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ABSTRACT 
 

William D. Green: Obesity induces metabolic alterations of T lymphocytes in influenza-
vaccinated adults 

 (Under the direction of Melinda Beck) 
 
 

Obesity increases the risk for infection due to impairments in T cell activation and 

function. Although the metabolic profiles of T cells dictates their function, what remains 

unknown is if obesity alters T cell metabolism, thereby impairing function. This study examined 

the metabolic profiles of T cells from healthy weight and obese white women. We demonstrated 

that obesity alters the metabolic profile of quiescent and activated peripheral blood mononuclear 

cells, and isolated CD4 and CD8 T cells. T cells from obese non-diabetic subjects exhibited 

higher rates of aerobic glycolysis and mitochondrial respiration compared to obese metformin-

treated diabetic subjects. This ability of metformin to lower T cell metabolism in obese diabetics 

to healthy weight levels, despite elevated serum glucose, suggests that metformin’s mechanism 

of action directly impacts T cells. These results suggest that perturbations in T cell metabolism 

are the mechanism for impairment of T cell function in obese adults. 
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CHAPTER I - BACKGROUND 

Introduction 

Prevalence rates of obesity have exponentially increased within the past few decades [1]. 

This dramatic rise in cases of obesity increases the risk for a variety of chronic and infectious 

diseases. Of particular note, obesity increases the risk of morbidity and mortality to influenza 

virus infection independent of other co-morbidities [2]. In any given year, roughly 3,000 to 

50,000 people die from influenza infection in the United States [3]. However, in pandemic years, 

as was the case in 2009 with the pandemic H1N1 influenza outbreak, the number of incident 

cases and resultant deaths from influenza infection greatly increases, especially in high risk 

populations like children, the elderly and the obese. 

The immune response to infection involves a complex orchestra of diverse cell types, 

including dendritic cells, macrophages, natural killer cells, and B and T cells. As one of the most 

prominent and critical players in the response to infection, subsets of T cells range in activity 

from supporting the function and activation of other immune cells, as well as T cells themselves, 

to producing pro and anti-inflammatory proteins. Furthermore, cytotoxic T cell subsets are 

instrumental in the elimination of pathogen-infected host cells. This diversified set of 

immunologically adaptive immune cells plays a critical and central role in combating pathogens.  

A number of T cell knockout models have demonstrated that removal of any subset of T cells 

during an infectious challenge often results in higher rates of morbidity and mortality. For many 

years, T cell activation and function was believed to occur from a combination of antigen 

recognition, subsequent signaling cascades and micro-environmental cues [4,5]. However, recent 
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studies have clearly demonstrated that the cellular metabolism of the T cell is also a key player 

affecting differentiation, proliferation, function and its ultimate fate [6-11].  

Recent publications of how metabolic fuels such as glucose, amino acids and fatty acids 

elicit distinct metabolic profiles depending on cell state (naïve, effector or memory) and subtype 

(Th1, Th2, Th17, Treg, etc.) [7,12-14], has led to a revolution in the understanding of T cell 

driven immunity. Furthermore, these findings highlights the metabolic plasticity of T cells to 

respond to the energetic and biosynthetic demands required to successfully fight infection. For 

primers on T cell metabolism, refer to the excellent reviews by MacIver et al. [4] and Buck et al. 

[5].  

Although T cells respond to antigenic challenge by altering their metabolic state, what is 

not as well understood is how metabolic dysfunction may alter their ability to function. One such 

altered metabolic environment that may have a profound effect on T cell function is obesity. 

Obesity has classically been characterized as a state of excess adiposity and is associated with 

chronic inflammation and metabolic dysfunction such as hyperglycemia, hyperleptinemia and 

hormone resistance [15]. These uncontrolled metabolic alterations can lead to the development 

of chronic diseases such as type II diabetes, nephritis and/or chronic kidney disease, 

cardiovascular disease and specific cancers [16]. However, recent data from our lab and others 

demonstrate a link between obesity and increased incidences of infectious diseases, most likely 

through impaired cellular and humoral immune responses [16,17].  

Considering recent findings on how T cell metabolism drives cellular function and 

survival, understanding how obesity impacts these processes in T cells remains critical. Here, we 

examine the impact of obesity on lymphocyte metabolism, specifically CD4+ and CD8+ T cells, 

in adult white women vaccinated against influenza virus. This work utilizes a unique high-
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throughput method to determine metabolic profiles of cells to explore possible mechanisms for T 

cell impairment in the context of obesity. Given this exponential increase in the prevalence of 

obesity over the past few decades, coupled with the increasing threat of influenza epidemics and 

pandemics, understanding how the complex metabolic state of obesity influences immunity 

warrants investigation.  

 

T cell metabolism supports cell survival and function 

T cells display metabolic flexibility unlike other cells in the body. Upon stimulation of 

the T cell receptor (TCR) and costimulatory receptors, T cells undergo a dramatic metabolic shift 

from a quiescent to an activated state, highlighted by a change from primarily catabolic to 

anabolic metabolism (Figure 1) [7]. The shift from oxidative phosphorylation to glycolysis 

produces ATP and supports the generation of nucleotides and amino acids for the production of 

daughter cells necessary to mount an effective immune response [18]. Importantly, this 

glycolytic shift supports effector functions, which vary depending on T cell subtype [6,14,19]. 

After clearance of the infection, the majority of effector T cells undergo apoptosis, with a small 

subset remaining as long-lived memory T cells [20,21]. These memory T cells revert back to a 

relatively quiescent catabolic state. However, unlike their naïve cell counterparts, memory T 

cells quickly respond to antigenic challenge upon re-exposure through elevated metabolic 

activity, increased proliferation and production of cytokines [22,23].  
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Figure 1: T cell metabolism and state of quiescent and activated T cells. Quiescent T cells utilize oxidative 

respiration of glucose-derived pyruvate as well as fatty acids and amino acids to produce ATP through the TCA 

cycle and electron transport chain. This energy production supports immune surveillance and homeostasis. Upon 

stimulation of the T cell receptor (TCR) and costimulatory receptors, T cells upregulate glycolysis and glutamine 

oxidation while reducing fatty acid oxidation to support cell growth, differentiation and the production of daughter 

cells. Following clearance of the pathogen, the majority of T cells undergo apoptosis with a subset surviving as 

memory T cells, which return to a quiescent state dependent on oxidative phosphorylation of fatty acids.  

 

These distinct metabolic states of T cells require signaling molecules to support 

homeostasis, effector function and survival. Cytokines such as IL-7 and IL-15 sustain the 

catabolic survival functions of naïve and memory T cells, respectively [19,24,25]. Other 

cytokines, such as IL-2, elicit proliferation [26], while interferon gamma (IFN-γ) promotes pro-

inflammatory T cell subtypes like Th1 and cells of innate immunity [27]. T cell subsets also help 

to down-regulate the inflammatory response once pathogen clearance has occurred. For example, 

regulatory T cells (Treg) and the cytokine IL-10 help to suppress T cell activation and 

proliferation [27,28].  



	   5	  

Aside from cytokine and growth factor signals, nutrients and hormone signaling also 

influence T cell metabolism [11,26,29]. These signals affect regulatory pathways controlled by 

enzymes such as the mammalian target of rapamycin (mTOR) and AMP-activated protein kinase 

(AMPK) to influence cell growth/proliferation or homeostasis [30,31]. In the absence of these 

extrinsic signals, T cells lose their ability to maintain homeostasis and eventually succumb to 

apoptosis through Bcl-2 mediated cell death [10,31].   

 

Obesity impairs the immune response to infection 

As of 2014, for the first time in recorded history, obese adults outnumber underweight 

adults worldwide, with the global prevalence of obesity equaling 10.8% in men and 14.9% in 

women [1]. In the United States, obese adults comprise 36.5% of the population [32]. Obesity 

has been linked to increased incidences of infectious diseases, including periodontal infections, 

influenza, bacterial pneumonia, nosocomial and surgical site infections, among others [2,16]. 

Furthermore, obesity has been shown to impair immunological responses in both adults and 

children [33-35].  

Following the first influenza pandemic of the 21st century, obesity was identified as an 

independent risk factor for increased morbidity and mortality from pandemic H1N1 infection [2]. 

