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ABSTRACT 

Cortney L. Cavanaugh: APPLICATIONS OF ORGANIC PHOTOREDOX CATALYSIS IN 
THE DEVELOPMENT OF ALKENE FUNCTIONALIZATION METHODS TOWARD THE 

SYNTHESIS OF α–BENZYLOXYAMINO- AND HALO-LACTONES 
(Under the direction of David A. Nicewicz) 

I. Introduction To Organic Photoredox Catalysis 

An overview of the photophysical and electrochemical components of organic photoredox 

catalysis and its applications in alkene functionalization reactions is addressed. 

II. Synthesis of α-Benzyloxyamino-γ-Butyrolactones Via a Polar Radical Crossover 
Cycloaddition Reaction  
 
The development of a direct catalytic synthesis of substituted α-benzyloxyamino-γ-

butyrolactones, beginning from simple oxime acids and alkenes, is discussed. The substituted O-

benzyloxime acid starting materials undergo cyclization with oxidizable alkenes, via Polar 

Radical Crossover Cycloaddition (PRCC) reactions. The catalytic reaction is carried out using an 

acridinium photooxidant and substoichiometric amounts of a redox-active cocatalyst. The utility 

of this methodology is demonstrated through the cyclization of 3 oxime acids and 19 oxidizable 

olefins to generate 21 highly substituted α-amino lactone products.   

III. Reversing The Regioselectivity Of Halofunctionalization Reactions Through 
Cooperative Photoredox And Copper Catalysis 
 

A novel method for reversing the regioselectivity of classic alkene halofunctionalization 

reactions is presented. This transformation relies on the implementation of a dual-catalytic 

system, incorporating the use of an acridinium photoredox catalyst in conjunction with a 

coppercocatalyst. The utility of the method is demonstrated through the application of chloro-
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and bromo-functionalization conditions in both an intra- and intermolecular fashion. Over 15 

synthetically and biologically relevant halo-lactones are accessed in a highly regioselective 

fashion. 
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CHAPTER ONE: INTRODUCTION TO ORGANIC PHOTOREDOX CATALYSIS 

1.1 Introduction  

Modern advances in photoredox catalysis stemmed from work out of the late 1970s and have 

continued to greatly impact recent synthetic methods.1–3 Over the past 40 years, the number of 

papers published annually in the field of organic photoredox catalysis has increased substantially 

approaching nearly 200 in 2015.4 These data are a direct reflection of the groundbreaking and 

exciting advancements being made in the field, garnering significant attention in both academia 

and industry. A major asset to using photon-absorbing catalysts (i.e. photoredox catalysts) is the 

ability to accesses unique substrate reactivity, which has been considered difficult, or even 

impossible, under classic organic reaction conditions. While significant advances have been 

made in the field of visible light photoredox catalysis using transition metal complexes,5 it is 

worth focusing directly on the rapidly advancing, distinctive field of organic photoredox 

catalysis, in which the Nicewicz laboratory and this thesis are grounded. 

1.2 The Photophysical and Electrochemical Components of Photoredox Catalysis 

At their foundation, organic photoredox catalysts are highly prized as participants in a 

process known as photoinduced electron transfer or PET. This term refers, overall, to an electron 

transfer event that occurs between an excited state and ground state molecule.6 In the case of 

visible light organic photoredox catalysis, the excited state refers to that of an organic 

chromophore. When the chromophore absorbs visible light (hυ), an electronically excited 

molecule is formed as an electron is promoted to a higher energy state from its original ground 

state (S0). The direct excitation from the ground singlet state to the first singlet excited state (S1) 
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can be represented with a Jablonski diagram (Figure 1-1).7 Though many singlet excited states, 

of varying vibrational energy exist and may be accessed, non-radiative relaxation to the lowest 

energy S1 state occurs in a matter of picoseconds. The fate of S1 is dependent on both radiative 

and non-radiative photophysical pathways. A radiative pathway, for S1 to return to S0, involves 

the dissipation of energy in the form of a photon and is termed fluorescence. Two potential non-

radiative pathways may also dictate the fate of S1. Similar to fluorescence, S1 may also return to 

S0 through internal conversion (IC), however, in this case, the loss of energy is thermal. The final 

process is intersystem crossing (ISC) and involves the transition of S1 to T1, the first triplet 

excited state. This process is spin forbidden and is therefore slow. Upon entering T1, an 

additional radiative pathway, known as phosphorescence, may occur, allowing T1 to return to S0. 

This transition may also involve non-radiative pathways. 

 

	

Figure 1-1. Jablonski Diagram and a Simplistic View of Excitation/ISC 

	
	

As a result of entering S1 or T1, organic chromophores become capable of participating in an 

electron transfer process. In principle, the excited state catalyst can act as an oxidant or 

reductant. This interaction may involve electron transfer in two directions; the excited state of 

the photoredox catalyst may donate an electron to the substrate, through an oxidative quenching 

process, or it may accept an electron through a reductive quenching cycle. To gain a thorough 
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understanding of the transformations to be discussed herein, an emphasis will be placed on 

exploring electron transfer through the reductive quenching cycle of photoredox catalysts. 

In this relationship, the photon-absorbing catalyst acts as an acceptor molecule (A), while the 

substrate functions as the donor molecule (D) (Figure 1-2). This simplified model demonstrates 

the interactions between the corresponding molecular orbitals of the catalyst and substrate in 

their ground and excited states. In the ground state, the acceptor molecule possesses a highest 

occupied molecular orbital (HOMO) and a lowest unoccupied molecular orbital (LUMO) that are 

each lower in energy than that of the corresponding HOMO and LUMO for the donor. As a 

result of these relative energy levels, electron transfer in either direction (A → D or D → A) is 

endergonic and therefore unfavorable. However, upon excitation by visible light, A is capable of 

accessing its excited state (A*), transferring an electron from its HOMO to its LUMO. The 

newly formed vacancy in the former HOMO of A* makes it an excellent excited state oxidant as 

it is more easily reduced than its ground state counterpart. As a result, single electron transfer 

(SET) from the HOMO of D to the lower energy SOMO (singularly occupied molecular orbital) 

of A* allows for the oxidation of D to an electron-deficient D+� species and the concurrent 

reduction of A* to the electron-rich A-� species.  

 

				 	

Figure 1-2. Single Electron Transfer Model 

 

While this PET process is highly desirable for the single electron oxidation of organic 

substrates by a photoredox catalyst, its efficiency can be limited by an unproductive back 

A
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electron transfer (BET) pathway. BET is a general term associated with any event in which A-� 

transfers an electron back to D+�. This process may occur as a result of a close physical 

relationship between the radical ion pairs and is also a highly exergonic, competitive pathway.8 

To help promote forward electron transfer and limit BET, more polar solvents can be utilized as 

they stabilize polar intermediates and promote the separation of the radical ion pairs.9 The 

excited state from which PET occurs can either be the singlet or triplet state, though reaction 

efficiency is higher for those occurring from the latter.10 Though an acceptor in S1 possesses a 

higher oxidizing ability, PET from this state is less efficient than that from T1. This is a direct 

result of the long-lived nature of T1, which provides sufficient time for the species to diffuse, 

collide, and undergo electron transfer. The slower rate of BET associated with the triplet state 

allows for the radical ion pair to separate sufficiently before the unproductive event can occur. In 

order to achieve successful PET and limit BET, an appropriate acceptor/donor system must be 

identified.  

To aid in this determination, a general equation can be applied to identify the likelihood of a 

PET event occurring.6 Before considering the photoinduced transfer event, it is worth 

considering the equation that describes the Gibbs free energy of a single electron transfer event 

occurring in the ground state (Equation 1-1). This equation relates the redox potentials for A and 

D, undergoing reduction (!!"#) and oxidation (!!") events, respectively. It is worth clarifying 

the nomenclature and noting that that !!"# specifically refers to the single electron reduction of 

A to A-� (A→A-�, !!/!(A/A-�)) and this value, measured in volts (V), is usually negative for most 

acceptors in the ground state. This value is associated with the fact noted previously, that single 

electron reduction of the acceptor molecule, in its ground state, is generally thermodynamically 

unfavorable. The oxidation potential of D, or !!", is technically defined as the reduction half 
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potential and is associated with the D+� to D reaction (D+� → D, !!/!(D+�/D)). Unlike the 

reduction of A, the single electron reduction of D+� is generally an energetically favorable 

process and results in a positive voltage value.  

 

Equation 1-1. Gibbs Free Energy of Single Electron Transfer   
 

∆!!" =  −! !!"# −  !!" =  −!(!!/!(!/!⋅!)  −  !!/!(!⋅!/!)) 
 
  
 

 
Having considered single electron transfer in the ground state, the equation for PET can now 

be explored. The free energy of PET occurring between the excited state photoredox catalyst 

acceptor (where A = cat*) and a ground state substrate (D = sub) can be modeled by Equation 1-

2, where Coulombic interactions are disregarded. Here, !!"#∗  refers to the excited state reduction 

potential for the photoredox catalyst under consideration and can be calculated according to 

Equation 1-3. The excited state energy (!!,! ) refers to the transition between the lowest 

vibrational state of S1 or T1 to that of S0. This value can be estimated at the midpoint between the 

absorption and emission maxima from the overlaid spectra.  

 

Equation   1-2. Gibbs Free Energy of PET   
 

∆!!"# =  −!(!!"#∗ (!"#∗/!"# ⋅!) − !!"(!"#⋅!/!"#)) 
 
 
 

Equation 1-3. Excited State Reduction Potential of Photoredox Catalyst  
 

  !!"#∗ (!"#∗/!"# ⋅!)  =  !!"#(!"#/!"# ⋅!)  +  !!,! 
 

! = Faraday’s constant (23.061 kcal V-1 mol-1)	
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While a significant amount of information is contained within these equations, a valuable 

tool can be simplified from the mathematical relationship to determine the likelihood of a 

proposed PET between a photoredox catalyst and a substrate. A successful photoinduced 

electron transfer event is possible when !!"#∗  in more positive than !!"  of the substrate. 

Determining the feasibility of an electron transfer event can aid in the selection of a photoredox 

catalyst depending on substrate that is to be oxidized.6 

Cyclic voltammetry is commonly employed to measure the redox potential for a given 

substrate. From the cyclic voltammogram (CV), one can identify the oxidation potential for an 

organic compound by estimating the potential at half the maximum current, also known as the 

half-peak potential. A series of potentials, for a variety of organic functional groups, was 

reported by Roth et al.11 in 2016, to aid in the selection of an effective catalyst-substrate pairing. 

An abbreviated collection of these substrates, and the range for their corresponding potentials, 

are represented in Figure 1-3 with the values reported against a saturated calomel electrode 

(SCE). These potentials can be compared to the excited state reduction potential of some 

commonly used organic photoredox catalysts.6,12 Often, these catalysts are combined with 

sufficiently oxidizable substrates to carry out single electron oxidation of the organic donor 

molecule to generate reactive cation radical intermediates. 
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Figure 1-3. Series of Potentials for Various Organic Functional Groups and Catalysts 

	
	

Early evidence for gaining access to these valuable cation radical intermediates through PET 

was first provided in groundbreaking work by the Arnold lab.13 While studying 
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Scheme 1-1. Cyclization of 1,1-Diphenylethylene via Cation Radical Intermediate Formation   

	

 

From these results, it was concluded that, upon nucleophilic trapping of the cation radical, 
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1.3 Organic Photoredox Catalysis and its Applications in Anti-Markovnikov Alkene 
Hydrofunctionalization 

 
The functionalization of alkenes through the addition of a proton and heteroatom across the 

double bond is one of the oldest and most applied transformations in organic chemistry. 

Typically, this reaction leads to the corresponding Markovnikov product. While this reactivity is 

often desirable, a significant amount of attention has been directed towards reversing the 

regioselectivity of olefin hydrofunctionalization reactions to favor the more elusive anti-

Markovnikov adduct.  

In response to this interest in developing anti-Markovnikov alkene functionalization 

methods, and based on precedent from within the field, the Nicewicz lab has turned its attention 

towards the development of an organic photoredox-mediated method, with a specific focus on 

identifying an effective catalytic variant. We have developed and applied methods for accessing 

anti-Markovnikov hydrofunctionalization products through PET between organic photoredox 

catalysts and olefin substrates. This method relies on the formation of a uniquely reactive cation 

radical intermediate and has proven to be a general approach towards alkene functionalization. In 

order to achieve the desired catalytic reactivity, we have applied a dual organic catalyst system in 

the transformation, utilizing an acridinium photoredox catalyst and a redox active, organic, 

hydrogen atom donor.  

Since our seminal publication in 2012, this methodology has been applied to the anti-

Markovnikov addition of alcohols,17 carboxylic acids,18 amines,19 trifluoromethyl groups,20 and 

mineral acids21 in the presence of a hydrogen atom source (Scheme 1-3). A variety of electron-

rich olefins were successfully functionalized, regioselectivly, using this novel method. This 

photoredox-meditated transformation was also expanded upon to include the synthesis of a 

variety of heterocycles through a related Polar Radical Crossover Cycloaddition (PRCC) reaction 
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approach.22–24 Though this approach has proven to be a highly successful method of 

functionalizing alkenes in a regioselective fashion, a substantial amount of attention has been 

placed on understanding the general transformation. Specifically, the identity of the organic 

photoredox catalyst (Figure 1-3) and hydrogen atom donor cocatalyst has required a thorough 

analysis to develop an optimal and effective dual catalytic process. 
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Scheme 1-3. Previous Anti-Markovnikov Hydrofunctionalization Methods Developed by 
Nicewicz et al. 
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expected to proceed through the single electron oxidation of olefins, the organic dye of choice 

would need to be capable of oxidizing a variety of alkenes, with a wide range of oxidation 

potentials, to ensure a thorough and diverse substrate scope. In order to ensure optimal reactivity, 

the photocatalyst would also need to exhibit key characteristics including the ability to undergo 

excitation upon irradiation with visible light, a sufficient fluorescence lifetime and quantum 

yield, and it must undergo limited, unproductive BET. Lastly, to access catalytic reactivity, the 

chromophore of choice would need to exhibit redox reversibility, ensuring that the catalyst 

would remain intact and could be turned over in the presence of a suitable oxidant. Upon an 

exploration of the literature, it was determined that 9-mesityl-10-methylacridinium (NMA), as 

disclosed by Fukuzumi, would best embody these characteristics and could be successfully 

applied as a photoredox catalyst in the hydrofunctionalization of alkenes.25 

 The photophysical characteristics of the acridinium catalyst lend itself well towards its 

incorporation into our hydrofunctionalization methodology (Figure 1-4).6 Firstly, the excited 

state reduction potential of NMA is +2.18 V vs SCE. With such a highly positive potential, 

NMA gives access to a variety of olefin substrates that are capable of being oxidized to their 

corresponding cation radical intermediate. Additionally, the excited state of the acridinium can 

be achieved through irradiation by visible light. While the absorbance maximum is reported to be 

425 nm for NMA, it is best to irradiate at the highest possible wavelength to prevent potentially 

competing photochemical pathways. Light emitting diodes (LEDs) have proven to be an asset in 

the development of photoredox mediated methods, as they are efficient, high-intensity light 

sources that are selective due to their narrow emission band. As a result, commercially available 

blue LEDs can be applied when NMA is used as a photoredox catalyst.  
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Figure 1-4. Photophysical Properties of 9-Mesityl-10-Methylacridinium Photoredox Catalyst 
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efficiently turned over by a co-oxidant. The delicate balance between the photoredox catalyst and 

cocatalyst system has been explored closely through a series of mechanistic studies.  

1.4 Mechanistic Insight  

Ultimately, a suitable photoredox catalyst must successfully interact with all of the 

hydrofunctionalization reaction components as a cohesive, redox neutral system. As discussed 

previously, in order to achieve a net redox-neutral transformation, the photocatalyst’s reductive 

quenching cycle must be coupled with an additional oxidative quenching cycle. Through a series 

of reports, it was determined that NMA functions effectively in a system with a redox active 

hydrogen atom donor such as phenylmalononitrile (PMN).17,22 However, it was discovered that 

higher yields and shorter reaction times could be achieved using thiophenol (PhSH) and diphenyl 

disulfide ((PhS)2) as alternative hydrogen atom donors. An exploration of a general reaction 

mechanism is necessary to illustrate how the photoredox catalyst and cocatalyst function together 

to afford the generation of an anti-Markovnikov, alkene hydrofunctionalization product (Scheme 

1-4). Initially, olefin substrate 1.3 undergoes single electron transfer to an excited state 

acridinium NMA* to afford the characteristic cation radical intermediate (1.4). This intermediate 

can be detected through laser flash photolysis.26 Nucleophilic trapping of the cationic component 

affords the more stable (1.5) of the two potential carbon-centered radicals. The 

hydrofunctionalized product (1.7) is generated upon deprotonation and trapping of the radical 

intermediate (1.6) through efficient hydrogen atom transfer (HAT) by the thiophenol cocatalyst.  
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Scheme 1-4. General Mechanism for Anti-Markovnikov Alkene Hydrofunctionalization  
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HAT catalyst. It was hypothesized that the disulfide undergoes homolytic cleavage upon 

irradiation by visible light, ultimately generating thiophenol in situ. To support this proposed 

pathway, a crossover experiment was conducted in which diphenyl disulfide (1.8) was irradiated 

in the presence of 4-methyl diphenyl disulfide (1.9) and NMA (Scheme 1-5).26 The mixed-

disulfide product (1.10) was obtained along with the symmetric disulfides (1.8 and 1.9) as a 2:1:1 

mixture. These results were also observed when NMA was left out of the reaction conditions but 

no exchange was noted when the reaction was conducted in the dark, even when heated. In 

combination, these results strongly supported the visible light induced homolytic cleavage of 

diphenyl disulfide. 

 

 

 Scheme 1-5. Diaryl Disulfide Crossover Experiment 
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thiolate necessary to carry out the deprotonation event. These observations, in addition to being 

easier to handle, make diphenyl disulfide an ideal cocatalyst in this novel organic photoredox-

mediated hydrofunctionalization of alkenes.  

1.5 Conclusion 

A rudimentary understanding of the photophysical and electrochemical factors that influence 

the activity of an organic photoredox catalyst is fundamental to the successful employment of 

such a species in a transformation. By understanding the oxidizing ability and photophysical 

properties of 9-mesityl-10-methylacridinium, we were able utilize this photoredox catalyst in the 

synthesis of a diverse set of hydrofunctionalized alkenes. The general, dual-catalytic process 

utilizes a redox active hydrogen atom donor cocatalyst in a concurrent cycle to access an overall, 

net redox neutral transformation. Photoredox catalysis has enabled access to unique reactivity, 

that is often difficult or impossible to achieve, including the anti-Markovnikov addition of 

nucleophiles to olefin substrates. An exploration of two novel transformations, based on this 

concept, is discussed herein. 
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CHAPTER TWO: SYNTHESIS OF α-BENZYLOXYAMINO-γ-BUTYROLACTONES 
VIA A POLAR RADICAL CROSSOVER CYCLOADDITION REACTION 

  

2.1 Introduction 

Cyclic esters, known as lactones, are structural motifs that have garnered significant 

attention for their presence in natural products and medicinal chemistry targets.1 In addition to 

being used as simple synthetic building blocks and monomers of polyesters, lactones possess 

significant economic value, especially in the fragrance industry.2 A subset of lactones that are 

especially valuable, due to their prevalence in synthesis, stability, and diverse bioactivity, are γ-

butyrolactones.  

The significance of γ-butyrolactones can be enhanced by the addition of heteroatom 

substituents at the α-position, with nitrogen functionality being particularly valuable. These α-

amino-γ-butyrolactones are a class of bioactive heterocycles that show especially great utility in 

synthesis and are highly prevalent in nature. Existing as the lactone form of the amino acid 

homoserine, α-amino lactones can be easily converted to the straight-chain, γ-hydroxyamino acid 

equivalent through hydrolysis or can be used in the preparation of several amino acids that are 

expensive and difficult to access, such as methionine3 and canaline.4  

α-Amino-γ-butyrolactones, also known as homoserine lactones, have been used as 

scaffolds in anti-allergy, immunosuppressant, and anti-asthma agents5 and in the synthesis of 

antibiotics, antifungal peptides, and serine protease inhibitors.6 This class of γ-butyrolactones 

have displayed anti-tumor and anti-cancer activity towards human colorectal and breast cancer
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cell lines.7 The most significant biological activity exhibited by α-amino-γ-butyrolactones makes 

them desirable targets as antibiotics. In their N-acylated/sulfonylated form, these lactones act as 

signaling molecules for a population-density based, bacterial communication mechanism known 

as quorum sensing (Figure 2-1).7–9 This cell-to-cell communication, between individual 

microorganisms, controls several factors including the growth of biofilms, as well as enzyme and 

virulence factor production. Consequently, these small molecules can be targeted to intercept 

quorum sensing for the treatment of bacterial infections. The inherent biological activity of α-

amino-γ-butyrolactones makes them highly desirable as synthetic targets.  

 

      

Figure 2-1. Natural and Synthetic N-Acylated/Sulfonylated α-Amino-γ-Butyrolactones 
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Scheme 2-1. Cyclization of Homoserine to Generate a Protected α-Amino-γ-Butyrolactone  

	

	

	

Starting from methionine, upon acid protection and methylation, the resulting sulfonium 

intermediate is then cyclized under basic conditions to generate the Boc-protected α-amino-γ-

butyrolactone in 70% yield (Scheme 2-2).12  

	

Scheme 2-2. Cyclization of Methionine to Generate a Protected α-Amino-γ-Butyrolactone  

	

	
 

In 1978, Baldwin demonstrated the cyclization of protected, tritylated aspartic acid under 

reductive conditions (Scheme 2-3).13 The α-amino-γ-butyrolactone product was isolated as the 

HCl salt in excellent yield. A major shortcoming associated with the cyclization of amino acid is 

the limited substitution pattern and functionality achievable around the resulting lactone ring, 

due to the lack of substation on the carbon backbone of the starting material. 
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In 2014, Babu and coworkers demonstrated a stereoselective, acid-mediated, 

lactonization method beginning from α-amino γ,δ-unsaturated carboxylic acid esters (Scheme 2-

4).14 This method was applied to the synthesis of over 30, functionalized α-amino-γ-

butyrolactones with varying substitution on the amine. Despite its diverse product scope, this 

route is limited to non-commercially available, terminal alkene substrates, which are not always 

trivial to prepare.  

 

 

Scheme 2-4. Acid-Mediated Lactonization of α-Amino γ,δ-Unsaturated Carboxylic Acid Esters  

	

	

	

	

An impressive enantioselective method for generating homoserine lactones has also been 

achieved through the use of dual organo- and biocatalysis (Scheme 2-5).15 Both enantiomer of an 
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steps, by altering the identity of the biocatalyst. The lactone product was obtained in high yield 

as well as enantio-, and diastereoselectivity. Despite the fact that only a single lactone product 

was obtained, this work demonstrates an excellent proof of concept for the selective generation 

of these valuable lactones.  
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Scheme 2-5. Accessing Homoserine Lactones via Dual Organo- and Biocatalytic System 
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Scheme 2-6. Synthesis of an α-Amino-γ-Butyrolactone via an Aza-Prins Cyclization  

	

										 	

	

Additional methods have been reported for the production of α-amino lactones including 

the ring opening of aziridines (Scheme 2-7). The Loreto group successfully converted γ-ylidene-

lactones to their corresponding aziridines, which were then opened to reveal the α-amino-γ-

butyrolactones products.17  

 

 

Scheme 2-7. Aziridines Opening to Reveal α-Amino-γ-Butyrolactones Products 
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prefunctionalized starting materials, use of harsh conditions and exotic reagents, and the 

underwhelming diversity in substitution on the lactone product core.  

 
 
	
Scheme 2-8. Acidic Hydrolysis of Morpholinone Derivative Toward the Synthesis of α-Amino-
γ-Butyrolactones 

	
	

												 	

	

	

2.3  Synthesis of α-Benzyloxyamino-γ-Butyrolactones via Photoredox Catalysis 

2.3.1 Background and Precedent 

To overcome the limitations exhibited by current synthetic methods, we envisioned 

applying photoredox catalysis to the synthesis of α-amino-γ-butyrolactones, beginning from 
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(PRCC) reactions. The PRCC method involves the formation of multiple bonds through both a 

polar and radical reaction vector. Here, an intermolecular cycloaddition, between alkenes and 

alkenol coupling partners, was employed to generate highly substituted tetrahydrofurans 

(Scheme 2-9).19 
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Scheme 2-9. Tetrahydrofuran Synthesis Through PRCC Between Alkenes and Alkenols  

	

	

	

Typically, alkene functionalization reactions occur through standard substrate reactivity 

in which an olefin interacts in a nucleophilic fashion with an electrophilic coupling partner. In 

order to expand the scope of reactivity for alkenes, our lab has sought to apply organophotoredox 

catalysis to achieve umpolung reactivity. As a result of this polarity reversal, alkene substrates 

can be rendered electrophilic and can then react with nucleophiles to obtain unique products in a 

regioselective fashion.   

To achieve this desired reactivity, 9-mesityl-10-methylacridinium (NMA) 

tetrafluoroborate, was employed as an excited state, single electron, photo-oxidant. When 

irradiated with blue LEDs, the ground state NMA enters its excited state (NMA*), allowing it to 

carry out single electron oxidation of an alkene substrate, such as β-methylstyrene  (2.1) (Scheme 

2-10). The resulting cation-radical species (2.2) then proceeds to react in both a polar and radical 

fashion. Initial trapping of the cation by allyl alcohol (2.3) occurs at the β-position to produce the 

stabilized benzylic radical (2.4). Upon deprotonation, the radical intermediate is poised to 
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radical species (2.5), which is then trapped with a hydrogen atom to give the final 

tetrahydrofuran product (2.6). In this system, terminal hydrogen atom transfer (HAT) was 

achieved using redox-active phenylmalononitrile (2.7) as a hydrogen atom donor. The resulting 

phenylmalononitrile radical (2.8) is capable of acting as a single electron oxidant, turning over 

the acridine radical (NMA�). Phenylmalononitrile serves an additional purpose as its anionic 
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form (2.9) can neutralize acid that is generated during the course of the reaction to regenerate the 

H-atom donor.  

 

Scheme 2-10. Mechanism for Tetrahydrofuran Synthesis via PRCC 
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Figure 2-2. Tetrahydrofuran Synthesis Substrate Scope  
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Scheme 2-11. γ-Butyrolactones Accessed Through a Photoredox Mediated PRCC 

	
	

								 	

 

Through the development of multiple photoredox-mediated transformations, our lab has 

been able to draw critical conclusions regarding the reactivity of the hydrogen atom donor co-

catalyst as utilized in the PRCC systems. In order to achieve successful HAT, it is necessary that 

the redox-active donor meet key requirements including the following:  

1) The hydrogen atom donor must possess a bond dissociation energy (BDE) that falls 

within the range of 70-80 kcal/mol for the X-H bond for the HAT event to occur 

2) The resulting radical that forms, upon HAT to the substrate, must be capable of 

undergoing single electron reduction to successfully turn over the photoredox catalyst 

and complete the catalytic cycle 

3) The pKa of the hydrogen atom transfer agent must be sufficiently high enough so that 

it is reformed upon reduction, allowing the donor to be utilized catalytically  

Multiple H-atom donors meeting these requirements have been utilized in our PRCC 

transformations (Figure 2-3). Thiophenol and its derivatives are often relied on as efficient H-

atom donors given their sufficient BDE and pKa values. However, diphenyl disulfide21 is 

commonly employed as an alternative thiophenol source due to its ease of use, lack of odor, and 

weak sulfur-sulfur bond (BDE ~50 kcal/mol22).23  
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Figure 2-3. Hydrogen Atom Donors and Their Corresponding BDE/pKa Values 

	
	
 

Using catalytic quantities of diphenyl disulfide as a hydrogen atom donor, Zeller et al. 

successfully synthesized over 20 γ-butyrolactones varying both the olefin and α,β-unsaturated 

acid coupling partners (Scheme 2-12). In addition to trisubstituted alkenes (2.7), the oxidizable 

alkene scope included β-methylstyrene (2.8-2.10), as well as its derivatives substituted with both 
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Scheme 2-12. Abbreviated γ-Butyrolactones Substrate Scope 

  

	

	

	

In addition, the value of this system was further demonstrated with the synthesis of two 

bioactive, α-methylene paraconic acids (Scheme 2-13) known as methylenolactocin (2.16) and 

protolichesterinic acid (2.17). 
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Scheme 2-13. Synthesis of Methylenolactocin and Protolichesterinic Acid via PRCC 

	

 

	
	
	

Gesmundo, Grandjean, and Nicewicz accomplished a logical and valuable expansion of 

this PRCC method to the formation of γ-lactams and pyrrolidines.24 Using a system similar to 

those discussed previously, oxidizable olefins were found to couple successfully with 

unsaturated amides and protected amines to catalytically generate a variety of highly substituted, 

nitrogen heterocycles in a regioselective manner (Scheme 2-14). In a similar fashion to the 

previous PRCCs, this system was optimized using β-methylstyrene as the substrate of choice. 

