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ABSTRACT

Hongtao Zhang: Statistical Methods for Correlated Data From Observational Studies
(Under the direction of Jianwen Cai and Haibo Zhou)

First, we consider case-cohort studies with multiple disease outcomes. To investigate

the effect of a risk factor on different diseases, multiple case-cohort studies are usually

conducted. To compare the effect of a risk factor on different types of diseases, times

to different disease events need to be modeled simultaneously. Existing case-cohort es-

timators for multiple disease outcomes utilize only the relevant covariate information in

cases and subcohort controls, though many covariates are measured for everyone in the

full cohort. Intuitively, making full use of the relevant covariate information can improve

efficiency. To this end, we consider a class of doubly-weighted estimators for both regular

and generalized case-cohort studies with multiple disease outcomes. The asymptotic prop-

erties of the proposed estimators are derived and our simulation studies show that a gain

in efficiency can be achieved with a properly chosen weight function. We illustrate the

proposed method with a data set from Atherosclerosis Risk in Communities (ARIC) study.

Second, we investigate marginal structural Cox model for clusters of correlated failure

time observations. In many studies, subjects in the same community form natural clusters

and are thus correlated. We formulate marginal structural Cox model for this type of data

and prove the consistency and asymptotic normality of the estimator. Simulation studies

show that marginal structural Cox model perform properly by yielding unbiased estimate

and satisfactory confidence interval coverage. The proposed method is implemented using

a claim data assessing the effectiveness of INSPIRIS home visiting health care program.

Third, we study cluster-based PDS. When the outcome is continuous, the two-stage

PDS is an appealing sampling scheme that allows investigators to obtain a more informa-
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tive sample. In the Collaborative Perinatal Project (CPP), subjects are clustered within each

clinic. Statistical method needs to properly account for cluster-level random effects under

PDS scheme. We propose estimation and inference procedures based on a semiparametric

profile likelihood function. We show that our estimator is consistent and asymptotically

normal. In simulation studies, our cluster-based PDS method provides more efficient esti-

mators compared to linear mixed effect models on an SRS of the same size. We apply the

method to CPP data.
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CHAPTER 1: INTRODUCTION

In medical studies, multivariate data may occur on various occasions. For example,

one subject may experience multiple outcomes of interest. On the other hand, subjects

sharing similar characteristics can form intrinsically correlated clusters. Proper methods

are needed to analyze such data. This dissertation concentrates on multivariate statistical

methods in observation studies, possibly with biased sampling schemes.

Using Full Cohort Information to Improve the Efficiency of Multivariate Marginal
Hazard Model for Case-Cohort Studies

As all studies are conducted with a limited budget, the maximum study sizes are often

restricted by the cost of the exposure ascertainment. Cost-effective sampling designs have

long been desired and play an important role in success of many biological studies.

When the outcome is time-to-event, a popular biased sampling design is case-cohort

study. First formally introduced in Prentice (1986), case-cohort design requires a random

sample of the full cohort, or ‘subcohort’. All subjects of the full cohort are followed until

failure or censoring, but complete covariate information is only collected for subjects who

experienced failure and for the subjects selected into the subcohort. Case-cohort design is

a special form of two-phase sampling design (Breslow and Wellner 2007). In some studies,

certain covariates are available on all subjects in the full cohort, while other covariate infor-

mation that is costly to collect is only assembled among the cases and subcohort controls.

The former is referred to as the first-phase covariate data, and the latter as second-phase

covariate data. Most case-cohort methods discard the first-phase covariate data in the non-

subcohort controls, hence it is intuitive that one may gain efficiency by making full use
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of the first-phase covariate data. For example, the Atherosclerosis Risk in Communities

(ARIC) study is a large cohort study that involves 15,792 participants. One important aim

of ARIC study was to assess lipoprotein-associated phospholipase A2 (Lp-PLA2) as poten-

tial risk factor of atherosclerosis and its sequelae, so that physicians may consider making

Lp-PLA2 a complementary risk factor beyond the traditional ones. Given the large cohort

size and funding limitation, measuring Lp-PLA2 in labs for all the participants would be

infeasible. Alternatively, case-cohort studies were carried out: Lp-PLA2 were obtained

only for patients suffering cardiovascular heart disease (CHD) or stroke, together with a

random subcohort that were event-free. Investigators (Ballantyne et al. 2004, 2005) stud-

ied candidate biomarkers of inflammation as possible risk factors. However, the first-phase

covariate information such as LDL/HDL cholesterol level was not fully utilized. Another

feature of ARIC study is that multiple disease (e.g CHD and incident stroke) outcomes

were monitored simultaneously. Kang and Cai (2009) proposed a weighted estimating

equation approach to fit a marginal proportional hazard model with multiple diseases. Kim

et al. (2013) used a modified weight function that was empirically shown to improve the ef-

ficiency over Kang and Cai (2009) model. In the first topic, we consider a doubly-weighted

approach that utilizes all covariate information to improve the efficiency.

Marginal Structural Cox Models

Randomized clinical trials are generally considered the ‘gold standard’ in establishing

causal relationship due to its ability to balance distributions of subject characteristics across

treatment groups. Since the treatment assignment is not confounded with the patient’s

baseline characteristics, treatment effect can be estimated simply by comparing outcomes

between treated and untreated groups.

Due to ethical and other concerns, randomized trials are not always an option. Re-

searchers sometimes rely on observational study designs to investigate the relationship be-
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tween exposure and outcome. One major challenge in analyzing data from observational

studies is confounding by indication, which is introduced if prognostic factor(s) can be re-

lated to both treatment history and outcome. Recent years have seen increasing interests in

observational comparative effective research (CER), mainly due to the growing adoption

of electronic medical record (EMR) database.

In many observational studies, whether a subject will receive active treatment or not

is determined by a number of individual-level prognostic factors such as age and co-

morbidity. Meanwhile, patients from the same community or clinic form natural clusters,

whose members share a similar tendency to be assigned active treatment or otherwise. The

INSPIRIS Inc. home visiting provider (HVP) program, for example, was initiated to deliver

an intensive program that includes home visits by physicians and nurse practitioners and

telephonic case management for a high-risk subset of high risk seniors. It is believed that

this HVP program has the potential to increase quality of care and reduce total health care

expenditures for elders with chronic conditions. Like other studies, individual’s medical

history and other factors played an important role in determining the program eligibility.

Also, enrollment of HVP program was offered in selected communities in the greater De-

troit, Ann Arbor/Lansing and Grand Rapids areas, Michigan. Therefore, subjects living in

vicinity form clusters and are potentially correlated. So far, the program has accumulated

1,082 participants and claim data are also available on 10,712 non-participants. First in-

cidence of hospitalization after January 1, 2010, which is the date of initial enrollment of

HVP program, is the event of interest. The investigators are interested in whether HVP

program can identify health problems at an early stage and increases hospitalizations for

preventive treatment. Marginal structural Cox model (Hernan et al. 2000) is useful in an-

alyzing observational data to draw causal inference. The second topic of this dissertation

is to investigate the performance of the marginal structural Cox model with clusters and

derive its asymptotic properties.
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Mixed Effect Model for Probability-dependent Sampling Design

There are numerous situations where the outcome of interest is measured continuously.

Outcome-dependent sampling (ODS) scheme (Zhou et al. 2002, Weaver and Zhou 2005)

was a two-stage sampling procedure proposed to obtain a more informative sample by over-

represent the two distributional tails ofX , the exposure that is expensive to ascertain. ODS

design is a popular choice for studies that values of outcome Y are known for all subjects,

but the exposure variableX may be expensive or difficult to ascertain. The data structure of

the ODS sample consists of a first-phase simple random sample (SRS) and a second-phase

simple random sample from two tails of Y . ODS scheme is useful when the investigators

have some knowledge about the relationship between Y and X . For example, if Y has a

linear relationship withX , subjects sampled from two tails of Y distribution are more likely

to have X-value that falls in its two distributional tails. However, such prior knowledge

is not always feasible. To this end, probability-dependent sampling (PDS) scheme (Zhou

et al. 2014) allows investigators to over-sample the two tails of X distribution without

having knowledge of X in advance. In some studies, e.g. Collaborative Perinatal Project,

participants in the same clinic form natural clusters and are potentially correlated. The

third topic of this dissertation is to extend PDS design to cluster-based studies.

In the next chapter, we will review the relevant literature in these areas.
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CHAPTER 2: LITERATURE REVIEW

2.1. Marginal Structural Cox Model

2.1.1 Cox Model and Extension to Multivariate Case

Cox proportional hazard model (Cox 1972) is the most popular class of model used to

analyze time-to-event data. For n independent subjects, the Cox model can be expressed

as:

λ(t) = λ0(t)exp{βTX(t)},

where λ0(t) is the unspecified nonparametric baseline hazard function and β is the un-

known parameters associated with the vector of possibly time-dependent covariates X(t).

Estimation of Cox model is based on partial likelihood (Cox 1975). The maximum partial

likelihood estimate (MPLE) β̂, maximizes the partial likelihood function

L(β) =
n∏
i=1

∏
t≥0

{ eβ
TXi(t)∑n

j=1 Yj(t)e
βTXi(t)

}∆Ni(t),

where Y (t) is the at-risk process and ∆Ni(t) = 1 if the ith subject has event of inter-

est (fails) at time t and 0 otherwise. Andersen and Gill (1982) investigated the asymp-

totic properties of MPLE β̂ using martingale theory. Under mild regularity conditions, the

MPLE β̂ is consistent for the true parameter β0 and is asymptotically normal

n1/2(β̂ − β0)→d N(0, I1(β0)−1),

in which I1(β0) = 〈n−1/2U(τ ; β0)〉.
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In many studies, subjects may be intrinsically correlated. For example, patients that are

treated in the same medical clinic form clusters and are likely to be correlated. Another

example is that multiple diseases may be monitored simultaneously for one subject. Either

example leads to the multivariate survival analysis scenario. Currently, there are in general

two classes of models to analyze multivariate time-to-event data. One class is known as

the frailty models (Hougaard 1995). We use subscript k = 1, . . . , K to index the clusters

and i = 1, . . . , n0 to index patients or observations within a cluster. Frailty models have

the form

λki(t|Qk) = Qkλ0(t)exp{βTXki(t)},

in which the cluster-specific random effect Qk is assumed to follow a known distribution.

Qk resembles a random effect in linear mixed effect models and it is commonly assumed

to follow Gamma distribution (Clayton and Cuzick 1985) or positive stable distribution

(Hougaard 1986).

The other class is the marginal models. Marginal models leaves the nature of depen-

dence structure completely unspecified, rendering them more robust. Marginal models

are usually of greater interest when the dependence structure is not of interest. Wei et al.

(1989) suggested fitting a marginal Cox proportional hazard model that can be formulated

as

λki(t) = λ0k(t)exp{βTkXki(t)}. (2.1)

Each cluster k has a distinct baseline hazard function, which suits well with the multi-

ple disease situation. Model (2.1) can be implemented using standard software packages.

Asymptotic results also confirm that the MPLE is a consistent estimator whose variance

can be approximated by a robust estimator that is in the sandwich form.

Lee et al. (1992) considered a proportional hazard model with a common baseline
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hazard function across all clusters:

λki(t) = λ0(t)exp{βTXki(t)}. (2.2)

The asymptotic results were similar to those of model (2.1).

2.1.2 Marginal Structural Cox Model

Marginal structural models (Robins et al. 2000, Hernan et al. 2001) are a class of mod-

els used in causal inference. Such models handle the issue of time-dependent confounding

in evaluation of the efficacy of interventions by inverse probability weighting for receipt

of treatment. Marginal structural Cox model (Hernan et al. 2000) for time-to-event data

is an important extension. It takes a form that resembles the regular Cox model, but is

formulated using counterfactual arguments. Consider an observational study where the

outcome of interest is survival time T . Let A(t) indicate the observed treatment(s) re-

ceived which can take various forms. For example, it could be an indicator of treatment

initiated at baseline, an arbitrary function of dose level, or a time-dependent indicator

of treatment received at time t. Let L(t) denote a vector of covariates and L(0) repre-

sents baseline covariates. Use overbars to represent history up to time t (t included) such

that A(t) = {A(u) : 0 ≤ u ≤ t}. L(t) is defined analogously. Let a be any treat-

ment, potentially contrary to what was observed, that a subject could receive. Specifically,

a = {a(t) : 0 ≤ t ≤ τ}, where τ is the duration of the study. Observed treatment history

A(t) can be considered a particular realization of a(t). There will be a failure time Ta

associated with each possible realization of a. The simplest case is when we only consider

the treatment received at baseline. The counterfactual is thus two-dimensional, with two

possible outcomes T1 and T0, representing the failure time had the subject been assigned

to experimental and control group, respectively.
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We need the following three assumptions that are needed for marginal structural models

Assumption 2.1.1. T = Ta for any a such that a(t) = A(t), t ≤ T

Assumption 2.1.2. pr(A(t)|A(t−), L(t−)) > 0, for any t ∈ [0, τ ] such that

pr(A(t−), L(t−)) > 0

Assumption 2.1.3. Ta ⊥⊥ A(t)|A(t−), L(t−), for any a

Assumptions 2.1.1 and 2.1.2 are usually referred to as consistency and positivity as-

sumptions, respectively (Hernan and Robins 2006, Cole and Frangakis 2009). Assumption

2.1.1 states that an individual’s observed failure time T is precisely the potential failure

time Ta under a certain observed exposure history a. Assumption 2.1.2 states that the prob-

ability of receiving any particular treatment at time t, given treatment and covariate history

up to t, is greater than zero. Assumption 2.1.3 is known as no unmeasured confounding

(Hernan et al. 2000). In practice, only assumption 2.1.2 is testable.

We consider the marginal structural Cox model for the hazard of failure at time t had

the subject received treatment a

λTa(t) = λ0(t)exp{βT0 a(t)}, (2.3)

where λ0(t) is an unspecified baseline hazard function and β0 is the unknown parameter

vector. exp{β0} will have the interpretation of average treatment hazard ratio.

Estimation of parameters in model (2.3) is carried out via inverse probability weighting

technique. Before proceeding to likelihood, we need to discretize the study duration [0, τ ]

so that weight functions can be defined. Let 0 ≤ t1 < t2 < · · · < tD ≤ τ beD distinct time

points, which can be distinct observed times (event or not), or time of scheduled follow-up
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visits. Define

W (t) =
∏
td≤t

1

pr[A(td)|A(t−d ), L(td)]
. (2.4)

At any given time t, the subject is inversely weighted by the probability of receiving the

observed history of treatment up to that moment. By inverse probability weighting, we

create a hypothetical pseudo-population where L(t) ⊥⊥ A(t)|A(t−) holds at time t.

When L(t) contains confounders that are strongly correlated to treatment A(t), the

estimate weight Ŵ (t) can vary drastically, resulting in high sampling variability in β̂W .

As a remedy, Robins et al. (2000) and Hernan et al. (2000) suggested using a stabilized

version of W (t)

w(t) =
∏
td≤t

pr[A(td)|A(t−d )]

pr[A(td)|A(t−d ), L(td)]
. (2.5)

In (2.5), the excessive contribution of W (t) can be offset by the probability conditional

on treatment history solely on the numerator. Using either W (t) or w(t) will result in a

weighted partial likelihood function that can be maximized using Newton-Raphson itera-

tive algorithm. In her dissertation, Lee (2013) proved the asymptotic properties of marginal

structural Cox model for the case-cohort design when subjects are independent.

2.2. Statistical Methods for Biased Sampling Designs

Because randomized trials are not always an option, researchers sometimes rely on

observational study designs to investigate the relationship between outcome and exposure

and other covariates. As all studies are conducted with a limited budget, the maximum

study sizes are often restricted by the cost of the exposure ascertainment. Cost-effective

study designs have long been desired and play an important role in success of many biolog-

ical studies. Among them, the biased sampling design play an important role. Depending

on the nature of outcome of interest, different sampling strategies are utilized. When the
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response is intrinsically binary, case-control designs (Prentice and Pyke 1979) are often

preferred. The idea of case-control design is to over-sample cases that are believed to be

more informative. Ordinary analysis can then be performed on the case-control sample.

On the other hand, there are numerous situations where the outcome of interest is

measured continuously. Case-control design cannot be naturally extended to continu-

ous outcome setting. In practice, investigators often dichotomize the outcome based on

whether the outcome is above or below a certain cutoff (potentially subjective). How-

ever, it is obvious that doing so will discard the information in the continuous outcome.

Also, the results may be sensitive to the choice of cutoff. Zhou et al. (2002) proposed

an outcome-dependent sampling (ODS) scheme to address this issue. To fix notation, let

Y denote the continuous outcome variable and X the vector of covariates. Assume that

Y can be partitioned into K mutually exclusive and exhaustive strata by known constants

−∞ = a0 < a1 < · · · < aK−1 < aK = ∞ and let the kth stratum be represented

by Ck = (ak−1, ak], k = 1, . . . , K. The data structure of the ODS sample consists of

an overall simple random sample (SRS) of size n0 and a simple random sample of size

n1, . . . , nK from each of the K strata. The latter is referred to as ‘supplemental sample’.

Let nV =
∑K

k=0 nk be the total size of the ODS sample and N be the sample size in

the population. Borrowing terms from the measurement error literature, we refer to the

ODS sample as the ‘validation sample’, and refer to the rest nV̄ = N − nV observation

as the non-validation sample. Let V represent the index set of all observations in the val-

idation sample, and let V̄ represent the index set of all observations in the non-validation

sample. Their corresponding partitions Vk and V̄k are also defined. Although response

Y is observed for all observations, complete covariate information X is measured only

in the validation sample. Zhou et al. (2002) utilized only the validation sample. Let GX

and gX denote the cumulative distribution and density functions of X , respectively. Also,
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F (u) = pr(Y ≤ u) and F (u|x) = pr(Y ≤ u|x). Then the validation sample likelihood is

L(β,GX) =

{ n0∏
i=1

fβ(y0i|x0i)gX(x0i)

}
×
[ K∏
k=1

nk∏
j=1

fβ(ykj, xkj|ykj ∈ Ck)
]

=

{ n0∏
i=1

fβ(y0i|x0i)×
K∏
k=1

nk∏
j=1

fβ(ykj|xkj)
F (ak|xkj)− F (ak−1|xkj)

}

×
{ n0∏

i=1

gX(x0i)×
K∏
k=1

nk∏
j=1

gX(xkj)[F (ak|xkj)− F (ak−1|xkj)]
F (ak)− F (ak−1)

}
= L1(β)× L2(β,GX). (2.6)

The second component in (2.6), L2(β,GX), is a function of β because the condi-

tional distribution function F (·|x) depends upon β. Without specifying GX , inference

about β can be obtained by maximizing L1(β) with respect to β. Zhou et al. (2002)

elected to leave GX unspecified, making it an infinite-dimension nuisance parameter, and

used Lagrange multiplier arguments to derive a semiparametric empirical likelihood func-

tion. Their discussion focused on partitioning Y into 3 strata and over-sample its two

tails C1, C3. They profiled L2(β,GX) by fixing β and obtaining the empirical likeli-

hood function of GX over all distributions whose support contains the observed X values.

During the process, four more parameters were introduced η = (π1, π3, ν1, ν3)T where

π1 = F (a1), π3 = F̄ (a3) = 1 − F (a3) and ν1, ν3 were Lagrange multipliers. The param-

eter estimator for θ = (βT , ηT )T can be obtained iteratively via Newton-Raphson method

and its asymptotic properties were derived.

Weaver and Zhou (2005) made attempt to utilize the information in the non-validation

sample. It was assumed that, in addition to the complete observations in the ODS, in-

formation regarding stratum membership would be retained for the observations in the

non-validation sample. Clearly, this assumption would be satisfied as long as continuous

response Y is measured for all N observations. Let fY (Yj; β) =
∫
fY (Yj|x; β)dGX(x) be

11



the unspecified marginal density of Y . The full sample likelihood is proportional to

LF (β,GX) =

[∏
i∈V

fβ(Yi|Xi)

]
×
[∏
i∈V

dGX(Xi)

]
×
[∏
j∈V̄

fY (Yj; β)

]
. (2.7)

Denote the number of observations in the SRS that belong to the kth stratum as n0,k.

Nk is defined likewise for the population. Weaver and Zhou (2005) proposed to substitute

the unspecified GX with its consistent empirical estimator, that is,

ĜX(x) =
K∑
k=1

Nk

N
Ĝk(x),where Ĝk(x) =

∑
i∈Vk

I{Xi ≤ x}
nk + n0,k

.

The resultant unbiased estimator for fY (Yj; β) is then

f̂Y (Yj; β) =
K∑
k=1

Nk

N(nk + n0,k)

∑
i∈Vk

fβ(Yj|Xi). (2.8)

Substituting (2.8) into (2.7) and applying the log-transformation, one can obtain the

estimated log-likelihood

l̂F (β) =

[∑
i∈V

logfβ(Yi|Xi)

]
+

[∑
j∈V̄

log

{ K∑
k=1

Nk

N(nk + n0,k)

∑
i∈Vk

fβ(Yj|Xi)

}]
.

Consistent estimator is again found using Newton-Raphson method.

In practice, there may exist an auxiliary variable W , which is available for all N ob-

servations, for the exposure X . It is thus necessary to incorporate the information implied

by W into the statistical analysis. Let Z be the covariates which are observed for all sub-

jects. It is assumed that Z is related to the conditional density of Y . On the other hand,
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W provides no additional information about Y when X and Z are known. Zhou et al.

(2011b) considered an outcome-auxiliary-dependent sampling (OADS) scheme. In addi-

tion to the K partitions of Y , assume that W can be partitioned into J mutually exclusive

and exhaustive strata by known constants −∞ = b0 < b1 < · · · < bJ−1 < bJ = ∞

and let the jth stratum be represented by Bj = (bj−1, bj], j = 1, . . . , J . Then the popula-

tion can be partitioned into T = K × J strata on the domain of Y ×W . For notational

simplicity, use ∆t, t = 1, . . . , T to denote the strata. V, V̄ and corresponding partitions

Vt, V̄t are defined analogously. The outcome-auxiliary-dependent sample also consists of

two components: an overall SRS and a supplemental sample of size nt from tth stratum.

These two components make up the validation sample, whose complement is referred to

as non-validation sample. Using similar arguments as in Weaver and Zhou (2005), the full

sample with likelihood

LF (β) =

[ T∏
t=0

∏
i∈Vt

fβ(Yi|Zi, Xi)dG(Xi|Zi,Wi)

]

×
[ T∏
t=0

∏
i∈V̄t

∫
X

fβ(Yi|Zi, x)dG(x|Zi,Wi)

]
. (2.9)

G(X|Z,W ) is again estimated non-parametrically. Let S denote the d−dimensional

information components of (Z,W ) in the sense thatG(X|Z,W ) = G(X|S) almost surely.

Zhou et al. (2011b) proposed to estimate G(x|s) via kernel smoothing. Specifically,

Ĝ(x|s) =
T∑
t=1

π̂t(s)Ĝt(x|s),

where

π̂t(s) =

∑N
i=1 I{(Yi,Wi) ∈ ∆t}φh(Si − s)∑N

i=1 φh(Si − s)
, Ĝt(x|s) =

∑
i∈Vt I{Xi ≤ xφh(Si − s)}∑

i∈Vt φh(Si − s)
.
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φh(·) here is a d−dimensional kernel function with bandwidth h. Substituting Ĝ(x|s) into

(2.9) to obtain the estimated likelihood function, then one can employ Newton-Raphson

method to obtain the estimate of β and consequently make inferences. In some studies, ob-

servations may be intrinsically clustered (e.g. within medical clinics) and statistical meth-

ods need to account for the cluster-level random effect. Xu and Zhou (2012) investigated

cluster-based OADS. They postulated a linear mixed effect model for fβ(y|x, z)

Ymti = β0 + β1Xmti + β2Zmti + um + emti (2.10)

The additional subscript m = 1, . . . ,M indexes the clusters. um ∼ N(0, σ2
u), emti ∼

N(0, σ2) and um ⊥⊥ emti. Their likelihood function had a similar form as in Zhou et al.

(2011b). However, numerical integration technique was implemented to address the com-

plexity introduced by the cluster-level random effect um. Wang and Zhou (2010) consid-

ered the OADS design with categorical response variable. Estimation and inference were

carried out based on an estimated likelihood function.

So far in this section, the mean model linking the response to the exposure of interestX

and covariates Z was assumed to be linear. Specifically, the linear model is E(Y |X,Z) =

βTX + γTZ, where β and γ are unknown regression parameters. In many studies, it is

desirable to make such relationship flexible. Zhou et al. (2011a) and Qin and Zhou (2011)

proposed a partial linear model leaving the functional form of exposure X unspecified. On

the other hand, Zhou et al. (2011c) employed a similar partial linear model, but left the

functional form of covariate Z unspecified. Other variations of the original ODS design

were explored. Ding et al. (2012) considered a special situation in which the exposure

variables are fully unobservable but only the summation of them can be observed. This

type of data is usually encountered in genetic studies. ODS design can also be implemented

in studies where the response is time-to-event (Ding et al. 2014).
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Recently, a probability-dependent sampling (PDS) scheme has been proposed (Zhou

et al. 2014). Assume that the domain of the exposure X is partitioned into three mutually

exclusive intervals: (−∞, xL] ∪ (xL, xU ] ∪ (xU ,∞). Like ODS, an SRS is drawn from

the population at the first stage. Before supplemental sampling, a model for E(X|Y, Z) is

fitted using the first-phase SRS. On the basis of this model, the chances of a new subject’s

X conditional on Y = y and Z = z, will be in (−∞, xL] and (xU ,∞) are predicted by

φ̂1(y, z) = p̂r(X < xL|Y, Z) and φ̂3(y, z) = p̂r(X > xU |Y, Z) respectively. Then supple-

mental samples are drawn from those whose X are more likely to fall on the distributional

tails of X . For example, random samples can be drawn from those with φ̂1(y, z) > c1 or

with φ̂3(y, z) > c3, where c1 and c3 are thresholds. Assume that fβ(y|x, z) has the linear

form

Y = β0 + β1X + β2Z + e,

where e is normal random error. Let G(X,Z) and g(X,Z) denote the joint CDF and PDF

of (X,Z). Define

πk = pr{φk(Y, Z) ≥ ck}

=

∫ ∫ ∫
fβ(Y |X,Z)g(X,Z)I{(Y, Z) : φk(Y, Z) ≥ ck}dY dXdZ.

The log-likelihood for the validation sample is

l(β, {pi}, π1, π3) =

{∑
i∈V

logfβ(Yi|Xi, Zi)

}
+

{∑
i∈V

log(pi)− n1log(π1)− n3log(π3)

}
= l1(β) + l2(β, {pi}, π1, π3), (2.11)

where pi = g(Xi, Zi). Using Lagrange multiplier arguments, one can profiled l2 in (2.11)

over {pi} by fixing (β, π1, π3) and obtaining the empirical likelihood function of {pi} over

all distributions whose support contains the observed values of X and Z. The estimate
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β that maximizes the resulting semiparametric empirical log-likelihood is found using

Newton-Raphson algorithm. In their simulation study, PDS estimator was shown to have

improved efficiency over the ODS estimator.

We have so far focused on reviewing statistical methods for biased sampling when

response Y is completely continuously measured. When the outcome of interest is time-to-

event, subject to censoring, an important biased sampling design is case-cohort sampling.

We review the related literature in the next section.

2.3. Statistical Methods for Case-cohort Design

2.3.1 Univariate Case-cohort Design

As an alternative design to reduce cost and achieve the same goal as a full cohort study,

case-cohort design was first formally introduced in Prentice (1986). The design involves

the collection of covariate data for all cases in the full study cohort and for a small random

sample of size ñ from the entire cohort called the subcohort, denoted by C. The subcohort

in a given stratum constitutes the comparison set of cases occurring at a range of failure

times. The subcohort also provides a basis for covariate monitoring during the course of

cohort follow-up. The relative risk regression model considered had the form

λ{t : Z(u), 0 ≤ u < t} = λ0(t)r{βTZ(t)}, (2.12)

where r(x) is a fixed function satisfying r(0) = 1. The resultant pseudo likelihood took

the form

L̃(β) =
n∏
i=1

(rii/
∑
l∈R̃(ti)

rli)
∆i , (2.13)
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where rli = Yl(ti)r{βTZl(ti)}. Assuming no tied times, the risk set R̃(ti) contains all the

at-risk subjects in the subcohort at time ti, and the subject who experienced uncensored

failure at ti. Since (2.13) does not generally possess a partial likelihood interpretation,

it was termed pseudo likelihood. The maximum pseudo likelihood estimate β̃P satisfies

U(β̃P ) = 0, where the pseudo likelihood estimating function

U(β) =
n∑
i=1

Ui(β) =
n∑
i=1

∆i(cii −
∑
l∈R̃(ti)

bli/
∑
l∈R̃(ti)

rli) (2.14)

in which bli = Yl(ti)Zl(ti)r
′{βTZl(ti)}, cli = bli(r{β′Zl(ti)})−1 and r′(u) = dr(u)/du.