Our laboratory studied the response to influenza vaccination in obese adults and found that 

increasing BMI was associated with greater declines in influenza-specific antibody titers one-

year post vaccination [34]. In addition, influenza-stimulated T cells from obese adults were less 

functional and less activated compared with T cells from vaccinated healthy weight adults [36].  

Obesity reduces circulating levels of γδ T cells, and impairs their function through 

reduced IL-2 receptor expression and IFN-γ production [37]. Moreover, obesity has been 
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implicated in reduced function of Treg cells in obese patients with asthma [38]. Finally, growing 

evidence suggests that obesity impairs immune responses to vaccines such as hepatitis B (HB), 

hepatitis A (HA), rabies and tetanus, and that it increases risk of several bacterial infections [39]. 

Despite growing evidence supporting the notion that obesity impairs immunological 

responses to infection, it is worth noting that some studies have found a protective effect of 

obesity against infection. Roth et al., in their review of over 20 epidemiological studies, found 

that obesity was associated with better outcomes from infections such as tuberculosis, 

community-acquired pneumonia and sepsis [40]. They argue that aspects of the metabolic 

syndrome often found in obesity provide an advantageous niche for immune cells to fight off 

infection. While there is controversy between findings on obesity’s impact on the immune 

response to infection, it is important to note that obesity is a multifactorial condition that impacts 

a variety of tissue and organ systems.  

 

Obesity alters the metabolome during infection 

Studies using murine models of obesity have shown great similarity to obesity in humans, 

providing a translational model to study this complex condition [41]. Recent studies have shown 

altered metabolic profiles in diet-induced and genetically obese mice following influenza virus 

challenge in vivo. Using 1H NMR and global liquid chromatography-mass spectrometry, Milner 

et al. reported specific alterations in the metabolic profiles of influenza-infected diet-induced 

obese mice when compared with infected lean mice in serum, liver, lung, mesenteric white 

adipose tissue, urine, feces and bronchoalveolar lavage fluid [42,43]. Changes in metabolites 

included increased levels of fatty acid, cholesterol and phospholipids in lung tissues isolated 
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from obese mice compared to lean mice, correlating with increased lung damage and mortality 

observed in the infected obese mice [43].  

Notably, obese mice showed significant fold increases in glutamyl-proline, 

tetrahydrocortisol, 3-hydroxybutyric acid and numerous acyl-carnitine metabolites in lung tissues 

[43], suggesting that differential metabolism in these tissues may be driving immune 

dysregulation in the influenza-infected lung. Additionally, diet-induced obese mice had a 55-fold 

increase in p-cresol sulfate concentrations in lungs at 4 days post infection compared to lean 

mice [43]. P-cresol sulfate, a metabolite produced by gut microbiota during secondary 

metabolism of p-cresol, accumulates during kidney failure and can impact cell function [43].  

This increase in secondary metabolites in obese mice suggests that the obese microbiome may 

differ from lean, and thus contribute to differences in immune function.  

In order to differentiate between the effects of diet vs. obesity, mice lacking hypothalmic 

leptin receptors (LepRH-/-) were utilized in the influenza infection model. LepRH-/- knockout mice 

were established by crossing fully floxed leptin receptor mice with Cre transgene expressing 

C57BL/6J-Tg(Nkx2-1-cre)2S mice driven by the Nkx2.1 promoter. These transgenic mice 

lacked leptin receptor signaling in hypothalamic neurons, resulting in obesity from excess 

consumption of a low fat chow diet thereby removing the influence of high fat diet on immune 

function. Compared to lean controls (LepRHFlox/Flox consuming an identical diet), obese mice that 

gained weight on the chow diet exhibited altered metabolic profiles. Similar to high fat fed diet-

induced obese mice, the LepRH-/- obese mice had higher fatty acid, cholesterol and nucleic acid 

metabolites in urine and lung tissues following influenza virus infection [43]. Again, these 

variations in metabolites correlated with greater lung pathology and inflammation, as well as 

reduced levels of quiescent and activated CD4+ and Treg cells in the lung and bronchoalveolar 
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lavage fluid during the immune response to influenza virus infection [43]. These studies suggest 

that obesity itself, not the diet, alters metabolites both in circulation and in tissue specific regions 

impacted by infection. This work supports the notion that obesity alters the metabolic landscape 

of the host, thus impairing T cell function, leading to increased susceptibility to infectious 

disease. 

 

Adipocytes in the obese state promote inflammatory T cell activation through altered 

metabolism 

Another theory as to how obesity impairs the T cell response to infection involves the 

distorted cytokine and adipokine milieu brought about by excess adiposity. Leptin, a hormone 

involved in energy homeostasis, has been shown to be essential for glucose uptake in effector T 

cells [29].  Upregulation of Glut1 transporters by leptin signaling under normal conditions 

represents a bioenergetic advantage for T cells to prevent suppressed proliferative and functional 

responses when glucose concentrations become limited [10,26,29]. However, in obesity, when 

leptin secretion becomes systemic and chronic, leptin signaling may lead to altered CD4+ T cell 

differentiation. Leptin signaling has been shown to promote pro-inflammatory T cell subtypes, 

Th1 and Th17 [29,44,45], suggesting leptin plays a critical role in the development of an 

inflammatory adipose tissue microenvironment. Leptin’s role in modulating T cell repertoires, 

leading to inflammatory adipose tissue microenvironments is further supported by the discovery 

of pro-inflammatory CD8+ T cells precede adipose tissue macrophage (ATM) infiltration in 

visceral adipose tissue, with marked declines in CD4+ helper T cell and Treg cell populations in 

obese mice compared to lean [46]. 
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Infiltration of T cells in adipose tissue has received attention for its suggested role in the 

development of insulin resistance [47]. Recent findings by Morris et al. identified a mechanism 

by which ATMs function as antigen presenting cells (APCs) to regulate the activation of CD4+ T 

cells in mice [48]. This finding, reproduced by Cho et al., identified a novel MHCII-dependent 

activation loop between CD4+ T cells and ATMs which supports T cell driven metainflammation 

in adipose tissue in mice [49].  

However, large human adipocytes also activate CD4+ T cells through MHCII-

upregulation, thereby acting as APCs to stimulate T cell inflammatory effector functions [50]. 

This activation of adipose tissue associated T cells by MHCII-mediated APCs and leptin 

costimulation supports the notion of an inflammatory microenvironment in obese adipose tissue. 

These findings suggest the possibility that obesity leads to suppressed T cell response to 

infection through altered T cell populations caused by premature activation to pro-inflammatory 

T cell subtypes.  

 

Adipocytes in the obese state promote T cell senescence 

Senescence, typically associated with aging, is described as a fate in which cellular 

proliferation becomes halted but metabolic activity and function remain [51]. This cell 

phenotype represents a state of cellular exhaustion, with chronic activation of Akt and mTOR, 

thereby supporting cytokine production but limiting proliferation [51,52]. Recently, obesity was 

proposed to increase T cell senescence in visceral adipose tissue (VAT) of high fat fed obese 

mice [53]. These mice displayed increased accumulation of CD153+PD-1+CD44+CD4+ T cells in 

VAT, resembling the activity of senescent associated T cells, with increased osteopontin 
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secretion and VAT inflammation [53]. Previously, osteopontin has been shown to be a Th1 

promoting cytokine that supports pro-inflammatory function [54].  

This increased production of PD-1 (programmed cell death-1), an exhaustion/tolerance 

marker, [55], signals an exhausted state of visceral adipose T cells. This role of PD-1 as an 

immune regulator of TCR activation in effector T cells is evidenced by the establishment of PD-

1 expressing CD8+ effector memory T cells, and not central memory T cells [56]. Furthermore, 

strength of PD-1 expression is tied to signaling activation and effector function in T cells, such 

that high expression of PD-1 is needed for cell exhaustion but only low levels are required to 

disrupt some functions such as IL-2 or TNF-α secretion [57].  

Finally, CD4+ T cell metabolism alters PD-1 expression in mice cultured with galactose 

versus glucose [58]. This forced alteration in T cell metabolism from aerobic glycolysis to 

oxidative phosphorylation (OXPHOS) resulted in differences in glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) and PD-1 expression, correlating with impairments in IFN-γ 

production [58]. Given aerobic glycolysis’ critical requirement in optimal IFN- γ production, this 

connection between aerobic glycolysis and PD-1 expression demonstrates a novel mechanism 

through which T cell function is influenced by nutrition. How long-term exposure to obesogenic 

conditions impacts gene expression remains unresolved. However, some recent studies suggest 

that obesity can lead to the hypermethylation of lymphocyte DNA in humans and animals 

[59,60], thereby implicating an epigenetic component that supports the conditions of obesity 

associated T cell senescence.  
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Hypotheses 

Despite the lack of direct evidence linking obesity and altered T cell metabolism with 

impaired immune response to infection, foundations from several studies over recent years 

support the hypothesis that obesity disrupts T cell metabolism, resulting in impaired function. 

