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ABSTRACT
JUSTIN HENSLEY: Increasing Rendering Performance of Graphics Hardware

(Under the direction of Anselmo Lastra and Montek Singh)

Graphics Processing Unit (GPU) performance is increasing faster than central processing

unit (CPU) performance. This growth is driven by performance improvements that can be

divided into the following three categories: algorithmic improvements, architectural improve-

ments, and circuit-level improvements. In this dissertation I present techniques that improve

the rendering performance of graphics hardware measured in speed, power consumption or

image quality in each of these three areas.

At the algorithmic level, I introduce a method for using graphics hardware to rapidly and

efficiently generate summed-area tables, which are data structures that hold pre-computed

two-dimensional integrals of subsets of a given image, and present several novel rendering

techniques that take advantage of summed-area tables to produce dynamic, high-quality im-

ages at interactive frame rates. These techniques improve the visual quality of images rendered

on current commodity GPUs without requiring modifications to the underlying hardware or

architecture.

At the architectural level, I propose modifications to the architecture of current GPUs

that add conditional streaming capabilities. I describe a novel GPU-based ray-tracing algo-

rithm that takes advantage of conditional output streams to reduce the memory bandwidth

requirements by over an order of magnitude times when compared to previous techniques.

At the circuit level, I propose a compute-on-demand paradigm for the design of high-speed

and energy-efficient graphics components. The goal of the compute-on-demand paradigm is to

only perform computation at the bit-level when needed. The compute-on-demand paradigm

exploits the data-dependent nature of computation, and thereby obtains speed and energy im-

provements by optimizing designs for the common case. This approach is illustrated with the
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design of a high-speed Z-comparator that is implemented using asynchronous logic. Asyn-

chronous or “clockless” circuits were chosen for my implementations since they allow for

data-dependent completion times and reduced power consumption by disabling inactive com-

ponents. The resulting circuit-level implementation runs over 1.5 times faster while on dissi-

pating 25% the energy of a comparable synchronous comparator for the average case.

Also at the circuit-level, I introduce a novel implementation of counterflow pipelining,

which allows two streams of data to flow in opposite directions within the same pipeline

without the need for complex arbitration. The advantages of this implementation are demon-

strated by the design of a high-speed asynchronous Booth multiplier. While both the com-

parator and the multiplier are useful components of a graphics pipeline, the objective of this

work was to propose the new design paradigm as a promising alternative to current graphics

hardware design practices.
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CHAPTER 1

Introduction

Graphics Processing Unit (Graphics Processing Unit (GPU)) performance is increasing faster

than Central Processing Unit (Central Processing Unit (CPU)) performance, and is reported

by some to be growing at a “Super-Moore’s Law” rate (Govindaraju et al., 2006). This

growth is driven by performance improvements that can be divided into the following three

categories.

• Algorithmic: Algorithmic improvements are often initially implemented at the appli-

cation level, using the current capabilities of current hardware. The relatively recent

introduction of programmable pipelines to commodity GPUs enables a wide variety of

algorithms to be implemented without architectural changes.

• Architectural: There are situations where a new algorithm lends itself to an efficient,

direct implementation in hardware that would require only minimal changes to the

GPUs architecture. For example, various environment mapping techniques initially

required the application developer to handle texture coordinate generation, whereas

modern GPUs are able to automatically transform normal and reflection directions into

texture coordinates.

At the architectural level, enhancements designed to introduce new functionality or

increase performance should be made without impacting the performance of legacy ap-

plications. This is an especially important property for devices destined for established

commodity markets. For better or worse, the driving forces behind the commodity

GPU market are video games, and it would be considered unacceptable for a newly re-

leased GPU to run slower on the current “game-de-jour” than the previous generation

of products.



• Circuit: At the circuit level, it is possible to make dramatic changes to the underly-

ing circuitry without modifying the GPU’s architecture or the application programmer

interface. Some of the possible benefits of circuit-level modifications include faster com-

putation, lower energy-consumption, or improved yields when fabricating integrated

circuits. For example, some modern hardware has moved from using standard-cell im-

plementations to custom ASICs without requiring changes to the overall architecture.

Also, over the lifetime of a specific architecture, multiple different fabrication processes

might be used — e.g. a device might initially be implemented in a 90 nm process,

but later be fabricated in a 65 nm process as the architecture and fabrication processes

become more mature.

Performance improvements can be measured in several ways. In this work I use metrics

related to the visual image quality, speed of computation, and energy-efficiency. The following

sections give more detail about the contributions made in these three areas.

1.1 The Algorithmic Axis: Improving Rendering Quality with

GPU-Based Summed-Area Tables and Extensions

At the algorithmic level, I will discuss several novel techniques that are capable of improving

the visual quality of images rendered on current commodity GPUs without requiring modi-

fications to the underlying hardware or architecture. In particular, I will describe a method

for using graphics hardware to rapidly and efficiently generate summed-area tables, which are

data structures that hold pre-computed integrals of a given image. Additionally, I will de-

scribe extensions to summed area tables that reduce their precision requirements and present

multiple rendering techniques that take advantage of summed-area tables to produce high-

quality images in real-time. My algorithm is able to compute a 256x256 summed-area table

in less than 2ms, and render complex scenes, such as the one shown in Figure 1.2(a), with

interactive glossy reflections at over 60 frames per second on relatively old hardware such as

a Radeon X800XT PE.

The following quick tutorial is intended for readers unfamiliar with texture mapping and
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summed-area tables. Readers familiar with the topics can skip to Section 1.1.2.

1.1.1 Background

Texture mapping, a technique that is ubiquitous in computer graphics, is a process that enables

simple rendered surfaces to appear to have complex surface properties. In its simplest form,

texture mapping can be thought of as an image being used as a decal on the surface of

an object. Introduced by Catmull (Catmull, 1974), texture mapping is a process whereby

positions in three-space are mapped to an n-dimensional, parametric space, which allows for

easy sampling of data stored in n-dimensional arrays such as images (2D) and volumetric

data (3D).

As with any sampling technique, it is often necessary to filter or interpolate the data sam-

pled from a texture map to attain visually pleasing images. In practice, it is cost-prohibitive

to directly interpolate the texture map with anything more complex than linear interpolation.

Mipmaps (Williams, 1983) address this issue by pre-computing multiple images, which are

scaled-down versions of the original input image, and then performing trilinear interpolation

between two levels of the mipmap.

First introduced by Crow (Crow, 1984), summed-area tables enable more general tex-

ture filtering than is possible with the commonly-used mipmapping technique. In particular,

summed-area tables are able to more accurately reflect the data actually inside a box filter

kernel at a specific location, whereas a nearby samples from a mipmap are limited to the

average of a fixed set a pixels. When using a mipmap to perform more generalized filtering,

this becomes apparent as visual defects in the filtered image. Although introduced at roughly

the same time as mipmaps, summed-area tables have a more stringent precision requirement

than an equivalently sized mipmap. Partly due to this limitation of summed-area tables,

mipmapping became a more attractive technique to implement in early GPUs, and summed-

area tables fell out of favor in real-time rendering. But, summed-area tables remained a useful

technique in offline rendering applications such as the renders used in the film industry. The

relatively recent availability of floating-point capable datapaths, and the associated increase

in the available computational precision on commodity GPUs has facilitated a resurrection in
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XL XR

YT
YB

Figure 1.1: (after [Crow84]) An entry in the summed-area table holds the sum of the values
from the lower left corner of the image to the current location. To compute the sum of the
dark rectangular region, evaluate T [XR, YT ]−T [XR, YB]−T [XL, YT ] + T [XL, YB] where T is
the value of the entry at (x, y).

the use of summed-area tables in real-time graphics, despite their high precision requirements.

For an image, a summed-area table is a two-dimensional array where each entry in the

array stores the discrete integral for each rectangular sub-image of the input image. Summed-

area tables enable at a fixed computational cost the rapid calculation of the sum of the pixel

values in an arbitrarily sized, axis-aligned rectangle. Figure 1.1 illustrates how a summed-area

table is used to compute the sum of the values of pixels spanning a rectangular region. To

find the integral of the values in the dark rectangle, we begin with the pre-computed integral

from (0,0) to (xR, yT ). We subtract the integrals of the rectangles (0, 0) to (xR, yB) and (0,

0) to (xL, yT ). The integral of the hatched box is then added to compensate for having been

subtracted twice. Finally, the average value of a group of pixels can be calculated by dividing

the sum by the area.

Once generated, a summed-area table provides a means to evaluate a spatially varying

box filter with a constant number of memory accesses. For example, the average value of a

100x100 pixel region of an image could be computed with only four accesses to a summed-area

table, whereas if the region were to be directly filtered, it would take 10,000 accesses to the

original image. Summed-area tables were later extended by Heckbert (Heckbert, 1986) to
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(a) Glossy environmental reflections (b) Approximate HDR image-based lighting

Figure 1.2: Image (a) shows an object rendered in real-time with an environment map fil-
tered by a spatially varying filter. Image (b) shows A real-time rendering of a statue of
Hebe, the Greek goddess of youth. All lighting calculations are only performed by sampling
summed-area tables computed from the Grace Cathedral lightprobe (lightprobe courtesy of
Paul Debevec). The left image of Hebe shows an approximation to the Phong BRDF, and
the right image shows an approximation to a diffuse BRDF.

handle complex filter functions by taking advantage of the properties of convolution. These

extensions will be described in more detail in Chapter 2.

1.1.2 Contributions

In this dissertation I present a method to rapidly generate summed-area tables that is efficient

enough to allow multiple summed-area tables to be generated every frame while maintain-

ing interactive frame rates. I extend the traditional summed-area table algorithm to reduce

their precision requirements, which enables summed-area tables to easily be used on graphics

hardware with relatively limited-precision, or alternatively, larger summed-area tables to be

generated with visual artifacts being introduced. I demonstrate the applicability of spatially

varying filters for real-time, interactive computer graphics through several different applica-

tions. Some example applications are the interactive rendering of dynamic glossy reflections
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(Hensley et al., 2005), and dynamic image-based lighting (Hensley et al., 2006). Figure 1.2(a)

shows an image captured from a real-time application that is rendering an object with spa-

tially varying glossy environmental reflections, while Figure 1.2(b) shows an image captured

from a real-time application that is rendering a statue illuminated using an approximate

image-based lighting technique. Using the metrics described earlier, these contributions im-

prove rendering performance in two key ways: (i) improving the visual quality of rendered

images, and (ii) increasing the speed of computing summed-area tables.

1.2 The Architectural Axis: Extending Graphics Architec-

tures with Conditional Output Streams Increases Render-

ing Capabilities

As with most data-parallel architectures, conditional operations are difficult to handle ef-

ficiently on graphics processors. This inefficiency arises because data-parallel architectures

typically execute the same operation on multiple elements of data at the same time. This

mode of operation is often referred to as SIMD — Single Instruction, Multiple Data. Since

all the elements are operated on by the same instruction, data that requires separate branch

paths forces redundant execution. In the worst case each element requires a different path

through the code, forcing sequential operation instead of parallel operation, which is clearly

undesirable.

GPUs are just now gaining conditional operations but because of a GPU’s SIMD nature,

they are limited to either consecutive arithmetic operations with no branching, or the inef-

ficient execution of all of the possible branch outcomes for all pixels that executed together.

As an example, ATI’s X1800 shader architecture (ATI Technologies, 2005) processes sixteen

pixels in parallel. The X1800 is optimized to take advantage of the situation where all pixels

branch the same way, otherwise both paths of the branch would require execution (although,

this optimization only helps where there is large amount of locality to the branching pattern).

For example, consider the following shader pseudo-code:
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append xi to S
append (xi > p) to mask

input stream

mask

output stream

(a) Without conditional streams

if xi > p
    append xi to S

input stream output stream

(b) With conditional streams

Figure 1.3: Conditional operations with streaming architectures. Figure (a) shows how a
mask must be used to prevent downstream compute kernels from operating on invalid data.
The output stream is the same size as the input stream, and the mask has the same number
of elements as the input stream. Figure (b) shows the same simple conditional operation with
conditional output streams. In this situation, the output stream is only as large as it needs
to be, no additional mask vector is needed, and processor utilization of downstream kernels
is increased.

if pixel not in shadow then

computeLighting()

else

computeShadow()

end if

Assume that it takes X amount of time to execute computeLighting() and Y amount of

time to execute computeShadow() for a batch of sixteen pixels. In the situation where all

sixteen pixels in a batch are all not in shadow, then it will take X amount for time to process

the pixels. Alternatively, if all the pixels are shadowed it will take Y amount of time to

process the pixels. In the unfortunate situation where some of the pixels are shadowed and

some are not, X + Y amount of time must be spent to process the sixteen pixels.

As with any area of research it is often useful to examine how other researchers dealt

with this issue in related fields. GPU architectures are sometimes referred to as stream

architectures. Researchers have introduced the concept of conditional streams (Kapasi et al.,

2000), which augment traditional streaming processors with the capability to conditionally

read from input streams, and conditionally write to output streams.
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1.2.1 Conditional Streams

Figure 1.3(a) shows how a simple conditional operation would be handled by a streaming

architecture without conditional streams. The goal of the compute kernel is to filter all the

values that are below p. Since there must be a 1-to-1 correspondence between the input and

output streams, all of the input values must be copied to the output. A mask is also generated

to inform downstream kernels which elements of the output stream are valid. Since the mask

can disable processing of some elements, the stream processors will not be fully utilized.

Figure 1.3(b) shows how the same conditional operation would be handled with conditional

output streams. In this situation, the kernel can conditionally write values that are greater

than p to the output stream. Since the output stream is only as large as it needs to be, the

downstream kernels will fully utilize the stream processor since the output stream is densely

packed.

Conditional output streams enable the efficient implementation of if-else style branches,

and have the advantage that they can be implemented with a negligible performance penalty,

only several additional gate delays. Conditional streams allow for a dramatic increase in

processor utilization, hence an increase in processing efficiency, and memory access coherence,

and thereby increase in performance. Algorithms such as sorting, boosted Haar cascades

(Viola and Jones, 2001) which are useful for object detection, and particle system simulations,

in additional to many others both graphics and non-graphics related, would execute more

efficiently if the GPU supported conditional streams.

1.2.2 Contributions

Conditional streams provide the opportunity to increase the rendering performance of graphics

hardware by enabling the efficient implementation of high-quality rendering algorithms, and

by making more generalized computations efficient. In this dissertation, I discuss augmenting

the the architectures of graphics processors with conditional streams. A change of this type

has been suggested by Popa (Popa, 2004) who proposed the use of conditional streams for

compiling data-dependent control flows on SIMD GPUs. Additionally, while Direct3D 10

has introduced the concept of geometry shaders (Blythe, 2006), which also have a similar
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capability to generate compacted streams of data. Although there are no graphics chips

capable of implementing this feature of geometry shaders efficiently at this time. Prior work

has reported on using conditional streams in GPUs, it does not directly address the problem

of ray tracing. In this dissertation, I will focus on the use of conditional output streams to

accelerate a novel ray tracing algorithm. In particular, I describe a ray tracing algorithm

that takes advantage of conditional streams that is able to reduce the required memory

bandwidth by more than an order of magnitude when compared to previous work using

GPUs for raytracing.

1.3 The Circuit Axis: Asynchronous Techniques for Improv-

ing the Efficiency and Performance of GPUs

Current trends in micro-electronic design pose a challenge to synchronous systems: (i) high

clock speed, (ii) large die area, (iii) handling worst-case delay in deep submicron processes

(e.g. 90 nm and smaller), and (iv) managing large, complex designs. As a result, an alterna-

tive paradigm—asynchronous or “clockless” design—is becoming an increasingly attractive

approach because of asynchronous logic’s promise in reversing these negative trends (Berkel

et al., 1999). As illustrated in Figure 1.4, instead of using global clocking, an asynchronous

system uses handshaking between interacting components to achieve local synchronization.

Asynchronous design has potentially significant energy and performance benefits: lower

energy consumption results due to elimination of the power wasted driving the clock, and

by limiting switching activity to when and where needed (Berkel et al., 1999). Since local

handshaking is used instead of a global clock for synchronization, asynchronous components

can gain performance benefits by exploiting the data-dependency of computation completion

times (Nowick et al., 1997; Rotem et al., 1999).

Since underlying circuit implementations can largely be decoupled from system level ar-

chitecture, the circuit designer is basically free to use exotic techniques, such as clockless

logic, while leaving the system architecture unchanged. For example, some modern CPUs,

e.g. the Pentium 4, use asynchronous logic to implement their arithmetic units, while still
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clock

(a) A synchronous system, featuring cen-
tralized control

handshaking
interface

(b) An asynchronous system, with distributed con-
trol

Figure 1.4: Synchronous and asynchronous system block diagrams.

realizing a standardized architecture that appears unchanged at a high level. At the extreme,

an entire micro-controller has been implemented with asynchronous circuits. This processor

is a functional, drop-in replacement for standard synchronous micro-controller (Gageldonk

et al., 1998).

1.3.1 Contributions

The work presented in the dissertation involving what we have termed the circuit axis makes

use of asynchronous logic, and increases rendering performance by making graphics hardware

more energy efficient, while operating faster for the average case. The dissertation introduces

two novel concepts: (i) the compute-on-demand paradigm, whereby computation at the bit-

level is on performed on an as-needed case, and (ii) a novel implementation of the counterflow

pipeline architecture. In particular it extends the high capacity (HC) asynchronous pipelining

style, which in turn uses dynamic logic, both of which will be briefly described below, and in

more detail in Chapter 3.4.

Figure 1.5(a) shows a rendered image from the game Unreal Tournament 2004 (Epic

Games, 2004), and Figure 1.5(b) shows a histogram of the number of bits that actually need

to be compared per depth comparison to render the image. In Chapter 3, I will present a

novel z-comparator that is both energy-efficient and fast. The comparator gains its increased

performance by taking advantage of average case performance, and introduces my compute-

on-demand paradigm.
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(a) Rendered frame
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Figure 1.5: Image (a) shows a frame from Unreal Tournament 2004. The frame requires
6,768,766 comparisons of incoming fragments with the depth buffer. On average, only the 7.3
most significant bits are actually needed to resolve each comparison. Figure (b) shows the
distribution of z-comparison compute chain length for the frame shown in (a).

Additionally, I describe an asynchronous Booth multiplier that uses a novel implementa-

tion of a counterflow architecture (Sproull et al., 1994) in a single pipeline. In a counterflow

architecture, data flows in one direction and control information flows in the opposite di-

rection. This counterflow architecture allows for shorter critical paths, and therefore higher

operating speed.

While using asynchronous logic in graphics hardware would require dramatic changes at

the circuit-level, it would not require (or prevent), changes at the architectural or algorithmic

levels.

1.4 Thesis Statement

Using multiple techniques at the circuit, architectural, and algorithmic levels, it is possible to

increase the rendering performance of graphics hardware, where rendering performance can

be defined as either increasing the energy efficiency of computation, increasing the speed of

computation or increasing the visual quality of rendered images.

• Efficient construction of summed-area tables on commodity graphics hardware makes

possible dynamic, real-time glossy environmental reflections and dynamic real-time

image-based lighting without requiring changes to the underlying architecture.
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• Conditional output streams facilitate an implementation of ray tracing that reduces

memory-bandwidth, and allows for high-quality, geometrically correct reflection, refrac-

tion, and shadows.