Under some mild regularity conditions, n−1/2U(β0) was shown to converge to a normal

variate with mean 0 and variance matrixA, where

A =
n∑
i=1

[var{Ui(β)}+ 2
∑

{k|tk<ti}

cov{Uk(β), Ui(β)}].

Consequently, n−1/2(β̃P − β0) was shown to converge in distribution to a zero mean nor-

mal distribution with a sandwich type variance matrix S = Ω−1AΩ−1, which can be

consistently estimated by nI(β̃P )−1Ṽ (β̃P )I(β̃P )−1 where

Ṽ (β) =
n∑
j=1

∆j{vjj + 2∆̃(tj)
∑

{k|tk<tj}

∆kvkj},

with

vkj = −
∑

i∈R̃(tj)

(
Bk + bjk − bik
Rk + rjk − rik

)′(cij −
Bj

Rj

)rijR
−1
j ,

Rj =
∑
l∈R̃(tj)

rlj, Bj =
∑
l∈R̃(tj)

blj,

and ∆̃(t) = 1 if R̃(t) 6= C and 0 otherwise.
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A natural estimator of the cumulative baseline hazard function can be written

Λ̂0(t) = ñn−1

∫ t

0

[∑
l∈C

Yl(w)r{β̃P
T
Zl(w)}

]−1

dN̄(w), (2.15)

where N̄ = N1 + · · · + Nn. It was shown that the results could be extended to a stratified

design in which a baseline covariate is used to partition the entire cohort into Q strata and

stratum-specific relative risk regression models are specified.

Self and Prentice (1988) developed the asymptotic theory for the case-cohort maximum

pseudo likelihood estimator and related quantities using a combination of martingale and

finite population convergence results. They considered an estimator, denoted by β̃SP , that

maximizes the pseudo likelihood function very similar to (2.13). The pseudo log-likelihood

can be written

logL̃(β, t) =
∑
i∈C

∫ t

0

log(r{βTZi(u)})dNi(u)−
∫ t

0

log

[∑
l∈C

Yl(u)r{βTZi(u)}
]
dN̄(u).

(2.16)

Under mild regularity conditions plus additional assumptions regarding the stability

of subcohort averages, n−1/2Ũ(β) was shown to converge to a zero mean normal random

variable whose covariance matrix being Σ(β0) = D(β0) +A(β0) in which D(β0) can be

consistently estimated by the information matrix generated by the pseudo log-likelihood

(2.16) and the matrixA(β0) reflects the efficiency loss induced by the sampling of the sub-

cohort. Following Taylor expansion arguments, n1/2(β̃SP − β0) was shown to converge in

distribution to a zero mean Gaussian random variable with covariance matrix D(β0)−1 +

D(β0)−1A(β0)D(β0)−1. An estimate of the cumulative baseline hazard function Λ0(t)

has the same form of (2.15), except for substituting β̃P with β̃SP .

The only difference between β̃P and β̃SP is the construction of the comparison risk set
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R̃(t): the risk set in Prentice (1986) includes all subcohort members at risk at t plus any

individuals who are not in the subcohort but who experienced failure at t, while the risk

set in Self and Prentice (1988) only contains members in the subcohort. As a result, the

two asymptotic covariance matrices are slightly different. However, it was shown that β̃P

and β̃SP are asymptotically equivalent provided an individual’s contributions to S(1) and

S(0) are asymptotically negligible. The covariance matrix associated with β̃P was shown

to converge toD(β0)−1 +D(β0)−1A(β0)D(β0)−1.

Both variance estimators proposed by Prentice (1986) and Self and Prentice (1988)

have complicated form. The application of case-cohort design was hindered partly due to

the perceived difficulty in variance computation. Attempts were made to address this issue.

Wacholder et al. (1989) proposed (1) a variance estimator based on superpopulation under

the null hypothesis H0 : β = 0 (2) a variance estimator obtained from a modified bootstrap

resampling procedure. However, the drawbacks of the two estimators are obvious: the

former is only valid under the null hypothesis, while the latter can be highly computational

intensive when dealing with large studies. It was noted that the former estimator may be

useful in predicting the power of the case-cohort design, and its efficiency, compared to the

full cohort study.

A robust variance estimator was proposed in Barlow (1994), based on the influence of

an individual observation on the overall score. Barlow’s estimator bypassed the explicit

estimation of A(β0) in Self and Prentice (1988) and was shown to be a jackknife variance

estimator. Specifically, he considered a weighted version of pseudo likelihood function:

the conditional probability of failure at time tj is given by

pi(tj) =
Yi(tj)wi(tj)ri(tj)∑n
k=1 Yk(tj)wk(tj)rk(tj)

,

where ri(t) = exp{βTZi(t)} and the weight wi(t) reflecting subcohort membership and
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current failure status is defined as

wi(t) =


1 if dNi(t) = 1,

m(t)/m̃(t) if dNi(t) = 0 and i ∈ C,

0 if dNi(t) = 0 and i /∈ C.

m(t) is the number of disease-free individuals in the cohort at risk at time t and m̃(t) is the

number disease-free in the subcohort at time t. The time-invariant estimator of m(t)/m̃(t)

is given by n/ñ. Estimation of β0 follows directly from the pseudo log-likelihood function∑
t

∑
i log(pi(t))dNi(t) . The estimator β̃B maximizing the pseudo log-likelihood has a

robust variance estimator given by ˆvar(β̃B) = n−1
∑n

i=1 êiê
T
i where êi = β̃B − β̃B(−i)

is the change in β̃B if the ith individual were deleted. To estimate êi, let ci(t) denote the

influence of an individual observation on the overall score for person i at time t, we have

ci(t) =

∫ t

0

Yi(u)[dNi(u)− λi(u)][Zi(u)− E(u)]dN̄(u),

where E(t) is the conditional expectation of the covariate at time t. Then êi can be approx-

imated by I−1(β̃B)ĉi(t), with I−1(β) being the inverse of the information matrix generated

by the pseudo log-likelihood and

ĉi(t) =

∫ t

0

Yi(u)[dNi(u)− p̂i(u)][Zi(u)− Ê(u)]dN̄(u).

p̂i(u), Ê(u) are corresponding estimates of pi(u), E(u) by substituting β with β̃B.

Lin and Ying (1993) provided a general solution to the problem of missing covari-

ate data under the Cox regression model. Case-cohort design can be treated as a special

case under their framework. Suppose that the data consist of i.i.d. random quintuplets
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{Xi,∆i, Zi(·), H0i(·),H i(·)}, where Zi(·) is a p-dimensional covariate vector that may

not be completely observed. H0i(t) is the subcohort indicator which equals 1 if the ith

subject is in the subcohort at time t. H i(t) is a p × p diagonal matrix with indicator

functions {H1i(t), . . . , Hpi(t)} as diagonal elements, where Hji = 1 if Zji(t) is observed

and Hji = 0 otherwise (j = 1, . . . , p). H0i(t) determines whether or not the ith subject

is included in the estimation of Z̄(β, t) and Hji(t) indicates whether or not the ith sub-

ject contributes directly to the jth component of the estimating function. Under MCAR

assumption, the approximate partial likelihood score function for estimating β0 can be

written as

ŨH(β) =
n∑
i=1

∆iH i(Xi){Zi(Xi)− ZH(β,Xi)}

where ZH(β, t) = S
(1)
H (β, t)/S

(0)
H (β, t) and

S
(d)
H = n−1

n∑
i=1

H0i(t)Yi(t)exp{βTZi(t)}Zi(t)⊗d.

The APLE β̃H is the root to ŨH(β) = 0. In addition to the common regularity conditions,

two more are required to derive the asymptotic properties of β̃H :

(A) All covariates have bounded total variations, that is,
∫∞

0
|dZji(t)|+ |Zji(0)| ≤ K for

some K > 0 and all i, j

(B) There exist k0 > 0 and η0 > 0 such that for j = 0, 1, . . . , p and r = 0, 1,

sup
|d|≤n−k0

[
n−1

∣∣∣∣ n∑
i=1

{Hji(t)−Hji(t+ d)}
∣∣∣∣+ |hj(t)− hj(t+ d)|

]
= op(n

−(1/2)−η0)
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and

sup
|d|≤n−k0

[
n−1

∥∥∥∥ n∑
i=1

{Zi(t)−Zi(t+ d)}
∥∥∥∥+ ‖s(r)(β0, t)− s(r)(β0, t+ d)‖

]
=op(n

−(1/2)−η0),

where s(r) are the limits of S(r)
H (β, t).

Then n1/2(β̃H − β0) was shown to follow a normal distribution with mean 0 and sand-

wich type covariance matrixA(β0)−1B(β0)A(β0)−1 where

A(β) = lim
n→∞

−n−1∂ŨH(β)

∂β
,

B(β) = E{W 1(β)⊗2},

W i(β) = ∆iH i(Xi){Zi(Xi)− zH(β,Xi)}

−
∫ Xi

0

{h(t)/h0(t)}H0i(t)exp{βTZi(t)}{Zi(t)− zH(β, t)}λ0(t)dt,

and zH(β, t) = s
(1)
H (β, t)/s

(0)
H (β, t), s(d)

H = E[S
(0)
H ], h(t) = E[H i(t)] and hj(t) =

E[Hj1(t)].

The proposed framework incorporates many sampling designs. In particular, for case-

cohort designs with time-independent covariates, it is clear that (Hi1(t), . . . , Hip(t)) are

time-invariant and h(t) ≡ (h). The covariance estimator is much easier to compute than

those of Prentice (1986) and Self and Prentice (1988), especially in the presence of time-

dependent covariates. Furthermore, incomplete covariate measurements on the cases are

allowed. The estimator of the cumulative baseline hazard function is given by Λ̂(β̃H , t)

Λ̂(β, t) =
n∑
i=1

I(Xi ≤ t)∆iH0i(Xi)

nS
(0)
H (β̃H , Xi)

.

22



Chen and Lo (1999) derived a class of estimating equations for case-cohort sampling, each

depending on a different estimator of the population distribution, which lead naturally to

simple estimators that improve on pseudo likelihood estimator of Prentice (1986). Their

key idea that enables an improvement is that, in constructing the risk set to be used in

estimating equations, the information in all case samples should be completely rather than

only partially utilized. The pseudo likelihood estimating equation is given by

U(β) =
n∑
i=1

∫ τ

0

[
zi(t)−

∑
j∈C∪{i} Yj(t)zj(t)e

βT zj(t)∑
j∈C∪{i} Yj(t)e

βT zj(t)

]
dNi(t) = 0 (2.17)

The second term in (2.17) estimates m(t), the conditional mean of Z given X = t and

∆ = 1, through the identity

E[Z|X = t,∆ = 1] =
E(Zeβ

TZI(X≥t))

E(eβTZI(X≥t))

=
pE(Zeβ

TZI(X≥t)|∆ = 1) + (1− p)E(Zeβ
TZI(X≥t)|∆ = 0)

pE(eβTZI(X≥t)|∆ = 1) + (1− p)E(eβTZI(X≥t)|∆ = 0)
(2.18)

where p = pr(∆ = 1). Based on (2.18), they derived a class of estimating equations

that yield different case-cohort estimators. Let N(n) be the size of the cohort (subcohort),

N1(n1) and N0(n0) be the numbers of cases and controls in the cohort (subcohort), respec-

tively. Also, use C1(C̃1) and C0(C̃0) to denote, respectively, the index sets of all cases and

all controls in the cohort (subcohort). The subscript t restricts an index set to individuals

at risk time t, so that the at risk indicator Yj(t) is no longer needed in (2.18). Depend-

ing on whether the full cohort is well-defined and whether failure probability p is known,

they used different strategies to estimate (2.18) and substitute it in (2.17). Specificly, they

considered the following scenarios:
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Case 1. let n̂1/n be the estimator of p. Then β̂1 solves U1(β) = 0 where U1(β) is

n∑
i=1

∫ τ

0

[
zi(t)−

{n1/(nN1)}
∑

j∈C1
t
zj(t)e

βT zj(t) + (1/n)
∑

j∈C̃0
t
zj(t)e

βT zj(t)

{n1/(nN1)}
∑

j∈C1
t
eβT zj(t) + (1/n)

∑
j∈C̃0

t
eβT zj(t)

]
dNi(t)

Case 2. If the full cohort is well defined so that N,N1, N0 are known. Substitue p with

a better estimator p̂ = N1/N . The resultant β̂2 solves U2(β) = 0 where U2(β) is

n∑
i=1

∫ τ

0

[
zi(t)−

(1/N)
∑

j∈C1
t
zj(t)e

βT zj(t) + {N0/(Nn0)}
∑

j∈C̃0
t
zj(t)e

βT zj(t)

(1/N)
∑

j∈C1
t
eβT zj(t) + {N0/(Nn0)}

∑
j∈C̃0

t
eβT zj(t)

]
dNi(t)

Case 3. If the population case percentage p is known. Then β̂3 solves U3(β) = 0 where

U3(β) is

n∑
i=1

∫ τ

0

[
zi(t)−

(p/N1)
∑

j∈C1
t
zj(t)e

βT zj(t) + {(1− p)/n0}
∑

j∈C̃0
t
zj(t)e

βT zj(t)

(p/N1)
∑

j∈C1
t
eβT zj(t) + {(1− p)/n0}

∑
j∈C̃0

t
eβT zj(t)

]
dNi(t)

Chen and Lo (1999) proved that β̂1, β̂2, β̂3 are all consistent and their respective asymp-

totic variances were derived. Their limited simulation study showed that β̂2 performed the

best in the sense that it yielded the smallest standard error.

Borgan et al. (2000) considered stratified case-cohort sampling designs and proposed

three estimator based on different ways to construct risk sets and to estimate inverse sam-

pling proportion wk(t), where k = 1, . . . , K indexes strata in the full cohort based on a

stratum variable that is available for everyone. Their work was extended by Samuelsen

et al. (2007), who considered stratified generalized case-cohort design with surrogate vari-

able that are predictive of the main exposure variables.

In the aim of improving the efficiency, Kulich and Lin (2004) proposed a class of
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weighted estimating equations under stratified case-cohort design. They considered the

situation when some covariates (usually covariates that are less expensive to collect, e.g.,

age and blood type) are available for the full cohort, while other costly covariates (e.g.,

genotype) are only in the case-cohort sample. The former was termed first-phase covariate

data and the latter second-phase covariate data. The idea was to improve the efficiency by

making fuller use of the first-phase covariate data.

Consider a cohort of n subjects who can be divided into K mutually exclusive strata

based on a discrete stratum variable V , which is available for everyone in the full cohort.

Let αk = pr(ξ = 1|V = k), (k = 1, . . . , K) where ξ is the subcohort indicator. Let nk

be the number of subjects in the kth stratum and let qk ≡ pr(V = k). They proposed

so-called doubly weighted estimator so that a separate set of (time dependent) weights is

used for each covariate in Cox model to estimate the sampling proportion. In specific, they

definedAik(t), subject to certain regularity conditions, as a diagonal matrix with m poten-

tially different random processes on the diagonal, where m is the number of covariates in

the target Cox model with common baseline hazard. Then the quantity analogous to the

subcohort sampling probabilities is given by

α̂k(t) =

{ nk∑
i=1

(1−∆ki)Aik(t)

}−1{ nk∑
i=1

ξki(1−∆ki)Aki(t)

}
.

Accordingly, the time-dependent weight function has the form

%ki(t) = ∆kiIm + (1−∆ki)ξkiα̂k(t)
−1.

Then the at-risk covariate average is estimated by:

Z̄KL(β, t) ≡
{
S

(0)
KL(β, t)

}−1

S
(1)
KL(β, t)
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where S(d)
KL(β, t) ≡ n−1

∑K
k=1

∑nk

i=1 %ki(t)Yki(t)exp{βTZki(t)}Zki(t)⊗d. Note S(1)
KL(β, t)

is an m-vector, whereas S(0)
KL(β, t) is a diagonal m×m matrix. The pseudo score function

is defined as

UKL(β) =
K∑
k=1

nk∑
i=1

∫ τ

0

{Zki(t)− Z̄KL(β, t)}dNki(t). (2.19)

Their estimator, β̂KL, solves the equation UKL(β) = 0. It was shown that

√
n(β̂KL − β0) −→d N(0, I−1

F + I−1
F ΣKLI−1

F ).

Like many of its counterparts in other case-cohort estimators, the variance estimator con-

sists of two parts: the variance of full-data partial likelihood estimator plus the efficiency

loss due to case-cohort sampling. IF is the limiting information matrix generated by (2.19).

It is not intuitive to estimate the cumulative baseline hazard function Λ0(t) since the

quantity S(0)
KL(β, t) is not a scalar when dealing with more than one covariates in the Cox

model. Alternatively, Kulich and Lin (2004) proposed to estimate Λ0(t) using an existing

method, that is,

Λ̂0(t) = n−1

∫ t

0

{S(0)
Λ (u, β̂Λ)}−1

∑
k,i

dNki(u),

in which the footnote Λ indicates that the quantity comes from an existing method (Kulich

and Lin (2004) used estimator II in Borgan et al. (2000), denoted as β̂B).

Through arguments in semiparametric efficiency, they claimed the optimal form of

second level weightAki(t) is given by

Aki(t) ≡ diag[{Ẑki − Z̄B(t, β̂B)}exp{β̂TBẐki}Yki(t)] (2.20)

where Ẑki equals Zki if the subject is selected in the case-cohort sample. Otherwise, the

missing part in Zki is imputed from a rich model regressing the missing covariate(s) on
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all observed covariates. It was pointed out that β̂KL may not always perform well in finite

sample sizes. Hence, the authors also developed a combined doubly weighted estimator

β̂CDW and derived its asymptotic properties. In their simulation, they considered the case

when a surrogate of the missing covariate is available.

2.3.2 Multivariate Case-cohort Design

Despite the progress in the methods for univariate case-cohort studies, there is a very

limited collection of literature addressing the analysis of case-cohort data with multiple

disease outcomes. Lu and Shih (2006) focused their discussion on large study cohort with

many clusters for which the investigators seek to evaluate the effect of risk factors or the

effect of an intervention program at a population average level. Assume that the full cohort

consists of n independent clusters, and each cluster contains mi correlated individuals, for

i = 1, . . . , n. It is assumed that the individuals within the same cluster are exchange-

able conditional on covariates. Due to the clustered feature of the full cohort, modified

case-cohort sampling procedures are needed. Lu and Shih (2006) proposed three designs

corresponding to various scenarios in the full cohort:

Design A: suppose that a complete roster of clusters is available for the full cohort,

then randomly sample r individuals per cluster, and collect covariate data from the selected

individuals and all failures from the entire cohort.

Design B: when the full cohort is large and enumeration of every cluster is impossible,

then randomly sample ñ clusters without replacement and collect covariate data from all

members of each selected cluster and all failures from the entire cohort.

Design C: In design B, if the cluster size is large, combine the principle of design A.

Their approach was built upon the work by Lee et al. (1992), in which a common
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cumulative baseline hazard function Λ0(t) and common regression coefficients β0 were

assumed. Estimation and asymptotic inference under design A is different from those

under design B and C, due to the fact that sampling ñ clusters without replacement induces

correlation among the ñ clusters. LetHi be the cluster indicator that takes value 1 if cluster

i belongs to the subcohort, and 0 otherwise, and ηij be the individual indicator that equals

1 if individual (i, j) is selected in the subcohort, and 0 otherwise. Under design A, the

estimator β̂ solves the estimating equation UA(β) = 0 where

UA(β) =
n∑
i=1

mi∑
j=1

[
Zij(Xij)− Ē(β,Xij)

]
∆ij.

Here,

Ē(β, u) = S̄(1)(β, u)/S̄(0)(β, u),

S̄(d)(β, u) = n−1

n∑
i=1

mi∑
j=1

ηijYij(u)exp{βTZij(u)}Zij(u)
⊗
d.

Under mild regulatory conditions, β̂ was shown to be consistent and asymptotically nor-

mal. The variance of n1/2(β̂ − β0) is given by A(β0)−1Ω(β0)A(β0)−1, where Ω(β0) =

E{W 1(β0)
⊗

2},

W 1(β) =
m∑
j=1

∫ τ

0

{Zij(u)− z̄(β, u)}

× [dNij(u)− ηijYij(u)exp{βTZij(u)}/{αrs(0)(β, u)}dF (u)],

αr =
r

m
.

Under designs B and C, the corresponding estimating equation is very similar to that under
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design A, except that S̄(d)(β, u) is defined as

n−1

n∑
i=1

mi∑
j=1

HiηijYij(u)exp{βTZij(u)}Zij(u)
⊗
d

With additional conditions, the estimator β̃ was also consistent, asymptotically normal

and the variance isA(β0)−1Ω̃(β0)A(β0)−1. Since Ω̃(β) has a complicated expression, the

authors also proposed alternative ways to estimate it, including a modified bootstrap resam-

pling procedure based on Wacholder et al. (1989). Through simulation studies, they con-

cluded that the statistical efficiency is improved when sampling greater ñ clusters and/or

more individuals per cluster (r).

Unlike case-cohort design with clusters, for multiple disease outcomes, the common

baseline assumption is not realistic and could lead to biased estimates if the baseline hazard

function is indeed different for different disease outcomes. The work by Kang and Cai

(2009) addressed this issue by considering a marginal disease-specific Cox proportional

hazard model

λik(t) = Yik(t)λ0k(t)e
βT
0 Zik(t) (2.21)

in which k = 1, . . . , K denotes different diseases and i = 1, . . . , n denotes subjects in the

full cohort. They also extended their estimation and inference procedure for generalized

case-cohort designs with multiple outcomes. The design is in effect a two-stage sampling

procedure. First, select a subcohort of fixed size ñ from the cohort by simple random

sampling. Use ξi to denote the subcohort indicator that equals 1 if subject i is included in

the subcohort. After the sampling of a subcohort, subsequent samplings of cases outside

the subcohort follow. For the kth disease, sample a fixed number of ñc,k cases that are

outside the subcohort by simple random sampling without replacement. Let ηik be the

indicator for the ith subject outside the subcohort with the kth disease being selected into

the sample. Define α̃ = pr(ξi = 1) = ñ/n and q̃k = pr(ηik = 1|∆ik = 1, ξi = 0) =
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ñc,k/(nk − ñk), where nk(ñk) denotes the number of the kth disease cases in the cohort

(subcohort). The potentially time-varying weight function is given by

wik(t) = ∆ikξi + (1−∆ik)ξiα̂k(t)
−1 + ∆ik(1− ξi)ηikq̂k(t)−1 (2.22)

in which

α̂k(t) =

∑n
i=1(1−∆ik)ξiYik(t)∑n
i=1(1−∆ik)Yik(t)

,

q̂k(t) =

∑n
i=1 ∆ik(1− ξi)ηikYik(t)∑n
i=1 ∆ik(1− ξi)Yik(t)

.

Therefore, the weighted estimating equation has the form

UKC(β) =
n∑
i=1

K∑
k=1

∫ τ

0

wik(t){Zik(t)− Z̄k(β, t)}dNik(t). (2.23)

Note that, in original case-cohort design, wik(t) is not required in (2.23) since all cases

are sampled and each has wik(t) ≡ 1. For generalized case-cohort design, however, it

cannot be omitted due to the case sampling. Denote the resultant estimator as β̂KC , which

was shown to be consistent and asymptotically normal. The variance-covariance matrix of

n1/2(β̂KC − β0) is given byA(β0)−1Σ(β0)A(β0)−1 in which

Σ(β0) = Q(β0) +
1− α̃
α̃

V I(β0) + (1− α̃)
∑
k

pr(∆1k = 1)
1− q̃k
q̃k

V II
k (β0), (2.24)
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where

Q(β0) = E[
∑
k

Mz̄,1k(β0)]
⊗

2,

V I(β0) = E[
∑
k

(1−∆1k)

·
∫ τ

0

[R1k(β0, t)− µk(t)−1Y1k(t)E[(1−∆1k)R1k(β0, t)]}]dΛ0k(t)]
⊗

2,

V II
k (β0) = E{[Mz̄,1k(β0)−

∫ τ

0

θk(t)
−1Y1k(t)E[∆1kdMz̄,1k(β0)]]

⊗
2|∆1k = 1, ξ1 = 0}.

A(β0) is the information matrix generated by (2.23). Also,

Z̃ik(β, t) = Zik(t)− z̄k(β, t),

Mik(β, t) = Nik(t)−
∫ t

0

Yik(u)eβ
TZik(u)dΛ0k(u),

Mz̄,ik(β) =

∫ τ

0

Z̃ik(β, t)dMik(t),

Rik(β, t) = Yik(t)Z̃ik(β, t)e
βTZik(u),

µk(t) = E{(1−∆1k)Y1k(t)},

θk(t) = E{Y1k(t)|∆1k = 1}.

The baseline cumulative hazard function Λ0k can be consistently estimated by

Λ̂0k(β̂KC , t) =

∫ τ

0

∑n
i=1 dNik(t)

nŜ(0)(β̂KC , u)
.

The variance-covariance matrix is estimated by plugging in consistent empirical estimators

of corresponding components. Kim et al. (2013) attempted to improve the efficiency over

Kang and Cai (2009) by making use of information on all outcomes. Their weighted
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estimator used the weight function

ψik(t) =

{
1−

K∏
j=1

(1−∆ij)

}
+

K∏
j=1

(1−∆ij)ξiα̃
−1
k (t),

where α̃k(t) =
∑n

i=1 ξi{
∏K

j=1(1 −∆ij)}Yik(t)/
∑n

i=1{
∏K

j=1(1 −∆ij)}Yik(t). Their esti-

mator was shown to be consistent and asymptotically normal, with a sandwich-type vari-

ance. Simulation studies confirmed the efficiency gain in finite sample.
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CHAPTER 3: MORE EFFICIENT CASE-COHORT ESTIMATORS

3.1. Introduction

Case-cohort design is widely used in large cohort studies when it is prohibitively costly

to assemble covariate history for all subjects in the full cohort. First introduced in Prentice

(1986), case-cohort design requires a random sample in the full cohort, or ‘subcohort’.

All subjects in the full cohort are followed until failure or censoring occurs, but complete

covariate information is only collected for subjects who experienced failure and for those

subjects selected into the subcohort. Case-cohort design is a special form of two-phase

sampling design (Breslow and Wellner 2007).

For data from case-cohort studies for a single disease outcome, many methods have

been proposed under the Cox proportional hazard model (Cox 1972) framework. Prentice

(1986) and Self and Prentice (1988) studied a pseudo-likelihood approach, which modified

the partial likelihood (Cox 1975) by weighting the contributions of cases and subcohort

controls differently. Barlow (1994) provided an easier alternative approach to compute the

asymptotic variance. Chen and Lo (1999) used a refined procedure to estimate the at-risk

average to achieve efficiency gain. Borgan et al. (2000) considered a stratified case-cohort

design and used time-varying weights based on the at-risk process to improve the efficiency

of the parameter estimates. When it is of interest to compare the effect of a risk factor on

different diseases, marginal models are appealing. Despite the advances in methods for

univariate case-cohort designs, literature on the marginal models for case-cohort data with

multiple disease outcomes is scarce. Kang and Cai (2009) proposed a weighted estimating

equation approach to fit a marginal proportional hazard model with multiple diseases. Kim

et al. (2013) proposed a modified weight function that used all available disease status to
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improve efficiency. Both of these methods only used the covariate information collected

on cases and subjects in the subcohort.

In many studies, certain covariates are available on all subjects in the full cohort, while

other covariate information that is costly to collect is only assembled among the cases

and subjects in the subcohort. The former is referred to as the first-phase covariate data,

and the latter as second-phase covariate data. For example, the Atherosclerosis Risk in

Communities (ARIC) study is a large cohort study that involved 15,792 participants. One

important aim of ARIC study was to assess lipoprotein-associated phospholipase A2 (Lp-

PLA2) as potential risk factor of atherosclerosis and its sequelae, so that physicians may

consider making Lp-PLA2 a complementary risk factor beyond the traditional ones. Given

the large cohort size and funding limitation, measuring Lp-PLA2 in labs for all the partic-

ipants would be infeasible. Alternatively, case-cohort studies were carried out: Lp-PLA2

were obtained only for participants suffering cardiovascular heart disease (CHD) or stroke,

together with a subcohort that were free of CHD or stroke (Ballantyne et al. 2004, 2005).