Altered metabolism of the obese host has been shown both in the steady state and during 

infection. Hormone resistance, inflammation and alterations in nutrient levels all influence T cell 

activation, function and survival. A surfeit of nutrients such as glucose and fatty acids, along 

with excess leptin production in the obese state, may elicit the activation of T cells in the absence 

of specific pathogens, thus, skewing naïve and memory cells towards inflammatory Th1 & Th17 

subtypes, while reducing anti-inflammatory Treg repertoires (Figure 2). The response to infection 

in an obese environment most likely would result in disrupted T cell metabolism through 

increased glycolytic and oxidative flux and cause impaired T cell response by promoting 

inflammation and reducing anti-inflammatory immune surveillance.   

Here, we examined the immunometabolic profile of isolated peripheral blood 

mononuclear cells (PBMCs) and T lymphocytes from adult white women vaccinated against 

influenza virus. Using high-throughput extracellular flux analysis, we show that obesity induced 

higher rates of aerobic glycolysis and mitochondrial respiration in PBMCs in both quiescent and 

activated states. Furthermore, obesity alters basal respiration and basal glycolysis of quiescent 

CD4+ and CD8+ T cells, with notably higher rates of OXPHOS compared to healthy weight 

controls. Given the reliance of effector T cells on glucose metabolism to facilitate effector 

functions, we hypothesized that obese non-diabetic subjects would differ from obese metformin-

treated diabetic subjects with insulin resistance and resultant glucose dysregulation. Interestingly, 

obese metformin-treated diabetics had fasting glucose levels greater than 125mg/dl, indicating 
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that metformin treatment had not restored homeostatic glucose levels. However, CD4+ and 

CD8+ T cells from obese metformin-treated subjects exhibited levels of basal respiration and 

glycolysis similar to cells from healthy weight controls. This finding suggests metformin may 

work to restore homeostatic metabolism of quiescent CD4+ and CD8+ T cells. Finally, activated 

CD4+ and CD8+ T cells exhibited no differences in aerobic glycolysis or OXPHOS, but did 

show differences in spare respiratory capacity, suggesting that elevated glucose levels do not 

drive impairments in effector T cell function in the obese state.  

Taken together, this investigation provides the first demonstration of obesity-driven 

metabolic alterations of T cells. These observed alterations in quiescent and activated T cell 

metabolism might account for impairments in T cell function. Furthermore, elevated glucose 

levels did not account for differences in obese subjects; suggesting that other factors associated 

with obesity, and not excess glucose, result in altered T cell metabolism. How chronic exposure 

to excess nutrients like lipids, hormones and/or inflammation influences gene regulation and 

immune function in lymphocytes remains unknown. However, trends from this work support the 

notion that obesity is a complex and multifactorial condition, most likely influencing immunity 

through a number of mechanisms. With the recent explosion in cases of obesity in the United 

States and around the globe, understanding how this diverse metabolic state influences immune 

responses to infection warrants further investigation. 

The results of this investigation are expressed in Chapter 2 as a journal manuscript, with 

the intention of publication upon confirming results with future experiments.   
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Figure 2: Potential mechanisms of impairment of normal T cell signaling and response to infection in obesity. 

Nutrients, leptin and inflammation signals cause a disruption of normal T cell metabolism, resulting in impaired 

cellular functions. Long-term exposure to these extrinsic signals alters the metabolic profile of T cells, impacting 

their feedback of cytokine secretion and functional response to infection. Whether or not long-term exposure results 

in epigenetic changes, or metabolite influence from obese microbiota has yet to be determined. TCR, T cell receptor. 

Costim, costimulatory receptor.  
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CHAPTER II – JOURNAL MANUSCRIPT 

1Obesity induces metabolic alterations of T lymphocytes in influenza-vaccinated adults 
 

Summary 

An epidemic of obesity in both adults and children over the past three decades increases 

the risk of chronic and infectious diseases. Within the past few years, obesity has been shown to 

impair the adaptive immune response to infection through alterations in T cell functioning. 

Importantly, obesity has been shown to increase morbidity and mortality from influenza 

infection. Animal and human studies show that obesity impairs the activation and function of 

influenza-specific T cell response. This diverse cell population relies heavily on glucose and 

glutamine metabolism to support critical effector functions when pathogenically challenged. 

Recent findings in the fields of obesity and T cell mediated immunity demonstrate a unique 

relationship between altered mechanisms of T cell metabolic homeostasis and plasticity of 

adaptive immune responses in the obese setting. Here, we show that obesity alters the quiescent 

and activated metabolic profile of peripheral blood mononuclear cells, and more critically, CD4+ 

and CD8+ T cell lymphocytes in white women vaccinated against influenza virus. Furthermore, 

T cells from obese non-diabetic subjects with no metabolic dysregulation of glucose exhibit 

higher rates of aerobic glycolysis and mitochondrial respiration compared to obese metformin-

treated diabetic subjects. This restorative effect of metformin occurs in the absence of restored 

serum glucose, suggesting that its mechanism of action impacts T cells directly and may offer 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Manuscript	  to	  be	  submitted	  



	  15	  

therapeutic benefits beyond hepatic and peripheral glucose homeostasis. While results from this 

study require further investigation to confirm its findings with larger sample sizes and in 

populations other than white women, these results support growing evidence that perturbations in 

T cell metabolism drive the impaired immune response of T cell lymphocytes, stemming from 

chronic nutrient, hormone and adipokine dysregulation in the obese. Our findings may provide 

the mechanistic link for obesity-driven impaired immune response to influenza infection and 

vaccination.  

 

Introduction 

 Currently, obesity ranks as one of the largest growing epidemics in the United States and 

worldwide [61]. In the US alone, obese adults comprise 36.5% of the population with 15-20% of 

children and youth classified as obese [32,61]. Obesity has been linked with higher incidences of 

infectious diseases, including periodontal infections, influenza, bacterial pneumonia, nosocomial 

and surgical site infections, among others [2,16]. Classically characterized as a state of excess 

adiposity, obesity has been associated with chronic inflammation and metabolic dysfunctions 

such as hyperglycemia, hyperleptinemia and hormone resistance [15]. These uncontrolled 

metabolic conditions can lead to the development of chronic diseases such as type II diabetes, 

kidney disease, cardiovascular disease and specific cancers [16]. However, recent data 

demonstrates a link between obesity and increased incidences of infectious diseases, most likely 

through impaired cellular immune responses [16,17]. 

 Following the first pandemic influenza outbreak of the 21st century, obesity was 

identified as an independent risk factor for increased morbidity and mortality from pandemic 

H1N1 infection [2]. Previous studies in our lab have shown impaired immunological responses 
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in obese adults compared to healthy weight adults. Using influenza vaccination as a model to 

study the immune response in obesity, our lab has demonstrated that increasing BMI was 

associated with greater declines in influenza-specific antibody titers one-year post vaccination 

[34]. Furthermore, when isolated peripheral blood mononuclear cells (PMBCs) from influenza 

vaccinated healthy weight, overweight and obese adults were stimulated with H1N1 influenza 

virus in vitro, CD4+ and CD8+ T cells from obese and overweight adults expressed fewer 

activation and functional markers compared to healthy weight adults [36]. These impairments 

included less expression of activation markers CD28, CD40 ligand, CD69 and IL-12R as well as 

reduced expression of IFN-γ and granzyme B, critical cytokines produced by effector T cells 

involved in influenza clearance [36]. Additionally, no differences were seen in dendritic cell 

activation or function, suggesting obesity impacts T cell activation and function independent of 

antigen presentation. Given obesity’s numerous metabolic and micro-environmental effects 

through long-term net positive caloric intake and resultant hormone/cytokine dysregulation, 

understanding how these factors influence T cell function remains unresolved and critically 

important.  

 For many years, T cell activation and function was believed to occur from a combination 

of antigen recognition, subsequent signaling cascades and micro-environmental cues [4,5]. 

