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Abstract

Carole Agyeman-Prempeh : Cutting and Stacking in Ergodic Theory

(Under the direction of Dr. Idris Assani)

This thesis looks at constructing transformations using cutting and stacking methods. It

focuses mainly on the construction of Chacon’s transformation. This transformation pro-

vides an example of a measure-preserving transformation which is weakly mixing and not

strongly mixing.
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Chapter 1

Introduction

1.1 Preliminaries

The goal is to define and exhibit some properties of an important measure-preserving sys-

tem. This system was created in 1969 by R.V. Chacon [1]. The transformation T defined

on this system is called Chacon’s transformation. The Chacon example and its contstruc-

tion has become one of the fundamental examples in Ergodic theory. First we give some

preliminaries, the definition and simple examples of measure-preserving systems.

We consider first a set X then define on it a σ- algebra, a measure and a measure-preserving

transformation.

Definition 1.1.1. A collection of subsets of (X, B) is defined as a σ-algebra if

1. ∅ ∈ B

2. B is closed under countable union and intersections.

3. B is closed under complements.

Definition 1.1.2. A set A is measurable if A belongs to the σ-algebra.

The pair (X,B) forms a measurable space. In order to define a measure we first need to

state the set of interest X and the σ-algebra B. The set of interest here will be the unit

interval [0, 1] and the σ-algebra will consist of the Lebesgue measurable subsets of [0, 1].



The measure which is defined on the elements of the σ-algebra is the Lebesgue measure µ.

The triple ([0, 1],B, µ) now makes up the measure space of interest.

Definition 1.1.3. A transformation T : X → X is said to be measure-preserving if for all

A ∈ B

µ(T−1A) = µ(A).

An example of measure-preserving transformation defined on [0, 1] is the translation map

T (x) = x+ α (mod 1) with α ∈ (0, 1). Figure 1.1.1 shows this graphically.

Fig. 1.1.1: Graph of the translation T (x) = x+ α with α ∈ (0, 1)

Another measure-preserving transformation defined [0, 1] is T : [0, 1] → [0, 1] such that

Tx = 2x (mod 1) or more generally Tx = nx(mod1). Tx = 2x (mod 1) is seen graphically

in Figure 1.1.2.

Proposition 1.1.1. T (x) = nx (mod 1) is measure preserving.

Proof. Step 1: We first show T is measure-preserving on open intervals.

Given an interval A ∈ B,

T−1A =
n⊔
j=1

Aj disjoint union

µ(T−1A) =
n∑
j=1

µ(Aj) because µ is σ-additive.
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Using the fact that the slope of the line, s, is given by

s = ∆y
∆x = 1

1
n

= n

⇒ ∆y = n∆x

and thus µ(A) = n µ(Aj) ∀j.

From this we see that each Aj has measure 1
n
µ(A) and therefore

µ(T−1A) =
n∑
j=1

1
n
µ(A)

= µ(A).

We have thus shown that the transformation T is measure-preserving on open intervals.

Fig. 1.1.2: Graph of the double map T (x) = 2x (mod 1)

Step 2: The result above can be extended to open sets then in turn extended to the set

of Lebesgue measurable sets (Lebesgue measurable σ-algebra). The proof of this result is

given below for open sets.

Observe that for an open set, O,

O =
⋃

(an, bn), open, countable, and disjoint intervals

3



T−1O = T−1(∪(an, bn))

µ(T−1O) = µ(T−1(∪(an, bn)))

= µ(∪T−1(an, bn)) since the intervals are disjoint

=
n∑
µT−1(an, bn)

=
∑

µ(an, bn)

= µ(O).

Hence T is measure-preserving on open sets.

Step 3: To move to Lebesgue measurable sets, notice that for any A ∈ B and for all ε > 0,

∃ O an open set such that A ⊂ O and µ(O\A) < ε. Pick O1 and O2 such that A ⊂ O1,

A ⊂ O2. Then A ⊂ (O1 ∩ O2). Let Ō2 denote O1 ∩ O2. Again, pick O3 such that A ⊂ Ō3

where Ō3 = O1 ∩O2 ∩O3. Continuing this process generates a decreasing sequence of open

sets such that A ⊂ Ōn. Let I denote the characteristic function on some set. Then

IŌn −→ IA a.e thus

µ(Ōn) −→ µ(A). Also since

T−1(A) ⊂ T−1(Ōn) then

lim
n→∞

µ(Ōn) = lim
n→∞

∫
IŌndµ =

∫
lim
n→∞

IŌn by the MCT

= µ(A).

Hence we have shown that lim
n→∞

µ(Ōn) = µ(A). Note also that

∞⋂
n=1

Ōn = A and that

⋂
T−1(Ōn) = T−1(

∞⋂
n=1

Ōn)

µ(
⋂
T−1(Ōn)) = µ(T−1(

∞⋂
n=1

Ōn))

lim
n→∞

µ(T−1(Ōn)) = lim
n→∞

µ(Ōn)

= µ(A).

Therefore T is measure-preserving on Lebesgue measurable subets as well.
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We continue by giving more preliminaries that will be needed to prove one of the properties

of Chacon’s transformation.

Definition 1.1.4. A set of nonnegative integers D is said to be of density zero if

lim
n→∞

1
n

n−1∑
i=0

ID(i) = 0.

If this is not the case, then the lim sup
n→∞

1
n

n−1∑
i=0

ID(i) is strictly positive and the set D is

described as having positive upper density.

Definition 1.1.5. Let {ai} be a bounded sequence of real numbers which may converge to

a number a. Given are three notions of convergence. We say

1. The sequence {ai} converges to a if

lim
i→∞

ai − a = 0.

2. {ai} has strong Cesaro convergence to a if

lim
n→∞

1
n

n−1∑
i=0
|ai − a| = 0 and

3. {ai} is described to have Cesaro convergence to a if

lim
n→∞

1
n

n−1∑
i=0

ai − a = 0

Stated without proof, note that if {ai} is a bounded sequence, convergence to a implies

strong Cesaro convergence which in turn implies Cesaro convergence. Also take note that

the converse implications do not hold.

Definition 1.1.6. A sequence {ai} of real numbers is said to converge in density to a point

a if there exists a set of density zero, D, such that for every ε > 0 there is an integer N

such that whenever i > N and i /∈ D, |ai − a| < ε. This way of looking at convergence

will be used in the subsequent chapter to prove the weakly mixing property of the Chacon

transformation.
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We now define what it means for a transformation T to be ergodic.

Definition 1.1.7. Let (X,B, µ) be a probability measure space. A measure-preserving

transformation T : X → X is said to be ergodic if and only if for all A, T -invariant sets,

µ(A) = 0 or µ(Ac) = 0.