Beginning with a protected cinnamamide coupling partner (2.18), the authors sought to 

overcome the major challenge of identifying reaction conditions that favored nucleophilic attack, 

at the cation radical intermediate, by the nitrogen, rather than the oxygen functionality, to favor 

lactam (2.19) over imidate (2.20) formation. Upon a closer analysis of amide protecting group 

identity, it was determined that a lack of protecting group or a labile group, such as a Boc group, 

led to substrate decomposition and a lack of product formation. However, sulfonyl-protected 

substrates were found to work efficiently, with more electron deficient groups leading to higher 

yields and a higher N:O addition ratio, favoring N-addition. 
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Scheme 2-14. Regioselective Synthesis of γ-Lactams Through a PRCC 

										

							 	

  

The alkene scope explored in this system is reflective of those studied in previous PRCC 
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Scheme 2-15. γ-Lactam Scope 
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While protected cinnamamide derivatives worked well as an amide substrate (Scheme 2-

16, 2.35-2.40), it was determined that β-aryl functionality was not required for the cyclization to 

occur successfully (2.41-2.44).  

 

Scheme 2-16. Amide Scope for the Synthesis of Highly Substituted Lactams 
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The disclosed scope for pyrrolidine product formation was limited compared to that of 

the γ-lactams (Scheme 2-17). Valuable however, was the discovery that the cyclization could be 

achieved using Boc-protected, unsaturated amines, which could then be easily deprotected upon 

treatment with TFA to afford the final, highly substituted, heterocycles.  

 

Scheme 2-17. Pyrrolidine Product Scope 
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it would be possible to use O-benzyloxime acids as substrates, along with oxidizable olefins, to 

generate these products.25,26 In this work, Clive presented the generation of a radical precursor 

(2.49) derived from glyoxylic acid O-benzyloxime with β-bromo alcohol, which is poised to 

undergo a radical cyclization to generate α-benzyloxyamino-γ-butyrolactone 2.50 (Scheme 2-

18). Upon esterification, the radical precursor was treated with Bu3SnH to generate the radical 

intermediate, which undergoes a 5-exo-trig cyclization to form the final lactone product in two 

steps and a 51% yield. Precedent for this ring closure and formation of the nitrogen-centered 

radical are strong evidence that a similar intermediate, achieved through a photoredox-mediated 

PRCC, could undergo successful conversion to a lactone product. This method, in combination 

with the PRCC reactions developed within the Nicewicz lab, inspired us to develop a system for 

the formation of highly substituted, α-benzyloxyamino-γ-butyrolactones, in a single synthetic 

step, via photoredox catalysis.27  

 

Scheme 2-18.  Clive’s Radical Cyclization of an O-Benzyloxime Derivative to Access an α-
Benzyloxyamino-γ-Butyrolactones 
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2.3.2 Results and Discussion 

The investigation into the synthesis of α-benzyloxyamino-γ-butyrolactones began with 

conditions based on those optimized for the synthesis of γ-butyrolactones (Table 2-1). Initially, 

we tested β–methylstyrene and O-benzyloxime acid as the two potential reaction partners. The 

O-benzyloxime acid substrate was prepared through the efficient condensation of 

benzyloxyamine hydrochloride onto glyoxylic acid in a 96% yield (Scheme 2-19).  

 

Scheme 2-19. Preparation of O-Benzyloxime  Coupling Partner  
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in situ (Table 2-1, entries 8-11). An optimal loading of 15 mol% was observed, resulting in a 

yield of 69% (Table 2-1, entry 10). Higher (Table 2-1, entry 11) and lower (Table 2-1, entry 9) 

loadings of base led to diminished yields.  

 

Table 2-1. Optimization of PRCC Conditions for the Synthesis of α-Benzyloxyamino-γ-
Butyrolactones 

				 	

 

Having achieved an increase in product yield, a series of control experiments were 

carried out to confirm the catalytic activity in our proposed transformation. Omitting NMA 

resulted in no product formation thereby demonstrating the necessity of the photocatalyst in the 
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1b (PhS)2 2.5 0  CH2Cl2 57 
2 (PhS)2 2.5 0 CHCl3 35 
3 (PhS)2 2.5 0 acetone 0 
4 (PhS)2 2.5 0 (CH2Cl)2 39 
5b 4-(MeO)PhSH 2.5 0 CH2Cl2 40 
6b 4-(NH2)PhSH 2.5 0 CH2Cl2 40 
7 4-(NO2PhS)2 2.5 0 CH2Cl2 29 
8 (PhS)2 2.5 0 CH2Cl2 38 
9 (PhS)2 2.5 5 CH2Cl2 53 

10 (PhS)2 2.5 15 CH2Cl2 69 
11 (PhS)2 2.5 20 CH2Cl2 51 

12c,d (PhS)2 0 15 CH2Cl2 0 

13 (PhS)2 5.0 0 CH2Cl2 42 
14 (PhS)2 7.5 0 CH2Cl2 39 
15d None 2.5 15 CH2Cl2 40 

16c,d (PhS)2 2.5 15 CH2Cl2 88 

Reactions were carried out on a 0.33 mmol scale in N2-sparged solvent [0.08 M] under 2 LED lamps (λmax = 450 nm) for 24 h. 
aYields were obtained relative to (Me3Si)2O 1H NMR internal standard of crude reaction mixtures. bReaction was run at [0.15 
M] c10 mol % disulfide. dalkene/acid = 1.5:1. 
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system (Table 2-1, entry 12). It should be noted however, that an increase in the loading of NMA 

resulted in lower yields of the lactone product (Table 2-1, entries 13-14). A curious observation 

was made upon exclusion of the hydrogen atom donor cocatalyst as the product was still 

observed, though in a limited yield of 40% (Table 2-1, entry 15). This product formation is 

accounted for in the succeeding discussion of the reaction mechanism. It was demonstrated that a 

change in the alkene/oxime ratio from 1:1.1 to 1.5:1, along with lowering the disulfide loading to 

just 10 mol%, improved the yield of the lactone product to 88% (Table 2-1, entry 16). 

Having developed optimal reaction conditions for the PRCC between oxidizable olefins 

and an oxime acid coupling partner, we then set out to study the scope of the transformation in 

relation to the O-benzyloxime acid (Scheme 2-20). O-Benzyloxime 2.51 was successfully reacted 

with β–methylstyrene to provide the α-benzyloxyamino-γ-butyrolactone (2.54) in a 71% yield. 

We were pleased to discover that the synthesis of oxime acids could be expanded to include 

substitution at the α-position. As a result, lactone products bearing α-quaternary carbons (2.55 

and 2.56) could be accessed from pyruvic acid (2.52) and phenylglyoxylic acid (2.53) derived 

oximes without diminishing the yield of the reaction. 
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Scheme 2-20. Exploration of O-Benzyloxime Acid Scope 
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quaternary substituted lactone (2.69) in 58% yield. We also considered trisubstituted alkenes as 

coupling partners (2.70-2.71), which provided the lactone products in varying yields. Lactone 

2.70 was obtained in an excellent yield of 88% from 1-phenylcyclohexene. Cyclization was more 

problematic when 2-methyl-2-butene was used as the coupling partner, furnishing the lactone 

product in a yield of 42% (2.71). We were pleased to observe that this method could be 

successfully applied to the formation of lactone products, possessing desirable all-carbon 

quaternary centers. Tricyclic lactone 2.72 was obtained in good yield (53%) from indene. Lastly, 

an alkene bearing a phthalimide-protected nitrogen and a β–methylstyrene derived tert-

butyldimethylsilyl (TBS) ether resulted in derivatives 2.73 and 2.74 in 41% and 71% yields, 

respectively. Overall, these results demonstrate that this photoredox-mediated PRCC system can 

be used to efficiently generate the desired, substituted α-amino lactone products in fair to 

excellent yields. 
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Scheme 2-21. Alkene Scope for the Synthesis of α-Benzyloxyamino-γ-Butyrolactone  
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The dual-catalytic mechanism, proposed for this transformation, is reflective of the 

previous PRCC systems explored within our lab (Scheme 2-22). Beginning in its ground state, 

the acridinium (NMA) enters its excited state (NMA*) upon absorption of visible light. The 

excited state photoredox catalyst is now capable of undergoing single electron transfer with the 

alkene substrate (2.75), generating a cation radical intermediate (2.76), which simultaneously 

leads to the formation of the acridine radical (NMA�). The cation radical is poised to undergo 

nucleophilic trapping by the oxime acid (2.77), resulting in the formation of carbon-centered 

radical 2.78. Following deprotonation of the intermediate, this radical undergoes an irreversible 

5-exo-trig cyclization. 	

 

Scheme 2-22. Proposed Mechanism for the Production of α-Benzyloxyamino-γ-Butyrolactones 
via a PRCC 
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Zeller et al. conducted an additional test reaction to determine the potential reversibility 

of this cyclization step (Scheme 2-23). Classical radical hydrodehalogenation conditions were 

applied to β–bromo substrate 2.81 resulting in the formation of product 2.82 only. The lack of 

uncyclized product (2.83) formation is suggestive of an irreversible trapping step, as this product 

would have formed if the radical cyclization were reversible. 

 

Scheme 2-23. Hydrodehalogenation of a β–Bromo Substrate to Test the Reversibility of the 
Radical Cyclization Step 
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transfer. This HAT step has been identified as exhibiting a significant rate-limiting influence on 

the system.  The thiophenol then acts as the terminal hydrogen atom donor, which converts 2.79 

to the desired α-benzyloxyamino-γ-butyrolactone product (2.80). Ultimately, the resulting 

thiophenol can then reenter the catalytic cycle. 

Based on the observation that a moderate amount of lactone product is generated in the 

absence of diphenyl disulfide (Table 2-1, entry 15), we proposed that an additional pathway likely 

operates without the involvement of a hydrogen atom donor cocatalyst (Scheme 2-24). To account 

for this observation in the mechanism, we propose that the nitrogen-centered radical 2.79 can be 

reduced by the acridine radical to simultaneously generate a nitrogen anion and regenerate the 

ground state acridinium (NMA). Protonation of the anion, likely via lutidinium or an equivalent 

of acid would lead to formation of the product. 

 

Scheme 2-24. Explanation of Product Formation When Hydrogen Atom Donor is Omitted  
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was favored for the synthesis of γ-butyrolactones. Conversely, tetrahydrofuran, lactam, and 

pyrrolidine products were isolated as the 3,4-cis/4,5-trans conformer. Initially, we attempted to 

use similar epimerization conditions, as those used previously, to identify the major adduct.  

Based on previous evidence,20 it was assumed that the product was the 

thermodynamically favored 3,4-trans isomer. As demonstrated in the synthesis of γ-

butyrolactones, epimerization conditions can be used to determine the major/minor diastereomer 

(Scheme 2-25). Enrichment of the major diastereomer under epimerization conditions would 

suggest that the thermodynamically favored, all-trans conformation is the major diastereomer 

and the minor product exhibits a 3,4-cis/4,5-trans relationship. Epimerization, via deprotonation 

of the α-proton, leading to the enrichment of the minor diastereomer, would indicate that the cis-

trans conformation is the major product.  

 

Scheme 2-25. Determination of Major Diastereomer Conformation Under Epimerization 
Conditions 
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Scheme 2-26. Enamine Formation Observed Under Epimerization Conditions 

	

	

	

In an effort to circumvent the formation of the undesired elimination product, we directed 

our efforts towards the initial hydrogenation of the benzyloxyamino, followed by the application 

of the epimerization conditions to the free amine. Unfortunately, none of the reduced product 

was generated after screening several reduction methods (Table 2-2). We then attempted initial 

nitrogen acylation to facilitate benzyloxyamine reduction prior to applying the epimerization 

conditions.  

 

Table 2-2. Exploration Of Reduction Conditions to Access the Free Amine Product 
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Acylation proved fruitless after many attempts using several methods and acylating 

agents (Table 2-3).  

 

Table 2-3. Exploration Of Acylation Conditions to Access the N-Acyl Amine  
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located on the same face of the 5-membered ring in the major diastereomer. The minor 

diastereomer exhibited no NOE between the protons located at the 4 and 5 positions and a strong 

signal for protons in the 3 and 4. Based on these observations, we concluded that the major 

diastereomer was the all-trans product and the minor diastereomer exhibited a cis-trans 

relationship. So not to draw general conclusions from β–methylstyrene substrates, the 

stereochemistry of lactones 2.55 and 2.69-2.72 were assigned separately, using 1D-NOESY 

NMR experiments, from their respective spectra. In general, the product diastereoselectivity (dr) 

was consistently around 2.0:1 or less, with a few exceptions. 

 

	

				 		

	
Figure 2-4. Major Diastereomer Identification Based on 1-D NOESY NMR Analysis 
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effect on the diastereoselectivity (Scheme 2-27). Obtaining the reduced, free amine product 

could allow for further functionalization of the lactones.  

 

Scheme 2-27.  O-Benzyl Amine Reduction to Generate Free α-Amino-γ-Butyrolactone  
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transformation also proceeds efficiently under mild reaction conditions, generating highly 

substituted, novel α-benzyloxyamino-γ-butyrolactone products, without the use of harsh and 

hazardous reagents. 

To further develop this project, we have made initial attempts toward employing alkynes, 

in place of alkenes, in the PRCC reaction manifold. It has been observed that alkynes, such as 

diphenylacetylene and 4-ethynylanisole, would be oxidizable using acridinium photoredox 

catalysts given their redox potentials of Ep/2
 = +1.84 V and +1.65 V vs SCE, respectively.29 

Using alkynes as potential coupling partners in PRCC reactions would allow us to build 

complexity into heterocyclic compounds (Figure 2-5). The addition of unsaturation into the 

previously prepared lactone and lactam cores will allow for additional functionalization of the β–

γ-unsaturated ring. By incorporating unsaturation into the system, we are pursuing the generation 

of several highly substituted and valuable heterocycles including imidazoles, pyrroles, and 

thiophenes. 

	

			 	

Figure 2-5. Potential Heterocycles Accessible Through PRCC With Alkyne Substrates  
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2.5 Experimental 

General Information: Materials and Methods 

Commercially available reagents were purchased from Sigma Aldrich, Acros, Alfa Aesar, or 

TCI, and used as received unless otherwise noted. Dichloromethane (DCM) was dried by passing 

through activated alumina columns under nitrogen prior to use. Irradiation of photochemical 

reactions was carried out using two 15W PAR38 blue LED floodlamp purchased from 

EagleLight (Carlsbad, CA) and one 21W PAR38 blue aquarium LED lamp (Model #6851) 

purchased from Ecoxotic (www.ecoxotic.com), with borosilicate glass vials purchased from 

Fisher Scientific. Thin layer chromatography (TLC) was performed on SiliaPlate 250 µm thick 

silica gel plates provided by Silicycle. Visualization was accomplished with short wave UV light 

(254 nm), aqueous basic potassium permanganate solution, or cerium ammonium molybdate 

solution followed by heating. Flash chromatography was performed using SiliaFlash P60 silica 

gel (40-63 µm) purchased from Silicycle. Yield refers to isolated yield of analytically pure 

material unless otherwise noted. Proton and carbon magnetic resonance spectra (1H NMR and 

13C NMR) were recorded on a Bruker model DRX 400 or a Bruker AVANCE III 600 CryoProbe 

(1H NMR at 400 MHz or 600 MHz and 13C NMR at 101 or 151 MHz) spectrometer with solvent 

resonance as the internal standard (1H NMR: CDCl3 at 7.26 ppm, 13C NMR: CDCl3 at 77.0 ppm). 

1H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = 

triplet, dd = doublet of doublets, ddt = doublet of doublet of triplets, ddd = doublet of doublet of 

doublets, dddd = doublet of doublet of doublet of doublets m = multiplet, brs = broad singlet), 

coupling constants (Hz), and integration. NMR yields were determined using 

hexamethyldisiloxane, (Me3Si)2O, as an internal standard. Infrared (IR) spectra were obtained 

using a Jasco 260 Plus Fourier transform infrared spectrometer. Dichloromethane (DCM) was 
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used as the solvent for FT-IR spectroscopy. High resolution mass spec (HRMS) was obtained on 

the Thermo LTqFT mass spectrometer with electro spray ionization in positive mode. 

 
Lamp Setup: 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 

Preparation of Photoredox Catalyst 

The acridinium photoredox catalyst (NMA) was prepared according to published literature 

procedures. Spectral data were in agreement with literature values.30 

 

Preparation of Alkene Substrates 

Purchased Alkenes: β-methylstyrene (1a), anethole (1b), indene (1c), α-methylstyrene (1d), 1-

phenyl-1-cyclohexene (1e), and 2-methyl-2-butene (1f) were purchased from a commercial 

source. 

Synthesized Styrenes: The following alkenes were prepared according to a published Wittig 

olefination procedure.24 
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β-Methyl-3-bromostyrene (1g): Spectral data were in agreement with literature values.31  

 

 

 

β-Methyl-4-bromostyrene (1h): Spectral data were in agreement with literature values.32  

 

 

 

β-Methyl-2-chlorostyrene (1i): Spectral data were in agreement with literature values.33 

 

 

 

β-Methyl-3-chlorostyrene (1j): Spectral data were in agreement with literature values.31 

 

 

 

β-Methyl-4-chlorostyrene (1k): Spectral data were in agreement with literature values.31 

 

 

 

β-Methyl-4-fluorostyrene (1l): Spectral data were in agreement with literature values.34 
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β-Methyl-3-methylstyrene (1m): Spectral data were in agreement with literature values.35 

 

 

 

β-Methyl-4-methylstyrene (1n): Spectral data were in agreement with literature values.36 

 

 

 

β-Methyl-4-tert-butylstyrene (1o): Spectral data were in agreement with literature values.37  

 

 

 

 

β-Methyl-2-methoxystyrene (1p): Spectral data were in agreement with literature values.38 

 

 

 

β-Methyl-3-methoxystyrene (1q): Spectral data were in agreement with literature values.39 
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(E)-2-(3-(4-Methoxyphenyl)allyl)isoindoline-1,3-dione (1r): Prepared according to a published 

procedure. Spectral data were in agreement with literature values.34 

 

 

 

 

tert-Butyldimethyl(4-(prop-1-en-1-yl)phenyl)silane (1s): Spectral data were in agreement with 

literature values.40 

 

 

 

 

Preparation of O-Benzyl Oxime Acids 

(E)-2-((Benzyloxy)imino)acetic acid (2.51): Prepared according to a published procedure. 

Spectral data were in agreement with literature values.41 

 

 

 

 

(E)-2-((Benzyloxy)imino)propanoic acid (2.52): Prepared according to a published procedure. 

Spectral data were in agreement with literature values.41 
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2-((Benzyloxy)imino)-2-phenylacetic acid (2.53): Prepared according to an adapted 

procedure.41  

 

 

 

 

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 9.11 (s, 1H), 7.69 – 7.62 (m, 1H), 

7.57 – 7.51 (m, 1H), 7.50 – 7.32 (m, 8H), 5.35 (d, J = 3.1 Hz, 2H). 

13C NMR for major/minor diastereomers (151 MHz, CDCl3) δ 167.55, 164.26, 150.21, 147.96, 

130.72, 137.03,  136.03, 130.37, 129.86, 129.68, 128.91, 128.80, 128.68, 128.60, 128.39, 128.21, 

128.18, 128.15, 126.66, 78.74, 77.50. 

IR (thin film, cm-1) 3450, 1722, 1496, 1454, 1366, 1213, 1082, 1059 

HRMS: m/z calculated for C15H13NO3[Na]+: 278.07876; found: 278.07889 

 

General Procedure A for Lactone Polar Radical Crossover Cyclization  

A flame dried 2-dram vial, equipped with a Teflon-coated septum cap, was charged with a stir 

bar, the Fukuzumi acridinium photoredox catalyst (Mes-Acr-Me, 2.5 mol%), diphenyl disulfide 

(10 mol%) and the appropriate O-benzyl oxime (0.33 mmol, 1.0 equiv). The vial and its contents 

were transferred to an inert atmosphere (glove box, N2). The alkene substrate (1.5 equiv) and 

2,6-lutidine (15 mol%) were added by microsyringe to the vial, followed by the addition of 

solvent (CH2Cl2, 0.08 M) by syringe. The vial was capped and removed from the glove box and 

placed in front of a light setup where it was irradiated (3x450 nm blue LED lamps) and stirred 

for 24 hours. The crude reaction was concentrated under reduced pressure and purified via 
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column chromatography on silica gel. 

Notes:  

-Some substrates required deviations from standard conditions and are noted below. 

-Integration of peaks in 1H NMR spectra for inseparable diastereomers were determined based 

on the ratio between the methyl peaks of the major and minor diastereomers. The signals were 

assigned to the major and minor diastereomers where possible.  

 

3-((Benzyloxy)amino)-5-methyl-4-phenyldihydrofuran-2(3H)-one (2.54) 

 

 

 

 

 

 

The average isolated yield for 2.54 was 70 mg, 71% (2 trials), synthesized using General 

Procedure A with β-methylstyrene 1a, oxime 2.51, and an irradiation time of 24 hours. The title 

compound was obtained as a 2.0:1 mixture of inseparable diastereomers based on an average of 

two trials. The product was isolated by column chromatography on silica gel (10% Et2O/hexanes 

then 30% Et2O/hexanes) as a yellow oil.  

Analytical data for 2.54:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.39 (t, J = 7.4 Hz, 3H), 7.37 – 

7.27 (m, 7H), 7.24 – 7.20 (m, 5H), 6.11 (s, 1H-major), 5.67 (s, 1H-minor), 5.03 (dd, J = 7.4, 6.1 

Hz, 1H-minor), 4.69 (q, J = 11.6 Hz, 2H-major), 4.55 – 4.43 (m, 3H-2 minor, 1 major), 4.08 – 
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4.02 (m, 2H-1 minor, 1 major), 3.45 – 3.39 (m, 2H-1 minor, 1 major), 1.46 (d, J = 6.3 Hz, 3H-

minor), 1.42 (d, J = 6.1 Hz, 3H-major). 

13C NMR for major/minor diastereomer (151 MHz, CDCl3) δ 174.02, 174.01, 173.46, 173.44, 

137.18,  136.85, 136.51, 134.59, 129.25, 128.98, 128.89, 128.71, 128.49, 128.45, 128.06, 128.04, 

127.97, 127.90, 80.73, 79.60, 77.24, 76.49, 67.89, 63.64, 52.92, 52.68, 20.12, 19.00. 

IR (thin film, cm-1)  3477, 3255, 3062, 3030, 2977, 2930, 1955, 1775, 1642, 1602, 1497, 1454, 

1387, 1365, 1333, 1283, 1190, 1061 

HRMS: m/z calculated for C18H19NO3 [Na]+: 320.12571; found: 320.12556 

 

3-((Benzyloxy)amino)-3,5-dimethyl-4-phenyldihydrofuran-2(3H)-one (2.55) 

 

 

 

 

 

 

 

The average isolated yield for 2.55 was 75 mg, 73% (2 trials), synthesized using General 

Procedure A with β-methylstyrene 1a, oxime 2.53, (2,6-lutidine was omitted) and an irradiation 

time of 24 hours. The title compound was obtained as a 5.0:1 mixture of inseparable 

diastereomers based on an average of two trials. The product was isolated by column 

chromatography on silica gel (10% Et2O/hexanes then 30% Et2O/hexanes) as a yellow oil.  

Analytical data for 3.55:  

Major Minor

+
O

HN

OMe O

O
HN

OMe O

Me Me



	 	 62 

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ7.44 – 7.38 (m, 2H), 7.38 – 7.35 

(m, 2H), 7.35 – 7.32 (m, 4H), 7.30 (q, J = 3.9, 3.3 Hz, 3H), 7.14 (d, J = 7.5 Hz, 1H), 5.70 (s, 1H-

minor), 5.28 (s, 1H-major), 5.16 – 5.06 (m, 1H-major), 4.93 – 4.80 (m, 3H-minor), 4.61 (d, J = 

3.7 Hz, 2H-major), 3.78 (d, J = 10.6 Hz, 1H-minor), 3.05 – 2.95 (m, 1H-major), 1.48 (d, J = 6.0 

Hz, 3H-minor), 1.37 (d, J = 6.2 Hz, 3H-major), 1.30 (d, J = 1.1 Hz, 3H-major), 0.84 (s, 3H-

minor). 

13C NMR for major/minor diastereomer (151 MHz, CDCl3) (some peaks of the minor/major 

diastereomers are overlapping) δ 177.25, 176.76, 137.35, 136.83, 134.16, 132.98, 129.42, 

129.01, 128.83, 128.62, 128.57, 128.51, 128.30, 128.12, 128.06, 127.81, 78.48, 76.85, 76.65, 

75.41, 67.86, 66.66, 60.61, 51.66, 20.35, 19.73, 19.48, 16.10. 

IR (thin film, cm-1) 3437, 3063, 3031, 2977, 2931, 2359, 1977, 1693, 1498, 1454, 1374, 1334, 

1283, 1247, 1203, 1178, 1160, 1116 

HRMS: m/z calculated for C19H21NO3 [Na]+: 334.14136; found: 334.14120 

 

 

3-((Benzyloxy)amino)-5-methyl-3,4-diphenyldihydrofuran-2(3H)-one (2.56) 

 

 

 

 

 

 

The average isolated yield for 2.56 was 41 mg, 64% (2 trials), synthesized using General 
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Procedure A with β-methylstyrene 1a, oxime 2.53 (0.17 mmol), 0.024M, (2,6-lutidine was 

omitted) and an irradiation time of 24 hours. The title compound was obtained as a 1.2:1 mixture 

of inseparable diastereomers based on an average of two trials. The product was isolated by 

column chromatography on silica gel (10% Et2O/hexanes then 30% Et2O/hexanes) as a yellow 

oil.  

Analytical data for 2.56:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ7.48 (d, J = 7.9 Hz, 2H), 7.40 (dd, 

J = 8.3, 6.8 Hz, 3H), 7.37 – 7.28 (m, 11H), 7.22 (ddd, J = 8.5, 5.3, 1.6 Hz, 3H), 7.20 – 7.15 (m, 

1H), 7.15 – 7.08 (m, 6H), 6.84 (dt, J = 8.8, 1.6 Hz, 2H), 6.60 – 6.48 (m, 2H), 6.15 (s, 1H-major), 

5.87 (s, 1H-minor), 5.32 – 5.17 (m, 1H-major), 5.05 – 4.92 (m, 2H-major), 4.76 – 4.61 (m, 3H-

minor), 3.96 (dd, J = 10.8, 2.2 Hz, 1H-major), 3.42 (dd, J = 10.3, 2.1 Hz, 1H-minor), 1.43 (d, J = 

6.1 Hz, 6H-3H minor, 3H major). 

13C NMR for major/minor diastereomer (151 MHz, CDCl3) (some peaks of the minor/major 

diastereomers are overlapping) δ 176.41, 175.76, 138.15, 137.30, 136.69, 134.08, 133.17, 

132.60, 129.58, 129.34, 128.93, 128.76, 128.74, 128.68, 128.66, 128.61, 128.53, 128.29, 128.22, 

128.19, 128.16, 128.12, 127.63, 127.47, 126.48, 78.52, 76.86, 76.54, 76.35, 73.11, 62.40, 54.74, 

19.89, 18.88.  

IR (thin film, cm-1) 3433, 3063, 3031, 2978, 2929, 2360, 1778, 1639, 1497, 1453, 1385, 1332, 

1277, 1194, 1060 

HRMS: m/z calculated for C24H23NO3 [Na]+: 396.15701; found: 396.15677 
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3-((Benzyloxy)amino)-4-(2-chlorophenyl)-5-methyldihydrofuran-2(3H)-one (2.57) 

 

 

 

 

 

 

 

 

The average isolated yield for 2.57 was 84 mg, 77% (2 trials), synthesized using General 

Procedure A with β-methyl-2-chlorostyrene 1i, oxime 2.51, and an irradiation time of 24 hours. 

The title compound was obtained as a 1:1 mixture of separable diastereomers based on an 

average of two trials. The products were isolated by column chromatography on silica gel (10% 

EtOAc/hexanes then 30% EtOAc/hexanes) as yellow oils.  