Lp-PLA2 is thus the second-phase covariate and the first-phase covariates are the informa-

tion collected on the full cohort at the cohort visit, such as race, gender, lipid measure-

ments, etc. To compare the effect of Lp-PLA2 on the incident stroke and CHD, the two

disease outcomes need to be modeled simultaneously to properly account for their correla-

tion. The methods proposed by Kang and Cai (2009) and Kim et al. (2013) can be applied

in this situation. However, only covariate information collected on the cases and subjects

in the subcohort are used. It is desirable to use relevant covariate information collected

on the full cohort to improve efficiency. For a single survival outcome, Kulich and Lin

(2004) proposed a doubly-weighted estimator that used all available first-phase covariate

data and postulated a regression model for second-phase covariate(s) on first-phase covari-

ate(s). However, with multiple diseases, to our knowledge, no work has been done to fully

utilize the first-phase covariates. In this paper, we aim to investigate a doubly-weighted

approach to improve efficiency with multiple diseases with data from multiple traditional

34



case-cohort studies. Furthermore, we will also consider generalized case-cohort designs.

Generalized case-cohort designs are usually conducted when the disease is not rare, but

there is limited resources in biospecimen. Under such situation, instead of taking all the

cases, a random sample of cases outside the subcohort will be drawn (Cai and Zeng 2007,

Kang and Cai 2009). It will be of interest to examine the doubly-weighted approach for

the generalized case-cohort studies.

In this paper, we focus on the analysis of time-to-event data with multiple disease out-

comes and consider a doubly-weighted approach with the aim of improving the efficiency

under (generalized) case-cohort design. Section 3.2 formulates the doubly-weighted esti-

mating equation framework. Asymptotic properties are presented in section 3.3. In sec-

tion 3.4 we report the simulation results. ARIC study was analyzed in section 3.5. We give

some concluding remarks in section 3.6.

3.2. Model and Estimation

3.2.1 Notations and Model Definition

Suppose that there are n independent subjects in the full cohort andK disease outcomes

of interest. Consider independent vectors of potential failure times Ti = (Ti1, . . . , TiK)T ,

i = 1, . . . , n, k = 1, . . . , K. Similarly, we use Ci = (Ci1, . . . , CiK)T to denote the poten-

tial right censoring time vectors. In practice, it is common to have Ci1 = . . . CiK = Ci.

The observed time Xik = Tik ∧ Cik. Let ∆ik = I(Tik ≤ Cik) denote the event indicator,

Nik(t) = I(Xik ≤ t,∆ik = 1) the counting process, and Yik(t) = I(Xik ≥ t) the at-risk

process for disease k of subject i, respectively. Let Zik(t) be a p × 1 potentially time-

dependent covariate vector that can be decomposed into two components: a p1 × 1 vector

of first-phase covariates Vik(t), and a p2 × 1 vector of second-phase covariates Wik(t).

The time-dependent covariates are assumed to be ‘external’ in the sense that they are not
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affected by the outcome processes (Kalbfleisch and Prentice 2002). We assemble all the

covariates into a vector Zi = (Zi1, . . . , ZiK)T . Finally, τ is the study end time.

Suppose that potential failure time Tik arises from a Cox-type proportional marginal

hazards model (Cai and Prentice 1995)

λik(t|Zik(t)) = Yik(t)λ0k(t)e
βT
0 Zik(t), (3.1)

where λ0k(t) is the unspecified, disease-specific baseline hazard function and β0 is a p× 1

vector of fixed and unknown regression parameters. Disease-specific covariate effects can

be accommodated by defining β∗ = (βT1 , . . . , β
T
K)T andZik(t)∗ = (0Ti1, . . . , Zik(t)

T , . . . , 0TiK)

where βk denotes the disease-k-specific effect for covariate Zik(t), k = 1, ..., K. Under

the two systems of notation, we have βTk Zik(t) = β∗TZik(t)
∗.

3.2.2 Estimation

If the data were complete, for d = 0, 1, 2, define S(d)
k,F (β, t) = n−1

∑n
i=1 Yik(t)Zik(t)

⊗deβ
TZik(t),

with a⊗0 = 1, a⊗1 = a, a⊗2 = aaT . The relative risk parameter β0 can be estimated by

solving the pseudo partial likelihood score equation

UF (β) =
n∑
i=1

K∑
k=1

∫ τ

0

{Zik(t)− Z̄k,F (β, t)}dNik(t) = 0, (3.2)

where Z̄k,F (β, t) = S
(1)
k,F (β, t)/S

(0)
k,F (β, t). Under the case-cohort design, (3.2) cannot be

calculated because covariate vector Zik(t) is not fully observed for subjects that are neither

in the subcohort nor among sampled cases. Instead, we consider a weighted version of

pseudo likelihood score function in which information from a completely observed subject

represents multi-fold information from potentially missing subjects.
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Assume that we sample without replacement to obtain a subcohort of size ñ. Subcohort

sampling is followed by the sampling of non-subcohort cases, that is, for disease k, we

sample mk subjects without replacement from cases that are outside the subcohort. Let

ξi be an indicator of subcohort membership which equals 1 if subject i is sampled into

the subcohort and 0 otherwise. Similarly, we define ηik as the indicator for the ith subject

outside the subcohort with the kth disease being selected into the sample. For any i, the

subcohort sampling probability α̃ = Pr(ξi = 1) = ñ/n and disease-specific case sampling

probability q̃k = Pr(ηik = 1|∆ik = 1, ξi = 0) = mk/(nk − ñk), where nk and ñk denote

the number of cases for the kth disease in the cohort and in the subcohort, respectively.

Marginal proportional hazards model for case-cohort studies with multiple disease out-

comes was first investigated by Kang and Cai (2009), who embedded the at-risk processes

in estimating α̃ and q̃k. The motivation of using the doubly-weighted estimator arises from

the intuition that one could incorporate additional information beyond the at-risk processes,

hence, obtain a more efficient estimator. Further, it is desirable to have the flexibility of

weighting each covariate in (3.1) differently, which could lead to improved precision. We

hereafter use the superscript/subscript ‘KC’ and ‘DW’ to indicate that the quantity, func-

tion or estimate is obtained from implementing the β̃II estimator in Kang and Cai (2009)

and our doubly-weighted estimator, respectively.

Let

w̃ik(t) = ∆ikξiIp + (1−∆ik)ξiα̂k(t)
−1 + ∆ik(1− ξi)ηikq̂k(t)−1,

where

α̂k(t) = {
n∑
i=1

(1−∆ik)Aik(t)}−1{
n∑
i=1

(1−∆ik)ξiAik(t)}, (3.3)

and

q̂k(t) = {
n∑
i=1

∆ik(1− ξi)Bik(t)}−1{
n∑
i=1

∆ik(1− ξi)ηikBik(t)}, (3.4)
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where Aik(t) and Bik(t) denote diagonal matrices with p potentially different random pro-

cesses on their respective diagonals. Each of the p covariates in model (3.1) can have its

dedicated process to estimate the subcohort sampling probability α̂k,l(t) and case sampling

probability q̂k,l(t), l = 1, . . . , p. Define S(d)
k,DW (β, t) = n−1

∑n
i=1 w̃ik(t)Yik(t)Zik(t)

⊗deβ
TZik(t), d =

0, 1, 2, and the at-risk average process Z̄k,DW (β, t) = {S(0)
k,DW (β, t)}−1{S(1)

k,DW (β, t)}. We

propose to obtain β̂DW by solving a doubly-weighted score function:

UDW (β) =
n∑
i=1

K∑
k=1

∫ τ

0

w̃ik(t){Zik(t)− Z̄k,DW (β, t)}dNik(t) = 0. (3.5)

Unlike other weighting schemes where weights and S(0)
k (β, t) are scalar functions, both

S
(0)
k,DW (β, t) and w̃ik(t) in the doubly-weighted estimating equation in (3.5) are p× p diag-

onal matrices. The second level weights, Aik(t) and Bik(t) in (3.3) and (3.4), are diagonal

matrices with p potentially different random processes on their respective diagonals. Kang

and Cai (2009) estimator is a special case of the doubly-weighted estimator class by setting

both Aik(t) and Bik(t) to Yik(t) · Ip. The estimator in Kim et al. (2013) also belongs to this

class by setting Aik(t) = {
∏K

j=1(1−∆ij)}Yik(t) and Bik(t) is not applicable under tradi-

tional case-cohort study. Another choice of second level weight is similar to the ‘optimal’

weight proposed in Kulich and Lin (2004). It was a p× p diagonal matrix in the form of

Aik(t) = diag
[
{Ẑik(t)− Z̄k,KC(β̂KC , t)}exp{β̂TKCẐik(t)}Yik(t)

]
, (3.6)

where β̂KC and Z̄k,KC(β̂KC , t) were parameter estimate and estimated at-risk average pro-

cess obtained from implementing the Kang and Cai (2009) model. Ẑik = (Ẑik,1, . . . , Ẑik,p)
T

was a p-vector of observed or estimated covariates. Calculating weight (3.6) requires an-

other consistent and asymptotically normal multivariate case-cohort estimator. Other con-

sistent estimators for the two quantities can also be used.
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Doubly-weighted estimator β̂DW can be obtained via Newton-Raphson algorithm by

iteratively solving (3.5) until convergence criterion is met. Specifically, the estimator in the

step k+ 1 is β(k+1)
DW = β

(k)
DW −DDW (β

(k)
DW )−1UDW (β

(k)
DW ), where DDW (β) is the derivative

of UDW (β) with respect to β. Due to the matrix nature of S(0)
k,DW (β, t), special attention is

needed to compute DDW (β). Explicit form of DDW (β) is given in section 3.7.

We propose to use a Breslow-Aalen type estimator for the baseline cumulative hazard

function Λ0k(t). The form of the estimator is the same as the one proposed in Kang and

Cai (2009) with the estimator for β replaced by β̂DW . Specifically,

Λ̂0k(β̂DW , t) =

∫ t

0

∑n
j=1 ρjk(u)dNjk(u)

nS
(0)
k,KC(β̂DW , u)

,

where

ρjk(u) = ∆ikξi + (1−∆ik)ξiα̂
KC
k (u)−1 + ∆ik(1− ξi)ηikq̂KCk (u)−1,

αKCk (u) = {
n∑
i=1

(1−∆ik)Yik(u)}−1{
n∑
i=1

(1−∆ik)ξiYik(u)},

qKCk (u) = {
n∑
i=1

∆ik(1− ξi)Yik(u)}−1{
n∑
i=1

∆ik(1− ξi)ηikYik(u)},

and S(0)
k,KC(β, u) = n−1

∑n
i=1 ρik(u)Yik(u)eβ

TZik(u) are the scalar functions used in Kang

and Cai (2009). Based on the results in Kang and Cai (2009), this estimator is consistent

and converges weakly to a zero mean Gaussian process if β̂DW is a consistent estimator of

β0. We will establish the consistency of β̂DW in the next section.
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3.3. Asymptotic Properties of General Doubly Weighted Estimator

3.3.1 Asymptotic Results

We present the asymptotic properties of the doubly-weighted estimator. For k =

1, . . . , K, define the following limiting quantities:

s
(d)
k (β, t) = E{S(d)

k,F (β, t)}(d = 0, 1, 2), z̄k(β, t) = s
(1)
k (β, t)/s

(0)
k (β, t),

vk(β, t) =
s

(2)
k (β, t)s

(0)
k (β, t)− s(1)

k (β, t)
⊗

2

s
(0)
k (β, t)2

, Gk(β) =

∫ τ

0

vk(β, t)s
(0)
k (β, t)dΛ0k(t).

We assume the usual regularity conditions, as required in Spiekerman and Lin (1998):

Assumption 3.3.1. (Ti, Ci, Zi), i = 1, . . . , n are independent and identically distributed

Assumption 3.3.2. pr{Yik(t) = 1} > 0 for t ∈ [0, τ ], i = 1, . . . , n and k = 1, . . . , K

Assumption 3.3.3. |Zik(0)|+
∫ τ

0
|dZik(t)| < Dz <∞ for i = 1, . . . , n and k = 1, . . . , K

almost surely, where Dz is a constant

Assumption 3.3.4. Gk(β0) is positive definite for k = 1, . . . , K

Assumption 3.3.5. (Finite interval)
∫ τ

0
λ0k(t)dt <∞ for k = 1, . . . , K

Assumption 3.3.6. (Asymptotic stability) There exists a neighborhood B of β0 such that

sup
t∈[0,τ ],β∈B

‖S(d)
k,F (β, t)− s(d)

k (β, t)‖ →p 0

for d = 0, 1, 2 and k = 1, . . . , K

Assumption 3.3.7. (Asymptotic regularity) For all β ∈ B and k = 1, . . . , K: s(1)
k (β, t) =

∂
∂β
s

(0)
k (β, t), s(2)

k (β, t) = ∂2

∂β∂βT s
(0)
k (β, t) where s(0)

k (·, t), s(1)
k (·, t), s(2)

k (·, t) are continuous

functions of β ∈ B, uniformly in t ∈ [0, τ ], s(0)
k (·, t) is bounded away from 0 on B × [0, τ ]
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Assumption 3.3.8. (Lindeberg condition) There exists a δ > 0 such that as n→∞

n−1/2 sup
i,k,t
‖Zik(t)‖Yik(t)I{βT0 Zik(t) > −δ‖Zik(t)‖} →p 0

We also need the following conditions concerning case-cohort samples and second

level weights:

Assumption 3.3.9. (Nontrivial subcohort and case sampling) As n → ∞, α̃ converges to

a constant on (0, 1]; similarly, for k = 1, . . . , K, q̃k converges to a constant on (0, 1]

Assumption 3.3.10. For each component Zik,l(t) of Zik(t), var
∫ τ

0
|dVik,l(t)| <∞, where

Vik,l(t) = Zik,l(t)exp{βT0 Zik(t)}. For each diagonal elementAik,l(t) ofAik(t), var
∫ τ

0
|dAik,l(t)| <

∞. Diagonal elements of Bik(t) require a similar condition.

Assumption 3.3.11. Aik(t) is independent of ξi, and Bik(t) is independent of ηik, for k =

1, . . . , K

Assumption 3.3.12. the absolute values of the diagonal elements of µk(t) ≡ Ek[(1 −

∆1k)A1k(t)] and θk(t) ≡ Ek[∆1kB1k(t)] are bounded away from 0 for all t ∈ [0, τ ]

Assumption 3.3.12 is required in order to prove the asymptotic properties of α̂k(t) and

q̂k(t). As long as the elements on the diagonal of Aik(t) or Bik(t) are nonnegative (e.g.,

Yik(t)), this condition is trivial. However, this assumption may not hold if we use the

weight function (3.6). We relax this condition in next section. This will enable us to use

arbitrary second level weights.

We present the asymptotic results here and provide the outline of the proof in sec-

tion 3.8. Define

Mik(t) = Nik(t)−
∫ t

0

Yik(u)eβ
T
0 Zik(u)dΛ0k(u), Z̃ik(β, t) = Zik(t)− z̄k(β, t),
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Mz̄,ik(β) =

∫ τ

0

Z̃ik(β, t)dMik(t), Rik(β, t) = Yik(t)Z̃ik(β, t)e
βTZik(u).

Asymptotic properties of β̂DW are summarized in the following theorem:

Theorem 3.3.1. (Asymptotic properties of β̂DW )

Under conditions 3.3.1-3.3.12, β̂DW solving the estimating equation UDW (β̂DW ) = 0

is a consistent estimator of β0 and

√
n(β̂DW − β0)→d N(0, G(β0)−1Σ(β0)G(β0)−1),

where G(β) =
∑

kGk(β) and

Σ(β0) = Q(β0) +
1− α̃
α̃

V I(β0) + (1− α̃)
∑
k

pr(∆1k = 1)
1− q̃k
q̃k

V II
k (β0), (3.7)

where

Q(β0) = E

{∑
k

Mz̄,1k(β0)

}⊗
2

,

V I(β0) = var

{∑
k

(1−∆1k)

∫ τ

0

{R1k(β0, t)− µk(t)−1A1k(t)E[(1−∆1k)R1k(β0, t)]}dΛ0k(t)

}
,

V II
k (β0) = var

{
Mz̄,1k(β0)−

∫ τ

0

θk(t)
−1B1k(t)E[∆1kdMz̄,1k(β0, t)]

∣∣∣∣∆1k = 1, ξ1 = 0

}
.

The asymptotic variance of β̂DW has three components: the variance of the full data,

the variation due to subcohort sampling, and the variation due to further case sampling

if generalized case-cohort design is conducted. Unknown quantities can be estimated by

substituting proper consistent estimators for their theoretical counterparts. See section 3.8

for details.
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3.3.2 Generalization to Arbitrary Second Level Weight

In this section, we relax assumption 3.3.12, which will enable us to use arbitrary second

level weights. For notational simplicity, we drop the subscript l by assuming p = 1. For

p ≥ 2, the operation is on each diagonal element of Aik(t) and Bik(t). We break down

the second level weight by dynamic grouping based on the sign of Aik(t) and Bik(t).

Specifically, denote γ+
ik(t) = I(Aik(t) ≥ 0), γ−ik(t) = I(Aik(t) < 0), and let A+

ik(t) =

γ+
ik(t)Aik(t), A−ik(t) = −γ−ik(t)Aik(t). We then have an estimate of α using only the second

level weights that are non-negative:

α̂+
k (t) = {

∑
i

(1−∆ik)A
+
ik(t)}

−1{
∑
i

ξi(1−∆ik)A
+
ik(t)}.

α̂−k (t) is defined similarly. For the second level weights Bik(t), we analogously define the

quantities:

ζ+
ik(t) = I(Bik(t) ≥ 0), B+

ik(t) = ζ+
ik(t)Bik(t);

ζ−ik(t) = I(Bik(t) < 0), B−ik(t) = −ζ−ik(t)Bik(t);

q̂+
k (t) = {

n∑
i=1

∆ik(1− ξi)B+
ik(t)}

−1{
n∑
i=1

∆ik(1− ξi)ηikB+
ik(t)},

q̂−k (t) = {
n∑
i=1

∆ik(1− ξi)B−ik(t)}
−1{

n∑
i=1

∆ik(1− ξi)ηikB−ik(t)}.

Finally, the generalized weight function is

w̃ik(t) = ∆ikξiIp + (1−∆ik)ξi × [γ+
ik(t)α̂

+
k (t)−1 + γ−ik(t)α̂

−
k (t)−1]

+ ∆ik(1− ξi)ηik × [ζ+
ik(t)q̂

+
k (t)−1 + ζ−ik(t)q̂

−
k (t)−1]
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The expressions of asymptotic variance also need to be modified to accommodate the

grouping:

V I(β0) = var

{∑
k

(1−∆1k)

∫ τ

0

{R1k(β0, t)− γ+
1k(t)µ

+
k (t)−1A+

1k(t)E
+[(1−∆1k)R1k(β0, t)]

− γ−1k(t)µ
−
k (t)−1A−1k(t)E

−[(1−∆1k)R1k(β0, t)]}dΛ0k(t)

}
,

where µ+
k (t) = E[(1 − ∆1k)A1k(t)|A1k(t) ≥ 0] and E+[(1 − ∆1k)R1k(β0, t)] = E[(1 −

∆1k)R1k(β0, t)|A1k ≥ 0]. µ−k (t) and E−[(1 − ∆1k)R1k(β0, t)] are analogously defined.

Also,

V II
k (β0) = var

{
Mz̄,1k(β0)−

∫ τ

0

ζ+
1k(t)θ

+
k (t)−1B+

1k(t)E
+[dMz̄,1k(β0)|∆1k = 1]

−
∫ τ

0

ζ−1k(t)θ
−
k (t)−1B−1k(t)E

−[dMz̄,1k(β0)|∆1k = 1]

∣∣∣∣∆1k = 1, ξ1 = 0

}
.

θ+
k (t), θ−k (t), E+[dMz̄,1k(β0)|∆1k = 1] and E−[dMz̄,1k(β0)|∆1k = 1] are computed like-

wise. Due to the grouping, we need to split the sample to estimate the unknown quantities

separately in stratum by the sign of the second level weight. Thus in general, a larger

sample size is required to achieve satisfactory asymptotic properties.

3.3.3 Generalization to Stratified Sampling Design

Suppose that a cohort of size n can be partitioned into H mutually exclusive strata

based on some first-phase covariates. We extend the method to stratified case-cohort stud-

ies, whereby sampling is conducted within each stratum with possibly different sampling

probabilities. Specifically, let nh denote the number of subjects in the hth stratum in

the full cohort (h = 1, . . . , H) and n = n1 + · · · + nH . Then within the hth stratum,

we sample ñh subcohort members via simple random sampling with probability being
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α̃h = P (ξhi = 1) = ñh/nh. Total subcohort size ñ = ñ1 + · · · + ñH . Subsequently,

for the kth disease outcome within the hth stratum, we sample mhk cases outside the sub-

cohort with probability q̃hk = mhk/(nhk − ñhk), where nhk and ñhk are the numbers of

subjects with the kth disease outcome in the hth stratum in the cohort and in the subcohort,

respectively. We consider the following model with the stratified sampling design,

λhik(t|Zhik(t)) = Yhik(t)λ0k(t)e
βT
0 Zhik(t). (3.8)

We use superscript/subscript ‘ST’ to denote the stratified version of quantities. The pro-

posed estimator β̂STDW solves the following estimating equation

UST
DW (β) =

H∑
h=1

nh∑
i=1

K∑
k=1

∫ τ

0

w̃hik(t){Zhik(t)− Z̄k,DW (β, t)}dNhik(t) = 0, (3.9)

where w̃hik(t) = ∆hikξhi + (1 − ∆hik)ξhiα̂
−1
hk (t) + ∆hik(1 − ξhi)ηhikq̂

−1
hk (t). Estimating

equation (3.9) utilizes weights that are estimated within each sampling stratum. The base-

line cumulative hazard function Λ0k(t) is estimated by a Breslow-Aalen type estimator

Λ̂ST
0k (β̂STDW , t) where

Λ̂ST
0k (β, t) =

∫ t

0

∑H
h=1

∑nh

j=1 ρhjk(u)dNhjk(u)

n
∑H

h=1

∑nh

j=1 ρhjk(u)Yhjk(u)eβ
TZhjk(u)

,

where ρhjk(u) = ∆hikξhi + (1 − ∆hik)ξhiα̂
KC
hk (u)−1 + ∆hik(1 − ξhi)ηhikq̂KChk (u)−1 is the

stratified version of weight function used in Kang and Cai (2009).

Using arguments similar to those in section 3.8, the asymptotic properties of β̂STDW

can be derived. It can be shown that
√
n(β̂STDW − β0) converges to a zero-mean normal
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distribution with variance function

G−1(β0)

{
H∑
h=1

ph[Qh(β0) +
1− α̃h
α̃h

V I
h (β0) + (1− α̃h)

K∑
k=1

pr(∆1k = 1)
1− q̃hk
q̃hk

V II
hk (β0)]

}
G−1(β0),

where ph = nh/n,

Qh(β0) = E

{∑
k

Mz̄,h1k(β0)

}⊗
2

,

V I
h (β0) = var

{∑
k

(1−∆h1k)

∫ τ

0

{Rh1k(β0, t)

− µhk(t)−1Ah1k(t)E[(1−∆h1k)Rh1k(β0, t)]}dΛ0k(t)

}
, and

V II
hk (β0) = var

{
Mz̄,h1k(β0)

−
∫ τ

0

θhk(t)
−1Bh1k(t)E[dMz̄,h1k(β0)|∆h1k = 1]

∣∣∣∣∆h1k = 1, ξh1 = 0

}
.

3.4. Simulation Studies

We performed extensive simulation studies to examine the performance of the proposed

doubly-weighted estimator under finite sample setting. Suppose that a case-cohort study

was conducted to investigate disease 1 and 2 (K = 2). We considered the following

set up. There are three covariates of interest: Z1 and Z3 were two first-phase covariates

where Z1 ∼ N(0.3, 0.462) and Z3 ∼ N(1, 0.52); Z2 was the second-phase covariate which

was only available for subcohort members and sampled cases. We assumed that Z2 had a

first-phase continuous surrogate Z̃2 that followed N(0.5, 0.52) distribution. We introduced

Z4 ∼ N(0.5, σ2
4) to represent the presence of auxiliary covariates. We set Z2 = Z̃2 +Z4 +ε

where ε ∼ N(0, σ2
ε ) and Z̃2, Z4, ε were mutually independent. Therefore, σ2 = σ2

4 + σ2
ε

controlled the correlation between Z2 and its first-phase surrogate Z̃2. Specifically, we had

corr(Z2, Z̃2) = (2
√

0.52 + σ2)−1.
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We assumed that the marginal distribution of Tik is exponential with failure rate λ0ke
βT
0 Zik

where β0 is the true regression parameter vector. Correlated failure time data were gener-

ated from the Clayton-Cuzick model (Clayton and Cuzick 1985), in which the joint survival

function of Ti = (Ti1, . . . , TiK)T had the form:

S(t1i, . . . , tKi|Z1i, . . . , ZKi) =

{
K∑
k=1

exp(

∫ tik
0
λ0k(t)e

β′0Zikdt

θ
)− (K − 1)

}−θ
.

The positive parameter θ measured the strength of correlation among (Ti1, . . . , TiK). The

relationship between θ and Kendall’s τθ is τθ = 1/(2θ+1). The smaller θ was, the larger the

Kendall’s τθ, hence the stronger the correlation. The baseline hazard functions were set to

0.3 for disease 1 and 0.5 for disease 2 (K = 2). Right-censoring time Ci = Ci1 = Ci2 was

generated from uniform distribution on [0, r], hence censoring percentage was controlled

by the parameter r.

3.4.1 Traditional Case-cohort Design

We first examined the performance of doubly-weighted estimator under the traditional

case-cohort design. We simulated full study cohort samples of size n = 3000 and then

selected a subcohort of size 300 or 450 (α̃ = 0.1 or 0.15) then collected all the cases

outside the subcohort. Right-censoring parameter r was selected so that the event rate was

roughly 4% and 7% for disease 1 and 2, respectively. Values 0.05, 0.50, 10 were considered

for parameter θ, corresponding to Kendall’s τθ of 0.91, 0.50, 0.05, to represent strong to

weak correlation between the two disease outcomes. Lastly, we set σ2
4 = 0.2 and σ2

ε = 0.06

so that corr(Z2, Z̃2) = 0.7.

In our simulation where p = 3, the first-phase covariates Ẑik,1 and Ẑik,3 were their

respective observed values. For the subjects in the subcohort and the cases, the second-
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phase covariate Ẑik,2 equaled the observed values, while for non-cases outside the subco-

hort, their Zik,2 was missing and Ẑik,2 equaled the estimated value. We postulated a linear

model to estimate the second-phase covariate Zik,2 for non-subcohort controls. Using the

fully observed data on subcohort controls and cases, regressing Z2 on its surrogate Z̃2

yielded an R2 around 0.5. If we incorporated the first-phase covariates Z1, Z3 and Z4, the

R2 increased to 0.85. This mimicked the situation that auxiliary information was used to

improve the capability predicting missing Z2. We then obtained Ẑ2 for non-subcohort con-

trols and implemented the doubly-weighted estimator β̂DW . For comparison purpose, we

computed estimator II, denoted β̂KC , in Kang and Cai (2009). The estimator based on the

full cohort β̂F , which is not feasible in practice with case-cohort designs, was also obtained

as a benchmark. Results presented were based on 2000 simulations for each setting.

We considered two sets of values of true regression parameters β0 = (0.5, 0.0, 0.2)T

and β0 = (0.5, 1.2, 0.2)T . Results summarized in Tables 3.1 and 3.2 show that the doubly-

weighted estimator was approximately unbiased. As the subcohort size ñ increased, the

average of the estimated standard error got closer to the empirical standard deviation and

the 95% confidence interval had satisfactory coverage rate. More importantly, β̂DW could

be much more efficient than β̂KC . The efficiency gain was higher for less correlated data.

The relative efficiency was smaller when subcohort size increased, but efficiency gain was

still noticeable.

3.4.2 Generalized Case-cohort Design

We then examined the performance of doubly-weighted estimator under generalized

case-cohort design with non-rare diseases. In practice, it is common to take a ‘balanced’

sample in which the numbers of cases and controls are roughly the same. Let the proportion

of disease k be Pk. By simple algebra, we obtained that q̃k, the case sampling proportion

to achieve the expected case/control ratio Rk for disease k, is independent of full cohort
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size n:

q̃k =
[(1− Pk)Rk − Pk]α̃

Pk(1− α̃)
. (3.10)

We considered the full cohort size of 4000. We then selected a subcohort of size 400 or

600 (α̃ = 0.1 or 0.15). The right-censoring parameter r was set to 0.25 so that the event

rate was 19% for disease 1 and 28% for disease 2. Based on (3.10), the corresponding

vectors of qk to achieve roughly 1:1 case/control ratio were (0.36, 0.18) or (0.58, 0.28),

respectively.

We set both Aik(t) and Bik(t) to be the same as in (3.6). Results based on 2000 sim-

ulations are presented in Tables 3.3 and 3.4. Both estimators were generally unbiased.