An important result in the study of ergodic theory is the Mean ergodic theorem which is

stated as follows:

Theorem 1.1.1. Let T be a measure-preserving transformation on a probability space

(X,B, µ) and let f ∈ L1. Then there exists f∗ ∈ L1 with f∗ ◦ T = f∗ a.e and

lim
n→∞

1
n

n−1∑
k=0

f ◦ T k = f∗

in L1 norm. Also
∫
f∗dµ =

∫
fdµ.

There are several ways of stating the ergodicity property. Given below are a few.

Lemma 1.1.1. The following are equivalent:

1. T is ergodic.

2. For every A,B ∈ B

lim
n→∞

1
n

n−1∑
k=0

µ(T−k(A) ∩B) = µ(A)µ(B).

3. For all A,B ∈ B of positive measure, there exists some integer k such that µ(T−kA∩

B) > 0.

Proof. (3) implies (1). Let A be a T -invariant set of positive measure i.e, for all k > 0,

T−k(A) = A. Set B = Ac. Then if B has positive measure there would exist some integer

k so that µ(T−kA ∩ B) = µ(T−kA ∩ Ac) > 0. This is never true and hence we have a

contradiction. Therefore µ(Ac) = 0 which makes T ergodic.

(1) implies (2). The function f∗ ∈ L1 is given by f∗ = EI(f), the expectation of f . If T

is ergodic, then I is trivial and thus I = {∅, X}. Thus f∗ =
∫
fdµ. Suppose T is ergodic.

6



Note that with f = IA × IB, then

lim
n→∞

1
n

n−1∑
k=0

(
IA ◦ T k · IB

)
= lim

n→∞

(
1
n

n−1∑
k=0

IA ◦ T k
)

IB.

Then by the ergodic theorem

lim
n→∞

∫ ( 1
n

n−1∑
k=0

IA ◦ T k
)

IB =
∫

IAdµ
∫

IBdµ

= µ(A)µ(B).

(2) implies (3). Suppose (2) is true. For the limit to exist, there should be infinitely many

integers k such that
1
n

n−1∑
k=0

µ(T−k(A) ∩B) > 0

which would imply that there are infinitely many k such that µ(T−k(A) ∩B) > 0.

Stated without proof is a Bochner-Herglotz theorem [2]. This will be needed in the next

chapter to help prove the weakly-mixing property of a transformation.

Theorem 1.1.2. Let {σn} be a positive definite sequence. Then there exists unique non-

negative measure µ on [0, 1], such that

σ(n) =
∫
e2πinxdµ.

7



Chapter 2

Chacon’s Transformations

In this chapter we look at two different ways of constructing Chacon’s transformation. The

first, and more common, method of construction is studied first. The transformation from

this method, called the canonical Chacon’s transformation, is as studied by Cesar Silva [3].

The second method of construction explored, which is actually the original method, is that

seen in Chacon’s paper [1].

2.1 Construction of The Canonical Chacon Trans-

formation

We begin stage 1 by dividing the unit interval [0, 1] into two disjoint pieces
[
0, 23

)
and[2

3 , 1
]
. The second piece will serve as the spacer or reservoir. The first piece,

[
0, 23

)
, is cut

into three equal parts and an interval of equal length to each part, 2
9 , is cut from the right

side of the spacer. Figure 2.1.1 shows this step. This completes the 'cutting'process.

The order of stacking of the intervals is this: First the middle piece is stacked on top of the

left. The interval of equal length from the spacer is next and last in the stacking process,

to form tower-1, is the rightmost piece. Figure 2.1.2 gives an illustration.



Fig. 2.1.1: Constructing Chacon’s transformation at Stage 1

Fig. 2.1.2: Intermediate step of Chacon’s process at Stage 1

Fig. 2.1.3: End of Stage 1

Thus at the end of the first stage we have a tower consisting of four levels and the remaining

spacer. See Figure 2.1.3. The transformation T at this stage maps the base of the tower

linearly to the interval just above it and that interval to the one just above it and so on.
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We note that under T the topmost level and the remaining spacer have no images.

The process of cutting and stacking is repeated again in Stage 2. We start off first by slicing

the four-tier tower from the end of stage 1, tower-1 for short, into three equal pieces.

An interval of same length as each of the newly cut parts, now 1
3 ·

2
9 = 2

27 , is separated

from the right-hand side of the remaining spacer. Again the order of stacking is that the

Fig. 2.1.4: Subdividing tower-1 and stacking middle portion at Stage 2

middle portion of the sliced tower is stacked on the left portion, then the spacer and last is

the rightmost portion of the tower.

Fig. 2.1.5: Intermediate steps in Stage 2

10



Thus at the end of stage 2, we have a new tower, tower-2, consisting of 13 levels and the

remaining spacer.

Fig. 2.1.6: End of Stage 2 of the Chacon process

This is an iterative process and at the (n+1)th stage of construction the nth tower is again

sliced into 3 equal pieces. An interval of equal length to each level of the tower is cut off

from the remaining spacer.

Fig. 2.1.7: Slicing and stacking the nth tower

Stacking first the middle 1
3 of the tower, then the equal length spacer, then the rightmost

11



portion of the tower we are again presented with a new tower at the end of the nth stage.

Fig. 2.1.8: Intermediate steps of (n+ 1)th stage

Fig. 2.1.9: End of the (n+ 1)th stage

12



2.1.1 Some calculations

We now look at some calculations that can be deduced about the Chacon transformation

at the beginning of the stages.

At the beginning of Stage 1:

† Height of tower = 1.

† Length of spacer = 1
3 .

† Length of each interval (excluding spacer) after slicing = 1
3 ·

2
3 = 2

9 = 2
32 .

At the beginning of Stage 2:

† Height of tower = (3× 1) + 1 = 4.

† Length of spacer = 1
3 −

2
9 = 1

9 = 1
32 .

† Length of each interval after slicing = 1
3 ·

2
9 = 2

27 = 2
33

Therefore by induction we observe that at the beginning of the nth stage:

† The height of tower is given by hn = 3hn−1 + 1.

† The length of the spacer is given by 1
3n and

† The length of each interval after cutting is 2
(1

3

)n+1
.

Thus at the end of the nth stage the transformation T is defined on all the levels except

the top level and the remaining spacer. Explicitly, the transformation is defined on a subset

of [0, 1] of measure 1 − 1
3n −

2
3n+1 = 1 − 5

3n+1 . We note that the process of cutting and

stacking increases the domain of where the transformation is defined and as n gets larger

and larger, the limiting transformation T is defined on a subset of [0, 1] which has measure

1.