Analytical data for 2.57:  

1H NMR for major diastereomer (600 MHz, CDCl3) δ 7.46 (dd, J = 7.8, 1.4 Hz, 1H), 7.33 – 7.27 

(m, 5H), 7.23 (t, J = 7.7 Hz, 3H), 6.13 (s, 1H), 4.77 – 4.63 (m, 2H), 4.55 (dq, J = 9.4, 6.1 Hz, 

1H), 4.22 (d, J = 10.8 Hz, 1H), 4.13 (dd, J = 10.9, 9.4 Hz, 1H), 1.45 (d, J = 6.1 Hz, 3H). 

13C NMR for major diastereomer (151 MHz, CDCl3) δ 173.41, 137.15, 134.79, 134.57, 130.63, 

129.20, 129.00, 128.60, 128.49, 128.08, 127.75, 79.80, 77.19, 67.25, 49.25, 19.53. 

IR (thin film, cm-1) 3054, 2360, 1778, 1421, 1265, 1189 

HRMS: m/z calculated for C18H18ClNO3 [Na]+ 354.08674; found: 354.08655 
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1H NMR for minor diastereomer (600 MHz, CDCl3) δ 7.49 – 7.45 (m, 1H), 7.33 – 7.31 (m, 2H), 

7.31 – 7.28 (m, 2H), 7.28 – 7.26 (m, 2H), 7.17 – 7.13 (m, 2H), 5.71 (s, 1H), 5.13 (dq, J = 8.9, 6.3 

Hz, 1H), 4.38 – 4.28 (m, 2H), 4.22 (d, J = 8.7 Hz, 1H), 3.82 (t, J = 8.8 Hz, 1H), 1.48 (d, J = 6.3 

Hz, 3H). 

13C NMR for minor diastereomer (151 MHz, CDCl3) δ 174.39, 136.74, 135.30, 132.67, 130.08, 

129.05, 128.89, 128.52, 128.39, 128.10, 127.17, 79.74, 76.33, 62.50, 49.51, 20.02. 

IR (thin film, cm-1) 3231, 3063, 3031, 2978, 2931, 1779, 1477, 1209, 1063 

HRMS: m/z calculated for C18H18ClNO3 [Na]+: 354.08674; found: 354.08661 

 

3-((Benzyloxy)amino)-4-(3-chlorophenyl)-5-methyldihydrofuran-2(3H)-one (2.58) 

 

 

 

 

 

 

The average isolated yield for 2.58 was 80 mg, 73% (2 trials), synthesized using General 

Procedure A with β-methyl-3-chlorostyrene 1j, oxime 2.51, and an irradiation time of 24 hours. 

The title compound was obtained as a 1.8:1 mixture of inseparable diastereomers based on an 

average of two trials. The product was isolated by column chromatography on silica gel (10% 

EtOAc/hexanes then 30% EtOAc/hexanes) as a yellow oil.  

Analytical data for 2.58:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.32 (dt, J = 4.2, 1.8 Hz, 5H), 7.30 
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(dt, J = 5.0, 1.3 Hz, 3H), 7.26 – 7.21 (m, 3H), 7.16 (dd, J = 5.0, 2.6 Hz, 1H), 7.13 (d, J = 1.7 Hz, 

1H), 7.06 (s, 1H), 6.10 (s, 1H -major), 5.68 (s, 1H-minor), 4.96 (dq, J = 7.6, 6.3 Hz, 1H-minor), 

4.67 (s, 2H-major), 4.50 – 4.42 (m, 3H-2 minor, 1 major), 4.03 (d, J = 8.5 Hz, 1H -minor), 3.97 

(d, J = 11.3 Hz, 1H-major), 3.38 (t, J = 8.0 Hz, 1H-minor), 3.34 (dd, J = 11.2, 9.9 Hz, 1H-

major), 1.45 (d, J = 6.3 Hz, 3H-minor), 1.41 (d, J = 6.1 Hz, 3H-major). 

13C NMR for major/minor diastereomers (151 MHz, CDCl3) δ 173.73, 173.08, 138.76, 137.12, 

136.88, 136.52, 135.14, 134.89, 130.55, 130.23, 129.21, 128.89, 128.62, 128.60, 128.58, 128.35, 

128.29, 128.24, 128.23, 128.19, 127.23, 125.99, 80.69, 79.30, 77.25, 76.51, 67.80, 63.61, 52.69, 

52.26, 20.21, 19.13. 

IR (thin film, cm-1) 3063, 2981, 2931, 1772, 1455, 1266, 1191, 1065 

HRMS: m/z calculated for C18H18ClNO3 [Na]+: 354.08674; found: 354.08664 

 

3-((Benzyloxy)amino)-4-(4-chlorophenyl)-5-methyldihydrofuran-2(3H)-one (2.59) 

 

 

 

 

 

 

 

The average isolated yield for 2.59 was 67 mg, 62% (2 trials), synthesized using General 

Procedure A with β-methyl-4-chlorostyrene 1k, oxime 2.51, and an irradiation time of 24 hours. 

The title compound was obtained as a 2.4:1 mixture of inseparable diastereomers. The product 
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was isolated by column chromatography on silica gel (10% EtOAc/hexanes then 30% 

EtOAc/hexanes) as a yellow oil.  

Analytical data for 2.59:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.38 – 7.27 (m, 7H), 7.21 (ddd, J 

= 9.8, 7.3, 1.8 Hz, 3H), 7.13 – 7.08 (m, 2H), 6.12 (s, 1H-major), 5.67 (s, 1H-minor), 4.99 – 4.89 

(m, 1H-minor), 4.69 – 4.61 (m, 2H-major), 4.50 – 4.38 (m, 3H-2 minor, 1 major), 4.03 (d, J = 

8.5 Hz, 1H-minor), 3.97 (d, J = 11.3 Hz, 1H-major), 3.45 – 3.29 (m, 2H-1 minor, 1 major), 1.44 

(d, J = 6.3 Hz, 3H-minor), 1.40 (d, J = 6.1 Hz, 3H-major). 

13C NMR for major/minor diastereomers (151 MHz, CDCl3) δ 173.81, 173.15, 137.11, 136.63, 

135.08, 133.95, 133.87, 133.28, 130.30, 130.02, 129.42, 129.24, 129.11, 128.79, 128.55, 128.52, 

128.20, 128.17, 80.76, 79.34, 77.20, 76.47, 67.77, 63.49, 52.31, 52.12, 20.14, 18.98.  

IR (thin film, cm-1) 2980, 2931, 1777, 1592, 1494, 1455, 1386, 1266, 1191, 1091, 1014 

HRMS: m/z calculated for C18H18ClNO3 [Na]+: 354.08674; found: 354.08657 

 

3-((Benzyloxy)amino)-4-(3-bromophenyl)-5-methyldihydrofuran-2(3H)-one (2.60) 

 

 

 

 

 

 

 

The average isolated yield for 2.60 was 89 mg, 72% (2 trials), synthesized using General 
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Procedure A with β-methyl-3-bromostyrene 1g, oxime 2.51, and an irradiation time of 24 hours. 

The title compound was obtained as a 1.8:1 mixture of inseparable diastereomers based on an 

average of two trials. The product was isolated by column chromatography on silica gel (10% 

EtOAc/hexanes then 30% EtOAc/hexanes) as a yellow oil.  

Analytical data for 2.60:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.53 – 7.46 (m, 2H), 7.38 – 7.33 

(m, 4H), 7.33 – 7.29 (m, 2H), 7.29 – 7.22 (m, 5H), 7.13 (dt, J = 7.8, 1.2 Hz, 1H), 6.15 (s, 1H-

major), 5.71 (s, 1H-minor), 5.02 – 4.95 (m, 1H-minor), 4.69 (s, 2H-major), 4.53 – 4.43 (m, 3H-2 

minor, 1 major), 4.05 (d, J = 8.5 Hz, 1H-minor), 4.00 (d, J = 11.3 Hz, 1H-major), 3.40 (t, J = 8.1 

Hz, 1H-minor), 3.34 (dd, J = 11.2, 9.9 Hz, 1H-major), 1.47 (dd, J = 6.3, 1.3 Hz, 3H-minor), 1.43 

(dd, J = 6.1, 1.5 Hz, 3H-major). 

113C NMR for major/minor diastereomers (151 MHz, CDCl3) δ 173.72, 173.06, 139.02, 137.12, 

137.09, 136.59, 132.07, 131.22, 131.09, 131.03, 130.77, 130.46, 128.84, 128.56, 128.54, 128.24, 

128.18, 127.68, 126.48, 126.45, 123.25, 123.00, 80.64, 79.25, 77.18, 76.42, 67.74, 63.57, 52.59, 

52.15, 20.14, 19.07.  

IR (thin film, cm-1) 3251, 3062, 3030, 2977, 2929, 1777, 1714, 1595, 1567, 1476, 1192, 1064 

HRMS: m/z calculated for C18H18BrNO3 [Na]+: 398.03623; found: 398.03612 
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3-((Benzyloxy)amino)-4-(4-bromophenyl)-5-methyldihydrofuran-2(3H)-one (2.61) 

 

 

 

 

 

 

The average isolated yield for 2.61 was 91 mg, 73% (2 trials), synthesized using General 

Procedure A with β-methyl-4-bromostyrene 1h, oxime 2.51, and an irradiation time of 24 hours. 

The title compound was obtained as a 1.8:1 mixture of inseparable diastereomers based on an 

average of two trials. The product was isolated by column chromatography on silica gel (10% 

EtOAc/hexanes then 30% EtOAc/hexanes) as a yellow oil.  

Analytical data for 2.61:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.50 (dd, J = 10.5, 8.2 Hz, 3H), 

7.35 – 7.28 (m, 5H), 7.24 – 7.18 (m, 3H), 7.15 (d, J = 8.4 Hz, 1H), 7.07 – 7.01 (m, 2H), 6.11 (s, 

1H-major), 5.66 (s, 1H-minor), 5.00 – 4.88 (m, 1H-minor), 4.69 – 4.61 (m, 2H-major), 4.45 (q, J 

= 5.6, 5.1 Hz, 3H-2 minor, 2 major), 4.03 (d, J = 8.5 Hz, 1H-minor), 3.97 (d, J = 11.3 Hz, 1H-

major), 3.41 – 3.29 (m, 2H-1 minor, 1 major), 1.44 (d, J = 6.3 Hz, 3H-minor), 1.40 (dd, J = 6.1, 

1.2 Hz, 3H-major). 

13C NMR for major/minor diastereomers (151 MHz, CDCl3) δ 173.76, 173.09, 137.10, 135.63, 

135.62, 133.84, 132.41, 132.10, 130.65, 130. 09, 129.58, 128.82, 128.58, 128.55, 128.23, 128.21, 

122.04, 122.01, 80.71, 79.29, 77.23, 76.51, 67.75, 63.47, 52.42, 52.26, 20.18, 19.02.  

IR (thin film, cm-1) 3470, 3257, 3063, 3031, 2978, 2930, 2871, 1779, 1715, 1587, 1491, 1455, 
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1386, 1192 

HRMS: m/z calculated for C18H18BrNO3 [Na]+: 398.03623; found: 398.03617 

 

 

3-((Benzyloxy)amino)-4-(4-fluorophenyl)-5-methyldihydrofuran-2(3H)-one (2.62) 

 

 

 

 

 

 

The average isolated yield for 2.62 was 69 mg, 66% (2 trials), synthesized using General 

Procedure A with β-methyl-4-fluorostyrene 1l, oxime 2.51, and an irradiation time of 24 hours. 

The title compound was obtained as a 2.0:1 mixture of inseparable diastereomers based on an 

average of two trials. The product was isolated by column chromatography on silica gel (10% 

EtOAc/hexanes then 30% EtOAc/hexanes) as a yellow oil.  

Analytical data for 2.62:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.31 (td, J = 6.9, 6.2, 3.3 Hz, 4H), 

7.27 – 7.20 (m, 3H), 7.15 (dd, J = 8.5, 5.4 Hz, 2H), 7.07 (dt, J = 10.5, 8.6 Hz, 3H), 6.11 (s, 1H-

major), 5.66 (s, 1H-minor), 5.00 – 4.91 (m, 1H-minor), 4.71 – 4.63 (m, 2H-major), 4.51 – 4.41 

(m, 3H-2 minor, 1 major), 4.02 (d, J = 8.4 Hz, 1H-minor), 3.97 (dd, J = 11.5, 1.6 Hz, 1H-major), 

3.46 – 3.32 (m, 2H-1 minor, 1 major), 1.44 (d, J = 6.3 Hz, 3H-minor), 1.41 (d, J = 6.1 Hz, 3H-

major). 
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13C NMR for major/minor diastereomers (151 MHz, CDCl3) δ  173.88, 173.27, 163.28, 163.21, 

161.65, 161.58, 137.17, 136.71, 132.28, 132.26, 130.61, 130.55, 130.46, 130.44, 129.49, 129.44, 

128.78, 128.55, 128.52, 128.16, 116.27, 116.13, 115.98, 115.83, 80.96, 79.52, 77.22, 76.51, 

67.88, 63.52, 52.27, 51.94, 20.11, 18.95.  

IR (thin film, cm-1) 3475, 2978, 2930, 1778, 1603, 1512, 1455, 1387, 1330, 1227, 1096 

HRMS: m/z calculated for C18H18FNO3 [Na]+: 338.11629; found: 338.11612 

 

 

3-((Benzyloxy)amino)-4-(2-methoxyphenyl)-5-methyldihydrofuran-2(3H)-one (2.63) 

 

 

 

 

 

 

The average isolated yield for 2.63 was 63 mg, 58% (2 trials), synthesized using General 

Procedure A with β-methyl-2-methoxystyrene 1p, oxime 2.51, and an irradiation time of 24 

hours. The title compound was obtained as a 1.2:1 mixture of inseparable diastereomers based on 

an average of two trials. The product was isolated by column chromatography on silica gel (10% 

EtOAc/hexanes then 30% EtOAc/hexanes) as a yellow oil.  

Analytical data for 2.63:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.36 – 7.28 (m, 5H), 7.26 (td, J = 

6.9, 3.3 Hz, 4H), 7.19 (dd, J = 7.6, 1.6 Hz, 1H), 7.15 – 7.09 (m, 2H), 7.03 (dd, J = 7.4, 1.7 Hz, 
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1H), 7.00 (td, J = 7.5, 1.1 Hz, 1H), 6.97 – 6.89 (m, 3H), 6.11 (s, 1H-major), 5.67 (s, 1H-minor), 

5.09 – 4.99 (m, 1H-minor), 4.76 – 4.64 (m, 3H-2 minor, 1 major), 4.43 (d, J = 10.4 Hz, 1H-

major), 4.30 (s, 2H-minor), 4.15 (d, J = 8.8 Hz, 1H-minor), 3.82 (s, 3H-major), 3.79 (s, 3H-

minor), 3.65 (t, J = 8.5 Hz, 1H-minor), 3.51 (dd, J = 10.3, 9.2 Hz, 1H-major), 1.47 (d, J = 6.3 

Hz, 3H-minor), 1.37 (d, J = 6.2 Hz, 3H-major).  

13C NMR for major/minor diastereomers (151 MHz, CDCl3) δ 174.97, 174.87, 157.86, 157.64, 

137.40, 137.14, 130.92, 129.30, 128.92, 128.76, 128.57, 128.47, 128.38, 128.35, 128.03, 127.89, 

124.63, 123.56, 121.14, 120.77, 111.28, 110.67, 79.79, 78.00, 77.20, 76.32, 65.58, 62.46, 55.44, 

55.32, 50.16, 47.48, 20.46, 19.91.  

IR (thin film, cm-1) 3436, 3063, 3013, 2976, 2932, 2839, 1777, 1601, 1587, 1495, 1463, 1455, 

1384, 1247 

HRMS: m/z calculated for C19H21NO4 [Na]+: 350.13628; found: 350.13606 

 

3-((Benzyloxy)amino)-4-(3-methoxyphenyl)-5-methyldihydrofuran-2(3H)-one (2.64) 

 

 

 

 

 

 

 

The average isolated yield for 2.64 was 70 mg, 65% (2 trials), synthesized using General 

Procedure A with β-methyl-3-methoxystyrene 1q, oxime 2.51, and an irradiation time of 24 
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hours. The title compound was obtained as a 2.0:1 mixture of inseparable diastereomers based on 

an average of two trials. The product was isolated by column chromatography on silica gel (10% 

EtOAc/hexanes then 30% EtOAc/hexanes) as a yellow oil.  

Analytical data for 2.64:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.33 – 7.27 (m, 6H), 7.25 – 7.22 

(m, 3H), 6.89 – 6.83 (m, 3H), 6.81 (dt, J = 7.7, 1.2 Hz, 1H), 6.77 (t, J = 2.1 Hz, 1H), 6.09 (s, 1H-

major), 5.68 (s, 1H-minor), 5.00 (dq, J = 7.8, 6.3 Hz, 1H-minor), 4.70 (q, J = 11.6 Hz, 2H-

major), 4.55 – 4.46 (m, 3H-2 minor, 1 major), 4.07 – 3.99 (m, 2H-1 minor, 1 major), 3.81 (s, 3H-

major), 3.79 (s, 3H-minor), 3.45 – 3.32 (m, 2H-1 minor, 1 major), 1.44 (d, J = 6.3 Hz, 3H-

minor), 1.42 (d, J = 6.1 Hz, 3H-major).  

13C NMR for major/minor diastereomers (151 MHz, CDCl3) δ 173.94, 173.45, 160.23, 160.07, 

138.17, 137.21, 136.89, 135.98, 130.36, 130.06, 128.71, 128.59, 128.48, 128.42, 128.11, 128.09, 

121.18, 120.07, 114.96, 114.18, 113.12, 112.93, 80.71, 79.53, 77.32, 76.67, 67.96, 63.73, 55.41, 

55.35, 53.15, 52.61, 20.12, 19.12.  

IR (thin film, cm-1) 3434,  2348, 1777, 1643, 1602, 1491, 1455, 1291, 1265, 119, 1063 

HRMS: m/z calculated for C19H21NO4 [Na]+: 350.13628; found: 350.13612 
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3-((Benzyloxy)amino)-4-(4-methoxyphenyl)-5-methyldihydrofuran-2(3H)-one (2.65) 

 

 

 

 

 

 

The average isolated yield for 2.65 was 50 mg, 46% (2 trials), synthesized using General 

Procedure A with anethole 1b, oxime 2.51, and an irradiation time of 24 hours. The title 

compound was obtained as a 2.1:1 mixture of inseparable diastereomers based on an average of 

two trials. The product was isolated by column chromatography on silica gel (10% 

EtOAc/hexanes then 30% EtOAc/hexanes) as a yellow oil.  

Analytical data for 2.65:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.34 – 7.27 (m, 5H), 7.25 – 7.19 

(m, 4H), 7.14 – 7.10 (m, 2H), 6.93 – 6.88 (m, 3H), 6.09 (d, J = 1.9 Hz, 1H-major), 5.66 (d, J = 

3.1 Hz, 1H-minor), 4.96 (dq, J = 7.8, 6.3 Hz, 1H-minor), 4.73 – 4.64 (m, 2H-major), 4.52 (d, J = 

2.9 Hz, 2H-2 minor), 4.46 (dq, J = 10.0, 6.1 Hz, 1H-major), 4.02 – 3.94 (m, 2H-1 minor, 1 

major), 3.82 (d, J = 4.2 Hz, 6H-3 minor, 3 major), 3.40 – 3.31 (m, 2H-1 minor, 1 major), 1.43 (d, 

J = 6.3 Hz, 3H-minor), 1.40 (d, J = 6.1 Hz, 3H-major). 

13C NMR for major/minor diastereomers (151 MHz, CDCl3) δ 13C NMR (151 MHz, CDCl3) δ 

174.18, 173.61, 159.37, 159.27, 137.20, 136.83, 130.04, 128.95, 128.76, 128.56, 128.51, 128.49, 

128.21, 128.11, 126.14, 114.63, 114.38, 81.08, 79.76, 77.28, 76.60, 67.93, 63.68, 55.46, 55.43, 

52.45, 51.85, 20.06, 18.93.  
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IR (thin film, cm-1) 3465, 2975, 2932, 2837, 2348, 2282, 1778, 1613, 1515, 1455, 1386, 1250 

HRMS: m/z calculated for C19H21NO4 [Na]+: 350.13628; found: 350.13607 

 

3-((Benzyloxy)amino)-5-methyl-4-(m-tolyl)dihydrofuran-2(3H)-one (2.66) 

 

 

 

 

 

 

The average isolated yield for 2.66 was 66 mg, 64% (2 trials), synthesized using General 

Procedure A with β-methyl-3-methylstyrene 1m, oxime 2.51, and an irradiation time of 24 hours. 

The title compound was obtained as a 2.4:1 mixture of inseparable diastereomers based on an 

average of two trials. The product was isolated by column chromatography on silica gel (10% 

EtOAc/hexanes then 30% EtOAc/hexanes) as a yellow oil.  

Analytical data for 2.66:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.32 – 7.27 (m, 4H), 7.25 – 7.23 

(m, 1H), 7.21 (td, J = 7.5, 1.7 Hz, 3H), 7.15 – 7.10 (m, 1H), 7.06 (d, J = 8.2 Hz, 1H), 6.99 (d, J = 

8.4 Hz, 2H), 6.07 (s, 1H-major), 5.64 (s, 1H-minor), 5.04 – 4.96 (m, 1H-minor), 4.72 – 4.63 (m, 

2H-major), 4.53 – 4.43 (m, 3H-2 minor, 1 major), 4.06 – 3.96 (m, 2H-1 major, 1 minor), 3.40 – 

3.30 (m, 2H-1 major, 1 minor), 2.35 (d, J = 3.4 Hz, 6H-3 major, 3 minor), 1.43 (d, J = 6.3 Hz, 

3H-minor), 1.40 (d, J = 6.1 Hz, 3H-major). 
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13C NMR for major/minor diastereomers (151 MHz, CDCl3) δ 174.07, 173.57, 139.00,  138.72, 

137.25, 136.96, 136.49, 134.41, 129.64, 129.17, 128.92, 128.88, 128.80, 128.77, 128.61, 128.51, 

128.49, 128.11, 128.07, 125.95, 124.99, 80.77, 79.72, 77.29, 76.57, 68.00, 63.72, 53.04, 52.61, 

21.60, 21.58, 20.15, 19.09.  

IR (thin film, cm-1) 3446, 3030, 2977, 2928, 1777, 1716, 1654, 1608, 1493, 1454, 1386, 1328, 

1190 

HRMS: m/z calculated for C19H21NO3 [Na]+: 334.14136; found: 334.14120 

 

 

3-((Benzyloxy)amino)-5-methyl-4-(p-tolyl)dihydrofuran-2(3H)-one (2.67) 

 

 

 

 

 

 

 

The average isolated yield for 2.67 was 64 mg, 62% (2 trials), synthesized using General 

Procedure A with β-methyl-4-methylstyrene 1n, oxime 2.51, and an irradiation time of 24 hours. 

The title compound was obtained as a 2.1:1 mixture of inseparable diastereomers based on an 

average of two trials. The product was isolated by column chromatography on silica gel (10% 

EtOAc/hexanes then 30% EtOAc/hexanes) as a yellow oil.  

Analytical data for 2.67:  

Major Minor

+
O
NH

OMe O

O
NH

O
Me O

Me Me



	 	 77 

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.33 – 7.27 (m, 5H), 7.22 (ddt, J = 

5.1, 3.6, 1.6 Hz, 3H), 7.21 – 7.15 (m, 5H), 7.11 (d, J = 7.9 Hz, 2H), 6.08 (s, 1H-major), 5.66 (s, 

1H-minor), 5.04 – 4.97 (m, 1H-minor), 4.68 (q, J = 11.6 Hz, 2H-major), 4.54 – 4.44 (m, 3H-2 

minor, 1 major), 4.05 – 3.97 (m, 2H-1 minor, 1 major), 3.43 – 3.33 (m, 2H-1 minor, 1 major), 

2.37 (d, J = 2.4 Hz, 6H-3 minor, 3 major), 1.44 (d, J = 6.3 Hz, 3H-minor), 1.41 (d, J = 6.1 Hz, 

3H-major). 

13C NMR for major/minor diastereomers (151 MHz, CDCl3) δ 174.11, 173.56, 137.92,  137.81, 

137.25,  136.93, 133.43, 131.33, 129.97, 129.74, 128.80, 128.74, 128.56, 128.49, 128.47, 128.09, 

127.80, 80.86, 79.72, 77.30, 76.59, 67.99, 63.73, 52.79, 52.37, 21.22, 21.20, 20.10, 19.01.  

IR (thin film, cm-1) 3444, 1778, 1644, 1516, 1454, 1385, 1188, 1063 

HRMS: m/z calculated for C19H21NO3 [Na]+: 334.14136; found: 334.14118 

 

 

3-((Benzyloxy)amino)-4-(4-(tert-butyl)phenyl)-5-methyldihydrofuran-2(3H)-one (2.68) 

 

 

 

 

 

 

 

 

The average isolated yield for 2.68 was 70 mg, 60% (2 trials), synthesized using General 
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Procedure A with β-methyl-4-tert-butylstyrene 1o, oxime 2.51, and an irradiation time of 24 

hours. The title compound was obtained as a 2.4:1 mixture of inseparable diastereomers based on 

an average of two trials. The product was isolated by column chromatography on silica gel (10% 

EtOAc/hexanes then 30% EtOAc/hexanes) as a yellow oil.  

Analytical data for 2.68:  

1H NMR for major/mnor diastereomers (600 MHz, CDCl3) δ 7.43 – 7.38 (m, 3H), 7.33 – 7.27 

(m, 4H), 7.24 – 7.19 (m, 4H), 7.18 – 7.14 (m, 2H), 6.11 (s, 1H-major), 5.66 (s, 1H-minor), 5.05 – 

4.99 (m, 1H-minor), 4.74 – 4.64 (m, 2H-major), 4.54 – 4.46 (m, 3H-2 minor, 1 major), 4.08 – 

3.99 (m, 2H-1 minor, 1 major), 3.40 (t, J = 10.5 Hz, 2H-1 minor, 1 major), 1.45 (d, J = 6.3 Hz, 

3H-minor), 1.42 (d, J = 6.1 Hz, 3H-major), 1.36 – 1.33 (m, 18H-9 minor, 9 major). 

13C NMR for major/minor diastereomers (151 MHz, CDCl3) δ 174.11, 173.58, 151.06, 151.00, 

137.16, 136.95, 133.36, 131.27,  128.75, 128.61, 128.54, 128.45, 128.08, 128.04, 127.56, 126.18, 

125.92, 80.81, 79.71, 77.32, 76.55, 67.94, 63.72, 52.67, 52.33, 34.66, 31.42, 20.10, 19.07.  

IR (thin film, cm-1) 3458, 3063, 3031, 2963, 2868, 2359, 1777, 2644, 1516, 1455, 1386, 1363, 

1330, 1268, 1189, 1064 

HRMS: m/z calculated for C19H21NO3 [Na]+: 376.18831; found: 376.18822 
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3-((Benzyloxy)amino)-4-methyl-4-phenyldihydrofuran-2(3H)-one (2.69) 

 

 

 

 

 

 

The average isolated yield for 2.69 was 57 mg, 58% (2 trials), synthesized using General 

Procedure A with α-methylstyrene 1d, oxime 2.51, Mes-Acr-Ph, 2.5 mol%, and an irradiation 

time of 24 hours. The title compound was obtained as a 2.9:1 mixture of separable diastereomers 

based on an average of two trials. The products were isolated by column chromatography on 

silica gel (15% EtOAc /hexanes then 20% EtOAc/hexanes) as yellow oils.  

Analytical data for 2.69:  

1H NMR for major diastereomer (600 MHz, CDCl3) δ 7.47 – 7.43 (m, 2H), 7.39 (dd, J = 8.4, 6.8 

Hz, 2H), 7.34 – 7.28 (m, 4H), 7.22 – 7.16 (m, 2H), 6.20 – 6.07 (m, 1H), 4.71 – 4.58 (m, 2H), 

4.35 (d, J = 3.0 Hz, 1H), 4.31 (d, J = 1.2 Hz, 2H), 1.50 (s, 3H). 

13C NMR for major diastereomer (151 MHz, CDCl3) δ 174.57, 142.57, 136.94, 129.04, 128.75, 

128.51, 128.18, 127.46, 125.93, 76.90, 76.72, 68.07, 47.43, 21.23.  

