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ABSTRACT

JASON NEWPORT: Solutions to the Nonlinear Schrodinger Equation with Dirac Mass

Initial Data

(Under the direction of Kenneth T-R McLaughlin)

We study the Nonlinear Schrodinger Equation Dirac mass initial data. We use scat-

tering and inverse scattering theory to pose a Riemann Hilbert problem with a regularized

reflection coefficient. We study the asymptotic behaviour of this RHP as the regulariz-

ing parameter tends to zero. We also establish asymptotic descriptions of solutions for

sequences of initial data that converge to a Dirac mass, using a connection to previously

known long time asymptotics.
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CHAPTER 1

Introduction

The goal of this paper is to analyze solutions of the defocussing nonlinear Schrodinger

(NLS) equation with Dirac mass intial data:

iϕt + ϕxx − 2|ϕ|2ϕ = 0(1.1)

ϕ(x, t = 0) = δ(x).(1.2)

In chapter 1.1 we investigate the linear Schrodinger equation with Dirac mass initial

data:

iϕt + ϕxx = 0(1.3)

ϕ(x, t = 0) = δ(x).(1.4)

We will study this via a straightforward regularization which will motivate the regular-

ization that we need to use when solving the nonlinear problem.

In chapter 2 we will describe the Scattering and Inverse Scattering Theory associated

to the NLS equation. It is a nonlinear analogue of the Fourier theory used to solve the

linear problem. We will study this theory for Schwartz class initial data.



In chapter 3 we will find the scattering data corresponding to Dirac mass initial data.

We will formulate a Riemann Hilbert Problem (RHP), and see why the theory breaks

down with constant scattering data. Then we introduce a regularization similar to the

one we used in section 1.1.

In chapter 4 we preform asymptotic calculations on the RHP with the regularized

reflection coefficient to find the asymptotic behaviour of the potential.

In chapter 5 we find a connection between long time asymptotics and sequences of

initial data that converge to a Dirac mass.

1.1. Linear Schrodinger Equation

To motivate the need for a regularization of the scattering data in the nonlinear

case, we will start with the simpler linear equation. The Linear Schrodinger Equation is

defined as

(1.5) iqt + qxx = 0,

where we have chosen the initial data as the Dirac mass:

(1.6) q(t = 0, x) = δ(x).

Using the fourier transform

F{f}(k) = f̂(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikxdx,

2



we see that, formally, the solution to our equation should be

(1.7) q(t, x) =
1

2π

∫ ∞
−∞

eikx−ik
2tdk.

However, the integrand in (1.7) is purely oscillitory, and we must decide upon a proper

interpretation of the integral.

At this point we introduce a regularization to our transformed data to ensure that

the inverse transform of our initial data converges. Let

(1.8) q̂ε0 =
1√
2π
e−εk

2

.

Now, our solution (1.7) becomes

qε(t, x) =
1

2π

∫
R
eikx−ik

2t−εk2

dk.

Straightforward calculations yield:

(1.9) qε(x, t) =
1

2π
e
ix2

4t e−i
π
4

∫
R
e−(t−iε)z2dz.

In the limit as ε→ 0 we find the solution is

(1.10) q(t, x) =
1

2
√
πt
e−i

π
4 e

ix2

4t .

Consider the asymptotics of our solution, as t → 0. We will show that it converges

weakly to the Dirac delta. Let h(x) be any smooth test function, and define

I(x, t) =

∫
R
q(x, t)h(x)dx =

1

2
√
πt
e−i

π
4

∫
R
e
ix2

4t h(x)dx.

3



As t→ 0, the dominant contribution from the integral is at x = 0. The stationary phase

method yields

I(x; s) = h(0) +O(
√
t).

Thus, our solution converges weakly to the Dirac delta function.

Remark: We have shown that if ε→ 0 the formula (1.9), converges to a Dirac mass

as t → 0. A modification of this calculation shows that the order of limits does not

matter. Indeed, if the vector (t, ε) → 0 in formula (1.9), then the result converges to a

Dirac mass as ε → 0. In the nonlinear case, we will see that we cannot interchange the

order of limits.

1.2. Results

Formal considerations in chapter 3 lead us to a one parameter family of reflection

coefficients:

r(z, t) =
1

1 + γ − γ2
e4iz2t.

For ease of calculation we will choose γ = 1
2
. We consider the regularized reflection

coefficient

(1.11) r(z, t) =
4

5
e−2εz2+4iz2t.

Our interest is the behaviour of the solution to the NLS equation with initial data

corresponding to (1.11), as ε→ 0. The following is our main result, proven in chapter 4.

Theorem 1.2.1. Let ϕ(x, t; ε) represent the solution to the NLS equation corre-

sponding to the reflection coefficient (1.11). Then for each T1, T2 and X such that

4



0 < T1 < T2 <∞ and 0 < X <∞, the following expansion holds true for all T1 < t < T2

and |x| < X:

ϕ =
1√
t
e
ix2

4t
−2iνlog(8t)ε−2iνeh(z0)

√
π

5eiπ/4−πν/2

4Γ(−iν)
+O

(√
εlog(ε)

)
,

with ν(z) and h(z) defined in (A.1) and (A.3) respectively.

The meaning of the error term is that there exists a constant C depending on T1, T2

and X so that the error is bounded by C|
√
ε(logε)2| for all allowable x and t.

Theorem 1.2.2. Let r̃(λ) be the reflection coefficient corresponding to the initial data

f(x). Consider initial conditions of the form

ϕ(x, t = 0; ε) =
1

ε
f
(x
ε

)
,

and let M be a positive constant. Then for all values x and t where |z0| =
∣∣−εx

4t

∣∣ ≤ M ,

the solution has the following asymptotic expansion:

ϕ(x, t; ε) =
1√
t
e
ix2

4t
−iνlog(8t)ε2iνu(z0) +O (εlogε)

with

iν(z0) =
1

2πi
log
(
1− |r̃(z0)|2

)
.

The function u is defined in terms of its modulus and phase:

|u(z0)|2 = ν/2 = − 1

4π
log(1− |r̃(z0)|2)

arg u(z0) =
1

π

∫ z0

−∞
log(z0 − s)d log(1− |r̃(s)|2) +

π

4
+ argΓ(iν)− arg r̃(z0).

5



Remark: The question which led to the first theorem was ’What is the behaviour

of solutions associated with regularizations of constant reflection coefficients.’ The sort

of regularizations we considered were in the general class of delta sequences discussed

in Theorem 1.2.2. In addition, the method used to prove the two theorems are quite

different. The former involves Riemann Hilbert Analysis of the inverse spectral problem,

while the latter relies on established long time asymptotics.

A slightly stronger version of Theorem 1.2.2 follows.

Theorem 1.2.3. Let r̃(λ) be the reflection coefficient corresponding to the initial data

f(x). Consider iinitial conditions of the form

ϕ(x, t = 0; ε) =
1

ε
e−2iαxf

(x
ε

)
,

and let M be a positive real constant. For any constant α ∈ R and for all values x and t

where |z0| =
∣∣−εx

4t

∣∣ ≤M the solution has the following asymptotic expansion:

ϕ(x, t; ε) = e−2iαx−2iα2t

[
1√
t
e
ix2

4t
−iνlog(8t)ε2iνu(z0) +O (εlogε)

]

with

iν(z0) =
1

2πi
log
(
1− |r̃(z0)|2

)
.

The function u is defined in terms of its modulus and phase:

|u(z0)|2 = ν/2 = − 1

4π
log(1− |r̃(z0)|2)

arg u(z0) =
1

π

∫ z0

−∞
log(z0 − s)d log(1− |r̃(s)|2) +

π

4
+ argΓ(iν)− arg r̃(z0).

6



1.3. Motivation For Studying Singular Limits of the NLS Equation

We are studying the behaviour of the NLS equation with Dirac mass initial data

for several reasons. The scattering and inverse scattering theory found herein is well

established. Existence and uniqueness of long time asymptotics are known for initial

data in a weighted Sobolev space [4]. The Dirac mass is a distribution that is outside

this class of functions. In this paper we find that solutions exist for sequences of initial

conditions that converge to a Dirac mass. One interesting part of analysis is that the

solutions are not unique.

Another reason we studied these problems is to figure out how the NLS equation

regularizes singular data. In order to study this we had to regularize the reflection

coefficient and develop the machinery to handle the limit when this smoothing parameter

went to zero. Once we had found solutions, one could ask what happened when t → 0.

The limit as the smoothing parameter ε tends to zero does not necessarily commute with

the limit when t→ 0.

The NLS equation can also be used to model laser pulses in optical fibres. Our work

could be used to understand the behaviour of ultra short high intensity pulses.

7



CHAPTER 2

Scattering and Inverse Scattering Theory

In this chapter we will study the defocusing nonlinear Schrodinger equation:

iϕt + ϕxx − 2|ϕ|2ϕ = 0

with Schwartz class initial data.

The scattering and inverse scattering theory we will discuss is a nonlinear version of

the Fourier method for solving linear partial differential equations. We find scattering

data via the direct spectral transform. This scattering data has a very simple evolution

in time. In order to reconstruct the solution at later times we must go from the evolved

scattering data back to the potential, which is achieved using Riemann Hilbert methods.

This scattering and inverse scattering theory have been studied in great detail; in [1] and

[6], for example.

The Lax pair associated with the NLS equation is the pair of linear operators:

(2.1) L = iσ3
∂

∂x
+ i

 0 −ϕ

ϕ 0





(2.2) B = 2zI
∂

∂x
+ i

 −|ϕ|2 ϕx

−ϕx |ϕ|2

 .

If a 2× 2 matrix function ψ = ψ(x, t, z;ϕ) exists so that

(2.3) Lψ = zψ

(2.4)
∂

∂t
ψ = Bψ,

the compatibility of partial derivatives implies that ϕ solves the NLS equation.