Within the past decade, cellular metabolism has been shown to critically influence T cell 

differentiation, proliferation, function and ultimately their cellular fate [6-11]. Reports of how 

metabolic fuels such as glucose, amino acids and fatty acids elicit distinct metabolic profiles 

depending on cell state (naïve, effector or memory) and subtype (Th1, Th2, Th17, Treg, etc.) 

[7,12-14], has led to a revolution in the understanding of T cell driven immunity. Furthermore, 

this newfound understanding highlights the metabolic plasticity of T cells to respond to the 
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energetic and biosynthetic demands required to successfully fight infection [8]. Although it is 

known how T cells respond to antigenic challenge by drastically altering their metabolic state, 

what is not as well understood is how altered metabolic conditions such as obesity may influence 

T cell metabolic programming, thus impairing T cell function and response to infection. 

 In this investigation, a subgroup of white women age 35 to 65 were recruited from the 

previously established prospective observational cohort study on influenza vaccination at the 

University of North Carolina at Chapel Hill’s Family Medicine Center, Chapel Hill, NC. 

Subjects were recruited following enrollment from the traditional influenza study cohort for a 

one-time blood draw in March 2016 and February/March 2017. Subjects included three 

demographic classes: healthy weight non-diabetics (BMI 18.5 to 24.9; fasting glucose < 

100mg/dL), obese non-diabetic (BMI ≥ 30.0; fasting glucose < 100mg/dL) and obese metformin 

treated diabetics (BMI > 30.0; fasting glucose > 125mg/dL). PBMCs, CD4+ and CD8+ T cells 

were isolated from each subject and metabolically profiled using high-throughput extracellular 

flux analyzers (XF24 and XFe96). This technique provides a measure of aerobic glycolysis and 

mitochondrial oxidative phosphorylation for cells types of interest, to allow for the rapid 

metabolic characterization of cells.  

 Given that T cells predominately rely on glucose and glutamine metabolism for 

homeostasis and effector functions, we hypothesized that obesity would increase the metabolic 

profile of freshly isolated quiescent CD4+ and CD8+ T cells, thereby giving a snapshot of the 

metabolic programming of these cell types within the host. Furthermore, upon stimulation in 

culture, when these cells become highly glycolytic and require glucose and glutamine to support 

proliferation, cell survival and effector function, we hypothesized that obesity would increase the 

rates of glycolytic and respiratory flux of glucose, pyruvate and glutamine fuels compared to 
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healthy weight subjects, suggesting that previously observed impairments in effector functions 

may be due to alterations in metabolic programming of isolated T cells, stemming from the obese 

environment. Finally, obese metformin-treated diabetics were included as a separate group to 

determine the effect of a metabolic drug on T cell metabolism in an uncontrolled glucose 

environment. Previous research has shown that metformin treatment facilitates memory T cell 

formation and function, possibly through restored T cell metabolic activity [62,63]. Recent data 

also suggests that metformin may be protective against cancer formation and beneficial also as a 

cancer therapeutic [64]. 

Here we show altered metabolic profiles of CD4+ and CD8+ T cells isolated from 

healthy weight, obese non-diabetic and obese diabetic subjects vaccinated against influenza 

virus. These differences in metabolism present a novel mechanism through which T cell function 

may be compromised due to non-optimal metabolic flux, supporting the notion of obesity 

inducing pro-inflammatory T cell subtype differentiation and impairment of resting or quiescent 

T cell populations. Furthermore, we demonstrate that influenza specific HAI antibody titers from 

healthy weight, obese non-diabetic and obese metformin-treated diabetic adults respond to 

vaccine at 30 days, but fall at six months post vaccination, with no differences between groups. 

This data suggests that T cell mediated responses, and not antibody seroconversion or 

seroprotection, should be considered when assessing for correlates of protection from influenza 

infection.  

  

Methods & Materials 

Subjects. Participants were recruited from the prospective observational cohort study conducted 

by the Beck Lab on the investigation of BMI on influenza vaccination response at the University 
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of North Carolina at Chapel Hill Family Medicine Center, Chapel Hill, NC [36]. Adult white 

females age 35 to 65 vaccinated against influenza virus were recruited as a study cohort 

subgroup following written informed consent under approval of the University of North Carolina 

at Chapel Hill’s Biomedical Institutional Review Board. Venous antecubitual serum and plasma 

was obtained using aseptic phlebotomy in overnight fasting subjects. Participants had previously 

received either the 2015-2016 or 2016-2017 quadrivalent influenza vaccination (FLUARIX® 

481035) from UNC-Family Medicine as part of their normal preventative care prior to enrolling 

in the study subgroup.  

The strains in the 2015-2016 influenza vaccine included: A/California/07/2009(pH1N1), 

A/Switzerland/9715293/2013(H3N2), B/Phuket/3073/2013, and B/Brisbane/60/2008. The strains 

in the 2016-2017 influenza vaccine included: A/Christchurch/16/2010 (H1N1) NIB-74XP (an 

A/California/7/2009 (H1N1) pdm09-like virus), A/Hong Kong/4801/2014 (H3N2) NYMC X-

263B, B/Phuket/3073/2013, and B/Brisbane/60/2008. Exclusion criteria included: 

immunosuppressive drugs or diseases like HIV, acute febrile illness, autoimmune disease, 

medical history of immunotherapy for cancer, history of Guillain-Barre syndrome, and any 

hypersensitivity to influenza vaccine components.  

 Subjects were recruited from March 2016 to March 2017, with blood draws no closer 

than two months apart to ensure compliance with IRB approved procedures. Blood draws 

occurred in two phases; the first in March 2016 for initial PBMC characterization (n=7), 

followed by a second wave of blood draws in February/March 2017 (n=9). Height and weight 

measurements were taken to calculate body mass index (BMI = (kg)/height(m)2), as well as 

medical history to determine diabetes status and drug medications. Fasting glucose was 

measured using a glucometer immediately after whole blood collection (FreeStyle Precision 



	  20	  

Neo). Three groups of participants were recruited: healthy weight with no history of diabetes 

(BMI 18.5 – 24.9; fasting glucose < 100 mg/dl), obese non-diabetic (BMI ≥ 30.0; fasting glucose 

< 100), and obese diabetic patients actively taking metformin (BMI ≥ 30.0; fasting glucose > 

125).  As part of the traditional influenza vaccine study, participants were monitored during flu 

season for cases of medically confirmed influenza and influenza-like illness (ILI), defined as a 

fever over 100oF and a cough in the absence of any other medical diagnosis [65]. Demographics 

of subjects are displayed in Tables 1 & 2.  

 

Cell Isolations & Stimulation. Peripheral blood mononuclear cells (PBMCs) were isolated from 

fresh plasma using Histopaque-1077 (Sigma-Aldrich, St. Louis, MO) gradient separation as 

previously described [36]. PBMCs were washed twice with Ca2+ and Mg2+ free HBSS before 

being re-suspended in complete RPMI-1640 containing 10mM glucose, 2mM glutamine, 10% 

FBS and penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO) and counted using a 

hemocytometer. PBMCs were cultured in complete RPMI-1640 for 72hrs at 37oC and 5% CO2 

with or without treatment with a PBS control or 0.5µg/µL lectin mitogen, concanavalin A 

(Sigma-Aldrich), per 1x106 PBMCs. Isolated CD4+ and CD8+ T cells were obtained using 

negative selection exclusion beads (StemCell Technologies, Vancouver, Canada) following 

PBMC isolation. Isolated T cells were stimulated using anti-CD3/anti-CD28 magnetic beads (1:1 

cell to bead ratio) and 30IU IL-2 (ThermoFisher Scientific, Waltham, MA) in complete RPMI-

1640 containing 10mM glucose, 2mM glutamine, 5% autologous plasma and 

penicillin/streptomycin for 72hrs at 37oC and 5% CO2. Isolated T cells were cultured using 

autologous plasma instead of FBS in order to more accurately recapitulate physiological culture 
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conditions of the host for each subject, thereby activating cells in their host milieu of fatty acid, 

hormones, growth factors, etc.  