IR (thin film, cm-1) 3447, 3062, 3036, 2969, 2915, 2360, 1778, 1639, 1497, 1454, 1366, 1292, 

1188, 1141, 1062 

HRMS: m/z calculated for C18H19NO3 [Na]+: 320.12571; found: 320.12557 

1H NMR for minor diastereomer (600 MHz, CDCl3) δ 7.40 (ddd, J = 8.0, 6.6, 1.2 Hz, 2H), 7.34 

– 7.27 (m, 4H), 7.26 – 7.22 (m, 2H), 7.15 (dd, J = 7.7, 1.8 Hz, 2H), 5.70 (d, J = 4.4 Hz, 1H), 4.83 
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(d, J = 8.5 Hz, 1H), 4.39 – 4.25 (m, 3H), 3.77 (d, J = 4.2 Hz, 1H), 1.57 (s, 3H). 

13C NMR for minor diastereomer (151 MHz, CDCl3) δ 175.16, 140.14, 136.97, 128.97, 128.63, 

128.46, 128.09, 127.55, 126.79, 77.04, 76.48, 68.79, 46.90, 27.42.  

IR (thin film, cm-1) 3433, 3061, 3030, 2965, 2923, 2871, 2359, 1779, 1634, 1602, 1497, 1454, 

1387, 1364, 1291, 1213, 1176, 1118 

HRMS: m/z calculated for C18H19NO3 [Na]+: 320.12571; found: 320.12551 

 

 

3-((Benzyloxy)amino)-3a-phenylhexahydrobenzofuran-2(3H)-one (2.70) 

 

 

 

 

 

 

The average isolated yield for 2.70 was 98 mg, 88% (2 trials), synthesized using General 

Procedure A with 1-phenyl-1-cyclohexene 1e, oxime 2.51, and an irradiation time of 24 hours. 

The title compound was obtained as a 1.5:1 mixture of separable diastereomers based on an 

average of two trials. The products were isolated by column chromatography on silica gel (20% 

EtOAc /hexanes then 30% EtOAc/hexanes). The minor product was obtained as a coconut-

scented, yellow oil and the major product as a cream-colored solid.   

Analytical data for 2.70:  
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1H NMR for major diastereomer (600 MHz, CDCl3) δ 7.52 (dd, J = 8.3, 1.3 Hz, 2H), 7.43 (t, J = 

7.8 Hz, 2H), 7.37 – 7.30 (m, 1H), 7.23 (dd, J = 4.9, 1.9 Hz, 3H), 6.96 (dd, J = 6.7, 2.9 Hz, 2H), 

6.04 – 5.92 (m, 1H), 4.90 (t, J = 2.4 Hz, 1H), 4.50 – 4.36 (m, 2H), 4.26 (d, J = 2.3 Hz, 1H), 2.44 

(dt, J = 15.0, 3.2 Hz, 1H), 2.20 – 2.07 (m, 1H), 1.71 (dt, J = 13.2, 3.2 Hz, 1H), 1.59 – 1.45 (m, 

4H), 1.39 (dd, J = 11.2, 2.6 Hz, 1H). 

13C NMR for major diastereomer (151 MHz, CDCl3) δ 173.96, 139.33, 136.87, 128.96, 128.61, 

128.31, 127.98, 127.24, 126.89, 80.65, 76.66, 74.72, 48.61, 26.61, 24.91, 20.98, 19.56.  

IR (thin film, cm-1) 3436, 3258, 3054, 2934, 2867, 1779, 1601, 1496, 1449, 1364, 1297, 1264, 

1190, 1140, 1094, 1055, 1018 

HRMS: m/z calculated for C21H23NO3 [Na]+: 360.15701; found: 360.15690 

1H NMR for minor diastereomer (some major diastereomer peaks are present in the major 

diastereomers spectrum) (600 MHz, CDCl3) δ 7.43 (t, J = 7.7 Hz, 3H), 7.37 – 7.30 (m, 2H), 7.28 

(dd, J = 7.6, 2.0 Hz, 3H), 7.09 (dd, J = 7.4, 2.1 Hz, 2H), 5.60 (s, 1H), 5.35 (t, J = 3.4 Hz, 1H), 

4.24 (dd, J = 66.5, 11.4 Hz, 2H), 3.56 (s, 1H), 2.31 – 2.22 (m, 1H), 2.04 (d, J = 13.9 Hz, 1H), 

2.00 – 1.93 (m, 1H), 1.72 (td, J = 13.3, 3.2 Hz, 1H), 1.59 (ddt, J = 11.2, 7.6, 3.3 Hz, 2H), 1.53 – 

1.48 (m, 1H), 1.18 – 1.07 (m, 1H). 

13C NMR for minor diastereomer (151 MHz, CDCl3) δ 173.97, 139.35, 136.88, 128.98, 128.62, 

128.32, 127.99, 127.25, 126.91, 80.66, 76.68, 74.73, 48.62, 26.63, 24.92, 20.99, 19.57.   

IR (thin film, cm-1) 3446, 3060, 3030, 2938, 2861, 2360, 2341, 1771, 1669, 1601, 1496, 1366, 

1290, 1267, 1248, 1204 

HRMS: m/z calculated for C21H23NO3 [Na]+: 360.15701; found:360.15691 
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3-((Benzyloxy)amino)-4,4,5-trimethyldihydrofuran-2(3H)-one (2.71) 

 

 

 

 

 

 

 

The average isolated yield for 2.71 was 34 mg, 42% (2 trials), synthesized using General 

Procedure A with 2-methyl-2-butene 1f (3.0 equiv), oxime 2.51, Mes-Acr-Ph, 2.5 mol%, and an 

irradiation time of 24 hours in a 1-dram vial. The title compound was obtained as a 1.7:1 mixture 

of inseparable diastereomers based on an average of two trials. The product was isolated by 

column chromatography on silica gel (20% EtOAc /hexanes then 30% EtOAc/hexanes) as a 

yellow oil.  

Analytical data for 2.71:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.35 (t, J = 4.9 Hz, 6H), 7.34 – 

7.29 (m, 2H), 5.94 (s, 2H-1 minor, 1 major), 4.79 – 4.69 (m, 4H-2 minor, 2-major), 4.36 (q, J = 

6.7 Hz, 1H-minor), 4.15 (q, J = 6.5 Hz, 1H-major), 3.74 (s, 1H-major), 3.54 (s, 1H-minor), 

1.28(dd, J = 6.6, 3.5 Hz, 6H-3-minor, 3-major), 1.17 (s, 3H-major), 1.11 (s, 3H-minor), 1.09 (s, 

3H-minor), 0.89 (s, 3H-major). 

13C NMR for major/minor diastereomer (151 MHz, CDCl3) δ 174.80, 174.05, 137.23 ,137.01, 

128.76, 128.67, 128.60, 128.56, 128.21, 128.19, 84.39, 82.18, 76.71, 76.46, 70.07, 68.27, 43.80, 

41.51, 23.37, 22.02, 21.27, 15.45, 15.22, 13.07.  
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IR (thin film, cm-1) 3516, 3257, 3088, 5063, 3031, 2976, 2932, 2873, 1772, 1639, 1536, 1469, 

1469, 1455, 1389, 1572, 1284, 1212, 1186, 1064 

HRMS: m/z calculated for C14H19NO3 [Na]+: 272.12571; found: 272.12557 

 

 

3-((Benzyloxy)amino)-3,3a,8,8a-tetrahydro-2H-indeno[2,1-b]furan-2-one (2.72) 

 

 

 

 

 

 

 

The average isolated yield for 2.72 was 51 mg, 53% (2 trials), synthesized using General 

Procedure A with indene 1c, oxime 2.51, and an irradiation time of 24 hours. The title compound 

was obtained as a 1.0:1 mixture of separable diastereomers based on an average of two trials. 

The products were isolated by column chromatography on silica gel (10% EtOAc /hexanes then 

30% EtOAc/hexanes). The minor product was obtained as a brown solid and the major product 

as a purple oil.   

Analytical data for 2.72:  

1H NMR for major diastereomer (600 MHz, CDCl3) δ 7.54 – 7.26 (m, 7H), 7.25 (s, 2H), 6.23 (s, 

1H), 5.33 (s, 1H), 4.82 (d, J = 6.5 Hz, 2H), 3.91 (dd, J = 6.0, 1.8 Hz, 1H), 3.79 (d, J = 1.9 Hz, 

1H), 3.31 – 3.27 (m, 2H). 
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13C NMR for major diastereomer (151 MHz, CDCl3) δ 175.89, 140.59, 140.35, 137.07, 128.78, 

128.70, 128.60, 128.42, 127.91, 125.51, 125.09, 84.52, 77.22, 66.91, 51.12, 38.88. 

IR (thin film, cm-1) 3505, 3241, 3030, 2921, 1772, 1481, 1455, 1425, 1354, 1294, 1269, 1205, 

1176, 1114 

HRMS: m/z calculated for C18H17NO3 [Na]+: 318.11006; found: 318.10989 

1H NMR for minor diastereomer (600 MHz, CDCl3) δ 7.50 (d, J = 7.5 Hz, 1H), 7.42 – 7.35 (m, 

4H), 7.35 – 7.30 (m, 1H), 7.30 – 7.26 (m, 2H), 7.23 (td, J = 6.7, 5.9, 2.7 Hz, 1H), 5.97 (d, J = 5.2 

Hz, 1H), 5.23 (dt, J = 5.4, 3.4 Hz, 1H), 4.78 – 4.70 (m, 2H), 4.40 (d, J = 8.8 Hz, 1H), 4.20 (ddd, 

J = 8.8, 5.5, 1.0 Hz, 1H), 3.29 (d, J = 3.4 Hz, 2H). 

13C NMR for minor diastereomer (151 MHz, CDCl3) δ 173.40, 141.26, 137.22, 136.87, 128.78, 

128.67, 128.65, 128.29, 127.55, 127.33, 125.50, 81.82, 76.38, 62.89, 48.91, 39.18. 

IR (thin film, cm-1) 3428, 3055, 3030, 2922, 1770, 1699, 1496, 1478, 1455, 1425, 1362, 1296, 

1266, 1173 

HRMS: m/z calculated for C18H17NO3 [Na]+: 318.11006; found: 318.10991 
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2-((4-((Benzyloxy)amino)-3-(4-methoxyphenyl)-5-oxotetrahydrofuran-2-

yl)methyl)isoindoline-1,3-dione (2.73)  

 

 

 

 

 

 

 

 

The average isolated yield for 2.73 was 64 mg, 41% (2 trials), synthesized using General 

Procedure A with (E)-2-(3-(4-methoxyphenyl)allyl)isoindoline-1,3-dione 1r, oxime 2.51, and an 

irradiation time of 24 hours. The title compound was obtained as a 3.2:1 mixture of inseparable 

diastereomers based on an average of two trials. The product was isolated by column 

chromatography on silica gel (30% EtOAc /hexanes then 50% EtOAc/hexanes) as a cream solid.  

Analytical data for 2.73:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.74 (dd, J = 5.4, 3.1 Hz, 3H), 

7.67 (dd, J = 5.5, 3.0 Hz, 3H), 7.34 – 7.24 (m, 6H), 7.19 (ddd, J = 14.2, 7.4, 1.9 Hz, 1H), 7.12 – 

7.07 (m, 2H), 6.73 (t, J = 8.5 Hz, 3H), 6.00 (s, 1H-major), 5.60 (s, 1H-minor), 5.25 (dt, J = 8.8, 

6.7 Hz, 1H-minor), 4.90 (dt, J = 10.1, 6.2 Hz, 1H-major), 4.74 – 4.64 (m, 2H-major), 4.51 (q, J = 

11.7 Hz, 2H-minor), 4.07 (dd, J = 14.1, 6.6 Hz, 2H-1 minor, 1 major), 3.99 – 3.94 (m, 2H-1 

minor, 1 major), 3.84 (d, J = 11.1 Hz, 2H-1 minor, 1 major), 3.68 (d, J = 1.6 Hz, 6H-3 minor, 3 

major), 3.61 (t, J = 10.6 Hz, 1H-major), 3.55 (t, J = 8.6 Hz, 1H-minor). 
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13C NMR for major/minor diastereomers (151 MHz, CDCl3) δ 173.24, 172.57, 167.96, 167.94, 

159.27, 159.24 137.17, 134.12, 134.11, 131.77, 130.08, 128.80, 128.78, 128.53, 128.11, 127.93, 

124.89, 123.41, 79.77, 78.06, 77.31, 76.64, 68.39, 63.38, 55.35, 55.31, 49.13, 47.72, 40.64, 

40.10. 

IR (thin film, cm-1) 3470, 3560, 3061, 2937, 2838, 1774, 1716, 1694, 1515, 1467, 1455, 1422, 

1395, 1369, 1307, 1254, 1181, 1087 

HRMS: m/z calculated for C27H24N2O6 [H]+: 473.17071; found: 473.17079 

 

 

3-((Benzyloxy)amino)-4-(4-(tert-butyldimethylsilyl)phenyl)-5-methyldihydrofuran-2(3H)-

one (2.74) 

 

 

 

 

 

 

 

The average isolated yield for 2.74 was 100 mg, 71% (2 trials), synthesized using General 

Procedure A with tert-butyldimethyl(4-(prop-1-en-1-yl)phenyl)silane 1s, oxime 2.51, and an 

irradiation time of 24 hours. The title compound was obtained as a 1.9:1 mixture of inseparable 
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Analytical data for 2.74:  

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.34 – 7.27 (m, 5H), 7.27 – 7.21 

(m, 4H), 7.14 (d, J = 8.5 Hz, 1H), 7.09 – 7.04 (m, 2H), 6.84 (t, J = 8.4 Hz, 3H), 6.08 (s, 1H-

major), 5.65 (d, J = 3.1 Hz, 1H-minor), 4.95 (dq, J = 7.7, 6.3 Hz, 1H-minor), 4.68 (q, J = 11.6 

Hz, 2H-major), 4.50 (d, J = 2.9 Hz, 2H-minor), 4.44 (dq, J = 10.0, 6.1 Hz, 1H-major), 3.98 (dd, J 

= 9.9, 6.1 Hz, 2H-1 minor, 1 major), 3.38 – 3.30 (m, 2H-1 minor, 1 major), 1.43 (d, J = 6.3 Hz, 

3H-minor), 1.40 (d, J = 6.1 Hz, 3H-major), 1.00 (s, 18H= 9 minor, 9 major), 0.21 (s, 12H-6 

minor, 6 major). 

13C NMR for major/minor diastereomer (151 MHz, CDCl3) δ  174.11, 173.60, 155.56, 155.49, 

137.30, 136.99, 129.99, 128.91, 128.88, 128.75, 128.55, 128.49, 128.08,  126.95, 120.73, 120.55, 

81.00, 79.77, 77.30, 76.63, 67.93, 63.63, 52.46, 52.01, 25.79, 25.77, 20.10, 18.97, 18.33, 18.30, -

4.25, -4.27.  

IR (thin film, cm-1) 3251, 3062, 3032, 2955, 2930, 2895, 2895, 2857, 2302, 1779, 1692, 1609, 

1511, 1472, 1455, 1421, 1387, 1362, 1329, 1266, 1199, 1174 

HRMS: m/z calculated for C24H33NO4Si [H]+: 428.22516; found: 428.2254 
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Reduction of product 2.52 was achieved using a procedure adapted from a previously reported 

method.28 A flame dried high-pressure vessel was charged with a stir bar, lactone 2.52 (79 mg, 

0.25 mmol), and Pearlman’s catalyst Pd(OH)2/C (54 mg, 0.38 mmol). The mixture was stirred in 

MeOH (8.5 mL) under hydrogen (40 psi) for 24 hours followed by filtration over celite and a 

MeOH wash. After the solvent was evaporated, the product was dissolved in 5 mL DCM and 

acidified to pH 5 with 1N HCl. The aqueous layer was washed once with 10 mL Et2O and then 

basified to pH 8 with saturated NaHCO3. The product was extracted three times (3x) with 10 mL 

DCM. The combined organic layers we dried over MgSO4 before the solvent was evaporated to 

afford the free amine product as a clear oil (37 mg, 72%). The product was obtained as a 5:1 

mixture of inseparable diastereomers. 

Analytical data: 

1H NMR for major/minor diastereomers (600 MHz, CDCl3) δ 7.42 – 7.33 (m, 6H-3 minor, 3 

major), 7.31 – 7.27 (m, 2H-major), 7.26 – 7.22 (m, 2H-minor), 5.04 (dq, J = 10.1, 6.2 Hz, 1H-

major), 4.84 (dq, J = 12.0, 6.1 Hz, 1H-minor), 3.07 (d, J = 10.7 Hz, 1H-minor), 2.92 (d, J = 10.1 

Hz, 1H-major), 1.45 (d, J = 6.1 Hz, 3H-minor), 1.39 (d, J = 6.2 Hz, 3H-major), 1.37 (s, 3H-

major), 1.01 (s, 3H-minor). 

13C NMR for major diastereomer (151 MHz, CDCl3) δ 179.64, 177.36, 132.76, 132.18, 128.31, 

127.97, 127.88, 127.52, 127.37, 127.08, 76.37, 74.59, 59.79, 59.49, 59.00, 57.67, 24.83, 19.86, 

18.25, 17.82.  

IR (thin film, cm-1) 3853, 3696, 3061, 3032, 2975, 2870, 2389, 1958, 1769, 1690, 1601, 1584, 

1500, 1454, 1376, 1287, 1168,, 1061 

HRMS: m/z calculated for CHNO [H]+ : 206.11756 ; found: 206.11761 
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Stereochemical Assignment- Selective 1D-NOESY 

The stereochemistry for β-methylstyrene-derived products was determined based on 3-

((benzyloxy)amino)-4-(2-methoxyphenyl)-5-methyldihydrofuran-2(3H)-one (2.63) using 

selective 1D-NOESY experiments. Four proton environments were selectively irradiated for the 

major and minor diastereomers. The relative peak amplifications, resulting from a NOE, were 

used to assign the relative stereochemistry of the product. The same procedure was used to 

identify the stereochemistry of 3-((benzyloxy)amino)-4-methyl-4-phenyldihydrofuran-2(3H)-one 

(2.69), 3-((benzyloxy)amino)-3a-phenylhexahydrobenzofuran-2(3H)-one (2.70), 3-

((benzyloxy)amino)-4,4,5-trimethyldihydrofuran-2(3H)-one (2.71), and 3-((benzyloxy)amino)-

3,3a,8,8a-tetrahydro-2H-indeno[2,1-b]furan-2-one (2.72) and 3-((benzyloxy)amino)-3,5-

dimethyl-4-phenyldihydrofuran-2(3H)-one (2.55) (extrapolated to 2.56). See below for spectra.  
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CHAPTER THREE: REVERSING THE REGIOSELECTIVITY OF 
HALOFUNCTIONALIZATION REACTIONS THROUGH COOPERATIVE 

PHOTOREDOX AND COPPER CATALYSIS 
 

3.1 Introduction 

A 1,2-relationship between oxygen and halogen functionality has proven to be an invaluable 

feature in the synthesis of small, bioactive molecules and as a component in advanced synthetic 

routes. Whether existing in the halohydrin or halolactone form, this relationship is widely found 

in biologically active natural and unnatural products (Figure 3-1).  

 

							 	

 

Figure 3-1. Biologically Active Natural and Unnatural Products Exhibiting a 1,2- 
Oxygen/Halogen Relationship
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For example, halolactones 3.1-3.3 have been shown to express potent activity as non-

nucleoside reverse transcriptase inhibitors (NNRTIs).1 In order for HIV-1 to integrate its genetic 

information into its host’s DNA, the reverse transcriptase (RT) enzyme must act to convert the 

virus’ single-stranded viral RNA into the necessary double-stranded DNA form. Interrupting RT 

activity has proven to be an effective method for the treatment of HIV and consequently, NNRTI 

type drugs have been used in HIV combination therapy. As a result, the identification and 

synthesis of these inhibitors has been a key goal in the development of anti-HIV medication. In 

2015, Zhou et al. reported this class of novel halolactone inhibitors and observed anti-HIV 

activity associated with them. 

A common scaffold for the development of highly biologically active materials is the rose 

ketone, or ionone. It was been observed that analogues of this ketone are prevalent in nature, 

exhibiting a variety of biological properties in both plants and animals. Halolactones occur in 

molecules having cytotoxic, antifungal, antiviral, antibacterial, and anticancer activity. For 

example, chloro- and bromolactone derivatives 3.4 have been prepared by Anioł et al. in 2013 

(Figure 3-1).2 While potential bioactivity was recognized in the halolactone form, the value of 

these compounds was further demonstrated through the conversion to their hydroxylactone form 

(3.5). The latter class of lactones was studied for activity against bacteria, fungi, and yeast and 

was found to display activity against the growth of a variety of these microorganisms.  

The natural product bromphycolide A (3.6) has both halolactone and halohydrin functionality 

that contribute to its interesting bioactivity. Since its initial isolation in 2015 from Fijian red 

algae (Callophycus Serratus), this macrolactone has been of interest due to its unique, molecular 

complexity as well as its antitumor and antimalarial activity. Additionally, bromphycolide 

derivatives have been shown to inhibit the growth of problematic bacterial strains such as MRSA 
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and VREF. Krauss and coworkers have presented a concise and impressive route to the 

asymmetric synthesis of the bromphycolide A and D skeleton, both displaying the highly 

valuable 1,2-relationship between oxygen and halogen functionality.3  

Similarly, halohydrins are commonly incorporated into complex synthetic targets. Numerous 

syntheses have been directed toward the preparation of natural product exhibiting a 1,2-

relationship between oxygen and chlorine/bromine atoms (Figure 3-2).4 One of the most 

common arrangements in which this relationship exists is in the form of β-chloro/bromo cyclic 

ethers. This functionality has been observed in the core structure of a significant number of 

natural products (3.7-3.13), which have all been the target of impressive synthetic efforts.  

 

 

				 	
 

Figure 3-2.	Biologically Active β-Halo-Cyclic Ethers 
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Accessing the desirable 1,2-oxygen-halogen relationship has long been a goal for organic 

chemists given their extensive presence in natural product structures and a diverse display of 

bioactivity. Given such interest, it is not surprising that halofunctionalization methods have been 

studied, developed, and applied extensively throughout the chemical literature.  

3.2 Halofunctionalization of Alkenes 

The halofunctionalization of alkenes is one of the oldest and most commonly employed 

reactions in the field of organic chemistry. In addition, it is also one of the introductory 

transformations has had a well-defined place within entry level textbooks since the 1930s.5 The 

transformation is often introduced as a method of generating vicinal dihalides (Scheme 3-1).6 Pi 

electrons of an olefin, acting as a nucleophile, are capable of attacking halogen molecules, 

including Br2 and Cl2, expelling a halide anion to form a positively charged, three-membered 

ring. The resulting halonium ion, possessing a halide atom with a complete octet, is particularly 

electrophilic given the positive charge and significant ring strain. Back-side, nucleophilic attack 

on the reactive species, by a halide anion, leads to efficient ring opening and stable, vicinal 

dihalide formation. By altering the nucleophilic, ring-opening reagent, it is possible to redirect 

the reactivity toward the formation of halohydrins rather than the dihalide adduct. The addition 

of a nucleophilic solvent, rather than using an inert solvent or neat reactions conditions, favors 

this alternative reaction pathway. Water efficiently opens halonium ions to generate chloro- or 

bromohydrins upon deprotonation. 
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Scheme 3-1. Halofunctionalization of Alkenes  
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been determined, in many cases, that the nucleophilic partner actually enhances the reactivity of 

the alkene through a form of electron donation known as nucleophile-assisted alkene activation 

(NAAN). Rather than relying on a general mechanism for halohydrin formation, Borhan suggests 

multiple mechanistic pathways, including a concerted process as well as stepwise routes that 

involve the formation of a distinct carbocation intermediate. In cases involving NAAN, 

electrophilic addition to the alkene is assisted by simultaneous nucleophilic attack, resulting in 

pre-polarization of the substrate (Scheme 3-2). The nucleophile’s approach activates the olefin, 

through electron donation, allowing for more efficient attack on the electrophile rather than 

electronic repulsion, ultimately leading to increased reaction rates. However, evidence suggests 

that a classic mechanistic pathway dominates in systems with electron rich olefin substrates and 

sufficient halonium ion donor nucleofugality. 

 

Scheme 3-2. Nucleophile-Assisted Alkene Activation in Olefin Halofunctionalization Reactions 
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3-3).9 The method, utilizing stoichiometric quantities of a chiral titanium complex, was applied 

to the cyclization of a diallyl hydroxyacetic acid and an unsaturated diol affording the desired 

iodolactone products in a 67% and 65% ee, respectively. 

 

 

Scheme 3-3. Enantioselective Iodolactonization Achieved Using a Chiral Titanium Complex 
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Scheme 3-4. Enantioselective Chlorolactonization  

	

		 	 	

	

A catalyst–hydantoin complex was observed by 1H NMR and was proposed as a key 

component in the asymmetric delivery of the halogen atom. Preliminary explorations of the 

system suggest that the interaction may exist in two possible forms, either as a hydrogen bond or 

ion pair mediated complex (Figure 3-3). Several chlorolactone products were produced in good 

yield with synthetically useful enantioselectivities. 

 

 

																								 	

Figure 3-3. Proposed Catalyst–Hydantoin Complexes  
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In 2011, Yeung and coworkers developed an enantioselective synthesis of bromo-δ-lactones 

using a chiral amino-thiocarbamate catalyst and N-bromosuccinimide (NBS) as the bromine 

source (Scheme 3-5).11 By applying this method to 1,2-disubstituted olefinic acids, it was 

possible to access δ-lactones moieties, rather than the typical γ-lactones that are obtained through 

the cyclization of 1,1-disubstituted unsaturated acids, as demonstrated in previous work.12  

 

Scheme 3-5.  Amino-Thiocarbamate Catalyzed Synthesis of Bromo-δ-Lactones  
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Figure 3-4. δ- and γ-Bromolactone Scope 

	
	
	

	
Figure 3-5. Stereochemical Model for Bromolactonization  

O

O

Br

O

O

Br

Me
Me

Me

O

O

Br
O

CH3

O

O

Br
O

CF3

O

O

Br
F

O

O

Br

Me Me
Me

O

O

Br

F3C
CF3

O

O

Br

O
H3C

O

O

Br

O
F3C

92%
80% ee

99%
91% ee

99%
81% ee

90%
90% ee

99%
92% ee

97%
93% ee

88%
90% ee

67%
28% ee

85%
90% ee

OH

Ar

O

OH

R

O

From:

From:

MeO

OMe

N
H

O
S

N
O

O

Br

N
H

R R

OO

Ar

MeO

OMe

N
H

O
S

N
O

O

Br

N
H

R R

O
O

Ar

Br

Ar

O

O

Br

Ar

O

O

major

minor

favored

disfavored



	 123 

 The Johnston group also disclosed a method for the production of δ-lactones, this time 

using NIS as the halogen source.13 This novel system relies on the relationship between a chiral 

Brønsted acid catalyst and an achiral counterion (Scheme 3-6). It has been proposed that the high 

enantioselectivity observed upon applying this system to the lactonization of substituted 

hexenoic acid derivatives is the result of acid activation of the iodine source and Brønsted base 

activation of the carboxylic acid substrate. Through a counterion screen, it was determined that 

more highly dissociative achiral counterions were critical in achieving high enantioselectivity as 

its identity may have a major effect on the catalyst’s interaction with the substrate by influencing 

the size and shape of the binding pocket.  

 

 

Scheme 3-6. Enantioselective Iodolatonization Achieved via Chiral Brønsted Acid Catalysis  
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After developing a class of novel C3-symmetric chiral cinchonine-squaramide (CSCS) 

organocatalysts,15–18 Zhou hoped to apply their activity to the synthesis of valuable halolactones 

(Scheme 3-7). While the achiral lactone product could be achieved in good yield (95%) with the 

CSCS catalyst and DCDMH as a chlorine source, 4-nitrobenzenesulfonamide (NsNH2) was 

necessary as a super-stoichiometric additive to access the product enantioselectively.  

 

 

Scheme 3-7. Enatioselective Synthesis of Chlorolactones Using a Novel CSCS Organocatalyst 
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Table 3-1. Scope and Regioselectivity of CSCS Catalyzed Chlorolactonization   

	 	
Entry R1 R2 Yield (%) 3.14 : 3.15 ee (%) 

1 Me H 93 >99:1 83 
2 H H 95 99:1 67 
3 Ph H 92 99:1 57 
4 4-BrC6H4 Me 92 1:3 99 
5 4-FC6H4 Me 93 1:2 92 
6 4-ClC6H4 Me 93 1:3 90 

	

	

Additional studies were carried out to further demonstrate the value of this transformation. 