Let z ∈ C+ and assume t = 0. Then the differential equation

iσ3
∂

∂x
Ψ + i

 0 −ϕ

ϕ 0

Ψ = zΨ,

together with the asymptotic conditions:

(2.5) Ψ(x, z)

 eizx 0

0 e−izx

→ I as x→∞;

and

(2.6) Ψ(x, z)

 eizx 0

0 e−izx

 bounded as x→ −∞.

possesses a unique solution.

We will use the notation

eizxσ3 =

 eizx 0

0 e−izx


9



Define

(2.7) M = Ψ(x, z)eizxσ3

so that

(2.8) M → I when x→∞.

2.1. Potentials with Compact Support

In this section we will assume that supp(ϕ) = (xl, xr). Many of the analytical issues

are greatly simplified in this setting. Our goal is to provide a well-known (see [1])

description of the reflection coefficient.

We will begin by building unique solutions to (2.3) and (2.4) at t = 0. For x > xr,

(2.3) simplifies to

iσ3
∂

∂x
Ψ = zΨ.

Thus,

Ψ(x, z) = eizxσ3C =

 eizx 0

0 e−izx


 c11 c12

c21 c22

 ,

for x > xr, where the matrix C is constant in x.

Let z ∈ C+. By the asymptotics in (2.5), we know c22 = c11 = 1, c12 = 0. However,

c21 is not determined. If we do a similar analysis as x→ −∞, we find that

Ψ(x, z) =

 e−izx 0

0 eizx


 d11 d12

d21 d22

 .

10



In order for Ψ to be bounded, we need d21 = 0. However, d11, d12, d22 have yet to be

determined. Thus, we have

(2.9) Ψ(x, z) = e−izxσ3

 1 0

c21 1

 x > xr

(2.10) Ψ(x, z) = e−izxσ3

 d11 d12

0 d22

 x < xl.

For z ∈ C−, a similar analysis shows that our solution is

(2.11) Ψ(x, z) = e−izxσ3

 1 ĉ12

0 1

 x > xr

(2.12) Ψ(x, z) = e−izxσ3

 d̂11 0

d̂21 d̂22

 x < xl.

Proving Ψ exists in (xl, xr) follows from standard ODE theory. We find that there is

a unique c21(z) that forces d21 = 0.

The function Ψ has boundary values as z tends towards the real axis. Let

Ψ+ = lim
Im(z)↘0

Ψ

Ψ− = lim
Im(z)↗0

Ψ.

11



These both exist since Ψ(z) is analytic off the real axis and the support of ϕ is compact.

Now we have 2 fundamental solutions to the same ODE on the real axis, and so they

must be related as follows:

(2.13) Ψ+(x, z) = Ψ−(x, z)

 v11 v12

v21 v22

 (z).

For x > xr, using (2.9) and (2.11), we get 1 0

c21 1

 =

 1 ĉ12

0 1


 v11 v12

v21 v22

 (ξ).

Simplifying, we get

(2.14)

 1− c21ĉ12 −ĉ12

c21 1

 =

 v11 v12

v21 v22

 (z).

The mapping ϕ(x) −→ c12(z) is our nonlinear transform. The function c21 is called

the reflection coefficient and is denoted r(z, t).

2.2. Evolution in Time

For t = 0 we have a reflection coefficient. We want to find how it evolves in time as

the NLS equation evolves. In the previous section we showed that Ψ exists when t = 0.

Since compact support is not preserved by the NLS equation, the previous section does

not yield existence for potentials ϕ with non compact support. For the remainder of this

section we will assume that Ψ exists for each t > 0. A general existence theory is found

12



in appendix A.2. See also [4]. It should be noted that due to this theory, we know the

solution Ψ (and therefore, M) is differentiable.

Straightforward algebra shows that ∂
∂t
L = [B L]. Recall, LΨ = zΨ with the asymp-

totic conditions (2.5) and (2.6). Differentiating with respect to t, we obtain

∂

∂t
(zΨ) = BLΨ− LBΨ + LΨt.

Rearranging, yields

L(Ψt −BΨ) = z(Ψt −BΨ).

Therefore, both Ψt−BΨ, and Ψ are eigenfunctions of L with the same eigenvalue. Thus

they are related by:

Ψt −BΨ = ΨE,

where E is a matrix whose entries are constant in x. We can rewrite this equation in

terms of M :

Mt −BM = Me−izxσ3Eeizxσ3 .

In A.2 we show some properties of M , including the fact that it is bounded. It is

easily shown that, M−1 (Mt −BM) is bounded as x→ ±∞. In addition, it follows that

det M = 1. Therefore, E12 = E21 = 0. Using the asymptotics for M , derived from the

asymptotics for Ψ (2.5) and (2.6), we find that

M−1 (Mt −BM)→ 2iz2σ3,

as x→∞.

13



Thus, we find E = 2iz2σ3. In terms of Ψ, we have

(2.15) Ψt −BΨ = 2iz2σ3Ψ.

Differentiating (2.13) with respect to time, and using (2.15), we find

Vt = [V , E]

= 2iz2[V , σ3].

Using the definition (2.13) of the jump matrix, we have

(2.16) r(z, t) = e4iz2tr(z, 0) = e4iz2tv12 for z ∈ R.

A symmetry of the Lax pair allows us to write the jump matrix for Ψ as

(2.17) V =

 1− |r|2 −r(z, t)

r(z, t) 1

 .

2.3. Formulation of RHP and Inverse Scattering Theory

We have computed the reflection coefficient and how it evolves in time. We want

a procedure to reconstruct the potential as it evolves with the NLS equation. We use

the inverse scattering transform solved with Riemann Hilbert approach. For this section

we assume M exists and is differentiable. The proof that M exists relies heavily on the

knowledge of the Lax pair and the function ϕ, and can be found in appendix A.2.

We know M is analytic off of the real axis and that it has identity asymptotics as

z →∞. We will assume r(z) is analytic, therefore, M is continuous in the closed upper

half plane, and in the closed lower half plane. In this sense, M achieves boundary values

14



on the real axis. Using the jump matrix for Ψ and the definition of M , (2.17) and (2.7),

we can find the jump relation for M :

M+(z) = M−(z)

 1− |r|2 −r(z)e−2izx−4iz2t

r(z)e2izx+4iz2t 1

 z ∈ R.

These properties can be combined to formulate a Riemann Hilbert Problem: We wish

to find a matrix M that has the following properties:

M(z) is analytic off the real axis

M(z) = I + M1

z
+ M2

z2
+ · · · z →∞

M+(z) = M−(z)

 1− |r|2 −r(z)e−2izx−4iz2t

r(z)e2izx+4iz2t 1

 z ∈ R.

If we can find such an M , the solution to the NLS equation is embedded in M as

shown in the following theorem.

Theorem 2.3.1. Assume ϕ is Schwartz class for t = 0. Then the solution ϕ to the

NLS equation is:

ϕ = 2i(M1(x, t))12,

where (M1)12 is the upper right entry of the first moment of M as z →∞.

Proof. We know that M solves the differential equation

∂

∂x
M = iz[M,σ3] +QM,

15



where

Q =

 0 ϕ

ϕ 0

 .

If M = I + z−1M1 + · · · , then

z−1 ∂

∂x
M1 + · · · = iz[I + z−1M1 + · · · , σ3] +Q(I + z−1M1 + · · · ).

Solving for the leading order term yields Q = −i[M1, σ3]. In terms of the matrix

entries:  0 ϕ

ϕ 0

 = 2i

 0 (M1)12

−(M1)21 0

 .

Thus,

ϕ = 2i(M1)12 = 2i lim
z→∞

z(M(z)− I)12.

�

Remark: Theorem 2.3.1 is a well known fact and is true under weaker conditions on

the potential. In [4] Deift and Zhou require only that the intial data be in the weighted

sobolev space H1,1.

Retrieving the solution to the NLS equation from the solution to our RHP is called

Inverse Scattering Theory. There are several ways to achieve this retrieval; the more

classical approach involves the Gelfand-Levitan-Marchenko equations, but we use a more

recently developed Riemann–Hilbert approach, which is more suited to our subsequent
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asymptotic analysis. In chapter 4 we will solve the RHP, and then the inverse scattering

theory will allow us to find the solution to the NLS equation.
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CHAPTER 3

Obtaining the Reflection Coefficient with Dirac Mass Initial

Data

Our goal is to find the reflection coefficient corresponding to NLS equation with Dirac

mass initial data:

iϕt + ϕxx − 2|ϕ|2ϕ = 0(3.1)

ϕ(x, t = 0) = δ(x),

where a is a constant.

Seeking a solution to equation (2.3), satisfying (2.5) and (2.6), with a Dirac mass

potential is somewhat problematic. At t = 0, we have ϕ = ϕ = δ(x). For this reason, Ψ

will have a jump discontinuity at x = 0. We must append a rule for how a Dirac mass

acts on a function with a jump discontinuity. We will proceed formally by imposing rules

to evaluate ∫
R

Ψδ(x)dx.

We will use a weighted average of limiting values from the left and right. Using (3.3), we

define

(3.2)

∫
R

Ψδ(x)dx = γ

(
lim
x→0−

Ψ(x)

)
+ (1− γ)

(
lim
x→0+

Ψ(x)

)
.



Now we will compute our reflection coefficient. Note that supp(ϕ(x, t = 0)) = {0}.

Thus, (2.10) and (2.9) become

Ψ(x, z) = e−izxσ3

 1 0

c21 1

 x > 0

Ψ(x, z) = e−izxσ3

 d11 d12

0 d22

 x < 0.

For brevity, let

C =

 1 0

c21 1



D =

 d11 d12

0 d22

 .