However, when the subcohort sampling proportion was below 0.1 (results not presented),

the standard deviation of β̂DW could not be estimated accurately and the efficiency gain was

minimal. This phenomenon echoed our discussion in section 3.3.3 that doubly-weighted

estimator requires a larger sample size to obtain stable variance estimator. On the other

hand, β̂KC yielded good standard deviation estimator regardless of α̃. We could see that

doubly-weighted estimator is more efficient than β̂KC , although the magnitude of effi-

ciency gain was not as large compared to the traditional case-cohort design. The correlation

between two diseases did not appear to affect the relative efficiency.

3.5. Data Analysis

We applied the proposed procedures to a data set from the Atherosclerosis Risk in

Communities (ARIC) study (Ballantyne et al. 2004, 2005). ARIC was a large cohort study

which enrolled 15,792 apparently healthy middle-aged men and women from four US

communities. A baseline examination was conducted from 1987 to 1989, with 3 more ex-

aminations through 1998. Patients were followed up with incident CHD, including CHD-

related death, and ischemic incident stroke, a first definite or probable hospitalized stroke
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through 1998. It was of interest to examine whether lipoprotein-associated phospholipase,

Lp-PLA2, was associated with increase risk for incident CHD and ischemic stroke. A total

of 12,363 subjects comprised the full cohort for this analysis. In order to preserve stored

plasma samples and reduce cost, case-cohort studies were implemented, one for CHD and

one for stroke. Lp-PLA2 was measured in plasma from visit 2 (1990 to 1992) in individ-

uals who subsequently developed CHD or stroke (cases) and in a cohort random sample

(subcohort). Those who were still alive or disease-free by 12/31/1998 or lost to follow-up

were treated as censored. The subcohort was selected using stratified sampling based on

gender, race (white versus black), and age group (below versus above 55). Table 3.5 shows

the baseline characteristics at visit 2 among different populations.

In this analysis, the two disease outcomes of interest were incident CHD and incident

ischemic stroke. A total of 603 CHD cases and 183 ischemic incident stroke cases, along

with 777 subcohort subjects were included in the sample. Due to the overlap in two dis-

eases, the total number of assayed sera samples was 1470. The main exposure of interest

was tertile group indicators of Lp-PLA2 (low/moderate/high Lp-PLA2, reference level be-

ing low Lp-PLA2 group). Other confounders adjusted for were three first-phase stratum

covariates, age at visit 2, gender and race, so that our model was comparable to model 1

in Ballantyne et al. (2004). Finally, we assumed that the covariate effects were disease-

specific, resulting a total of 10 parameters.

We implemented the proposed doubly-weighted estimator β̂DW with second level weight

(3.6). To this end, we built a prediction model for the second-phase covariate Lp-PLA2

(in mg/dL) among non-subcohort controls. The first-phase covariates used in the regres-

sion model on Lp-PLA2 were race, gender, LDL-C, HDL-C and smoking status (never

smoked/former smoker/current smoker). We then assigned their tertile group indicators

based on the predicted values. For comparison purpose, we calculated β̂KC , the estima-

tor in Kang and Cai (2009). We used the stratified version of estimating equation (3.9)
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and variance estimators to accommodate the stratified sampling nature of ARIC study.

The coefficient estimates, standard errors and associated p-values are presented in table

3.6. There was fair agreement between the two methods in terms of point estimates. The

findings matched those reported in Ballantyne et al. (2004, 2005). Efficiency-wise, β̂DW

outperformed β̂KC : despite a negligible (no more than 6%) increase in standard errors of

3 parameters, β̂DW yielded noticeably more efficient results elsewhere. The most note-

worthy finding was regarding high Lp-PLA2 group: using doubly-weighted estimator, we

had strong evidence that it was significantly associated with elevated incident CHD risk

(HR: 1.729, 95% CI: 1.092, 2.736), compared to low Lp-PLA2 group. On the other hand,

β̂KC deemed the effect insignificant (HR: 1.567, 95% CI: 0.846, 2.903). Other first-phase

risk factors that were statistically associated with elevated risks were advancing age (CHD

and stroke), white race (CHD) and male (stroke). Based on β̂DW , we performed a Wald

test with 2 degrees of freedom to compare the corresponding coefficients for the Lp-PLA2

group indicators between the two diseases. The p-value for the Wald test was 0.6580,

suggesting the Lp-PLA2 effects for the two diseases were not significantly different.

3.6. Concluding Remarks

When implementing the doubly-weighted estimator with second level weight (3.6),

we need to build a predicting model for the unobserved second-phase covariates. In both

simulation studies and the real data application, we chose to build the model using linear

regression. Kernel regression and polynomial regression with carefully calibrated smooth-

ing parameter can be explored, if flexible forms of the covariates are desired. Other choices

of second level weights are possible. For example, in a similar fashion to Qi et al. (2005),

we can incorporate Nadaraya-Watson kernel estimator in the second level weight.

Throughout this paper, we have assumed a Cox-type marginal proportional hazards

model. The additive hazards models, which model risk differences, has often been used as
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an alternative to the proportional hazards model. For data arising from multiple case-cohort

studies, Kang et al. (2013) proposed a marginal additive hazards model based on a weighted

estimating equation approach. They also considered the generalized case-cohort design. To

improve efficiency, extending the proposed doubly-weighted approach to marginal additive

hazards model will allow us to make full use of first-phase covariate information, thus may

merit further investigation.

In the ARIC study, it was possible for a subject to experience both CHD and incident

stroke. In many other studies, a subject can be at risk for all types of events from the

beginning, but will not be at risk for any other event immediately after the occurrence of

one event. For example, it may be of interest to model deaths due to the disease of interest

and deaths due to all other causes simultaneously. If this is the case, we need to consider

statistical methods from a competing risks perspective (Sorensen and Andersen 2000). Our

proposed doubly-weighted approach could be adapted to the competing risks setting.

3.7. Explicit Form of DDW (β)

Due to the matrix nature of S(0)
k,DW (β, t), special attention is required to compute the

Hessian matrix DDW (β). Let l, l′ = 1, . . . , p, we can explicitly express w̃ik(t) and Zik(t):

w̃ik(t) = diag{w̃ik,1(t), w̃ik,2(t), . . . , w̃ik,p(t)},

Zik(t) = [Zik,1(t), Zik,2(t), . . . , Zik,p(t)]
T .

Define the scalar functions

S
(0)
k,DW,l(β, t) = n−1

n∑
i=1

w̃ik,l(t)Yik(t)exp{βTZik(t)},
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S
(1)
k,DW,ll′(β, t) = n−1

n∑
i=1

w̃ik,l(t)Zik,l′(t)Yik(t)exp{βTZik(t)},

and

S
(2)
k,DW,ll′(β, t) = n−1

n∑
i=1

w̃ik,l(t)Zik,l(t)Zik,l′(t)Yik(t)exp{βTZik(t)}.

Let Vk,DW (β, t) be the derivative of −Z̄k,DW (β, t) with respect to β. We have

DDW (β) =
∂UDW (β)

∂βT
=

K∑
k=1

∫ τ

0

w̃ik(t)Vk,DW (β, t)d
n∑
i=1

Nik(t),

where the lth row of Vk,DW (β, t) has the form

S
(0)
k,DW,l(β, t)

−2

{
S

(1)
k,DW,ll(β, t)[S

(1)
k,DW,l1(β, t), . . . , S

(1)
k,DW,lp(β, t)]

−[S
(2)
k,DW,l1(β, t), . . . , S

(2)
k,DW,lp(β, t)]S

(0)
k,DW,l(β, t)

}
.

3.8. Proof of Theorem 3.3.1

The following two lemmas are important in deriving the asymptotic results and are

applied repeatedly.

Lemma 3.8.1. Let ξ = (ξ1, ..., ξn)T be a random vector containing ñ ones and n− ñ zeros,

with each permutation equally likely. Let Bi(t), i = 1, ..., n be independent and identically

distributed real-valued random processes on [0, τ ] with E[Bi(t)] = µB(t), var(Bi(0)) <

∞ and var(Bi(τ)) < ∞. Let B(t) = {B1(t), ..., Bn(t)}T and ξ be independent. Suppose

that almost all paths of Bi(t) have finite variation. Then, n−1/2
∑n

i=1 ξi{Bi(t) − µB(t)}

converges weakly in l∞[0, τ ] to a zero-mean Gaussian process and therefore

n−1

n∑
i=1

ξi{Bi(t)− µB(t)} p−→ 0
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uniformly in t.

This lemma is stated in Lemma A1 in Kang and Cai (2009). Its proof involves the

central limit theorem for finite population sampling from Hájek (1960) and example 3.6.14

of van der Vaart (1996). A special case of this lemma is obtained by setting ξ = Jn where

Jn is an n-vector of ones.

We need the following results on the asymptotic properties of α̂k(t) and q̂k(t). We

hereafter present and prove Lemma B3.8.2, Lemma B3.8.4 and Theorem 3.3.1 assuming

a single covariate in (3.1). With multiple covariates, α̂k(t), q̂k(t) and S(0)
k,DW (β, t) are p-

by-p diagonal matrices, and the arguments below pertain to each of the p processes on the

diagonal.

Lemma 3.8.2.

n1/2(α̂k(t)
−1 − α̃−1) = {α̃µk(t)}−1n−1/2

n∑
i=1

(1− ξi/α̃)(1−∆ik)Aik(t) + op(1), (3.11)

in which µk(t) is defined as E[(1−∆1k)A1k(t)]. Also, we have similar results for q̂k(t):

n1/2(q̂k(t)
−1− q̃−1

k ) = {q̃k(1− α̃)θk(t)}−1n−1/2

n∑
i=1

(1−ηik/q̃k)∆ik(1− ξi)Bik(t) +op(1),

(3.12)

in which θk(t) = E[∆1kB1k(t)].

The detailed proof for equation (3.11), which utilizes assumptions 3.3.10 to 3.3.12, the

special case of Lemma B3.8.1 and functional delta method, can be found in Kulich and

Lin (2004). Since we still have identical and independently cases within each disease k,

k = 1, . . . , K, the proof can go through without modification. Equation (3.12) can be

shown analogously.
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We need another technical lemma from Lin (2000b).

Lemma 3.8.3. Let W (t) and Z(t) be two sequences of bounded processes. Suppose that

W (t) is monotone and converges to w(t) uniformly in t in probability and that Z(t) con-

verges weakly to a zero-mean process with continuous sample paths. Then

∫ t

0

{W (u)− w(u)}dZ(u)→ 0,

∫ t

0

Z(u)d{W (u)− w(u)} → 0

uniformly in t in probability.

The next lemma states the uniform convergence of Z̄k,DW (β, t), to the limit of its full

cohort counterpart.

Lemma 3.8.4. (Convergence of the at-risk average process) For any k,

sup
β,t

∥∥Z̄k,DW (β, t)− z̄k(β, t)
∥∥→p 0.

Proof. We first show that supβ,t ‖S
(d)
k,DW (β, t)− S(d)

k,F (β, t)‖ →p 0 uniformly in t and β for

d = 0, 1. We start with

S
(d)
k,DW (β, t)− S(d)

k,F (β, t) = n−1
∑
i

{w̃ik(t)− 1}Zd
ik(t)e

βTZik(t)Yik(t)

Expand the weight function w̃ik(t) and rearrange terms on the right-hand side (RHS), we

55



get

S
(d)
k,DW (β, t)− S(d)

k,F (β, t) = n−1
∑
i

(
ξi
α̃
− 1)Zd

ik(t)e
βTZik(t)Yik(t)

− n−1
∑
i

(
ηik
q̃k
− 1)∆ikξiZ

d
ik(t)e

βTZik(t)Yik(t)

− n−1
∑
i

(
ξi
α̃
− 1)∆ikZ

d
ik(t)e

βTZik(t)Yik(t)

+ n−1
∑
i

(
ηik
q̃k
− 1)∆ikZ

d
ik(t)e

βTZik(t)Yik(t)

+ n−1
∑
i

(α̂k(t)
−1 − α̃−1)(1−∆ik)ξiZ

d
ik(t)e

βTZik(t)Yik(t)

+ n−1
∑
i

(q̂k(t)
−1 − q̃−1

k )∆ik(1− ξi)ηikZd
ik(t)e

βTZik(t)Yik(t).

Taking the norm on both sides,

∥∥∥S(d)
k,DW (β, t)− S(d)

k,F (β, t)
∥∥∥

≤

∥∥∥∥∥n−1
∑
i

(
ξi
α̃
− 1)Zd

ik(t)e
βTZik(t)Yik(t)

∥∥∥∥∥ (3.13)

+

∥∥∥∥∥n−1
∑
i

(
ηik
q̃k
− 1)∆ikξiZ

d
ik(t)e

βTZik(t)Yik(t)

∥∥∥∥∥ (3.14)

+

∥∥∥∥∥n−1
∑
i

(
ξi
α̃
− 1)∆ikZ

d
ik(t)e

βTZik(t)Yik(t)

∥∥∥∥∥ (3.15)

+

∥∥∥∥∥n−1
∑
i

(
ηik
q̃k
− 1)∆ikZ

d
ik(t)e

βTZik(t)Yik(t)

∥∥∥∥∥ (3.16)

+

∥∥∥∥∥n−1
∑
i

(α̂k(t)
−1 − α̃−1)(1−∆ik)ξiZ

d
ik(t)e

βTZik(t)Yik(t)

∥∥∥∥∥ (3.17)

+

∥∥∥∥∥n−1
∑
i

(q̂k(t)
−1 − q̃−1

k )∆ik(1− ξi)ηikZd
ik(t)e

βTZik(t)Yik(t)

∥∥∥∥∥ . (3.18)

We now show each of the six terms converges to 0 in probability uniformly in β and t.

(3.13) converges to 0 in probability uniformly in t by the special case of Lemma B3.8.1.
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Specifically,

‖n−1
∑
i

(
ξi
α̃
− 1)Zd

ik(t)e
βTZik(t)Yik(t)‖

=‖n−1
∑
i

ξi
α̃
Zd
ik(t)e

βTZik(t)Yik(t)− n−1
∑
i

Zd
ik(t)e

βTZik(t)Yik(t)‖.

By iterated expectation argument conditioning on everything but ξi, it is clear that

E[
ξi
α̃
Zd
ik(t)e

βTZik(t)Yik(t)] = E[Zd
ik(t)e

βTZik(t)Yik(t)] = µB(t).

By assumption, ξi
α̃
Zd
ik(t)e

βTZik(t)Yik(t) has finite variation on [0, τ ]. Hence, the afore-

mentioned lemma guarantees the convergence of (3.13) to 0, uniformly in t and β. Through

similar arguments, (3.14) - (3.16) converges to 0 in probability uniformly in t and β, re-

spectively.

We then show that (3.17) converges to 0 in probability uniformly in t and β. By

Cauchy-Schwarz inequality,

‖n−1
∑
i

(α̂k(t)
−1 − α̃−1)(1−∆ik)ξiZ

d
ik(t)e

βTZik(t)Yik(t)‖

≤‖α̂k(t)−1 − α̃−1‖ · n−1
∑
i

(1−∆ik)ξi‖Zd
ik(t)‖eβ

TZik(t)Yik(t),

The latter converges to 0 in probability, uniformly in t and β. This can be justified by

noting α̂k(t)−1−α̃−1 converges to 0 in probability uniformly in t, in view of Lemma B3.8.2.

Also by Lindeberg condition 3.3.8, n−1
∑

i(1−∆ik)ξi‖Zd
ik(t)‖eβ

TZik(t)Yik(t) converges to

a finite quantity. Likewise, (3.18) can be shown to converge to 0 in probability uniformly in

t and β. Therefore, we have shown that supβ,t ‖S
(d)
k,DW (β, t)− S(d)

k,F (β, t)‖ →p 0 uniformly
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in t and β, for d = 0, 1. This result, in combination with assumption 3.3.6, lead to the

conclusion that supβ,t ‖S
(d)
k,DW (β, t)− s(d)

k (β, t)‖ →p 0 uniformly in t and β.

To obtain the main result of the lemma, we start with

sup
β,t

∥∥Z̄k,DW (β, t)− z̄k(β, t)
∥∥ = sup

β,t

∥∥Z̄k,DW (β, t)− Z̄k,F (β, t) + Z̄k,F (β, t)− z̄k(β, t)
∥∥

≤ sup
β,t

∥∥Z̄k,DW (β, t)− Z̄k,F (β, t)
∥∥

+ sup
β,t

∥∥Z̄k,F (β, t)− z̄k(β, t)
∥∥

Clearly, the second term on the right RHS of the inequality converges to 0 in probability

based on full data results. The first term can be written as:

sup
β,t

∥∥∥∥∥S
(0)
k,F (β, t){S(1)

k,DW (β, t)− S(1)
k,F (β, t)}+ S

(1)
k,F (β, t){S(0)

k,F (β, t)− S(0)
k,DW (β, t)}

S
(0)
k,DW (β, t)S

(0)
k,F (β, t)

∥∥∥∥∥
≤ sup

β,t

∥∥∥∥∥S
(0)
k,F (β, t){S(1)

k,DW (β, t)− S(1)
k,F (β, t)}

S
(0)
k,DW (β, t)S

(0)
k,F (β, t)

∥∥∥∥∥
+ sup

β,t

∥∥∥∥∥S
(1)
k,F (β, t){S(0)

k,F (β, t)− S(0)
k,DW (β, t)}

S
(0)
k,DW (β, t)S

(0)
k,F (β, t)

∥∥∥∥∥ .
Both terms converge to 0 in probability by assumption 3.3.6 and that supβ,t ‖S

(d)
k,DW (β, t)−

S
(d)
k,F (β, t)‖ →p 0 uniformly in t and β, for d = 0, 1. This completes the proof.

We are now in place of proving theorem 3.3.1.

Proof. The proof of consistency of β̂DW can be shown by the extension of Foutz (1977).

Denote n−1UDW (β) by ŨDW (β). β̂DW is consistent if all four conditions below hold: (i)

∂ŨDW (β)/∂βT exists and is continuous in an open neighborhoodB of β0; (ii) ∂ŨDW (β)/∂βT

is negative definite with probability going to one as n → ∞; (iii) −∂ŨDW (β)/∂βT con-

verges toG(β0) in probability uniformly for β in an open neighborhood of β0; (iv) ŨDW (β)
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converges to 0 in probability.

We need to verify the four conditions to establish consistency. The form of ∂ŨDW (β)/∂βT

was given in section 3.7, hence (i) holds due to the continuity of each part. (ii) and (iii)

are satisfied if we can show ‖ − ∂ŨDW (β)/∂βT − G(β)‖ converges to 0 in probability

uniformly in β ∈ B as n→∞. We make the decomposition

∥∥∥∥∥−∂ŨDW (β)

∂βT
−G(β)

∥∥∥∥∥ ≤
∥∥∥∥∥

K∑
k=1

∫ τ

0

{Vk,DW (β, t)− vk(β, t)}n−1d
n∑
i=1

Nik(t)

∥∥∥∥∥
+

∥∥∥∥∥
K∑
k=1

∫ τ

0

vk(β, t)n
−1d

n∑
i=1

Mik(t)

∥∥∥∥∥
+

∥∥∥∥∥
K∑
k=1

∫ τ

0

vk(β, t){S(0)
k,DW (β, t)− s(0)

k (β, t)}dΛ0k(t)

∥∥∥∥∥ .(3.19)

Each term on the RHS of (3.19) will be shown to converge to 0, uniformly in β ∈ B.

While proving Lemma B3.8.4, we showed that supβ,t ‖S
(d)
k,DW (β, t) − s

(d)
k (β, t)‖ →p 0

uniformly in t and β, for d = 0, 1. From the derivation in section 3.7, it follows naturally

that Vk,DW (β, t) converges to vk(β, t) uniformly in t and β. By Lenglart inequality, for any

δ, ρ > 0, there exists n0 such that for n ≥ n0,

P [n−1N̄k(τ) > c] ≤ δ

c
+ P [

∫ τ

0

S
(0)
k,DW (β0, t)λ0k(t)dt > δ].

By assumption 3.3.6, for δ >
∫ τ

0
s

(0)
k (β0, t)λ0k(t)dt, P [

∫ τ
0
S

(0)
k,DW (β0, t)λ0k(t)dt > δ] → 0

as n → ∞. Then limc↑∞ limn→∞ P [n−1N̄k(τ) > c] = 0. Therefore, the first term on the

RHS converges to 0 in probability uniformly in β ∈ B as n→∞.

For the second term, n−1
∑n

i=1

∫ τ
0
vk(β, t)dMik(t) is a local square integrable martin-
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gale. Lenglart inequality implies that, for any δ, ρ > 0, there exists n0 such that for n ≥ n0,

P

[∥∥∥∥n−1

∫ τ

0

{vk(β, t)}ll′dM̄k(t)

∥∥∥∥ > ρ

]
≤ δ

ρ2
+ P

[
n−1

∫ τ

0

{vk(β, t)}2
ll′S

(0)
k,DW (β0, t)λ0k(t)dt > δ

]

where the subscript ll′ denotes the (l, l′) element of the matrix. Assumptions 3.3.5-3.3.7

ensure that P [n−1
∫ τ

0
{vk(β, t)}2

ll′S
(0)
k,DW (β0, t)λ0k(t)dt > δ] converges to 0 in probability

uniformly in β ∈ B for any δ. Then the second term on the RHS of (3.19) also converges

to 0 in probability uniformly in β ∈ B as n→∞, since δ can be arbitrarily small.

Finally, assumptions 3.3.4-3.3.6 and uniform convergence of S(0)
k,DW (β, t) to s(0)

k (β, t)

in probability, the last term on the RHS of (3.19) converges to 0 uniformly in β ∈ B as

n → ∞. Therefore, left-hand side (LHS) of (3.19) converges to 0 uniformly in β ∈ B as

n→∞. Then conditions (ii) and (iii) are satisfied.

Convergence of ŨDW (β) to zero in probability shows that (iv) is satisfied. Therefore,

β̂DW is a consistent estimator of β0.

To establish the asymptotic normality of the doubly-weighted score process, we make
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the decomposition of n−1/2UDW (β0)

n−1/2UDW (β0) = n−1/2

n∑
i=1

K∑
k=1

∫ τ

0

w̃ik(t){Zik(t)− Z̄k,DW (β, t)}dNik(t)

= n−1/2

n∑
i=1

K∑
k=1

∫ τ

0

w̃ik(t){Zik(t)− Z̄k,DW (β, t)}dMik(t)

= n−1/2
∑
k

∑
i

∫ τ

0

{Zik(t)− z̄k(β0, t)}dMik(t) (3.20)

+ n−1/2
∑
k

∑
i

∫ τ

0

{z̄k(β0, t)− Z̄k,DW (β, t)}dMik(t) (3.21)

+ n−1/2
∑
k

∑
i

∫ τ

0

(w̃ik(t)− 1){Zik(t)− z̄k(β0, t)}dMik(t) (3.22)

+ n−1/2
∑
k

∑
i

∫ τ

0

(w̃ik(t)− 1){z̄k(β0, t)− Z̄k,DW (β, t)}dMik(t)

(3.23)

+ op(1).

Using the example in 2.11.16 of van der Vaart (1996), the Kolmogorov-Centsov the-

orem, Lemma B3.8.2 and B3.8.3, (3.21) and (3.23) can be shown to converge to 0 in

probability, uniformly in t. In Spiekerman and Lin (1998), (3.20) was shown to con-

verge to a zero mean normal distribution with covariance matrix Q(β0), where Q(β0) =

E[
∑K

k=1

∫ τ
0
Z̃ik(β, t)dMik(t)]

⊗
2.

61



We can further decompose (3.22) by expanding w̃ik(t):

n−1/2
∑
k

∑
i

∫ τ

0

(w̃ik(t)− 1)dMz̄,ik(β0, t)

= n−1/2
∑
k

∑
i

(1−∆ik)ξi

∫ τ

0

(α̂−1
k (t)− α̃−1)dMz̄,ik(β0, t) (3.24)

+ n−1/2
∑
k

∑
i

∆ik(1− ξi)ηik
∫ τ

0

(q̂−1
k (t)− q̃−1

k )dMz̄,ik(β0, t) (3.25)

+ n−1/2
∑
k

∑
i

(1−∆ik)(ξiα̃
−1 − 1)Mz̄,ik(β0) (3.26)

+ n−1/2
∑
k

∑
i

∆ik(1− ξi)(ηikq̃−1
k − 1)Mz̄,ik(β0). (3.27)

By (3.11), (3.24) is equal to

n−1/2
∑
k

∑
i

(1−∆ik)ξi×∫ τ

0

[{α̃µk(t)}−1n−1
∑
j

(1− ξjα̃−1)(1−∆jk)Ajk(t)]Z̃ik(β0, t)dMik(t)

=− n−1/2
∑
k

∑
i

(1−∆ik)(ξiα̃
−1 − 1)×∫ τ

0

µk(t)
−1Aik(t){n−1

∑
j

ξjα̃
−1(1−∆jk)Z̃jk(β0, t)dMjk(t)}

=n−1/2
∑
k

∑
i

(1−∆ik)(ξiα̃
−1 − 1)×∫ τ

0

µk(t)
−1Aik(t){n−1

∑
j

ξjα̃
−1(1−∆jk)Z̃jk(β0, t)Yjk(t)e

βT
0 Zjk(t)}dΛ0k(t).

The last equation is granted by martingale decomposition of Mjk(t) and the fact (1 −
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∆jk)dNjk(t) = 0. Similarly, we have (3.26) equal to

− n−1/2
∑
k

∑
i

(1−∆ik)(ξiα̃
−1 − 1)Z̃ik(β0, t)Yik(t)e

βT
0 Zik(t)dΛ0k(t)

=− n−1/2
∑
k

∑
i

(1−∆ik)(ξiα̃
−1 − 1)Rik(β0, t)dΛ0k(t).

The quantity n−1
∑

j ξjα̃
−1(1 − ∆jk)Z̃jk(β0, t)Yjk(t)e

βT
0 Zjk(t) converge in probability

to E[(1 − ∆1k)R1k(β0, t)] uniformly in t, by the special case of Lemma B3.8.1. We can

then combine (3.24) and (3.26) and can show that the combined term is asymptotically

equivalent to

n−1/2
∑
k

∑
i

(1−∆ik)(ξiα̃
−1 − 1)

∫ τ

0

{µk(t)−1Aik(t)

·E[(1−∆1k)R1k(β0, t)]−Rik(β0, t)}dΛ0k(t). (3.28)

Repeating the above procedure to combine (3.25) and (3.27), their summation is asymp-

totically equivalent to

n−1/2
∑
k

∑
i

∆ik(1− ξi)(ηikq̃−1
k −1)[Mz̄,ik(β0)−

∫ τ

0

θk(t)
−1Bik(t)E[∆1kdMz̄,k1(β0, t)]].

(3.29)

By Lemma B3.8.1 and B3.8.2, both (3.28) and (3.29) can be shown to converge to a zero

mean normal distribution, respectively.

By law of total expectation, the three terms (3.20), (3.28) and (3.29) are pairwise un-

correlated, which implies independence under normality. Specifically, the covariances be-

tween (3.28) and (3.29), (3.20) and (3.29) are both 0 by conditioning on filtration F(τ)

and ξ. The covariance between (3.20) and (3.28) is 0 by conditioning on F(τ). Therefore,
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n−1/2UDW (β0) is asymptotically normally distributed with mean zero and we can compute

the contributions of (3.20), (3.28) and (3.29) to the asymptotic variance separately.

Following conditional arguments, the second component (3.28) has asymptotic vari-

ance 1−α̃
α̃
V I(β0), in which V I(β0) equals

var

{ K∑
k=1

(1−∆1k)

∫ τ

0

{R1k(β0, t)− µ−1
k (t)A1k(t)E[(1−∆1k)R1k(β0, t)]}dΛ0k(t)

}
.

Similarly, the asymptotic variance of (3.29) is (1− α̃)
∑K

k=1 pr(∆1k = 1)1−q̃k
q̃k
V II
k (β0),

where

V II
k (β0) = var

{
Mz̄,1k(β0)−

∫ τ

0

θk(t)
−1B1k(t)E[∆1kdMz̄,1k(β0, t)]|∆1k = 1, ξ1 = 0

}
.

The desirable asymptotic distribution of β̂DW then follows from the Taylor expansion

of UDW (β̂DW ) around β0 and Slutsky’s theorem.

