the estimation of E. coli concentration. 

In Bangladesh, diarrheal disease is still a severe problem which accounts for 

more than 50000 child deaths annually. In chapter 4, the relationship between 

microbial contamination of tubewell water and environmental factors was 

investigated. However, diarrheal disease events are not directly studied. In chapter 

5, we, therefore, investigate how environmental factors affect the spatial distribution 

of diarrheal disease in Bangladesh. Based on previous studies we selected, arsenic 

concentration, depth of the tubewell, flood protection, socioeconomic status, 

temperature, population density and rainfall as possible risk factors for diarrheal 

disease, and the association between these factors and diarrheal disease was 

evaluated using regression analysis. 

 

 



CHAPTER 2 

Moving-window Bayesian maximum entropy space/time mapping of annual 

PM2.5 ambient concentration across the U.S. 

 

2.1.  Background 

 

Several epidemiologic studies have demonstrated that long-term exposure to 

fine-particulate matter (PM2.5) is associated with increased morbidity and mortality 

(Beelen et al. 2008; Boldo et al. 2006; Eftim et al. 2008; Kunzli et al. 2005; Pope, 

Ezzati, and Dockery 2009). In most of these studies, long-term exposure was 

estimated by either the local average of PM2.5 concentrations measured at 

monitoring stations near the study subject or the concentration observed at the 

nearest monitoring station. These exposure estimates implicitly assume a uniform 

distribution of concentration across the area surrounding the study subject, and the 

local exposure gradient between the resident location and its closest monitoring 

site(s) has not been taken into account. Recent studies have addressed this issue 

and accounted for the small scale spatial variability of PM2.5 by applying a 

geostatistical interpolation method (Kunzli et al. 2005; Liao et al. 2006) or some 

spatial regression techniques (Brauer et al. 2003; Henderson et al. 2007). 

Geostatistical techniques, in particular, have been widely used in air pollution 

epidemiologic studies. For instance, a stronger association between long-term
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exposure to PM2.5 and chronic health effects relative to previous studies was found 

by estimating within-city exposure using a kriging geostatistical approach over the 

Los Angeles metropolitan area (Jerrett et al. 2005). 

Although the local scale spatial variability can be successfully estimated by 

geostatistical techniques, there are several issues that arise when directly applying a 

geostatistical approach to long-term PM2.5 exposure assessment at the national 

scale (i.e., over the entire U.S.). A major issue is that the spatial dependency of the 

long-term exposure to PM2.5 is usually assumed to be stationary across the entire 

study area. In other words, the spatial autocorrelation of long-term PM2.5 

concentration is assumed constant across geographic locations, and a single spatial 

dependency model - such as variogram or covariance function - obtained from the 

whole data set is used for the entire estimation domain. In a national-scale study, 

however, spatial dependency is expected to vary with location and the stationarity 

assumption seems inappropriate. Thus, in order to perform national-scale exposure 

assessment, a framework that accounts for non-stationarity is needed. 

Another issue pertaining to the assessment of long-term exposure to PM2.5 is 

the completeness criterion used to reliably estimate long-term exposure. Long-term 

exposure to PM2.5 is generally approximated by taking the average of PM2.5 daily 

concentrations observed over some time period of exposure (e.g., yearly or monthly 

time periods), only if there are enough daily measurements within that time period to 

construct a reliable long-term exposure (Miller et al. 2007; Pope et al. 2002). For 

example, Pope et al. defined yearly average concentration based on PM2.5 daily 

concentrations collected in 1999 and the first three quarters of 2000, only if a 
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monitoring site meets the following completeness criteria: At least 50% of the sixth-

day samples are available for each quarter in either 1999 or 2000, and at least 45 

total sampling days are available at that monitoring site. All average concentrations 

not satisfying that completeness criteria were then eliminated from the subsequent 

analysis due to the lack of the methodological framework to handle the uncertainty 

associated with yearly average concentrations. 

In addition, long term exposure to PM2.5 is often estimated from the average 

concentrations based on calendar years, so that the same long term exposure is 

assigned to a study subject regardless of the exact time of the health event within a 

given year. However, exposure misclassification can be reduced by accounting for 

the timing of disease occurrence. In other words, a time window of exposure based 

not only on its duration, but also on the exact beginning/ending times should be 

constructed to estimate the long-term exposure accurately. 

Thus, the overall goal of this study is to conduct a national-scale assessment 

of long-term exposure to ambient PM2.5 that takes into consideration all of the 

aforementioned issues. The yearly average concentration of ambient PM2.5 over the 

contiguous 48 United States and District of Columbia was estimated using a moving-

window implementation of a geostatistical estimation framework based on the 

Bayesian Maximum Entropy (BME) method. In this framework, the PM2.5 yearly 

average concentration at all monitoring sites on an estimation date of interest were 

calculated as the average of PM2.5 daily concentrations measured at that site over 

365 days prior to the estimation date. In order to estimate the yearly average 

concentration at unmonitored points across the study region, the calculated yearly 
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average concentrations are then processed in the moving-window BME method, 

either as hard data (i.e., data with no error), or as soft data (i.e., data with associated 

measurement errors), based on the completeness criteria. The moving-window 

approach provides an efficient and easily implementable framework to account for 

the non-stationarity of a spatial random process (Haas 1990, 1995), while the BME 

method (Christakos 2000; Christakos, and Li 1998) rigorously processes the 

uncertainty of the PM2.5 yearly average concentration due to the incompleteness of 

PM2.5 daily concentrations within the year period of interest. 