Then Ψ has the following representation:

(3.3) Ψ = e−izxσ3D +H(x)e−izxσ3 (C −D) ,

with H being the heavyside function defined as

H(x) =


0 x < 0

1
2

x = 0

1 x > 0.

Suppose t = 0. To find our reflection coefficient we integrate the equation LΨ−zΨ = 0

against a test function h(x) over the entire real axis. The weak form of this equation is:

(3.4) −iσ3

∫
R

Ψh′(x)dx− i
∫

R

 0 −ϕ

ϕ 0

Ψh(x)dx− z
∫

R
Ψh(x)dx = 0.
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Since we already know Ψ solves this equation for x 6= 0, most of the terms in the

equation will cancel. Then (3.4) can be rewritten as

0 = iσ3e
−izaσ3(C −D)h(0) + i

∫
R

 0 −ϕ

ϕ 0

Ψh(x)dx

= h(0)

iσ3(C −D) + i

 −γc21 −γ − (1− γ)d22

γ + (1− γ)d11 (1− γ)d12




This is valid for any test function h, so (1− d11) −d12

−c21 −(1− d22)

+

 −γc21 −γ − (1− γ)d22

γ + (1− γ)d11 (1− γ)d12

 = 0.

We can easily solve these equations for c21, yielding

c21 =
1

1 + γ − γ2
.

We can consider the Dirac delta function as a limit of piecewise constant functions

whose integral is one:

(3.5) q(x) =


1
δ
|x| ≤ δ

0 |x| > δ

.

Using the work of DiFranco and McLaughlin in [5], we can find the reflection coef-

ficient for initial conditions of the form (3.5). In the limit when δ → 0 the reflection

coefficient is a constant:

lim
δ→0

r(z, δ) =
e4 − 1

e4 + 1
.
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We can choose γ so that our reflection coefficient matches this limiting case. For sim-

plicity, we choose γ = 1
2

yielding our reflection coefficient

(3.6) r(z, t = 0) = c21 =
4

5
,

as this will not effect the analysis in the upcoming calculations.

Recall the RHP for M . The problem is to find a 2 matrix M that satisfies:

M(z) is analytic off the real axis(3.7)

M(z) = I +
M1

z
+
M2

z2
+ · · · z →∞(3.8)

M+(z) = M−(z)

 1− |r|2 −r(z)e−2izx−4iz2t

r(z)e2izx+4iz2t 1

 z ∈ R.(3.9)

Unfortunately, with Dirac mass initial data, this problem is ill-posed. Similar to the

linear problem we looked at, our transformed data r(z) = 4
5

is a constant. We know

M → I as z → ∞. However, if we look at the third condition of our RHP, we see that

M+,M− → I for z → ∞. But our jump matrix will not converge since r is constant,

and z ∈ R.

In order to solve our problem, we will introduce a regularization in the same way that

we did for the linear case. Let

(3.10) rε(z) := r(z)e−2εz2 =
4

5
e−2εz2 .
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Using this regularization our reflection coefficient now decays as z → ∞, and we can

find the solution to our RHP. It is the goal of the next chapter to study the behavior as

ε→ 0.

Remark: The derivation that the reflection coefficient is constant in z was formal.

However, it is important to observe that the asymptotic analysis of the inverse prob-

lem with this regularized reflection coefficient, appearing in chapter (4), is completely

rigorous.
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CHAPTER 4

Asymptotic Analysis of the RHP

In this chapter we will find an explicit approximation for our Riemann Hilbert Prob-

lem with regularized data. We will make use of a solution to a similar RHP, solved by

Deift and Zhou in [3]. Using a series of explicit transformations, we will show that an

equivalent form of our RHP is sufficiently close to theirs. We will then use Neumann

series to compute the error.

We will use the Lie algebra notation

λadσ3v = λσ3vλ−σ3 ,

to make the transformations simpler to read.

Define a RHP with regularized data to be

M ε(z) is analytic off the real axis(4.1)

M ε(z) = I +
M ε

1

z
+
M ε

2

z2
+ · · · z →∞(4.2)

M ε
+(z) = M ε

−(z) e(−izx−2iz2t) adσ3

 1− |rε(z)|2 −rε(z)

rε(z) 1

 z ∈ R.(4.3)

The solution to the NLS equation is

(4.4) ϕ = 2i lim
ε→0

(M ε
1)12 .



The RHP solved by Deift and Zhou in [3] is:

MDZ(ω) is analytic off the contour Σ(4.5)

MDZ(ω) = I +
MDZ

1

ω
+ · · · ω →∞(4.6)

MDZ
+ (ω) = MDZ

− (ω) e−iω
2adσ3/4ωiνadσ3V DZ ω ∈ Σ,(4.7)

where iν = 1
2πi
log (1− |r(z0)|2) with z0 = −x

4t
the stationary phase point. The contour

Figure 4.1. The Contour Σ

Σ is shown in Figure 4.1. The jump matrix is defined as:

V DZ(ω) =



Vr(z0) ω ∈ Σ2

V̂r(z0) ω ∈ Σ3

V̂l(z0) ω ∈ Σ5

Vl(z0) ω ∈ Σ6 .

,

using the definitions of Vl, Vr, V̂l and V̂r in (4.10), (4.11), (4.13) and (4.15). Note that in

section 4.3 we will refer back to this RHP.
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As in (4.4), the information we need is in the (1, 2) entry of the the first moment of

MDZ at infinity. From their paper,

(4.8)
(
MDZ

1

)
12

=
−i
√

2πeiπ/4e−πν/2

r(z0)Γ(−iν)
.

This is the solution to a model RHP, obtained through a series of transformations.

4.1. Transformations to an Equivalent RHP

In this section we will show the explicit transformations we use to find a RHP equiv-

alent to ours, which is close to the RHP stated in (4.5) - (4.7).

It will be useful to define V0 as

V0 =

 1− |rε(z)|2 −rε(z)

rε(z) 1

 .

The jump matrix can be written as V = e−itθadσ3V0, where

θ = 2z2 +
zx

t
= 2(z − z0)2 − 2z0.

The stationary phase point is defined to be z0 = − x
4t

.

Remark: We will drop the superscript ε from the reflection coefficient. For the

remainder of this chapter it is assumed that we are working with the regularized reflection

coefficient.

Now we define two factorizations of V0:

(4.9) V0 = Vl Vr
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with

(4.10) Vl =

 1 −r(z)

0 1

 ,

(4.11) Vr =

 1 0

r(z) 1

 ;

and

(4.12) V0 = V̂l V̂c V̂r

with

(4.13) V̂l =

 1 0

r(z)
1−|r(z)|2 1

 ,

(4.14) V̂c =

 1− |r(z)|2 0

0 (1− |r(z)|2)
−1

 ,

(4.15) V̂r =

 1 − r(z)
1−|r(z)|2

0 1

 .

Let V0 be factored according to:

V0 =


Vl Vr z > z0

V̂l V̂c V̂r z < z0.

The matrices Vr and Vl can be analytically extended into the upper and lower right

quadrants, respectively. Similarily, V̂r and V̂l can be extended into the upper and lower
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left quadrants, respectively. The term V̂c can be removed from the factorization (4.12)

via the transformation

(4.16) L = Mδ−σ3 = M

 δ−1 0

0 δ

 ,

where δ solves the one dimensional RHP defined in (4.17) - (4.20).

The jump relation for L can be found as follows

M+ = M−V

M+δ
−σ3 = M−V δ

−σ3

M+δ
−σ3
+ = M−δ

−σ3
− δσ3

− V δ
−σ3
+

L+ = L−δ
σ3
− V δ

−σ3
+ ,

where δ± denotes the boundary values for δ as z approaches the real axis from the plus

and minus sides.

Now, the jump matrix for L can be written in a factored form. For z < z0 we have

δσ3
− V δ

−σ3
+ =

 1 0

r(z)
1−|r(z)|2 e

itθδ−2
− 1

×
 δ−δ

−1
+ (1− |r(z)|2) 0

0 δ+δ
−1
− (1− |r(z)|2)

−1


 1 − r(z)

1−|r(z)|2 e
−itθδ2

+

0 1

 .
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The desired conditions for δ are

δ is analytic off the real axis(4.17)

δ → 1 as z →∞(4.18)

δ+ = δ−
(
1− |rε|2

)
z < z0(4.19)

δ+ = δ− z > z0(4.20)

The solution to this scalar RHP (see [[3]]), is

(4.21) δ = exp

(
1

2πi

∫ z0

−∞

log (1− |r(s)|2)

s− z
ds

)
.

The form of δ is shown in the following lemma.

Lemma 1. δ can be written in the form:

δ = (z − z0)iν εiν/2eh(z),

with

iν =
1

2πi
log
(
1− |r(z0)|2

)
,

and

h(z) = − 1

2πi

∫ √εz0
−∞

log(
√
εz − λ)

∂

∂λ
log

(
1− 16

25
e−4λ2

)
dλ.

The function h(z) satisfies the following properties:

• eh(z)−h(z0) is bounded uniformly in the complex z plane

• Suppose z0 ∈ R is fixed and z ∈ Σ2 ∪ Σ3 ∪ Σ5 ∪ Σ6 (as defined in Figure 4.1)

such that |z| ≤
√

2logε. Then

h(z)− h(z0) = O(
√
ε(logε)2),
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as ε→ 0.

The proof of this lemma is shown in appendix (A.1).

The next transformation is the following change of variables: ω =
√

8t(z−z0). Define

(4.22) N(ω) = e−2itz20σ3L(z0 + ω/
√

8t)e2itz20σ3 .

Under this latest transformation, we have

N+(ω) = N−(ω)e−iω
2adσ3/4δ−adσ3V0(z0 + ω/

√
8t).