The quantities G(β0), Q(β0), 1−α̃
α̃
V I(β0) and (1 − α̃)

∑K
k=1 pr(∆1k = 1)V II

k (β0) can

be consistently estimated by Ĝ(β̂DW ), Q̂(β̂DW ), 1−α̃
α̃
V̂ I(β̂DW ) and (1− α̃)

∑
k p̂r(∆1k =

1)V̂ II
k (β̂DW ), respectively, where

Ĝ(β) = −n−1DDW (β), Q̂(β) = n−1

n∑
i=1

ξi
α̃

[ K∑
k=1

M̂z̄,ik(β)

]⊗ 2

,
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where

M̂z̄,ik(β) = ∆ik[Zik(Xik)− S(0)
k,DW (β,Xik)

−1S
(1)
k,DW (β,Xik)]

− n−1

n∑
j=1

∆jkYik(Xjk)e
βTZik(Xjk)

Ŝ
(0)
k,KC(β,Xjk)

ρjk(Xjk)

· [Zik(Xjk)− S(0)
k,DW (β,Xjk)

−1S
(1)
k,DW (β,Xjk)],

V̂ I(β) = n−1

n∑
i=1

ξi
α̃

[ K∑
k=1

(1−∆ik) · n−1

n∑
j=1

∆jk

Ŝ
(0)
k,KC(β,Xjk)

· ρjk(Xjk)

× {R̂ik(β,Xjk)− µ̂k(Xjk)
−1Aik(Xjk)Ê[(1−∆1k)R1k(β,Xjk)]}

]⊗ 2

−
[
n−1

n∑
i=1

ξi
α̃

K∑
k=1

(1−∆ik) · n−1

n∑
j=1

∆jk

Ŝ
(0)
k,KC(β,Xjk)

· ρjk(Xjk)

× {R̂ik(β,Xjk)− µ̂k(Xjk)
−1Aik(Xjk)Ê[(1−∆1k)R1k(β,Xjk)]}

]⊗ 2

,
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V̂ II
k (β) = (nk − ñk)−1

n∑
i=1

ηik
q̃k

[
M̂z̄,ik(β)

− (nk − ñk)−1

n∑
j=1

∆jk(1− ξj)
ηjk
q̃k
θ̂k(Xjk)

−1

·Bik(Xjk)(Zjk(Xjk)− S(0)
k,DW (β,Xjk)

−1S
(1)
k,DW (β,Xjk))

+ n−1

n∑
j=1

∆jk

Ŝ
(0)
k,KC(β,Xjk)

ρjk(Xjk)θ̂k(Xjk)
−1

·Bik(Xjk)Ê[R1k(β,Xjk)|∆1k = 1, ξi = 0]

]⊗ 2

−
[
(nk − ñk)−1

n∑
i=1

ηik
q̃k

(
M̂z̄,ik(β)

− (nk − ñk)−1

n∑
j=1

∆jk(1− ξj)
ηjk
q̃k
θ̂k(Xjk)

−1

·Bik(Xjk)(Zjk(Xjk)− S(0)
k,DW (β,Xjk)

−1S
(1)
k,DW (β,Xjk))

+ n−1

n∑
j=1

∆jk

Ŝ
(0)
k,KC(β,Xjk)

ρjk(Xjk)θ̂k(Xjk)
−1

·Bik(Xjk)Ê[R1k(β,Xjk)|∆1k = 1, ξi = 0]

)]⊗ 2

R̂ik(β, t) = {Zik(t)− S(0)
k,DW (β, t)−1S

(1)
k,DW (β, t)}Yik(t)eβ

TZik(t),

µ̂k(t) = n−1

n∑
i=1

(1−∆ik)Aik(t),

Ê[(1−∆1k)R1k(β, t)] = n−1

n∑
i=1

ξi
α̃

(1−∆ik)R̂ik(β, t),
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θ̂k(t) = n−1

n∑
i=1

∆ikBik(t),

Ê[R1k(β, t)|∆1k = 1, ξ1 = 0] = (nk − ñk)−1

n∑
l=1

∆lk(1− ξl)
ηlk
q̃k
R̂lk(β, t).
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Table 3.1: Comparison of three estimators: case-cohort design with β0 = (0.5, 0.0, 0.2)T

β̂F β̂KC β̂DW

ñ τθ Mean SE ESD CR Mean SE ESD CR Mean SE ESD CR REDW |KC
300 0.91 β1 0.500 0.329 0.325 0.95 0.515 0.463 0.450 0.94 0.495 0.329 0.331 0.94 1.98

β2 -0.002 0.095 0.095 0.95 -0.003 0.132 0.133 0.94 -0.002 0.104 0.099 0.93 1.61
β3 0.199 0.139 0.137 0.94 0.204 0.193 0.190 0.95 0.197 0.138 0.140 0.94 1.96

0.50 β1 0.500 0.278 0.277 0.95 0.513 0.421 0.413 0.95 0.495 0.279 0.284 0.94 2.28
β2 -0.001 0.083 0.081 0.95 -0.001 0.123 0.122 0.94 -0.001 0.091 0.084 0.93 1.83
β3 0.201 0.118 0.117 0.95 0.207 0.178 0.174 0.95 0.199 0.117 0.120 0.95 2.31

0.05 β1 0.504 0.257 0.263 0.95 0.517 0.406 0.403 0.95 0.499 0.258 0.270 0.95 2.48
β2 -0.002 0.078 0.077 0.95 -0.003 0.121 0.119 0.94 -0.002 0.087 0.080 0.92 1.93
β3 0.200 0.110 0.110 0.95 0.206 0.172 0.170 0.95 0.198 0.110 0.114 0.95 2.44

450 0.91 β1 0.500 0.329 0.325 0.95 0.503 0.419 0.407 0.94 0.497 0.328 0.327 0.94 1.63
β2 -0.002 0.095 0.095 0.95 -0.003 0.121 0.120 0.95 -0.002 0.103 0.097 0.93 1.38
β3 0.199 0.139 0.137 0.94 0.203 0.174 0.172 0.95 0.197 0.138 0.138 0.94 1.59

0.50 β1 0.500 0.278 0.277 0.95 0.500 0.371 0.368 0.95 0.497 0.277 0.280 0.94 1.79
β2 -0.001 0.083 0.081 0.95 -0.002 0.110 0.108 0.95 -0.001 0.091 0.083 0.92 1.46
β3 0.201 0.118 0.117 0.95 0.205 0.157 0.155 0.95 0.200 0.117 0.118 0.95 1.80

0.05 β1 0.504 0.257 0.263 0.95 0.503 0.354 0.357 0.95 0.502 0.257 0.266 0.95 1.90
β2 -0.002 0.078 0.077 0.95 -0.003 0.108 0.105 0.94 -0.002 0.086 0.078 0.92 1.58
β3 0.200 0.110 0.110 0.95 0.204 0.151 0.150 0.95 0.199 0.110 0.112 0.95 1.88

NOTE: SE, sample standard deviation; ESD, average standard error estimator; CR, estimated standard error coverage
rate of the nominal 95% confidence intervals; REDW |KC = SE2

KC/SE
2
DW , efficiency of β̂DW relative to β̂KC . The

full cohort contained 3000 subjects.
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Table 3.2: Comparison of three estimators: case-cohort design with β0 = (0.5, 1.2, 0.2)T

β̂F β̂KC β̂DW

ñ τθ Mean SE ESD CR Mean SE ESD CR Mean SE ESD CR REDW |KC
300 0.91 β1 0.496 0.309 0.311 0.95 0.507 0.515 0.492 0.94 0.482 0.315 0.334 0.95 2.67

β2 1.199 0.094 0.093 0.95 1.235 0.167 0.153 0.92 1.223 0.098 0.112 0.95 2.90
β3 0.201 0.133 0.131 0.95 0.208 0.216 0.207 0.94 0.195 0.136 0.140 0.95 2.52

0.50 β1 0.497 0.267 0.269 0.95 0.507 0.480 0.459 0.93 0.484 0.275 0.290 0.95 3.05
β2 1.199 0.084 0.082 0.95 1.235 0.159 0.144 0.91 1.226 0.089 0.101 0.95 3.19
β3 0.199 0.114 0.113 0.96 0.210 0.202 0.193 0.94 0.194 0.117 0.122 0.95 2.98

0.05 β1 0.501 0.250 0.248 0.95 0.512 0.457 0.442 0.94 0.488 0.258 0.269 0.95 3.14
β2 1.201 0.077 0.075 0.94 1.234 0.152 0.137 0.91 1.229 0.083 0.095 0.94 3.35
β3 0.201 0.106 0.104 0.95 0.209 0.197 0.186 0.94 0.196 0.110 0.113 0.95 3.21

450 0.91 β1 0.496 0.309 0.311 0.95 0.504 0.448 0.436 0.95 0.485 0.312 0.324 0.96 2.06
β2 1.199 0.094 0.093 0.95 1.222 0.143 0.136 0.93 1.237 0.098 0.104 0.94 2.13
β3 0.201 0.133 0.131 0.95 0.207 0.188 0.183 0.94 0.197 0.134 0.136 0.95 1.97

0.50 β1 0.497 0.267 0.269 0.95 0.505 0.412 0.400 0.94 0.487 0.270 0.280 0.95 2.33
β2 1.199 0.084 0.082 0.95 1.222 0.135 0.126 0.93 1.238 0.088 0.093 0.93 2.35
β3 0.199 0.114 0.113 0.96 0.207 0.175 0.168 0.93 0.196 0.115 0.118 0.95 2.32

0.05 β1 0.501 0.250 0.248 0.95 0.508 0.391 0.383 0.94 0.491 0.253 0.259 0.95 2.39
β2 1.201 0.077 0.075 0.94 1.222 0.128 0.120 0.93 1.241 0.082 0.085 0.93 2.44
β3 0.201 0.106 0.104 0.95 0.208 0.170 0.161 0.93 0.197 0.108 0.109 0.95 2.48

NOTE: The full cohort contained 3000 subjects.
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Table 3.3: Comparison of three estimators: generalized case-cohort design with β0 = (0.5, 0.0, 0.2)T

β̂F β̂KC β̂DW

ñ τθ Mean SE ESD CR Mean SE ESD CR Mean SE ESD CR REDW |KC
400 0.91 β1 0.505 0.149 0.147 0.95 0.525 0.343 0.336 0.96 0.489 0.254 0.270 0.97 1.82

β2 0.001 0.043 0.043 0.96 0.000 0.102 0.099 0.94 0.000 0.072 0.081 0.97 2.01
β3 0.199 0.059 0.062 0.96 0.201 0.143 0.142 0.96 0.201 0.106 0.114 0.97 1.82

0.50 β1 0.508 0.133 0.129 0.95 0.522 0.331 0.323 0.95 0.497 0.247 0.260 0.96 1.80
β2 0.000 0.037 0.038 0.96 -0.001 0.096 0.095 0.94 -0.001 0.069 0.077 0.98 1.94
β3 0.199 0.051 0.054 0.96 0.199 0.128 0.136 0.96 0.194 0.098 0.110 0.97 1.71

0.05 β1 0.513 0.115 0.113 0.95 0.532 0.322 0.311 0.94 0.517 0.233 0.267 0.97 1.91
β2 0.001 0.031 0.033 0.96 0.004 0.088 0.091 0.95 0.007 0.066 0.074 0.98 1.78
β3 0.198 0.046 0.047 0.96 0.203 0.125 0.131 0.96 0.203 0.100 0.106 0.97 1.56

600 0.91 β1 0.505 0.149 0.147 0.95 0.515 0.286 0.273 0.94 0.516 0.220 0.219 0.96 1.69
β2 0.001 0.043 0.043 0.96 0.001 0.082 0.080 0.94 -0.001 0.058 0.062 0.97 2.00
β3 0.199 0.059 0.062 0.96 0.197 0.114 0.115 0.94 0.198 0.086 0.091 0.97 1.76

0.50 β1 0.508 0.133 0.129 0.95 0.505 0.272 0.259 0.94 0.504 0.189 0.198 0.97 2.07
β2 0.000 0.037 0.038 0.96 0.002 0.076 0.076 0.94 -0.002 0.056 0.059 0.96 1.84
β3 0.199 0.051 0.054 0.96 0.199 0.106 0.109 0.95 0.200 0.079 0.084 0.96 1.80

0.05 β1 0.513 0.115 0.113 0.95 0.512 0.258 0.246 0.94 0.522 0.178 0.188 0.96 2.10
β2 0.001 0.031 0.033 0.96 0.003 0.072 0.072 0.96 0.001 0.049 0.056 0.97 2.16
β3 0.198 0.046 0.047 0.96 0.195 0.111 0.104 0.92 0.195 0.075 0.079 0.95 2.19

NOTE: The full cohort contained 4000 subjects.
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Table 3.4: Comparison of three estimators: generalized case-cohort design with β0 = (0.5, 1.2, 0.2)T

β̂F β̂KC β̂DW

ñ τθ Mean SE ESD CR Mean SE ESD CR Mean SE ESD CR REDW |KC
400 0.91 β1 0.505 0.152 0.146 0.93 0.521 0.347 0.338 0.94 0.501 0.319 0.282 0.92 1.18

β2 1.200 0.048 0.046 0.94 1.225 0.100 0.101 0.95 1.183 0.085 0.088 0.94 1.38
β3 0.198 0.062 0.061 0.95 0.212 0.141 0.143 0.94 0.199 0.132 0.119 0.91 1.14

0.50 β1 0.503 0.134 0.131 0.94 0.534 0.328 0.327 0.95 0.536 0.308 0.272 0.91 1.13
β2 1.201 0.041 0.041 0.95 1.224 0.102 0.097 0.94 1.183 0.085 0.086 0.93 1.44
β3 0.200 0.055 0.055 0.95 0.202 0.137 0.138 0.95 0.192 0.128 0.113 0.92 1.15

0.05 β1 0.502 0.111 0.111 0.95 0.513 0.313 0.309 0.95 0.504 0.291 0.298 0.92 1.16
β2 1.200 0.036 0.036 0.95 1.220 0.096 0.091 0.94 1.185 0.084 0.084 0.94 1.31
β3 0.201 0.046 0.047 0.95 0.206 0.130 0.130 0.95 0.197 0.128 0.111 0.90 1.03

600 0.91 β1 0.505 0.152 0.146 0.93 0.511 0.274 0.276 0.95 0.502 0.243 0.216 0.92 1.27
β2 1.200 0.048 0.046 0.94 1.209 0.086 0.082 0.93 1.182 0.071 0.071 0.93 1.47
β3 0.198 0.062 0.061 0.95 0.197 0.115 0.116 0.95 0.200 0.102 0.091 0.92 1.27

0.50 β1 0.503 0.134 0.131 0.94 0.508 0.268 0.264 0.95 0.496 0.235 0.205 0.91 1.30
β2 1.201 0.041 0.041 0.95 1.209 0.080 0.079 0.94 1.185 0.068 0.065 0.92 1.38
β3 0.200 0.055 0.055 0.95 0.204 0.117 0.111 0.94 0.201 0.095 0.087 0.92 1.52

0.05 β1 0.502 0.111 0.111 0.95 0.499 0.241 0.246 0.96 0.499 0.219 0.197 0.91 1.21
β2 1.200 0.036 0.036 0.95 1.204 0.076 0.073 0.93 1.184 0.062 0.061 0.94 1.50
β3 0.201 0.046 0.047 0.95 0.201 0.103 0.103 0.94 0.201 0.091 0.082 0.92 1.28

NOTE: The full cohort contained 4000 subjects.
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Table 3.5: Baseline Characteristics of ARIC Study

CHD (n=604) Stroke (n = 183) Subcohort (n = 777) Full (n = 12,363)
Age (SD), years 58.6 (5.44) 59.7 (5.54) 56.9 (5.57) 56.8 (5.70)
Male Sex, % 67.7 55.7 42.7 42.2
White Race, % 77.1 56.8 75.2 75.6
Lp-PLA2 (SD), mg/L 0.427 (0.14) 0.451 (0.17) 0.378 (0.13) N/A
Lp-PLA2: Moderate †, % 31.5 22.4 33.9 N/A
Lp-PLA2: High ‡, % 48.0 53.6 34.4 N/A

†Lp-PLA2 between 0.310 and 0.422 mg/L
‡Lp-PLA2 above 0.422 mg/L

Table 3.6: Coefficient Estimates of Disease-Specific Effect Model

β̂DW β̂KC

Estimate Std Err P-value Estimate Std Err P-value
Disease: CHD
Age in years/10 0.5279 0.1076 < .0001 0.4756 0.2020 0.0185
Male 1.0346 0.2411 < .0001 0.9798 0.2730 0.0003
White Race -0.0904 0.2359 0.7016 -0.1692 0.2591 0.5137
Lp-PLA2: Moderate 0.4135 0.3469 0.2333 0.2573 0.3296 0.4350
Lp-PLA2: High 0.5474 0.2343 0.0195 0.4490 0.3146 0.1535

Disease: Stroke
Age in years/10 0.9702 0.2297 < .0001 1.0108 0.4175 0.0155
Male 0.6109 0.4134 0.1395 0.4328 0.4413 0.3267
White Race -0.9571 0.3936 0.0150 -1.2054 0.3906 0.0020
Lp-PLA2: Moderate -0.1162 0.6003 0.8465 -0.2028 0.5989 0.7349
Lp-PLA2: High 0.4435 0.3697 0.2303 0.6961 0.4849 0.1511

72



CHAPTER 4: MSCM FOR CLUSTERED FAILURE TIMES

4.1. Introduction

It is widely acknowledged that randomized clinical trials are considered the ‘gold stan-

dard’ in assessing the effectiveness of new therapies or drugs. Through randomization,

randomized clinical trials are able to balance distributions of subject characteristics across

treatment groups, hence remove the confounding. Treatment effect can be estimated sim-

ply by comparing outcomes between treated and untreated groups. Despite the popularity,

conducting randomized trials is not always ethical, feasible or timely. For example, an

active treatment may be considered beneficial to patients, but random assignment may be

deemed unethical. As a result, treatment effect is investigated using observational studies.

Comparing to randomized trials, the desirable features of observational studies include less

restrictive inclusion criteria, possibility of long followup, and relatively low cost (Benson

and Hartz 2000).

Recent years have seen increasing interests in observational comparative effective re-

search (CER), mainly due to the growing adoption of electronic medical record (EMR)

database. Though the majority of medical records in US hospitals are still paper-based,

they are slowly replaced by EMR databases (Jha et al. 2009). EMR data may also come

from insurance claims. Such databases are mostly ‘big data’ and can serve as a rich source

of observational data.

However, like any observational study, the use of EMR data to draw causal inference

is hindered by its intrinsic confounding. Among all confounding, confounding by indi-

cation is considered the most important limitation of observational studies. Confounding
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by indication is introduced if prognostic factor(s) can be related to treatment history and

outcome. This persistent issue, along with new challenges brought by EMR databases, has

drawn great interests from statisticians. Many efforts have been put into the emulation of

randomized trials (Danaei et al. 2013). A considerable portion of literature used large ob-

servational study databases and applied inclusion/exclusion criteria that mimic the design

of well-planned randomized trials. For example, Hernan et al. (2008) compared the results

of an observational data (Nurses’ Health Study) and a randomized trial (Women’s Health

Initiative) trial on CHD risk in women from two treatment groups: estrogen/progestin and

placebo. Their investigation showed that estimates of the two studies were fairly similar.

See also Tannen et al. (2009). Some researchers did literature search or performed meta-

analysis to assess the consistency of estimators from observational studies and randomized

trials (Ioannidis et al. 2001, Concato et al. 2000).

In randomized clinical trials, the marginal, or unconditional, treatment effect is often

‘overwhelmingly the focus of the primary analysis’ (Tsiatis et al. 2008). As its name

suggests, the marginal treatment effect is not adjusted for other confounders. Loosely

speaking, in a two arm randomized trial for example, it can be obtained by fitting a model

whose only covariate is the treatment indicator. This type of analysis fits well in the scope

of observational CER using EMR databases because, as was pointed out in Sturmer et al.

(2011), EMR databases mostly come from hospitals (or insurance companies) and may be

lack of data on some important confounders. Some routine risk factors like blood pressure

may be available, but other factors that are difficult to measure are likely to be missing.

In many observational studies, whether a subject receives an active treatment or not

is determined by a number of individual-level prognostic covariates such as age and co-

morbidity. Meanwhile, patients from the same community or clinic form natural clusters.

The outcomes of members from the same cluster may be correlated. They may also share

a similar tendency to be assigned the active treatment or otherwise. For example, the
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INSPIRIS Inc. home visiting provider (HVP) program was initiated to deliver an intensive

program that includes home visits by physicians and nurse practitioners and telephonic case

management for a high-risk subset of high risk seniors. It is believed that this HVP program

has the potential to increase quality of care and reduce total health care expenditures for

elders with chronic conditions. Like other studies, individual’s medical history and other

factors played an important role in determining the program eligibility. Enrollment of HVP

program was offered in selected communities in the greater Detroit, Ann Arbor/Lansing

and Grand Rapids areas, Michigan. Therefore, subjects living in vicinity form clusters and

are potentially correlated. The program was offered to 1,082 participants and claim data

are also available on 10,712 non-participants. The investigators are interested in whether

the program can improve the quality of life and reduce health insurance claim payments.

Marginal structural models (Robins et al. 2000, Hernan et al. 2001) are a class of mod-

els used in causal inference. Such models handle the issue of confounding in evaluation

of the efficacy of interventions by inverse probability weighting for receipt of treatment,

creating a pseudo-population in which the distribution of prognostic covariates are bal-

anced. Marginal structural Cox model has been employed widely in observational studies,

e.g. Hernan et al. (2000). Theoretical justifications of marginal structural models were

provided under the assumption of independent observations with continuous responses

(Robins 1999) or survival endpoints (Lee 2013). However, when the observations are not

independent, these methods do not apply directly. Development of multivariate marginal

structural Cox model is needed in order to handle such data properly.

In this paper, we study marginal structural Cox model in the presence of cluster-level

random effect. In section 4.2, we formulate the marginal structural Cox model under

counter-factual framework. Section 4.3 describes estimation procedure and provides theo-

retical justification. We carry out an extensive simulation study in section 4.4 and applied

the method to a real data set in section 4.5. We conclude with some remarks in section 4.6.
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4.2. Statistical Framework

Consider an observational study where the outcome of interest is survival time T . Let

A(t) indicate the observed treatment(s) received which can take various forms. For ex-

ample, it could be an indicator of treatment initiated at baseline, an arbitrary function of

dose level, or a time-dependent indicator of treatment received at time t. Let L(t) denote a

vector of covariates and L(0) represents baseline covariates. We use overbars to represent

history up to time t (t included) such that A(t) = {A(u) : 0 ≤ u ≤ t}. L(t) is defined

analogously.

We use the counter-factual outcome framework to formally define the parameters of

interest. Let a be any treatment, potentially contrary to what was observed, that a subject

could receive. Specifically, a = {a(t) : 0 ≤ t ≤ τ}, where τ is the duration of the study.

Observed treatment historyA(t) can be considered a particular realization of a(t). There is

a failure time Ta associated with each possible realization of a. The simplest case is when

we only consider a binary treatment assignment at baseline. The counter-factual is thus

two-dimensional, with two possible outcomes T1 and T0, representing the failure time had

the subject been assigned to experimental and control group, respectively.

We need the following three assumptions for marginal structural models:

Assumption 4.2.1. T = Ta for any a such that a(t) = A(t), t ≤ T .

Assumption 4.2.2. pr(A(t)|A(t−), L(t−)) > 0, for any t ∈ [0, τ ] such that

pr(A(t−), L(t−)) > 0.

Assumption 4.2.3. Ta ⊥⊥ A(t)|A(t−), L(t−), for any a.

Assumptions 4.2.1 and 4.2.2 are usually referred to as consistency and positivity as-
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sumptions, respectively (Hernan and Robins 2006, Cole and Frangakis 2009). Assumption

4.2.1 states that an individual’s observed failure time T is precisely the potential failure

time Ta under a certain observed exposure history a. Assumption 4.2.2 states that the prob-

ability of receiving any particular treatment at time t, given treatment and covariate history

up to t, is greater than zero. Assumption 4.2.3 is known as no unmeasured confounding

(Hernan et al. 2000). In practice, only assumption 4.2.2 is empirically testable.

We consider the marginal structural Cox model for the hazard of failure at time t had

the subject received treatment a

λTa(t) = λ0(t)exp{βT0 a(t)}, (4.1)

where λ0(t) is the unspecified baseline hazard function and β0 is the unknown parameter

vector. β0 will have the interpretation of average treatment log-hazard ratio.

4.3. Estimation and Inference

To facilitate understanding, we hereafter formulate the estimating procedure using the

setting in which the patients of the same doctor form a cluster. We use k = 1, . . . , K to

index the doctors. For notational simplicity, we assume that all doctors have n0 patients.

The total sample size n = K · n0. To accommodate the practical situation that numbers

of patients vary among doctors, we introduce the indicator ξki, i = 1, . . . n0 which equals

1 if doctor k has patient i, and 0 otherwise. Let Tki and Cki be the potential failure time

and censoring time, respectively. Observed time Xki = Tki ∧ Cki. The event indicator

∆ki = I(Tki < Cki). Let Yki(s) = I(Xki ≥ s) be the left-continuous at-risk process.

In this paper, we study the estimation and large sample theory under the counting pro-

cess framework. Let Nki(t) be the counting process representing the number of failures of
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subject i in cluster k by time t. We use dNki(t) to denote the number of events of subject i

in cluster k that occurred in [t, t+dt) for some sufficiently small dt. We define the filtration

Ft = σ{Nki(u), Yki(u)+, Aki(u), Lki(u); k = 1, . . . , K, i = 1 . . . , n0, 0 ≤ u ≤ t},

which is the increasing right-continuous σ-algebra generated by failure times, covariates

and treatment histories up to time t, and censoring histories up to time t+ for all subjects.

Let Cki(t) = 0 indicate that subject i in cluster k remained uncensored prior to time t and

Cki(t) = 1 otherwise. The treatment process Aki(·) and the censoring process Cki(·) are

assumed to be piece-wise constant point processes with cadlag (right-continuous with left-

hand limits) step-function sample paths. They are assumed to have jumps that can occur

at no more than a finite number of time points. Informally, this means that all participants

follow (approximately) the same visit schedule. This assumption should be reasonable in

studies with regularly scheduled follow-up visits and good study compliance.

Parameters in model (4.1) are estimated using inverse probability weighting technique.

Let 0 ≤ t1 < t2 < · · · < tD ≤ τ be D distinct time points, which can be distinct observed

times (event or not), or time of scheduled follow-up visits. Define the weight function

Wki(t) =
∏
td≤t

1

pr[Aki(td)|Aki(t−d ), Lki(td)]
. (4.2)

At any given time t, the subject is inversely weighted by the probability of receiving the

observed treatment A(t) conditional on the covariate and treatment histories up to that

moment t. By inverse probability weighting, we create a hypothetical pseudo-population

where L(t) ⊥⊥ A(t)|A(t) holds at time t.

In practice, the true weight function Wki(t) is almost always unknown and needs to be

estimated by Ŵki(t). With clustered data, the subjects in the same cluster may share the
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same tendency of receiving treatment, we can use methods such as mixed effect models to

account for this correlation in estimating Ŵki(t).

Due to the correlated nature of data, the likelihood function that pertains to the original

marginal structural model is not applicable to our setting. We propose a modified weighted

pseudo partial log-likelihood (WPPL) function

l(β, t,W ) =
K∑
k=1

n0∑
i=1

∫ t

0

ξkiWki(s)

[
βTAki(s)

− log
{
n−1

K∑
k=1

n0∑
i=1

ξkiWki(t)Yki(t)exp{βTAki(t)}
}]

dNki(s). (4.3)

We substitute Wki(t) by Ŵki(t) in (4.3) to obtain l(β, τ, Ŵ ). The maximum WPPL es-

timator of β0, denote by β̂W , maximizes l(β, τ, Ŵ ). β̂W is found via Newton-Raphson

algorithm.

When L(t) contains confounders that are strongly correlated to treatment A(t), the

estimated weight Ŵ (t) can vary drastically, resulting in high sampling variability in β̂W .

As a remedy, we can use a stabilized weight

wki(t) =
∏
td≤t

pr[Aki(td)|Aki(t−d )]

pr[Aki(td)|Aki(t−d ), Lki(td)]
. (4.4)

In (4.4), the excessive contribution of W (t) can be offset by the probability conditional

on treatment history solely on the numerator. Substituting weight (4.4) in pseudo-partial

likelihood (4.3) will yield estimator β̂w.

Before presenting results related to the asymptotic distribution of β̂W , we introduce
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some additional notations. For d = 0, 1, 2 and c = 1, 2, let

S
(d)
W c(β, t) = K−1

K∑
k=1

n0∑
i=1

ξkiW
c
ki(t)Yki(t)Aki(t)

⊗dexp{βTAki(t)},

in which a⊗0 = 1, a⊗1 = a, a⊗2 = aaT . S
(d)

Ŵ c
(β, t) are defined likewise by replacing

W (β, t) by Ŵ (β, t). For aforementioned quantities with c = 1, we suppress c in the

notation. In addition, define the following quantities

Z̄W (β, t) =
S

(1)
W (β, t)

S
(0)
W (β, t)

; VW (β, t) =
S

(2)
W (β, t)

S
(0)
W (β, t)

− Z̄W (β, t)⊗2.

The proof of asymptotic results requires the following regularity conditions that are

similar to those in Andersen and Gill (1982) and Sasieni (1993):

Assumption 4.3.1. (Finite interval)
∫ τ

0
λ0(s)ds <∞.