 

 

2.2. Materials and Methods 

 

2.2.1. PM2.5 Monitoring Data 

PM2.5 daily concentrations measured from 1999 to 2008 were obtained from 

the Air Quality System (AQS) maintained by the U.S. Environmental Protection 

Agency (U.S. EPA 2009). Since PM2.5 daily concentrations reported to the AQS can 

be negative because of small measurement errors at low PM2.5 daily concentrations, 

these negative values were replaced by zero. In addition the PM2.5 daily 

concentrations which exceeded the federal maximum sample value (500ɛg/L3) were 

regarded as outliers and removed from the data (U.S. EPA 2008). If multiple 

monitors were operating at the same monitoring location on the same day, the 

resulting co-located daily concentrations were treated as duplicated measurements 

and were averaged. The daily average concentrations measured from 2001 to 2003 
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were used in this study to perform the moving-window BME estimation of yearly 

PM2.5 concentration at any space/time location in 2003. 

 

2.2.2. The Moving-window Approach 

The moving-window estimation approach described by Haas (1990, 1995) 

accounts for the non-stationarity of a spatial process over a large geographic domain 

by localizing the estimation procedure to regions small enough so that the spatial 

process may be assumed stationary within each small region. Our implementation of 

the moving approach in this work consists in calculating a covariogram at each 

estimation point of interest using only the data points within the region around that 

estimation point. Then the geostatistical analysis for that estimation point is 

conducted using the location-specific covariogram and the data around the 

estimation point. This region around the estimation point is referred to as the 

estimation ñwindowò and moves with the estimation point. The size of the window 

has to be small enough to assure stationarity of the spatial process within the 

window, but also large enough so that it contains enough data points to model the 

covariogram. In this study, we used a window containing 100 monitoring sites, based 

on the minimum sample size expected to produce a reliable sample covariogram 

estimate (Olea 2006). 

 

2.2.3. The Bayesian Maximum Entropy Method 

The BME method introduced by Christakos (Christakos 1990; Christakos 

2000) provides a mathematically rigorous framework that integrates a variety of 

available knowledge bases (e.g., spatial dependency model, empirical relationships, 
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scientific model) with data having varying levels of epistemic uncertainty. These data 

are categorized in hard data corresponding to exact measurements of the process, 

and soft data, which may have an uncertainty characterized by a probability density 

function (PDF) of any type (e.g., Gaussian, Uniform). A full description of the 

epistemic underpinnings and numerical implementation of the BME method can be 

found elsewhere (Christakos et al. 2001; Serre, and Christakos 1999). In brief the 

BME method can be viewed as a two-stage knowledge processing procedure: At the 

prior stage, maximum entropy theory is used to process the general knowledge base 

at hand and produce a prior PDF describing spatial process. Then at the posterior 

stage, an operational Bayesian conditionalization rule is used to update this prior 

PDF with respect to the site specific hard and soft data available, which produces a 

BME posterior PDF describing the value of the spatial process at any estimation 

point of interest. 

Let ὤ(▼)  be a spatial random field (SRF) representing the PM2.5 yearly 

average concentration at some spatial location ▼ (Christakos 1992). We will denote 

as ὤὯ the random variable representing the SRF at estimation point ▼Ὧ (i.e., ὤὯ=

ὤ(▼Ὧ)), and similarly ὤὬ and ὤί are vectors of random variables representing the SRF 

at the hard data points {▼Ὤ} and the soft data points {▼ί}, respectively. By convention, 

lower case variables (e.g. ᾀὬ, ᾀί, or ᾀὯ) will denote realizations or deterministic 

values taken by their corresponding upper case random variables (e.g. ὤὬ, ὤί or ὤὯ) 

In the case that the general knowledge base Ὃ about the SRF ὤ(▼) consists in 

its mean trend άᾀ(▼) = Ὁ[ὤ(▼)] and covariance function 
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 ὧὤ(▼,▼ȭ) = Ὁ[(ὤ(▼) άὤ(▼))(ὤ(▼ȭ) άὤ(▼ȭ))] (2.1)  

 

where Ὁ[] is the expected value operator, then the BME fundamental equation 

reduces to 

 

 ὪὑᾀὯ = ὃ 1 Ὠ◑ίὪὋ◑Ὤ,◑ί,◑ὯὪὛ(◑ί) (2.2)  

 

where ὃ is a normalization constant, the prior PDF ὪὋ obtained from entropy 

maximization on Ὃ= {άὤ(.),ὧὤ(.)} is multivariate normal with mean and covariance 

given by άὤ(.)  and ὧὤ(.), respectively, the vector of deterministic values ◑Ὤ 

corresponds to the hard data, and ὪὛ is a PDF characterizing the epistemic 

uncertainty of the soft data. The BME posterior PDF is denoted with a subscript 

ὑ= Ὃ᷾Ὓ representing the knowledge blending (or union) of the general knowledge 

Ὃ= {άὤ(.),ὧὤ(.)} and site specific knowledge Ὓ= {◑Ὤ ,ὪὛ . }. 

The expected value of the BME posterior PDF provides an estimate of yearly 

PM2.5 concentration at the estimation point, and the corresponding BME posterior 

variance provides a useful characterization of the associated estimation uncertainty. 

The Strength of the BME method is that it considers epistemic uncertainty for the 

soft data represented by a PDF ὪὛ(.) of any type. Hence any combination of non-

Gaussian distributions is automatically integrated in the estimation process. For 

example, if the soft data includes some points with Gaussian distributions while 

others have uniform distributions, then the BME posterior PDF is non-Gaussian, and 

the corresponding BME estimator is a non-linear combination of the hard and soft 
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data. Another advantage of the BME framework is that in the limiting case where 

only hard data are included in the estimation process and the SRF is stationary with 

a constant mean, then the BME estimator is simply the kriging estimator. This makes 

BME a consistent extension of the widely used kriging estimator when one needs to 

integrate non-Gaussian soft data, as is the case in this work. 