13



2.2 Some Properties of Chacon’s Transformation

2.2.1 Measure-Preserving Property

The goal is to prove that µ(T−1A) = µ(A) for all measurable A ⊂ [0, 1]. Since A will be

broken up into pieces, at the nth stage of the Chacon process A = (A⋂ spacers) ⋃(A⋂
top levels) ⋃(A⋂ middle levels). Bear in mind that on the nth stage on the tower, T is

not defined on the top level if we move in the forward direction or T is not defined on the

bottom levels if we move in the backward direction. Let Tn denote the tower at the nth

stage and In,k be the levels of the tower at the nth stage and in kth position from the base

of the tower.

Lemma 2.2.1. Given Xn ⊂ [0, 1] and that µ(Xn)→ µ(X) = 1. We claim that µ(B∩Xn)→

µ(B) for any B ⊂ [0, 1].

Proof.

µ(B) = µ (B ∩Xn) + µ (B\Xn)

µ(B)− µ (B ∩Xn) = µ (B\Xn)

Note that µ(B\Xn) ≤ µ ([0, 1]\Xn)

= 1− µ (Xn)→ 0 as n→∞ since µ(Xn)→ 1.

And therefore µ(B) = lim
n→∞

µ(B ∩Xn).

Proof of measure-preserving property. Let A be a measurable subset of [0, 1].

A can be written as A = (A⋂ In,1)⋃
 hn⊔
k=2

A
⋂
In,k

⋃(A⋂ remaining spacer at nth stage).

Thus

µ(A) = µ
(
A
⋂
In,1

)
+ µ

 hn⊔
k=2

(
A
⋂
In,k

)+ µ(A
⋂

remaining spacer at nth stage).

Notice that µ (A⋂ In,1) → 0 as n → ∞ because µ(In,1) = 2
3n+1 → 0 as n → ∞. Similarly

14



µ(A⋂ remaining spacer at nth stage)→ 0 as n→∞. Therefore as n→∞ we have that

µ(A) = limµ

 hn⊔
k=2

(
A
⋂
In,k

)

From the preceding lemma we know this holds since µ

 hn⊔
k=2

In,k

→ 1 as n→∞.

Also note that
hn⊔
k=2

(
A
⋂
In,k

)
= A

⋂ hn⊔
k=2

In,k

 and that

µ

A⋂ hn⊔
k=2

In,k

 = µ

T−1

A⋂ hn⊔
k=2

In,k)

 as T is m.p on levels of the tower

= µ

T−1(A)
⋂
T−1

 hn⊔
k=2

In,k


= µ

T−1(A)
⋂ hn−1⊔

k=1
(In,k)


→ µ

(
T−1(A)

)

Again this result is from the preceding lemma and from fact that µ(
hn−1⊔
k=1

In,k)→ 1 as n→∞.

So for the same expression we arrive at two conclusions and therefore µ(A) = µ(T−1A).

2.2.2 The Chacon Transformation is Not Strongly Mixing

Definition 2.2.1. A measure-preserving transformation T is said to be strongly mixing if

∀A ∈ B and ∀B ∈ B

lim
n→∞

µ(T−n(A) ∩B) = µ(A)µ(B).

Proposition 2.2.1. Chacon’s transformation is not strongly mixing.

Proof. We will be able to conclude Chacon’s transformation is not strongly mixing if we

can find at least one A ∈ B of positive measure such that

lim sup
n→∞

µ(T−n(A) ∩A) 6= (µ(A))2.

15



Note that since T is invertible almost everywhere.

µ(TnA ∩A) = µ
(
T−n(TnA ∩A)

)
because T is measure-preserving

= µ
(
T−n(TnA) ∩ T−nA

)
= µ(A ∩ T−nA).

With this result if we can show instead that lim sup
n→∞

µ(Tn(A) ∩ A) 6= (µ(A))2 we will still

have established that T is not strongly mixing. We fix the stage k0 and denote the tower at

this stage by Tk0 . As a candidate for A, we choose one of the levels of the tower. The most

convenient choice for A is the base of the tower of Tk0 . The height of this tower is hk0 .

We note that µ(T hnA∩A) ≥ 1
3µ(A). To establish this, first observe that A is split into three

intervals, A1, A2 and A3 in the (k0 + 1)th stage under the cutting and stacking process.

Using some analysis of the measures of the intervals and by induction we will obtain the

inequality above and use it to prove why the Chacon tranformation is not strongly mixing.

For stage k0 + 1 and on tower Tk0+1,

T hk0 (A) ∩A = T hk0 (A1 ∪A2 ∪A3) ∩A

=
(
T hk0 (A1) ∩A

)
∪
(
T hk0 (A2) ∩A

)
∪
(
T hk0 (A3) ∩A

)

Observe that on this tower only T hk0A1 hits A again. In particular

µ(T hk0 (A1) ∩A) = µ(A2 ∩A) = 1
3µ(A) and

µ
(
T hk0 (A2) ∩A

)
= µ(∅) = 0.

We are unable to make a direct estimate for µ(T hk0 (A3) ∩ A) in the (k0 + 1) stage so we

end the (k0 + 1) stage with the result that,

µ
(
T hk0 (A) ∩A

)
≥ 1

3µ(A).

Moving to the (k0 + 2)th stage by cutting and stacking, A1 intersects with itself at least

16



once under T h0+1. The same happens for A2 and A3. Therefore

µ(T hk0+1(A1) ∩A1) ≥ 1
3 ·

1
3µ(A) = 1

9µ(A).

Likewise µ
(
T hk0+1(A2) ∩A2

)
≥ 1

9µ(A) and

µ(T hk0+1(A3) ∩A3) ≥ 1
9µ(A).

Therefore at the end of the k0 + 2 stage we arrive at the inequality

µ(T hk0+1(A) ∩A) ≥ 3 · 19µ(A) = 1
3µ(A).

By induction we see that at stage n ≥ k we have 3n−k0 pieces of A with each contributing
1

3n−k0+1µ(A). Thus

µ(T hn(A) ∩A) ≥ 3n−k0 · 1
3n−k0+1µ(A) = 1

3µ(A).

With this inequality holding for all stages of the Chacon transformation, then for the Chacon

transformation to be strongly mixing it has to satisfy that (µ(A))2 ≥ 1
3µ(A)⇒ µ(A) ≥ 1

3 .

However this fails for the Chacon process since each level of the transformation has length

of at most 2
9µ(A). Therefore (µ(A))2 is at most 4

81µ(A). Hence this proves that Chacon’s

transformation is not strongly mixing.