 

Metabolic Assays. Mitochondrial stress tests were performed on cells using Agilent’s XF24 and 

XFe96 flux analyzers. Unstimulated (control) and concanavalin A stimulated PBMCs were 

assayed using the XF24 extracellular flux analyzer as previously described [6]. Cells were 

counted, attached to culture plates via CellTak adhesion at 1.2x106 cells per well in non-buffered 

DMEM with 25mM glucose and 1mM glutamine (Sigma-Aldrich, St. Louis, MO). Oxygen 

consumption rates (OCR) and extracellular acidification rates (ECAR) were measured at 37oC 

under basal conditions and in response to 1µM oligomycin (an ATPase inhibitor), 0.5µM fluoro-

carbonyl cyanide phenylhydrazone (FCCP) (a mitochondrial uncoupling agent) and 0.75µM 

rotenone (complex I inhibitor) and1.5µM antimycinA (complex III inhibitor) (Sigma-Aldrich, St. 

Louis, MO).  

 Freshly isolated CD4+ and CD8+ T cells and 72hr CD3/CD28 + IL-2 stimulated CD4+ 

and CD8+ T cells were assayed using the XFe96 extracellular flux analyzer. Cells were plated as 

previously described at 2x105 cells per well in non-buffered RPMI-1640 with 10mM glucose, 

2mM glutamine and 1mM pyruvate. Oxygen consumption rates (OCR) and extracellular 

acidification rates (ECAR) were measured at 37oC under basal conditions and in response to 

1µM oligomycin (an ATPase inhibitor), 1.5µM fluoro-carbonyl cyanide phenylhydrazone 

(FCCP) (a mitochondrial uncoupling agent), 0.1µM rotenone (complex I inhibitor) and1.0µM 

antimycinA (complex III inhibitor) (Sigma-Aldrich, St. Louis, MO).  

 Metabolic parameters were calculated as follows. Basal respiration (OCR (pmoles/min) 

and basal glycolytic rate (ECAR (mpH/min)) were determined as the last time point 
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measurement before injection of oligomycin. Maximal respiration was determined as the peak 

OCR (pmoles/min) following injection of FCCP, while spare respiratory capacity was calculated 

as the Max OCR – Basal OCR. Finally, OCR:ECAR ratio was determined by dividing the basal 

respiration by basal glycolysis. Non-mitochondrial respiration (OCR following 

rotenone+antimycin A injection) was not subtracted from these observed readings, as commonly 

reported in previous studies, in order to reduce variance from drug injection effects and reduce 

differences in plate measurement between metabolic platforms, thus allowing for total 

representation of all O2 consumption and H+ production by cells in these metabolic parameters.  

 

Influenza Specific Antibody Determination. Serum was obtained for each subject by allowing 

whole blood to clot at room temperature for 30mins prior to refrigeration at 4oC over night and 

centrifugation at 800xg at 40C for 10mins. Serum antibody titers for A/California/7/2009(H1N1) 

were determined via hemagluttination inhibition assay as previously described [66]. Samples 

were assessed in duplicate and represent mean for each individual subject at day 0 (pre-

vaccination), 30 days post vaccination, six months post vaccination and one year post 

vaccination. 

 

Statistical Analysis. Values for oxygen consumption (OCR) and extracellular acidification 

(ECAR) from technical replicates were averaged for each well. Physiologically impossible 

values for OCR or ECAR (values ≤ 0) were excluded. Biological medians ± standard error was 

reported as shown to reduce effect of skew from outliers. Data was assessed for significance by 

one-way or two-way ANOVA followed by Tukey’s multiple comparisons where denoted. 

Student’s t test or Mann-Whitney sum rank test were used to determine significance between two 
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groups. Correlation coefficients were determined by Spearman’s rank correlation. Data was 

determined to be statistically significant when p < 0.05. All analyses were conducted in 

Graphpad Prism 7.0 for Mac OS X.  

  

Results 

PBMCs from obese adults display altered metabolism compared to healthy weight adults. In 

order to assess if obesity alters the global metabolism of circulating immune cells, peripheral 

blood mononuclear cells (PBMCs) were isolated from healthy weight, obese non-diabetic and 

obese metformin-treated diabetic subjects and assayed using the mitochondrial stress test with an 

XF24 extracellular flux analyzer (Fig. 3). Quiescent (resting) PBMCs from both obese non-

diabetic and obese metformin-treated diabetic subjects had a ~1.5x higher basal respiratory rates 

compared to healthy weight adults (Fig. 3C), with no differences in basal glycolysis (Fig. 3D). 

No significant differences were observed in the cells spare respiratory capacity (SRC) between 

groups, a measure of cellular ability to metabolically respond to energetic demands (Fig. 3E). 

Additionally, no differences were seen in the ratio of basal oxygen consumption to basal 

glycolysis (OCR:ECAR) (Fig. 3F). However, for both SRC and OCR:ECAR ratio, an upward 

trend was seen in both obese groups compared to healthy weight. 

PBMCs include a diverse set of leukocytes including lymphocytes (T cells, B cells, NK 

cells) as well as monocytes and dendritic cells [67]. Upon treatment with concanavalin A (Con 

A), a T cell specific lectin mitogen, antigen presenting cells (APCs) display Con A peptides to 

CD4+ and CD8+ T cells causing global activation of PBMCs through a T cell mediated 

mechanism [68]. When cells were treated with Con A (activated) as opposed to a PBS control 

(quiescent), cells from all groups showed an increase in OCR and ECAR, indicating treatment 
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with Con A resulted in activation of these cells in culture, thus causing dramatic shifts in their 

metabolic programming (Fig. 3A-B). Interestingly, obese non-diabetic and obese metformin-

treated diabetic subjects showed greater induction in basal OCR, with only obese non-diabetics 

having higher basal ECAR, compared to healthy weight adults (Fig. 3C-D). Again no significant 

differences between groups were observed in SRC or OCR:ECAR (Fig. 3E-F).  

 

Quiescent CD4+ T cells display trends in elevated respiration in obese non-diabetic subjects, 

with obese metformin-treated diabetics more like healthy weight. Freshly isolated CD4+ T cells 

were subjected to a mitochondrial stress test using the XFe96 flux analyzer, measuring OCR and 

ECAR in response to olgiomycin, FCCP, and antimycin A + rotenone (Fig. 4A-B). Similar 

trends were seen in basal OCR, basal ECAR and SRC, with obese non-diabetic CD4+ T cells 

exhibiting higher rates compared to healthy weight and obese metformin-treated diabetic CD4+ 

T cells (Fig. 4C-E). No differences in trends were seen in OCR:ECAR (Fig. 4F). Despite a lack 

of significant differences between these measures, likely due to a low sample size, these trends 

suggest that freshly isolated quiescent CD4+ T cells from obese non-diabetic adults have a 

higher metabolic profile of aerobic glycolysis and mitochondrial respiration than healthy weight 

or obese metformin-treated diabetic CD4+ T cells.  

 

Activated obese non-diabetic CD4+ T cells display trends in elevated basal respiration and 

SRC than healthy weight CD4+ T cells. Freshly isolated CD4+ T cells were activated using 

anti-CD3 and anti-CD28 antibody coated beads for 72hrs in the presence of IL-2. Compared to 

quiescent T cells (Fig 4.), activation of CD4+ T cells resulted in greatly increased rates of 

mitochondrial respiration and aerobic glycolysis (Fig. 5A-D). No differences were seen in 
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stimulated CD4+ T cells’ glycolytic rates between groups, when these cells should be 

predominately glycolytic. However, trends suggest that activated obese non-diabetic CD4+ T 

cells have slightly higher rates of mitochondrial respiration compared to healthy weight and 

obese metformin-treated diabetics. Furthermore, obese non-diabetic CD4+ T cells had elevated 

levels of SRC, with obese diabetics falling slightly below but not quite returning to healthy 

weight levels (Fig. 5E).  No differences were seen in OCR:ECAR in stimulated CD4+ T cells 

(Fig. 5F). 

 

Quiescent CD8+ T cells display trends suggesting alterations in basal respiration, basal 

glycolysis and spare respiratory capacity between healthy weight, obese non-diabetic and obese 

metformin-treated diabetics. Quiescent CD8+ T cells display low levels of basal respiration and 

glycolysis following isolation, typical of resting CD8+ T cells (Fig. 6A-B). Interestingly, CD8+ 

T cells from both obese non-diabetic subjects and obese metformin-treated diabetics had higher 

trends in basal respiration (Fig. 6C). A negative trend in basal ECAR was observed with obese 

non-diabetics and obese metformin-treated diabetics having lower rates of basal glycolysis 

compared to healthy weight (Fig. 6D). Additionally, quiescent obese metformin-treated diabetic 

CD8+ T cells had lower trends for SRC (Fig. 6E) and higher OCR:ECAR ratio (Fig. 6F), 

signifying that obese diabetic CD8+ T cells were more respiratory in nature yet did not achieve 

the same maximal respiration after treatment with FCCP.  