• Asynchronous design techniques, increase energy efficiency, decrease area usage, and

increase throughput of basic components used in graphics pipelines.

1.5 Major Contributions

This dissertation presents research at the circuit, architectural, and algorithmic levels that

improves the energy efficiency of graphics processors, increases the speed of the computations,

and increases the visual quality of rendered images.

My research contributions include along the three axes are:

• Algorithm Axis

– Efficient construction of summed-area tables: I describe a method using

graphics hardware to rapidly generate summed-area tables that is efficient enough

to allow multiple tables to be generated every frame while maintaining interactive

frame rates. Several possible applications of using summed-area tables in interac-

tive graphics are presented.

– Offset summed-area tables: I propose a technique that alleviates the precision

requirements needed in the construction and use of summed-area tables by off-

setting the input image by a constant value. This method improves precision in

two ways: (i) there is a 1-bit gain in precision because the sign bit now becomes

useful, and (ii) the summed-area function becomes non-monotonic, and therefore

the maximum value reached has a relatively lower magnitude, thereby significantly

increasing precision by lowering the dynamic range needed to store a summed-area

table.

– Fast image-based lighting using summed-area tables: I present a method

to rapidly generate higher-order summed-area tables — e.g., a summed-area table
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of a summed-area table — that is efficient enough to allow multiple tables to be

generated every frame while maintaining interactive frame rates. I demonstrate

using higher order summed-area tables to approximate reflections generated using

a Phong BRDF and high dynamic range environment maps.

• Architecture Axis

– Novel ray tracing algorithm using conditional streams: I propose a novel

streaming ray casting algorithm. The algorithm uses conditional output streams

to reduce memory bandwidth and increase processor utilization when compared to

previous methods. The algorithm is able to reduce memory bandwidth by over an

order of magnitude compared to the most efficient method presented so far. One

possible use for our proposed technique is to implement hybrid rendering algorithms

that use standard z-buffering techniques to generate the first hits from the camera

view, and then use ray tracing to generate geometrically correct reflections and

shadows.

• Circuit Axis

– Compute-on-demand paradigm for asynchronous circuits: I introduce the

notion of compute-on-demand as a design principle for fast and energy-efficient

graphics hardware. The key idea is to exploit the data-dependent nature of com-

putation, and to obtain speed and energy improvements by optimizing the design

for the common case, instead of assuming worst-case operation. An asynchronous

or clockless circuit style is used to facilitate this paradigm. In particular, only

those portions of compute blocks are activated that are actually required for a

particular operation, thereby saving energy and reducing critical delays.

– Novel conterflow pipeline approach: I propose a novel implementation of

counterflow pipelining which has significant advantages compared with previous

implementations; it eliminates the need for complex synchronization and arbitra-

tion required between the two distinct data streams in the original counterflow

implementation. This feature allows shorter critical paths, and therefore higher
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operating speed. To demonstrate my counterflow methodology, I introduce a novel

multiplier organization, in which the data bits flow in one direction, and the Booth

commands are piggybacked on the acknowledgments flowing in the opposite direc-

tion.

1.6 Dissertation Organization

The remainder of this dissertation is organized as follows:

Chapter 2 discusses increasing rendering performance at the algorithmic level. First, I

present background information on summed-area tables, pre-filtering environment maps, and

image-based lighting is presented. Next, a method to rapidly construct summed-area tables

using graphics hardware is described. Then, a technique to improve the precision requirements

of summed-area tables, called offset summed-area tables is presented. Example applications

are then described. Next, a method to construct higher-order summed-area tables in real-time

is presented. Finally, a dynamic, real-time approximate image-based lighting algorithm.

Chapter 3 describes an architectural extension to commodity graphics processors that

would improve processor utilization during execution o conditional operations. The chapter

begins by presenting background information on conditional output streams, and GPU-based

ray tracing algorithms. Next, as an example of the benefits of conditional streams, a novel

ray tracing algorithm is presented. Then the performance of the algorithm is discussed.

Chapter 4 covers techniques used to improve graphics hardware efficiency and performance

at the circuit level. It begins with an overview of asynchronous logic, with a particular empha-

sis on the High Capacity (HC) pipelining style. Next, a novel asynchronous z-comparator is

presented which introduces and illustrates the compute-on-demand paradigm. Then two asyn-

chronous Booth multipliers are presented to demonstrate the proposed counterflow pipelining

style. Finally, an experiment designed to examine the relationship between pipeline complex-

ity and average-case performance is discussed.

Chapter 5 concludes my dissertation with a summary of my contributions and discusses

possible future work.
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CHAPTER 2

Increasing Rendering Performance Along

the Algorithmic Axis

In this chapter, I present techniques that increase rendering quality on current commodity

GPUs. In the next section background information will be presented along with related work.

Next, my method for summed-area table construction will be discussed in detail. Additionally,

a novel modification to standard summed-area tables, which I have term offset summed-area

tables, will be presented. Finally multiple novel algorithms are presented which use summed-

area tables to increase the quality of renderings. All of the algorithms presented in this

chapter depend on the ability to rapidly generate multiple summed-area tables at interactive

rates.

In (Kautz et al., 2000), Kautz et al. presented a method for real-time rendering of glossy

reflections for static scenes. They rendered a dual-paraboloid environment map and pre-

filtered it in an offline process. Instead of pre-filtering, my algorithm creates a summed-area

table for each face of a dual-paraboloid map on the fly, and uses them to filter the environment

map at run time. This enables real-time, interactive environmental glossy reflections for

dynamic scenes.

2.1 Background

In this section, I present background information on several techniques used as the basis for

the research presented in this chapter, including environment mapping, summed-area tables,

and high-dynamic range images. Then I discuss several related techniques that use mipmaps

instead of summed-area tables to perform image filtering.



2.1.1 Reflection and Environment Mapping

Reflection and environment mapping (Blinn and Newell, 1976) are a set of techniques that

are useful for approximating reflection and refraction without having to resort to using ray

tracing, which can be expensive or even impossible due to architectural limitations on current

graphics hardware.

Figure 2.1: Planar reflection mapping. A virtual camera is placed opposite the planar reflector
from the actual camera to generate planar reflections.

2.1.1.1 Planar Reflection Mapping

Planar mirror reflections are generated by a relatively simple process whereby the scene is

rendered from the view point of a virtual camera that is located on the opposite side of the

planar reflector from the actual camera (Figure 2.1). On modern graphics hardware this

procedure is accomplished using additional rendering passes, and rendering the results into

a texture for use in the final rendering pass. This technique has the benefit of generating
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physically correct reflections, but suffers from performance issues when there are a large

number of planar reflectors, since the scene must be re-rendered separately for each reflector.

2.1.1.2 Cube Mapping

Environment mapping typically assumes that the reflective object, the reflector, is surrounded

by a shell, such as a sphere (spherical mapping) or more commonly a cube (cube mapping),

and then the environment is projected onto the surrounding shell using the center of the shell

as the center of projection. For cube mapping, this process simply requires the scene to be

rendered six times, once for each face of the cube. Then during the final rendering pass,

the normal to the reflector and the view direction are used to compute a reflection direction

which is used to lookup values from the cubemap. Modern graphics chips include support for

automatically sampling the correct cube map face given a direction in 3-space.

Most environment mapping techniques make the simplifying assumption that the reflected

environment is far from the reflector. When the reflector is relatively close to the environment,

or if the center of the reflector is not near the center of the environment map, geometric

distortions may be visible since the map has been generated with the center of an enclosing

surface as the center of projection.

2.1.1.3 Dual-Paraboloid Mapping

Dual-paraboloid environment mapping (Heidrich and Seidel, 1998) is a technique that stores

an environment map in two textures, each of which stores half of the environment as reflected

by a parabolic mirror (see Figure 2.2). Typically the alpha channel of each dual-paraboloid

map face stores a circular mask that indicates whether a pixel contains relevant data.

A direct mapping from a cube map to a dual-paraboloid map is given by Blythe (Blythe,

1999). The following High Level Shader Language (HLSL) code perfoms the mapping for the

front face of the dual-paraboloid map.

samplerCube tCube; // the cubemap to covert to a dual-paraboloid map
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(a) Example dual-paraboloid map. The left column
shows the front map, and the right column shows the
back map.

incoming
rays

reflected
rays (front)

reflected
rays (back)

(b) Diagram of a dual-paraboloid map projection.
The reflected rays are parallel to each other.

Figure 2.2: Dual-paraboloid maps.

float 4 main (float2 inUV : TEXCOORD0 /* quad texcoord from 0..1 */ )

: COLOR

{

float2 uv = 2.0 * inUV - 1.0; // scale and bias into -1..1 range

float3 dir; // lookup direction for cubemap

// convert front dual-paraboloid face texture coordinate to 3D

// direction

dir.x = 2.0*uv.x;

dir.y = 2.0*uv.y;

dir.z = -1.0 + dot( uv, uv );

dir /= (dot( uv, uv ) + 1.0);

// compute circular mask for alpha channel

float alpha = (dot( uv, uv ) < 1.0 ) ? 1.0 : 0.0;
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// look up cubemap texture sample and multiply with alpha mask

return float4(texCUBE( texCUBE(tCube, dir).rgb, 1.0) * alpha;

}

A similar shader is used to compute the values for the back map. An alternative to

converting 2D texture coordinates to a 3D direction vector in the shader is to pre-compute

the conversion and store it in a lookup texture. Then at run-time, an indirect texture lookup

is performed during generation of a dual-paraboloid map.

2.1.2 High-Dynamic Range Images

Images in computer graphics are typically represented using low-dynamic range (LDR) values,

since the archetypal display can display only a relatively limited dynamic range (the intensity

range between black and white). Current commodity LCD displays typically only have a

dynamic range on the order of 1000 to 1, whereas real world data will have a dynamic range

several orders of magnitude larger.

Instead of using an integer value to represent the intensity of each color channel of an

image, high-dynamic range (HDR) images typically use floating point values to represent the

intensity of each channel, and allows for more realistic lighting and rendering effects. The

availability of commodity graphics processors with single precision floating point native data

paths, makes processing HDR data an attractive proposition that can dramatically increase

the quality of rendered imagery. Given the limited capabilities of current display technologies,

HDR data does have to be mapped to a LDR data via a process called tone mapping. Tone

mapping is a separate topic from the material covered in this chapter, and will not be discussed

further in this thesis.

2.1.3 Image-Based Lighting

Image-based lighting (IBL), a technique introduced by Debevec (Debevec, 1998; Debevec,

2002), enables synthetic objects to be rendered into real scenes with realistic lighting. This

dramatically increases the perceived realism of the synthetic objects. As presented by De-

bevec, IBL uses a lightprobe, which is simply an HDR environment map of real world data.
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Lightprobes are typically captured from multiple images taken of a mirrored sphere, which

allows radiance data to be captured in all directions. Once a lightprobe is generated, ray trac-

ing is used to compute the incident illumination from the image-based lighting environment

on each of the synthetic surfaces in the rendered scene (see Figure 2.3).

point being shaded

Image-based lighting environment 
(e.g. Lightprobe)

Direct 
reflections

Indirect 
reflections

Figure 2.3: Image based lighting.

Assuming that normalized coordinates are used to access the lightprobe, directions in

3-space can be generated by rotating an normalized vector pointing in the direction of the

-z-axis by θ and φ, where θ and φ are given by

u = [−1, 1], v = [−1, 1]

θ = arctan(v/u)

φ = π ∗
√

(u2 + v2)

Using these relationships, it is a relatively simple task to generate HDR cube and dual-

paraboloid environment maps from real world data.

When a local-lighting model is used, an approximation of IBL is to simply convolve a
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synthetic object’s BRDF with a lightprobe, thereby approximating the lighting that the

synthetic object would have received had it been located at the position where the lightprobe

was taken. The use of ambient occlusion (Pharr, 2004) further increases the quality of this

approximation.

2.2 Summed-Area Tables

As described in Section 1, summed-area tables enable the rapid calculation of the sum of

the pixel values in an arbitrarily sized, axis-aligned rectangle at a fixed computational cost.

Figure 1.1 illustrates how a summed-area table is used to compute the sum of the values of

pixels spanning a rectangular region. To find the integral of the values in the dark rectangle,

we begin with the pre-computed integral from (0,0) to (xR, yT ). We subtract the integrals of

the rectangles (0, 0) to (xR, yB) and (0, 0) to (xL, yT ). The integral of the hatched box is

then added to compensate for having been subtracted twice.

The average value of a group of pixels can be calculated by dividing the sum by the area.

Crow’s technique amounts to convolution of an input image with a box filter. The power lies

in the fact that the filter support can be varied at a per pixel level without increasing the

cost of the computation. Unfortunately, since the value of the sums (and thus the dynamic

range) can get quite large, the table entries require extended precision. The number of bits

of precision needed per component is

Ps = log2(w) + log2(h) + Pi

where w and h are the width and height of the input image. Ps is the precision required to

hold values in the summed-area table, and Pi is the number of bits of precision of the input.

Thus, a 256x256 texture with 8-bit components would require a summed-area table with 24

bits of storage per component.

Another limitation of Crow’s summed-area table technique is that it is only capable of

implementing a simple box filter. This is because only the sum of the input pixels is stored;

therefore it is not possible to directly apply a more complex filter by weighting the inputs.
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2.2.1 Higher-Order Summed-Area Tables

In (Heckbert, 1986), Heckbert extended the theory of summed-area tables to handle more

complex filter functions. Heckbert made two key observations. The first is that a summed-

area table can be viewed as the integral of the input image, and the second that the sample

function introduced by Crow was the same as the derivative of the box filter function. By

taking advantage of those observations and the following convolution identity

f ⊗ g = f ′n ⊗
∫ n

g

it is possible to extend summed-area tables to compute higher order filter functions, such as a

Bartlett filter, or even a Catmull-Rom spline filter. The process is essentially one of repeated

box filtering. Higher order filters approach a Gaussian, and exhibit fewer artifacts such as

the blockiness associated with box-filtering.

For instance, Bartlett filtering requires taking the second-order box filter, and weighting

it with the following coefficients:

f =

1 −2 −1

−2 4 −2

1 −2 −1

Unfortunately, a direct implementation of the Bartlett filtering example requires 44 bits of

precision per component, assuming 8-bits per component and a 256x256 input image.

In general, the precision requirements of Heckbert’s method can be determined as follows:

Ps = n ∗ (log2(w) + log2(h)) + Pi

where w and h are the width and height of the input texture, n is the degree of the filter

function, Pi is the input image’s precision, and Ps is the required precision of the nth-degree

summed-area table (Heckbert, 1986).
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2.2.2 Related Techniques

Various techniques (Ashikhmin and Ghosh, 2002; Yang and Pollefeys, 2003) have been pre-

sented that combine multiple samples from different levels of a mipmap to approximate filter-

ing. Ashikhmin and Ghosh approximate simple blurry reflections by using multiple samples

from a mipmapped environment map instead of pre-filtering the environment map (Ashikhmin

and Ghosh, 2002). By using multiple samples, they are able to approximate various simple

BRDFs and blur the environment map on the fly, giving objects the appearance of having

glossy BRDFs. Yang and Pollefeys use the same approach to assist in performing depth cor-

relation on a pair of stereo images. They take multiple samples from the mip-map and sum

them together to approximate a smooth filter functions.

These techniques suffer from several problems. First, a small step in the neighborhood

around a pixel does not necessarily introduce new data to the filter; it only changes the weights

of the input values. Second, when the inputs do change, a large amount of data changes at

the same time, due to the mipmap, which causes noticeable artifacts. Demers et al. (Demers,

2004) added noise in an attempt to make the artifacts less noticeable; although, the visual

quality of the resulting images was noticeably reduced.

2.2.3 Efficient Summed-Area Table Generation on GPUs

This section presents one of the major contributions of this thesis. In particular I present a

technique to rapidly generate summed area tables on GPUs. In order to efficiently construct

summed-area tables, I borrow a technique, called recursive doubling (Dubois and Rodrigue,

1977), often used in high-performance and parallel computing. Using recursive doubling, a

parallel gather operation amongst n processors can be performed in only log2(n) steps, where

a single step consists of each processor passing its accumulated result to another processor.

In a similar manner, the method presented uses the GPU to accumulate results so that

only O(log n) passes are needed for summed-area table construction. To simplify the following

description, I assume that only two texels, texture elements, can be read per pass. Later in

the discussion I explain how to generalize the technique to an arbitrary number of texture

reads per pass.
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Figure 2.4: The recursive doubling algorithm in 1D. On the first pass, the value one element
to the left is added to the current value. On the second pass, the value two elements to the
left is added the current value. In general, the stride is doubled for each pass. The output is
an array whose elements are the sum of all of the elements to the left, computed in O(log n)
time.

The algorithm proceeds in two phases: first a horizontal phase, then a vertical phase.

During the horizontal phase, results are accumulated along scan lines, and during the vertical

phase, results are accumulated along columns of pixels. The horizontal phase consists of n

passes, where n = ceil(log2(image width)), and the vertical phase consists of m passes, where

m = ceil(log2(image height)).

For each pass a screen-aligned quad is rendered that covers all pixels that do not yet

hold their final sum. This prevents pixels that have already computed their final value from

wasting precision resources. The input image is stored in a texture named tA. In the first

pass of the horizontal phase two texels are read from tA: the one corresponding to the pixel

currently being computed and the one to the immediate left. They are added together and

stored into texture tB.

For the second pass, the textures are swapped so that data is read from tB and written

to tA. Now the fragment program adds the texels corresponding to the one currently being

computed and the one two pixels to the left. tA now holds the sum of four pixels.

The third pass repeats this scheme, now reading from tA and writing to tB and summing

two texels four pixels apart, resulting in the sum of eight pixels in tB. This progression

continues for the rest of the horizontal passes until all pixels are summed up in the horizontal

direction. Note that in pass i the leftmost 2i pixels already hold their final sum for the
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horizontal phase and thus are not covered by the quad rendered in this pass. Next the vertical

phase proceeds in an analogous manner. Figure 2.4 shows the horizontal passes needed to

construct a summed-area table of a 4x4 image. The following pseudo-code summarizes the

algorithm.

tA ⇐ InputImage

n ⇐ log2(width)

m ⇐ log2(height)

// horizontal phase

i ⇐ 0

for i < n do

tB[x, y] ⇐ tA[x, y] + tA[x + 2i, y]

swap(tA, tB)

i ⇐ i + 1

end for

// vertical phase

i ⇐ 0

for i < m do

tB[x, y] ⇐ tA[x, y] + tA[x, y + 2i]

swap(tA, tB)

i ⇐ i + 1

end for

// Texture tA holds the result

In practice, reading more than two texels per fragment, per pass is possible, and this

reduces the number of passes required to generate a summed-area table by at least a factor
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of two. The current implementation supports reading 2, 4, 8, or 16 texels per fragment, per

pass. This allows trading per-pass complexity with the number of rendering passes required.