 

2.2.4. The hard and soft PM2.5 yearly average concentration data 

In the context of an exposure assessment, we defined PM2.5 yearly average 

concentration at some estimation time ὸὯ as the average of PM2.5 daily 

concentrations over the 365 days preceding time ὸὯ. An exact yearly average 

concentration value is, therefore, given by the average of 365 daily average 

concentrations over one year preceding estimation time ὸὯ. Since at most of the 

monitoring sites PM2.5 daily concentrations were collected on a three-day cycle 

during the study period, an exact PM2.5 yearly average concentration is rarely 

obtained. Thus, in most epidemiologic studies PM2.5 yearly average concentrations 

satisfying some acceptable data completeness criterion are treated as hard data for 

the exact yearly average concentration. In this study, we used the completeness 

criterion that there must be more than 75% of intended measurements in each 

quarter of the year prior to ὸὯ to ensure that the observations are evenly distributed 

throughout the yearly period. If the completeness criterion were satisfied, the hard 

data ᾀὬ,Ὥ for the PM2.5 yearly average concentration at monitoring site Ὥ and time ὸὯ is 

simply defined as 
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 ᾀὬ,Ὥ= ‘Ὤ,Ὥ=  
ώὭ,Ὦ

ὲὭ

ὲὭ

Ὦ= 1

 (2.3)  

 

where ώὭ,Ὦ is the Ὦ-th daily concentration measured at site Ὥ over the yearly period 

prior to ὸὯ, and ὲὭ is the number of ώὭ,Ὦ daily values. These hard data are processed 

in identical fashion by the kriging method and BME method. 

If the completeness criterion described above was not met, then the yearly 

average concentration was treated as a soft data if there were more than 10% of 

intended measurements in each quarter. Following the notation introduced above, 

let ὤί,Ὥ be a random variable representing the yearly average concentration at site Ὥ, 

and let Ὓ be the site specific knowledge base provided by the incomplete set of daily 

measured values ώὭ,Ὦ. In the BME framework, the epistemic uncertainty associated 

with the incomplete daily concentrations is characterized by the PDF ὪὛ(ᾀί,Ὥ). In this 

work, we assume that an adequate choice for ὪὛ is a truncated normal distribution 

given by the following equation.  

 

 ὪὛᾀs,Ὥ =

1

2“„ί,Ὥ
2

exp
ᾀs,Ὥ ‘ί,Ὥ

2

2„ί,Ὥ
2

 
ὦ ‘ί,Ὥ
„ί,Ὥ

 
ὥ ‘ί,Ὥ
„ί,Ὥ

Ὅὥ,ὦ ᾀs,Ὥ (2.4)  

 

where   is the standard normal cumulative probability distribution, ‘ί,Ὥ is the average  

of the daily measure ώὭ,Ὦ over the 365 days preceding time ὸὯ, and Ὅὥ,ὦ ᾀs,Ὥ is the 

indicator function 
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 Ὅὥ,ὦ ᾀs,Ὥ =
1     if  ὥ ώ ὦ
0     otherwise

 (2.5)  

 

Since the yearly average concentration cannot be negative, the lower and upper 

bounds are ὥ= 0 and ὦ= +Њ, respectively. The epistemic uncertainty associated 

with this soft datum arises from the difference between the arithmetic average of all 

365 daily concentrations, and the arithmetic average calculated from an incomplete 

sample of size ὲὭ randomly selected out of a finite population of size 365. Therefore, 

a reasonable value for the standard deviation „ί,Ὥ of the truncated normal distribution 

ὪὛ(ᾀί,Ὥ)  is  

 

 „ί,Ὥ=
365 ns,Ὥ

365
×
В ώὭὮ ‘ί,Ὥ

2ns,Ὥ

Ὦ= 0

ns,Ὥ
 (2.6)  

 

where the first term of this equation is a finite population correction factor that 

linearly decreases to 0 as ὲὭ increases to the finite population size 365, and the 

second term quantifies the variability of measured daily concentrations within the 

yearly period. 

Yearly average concentrations satisfying the completeness criterion were 

regarded as the exact yearly average concentration and treated as hard data. 

However, all yearly average concentrations, except for the one based on 365 daily 

PM2.5 concentrations, have an associated uncertainty. This uncertainty can be 

evaluated by using eq. (2.6) to calculate the data standard deviation „Ὤ at any hard 
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data points. At each monitoring site Ὥ, the standard deviation of soft data „ί,Ὥ  smaller 

than the maximum of the hard data standard deviations were replaced by the 

maximum of „Ὤ,Ὥ, in order to make sure that uncertainty associated with soft data is 

at least as large as the uncertainty associated with the hard data. 

 

2.2.5. Estimation of spatial autocorrelation 

The spatial autocorrelation of the SRF ὤ(▼) is characterized by means of its 

covariance function. The covariance function of a stationary SRF can be expressed 

in terms of the distance ὶ between two location ▼ and ▼ȭ, i.e. ὧὤ(▼,▼ȭ) = ὧὤ(ὶ= ||▼

▼ȭ||). In this study, the method of moment estimator was employed to estimate the 

experimental covariogram at various spatial lags ὶ (Cressie 1993; Curriero et al. 

2002). The experimental covariogram was then used to fit a positive definite 

covariance model using an automated weighted least square procedure (Jian, Olea, 

and Yu 1996; Olea 2006). The following three parametric covariance models were 

tested: (1) exponential model, (2) Gaussian model, and (3) spherical model. In 

addition, the covariance model that best fit the experimental covariogram at each 

window among the aforementioned three covariance models was also selected 

based on the smallest Akaike information criterion (AIC). 

 

2.2.6. Cross-validation analysis 

In order to compare the model performance of the moving-window BME 

approach implemented in this study with other conventional methods, a cross-

validation analysis was conducted that comparing the following three methods: (1) 
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the BME hard data only analysis assuming stationarity of PM2.5 yearly average 

concentrations across the entire U.S., (2) the moving-window BME hard data only 

analysis, and (3) the moving-window BME soft data analysis. In method (1), a single 

covariogram was calculated for a given estimation time ὸὯ using the all the data 

points throughout the U.S. On the contrary, in methods (2) and (3), the covariogram 

was calculated at each estimation point using only the data for the 100 monitoring 

sites closest to the estimation point. Only the hard data points was considered for 

the estimation in methods (1) and (2), which correspond to the conventional kriging 

approach, whereas in method (3) both hard and soft data were used for the 

estimation in a way that rigorously accounts for the uncertainty associated with 

yearly average concentrations failing the completeness criterion.  