Note that in the ω variable, V0 has the factorization

V0(z0 + ω/
√

8t) =


Vl(z0 + ω/

√
8t) Vr(z0 + ω/

√
8t) ω > 0

V̂l(z0 + ω/
√

8t) V̂r(z0 + ω/
√

8t) ω < 0.

The next transformation involves opening sectors, and changing the contour on which

N has a jump. Define P so that

(4.23) P (ω) = N(ω)



I arg ω ∈
(
π
4
, 3π

4

)
∪
(

5π
4
, 7π

4

)
V −1
r (z0 + ω/

√
8t) arg ω ∈

(
0, π

4

)
Vl(z0 + ω/

√
8t) arg ω ∈

(
7π
4
, 2π
)

V̂ −1
r (z0 + ω/

√
8t) arg ω ∈

(
3π
4
, π
)

V̂l(z0 + ω/
√

8t) arg ω ∈
(
π, 5π

4

)
.

This new matrix P will have jump matrices defined on the contour Σ (see, 4.1).
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The matrix P still has identity asymptotics as ω →∞ since N had identity asymp-

totics, and each of the matrices Vr, Vl, V̂r, and V̂l have identity asymptotics in the appro-

priate region.

It can be shown that P has the following jumps

P+ = P−e
−iω2adσ3/4δ−adσ3



I ω ∈ Σ1 ∪ Σ4

Vr ω ∈ Σ2

V̂r ω ∈ Σ3

V̂l ω ∈ Σ5

Vl ω ∈ Σ6 .

The next transformation uses the form of δ that was described in Theorem 1. In the

z variable, δ has the form:

δ = (z − z0)iν εiν/2eh(z).

In the ω variable, this becomes

δ = ωiν(8t)−iν/2εiν/2eh(z0+ω/
√

8t).

We now decompose δ into two parts. One of which, can be factored out of our problem

as a constant (in ω).

δ(ω) = δ0 δ1(ω),

with

δ0 = (8t)−iν/2eh(z0)εiν/2,

and

δ1(ω) = ωiνeh(z0+ω/
√

8t)−h(z0).
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The factor δ0 is constant in ω and can be factored out of our problem by defining

T = δ−σ3
0 Pδσ3

0 .

Notice that all of our transformations have preserved analyticity, and the identity

asymptotics at infinity. The jump relation for T is as follows:

T+(ω) = T−(ω)ωiνadσ3e−iω
2adσ3/4e[h(z0+ω/(8t))−h(z0)]adσ3VΣ(ω),

where VΣ is defined according to

VΣ(ω) =



I ω ∈ Σ1 ∪ Σ4

Vr(z0 + ω/
√

8t) ω ∈ Σ2

V̂r(z0 + ω/
√

8t) ω ∈ Σ3

V̂l(z0 + ω/
√

8t) ω ∈ Σ5

Vl(z0 + ω/
√

8t) ω ∈ Σ6 .

The RHP for T is now very similar to the RHP defined by (4.5), (4.6), and (4.7); and

solved in [3].

This completes the transformations we perform on M . In the next section, we will

prove that T and MDZ differ by something which is O(
√
ε(logε)2). Following that we

will outline a solution.
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4.2. Comparison of Two RHP’s

In this section we will prove that the jump matrices for T and MDZ differ by

O(
√
ε(logε)2).

Recall, the RHP for T has been constructed as:

T (ω) is analytic off of Σ(4.24)

T (ω) = I +O

(
1

ω

)
ω →∞(4.25)

T+(ω) = T−(ω)e−iω
2adσ3/4ωiνadσ3e[h(z0+ω/(8t))−h(z0)]adσ3VΣ.(4.26)

Both T and MDZ have the same asymptotics, and are both analytic in the same

regions. We will need to show that their jump matrices are close in norm.

Theorem 4.2.1. For || · || representing the L1, L2, or L∞ norms, we have

(4.27)
∣∣∣∣VT − V MDZ

∣∣∣∣ < C
√
ε(logε)2,

with

VT = e−iω
2adσ3/4ωiνadσ3e

1
2πi

[h(z0+ω/(8t))−h(z0)]adσ3VΣ,

and

V MDZ = e−iω
2adσ3/4ωiνadσ3V DZ .

Proof. Suppose z ∈ Σ2. Our reflection coefficient is r(z) = 4
5
e−2ε(z0+ω/

√
8t)2 . Define

rDZ = r(z0), the constant used in [3]. The particular solution constructed depends on a

parameter r(z0) which may be freely chosen, as long as |r(z0)| ≤ 1. We choose rDZ = 4
5
.
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It is sufficient to show (4.27) along one of the rays of Σ. The inequalities along the

other rays follow by analogous reasoning. For z ∈ Σ1 we have

VT − V MDZ =

 0 0

1 0

 η,

where η = eiω
2/2ω2iν

(
e2h(z0+ω/

√
8t)−2h(z0)r(ω)− rDZ

)
.

The appendix is devoted to establishing several useful properties of h(z). One such

property is the approximation

(4.28) e2((h(z0+ω/
√

8t)−h(z0))) = 1 +O(
√
ε(logε)2),

for ω ∈ Σ2 ∪Σ3 ∪Σ5 ∪Σ6 such that |ω| ≤
√

2logε. If ω is unbounded, we only know that

this quantity is bounded.

Since ω ∈ Σ2, we can substitute ω = eiπ/4s, with s > 0 yielding

(4.29) η = e−s
2/2ω2iν 4

5

[
e2((h(z0+eiπ/4s/

√
8t)−h(z0)))e−2iεs2/8t−2εz20−2εeiπ/4z0s/

√
8t − 1

]
.

The matrix norm of VT − V MDZ is bounded by

∣∣∣∣VT − V MDZ
∣∣∣∣ ≤ ||η||

≤ C
∣∣∣∣∣∣e−s2/2 [e2((h(z0+eiπ/4s/

√
8t)−h(z0)))e−2iεs2/8t−2εz20−2εeiπ/4z0s/

√
8t − 1

]∣∣∣∣∣∣ .

We choose R(ε) so that for s > R(ε) we know |e−s2/2| is small. We know the terms

in the square brackets in (4.29) are bounded. Recall, we want (4.27) for the L1, L2, and
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L∞ norms. For the L∞ norm, we can choose R(ε) so that e−R(ε)2/2 = ε. For the other

norms, we choose R(ε) so that
∫
s>R
|e−s2/2|qds < ε, where q = 1, 2.

If
∫∞
R
|e−s2/2|qds < ε, then

∫ ∞
R

e−s
2/2ds ≤

∫ ∞
R

se−s
2/2ds

≤ −e−s2/2
∣∣∣s=∞
s=R

≤ e−R
2/2.

We again can choose R(ε) so that e−R
2/2 = ε. Note that R is growing with ε like

R =
√

2logε.

Therefore, we have established that

||η||Lq(R\(−R(ε),R(ε))) ≤ ε

for q = 1, 2,∞. Our next task is to establish the bounds for η when |s| < R(ε).

For any of these norms, we have chosen R(ε) so that the Gaussian factor in (4.29)

controlled the asymptotics for large s. For |s| < R(ε) the factor of (4.29) in square

brackets will control the asymptotics.
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For |s| < R(ε), we can use the bound (4.28). Note that |e−s2/2 ≤ 1|. Then we have

||η|| ≤ C
∣∣∣∣∣∣(1 +O(

√
ε(logε)2)

)
e−2iεs2/8t−2εz20−2εeiπ/4z0s/

√
8t − 1

∣∣∣∣∣∣
≤ C

∣∣∣∣∣∣e−2iεs2/8t−2εz20−2εeiπ/4z0s/
√

8t − 1
∣∣∣∣∣∣

+ Ĉ
√
ε(logε)2

∣∣∣∣∣∣e−2iεs2/8t−2εz20−2εeiπ/4z0s/
√

8t
∣∣∣∣∣∣ .

Define

(4.30) p =
∣∣∣∣∣∣(e−2iεs2/8t−2εz20−2εeiπ/4z0s/

√
8t − 1)

∣∣∣∣∣∣ ,
and

ζ = −2iεs2/8t− 2εz2
0 − 2εeiπ/4z0s/

√
8t.

Thus, we can rewrite p as

p =

∣∣∣∣∣∣∣∣∫ ζ

0

exdx

∣∣∣∣∣∣∣∣ .
We can bound p as follows

p =

∣∣∣∣∣∣∣∣∫ ζ

0

exdx

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣
∣∣∣∣∣ |ζ| sup

|x|<|ζ|
|ex|

∣∣∣∣∣
∣∣∣∣∣ .

We know that there is a constant H so that

|ζ| ≤ HεR2.

We can bound p by

p ≤ Ĥ
∣∣∣∣ε logε eεlogε∣∣∣∣ .
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Thus, we have that

||η|| ≤ Ĉ
√
ε(logε)2 + Cεlogε.

This completes the proof of our theorem. �

4.3. Asymptotic Estimate of the RHP Yielding the Evolved Potential

In the previous section we proved that the difference of the jump matrices for T and

MDZ was O(
√
ε(logε)2). We will now use the solution for MDZ to find our solution.

We start by defining a new quantity

(4.31) E := T (MDZ)−1.

E solves a RHP:

E(ω) is analytic off of Σ(4.32)

E(ω) → I ω →∞(4.33)

E+(ω) = E−(ω)J.(4.34)

To find J , we use the definition of E

J = E−1
− E+

= I +

MDZ
−

 0 0

1 0

(MDZ
−
)−1

 η,

where η = eiω
2/2ω2iν

(
eh(z0+ω/

√
8t)−h(z0)r(z0 + ω/

√
8t)− rDZ

)
.
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We already know thatMDZ
− is bounded. Theorem 4.2.1 proved that η = O(

√
ε(logε)2).