Adding 16 texels per pass enables us to generate a summed-area table from a 256x256 image

in only four passes, two for the horizontal phase, and two for the vertical phase. As shown

later, adjusting the per-pass complexity helps in optimizing summed-area generation speed

for different input texture sizes. The following is the pseudo-code to generate a summed-area

table when r reads per fragment are possible.

tA ⇐ InputImage

n ⇐ logr(width)

m ⇐ logr(height)

// horizontal phase

i ⇐ 0

for i < n do

tB[x, y] ⇐ tA[x, y]+

tA[x + 1 ∗ ri, y]+

tA[x + 2 ∗ ri, y]+

· · ·+

tA[x + r ∗ ri, y]

swap(tA, tB)

i ⇐ i + 1

end for

// vertical phase

i ⇐ 0

for i < n do

tB[x, y] ⇐ tA[x, y]+

tA[x, y + 1 ∗ ri]+
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tA[x, y + 2 ∗ ri]+

· · ·+

tA[x, y + r ∗ ri]

swap(tA, tB)

i ⇐ i + 1

end for

// Texture tA holds the result

Note that near the left and bottom image borders the fragment program will fetch texels

outside the image regions. To ensure correct summation of the image pixels, the texture

units must be configured to use clamp to border color mode with the border color set to 0.

This way texel fetches outside the image boundaries will not affect the sum. Alternatively,

it is possible to render a single pixel black border around the input image and configure the

texture units to use clamp to edge mode.

The algorithm presented has been implemented in both Direct3D and OpenGL, with simi-

lar results. Tables 2.1 and 2.2 summarize the Direct3D results. The OpenGL implementation

uses a double buffered pbuffer to mitigate the cost of context switches. Instead of switching

context between each pass, the implementation simply swaps the front and back buffers of the

pbuffer. This allows us to efficiently ping-pong between two textures as results are accumu-

lated. The Direct3D implementation simply uses two different render targets. If implemented

at the driver level, similar to the way that automatic mip-map generation is done, the costs

of the passes would be reduced even more.

2.2.4 Summed-Area Table Generation Performance

Table 2.1 shows the time required to generate summed-area tables of different sizes on a

number of graphics cards using DirectX 9. For each card, and for each of the three input

image sizes, we show the shortest time to generate a summed-area table along with the number

of texels read per fragment per pass that gives the best result.
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Summed-area table size
256x256 512x512 1024x1024

Radeon
9800 XT1 3.1 ms (8) 14.2 ms (4) 70.1 ms (4)
Radeon

X800XT PE1 1.4 ms (8) 7.3 ms (4) 36.2 ms (4)
Geforce

6800 Ultra2 4.3 ms (8) 32.4 ms (4) 95.3 ms (4)

Table 2.1: Shortest time to generate summed-area tables of different sizes. The number of
samples per pass are given in parentheses. 124− bit floats 232− bit floats

Summed-area table size
Samples/pass 256x256 512x512 1024x1024

2 2.3 ms 9.9 ms 44.3 ms
4 1.8 ms 7.3 ms 36.2 ms
8 1.4 ms 9.9 ms 45.6 ms
16 2.7 ms 12.4 ms 53.3 ms

Table 2.2: Time to generate summed-area tables of different sizes using different number of
samples per pass on a Radeon X800XT Platinum Edition graphics card.

Table 2.2 shows performance based on input size and the number of samples per pass

for one of the cards used in the tests. Benchmark results show that finding a good balance

between the number of rendering passes and the amount of work performed during each

pass is important for the overall performance of summed-area table generation. The optimal

tradeoff between the number of passes and per-pass cost is largely dependent on the overhead

of switching render targets, which typically causes a pipeline flush, and the design of the

texture cache on the target platform.

Computing summed-area tables directly on the graphics card is better than performing

this computation on the CPU for a two primary reasons. First, the input data is already

present in GPU memory. Transferring the data to the CPU for processing and then back

again would put an unnecessary burden on the bus and can easily become a bottleneck because

many graphics drivers are unable to reach full theoretical bandwidth utilization when reading

back data from the GPU (GPUBench, 2004). Moreover, moving data back and forth between

GPU and CPU would break GPU-CPU parallelism because each processor would end up

waiting for new results from the other processor.
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2.3 Offset Summed-Area Tables

A key challenge to the usefulness of the summed-area table approach is the loss of numerical

precision, which can lead to significant noise in the resultant image. This section first discusses

the source of such precision loss and then presents my approach to mitigate this problem

(this technique is also described in (Hensley et al., 2005)). Example images are provided

that demonstrate how the approach achieves significant reduction in noise: up to 31 dB

improvement in signal-to-noise ratios.

2.3.1 Source of Precision Loss

One source of precision loss could be the GPU’s floating-point implementation: Current

graphics hardware does not implement IEEE standard 754 floating point but, as shown by

Hillesland (Hillesland and Lastra, 2004), current GPU implementations behave reasonably

well, so this is not the primary source of numerical error.

The summed-area table approach can exhibit significant noise because certain steps in

the algorithm involve computing the difference between two relatively large finite-precision

numbers with very close values. This is especially true for pixels in the upper right portion of

the image because the monotonically increasing nature of the summed-area function implies

that the table values for that region are all quite high.

As an example, consider the images of Figure 2.5, which are 256x256 images with 8-bit

components. The middle and right columns show the image after being filtered through an

”identity filter,” i.e., a 1-bit filter kernel that is ideally supposed to produce a resultant image

that is a replica of the original image. To avoid loss of computational precision, a summed-area

table with 24 bits of storage per component per pixel would be sufficient, since the maximum

summed-area value at any pixel cannot exceed [256x256]x256. However, the summed-area

table used in this example used 16 and 24 bit FP values. 16-bit floating point values are

represented with one sign bit, 5 exponent bits, and 10 mantissa bits (s10e5), whereas 24-bit

floating point values are represented with one sign bit, seven exponent bits, and 16 mantissa

bits (s16e7). As a result, significant noise is seen in the filtered image, with worsening image
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Figure 2.5: The left column shows the original input images, the middle column of images
are reconstructions from summed-area tables (SATs) generated using our method, and the
right column are reconstructions from SATs generated with the Crow’s method. For the
first row, the SATs are constructed using 16 bit floats, for the second row the SATs are
constructed using 24 bit floats, and the final row shows a zoomed version of the second row
(region-of-interest highlighted)

30



quality in the direction of increasing xy.

2.3.2 Using Signed-Offset Pixel Representation

Offset summed-area tables simply represent pixel values in the original image as signed

floating-point values (e.g., values in the range -0.5 to 0.5), as opposed to the traditional

approach that uses unsigned pixel values (from 0.0 to 1.0).

This modification improves precision in two ways: (i) there is a 1-bit gain in precision

because the sign bit now becomes useful, and (ii) the summed-area function becomes non-

monotonic, and therefore the maximum value reached has a relatively lower magnitude.

I have investigated two distinct methods for converting the original image to a signed-offset

representation: (i) centering the pixel values around the 50% gray level, and (ii) centering

them around the average image pixel value. The former involves less computational overhead

and gives good precision improvement, but the latter provides even better results with modest

computational overhead.

Centering around 50% gray level. This method modifies the original image by subtracting

0.5 from the value at every pixel, thereby making the pixel values lie in the -0.5 to 0.5 range.

The summed-area table computation proceeds as usual, but with the understanding that the

table entry at pixel position (x,y) will now be 0.5xy less than the actual summed-area value.

The net impact is a significant gain in precision because the table entries now have significantly

lower magnitudes, and therefore computing the differences yields a greater precision result.

Figure 2.5 demonstrates the usefulness of this approach. The first row shows three versions

of a checkerboard. The image on the right, reconstructed from a traditional summed-area

table, exhibits unacceptable noise throughout much of the image. In contrast, the middle

image, generated by our method, shows no visibly perceptible errors.

Centering around image pixel average. While centering pixel values around the 50% gray

level proved to be useful, an even better approach is to store offsets from the image’s average

pixel value. This is especially true of images such as Lena for which the image average

can be quite different from 50% gray. For such images, centering around 50% gray could still

result in sizable magnitudes at each pixel position, thereby increasing the probability that the
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(a) Absolute-value of the difference between ground
truth and a reconstruction using original summed-
area tables.

(b) Absolute-value of the difference between ground
truth and a reconstruction using my method (offset
summed-area tables).

Figure 2.6: Summed-area table reconstruction error of the inset (bottom row) of Figure 2.5.

summed-area values could appreciably grow in magnitude. Centering the pixel values around

the actual image average guarantees that the summed-area value is equal to 0 both at the

origin and at the upper right corner (modulo floating-point rounding errors). Figure 2.6 shows

the error images between a reconstruction using the original summed-area table algorithm,

and the offset summed-area tables method presented in this dissertation.

The computational overhead of this approach is modest as the image average is easily

computed in hardware using mip mapping.

2.4 Higher-Order Summed-Area Table Generation

Generating the interior pixels of a higher-order summed-area table is a simple matter of

re-running the algorithm presented in Section 2.2.4 on the n − 1 order summed-area table.

Complicating the issue is that an essential portion of the image-based lighting algorithm

presented later requires filtering large pixel regions, which increases the chance that a filter

kernel will extend beyond the boundary of the image being filtered. Traditional filtering

approaches handle such a situation by padding the image with selected values beyond its
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(a) original image (b) oSAT 1 (box) (c) oSAT 2 (Bartlett) (d) oSAT 3 (cubic)

Figure 2.7: Comparison of images filtered using repeated offset summed-area tables. Image
(a) shows the original input image, half of a dual-paraboloid map computed from the St.
Peter’s Basilica light probe (Debevec, 1998). Image (b) is (a) filtered with a box filter using
a first order offset summed-area table. Image (c) is (a) filtered with a Bartlett filter using a
second order offset summed-area table. Image (d) is (a) filtered with a cubic filter using a
third order offset summed-area table. The error in the upper right corner of image (d) is the
result of a loss of precision.

boundary pixels. One such padding is to extend the image with black pixels, while arguably,

a more reasonable approach is to simply extend the boundary pixels.

There is a simple optimization that traditional approaches use, which is no longer appli-

cable when computing higher-order summed-area tables. Traditionally, padding by extending

boundary pixel values is actually achieved by re-mapping read accesses to the padded region

back to the boundary pixels. Thus, no actual padding is done, but its effect is simulated

by ”clamping” the sampling coordinates to the boundary. However, for computing higher

order summed-area tables, one cannot use clamping on the first-order summed-area table. In

particular, the correct padding is not simply a replication of its boundary values; it is actually

the integral of the underlying padded image.

Therefore, for filtering from a second-order summed-area table, instead of clamping, a

simple, yet effective, approach is to actually pad the original image, and then do all com-

putations on the padded image. This technique ensures that all higher-order summed-area

tables are computed accurately, at an increased computational cost. In practice, this does

not dramatically affect performance.
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Image 2.7 shows a comparison of filtering a high-dynamic range (HDR) image with a first,

a second and a third order summed area table. For the comparison, the first, second, and third

order offset summed area tables of the St. Peter’s Basilica Lightprobe were generated using

32-bit floating point arithmetic. For the filtered images, the width of the filter kernel is the

same for the different filter orders. The first order filtered image, Figure 2.7(b), clearly shows

blocking artifacts from the use of the box filter, while the third order image, Figure 2.7(d)

suffers from a loss of precision. The blocking artifacts are greatly exacerbated by the HDR

data from the input image, since as soon as bright spot enters the filter kernel, it overwhelms

the rest of the data in the filter kernel’s region of support. Figure 2.7(c) shows that filtering

with a second order summed-area table offers a reasonable compromise by greatly reducing

the blocking artifacts while limiting errors introduced from a loss of precision. Additionally,

filtering with a second order summed-area table requires only nine memory accesses, while

filtering with a third order summed-area table would require sixteen memory accesses.

2.5 Rendering Glossy Reflections with Summed-Area Tables

Since the technique presented in Section 2.2.2 is efficient enough to generate summed-area

tables every frame (less than 2ms for a 256x256 input image on an X800XT PE), their use

becomes feasible to generate real-time, interactive effects. This makes summed-area tables an

attractive candidate for implementing techniques that approximate dynamic glossy reflections

by filtering dynamically generated images.

2.5.1 Glossy Environmental Reflections

Figure 2.8 is an image of an object where the environment map has been filtered with a

spatially varying filter function; in this case the filter support has been modulated by another

texture. The image is rendered in real time, at a rate of over 60 frames per second on a Radeon

X800XT PE with 24-bit floating-point arithmetic. The filter function, scene geometry and

environment map can change every frame.
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(a) Rendered image (b) close-up of reflections

Figure 2.8: An object rendered with glossy reflections by filtering a dynamic environment
map with a spatially varying kernel size. Image (b) shows a close-up of the rendered image,
and the spatially varying glossiness

There are several compelling reasons for using dual-paraboloid environment mapping over

the more commonly used cube mapping. First, Kautz et al. showed that when filtering in

image space, as opposed to filtering over a solid angle of a hemisphere, a dual-paraboloid

environment map has lower error than a cube map or a spherical map. Second, it is only

necessary to generate two summed-area tables as opposed to six summed-area tables (one per

face of the cube). Finally, for large filters, a dual-paraboloid map requires data from only two

textures, whereas it is possible that data might be required from all six faces of a cube map.

A gross approximation to a glossy BRDF is a simple box filter. A single box-filter eval-

uation takes four texture reads from the summed-area table. Two evaluations are required

in the current implementation when a filter is supported by both the front and the back of

a dual-paraboloid map, since at the time of implementation efficient if-else statements were

not supported on GPUs. On hardware that has more optimized branching, it is possible to

evaluate the filters for both maps only when necessary.
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(a) Rendered image (b) single box filter

Figure 2.9: An object textured using four samples from a pair of summed-area tables generated
from an environment map in real-time.

As is common when storing a spherical map in a square texture, our implementation

uses the alpha channel to mark the pixels that are in the dual-paraboloid map. A pixel is

considered to be in the map if its alpha value is one. The algorithm also uses the alpha value

to count the area covered by the filter. After combining the result of the evaluation from the

front and back maps, the alpha channel holds the total count of summed texels, which is then

used to normalize the filter value.

The basic algorithm for rendering glossy environmental reflections follows.

renderCubeMap()

generateDualParaboloidMapFromCubeMap()

generateSummedAreaTable(FrontMap)

generateSummedAreaTable(BackMap)

setupTextureCoordinateGeneration()

renderScene()

return

renderScene :

for every fragment on reflective object do
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(a) Rendered image (b) stacked filters

Figure 2.10: A set of four box filters stacked to approximate a Phong BRDF.

front ⇐ evaluateSAT (FrontSAT, filter size)

back ⇐ evaluateSAT (BackSAT, filter size)

// computer filter area

filtered.alpha ⇐ front.alpha + back.alpha

// combine front and back color

result ⇐ front + back

// divide by the area of the filter

result ⇐ result/filtered.alpha

computeF inalColor(result)

end for

While the implementation presented creates a dual-paraboloid map from a cube map, it

is possible to directly generate the dual-paraboloid map by using a vertex program to project

the scene geometry as done in (Coombe et al., 2004), assuming that the introduced error by

this method is acceptable.
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(a) Rendered image (b) close-up of reflections

Figure 2.11: An image illustrating the use of a summed-area table to render glossy planar
reflections where the blurriness of an object varies depending on its distance from the reflector.
The object-reflector distance is used to vary the filter size to sharpen the reflections as the
object nears the planar reflector as can be seen in image (b), a close-up of where the floor
meets the wall. As can be seen the sharpness of the reflections varies with the distance
between the reflector and the wall.

More complex filter functions can be constructed at the cost of more texture reads by

stacking multiple box filters on top of each other. The stacked boxes approximate the shape

of smoother filters. For a single summed-area table, each filter in the stack requires eight

texture reads (four reads for the box filter in the front map and four reads for the box filter

in the back map). So a complex filter created from a stack of four box filters would perform

thirty-two texture reads per fragment.

Both OpenGL and Direct3D provide a means to automatically generate texture coor-

dinates based on the normal direction and reflection direction. By combining box filters

generated from both the reflection direction and the normal direction, it is possible to com-

pute an approximation of the Phong BRDF. Figure 2.11(a) shows an image generated using a

stack of two large box filters centered on the normal direction to approximate the diffuse com-

ponent of the Phong BRDF and a stack of two smaller box filters centered on the reflection

direction to approximate the specular component.
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2.5.2 Glossy Planar Reflections

Since the summed-area table enables filtering with arbitrary support, it is relatively easy to

render glossy reflections where the blurriness of an object varies depending on the distance

of the reflected object from the reflector. This effect is often seen when an object is placed

on a glossy table top. The object’s reflection is much sharper where the object and table top

meet than elsewhere. Figure 2.11 shows an image where the floor is a glossy reflector, and

the blurriness of the reflection depends on the object’s distance from the floor.

Figure 2.11(b) shows a close up of the rendering that is accomplished by augmenting the

standard planar reflection algorithm to implement glossy reflections. The pass for rendering

the reflected scene from the virtual viewpoint outputs both the color and the distance to the

reflection plane to a texture. A summed-area table is generated from the color data. Then the

planar reflector is rendered from the summed-area table, using the previously saved distance

to modulate the filter width.

2.6 Depth-of-Field and Glossy Translucency

Since summed-area tables allow the efficient filtering of images with spatially varying filter

kernels, other effects besides glossy reflections are possible. This section discusses two: a

depth-of-field effect based translucency.

2.6.1 Depth-of-Field

In (Greene, 2003), Greene presents a technique to render an image with a depth-of-field

effect using summed-area tables. His summed-area table generation technique is problematic

since it requires that a texture be read from and written to at the same time. Unfortunately,

graphics hardware — due to its parallel streaming architecture — makes no guarantees about

the execution sequence of read-modify-write operations.

In (Demers, 2004), a technique to render a depth-of-field effect was presented that used

mip maps to approximate a simple filter. Because of the artifacts introduced by the mip-map
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Figure 2.12: Simulated depth-of-field effect using summed-area tables.

filtering technique, the authors add noise to reduce the perceptible Mach bands.

Unlike mip maps, summed-area tables are able to average arbitrary rectangular sections of

an image, allowing us to implement a real-time, interactive version of the depth-of-field effect,

without having to add noise to mask filtering artifacts. However, our implementation does

have the same drawbacks as other image filtering techniques for generating a depth-of-field

effect, such as the bleeding of sharp in-focus objects onto blurry backgrounds. Figure 2.12

shows an image rendered with depth-of-field. This 1024x768 image renders at a rate of 23

frames per second with an ATI Radeon X800XT PE. Lower resolution versions render at

higher frame rates.

The effect is accomplished by first rendering the scene from the camera’s point-of-view

and saving the color and depth buffers to texture memory. Next, a summed-area table is

generated from the saved color buffer. As in (Demers, 2004), the depth buffer is used to

determine the circle-of-confusion. Finally, a screen-filling quad is rendered, and a fragment

program is used to blur the color buffer based on the circle-of-confusion.
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Figure 2.13: Example of translucency using a summed-area table to filter the view seen
through the glass.

2.6.2 Translucency

Approaches to rendering translucent materials include those of (Arvo, 1995; Diefenbach,

1996). While these techniques are able to generate high-quality results, they are not able

to handle dynamically changing environments in real time. Using summed-area tables it

is possible to render real-time, interactive translucent objects. This technique can be used

to render such effects as etched and milky glass. Figure 2.13 shows a scene with multiple

translucent objects.

The rendering steps necessary for dynamic translucency are as follows.