Leave-one-out cross-validations are performed using the yearly average 

concentrations that met the completeness criterion as the validation data set for 10 

randomly selected days in 2003. Model performance was evaluated using the 

following cross-validation statistics: arithmetic mean of the prediction error (APE), 

arithmetic mean of the standardized prediction error (ASPE), arithmetic mean of the 

standard error (ASE), root mean square standardized (RMSS), and mean square 

prediction error (MSE). The prediction error is equal to the difference between the 

predicted and observed PM2.5 yearly average concentration and the standardized 

prediction error is equal to prediction error divided by its estimated standard error  

The APE and ASPE are measures of bias of estimation and should be close to 0. 

RMSS which is defined as the standard deviation of standardized prediction error 

measures the accuracy of the estimated standard error and should be close to 1. For 
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an accurate model, the ASE and MSE should be as small as possible. In addition, 

the Pearson correlation coefficient and Spearmanôs rank correlation were also 

calculated to evaluate the linear correlation and rank order of the predicted and 

observed PM2.5 yearly average concentrations. 

 

2.2.7. Simulation 

In this study only a small fraction of PM2.5 yearly average concentrations did 

not meet the completeness criterion over the study period which leads to a small 

ratio of soft to hard data points. However epidemiologic studies in other countries, 

over other study periods, or for other air pollutants that have frequent missing daily 

concentration measurements may lead to much higher ratio of soft to hard data 

points. In order to explore the performance of the aforementioned estimation 

methods under this situation, four simulated PM2.5 daily concentration data sets were 

constructed by randomly removing 5%, 10%, 15%, and 20 % of PM2.5 daily 

concentrations from the original daily concentration data set. Using these realistic 

simulated data sets, the hard and soft data for PM2.5 yearly concentrations were re-

constructed, which resulted in a substantially larger fraction of soft to hard data 

points. Finally, these simulated yearly average concentrations were used to re-run 

the cross validation analysis to evaluate the model performance. 

 

2.2.8. Space/Time Sensitivity Analysis 

In a geostatistical estimation framework, the optimal selection of the 

estimation neighborhood consists in selecting data points that (1) are correlated with 

the estimation point, and (2) that are independent from one another. PM2.5 yearly 
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average concentrations for a given site, however, are highly correlated from one day 

to the next because of the overlapping of all but one daily concentrations used to 

calculate the yearly average concentration. A particularity of our proposed approach 

including both hard and soft data points in the BME analysis is that the optimal 

estimation neighborhood therefore consists in selecting the (hard or soft) data point 

for each monitoring station corresponding to the estimation day of interest, which 

essentially correspond to a purely spatial analysis. This can be explained by the fact 

that once we have included all the hard and soft data points corresponding to an 

estimation day of interest, then adding data from preceding or following days will 

only result in information that is highly redundant with that which is already in the 

spatial only estimation neighborhood. As a result, even though our approach can be 

easily extended to a space/time context, we do not anticipate that this would result in 

a substantial decrease of estimation error over a purely spatial analysis. In order to 

investigate this point, we conducted a sensitivity analysis consisting in comparing 

the model performance of the space/time implementation of methods (1), (2) and (3), 

which we refer to methods (4), (5) and (6), respectively, i.e. method (4) is the BME 

space/time hard data only analysis assuming country wide stationarity, method (5) is 

the moving-window BME space/time hard data only analysis, and method (6) is the 

moving-window BME space/time soft data analysis. For this sensitivity analysis, the 

PM2.5 yearly average concentration was modeled as a homogeneous/stationary 

space/time random field (S/TRF) (Christakos 1992). Then, the space/time 

dependency amongst PM2.5 yearly average concentrations was modeled using a 

space/time separable covariance model. Furthermore the estimation neighborhood 
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for the space/time estimation methods included all the data points used in the spatial 

only estimation methods, as well as three additional PM2.5 yearly average 

concentrations observed at days preceding or following the estimation day of interest 

for the three monitoring stations in the spatial only estimation neighborhood that are 

closest to the estimation point (in terms of a space/time metric)  (Christakos et al. 

2001). The cross-validation analysis was, then, conducted for the same 10 randomly 

selected days in 2003 to compare model performance. All analyses were conducted 

using the Matlab R2008a (MathWorks Inc.) and BMElib, suite of the Matlab libraries 

for the BME analysis (Christakos et al. 2001). 

 

 

2.3. Result 

 

2.3.1. PM2.5 yearly average concentration 

Of the 1515 PM2.5 monitoring sites that operated from 1999 to 2008, 1239 

had PM2.5 daily concentrations during the 2001-2003 study period. Figure 2.1 (a) 

shows the entire 1515 PM2.5 monitoring sites over the continental U.S. PM2.5 yearly 

average concentrations calculated for an estimation date of December 31, 2003, 

which uses all the PM2.5 daily measurements observed during 2003, are shown in 

Figure 2.1 (b). The yearly average concentrations that met the completeness 

criterion are shown in circles. They were treated as hard data in the BME analysis. 

In contrast, those shown in squares did not meet this criterion and were treated as 

soft data. 
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                               (a)                                                               (b) 

 

Figure 2.1: (a) PM2.5 monitoring sites over the continental U.S. and (b) PM2.5 yearly 
average concentration on December 31, 2003 

 

 

Figure 2.2 displays time series of PM2.5 daily and corresponding yearly 

average concentrations in 2003 at two monitoring sites: (a) 41-029-2129 and (b) 41-

029-1001. PM2.5 yearly average concentrations are shown in blue and green lines. 