Assumption 4.3.2. (Asymptotic stability) For d = 0, 1, 2 and c = 1, 2, there exists a

neighborhood B of β0 and scalar, vector and matrix functions s(0)
W c , s(1)

W c and s(2)
W c defined

on B × [0, τ ] such that

sup
t∈[0,τ ],β∈B

‖S(d)
W c(β, t)− s(d)

W c(β, t)‖ →p 0, as K →∞

Assumption 4.3.3. (Lindeberg condition) There exists δ > 0 such that as K →∞,

K−1/2 sup
k,i,t
‖Aki(t)‖Yki(t)I{βT0 Aki(t) > −δ‖Aki(t)‖} →p 0

Assumption 4.3.4. (Asymptotic regularity condition) Let B, s(0)
W c , s(1)

W c and s(2)
W c be as in
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assumption 4.3.2 and define

z̄(β, t) =
s

(1)
W (β, t)

s
(0)
W (β, t)

, v(β, t) =
s

(2)
W (β, t)

s
(0)
W (β, t)

− z̄(β, t)⊗2.

For all β ∈ B, t ∈ [0, τ ]:

s
(1)
W c(β, t) =

∂

∂β
s

(0)
W c(β, t), s

(2)
W c(β, t) =

∂2

∂β2
s

(0)
W c(β, t).

s
(0)
W c(β, t), s

(1)
W c(β, t) and s(2)

W c(β, t) are continuous functions of β ∈ B, uniformly in t ∈

[0, τ ]. Further, s(0)
W c(β, t), s

(1)
W c(β, t) and s(2)

W c(β, t) are bounded on B × [0, τ ]; s(0)
W c(β, t) is

bounded away from zero on B × [0, τ ], and the matrix

GW (β0) =

∫ τ

0

v(β0, t)s
(0)
W (β0, t)λ0(t)dt

is positive definite.

We need another assumption concerning the weights W (t) and the corresponding esti-

mators Ŵ (t).

Assumption 4.3.5. Let ‖ · ‖∞ be the supremum norm over k, i, t,

A. (Uniform consistency of estimated weights)

‖Ŵki(t)−Wki(t)‖∞ ≡MW →p 0,

B. (Stability of weights) Both Wki(t) and Ŵki(t) are locally bounded, that is, there
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exists constants M1 and M2 such that

‖Wki(t)‖∞ ≤M1 and ‖Ŵki(t)‖∞ ≤M2

Note that Ŵ (t) and W (t) are predictable with respect to the filtration Ft. Under the

assumption of finite support ofA(·), this is true because they are determined by predictable

processes: A(·), L(·) and their histories.

Theorem 4.3.1. (Consistency) Under assumptions 4.3.1 - 4.3.5, β̂W →p β0, as K →∞.

Proof. Consider the following process

X(β, t,W ) = K−1{l(β, t,W )− l(β0, t,W )}

= K−1

K∑
k=1

n0∑
i=1

∫ t

0

ξkiWki(s)

[
(β − β0)TAki(s)− log

S
(0)
W (β, s)

S
(0)
W (β0, s)

]
dNki(s),

and its compensator

C(β, t,W ) = K−1

K∑
k=1

n0∑
i=1

∫ t

0

ξkiWki(s)

[
(β − β0)TAki(s)− log

S
(0)
W (β, s)

S
(0)
W (β0, s)

]
λki(s)ds,

where the intensity process is given by λki(s) = Yki(s)λ0(s)exp{βT0 Aki(s)}. In this ex-

pression, β and λ0(s) in the intensity process for the observed counting process N(s)

are the same with the corresponding quantities in model (4.1). To see this, note that the

observed counting process is the same with the counting process in the super-population

defined by MSCM (4.1). Therefore, the observed and super-population intensity processes

have the same β and λ0(s).
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To start with, we show that

∣∣∣∣{X(β, t, Ŵ )− C(β, t, Ŵ )} − {X(β, t,W )− C(β, t,W )}
∣∣∣∣→p 0 (4.5)

so that we can focus on the asymptotic properties of X(β, t,W ) − C(β, t,W ) instead

of X(β, t, Ŵ ) − C(β, t, Ŵ ). The quantity on the left hand side (LHS) of (4.5) can be

expressed as

∣∣∣∣K−1

K∑
k=1

n0∑
i=1

∫ t

0

ξki{Ŵki(s)−Wki(s)}(β − β0)TAki(s)dMki(s)

−K−1

K∑
k=1

n0∑
i=1

∫ t

0

ξki{Ŵki(s)−Wki(s)}log
S

(0)
W (β, s)

S
(0)
W (β0, s)

dMki(s)

−K−1

K∑
k=1

n0∑
i=1

∫ t

0

ξkiŴki(s)log

{
S

(0)

Ŵ
(β, s)

S
(0)

Ŵ
(β0, s)

/
S

(0)
W (β, s)

S
(0)
W (β0, s)

}
dMki(s)

∣∣∣∣ (4.6)

Wki(·), Ŵki(·) and Aki(·) are all predictable processes, hence each term in (4.6) is a

local square integrable martingale. To establish the equivalence (4.5), it suffices to show

that the variation process of each martingale in (4.6) converges to 0 in probability. The

variation process of the first martingale

B1(β, t) = K−2

K∑
k=1

n0∑
i=1

∫ t

0

ξki{Ŵki(s)−Wki(s)}2(β − β0)TAki(s)
⊗2(β − β0)λki(s)ds

≤ K−1M2
W

∫ t

0

(β − β0)T
[
K−1

K∑
k=1

n0∑
i=1

ξkiYki(s)exp{βT0 Aki(s)}Aki(s)⊗2

]
· (β − β0)λ0(s)ds

= K−1M2
W

∫ t

0

(β − β0)TS
(2)
W (β0, s)(β − β0)λ0(s)ds,
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The variation process of the second martingale

B2(β, t) = K−2

K∑
k=1

n0∑
i=1

∫ t

0

ξki{Ŵki(s)−Wki(s)}2

{
log

S
(0)
W (β, s)

S
(0)
W (β0, s)

}2

λki(s)ds

≤ K−1M2
W

∫ t

0

{
log

S
(0)
W (β, s)

S
(0)
W (β0, s)

}2

S
(0)
W (β0, s)λ0(s)ds,

As K → ∞, both B1(β, t) and B2(β, t) converge to 0 in probability, in view of as-

sumptions 4.3.2, 4.3.4 and 4.3.5.

The variation process of the last martingale in (4.6) is given by

B3(β, t) = K−2

K∑
k=1

n0∑
i=1

∫ t

0

ξkiŴ
2
ki(s)

[
log

{
S

(0)

Ŵ
(β, s)

S
(0)

Ŵ
(β0, s)

/
S

(0)
W (β, s)

S
(0)
W (β0, s)

}]2

λki(s)ds

= K−1

∫ t

0

[
log

{
S

(0)

Ŵ
(β, s)

S
(0)

Ŵ
(β0, s)

/
S

(0)
W (β, s)

S
(0)
W (β0, s)

}]2

S
(0)

Ŵ 2
(β0, s)λ0(s)ds

≤ K−1

∫ t

0

[∥∥∥∥log{ S
(0)

Ŵ
(β, s)

S
(0)

Ŵ
(β0, s)

}∥∥∥∥2

∞
+

∥∥∥∥log{ S
(0)
W (β, s)

S
(0)
W (β0, s)

}∥∥∥∥2

∞

+ 2
S

(0)

Ŵ
(β, s)

S
(0)

Ŵ
(β0, s)

}∥∥∥∥
∞

∥∥∥∥log{ S
(0)
W (β, s)

S
(0)
W (β0, s)

}∥∥∥∥
∞

]
S

(0)

Ŵ 2
(β0, s)λ0(s)ds,

which converges to 0 in probability by assumptions 4.3.2, 4.3.4, 4.3.5 and continuous

mapping theorem, as K →∞. Hence (4.5) is proved.

The remaining arguments pertain to the martingale X(β, t,W )−C(β, t,W ). We have

X(β, t,W )− C(β, t,W )

=K−1

K∑
k=1

n0∑
i=1

∫ t

0

ξkiWki(s)

[
(β − β0)TAki(s)− log

S
(0)
W (β, s)

S
(0)
W (β0, s)

]
dMki(s).
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Its variation process B(β, t) can be expressed as

K−1

∫ t

0

[
(β − β0)TS

(2)

W 2(β0, s)(β − β0)

−2(β − β0)TS
(1)

W 2(β0, s)log
S

(0)
W (β, s)

S
(0)
W (β0, s)

+

{
log

S
(0)
W (β, s)

S
(0)
W (β0, s)

}2

S
(0)

W 2(β0, s)

]
λ0(s)ds.

By assumptions 4.3.2 and 4.3.4, K ·B(β, t) converges to some finite quantity involving

s
(0)
W (β, t) and s(d)

W 2(β, t), for d = 0, 1, 2. Hence B(β, t) converges to 0 in probability, as

K →∞. Then by Lenglart’s inequality,

pr

[
‖X(β, t,W )− C(β, t,W )‖∞ > η

]
≤ δ

η2
+ pr[B(β, τ) > δ].

It follows that X(β, t,W ) and C(β, t,W ) have the same limit when K goes to infinity.

As a result, we can investigate the asymptotic properties of C(β, τ,W ) instead. Specifi-

cally, we examine the first and second order derivatives of C(β, τ,W ):

∂C(β, τ,W )

∂β
=

∫ τ

0

{S(1)
W (β0, t)− S(0)

W (β0, t) ·
S

(1)
W (β, t)

S
(0)
W (β, t)

}λ0(t)dt,

which equals 0 when evaluated at β = β0. The minus second order derivative

−∂
2C(β, τ,W )

∂β∂βT
= − ∂

∂β
{
∫ τ

0

(Z̄W (β0, t)− Z̄W (β, t))S
(0)
W (β0, t)λ0(t)dt}

=

∫ τ

0

VW (β, t)S
(0)
W (β0, t)λ0(t)dt

→p

∫ τ

0

v(β, t)s
(0)
W (β0, t)λ0(t)dt. (4.7)

The limiting matrix (4.7) is positive definite, due to assumption 4.3.4.
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Therefore, we have shown that X(β, τ,W ) converges to a concave function having

unique maximum at β0. By corollary II.2 in Andersen and Gill (1982), we conclude that

β̂W →p β0, as K →∞.

Theorem 4.3.2. (Asymptotic Normality) Under assumptions 4.3.1 - 4.3.5,

K1/2(β̂W − β0)→d N(0, GW (β0)−1GU(β0)GW (β0)−1),

where

GU(β0) = var{K−1/2U(β0, τ,W )},

GW (β0) =

∫ τ

0

v(β0, t)s
(0)
W (β0, t)λ0(t)dt

We obtain the score function by differentiating (4.3) with respect to β:

U(β, t,W ) =
K∑
k=1

n0∑
i=1

∫ t

0

ξkiWki(s)[Aki(s)− Z̄(0)
W (β, s)]dNki(s). (4.8)

Differentiate (4.8) with respect to β to obtain information matrix

I(β, t) = −∂U(β, t,W )

∂βT
=

K∑
k=1

n0∑
i=1

∫ t

0

ξkiWki(s)VW (β, s)dNki(s)

Expand U(β̂W , τ,W ) in a Taylor series around β0 to get

K1/2(β̂W − β0) = {K−1I(β∗W )}−1K−1/2U(β0, τ,W ), (4.9)

where β∗W is on the line segment between β0 and β̂W .

Lemma 4.3.1. (Normality of score function) Under assumptions 4.3.1 - 4.3.5, the score
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function K−1/2U(β0, τ,W ) converges in distribution to a zero mean Gaussian distribution

with covariance matrix

GU(β0) = var

{ n0∑
i=1

ξ1i

∫ τ

0

W1i(s){A1i(s)− z̄(β0, s)}dM1i(s)

}

Proof. We rewrite (4.8) into the summation of a martingale process and its compensator:

U(β, t,W ) =
K∑
k=1

n0∑
i=1

∫ t

0

ξkiWki(s){Aki(s)− Z̄W (β, s)}dMki(s)

+
K∑
k=1

n0∑
i=1

∫ t

0

ξkiWki(s){Aki(s)− Z̄W (β, s)}Yki(s)eβ
T
0 Aki(s)λ0(s)ds,

in which the second term becomes 0 when evaluated at β = β0. Therefore, we have

K−1/2U(β0, τ,W ) = K−1/2

K∑
k=1

n0∑
i=1

∫ τ

0

ξkiWki(s)Aki(s)dMki(s)

−K−1/2

∫ τ

0

Z̄W (β0, s)dM̄(s),

where M̄(s) =
∑K

k=1

∑n0

i=1 ξkiWki(s)Mki(s). Due to the possible dependence among

observations within the same cluster, we cannot directly use martingale theory to prove the

asymptotic normality of K−1/2U(β0, τ,W ). Alternatively, we first show that the quantity

K−1/2
∫ τ

0
Z̄W (β0, s)dM̄(s) is asymptotically equivalent to K−1/2

∫ τ
0
z̄(β0, s)dM̄(s).

We can show that

‖Z̄W (β0, t)− z̄(β0, t)‖ = op(1). (4.10)

To see this, we have

∥∥∥∥S(1)
W (β0, s)

S
(0)
W (β0, s)

− s
(1)
W (β0, s)

s
(0)
W (β0, s)

∥∥∥∥ =

∥∥∥∥S(1)
W (β0, s)s

(0)
W (β0, s)− s(1)

W (β0, s)S
(0)
W (β0, s)

S
(0)
W (β0, s)s

(0)
W (β0, s)

∥∥∥∥.
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Assumption 4.3.4 guarantees that the denominator is asymptotically bounded away from

0. The numerator

‖S(1)
W (β0, s)s

(0)
W (β0, s)− s(1)

W (β0, s)S
(0)
W (β0, s)‖

≤‖s(0)
W (β0, s)‖ · ‖S(1)

W (β0, s)− s(1)
W (β0, s)‖+ ‖s(1)

W (β0, s)‖ · ‖s(0)
W (β0, s)− S(0)

W (β0, s)‖.

The right hand side (RHS) converges in probability to 0, by assumption 4.3.2. By lemma

A.1 in Spiekerman and Lin (1998), we have

∥∥∥∥K−1/2

∫ τ

0

{Z̄W (β0, s)− z̄(β0, s)}dM̄(s)

∥∥∥∥→p 0,

which implies that

K−1/2

∫ τ

0

{Z̄W (β0, s)− z̄(β0, s)}dM̄(s)→p 0.

The desired asymptotic equivalence is shown. Now we have K−1/2U(β0, τ,W ) is asymp-

totically equivalent to

K−1/2

K∑
k=1

n0∑
i=1

ξki

∫ τ

0

Wki(s){Aki(s)− z̄(β0, s)}dMki(s).

By multivariate central limit theorem, as K → ∞, K−1/2U(β0, τ,W ) converges to a zero

mean Gaussian process with covariance matrix GU(β0), where

GU(β0) = var

{ n∑
i=1

ξ1i

∫ τ

0

W1i(s){A1i(s)− z̄(β0, s)}dM1i(s)

}
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We are now in the position to prove Theorem 4.3.2.

Proof. We decompose K−1I(β0, τ) by

K−1

K∑
k=1

n0∑
i=1

ξki

∫ τ

0

Wki(t)

[
S

(2)
W (β0, t)S

(0)
W (β0, t)− {S(1)

W (β0, t)}⊗2

S
(0)
W (β0, t)2

]
dMki(t)

+

∫ τ

0

[
S

(2)
W (β0, t)S

(0)
W (β0, t)− {S(1)

W (β0, t)}⊗2

S
(0)
W (β0, t)2

]
S

(0)
W (β0, t)λ0(t)dt

The elements in the first term are local square integrable martingale which can be shown to

converge to zero in probability. We now prove the second term
∫ τ

0
VW (β0, t)S

(0)
W (β0, t)dt

converge to the fixed matrix GW (β0). Specifically,

∥∥∥∥∫ τ

0

VW (β0, t)S
(0)
W (β0, t)dt−GW (β0)

∥∥∥∥
=

∥∥∥∥∫ τ

0

{VW (β0, t)S
(0)
W (β0, t)− v(β0, t)s

(0)
W (β0, t)}dt

∥∥∥∥
≤
∥∥∥∥∫ τ

0

{VW (β0, t)S
(0)
W (β0, t)− v(β0, t)S

(0)
W (β0, t)}dt

∥∥∥∥
+

∥∥∥∥∫ τ

0

{v(β0, t)S
(0)
W (β0, t)− v(β0, t)s

(0)
W (β0, t)}dt

∥∥∥∥.
Under the regularity assumptions, the two terms in the last inequality converges to 0 in

probability, respectively. Combining the Taylor expansion (4.9), theorem 4.3.1, lemma

4.3.1, we conclude the proof by applying Slutsky’s theorem,

K1/2(β̂W − β0)→d N(0, GW (β0)−1GU(β0)GW (β0)−1)
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The variance-covariance matrix of β̂W can be estimated by

ĜW (β̂W )−1ĜU(β̂W )ĜW (β̂W )−1,

where ĜU(·) and ĜW (·) are obtained by replacing unknown quantities in GU(·) and GW (·)

by their finite sample estimates, respectively.

4.4. Simulation

We conducted extensive simulation studies to investigate the ability of marginal struc-

tural Cox model in yielding average treatment effect estimates that are consistent with

those in randomized trials. For better illustration, we used the scenario where patients are

clustered within doctors.

4.4.1 Covariates and Correlated Failure Time

We generated three covariates that are considered ‘important’: (1) patient’s age X1 ∼

Uniform(30, 70); (2) indicator of severe pre-existing conditionsX2 following a Bernoulli

distribution with p = 0.3; (3) indicator of possessing a comprehensive health insurance

X3 which follows a Bernoulli distribution with p = 0.8 if aged above 55, or a Bernoulli

distribution with p = 0.2 if otherwise. They were deemed important in the sense that they

were related to both treatment history and outcome, thus, were confounders. Besides the

three confounders, we generated 10 mutually independent nuisance covariates, denoted

by V1, . . . , V10, each following a standard normal distribution. Though not related to ei-

ther treatment history or outcome, they were included in constructing the weights for the

marginal structural Cox model.

We designed two mechanisms from which experimental/control treatment Zki (1 for
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experimental, 0 for control) is assigned. The first assignment mechanism was based on a

logistic model with cluster-level random effect. Specifically, it follows a logistic model

logit(P (Zki = 1)) = −1 + 0.05X1,ki −X2,ki + 0.8X3,ki + ηk.

The cluster-level random effect ηk follows a standard normal distribution and measures the

doctor’s overall tendency to assign treatment.

In practice, such mechanism may often be unrealistic because few doctor would as-

sign treatment based on a logistic model. Instead, a doctor uses his own discretion and

professional experience to determine whether a patient is too old or too sick to receive a

potentially aggressive experimental treatment. Such decision procedures can be extremely

complicated and definitely vary from doctor to doctor. Therefore, we need another mecha-

nism that can better emulate the procedure. In our second mechanism, we introduced two

more doctor-specific random effects in addition to ηk: the random effect ξk that reflected

the doctor’s judgment on the suitability of assigning treatment based on the patient’s age,

and µk which represented random variation of chances in assigning treatment. We assume

that ξk ∼ Unif(−3, 3) and µk ∼ Unif(−0.1, 0.1). Treatment is assigned by the following

rules: if X3,ki = 1 and ηk ≥ 0.4, Zki = Bernoulli(0.8 + µk). Otherwise,

Zki =



Bernoulli(0.7 + µk) , if X1,ki ≤ 55 + ξk and X2,ki = 1

Bernoulli(0.8 + µk) , if X1,ki > 55 + ξk and X2,ki = 1

Bernoulli(0.3 + µk) , if X1,ki ≤ 55 + ξk and X2,ki = 0

Bernoulli(0.2 + µk) , if X1,ki > 55 + ξk and X2,ki = 0

We hereafter refer to the treatment assignment scheme via logistic model as scheme 1, and

the complicated scenario as scheme 2.
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We assumed that the marginal distribution of failure time Tki has failure rate

λ0(t)exp{βT0 Wki},

where β0 was the true regression parameter vector and Wki was the set of covariates. Cor-

related failure time data within doctor k were generated from the Clayton-Cuzick model

(Clayton and Cuzick 1985), in which the joint survival function of Tk = (Tk1, . . . , Tknk
)T

had the form:

S(tk1, . . . , tknk
|Wk1, . . . ,Wknk

) =

{
nk∑
i=1

exp(

∫ tki
0
λ0(t)eβ

T
0 Wkidt

θ
)− (nk − 1)

}−θ
.

(4.11)

The positive parameter θ measured the strength of correlation among (Tk1, . . . , Tknk
)T . θ

was related to Kendall’s τθ in the way that τθ = 1/(2θ+1) when there is no censoring. The

smaller θ was, the larger the Kendall’s τθ, hence the stronger the correlation. We performed

two types of simulation studies using two different failure time generating mechanisms.

They are described in the following two sections.

4.4.2 Binary Time-independent Treatment

We first investigate the performance of marginal structural Cox model in the simplest

situation where there is only one binary treatment Z. We assumed that, for subject i of

doctor k, the failure time T arises from the marginal hazard model

λki(t) = 0.5exp{βZki + 0.025X1,ki + 0.25X2,ki − 0.25X3,ki}. (4.12)

Correlated failure times were simulated via Clayton-Cuzick model (4.11). By setting

Zki to either 0 or 1, we obtained pairs of counter-factual failure times (T0,ki, T1,ki) to rep-
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resent the subjects’ potential outcomes had he/she been assigned to a specific treatment at

baseline, in the absence of censoring. To emulate a randomized trial, we assigned the sub-

jects to the experimental group by Bernoulli(0.5). Depending on the assigned treatment

group, corresponding value of the pair (T0,ki, T1,ki) was extracted. Right censoring time

was then simulated from Uniform(0, r) distribution. Data from an observational study

was generated in a similar fashion, except that the treatment group was assigned according

to the two schemes described in section 4.4.1. During this process, covariates X1, X2, X3

were directly related to both potential outcome T and assigned treatmentZ, therefore, were

confounders.

On the generated observational data, we estimate the marginal treatment effect by fit-

ting a model analogical to intent-to-treat Cox model.

λki(t) = λ0(t)exp{γZki} (4.13)

Model (4.13) compares the relative risk between experimental and control groups, regard-

less of whether the subjects subsequently stop or initiate another therapy. In other words, it

compares treatment initiators and non-initiators. Therefore, model (4.13) can be viewed as

the observational equivalence of its intent-to-treat analysis counterpart. Estimation is done

via inverse probability weighting. Weights at baseline were estimated by a mixed effect

logistic model whose covariates were X1, X2, X3 plus the nuisance covariates V1, . . . , V10.

Since model (4.13) is different from the data-generating model (4.12), the average treat-

ment hazard ratio γ would differ from β, the conditional hazard ratio. As was stated in

Gail et al. (1984) and Austin et al. (2007), in general we have |γ| ≤ |β| if β 6= 0. Ideally,

we would integrate X1, X2, X3 out of model (4.12) to obtain the true value. This may be

infeasible if the conditional probability f(Z|X1, X2, X3) is complicated, e.g. scheme 2 in

section 4.4.1. Alternatively, we elected to find the true value via simulation. Specifically,

we generated a large data set (5000 doctors, each with 20 patients), randomly assigned
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treatment from Bernoulli(0.5) and obtained an estimate of average treatment hazard ra-

tio. We repeated this procedure 500 times and referred to average hazard ratio as the true

value.

We carried out the simulation by setting β in (4.12) to -2 or 0. The corresponding true

values were -1.92 and 0.01, respectively. The number of doctors we considered were 100,

200 and 300. Each doctor had 20 patients assigned to him. Parameter θ in (4.11) was set to

1 so the patients assigned to the same doctor were moderately correlated. Values of right

censoring parameter r were selected to produce about 85% censoring.

Results based on 500 simulations are presented in table 4.1. We computed the bias,

empirical standard deviation (ESD), average of standard error (ESE) and coverage rate

(CR) of 95% confidence intervals. We fitted the unadjusted LWA model (Lee et al. 1992)

that does not address confounding by indication. The results showed that this method per-

formed reasonably well under treatment assignment scheme 1, with unbiased estimates and

good 95% CI coverage rates. However, it yielded biased estimates under the complicated

scheme 2, and the coverage rates became lower as the number of clusters increased. On

the other hand, estimators from MSCM (4.13) was approximately unbiased, even under the

complicated treatment assignment mechanism 2. The ESEs were very close to the ESDs,

indicating good approximation of the covariance matrix estimator. The coverage rates of

95% confidence intervals were satisfactory. The emulated RCT estimators was also ap-

proximately unbiased and were close to their MSCM counterparts. Under certain setups,

marginal structural Cox model had a slightly higher variability, which was likely due to

inverse probability weighting.
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4.4.3 Primary Treatment, with a Possibility of Secondary Treatment

In both randomized trials and observational studies, failure to adhere to the treatment

of primary interest often introduces great complexity to statistical analysis. In many cases,

intent-to-treat analysis (or per-protocol analysis, for observational studies) are carried out,

completely ignoring the adherence to the treatment that was initiated. On the other hand,

an as-treated analysis classifies the subjects according to the actual treatment they received,

as opposed to the treatment they initiated at baseline. As-treated analysis can take flexible

forms. For example, the model can incorporate a time-dependent treatment group indicator

A(t). This is often referred to as ‘current versus never users’ comparison. In this section,

we considered another important variation of as-treated analysis that accommodates sec-

ondary treatment.

Secondary treatment is prevalent in both randomized trials and observational studies.

After a subject initiates a primary treatment at randomization/baseline, he or she later may

have to start a secondary treatment due to deteriorating condition or other complications.

An intent-to-treat analysis will fail to tease out the effect of primary treatment, which is

usually of major interest, since it is confounded by secondary treatment effect. Marginal

structural Cox models has been utilized to address this issue under randomized trial setting

(Yamaguchi and Ohashi 2004, Zhang and Wang 2012). The model is defined using counter-

factual framework. Let T pz denote the failure time of a subject if, possibly contrary to the

fact, the subject received treatment z at baseline and initiated the secondary treatment at

time p. We let p = ∞ if secondary treatment is never initiated. For each subject, this

is an infinite-dimensional counter-factual since secondary treatment can be initiated at an

arbitrary time point. We assumed a marginal structural Cox model

λT p
z
(t) = λ0(t)exp{θ1z + θ2q(t)}, (4.14)
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where q(t) is the time-dependent indicator of secondary treatment with q(t) = I(t ≥ p)

and we have a(t) = {z, q(t)}T . λT p
z
(t) is the hazard function for T pz and λ0(t) is the

unspecified baseline hazard function. In this simulation, we assumed that the failure times

followed an exponential distribution. Therefore, we have a constant baseline hazard λ0,

λT p
z
(t) = λ0exp{θ1z + θ2q(t)}.

The survival function of T pz is exp{−
∫ t

0
λ0exp{θ1z+θ2q(s)}ds}. Let u ∼ Uniform(0, 1),

by probability integral theorem, we generate T pz by solving t from

exp{−
∫ t

0

λ0exp{θ1z + θ2q(s)}ds} = u.

For t ≤ p, we have a(s) = 0 for s ≤ t and obtain T pz = − log(u)
λ0exp{θ1z} . For t > p, the

equation became

∫ p

0

exp{θ1z}ds+

∫ t

p

exp{θ1z + θ2}ds = − log(u)

λ0

.

We then have

T pz = p+ [− log(u)

λ0exp{θ1z}
− p]/exp(θ2)

= p+ [T∞z − p]/exp(θ2)

The derivation suggested that we could first generate the failure time without secondary

treatment. Then if the subject initiated secondary treatment at moment p, his residual

survival after p was prolonged by the factor exp(θ2). By following these two steps, the true
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values are identical to θ1 and θ2 if we fit the MSCM (4.14). Therefore, we do not need to

obtain true values by emulating randomized trials repeatedly from a huge counter-factual

data.

We now describe the details about generating the counter-factual dataset. First, we gen-

erated the counter-factual pair (T∞0 , T∞1 ), the potential failure times if secondary treatment

were never initiated. We assumed the failure times followed an exponential distribution

with marginal hazard function

λT∞Z (t) = λ0exp{θ1Z}.

Correlated failure times within the same doctor were simulated from Clayton-Cuzick

model (4.11). When generating (T∞0 , T∞1 ) using probability integral theorem, the standard

uniform random seed u required some special manipulation. We introduced two indepen-

dent standard normal random variables X4 and ε and a constant a between 0 and 1. Define

y = a ·X4 +
√

1− a2 · ε. Obviously, y was still standard normal due to the independence

between X4 and ε. Hence, u = Φ(y), where Φ(·) was the standard normal cumulative

distribution function, followed standard normal distribution. Indirectly, X4 was related to

the failure times (T∞0 , T∞1 ) and the strength of dependence was determined by the value

of a: the larger the a was, the stronger the dependence. Similarly, we could relate more

covariates to the failure times.