2.2.3 Weakly Mixing Property

The main theorem which will be used to prove that the Chacon transformation is weakly

mixing is the following:

Theorem 2.2.1. Let T be an invertible measure-preserving transformation on a Lebesgue

probability space. Then the following are equivalent.

1. T is weakly mixing.

2. T is doubly ergodic.

3. T has continuous spectrum.
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4. T × S is ergodic for any ergodic, finite measure-preserving transformation S.

The following defintions, proposition and lemma will be needed to prove the implication

(1)⇒ (2).

Definition 2.2.2. Let (X,B, µ) be a measure-preserving space and T a measure-preserving

transformation. T is said to be weakly mixing if ∀ A,B ∈ B

lim
n→∞

1
n

n−1∑
k=0

∣∣∣µ(T−kA ∩B)− µ(A)µ(B)
∣∣∣ = 0

Recall the definition of what it means for a sequence to have convergence to a limit, to have

strong Cesaro convergence and to have Cesaro convergene to a limit. Denoting ak(A,B) =

µ(T−k(A) ∩ B) and a = µ(A)µ(B) we note that the property of T being weakly mixing is

equivalent to the sequence ak converging strong Cesaro to a.

Definition 2.2.3. A transformation T is defined to be doubly ergodic if ∀ A,B ∈ B of

positive measure, there exists an integer n such that

µ(T−nA ∩A) > 0 and µ(T−nA ∩B) > 0.

Lemma 2.2.2. Let {ak} be a bounded nonnegative sequence. Then 1
N

N∑
k=1

ak converges to

0 if and only if {ak} converges to 0 in density.

Proof. Suppose {ak} converges to 0 in density, that is, there exists a zero density set D

such that outside D, lim
k→∞,k /∈D

ak = 0. Let {ak} be bounded by a. Then

lim
n→∞

1
n

n−1∑
k=0

ak = lim
n→∞

 1
n

n−1∑
k=0,k∈D

ak + 1
n

n−1∑
k=0,k /∈D

bk


= lim sup

n→∞

 1
n

n−1∑
k=0,k∈D

ak + 1
n

n−1∑
k=0,k /∈D

ak


≤ lim sup

n→∞

1
n

∑
k=0,k∈D

a+ lim sup
n→∞

1
n

∑
k=0,k /∈D

ak

= a lim sup
n→∞

1
n

n−1∑
k=0

ID(k) + lim sup
n→∞

1
n

n−1∑
k=0,k /∈D

ak
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= a lim
n→∞

1
n

n−1∑
k=0

ID(k) + lim
n→∞

1
n

n−1∑
k=0,k /∈D

ak = 0.

On the other hand, suppose that lim
n→∞

1
n

n−1∑
k=0

ak = 0. For each m = 1, 2, ..., let

Dm = {k : 1
m
< ak}.

Note that D1 ⊂ D2 ⊂ .... Each Dm has density 0 as for a fixed m,

1
n

n−1∑
k=0

IDm(k) < m · 1
n

n−1∑
k=0

ak → 0

as n → ∞. Also recall that k ∈ Dm ⇒ ak >
1
m
. Choose i1 < i2 < ... such that for each

n ≥ im,
1
n

n−1∑
k=0

IDm(k) < 1
m
. Define

D =
∞⊔
m=1

Dm

⋂
(im, im+1) .

It is clear that lim
k→∞,k /∈D

ak = 0 since as off the set D, ak , a nonnegative sequence, decreases

as m tends to infinity.

What is left to prove is that D has density 0. Fix some large n ∈ N. We can find an m

with im ≤ n ≤ im+1. Then

1
n

n−1∑
k=0

ID(k) = 1
n

im−1∑
k=0

ID(k) + 1
n

im∑
k=0

ID(k)

≤ 1
n

im−1∑
k=0

IDm−1(k) + 1
n

im∑
k=0

IDm(k)

≤ 1
m− 1 + 1

m
.

Given any ε > 0 we can choose n so that n ≥ im ⇒
1

m− 1 <
ε

2 .

Lemma 2.2.3. For T , a measure-preserving transformation on a probability space (X,B, µ),

the following are equivalent:

1. T is weakly mixing.
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2. For each pair of measurable sets A and B, there is a zero density set D = D(A,B)

such that

lim
k→∞,k /∈D

µ(T−k(A) ∩B) = µ(A)µ(B).

3. For each pair of A, B ∈ B

lim
n→∞

1
n

n−1∑
k=0

[
µ(T−k ∩B)− µ(A)µ(B)

]2
= 0

The second statement in words implies that T is weakly mixing if there is a set D such that

off this set T is strongly mixing.

Proof. (1) implies (2) Suppose T is weakly mixing. By definition

lim
n→∞

1
n

n∑
k=0
|µ(T−nA ∩B)− µ(A)µ(B)| = 0

Denoting bk = |µ(T−kA ∩B)− µ(A)µ(B)| and noting that bk is bounded by 1, then

lim
n→∞

1
n

n−1∑
k=0

bk = lim
n→∞

 1
n

n−1∑
k=0,k∈D

bk + 1
n

n−1∑
k=0,k /∈D

bk


= lim sup

n→∞

 1
n

n−1∑
k=0,k∈D

bk + 1
n

n−1∑
k=0,k /∈D

bk


≤ lim sup

n→∞

1
n

∑
k=0,k∈D

1 + lim sup
n→∞

1
n

∑
k=0,k /∈D

bk

= 1 lim sup
n→∞

1
n

n−1∑
k=0

ID(k) + lim sup
n→∞

1
n

n−1∑
k=0,k /∈D

bk

= lim
n→∞

1
n

n−1∑
k=0

ID(k) + lim
n→∞

1
n

n−1∑
k=0,k /∈D

bk = 0

by the fact that D is a set of density zero and by Lemma 2.2.2.

(2) implies (3) Suppose (2) is true. Then

lim
k→∞,k /∈D

µ(T−k(A) ∩B)− µ(A)µ(B) = 0

⇒ lim
k→∞,k /∈D

[
µ(T−k(A) ∩B)− µ(A)µ(B)

]2
= 0.
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Using Lemma 2.2.2 again then this implies that

lim
n→∞

1
n

n−1∑
k=0

[
µ(T−k ∩B)− µ(A)µ(B)

]2
= 0.

(3) implies (1) If (3) holds, then clearly,

lim
n→∞

1
n

n−1∑
k=0
|µ(T−k ∩B)− µ(A)µ(B)| = 0

which is the definition of weakly mixing and hence T is weakly mixing.

Theorem 2.2.1 (1)⇒ (2) [T is weakly mixing implies T is doubly ergodic.]