The blue line shows yearly average concentrations that met the completeness 

criterion, whereas the green lines show yearly average concentrations which did not 

meet the completeness criterion, and their corresponding 95% confidence interval 

based on the soft data standard deviation „ί,Ὥ given by eq. (2.6). The PM2.5 daily 

average concentrations are shown in red dotted line. At monitoring site 41-029-2129, 

all the yearly average concentrations calculated each day of 2003 met the 

completeness criterion, therefore a hard datum is shown for each of these days. On 

the other hand, at site 41-029-1001, most of the yearly average concentrations 

obtained during 2003 did not meet the completeness criterion and were treated as 

soft data because of the incompleteness of daily observations. 
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                               (a)                                                               (b) 

 

Figure 2.2: Time series of PM2.5 daily and yearly average concentrations at 
monitoring site (a) 41-029-2129 and (b) 41-029-1001. 

 

 

A histogram of all the PM2.5 yearly average concentrations obtained in 2003 is 

shown in Figure 2.3. Although PM2.5 yearly average concentrations were slightly 

positively skewed (coefficient of skewness: 0.357), their distribution is more 

symmetric than that of log-transformed yearly average concentrations (coefficient of 

skewness: -0.805).PM2.5 yearly average concentrations were thus not log-

transformed prior to the following estimation analysis. 
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Figure 2.3: Histogram of all PM2.5 yearly average concentrations obtained in 2003. 

 

 

2.3.2. Cross-validation analysis 

Table 2.1 shows the cross validation statistics obtained for method (1) ï (3). 

The moving-window BME hard data only analysis (method (2)) reduced the MSE by 

11% relative to the method under country wide stationarity assumption (method (1)). 

This indicates that using a moving-window approach to account for the non-

stationarity of the process leads to 11% improvement in estimation performance 

over a method that assumes country wide stationarity. The moving-window BME soft 

data analysis (method (3)) further reduced the MSE by 18% relative to method (1), 

which indicates that there was a cumulative improvement in estimation performance 

when using the moving-window approach and accounting for soft data. 

The APE and ASPE were generally close to 0, even though both values from 

method (1) were slightly closer to 0 relative to the moving-window approaches 

(method (2) and (3)). In contrast, the ASE from the moving-window approaches were 
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about 20% smaller than that from method (1). Similarly, the RMSS for the moving 

widow approaches were substantially closer to 1 than that for method (1). Likewise, 

the Pearsonôs correlation and Spearmanôs rank correlation were both higher for the 

moving-window approaches than for method (1). However, those from method (3) 

were the best among all three methods. 

 

Table 2.1: Cross validation statistics obtained by the following three methods based 
on exponential covariance model: method (1) the BME hard data only analysis 
assuming stationarity across the U.S. (first column), method (2) moving-window 
BME hard data only analysis (second column), and method (3) moving-window BME 
soft data analysis 

Method (1) (2) (3) 

MSE 2.459 2.186 1.998 

APE 0.054 0.128 0.114 

ASPE 0.012 0.052 0.044 

ASE 1.939 1.570 1.540 

RMSS 0.801 1.044 1.077 

Pearsonôs Corr. 0.878 0.893 0.903 

Spearmanôs Rank Corr. 0.886 0.894 0.902 

 

 

The MSE based on other covariance models (exponential, Gaussian, 

spherical, and best fit covariance model) are listed in Table 2.2. In terms of MSE, the 

exponential covariance model outperformed the other covariance models. Moreover, 

the performance of three estimation methods (1) ï (3) exhibits the same trend 

regardless the covariance model. Method (2) improves the estimation performance 
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over method (1) and method (3) further reduced the MSE. Other cross validation 

statistics are listed in Appendix A. 

 

Table 2.2: Mean square error (MSE) of three estimation methods (1) ï (3) based on 
four covariance functions; exponential (first row), Gaussian (second row), spherical 
(third row), and best fit model (forth row), 

Method (1) (2) (3) 

Exponential Model 2.459 2.186 1.998 

    

Gaussian Model 3.442 2.480 2.281 

Spherical Model 3.050 2.231 2.066 

Best Fit Model 3.050 2.302 2.100 

 

 

2.3.3. Space/Time Sensitivity Analysis 

Table 2.3 shows the MSE for the spatial only estimation methods (1) ï (3) 

and for the corresponding three space/time estimation methods (4) ï (6) based on 

exponential covariance model. The second and third columns list  the change in 

percent (%) relative to method (1), and relative to the corresponding spatial only 

(SO) model, respectively. The space/time methods (4) and (5) reduced the MSE by 

approximately 4% relative to their corresponding spatial only methods. On the other 

hand, method (6) did not improve the estimation over method (3). This indicates that 

when using only hard data the space/time estimation framework leads to a 

performance improvement regardless of whether one is using nationwide or a local 

covariance model. This can be explained by the fact that on the estimation day of 

interest several monitoring stations do not meet the completeness criterion. As a 
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result the corresponding data points are not used in the spatial only analysis, while 

the space/time analysis is able to include data for these stations at some days 

following or preceding the estimation day when the completeness criterion is met. 

On the other hand, as explained earlier, we did not expect an improvement in 

estimation accuracy when implementing the BME method with soft data, which 

explains why the model performance does not improve from method (3) to (6).  

 

Table 2.3: Mean square error (MSE) of spatial only estimation methods (1) ï (3) and 
space/time estimation methods (4) ï (6) based on the exponential covariance model. 
The change in MSE (in percent,%) relative to method (1) and to corresponding 
spatial only (SO) method are shown in column 3 and 4, respectively. 