// Update the lighting environment

texture ⇐ renderSceneWithoutTranslucentObjects()

SAT ⇐ generateSummedAreaTable(texture)

setupTextureCoordinateGeneration()

renderScene()
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return

renderScene :

for every translucent fragment do

// transmap holds spatially varying filter kernel size

filter size ⇐ sampleTexture(transmap, u, v)

result ⇐ evaluateSAT (FrontSAT1, 1, filter size)

// divide by the area of the filter

filtered ⇐ result/result.alpha

computeF inalColor(filtered)

end for

2.7 Approximate HDR Image-Based Lighting

By using higher-order offset summed-area tables, it is possible to filter a dual-paraboloid

high-dynamic range environment map in constant time, irrespective of the filter size. Figure

2.14 shows the image of a model rendered with an approximate Phong BRDF computed

dynamically using offset summed-area tables. The diffuse component is approximated by

sampling a second order summed-area table with a large filter kernel in the direction of

the normal (shown as the large triangle in Figure 2.14(b)), and the specular component is

approximated by sampling a first order summed-area table with a small filter kernel in the

direction of the reflection direction (shown as the thin rectangle in Figure 2.14(b)). The

second order filter is used for the diffuse component to prevent noticeable artifacts from box

filtering, shown in Figure 2.15. The first order filter is used for the specular component

to increase performance, since it only requires four texture reads, and to limit the effect of
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(a) Rendered image (b) filters used

Figure 2.14: A rendering of Hebe, with an approximate image-based lighting computed from
two sets of summed area tables whose results are summed together. One 2nd order summed-
area table to approximate diffuse lighting, and one 1st order summed-area table to approxi-
mate specular lighting. Image (b) represents the filters used.

precision loss due to the use of single precision floating point textures.

The rendering steps necessary for fully dynamic image-based lighting are as follows.

// Update the lighting environment

renderCubeMap()

generateDualParaboloidMapFromCubeMap()

FrontSAT1 ⇐ generateSummedAreaTable(FrontMap)

FrontSAT2 ⇐ generateSummedAreaTable(FrontSAT1)

BackSAT1 ⇐ generateSummedAreaTable(BackMap)

BackSAT2 ⇐ generateSummedAreaTable(BackSAT1)

setupTextureCoordinateGeneration()

renderScene()

return
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(a) Box filter (b) Bartlett filter

Figure 2.15: Approximating a diffuse BRDF using summed area tables. Image (a) shows an
approximation to a diffuse BRDF using a simple box filter. Image (b) shows an approximation
using a Bartlett filter, which clearly eliminates the banding artifacts seen in Image (a).

renderScene :

for every fragment on object do

front1 ⇐ evaluateNthSAT (FrontSAT1, 1, filter size)

front2 ⇐ evaluateNthSAT (FrontSAT2, 2, filter size)

back1 ⇐ evaluateNthSAT (BackSAT1, 1, filter size)

back2 ⇐ evaluateNthSAT (BackSAT2, 2, filter size)

// computer filter area

filtered1.alpha ⇐ front1.alpha + back1.alpha

filtered2.alpha ⇐ front2.alpha + back2.alpha

// combine front and back color

result1 ⇐ front1 + back1

result2 ⇐ front2 + back2

// divide by the area of the filter
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filtered1 ⇐ result1/result1.alpha

filtered2 ⇐ result2/result2.alpha

computeF inalColor(filtered1, filtered2)

end for

2.8 Conclusion

This chapter presented several rendering techniques that use the ability to generate summed-

area tables efficiently on the GPU. Additionally, the techniques take advantage of the precision

improvements provided by offset summed-area tables. While offset summed-area tables can

dramatically increase the precision limitations of summed-area tables, the do not eliminate

them.
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CHAPTER 3

Increasing Graphics Hardware

Performance Along the Architectural Axis

The second axis to be considered is the architectural axis. I discuss how graphics hardware

that incorporates hardware support for conditional output streams can be used to implement

an efficient ray casting algorithm. Furthermore, I discuss some of the issues involved with

adding conditional streams to current commodity graphics hardware. Conditional output

streams are an architectural extension that attempt to solve a critical shortcoming of most

data-parallel machines such as GPUs: the inefficient execution of control-flow if statements.

Typically, SIMD machines will execute both sides of a branch on each processor, causing load

imbalances and wasted work. The novel streaming ray casting algorithm increases coherence

by testing as many rays as possible against a particular node in the acceleration data structure

before going on to the next node. I show that this method can reduce memory bandwidth

requirements by more than forty times when compared to current ray tracing techniques.

As on most data parallel architectures, conditional operations are difficult to handle on

graphics processors. GPUs are just now gaining conditional operations but because of their

SIMD processing nature, they are limited to either straight arithmetic operations with no

branching, or inefficient execution of both sides of a branch. Although, the ATI X1800 shader

architecture (ATI Technologies, 2005) is optimized to take advantage of the situation when

all pixels in a processing group branch the same way, so that both branches do not need to

be executed.

Researchers in streaming architectures have introduced the concept of conditional streams

(Kapasi et al., 2000), which augment traditional streaming processors with the capability to

conditionally read from input streams, and conditionally write to output streams. While



(a) Ray traced reflections (b) Stream length metric (c) Ray restarts

Figure 3.1: Ray traced second generation rays using conditional output streams. Image (a)
shows reflections on a car placed inside the Sponza scene. For simplicity, the pixels are shaded
with the distance to the closest intersection point. Image (b) shows sum of 1/(stream length)
for each pixel. The colormap is on the left of the image. Red pixels represent smaller values,
and purple pixels represent larger values. As can be seen, most rays are processed in large
streams. Image (c) shows the number of ray restarts needed for each pixel. The number of
restarts is strongly correlated with the number of node traversals required to find the closest
intersection point. For the image shown, the worst case pixel required forty-six restarts.
Images were rendered at 512x512.

some prior work has been reported on using conditional streams in GPUs, it does not directly

address the problem of ray tracing. In particular, Popa (Popa, 2004) has proposed the use of

conditional streams for compiling data-dependent control flows for SIMD GPUs. Additionally,

Direct3D 10 (Blythe, 2006) introduces the concept of geometry shaders, which also have a

similar capability to generate compacted streams of data.

By implementing conditional output streams on GPUs, a completely new set of capabilities

becomes available to applications developers. Many applications are not sensitive to the order

in which the data is processed and can benefit from better performance using conditional

operations. In this dissertation, I focus on a novel streaming ray casting algorithm. The

algorithm uses conditional output streams to reduce memory bandwidth requirements and

increase processor utilization when compared to previous methods (Foley and Sugerman,

2005). The new algorithm is able to reduce memory bandwidth by over forty times compared

to the most efficient method presented so far. One possible use for my proposed technique is to

implement hybrid rendering algorithms that use standard z-buffering techniques to generate

the first hits from the camera view, and then use ray tracing to generate geometrically correct
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reflections and shadows.

3.1 Background

The rather dramatic increases in the speed of processors over the past several decades has

not been matched in DRAM devices. This has led to an ever increasing performance gap to

the point where modern CPUs waster a majority of their cycles waiting for data to return

from memory. While modern DRAM devices have relatively high bandwidth when accessing

data in large sequential blocks, initiating accesses to non-adjacent memory locations typically

incurs a long latency between the request and the arrival of the new data. As processor speed

increases, this speed mismatch becomes increasingly difficult to hide. Processor architects

have had to develop ever more ingenious ways to overcome the access latency, since general-

purpose processors typically execute workloads that have relatively random access patterns.

To help prevent processors from idling waiting for data from DRAM, modern processors have

extremely large caches that smooth data access times. Caches allow data to be accessed

in large, contiguous blocks, an operation that is more optimal for accessing DRAMs than

random memory accesses. Despite this, conventional wisdom says that modern day general

purpose processors spend most of their time waiting for data to return from the memory

subsystem.

Because of the design practicalities involved with building large DRAM chips, it is nec-

essary to sub-divide larger DRAM modules into several banks, each of which is further sub-

divided into blocks called pages. The first access to a page, often referred to as ”opening a

page”, is a relatively long latency operation, but once a page is opened a large amount of data

can either be written or read at high speed. Typically, only one page is allowed to be open

per bank. Typically, DRAM modules allow concurrent accesses to multiple banks to mitigate

the cost. So for example, if page X was open in bank A, and data needed to accessed in

page Y of bank A, page X would have to be closed, and then page Y could be opened. The

process of closing a page and opening a different page within the same bank takes a large

number of cycles. Because of these constraints, it is in the architect’s best interest to access

the maximum possible amount of useable data per page access.
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3.1.1 Streaming Architectures

CPU architects have spent a large amount of time developing paradigms designed to over-

come the widening performance gap between processor and memory performance. Once such

class of architectures are stream processors. Stream processors read and write data in large

sequential chunks, called streams. Each element of a stream is operated on by a small set of

computational operations called a kernel. A stream can be pipelined through multiple ker-

nels to implement complex functionality. Because stream processors access memory in very

coherent chunks, they can take advantage of the high bandwidth of modern DRAMs without

being adversely affected by the long latency needed to initially open DRAM pages. Stream

processors are extremely adept at processing what are considered traditional DSP applica-

tions, such as image and signal processing where the same operation is executed on every

piece of data in a stream, but as with most data-parallel architectures, conditional operations

are inefficient.

3.1.2 Conditional Streams

As mentioned before, strictly data-parallel architectures typically have problems handling

data-dependent operations. Kapasi et al. introduced the concept of conditional streams for

stream processors as part of the Imagine stream processor architecture (Kapasi et al., 2000).

As a part of his Master’s thesis, Popa (Popa, 2004) discusses using conditional streams for

SIMD GPUs in the context of compiling shaders that exhibit data-dependent control flows.

Figure 3.2(a) shows how a simple conditional operation would be handled by a streaming

architecture without conditional streams. The goal of the kernel is to filter all the values

that are below p. Since there must be a 1-to-1 correspondence between the input and output

streams, all of the input values must be copied to the output. A mask is also generated to

inform downstream kernels which elements of the output stream are valid. Since the mask

disables processing of some elements, the down stream processor will not be fully utilized.

Figure 3.2(b) shows how the same conditional operation would be handled with conditional

output streams. In this situation, the kernel can conditionally write values that are greater

than p to the output stream. The output stream is only as large as it needs to be, so there
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append xi to S
append (xi > p) to mask

input stream

mask

output stream

(a) Without conditional streams

if xi > p
    append xi to S

input stream output stream

(b) With conditional streams

Figure 3.2: Conditional operations with streaming architectures. Figure (a) shows how a
mask must be used to prevent downstream kernels from operating on invalid data. The
output stream is the same size as the input stream, and the mask has the same number of
elements as the input stream. Figure (b) shows the same simple conditional operation with
conditional output streams. In this situation, the output stream is only as large as it needs
to be, no additional mask vector is needed, and processor utilization of downstream kernels
is increased.

is no wasted space. Additionally, downstream kernels will fully utilize the stream processor

since the output stream is densely packed with actually useful data as opposed to sparsely

packed data with masking.

3.1.3 Ray Tracing on GPUs

There have been several commodity based GPU ray tracer implementations (Purcell et al.,

2002) (Karlsson and Ljungstedt, 2004) (Christen, 2005) (Foley and Sugerman, 2005). The

original work by Purcell used a uniform grid triangle bins as its acceleration data structure.

Unfortunately, uniform grids do not gracefully handle scenes with a non-uniform distribution

of geometric primitives. A large study of ray tracing acceleration data structures by Havran

(Havran, 2001) shows that kd-trees handle a wide variety of scenes well. The obvious kd-

tree traversal mechanism requires the use of a per-ray stack which is problematic on modern

graphics hardware. Foley and Sugerman developed a GPU ray tracer that used kd-trees

instead of uniform grids. They presented two separate stack-less traversal algorithms, kd-

restart and kd-backtrack.

The kd-restart algorithm modifies the basic kd-tree traversal algorithm by advancing the

tmin, tmax range when rays fall through leaf nodes (Foley and Sugerman, 2005). The rays

then restart their traversal at the root node of the kd-tree. While this causes some nodes of

the data structure to be read more times than necessary, it removes the need for a per-ray
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stack.

3.2 Architectural Modifications

g f e dh c b a

4-wide SIMD fragment processor

bh
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fragment 
processors h f e d b

input stream output stream

input queue output queue

Figure 3.3: Conditional output streams for graphics hardware. Individual elements of the
input stream are loaded in parallel by the fragment processors. This is a similar access
pattern to stepping through a one dimensional texture. After some amount of computation,
the fragment processors test a set of conditions and output only a subset of fragments. The
resulting stream is then compacted into a new output stream. Note that ordering is not
necessarily preserved in the output stream, but this example is shown ordered for a clearer
exposition.

Figure 3.3 gives an overview of how streams would be accessed by the fragment processors.

Individual elements of the input stream are loaded in parallel by the fragment processors.

This is very similar to stepping through a one-dimensional texture. After some amount of

computation, the fragment processors test a set of conditions and only output a subset of

fragments. The resulting stream is then compacted into a new output stream.

Figure 3.4 shows a block diagram of the hardware that enables conditional output streams.

It acts as a ”stream compaction” unit, and provides a mechanism for fragments to condition-

ally write to a render target, yet still provide a coherent stream to the memory interface unit.

The 2-stage FIFO provides a stage area for data to be compacted before it is sent to the

memory controller. Once one of the FIFOs fills, the data can be dispatched to be written to

memory while the other FIFO is being backed. Two stages are needed for the situation where

the output from the fragment processors would overflow a single-stage output FIFO. Addi-

tionally, since modern hardware supports multiple render targets, it is reasonable to allow

multiple conditional output streams. While not shown in the figure, multiple 2-stage FIFOs

would be needed to compact the different output streams for each render target. Another
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controller

switch 2-stage buffer

permutation write vector

Figure 3.4: Additional hardware needed to implement conditional streams in graphics hard-
ware. The switch permutes its input based on which processor outputs valid data. The
output of the switch is written into a 2-stage buffer based on the write vector signal, which
is provided by the controller (diagram adapted from Kapasi et al.).

possible solution presented by Popa (Popa, 2004) involves the use of a Benes̆ network.

3.2.1 Decreasing Memory Fragmentation

One drawback to using conditional output streams is the potential fragmentation of memory,

since the output size is not known at the time of creation. The hardware must allocate

enough space to hold the entire stream for situations where the entire input stream is written

to memory. In cases where the input stream could be written to one of n separate streams, n

output streams must be allocated, each with a size of the input stream. The special case of

only two output streams allows for a simple optimization. In this situation, only one output

buffer of size n needs to be allocated. One output stream writes from the beginning of the

output buffer, and writes towards the end of the stream. The other output stream begins

writing at the end of the buffer, and writes towards the beginning. Since no new fragments are
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introduced, the two output streams are guaranteed to fit exactly inside the space allocated.

The major hardware modification that this optimization would require is the ability of the

memory controllers to write memory in either the forward direction or the reverse direction,

which should be a trivial modification.

3.3 Basic Streaming Ray Tracing Algorithm

At a high level, the streaming algorithm proceeds as follows. First the scene is rendered using

the standard z-buffer algorithm. Reflection rays are then traced into the scene, and the rays

are intersected with the scene using the streaming algorithm. Since ordering is not preserved

inside the stream, the rays must then be scattered back to screen space, where the resulting

fragments are shaded.

The goal of our ray tracing algorithm is to test as many candidate rays against each

node in the acceleration data structure as few times as possible, thus conserving bandwidth.

While the presented technique uses the kd-restart algorithm of Foley and Sugerman, other

acceleration data structures and traversal algorithms are possible.

The ray tracing algorithm proceeds as follows.

1. Rays of given generation are all added to stream S0. Since S0 is the initial stream, the

root kd-tree node, N0, is assigned to be tested against S0. S0 is then inserted into the

work queue.

2. A stream Si is removed from the work queue, and its corresponding kd-tree node Ni

is loaded. Unlike in a conventional recursive ray tracer, the rays in Si are tested only

against Ni

3. If the current node is an internal node, then the input stream is split into two separate

streams. One stream Sabove holds the rays above the current split plane, which will be

tested against the kd-tree node Nabove. The other stream Sbelow holds the rays below

the current split plane, which will be tested against the kd-tree node Nbelow. The new

output streams are then added to the work queue.
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If the current node is a leaf node, the rays in Si are tested against the node’s geometry

list. Rays that do not intersect any geometry are added to the restart stream Srestart.

Rays that intersect geometry are added to a shade stream, which holds rays that are

ready to be shaded.

4. The next stream Si+1 from the work queue is selected, along with the appropriate kd-

tree node Ni+1. If there are no streams in the work queue, then the restart stream

Srestart is selected along with the root node of the kd-tree. The algorithm proceeds as

previously described, until no streams are left.

All rays of the current generation have now been traced. Multiple generations of rays can

be processed in this manner if recursive ray tracing is desired. If a unified shader architecture

similar to ATI’s Xenos (Doggett, 2005) is used, an output stream can be fed back as an input

stream for the next iteration of the algorithm with out requiring a round-trip to and from

memory. This further reduces bandwidth by eliminating the need to write every stream out

to memory. Clearly, this optimization will be limited by resources, and large streams will

have to be written to memory.

3.3.1 Hybrid Algorithm

The major benefit of this algorithm is its highly regular access pattern. As with most stream-

ing algorithms, this one reads from and writes to memory in extremely coherent blocks. One

potential drawback of this algorithm is that it may create numerous small streams. Foley

and Sugerman found that the two major limits on performance for their algorithms were load

balancing and the cost of recirculating data. Since the proposed hardware extensions enable

true load balancing through conditional streams, a hybrid technique could use the proposed

streaming algorithm to process the streams until the streams reach a lower size limit, at which

point a modified version of Foley and Sugerman’s algorithm that takes advantage of condi-

tional streams instead of using masking would be used, by sorting fragments into separate

streams, where each stream only contains fragments in a given state.
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3.3.2 Results

Figure 3.1 shows the result of rendering images using our new streaming ray tracing algorithm.

In Figure 3.1(a), our algorithm is only used to generate the reflections on the surface of a

TT model inside the Sponza scene (both models are distributed as part of PBRT (Pharr and

Humphreys, 2004)). This image mimics the situation where the primary ray intersections

are calculated using standard z-buffering techniques. Physically correct reflections are then

generated using our ray tracing algorithm.

Figure 3.1(b) visualizes the sum of the metric 1/stream length. The color map, shown on

the left of the image, ranges from small values, represented by red, to large values, represented

by purple. As can be seen, most of the image is red, which indicates that most pixels are

processed in relatively large streams. In this image, the worst-case pixel is in the front wheel

of the TT model where the spokes meet, and the ray must be restarted forty-six times.

During the rendering of the TT, the average stream size when processing internal nodes

was 23.6 rays per stream. The overhead of processing streams with an average size of 23

elements should be roughly the same overhead as that of rendering a triangle with 23 pixels,

which is reasonable. The average stream size when processing leaf nodes was 5.3, which means

that each triangle of the model was, on average, tested against 5 rays at a time. This result

agrees with previous results that have shown that there is a surprising amount of coherence

available when ray tracing reflections (Wald et al., 2001). In another test scene, a perfectly

reflective Sponza, the average stream size for the fifth bounce was still over thirty rays.