 

Activated obese metformin-treated diabetic CD8+ T cells displayed higher trends for aerobic 

glycolysis and suppressed SRC compared to healthy weight.  As previously seen with activated 

CD4+ T cells (Fig. 5), activation of CD8+ T cells cause dramatic induction of OCR (Fig. 7A) 
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and ECAR (Fig. 7B) in all three demographic groups. However, obese metformin-treated 

diabetic CD8+ T cells had ~1.5x higher basal ECAR than healthy weight (Fig 7D), with only 

~1.2x higher basal OCR induction than healthy weight (Fig. 7C). Trends in obese non-diabetic 

OCR (Fig. 7C) and ECAR (Fig. 7D) fell in between healthy weight and obese metformin-treated 

diabetics. Additionally, obese metformin-treated diabetics had a ~3 fold lower rate for SRC. This 

followed trends of quiescent obese metformin-treated diabetic CD8+ T cells, as they did not 

reach similar levels of maximal respiration signifying activated obese metformin-treated diabetic 

CD8+ T cells had suppressed metabolic potential for energetic demand following administration 

of FCCP (Fig. 7E). Finally, no differences were observed in the ratio of basal OCR to ECAR 

between groups (Fig 7F). 

 

No significant differences between basal respiration and glycolysis for quiescent CD4+ T cells 

in euglycemic versus diabetic glucose. Despite taking the metabolic drug metformin to restore 

serum glucose levels, obese diabetic subjects still had elevated fasting glucose levels compared 

to healthy weight and obese non-diabetic subjects (Table 2). To determine if high glucose levels 

directly account for altered T cell metabolism, quiescent CD4+ T cells were assessed in 

euglycemic (5mM or 90mg/dl) or diabetic level glucose media (10mM or 180mg/dl). No 

significant differences were seen in basal OCR (Fig. 8A) or basal ECAR (Fig. 8B) for healthy 

weight CD4+ T cells cultured in either 5mM or 10mM glucose media. Healthy weight CD4+ T 

cells did exhibit higher maximal respiration and thus higher SRC in 10mM glucose, most likely 

due to increase nutrient availability (data not shown). 
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A/California/7/2009 antibody HAI titers increase following vaccination and decline at 6 

months post vaccination. Influenza specific HAI antibody titers increased following vaccination 

(Fig. 9A-B), regardless of weight or diabetic status for both 2015-2016 and 2016-2017 study 

years. No differences were seen in seroconversion rates between demographic groups, defined as 

a four-fold or greater increase in antibody titer following vaccination, confirming previously 

reported seroconversion rates for influenza vaccination in healthy weight, obese and obese 

diabetic subjects [66]. However, while not significant due to the small sample size, obese non-

diabetic subjects in for the 2015-2016 study year had a mean fold seroconversion rate of 4.25 

compared to 7.5 fold increase for healthy weight subjects (Fig. 9A). Interestingly, influenza 

specific HAI antibody titers declined at six months post-vaccination to similar levels as observed 

at one year post-vaccination (Fig 9A). Additionally, there were no differences in influenza virus 

specific levels of seroprotection between groups, deemed as having an antibody titer of 40 or 

greater (Fig. 9A-B).  

 

Age significantly correlates with quiescent CD8+ T cell basal ECAR, despite no significant 

differences in age for subject group. Using our demographic and metabolic data, we found that 

only age significantly correlated with quiescent CD8+ T cell basal glycolysis. However, there 

were no significant differences in age among subjects between the three demographic groups. 

Several measures approached significance, most notably quiescent CD8+ T cell basal glycolysis 

and incidence of influenza or ILI (p = 0.0556) (Table 3). Other notably correlations included 

incidence of Flu or ILI with activated CD4+ T cell ECAR (p = 0.111). Again, these correlations 

are influenced by the small sample size used in the study. 
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Discussion 

 Previous studies in our lab demonstrated that compared to influenza vaccinated healthy 

weight adults, T cells from obese adults vaccinated against influenza virus were impaired. 

Specifically, CD4+ and CD8+ T cells from obese adults, when exposed to pH1N1 in vitro, 

expressed less activation and functional markers. These impairments were shown to be 

independent of antigen presentation, suggesting alterations in T cells from obese adults may be 

due to their distorted metabolic environment [36]. Additionally, our lab has shown that, 

compared to healthy weight adults, obese adults have greater declines in antibody titers at one-

year post vaccination [34]. Finally, we have shown that obese adults have twice the risk of 

influenza or influenza like illness despite equivalent levels of seroconversion and seroprotection 

from influenza vaccination (Neidich et al. 2017, under review). This recent finding challenges 

the current standard for correlates of protection, suggesting that a T cell mediated response and 

not antibody threshold is required to achieve vaccine protection in obese adults. Despite this 

newfound understanding, the cause of T cell impairment in obesity remains elusive. 

Recent attention identifying the importance of cellular metabolism for lymphocyte 

function highlights a novel mechanism through which obesity may influence immunity. 

Technological advancements in the assessment of cellular metabolism using high-throughput, 

real-time measures allows for the diverse characterization of a wide array of cellular phenotypes 

and pathologies. As our understanding of how metabolism is altered in a number of pathological 

events such as infection or cancer, this rapid profiling of cellular metabolism offers tremendous 

benefits for drug screening, pathogenic phenotyping and more. In the case of obesity, this 

technological platform offers the opportunity to quickly and effectively screen for alterations in 
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aerobic glycolysis and mitochondrial respiration in live cells, thus generating insights that can be 

used to guide targeted assessments of metabolic and signaling pathways altered in obesity. 

Here, compared to influenza vaccinated healthy weight adult white women, we report 

differences in metabolic profiles for obese non-diabetic and obese metformin-treated diabetic 

adults. Quiescent PBMCs from obese non-diabetic and obese metformin-treated diabetic subjects 

demonstrated higher basal respiratory rates, suggesting global metabolic programming is altered 

in obese adults compared to healthy weight adults. Additionally, upon stimulation with the T cell 

specific mitogen, Concanavalin A, PBMCs from obese non-diabetic and obese metformin-treated 

diabetic adults had higher respiratory rates but no differences in OCR:ECAR, indicating a greater 

induction in both aerobic glycolysis and mitochondrial respiration upon stimulation. This global 

dysregulation of metabolism in PBMCs from obese subjects towards a more glycolytic and 

respiratory environment supports the hypothesis of hyperactive immune cells contributing to 

obese-associated inflammatory environments. However, due to the diversity of cell types found 

in circulating PBMCS, whether or not this global alteration in metabolism was due to differences 

in T cells was unclear.  

To better assess T cell specific metabolic differences between influenza vaccinated 

healthy weight, obese non-diabetic and obese metformin-treated diabetic adults, freshly isolated 

CD4+ and CD8+ T cells were further investigated. We found that compared to healthy weight, 

quiescent obese non-diabetic CD4+ and CD8+ T cells tended to have higher basal respiration. 

Additionally, CD4+ but not CD8+ T cells from obese non-diabetic subjects had higher trends in 

basal glycolysis. Quiescent T cells are primarily oxidative in nature, utilizing glutamine and fatty 

acid to drive catabolic metabolism in order to support homeostasis. Altered rates of OXPHOS 

and glycolysis in quiescent CD4+ and CD8+ T cells in obese non-diabetics may inhibit the 
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anabolic transition into effector T cells upon activation, thereby contributing to the impaired 

response of T cells from obese individuals to influenza virus challenge.  

Interestingly, in several cases, T cells from obese metformin-treated diabetic subjects 

displayed metabolic profiles closer to T cells from healthy weight subjects than their obese non-

diabetic counterparts. This lower metabolic profile occurred in spite of persistent elevated serum 

glucose in obese diabetic subjects. This restoration of T cell metabolism to “healthy” levels 

signifies metformin’s direct action on T cell metabolism independent of its proposed 

mechanisms of action through glucose homeostasis. Recent publications suggest that metformin 

may work to restore T cells to a homeostatic quiescent state through blockage of mTOR cascade 

signaling, thereby suppressing pro-growth metabolic signaling [63]. Treatment of T cells with 

metformin promote the development of memory CD8+ T cells through induction of fatty acid 

oxidation and suppression of glycolytic pathways via AMPK [63]. However, other studies show 

metformin’s inhibition of mTOR’s pro-growth signaling and resultant metabolic switch from 

catabolic to anabolic metabolism in CD4+ T cells occurs through an AMPK-independent manner 

[62]. Regardless of direct or indirect action, our findings demonstrate trends suggesting a 

restorative effect of metformin treatment in obese diabetic CD4+ and CD8+ T cells to their 

homeostatic quiescent state. 