Method MSE 
Change (%) 

(Relative to (1)) 
Change (%) 

(Relative to SO) 

(1) 2.459   

(2) 2.186 -11.1 NA 

(3) 1.998 -18.75 NA 

(4) 2.362 -3.94 -3.94 (Relative to (1)) 

(5) 2.088 -15.07 -4.47 (Relative to (2)) 

(6) 2.006 -18.43 0.4 (Relative to (3)) 

 

 

2.3.4. Simulation Study 

In 2003 the fraction of soft data points for PM2.5 yearly average 

concentrations was only about 18% of all the hard and soft data points. This fraction, 

however, increases as daily PM2.5 observations were progressively removed from 

the original data set, reaching a fraction of 77% of soft data points when 20% of daily 

PM2.5 concentrations were removed (Table 2.4). The MSEs from methods (1) ï (3) 
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based on these simulated data sets are also shown in Table 2.4. The MSEs 

obtained from method (1) and (2) which relied only on hard data points increased as 

the ratio of soft data increased. In contrast, the MSE did not drastically change in 

method (3) which processes both the hard and soft data available. For example, 

when Simulated Data 4 was used, the MSE increased by about 90% in method (2), 

whereas the MSE from method (3) increased by only about 8%. 

 

Table 2.4: Fraction of the PM2.5 yearly concentration soft data (in %) and MSEs for 
methods (1) ï (3) obtained for the true (i.e. uncensored) dataset (first row) and for 
the simulated datasets generated by randomly censoring 5% (second row), 10% 
(third row), 15% (fourth row), and 20% (fifth row) of the daily PM2.5 observations 

 Soft Data (%) MSE (1) MSE (2) MSE (3) 

True Data 17.9 2.459 2.186 1.998 

Simulated Data 1 (5%) 24.7 2.543 2.267 2.009 

Simulated Data 2 (10%) 37.5 2.834 2.543 2.024 

Simulated Data 3 (15%) 57.2 3.177 2.901 2.105 

Simulated Data 4 (20%) 76.7 4.216 4.149 2.156 

 

 

2.3.5. Estimation Map 

Figure 2.4 shows maps of the estimated PM2.5 yearly average concentration 

in California on December 31st, 2003 obtained by (a) method (1) and (b) method (3) 

in California. The concentration map created by method (1) has a smoother 

distribution compared with that obtained by method (3). This result indicates that the 

moving-window BME method provides a description of spatial variation of PM2.5 

yearly average concentrations at a substantially finer resolution than that provided 
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by method (1). This result can be explained by the fact that ignoring the non 

stationarity and the soft data for PM2.5 yearly average concentrations may lead to a 

loss of information that result in a loss of ability to describe detailed spatial gradients 

in long term exposure to PM2.5. To visually inspect the accuracy of the estimated 

PM2.5 yearly average concentrations, the yearly average concentration across the 

U.S. obtained by method (3) on December 31st, 2003 and U.S. EPA AirData annual 

summary of PM2.5 concentration are shown in Figure 2.5 (U.S. EPA 2009). AirData 

annual summary concentrations (colored circles) and the estimated concentration 

(background color) show a good agreement. 

 

                               (a)                                                               (b) 

 

Figure 2.4: Map of the estimated PM2.5 yearly average concentrations (mg/m3) in 
California on December 31st, 2003 obtained by (a) method (1) and (b) method (3)  
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Figure 2.5: Map of the estimated PM2.5 yearly average concentrations (mg/m3) 
across the U.S. obtained using method (3) on December 31st, 2003. The U.S. EPA 
AirData annual summary of PM2.5 concentration shown in colored circles. 

 

 

2.4. Discussion 

 

Classical linear geostatistical methods such as kriging are widely used to 

estimate individual-level exposure to air pollutants in many epidemiologic studies. 

Relative to conventional deterministic values such as the local average 

concentration or the concentration at the nearest monitoring station, or compared to 

deterministic interpolation techniques such as the inverse distance weighted 

average, geostatistical methods generally provide better estimates for individual-

level exposure by taking into account the spatial dependency amongst the measured 

concentrations. However, there are several limitations when using classical linear 
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geostatistical methods to assess the long-term exposure to an air pollutant such as 

PM2.5 over a large geographic region. 

In the U.S., the concentration of PM2.5 and its chemical composition show 

high spatial and temporal variability. Concentrations are generally higher in winter 

months on the west coast, whereas the level peaks in the summer on the east coast. 

Sulfate and other components of PM2.5 also display clear spatial pattern (Bell et al. 

2007). The spatial dependency of the PM2.5 concentration is, therefore, expected to 

vary across space so that standard geostatistical methods relying on the stationarity 

assumption is inappropriate. Thus, a methodological framework that is capable of 

handling the non-stationarity of the spatial process is needed. Several studies 

addressed this issue in air pollution epidemiologic studies. Liao et al. (2006), for 

instance, conducted regional-scale kriging to estimate daily PM10 concentration over 

the U.S. by dividing the U.S. continent into five regions and calculating the 

semivariogram parameters in each region. However, based on cross-validation 

statistics they recommended using a national-scale kriging approach that assumes 

nationwide stationarity rather than a regional-scale kriging approach because of the 

insufficient model performance at the estimation points near the regional borders. 

That approach, however, is inadequate to account for the non-stationarity of the 

spatial process, since all estimation points in each region shared the same 

semivariogram parameters, which is equivalent to assuming within-region-

stationarity. In the present study, we employ a moving-window approach to account 

for this issue. As shown in Table 2.1, the moving-window BME hard data only 

analysis (method (2)) led to 11% reduction of the MSE relative to the method 
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assuming country wide stationarity (method (1)). Other cross-validation statistics 

obtained from method (2) were also generally better than those obtained from 

method (1). The RMSS from methods (1) and (2) were 0.801 and 1.044, 

respectively. The RMSS from method (2) is pretty close to 1, which indicates that 

estimated standard error is a valid estimate. In contrast, the RMSS from method (1) 

is smaller than 1 suggesting an overestimation of the estimated standard error. In 

addition, the Spearmanôs rank correlation from method (2) is also higher than that 

from method (1), which suggests that the estimation results from method (2) better 

preserve the ranking of true concentrations. Thus, the moving-window approach 

accounting for the non-stationarity of the spatial process is superior to the method 

based on nationwide stationarity.  