The CSCS class of squaramide catalysts was especially prized as it was observed that the species 

could be recovered and reused for six catalytic cycles without a significant erosion of yield or 

enantioselectivity (Table 3-2).  

	

Table 3-2. Catalyst Recyclability  
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Two products obtained via this transformation were tested and found to be highly potent 

HIV-1 inhibitors (Figure 3-6).  

 

	
Figure 3-6. Demonstrated Potency Against HIV-1 in TZM-bl cells 

	
	
	

Lastly, δ-lactone product 3.16 was further functionalized through an alkyne coupling to 
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activity (Scheme 3-8).  

 

Scheme 3-8. Generation of Bioactive Products Through the Functionalization of Chlorolactone 
Products 
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halolactonizations have been considered to be highly valuable transformations. As a result, a 

significant amount of attention has been placed on developing methods of generating the 

halolactone scaffold. However, one major limitation of these current methods in the literature 

is the predetermined regioselectivity of the halonium opening/cyclization process, as 

governed by the substrate and the previously discussed, extended, Markovnikov rule. While 

this predictability can be an asset, we recognized the inherit significance in being able to 

reverse this classical selectivity when generating halolactones from unsaturated acid 

substrates.  

3.4 Halofunctionalization Achieved Through Photoredox Catalysis  

3.4.1 Background and Precedent 

In seminal work by the Nicewicz lab from 2012, a novel, photoredox-mediated, anti-

Markovnikov, hydroetherification method was applied to the cyclization of alkenol substrates.19 

Typically, the regioselectivity of electrophilic addition to alkenes is dictated by Markovnikov’s 

rule. This longstanding rule, for olefin functionalization under acidic conditions, dates back to 

1869 when Russian chemist Vladimir Markovnikov reported a defined regioselectivity for the 

addition of HBr to alkenes (Scheme 3-9). Upon protonation, the more stabilized cation 

intermediate forms, leading to nucleophilic attack by the bromide at this more substituted site 

resulting in the Markovnikov product. While this selectivity has be an undeniable advantage in 

synthesis, a significant amount of effort has been focused on the development of anti-

Markovnikov, alkene functionalization methods to access products exhibiting the reverse 

selectivity. Though Hartwig20,21 and Grubbs22 have developed several methods for the anti-

Markovnikov addition of amines and water to olefins, the methods rely on expensive transition 

metal catalysts and have only been successfully applied to the functionalization of terminal 
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styrene substrates. Methods developed by Gassman23,24 and Arnold,25 while impressive for their 

time, are limited in substrate scope, result in undesired side reactivity, and require large 

quantities of a single-electron photooxidant.  

 

Scheme 3-9. Alkene Functionalization Demonstrating Markovnikov Selectivity  
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were screened possessed R-H BDE of <90 kcal/mol and included N-hydroxyphthalimide (BDE = 

87 kcal/mol), 9-phenylfluorene (BDE = 74 kcal/mol), and 2-phenylmalononitrile (BDE = 77 

kcal/mol) (Table 3-3, entries 4-5). While all three H-atom donors led to an increase in product 

formation, 2-phenylmalononitrile (PMN) proved to be the most efficient cocatalyst, 

regioselectively producing the ether, in 73% yield (Table 3-3, entry 6). Control reactions 

excluding photoredox catalyst (Table 3-3, entry 7) and light (Table 3-3, entry 8) demonstrated 

that both components were necessary to obtain the desirable reactivity. It was also determined 

that the commonly employed transition metal photooxidant Ru(bpy)3 was incapable of oxidizing 

the alkene substrate and was ineffective at generating the expected product (Table 3-3, entry 9). 

 

Table 3-3. Optimization of Photoredox Mediated Anti-Markovnikov Hydroetherification  
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for single–electron oxidation of the unsaturated alcohol substrate (3.18) to occur, forming the 

reactive cation–radical species (3.19).  This intermediate is then poised to undergo an 

intramolecular cyclization, exhibiting anti-Markovnikov regioselectivity, to generate 3.20. To 

furnish the final product, deprotonation and HAT steps must occur. Phenylmalononitrile (3.23), 

utilized in substoichiometric quantities, is capable of donating its hydrogen atom to the resulting 

trisubstituted radical species (3.21). This step affords the final product (3.22) and the 

corresponding phenylmalononitrile radical (3.24). To complete the cycle, the redox-active 

phenylmalononitrile radical then undergoes a single electron transfer with the acridine radical 

(NMA�) to turn over the photoredox catalyst and generated phenylmalononitrile anion (3.25).  

Protonation, via an equivalent of the substrate, regenerates the phenylmalononitrile that reenters 

the cycle to continue to function as a hydrogen atom donor.   

 

 

Scheme 3-10. Proposed Mechanism For the Anti-Markovnikov Hydroetherification  
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The alkenol scope of this photoredox-mediated hydroetherification method was explored to 

generate an electronically diverse substrate scope (Scheme 3-11). It was determined that more 

easily oxidized, electron-rich styrenes, results in the efficient generation of the 

hydroetherification product in 80% yield (3.26). The system was also tolerant of the more 

electron deficient 4-ClC6H4–substituted styrene, affording the corresponding product in 60% 

yield (3.27). While the desired 5-exo cyclization benefitted from gem-dialkyl substitution, it was 

not required as demonstrated by the highly selective formation of 3.28 from a substrate lacking 

the geminal dimethyl of diphenyl substitution pattern. Non-styreneyl, trisubstituted olefin 

substrates were also accessible through this methodology as alkenols 3.29 and 3.30 provided the 

ether product in good yield, with the latter exhibiting good diastereoselectivity as well. The mild 

nature of the transformation was highlighted with the successful cyclization of substrate 3.31, 

possessing a silyl-protected alcohol, which remains intact upon application of the reaction 

conditions.  
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Scheme 3-11. Substrate Scope for Photoredox Mediated Hydroetherification  
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both Brønsted acid and photoredox-mediated conditions. Under acidic conditions, alkenol 3.35 

forms the 6-endo Markovnikov product (3.37) while the photoredox methodology resulted in the 

formation of 5-membered cyclic ether 3.38. Substrate 3.36, while poised to undergo the 

kinetically favorable 5-exo cyclization, forms the 6-endo product in an impressive 77% yield 

when reacted under photoredox-mediated conditions (3.40). Alternatively, acidic conditions lead 

to the efficient formation of the Markovnikov product (3.39). This direct comparison between 

cyclization methods and product distribution excellently highlights the impressive selectivity of 

this novel transformation. 

 

Scheme 3-12. Markovnikov vs. Anti-Markovnikov Regioselectivity of Hydroetherification 
Conditions 
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an unsaturated acid was considered as a substrate to give completely regioselective access the 

anti-Markovnikov-type lactone adduct in a 72% yield.  

 

Scheme 3-13. Intermolecular and Lactonization Variants of Hydrofunctionalization of Alkenes 
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in our lab,26–30 we decided to turn our attention towards the development of a photoredox-

mediated, halofunctionalization system, which utilizes a halogen source as a radical trap rather 

than the previously explored hydrogen atom donor.  

In a similar fashion to the previously reported hydrofunctionalization reactions, we hoped 

to develop a system, which is capable of outcompeting the Markovnikov-type regioselectivity 

exhibited by traditional halofunctionalization reactions (Scheme 3-14).31 When we first set out to 

accomplish this goal, we recognized three potential pitfalls associated with generating 

halogenated products using photoredox catalysis: 

1) In general, radical halogen sources are capable of reacting efficiently with olefins 

to directly form halonium ions. Consequently, the system requires that the 

catalytic pathway be much faster than this background reaction in order to 

outcompete it.  

2) Halogen sources, with heteroatom-halogen bonds, are prone to homolysis. The 

potential to generate highly reactive, halogen-centered radicals could be 

problematic and lead to a variety of unwanted byproduct formation. 

3) The halogenated products, obtained through this transformation, may be prone to 

further reactivity under the developed reaction conditions. This challenge is 

especially risky for cases in which the product possesses a benzylic halogen as 

they have been reported to undergo hydrolysis rapidly.   
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Scheme 3-14. Reversing Classical Regioselectivity of Alkene Halofunctionalization Reactions 
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quantities of the undesired δ-lactone (3.43) regioisomer (Table 3-4, entries 2-3). Given the lack 

of desired product formation, this initial investigation illustrated inefficiencies in the halogen 
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transfer step of the current reaction conditions. At this point, it was determined that an additive 

would likely be required to aid in halogen radical transfer.  

 

 

Table 3-4. Optimization of Chlorolactonization Conditions 

	

                             

	

	

	

	

	

	

	

 

An exploration of the literature suggested that a copper (I) cocatalyst may be necessary in 

the system, to facilitate chlorine radical transfer, based on its reported efficiency in atom transfer 

radical polymerization (ATRP) (Scheme 3-15).32 To achieve controlled polymerization 

conditions, it is necessary to regulate every component of several elementary reactions including 

the concentration and reactivity of each species involved. Consequently, halogen radical 

concentrations must be controlled and their transfer must only occur upon initiation of an 
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NMA (5 mol%)
Cl   source (1 equiv)

CuCl2(10 mol%)
Ligand (10 mol%)

450 nm LEDs
MeCN [0.1 M], rt, 18 h

O
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Me

Me
Ph

Cl

O

O

Me
Me

Cl

Ph

3.41 3.42 3.43

Entry Cl Source CuCl2/Ligand A (%)a dr (A) B (%)a 
1 TsCl --- --- --- --- 
2 NCS --- --- --- 50 
3 NCP --- --- --- 30 
4b --- CuCl2/bpy 62 1.5:1 --- 
5c Lut+Cl- CuCl2/bpy 19 2.6:1 --- 
6 NCP CuCl2/bpy 90 2.3:1 --- 
7 NCP CuCl/bpy 92 2.4:1 -- 
8 NCP CuCl2/phen 85 3.2:1 --- 
9d NCP CuCl2/phen 25 2.2:1 12 
10e NCP --- --- --- --- 
11d NCP --- --- --- --- 

Reactions were carried out in N2-sparged MeCN [0.1m] under two LED lamps (lmax=450 nm) for 18 h.	[a] Yield as 
determined by 1H NMR spectroscopic analysis of the crude reaction mixture relative to the internal standard (Me3Si)2O. [b] 
The reaction was carried out with 1 equivalent of CuCl2/bpy under air. [c] The reaction was carried out with CuCl2/bpy (20 

mol%) in the presence of O2. [d] The reaction was carried out without NMA. [e] Reaction ran in dark 
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activation process. In this system, bromine-capped polymer (Pn-Br) and Cu(I)(bpy)2 are the 

dominant structural forms and the equilibrium heavily favors a low radical concentration (k-1 

~107 M-1s-1). Due to its affinity for halogens, this copper (I) species is capable of abstracting the 

halogen atom, generating a radical polymer species (Pn�), which is able to react further with an 

equivalent of monomer (Pm), leading to the uniform elongation of the polymer chain (Pn-Pm). A 

second halogen transfer event, by the copper (II) species, leads to the regeneration of the copper 

(I) complex. This efficiency at abstracting and transferring halogen radicals led us to believe that 

a copper (I)/2,2’-bipyridine catalyst system could be effectively applied to our existing reaction 

conditions to support the problematic radical transfer step. Additionally, we were encouraged by 

evidence in the literature which suggests that copper(II) chloride is capable of undergoing 

irreversible chlorine-radical transfer with aryl cation radicals.33 

 

 

Scheme 3-15. Copper Mediated Atom Transfer Radical Polymerization  
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simple addition of 2,2’-bipyridine, as a copper ligand, the product could be obtained in a 62% 

yield (Table 3-4, entry 4). While pleased with this result, we were concerned about the use of 

stoichiometric copper and hoped to reduce its loading to catalytic quantities through the addition 

of a secondary chlorine source. Lutidinium chloride (Lut+Cl-) was first considered as chlorine 

source though this returned the product in only a limited quantity (19%) and resulted in 

significant byproduct formation (Table 3-4, entry 5). A significant increase in reaction efficiency 

was achieved with the addition of NCP in combination with just 10 mol% CuCl2. The desired 

lactone was obtained, regioselectivity, in a 90% yield, with a dr of 2.3:1 (Table 3-4, entry 6). As 

a mechanistic probe, the CuCl/bpy complex was also tested under these conditions and provided 

the product in a comparable yield (Table 3-4, entry 7). This result suggests that the chlorinating 

agent, NCP, may be responsible for generating CuCl2 in situ. Switching the bpy ligand out for 

1,10-phenanthroline (phen) caused a minor drop in yield to 85% but displayed the added benefit 

of reducing the reaction time from 18 to just 2 hours and led to a boost in diastereoselectivity 

(3.2:1) (Table 3-4, entry 8).   

As a control experiment, the reaction was run without the addition of NMA (Table 3-4, 

entry 9). After 18 hours of irradiation, under these reaction conditions, both regioisomers did 

form in a combined yield of 37%. However, it is important to note that when the reaction was 

stopped after 2 hours (reflective of the final conditions used in scope development), only 

unreacted starting material was observed. Running the reaction in the presence of NMA without 

irradiation results in returned starting material (Table 3-4, entry 10). When both the acridinium 

and copper catalysts were omitted, no reaction occurred (Table 3-4, entry 11).  

The observed formation of undesired δ-lactone 3.43 with NMA and no copper (Table 3-4, 

entry 9) in combination with the lack of this product formation when NMA and copper were both 
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omitted (Table 3-4, entry 11) warrants a further explanation. We hypothesized that this 

background reactivity, in the presence of irradiated NMA, is the result of the in situ generation of 

a strong acid that is capable of activating the chlorine source, and leads to the observed 

formation of 3.43. We proposed that the strong acid (3.44) forms as a result of nucleophilic 

attack by the acid on the cation radical intermediate (Scheme 3-16). A second equivalent of the 

substrate is then able to undergo the background reaction to form an additional equivalent of 

strong acid (3.45), which can go on to propagate the reaction.  

 

 

Scheme 3-16. Proposed Mechanism for In Situ Strong Acid Formation  
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was obtained. When a significantly stronger acid was employed, i.e. triflic acid (CF3SO3H, pKa 

= -14), 66% of the undesired lactone was obtained  (Scheme 3-17). From these results we 

concluded that the strong acid that forms in the presence of NMA and under irradiative 

conditions could be responsible for producing a more electrophilic chlorinating agent, existing in 

the form of either protonated NCS or Cl2.   

 

Scheme 3-17. Background Reactivity Initiated by Strong Acid Formation  

 

						 	

	

   Concurrently, conditions were developed for the complementary bromolactonization 

system (Table 3-5). The development of chlorolactonization conditions provided a solid starting 

point for the development of bromination methodology though the conditions were not found to 

be directly transferable. Initially TsBr was found to be highly ineffective, leading to a 1:1 
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Table 3-5. Optimization of Bromolactonization Conditions 

	

								 	

 

 

 

 

 

 

 

 

 

A literature search provided insight as to a potential alternative to the typical nitrogen-

based bromine sources, as those proved to be too electrophilic to achieve strict regiocontrol. In 

their exploration of a triethylborane-induced bromine atom-transfer radical addition, Oshima et 

al. compiled a list of effective bromine radical sources. Diethyl bromomalonate (DEBM) was 

determined to be one of the most efficient bromine traps for carbon-centered radicals (Scheme 3-

18).34  
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CuBr2(10 mol%)
Ligand (10 mol%)

450 nm LEDs
MeCN [0.1 M], rt, 18 h
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Me
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3.46 3.473.41

Entry Br Source CuBr2/Ligand 3.46a dr (3.46) 3.47a 
1 TsBr CuBr2/bpy 1 n.d. 1 
2 NBS CuBr2/bpy 1 >20:1 2.5 
3 NBS CuBr2/phen 1 1.0:1 1.8 
4 NBP CuBr2/bpy 39% 3.0:1 61% 
5 DEBM CuBr/bpy 79% 2.0:1 6% 
6 DEBM CuBr2/phen 94% 2.0:1 6% 
7 DEBM CuBr2/bpy 97% 2.4:1 3% 
8b DEBM --- --- --- --- 
9 DEBM CuBr2/bpy --- --- --- 

10 DEBM --- --- --- --- 
11c --- CuBr2/bpy 35% 1.0:1 15% 

      
Reactions were carried out in N2-sparged MeCN [0.1m] under two LED lamps (lmax=450 nm) 

for 18 h.	[a] Yield as determined by 1H NMR spectroscopic analysis of the crude reaction 
mixture relative to the internal standard (Me3Si)2O.[b] The reaction was carried out without 

NMA. [c] Ran with 1 equiv CuBr2/bpy 



	 143 

Scheme 3-18. Diethyl Bromomalonate as a Bromine Radical Source in Atom-Transfer Radical 
Addition Reactions 
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irradiation of the system also containing catalytic quantities of CuBr2/bpy (Table 3-5, entry 9). 

Interestingly, no background or desired reactivity was observed when the system consisted of 

NMA and DEBM under irradiation by 450 nm LEDs (Table 3-5, entry 10). Based on the results 

of these control experiments, it seemed plausible that the copper had an additional role in the 

reaction, possibly activating the malonate towards more efficient halogen atom transfer (Scheme 

3-19). When 1 equivalent of CuBr2/bpy was used without the addition of DEBM both 3.46 and 

3.47 were obtained in a 2.3:1 ratio (Table 3-5, entry 11). 

 

Scheme 3-19. Proposed Copper Activation of Diethyl Bromomalonate  
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yield (3.53). A trisubstituted olefin functioned effectively as a substrate under 

chlorolactonization conditions, albeit with a lack of diastereoselectivity (3.55). The 

bromolactonization conditions were successfully applied to this substrate as well, however the 

five-membered lactone was also the favored product regioisomer under classical 

halofunctionalization conditions. Products with varying substitution on the arene could also be 

obtained under both sets of conditions. Substrates bearing electron-withdrawing chorine (3.56) 

functionality were tolerant of chloro- and bromolactonization conditions (3.57 and 3.58). Moving 

to more electron-rich substrates, 3.59 and 3.61, provided the desired adducts in 64% and 72%, 

respectively. Bromination was successfully accomplished on moderately electron-rich substrates 

(3.61) but failed on the more electron-rich OMe-substituted styrene (3.59). The latter substrate 

was likely problematic due to the instability of the electron-rich, benzyl bromide product. Two 

additional γ-lactones were accessed from trisubstituted aliphatic olefin substrates. Highly 

substituted chlorolactone 3.65 was obtained in a 63% yield while the TBS-protected alcohol gave 

the corresponding lactone product in a slightly diminished, 46% yield (3.67). 
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Scheme 3-20. γ-Halolactone Scope 
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After thoroughly exploring internal olefin substrates, we turned our attention toward 

several 1,1-disubstituted-styrene substrates (Scheme 3-21). These terminally, unsaturated acids 

have been demonstrated as model substrates in classical halolactonization conditions and react in 

a Markovnikov fashion. Chloro-δ-lactones 3.68–3.72 were accessed in good yields from alkenes 

functionalized with electron-rich, -neutral, and -deficient arenes. The reactivity of the system 

shifted slightly upon the addition of geminal dimethyl groups to the α- and β-positions of the 

acid substrate. In the case of 3.74, a catalytic quantity of 2,6-lutidine base was required as an 

additive to aid in the cyclization under the bromination conditions. The regioselectivity of the 

chlorolactonization of substrate 3.74 and 3.77 proved mildly problematic. Lactone 3.75 was 

obtained in a 72% yield and 19:1 rr while 3.78 was accessed in a 66% yield but only with a 

selectivity of 4.4:1. This observed decrease in regioselectivity is likely a direct result of the 

Thorpe–Ingold effect accelerating the uncatalyzed background reaction. The final lactone 

product (3.80) was achieved by applying the chlorolactonization conditions to a benzoic acid 

substrate. The product was obtained in a good yield (64%) albeit with low regioselectivity 

(2.5:1). 
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Scheme 3-21. δ-Halolactone Scope 
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taken to confirm that a trans relationship was indeed favored between the alcohol and halogen 

functionality. Model γ-lactone 3.52 was used to confirm this configuration using Borhan’s 

conditions for reducing chlorolactones to the corresponding epoxy-alcohol (Scheme 3-22).35 The 

major lactone diastereomer was subjected to the reaction conditions resulting in the formation of 

the epoxide (3.81). The products were isolated via column chromatography and were analyzed 

by 1H NMR. A coupling constant of 2.1 Hz was observed between the protons of the epoxide. 

The small magnitude of this value is indicative of a trans relationship between the protons, 

arising from the epoxidation of a trans starting lactone. To emphasize this observation, the minor 

diastereomer was also subjected to these reduction conditions. In this case, the cis epoxide was 

obtained (3.82) and the coupling constant between the epoxide protons was determined to be 4.3 

Hz. This larger coupling constant reinforced that a cis relationship existed between the protons of 

the minor diastereomer. From these observations, it was concluded that this transformation 

favors the production of a trans halogen-nucleophile relationship.  

 

Scheme 3-22. Identification of Major/Minor Diastereomer Using Epoxidation Conditions 

 

OO

Me
Me

Ph

Cl

Major diastereomer

3.0 eq LiBH4

1:1 THF:MeOH Ph

O

Ha Hb OH

Me
Me

Ph

Cl

O

HO Me
Me

Ja,b=2.1 Hz

OO

Me
Me

Ph

Cl

Minor diastereomer

Ph

O

Ha
Hb

HO Me
Me

Ja,b=4.3 Hz

OH

Me
Me

Ph

Cl

O

via:

3.0 eq LiBH4

1:1 THF:MeOH

via:

3.81

3.82

3.52

3.52



	 150 

An additional effort was made to expand the substrate scope of the transformation by 

varying the identity of the nucleophile (Scheme 3-23). Further inspired by the work of Hamilton 

and Nicewicz,19 we sought to demonstrate that our system could be applied to the synthesis of 

halogenated, cyclic ethers beginning from unsaturated alcohols. We were successfully able to 

generate 5- (3.84) and 6-membered (3.87) cyclic ethers under the chlorination conditions in good 

yields (61% and 57%, respectively). The 1,2-disubstituted alkene functioned successfully under 

our bromination conditions to form the 5-membered cyclic ether in a 71% yield (3.85). Inspired 

by other alkene hydrofunctionalization work from our lab, we successfully applied these 

halofunctionalization conditions with amine and acetate nucleophiles in intra- and intermolecular 

fashions. An unsaturated Boc-amine (3.88) could be cyclized to generate a chlorinated 

pyrrolidine adduct (3.89). Using β-methylstyrene (3.90) as an oxidizable olefin substrate, two 

intermolecular transformations were achieved. Though low yielding, these chloro-acetoxylation 

(3.91) and bromo-amination (3.92) reactions act as a proof of concept that this methodology can 

be extended to a variety of untethered nucleophiles.  
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Scheme 3-23. Alkene Halofunctionalization Scope  
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reactivity. To our dismay, in several cases, the uncatalyzed background reaction also resulted in 

the anti-Markovnikov-type product formation. 

 Based on insight obtained through control experiments and the mechanistic precedent 

from our lab’s hydrolactonization work, we proposed a potential mechanism to accompany this 

novel halolactonization transformation (Scheme 3-24). Single electron oxidation of the olefin 

functionality (3.93), by the excited state NMA, affords the reactive cation radical (3.94). 

Reversible nucleophilic trapping of the polar component of 3.94 results in the more stabilized 

carbon-centered radical (3.95) upon deprotonation. The second component of this dual catalytic 

system begins with the copper-mediated transfer of the halogen atom. CuCl2 is proposed to be 

the active chlorine transfer agent, trapping the carbon centered radical producing the final, 

desired product (3.96) and CuCl species. This atom radical trapping step may proceed through an 

outer-sphere direct atom-transfer or and inner-sphere Cu(III) pathway. The Cu(II) species, 

reflective in its catalytic use, can be regenerated from the resulting Cu(I) complex, which is 

reoxidized by the stoichiometric chlorine source, NCP.  It is likely that NMA� could be 

successfully turned over by the nitrogen-centered radical (PhthN� or SucN�) or a copper(III) 

species to regenerate the ground state photoredox catalyst and reset the cycle. This proposed 

turnover step is supported by literature evidence that has demonstrated the ability of succinimide 

radical to undergo a very rapid and efficient single-electron oxidation event with [Ru(bpy)3]2+ (k 

= 109 M-1s-1).36 In combination with the fact that SucN� has a sufficiently high reduction 

potential (+1.96 V vs. SCE)36 to successfully oxidize NMA�, we have concluded that it is highly 

likely that the imidyl radicals would be capable of closing the catalytic cycle by regenerating the 

photoredox catalyst. This redox neutral process would include the formation of the reduced 

succinimide and phthalimide radicals (PhthN- or SucN-). In further support of the proposed 
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mechanism, both succinimide (SucNH) and phthalimide (PhthNH) were observed, by 1H NMR, 

as byproducts of these reaction conditions.  

 

Scheme 3-24. Proposed Chlorolactonization Mechanism 
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process. CuBr would then be reoxidized by DEBM to generate more of the Cu(II) active halogen 

transfer agent. The resulting malonate radical (DEM�) or copper(III)-malonate (Cu(III)-DEM) 

complex, is poised to undergo single electron transfer with the acridine radical, resetting the 

catalytic cycle and generating an equivalent of malonate anion (DEM-). Protonation of this 
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species, by an equivalent of substrate, results in the generation of malonate (DEM), which was 

observed in the crude 1H NMR and GC-MS. Given control experiment results, it is possible that 

bromine radical transfer may also occur from the activated DEBM-copper complex proposed in 

Scheme 3-19. 

 

Scheme 3-25.	Proposed Bromolactonization Mechanism 
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Cu(II) complex spectrum showed absorbances at and 388 and 714 nm. With these values in 

hand, a solution of NCP was added to the Cu(I) complex and a spectrum was obtained. The 

resulting spectrum match that of the lone Cu(II) complex, suggesting the immediate oxidation of 

Cu(I) in the presence of NCP.  

This process was repeated for with CuBr, CuBr2, and CuBr/DEBM (see experimental section 

for spectra). The characteristic peak for the Cu(I) complex at 424 nm immediately disappeared 

upon addition of DEBM and a peak, corresponding to the independently synthesized Cu(II) 

complex, formed. While these results do not eliminate the potential for other mechanistic 

pathways, they do support our proposal for the in situ generation of a copper (II) complex, 

turning over the copper catalytic cycle. Though the current proposed mechanism is supported by 

the literature, control experiments, and observations, we believe that additional mechanistic 

studies would only help to enhance our understanding of this novel dual catalytic system.  

3.5 Conclusion 

Ultimately, we have developed a novel method for the efficient generation of halolactones. 

This dual catalytic system, consisting of an acridinium photoredox catalyst and copper 

cocatalyst, was successfully applied to the synthesis of 19 halofunctionalized products, in good 

to excellent yields. The unique reactivity of the transformation made it possible to outcompete 

the regioselectivity of traditional halofunctionalization methods in favor of the anti-

Markovnikov-type product formation in a completely selective fashion, excluding a few noted 

exceptions. Both chloro- and bromofunctionalization conditions were developed and applied to a 

variety of substrates. In addition to synthesizing both γ- and δ-lactone adducts from unsaturated 

acid substrates, we were able to extend this transformation to various nitrogen- and oxygen-

centered nucleophiles in both an intra- and intermolecular fashion. While this innovative method 
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is highly valuable itself, the utility of the products enhance its appeal. The halofunctionalized 

products could potentially undergo functional group modifications, be used a synthetic building 

blocks, or function as biologically active small molecules. Additional efforts have been started 

towards developing an enantioselective variant of this methodology through the use of chiral 

copper ligands.  
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3.6 Experimental 

General Methods 

Proton, carbon, Heteronuclear Single Quantum Coherence, and Correlated Spectroscopy  (1H 

NMR, 13C NMR, HSQC, COSY, respectively) were recorded on a Bruker model DRX 400 or 

AVANCE III 600 CryoProbe spectrometer (1H NMR at 400 MHz or 600 MHz, 13C NMR at 100 

MHz or 150 MHz respectively). Chemical shifts for proton NMR are reported in parts per 

million downfield from tetramethylsilane and are referenced to residual CHCl3 in solution 

(CHCl3 set to 7.26 ppm). Chemical shifts for 13C NMR are reported in parts per million 

downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent 

(CDCl3 set to 77.00 ppm). NMR data are represented as follows: chemical shift, multiplicity (s = 

singlet, br s = broad singlet, d = doublet, dd = doublet of doublet, t = triplet, ddd = doublet of 

doublet of doublet, q = quartet, m = multiplet, etc.), coupling constants (Hz), and integration. 