Figure 3.1(c) shows the number of restarts needed to render each pixel; the number of

restarts is strongly correlated with the number of kd-tree node traversals needed to render

each pixel. As before, the color map is on the left side of the image. The worst case pixel

requires 46 restarts and 1324 node traversals, and is again located in the front wheel of the

TT model. The minimum number of traversals needed to render the image was 21, and the

average number of traversals over the entire image was 259.

Table 3.1 summarizes the results of a comparison of our technique with Foley and Sug-

erman’s. In an effort to normalize the estimates with regard to image and scene size, the

bandwidth is presented as bytes per ray per triangle. Using estimates calculated from data
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Scene number Bandwidth per
of triangles (triangle * pixel * frame )

TT in Sponza 371,544 0.022
Foley - kitchen 110,561 0.52
Foley - robot 71,708 0.89

Table 3.1: Comparison of our technique with the results presented by Foley and Sugerman.
All images were rendered at 512x512.

presented by Foley and Sugerman, their algorithm requires 0.52 bytes of data per triangle per

pixel to be transferred during the process of rendering a single frame of the kitchen scene and

0.089 bytes of data to render a frame of the robot scene. The images rendered for Figure 3.1

only required 0.022 bytes per triangle per pixel, a decrease in bandwidth by a factor of 23

to 40 times. By using conditional streams, memory bandwidth is dramatically reduced when

compared to previous techniques. This is due to two factors. Since masking is not used, the

output streams only contain active rays, which eliminates the need to recirculate useless data

and increases processor utilization. Additionally, conditional streams allow us to load balance

the fragment processor by eliminating useless computation. The second factor is that our ray

tracing algorithm reduces memory bandwidth by attempting to maximize the number of rays

that are tested at once against each kd-tree node, thus reducing the number of times that the

node has to be read from memory.

Besides the cost of shading, there are three separate computation costs. The first is

the cost of intersecting the rays with the acceleration data structure. The image shown in

Figure 3.1 requires 12,704,461 individual ray traversal tests. Recall that only the reflected

rays are traced. This constitutes 95% of the intersection tests needed to render the scene. The

second cost is associated with the actual ray triangle tests, and the test scene requires only

691,846 ray/leaf node tests (these are the other 5%). The third cost is associated with the

need to scatter the unsorted computed fragments to the correct location in the framebuffer

for shading and display.

To estimate the computational cost of traversing the kd-tree and computing ray-triangle

intersections, OpenGL Shading Language (GLSL) shaders were tested on a 3.2 GHz Pentium

IV with an ATI X1900XT graphics card. The shaders do not implement conditional streams,

since there is no support in current hardware, but instead emulate the functionality as closely
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Figure 3.5: Processing time per pass for kd-tree traversal GLSL shader. Data captured on
an ATI X1900XT

as possible. Figure 3.5 shows the time it takes to traverse a single node of the kd-tree for

a given number of rays using the traversal shader. For 262,144 rays (a 512x512 image), the

shader is able to run at approximately 1,000 passes per second. This conservative test shows

that the time to render a 4 element stream is only four times faster than the time to process

a 262,144 element stream, which is clearly undesirable. Figure 3.6 shows the effective cost

of processing of single ray in a stream as the stream size is varied. Because of the overhead

associated with rendering a single small stream, the effective processing time is longer for

short streams versus long streams. This can be alleviated by processing multiple small streams

together in a single pass. For the car inside the Sponza test scene, 12,704,461 individual ray

traversal tests need to be run and, assuming that all the streams are bundled together in a pass,

completely traversing the kd-tree for the example scene could be performed approximately 10

times per second. Bundling the streams together using the memory optimization presented in

Section 3.2.1 is relatively straightforward, but would decrease memory access coherence, since

multiple kd-tree nodes not stored adjacently would have to read at the same time. However,
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a drop in memory coherence can be hidden by processing enough computational threads at

the same time to effectively hide memory latency, a technique already used in modern GPUs.

Figure 3.6: Effective processing time per ray for traversal shader. Data captured on an ATI
X1900XT

To estimate the computational cost of traversing leaf nodes in the kd-tree and testing

ray-triangle intersections, another GLSL shader was written. Dependent texturing is used

to reference sets of 3 indices contained in an index texture. The indices are then used to

reference the actual vertices of the triangle that are contained in yet another texture. For the

triangle intersection code, memory bandwidth is clearly the limiting factor due to the number

of texture reads performed versus the amount of computation that needs to be performed.

For my test scene, the kd-tree leaf nodes contain an average of 3.5 triangles. For situation

where all 512x512 rays are each being tested against 4 different triangles, the X1800XT is

still able to test each ray against the 4 distinct triangles at a rate of 434 fps. Since only
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Image size Without scatter With scatter Ratio
(FPS) (FPS) (with/without)

512x512 831 774 93%
1024x1024 212 192 90%

Table 3.2: Scatter performance using GL POINTS with a vertex shader on an ATI X1900XT.
On current hardware a scatter only causes a slight drop in performance versus pure point
rendering.

five percent of the kd-tree intersection tests involve leaf nodes and geometry, the ray-triangle

intersection tests are not the limiting factor.

The final step of the ray-tracing algorithm requires the stream of shader fragments to be

scattered to the correct location of the frame buffer. Tests using GLSL show that the X1900XT

can perform a scatter on a fully randomized 512x512 element stream approximately 774 times

a second. While this wastes 3/4ths of the shader resources since GL POINTS are used instead

of small quads, the scatter operation needs to be performed only once per rendered frame,

so it is clearly not the limiting factor. Additionally, some commodity graphics cards support

limited scatter operations, albeit without API access in OpenGL or Direct3D.

3.4 Conclusion

I have presented a way to use conditional streaming on a GPU to implement a novel streaming

ray-casting algorithm that lowers memory bandwidth and increases processor utilization when

compared to current GPU based techniques. One of the biggest drawbacks of the algorithm

presented is possible fragmentation of memory, and the overhead associated with processing

small streams, although these can be mitigated with techniques presented in this chapter.

Additionally, the algorithm implements recursive ray tracing via tail-recursion, which forces

data recirculation between ray generations.
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CHAPTER 4

Increasing Graphics Hardware

Performance Along the Circuit Axis

The third axis on which performance improvements can be made is at the circuit level. The

primary aspect of performance addressed by my work along this axis involves energy efficiency

which is not only important for mobiles devices, but also for “desktop” devices. At one end

of the spectrum, it is important to be energy efficient to maximize the battery life of mobile

devices, while at the other end of the spectrum, energy efficiency is important since there are

practical physical limits on the amount of power that a chip can dissipate. In this chapter, I

present a design paradigm for creating energy efficient graphics hardware components. The

design paradigm is illustrated via two different concrete examples.

The key idea behind the “compute-on-demand” paradigm is to exploit the data-dependent

nature of computation, and to obtain speed and energy improvements by optimizing the

design for the common case, instead of assuming worst-case operation. An asynchronous or

clockless circuit style is used to facilitate this paradigm. In particular, only those portions

of the computation blocks are activated, i.e. using energy, that are actually required for

a particular computational operation, thereby saving energy and reducing critical delays.

The first example is a z-comparator that takes advantage of data-depencies to reduce energy

consumption and average-case latency.

The second example illustrates a novel implementation of a counterflow organization

(Sproull et al., 1994) that eliminates the need for complex synchronization and arbitration.

This design allows shorter critical paths, and therefore higher operating speed. As an example

of our counterflow methodology, we introduce a novel multiplier organization, in which the

data bits flow in one direction and the commands are piggybacked on the acknowledgments



flowing in the opposite direction. Because of the reduction in power, this implementation is

suitable for use in the graphics cores of mobile devices.

The chapter is organized as follows. First background on asynchronous circuits is given.

Next, the z-comparator is described in detail. Finally, the Booth multiplier is described in

detail.

4.1 Background

As mentioned in Chapter 1, trends in semiconductor devices are posing significant chal-

lenges to globally clocked design: (i) distribution of a multi-GigaHertz clock across large

dies, (ii) handling of multiple timing domains (e.g. GPUs typically have multiple clocking

domains: 2D engine clock, 3D engine clock, and memory clock), (iii) overcoming worst-case

performance, (iv) limiting wasteful clock power dissipation (e.g. a modern CPU will waste

almost half of its power budget just driving the clock ??), and (v) interfacing with arbitrary

environments.

clock

(a) A synchronous system, featuring central-
ized control

handshaking
interface

(b) An asynchronous system, with distributed control

Figure 4.1: Synchronous and asynchronous systems (figure adapted from (Singh, 2001)).

As a result of these problems, an alternative approach—asynchronous or “clockless”

design—is becoming an increasingly attractive (Berkel et al., 1999). As shown in Figure 4.1,

instead of using a global clock, an asynchronous system uses handshaking between interacting

components to achieve local synchronization.

Since asynchronous design eliminates the wasteful clock power and limits circuit activity
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to when and where necessary, it has potential significant energy and performance benefits.

Performance benefits result because typical asynchronous components are capable of exploit-

ing the data-dependency of completion times (Nowick et al., 1997; Rotem et al., 1999). The

designs presented in this chapter use asynchronous logic to increase energy-efficeincy and

performance. The next few sections present background information on asynchronous logic

(adapted from (Singh, 2001)).

4.1.1 Advantages of Asynchronous Design

Asynchronous design offers several potential advantages:

• Higher performance. Unlike synchronous systems, which are constrained to worst-case

operation, asynchronous systems can potentially obtain average-case performance by

taking advantage of data-dependent completion times (Nowick, 1996; Nowick et al.,

1997; Rotem et al., 1999; Benes et al., 1998).

• Lower power. Asynchronous circuits can provide dramatic reduction in power consump-

tion due to two factors: (i) elimination of clock power dissipation, and (ii) exhibiting

switching activity only “on demand.” Well-designed asynchronous components will

only exhibit switching when new data arrives. This is provides the savings of clock

gating (Gowan et al., 1998; Tiwari et al., 1998) at the gate level automatically.

• Greater modularity and design reusability. The lack of a global timing constraints

potentially makes asynchronous designs more modular and flexible. This allows design

reuse, since well-designed asynchronous components with standardized interfaces can

easily be connected together (Berkel et al., 1999). This makes asynchronous logic an

attractive methodology for implementing designs that easily need to be retargeted to

multiple market segments, such as GPUs.

4.1.2 Asynchronous Design Background

The two most basic decisions that must be made when designing an asynchronous systems

are determining the type of handshaking, or control signaling, to use, and the type of data
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Request

Acknowledge

start
event

event
done

get ready for
next event

ready for
next event

start
next event

(a) A four-phase handshake scheme

Request

Acknowledge

start
event

event
done

start
next event

next event
done

(b) A two-phase handshake scheme

Figure 4.2: Examples of handshake schemes

encoding, or data representation, to use.

4.1.2.1 Control Signaling

Two of the commonly-used handshake protocols include four-phase and two-phase. I describe

only the four-phase protocol in detail since that is the signaling protocol used in the work

described later in the chapter.

Four-Phase Handshaking. A four-phase handshake scheme uses four events per hand-

shake, as shown in Figure 4.2(a) (Seitz, 1980; Birtwistle and Davis, 1995). Normally, only

the first two of these events actually communicate useful information: a request and an ac-

knowledge; the last two events only serve to return the signals back to their deactivated state

(“return to zero”).
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bit 1

request

bit n

bit 1

bit m

donematched
delay

Figure 4.3: A bundled data function block

4.1.2.2 Data Representation

In asynchronous systems, numerous techniques have been proposed to encode data in order

to communicate two vital pieces of information: The first is the validity of the data and the

second is the actual data itself. Two of the most commonly used schemes are single-rail, or

bundled data, and dual-rail data encoding schemes (Davis and Nowick, 1995).

Bundled Data. Bundled data encoding uses one wire for each bit of the datapath, and an

additional wire to indicate validity of data, which is often used as a signal indicating arrival

of new data and is often term a “request”. To insure correct operation, the request must

arrive after the data is valid. This constraint can often be met by adding an inline matched

delay that is designed to delay the request signal until the data is valid and stable.

Dual-Rail Encoding. An alternative technique, dual-rail encoding, uses two wires for every

data bit. The additional encoding cost allows the data validity and data to be represented

together in a unified way (Williams, 1992; Davis and Nowick, 1995), as shown in Figure 4.4(a).

Since each data value is represented by two wires, each bit can take on four values. The

combinations 01 and 10 are used to communicate “1” and “0” values respectively for the data

bit. The value 00 is used to represent invalid data, and is sometimes referred to as a “bubble”

or “spacer”. The final combination 11 is not used and is not an allowed state. In order to

detect whether the dual-rail data is valid or not, completion detectors are often used.
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bit 1 bit 1

bit n bit m
(a) A dual-rail function block

Dual-rail
code Meaning
00 Data not available (reset spacer)
01 Valid 1
10 Valid 0
11 unused

(b) Dual-rail codes and their meaning

C Done

bit1

bit2

bitn OR

OR

OR

(c) A dual-rail completion detector using OR-gates and a Müller
C-element

Figure 4.4: A dual-rail data encoding scheme

4.1.2.3 Completion Detection

Figure 4.4(c) shows a completion detector for a four-phase dual-rail datapath. The individual

data bit validity, or non-validity, is checked by OR’ing their two rails together. This gener-

ates a vector of values defining which bits are valid. The vector is then fed into a Müller

C-element (Sutherland, 1989), which generates the data validity signal. A C-element is a

standard asynchronous state-holding element that asserts its output when all its inputs are

high — all data bits valid — and asserts a low value when all its inputs are low — all data bits

invalid. If the inputs are not all equal, the C-element maintains its state. (Upon initialization,

the C-element is typically reset low.)
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4.1.3 Dynamic Logic

Traditional datapaths are often designed using static CMOS gates, where each gate is com-

posed of complementary pull-up and pull-down networks (Weste and Eshraghian, 1993). Since

this requires two complementary sets of gates, a relatively large amount of chip area is used.

Additionally, due to the device physics involved, e.g., hole motility, the pMOS transistors used

in the pull-up tend to be fairly large and slow devices. An alternative logic style that elimi-

nates the need for the pMOS pull-up networks is called dynamic, or precharge, logic (Weste

and Eshraghian, 1993). Unlike static gates with pull-up networks that are controlled by

logic inputs, a dynamic gate has a single pull-up transistor driven by an external control

input. Because of its its high-performance potential, dynamic logic is being increasing used

in speed-critical portions of modern chips, e.g., arithmetic and logic units (ALU’s).

4.1.3.1 Energy Efficiency of Dynamic Logic

Dynamic logic was chosen as the circuit implementation style for our implementations because

it can potentially help reduce energy consumption in several ways. First, the lower loading

exhibited by dynamic gates can help reduce the switching capacitance. Second, and more

significantly, dynamic gates are critical to the concept of “compute-on-demand”: the gates

use an extra control input, which provides the ability to start and stop computation. As will

be shown in Section 4.2, the control of the gate’s operation can help obtain dramatic power

reduction by preventing switching activity in those parts of a system that are not needed for

a particular operation. Finally, as shown in the following subsection, with careful sequencing

of control, it is possible to pipeline a dynamic datapath without the need for storage elements

between pipeline stages, thereby eliminating wasteful energy dissipation in pipeline latches or

registers.

4.1.3.2 Structure and Implementation

Figure 4.6 shows the structure of a general dynamic gate. Much like static logic, a dynamic

gate has a pull-down network made of nMOS transistors. However, there is no pull-up net-

work; instead, there is a single pull-up transistor (“precharge device”). Typically, there is also
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n-stack

n-stack

Figure 4.5: A dual-rail AND gate in dynamic logic

an additional nMOS transistor, in series with the pull-down network (“evaluation device” or

“foot”). Both the precharge and evaluation devices are controlled by an external input, called

pc, which stands for “precharge control.” There also two inverters near the output of the

gate, one for generating the correct polarity of the output (“output inverter”), and a weaker

one that provides feedback to stabilize the output (“keeper”).

4.1.3.3 Operation

A dynamic gate has two phases of operation—precharge (or reset) and evaluation—controlled

by the pc input. The gate alternates between these phases.

Precharge occurs when pc is asserted low. A low pc switches the precharge device on,

causing the wire labeled “dynamic node” to go high. As a result, the output inverter resets

the gate output to low. The foot device ensures that the pull-down path is cut off during

precharge, to avoid the possibility of a short-circuit between the voltage supply and ground.

The evaluation phase occurs when pc is de-asserted high. A high pc disables the precharge

device, and enables the foot device; this action is called precharge release. At this point, the

pull-down network processes its inputs, and produces a value that is inverted to form the
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Figure 4.6: A dynamic logic gate (figure adapted from (Singh, 2001)).

gate output. In particular, if the input values are such that the pull-down network becomes

conducting, the dynamic node is discharged, and the gate output makes a transition from low

to high. For other input values, the output stays low. It is important to note that, once the

gate output has changed from low to high, the output stays high even if the gate inputs are

de-asserted. The output stays high because de-asserting the inputs only cuts off the pull-down

network. For the output to reset, the precharge control itself must be asserted.

4.1.4 Asynchronous Pipelining

There are several well-known approaches for asynchronous pipelined circuit implementation.

These approaches can be classified along many different dimensions, e.g., static (Suther-

land, 1989; Singh and Nowick, 2001) or dynamic logic datapaths (Williams and Horowitz,

1991; Singh and Nowick, 2000b; Singh and Nowick, 2000a); four-phase or two-phase hand-

shaking (Day and Woods, 1995); and timing-independent (robust) (Lines, 1998) or high-

performance (Sutherland and Fairbanks, 2001; Schuster et al., 2000).
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Figure 4.7: Block diagram of a PS0 pipeline

4.1.4.1 Overview

A simple asynchronous pipelining approach introduced by Williams and Horowitz (Williams

and Horowitz, 1991; Williams, 1992) referred to as PS0, where “P” stands for “precharge,”

indicating that the datapath is implemented using dynamic logic; “S” refers to its simple

control implementation; and “0” indicates the absence of explicit storage elements in the

pipeline. Storage is achieved inside the dynamic logic stages simply by appropriate sequencing

of control. The PS0 style is described first because it is arguably the simplest dynamic logic

pipeline style reported in literature.

4.1.4.2 Williams’ PS0 Pipeline Style

This section provides background on Williams’ PS0 pipeline approach.

PS0 Pipeline Structure. Figure 4.7 shows a three-stage fragment of Williams’ PS0

pipeline. Each pipeline stage is composed of a dual-rail function block and a completion

detector. The completion detectors indicate validity or absence of data at the outputs of the

associated function block.

Each function block is implemented using dynamic logic gates (Weste and Eshraghian,

1993). The precharge/evaluate control input, pc, of each stage is tied to the output of the

next stage’s completion detector. Since a precharge logic block can hold its data outputs even

when its inputs are reset, it also provides the functionality of an implicit latch. Therefore,

a PS0 stage has no explicit latch. Figure 4.5 shows how a dual-rail AND gate, for example,

would be implemented in dynamic logic; the dual-rail pair, f1 and f0, implements the AND

of the dual-rail inputs a1a0 and b1b0.
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Each completion detector verifies the completion of every computation and precharge of

its associated function block.