Therefore, we have established the following inequalities:

||J − I||L∞ ≤ C
√
ε(logε)2(4.35)

||J − I||L1 ≤ C
√
ε(logε)2(4.36)

||J − I||L2 ≤ C
√
ε(logε)2.(4.37)

A standard procedure involving small norm Riemann Hilbert problems establishes

the following result. (For a discussion of small norm RHP’s, see [3])

Theorem 4.3.1. There exists E solving the RHP (4.32) - (4.34) in the L2 sense. As

ω →∞ bounded away from the contour Σ, E has the following expansion:

E = I +O

(√
ε(logε)2

1 + |ω|

)
.

Equipped with the solution E, we can find an explicit representation for T . Recall,

T = EMDZ .

Deift and Zhou found an explicit solution for MDZ in [3], and we can find E by Neumann

series. Compiling all this information, we can find an explicit approximation of T .

We will invert each of our transformations to find the solution M ε. For ω bounded

away from the sectors arg(ω) ∈ (0, π/4) ∪ (3π/4, 5π/4) ∪ (7π/4, 2π) (see (4.31), (4.23),
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(4.22) and (4.16)) the following identities hold true:

T (ω) = E(ω)MDZ(ω),

P (ω) = δσ3
0

(
E(ω)MDZ(ω)

)
δ−σ3

0 ,

N(ω) = δσ3
0

(
E(ω)MDZ(ω)

)
δ−σ3

0 ,

L(z) = e2iz20tσ3δσ3
0

(
E(
√

8t(z − z0))MDZ(
√

8t(z − z0))
)
δ−σ3

0 e−2iz20tσ3 .

It then follows, for ω bounded away from the boundaries of these sectors, that:

(4.38) M ε(z) = e2iz20tσ3δσ3
0

(
E(
√

8t(z − z0))MDZ(
√

8t(z − z0))
)
δ−σ3

0 e−2iz20tσ3δσ3

The solution to the NLS equation is given by

ϕ = 2i lim
z→∞

z(M ε − I)12.

Thus, we need to find the O(1
z
) term in our expansion. We made the variable change

z = z0 + ω/
√

8t. As we have defined them, E and MDZ are properly functions of ω.

Extracting the O(1
z
) term, we get

(M ε
1)12 =

1√
8t
e4iz20tδ2

0(MDZ
1 )12 +O

(√
ε(logε)2

)
.

Notice that δσ3 is diagonal, and δ = I +O
(

1
z

)
. Therefore, it does not appear in this

term.
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Substituting the values for z0 and δ0, we get

2i(M ε
1)12 = 2i

1√
8t
e
ix2

4t (8t)−iνe2h(z0)εiν(MDZ
1 )12 +O

(√
ε(logε)2

)
.

After substituting (4.8) we arrive at our solutions:

(4.39) ϕ(x, t; ε) = 2i(M ε
1)12 =

1√
t
e
ix2

4t
−iνlog(8t)εiνe2h(z0)

√
π

5eiπ/4−πν/2

4Γ(−iν)
+O

(√
ε(logε)2

)
.

4.4. Remarks on the Solution

Since ν > 0 , the factor εiν = eiνlog(ε) oscillates rapidly. In contrast to the linear case,

there does not exist a limit when ε → 0 for the nonlinear case. However, the factor εiν

in (4.39) is independent of x and t at first order. If we divide our solution by εiν0 we will

remove the fast oscillations, arriving at

(4.40) ϕ̃(x, t) =
1√
t
e
ix2

4t
−iνlog(8t)e2h(z0)

√
π

5eiπ/4−πν/2

4Γ(−iν)
+O

(√
ε(logε)2

)
.

Thus, we have arrived at a solution to the NLS equation that will have a limit as

ε→ 0. Suppose ε = 0, and denote the leading order behavior of this solution by

(4.41) ϕasy(x, t) =
1√
t
e
ix2

4t
−iν0log(8t)e2h0

√
π

5eiπ/4−πν0/2

4Γ(−α0)
,

with

ν0 = lim
ε→0

ν = − 1

2π
log

(
9

25

)
,

and

h0 = lim
ε→0

h(z).
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It can be shown that ϕasy does not solve the NLS equation. A brief explanation of this

surprising fact follows.

Proposition 1.

(4.42)
∂

∂x

(
lim
ε→0

ϕ̃
)

=
∂

∂x
ϕasy is bounded.

(4.43) lim
ε→0

(
∂

∂x
ϕ̃

)
is unbounded.

This proposition tell us that the operations of differentiation and the limit when

epsilon goes to zero do not commute. It is for precisely this reason that ϕ̃ solves NLS

equation (by construction) but ϕasy does not solve the NLS equation. We will outline a

proof of the proposition (4.43) below. Straightforward calculations show that ∂
∂x
ϕasy is

bounded.

We will outline a proof of the (4.43). Recall in Theorem 2.3.1 we substituted the

asymptotics for M into the equation

∂

∂x
M = iz[M,σ3] +

 0 ϕ

ϕ 0

M

to get information about ϕ. Plugging in M = I + z−1M1 + z−2M2 + · · · into the above

equation yielded (at first order) that ϕ = 2i(M1)12. The O(z−2) term in this equation

yields

(4.44) ϕx = 4(M2)12 + ϕ

∫ x

|ϕ(x′)|2dx′.
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This means we can extract information about ϕx directly from our Lax pair, without

taking a derivative of our asymptotic result. We already know that ϕ is bounded. We

need to see if (M2)12 is bounded or not. Recall the exact formula (4.38) for M :

M ε(z) = e2iz20tσ3δσ3
0

(
E(
√

8t(z − z0))MDZ(
√

8t(z − z0))
)
δ−σ3

0 e−2iz20tσ3δσ3

To find (M2)12, we need to find all the O(z−2) terms:

(4.45)

M ε
2(z) = e2iz20tσ3δσ3

0

(
E2 +MDZ

2 + δσ3
2 + E1M

DZ
1 + E1δ

σ3
1 +MDZ

1 δσ3
1

)
δ−σ3

0 e−2iz20tσ3 ,

where δ has the expansion

δ(z) = 1 +
δ1

z
+
δ2

z
· · · .

MDZ
2 is bounded. To see that E2 is bounded, we can write

E = I +
1

2πi

∫
R

(I + γ)(J − I)

s− z
ds

= I − 1

2πiz

∫
R
(I + γ)(J − I)(1 + s/z + s2/z2 + · · · )ds

where γ has a small norm Neumann expansion. Then

E2 = − 1

2πi

∫
R
(I + γ)(J − I)s ds.

We can factor the sup norm of I + γ out of the integral above and so we need to prove

that the quantity

||(J − I)s||Lp(ds)
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is small for p = 1, 2,∞. This can be done in a manner analogous to the proof of Theorem

4.2.1 since the exponential decay will dominate the algebraically growing term, s, we’ve

introduced.

Since δσ3
2 is diagonal, so it will not contribute to (M2)12. Consider the term involving

MDZ
1 δ1. We know MDZ

1 is constant in z. We need to examine the δ1 as it ε→ 0. We can

rewrite the integral in

δ(z; ε) = exp

 1

2πi

∫ z0

−∞

log
(

1− 16
25
e−4εs2

)
s− z

ds

 .
as:

∫ z0

−∞

log
(

1− 16
25
e−4εs2

)
s− z

ds = −1

z

∫ z0

−∞
log

(
1− 16

25
e−4εs2

)
(1 + s/z + s2/z2 + · · · )ds.

Thus,

δ(z; ε) = 1− 1

2πiz

∫ z0

−∞
log

(
1− 16

25
e−4εs2

)
ds+ · · · .

Clearly the O(z−1) term is blowing up when ε → 0. Thus (M2)12 is not bounded.

Then equation (4.44) implies that ϕ̃x is not bounded. This explains precisely why our

asymptotic approximation for ϕ does not solve the NLS equation.

It should also be noted that the expansion for ϕ is valid for ε small, and t > 0 fixed. It

is not necessarily valid uniformly for t→ 0. But it can be shown to be valid for t = τε
1
2
−β

with 0 < β < 1/2. If we rescale t so that t = τε
1
2
−β then the solution becomes:

ϕ =
εβ/2−1/4

τ
e

ix2

4τε1/2−β eiνlog(
ε1/2+β

8τ
)e

2h
“

x

4τε1/2−β

”
5
√
πeiπ/4−πν/2

4Γ(−iν)
.
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The factor εβ/2−1/4

τ
e

ix2

4τε1/2−β above converges to a Dirac mass when ε→ 0 (up to a constant).

However, the next factor will oscillate rapidly when ε → 0. The remaining factors tend

towards a constant as ε→ 0.
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CHAPTER 5

Several Approaches to Finding Evolution Under the NLS

Equation for Sequences Approximating Dirac Masses

In computing our reflection coefficient (see chapter 3), we imposed a formal rule to

evaluate certain integrals. We then arrived at a sequence of reflection coefficients with

parameter ε. These correspond to an unknown sequence of initial data.

In this chapter we will study particular sequences of initial data that converge to

a Dirac mass. This will be done in two separate ways. The first is to study the NLS

equation directly. This is done in section 5.1 using a series of transformations. We can

also study the NLS equation using the associated Lax pair and the reflection coefficient.

We study this in section 5.2. Each of these methods reveals a connection between long

time asymptotics and sequences of initial conditions that converge to a Dirac mass.

In this chapter we will make use of long time asymptotics for the NLS (see [2], and

the references therein). The behaviour of solutions is given as follows:

(5.1) ψ(y, τ) =
1√
τ
e
iy2

4τ
−iν(z0)log(8τ)u(z0) +O

(
(logτ)

τ

)

with

iν(z0) =
1

2πi
log
(
1− |r̃(z0)|2

)



and where u is a function of the reflection coefficient, r̃(λ), associated with initial con-

ditions f(y) and z0 = −y
4τ

. The function u can be written in terms of its modulus and

phase:

|u(z0)|2 = ν/2 = − 1

4π
log(1− |r̃(z0)|2)

arg u(z0) =
1

π

∫ z0

−∞
log(z0 − s)d log(1− |r̃(s)|2) +

π

4
+ argΓ(iν)− arg r̃(z0).