High Resolution Mass Spectra (HRMS) were obtained using Thermo LTqFT mass spectrometer 

with electrospray ionization in positive mode. Low Resolution Mass Spectra (LRMS) were 

obtained using GC-MS (Agilent 6850 series GC equipped with Agilent 5973 network Electron 

Impact-MSD). Infrared (IR) spectra were obtained using a Jasco 260 Plus Fourier transform 

infrared spectrometer. Thin layer chromatography (TLC) was performed on SiliaPlate 250 µm 

thick silica gel plates purchased from Silicycle. Visualization was accomplished using 

fluorescence quenching, KMnO4 stain, or ceric ammonium molybdate (CAM) stain followed by 

heating. Purification of the reaction products was carried out by chromatography using 

Siliaflash-P60 (40-63 µm) silica gel purchased from Silicycle. All reactions were carried out 

under an inert atmosphere of nitrogen in flame-dried glassware with magnetic stirring unless 

otherwise noted. Reactions were carried out in standard borosilicate glass vials purchased from 
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Fisher Scientific. Yield refers to isolated yield of analytically pure material unless otherwise 

noted. NMR yields were determined using hexamethyldisiloxane, (Me3Si)2O, as an internal 

standard.  

 

Materials 

 Commercially available reagents were purchased from Sigma Aldrich, Acros, Alfa Aesar, Fisher 

Scientific, or TCI, and used as received unless otherwise noted. Diethyl ether (Et2O), 

dichloromethane (DCM), tetrahydrofuran (THF), toluene (PhMe), and dimethylformamide 

(DMF) were dried by passing through activated alumina columns under nitrogen prior to use. 

1,2-dichloroethane (DCE) was purchased from Fischer and sparged with N2 before being stored 

over activated 4Å molecular sieves in a glovebox. Acetonitrile (MeCN) was dried by passing 

through activated alumina column under nitrogen. MeCN was commonly stored in a glovebox 

after sparging with N2. Glacial acetic acid (AcOH) stored in the glovebox with 5% v/v acetic 

anhydride. Other common solvents such as chloroform (CHCl3) were purified by standard 

published methods when necessary. Trans-β-methylstyrene was distilled over potassium 

hydroxide, sparged with N2, and stored in a glovebox freezer. 

  

Photoreactor Setup and Lamp Information 
 
Reactions were irradiated using a photoreactor which consists of two Par38 Royal Blue 

Aquarium LED lamps (Model #6851) purchased from ecoxotic. A standard magnetic stir plate 

was used as the support. Reaction efficacy can be impacted by the type of LED used. A fan was 

added above to cool the reaction and keep the temperature below 30˚C. 

 



	 159 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Preparation of Substrates 

1,2 disubstituted styrene substrates were prepared according to the following Wittig olefination 

procedure: 

 

1.8 equiv (relative to the necessary aldehyde precursor) of 3-

carboxypropyl)triphenylphosphonium bromide37 or chloride was dispensed into a flame-dried 

round bottom flask equipped with a magnetic stir bar.  The flask was flushed with N2 and THF 

R

O

H

OH

O

Ph3P

2.4 eq NaHMDS
1.8 eq

0.3M THF, 18 hrs
OH

O

R

X

Photoreactor setup used for halofunctionalization reactions. Reaction vials were 
placed about 5 cm from the face of both lamps. Above a simple fan was used to 

cool the reaction. 
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was added to 0.3 M concentration. The solution was cooled to 0˚C before 2.4 equiv sodium 

hexamethyldisilazane (1.0 M in THF) was carefully added to the stirring solid. The contents 

were warmed to room temperature and stirred for 0.5 to 1 hour after which the solution was 

cooled to  -78˚C and 1 equiv of the necessary aldehyde was added dropwise to the stirring ylide. 

The reaction stirred overnight while warming to room temperature. The reaction was quenched 

with H2O, and diluted with equal amounts DI H2O and diethyl ether, and the aqueous phase was 

acidified to pH of 1 before extracting 3 times with ethyl acetate. The organics were combined 

and dried over Na2SO4 and concentrated under reduced pressure. Purification was accomplished 

via column chromatography (gradient: 2:1 Et2O:hexanes with 1% acetic acid by volume→1:1 

Et2O:hexanes with 1% acetic acid by volume).  

 

(E)-5-Phenylpent-4-enoic acid: 

 

Obtained as the pure E-isomer in 65% isolated yield. Analytical data matched were in agreement 

with literature values.11 

 

(E)-5-(4-Chlorophenyl)pent-4-enoic acid: 

 

Obtained as a 6:1 mixture of E:Z isomers in an 89% isolated yield. Analytical data matched were 

in agreement with literature values.11 

 

HO

O

HO

O
Cl
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(E)-5-(4-Methoxyphenyl)pent-4-enoic acid: 

 

Obtained as a 8:1 mixture of E:Z isomers in an 84% isolated yield. Analytical data matched were 

in agreement with literature values.11 

 

(E)-5-(o-Tolyl)pent-4-enoic acid: 

 

Obtained as a 1.9:1 mixture of E:Z isomers in an 93% isolated yield. Analytical data matched 

were in agreement with literature values.11 

 
7-((tert-Butyldimethylsilyl)oxy)-2,2,5-trimethylhept-4-enoic acid 
 

 

To a flame-dried 250 mL round bottom flask containing 3.9 g of 4-((tert-

butyldimethylsilyl)oxy)butan-2-one38 was flushed with N2 before adding 100 mL dry THF. The 

solution was cooled to 0 ˚C before adding 21 mL of vinyl magnesiumbromide solution (1 M in 

THF) dropwise. This was allowed to stir for an additional hour while warming to room 

temperature, before 2.4 mL of isobutyryl chloride was added. The reaction was then stirred for 2 

hours before the reaction was quenched with H2O and then a saturated solution of ammonium 

chloride. The mixture was transferred to a separatory funnel where Et2O was added. The phases 
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were separated, and the aqueous layer was back extracted twice with Et2O. The combined 

organics were dried over MgSO4 and the solution was concentrated. 5-((tert-

butyldimethylsilyl)oxy)-3-methylpent-1-en-3-yl isobutyrate was obtained cleanly after column 

chromatography to give 3.3 g (57% yield) of a clear oil. 

 

1H NMR: (400 MHz, Chloroform-d) δ 5.97 (dd, J = 17.5, 11.0 Hz, 1H), 5.19 – 5.06 (m, 2H), 

3.68 (t, J = 7.3 Hz, 2H), 2.48 (hept, J = 7.0 Hz, 1H), 2.07 (tdd, J = 20.5, 13.9, 7.3 Hz, 2H), 1.55 

(s, 3H), 1.14 (d, J = 7.0 Hz, 6H), 0.88 (s, 9H), 0.04 (s, 6H). 

 

To a flame-dried 250 mL round bottom flask was added 80 mL of dry toluene and 20 mL of 

freshly distilled triethylamine. Next, 3.3 g 5-((tert-butyldimethylsilyl)oxy)-3-methylpent-1-en-3-

yl isobutyrate was added in a solution of toluene and the solution was cooled to -78˚C. Then a 33 

mL of a solution of NaHMDS in THF (1M) was slowly added while stirring. This was stirred for 

1 hour at -78 ˚C before 1.5 mL of TMSCl was added, and the solution was allowed to warm to 

room temperature while stirring overnight. The reaction was quenched by adding H2O and 3M 

HCl solution. The reaction mixture was transferred to a separatory funnel and the aqueous layer 

was brought to a pH of 1 then extracted with Et2O three times. The combined organics were 

washed with H2O and brine, before drying with MgSO4, filtered and concentrated to give a 

yellowish oil. The title compound was purified on column chromatography (15% 

EtOAc:hexanes, 150 mL dry silica gel) to obtain 1.7 g (52% yield) of 7-((tert-

butyldimethylsilyl)oxy)-2,2,5-trimethylhept-4-enoic acid (1.4:1 E:Z, yellowish oil).  
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1H NMR: Mixture of E:Z isomers (400 MHz, Chloroform-d) δ 5.17 (t, J = 6.7 Hz, 1H E/Z), 3.70 

– 3.55 (m, 2H E/Z), 2.27 (t, J = 6.9 Hz, 2H, E/Z), 2.22 (t, J = 7.1 Hz, 1H, E/Z), 2.17 (d, J = 1.5 

Hz, 1H, E/Z), 1.73 (s, 3H Z), 1.63 (s, 3H E), 1.19 (s, 6H E/Z), 0.89 (s, 3H Z), 0.88 (s, 3H E), 0.05 

(d, J = 1.6 Hz, 6H Z), 0.04 (d, J = 1.6 Hz, 6H E). 

13C NMR:	(151 MHz, CDCl3) δ 183.58, 183.45, 135.37, 134.99, 121.81, 121.43, 62.39, 61.72, 

53.41, 43.31, 42.58, 42.32, 38.23, 38.20, 35.60, 25.96, 25.94, 24.65, 24.49, 24.26, 18.36, 18.31, 

16.61, -5.30. 

IR (thin film cm-1): 3447, 2956, 2930, 2858, 1701, 1473, 1256, 1095 

HRMS: m/z calculated for C16H32O3Si[H]+: 301.2193; found: 301.2193 

 
 
2-(Prop-1-en-2-yl)benzoic acid: 
 

 
 
 
15 mL of 36% HBr and 35 mL of H2O were added to a 250 mL round bottom flask, followed by 

3 mL 1-(2-aminophenyl)ethan-1-one. The solution was cooled to 0˚C before adding 1.7 g of 

NaNO2 dissolved in H2O dropwise. This was allowed to stir about 20 minutes after all of the 

NaNO2 had been added. 3.6 g of CuBr was added, with N2 bubbles forming immediately. This 

was stirred overnight before quenching the reaction with a saturated solution of NaHCO3. A 

precipitate formed which was filtered under vacuum. The mixture was then transferred to a 

separatory funnel and extracted 3 times with Et2O. The organics were combined and dried over 

MgSO4, and concentrated giving a brownish oil. This was passed through a plug of silica to give 
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3.0 g of 1-(2-bromophenyl)ethan-1-one as a yellow oil (60% yield). No further purification was 

necessary. Characterization matched previous reports.39 

 

To a flame-dried 250 mL round bottom flask was added 10.8 g of methyltriphenylphosphonium 

bromide and 4.2 g of KOtBu. The flask was then evacuated and refilled with N2 before adding 

150 mL of dry THF and stirring for 20 minutes. 3 g of 1-(2-bromophenyl)ethan-1-one was added 

and the solution was stirred overnight. The reaction was quenched with a saturated solution of 

ammonium chloride and the mixture was transferred to a separatory funnel. Et2O was added and 

the two phases were separated. The aqueous layer was back extracted twice with Et2O. The 

combined organics were dried with MgSO4, filtered, and concentrated. The product was purified 

by dry loading the resulting material on celite and eluted from a short silica plug with hexanes. 

1.8 g of 1-bromo-2-(prop-1-en-2-yl)benzene was obtained as a clear oil (60% yield). 

Characterization matched previous reports.40 

 

To a flame-dried 100 mL round bottom flask was added 500 mg Mg˚ (2.0 equiv), and a small 

amount of I2. The flask was purged with N2 before adding 25 mL dry THF, resulting in an orange 

solution. 1.8 g of 1-bromo-2-(prop-1-en-2-yl)benzene was added. After about ten minutes the 

orange color subsided; the solution was allowed to stir an addition 30 minutes before the solution 

was sparged with a balloon of CO2 for about 5 minutes. The flask was kept under a balloon of 

CO2 while stirring overnight. The reaction was then quenched with H2O and transferred to a 

separatory funnel where more H2O and Et2O were added. The organic layer was removed before 

bringing the aqueous layer to a pH of 1 forming a white precipitate. The aqueous layer was 

extracted three times with Et2O and the combined organics were dried with MgSO4, filtered, and 
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concentrated to give 1.1 g of 2-(prop-1-en-2-yl)benzoic acid (74% yield). No further purification 

was required. Characterization matched previous reports.41 

 

tert-Butyl (E)-(2,2-dimethyl-5-phenylpent-4-en-1-yl)carbamate: 

 

 
 

To a flame-dried 100 mL round bottom flask was added 1 gram of (E)-2,2-dimethyl-5-

phenylpent-4-en-1-amine42 and 2.3 grams of di-tert-butyl dicarbonate. The flask was flushed 

with N2 before adding 25 mL of dry DCM and 2.2 mL of freshly distilled triethylamine. The 

reaction was allowed to stir overnight before removing DCM and most triethylamine under 

vacuum. The crude material was then purified on silica gel (20% EtOAc:hexanes) to give the 

product as a white solid 1.4 grams, 87% yield.  

 
1H NMR:(400 MHz, ) δ 7.38 – 7.33 (m, 2H), 7.30 (dd, J = 8.5, 6.7 Hz, 2H), 7.23 – 7.17 (m, 1H), 

6.39 (d, J = 15.7 Hz, 1H), 6.24 (dt, J = 15.4, 7.5 Hz, 1H), 4.59 (s, 1H), 3.01 (d, J = 6.5 Hz, 2H), 

2.12 (dd, J = 7.5, 1.2 Hz, 2H), 1.45 (s, 9H), 0.92 (s, 6H). 

13C NMR: (151 MHz, CDCl3) δ 156.19, 137.56, 132.54, 128.48, 127.01, 126.73, 126.04, 79.07, 

50.49, 43.48, 35.46, 28.41, 24.84. 

IR (thinfilm cm-1): 3379, 2965, 2929, 1702, 1510, 1365, 1245, 1171, 967, 736 

HRMS: m/z calculated for C18H27NO2[Na]+: 312.1934; found: 312.1932 
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(E)-2,2-Dimethyl-5-phenylpent-4-enoic acid:  

 

Prepared according to a previously reported literature procedure19 

 

(E)-2,2,4-Trimethyl-5-phenylpent-4-enoic acid: 

 

Prepared according to a previously reported literature procedure19 

 

5-Methyl-2,2-diphenylhex-4-enoic acid: 

 

 

Prepared according to a previously reported literature procedure19 

 

4-Phenylpent-4-enoic acid: 

 

 

Prepared according to a previously reported literature procedure21 
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4-(p-Tolyl)pent-4-enoic acid: 

 

Prepared according to a previously reported literature procedure43 

 

4-(4-Chlorophenyl)pent-4-enoic acid: 

 

Prepared according to a previously reported literature procedure43 

 

3,3-Bimethyl-4-phenylpent-4-enoic acid: 

 

 

Prepared according to a previously reported literature procedure19 

 

2,2-Dimethyl-4-phenylpent-4-enoic acid: 

 

Prepared according to a previously reported literature procedure44 
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(E)-2,2-Dimethyl-5-phenylpent-4-en-1-ol  

 

 

Prepared according to a previously reported literature procedure19  

 

4-Phenylpent-4-en-1-ol: 

 

Prepared according to a previously reported literature procedure45 

 

Halofunctionalization Procedures  

General Procedure for Chlorofunctionalization: 

 

 

The carboxylic acid substrate, N-chlorophthalimide (NCP, 1.0 equiv) or N-chlorosuccinimide 

(NCS, 1.0 equiv), CuCl2 (0.1 equiv), 1,10-phenanthroline, (0.1 equiv) and acridinium 

photoredox catalyst (0.05 equiv) were weighed and dispensed into a flame-dried vial (2-dram) 

equipped with a stir bar and Teflon-coated septum cap. The vial was moved to a nitrogen filled 

glovebox where solvent was dispensed by syringe (MeCN or DCE to 0.1 M). Where noted acetic 

acid was added to the vial as well. The vial was then sealed and removed from the glovebox and 
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the reaction vial was sealed with electrical tape. The reactions were irradiated (2x455 nm blue 

LED lamps) and stirred until completion. Reaction progress was monitored by GC/MS. Upon 

completion, the crude reactions were passed through a silica plug to remove CuCl2 before NMR 

analysis.  

 

General Procedure for Bromofunctionalization: 

 

	

The carboxylic acid substrate (1.0 equiv), diethyl bromomalonate (1.0 equiv), CuBr2 (0.1 equiv), 

2,2’-bipyridine, (0.1 equiv) and acridinium photoredox catalyst (0.05 equiv) were weighed and 

dispensed into a flame-dried vial (2-dram) equipped with a stir bar and Teflon-coated septum 

cap. The vial was moved to a nitrogen filled glovebox where solvent was dispensed by syringe 

(MeCN to 0.1 M). When noted, 2,6-lutidine (0.1 equiv) was added to the vial as well. The vial 

was then sealed and removed from the glovebox and the reaction vial was sealed with electrical 

tape. The reactions were irradiated (2x455 nm blue LED lamps) and stirred until completion. 

Reaction progress was monitored by GC/MS. Upon completion, the crude reactions were 

concentrated then passed through a silica plug to remove CuBr2 before NMR analysis.  

 

 

Note: NCP and NCS were purchased from Sigma and stored in a desiccator away from light. 

This was found to be particularly important for avoiding background reactivity, most likely 
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through formation of Cl2. Copper (II) sources as well as ligands were stored in the desiccator as 

well to avoid absorption of H2O. 

 

Note: Products 1m, 1n, and 1v were found to decompose upon standing. Characterization data 

for these compounds was collected after preparing fresh samples. It was also noted that 

compounds 1o, 1p, 1q, 1r, and 1s were slightly less prone to decomposition, but still experienced 

some degree of decomposition upon standing. 

 

Note: Under the normal conditions products 1k and 1l were isolated with significant quantities of 

a new alkene product which was suspected to arise from chloride elimination. Using acetic acid 

as a buffer was found to alleviate this issue, and increased the yield of the desired chlorolactone. 

 

5-(Chloro(phenyl)methyl)dihydrofuran-2(3H)-one (3.49) 

 

The average yield for the title compound was 75% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalization using 88 mg of the starting carboxylic acid 

(0.1M in MeCN), 90.8 mg NCP, 10 mg NMA, 6.7mg CuCl2, 9 mg of 1,10-phenanthroline, and 

an irradiation time of 2 hours. The average diasteromeric ratio was 3.1:1. The products were 

isolated by column chromatography on silica gel (20 mL dry silica, 2 cm column, 15% 

EtOAc/hexanes) as a low melting white solid.  

Analytical data for 1a:  
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1H NMR Major/minor diastereomers: 1H NMR (600 MHz, Chloroform-d) δ 7.47 – 7.33 (m, 

10H-5 major, 5 minor), 5.05 (d, J = 5.7 Hz, 1H-major), 4.98 (d, J = 5.1 Hz, 1H-minor), 4.92 – 

4.88 (m, 1H-minor), 4.88 – 4.84 (m, 1H-major), 2.53 (m  3H-2 major, 1 minor), 2.47 – 2.39 (m, 

1H-minor), 2.39 – 2.32 (m, 1H-major), 2.29 (dddd, J = 13.4, 12.5, 5.6, 3.9 Hz, 1H-major), 2.25 – 

2.19 (m, 1H-minor), 2.15 – 2.07 (m, 1H-minor). 

13C NMR Major/minor diastereomers: (151 MHz, CDCl3) δ 176.19 (minor), 176.16 (major), 

136.28 (major), 136.04 (minor), 129.13 (minor), 129.04 (major), 128.82 (major), 128.80 (minor), 

127.94 (minor), 127.70 (major), 81.93 (major), 81.90 (minor), 64.03 (major), 63.60 (minor), 

28.27 (major), 28.05 (minor), 24.53 (minor), 24.18 (major). 

IR (thin film, cm-1): 1778, 1455, 1175, 1028, 919, 701 

HRMS m/z calculated for C11H11ClO2 [H]+: 211.0520 and 213.0491; found: 211.0520 and 

213.0491 

 

5-(Bromo(phenyl)methyl)dihydrofuran-2(3H)-one (3.50) 

 

The average yield for the title compound was 74% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Bromofunctionalization using 88 mg of the starting carboxylic acid 

(0.1M in MeCN), 85 μL diethyl bromomalonate, 10 mg NMA, 11.2 mg CuBr2, 7.8 mg 2,2’-

bipyridine, and an irradiation time of 16 hours. The average diasteromeric ratio was 2.3:1. The 

products were isolated by silica gel (40 mL dry silica, 2.5 cm column, 10% EtOAc/hexanes then 

30% EtOAc/hexanes) as a white solid.  
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Analytical data for 3.50:  

1H NMR Major/minor diastereomers: (600 MHz, Chloroform-d) δ 7.45 (dd, J = 8.0, 1.4 Hz, 2H-

minor), 7.44 – 7.40 (m, 2H-major), 7.39 – 7.30 (m, 6H-3 major, 3 minor), 5.01 (d, J = 6.9 Hz, 

1H-major), 4.99 (d, J = 5.5 Hz, 1H-minor), 4.95 – 4.88 (m, 2H-1 major, 1 minor), 2.57 – 2.43 

(m, 4H-3 major, 1 minor), 2.41 (dd, J = 10.0, 5.3 Hz, 1H-minor), 2.31 – 2.19 (m, 2H-1 major, 1 

minor), 2.05 (dddd, J = 13.4, 10.1, 8.3, 6.8 Hz, 1H-minor). 

13C NMR Major/minor diastereomers: (151 MHz, Chloroform-d) δ 176.12 (major), 176.06 

(minor) 137.08 (major), 136.87 (minor), 129.18 (minor), 129.12 (major), 128.93 (minor), 128.90 

(major), 128.46 (minor), 128.30 (major), 82.03 (minor), 81.70 (major), 55.48 (major), 55.24 

(minor), 28.63 (major), 28.40 (minor), 26.42 (major), 25.73 (minor). 

IR (thin film, cm-1): 1778, 1636, 1170, 1022, 911, 699 

HRMS m/z calculated for C11H11BrO2 [H]+: 255.0015 and 256.9995; found: 255.0014 and 

256.9994 

 

 

5-(Chloro(phenyl)methyl)-3,3-dimethyldihydrofuran-2(3H)-one (3.52) 

 

The average yield for the title compound was 75% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 102 mg of the starting carboxylic 

acid (0.1M in MeCN), 90.8 mg NCP, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, 
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and an irradiation time of 2 hours. The average diasteromeric ratio was 3.1:1. The products were 

isolated by column chromatography on silica gel (25 mL dry silica, 2 cm column, 10% 

EtOAc/hexanes) as a white solid.  

 

The reaction was performed on 2.0 gram scale (8.38 mmol). 1.7 g of the starting carboxylic acid, 

1.5 g of NCP (1.0 equiv), 167 mg of NMA (0.05 equiv), 112.5 mg CuCl2 (0.1 equiv), and 151 

mg 1,10-phenanthroline (0.1 equiv) to a 100 mL round bottom flask (flame-dried) equipped with 

a Teflon stir bar. The flask was fitted with a septum and evacuated and then refilled with N2 

three times. 80 mL of dry MeCN (0.1M) was sparged with N2 for 15 minutes and then 

transferred to the flask containing solid reagents via cannula. The flask was irradiated with two 

455 nm blue LED lamps from either side, while cooling with a fan (see S3). After 3 hours TLC 

revealed the reaction had reached full conversion. Solvent was then removed in vacuo. The crude 

material was loaded onto celite and purified on column chromatography (4.5 cm column, 200 

mL dry silica, gradient solvent system 3%→5%→7.5%→10% EtOAc in hexanes). Gradient 

column conditions were used in order to separate a small amount of undesired regioisomer as 

well the diastereomers. The combined yield of both diastereomers was 66%, 1.3 g, with 3.3:1 dr 

Diastereomers were only partially separated under these conditions. All fractions containing the 

minor disastereomer contained some of the major diastereomer.  

 

 

Analytical data for 3.52:  

1H NMR Major/minor diastereomers: (400 MHz, Chloroform-d) δ 7.39 (m, 10H-5major, 5 

minor), 4.98 (d, J = 6.6 Hz, 1H-major), 4.87 (d, J = 6.4 Hz, 1H-minor), 4.84 – 4.78 (m, 1H-
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minor), 4.75 (dt, J = 9.4, 6.4 Hz, 1H-major), 2.29 – 2.08 (m, 2H-major), 1.87 (qd, J = 13.0, 7.9 

Hz, 2H-minor), 1.29 (s, 3H-major), 1.26 (s, 3H-major), 1.24 (s, 3H-minor), 1.19 (s, 3H-minor).  

13C NMR Major/minor diastereomers: (151 MHz, CDCl3) δ 180.83 (major), 180.69 (minor), 

136.75 (major), 136.41(minor), 129.16 (minor), 129.03 (major), 128.84 (minor), 128.75 (major), 

127.91 (minor), 127.73 (major), 79.02 (minor), 78.49 (major), 63.87 (minor/major), 40.47 

(minor), 40.39 (minor), 40.31 (major), 40.14 (major), 24.90 (major), 24.77 (minor), 24.71 

(major), 24.66 (minor). 

IR (thin film cm-1) 2969, 2360, 1774, 1455, 1205, 1119, 1035, 915, 699, 667 

HRMS m/z calculated for C13H15ClO2 [H]+: 239.0833 and 241.0804; found: 239.0833 and 

241.0803 

 

NMR Spectra (1H, 13C, HSQC, COSY): S51-S52 

5-(Bromo(phenyl)methyl)-3,3-dimethyldihydrofuran-2(3H)-one (3.53) 

 

 

 

The average yield for the title compound was 94% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Bromofunctionalization using 102 mg of the starting carboxylic acid 

(0.1M in MeCN), 85 μL diethyl bromomalonate, 10 mg NMA, 11.2 mg CuBr2, 7.8 mg 2,2’-

bipyridine, and an irradiation time of 16 hours. The average diasteromeric ratio was 2.1:1. The 

products were isolated by silica gel (3 mL dry silica, 2 cm column, DCM) as a white solid.  
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Analytical data for 3.53:  

1H NMR Major/minor diastereomers: (600 MHz, Chloroform-d) δ 7.47 – 7.40 (m, 4H-2 major, 2 

minor), 7.40 – 7.30 (m, 6H-3 major, 3 minor), 4.94 (d, J = 7.7 Hz, 1H-major), 4.90 (d, J = 6.8 

Hz, 1H-minor), 4.84 (dtd, J = 9.5, 7.9, 6.1 Hz, 2H-1 major, 1 minor), 2.41 (dd, J = 13.0, 6.1 Hz, 

1H-major), 2.09 (dd, J = 13.0, 9.6 Hz, 1H-major), 1.95 (dd, J = 13.0, 6.2 Hz, 1H-minor), 1.81 

(dd, J = 13.1, 9.7 Hz, 1H-minor), 1.29 (d, J = 4.9 Hz, 6H-major), 1.25 (s, 3H-minor), 1.22 (s, 

3H-minor). 

13C NMR Major/minor diastereomers: (151 MHz, Chloroform-d) δ 180.83 (major), 180.49 

(minor), 137.40 (major), 137.07 (minor), 129.12 (minor), 129.03 (major), 128.90 (minor), 128.78 

(major), 128.24 (minor), 128.19 (major), 78.92 (minor), 78.15 (major), 55.52 (major), 55.02 

(minor), 42.25 (major), 41.48 (minor), 40.66 (minor), 40.64 (major), 24.80 (major), 24.74 

(minor), 24.68 (major/minor). 

IR (thin film cm-1): 2969, 2360, 1774, 1455, 1205, 1119, 1035, 915, 699, 667 

HRMS m/z calculated for C13H15BrO2 [H]+: 283.0328 and 285.0308; found: 283.0327 and 

285.0306 
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5-(Chloro(phenyl)methyl)-3,3,5-trimethyldihydrofuran-2(3H)-one (3.55):	

 

 

The average yield for the title compound was 76% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 109 mg of the starting carboxylic 

acid (0.1M in MeCN), 90.8 mg NCP, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, 

and an irradiation time of 2 hours. The average diastereomeric ratio was 1.3:1. The products 

were isolated by column chromatography on silica gel (25 mL dry silica, 2 cm column, 10% 

EtOAc/hexanes) as a colorless oil.  

 

Analytical data for 3.55:  

1H NMR Major/minor diastereomers: (600 MHz, Chloroform-d) δ 7.51 – 7.30 (m, 10H, 5 major, 

5 minor), 4.94 (s, 1H-minor), 4.84 (s, 1H-major), 2.60 (d, J = 13.4 Hz, 1H-minor), 2.51 (d, J = 

13.5 Hz, 1H-major), 1.93 (t, J = 13.8 Hz, 2H-1 major, 1 minor), 1.47 (s, 3H-minor), 1.46 (s, 3H-

major), 1.33 (s, 3H-minor), 1.32 (s, 3H-major), 1.15 (s, 3H-minor), 1.07 (s, 3H-major). 