The second stage was to generate the time P when secondary treatment was initiated

from the model λP (t) = λ0P (t)exp{γ1Z + γ2X4}. For Z = 0, 1, if P ≥ T∞Z , then

the secondary treatment was never initiated and T PZ = T∞Z . Otherwise, we have T PZ =

P + (T∞Z − P )exp{−θ2}. For each subject, we have the counter-factual pair (T P0,ki, T
P
1,ki).

We emulated the case of randomized trials and observational studies in the same way as in

section 4.4.2.
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The covariate X4 introduced in this section was indirectly related to the failure time. It

was also related to treatment history A(t) since the time to initiate secondary treatment P

was directly dependent upon X4. Therefore, X4 was a confounder.

Most simulation setups were similar to those in section 4.4.2. In addition, λ0P (t) was

selected so that about 40% of subjects initiated secondary treatment. Results based on

500 simulations are presented in table 4.2. As expected, emulated randomized trials gave

both unbiased point estimates and good confidence interval coverage rates. Results also

demonstrated that marginal structural Cox model was able to yield unbiased estimates for

both primary and secondary treatments. In general, the ESEs were fairly close to the ESDs

for both θ1 and θ2. We also noticed that there were a few outliers among θ2 estimates,

possibly due to the extreme values in the estimated weights. The coverage rates of 95%

confidence intervals were satisfactory.

4.5. Data Analysis

To illustrate our method, we implemented the proposed method to a data set from the

INSPIRIS study. Starting from January 2010, INSPIRIS Inc. started to offer a home vis-

iting health care program in selected communities in Michigan. The aim of this home

visiting health care program was to identify symptoms at an earlier stage and to provide

proper medical precautions. The investigators were interested in whether the program can

improve the quality of life and reduce health insurance claim payments. The enrollment

of the program was not offered randomly. Instead, at the beginning of each month, inves-

tigators examined the medical records during the past twelve-month period and decided

the program eligibility. If a subject had incurred a large amount of claim payment, s/he

was more likely to be offered the program. Other factors relevant to program eligibility

included number of hospitalization and emergency room visits, and disease history. Geo-

graphical area also played a role in determining the eligibility. Therefore, subjects living

98



in vicinity form clusters and are potentially correlated. The program was offered to 1,082

participants and claim data are available on 10,712 non-participants.

The response in our analysis was the time to the first emergency room (ER) visit after

January 1, 2010, denoted by T . Since the program eligibility was evaluated monthly, we

postulate a marginal structural Cox model for T :

λT (t) = λ0(t)exp{β · a(t)}, (4.15)

where a(t) is the time-dependent program membership indicator. Therefore, β is inter-

preted as the log hazard ratio between current INSPIRIS participants and non-participants.

Subjects were followed until they had an emergency room visit, loss to follow-up, or ad-

ministrative censoring date July 1, 2011, whichever came first. We set the administrative

censoring date because claim data became fairly sparse after that date. We used the count-

ing process style input and broke the follow-up period into month-long intervals. We also

extracted disease and other medical history information from the claim data, using the clin-

ically modified International Classification of Diseases (ICD-9-CM) codes. A full list of

the indicators is in Table 4.3. For the cluster information, we used five digit zip code. The

10,183 subjects in our data formed 374 clusters with sizes ranging from 2 to 309.

In order to estimate the weights used in inverse probability weighting, we fitted a lo-

gistic regression model with random intercept on data in each month-long interval. The

model adjusted for the number of hospitalization/ER visit, total claim payment and disease

indicators during the past twelve-month period, as well as several baseline factors includ-

ing gender and age on January 1, 2010. The hazard ratio estimate in MSCM (4.15) was

0.379 (95% CI: 0.336 to 0.427), which indicated that the INSPIRIS program is helpful in

reducing ER visit. There are some limitations for this analysis. As we mentioned before,

one critical assumption for MSCM is that there is no unmeasured confounding (assump-
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tion 4.2.3). With these claim data, it is very likely that there could be some important

confounding factors which are not measured.

4.6. Discussion

Large scale electronic medical record databases have seen rapidly growing popularity

in recent years. One largest challenge in estimating average treatment effect using EMR

data is to eliminate the confounding by indication. Meanwhile, it is common to have clus-

tered subjects whose responses are correlated in EMR data. In this paper, we proposed a

marginal structural Cox model approach that can handle time-to-event data with cluster-

level random effect and correctly estimate the average treatment effect. We formulated the

model using counter-factual arguments. Parameters can be estimated using inverse prob-

ability weighting technique. We proved its asymptotic properties via martingale theory.

We implemented our method in both simulations and a real large scale observational claim

data.

Claim data generally do not have mortality information, unless linked to external sources

such as hospital administrative data and clinical data (Pine et al. 1997). There were at-

tempts made to predict mortality using the ICD-9-CM codes recorded in claim data (Iez-

zoni et al. 1995). In the absence of mortality data, investigators sometimes will use alter-

native endpoints. Some endpoints such as hospitalization and ER visit are recurrent. Our

marginal structural Cox model approach was based on the AG (Andersen and Gill 1982)

model for terminal events such as death. While the AG method could potentially handle

recurrent events, a more suitable approach that we could develop in the future is based on

the rate models by Pepe and Cai (1993) for recurrent events.

When analyzing claim data, investigators are usually interested in the claim payment.

In many cases, including a parallel analysis of the INSPIRIS data, the claim payment is
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considered as a continuous endpoint and linear models are usually employed. A more

proper approach to analyze claim payments is to utilize methods concerning medical costs.

Because a patient who accumulates costs over time at relatively higher rates tends to gen-

erate larger cumulative costs at both the survival time and censoring time, the cumulative

cost at both times are positively correlated. Standard survival analysis methods may be

invalid because of the informative censoring. To this end, Lin (2000a) proposed a propor-

tional means regression model to handle such data. In claim data, geological information

may also introduce cluster level heterogeneity. This is because medical cost for subjects

living in vicinity may have similar socio-economic status and access to health care. In

contrast, such characteristics can vary significantly across clusters. To our best knowledge,

there is no statistical procedure for analyzing medical cost data that can address cluster

level heterogeneity and confounding by indication simultaneously. A possible future work

is to fill this methodological gap.
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Table 4.1: Simulation Results: Binary Time-independent Treatment

Unadjusted RCT MSCM
Beta Scheme #Doctors Bias ESD ESE CR Bias ESD ESE CR Bias ESD ESE CR

-2 1 100 -0.019 0.145 0.143 0.940 -0.014 0.141 0.138 0.950 -0.023 0.146 0.143 0.940
200 -0.008 0.101 0.102 0.940 -0.003 0.104 0.098 0.940 -0.012 0.102 0.102 0.940
300 -0.011 0.078 0.083 0.968 0.000 0.078 0.080 0.962 -0.015 0.079 0.084 0.960

2 100 0.097 0.138 0.140 0.896 -0.004 0.138 0.138 0.944 0.038 0.148 0.147 0.944
200 0.086 0.100 0.100 0.858 -0.008 0.104 0.098 0.934 0.029 0.106 0.105 0.942
300 0.096 0.085 0.082 0.766 0.000 0.084 0.080 0.946 0.041 0.089 0.086 0.944

0 1 100 -0.012 0.126 0.124 0.946 -0.012 0.112 0.115 0.956 -0.016 0.126 0.125 0.948
200 -0.011 0.090 0.088 0.944 -0.013 0.085 0.082 0.940 -0.015 0.091 0.089 0.946
300 -0.010 0.068 0.072 0.952 -0.009 0.065 0.067 0.958 -0.015 0.069 0.073 0.954

2 100 0.090 0.114 0.116 0.882 -0.008 0.114 0.115 0.944 0.037 0.119 0.120 0.942
200 0.074 0.085 0.082 0.848 -0.016 0.084 0.081 0.930 0.019 0.087 0.085 0.930
300 0.082 0.068 0.067 0.764 -0.010 0.069 0.067 0.960 0.029 0.071 0.069 0.930

NOTE: ESD, empirical standard deviation; ESE, average standard error estimator; CR, estimated standard error coverage rate
of the nominal 95% confidence intervals
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Table 4.2: Simulation Results: With Possible Secondary Treatment

RCT MSCM
(θ1, θ2)

T Scheme #Doctor Parameter Bias ESD ESE CR Bias ESD ESE CR
(-0.69, -0.2) 1 200 θ1 -0.032 0.135 0.135 0.946 -0.017 0.168 0.157 0.932

θ2 0.004 0.162 0.148 0.950 -0.002 0.160 0.131 0.930
250 θ1 -0.027 0.112 0.119 0.954 -0.015 0.143 0.143 0.950

θ2 -0.008 0.149 0.134 0.944 0.007 0.132 0.121 0.940
300 θ1 -0.036 0.109 0.109 0.938 -0.015 0.138 0.138 0.950

θ2 0.029 0.130 0.129 0.926 0.009 0.137 0.117 0.936
2 200 θ1 -0.017 0.133 0.133 0.950 0.010 0.138 0.141 0.952

θ2 0.018 0.175 0.157 0.926 0.006 0.135 0.127 0.940
250 θ1 -0.020 0.111 0.116 0.952 -0.004 0.120 0.122 0.952

θ2 0.023 0.147 0.139 0.928 0.005 0.118 0.115 0.950
300 θ1 -0.030 0.104 0.111 0.942 0.001 0.114 0.116 0.950

θ2 0.024 0.134 0.122 0.932 0.002 0.119 0.109 0.936
(0, -0.2) 1 200 θ1 0.032 0.129 0.126 0.942 0.000 0.125 0.131 0.956

θ2 0.009 0.129 0.120 0.938 -0.002 0.139 0.121 0.920
250 θ1 0.032 0.108 0.110 0.934 -0.011 0.112 0.118 0.952

θ2 -0.007 0.121 0.112 0.942 -0.014 0.115 0.110 0.946
300 θ1 0.034 0.107 0.102 0.930 0.003 0.112 0.114 0.956

θ2 -0.019 0.108 0.107 0.930 0.001 0.138 0.111 0.924
2 200 θ1 0.024 0.124 0.124 0.942 -0.006 0.122 0.125 0.948

θ2 -0.020 0.145 0.131 0.936 -0.005 0.126 0.119 0.942
250 θ1 0.023 0.107 0.107 0.942 0.002 0.102 0.108 0.952

θ2 -0.018 0.116 0.116 0.930 -0.007 0.109 0.106 0.942
300 θ1 0.030 0.099 0.103 0.958 -0.006 0.099 0.104 0.962

θ2 -0.017 0.104 0.103 0.932 -0.008 0.110 0.101 0.934
NOTE: ESD, sample standard deviation; ESE, average standard error estimator; CR, estimated
standard error coverage rate of the nominal 95% confidence intervals
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Table 4.3: List of Disease and Medical History Indicators

Alcohol status Arthritis Behavioral disorder Cancer
Chronic obstructive lung disease Chronic renal disease Congestive heart failure Coronary artery disease
Delirium Dementia Diabetes Encephalopathy
Falls Hip Fracture Hypertension Smoking status
Stroke Substance abuse
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CHAPTER 5: MIXED EFFECT MODEL FOR CLUSTER-BASED PDS

5.1. Introduction

Observational studies play a key role in investigating the relationship between outcome

and exposure and other covariates. All studies are conducted with a limited budget and

the maximum study sizes are often restricted by the cost of the exposure ascertainment. In

practice, there are many scenarios where all outcome data are available, and a sub-study is

planned which requires retrospectively collecting additional key exposure information on

a limited number of subjects. As a result, cost-effective study designs, especially biased

sampling designs, have been investigated closely. Among the biased sampling designs,

the most widely used one is the case-control design due to its efficiency and cost-effective

feature (Anderson 1972, Prentice and Pyke 1979). The fundamental idea of case-control

design is to over-represent the cases that are considered to be more informative in relating

response and exposure.

Case-control design is suitable when the outcome of interest is binary. On the other

hand, there are numerous situations where the outcome of interest is measured continu-

ously to which case-control design does not naturally extended. In practice, one ad hoc

solution is to dichotomize the outcome based on a pre-specified threshold. However, it is

obvious that there will be a loss of information in the continuous outcome. Meanwhile, the

results may be sensitive to the potentially subjective choice of cutoff. For continuous time-

to-event data, Prentice (1986) proposed case-cohort studies. Outcome-dependent sampling

(ODS) design (Zhou et al. 2002, Weaver and Zhou 2005) is a two-stage biased sampling

design proposed for general continuous responses. It is ideal for studies that values of out-

come Y are known for all subjects, but the exposure variable X may be expensive or diffi-
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cult to ascertain. Assume that the domain of Y can be partitioned intoK mutually exclusive

and exhaustive strata by known constants −∞ = a0 < a1 < · · · < aK−1 < aK = ∞ and

let the kth stratum be represented by Ck = (ak−1, ak], k = 1, . . . , K. The data structure

of the ODS sample consists of a first-phase simple random sample (SRS) of size n0 and

a second-phase simple random sample of size n1, . . . , nK from each of the K strata. The

latter is referred to as ‘supplementary sample’. Through sampling the response Y at its

two distributional tails, the X-values to be observed are more likely to occur at its distribu-

tional tails as well if the true underlying distribution is linear. Linear model theory shows

that the variance of parameter estimate is inversely proportional to the summed squares of

observed X-values (XTX). Therefore, having a sample thatX-values are over-represented

in its two distributional tails will be more informative than having a simple random sample

in which X-values are evenly concentrated around its mean. For variations of ODS, see

Zhou et al. (2011a), Qin and Zhou (2011) and Zhou et al. (2011c). In many studies, there

may exist a continuous auxiliary variableW forX , which is available for all subjects in the

full cohort. Intuitively, incorporating auxiliary information in W in biased sampling may

lead to improved efficiency. To this end, outcome-auxiliary-dependent sampling (OADS)

designs are proposed in Wang and Zhou (2010) and Zhou et al. (2011b). Suppose that

W can be partitioned into J mutually exclusive and exhaustive strata by known constants

−∞ = b0 < b1 < · · · < bJ−1 < bJ = ∞ and let the jth stratum be represented by

Bj = (bj−1, bj], j = 1, . . . , J . Then the population can be partitioned into T = K × J

strata on the domain of Y ×W . The outcome-auxiliary-dependent sample also consists of

two components: an overall SRS and supplementary samples from each of the T strata.

OADS may become implausible when there are a large number of strata for the auxil-

iary variable or the combination of several auxiliary variables. The probability-dependent

sampling (PDS) design, proposed in (Zhou et al. 2014), is well-suited in this scenario. The

rationale of PDS is to stratify the response-auxiliary domain by a single ‘score’, that is, a

probability. Another appealing feature of PDS is that it allows investigators to over-sample
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the two tails of X distribution without the prior knowledge that the relationship between Y

and X is linear. Suppose that the domain of the exposure X is partitioned into three mutu-

ally exclusive intervals: (−∞, xL]∪ (xL, xU ]∪ (xU ,∞). Like ODS and OADS, an SRS is

drawn from the population in the first stage. Before the second stage supplementary sam-

pling, a model forE(X|Y, Z) is fitted using the first-phase SRS. On the basis of this model,

the chances of a new subject’sX conditional on Y = y and Z = z, will be in (−∞, xL] and

(xU ,∞) are predicted by φ̂1(y, z) = p̂r(X < xL|Y, Z) and φ̂3(y, z) = p̂r(X > xU |Y, Z)

respectively. Then supplementary samples are drawn from those whose X are more likely

to fall on the distributional tails of X . For example, random samples can be drawn from

those with φ̂1(y, z) > c1 or with φ̂3(y, z) > c3, where c1 and c3 are thresholds.

In medical studies, it is very common that subjects from the same clinic or community

form clusters. The Collaborative Perinatal Project (CPP, Niswander and Gordon (1972)),

for example, is an epidemiological study where investigators were interested in studying in

utero exposure to polychlorinated biphenyls (PCBs) in relation to various health outcomes

that include neurodevelopmental abnormalities, among children born in the CPP study.

The PCB levels were measured retrospectively by analyzing the preserved third-trimester

blood serum specimens, which was costly. CPP participants were enrolled through 12

university-affiliated medical clinics, with the centers contributing unequal numbers of sub-

jects. Therefore, subjects within the same clinic may be correlated and it is important that

the clinic-specific random effect can be properly addressed in statistical analysis. Despite

of the advances in ODS-like designs with independent subjects, the literature on such de-

signs with correlated subjects is very limited. Xu and Zhou (2012) considered a linear

mixed effect model (Fitzmaurice et al. 2004) for cluster-based OADS design. Schildcrout

et al. (2013) proposed an outcome vector dependent sampling design for longitudinal con-

tinuous response data, based on summary statistics of individual longitudinal trajectories.

To our best knowledge, there is a gap in methodology that addresses cluster level hetero-

geneity in PDS designs.
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In this paper, we propose a cluster-based probability-dependent sampling design. The

rest of this paper is structured as follows. In Section 5.2.1, we describe the design and data

structure. The estimation and inference procedures based on a profile likelihood function

are presented in Section 5.2.2. We performed simulation studies to assess the performance

of our estimator in Section 5.3. In Section 5.4, we illustrate our method by implementing

it on the CPP data. We conclude with some discussion in Section 5.5.

5.2. Design and Semiparametric Inference

5.2.1 Design and Data Structure

Let Y denote the continuous outcome, (X,Z) denote the vector of covariates where

X is the expensive scalar exposure and Z is the vector of covariates that are available for

all subjects. We use i to index clusters and j to index the subjects within the cluster. We

assume a linear mixed effect model for Yij given (Xij, Zij)

Yij = β0 + β1Xij + β2Zij + ηi + εij, (5.1)

where ηi ∼ N(0, σ2
η) and εij ∼ N(0, σ2

ε ). We assume that ηi and εij are indepen-

dent, analogous to the ordinary linear mixed effect model. The parameter vector β =

(β0, β1, β2, σ
2
η, σ

2
ε )
T . Let xL < xU be known constants that partition the domain of X into

three mutually exclusive intervals A1 ∪ A2 ∪ A3 = (−∞, xL] ∪ (xL, xU ] ∪ (xU ,∞).

The sampling has two stages. In the first stage of PDS, we draw an SRS of size n0

from m0 clusters and their X-values are ascertained. On the first-stage SRS, a model of

E(X|Y, Z) is fitted. We may use linear models, logistic models or non-parametric kernel

methods. For the subjects outside the first-stage SRS, we can obtain the predicted values of

the following two conditional probabilities of X falling into the lower/upper stratum given
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Y and Z: φ1(Y, Z) = pr(X ∈ A1|Y, Z) and φ3(Y, Z) = pr(X ∈ A3|Y, Z), denoted by

φ̂1(Y, Z) and φ̂3(Y, Z). The second-phase supplementary sampling is conducted based on

the predicted probabilities φ̂1(Y, Z), φ̂3(Y, Z). An SRS of size nk, k = 1, 3 is drawn from

each stratum that φ̂k(Y, Z) is greater or equal to pre-specified threshold ck, e.g., 80%. The

number of clusters in supplementary sample are m1 and m3 respectively. The total sample

size n =
∑

k nk =
∑

k

∑mk

i=1 nki and the total number of clusters m = m0 + m1 + m3.

The data structure for the proposed cluster-based PDS is as follows.

First-stage SRS,

{(Y0ij, X0ij, Z0ij)}, i = 1, · · · ,m0, j = 1, · · · , n0i;

and second-stage supplementary sample,

{(Y1ij, X1ij, Z1ij) : pr(X1ij ∈ A1|Y1ij, Z1ij) ≥ c1}, i = 1, · · · ,m1, j = 1, · · · , n1i;

{(Y3ij, X3ij, Z3ij) : pr(X3ij ∈ A3|Y3ij, Z3ij) ≥ c3}, i = 1, · · · ,m3, j = 1, · · · , n3i.

5.2.2 Estimation and Asymptotic Results

Let G(X,Z) and g(X,Z) denote the joint CDF and PDF of (X,Z), respectively. Note

that,

f(Yij, Xij, Zij, ηi) = f(Yij|Xij, Zij, ηi) · h(ηi|Xij, Zij) · g(Xij, Zij)

= f(Yij|Xij, Zij, ηi) · h(ηi) · g(Xij, Zij).

The last equation is granted by assuming the independence between cluster-level and

individual-level random effects. We also assume that the observations of (X,Z) within
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the same cluster are independent. This is usually the case if the subjects are clustered

within the same participating clinic, like in the CPP.

With known φk(Ykij, Zkij), the likelihood function can be expressed as

L(β,G) =

{ m0∏
i=1

∫ n0i∏
j=1

fβ(Y0ij|X0ij, Z0ij, η)h(η)g(X0ij, Z0ij)dη

}

×
{ ∏
k=1,3

mk∏
i=1

∫ nki∏
j=1

fβ(Ykij, Xkij, Zkij, η|φk(Ykij, Zkij) ≥ ck)dη

}
, (5.2)

For k = 1, 3, using Bayes formula, we have

fβ(Ykij, Xkij, Zkij, ηki|φk(Ykij, Zkij ≥ ck))

=
fβ(Ykij, Xkij, Zkij, ηki, I{φk(Ykij, Zkij) ≥ ck})

pr{φk(Ykij, Zkij) ≥ ck}
=

fβ(Ykij, Xkij, Zkij, ηki)

pr{φk(Ykij, Zkij) ≥ ck}

=fβ(Ykij|Xkij, Zkij, ηki)h(ηki)g(Xkij, Zkij)π
−1
k ,

where

πk =

∫ ∫ ∫ ∫
f(Y |X,Z, η)h(η)g(X,Z)I{(Y, Z) : φk(Y, Z) ≥ ck}dY dXdZdη.

Therefore, likelihood function L(β,G) in (5.2) can be expressed as

{ m0∏
i=1

∫ n0i∏
j=1

fβ(Y0ij|X0ij, Z0ij, η)h(η)g(X0ij, Z0ij)dη

}

×
{ ∏
k=1,3

mk∏
i=1

∫ nki∏
j=1

fβ(Ykij|Xkij, Zkij, η)h(η)g(Xkij, Zkij)dη

} ∏
k=1,3

π−nk
k , (5.3)

It is clear that maximizing (5.3) will inevitably involve addressing G(X,Z), the joint
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distribution of (X,Z). We propose a semiparametric likelihood method without specifying

G(X,Z). Note that for a fixed β, (5.3) is a biased sampling likelihood (Vardi 1982, 1985,

Qin 1993). Let pij = g(Xij, Zij). The log-likelihood is

l(β, {pij}, π1, π3) =

{ m∑
i=1

log{
∫ ni∏

j=1

fβ(Yij|Xij, Zij, η)h(η)dη}
}

+

{ m∑
i=1

ni∑
j=1

log(pij)− n1log(π1)− n3log(π3)

}
= l1(β) + l2({pij}, π1, π3), (5.4)

where l1(β) and l2({pij}, π1, π3) denote the quantities in the first bracket and the second

bracket, respectively.

The first step is to profile (5.4) over {pij} by fixing (β, π1, π3) and to obtain the em-

pirical likelihood function of {pij} over all distributions whose support contains the ob-

served values of X and Z. Since we still have independent components in the term∑m
i=1

∑ni

j=1 log(pij), we can search for {p̂ij} that maximize l2({pij}, π1, π3) in (5.4), sub-

ject to following four constraints:

{
pij > 0;

m∑
i=1

ni∑
j=1

pij = 1;

m∑
i=1

∫ ni∑
j=1

pij

{∫
fβ(Y |Xij, Zij, η)h(η)I{(Y, Zij) : φ1(Y, Zij) ≥ c1}dY

}
dη − π1 = 0;

m∑
i=1

∫ ni∑
j=1

pij

{∫
fβ(Y |Xij, Zij, η)h(η)I{(Y, Zij) : φ3(Y, Zij) ≥ c3}dY

}
dη − π3 = 0

}
.

(5.5)

The four constraints rise from the idea in Owen (1988, 1990) that we need to consider only

discrete distributions with jumps at each of the observed points.
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We can use Lagrange multiplier argument to derive {p̂ij} that maximizes (5.4) subject

to the constraints (5.5). Specifically, we maximize the target function

H(β, {pij}, π1, π3)

=l2({pij}, π1, π3) + ρ(
m∑
i=1

ni∑
j=1

pij − 1) + n
∑
k=1,3

λk

[ m∑
i=1

×

∫ ni∑
j=1

pij

{∫
fβ(Y |Xij, Zij, η)h(η)I{(Y, Zij) : φk(Y, Zij) ≥ ck}dY

}
dη − πk

]
,

(5.6)

where ρ, λ1, λ3 are Lagrange multipliers. Differentiate H(β, {pij}, π1, π3) with respect to

ρ, λ1, λ3 and {pij}, we get

∂H

∂ρ
=

m∑
i=1

ni∑
j=1

pij − 1

∂H

∂λk
= n

m∑
i=1

∫ ni∑
j=1

pij

{∫
fβ(Y |Xij, Zij, η)h(η)I{(Y, Zij) : φk(Y, Zij) ≥ ck}dY dη

}
− πk

∂H

∂pij
= n

∑
k=1,3

λk

{∫ ∫
fβ(Y |Xij, Zij, η)h(η)I{(Y, Zij) : φk(Y, Zij) ≥ ck}dY dη − πk

}
+

1

pij
+ ρ (5.7)

Set all derivatives to zero and solve the equation. Multiply each ∂H/∂pij by pij and sum

over indices i, j, we can get ρ̂ = n. Plugging it back into ∂H/∂pij , we obtain the maxi-

mizer p̂ij:

n−1

[
1+
∑
k=1,3

λk

{∫ ∫
fβ(Y |Xij, Zij, η)h(η)I{(Y, Zij) : φk(Y, Zij) ≥ ck}dY dη−πk

}]−1

.

(5.8)

Replacing pij with (5.8) in (5.4), we have an estimated profile log-likelihood function
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whose arguments are (β, π1, π3, λ1, λ3). For unbiased sampling schemes, the true value of

π1 and π3 are zero. But this is generally not the case with a biased sample. Therefore, to

unify the notation, we center λ1 and λ3 by reparameterizing

ν1 = λ1 − q1/π1, ν1 = λ3 − q3/π3.

where qk = nk/n for k = 0, 1, 3.

Define the following quantities: ξ = (βT , π1, π3, ν1, ν3)T ,

Fk(Xij, Zij) =

∫ ∫
fβ(Y |Xij, Zij, η)h(η)I{(Y, Zij) : φk(Y, Zij) ≥ ck}dY dη,

and

∆(Xij, Zij) = q0 +
q1

π1

F1(Xij, Zij) +
q3

π3

F3(Xij, Zij).

Replacing λk with νk in (5.8), the resulting reparameterized profile log-likelihood can

be expressed as

l(ξ) = l1(β)− n1log(π1)− n3log(π3)

−
m∑
i=1

ni∑
j=1

log

{
∆(Xij, Zij) +

∑
k=1,3

νk{Fk(Xij, Zij)− πk}
}

(5.9)

We replace φk(Y, Zij) with φ̂k(Y, Zij) in Fk(Xij, Zij) and ∆(Xij, Zij) to obtain their

estimated counterparts, denoted by F̂k(Xij, Zij) and ∆̂(Xij, Zij). The estimated version of
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profile log-likelihood function has a form very similar to (5.9):

l̂(ξ) = l1(β)− n1log(π1)− n3log(π3)

−
m∑
i=1

ni∑
j=1

log

{
∆̂(Xij, Zij) +

∑
k=1,3

νk{F̂k(Xij, Zij)− πk}
}

(5.10)

We can obtain the maximum semiparametric empirical likelihood estimator ξ̂ for (5.10)

by using Newton-Raphson algorithm. We hereby present the asymptotic results of our

cluster-based PDS estimator ξ̂ and the detailed proof is given in the section 5.6.

Theorem 5.2.1. Under the regularity conditions outlined in the section 5.6, ξ̂ satisfying

n−1l̂(ξ̂) = 0 converges almost surely to the true value ξ0 = (β0, π1, π3, 0, 0)T . In addition,

n1/2(ξ̂ − ξ0)
d−→ N(0,Σ(ξ0)),

where Σ(ξ0) = [V (ξ0)−1]Ω(ξ0)[V (ξ0)−1]T .

Explicit forms of V (ξ) and Ω(ξ) are given in the section 5.6. A consistent estima-

tor of Σ(ξ0) is [V̂ (ξ̂)−1]Ω̂(ξ̂)[V̂ (ξ̂)−1]T , where V̂ (ξ) and Ω̂(ξ) are obtained by replacing

theoretical quantities with finite sample estimates in V (ξ) and Ω(ξ).

5.3. Simulation

We evaluate the performance of the proposed estimator by extensive simulation studies.

We assume that the continuous main exposure X follows a standard normal distribution.

Its domain X can be partitioned into three mutually exclusive intervals: X = A1∪A2∪A3,

whereA1 = (−∞, µX−a∗σX ], A2 = (µX−a∗σX , µX+a∗σX ] andA3 = (µX+a∗σX ,∞).