These asymptotics are valid for τ →∞ and |z0| ≤ C where C is a fixed constant.

5.1. Solutions via Long Time Asymptotics for a Particular Sequence of

Initial Data

We want to find solutions to the NLS equation for a sequence of initial conditions

that converge to a Dirac mass.

Consider a Schwartz class function, f(x) ∈ S(R). If
∫

R f(x)dx = 1, then

1

ε
f
(x
ε

)

converges to a Dirac mass (as a distribution) when ε→ 0. We will look for solutions to

the NLS equation with this type of initial condition:

iϕt + ϕxx − 2|ϕ|2ϕ = 0

ϕ(x, t = 0; ε) =
1

ε
f
(x
ε

)
.
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Theorem 5.1.1. For a sequence of initials conditions of the form 1
ε
f
(
x
ε

)
, the evolu-

tion under NLS gives the solutions:

ϕ(x, t; ε) =
1√
t
e
ix2

4t
−iνlog(8t)ε2iνu(z0) +O (εlog(ε))

Proof. Denote ϕ as the solution to the initial value problem:

ϕt + ϕxx − 2|ϕ|ϕ = 0

ϕ(t = 0, x) =
1

ε
f
(x
ε

)

Using the variable changes

t = ε2τ

x = εy

εϕ = ψ

one can see that ψ solves the initial value problem

iψτ + ψyy − 2|ψ|2ψ = 0

ψ(y, τ = 0) = f(y).

Recall, the long time asymptotics (5.1), yield

ψ(y, τ) =
1√
τ
e
iy2

4τ
−iν(z0)log(8τ)u(z0) +O

(
(logτ)

τ

)
.

These asymptotics are valid when τ →∞. If we change back to the x and t variables, we

see that |z0| =
∣∣ εx

4t

∣∣. Thus, these asymptotics hold when ε→ 0, for x and t in a compact
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set. Moreover, we can use ψ and it’s asymptotics to find ϕ:

ϕ(x, t; ε) =
1

ε
ψ

(
x

ε
,
t

ε2

)
=

1√
t
e
ix2

4t
−iνlog(8t/ε2)u(z0) +O

(
(logτ

τ

)
=

1√
t
e
ix2

4t
−iνlog(8t)ε2iνu(z0) +O (εlog(ε)) .

�

Recall, in section (1.1), we considered the asymptotics when t → 0. The solution

above was found using long time asymptotics. These asymptotics are valid when
∣∣ εx

4t

∣∣ ≤ C.

If we try to let t = 0 the point z0 will no longer be bounded, and our asymptotics will be

invalid. If we let t = ε and then let ε→ 0, these asymptotics our valid, and are given by:

ϕ(x, t = ε; ε) =
1√
ε
e
ix2

4ε e−iνlog(8ε)+2iνlog(ε)u(z0) +O (εlog(ε))

Due to the fast oscillations that are present, ϕ will not converge to a Dirac mass if t = ε

and ε→ 0.

Remark: In this section we have established asymptotic descriptions of solutions for

sequences of initial data converging to a Dirac mass. It should be noted that the asymp-

totic descriptions are not unique. Suppose we have two functions f(x) and g(x) with unit

mass. Consider initial conditions of the form 1
ε
f
(
x
ε

)
and 1

ε
g
(
x
ε

)
. These both converge to

a Dirac mass as ε → 0. However, they yield two different solutions when evolved using

the NLS equation. The solutions will be similar, but the function u(z0) is a function of

the reflection coefficient. Since f(x) and g(x) will have different reflection coefficients

associated to them, their corresponding solutions will differ. The factor e−iνlog(8ε)+2iνlog(ε)

will be different because ν is a function of the reflection coefficient as well.
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Note that in the (x, t) variables, the point z0 scales with epsilon. In the next section

we will see why this is the case.

5.2. Sequences Approximating Dirac Mass Initial Data, Studied Through

the Reflection Coefficient

Using the existence theory in Appendix A.1 it can be shown that if the initial data is

Schwartz class, then the reflection coefficient will also be Schwartz class. We will consider

how the reflection coefficient scales when the initial data scales with ε as in the previous

section.

Lemma 2. Suppose r̃(λ) is the reflection coefficient associated with the initial condi-

tion f(y). Then the reflection coefficient associated with the initial condition 1
ε
f
(
x
ε

)
is

r(z) = r̃(εz).

Proof. Let t = 0, and consider the first Lax equation LΨ = zΨ. Rewritten this is:

iσ3
∂

∂x
Ψ + i

 0 −ϕ

ϕ 0

Ψ = zΨ.

Assume that the potential is of the form ϕ(x) = 1
ε
ψ
(
x
ε
, t
ε2

)
as in the previous section.

If we define y = x/ε and τ = t/ε2 then the first Lax equation becomes

iσ3
∂

∂y
Ψ + i

 0 −ψ(y, τ)

ψ(y, τ) 0

Ψ = εzΨ.

Recall the second Lax equation:

Ψt = 2zΨx + i

 −|ϕ|2 ϕx

−ϕx |ϕ|2

Ψ + 2iz2Ψσ3.
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Using the same change of variables one sees that

Ψτ = 2(εz)Ψy + i

 −|ψ|2 ψy

−ψy |ψ|2

Ψ + 2i(εz)2Ψσ3.

Thus, when the initial condition scales like 1
ε
f
(
x
ε

)
this amounts to re-scaling of spec-

tral variable so that the reflection coefficient is r(z) = r̃(εz). �

Formal considerations, in chapter 3, led us to define a regularized reflection coeffi-

cient. This family of reflection coefficients corresponds to a family of initial conditions,

however until now we did not know the form of the initial data. The following is a direct

consequence of Lemma 2:

Corollary 1. The regularized reflection coefficient

r(z) =
4

5
e−εz

2

.

corresponds to initial data of the form 1√
ε
f
(

x√
ε

)
for some f ∈ S(R).

5.3. Sequences of Initial Data with Variable Phase

In the previous section we considered scaled initial data that led to a scaled reflection

coefficient. We will now consider what affect a shift will have on the spectral variable z.

Lemma 3. Suppose r̃(λ) is the reflection coefficient associated with the initial condi-

tions f(y). Then the reflection coefficient associated with the initial condition

ϕ(x, t = 0) =
1

ε
e−2iαxf

(x
ε

)
,

with α ∈ R a constant, is r(z) = r̃(ε(z − α)).
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Proof. Suppose ϕ solves the NLS equation with

ϕ(x, t = 0) =
1

ε
e−2iαxf

(x
ε

)
.

The solution has the following form

ϕ(x, t) =
1

ε
e−2iαx−2iωt/ε2ψ

(
x+ 4αt

ε
,
t

ε2

)

where α is a real parameter, and ω is real, but yet to be determined and ψ(ŷ, τ̂) will

be found using below, using long time asymptotics. Indeed, let y = x/ε and τ = t/ε2.

Inserting this form of ϕ into the NLS equation yields an equation for ψ:

iψτ − 4iαεψy + ψyy − 2|ψ|2ψ = 0.

We chose ω = 2α2ε2.

Let y = ŷ − aτ̂ and τ = τ̂ . Then ∂
∂y

= ∂
∂ŷ

and ∂
∂τ

= ∂
∂τ̂

+ a ∂
∂ŷ

. Choosing a = 4αε, we

find that ψ(ŷ, τ̂) solves the NLS initial value problem:

iψτ̂ + ψŷŷ − 2|ψ|2ψ = 0

ψ(ŷ, τ̂ = 0) = f(ŷ).

Now that we know the form of the potential, we study the Lax equations to see how

the spectral variable scales. Since ϕ solves the NLS equation there exists a Ψ solving the

equations

iσ3
∂

∂x
Ψ + i

 0 −ϕ

ϕ 0

Ψ = zΨ
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and

Ψt = 2zΨx + i

 −|ϕ|2 ϕx

−ϕx |ϕ|2

Ψ + 2iz2Ψσ3.

Define Ψ̂ = eiαxσ3+iω(t/ε2)σ3Ψ. After making the transformations

y = x/ε

τ = t/ε2

ϕ =
1

ε
e−2iαx−2iωt/ε2ψ

(
x+ 4αt

ε
,
t

ε2

)

then Ψ̂ solves the equation

iσ3
∂

∂y
Ψ̂ + i

 0 −ψ

ψ 0

 Ψ̂ = ε(z − α)Ψ̂.

We know Ψ solves the second Lax equation:

Ψt = 2zΨx + i

 −|ϕ|2 ϕx

−ϕx |ϕ|2

Ψ + 2iz2Ψσ3.

Making the same transformations, we see that

Ψ̂τ = 2εzΨ̂y+i

 −|ψ|2 ψy

−ψy |ψ|2

 Ψ̂+2iε2z2Ψ̂σ3−2iε2zασ3Ψ̂+iωσ3Ψ̂−2αεσ3

 0 −ψ

ψ 0

 Ψ̂

Let

y = ŷ − aτ̂

τ = τ̂
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with a = 4εα. Recall that ω = 2ε2α2. After these transformations we see that Ψ̂ solves

the equation:

Ψ̂τ̂ = 2ε(z − α)Ψ̂ŷ + i

 −|ψ|2 ψŷ

−ψŷ |ψ|2

 Ψ̂ + 2i(ε(z − α))2Ψ̂σ3 + (4iε2zα− 2iε2α2)Ψ̂σ3.