Given the widespread use of metformin in type-2 diabetic patients, and its early evidence 

of potential therapeutic benefit in the prevention and treatment of cancer [64], understanding 

how metformin’s impact on T cell metabolism, especially in immune-compromised populations 

such as the obese, remains a critical and unresolved question. Our data suggests that metformin 

treatment may offer therapeutic benefits for obese adults by suppressing hyperactive metabolic 

programming in quiescent and activated CD4+ and CD8+ T cells. Given previously seen 
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impairments in T cell function of influenza vaccinated obese adults, this finding has significant 

public health implications as obese adults are at heightened risk of morbidity and mortality from 

influenza infection. Furthermore, metabolic impairments in T cell function may exist in early-

onset or childhood obesity when immune development and vaccination efforts are at a critical 

time period. Thus, therapeutic benefits of metformin treatment in obese children warrant further 

study for the possible restorative metabolic effects on T cells, thereby influencing metabolic 

impairment of T cell function for infections such as influenza.  

While much of the data shown here does not meet significance due to the small sample 

size, the trends suggest critical differences in both mitochondrial respiration and aerobic 

glycolysis between our demographic groups. Using the largest variance observed in obese non-

diabetics, as this demographic had the largest variation in metabolic parameters compared to 

healthy weight and obese metformin-treated diabetics, conservative power calculations would 

require a sample size of 15 per group to adequately assess significant differences between 

activated T cells, with quiescent T cells requiring a sample size of 9 per group. Even still, this 

report offers the first identification of altered metabolic programming in obese adults compared 

to healthy weight, suggesting obesity impacts T cell metabolism and function through altered 

metabolic flux. The metabolic difference between healthy weight and obese adults warrants 

further study as these highly metabolic cells play a critical role in supporting innate and adaptive 

immune protection and recovery from influenza virus infection.    
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Figure 3. Quiescent and Concanavalin A activated PBMCs from healthy weight, obese non-diabetic 
and obese metformin-treated diabetic adults. Quiescent (A) and ConA activated (B) PBMCs from 
healthy weight (n=2), obese non-diabetic (n=2) and obese metformin-treated diabetic (n=3) adults exhibit 
changes in basal OCR and ECAR in response to 1.0 µM olgiomycin, 0.5µM FCCP, 1.5µM antimycinA 
and 0.75µM rotenone (A-B). Quiescent PBMCs had higher basal respiration (C) in obese non-diabetic 
and obese metformin-treated diabetic cells compared to healthy weight. Activated PBMCs had higher 
rates of basal respiration and glycolysis for obese non-diabetics (C-D), but only higher rates for basal 
ECAR in activated obese non-diabetics (D). Obese non-diabetic had higher trend of SRC in quiescent 
PBMCs compared to healthy weight (ns) (E), and saw an increasing trend in OCR:ECAR from healthy 
weight to obese non-diabetic and obese metformin-treated diabetic PBMCs (F). Data are biological 
medians. Two-way ANOVA with Tukey’s multiple comparisons. 
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Figure 4. Metabolic profile of quiescent CD4+ T cells in healthy weight, obese non-diabetic and 
obese metformin-treated diabetic adults. Mitochondrial stress test of freshly isolated CD4+ T cells 
from healthy weight (n=3), obese non-diabetic (n=3) and obese metformin-treated diabetic (n=3) subjects 
exhibits changes in OCR and ECAR in response to 1.0 µM olgiomycin, 1.5µM FCCP, 1.0µM antimycinA 
and 0.1µM rotenone (A-B) in non-buffered RPMI-1640 with 10mM glucose, 2mM glutamine and 1mM 
pyruvate. Obese non-diabetics had higher trends in basal OCR (C), basal ECAR (D) and spare respiratory 
capacity (E). No differences in trends were seen for OCR:ECAR (F). Data are median ± SE. No 
significance, one-way ANOVA with Tukey’s multiple comparisons. Individual comparisons were made 
using Mann-Whitney sum rank test, no significance found. 
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Figure 5. Metabolic profile of activated CD4+ T cells in healthy weight, obese non-diabetic and 
obese metformin-treated diabetic adults. Mitochondrial stress test of anti-CD3/anti-CD28 + IL-2 
stimulated CD4+ T cells from healthy weight (n=3), obese non-diabetic (n=3) and obese metformin-
treated diabetic (n=3) subjects cultured in 5% autologous plasma exhibits changes in OCR and ECAR in 
response to 1.0 µM olgiomycin, 1.5µM FCCP, 1.0µM antimycinA and 0.1µM rotenone (A-B) in non-
buffered RPMI-1640 with 10mM glucose, 2mM glutamine and 1mM pyruvate. No differences in trends 
were seen for basal OCR (C), basal ECAR (D) or OCR:ECAR (F). Obese non-diabetic and obese 
metformin-treated diabetic stimulated CD4+ T cells had higher trends in spare respiratory capacity (E). 
Data are median ± SE. No significance, one-way ANOVA with Tukey’s multiple comparisons. Individual 
comparisons were made using Mann-Whitney sum rank test, no significance found. 
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Figure 6. Metabolic profile of quiescent CD8+ T cells in healthy weight, obese non-diabetic and 
obese metformin-treated diabetic adults. Mitochondrial stress test of fresh CD8+ T cells from healthy 
weight (n=3), obese non-diabetic (n=3) and obese metformin-treated diabetic (n=3) subjects exhibit 
changes in OCR and ECAR in response to 1.0 µM olgiomycin, 1.5µM FCCP, 1.0µM antimycinA and 
0.1µM rotenone (A-B) in non-buffered RPMI-1640 with 10mM glucose, 2mM glutamine and 1mM 
pyruvate. Higher trends in basal OCR were seen in obese non-diabetic and obese diabetic CD8+ T cells 
compared to healthy weight (C). A decreasing trend was seen in basal ECAR  (D) between groups. Obese 
metformin-treated diabetic CD8+ T cells had lower SRC and nearly two-fold higher OCR:ECAR than 
healthy weight and obese non-diabetic resting CD8+ T cells. Data are median ± SE. No significance, one-
way ANOVA with Tukey’s multiple comparisons. Individual comparisons were made using Mann-
Whitney sum rank test, no significance found.  
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Figure 7. Metabolic profile of activated CD8+ T cells in healthy weight, obese non-diabetic and 
obese metformin-treated diabetic adults. Mitochondrial stress test of anti-CD3/anti-CD28 + IL-2 
stimulated CD8+ T cells from healthy weight (n=3), obese non-diabetic (n=3) and obese metformin-
treated diabetic (n=3) subjects cultured in 5% autologous plasma exhibits changes in OCR and ECAR in 
response to 1.0 µM olgiomycin, 1.5µM FCCP, 1.0µM antimycinA and 0.1µM rotenone (A-B) in non-
buffered RPMI-1640 with 10mM glucose, 2mM glutamine and 1mM pyruvate. No differences in trends 
were seen for basal OCR (C), basal ECAR (D) or OCR:ECAR (F). Obese metformin-treated diabetic 
stimulated CD8+ T cells had greatly reduced spare respiratory capacity (E). Data are median ± SE. No 
significance, one-way ANOVA with Tukey’s multiple comparisons. Individual comparisons were made 
using Mann-Whitney sum rank test, no significance found. 
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Figure 8. Influenza specific HAI antibody titers for A/California/7/2009(H1N1) from 2015-2016 and 
2016-2017 vaccine years. Virus specific antibody titers from healthy weight (n=3), obese non-diabetic 
(n=3) and obese diabetic (n=3) adult subjects vaccinated against Influenza virus increase following 
vaccination from day 0 to30-days post vaccination (A-B). Obese diabetic’s had a greater increase in IgG1 
antibody titer at 30 days post vaccination than obese non-diabetic (p<0.05), but difference from healthy 
weight (B). Antibody titers decline marginally by 6 months post vaccination. Data from both vaccine 
years were combined, as the same strain was included in both vaccines. Data are mean ± SEM. Two-way 
ANOVA and Tukey’s multiple comparisons were used to determine significance.  
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Figure 9. Metabolic profile of quiescent CD4+ T cells from influenza vaccinated healthy weight 
adults in euglycemic or diabetic glucose conditions. Quiescent CD4+ T cells in euglycemic (5mM or 
90mg/dl) glucose versus diabetic (10mM glucose or 180mg/dl) glucose conditions. No significant 
differences were seen in basal OCR (A) or ECAR (B) depending on glucose concentration. SRC was 
significantly higher, most likely due to excess nutrient availability suggesting glucose concentrations can 
become limits in culture. Data are mean ± SEM. Student’s T test.  
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Table 3. Summary data from Spearman’s correlation coefficients. Age was found to positively 
correlate with quiescent CD8+ ECAR data despite no significant differences between group ages. Other 
values may contribute in larger samples sizes.  
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CHAPTER III – SIGNIFICANCE & FUTURE DIRECTIONS 