In addition to the moving-window approach, several different approaches 

have been introduced to deal the non-stationarity of the covariogram. Even though 

the moving-window approach is suitable for geostatistical estimation, it might not be 

appropriate for other applications of spatial statistics (Fuentes 2003). However, since 

the primary goal of this study is to better estimate the long-term exposure  to PM2.5 

at unmonitored locations, we believe that the moving-window approach is a 

reasonable choice to handle the non-stationarity of the covariogram over a large 

spatial domain because it is a simple method to implement, which minimizes risk of 

implementation error in epidemiologic studies, and because it is shown in this study 

to significantly improve the estimation of long term exposure to PM2.5, which, to our 

knowledge, has not been demonstrated to the same extend for other methods using 

non-stationary covariograms. 
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The reliability of the yearly average concentration is, generally, assessed by 

the completeness criterion based on the number of daily concentrations used to 

calculate the yearly average concentration. In many epidemiologic studies, the 

yearly average concentrations not satisfying the completeness criterion were simply 

eliminated from the analysis to avoid the possibility of obtaining misleading results. 

On the other hand, the BME method used in this study provides a flexible 

methodological framework that is capable of rigorously incorporating uncertain 

observations expressed as soft data characterized by any form of probability density 

function. In 2003, about 18% of the data did not meet the completeness criterion and 

were treated as soft data (Table 2.4). By accounting for these soft data method (3) 

reduced the MSE by 8% relative to method (2) which disregarded these soft data 

(Table 2.1). Other cross-validation statistics obtained from method (3) were also 

generally better than those obtained from method (2) in terms of estimation accuracy 

and ranking order preservation. Thus, overall, the moving-window BME soft data 

method which accounts for both the non-stationarity of the covariogram and for 

PM2.5 yearly average concentrations not meeting the completeness criterion 

performs the best among the three methods investigated in this work, and is 

therefore the method recommended to minimize exposure misclassification in 

epidemiological studies investigating the effect of long term exposure to PM2.5 on 

health. 

To further investigate how the fraction of soft data points affects model 

performance, we also conducted the simulation study summarized in Table 2.4. We 

see from these results that the MSE obtained from method (3) is remarkably stable 
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even when up to 75% of the data do not meet the completeness criterion. By 

contrast, the MSE for methods (1) and (2) increase by a factor of almost 2 as 

compared to the MSE obtained for the true dataset. This means that our proposed 

approach (method 3) will continue to provide reliable assessment of long term 

exposure to an air pollutant even when the number of intended daily concentration 

decreases, while that is not at all the case in for the classical approach used in 

methods 1 and 2, which completely disregard the useful information provided by 

yearly averages that do not meet the completeness criterion. 

We find from Table 2.3 that, as expected, a space/time estimation method 

slightly improves model performance relative to its corresponding spatial only 

method when only hard data are used (i.e. methods 4 and 5 improved upon methods 

1 and 2, respectively), while the space/time estimation did not improve model 

performance when both hard and soft data are used (i.e. method 6 did not improve 

upon method 3). This result indicates that when using both hard and soft data (i.e. 

method 3), then the optimal estimation neighborhood consists in the (hard and soft) 

data for the estimation day of interest, which essentially means that the spatial 

estimation framework is optimal and little improvement is expected from 

implementing a full space/time estimation framework. This has the useful implication 

that in a practical epidemiological setting, the BME approach we are presenting in 

this work (method 3) will be easier to implement (and likewise less computationally 

intensive) than an approach (such as that used in methods 4 or 5) that would require 

the implementation of a full space/time estimation framework. In fact, of all the 6 
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spatial and space/time methods tested in this work, method 3 is the one with the 

smallest MSE, even though that method is a spatial only method. 

This study introduces a window-based implementation of the BME method for 

long term exposure assessment to PM2.5 that rigorously accounts of the uncertainty 

associated with incomplete daily PM2.5 observations. This work provides 

methodological developments that complement those presented in recent studies 

using the BME method for air pollution estimation, and can be extended in the future 

to investigate the applicability of the framework presented here to assess long term 

exposure to variety of air pollutants. For example, in a study conducted in the 

Carolinas (states of North and South Carolina) to estimate the long-term exposure to 

ozone and PM10 (Yu et al. 2009) used the histogram of daily observations to 

construct the soft data. By contrast we use in this work a truncated Gaussian 

distribution with a standard deviation (eq. 2.6) that explicitly incorporates a finite 

population correction factor. Both the window-based implementation of the BME 

method and the finite population correction factor present alternative model 

specifications that can offer modelers with a flexible conceptual framework that can 

enhance future models used for the space/time estimation of long term exposure to 

air pollutants. 

 



CHAPTER 3 

Influence of rainfall on the spatial variability of fecal indicator bacteria across 

tubewells in a village of Matlab, Bangladesh 

 

3.1. Background 

 

3.1.1. Diarrheal disease in the developing countries 

Despite great progress in improving water quality and sanitation in many parts 

of the world, diarrheal disease remains a severe problem among children. Even 

though the number of annual deaths from diarrheal disease has gradually decreased 

over the past two decades, morbidity and mortality of diarrheal disease remain high 

especially in the developing countries. The burden of diarrheal disease in developing 

countries was estimated to be more than 200 times higher than that in developed 

countries (Pruss et al. 2002). Currently diarrheal disease is the second leading 

cause of deaths among children under five years of age and it accounts for 

approximately 2.5 million deaths among children (Kosek, Bern, and Guerrant 2003). 