Now, define

Ψ̃ = Ψ̂e−(4iε2zα−2iε2α2)σ3τ̂ ,

so that Ψ̃ solves the second Lax equation:

Ψ̃τ̂ = 2ε(z − α)Ψ̃ŷ + i

 −|ψ|2 ψŷ

−ψŷ |ψ|2

 Ψ̃ + 2i(ε(z − α))2Ψ̃σ3.

Because of the nature of the transformations to (ŷ, τ̂) and Ψ̃ it can be easily shown that

Ψ̃ solves the first Lax equation:

iσ3
∂

∂y
Ψ̃ + i

 0 −ψ

ψ 0

 Ψ̃ = ε(z − α)Ψ̃.

with spectral parameter ε(z − α).

Summarizing, we started with the Lax solution, Ψ, with ϕ as the potential in the (x, t)

variables, and spectral parameter z. We derived a Lax solution with ψ as the potential in

the (ŷ, τ̂) variables with spectral parameter λ = ε(z − α). However, in order to conclude

that ψ solves the NLS equation, we need Ψ̃ to have the proper asymptotics.

We show this by recalling Ψ solves the Lax pair, having the asymptotics:

Ψeizxσ3 → I

as x→∞.
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It follows that

Ψ̃eiλŷσ3 → I

as ŷ →∞.

Indeed, if we reverse our transformations, we see that

Ψ̃eiλŷσ3 = exp
[
iαxσ3 + 2iα2tσ3

]
Ψ̂ exp

[
−4iαztσ3 + 2iα2tσ3 + iε(z − α)(y + 4αεt/ε2)σ3

]
= eiαxσ3+2iα2tσ3Ψeizxσ3e−iαxσ3−2iα2tσ3 .

Now letting ŷ →∞ we see that Ψ̃eiλŷσ3 → I.

Now, in the variables ŷ, τ̂ and λ, we will denote the reflection coefficient corresponding

to ψ by r̃(λ). The explicit transformations presented above now show that the reflection

coefficient corresponding to φ is given by r(z) = r̃(ε(z − α)). �

Using the long time asymptotics (5.1) yields the following theorem, as a direct result

of the above lemma.

Theorem 5.3.1. For a sequence of initials conditions of the form 1
ε
e−2iαxf

(
x
ε

)
, the

evolution under NLS gives the solutions:

ϕ(x, t) =
1√
t
e−2iαx−4iα2te

ix2

4t
−iν(z0)log(8t/ε2)u(z0) +O (εlog(ε)) ,

where z0 = −y
4τ

= − εx
4t

. This is valid when ε→ 0, for x and t in a compact set.

53



5.4. Remarks on the Solution

Recall, in the original problem we remarked (see section 4.4) that the asymptotic

description of the solution did not solve the NLS equation, whereas the full expansion

did (by construction). In this chapter we are considering a generalized version of the

original problem, thus one expects that the asymptotic description of ϕ does not solve

the NLS equation.

Proposition 2. Let ϕ represent the asymptotic description of a solution from theo-

rem 5.1.1,

ϕ(x, t; ε) =
1√
t
e
ix2

4t
−iνlog(8t)ε2iνu(z0) +O (εlog(ε)) .

Then

lim
ε→0

∂

∂t
ϕ 6= ∂

∂t
lim
ε→0

ϕ

Proof. If we let ε → 0, and then differentiate the asymptotic description of ϕ it is

clearly bounded.

However, if we differentiate the full expansion, we get terms that are unbounded as

ε→ 0. Recall, we wrote the solution using the (y, τ) variables, as:

ψ(y, τ) =
1√
τ
e
iy2

4τ
−iν(z0)log(8τ)u(z0) + f1(y, τ)

log τ

τ
,

where f1(y, τ) represents the higher order terms in the asymptotic expansion. Now, when

we take a derivative in t, we should note

∂

∂t
=

∂

∂t
τ
∂

∂τ
(5.2)

=
1

ε2
∂

∂τ
(5.3)
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When we differentiate the corrections above, one term will be(
∂

∂t
f1(y, τ)

)
log τ

τ
=

1

ε2

(
∂

∂τ
f1(y, τ)

)
ε2 log ε+O(εlogε)(5.4)

= log ε
∂

∂τ
f1(y, τ) +O(ε log ε).(5.5)

Since this term is unbounded when ε → 0, the full expansion is unbounded when a

derivative (in t) is performed and then we let ε→ 0. �

One should note that a similar calculation can be shown for derivatives in x.
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APPENDIX A

Appendix

A.1. Properties of h(z)

Recall, in section 4.1 we stated the solution of a scalar RHP to be

δ = exp

[
1

2πi

∫ z0

−∞

log
(
1− |r(s)|2

)
s− z

ds

]
.

In this appendix we will prove various properties of δ.

The function δ can be written in the form:

δ = (z − z0)iν εiν/2eh(z),

with

(A.1) iν =
1

2πi
log
(
1− |r(z0)|2

)
,

and

h = h(z) = h(z, z0; ε)(A.2)

= − 1

2πi

∫ √εz0
−∞

log(
√
εz − λ)

∂

∂λ
log

(
1− 16

25
e−4λ2

)
dλ.(A.3)



The form of δ and the function h(z) can be shown directly using integration by parts

and straightforward calculus. We require certain bounds on the function h for small

values of ε. These are described in the following theorem.

Theorem A.1.1. Let z0 ∈ R be fixed. Suppose z ∈ Σ such that |z| ≤
√

2logε. Then

h(z)− h(z0) = O(
√
ε(logε)2),

as ε→ 0. Furthermore, eh(z)−h(z0) is bounded uniformly in the complex z plane.

Proof. For simplicity of notation, we make the substitutions u =
√
εz, and v =

√
εz0.

The integrand has a logarithmic singularity at λ = u which needs to be removed. We

rewrite the desired difference as

h(z)− h(z0) = − 1

2πi

∫ v

−∞
log(u− λ)

∂

∂λ
log

(
1− 16

25
e−4λ2

)
dλ

+
1

2πi

∫ v

−∞
log(v − λ)

∂

∂λ
log

(
1− 16

25
e−4λ2

)
dλ.

Let c be a fixed negative parameter. We split the domain of integration into two

separate intervals, (−∞, c) and (c, v). Integrating by parts on the bounded interval
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yields

h(u)− h(v) = − 1

2πi

∫ c

−∞
log

(
u− λ
v − λ

)
∂

∂λ
log

(
1− 16

25
e−4λ2

)
dλ(A.4)

+ C
λe−4λ2

1− 16
25
e−4λ2 [(u− λ)log(u− λ)− (u− λ)]λ=v

c(A.5)

+ C
λe−4λ2

1− 16
25
e−4λ2 [−(v − λ)log(v − λ) + (v − λ)]λ=v

c(A.6)

+ C

∫ v

c

∫ v

u

log(s− λ)ds
∂2

∂λ2
log

(
1− 16

25
e−4λ2

)
dλ,(A.7)

with

C = − 64

25πi
.

We can analyze this quantity term by term. Notice in the first term, we can rewrite

the argument of the logarithm as

u− λ
v − λ

=
λ−
√
εz

λ−
√
εz0

.

An expansion in powers of
√
ε yields

(A.8)
u− λ
v − λ

= 1−
√
ε

√
2logε− z0

λ
+O(εlogε).

This expansion is valid since |λ| ≥ |c|.

If we substitue (A.8) into (A.4) and use the Taylor expansion of the logarithm, we

get

√
ε C

∫ c

−∞
λ−1(

√
2logε− z0)

∂

∂λ
log

(
1− 16

25
e−4λ2

)
dλ+O(εlogε).

The integral exists and is bounded, therefore the first term (A.4) is O(
√
εlogε).
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The boundary terms, (A.5) and (A.6), arising from integration by parts, are O(
√
ε).

This is easily shown by evaluating these terms at λ = v and λ = c, the endpoints of the

interval of integration. After simplifying we arrive at

C
√
ε

z0e
−4εz20

1− 16
25
e−4εz20

(√
ε(z − z0)log(

√
ε(z − z0))−

√
ε(z − z0)

)
+ C [(u− c)log(u− c)− (u− c)− (v − c)log(v − c) + (v − c)]

≤ Ĉεlogε+ C

[
u log(u− c)− v log(v − c) + (u− v)− c log

(
u− c
v − c

)]
≤ Ĉε logε+ C

√
εz log(

√
εz − c)−

√
εz0 log(

√
εz0 − c) +

√
ε(z − z0)− c

√
ε
z − z0

c

≤ O(
√
εlogε).

We also used the expansion (A.8), which is again valid since |λ| ≥ |c|.

The fourth term (A.7) encompasses the logarithmic singularity. Note that the log-

arithm and V (λ) are integrable functions. The following lemma will prove the desired

bounds for (A.7).

Lemma 4. For u =
√
εz, v =

√
εz0 and λ ∈ (−∞, c) we have that∣∣∣∣∫ v

u

log(s− λ)ds

∣∣∣∣ ≤ O(
√
ε(logε)2).

Proof. We can assume that λ = λ0

√
ε. If λ were any larger, |s−λ| will be bounded

away from the origin; thus, the logarithm will be bounded.

Using the definition of the complex logarithm, we have

(A.9) log(s− λ) = log|s− λ|+ iθ,

where θ is an angle chosen in a suitable branch.
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We now rewrite our integral using (A.9) as follows

∣∣∣∣∫ v

u

log(s− λ)ds

∣∣∣∣ ≤ ∫ v

u

|log(s− λ)| |ds|(A.10)

≤
∫ v

u

|log|s− λ|| |ds|+ |θ|
∫ v

u

|ds|.(A.11)

The second term in (A.11) is bounded by

|θ|
∫ v

u

|ds| ≤ |θ| |u− v|

≤ |θ|
√
ε|z − z0|

= O(
√
εlogε).