PS0 Pipeline Protocol. The sequencing of pipeline control is quite simple. Stage N is

precharged when stage N+1 finishes evaluation. Stage N evaluates when stage N+1 finishes

reset. (Of course, the actual evaluation will commence only after valid data inputs have also

been received from stage N−1.) This protocol ensures that consecutive data tokens are always

separated by reset tokens (or “spacers”).

The complete cycle of events for a pipeline stage is derived by observing how a single data

token flows through an initially empty pipeline. The sequence of events from one evaluation

by stage 1 to the next is: (i) Stage 1 evaluates, then (ii) stage 2 evaluates, then (iii) stage 2’s

completion detector detects completion of evaluation, and then (iv) stage 1 precharges. At

the same time, after completing step (ii), (iii) stage 3 evaluates, then (iv) stage 3’s comple-

tion detector detects completion of evaluation and initiates the precharge of stage 2, then

(v) stage 2 precharges, and finally, (vi) stage 2’s completion detector detects completion of

precharge, thereby releasing the precharge of stage 1 and enabling stage 1 to evaluate once

again. Thus, there are six events in the complete cycle for a stage from one evaluation to the

next.

PS0 Pipeline Cycle Time and Latency. The complete cycle for a pipeline stage, traced

above, consists of 3 evaluations, 2 completion detections and 1 precharge. The analytical

pipeline cycle time, TPS0, therefore is:

TPS0 = 3 · tEval + 2 · tCD + tPrech

where, tEval and tPrech are the evaluation and precharge times for each stage, and tCD is the

delay through each completion detector.

The per-stage forward latency, L, is defined as the time it takes the first data token, in

an initially empty pipeline, to travel from the output of one stage to the output of the next

stage. For PS0, the forward latency is simply the evaluation delay of a stage:

LPS0 = tEval
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(b) Details of a gate within a function block

Figure 4.8: The high-capacity (HC) pipeline style

4.1.5 Singh’s High-Capacity Style Pipeline

The implementation style used for the multiplier design is based on the high-capacity (HC)

asynchronous pipeline style (Singh and Nowick, 2000a; Singh et al., 2002). The HC style is

reviewed here; Section 4.4 will present the enhancements to HC that were carried out to meet

the design objectives of this portion of the dissertation.

4.1.5.1 Motivation

The HC style was chosen because of its area- as well as energy efficiency. In particular, the

HC datapath uses dynamic logic and is latchless, i.e., no explicit storage elements are used

between pipeline stages. Instead, the dynamic function blocks themselves provide implicit

storage capability through use of staticizers and by means of careful sequencing of control.

The absence of latches translates into significant area and energy savings. Further, unlike

some other asynchronous latchless dynamic styles (e.g., PS0 (Williams, 1991)), HC does not

require intervening “bubble” or “spacer” stages between data items, thereby keeping energy

consumption and area low.
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4.1.5.2 Overview

The key idea in the HC approach is one of decoupled control: the pull-up and pull-down of

the dynamic gates are made separately controllable, as shown in Figure 4.8(b). Therefore,

the precharge and evaluate controls can both be simultaneously de-asserted, allowing the gate

to enter a special “isolate phase”—between evaluation and precharge—in which its output is

protected from further input changes.

4.1.5.3 Structure

Figure 4.8(a) shows a block diagram of a high-capacity pipeline. Each stage consists of three

components: function block, a completion generator and a stage controller. The function

block is implemented using dynamic logic. It alternately evaluates and precharges, thereby

alternately producing data tokens and reset spacers for the next stage. The completion

generator indicates completion of the stage’s evaluation or precharge. The third component,

the stage controller, generates separate pc and eval signals which control the function block

and the completion generator. Figure 4.8(b) shows one gate of a function block in a pipeline

stage.

The bundled data scheme (Seitz, 1980; Davis and Nowick, 1995) is used to implement the

asynchronous datapath. A control signal, Req , indicates arrival of new inputs to a stage when

it is asserted; precharge of inputs is indicated when Req is de-asserted. For correct operation,

a suitable matched delay must be inserted to ensure that Req arrives after the data inputs.

The completion generator is implemented using an asymmetric C-element, aC (Furber

and Liu, 1996). The aC ’s output, Done, is set when the stage has entered its evaluate phase

(eval is high), and the previous stage has supplied valid data input (completion signal Req of

previous stage is high). Done is reset simply when the stage precharges (pc asserted low).

The stage controller produces the control signals for the function block and the completion

generator. It receives three inputs—the request from the previous stage, the delayed Done of

the current stage, and the acknowledge from the next stage—and produces the two decoupled

control signals, pc and eval .

72



4.1.5.4 Implementation

Figure 4.8(a) shows a complete implementation of the stage controller. The two outputs—pc

and eval—and an internal state variable, ok2pc, are each implemented using a single gate.

The 3-input NAND gate asserts pc when three conditions are met: the current stage has

completed evaluation, the next stage has also completed its evaluation (indicated by a high

ack), and these two stages contain the same data token (indicated by a high ok2pc). The state

variable ok2pc is implemented using an asymmetric C-element as follows: ok2pc is set when

Reqin is asserted high and Done is de-asserted low; ok2pc is reset when Reqin is de-asserted

low.

An important feature of the HC protocol is that transitions on the ok2pc signal are designed

to be off the critical path. In particular, while in Figure 4.8(a), ok2pc appears to add an extra

gate delay to the control path to pc, this is not the case: the pipeline protocol allows ok2pc

to be set in “background mode,” so that ok2pc is typically set before t gets asserted. As a

result, the critical path to pc has typically only one gate delay: from input t through the

3-input nand gate, nand3, to the output pc.

4.1.5.5 Operation

An HC pipeline stage simply cycles through three phases. After it completes its evaluate

phase, it enters its isolate phase and subsequently its precharge phase. As soon as precharge

is complete, it re-enters the evaluate phase again, completing the cycle.

The introduction of the isolate phase is the key to the new protocol. Once a stage finishes

evaluation, it immediately isolates itself from its inputs by a self-resetting operation regardless

of whether this stage is allowed to enter its precharge phase. As a result, the previous stage

can not only precharge, but even safely evaluate the next data token, since the current stage

will remain isolated. There are two benefits of this protocol: (i) higher throughput, since a

stage N can evaluate the next data item even before stage N + 1 has begun to precharge;

and (ii) higher capacity for the same reason, since adjacent pipeline stages are now capable

of simultaneously holding distinct data tokens, without requiring separation by spacers.

The ok2pc state variable is critical to disambiguating between two pipeline states: one in
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which pipeline stages N and N + 1 both contain valid data corresponding to the same data

token, and the other in which N and N + 1 contain valid data corresponding to distinct but

consecutive data items. In the former case, the protocol ensures that ok2pc will be asserted,

thereby enabling precharge of stage N. In the latter scenario, ok2pc’s value will be unset,

thereby correctly preventing precharge of stage N.

4.1.5.6 Performance

If the evaluation and precharge times for a stage are denoted by tEval and tPrech, and the delay

through the NAND and aC elements by tNAND3 and taC, respectively, then the analytical cycle

time of the pipeline is given by:

THC = tEval + tPrech + taC + tNAND3 + tINV

Also, a stage’s latency is simply its evaluation delay:

LHC = tEval

4.1.6 Power-Performance Trade-Off, and the Eτ 2 Metric

The freedom from stringent, hard-to-satisfy timing assumptions in asynchronous implemen-

tations greatly facilitates a trade-off between performance and power consumption.

In particular, an approach called voltage scaling can be used to reduce power consumption

at the expense of some loss of performance. For instance, in lower-end power-aware applica-

tions, the performance of a system can often be reduced to a desired level by lowering the

supply voltage. However, while the system throughput drops approximately linearly with

voltage—within certain voltage limits—the drop in power consumption and radiated noise is

more dramatic: they decrease as the square of the voltage.

In order to enable a fair comparison between different implementations of the same system,

a composite power-performance metric is often used (Martin et al., 2001; Martin, 2001):

Energy·delay2, often written as Eτ2. Here, E refers to the energy consumed per operation, and

τ is the execution time per operation (or the cycle time, which is inverse of the throughput).
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It is important to note that, in voltage scaling regimes, the Eτ2 metric is more appropriate

than simply the energy–delay product Eτ . The reason is that the Eτ2 metric is fairly invariant

to voltage scaling over a reasonable range of supply voltage, from about 25% below nominal

voltage to about 50% above nominal (Martin et al., 2001). In contrast, the energy–delay

product for a given implementation varies with the supply voltage, because of the quadratic

impact on energy consumed but approximately an inverse linear impact on delay.

4.2 Compute-on-Demand Paradigm

This section introduces the notion of compute-on-demand as a design principle for fast and

energy-efficient graphics hardware. The key idea is to exploit the data-dependent nature of

computation, and to obtain speed and energy improvements by optimizing the design for

the common case, instead of assuming worst-case operation. An asynchronous or “clockless”

circuit style is used to facilitate this paradigm. In particular, only those portions of compute

blocks are activated that are actually required for a particular operation, thereby saving en-

ergy. In addition, asynchronous components are typically capable of providing data-dependent

completion times, thereby potentially obtaining speed improvements.

The design of a z-comparator is presented to illustrate the general compute-on-demand

principle. By experimentation, I have determined that, on average, a typical depth compar-

ison requires examination of many fewer bits than the typical 24 to 32 bits of the z value.

For example, visibility for the complex frame in Figure 4.9 is determined by only comparing

an average of 7.3 bits. Since a typical depth comparator compares all of the bits of z, it

performs many unnecessary computations. That wastes energy, and potentially costs extra

time. In contrast, the presented novel asynchronous comparator limits energy dissipation by

only performing computation as required. To render the frame shown in Figure 4.9, the asyn-

chronous comparator would dissipate 1/4th the energy of an equivalently sized synchronous

comparator, while operating 1.67 times faster.

Arguably, only making the z-comparator fast and energy-efficient is not likely to result in

any significant improvement in the speed or energy consumption of an entire graphics chip.

However, the presented approach to designing the comparator holds promise for other parts of
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Figure 4.9: A frame from Unreal Tournament 2004. The frame requires 6,768,766 comparisons
of incoming fragments with the depth buffer. On average, only the 7.3 most significant bits
are actually needed to resolve each comparison.

the chip as well. For instance, certain arithmetic units can be constructed to take advantage

of the fact that the entire precision of a number is not always needed (Ekanayake et al., 2005).

Further, several asynchronous arithmetic blocks have been designed so as to obtain average-

case cycle times and latencies, as opposed to the worst-case operation typical of synchronous

components (Nowick et al., 1997; Rotem et al., 1999). Benefits of asynchrony have also been

demonstrated in mixed synchronous-asynchronous pipelines (Singh et al., 2002). In sum, the

comparator design is offered as an example to make the case that asynchronous circuits and

the compute-on-demand paradigm are promising for next-generation graphics hardware.

4.2.1 Previous Work

Most relevant prior work to the presented comparator is by Knittel et al. (Knittel and

Schilling, 1995), which introduces two comparator designs for use in a novel approach that

folds z-comparisons into z-buffer storage itself.

Their first design is the most similar: the comparison proceeds from the MSB towards the

LSB and, in certain cases, their design has data-dependent completion times. However, there
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are two key distinctions as well. Their design has data-dependent completion only when the

result of the z-comparison is “true” (i.e., the new z-value is less than the old z-value); for the

other cases, a “false” result is inferred after a worst-case delay. In contrast, the comparator is

able to exploit data-dependence in all cases, thereby providing a potential speed advantage.

The second difference is in the energy consumption. In particular, their design has a global

enable signal, which must be broadcast to all bitslices, whereas the presented design asserts

the enable for each bitslice only as needed, thereby conserving energy. Moreover, their design

uses alternating stages that are dominated by nMOS and pMOS transistors; the p-type stages

can represent significant capacitive loading. In contrast, the presented design uses domino

logic, which is dominated by n-type devices only, thereby providing a further energy benefit.

Their second design is a modification of the first one to increase concurrency: a 32-bit

comparator is decomposed into four 8-bit comparisons whose results are combined using

appropriate priority. As a result, speed is improved approximately four-fold, at the cost of

higher energy consumption. The comparator design could be similarly decomposed to achieve

higher speed at the cost of energy. However, the relative merits highlighted above are likely

to remain the same.

Another relevant approach is the energy-efficient comparator of Ponomarev et al. (Pono-

marev et al., 2004), proposed for use in superscalar CPUs. Somewhat analogous to the

presented “compute-on-demand” functionality, their design has a feature called “dissipate-

on-match”: their circuit consumes more energy when the operands match, and less for a

mismatch. However, while the design examines only those bits that are necessary, their de-

sign still examines all bits in parallel. Moreover, their design is dominated by pMOS pass

transistors, which imply increased loading, thereby wasting energy.

Most importantly, though, the comparator of (Ponomarev et al., 2004) has a significant

limitation: it is useful only for testing equality of two operands, not for less-than or greater-

than operations. Similarly, the comparator designs of (Wang et al., 2003) only check for

equality. As a result, these designs are not suitable for use as a z-comparator. In contrast,

the presented design provides all three comparisons (equal, greater-than or less-than).
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4.2.2 Asynchronous Comparator

This section introduces the novel comparator, which generates “less-than,” “equal-to,” or

“greater-than” for a pair of operands.

4.2.2.1 Comparator Architecture

Figure 4.10 shows the overall comparator architecture. The entire computation is bitsliced,

with a partial result at each bit position evaluated by a function block implemented using

dynamic logic. The precharge/evaluate control of each dynamic function block, labeled “eval”

in Figure 4.10 (“pc” in Figure 4.6), is generated by the bitslice to its left.

Computation proceeds from left to right, most significant bit to least significant bit. The

key idea is to have evaluation triggered in a bitslice if and only if all the bits to its left, i.e. the

more significant bits, have been inspected and found to be identical in the two operands.

Thus, this design uses the smallest leftmost prefix needed to evaluate the comparison.

An enabled bitslice compares the bits of the two operands at that position, and if they are

not equal, it generates the “greater-than” (gt) or “less-than” (lt) output. The “greater-than”

and “less-than” outputs of all the bitslices are OR’ed together using a tree of dynamic OR

gates, to provide the appropriate result. These trees are in practice quite efficient because

dynamic OR gates can typically have fan-ins as high as 6. If the comparison at a bitslice

is “equal” (eq), an evaluation request is sent to the next bitslice in the chain, which then

similarly evaluates the comparison at the next bit. If the rightmost, least-significant bit

evaluates as “equal,” then the result of the comparison is reported to be “equal.”

4.2.2.2 Comparator Operation: Compute-on-Demand

The asynchronous comparator takes advantage of the fact that the entire width of the

operands is not always needed to perform the computation. I have termed this feature

“compute-on-demand,” since each bitslice only computes if its result is required. By pre-

venting unnecessary partial-result evaluations, the asynchronous comparator limits its energy

dissipation to a minimum. In addition, the latency of the comparator is data-dependent: eas-

ier comparisons are faster. If the remainder of the graphics pipeline can exploit the shorter
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Figure 4.10: A novel “compute-on-demand” comparator

average comparator latency (compared with the worst-case latency of synchronous compara-

tors), then the design also has speed benefits.

If the operands are completely random, then on average only three bits need to be com-

pared to resolve a comparison, regardless of input width (Yun et al., 1997). This is because, as

the evaluation proceeds from left to right, the probability that another bit must be inspected

progressively falls by half.

In practice, however, the average number of bits inspected will be greater than three for

operands that are not random. In particular, when the comparator is used in the z-compare

unit, the operands will be incoming fragments whose depth values can exhibit some clustering.

The experiments on a variety of test scenes show that only 6–8 most significant bits are

needed, on average, to perform the z-comparison for 24–32 bit depth values. Figure 4.9

shows a single random frame, rendered at a resolution of 1024x768, from the game Unreal

Tournament 2004. A trace of all depth comparisons was generated using a modified version

of the Mesa (Mesa3D, 2006) graphics library. For the frame shown, 6,768,766 comparisons

were performed, and on average only the 7.3 most significant bits were needed to evaluate

the z-comparisons.

4.2.3 Experimental Results

This section presents the results of electrical simulations of the new asynchronous comparator.

To serve as the base case for comparison, a similar comparator was also designed using a

clocked approach. Both were designed using the Cadence tool suite, and simulated using
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Compute Synchronous Asynchronous Async E/ Async Eτ2/
chain delay, τ (ns) E(pJ) delay, τ (ns) E(pJ) Sync E Sync Eτ2

0 0.59 17.36 0.55 1.40 0.080 0.001
4 1.23 18.16 1.69 3.23 0.178 0.030
8 1.85 18.95 2.87 5.36 0.283 0.135
12 2.46 19.74 4.04 7.39 0.374 0.355
16 3.08 20.53 5.20 9.37 0.456 0.714
20 3.69 21.32 6.37 11.40 0.535 1.258
23 4.16 22.00 7.24 12.89 0.586 1.778

Table 4.1: 24-bit Comparator results

Spectre in a 0.18µm TSMC CMOS process, at 300K and 1.8V power supply.

For a fair comparison of the energy efficiency of the different implementations, a composite

energy–performance metric must be used. In particular, the energy consumed per operation,

multiplied by the square of the computation delay (Eτ2) is an appropriate metric for systems

in which voltage scaling can be used to trade off performance for energy savings (Martin et al.,

2001; Martin, 2001).

Simulation Results. Each comparator was simulated with several different input

values, and the computational latency and energy consumption were measured. Table 4.1

summarizes the results. The first column lists the number of bits after the MSB that were

needed to be examined in order to generate the result, i.e., the length of the shortest leftmost

prefix evaluated, excluding the MSB. The remaining columns provide the latency (τ) and

energy consumed (E) for each design, along with the ratio of E and Eτ2 for both.

The results clearly demonstrate the data-dependent nature of the comparison completion

times. The shortest comparisons are roughly similar for the two implementations: 590 ps for

synchronous and 550 ps for asynchronous. The longest comparisons take 4.16 ns and 7.24 ns,

respectively. The asynchronous comparator is slower in the worst case, since each successive

bitslice is enabled only once it is determined that further computation is required.

The advantage of the asynchronous implementation is quite clear: it truly exhibits variable

computation delays. In contrast, the designer of the synchronous implementation will be

forced to choose a clock time period that is long enough to accommodate the worst-case

delay, 4.16 ns.

Depending upon the operand distribution, the asynchronous implementation can be sig-
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Figure 4.11: Distribution of z-comparison compute chain length for the frame shown in Fig-
ure 4.9

nificantly faster than the synchronous one. In particular, several real-world example scenes

were analyzed, and I determined that the average compute chain lengths were in the range of

6–8 bits. Figure 4.11 shows the distribution of the compute chain length for the z-comparisons

from the frame shown in Figure 4.9. For this frame, the eight most significant bits provide

enough information to capture over 85% of the z-comparisons. Only rarely does the compara-

tor need to look beyond 10 bits. Assuming this distribution, the asynchronous comparator

would be able to evaluate the over 6 million comparisons 1.67 times faster (2.49 ns aver-

age latency) than the synchronous comparator (4.16 ns latency). Of course, the rest of the

synchronous graphics pipeline must be capable of exploiting this latency improvement.