13C NMR Major/minor diastereomers:(151 MHz, CDCl3) δ 181.53, 181.30, 136.44, 136.22, 

129.01, 128.96, 128.85, 128.70, 128.45, 128.27, 83.74, 83.34, 68.95, 68.91, 44.69, 44.16, 40.73, 

40.41, 28.60, 28.29, 27.46, 26.29, 26.08, 25.64. 

 IR (thin film cm-1): 2974, 1773, 1455, 1236, 1093, 962, 755, 701 

HRMS m/z calculated for C14H17ClO2 [H]+: 253.0990 and 255.0960; found: 253.0988 and 

255.0959 
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5-(Chloro(4-chlorophenyl)methyl)dihydrofuran-2(3H)-one (3.57): 

 

 

The average yield for the title compound was 72% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 105 mg of the starting carboxylic 

acid (0.1M in MeCN), 90.8 mg NCP, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, 

and an irradiation time of 2 hours. The average diasteromeric ratio was 2.7:1. The products were 

isolated by column chromatography on silica gel (25 mL dry silica, 2 cm column, 10% 

EtOAc/hexanes) as a low melting white solid.  

 

Analytical data for 3.57:  

1H NMR Major/minor diastereomers:(600 MHz, Chloroform-d) δ 7.39 (m, 8H-4 major, 4 

minor), 5.00-4.98 (m, 2H-1 major, 1 minor), 4.89 (ddd, J = 7.7, 6.2, 4.6 Hz, 1H-minor), 4.83 (td, 

J = 7.1, 6.2 Hz, 1H-major), 2.59 – 2.55 (m, 2H-major), 2.54 – 2.45 (m, 1H-minor), 2.45 – 2.40 

(m, 1H-major), 2.40 – 2.35 (m, 1H-minor), 2.33 – 2.23 (m, 2H-1 major, 1 minor), 2.14 (dddd, J 

= 13.6, 10.2, 7.7, 6.2 Hz, 1H-minor). 

13C NMR Major/minor diastereomers:(151 MHz, CDCl3) δ 175.99 (minor), 175.87 (major), 

135.09 (minor), 135.00 (major), 134.96 (major), 134.73 (minor), 129.35 (minor), 129.09 (major), 

129.02 (major), 128.97 (minor), 81.70 (major), 81.49 (minor), 63.14 (major), 62.91 (minor), 

28.22 (major), 27.97 (minor), 24.52 (major), 24.45 (minor). 

IR (thin film cm-1): 2925, 1779, 1493, 1174, 1091, 1015, 916 

O

O

Cl

O

O

Cl
Major Minor

+
Cl Cl



	 178 

HRMS m/z calculated for C11H10Cl2O2 [H]+: 245.0131 and 247.0101; found: 245.0131 and 

247.0101 

 

5-(Bromo(4-chlorophenyl)methyl)dihydrofuran-2(3H)-one (3.58) 

 

 

The average yield for the title compound was 84% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Bromofunctionalization using 105 mg of the starting carboxylic acid 

(0.1M in MeCN), 85 μL diethyl bromomalonate, 10 mg NMA, 11.2 mg CuBr2, 7.8 mg 2,2’-

bipyridine, and an irradiation time of 16 hours. The average diasteromeric ratio was 1.5:1. The 

products were isolated by silica gel (40 mL dry silica, 2.5 cm column, 10% EtOAc/hexanes then 

30% EtOAc/hexanes) as a clear oil.  

 

 

Analytical data for 3.58:  

1H NMR Major/minor diastereomers: (600 MHz, Chloroform-d) δ 7.43 – 7.38 (m, 2H-1 major, 1 

minor), 7.38 – 7.30 (m, 6 H-3 major, 3 minor), (d, J = , 1H-minor), 4.93 (d, J = 7.4 Hz, 1H-

major), 4.91 – 4.82 (m, 2H-1 major, 1 minor), 2.58 – 2.45 (m, 5H-3 major, 2 minor), 2.31 – 2.24 

(m, 1H-minor), 2.24 – 2.16 (m, 1H-major), 2.05 (ddq, J = 8.5, 5.0, 1.8 Hz, 1H-minor). 

13C NMR Major/minor diastereomers: (151 MHz, Chloroform-d) δ 175.94 (minor), 175.92 

(major), 135.80 (major), 135.66 (minor), 135.05(minor), 134.96 (major), 129.87 (major), 129.65 
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(minor), 129.09 (major/minor), 81.61 (minor), 81.50 (major),  54.48 (minor), 54.20 (major), 

28.62 (major), 28.31 (minor), 26.63 (major), 25.76 (minor). 

IR (thin film cm-1): 1777, 1492, 1168, 1014, 915, 836 

HRMS m/z calculated for C11H10ClBrO2 [H]+:288.9625 and 290.9605; found: 288.9625 and 

290.9605 

 

5-(Chloro(4-methoxyphenyl)methyl)dihydrofuran-2(3H)-one (3.60): 

 

The average yield for the title compound was 64% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 103 mg of the starting carboxylic 

acid (0.1M in DCE), 90.8 mg NCP, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, and 

an irradiation time of 2 hours. The average diasteromeric ratio was 2.2:1. To separate from 

phthalimide, after the 2 hour reaction time the reaction was transferred to a separatory funnel and 

washed with a 10% NaOH solution and H2O. The aqueous layer was back-extracted twice with 

DCM. The combined organics were dried and concentrated giving a dark brown oil. The 

products were isolated by column chromatography on silica gel (25 mL dry silica, 2 cm column, 

20% EtOAc/hexanes) as a low melting white solid.  

 

Analytical data for 3.60:  

1H NMR Major/minor diastereomers:	(600 MHz, Chloroform-d) δ 7.38 – 7.35 (m, 2H-minor), 

7.35 – 7.32 (m, 2H-major), 6.93 – 6.87 (m, 4H-2 major, 2 minor), 5.00 (d, J = 5.8 Hz, 1H-
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major), 4.94 (d, J = 5.2 Hz, 1H-minor), 4.87 (ddd, J = 7.6, 6.2, 5.2 Hz, 1H-minor), 4.84 (ddd, J = 

7.3, 6.6, 5.8 Hz, 1H-major), 3.81 (s, 6H-3 major, 3 minor), 2.54 – 2.48 (m, 2H-major), 2.45 – 

2.42 (m, 1H-minor), 2.42 – 2.34 (m, 1H-major), 2.32 – 2.25 (m, 2H-1 major, 1 minor), 2.24 – 

2.16 (m, 1H-minor), 2.09 (dddd, J = 13.6, 10.2, 7.6, 6.2 Hz, 1H-minor). 

13C NMR Major/minor diastereomers:(151 MHz, CDCl3) δ 176.27 (minor), 176.20 (major), 

160.04 (minor), 159.98 (major), 129.21 (minor), 129.01 (major), 128.36 (major), 128.08 (minor), 

114.13 (major), 114.10 (minor), 82.09 (minor), 82.04 (major), 63.86 (major), 63.43 (minor), 

55.33 (major), 55.32 (minor), 28.28 (major), 28.08 (minor), 24.53 (minor), 24.42 (major). 

IR (thin film cm-1): 2936, 2839, 1778, 1611, 1514, 1252, 1177, 1029, 836 

HRMS  m/z calculated for C12H13ClO3 [H]+: 241.0626 and 243.0596; found: 241.0625 and 

243.0596 

 

 

5-(Chloro(o-tolyl)methyl)dihydrofuran-2(3H)-one (3.62): 

 

The average yield for the title compound was 72% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 95 mg of the starting carboxylic acid 

(0.1M in MeCN), 90.8 mg NCP, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, and an 

irradiation time of 2 hours. The average diastereomeric ratio was 2.9:1. The products were 

isolated by column chromatography on silica gel (25 mL dry silica, 2 cm column, 10% 

EtOAc/hexanes) as a colorless oil.  
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Analytical data for 3.62:  

1H NMR Major/minor diastereomers: (600 MHz, Chloroform-d) δ 7.61 – 7.54 (m, 1H-minor), 

7.51 (dd, J = 7.3, 1.9 Hz, 1H-major), 7.31 – 7.22 (m, 4H-2 major, 2 minor), 7.20 – 7.17 (m, 2H- 

1 major, 1 minor), 5.32 (d, J = 6.2 Hz, 1H-major), 5.21 (d, J = 5.7 Hz, 1H-minor), 4.98 (ddd, J = 

7.5, 6.9, 5.7 Hz, 1H-minor), 4.87 (td, J = 7.0, 6.2 Hz, 1H-major), 2.65 (ddd, J = 17.9, 9.8, 5.4 Hz, 

1H-major), 2.57 (ddd, J = 18.1, 9.7, 8.9 Hz, 1H-major), 2.53 – 2.44 (m, 2H-minor), 2.44 – 2.35 

(m, 8H-5 major, 3 minor), 2.30 – 2.21 (m, 1H-1 minor), 2.06 (dddd, J = 13.4, 9.8, 8.4, 6.7 Hz, 

1H-1minor). 

13C NMR Major/minor diastereomers:(151 MHz, CDCl3) δ 175.94 (major), 175.80 (minor), 

135.51(major), 135.44 (minor), 134.62 (minor), 134.60 (major), 130.64 (minor), 130.55 (major), 

128.75 (minor), 128.59 (major), 127.78 (minor), 127.05 (major), 126.56 (minor), 126.43 (major), 

81.76 (minor), 80.80 (major), 60.17 (major), 59.79 (minor), 28.19 (major), 28.02 (minor), 25.06 

(minor), 24.32 (major), 19.32 (minor), 19.12 (major). 

IR (thin film cm-1): 2919.7, 1784, 1460, 1169, 917, 734 

HRMS  m/z calculated for C12H13ClO2 [H]+: 225.0677 and 227.0647; found: 225.0676 and 

227.0647 

 

5-(Bromo(o-tolyl)methyl)dihydrofuran-2(3H)-one (3.63) 

 

The average yield for the title compound was 83% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Bromofunctionalization using 95 mg of the starting carboxylic acid 
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(0.1M in MeCN), 85 μL diethyl bromomalonate, 10 mg NMA, 11.2 mg CuBr2, 7.8 mg 2,2’-

bipyridine, and an irradiation time of 16 hours. The average diasteromeric ratio was 1.6:1. The 

products were isolated by silica gel (40 mL dry silica, 2.5 cm column, 10% EtOAc/hexanes then 

30% EtOAc/hexanes) as a white solid.  

 

Analytical data for 3.63:  

1H NMR Major/minor diastereomers: (600 MHz, Chloroform-d) δ 7.59 – 7.53 (m, 1H-minor), 

7.50 (dd, J = 7.4, 1.7 Hz, 1H-major), 7.26 – 7.19 (m, 4H-2 major, 2 minor), 7.19 – 7.14 (m, 2H-1 

major, 1 minor), 5.26 (d, J = 7.7 Hz, 1H-major), 5.22 (d, J = 6.3 Hz, 1H-minor), 5.01 (dq, J = 

16.4, 7.3 Hz, 2H-1 major, 1 minor), 2.68 – 2.51 (m, 5H- 3 major, 2 minor), 2.39 (d, J = 3.2 Hz, 

6H-3 major, 3 minor), 2.36 – 2.23 (m, 2H-1 major, 1 minor), 1.94 (dtd, J = 13.3, 9.4, 7.4 Hz, 1H-

minor). 

13C NMR Major/minor diastereomers: (151 MHz, Chloroform-d) δ 176.04 (major), 175.79 

(minor), 135.92 (major), 135.62 (minor), 135.58 (minor), 135.50 (major), 130.88 (minor), 130.80 

(major), 128.95 (minor), 128.83 (major), 128.22 (minor), 127.63 (major), 126.88 (minor), 126.67 

(major), 82.00 (minor), 80.76 (major), 51.91 (major), 51.42 (minor), 28.68 (major), 28.51 

(minor), 26.98 (major), 26.35 (minor), 19.44 (minor), 19.31 (major). 

IR (thin film cm-1): 1777, 1174, 1022, 916, 728, 657 

HRMS  m/z calculated for C12H13BrO2 [H]+:269.0172 and 271.0151; found: 269.0171 and 

271.0150 
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5-(2-Chloropropan-2-yl)-3,3-diphenyldihydrofuran-2(3H)-one (3.65): 

 

The average yield for the title compound was 63% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 140 mg of the starting carboxylic 

acid (0.1M in DCE), 90.8 mg NCP, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, 

150µL of 95:5 Acetic acid:Acetic anhydride, and an irradiation time of 3 hours. The products 

were isolated by column chromatography on silica gel (25 mL dry silica, 2 cm column, 5% 

EtOAc/hexanes) as a white crystalline solid.  

 

 

Analytical data for 3.65:  

1H NMR (400 MHz, Chloroform-d) δ 7.59 – 7.12 (m, 10H), 4.30 (dd, J = 10.6, 5.2 Hz, 1H), 3.09 

(dd, J = 13.2, 5.2 Hz, 1H), 2.96 (dd, J = 13.2, 10.6 Hz, 1H), 1.68 (s, 3H), 1.62 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 176.41, 141.92, 139.17, 129.04, 128.44, 127.95, 127.71, 127.34, 

127.32, 81.88, 68.18, 58.35, 39.38, 29.18, 27.88. 

IR (thin film cm-1): 3060, 2979, 1770, 1496, 1447, 1170, 698 

HRMS  m/z calculated for C19H19ClO2 [H]+: 315.1146 and 317.1117; found: 315.1145 and 

317.1116  
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5-(4-((tert-Butyldimethylsilyl)oxy)-2-chlorobutan-2-yl)-3,3-dimethyldihydrofuran-2(3H)-

one (3.67): 

 

The average yield for the title compound was 47% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 150 mg of the starting carboxylic 

acid as a mixture of alkene isomers (0.1M in DCE), 90.8 mg NCP, 10 mg NMA, 6.7mg CuCl2, 

9mg of 1,10-phenanthroline, 150µL of 95:5 Acetic acid:Acetic anhydride, and an irradiation time 

of 3 hours. The average diastereoisomeric ratio was 1.1:1. The products were isolated by column 

chromatography on silica gel (25 mL dry silica, 2 cm column, 5% EtOAc/hexanes), 

diastereomers could be separated on silica gel and thus were characterized separately. Both 

appeared as clear viscous oils. 

 

Analytical data for 3.67-major:  

1H NMR (600 MHz, Chloroform-d) δ 4.59 (t, J = 8.1 Hz, 1H), 3.84 (dd, J = 6.8, 5.7 Hz, 2H), 

2.15 (d, J = 8.1 Hz, 2H), 2.01 (td, J = 6.3, 5.8, 4.7 Hz, 2H), 1.65 (s, 3H), 1.31 (s, 3H), 1.28 (s, 

3H), 0.89 (s, 9H), 0.06 (d, J = 0.8 Hz, 6H). 

13C NMR (151 MHz, CDCl3) δ 181.25, 80.94, 71.94, 59.22, 43.22, 40.33, 38.65, 25.88, 25.43, 

25.42, 24.69, 18.19, -5.44, -5.47. 

IR (thin film cm-1):2956, 2930, 2857, 1780, 1463, 1255, 1122, 835, 778 

HRMS m/z calculated for C26H35ClO3Si[H]+: 335.1804 and 337.1774; found: 335.1802 and 

337.1772 
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Analytical data for 3.67-minor:  

1H NMR (600 MHz, Chloroform-d) δ 4.54 (dd, J = 9.5, 6.7 Hz, 1H), 3.90 – 3.84 (m, 2H), 2.23 – 

2.04 (m, 4H), 1.54 (s, 3H), 1.31 (s, 3H), 1.29 (s, 3H), 0.89 (s, 9H), 0.06 (d, J = 1.4 Hz, 6H). 

13C NMR (151 MHz, CDCl3) δ 181.08, 81.15, 72.16, 59.52, 42.78, 40.33, 38.53, 25.87, 25.56, 

25.33, 24.65, 18.18, -5.42, -5.45. 

IR (thin film cm-1): 2956, 2930, 2857, 1780, 1463, 1255, 1101, 835, 778 

HRMS m/z calculated for C26H35ClO3Si[H]+: 335.1804 and 337.1774; found: 335.1802 and 

337.1773 

 

5-Chloro-5-phenyltetrahydro-2H-pyran-2-one (3.69):		

 

 

 

The average yield for the title compound was 54% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 88.4 mg of the starting carboxylic 

acid (0.1M in DCE), 67 mg NCS, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, and 

an irradiation time of 2 hours. After the reaction, the contents were transferred to a separatory 

funnel and diluted with DCM. The organic layer was washed with H2O to remove succinimide. 

The aqueous layer was extracted twice more with DCM. All organics were combined and dried 

over Na2SO4. The organics were passed through a small plug of silica to remove any remaining 

Cu or acridinium impurities. After removing the solvent in vacuo the title compound was found 

to be clean by NMR.  
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Analytical data for 3.69:  

1H NMR: (600 MHz, Chloroform-d) δ 7.58 – 7.54 (m, 2H), 7.46 – 7.42 (m, 2H), 7.41 – 7.37 (m, 

1H), 4.68 (dd, J = 12.4, 2.6 Hz, 1H), 4.62 (dd, J = 12.3, 0.6 Hz, 1H), 3.08 – 2.98 (m, 1H), 2.76 – 

2.67 (m, 2H), 2.66 – 2.59 (m, 1H). 

13C NMR: (151 MHz, CDCl3) δ 168.32, 139.10, 129.19, 129.00, 125.79, 76.92, 66.05, 34.04, 

27.58. 

IR (thin film cm-1): 2932, 1744, 1447, 1399, 1263, 1186, 1089, 753 

HRMS  m/z calculated for C11H11ClO2 [H]+:211.0520 and 213.0491; found: 211.0520 and 

213.0491 

 

 

5-Chloro-5-(p-tolyl)tetrahydro-2H-pyran-2-one (3.71):  

 

 

 

The average yield for the title compound was 50% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 95 mg of the starting carboxylic acid 

(0.1M in DCE), 67 mg NCS, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, and an 

irradiation time of 2 hours. After the reaction, the contents were transferred to a separatory 

funnel and diluted with DCM. The organic layer was washed with H2O to remove succinimide. 

The aqueous layer was extracted twice more with DCM. All organics were combined and dried 

over Na2SO4. The organics were passed through a small plug of silica to remove any remaining 
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Cu or acridinium impurities. After removing the solvent in vacuo the title compound was found 

to be clean by NMR.  

 

Analytical data for 3.71:  

1H NMR:	(600 MHz, Chloroform-d) δ 7.44 (d, J = 8.3 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 4.67 

(dd, J = 12.3, 2.5 Hz, 1H), 4.60 (d, J = 12.4 Hz, 1H), 3.06 – 2.97 (m, 1H), 2.71 (dt, J = 7.1, 3.7 

Hz, 1H), 2.68 (q, J = 7.4, 6.6 Hz, 1H), 2.65 – 2.59 (m, 1H), 2.37 (s, 3H). 

13C NMR: (151 MHz, CDCl3) δ 168.32, 139.28, 136.21, 129.66, 125.69, 76.82, 66.05, 34.11, 

27.64, 21.05. 

IR (thin film cm-1):1775, 1740, 1644, 1180, 818, 736 

HRMS m/z calculated for C12H13ClO2 [H]+:225.0677 and 227.0647; found: 225.0677 and 

227.0648 

 

 

5-Chloro-5-(4-chlorophenyl)tetrahydro-2H-pyran-2-one (3.73):		

 

 

The average yield for the title compound was 57% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 105 mg of the starting carboxylic 

acid (0.1M in DCE), 67 mg NCS, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, and 

an irradiation time of 2 hours. After the reaction, the contents were transferred to a separatory 

funnel and diluted with DCM. The organic layer was washed with H2O to remove succinimide. 
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The aqueous layer was extracted twice more with DCM. All organics were combined and dried 

over Na2SO4. The organics were passed through a small plug of silica to remove any remaining 

Cu or acridinium impurities. After removing the solvent in vacuo the title compound was found 

to be clean by NMR.  

 

Analytical data for 3.73:  

1H NMR:	(600 MHz, Chloroform-d) δ 7.50 (d, J = 8.7 Hz, 2H), 7.41 (d, J = 8.7 Hz, 2H), 4.65 

(dd, J = 12.4, 2.4 Hz, 1H), 4.60 (d, J = 12.3 Hz, 1H), 3.01 (ddd, J = 19.6, 9.5, 7.3 Hz, 1H), 2.72 – 

2.64 (m, 2H), 2.61 (dtt, J = 13.8, 7.0, 3.4 Hz, 1H). 

13C NMR: (151 MHz, CDCl3) δ 167.92, 137.75, 135.28, 129.21, 127.32, 76.63, 65.40, 34.27, 

27.53. 

IR (thin film cm-1): 1745, 1495, 1401, 1186, 1086, 1013, 811, 578 

HRMS m/z calculated for C11H10Cl2O2 [H]+:245.0131 and 247.0101; found: 245.0131 and 

247.0101 

 

 

 

5-(Chloro(4-chlorophenyl)methyl)dihydrofuran-2(3H)-one (3.75): 
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The average yield for the title compound was 72% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 102 mg of the starting carboxylic 

acid (0.1M in DCE), 90.8 mg NCP, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, and 

an irradiation time of 2 hours. The average regioisomeric ratio was 19:1. The products were 

isolated by column chromatography on silica gel (25 mL dry silica, 2 cm column, 10% 

EtOAc/hexanes) as a white solid.  

 

Analytical data for 3.75:  

1H NMR Major/minor regioisomers:(600 MHz, Chloroform-d) δ 7.73 – 7.49 (m, 4H-2 major, 2 

minor), 7.49 – 7.35 (m, 6H-3 major, 3 minor), 5.24 (d, J = 12.5 Hz, 1H-major), 4.70 (d, J = 12.4 

Hz, 1H-major), 4.10 (d, J = 12.4 Hz, 1H-minor), 3.97 (d, J = 12.4 Hz, 1H-minor), 3.01 (d, 1H-

minor), 2.83 (d, J = 18.0 Hz, 1H-major), 2.38 (d, J = 18.1 Hz, 2H-1 major, 1 minor), 1.46 (s, 3H-

minor), 1.19 (s, 3H-major), 1.06 (s, 3H-major), 0.70 (s, 3H-minor). 

13C NMR Major/minor regioisomers: (151 MHz, CDCl3) δ 174.69 (minor), 169.08 (major), 

137.66 (minor), 137.21 (major), 128.67 (major), 128.58 (minor), 128.41 (minor), 128.26 (minor), 

128.05 (major), 127.96 (major), 124.49 (minor), 90.92 (minor), 75.46 (major), 74.48 (major), 

49.26 (minor), 44.87 (minor), 42.57 (major), 39.40 (major), 28.11 (minor), 25.11 (major), 24.85 

(major), 22.20 (minor). 

IR (thin film cm-1): 2977, 1744, 1445, 1251, 1213, 1068, 701, 641 

HRMS m/z calculated for C13H15ClO2 [H]+:239.0833 and 241.0804; found: 239.0832 and 

241.0803
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5-Bromo-4,4-dimethyl-5-phenyltetrahydro-2H-pyran-2-one (3.76) 

 

The average yield for the title compound was 84% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Bromofunctionalization using 102 mg of the starting carboxylic acid 

(0.1M in MeCN), 85 μL diethyl bromomalonate, 10 mg NMA, 11.2 mg CuBr2, 7.8 mg 2,2’-

bipyridine, 6 μL 2,6-lutidine, and an irradiation time of 16 hours. The products were isolated by 

silica gel (40 mL dry silica, 2.5 cm column, 10% EtOAc/hexanes) as an off-white solid.  

 

Analytical data for 3.76:  

1H NMR : (600 MHz, Chloroform-d) δ 7.59 (dd, J = 8.0, 1.7 Hz, 2H), 7.40 – 7.31 (m, 3H), 5.23 

(d, J = 12.5 Hz, 1H), 4.92 (d, J = 12.5 Hz, 1H), 2.73 (d, J = 18.0 Hz, 1H), 2.35 (d, J = 18.0 Hz, 

1H), 1.34 (s, 3H), 1.09 (s, 3H). 

13C NMR: (151 MHz, Chloroform-d) δ 168.98, 138.41, 128.97, 128.72, 127.93, 75.08, 73.01, 

42.98 , 39.78, 27.04, 24.63. 

IR (thin film cm-1): 2972, 1744, 1444, 1250, 1067, 701 

HRMS m/z calculated for C13H15BrO2 [H]+:283.0328 and 285.0308; found: 283.0324 and 

285.0307 

 

5-Chloro-3,3-dimethyl-5-phenyltetrahydro-2H-pyran-2-one (3.78): 
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The average yield for the both regioisomers was 66% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 102 mg of the starting carboxylic 

acid (0.1M in DCE), 67 mg NCS, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, and 

an irradiation time of 2 hours. After the reaction, the contents were transferred to a separatory 

funnel and diluted with DCM. The organic layer was washed with H2O to remove succinimide. 

The aqueous layer was extracted twice more with DCM. All organics were combined and dried 

over Na2SO4. The organics were passed through a small plug of silica to remove any remaining 

Cu or acridinium impurities. After removing the solvent in vacuo the title compounds were 

isolated as a mixture of regioisomers (4.4:1). The major regioisomer could be isolated by column 

chromatography on silica gel (15 mL dry silica, 2 cm column, 5% EtOAc/hexanes) as a white 

solid. 

 

Analytical data for 3.78:  

1H NMR Major regioisomer:(600 MHz, Chloroform-d) δ 7.59 – 7.50 (m, 2H), 7.42 (td, J = 7.3, 

6.3, 1.4 Hz, 2H), 7.39 – 7.35 (m, 1H), 4.77 (d, J = 11.8 Hz, 1H), 4.69 (dd, J = 11.9, 1.9 Hz, 1H), 

2.67 – 2.60 (m, 2H), 1.50 (s, 3H), 1.19 (s, 3H). 

13C NMR Major regioisomers:	13C NMR (151 MHz, CDCl3) δ 175.61, 139.57, 129.05, 128.93, 

125.87, 75.05, 66.57, 50.43, 37.98, 30.16, 30.05. 

IR (thin film cm-1): 2977, 2359, 1739, 1447, 1389, 1134, 1064, 762, 697 

HRMS  m/z calculated for C13H15ClO2 [H]+:239.0833 and 241.0804; found: 239.0832 and 

241.0803 
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5-Chloro-3,3-dimethyl-5-phenyltetrahydro-2H-pyran-2-one (3.80): 

 

 

 

The average yield for the both regioisomers was 64% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 81.1 mg of the starting carboxylic 

acid (0.1M in DCE), 67 mg NCS, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, and 

150µL of 95:5 Acetic acid:Acetic anhydride an irradiation time of 2 hours. After the reaction, the 

contents were transferred to a separatory funnel and diluted with DCM. The organic layer was 

washed with H2O to remove succinimide. The aqueous layer was extracted twice more with 

DCM. All organics were combined and dried over Na2SO4. The average regioisomeric ratio was 

2.5:1. Purified on column chromatography on silica gel (25 mL dry silica, 2 cm column, 10% 

EtOAc:Hexanes).  

 

 

Analytical data for 3.80:  

1H NMR Major/minor regioisomers (600 MHz, Chloroform-d) δ 8.13 (dd, J = 7.8, 1.4 Hz, 1H-

major), 7.91 (dt, J = 7.7, 1.0 Hz, 1H-minor), 7.72 – 7.64 (m, 4H-2 major, 2 minor), 7.58 (td, J = 

7.5, 1.0 Hz, 1H-minor), 7.51 (td, J = 7.5, 1.5 Hz, 1H-major), 4.62 (d, J = 11.7 Hz, 1H-major), 

4.49 (d, J = 11.6 Hz, 1H-major), 3.91 – 3.75 (m, 2H-minor), 1.99 (s, 3H-major), 1.78 (s, 3H-

minor). 
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13C NMR Major/minor regioisomers (151 MHz, CDCl3) δ 163.54 (major), 150.76 (minor), 

143.22 (major/minor), 134.57 (major), 134.28 (minor), 130.78 (major), 129.80 (minor), 129.38 

(major), 126.25 (minor), 125.93 (minor), 124.48 (major), 122.91 (major), 121.59 (minor), 85.16 

(minor), 75.83 (major), 61.54 (major), 49.51 (minor), 27.64 (major), 23.51 (minor). 