The integrand in the first term of (A.11) is decreasing since s, λ = O(
√
ε). We know

that λ ∈ (c, v) ⊂ R and s ∈ (v, u) ⊂ Σ. Using this geometry, we find

(A.12) |s− λ| ≥ |<(s)− λ|.

Parameterizing the contour using s = v + t(u− v), and using (A.12) we have

∫ v

u

|log|s− λ|| |ds| ≤
∫ v

u

|log|<(s)− λ|| |ds|

≤ |u− v|
∫ 1

0

|log|v + t(<(u)− v)− λ|| dt.
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Because we assumed z 6= z0, then we know <u 6= v. Integrating yields

∫ v

u

|log|s− λ|| |ds| ≤ |u− v|
∫ 1

0

|log|v + t(<(u)− v)− λ|| dt

≤ |u− v|
|<(u)− v|

[(<(u)− λ)log(<(u)− λ)− (<(u)− λ)]

− |u− v|
|<(u)− v|

[(v − λ)log(v − λ)− (v − λ)] .

Replacing u =
√
εz, v =

√
εz0, we have that

∫ v

u

log|s− λ| ≤
√
ε
|z − z0|
|<(z)− z0|

[
(<(z)− λ0)log(

√
ε(<(z)− λ0))− (<(z)− λ0)

]
−
√
ε
|z − z0|
|<(z)− z0|

[
(z0 − λ0)log(

√
ε(z0 − λ0))− (z0 − λ0)

]
≤ O(

√
ε(logε)2)

�

Thus, (A.7) is O(
√
ε(logε)2). Previously, we showed that (A.4) - (A.6) were of higher

order. This proves the desired result. �

A.2. General Existence Theory

In subsection (2.1) we assumed the support of ϕ was compact in order to prove Ψ

existed. In this subsection we will prove that Ψ exists under more general assumptions.

Proving that M = Ψeizxσ3 exists is equivalent to proving that Ψ exists. We will prove

the existence of M since the identity asymptotics that M possesses at infinity are more

readily turned into integral equations normalized at infinity.
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Suppose that t ≥ 0 and z ∈ R. Furthermore, suppose ϕ ∈ L2(R) and the support of

ϕ is non-compact. M solves the ODE

(A.13) Mx = iz[M,σ3] +

 0 ϕ

ϕ 0

M.

Using the fact that

∂

∂x

(
eizxσ3Me−izxσ3

)
= eizxσ3Mxe

−izxσ3 − izeizxσ3 [M,σ3]e−izxσ3 ,

one finds

(A.14)
∂

∂x

(
eizxσ3Me−izxσ3

)
=

 0 ϕe2izx

ϕe−2izx 0

(eizxσ3Me−izxσ3
)
.

From the normalization of M at infinity, and (A.14), we find the integral equation

(A.15) M = I +

∫ x

∞

 0 ϕe2iz(x′−x)

ϕe−2iz(x′−x) 0

Me−2iz(x′−x)dx′.

To build the solution M in the complex z plane, we will construct M+ and M− for z ∈

R. Then we will analytically extend columns of these matrices into the upper and lower

half planes. M+ and M− are defined to solve (A.13) with the following normalization

conditions:

(A.16) M+ → I as x→ +∞

(A.17) M− → I as x→ −∞.
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This yields a pair of integral equations

M (±) = I +

∫ x

±∞

 0 ϕe2iz(x′−x)

ϕe−2iz(x′−x) 0

M (±)e−2iz(x′−x)dx′.

To prove that such solutions exist, we will use a standard contraction mapping argu-

ment. Consider

M (±) =

 M±
11 M±

12

M±
21 M±

22

 = (M1|M2)(±)

with M
(±)
1 , and M

(±)
2 being the columns of M (±). Then, M+

2 satisfies the following

equation

M+
2 =

 0

1

+

∫ x

∞

 0 ϕe4iz(x′−x)

ϕ 0

M+
2 dx′.

Since z ∈ R, we know |e2iz(x′−x)| = 1. We can analytically extend M+
2 into C+ since

x′ > x implies |e2iz(x′−x)| ≤ 1 for z ∈ C. For simplicity, let u = M+
2 and

Q =

 0 ϕe2iz(x′−x)

ϕ 0

 .

Note that ||Q|| = const|ϕ|.

Let u0 be the zero vector, and define

uj+1 =

 0

1

+

∫ x

∞
Qujdx

′.

Then, un =
∑n

j=1 (uj − uj−1). We claim that if n → ∞ then un will converge. We can

show this by controlling the size of |uj − uj−1|.
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The following list of results will be required but not proven in this paper:

• For j ≥ 1 we have |uj − uj−1| ≤ c
j!

(∫∞
x
ϕdx′

)j
• The series un =

∑n
j=0(uj − uj−1) converges exponentially, and

|u| = |M+
2 | ≤ Ce

R x
∞ |ϕ| dx

′

• M−
1 exists and is bounded for z ∈ R. M−

1 can also be extended analytically into

the upper half plane.

One then constructs the columns of M , for z ∈ C+, from M+
2 and M−

1 , since they

can both be extended into the upper half plane. However, we need to make sure that the

asymptotics in (2.8) are satisfied.

Let v =

 v1

v2

 = M−
1 . We need to show that v2 → 0 as x→∞. We already know

v is bounded as x→∞.

v2 =

∫ x

−∞
ϕ(x′)e−2iz(x′−x)v1dx

′.

Assume that x is large, and let ε > 0. There exists a X such that |
∫ x

X ϕe
−2iz(x′−x)v1dx

′| <

ε. We know v1 is bounded and |e−2iz(x′−x)| ≤ 1 since z ∈ C+ and x′ ≤ x. Thus we can

choose such an X so that

(A.18)

∫ ∞
X
|ϕ|dx′ < ε.

We can split the integral equation for v2 into 2 parts as follows

v2 =

∫ X

−∞
ϕe−2iz(x′−x)v1dx

′ +

∫ x

X
ϕe−2iz(x′−x)v1dx

′.
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By the Lebesgue Dominated Convergence theorem we have
∫ X
−∞ ϕe

−2iz(x′−x)v1dx
′ → 0

as x→∞. More precisely, there exists a Y so that

(A.19)

∣∣∣∣∫ X

−∞
ϕe−2iz(x′−x)v1dx

′
∣∣∣∣ < ε,

when x > Y. Let X̂ = max(X,Y). Then (A.18) and (A.19) yields

|v2| ≤
∣∣∣∣∫ X

−∞
ϕe−2iz(x′−x)v1dx

′
∣∣∣∣+

∣∣∣∣∫ x

X
ϕe−2iz(x′−x)v1dx

′
∣∣∣∣

≤
∣∣∣∣∫ X

−∞
ϕe−2iz(x′−x)v1dx

′
∣∣∣∣+

∫ ∞
X
|ϕ|dx′

< 2ε,

when x > X̂. Thus v2 → 0 when x→∞.

We already know that v1 is bounded. It will converge to a constant as x→∞. Thus,

we have shown that

(
M−

1 |M+
2

)
→

 c 0

0 1

 ,

when x→∞.

Now, we define our solution

(A.20) M :=

(
M−

1

a(z)

∣∣∣∣M+
2

)
,

where a(z) = det
(
M−

1 |M+
2

)
= 1 +

∫
R ϕM

+
21dx

′. We will show that a(z) is non-vanishing

so that this construction of M is valid.

Theorem A.2.1. Let ϕ be Schwartz class at t = 0. Then there exists a unique solution

M to (A.15).
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Proof. We’ve already proven that under the above assumptions M± exist. We need

to show that a(z) is non-vanishing.

The following properties hold for all z ∈ R, and can be shown using (2.3),

(A.21) detM+ = detM− = 1,

(A.22) M±(z) =

 0 1

1 0

M±(z)

 0 1

1 0

 ,

(A.23) M+ = M−

 α β

β α

 .

Lemma 5. For all z ∈ C, a(z) 6= 0.

Proof. First, let z ∈ C \ R, and suppose a(z) = 0. Since a(z) = det
(
M−

1 |M+
2

)
,

these columns are linearly dependent. This means we can write M−
1 = const(M+

2 ). Now

M−
1 is bounded as x → ±∞. Therefore, M−

1 is an eigenfunction of L, with eigenvalue

z. Since L is a self adjoint operator we have a contradiction. Therefore, a(z) 6= 0 for

z ∈ C \ R.

Let z ∈ R. By (A.23) M+
2 is related to M− as follows:

M+
2 =

 βM−
11 + αM−

12

βM−
21 + αM−

22

 .
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Now, a(z) can be rewritten in terms of M−

a(z) = det
(
M−

1

∣∣M+
2

)
= α det M−.

From (A.21) we know det M− = 1, so a(z) = α.

Using (A.23) and (A.21) we have that

1 = det

 α β

β α


= |α|2 − |β|2.

Therefore

|α|2 = 1 + |β|2 ≥ 1,

and we know a(z) is non-vanishing for z ∈ R. �

Thus, the construction of M is valid and unique, and so we have proved our theorem.

�

Remark: We did not need to use the fact that ϕ was Schwartz class. We could

therefore relax the conditions on ϕ, as in [4] where Deift and Zhou assume only that ϕ

is in a weighted Sobolev space.

Now, since a(z) 6= 0, it follows that detM = 1. Furthermore, we have constructed a

solution to (A.13) that is valid in the upper half plane. We can construct a solution valid
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in the lower half plane by defining

M :=

(
M+

1

∣∣∣∣M−
2

b(z)

)
,

where b(z) = det
(
M+

1 |M−
2

)
.

Since M has the same symmetry as M±:

M(z) =

 0 1

1 0

M(z)

 0 1

1 0

 ,

we find an alternate way of defining M in the lower half plane.
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