The energy advantage of the asynchronous comparator is even more significant. Assuming

the distribution of data in Figure 4.11, the asynchronous comparator, on average, dissipates

only 1/4th the energy of the synchronous comparator. Interestingly, for the shortest compute

chain, the asynchronous version is over 12 times more energy-efficient than the synchronous

81



one. In the worst case, for the longest chain, the asynchronous design still dissipates 41% less

energy.

4.3 High-Capacity Counterflow Pipelines

This section introduces the High-Capcity Counterflow (HC-CF) pipelining style. As an exam-

ple of the benefits of HC-CF, an asynchronous radix-4 Booth multiplier architecture that is

especially targeted to mobile devices, with the key objectives of high energy efficiency, small

chip area, and design reusability is presented. Several emerging consumer electronic applica-

tions are likely to increasingly depend on the following capabilities: 3D graphics computation

(e.g., cell phones (Kameyama et al., 2003), handheld game consoles), digital signal processing

(e.g., portable audio players), and cryptographic processing (e.g., smartcards). In each of

these application domains, multiplication is a fundamental operation.

It is important to note the distinction between energy efficiency and power efficiency.

The former represents the energy consumed per operation (e.g., nano-Joules/op), whereas

the latter refers to energy consumed per unit time (e.g., milli-Watts). For applications where

battery lifetimes are critical, energy efficiency is the more relevant metric. On the other hand,

power efficiency is more relevant for those desktop or high-performance applications where

heat dissipation or supply current are the limiting factors.

The presented multiplier is of the iterative radix-4 Booth type, implemented using asyn-

chronous circuits. An iterative implementation was chosen, as opposed to a combinational

array type, for higher area efficiency. A Booth implementation was chosen so as to uniformly

handle signed as well as unsigned operands. However, a minor modification to the controller

can easily transform the design into a simple (i.e., non-Booth) iterative multiplier. Finally,

an asynchronous circuit style was chosen because of its high energy efficiency (Berkel et al.,

1999; Markoff, 2001; Tristram, 2001). In particular, asynchronous circuits have the advantage

of demand-driven switching activity, effectively providing the benefits of fine-grain clock gat-

ing for free. In addition, the greater robustness to timing variations allows an asynchronous

circuit to more easily exploit voltage scaling as a technique to further conserve energy.

Besides demonstrating the benifits of HC-CF, the multiplier has several interesting features:
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• Counterflow Organization: A novel multiplier organization is introduced, in which

the data bits flow in one direction, and the Booth commands are piggybacked on the

acknowledgments flowing in the opposite direction. The presented counterflow organi-

zation has significant advantages compared with the counterflow pipeline of Sproull et

al. (Sproull et al., 1994) because it eliminates the need for complex synchronization and

arbitration the latter requires between two distinct data streams. This feature allows

shorter critical paths, and therefore higher operating speed.

• Merged Arithmetic/Shifter Unit: An architectural optimization is introduced,

which merges the arithmetic operations and the shift operation into the same function

unit, thereby obtaining significant improvement in area, energy and speed.

• Overlapped Execution: The entire design is pipelined at the bit-level, which allows

overlapped execution of multiple iterations of the Booth algorithm, including across

successive multiplications. As a result, both the cycle time per Booth iteration, as well

as the overall cycle time per multiplication are significantly improved.

• Modular Design: The design is quite modular, which allows the implementation to

be scaled to arbitrary operand widths, without the need for gate resizing, and without

incurring any overhead on iteration time. In particular, Booth commands are relayed

from one stage to the next, instead of being broadcast across the entire width of the

operand, thereby allowing for a constant Booth iteration time regardless of operand

widths. Further, a sentinel -based approach is used to determine the termination con-

dition (i.e., all multiplier bits have been consumed), instead of using a counter. As a

result, the Booth controller implementation becomes independent of operand widths.

• Precision-Energy Trade-Off: Finally, the architecture can be easily modified to

allow dynamic specification of operand widths, i.e., successive operations of a given

multiplier implementation could operate upon different word lengths. This feature could

potentially facilitate a dynamic trade-off between computation precision and energy

consumption.
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4.3.1 Related Work

Several asynchronous multipliers has been reported in literature, both array as well as itera-

tive. It was shown in (Wang et al., 2001) that array multipliers not only have lower latencies,

but may also have better energy efficiency than iterative multipliers. (Bartlett and Grass,

1999) presents a novel design of a bundled-data array concurrent multiply-accumulator unit,

which reduces power consumption by eliminating unnecessary evaluation of certain partial

products (i.e., those corresponding to a zero value for the multiplier bit). By taking advan-

tage of data-dependent evaluation times, their design was able to improve average throughput

by 14% when compared to an equivalent synchronous design.

A number of iterative multipliers have been introduced recently. In (Killpack et al., 2001),

an area-efficient low-power multiplier is described for use in a hearing aid. (Kearney and

Bergmann, 1997) targets both array and iterative multiplication, and is able to show a 20%

improvement for a bundled-data self-timed multiplier compared to an equivalent synchronous

one.

Several iterative implementations increase the operating speed by processing more than

one multiplier bit per iteration. For example, (Kim, 1999) reported a 32x32-bit iterative

modified-Booth multiplier, using a new 4-phase asynchronous handshaking scheme. Their

design uses two CSA adders and two 2-bit Booth encoders to reduce the number of iterations

by half. A high-throughput iterative multiplier is presented in (Shin et al., 2001), which

produces the product in n/4 iterations; however, it takes more than twice the area of a

shift-and-add iterative multiplier.

Recently, (Efthymiou et al., 2004a) has proposed several multiplier implementations, in-

cluding both the original radix-2 Booth algorithm, as well as the radix-4 Booth algorithm.

The key novelty of their radix-2 implementation is that it is able to exploit data dependency

to speed up its operation: it skips over arbitrarily long runs of ones and zeros in the multiplier

operand, instead of performing sequential single shifts. However, due to the added complex-

ity, its iteration time is actually longer, and therefore it exhibits performance advantages only

for certain corner cases. Their radix-4 implementation does not exploit data dependency,

but still obtains fairly good operating speed: 1.2 ns cycle time per Booth iteration, in 0.18µ
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technology.

Figure 4.12: The counterflow Booth multiplier

In this section, the principal comparison of the presented multiplier will be to the radix-4

implementation of (Efthymiou et al., 2004a), and the radix-2 implementation of (Hensley

et al., 2004).

4.3.2 Multiplier Design

The following sections present the new multiplier design. Section ?? presents the overall

architecture, highlighting a novel counterflow organization. Next, Section 4.3.4 discusses the

operation of the multiplier, which performs overlapped execution of multiple Booth iterations.

Finally, Section 4.3.5 presents some of the key details of the implementation, including a novel

asynchronous pipeline handshake style which builds upon the HC style of Section 4.1.5.

4.3.3 Multiplier Architecture

4.3.3.1 Overview

Figure 4.12 shows the overall architecture of the Booth multiplier. The new multiplier has a

novel counterflow organization: the Booth commands (i.e., add, add 2x, subtract, subtract

2x, and shift) are bit-level pipelined, i.e., relayed from one bit to another. In contrast,

existing iterative organizations involve a broadcast of the command to all bits, which makes

85



those designs less scalable than mine. Another feature of the design is the folding together

of the ALU and shifter units, resulting in a simple linear pipeline with area and energy

advantages. Finally, the multiplier allows overlapped execution of multiple iterations of the

Booth algorithm, including across successive multiplications.

The design of the multiplier is now presented in detail.

4.3.3.2 Novel Counterflow Organization

The multiplier has a counterflow organization: data and commands flow in opposite direc-

tions. In particular, data bits flow from left to right in the pipeline, whereas commands

generated by the Booth controller (i.e., add, add 2x, subtract, subtract 2x, or shift) flow from

right to left. Wherever carry bits are generated, as a result of an add or subtract command,

they are embedded in, and considered part of, the command itself and relayed to the stage

on the left.

The flow of data and commands is interlocked to achieve correct operation. In particular,

a data bit flows through a processing stage (i.e., moves right from its input side to its output

side) only after that stage has received the associated Booth command. Similarly, a command

is relayed from a stage to its left neighbor only after it has interacted with valid data.

My counterflow approach allows data and command to transform each other when they

interact. In particular, when data is evaluated by a pipeline stage, the actual operation

performed on it depends not only on the functional implementation of the stage, but also

on the command received by the stage. Similarly, this approach permits a command to be

arbitrarily transformed by the data it interacts with, before it is relayed to the left neighbor.

In this particular implementation of a Booth multiplier, the command transformation applies

to the carry bits which are embedded within the command: the carry bits are replaced by

the new carry bits that are generated when the Booth command interacts with the incoming

data.

A key novelty of this architecture is that it performs overlapped execution of multiple

iterations of the Booth algorithm. In particular, each command that is inserted by the Booth

controller into the right end of the counterflow pipeline effectively performs one iteration
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of the Booth algorithm as it flows from right to left through the pipeline. However, the

bit-level pipelined architecture enables multiple commands to be simultaneously “in flight,”

thereby effectively allowing multiple iterations of the algorithm to be overlapped. For instance,

the lower significant bits of the accumulated result, near the right end of the pipeline, can

commence a subsequent Booth iteration by interacting with a later command, while the higher

significant bits are still waiting to complete earlier commands.

Comparison with Counterflow Pipeline of Sproull et al. It must be empha-

sized that the presented counterflow pipeline organization is quite different from another

counterflow organization proposed by Sproull et al. (Sproull et al., 1994). In particular, the

architecture in (Sproull et al., 1994) uses two distinct pipelines to carry two different data

streams in opposite directions, and introduces interlocks to allow the two streams to inter-

act. A drawback of their approach is that arbiters are required between the two pipelines

to ensure that corresponding data packets in the two streams do not “skip past” each other,

leading to significant implementation complexity and also non-determinism in the system’s

operation. In contrast, my approach simply “piggybacks” commands on top of the acknowl-

edge signals already required for asynchronous handshaking, and thereby does not suffer from

these drawbacks.

4.3.3.3 Architectural Optimization: Folding Arithmetic Unit into Shifter

An architectural optimization was used to obtain significant improvement in area, speed, as

well as power consumption: the arithmetic operations (i.e., add and subtract) and the shift

operation were merged into the same function unit.

Figure 4.13 shows the block diagram of a folded ALU/shift stage. Each such stage has

three input sources and two output destinations. The first input stream, representing the

current accumulated result at that bit position (labeled Z), enters the block from the left.

The second input is applied to the top of the stage, and represents the corresponding constant

multiplicand bit (labeled B). The third stream represents the Booth commands, along with

embedded input carry bits (labeled Cin), and is accepted from the right. As a result of the
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command, the stage generates the new accumulated bit, and communicates it to the right,

effectively causing a shift operation as well. The stage also produces a second output, which

consists of the Booth command that was just executed, along with the new value of the carry

bit (labeled Cout); this second result is communicated to the left.

The operation of the new ALU/shift stage is quite simple. Whenever it receives a Booth

command from its right neighbor, and data from its left neighbor, it performs the command

on the data, and transfers the result to its right neighbor. Thus, every command effectively

causes a shift operation as well. If the command processed was a shift command, then the

data is simply passed along unmodified; otherwise, for add and subtract commands, the

multiplicand (B) and input carry (Cin) bits are combined with the data (Z) bit to generate

the results.

The folding in of the ALU into the shifter has several advantages: (i) lower area, because

no explicit shifter unit is required; (ii) faster operation, because the results of an arithmetic

operation are immediately available for a subsequent arithmetic operation (in the next stage),

thereby allowing shorter iteration times; and (iii) better energy efficiency because overall there

is less movement of data, and hence fewer transistors are switched.

Figure 4.13: The merged arithmetic/shift unit
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4.3.3.4 Command Representation

The commands that are generated by the Booth controller are represented using a 1-of-6 (i.e.,

one-hot) encoding that is delay-insensitive. The six representable commands are initialize,

add, add 2x, subtract, subtract 2x, and shift. Besides being delay-insensitive, the encoding has

two advantages: (i) no decoding circuitry required, and (ii) good energy efficiency, because

each command causes switching activity on only one wire.

When a command reaches the left half of the multiplier pipeline (i.e., the rightmost

ALU/shift stage), the 1-of-6 encoding for the command is augmented by a 1-of-2 code to

allow a carry bit to be also carried within the command (see Figure 4.13), making each

command a 8-bit value (labeled “Meta-command” in the figure).

4.3.3.5 Data Representation

Each data bit is also represented using a 1-of-n encoding. In the left half of the pipeline, a

1-of-2 (or “dual-rail”) encoding is used: one wire represents the logic “1” value, another wire

represents the logic “0” value. In the right half of the pipeline, however, a 1-of-3 encoding is

necessary because an additional value must be represented: a sentinel value, which encodes

a terminating condition. When a stage contains the sentinel, stages to the right hold the

remaining bits of the multiplier. Once the sentinel reaches the controller, the controller

senses the terminating condition, and stops issuing further Booth commands. Subsequently,

once the results of the multiplication have been consumed, the multiplier is ready to process

its next set of operands.

There are two significant benefits of using a sentinel-based encoding: (i) the design of

the Booth controller is greatly simplified, i.e., no counter is required, and (ii) the length of

the multiplier can be dynamically specified by providing the sentinel in the appropriate bit

position. While the current implementation uses a fixed position for the sentinel, Section ??

outlines how the implementation can be easily modifed to provide the ability to dynamically

specify the length of both the multiplicand and the multiplier, independent of each other.

This approach can potentially facilitate a dynamic trade-off between energy consumption

and the precision of computation.
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(a) Block diagram

(b) Detailed view

(c) Stage controller

Figure 4.14: Pipeline Handshake Controller
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4.3.4 Operation

Computation proceeds in three phases: initialization, execution, and termination.

4.3.4.1 Initialization

The controller starts computation by issuing the initialize command. This command effec-

tively copies the multiplier operand into the right half of the multiplier pipeline (see Fig-

ure 4.12). In particular, when a stage in the right half of the pipeline (i.e., a load/shift stage)

receives the initialize command, it loads the multiplier value at that bit position from the A

input on its top, and passes the same command to its left neighbor.

When the initialize command reaches the sentinel stage, it causes that stage’s output to

get initialized to the sentinel value. This value marks the position immediately to the left of

the most significant bit of the multiplier, and represents a termination flag that the Booth

controller can sense.

Finally, as the initialize command reaches each ALU/shift stage, it causes both the sum

and the carry output of the stage to be initialized to the logic “0” value, effectively clearing

the contents of the accumulator so that computation may begin.

Actually, the initialize command serves another purpose which was omitted from the dis-

cussion here: to indicate completion of the previous computation. This function is explained

later in Section 4.3.4.4, when initialization for the next round of computation is discussed.

4.3.4.2 Execution

After the initialization, the controller generates successive Booth commands: add, add 2x,

subtract, subtract 2x, or shift. Each command corresponds to one iteration of the Booth

algorithm. Since the operations are pipelined, multiple commands could be flowing through

the pipeline, effectively causing multiple iterations of the Booth algorithm to be executed

concurrently.

The load/shift stages in the right half of the multiplier pipeline interpret each of these

commands as a shift command, and cause their contents to shift one position to the right.

When the command reaches an ALU/shift stage, that stage performs an arithmetic oper-
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ation if specified, and a shift operation. The stage also generates a carry out that is bundled

with the Booth command and relayed to its left neighbor.

4.3.4.3 Termination

When the sentinel reaches the Booth controller, the computation terminates, and the con-

troller stops issuing further commands. The controller’s internal state and history bit are

cleared, and it prepares for the next set of operands. Strictly, though, at this point, there

can be some commands that are still flowing throwing the pipeline. The initialization phase

of the next iteration is used to handle this situation, as described below.

4.3.4.4 Initialization (next round of computation)

Upon termination, the Booth controller re-initializes the multiplier by generating a new ini-

tialize command. In addition to what was described above in Section 4.3.4.1, the initialize

command also serves the purpose of ensuring that all prior Booth commands that are still

flowing through the pipeline are correctly completed before the multiplication result is read.

In particular, when the initialize command reaches any pipeline stage, it causes that stage

to copy the output of its left neighbor onto its P output, which represents the final product

value for that radix-4 digit position, in dual-rail form (see Figure 4.12). Taken together,

P2n−1 · · ·P0 represents the result of the multiplication, where n is the number of radix-4

digits in the operands (i.e., 2n-bit operands). Even though the lower significant product bits

are produced earlier than the higher significant ones, the dual-rail encoding of Pi ensures

that the completion of the computation and validity of the result are correctly and robustly

indicated.

4.3.4.5 Overlapped Execution of Consecutive Computations

Just as successive iterations of the same computation are executed in an overlapped fashion,

the implementation allows an overlap between the last (or last few) iterations of one com-

putation, with the first (or first few) iterations of the next computation. In particular, the

Booth controller immediately commences issuing new Booth commands for the next round
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of computation, even though one or more commands for the previous computation may still

be flowing leftward through the pipeline.

This ability to overlap successive computations is quite advantageous, resulting in signif-

icantly reduced latency for the multiplier. The results of the experiments indicate that the

benefit is around a 60% reduction in latency.

4.3.5 Implementation

4.3.5.1 Pipeline Handshake Circuits

The pipeline handshake circuits used in the multiplier implementation are based closely on

the HC style of (Singh and Nowick, 2000a) (see Section 4.1.5), but include a significant en-

hancement to enable bi-directional communication, which in turn is critical to enabling the

counterflow organization.

Figure 4.14(a) shows the top-level view of the new pipeline stage. Compared with Fig-

ure ??, the new stage has an extra input and an extra output: it receives Commandin from

its right neighbor, along with Ackin, and similarly produces Commandout for its left neighbor,

along with Ackout.

Figure 4.18(a) shows the internal organization of a generic stage of the new pipeline. There

is a key difference with respect to the HC pipeline of Section 4.1.5: a buffer must be added to

store the incoming command, because the command arrives at the start of a precharge phase,

but it will be needed in a subsequent evaluation. During that evaluation, the command is

combined with the input data to not only produce output data, but also to generate a new

command for the left neighbor.

As an optimization, some preprocessing of the command is performed when it is stored

in the command buffer: e.g., since operand B is always available even if A has not yet been

received from the left neighbor, the command could actually be combined with B to produce

an intermediate result. As a result, the main function block, labeled “Data Function,” only

needs to combine the intermediate result with operand A, resulting is reduced complexity for

the function block. This optimization has the benefit of speeding up the critical forward path

through the pipeline; the command buffering and preprocessing is off of the critical path.
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Finally, Figure 4.18(b) shows the actual modification made to the HC handshake cir-

cuit. The new handshake circuit produces two additional outputs—command precharge and

command evaluate—which serve as the control signals for the command buffer. The figure

highlights the additional gates needed to generate the new signals. The function block’s

precharge signal triggers the evaluation of the command buffer, causing the incoming com-

mand to be stored. The command buffer is subsequently precharged only after the command

is “consumed” by the function block upon its next evaluation. The new inverter and NAND

gate directly implement this functionality.