We generate a covariate Z which equals X plus a standard normal random error. We
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assume that Z is measured on all the subjects in the full study cohort. To generate clustered

data, the response variable Y arises from a linear model with a random intercept:

Yij = β0 + β1Xij + β2Zij + ηi + εij, (5.11)

in which footnote i indexes clusters and j indexes subjects within a cluster. The individual-

level random effects εij follow a standard normal distribution and are independent over

i, j. Cluster level random effects ηi are normally distributed with mean 0 and variance

σ2
η . Therefore, the population intra-class correlation (ICC) equals σ2

η/(1 + σ2
η) and can be

controlled by a single factor σ2
η . Without loss of generality, we assume that the all clusters

have the same size. For the full study cohort, we generated 50 clusters of size 80, resulting

in 4000 subjects. In each independent simulation run, we compared the following three

estimators.

The first estimator, denoted by β̂F , is based on a hypothetical scenario in which we can

observe theX values on all subjects in the full study cohort. Although this can be achieved

in the simulation study, we emphasize that this is implausible in practice. This estimator

will serve as the benchmark. The second estimator, denoted by β̂S , is the linear mixed

effect model estimator. It is based on simple random sample of size n from the full study

cohort.

The third estimator, denoted by β̂P , is our proposed PDS estimator. To implement this

estimator, we first draw a simple random sample of size n0 = 200 from the full study

cohort. We fit two mixed effect logistic regression models on this sample. One is for the

event Xij ∈ A1, while the other is for the event Xij ∈ A3. Both models adjust for Y, Z

and account for the cluster level random effect. We then obtain the predicted probabilities

p̂r(Xij ∈ Ak|Yij, Zij, ηi), k = 1, 3 for those who outside the first phase simple random

sample. Supplementary probability dependent sampling is then conducted at a = 1, 1.5.
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We investigated two probability sampling thresholds c = c1 = c3: β̂P1 corresponds to

c = 85%, while β̂P2 corresponds to c = 95%. The sample sizes in the two probabilistic

tails are the same, that is, n1 = n3 = 100. The total sample size n = 400. True values of

β1 and β2 are set to 2 and -0.5, respectively.

Results based on 1000 independent simulations are presented in Table 5.1. All three

types of estimators are able to yield unbiased point estimates with satisfactory 95% con-

fidence interval coverage rates. The means of estimated standard errors are close to their

corresponding empirical standard errors, indicating good approximation of the variance

estimator. For each estimator, we also computed its relative efficiency (RE) to the bench-

mark full cohort estimator β̂F . Specifically, RE is defined as the squared ratio of ESE

for β̂F to ESE for the estimator. β̂F itself has RE equals 1 by definition. The larger the

RE is, the more efficient the estimator is. In our simulations, the cluster-based PDS es-

timators are more efficient than β̂S obtained from a simple random sample of same size.

For example, when ICC equals 0.33, the relative efficiencies of estimator from a simple

random sample are both 0.088 for β1 and β2. In contrast, the relative efficiencies of our

PDS estimator with a = 1 and c = 85% are 0.137 and 0.153, respectively for β1 and β2.

In general, we gain more efficiency when the ICC is smaller, that is, when cluster level

random effect contributes less to the total variability. On the other hand, the performance

of cluster-based PDS estimator appears to be insensitive to (1) how we classify the tails of

X domain (a = 1, 1.5) and (2) probability sampling threshold (c = 85%, 95%).

5.4. CPP Data Analysis

We illustrate our method by using data from the Collaborative Perinatal Project. It is

an epidemiological study where investigators were interested in studying in utero exposure

to polychlorinated biphenyls (PCB) in relation to various health outcomes including IQ,

among children born in the CPP study. Subjects were enrolled through 12 university-
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affiliated medical clinics, with the centers contributing unequal numbers of subjects from

23 to 204. One of the hypotheses is that the total PCB level is related to the performance on

the Weschler intelligence scale for children at 7 years of age. The total PCB was measured

by analyzing the third-trimester blood serum specimens preserved from mothers in the

CPP study. In our CPP data, total PCB was ascertained on all 850 subjects. We assume

that they consist of the full study cohort. Some baseline characteristics of the CPP table

are presented in Table 5.2.

To implement the probability dependent sampling, we set a = 1 so that the domain of

total PCB is divided into 3 non-overlapping strata: A1 = (−∞, 1.24], A2 = (1.24, 5.05],

A3 = (5.05,∞). A simple random sample of size 200 is selected from the full study cohort.

We fit two separate logistic regression models with random intercept to predict p̂r(PCB ∈

A1|IQ, Z) and p̂r(PCB ∈ A3|IQ, Z), where Z is the vector of covariates available on all

subjects in the full cohort. Specifically, Z includes standardized maternal education at

birth of child, socioeconomic index, standardized maternal age at registration, race (black

= 1), gender (female = 1), DDT, total cholesterol and triglycerides. Based on the predicted

probabilities, we conduct supplementary sampling with c = 85% and select 100 subjects

from both probabilistic tails. Using i = 1, . . . , 12 to index medical clinics and j to index

subject within the clinic, we postulate the following linear mixed effect model on IQ

IQij = β0 + β1PCBij + β2Educij + ηi + εij, (5.12)

where Educ is the standardized maternal education at birth of child. We also implemented

the same model (5.12) on the data from (1) the full cohort and (2) a simple random sample

of size 400. Analysis results are reported in Table 5.3. All three estimators identify a highly

significant positive relationship between maternal education and IQ-score, that is, higher

maternal education is significantly associated with higher IQ-score of the born child. On

the other hand, none of them demonstrate a significant total PCB effect on IQ-score. The
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corresponding P values were 0.8455, 0.6508 and 0.7848, respectively for full cohort, SRS

and PDS estimators. Nonetheless, β̂PDS has a smaller standard error compared to β̂SRS

and will result in a narrower confidence interval. For example, the 95% confidence interval

for PDS estimator is (2.00, 4.47), while the counterpart for SRS estimator is (2.40, 5.18).

5.5. Discussion

Compared to the classical ODS, PDS does not require assuming a true underlying linear

relationship between response and exposure, hence offers more flexibility. In this paper,

we proposed a new random effect model for a cluster-based probability dependent sam-

pling scheme. The implementation of PDS scheme involved drawing a first-stage simple

random sample. Using this validation sample, we obtained the predicted probabilities of

X falling in pre-specified lower and upper tails, then performed supplementary probabil-

ity sampling. The estimation and inference procedures were based on a profile likelihood

function. The procedure also properly accounted for the cluster-level heterogeneity. We

observed improved efficiency over the estimator from a complete simple random sample

in both simulation studies and real data analysis.

One potential drawback of our method lies in the added computational burden to ad-

dress the cluster level random effect. In order to compute double integrals in (5.8), we

applied the trapezoidal rule on a fairly fine grid of response Y and random effect η. The

computing speed for this naive method was acceptable, because we do not need the numer-

ical approximation to be extremely precise. We also considered other numerical integral

methods like adaptive cubature. However, we failed to observe improved performance

over the trapezoidal rule. Another approach to handle the numerical integral is Laplace

approximation similar to the technique used in (Xu and Zhou 2012). By using Laplace

approximation, each cluster-specific random effect ηi becomes an unknown parameter to

be estimated. While this approximation may be more efficient with a small number of large
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clusters (e.g. in CPP), the Newton-Raphson algorithm will be intractable when we have

many small clusters.

While reviewing the literature, we noticed there was a lack of methodology for cluster-

based ODS scheme. It is important to fill this gap. We can then further assess the perfor-

mance of our cluster-based PDS estimator by comparing it with its ODS counterpart. PDS

scheme also has the potential to be extended beyond the scope of continuous responses.

One possible extension is to time-to-event data. PDS may be implemented in combination

with the generalized case-cohort sampling design (Cai and Zeng 2007). Specifically, PDS

can be embedded into the case-sampling stage of generalized case-cohort design. We can

postulate a model for the failure times on the first stage simple random sample. We then

obtain the predicted probabilities of a failure time is smaller or larger than a pre-specified

threshold. We can sample the remaining cases based on the predicted probabilities and get

a more representative second-stage supplementary sample, which may lead to improved

statistical efficiency.

5.6. Proof of Theorems

Conditions

We required the following five regularity assumptions in the derivation of the asymp-

totic theories.

Assumption 5.6.1. The log-density log{fβ(Y |X,Z)} is twice continuously differentiable

with respect to β.

Assumption 5.6.2. The proportion nk/n is a fixed constant qk ∈ (0, 1) for k = 0, 1, 3.
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Assumption 5.6.3. The class of functions

F ≡
{∫

fβ(Y |X,Z, η)dη,
∂s

∂βs
log{

∫
fβ(Y |X,Z, η)dη}, ∂

s

∂βs
Fk(X,Z) : s = 0, 1, 2

}

is a P-Donsker class and has an envelope function with finite second moment. The class of

functions are indexed by ξ and parameters in φ.

Assumption 5.6.4. The information matrix −E[n−1∂2l(ξ)/∂ξ∂ξT ] generated by likeli-

hood function (5.9) is continuous in a neighborhood of true parameter ξ0 and is non-

singular at ξ0.

Assumption 5.6.5. The estimated functions

∂s

∂βs
F̂k(X,Z) : s = 0, 1, 2

also belong to class F and Pr[(Y, Z) : I{φ̂k(Y, Z) ≥ ck} → I{φk(Y, Z) ≥ ck}] = 1

Proof of Consistency

We compute the first-order derivatives of n−1l̂(ξ) and evaluate them at the true value

ξ0 = (βT0 , π1, π3, 0, 0)T . There are three components

∂n−1l̂(ξ)

∂β
= n−1

m∑
i=1

∂

∂β
log{

∫ ni∏
j=1

fβ(Yij|Xij, Zij, η)dη}

− n−1

m∑
i=1

ni∑
j=1

∑
k=1,3 qkπ

−1
k ∂F̂k(Xij, Zij)/∂β

∆̂(Xij, Zij)
, (5.13)
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and for k = 1, 3,

∂n−1l̂(ξ)

∂πk
= n−1

m∑
i=1

ni∑
j=1

qkπ
−2
k F̂k(Xij, Zij)

∆̂(Xij, Zij)
− qk
πk
, (5.14)

∂n−1l̂(ξ)

∂νk
= −n−1

m∑
i=1

ni∑
j=1

F̂k(Xij, Zij)− πk
∆̂(Xij, Zij)

. (5.15)

By the Donsker property assumptions 5.6.3 and 5.6.5, we can apply the Glivenko-

Canteli theorem respectively to (5.13), (5.14) and (5.15). We obtain

∣∣∣∣ ∂∂ξn−1l̂(ξ)− ∂

∂ξ
E[n−1l̂(ξ)]

∣∣∣∣ a.s.−−→ 0.

Assumption 5.6.5 implies that E[n−1l̂(ξ)]→ E[n−1l(ξ)], then we have

∣∣∣∣n−1 ∂

∂ξ
l̂(ξ)− ∂

∂ξ
E[n−1l(ξ)]

∣∣∣∣ a.s.−−→ 0.

Using similar arguments, we can show that

∣∣∣∣n−1 ∂
2l̂(ξ)

∂ξ∂ξT
− ∂2E[n−1l(ξ)]

∂ξ∂ξT

∣∣∣∣ a.s.−−→ 0,

for ξ in a neighborhood of the true value ξ0.

We can use inverse mapping theorem arguments similar to those in Foutz (1977) to

establish consistency of ξ̂. The next step is to show that n−1∂l̂(ξ)/∂ξ → 0. It suffices to

show that E[n−1∂l(ξ)/∂ξ]→ 0. To see that, replace the function φ̂ with φ in (5.13), (5.14)
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and (5.15), then we have

∂n−1l(ξ)

∂β
=

{
n−1 ∂

∂β

[ m∑
i=1

log{
∫ ni∏

j=1

fβ(Yij|Xij, Zij, η)dη} −
∑
k=1,3

nklog(πk)

]}

−
{
n−1

m∑
i=1

ni∑
j=1

∑
k=1,3 qkπ

−1
k ∂Fk(Xij, Zij)/∂β

∆(Xij, Zij)

}
, (5.16)

and for k = 1, 3,

∂n−1l(ξ)

∂πk
= n−1

m∑
i=1

ni∑
j=1

qkπ
−2
k Fk(Xij, Zij)

∆(Xij, Zij)
− qk
πk
, (5.17)

∂n−1l(ξ)

∂νk
= −n−1

m∑
i=1

ni∑
j=1

Fk(Xij, Zij)− πk
∆(Xij, Zij)

. (5.18)

Using the fact that πk = E[Fk(Xij, Zij)], k = 1, 3, we substitute Fk(Xij, Zij) with

πk in (5.16), (5.17) and (5.18). It is obvious that the expectations of (5.17) and (5.18)

converge to 0, respectively. The first bracket in (5.16) is essentially a ‘valid’ conditional

log-likelihood function involving only β. ‘Valid’ here means we can estimate and make

inferences on β solely based on the conditional log-likelihood function, even though it

is not the most efficient approach. Therefore, the expectation of the quantity in the first

bracket in (5.16) converges to 0. The expectation of the quantity in the second bracket also

converges to 0, in view of the ODS fact

E

[
n−1

n∑
i=1

g(Yi, Xi, Zi)

]
= q0E[g(Yi, Xi, Zi)] +

∑
k=1,3

qkE[g(Yi, Xi, Zi)|φk(Y, Z) ≥ ck].

Combining the results, we have shown that n−1∂l̂(ξ)/∂ξ → 0 almost surely, that is, 0 be-

longs to the image of n−1∂l̂(ξ)/∂ξ in any given neighborhood of the true value ξ0 when n is
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sufficiently large. By condition 5.6.4, n−1∂2l̂(ξ)/∂ξ∂ξT is invertible in this neighborhood

when n is sufficiently large. By the inverse mapping theorem, n−1∂l̂(ξ)/∂ξ is invertible in

any small neighborhood of the true value ξ0. Therefore, we conclude that there is a solution

ξ̂ to ∂l̂(ξ)/∂ξ = 0 and

ξ̂
a.s.−−→ ξ0.

Proof of Asymptotic Normality

We add a term on both sides of n−1∂l̂(ξ̂)/∂ξ = 0 to obtain

n−1∂l̂(ξ̂)

∂ξ
− E

[
n−1∂l̂(ξ̂)

∂ξ

]
= −E

[
n−1∂l̂(ξ̂)

∂ξ

]
.

The Taylor expansion of E[n−1∂l̂(ξ̂)/∂ξ] around ξ0 is

E

[
n−1∂l̂(ξ̂)

∂ξ

]
= E

[
n−1∂l̂(ξ0)

∂ξ

]
+ E

[
n−1∂

2l̂(ξ∗)

∂ξ∂ξT

]
(ξ̂ − ξ0),

where ξ∗ is on the line segment between ξ̂ and ξ0. We substitute E[n−1∂l̂(ξ̂)/∂ξ] on the

right-hand side of the equation with its expansion and get

n−1∂l̂(ξ̂)

∂ξ
− E

[
n−1∂l̂(ξ̂)

∂ξ

]
= −E

[
n−1∂

2l̂(ξ∗)

∂ξ∂ξT

]
(ξ̂ − ξ0)− E

[
n−1∂l̂(ξ0)

∂ξ

]
. (5.19)

The left-hand side of (5.19) is asymptotically equivalent to n−1/2
∑m

i=1

∑ni

j=1 U(Yij, Xij, Zij)
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where U(Yij, Xij, Zij) =



∂
∂β
log{

∫
fβ(Yij|Xij, Zij, η)h(η)dη} − 1

∆(Xij ,Zij)

∑
k=1,3 qkπ

−1
k

∂Fk(Xij ,Zij)

∂β

q1π
−2
1 F1(Xij ,Zij)

∆(Xij ,Zij)
− q1

π1

q3π
−2
3 F3(Xij ,Zij)

∆(Xij ,Zij)
− q3

π3

F1(Xij ,Zij)−π1
∆(Xij ,Zij)

F3(Xij ,Zij)−π3
∆(Xij ,Zij)


.

By the Donsker properties in assumptions 5.6.3 and 5.6.5, n−1/2
∑m

i=1

∑ni

j=1 U(Yij, Xij, Zij)

converges weakly to a Gaussian process.

For the second term of the right-hand side of (5.19), we have

E

[
n−1∂l̂(ξ0)

∂ξ

]
= E

[
n−1∂l̂(ξ0)

∂ξ

]
− 0 = E

[
n−1∂l̂(ξ0)

∂ξ

]
− E

[
n−1∂l(ξ0)

∂ξ

]
,

where the right-hand side quantity can be expressed as the mean of the summand



∑
k=1,3 qkπ

−1
k

[
∂F̂k(Xij ,Zij)/∂β

∆̂(Xij ,Zij)
− ∂Fk(Xij ,Zij)/∂β

∆(Xij ,Zij)

]
q1π

−2
1

(
F̂1(Xij ,Zij)

∆̂(Xij ,Zij)
− F1(Xij ,Zij)

∆(Xij ,Zij)

)
q3π

−2
3

(
F̂3(Xij ,Zij)

∆̂(Xij ,Zij)
− F3(Xij ,Zij)

∆(Xij ,Zij)

)
F̂1(Xij ,Zij)−π1

∆̂(Xij ,Zij)
− F1(Xij ,Zij)−π1

∆(Xij ,Zij)

F̂3(Xij ,Zij)−π3
∆̂(Xij ,Zij)

− F3(Xij ,Zij)−π1
∆(Xij ,Zij)


.

We can show that the second term of the right-hand side of (5.19) converges weakly to

a zero mean Gaussian process. Specifically, by the Donsker assumption 5.6.3 and 5.6.5,

both

n−1/2

m∑
i=1

ni∑
j=1

1

∆̂(Xij, Zij)

∑
k=1,3

qkπ
−1
k

∂F̂k(Xij, Zij)

∂β
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and

n−1/2

m∑
i=1

ni∑
j=1

1

∆(Xij, Zij)

∑
k=1,3

qkπ
−1
k

∂Fk(Xij, Zij)

∂β

converge in distribution to a Gaussian process. Therefore, the distribution of their dif-

ference is also Gaussian with mean 0. This is easily seen by replacing φ̂ with φ in the

expression. Likewise, the other four components can be shown to converge to zero mean

Gaussian processes, respectively. To summarize, we have

E

[
n−1∂l̂(ξ0)

∂ξ

]
− E

[
n−1∂l(ξ0)

∂ξ

]
∼



∑m
i=1

∑ni

j=1

∑
k=1,3 qkπ

−1
k Q1k(Yij, Xij, Zij)∑m

i=1

∑ni

j=1 q1π
−2
1 Q21(Yij, Xij, Zij)∑m

i=1

∑ni

j=1 q3π
−2
3 Q23(Yij, Xij, Zij)∑m

i=1

∑ni

j=1Q31(Yij, Xij, Zij)∑m
i=1

∑ni

j=1 Q33(Yij, Xij, Zij),


.

The quantity on the right follows a zero mean Gaussian distribution and for k = 1, 3,

Q1k(Yij, Xij, Zij) =
∑
k=1,3

[
∂F̂k(Xij, Zij)/∂β

∆̂(Xij, Zij)
− ∂Fk(Xij, Zij)/∂β

∆(Xij, Zij)

]
,

Q2k(Yij, Xij, Zij) =
F̂k(Xij, Zij)

∆̂(Xij, Zij)
− Fk(Xij, Zij)

∆(Xij, Zij)
,

and

Q3k(Yij, Xij, Zij) =
F̂k(Xij, Zij)− πk

∆̂(Xij, Zij)
− Fk(Xij, Zij)− πk

∆(Xij, Zij)
.

According to assumption 5.6.5 and consistency of ξ̂, the matrix in the first term on the

right-hand side of (5.19) satisfies

E

[
n−1∂

2l̂(ξ∗)

∂ξ∂ξT

]
→ E

[
n−1∂

2l(ξ0)

∂ξ∂ξT

]
= V (ξ0).
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Finally, we combine all results and obtain

− V (ξ0) · n1/2(ξ̂ − ξ0)

=n−1/2

m∑
i=1

ni∑
j=1

[
U(Yij, Xij, Zij) +



∑
k=1,3 qkπ

−1
k Q1k(Yij, Xij, Zij)

q1π
−2
1 Q21(Yij, Xij, Zij)

q3π
−2
3 Q23(Yij, Xij, Zij)

Q31(Yij, Xij, Zij)

Q33(Yij, Xij, Zij)


]
, (5.20)

where (5.20) converge weakly to a Gaussian distribution with covariance matrix Ω(ξ0).

The asymptotic normality of ξ̂ thus follows.
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Table 5.1: Simulation Results

ICC a Estimator β1 β2

——————————————— ———————————————
Mean ESD ESE CR RE Mean ESD ESE CR RE

0.33 N/A β̂F 2.001 0.023 0.023 0.954 10.641 -0.500 0.015 0.016 0.960 11.797
β̂S 2.004 0.076 0.076 0.948 1.000 -0.502 0.052 0.054 0.946 1.000

1 β̂P1 2.002 0.064 0.061 0.947 1.412 -0.499 0.041 0.041 0.947 1.601
β̂P2 2.001 0.057 0.061 0.960 1.753 -0.504 0.041 0.040 0.950 1.629

1.5 β̂P1 2.001 0.060 0.061 0.949 1.626 -0.503 0.041 0.041 0.941 1.648
β̂P2 2.004 0.065 0.061 0.938 1.360 -0.497 0.040 0.041 0.944 1.734

0.5 N/A β̂F 2.000 0.023 0.023 0.956 12.126 -0.500 0.015 0.016 0.964 13.299
β̂S 2.001 0.079 0.077 0.950 1.000 -0.500 0.055 0.055 0.954 1.000

1 β̂P1 2.002 0.074 0.071 0.947 1.130 -0.498 0.048 0.047 0.943 1.333
β̂P2 2.006 0.070 0.070 0.958 1.275 -0.502 0.048 0.047 0.934 1.356

1.5 β̂P1 2.004 0.067 0.071 0.955 1.390 -0.505 0.046 0.047 0.949 1.462
β̂P2 2.006 0.074 0.071 0.926 1.129 -0.497 0.046 0.047 0.950 1.470

NOTE: ESD, empirical standard deviation; ESE, average standard error estimator; CR, estimated standard
error coverage rate of the nominal 95% confidence intervals. True values: β1 = 2, β2 = −0.5.
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Table 5.2: Baseline Characteristics of CPP Data

Center Code 5 10 15 31 37 45
Sample Size 204 48 49 25 70 61

Total PCB: Lower Tertile 2.4 2.86 1.45 2.22 2.75 2.9
Total PCB: Upper Tertile 3.59 4.34 2.21 3.19 3.96 4.01

IQ: Mean (Std Dev) 102.98 107.9 85.31 90.96 99.23 88.66
(13.07) (13.6) (11.49) (15.24) (12.13) (11.96)

Center Code 50 55 60 66 71 82
Sample Size 47 23 47 149 64 63

Total PCB: Lower Tertile 1.54 1.45 1.15 2.54 2.52 1.84
Total PCB: Upper Tertile 2.37 2.42 2 3.7 3.15 2.48

IQ: Mean (Std Dev) 104.79 86.13 95.55 90.06 96.42 90.05
(14.4) (12.05) (13.69) (11.66) (12.02) (11.51)

Center codes: 5 - Boston Lying-in & Children’s Hospital; 10 - Children’s Hospital of
Buffalo; 15 - Charity Hospital in New Orleans; 31 - Columbia University; 37 - Johns
Hopkins University; 45 - Medical College of Virginia; 50 - University of Minnesota; 55
- New York Medical College; 60 - University of Oregon; 66 - University of Pennsylvania
Hospital ; 71 - Providence Lying-in Hospital(Yale); 82 - University of Tennessee
Overall: sample size = 850, lower tertile of total PCB = 2.2, upper tertile of total PCB =
3.37, Mean(SD) of IQ = 95.65(14.26)
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Table 5.3: Analysis Results of CPP Data

β̂Full β̂SRS β̂PDS
Effect Estimate Std Err P Value Estimate Std Err P Value Estimate Std Err P Value

Total PCB 0.046 0.236 0.8455 -0.153 0.338 0.6508 0.077 0.282 0.7848
Education 3.638 0.452 < .0001 3.791 0.708 < .0001 3.237 0.631 < .0001
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CHAPTER 6: SUMMARY AND FUTURE RESEARCH

In medical studies, correlated data may occur on various occasions. For example, one

subject may experience multiple outcomes of interest that are correlated. On the other

hand, subjects within the same cluster may be correlated because they share some similar

characteristics. Proper methods are needed to analyze such data. This dissertation concen-

trates on multivariate statistical methods for correlated data in observation studies, possibly

with biased sampling schemes.

The case-cohort design is widely used in large cohort studies when it is prohibitively

costly to measure some exposures for all subjects in the full cohort, especially in studies

where the disease rate is low. In Chapter 3, we have considered case-cohort designs with

multiple disease outcomes. Our focus was on the marginal proportional hazard regression

model in which the correlations among the failure times within each subject were con-

sidered as nuisance. In order to improve the statistical efficiency, we proposed a class of

doubly-weighted estimators that can make better use of the covariate information in the

subjects outside the case-cohort sample. The doubly-weighted estimator is also applica-

ble to generalized case-cohort designs. We showed that our estimator was consistent and

asymptotically normal. We observed improved statistical efficiency in simulation studies,

with properly chosen second level weight functions. We also implemented our method to

a data set from the Atherosclerosis Risk in Communities (ARIC) study.

In Chapter 4, we have considered the marginal structural Cox model for clusters of

correlated failure time observations. This project was motivated by the growing popularity

in observational electronic medical records (EMR) data. In EMR data, confounding by in-

dication was usually a concern because treatments were unlikely to be assigned randomly.
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Meanwhile, subjects in EMR data may form clusters within communities or clinics and

the cluster level heterogeneity needed to be properly addressed. We formulated marginal

structural Cox model and proved the consistency and asymptotic normality of the esti-

mator. Simulation studies showed that marginal structural Cox model performed well by

yielding unbiased estimate and satisfactory confidence interval coverage. The proposed

method was implemented using a claim data assessing the effectiveness of the INSPIRIS

home visiting health care program.

In Chapter 5, we studied the cluster-based probability-dependent sampling (PDS) de-

sign. PDS design is a biased sampling design for continuous responses. With PDS sam-

pling, investigators can acquire a more informative biased sample (compared to a simple

random sample of the same size), which may lead to more statically efficient estimators.

Like the case in Chapter 4, subjects may form clusters in PDS designs. We proposed esti-

mation and inference procedures that can address the cluster-level heterogeneity, based on

a semiparametric profile likelihood function. The consistency and asymptotic normality of

the cluster-based PDS estimator were proved using modern empirical process theory. In

simulation studies, our method yielded more efficient estimators compared to linear mixed

effect models on an SRS of the same size. We also applied the method to a data set from

the Collaborative Perinatal Project.

The future work on the proposed methods in this dissertation includes:

First, in Chapter 3, our doubly-weighted estimator was based on Cox-type marginal

proportional hazards model (Kang and Cai 2009). As an alternative to the proportional

hazards model, we can extend doubly-weighted approach to marginal additive hazards

model for (generalized) case-cohort studies with multiple disease outcomes (Kang et al.

2013). On the other hand, our method pertained to correlated events that do not compete.

For example, in the ARIC study, it was possible for a subject to experience both CHD

and incident stroke. However, there are cases when only one of the events of interest may
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occur, e.g., deaths due to the disease of interest and deaths due to all other causes. We can

consider statistical methods from a competing risks perspective (Sorensen and Andersen

2000) with doubly-weighting technique.

Second, the marginal structural Cox model we considered in Chapter 4 was based on

the AG model (Andersen and Gill 1982), thus was ideal for terminal events such as death.

As mortality information is rarely recorded in electronic claim databases, it will be im-

portant to extend our method to other common responses in such databases. One possible

direction is to adapt our method based on the rate models by Pepe and Cai (1993) for re-

current events like hospitalization and emergency room visit. Another feasible extension

is based on the proportional means regression model by Lin (2000a) for claim payments.

Third, to our best knowledge, there was a lack of methodology for cluster-based ODS

design. It is critical to fill this gap. PDS scheme also has the potential to be extended

beyond the scope of continuous responses. One possible extension is to time-to-event data.

PDS may be implemented in combination with the generalized case-cohort sampling de-

sign (Cai and Zeng 2007). Specifically, PDS can be embedded into the case-sampling

stage of generalized case-cohort design. We can postulate a model for the failure times

on the first stage simple random sample. We then obtain the predicted probabilities of a

failure time is smaller or larger than a pre-specified threshold. We can sample the remain-

ing cases based on the predicted probabilities and get a more representative second-stage

supplementary sample, which may lead to improved statistical efficiency.
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