Diarrhea is a typical symptom of gastrointestinal infections which can be caused by 

various bacteria, viruses and parasites. Most of these pathogenic organisms spread 

through fecal-oral transmission in which water is the primary medium to transport 

microbial pathogens (Ashbolt 2004). Thus in order to prevent diarrheal disease an 

access to clean water is essential.  
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3.1.2. Drinking water source and microbial contamination in Bangladesh 

In many developing countries, groundwater is a preferable drinking water 

source to surface water, since groundwater is normally less contaminated with 

microbial pathogens. In addition, the use of the groundwater is generally the only 

economically feasible option to obtain clean water (Pedley, and Howard 1997). In 

Bangladesh, the most densely populated country in the world located in South Asia, 

people gradually have switched their drinking water source from highly contaminated 

pond and river water to groundwater to prevent outbreaks of waterborne diseases. 

Since 1970ôs, with the assistance of the United Nations Childrenôs Fund (UNICEFF) 

and many NGOs, millions of tubewells have been installed across the country to 

provide an access to safe drinking water (Smith, Lingas, and Rahman 2000). 

Currently more than 90% of households in rural Bangladesh are using tubewells as 

their primary drinking water source (NIPORT 2005). Nevertheless, the switching of 

drinking water source was found to be insufficient to eliminate the risk of diarrheal 

disease (Black et al. 1982; Black et al. 1981; Chen, Rahman, and Sarder 1980; 

Levine et al. 1976). Diarrheal disease remains a severe problem in the country and 

more than fifty thousand children still die annually from it (UNICEF 2009). 

Several studies reported frequent occurrences of microbial contamination in 

the groundwater due to the combination of poorly designed disposal of human feces 

and insufficient protection of water source (Macler, and Merkle 2000; Melian et al. 

1999; Pedley, and Howard 1997). A study conducted in a rural area of Bangladesh, 

for example, found that water samples collected from five tubewells contained 

several microorganisms such as zooplankton, viable bacteria, and fecal coliforms 

(Islam et al. 2001). A more recent study (Luby et al. 2008) also confirmed the low 
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levels of fecal contamination in tubewell water using over 200 samples collected in 

three flood-prone districts in Bangladesh. Similar studies performed recently in 

Bangladesh also confirmed a moderate levels of fecal contamination in tubewell 

water (Hoque et al. 2006; Luby, Islam, and Johnston 2006). These results indicate 

that tubewell water might not be a safe drinking water source in Bangladesh. 

Consumption of tubewell water might be one of the primary routes of exposure to 

microbial pathogens. Thus, in order to reduce the burden of diarrheal disease in 

Bangladesh, it is essential to better understand the mechanism of groundwater 

microbial contamination. 

 

3.1.3. Groundwater and rainfall 

Groundwater recharge due to rainfall is one of the key factors for controlling 

microbial contamination in shallow aquifer. Previous studies reported an association 

between microbial contamination in groundwater and precipitation (Barrell, and 

Rowland 1979; Wright 1986). The level of microbial contamination in shallow 

protected springs in Kampala, Uganda, for example, was significantly associated 

with rainfall, especially with short-time rainfall events (Howard et al. 2003). These 

results suggest that transport of microbial pathogens driven by rainfall might 

determine how widely microbial contamination stretches in shallow aquifers. 

In the present study, we test the hypothesis that the spatial extent of microbial 

contamination in shallow aquifers is associated with rainfall. The study was 

conducted in Bara Haldia, one of the villages in the Matlab field research area of the 

International Centre for Diarrheal Disease Research, Bangladesh (ICDDR, B). We 

collected monthly tubewell water samples from May, 2008 to April, 2009 and we 
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analyzed these samples for Escherichia coli (E. coli). The range of the covariance 

function of log-transformed E. coli concentration was estimated each month of the 

study period as an indicator of the spatial extent of microbial contamination in the 

shallow aquifer. Then, correlation between the covariance range and rainfall was 

calculated to evaluate the association between the spatial extent of microbial 

contamination and rainfall. 

 

 

3.2. Material and Method 

 

3.2.1. Study Area 

The study was conducted in Bara Haldia, one of the villages in the Matlab 

field research area of ICDDR, B. Matlab is a subdistrict of Bangladesh located in the 

south-central part of the country approximately 50 km southeast of Dhaka (the 

capital of Bangladesh). Approximately 220000 people live in Matlab field research 

area. There are more than 10000 baris which are clusters of households connected 

through a patrilineal line. Flood protection embankment was built in the 1980ôs along 

the Dhonagoda River running from north to south through Matlab. Approximately half 

of the study area within the embankment is protected from flooding. Figure 3.1 

shows (a) the location of Matlab within Bangladesh and (b) a satellite image of the 

Matlab subdistrict and the location of the Bara Haldia study area. A GPS survey was 

conducted in the study area to identify the location of all tubewells, latrines, and 

households (Escamilla unpublished data). The location of 307 households, 244 

latrines, and 186 tube wells were recorded. Figure 3.2 shows a satellite image of the 
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study area with the location of monitoring tubewells, latrines, and households that 

were GPS surveyed. A road across the study area divides the village in its northern 

and southern parts. The northern area is more densely populated than the southern 

area. 

 

                               (a)                                                               (b) 

 

Figure 3.1: (a) The location of Matlab within Bangladesh and (b) A satellite image of 
the Matlab subdistrict and Bara Haldia study area 
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Figure 3.2: Satellite image of the Bara Haldia study area showing locations of 
monitoring tubewells, latrines, and households that were GPS surveyed 

 

 

3.2.2. Rainfall Data 

The tropical monsoon climate of Bangladesh is characterized by a monsoon 

season with heavy rainfalls from June to October and a dry pre- and post-monsoon 

season with virtually no rainfall. A HOBO weather station was installed in the Bara 

Haldia study area to collect precipitation and meteorological data (ONSET, Bourne, 

MA; http://www.onsetcomp.com/products/weather_stations). The weather station 






























































































































































