Proof. Let A and B be sets with positive measure. Then by Lemma 2.2.3 there exist sets

of density zero D1 = D(A,B) and D2 = D(A,B) such that

lim
k→∞,k /∈D1

µ(T−k(A) ∩B) = µ(A)µ(B)

and

lim
k→∞,k /∈D2

µ(T−k(A) ∩A) = µ(A)µ(A)

Therefore there is some integer k > 0, k ∈ (D1 ∪ D2)c such that µ(T−k(A) ∩ B) > 0 and

µ(T−k(A) ∩A) > 0. Hence T is doubly ergodic.

To prove the implication that 2⇒ 3 of Theorem 2.2.1, recall what it means for a transfor-

mation to be ergodic. We will have need for the following lemma.

Lemma 2.2.4. Let T be a probability-preserving transformation. If T is weakly mixing,

then it is ergodic.

Proof. If T is weakly mixing, recall that for all measurable sets A, B ∈ B then ak(A,B) =

µ(T−k(A) ∩ B) converges strong Cesaro to µ(A)µ(B). Then for A, a T -invariant set,

ak(A,Ac) = 0 but we also know that it converges to µ(A)µ(Ac). Therefore either µ(A) = 0

or µ(Ac) = 0 which is the requirement for a transformation to be ergodic for T -invariant

sets. Thus T is ergodic.
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Definition 2.2.4. A dynamical system (Y, C, ν, S) is called the factor of (X,B, µ, T ) if there

are measurable sets X0 and Y0 of full measure such that

X0 ⊂ X, T (X0) ⊂ X0 and Y0 ⊂ Y, S(Y0) ⊂ Y0,

and an onto map (not necessarily one-to-one a.e) φ : X0 → Y0 such that for all A ∈ C(Y0),

where C(Y0) is the trace of C onto Y0, that is, C(Y0) = C ∩ Y0 = {A ∩ Y0 : A ∈ C},

1. A ∈ C(Y0) if and only if φ−1(A) ∈ B(X0)

2. µ(φ−1(A)) = ν(A) for all A ∈ C(Y0).

Next we give some material on a small portion of spectral theory on transformations.

Let T be a measure-preserving transformation and f ∈ L2 i.e
∫
|f |2dµ < ∞. Set σ̂(n) =

〈Tnf, f〉 = 〈f ◦ Tn, f〉 =
∫
f ◦ Tn · f̄dµ. So

σ̂(0) =
∫
f · f̄dµ, σ̂(1) =

∫
f ◦ T · f̄dµ, σ̂(2) =

∫
f ◦ T 2 · f̄dµ...

The sequence {σ̂(n)}, n ≥ 0 is positive definite, that is, for each system of complex numbers

z0, z1, ...zn,
n∑

j,k=0
σ̂(j + k)zj z̄k ≥ 0. By the Bochner-Herglotz theorem, there exists σf , a

positive measure defined on B[(0, 1)],

σf : B[(0, 1)]→ R+.

such that

σ̂f (n) = σ̂(n) =
∫ 1

0
e−2πintdσf (t).

Each spectral measure, σf , associated with f can be broken up as follows:

σf = σ1
f︸︷︷︸+σ2

f + σ3
f︸ ︷︷ ︸ where

= σdf + σcf

σ1
f = σdf is the discrete part of σf . The measures σ2

f and σ3
f constitute the continuous part

of σf . By continuous we mean that σ{t} = 0 ∀ t ∈ [0, 1]. The measure σ3
f called the

Lebegue component of σf is absolutely continuous with respect to the Lebesgue measure
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while σ2
f , also continuous, is singular with respect to the Lebesgue measure.

Let (X,B, µ) be a probability space and T a measure-preserving transformation. λ is called

an eigenvalue of T if there exists a nonzero a.e complex-valued function f : X → C, f ∈ L1,

such that f ◦ T = λf a.e. The function f is the corresponding eigenfunction to λ.

Lemma 2.2.5. Let T be a measure-preserving transformation on (X,B, µ). T is ergodic if

and only if for all measurable functions f : X → R whenever f(x) = f(T (x)) a.e. then f

is constant a.e.

Proof. We prove that forward implication by contradiction. Suppose T is ergodic and

f ◦ T = f a.e. Suppose for the sake of contradiction that f is not constant a.e. Then there

exists some number t such that the sets {x : f(x) < t} and {x : f(x) > t} both have positive

measure. Observe that these sets are disjoint and are T - invariant. Since T is ergodic they

cannot both have positive measure so f must be constant a.e.

Note that for T we have the following holding. T is weakly mixing which makes it ergodic.

If f is an eigenfuction of T then f is constant a.e. Also observe that T is measure-preserving

and because constant functions are always eigenfunctions, λ = 1 is always an eigenvalue.

Since we are working on a probability space, if λ is an eigenvalue, then |λ| = 1 i.e, λ lies on

the unit circle in C. We are able to confirm this by observing that λ being an eigenvalue of

f it implies that

f ◦ T = λf.

From a pointwise perspective

|f ◦ T (x)| = |λ||f(x)|∫
|f ◦ T (x)|dµ = |λ|

∫
|f(x)|dµ and since T is measure-preserving∫

|f(x)|dµ = |λ|
∫
|f(x)|dµ

Since
∫
|f(x)|dµ 6= 0 as we are looking at a nonzero eigenfunction f , then this implies

|λ| = 1.

Definition 2.2.5. A measure-preserving transformation is defined to have continuous spec-

trum if λ = 1 is its only eigenvalue and in addition it is simple.
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Theorem 2.2.1 (2) ⇒ (3). [T is doubly ergodic implies T has continuous spectrum]

Proof. Suppose T is doubly ergodic, then we have for free that T is ergodic. Also suppose

λ is an eigenvalue of T . Then by definition, there exists a measurable function f : X → C

such that f(T (x)) = λf(x) almost everywhere and in addition, |λ| = 1 and f is constant

a.e. Without loss of generality let |f | = 1.

Expressing λ and f in Fourier, let λ = e2πiα and f(x) = e2πig(x) for some α ∈ [0, 1) and a

measurable function g : X → [0, 1).

Let S : [0, 1)→ [0, 1) such that S(t) = t+α. Note from figure 2.2.1 below that g ◦T = S ◦g.

We define a measure ν on [0, 1) by ν(A) = µ(g−1(A)).

Fig. 2.2.1: factor map

Then by previous defintion of what a factor map is, we note that g is a factor map from T

to S and since S is a factor of T , it inherits all properties of T and thus it implies that S

is also ergodic.

We have some scenarios arising from the nature of α.