 This investigation provides the first evidence of metabolic alterations of human T cells in 

the context of obesity. Quiescent CD4+ and CD8+ T cells from obese non-diabetic subjects 

showed trends of higher mitochondrial respiration, with CD4+ T cells from obese non-diabetics 

also exhibiting higher levels of basal respiration. Interesting, quiescent CD8+ T cell from obese 

non-diabetics had slightly lower rates of basal glycolysis, suggesting obesity’s impact on T cell 

metabolism is a complex multifactorial mechanism that differs based on individual cellular 

demand. Furthermore, obese metformin-treated diabetics, who despite medication still 

maintained elevated fasting glucose levels, had trends in CD4+ and CD8+ T cell metabolism 

similar to healthy weight controls.  This finding suggests that metformin acts directly on T cell 

metabolism, possibly helping to restore it to normal homeostatic levels. 

 Metformin has been implicated as a metabolic therapeutic for the prevention and 

treatment of cancer [64]. Given the incredible similarity between cancer metabolism and T cell 

metabolism, it is possible that metformin works to restore “normal” metabolic programming of 

these highly metabolic cell lineages. In the context of influenza and obesity, metformin treatment 

may restore homeostatic T cell metabolism to an optimal quiescent range, such that upon 

exposure to influenza virus, obese cells can then appropriately respond without over-responding 

to a hyper-inflammatory state. Furthermore, metformin treatment may support anti-inflammatory 

T regulatory cells, thereby helping to reduce the inflammatory microenvironment associated with 

excess adiposity. These initial findings provide a potential mechanistic link between previously 
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shown functional impairments in influenza specific T cell responses and metabolic dysregulation 

in obese adults.  

In 2014, influenza ranked as the 8th leading cause of death in the United States, with a 

population mortality rate of 1.4 deaths per 100,000 occurring due to influenza infection [69]. 

Given the growing population of adults classified as obese, this increase in obesity puts a 

increasing proportion of adults at risk of severe influenza infection and poor health outcomes due 

to T cell driven metabolic alterations of immunity against influenza virus. In the context of 

public health, these findings provide a potential mechanistic cause for obesity associated immune 

impairments, resulting in increased susceptibility to severe influenza outcomes. Furthermore, 

obesity’s impact on the immune system may influence developing immune systems like those of 

children classified as obese, increasing the susceptibility to influenza as well as other infectious 

diseases.  

The major strength of this work involves its novel identification of metabolic alterations 

of T cell metabolism in obese adults. It provides the first look into altered metabolic profiles of 

CD4+ and CD8+ T cells in healthy weight and obese adults. Furthermore, it provides evidence to 

support the metabolic drug metformin as a direct therapeutic target, impacting T cell metabolism. 

Finally, this work demonstrates that obesity driven alterations in T cell metabolism is most likely 

not glucose driven, as previously thought. Instead, other factors of obesity such as dysregulations 

in pro-growth tyrosine kinases such as insulin and EGF, as well as hormone adipokines like 

leptin may account for the altered metabolic programming of T cells from obese adults.  

This work also had several limitations. The sample size in this investigation did not yield 

enough power to accurately identify statistically significant differences between several 

metabolic conditions. Furthermore, the sample population was limited based on subject 
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availability and thus in an effort to minimize potential variability between subjects, a tightly 

defined study population was used. This limits the diversity of the study and reduces 

generalizability to males, other races, younger or older adults, etc. Secondly, this work was 

unable to directly tie alterations in T cell metabolism to impairments in T cell function. Finally, 

this work did not assess any other metabolic components of obesity aside from glucose 

metabolism.  

Future experiments should address several of these limitations by expanding the sample 

size as well as metabolic and functional parameters assessed to establish a stronger 

understanding of obesity’s influence on T cells. For example, creating a flow cytometry panel to 

correlate metabolic parameters with T cell activation and function would provide a more direct 

understanding of physiologic effects of obesity on T cell metabolism. Several key markers that 

should be assessed include CD40, CD69 and CD28, which are activation markers of activated T 

cells. Other expression markers like PD-1, an exhaustion signal upregulated during senescence, 

would indicate an exhausted state of T cells. These markers coupled with metabolic data would 

elicit a deeper understanding of how metabolic profiles of mitochondrial respiration and 

glycolysis influence T cell activation. Additionally, by including functional markers such as IFN-

γ, granyzme B, and IL-12R (an IFN-γ receptor which promotes the differentiation of Th1 T 

cells), cells from healthy weight and obese adults can be further characterized into more distinct 

optimally functional or impaired phenotypes. 

Metabolic conditions should also be further investigated. We showed trends in heighted 

mitochondrial respiration of glucose derived pyruvate and glutamine in quiescent CD4+ and 

CD8+ T cells. Additionally, we showed there was no difference in basal respiration of quiescent 

CD4+ T cells in euglycemic (5mM glucose) versus diabetic (10mM glucose) conditions. 
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However, quiescent T cells also utilize fatty acid for homeostatic metabolism. Future 

experiments should investigate whether oxidation of fatty acids differs between T cells from 

healthy weight and obese adults in both a quiescent state and activated state. By using 

radiolabeled palmitate or oleate in combination with non-labeled fatty acid, glucose and 

glutamine, beta-oxidation and/or incorporation of 13C-palmitate or 13C-oleate would demonstrate 

how T cells from healthy weight and obese adults utilize fatty acids in quiescent and activated 

states. Given the potential for significantly higher circulating levels of fatty acids in obese adults, 

this type of experiment would elicit a more accurate physiological understanding of how T cells 

from obese adults use lipid to sustain homeostasis, or perhaps explain why in an activated state, 

functional production of cytokines cannot occur as very little fatty acid oxidation should occur. 

Finally, looking at other factors such as hormones (insulin, letpin, adiponectin), cytokines 

(IL-2, IL-12, etc.) or microbiome-produced metabolites (short-chain fatty acids, etc.) would 

provide a more-thorough mechanistic understanding of how dyregulated factors of obesity 

influence T cell metabolism. Using techniques such as ELIS to quantify serum cytokines or 

hormones might account for higher or lower metabolic profiles of quiescent and activated T 

cells. Other future experiments might include measuring the distribution of microbiota in obese 

adults and coupling this information to metabolic factors in obese sera and resultant profiles of 

healthy weight and obese T cells to see if particular metabolites influence immune cell 

metabolism. 

Taken together, this work builds on previously shown impairments in T cell responses to 

influenza vaccination in obese adults. T cell metabolic differences between healthy weight and 

obese adults present a novel mechanism through which T cell function may be compromised; 

supporting the notion of obesity associated pro-inflammatory T cell subtype differentiation and 
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impairment of resting or quiescent T cell populations. Furthermore, we demonstrate that 

influenza specific HAI antibody titers from healthy weight, obese non-diabetic and obese 

metformin-treated diabetic adults respond to vaccine at 30 days, but fall at six months post 

vaccination, with no differences between groups. This data suggests that T cell mediated 

responses, and not antibody seroconversion or seroprotection, should be considered when 

assessing for correlates of protection from influenza infection in obese adults. The metabolic 

difference between healthy weight and obese adults warrants further study as these highly 

metabolic cells play a critical role in supporting innate and adaptive immune protection and 

recovery from influenza virus infection.    
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