Figure 4.15: Booth Controller

History bit
LSB1 LSB0 0 1

0 0 shift add
0 1 add add 2x
1 0 subtract 2x subtract
1 1 subtract shift
- sentinel init init

Figure 4.16: Booth commands

4.3.5.2 Booth Controller

Figure 4.15 shows the block diagram of the Booth controller. The history buffer stores a copy

of the most recently examined multiplier bit. This history bit is communicated to the Booth

encoder stage as a command. The Booth encoder processes this history bit along with the

two new least significant multiplier bits—LSB1 and LSB0—and generates the appropriate
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Booth command, as summarized in the truth table of Figure 4.16. This truth table is directly

implemented using a dynamic logic function block.

4.3.6 Spice Simulation Results

The performance of the multiplier has been quantified through Spice simulations in a 0.18µm

TSMC process, at 1.8V nominal supply voltage. The design takes 640–650ps per Booth itera-

tion, regardless of the operand widths, thereby demonstrating the scalability of the presented

approach. The overall computation time varies linearly with the width of the operand: e.g.,

about 2.6 ns for 8-bit operands, and approximately 10.4ns for 32-bit operands. The energy

consumed per multiplication varies as approximately square of the operand width, as ex-

pected: 0.11nJ for 8-bit and 1.42nJ for 32-bit multiplications. Finally, simulations performed

at reduced supply voltages of 1.5V and 1.0V demonstrated that the multiplier operates cor-

rectly at lower voltages, and is able to trade off some performance for even higher energy

efficiency.

Compared with several asynchronous Booth multiplier designs reported recently (Efthymiou

et al., 2004b), this iteration time represents a nearly two-fold (1.95x) increase in throughput

over the fastest radix-4 Booth multiplier reported in (Efthymiou et al., 2004b). Although

the multiplier consumes more energy per multiplication than the one in (Efthymiou et al.,

2004b), it actually has a superior energy-delay2 (Eτ2) product: 9.65 nJ · (ns)2 compared

with 14.8 nJ · (ns)2. Experimental results indicate that the new multiplier outperforms the

design of (Hensley et al., 2004): 3.3x higher throughput is obtained in the new design while

consuming 2.2x lower energy consumption.

4.3.7 Dynamic Precision-Energy Trade-Off

This section outlines an approach to achieving a dynamic trade-off between computation

precision and energy consumption in the multiplier architecture. Only a brief sketch of this

idea is provided here; experimental validation is part of ongoing work.

Figure 4.17 shows the overall architecture proposed for handling variable width operands.

There are several key differences between this picture and Figure 4.12.
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First, the variable-precision architecture employs full ALU/shift units in each multiplier

stage. In contrast, in Figure 4.12, the right half of the multiplier only had simpler shift units,

with no ALU capability. This modification is required because the right half of the multiplier

pipeline could now be involved in ALU computations for short operands.

Second, two sentinels are now needed: one to demarcate the MSB-end of the multiplier,

and another to indicate the MSB-end of the multiplicand. The two operands are now supplied

packed together as a single word.

Third, the function blocks in the ALU stages, which generate/relay the command for

their left neighbor need a slight modification. In particular, when an add or subtract Booth

command enters the multiplier from the right end, it is initially regarded by all the ALU

units it traverses as simply a shift command. However, as the Booth command passes the

first sentinel, its interpretation is changed to that of the actual add or subtract operation. As

a result, the subsequent ALU stages it traverses while flowing leftward regard it as an actual

ALU operation. Finally, when the command reaches the second sentinel, the ALU stage acts

simply as an arithmetic right-shift unit, and the command is not relayed to any of the stages

to the left.

Figure 4.17: The variable-precision Booth multiplier architecture

The final difference is that the product also contains a sentinel to indicate its MSB-end.
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With these modifications, the multiplier architecture is capable of handling dynamically-

varying operand widths, thereby giving a powerful architectural tool to allow the system to

dynamically trade computation precision for energy efficiency.

4.4 Dual-Rail High-Capacity Counter-flow Pipelines

A relatively simple modification allows HC-CF become more delay insensitive by using dual-

rail signaling. Figure 4.18(a) shows the internal organization of a generic stage of the new

pipeline. There are two key differences with respect to the HC pipeline. First, completion

information is no longer generated using a matched delay. Instead, a robust delay-insensitive

completion generator is used. Since the datapath is encoded using a 1-of-n code, completion

is easily detected: when all rails of a bit a are reset, precharge is indicated; when exactly

one rail is set, completion of evaluation is indicated. The second modification is the addition

of a buffer to store the incoming command, because the command arrives at the start of a

precharge phase, but it will be needed in a subsequent evaluation. During that evaluation,

the command is combined with the input data to not only produce output data, but also to

generate a new command for the left neighbor.

Finally, Figure 4.18(b) shows the actual modification made to the HC handshake cir-

cuit. The new handshake circuit produces two additional outputs—command precharge and

command evaluate—which serve as the control signals for the command buffer. The figure

highlights the additional gates needed to generate the new signals. The function block’s

precharge signal triggers the evaluation of the command buffer, causing the incoming com-

mand to be stored. The command buffer is subsequently precharged only after the command

is “consumed” by the function block upon its next evaluation. The new inverter and NAND

gate directly implement this functionality, as before.
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(a) Detailed view

(b) Stage controller

Figure 4.18: Pipeline Handshake Controller
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CHAPTER 5

Summary and Conclusion

The continuing exponential increase in graphics processor performance is attributable to

developments along three distinct yet non-orthogonal axes. In the following sections, I discuss

in detail the dissertation contributions and future work for each axis.

5.1 Algorithmic Axis

Algorithmic changes are often initially implemented at the application level, and typically use

the current capabilities of the hardware.

At the algorithmic level, I discussed several techniques that are capable of improving the

visual quality of images rendered on current commodity GPUs without requiring modifications

to the underlying hardware or architecture. In particular, I described a method to generate

summed-area tables rapidly using graphics hardware, improvements to summed-area tables,

and several rendering techniques that take advantage of summed-area tables to increase the

quality of imagery rendered in real-time.

5.1.0.1 Contribution

In this dissertation, I presented research contributions for improving the efficiency and perfor-

mance of graphics processors along the algorithmic axis. My specific research contributions

include:

• Efficient construction of summed-area tables: I developed a method to rapidly

generate summed-area tables using graphics hardware, which is efficient enough to allow

multiple tables to be generated every frame and used for a multitude of rendering effects



while maintaining interactive frame rates. Several novel applications of using summed-

area tables in interactive graphics are presented, such as the real-time rendering of

interactive glossy reflections.

• Offset summed-area tables: I developed a technique that alleviates the precision

requirements needed in the construction and use of summed-area tables by offsetting

the input image data by a constant value. This method improves precision in two ways:

(i) there is a 1-bit gain in precision because the sign bit now becomes useful, and (ii)

the summed-area function becomes non-monotonic, and therefore the maximum value

reached has a relatively lower magnitude.

• Fast image based lighting using summed area tables: Finally, I present a method

to rapidly generate higher-order summed-area tables — e.g., a summed-area table of a

summed-area table — that is efficient enough to allow multiple tables to be generated

every frame while maintaining interactive/ frame rates. These higher order summed-

area tables are then used to approximate reflections of high-dynamic range environments

maps onto a surface exhibiting a Phong BRDF.

5.1.0.2 Future Work

For future work along the algorithmic axis, I would like to quantify how closely a set of

summed box and Bartlett filters can approximate an arbitrary BRDF, and develop a set of

criteria to generate the filter stack that best represents a given BRDF. While the techniques

presented in this dissertation substantially reduce the precision requirements of summed-area

tables, work is needed on techniques to reduce them even further. Future work in this area

involves reducing the precision requirements of offset summed-area tables by extending the

offsets to non-constant values, and taking advantage of better branching support in future

shader architectures to reduce the need to sample both the front and back dual-paraboloid

maps for all fragments.
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5.2 Architectural Axis

That said, there are situation where the new algorithms will lend themselves to easy im-

plementation in hardware. For example various environment mapping techniques initially

required the application developer to handle texture coordinate generation, whereas modern

GPUs are able to automatically transform normal and reflection directions into texture co-

ordinates. At the architectural level, changes introducing new functionality should be made

without reducing the performance of legacy applications, an important property for devices

intended for established commodity markets.

I described a novel streaming ray tracer algorithm that uses a conditional output stream

and that lowers memory bandwidth and increases processor utilization when compared to

current GPU based techniques. While enabling conditional output streams would require

minor changes to the architecture of current GPUs, the benefits would far out weigh the costs.

This leverages current graphics hardware and is an alternative to developing a completely

separate architecture suitable only for ray tracing.

5.2.0.3 Contribution

In this dissertation I presented research that has produced contributions for improving the

efficiency and performance of graphics processors along the architectural axis. In particular,

my specific research contributions include:

• Novel ray tracing algorithm: I described a novel streaming ray casting algorithm.

The algorithm uses conditional output streams to reduce memory bandwidth and when

compared to previous methods increases processor utilization. The algorithm reduces

memory bandwidth by over forty times when compared to the most efficient method

presented so far. My proposed technique could be used to implement hybrid rendering

algorithms that use standard z-buffering techniques to compute primary visibility, and

then use ray tracing to generate geometrically correct reflections and shadows.
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5.2.0.4 Future Work

I would like to further develop algorithms that can take advantage of conditional output

streams. For example, in an all-GPU particle system algorithm particles could be efficiently

removed from the simulation. Further, I plan to develop a streaming k-nearest neighbor

search algorithm that takes advantage of conditional streams.

5.3 Circuit-Level Axis

It is possible to make dramatic changes at the circuit-level without modifying the GPU’s

architecture or the application programmer interface. For example, modern hardware has

moved from using standard-cell implementations to customs ASICs without requiring changes

to the underlying architecture.

At the circuit level, I developed a methodology that extends the high capacity asyn-

chronous pipelining style with a novel implementation of the counterflow organization. Ad-

ditionally, I described the compute-on-demand paradigm for arithmetic circuits, and how

asynchronous logic could be leveraged to improve the performance and energy efficiency of

commodity graphics processors.

5.3.0.5 Contribution

I developed techniques that have produced contributions for improving the efficiency and

performance of graphics processors along the circuit-level axis. In particular, my research

contributions include:

• Novel conterflow implementation: I developed a counterflow organization that

eliminates the complex synchronization and arbitration between the two distinct data

streams required by the traditional method. My technique allows for shorter criti-

cal paths, and, therefore higher operating speed. As an example of my counterflow

methodology, I describe a novel multiplier organization, in which the data bits flow

in one direction, and the Booth commands are piggybacked on the acknowledgments

floating in the opposite direction.

102



• Compute-on-demand paradigm: I described the notion of compute-on-demand as

a design principle for fast and energy-efficient graphics hardware. The key idea is to

exploit the data-dependent nature of computation, and to obtain speed and energy

consumption improvements by optimizing the design for the common case, instead of

assuming worst-case operation. An asynchronous or clockless circuit style is used to fa-

cilitate this paradigm. In particular, only those portions of compute blocks are activated

that are actually required for a particular operation, thereby saving energy.

5.3.0.6 Future Work

I presented a compute-on-demand paradigm, which is the key to the low power and high

performance of the presented asynchronous logic comparator. I believe this paradigm could

also be of benefit for other arithmetic circuits used in the graphics pipeline, such as variable-

precision ALUs, and interpolators. Additionally, the counterflow pipeline implementation

holds promise for hardware besides GPUs, and for reducing energy wasted in speculative

execution. Furthermore, I would like to explore on-the-fly variable precision arithmetic to

further reduce the energy consumption of mobile graphics cores.
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den.

Kautz, J., Vazquez, P.-P., Heidrich, W., and Seidel, H.-P. (2000). A unified approach to
prefiltered environment maps. In Eurographics Workshop on Rendering.

106



Kearney, D. and Bergmann, N. W. (1997). Bundled data asynchronous multipliers with data
dependant computation times. In Proc. Int. Symp. on Advanced Research in Asyn-
chronous Circuits and Systems, pages 186–197. IEEE Computer Society Press.

Killpack, K., Mercer, E., and Meyers, C. (2001). A standard-cell self-timed multiplier for
energy and area critical synchronous systems. ARVLSI 2001.

Kim, H. (1999). Relative timing based verification of timed circuits and systems. In Proc.
Int. Workshop on Logic Synthesis.

Knittel, G. and Schilling, A. (1995). Eliminating the z-buffer bottleneck. In EDTC ’95:
Proceedings of the 1995 European conference on Design and Test, page 12, Washington,
DC, USA. IEEE Computer Society.

Lines, A. M. (June 1995, revised 1998). Pipelined asynchronous circuits. Master’s thesis,
California Institute of Technology.

Markoff, J. (2001). Computing pioneer challenges the clock. In The New York Times (Tech-
nology Section). http://www.nytimes.com/2001/03/05/technology/05IVAN.html.

Martin, A., Nystroem, M., and Penzes, P. (2001). Power-Aware Computing, chapter ET2: A
Metric For Time and Energy Efficiency of Computation. Kluwer Academic Publishers.
http://caltechcstr.library.caltech.edu/archive/00000308.

Martin, A. J. (2001). Towards an energy complexity of computation. Information Processing
Letters, 77:181–187.

Mesa3D (2006). Mesa3d graphics library. http://mesa3d.org.

Nowick, S. M. (1996). Design of a low-latency asynchronous adder using speculative comple-
tion. IEE Proceedings, Computers and Digital Techniques, 143(5):301–307.

Nowick, S. M., Yun, K. Y., and Beerel, P. A. (1997). Speculative completion for the design of
high-performance asynchronous dynamic adders. In Proc. Int. Symp. on Advanced Re-
search in Asynchronous Circuits and Systems, pages 210–223. IEEE Computer Society
Press.

Pharr, M. (2004). Ambient occlusion. Game Developers Conference.

Pharr, M. and Humphreys, G. (2004). Physically Based Rendering. Morgan Kaufmann.

Ponomarev, D., Kucuk, G., Ergin, O., and Ghose, K. (2004). Energy efficient comparators
for superscalar datapaths. IEEE Transactions on Computers, 53(7):892–904.

Popa, T. S. (2004). Compiling data dependent control flow on simd gpus. Master’s thesis,
University of Waterloo.

Purcell, T. J., Buck, I., Mark, W. R., and Hanrahan, P. (2002). Ray tracing on programmable
graphics hardware. In SIGGRAPH ’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages 703–712, New York, NY, USA.
ACM Press.

107



Rotem, S., Stevens, K., Ginosar, R., Beerel, P., Myers, C., Yun, K., Kol, R., Dike, C.,
Roncken, M., and Agapiev, B. (1999). RAPPID: An asynchronous instruction length
decoder. In Proc. Int. Symp. on Advanced Research in Asynchronous Circuits and
Systems, pages 60–70.

Schuster, S., Reohr, W., Cook, P., Heidel, D., Immediato, M., and Jenkins, K. (2000). Asyn-
chronous interlocked pipelined CMOS circuits operating at 3.3-4.5 GHz. In Int. Solid
State Circuits Conf.

Seitz, C. L. (1980). System timing. In Mead, C. A. and Conway, L. A., editors, Introduction
to VLSI Systems, chapter 7. Addison-Wesley.

Shin, M.-C., Kang, S.-H., and Park, I.-C. (2001). An area-efficient iterative modified-booth
multiplier based on self-timed clocking. ICCD 2001, pages 511 – 512.

Singh, M. (2001). The Design of High-Throughput Asynchronous Pipelines. PhD thesis,
Columbia University.

Singh, M. and Nowick, S. M. (2000a). Fine-grain pipelined asynchronous adders for high-
speed DSP applications. In Proceedings of the IEEE Computer Society Workshop on
VLSI, pages 111–118. IEEE Computer Society Press.

Singh, M. and Nowick, S. M. (2000b). High-throughput asynchronous pipelines for fine-
grain dynamic datapaths. In Proc. Int. Symp. on Advanced Research in Asynchronous
Circuits and Systems, pages 198–209. IEEE Computer Society Press.

Singh, M. and Nowick, S. M. (2001). MOUSETRAP: ultra-high-speed transition-signaling
asynchronous pipelines. In Proc. Int. Conf. Computer Design (ICCD), Austin, TX.

Singh, M., Tierno, J. A., Rylyakov, A., Rylov, S., and Nowick, S. M. (2002). An adaptively-
pipelined mixed synchronous-asynchronous digital FIR filter chip operating at 1.3 Gi-
gaHertz. In ASYNC, Manchester, UK. IEEE Computer Society Press.

Sproull, R. F., Sutherland, I. E., and Molnar, C. E. (1994). The counterflow pipeline processor
architecture. IEEE Design & Test of Computers, 11(3):48–59.

Sutherland, I. and Fairbanks, S. (2001). GasP: A minimal FIFO control. In Proc. Int.
Symp. on Advanced Research in Asynchronous Circuits and Systems, pages 46–53. IEEE
Computer Society Press.

Sutherland, I. E. (1989). Micropipelines. Communications of the ACM, 32(6):720–738.

Tiwari, V., Singh, D., Rajgopal, S., Mehta, G., Patel, R., and Baez, F. (1998). Reducing
power in high-performance microprocessors. In Proc. ACM/IEEE Design Automation
Conf., pages 732–737.

Tristram, C. (2001). It’s time for clockless chips. Technology Review Magazine, 104(8):36–41.
http://www.technologyreview.com/magazine/oct01/tristram2.asp.

Viola, P. and Jones, M. (2001). Robust real-time object detection. In International Workshop
in Statistical and Computation Theories of Vision-Modeling, Learning, Computing, and
Sampling.

108



Wald, I., Slusallek, P., Benthin, C., and Wagner, M. (2001). Interactive rendering with
coherent ray tracing. In Chalmers, A. and Rhyne, T.-M., editors, Eurographics (EG),
volume 20(3), pages 153–164. Blackwell Publishing.

Wang, C.-C., Lee, P.-M., Wu, C.-F., and Wu, H.-L. (2003). High fan-in dynamic cmos
comparators with low transistor count. IEEE Transactions on Circuits and Systems I:
Fundamental Theory and Applications.

Wang, Y., Jiang, Y., and Sha, E. (2001). On area-efficient low power array multipliers. ICECS
2001, pages 1429 – 1432.

Weste, N. and Eshraghian, K. (1993). Priniciples of CMOS VLSI Design, a Systems Per-
spective. Addison-Wesley Publishing Co., second edition.

Williams, L. (1983). Pyramidal parametrics. In SIGGRAPH ’83: Proceedings of the 10th
annual conference on Computer graphics and interactive techniques, pages 1–11, ACM
Press.

Williams, T. E. (1991). Self-Timed Rings and their Application to Division. PhD thesis,
Stanford University.

Williams, T. E. (1992). Analyzing and improving the latency and throughput performance
of self-timed pipelines and rings. In Proc. Int. Symp. on Circuits and Systems.

Williams, T. E. and Horowitz, M. A. (1991). A zero-overhead self-timed 160ns 54b CMOS
divider. IEEE Journal of Solid-State Circuits, 26(11):1651–1661.

Yang, R. and Pollefeys, M. (2003). Multi-resolution real-time stereo on commodity graphics
hardware.

Yun, K. Y., Beerel, P. A., Vakilotojar, V., Dooply, A. E., and Arceo, J. (1997). The design
and verification of a high-performance low-control-overhead asynchronous differential
equation solver. In Proc. Int. Symp. on Advanced Research in Asynchronous Circuits
and Systems, pages 140–153. IEEE Computer Society Press.

109