Case 1: Refering back to Figure 1.1.1 from Chapter 1, note that there are two partitions of

[0, 1). One consists of the disjoint subintervals [0, 1− α) and [1− α, 1). The other consists

of disjoint intervals [0, α) and [α, 1). In addition, note that an interval in the first partition

is sent to an interval of the same length in the second partition by S. In particular, an

interval in [0, 1−α) is mapped to an interval in [α, 1) under the S and an interval which is a

subset of [1−α) has its image as an interval in [0, α). If α is rational, then ν is atomic and

concentrated on only a finite number of points. Let I and J be intervals of equal measure

in [0, 1) that are sufficiently apart. Observe that Sn(I) is an interval thus for any integer

n, if Sn(I) ∩ J 6= ∅ we would expect that Sn(I) ∩ I = ∅. This being the case, then S is not

doubly ergodic which is a contradiction to our assumption.
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Case 2: If α is irrational, then ν must be the Lebesgue measure and in this case also it implies

that S is not doubly ergodic. Again we have a contradiction to our initial assumption.

Hence λ = 1 is the only eigenvalue and this implies that T has continuous spectrum.

Lemma 2.2.6. (Bochner’s Theorem) Let µ be a measure on B([0, 1]). The measure µ is

continuous if and only if

1
2n+ 1

n∑
k=−n

|µ̂(k)| −→ 0 as n→∞.

Remark:

1. Note that if 1
2n+ 1

∑n
k=−n |µ̂(k)| −→ 0 then

1
n

n∑
k=0
|µ̂(k)| −→ 0 as n→∞.

2. T is ergodic on a probability measure space if and only if

1
n

n−1∑
k=0

f ◦ T k(x) −→
∫
fdµ in L2 norm.

Lemma 2.2.7. Let (X,B, µ, T ) be a measure-preserving transformation on a finite measure

space and σf be the spectral measure associated with f . If σf is continuous, then

1
n

n−1∑
k=0

f ◦ T k −→ 0

in L2 norm as n→∞.

This follows from the fact that EI(f) = 0 or we can observe this by direct calculation.

∫
| 1
n

n−1∑
k=0

f ◦ T k|2dµ = 1
n2

∫ (n−1∑
k=0

f ◦ T k
)2

dµ

= 1
n2

∫ (n−1∑
k=0

f ◦ T k
)n−1∑

j=0

¯f ◦ T j
 dµ
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= 1
n2

n−1∑
j,k=0

∫ (
f ◦ T k

) ( ¯f ◦ T j
)
dµ

= 1
n2

n−1∑
j,k=0

∫ (
f ◦ T k−j · f̄

)
dµ because T is measure-preserving.

≤ 1
n2

n−1∑
j,k=0

|σ̂f (n− j)|

≤ 2
n

n−1∑
k=0
|σ̂(k)| → 0

by the Bochner theorem since σf is continuous.

Theorem 2.2.1 (3)⇒ (4). [T has continuous spectrum implies that T × S is ergodic for any

ergodic, finite measure-preserving transformation S.]

Proof. Suppose T has continuous spectrum and S is ergodic. Set U = T × S. The goal is

to show that U is ergodic. Observe that U is ergodic if and only if for all bounded F on

X × Y
1
N

N−1∑
k=0

F ◦ Uk −→
∫
Fd(µ× ν).

If we are able to prove this on a dense set in X × Y then it holds on the whole set. Let

F = IAIB where F (x, y) = IA(x)IB(y). Thus to prove that U is ergodic we need to prove

that

lim
N→∞

1
N

N−1∑
k=0

[(
IA ◦ T k

) (
IB ◦ Sk

)]
−→

∫
(IAIB) dµ dν.

Using the fact that T has continous spectrum, we can choose fA = IA − µ(A). Then

lim
N→∞

1
N

N−1∑
k=0

[
(fA ◦ T k)(IB ◦ Sk)

]
=

lim
N→∞

1
N

N−1∑
k=0

[
IA(T k(x)) IB(Sk(y))

]
− µ(A) lim

n→∞
1
N

N−1∑
k=0

IB(Sk(y)).

Because S is ergodic,

lim
n→∞

1
N

N−1∑
k=0

IB(Sk(y)) = ν(B) a.e.
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Hence for U to be ergodic is suffices to show that

lim
N→∞

1
N

N−1∑
k=0

[
(fA ◦ T k)(IB ◦ Sk)

]
= 0.

To prove this we compute the (real) Fourier coefficents of fA × IB.

〈fA × IB, (fA × IB) ◦ Uk〉 = |
∫

(fA × IB)(fA × IB) ◦ Ukdµdν|.

Then in average,

lim
N→∞

1
N

N−1∑
k=0
|
∫ ∫

(fA × IB)(fA × IB) ◦ Ukdµdν| =

lim
N→∞

1
N

N−1∑
k=0
|
∫
fA · fA ◦ T kdµ| |

∫
IB · IB ◦ Skdν|.

Note that |
∫

IB · IB ◦ Skdν| ≤ 1. Therefore

lim
N→∞

1
N

N−1∑
k=0
|
∫ ∫

(fA × IB)(fA × IB) ◦ Ukdµdν| ≤ lim
N→∞

1
N

N−1∑
k=0
|
∫
fA · fA ◦ T kdµ|.

But since σfA is continuous then by Lemma 2.2.6,

lim
N→∞

1
N

N−1∑
n=0
|σ̂fA(n)| = 0.

Therefore

lim
N→∞

1
N

N−1∑
k=0
|
∫ ∫

(fA × IB)(fA × IB) ◦ Ukdµdν| = 0

which implies that lim
N→∞

1
N

N−1∑
k=0

[
IA(T k(x)) IB(Sk(y))

]
= µ(A)ν(B).

Recall Lemma 2.2.3. To prove the implication (4) implies (1) we will show that T × S

satisfies the third equivalent statement of weakly mixing in Lemma 2.2.3.

Theorem 2.2.1 (4) ⇒ (1) [If T × S is ergodic for any ergodic finite measure-preserving

transformation S then T is weakly mixing.]

Proof. Suppose T × S is ergodic. In addition suppose S is also ergodic thus T is ergodic
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and therefore by definition satisfies

lim
n→∞

1
n

n−1∑
k=0

µ(T−k(A ∩B)) = µ(A)µ(B).

Let (X,B, µ, T ) and (Y, C, ν, S) be measure-preserving systems. Since T ×S is ergodic, then

for all A, B ∈ B and for all C, D ∈ C

lim
n→∞

1
n

n−1∑
k=0

(µ× ν)
[
(T × S)−k (A× C) ∩ (B ×D)

]
= (µ× ν)(A× C) (µ× ν)(B ×D).

Observe that this is the same as

lim
n→∞

1
n

n−1∑
k=0

[(
µ(T−k(A ∩B)

)
× ν(S−k(C ∩D))

]
= µ(A)µ(B)ν(C)ν(D).

Also note that

lim
n→∞

1
n

n−1∑
k=0

[
(µ× ν)

(
(T × S)−k(A× C) ∩ (B ×D)

)]2
=

lim
n→∞

1
n

n−1∑
k=0

[
µ(T kA ∩B)2ν(SkC ∩D)2

]
= µ(A)2µ(B)2ν(C)2ν(D)2.

Therefore

lim
n→∞

1
n

n−1∑
k=0

[
(µ× ν)(T × S)−k(A× C) ∩ (B ×D)− µ(A)µ(B)ν(C)ν(D)

]2

= lim
n→∞

1
n

n−1∑
k=0

[(
µ(T−k(A) ∩B)

)2 (
ν(S−k(C) ∩D)

)]
−

lim
n→∞

1
n

n−1∑
k=0

[
2µ(T−k(A) ∩B)(ν(S−k(C) ∩D)µ(A)µ(B)ν(C)ν(D) + (µ(A)µ(B)ν(C)ν(D))2

]
= 2µ(A)2µ(B)2ν(C)2ν(D)2 − 2µ(A)2µ(B)2ν(C)2ν(D)2 = 0

Hence T is weakly mixing.

This completes the proof of Theorem 2.2.1.
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Theorem 2.2.2. The Chacon transformation is doubly ergodic.

By showing this and with the help of the just proved theorem for a measure-preserving

transformations in general, we can conclude that Chacon’s transformation is weakly mixing.

Proof. First we fix a stage k. Let Tk be the tower at this stage. We pick two levels of the

tower and denote them by I and J . Let I and J be separated by l levels with J above I,

that is, J is the (i + l)th level in Tk when I is the ith level. In proving that the Chacon

transformation was not strongly mixing we were able to establish that for any level of the

tower A, µ(TnA ∩ A) ≥ 1
3µ(A). Without loss of generality this holds that for any stage k.

Thus we have the inequality that µ(T kI ∩ I) ≥ 1
3µ(I). We claim that there exists an H

such that µ(I ∩ THJ) = µ(THJ ∩ I) ≥ 1
3lµ(J). If we are able to establish that the same H

holds for these two inequalities at the same stage, then we can conclude that the Chacon

transformation is doubly ergodic.

To establish this observe that at stage k the tower Tk has height hk. Moving to the (k+1)th

stage, all the levels of the tower are split up into three subintervals each. In particular, the

level J is divided into three subintervals J1, J2, J3. Further observe that T hkJ1 = J2 and

T hkJ2 = T−1J3. This is because of the spacer introduced in Tk+1 during the cutting and

stacking process. Thus we can say that µ(T hkJ2 ∩ T−1(J3)) = µ(T hkJ ∩ T−1(J)) ≥ 1
3µ(J).

Keeping track of only one of these subintervals of J , set T hkJ2 which is a level in the (k+1)th

stage to L. In moving from the (k + 1)th stage to the (k + 2)th stage let L1, L2, L3 denote

the subintervals of L. Again because the introduction of a new spacer we can see that

µ(T hk+1L2 ∩T−1(L3)) ≥
1
3µ(L). In fact, this helps us establish that µ(T hk+1L∩T−1(L)) ≥

1
3µ(L). Which means that

µ(T hk(T hk+1J) ∩ T−2(J))

= µ(T hk+hk+1J ∩ T−2J) ≥ 1
32µ(J).

In tracking any level we notice that the tower is split into three pieces and a spacer is

introduces when we move to the next stage. In studying the middle and right portions of a

split tower, the level always misses intersecting with itself because of the introduced spacer.
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Then by induction we are able to establish that (k + l)th stage

µ(T hk+hk+1+...+hk+l−1J ∩ T−l(J)) ≥ 1
3lµ(J).

But observe that T−lJ = I hence

µ(TH(J) ∩ I) ≥ 1
3lµ(J)

with H = hk + hk+1 + ...+ hk+l−1 = ∑l−1
i=0 hk+i.

We claim that the same H will make the inequality µ(TH(I) ∩ I) > 0 true. This time we

use the left and middle portions of the tower to attain desired result. Recall that we have

already proven that at any (k + 1)th stage µ(T hk(I) ∩ I) ≥ 1
3µ(I). Note that this applies

to any stage in the construction of Chacon transformation.

If we look at T hk(I) ∩ I as an interval, then in the (k + 2)th stage, we know that

µ
(
T k+1(T hk(I) ∩ I) ∩ (T hk(I) ∩ I)

)
= µ

(
T hk+1+hk(I) ∩ T hk+1(I) ∩ T hk(I) ∩ J)

)
≥ 1

32µ(I).

Now observe that T hk+1+hk(I)∩T hk+1(I)∩T hk(I)∩ J is a subset of T hk+1+hk(I)∩ J . Thus

µ(T hk+1+hk(I) ∩ I) ≥ 1
32µ(I).

Then by induction we can say that

µ(T hk+l−1+hk+l+...+hk+1+hk(I) ∩ I) ≥ 1
3lµ(I)

with hk+l−1 + hk+l + ...+ hk+1 + hk = H.

Let A, B ⊂ [0, 1] be sets of positive measure. We claim that there exists I, a level in a tower

Tk and a level J in Tk′ such that µ(A ∩ I) ≥ 2
3µ(I) and µ(B ∩ J) ≥ 2

3µ(J). By proving

this we will be able to conclude that Chacon’s transformation is doubly ergodic. We state

without proof the Increasing Martingale theorem which will be needed.

Lemma 2.2.8. (Increasing Martingale theorem) [2] If {Bn} is an increasing sequence if

sub-σ-algebras with Bn ↑ B∞ (i.e ∪nBn generates B∞), then the conditional expectation of

f ∈ L1(X) with respect to Bn, E(f |Bn)→ E(f |B∞) a.e and in L1(X).
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Continuing the proof of the doubly ergodic property of Chacon’s transformation, let Bk be

the increasing sequence of σ-algebras generated by the levels of Tk and the spacer which

converges to B (the σ-algebra of Lebesgue measurable subsets of [0, 1].) The conditional

expectation of IA with respect to Bk is given by

E(IA|Bk)(x) =
hk−1∑
j=1

∫
Ij

IAdµ
µ(Ij)

· IIj (x) +
∫
Sk

IAdµ
µ(Sk)

· ISk(x).

where Sk represents the remaining spacer at the kth stage. Then by the Martingale theorem,

E(IA|Bk)(x) −→ IA(x) a.e.

After eliminating a set of measure 0 in A, pick a point c ∈ A then

E(IA|Bk)(c) −→ IA(c) = 1

since the point c will be in only one set. Then for all k there exists a jk such that

∫
Ijk

IAdµ
µ(Ijk)

= µ(A ∩ Ijk)
µ(Ijk)

−→ 1.

Thus we can conclude that there exists a k0 such that for all k ≥ k0,
µ(A ∩ Ik)
µ(Ik)

≥ 2
3µ(I).

The same argument is applied to B to establish the corresonding inequality that there exists

a k′ > k0 such that µ(B ∩ Jk′)
µ(Jk′)

≥ 2
3µ(J) .

Now suppose k < k′. Pick I in Tk and J in Tk′ . Let I1, I2, I3 denote the subintervals of

I in the (k + 1)th stage then µ(A ∩ I) =
3∑
i=1

µ(A ∩ Ii). Since µ(A ∩ I) ≥ 2
3µ(A) at k we

claim that there exists at least one subinterval of I such that µ(A ∩ I ′) ≥ 2
3µ(I ′) at stage

(k+ 1). This result holds for all subsequent stages. Then by induction we can find levels I

and J , l levels apart, in the same tower Tn that are 2
3 -full of A and B respectively such

that µ(A ∩ I) ≥ 2
3µ(I) and µ(B ∩ J) ≥ 2

3µ(J).
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2.3 The Original Chacon Transformation

The construction of the Chacon transformation in [1] is slightly different from that of the

canonical Chacon transformation descibed earlier. The difference between these two meth-

ods of constructing the transformation is given next. In the first stage the unit interval

in divided into three equal and disjoint intervals I1
1 , I

1
2 and R1. Just as in the canonical

construction, the third portion R1 =
[2
3 , 1

]
is set aside as the spacer or reservoir.The stack-

ing process begins immediately after this. I2
1 is stacked on top of I1

1 . This ends stage 1.

The transformation T constructed at the end of this stage maps I1
1 linearly onto I2

1 and is

undefined on R1.

At the beginning of stage 2, the tower of two levels is cut in half. An interval of equal length

to the length of I1
1 is separated from the right side of R1. This piece is put on top of the

right-side sliced tower and then everything is stacked on top of the left piece. Thus at the

end of the second stage we have a tower consisting of five levels and the remaining spacer,

R2. The intervals at this stage satisfy the condition that h2 · µ(I1
2 ) + µ(R2) = 1 where h2

is the height of the tower at this stage and is five.

This inductive process continues and at the nth stage we have the intervals I1
n, I

2
n, ..., I

hn
n , Rn,

hn + 1 partitions of the unit interval where hn · µ(I1
n) +Rn = 1 with I1

n, I
2
n, ...I

hn
n all having

equal length. The map constructed at this stage is defined on ∪hn−1
k=1 Ikn and is undefined

on the topmost level Ihnn and the remaining spacer Rn. To form the (n + 1)th tower,

we first create a new partition of the unit interval by splitting the (n − 1)th tower into

two thus creating a new partition of the unit interval I1
n+1, I

2
n+1, ...I

hn+1
n+1 , Rn+1. Note that

I1
n+1, I

2
n+1, ...I

hn+1
n+1 have equal length. An interval of the same length as one of these pieces is

cut off from the Rn, placed on top of the right part of the sliced tower and then everything

is stacked on the left part of the sliced tower. The spacer that remains is what forms

Rn+1. Therefore at the end of the nth stage we have formed a new tower which has height

hn+1 = 2hn + 1.

Remark: Note that the transformation constructed using this method is the same as the

resulting transformation using the previously described method, i.e, splitting intervals into

three. It therefore has the same properties, in that, it is measure-preserving, invertible

with respect to µ a.e. and it is an example of a weakly mixing transformation which is not
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strongly mixing. The main advantage of contructing the transformation by splitting the

towers into three instead of two is realized when proving that the Chacon transformation is

doubly ergodic. Recall that to prove that µ(TH(I) ∩ I) > 0 we studied the left and middle

portions of the split tower while the middle and right portions of the tower were used to

prove that µ(TH(I)∩ I) > 0. In constructing the transformation using the original method

there is no clear cut division and thus proving the double ergodic property is quite tedious.
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Chapter 3

Some Results for Cutting and

Stacking Methods

There are several interesting results for cutting and stacking methods. We state without

proof results obtained by Arnoux et al [4].

Definition 3.0.1. [5] Let (X,B, µ) be a Lebesgue space and T an invertible measure-

preserving transformation of (X,B, µ). T is said to be aperiodic if

µ

 ⋃
k∈Z,k 6=0

{x ∈ X : T k(x) = x}

 = 0.

Definition 3.0.2. An interval exchange transformation (I.E.T) is a kind of dynamical

system which is a generalized idea of a circle rotation. I.E.T is a piecewise linear map of

[0, 1] into itself. It has the properties of being one-to-one and continuous except for a finite

set of points and also preserves Lebesgue measure. An interval exchange transformation acts

by cutting the unit interval into several subintervals, and then permuting these subintervals.

Mathematically, let n > 0 and let S be a vector of real numbers S = {s1, s2, ..., sn} such

that ∑n sn = 1. Set a0 = 0, ai = ∑i
j=1 sj and λi = [ai−1, ai). Let P be a permutation of

{1, 2, ..., n} and set SP = {sP−1(1), sP−1(2), ..., sP−1(n)}. The map TP,S : [0, 1]→ [0, 1] is an

interval exchange transformation to the pair (P,S) defined by

TP,S(x) = x− ai−1 + aPS(i)−1 for x ∈ λi, 0 ≤ i ≤ n.



Theorem 3.0.1. [4] Any aperiodic measure-preserving transformation on a probability

space is isomorphic to a interval exchange transformation T : [0, 1) → [0, 1) (obtained

from cutting and stacking) which satisfies the following properties:

1. There is a strictly increasing sequence {tn} ⊂ [0, 1) and a sequence {an} ⊂ R such

that t0 = 0, limn→∞ tn = 1 and T (x) = x+ an for all x ∈ [tn−1, tn).

2. T (In) ⊂ [0, 1) for all n ∈ N.

3. T is bĳective.

Remark: This is a very useful and strong theorem in that if given an interval exchange trans-

formation we know we can construct it inductively using a cutting and stacking method.

Also there exists an aperiodic transformation which is isomorphic to it. This allows us to

move between these two areas and obtain several other interesting results which have been

established for aperiodic transformations.
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