IR (thin film cm-1):2926, 1768, 1735, 1604, 1464, 1281, 1247, 1102, 765 

HRMS m/z calculated for C10H9ClO2 [H]+:197.0364 and 199.0334; found: 197.0363 and 

199.0334 

 

2-Chloro(phenyl)methyl)-4,4-dimethyltetrahydrofuran (3.84): 

 

 

 

The average yield for the title compound was 61% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 95.1 mg of the starting alcohol 

(0.1M in MeCN), 90.8 mg NCP, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, and an 

irradiation time of 2 hours. The average diastereomeric ratio was 1.9:1. The products were 

isolated by column chromatography on silica gel (25 mL dry silica, 2 cm column, 5% 

EtOAc/hexanes) as a colorless oil.  

 

Analytical data for 3.84:  

1H NMR Major/minor diastereomers: (600 MHz, Chloroform-d) δ 7.45 – 7.39 (m, 4H-2 major, 2 

minor), 7.38 – 7.34 (m, 4H-2 major, 2 minor), 7.34 – 7.29 (m, 2H-1 major, 1 minor), 4.86 (d, J = 
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7.0 Hz, 1H-major), 4.78 (d, J = 7.5 Hz-1H, minor), 4.55 – 4.40 (m, 2H-1 major, 1 minor), 3.60 – 

3.54 (m, 3H-1 major, 2 minor), 3.51 (d, 1H, J = 8.3 Hz-major), 1.92 (dd, J = 12.6, 6.8 Hz, 1H-

major), 1.83 (dd, J = 12.6, 9.0 Hz, 1H-major), 1.51 (dd, J = 12.6, 6.7 Hz, 1H-minor), 1.42 (dd, 

12.6, 9.4 Hz, 1H-minor), 1.11 (s, 3H-major), 1.09 (s, 3H-major), 1.06 (s, 3H-minor), 1.04 (s, 3H-

minor). 

13C NMR Major/minor diastereomers:	 (151 MHz, CDCl3) δ 138.94 (major), 138.74 (minor), 

128.57 (major), 128.53 (minor), 128.49 (major), 128.42 (minor), 127.80 (minor), 127.72 (major), 

82.86 (minor), 82.46 (major), 80.79 (major), 80.54 (minor), 66.43 (minor), 65.88 (major), 44.50 

(minor), 44.16 (major), 40.03 (minor), 39.81 (major), 26.30 (major), 26.23 (minor), 25.79 

(minor), 25.55 (major). 

IR (thin film cm-1): 2959, 2869, 1726, 1496, 1453, 1368, 1062, 698 

HRMS m/z calculated for C13H17ClO [H]+:225.1041, and 227.1011; found: 225.1040, and 

227.1014 

 

2-Bromo(phenyl)methyl)-4,4-dimethyltetrahydrofuran (3.85): 

 

 

 

The average yield for the title compound was 71% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Bromofunctionalization using 95.1 mg of the starting alcohol (0.1M 

in MeCN), 85 μL diethyl bromomalonate, 10 mg NMA, 11.2 mg CuBr2, 7.8 mg 2,2’-bipyridine, 

and an irradiation time of 16 hours. The average diasteromeric ratio was 1.9:1. The products 
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were isolated by silica gel (40 mL dry silica, 2.5 cm column, 10% EtOAc/hexanes, 20% 

EtOAc/hexanes, then 30% EtOAc/hexanes) as a colorless oil.  

 

Analytical data for 3.85:  

1H NMR Major/minor diastereomers: (600 MHz, Chloroform-d) δ 7.43 (dd, J = 11.3, 7.5 Hz, 

4H-2 major, 2 minor), 7.39 – 7.32 (m, 4H-2 major, 2 minor), 7.29 (q, J = 7.0, 6.1 Hz, 2H-1 

major, 1 minor), 4.90 (d, J = 7.9 Hz, 1H-major), 4.87 (d, J = 7.8 Hz, 1H-minor), 4.59 (qd, J = 

9.0, 6.8 Hz, 2H-1 major, 1 minor), 3.61 (d, J = 2.4 Hz, 2H-minor), 3.59 – 3.51 (m, 2H-major), 

2.07 (dd, J = 12.6, 6.4 Hz, 1H-major), 1.79 (dd, J = 12.6, 8.9 Hz, 1H-major), 1.59 – 1.55 (m, 1H-

minor), 1.39 (dd, J = 12.6, 9.2 Hz, 1H-minor), 1.11 (s, 6H-major), 1.08 (s, 3H-minor), 1.06 (s, 

3H-minor). 

13C NMR Major/minor diastereomers: (151 MHz, Chloroform-d) δ 139.50 (major), 139.37 

(minor), 128.66 (minor), 128.58 (major), 128.52 (minor), 128.45 (major), 128.16 (major), 128.08 

(minor), 82.71 (minor), 82.01 (major), 80.87 (major), 80.47 (minor), 58.47 (minor), 58.06 

(major), 46.08 (major), 45.30 (minor), 40.27 (minor), 39.95 (major), 26.32 (minor/major), 25.95 

(minor), 25.59 (major). 

IR (thin film cm-1): 3031, 2959, 2868, 1496, 1454, 1368, 1059, 697, 664 

HRMS m/z calculated for C13H17BrO [H]+:269.0536, and 271.0515; found:269.0535, and 

271.0514 
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3-Chloro-3-phenyltetrahydro-2H-pyran (3.87): 

 

 

 

The average yield for the title compound was 57% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 81 mg of the starting alcohol (0.1M 

in DCE), 67 mg NCS, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, and an 

irradiation time of 2 hours. After the reaction, the contents were transferred to a separatory 

funnel and diluted with DCM. The organic layer was washed with H2O to remove succinimide. 

The aqueous layer was extracted twice more with DCM. All organics were combined and dried 

over Na2SO4. The organics were passed through a small plug of silica to remove any remaining 

Cu or acridinium impurities. After removing the solvent in vacuo the title compound was 

obtained as a single regioisomer. The product was found to be volatile, therefore the use of high 

vacuum was avoided. 

 

Analytical data for 3.87:  

1H NMR (600 MHz, Chloroform-d) δ 7.61 – 7.56 (m, 2H), 7.39 (dd, J = 8.4, 6.9 Hz, 2H), 7.35 – 

7.29 (m, 1H), 4.06 (dd, J = 12.2, 1.6 Hz, 1H), 3.99 (d, J = 12.3 Hz, 1H), 3.91 (dt, J = 11.5, 4.7 

Hz, 1H), 3.62 (ddd, J = 11.7, 8.6, 3.3 Hz, 1H), 2.45 (dd, J = 9.2, 4.2 Hz, 1H), 2.41 (dddd, J = 

13.8, 6.8, 3.0, 2.0 Hz, 1H), 2.09 (tq, J = 8.9, 4.4 Hz, 1H), 1.64 – 1.58 (m, 1H). 

13C NMR (151 MHz, CDCl3) δ 142.02, 128.47, 128.16, 126.31, 76.16, 69.25, 67.99, 37.94, 

23.20. 

OCl
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IR (thin film cm-1): 2958, 2852, 1723, 1685, 1493, 1447, 1099, 1030, 755, 698, 587 

LRMS m/z calculated for C11H13ClO+: 196.06 and 198.06, found: 196.10 and 198.05 

 

 

tert-Butyl 2-(chloro(phenyl)methyl)-4,4-dimethylpyrrolidine-1-carboxylate (3.89) 

 

The average yield for the title compound was 59% (2 trials) at the 0.5 mmol scale, generated 

using General Procedure for Chlorofunctionalizations using 144.7 mg of the starting amine 

(0.1M in DCE), 90.8 mg NCP, 10 mg NMA, 6.7mg CuCl2, 9mg of 1,10-phenanthroline, and an 

irradiation time of 3 hours. The average diastereomeric ratio was 1.2:1. The products were 

isolated by column chromatography on silica gel (40 mL dry silica, 2.5 cm column, 10% 

EtOAc/hexanes) as a colorless oil.  

 

Analytical data for 3.89:  

1H NMR Major/minor diastereomers: (600 MHz, Chloroform-d) δ 7.44 (d, J = 7.3 Hz, 2H-1 

major, 1 minor), 7.36 – 7.26 (m, 8H-4 major, 4 minor), 6.04 (d, J = 3.0 Hz, 1H-major), 5.75 (d, J 

= 3.1 Hz, 1H-minor), 4.21 (ddd, J = 9.9, 7.3, 3.0 Hz, 1H-major), 4.17 – 4.08 (m, 1H-minor), 3.52 

(dd, J = 10.5, 1.9 Hz, 1H-minor), 3.35 (dd, J = 10.5, 1.8 Hz, 1H-major), 3.08 (dd, J = 12.7, 10.5 

Hz, 2H- 1 major, 1 minor), 2.03 (ddd, J = 22.0, 12.6, 9.3 Hz, 2H-1 major, 1 minor), 1.56 (s, 9H-

minor), 1.50 (s, 9H-major), 1.36 – 1.29 (m, 2H-1 major, 1 minor), 1.10 (d, J = 8.3 Hz, 6H-

minor), 0.90 (s, 6H-major). 
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13C NMR Major/minor diastereomers: (151 MHz, Chloroform-d) δ 155.09 (major), 154.42 

(minor), 138.59 (major), 138.53 (minor), 128.43 (minor), 128.27 (major), 128.03 (minor), 127.85 

(major), 127.24 (major), 127.01 (minor), 80.00 (minor), 79.63 (major), 65.63 (minor), 64.57 

(major), 63.01 (minor), 62.94 (major), 60.45 (major), 59.52 (minor), 39.61 (minor), 38.72 

(major), 36.91 (major), 36.68 (minor), 28.62 (minor), 28.56 (major), 26.50 (major), 26.48 

(minor), 25.48 (major), 25.43 (minor). 

IR (thin film cm-1): 2960, 2871, 1690, 1452, 1401, 1366, 1253, 1164, 1104, 950, 699 

HRMS m/z calculated for C18H26ClNO2 [H]+:324.1725, and 326.1695; found: 324.1724 and 

326.1694 

 

Procedure for photoredox/copper mediated intermolecular chloroacetoxylation 

 

91 mg of N-chlorophthalimide (NCP, 1.0 equiv), 7 mg CuCl2 (0.1 equiv), 9 mg 1,10-

phenanthroline (0.1 equiv), 10 mg NMA (0.05 equiv), were weighed and dispensed into a flame-

dried vial (1-dram) equipped with a stir bar and Teflon-coated septum cap. The vial was moved 

to a nitrogen filled glovebox where 65 μL β-methylstyrene, 429 μL glacial acetic acid (AcOH, 

15.0 equiv) with 5% v/v acetic anhydride, and solvent (MeCN 0.5 M) were dispensed by syringe. 

The vial was then sealed and removed from the glovebox and the reaction vial was sealed with 

electrical tape. The reactions were irradiated (2x455 nm blue LED lamps) and stirred for 2 hours. 

Upon completion, the crude reactions were passed through a silica plug to remove CuCl2 before 

NMR analysis.  
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Me
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Me
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HO Me
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15.0 eq

5 mol% Mes-Acr-Me+
10 mol% CuCl2
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1eq N-Chlorophalimide
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1-Chloro-1-phenylpropan-2-yl acetate (3.91) 

 

 

The average yield for the title compound was 51% (2 trials) at the 0.5 mmol scale. The average 

diastereomeric ratio was 1.4:1. The products were isolated by column chromatography on silica 

gel (10 mL dry silica, 1.0 cm column, 5% EtOAc/hexanes) as a colorless oil.  

 

Analytical data for 3.91:  

1H NMR (400 MHz, Chloroform-d) δ 7.44 – 7.29 (m, 10H- 5 major, 5 minor), 5.38 – 5.24 (m, 

2H-1 major, 1 minor), 4.98 (d, J = 5.7 Hz, 1H-major), 4.84 (d, J = 7.5 Hz, 1H-minor), 2.10 (s, 

2H-minor), 1.97 (s, 3H-major), 1.32 (d, J = 6.3 Hz, 3H-major), 1.14 (d, J = 6.4 Hz, 3H-minor). 

13C NMR (151 MHz, Chloroform-d) δ 170.19 (minor), 170.02 (major), 137.87 (minor), 137.61 

(major), 128.79 (minor), 128.65 (major), 128.47 (minor), 128.38 (major), 127.82 (major/minor), 

73.19 (minor), 73.05 (major), 65.25 (minor), 64.89 (major), 21.09 (minor), 20.97 (major), 17.55 

(minor), 16.01 (major) 

IR (thin film cm-1): 3033, 2989, 2938, 1742, 1495, 1454, 1372, 1238, 1059, 959, 699, 603 

HRMS m/z calculated for C11H13ClO2 [H]+:213.0677, and 215.0647; found: 213.0679 and 

215.0649 
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Procedure for photoredox/copper mediated intermolecular bromoamination 

 

 

48 mg methanesulfonamide, 113 mg N-bromophthalimide (NBP, 1.0 equiv), 11 mg CuBr2 (0.1 

equiv), 9. mg 1,10-phenanthroline (0.1 equiv),  10 mg NMA (0.05 equiv), were weighed and 

dispensed into a flame-dried vial (2-dram) equipped with a stir bar and Teflon-coated septum 

cap. The vial was moved to a nitrogen filled glovebox where 65 µL β-methylstyrene and solvent 

(DCE 0.1 M) were dispensed by syringe. The vial was then sealed and removed from the 

glovebox and the reaction vial was sealed with electrical tape. The reactions were irradiated 

(2x455 nm blue LED lamps) and stirred for 3 hours. Upon completion, the crude reactions were 

passed through a silica plug to remove CuBr2 before NMR analysis.  

 

 

N-(1-Bromo-1-phenylpropan-2-yl)methanesulfonamide (3.92) 

 

 

The average yield for the title compound was 27% (2 trials) at the 0.5 mmol scale. The average 

diastereomeric ratio was 1.8:1. The average regioisomeric ratio was 11.7:1. The products were 
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Br

5 mol% NMA
10 mol% CuBr2

10 mol% 1,10-phenanthroline
1eq N-Bromophthalimide

0.1M DCE
450 nm LEDs

Me
+ H2N S Me

O

O

Me

NHMs

Br

Me

NHMs

Br

+

Major Minor



	 201 

isolated by column chromatography on silica gel (60 mL dry silica, 2.5 cm column, 10% 

EtOAc/hexanes then 30% EtOAc/hexanes) as a colorless oil.  

 

Analytical data for 3.92:  

1H NMR Major/minor diastereomers (minor regioisomer noted for observable peaks): (600 

MHz, Chloroform-d) δ 7.44 (ddd, J = 7.6, 3.2, 1.9 Hz, 4H- 2 major, 2 minor), 7.39 – 7.34 (m, 

4H- 2 major, 2 minor), 7.34 – 7.28 (m, 2H- 1 major, 1 minor), 5.39 (d, J = 8.8 Hz, 1H-minor 

regioisomer), 5.13 (d, J = 5.0 Hz, 1H-major), 4.99 (d, J = 5.5 Hz, 1H-minor), 4.65 (dd, J = 8.8, 

4.4 Hz, 1H-minor regioisomer), 4.60 (d, J = 9.0 Hz, 1H-minor), 4.56 (d, J = 9.2 Hz, 1H-major), 

3.94 – 3.83 (m, 2H- 1 mjor, 1 minor), 2.82 (s, 3H-major), 2.71 (s, 3H-minor ), 2.67 (s, 3H- minor 

regioisomer), 1.58 (d, J = 6.9 Hz, 3H- minor regioisomer), 1.35 (dd, J = 8.7, 6.6 Hz, 6H-3 major, 

3 minor). 

13C NMR Major/minor diastereomers:(151 MHz, Chloroform-d) δ  138.07 (minor), 137.90 

(major), 128.84 (minor), 128.69 (major), 128.66 (minor), 128.64 (major), 128.49 (major), 128.39 

(minor), 60.64 (major), 59.59 (minor), 56.27 (minor), 55.86 (major), 42.08 (major), 41.49 

(minor), 21.48 (minor), 19.06 (major). 

IR (thin film cm-1): 3281, 2927, 1452, 1319, 1149, 993, 755, 700 

HRMS m/z calculated for C10H14BrNO2S [K+]: 329.9560 and 331.9540; found: 329.9560 and 

331.9540 
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General Procedure for Polar Chlorofunctionalization: 

 

 

 

The carboxylic acid substrate (1.0 equiv, 102 mg) and Dichlorodimethyl hydantoin (DCDMH, 

1.1 equiv, 108 mg) were weighed and dispensed into a flame-dried vial (2-dram) equipped with a 

stir bar and Teflon-coated septum cap.  The vial was moved to a nitrogen filled glovebox where 

solvent was dispensed by syringe (CHCl3 to 0.1 M), and 6 µL of 2,6-Lutidine was added via 

syringe. The vial was then sealed and removed from the glovebox and the reaction vial was 

sealed with electrical tape. The reaction was then heated at 40˚C with a heating block for 24 hrs. 

CHCl3 was then removed in vacuo and NMR analysis revealed the reaction had reached full 

conversion. The compound could be partially purified on column chromatography (10% 

EtOAc:Hex) however the product coeluted with monochlorodimethyl hydantoin. This impurity 

could be removed by bringing the sample up in DCM and washing with 10% sodium hydroxide 

solution. The isolated yield for the sole trial was 58%, however the purification was not 

optimized.  
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5-Chloro-3,3-dimethyl-6-phenyltetrahydro-2H-pyran-2-one : 

 

 

Analytical data for 5-chloro-3,3-dimethyl-6-phenyltetrahydro-2H-pyran-2-one:  

1H NMR (400 MHz, Chloroform-d) 1H NMR 7.64 – 7.33 (m, 5H), 5.19 (d, J = 9.8 Hz, 1H), 4.28 

(ddd, J = 11.1, 9.8, 4.8 Hz, 1H), 2.49 – 2.21 (m, 2H), 1.46 (s, 3H), 1.43 (s, 3H). 

13C NMR (151 MHz, CDCl3) δ 175.10, 136.45, 129.27, 128.52, 127.19, 86.41, 54.34, 44.76, 

39.70, 28.19, 27.70. 

IR (thin film cm-1):3035, 2982, 2931, 2872, 1731, 1459, 1388, 1236, 1129, 1000, 842, 716, 642 

HRMS m/z calculated for C13H15ClO2 [H]+: 239.0833 and 241.0804; found: 239.0832 and 

241.0803 

 

 

General Procedure for Polar Bromofunctionalization: 

	

The carboxylic acid substrate (1.0 equiv, 102 mg) and N-bromosuccinimide (1.0 equiv, 89 mg) 

were weighed and dispensed into a flame-dried vial (2-dram) equipped with a stir bar and 

Teflon-coated septum cap. The vial was moved to a nitrogen filled glovebox where solvent was 

dispensed by syringe (MeCN to 0.1 M). The vial was then sealed and removed from the 

O

O

Me
Me

Ph

Cl

O

O

Me
Me

Ph

Br

1 eq N-bromosuccinimide

0.1 M MeCN
HO

O

Me
Me

Ph

83% isolated
10:1 r.r.



	 204 

glovebox and the reaction vial was sealed with electrical tape. The reaction was stirred in the 

dark overnight. The product was isolated via column chromatography (40 mL dry silica, 2.5 cm 

column, 10% EtOAc/hexanes) as white solid. The regioisomers were inseparable and resulted in 

a single isolated yield of 83% 10:1 rr 

 

5-Bromo-3,3-dimethyl-6-phenyltetrahydro-2H-pyran-2-one  

 

Analytical data for 5-bromo-3,3-dimethyl-6-phenyltetrahydro-2H-pyran-2-:  

1H NMR Major/minor regioisomers:  (600 MHz, Chloroform-d) δ 7.44 – 7.36 (m, 10H-5 major, 

5 minor), 5.30 (d, J = 10.4 Hz, 1H-major), 4.94 (d, J = 7.7 Hz, 1H-minor), 4.87 – 4.77 (m, 1H-

minor), 4.37 (td, J = 10.2, 6.3 Hz, 1H-major), 2.45 – 2.38 (m, 3H-2 major, 1 minor), 2.09 (dd, J 

= 13.0, 9.7 Hz, 1H-minor), 1.47 (s, 3H-major), 1.42 (s, 3H-major), 1.29 (d, J = 5.1 Hz, 6H-

minor). 

13C NMR Major/minor regioisomers: (151 MHz, Chloroform-d) δ 180.83 (minor), 175.11 

(major), 137.42 (minor), 136.75 (major), 129.35 (major), 129.05 (minor) 128.80 (minor), 128.51 

(major), 128.20 (minor), 127.34 (major), 86.83 (major), 78.17 (minor), 55.53 (minor), 45.83 

(major), 45.18 (major), 42.30 (minor) 40.71 (major), 40.66 (minor), 27.99 (major), 27.50 

(major), 24.81(minor), 24.70 (minor). 

IR (thin film cm-1): 1725, 1459, 1387, 1210, 1130, 984, 706 

HRMS m/z calculated for C13H15BrO2 [H]+: 283.0328 and 285.0308; found: 283.0327 and 

285.0306  

O
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Me
Me
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General Procedure for Polar Bromoetherification: 

 

 

 

The alcohol substrate (1.0 eqiv, 95 mg) and N-bromosuccinimide (NBS, 1.0 eqiv, 89 mg) were 

weighed and dispensed into a flame-dried vial (2-dram) equipped with a stir bar and Teflon-

coated septum cap. The vial was moved to a nitrogen filled glovebox where solvent was 

dispensed by syringe (MeCN to 0.1 M). The vial was then sealed and removed from the 

glovebox and the reaction vial was sealed with electrical tape. The reaction was stirred in the 

dark overnight. The product was isolated via column chromatography (40 mL dry silica, 2.5 cm 

column, 10% EtOAc) colorless oil. The regioisomers were inseparable and resulted in a single 

isolated yield of 67% 8:1 rr 

 

3-Bromo-5,5-dimethyl-2-phenyltetrahydro-2H-pyran 

 

 

Analytical data for 3-bromo-5,5-dimethyl-2-phenyltetrahydro-2H-pyran:  

1H NMR Major/minor regioisomers: (600 MHz, Chloroform-d) 7.50 – 7.43 (m, 4H-2 major, 2 

minor), 7.43 – 7.34 (m, 6H-3 major, 3 minor), 4.94 (d, J = 7.9 Hz, 1H-minor), 4.64 (ddd, J = 8.9, 

7.9, 6.4 Hz, 1H-minor), 4.33 – 4.21 (m, 2H-major), 3.69 (dd, J = 11.3, 2.6 Hz, 1H-major), 3.62 – 
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3.56 (m, 2H-minor), 3.45 (d, J = 11.2 Hz, 1H-major), 2.40 – 2.28 (m, 1H-major), 2.10 (ddd, J = 

12.6, 6.4, 0.9 Hz, 1H-minor), 2.06 – 1.96 (m, 1H-major), 1.83 (dd, J = 12.6, 8.9 Hz, 1H-minor), 

1.26 (s, 3H-major), 1.15 (d, J = 1.9 Hz, 6H-minor), 0.97 (s, 3H-major). 

13C NMR Major/minor regioisomers:  (151 MHz, Chloroform-d) δ  139.32 (minor), 139.25 

(major), 128.48 (minor), 128.41 (major), 128.36 (minor), 128.14 (major), 128.10 (minor), 127.45 

(major), 85.47 (major), 81.93 (minor), 80.75 (minor), 78.26 (major), 58.00 (minor), 50.61 

(major), 49.08 (major), 45.99 (minor), 39.75 (minor), 34.99 (major), 26.43 (major), 26.26 

(minor), 25.52 (minor), 23.56 (major). 

IR (thin film cm-1): 2956, 2866, 1646, 1455, 1368, 1277, 1078, 791, 756, 698 

HRMS m/z calculated for C13H17BrO [H+]: 269.0536 and 271.0515; found 269.0536 and 

271.0515 

 

General Procedure for Polar Chloroacetoxylation: 

 

 

 

Dichlorodimethyl hydantoin (DCDMH, 1.1 equiv, 108 mg) was weighed and dispensed into a 

flame-dried vial (1-dram) equipped with a stir bar and Teflon-coated septum cap.  The vial was 

moved to a nitrogen filled glovebox where solvent was dispensed by syringe (CHCl3 to 0.5 M). 

This was followed by the addition of 430 µL (15 equiv) of acetic acid, and 6 µL of 2,6-lutidine 

(0.1 equiv). Finally, 65 µL of trans-betamethyl styrene was added (single alkene isomer). The 
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vial was then sealed and removed from the glovebox and the reaction vial was sealed with 

electrical tape. The reaction was then heated at 40˚C with a heating block for 24 hrs. CHCl3 and 

acetic acid were then removed in vacuo and NMR analysis revealed the reaction had reached full 

conversion. The product was isolated on silica gel (20 mL dry silica, 2cm column, 10% 

EtOAc:Hexanes) as a mixture of diastereomers (80% yield, 2:1 dr).  

 

2-Chloro-1-phenylpropyl acetate: 

 

 

Analytical data for 2-chloro-1-phenylpropyl acetate:  

1H NMR (600 MHz, Chloroform-d) δ 7.39 – 7.31 (m, 10H-5 major, 5 minor), 5.91 (d, J = 5.2 

Hz, 1H-major), 5.79 (d, J = 7.6 Hz, 1H-minor), 4.33 – 4.24 (m, 2H-1 major, 1 minor), 2.15 (s, 

3H-major), 2.13 (s, 3H-minor), 1.47 (d, J = 6.7 Hz, 3H-major), 1.35 (d, J = 6.7 Hz, 3H-minor). 

13C NMR (151 MHz, CDCl3) δ 169.76 (minor), 169.73 (major), 137.01 (minor), 136.71 (major), 

128.73 (minor), 128.55 (major), 128.48 (minor), 128.30 (major), 127.29 (minor), 127.19 (major), 

79.11 (minor), 78.12 (major), 58.87 (major), 58.53 (minor), 21.33 (minor), 20.99 (major/minor), 

19.99 (major). 

IR (thin film cm-1): 2983, 1746, 1454, 1372, 1228, 1029, 758, 703, 623 

HRMS m/z calculated for C11H13ClO2 [H]+: 213.0677 and 215.0647; found: 213.0677 
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Product identification: distinguishing regio- and diasteroisomers 
 
Distinguishing Regioisomers: 
 
Regioisomers of chlorofunctionalization could generally be distinguished by analysis of the 1H 

NMR. The 6-endo product was generated via reaction of the corresponding alkene with 

dichlorodimethylhydantoin. Comparing the two regioisomers shows Ha in the 6-endo product is 

further downfield than Ha in the 5-exo product. Hb in the 6-endo product is further upfield than 

Hb in the 5-exo product. The shifts of both Ha and Hb in each product match with the expected 

relative shifts. 

 
 
 
 

  
 
 
 
 
 

HSQC data could be used as further evidence of the regioselectivity of the reaction. Via HSQC 

correlation Ca and Cb could be assigned for each product. As expected Ca is further downfield in 

the 6-endo product, while Cb is further upfield.  

 
 
 
 
 
 
 

 
 

These analyses could be extrapolated to products 3.49-3.63 and 3.91. Analysis of HSQC data 

alone was sufficient for determining the regioisomer for products 3.65, 3.67, 3.84, and 3.85 (the 

relevant carbon shifts were more consistent with being adjacent to oxygen rather than a halogen).  
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1H and 13C spectra of products 3.87,10 3.8018 and 3.877 were compared to reported literature 

values of the corresponding regioisomers. These shifts were inconsistent with the reported values 

herein. This analysis could be further extrapolated to products 3.71-3.78. 

 

UV/vis Spectroscopy: 

 

UV/vis spectra were taken on a Hewlett-Packard 8453 Chemstation absorption spectrometer. 

[CuCl/Phen]2: A solution of [CuCl/Phen]2 was prepared by weighing equimolar amounts of 

CuCl and 1,10-phenanthroline into a vial (0.05 mmol). In a glovebox, 10 mL MeCN (N2 

sparged) was added to give a 5 x 10-3 M solution of the complex. 350µL of this solution was 

transferred to a 2-dram vial and then diluted to 3.5 mL total volume, giving a 5 x 10-4 M solution 

of [CuCl/Phen]2. 3mL of this solution was transferred to a quartz cuvette and a UV/vis spectrum 

was obtained. 
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CuCl2/Phen: A saturated solution of CuCl2/Phen was prepared by weighing equimolar amounts 

of CuCl2 and 1,10-phenanthroline into a vial (0.05 mmol). In a glovebox 10 mL MeCN (N2 

sparged) was added to give a saturated solution of unknown concentration of CuCl2/Phen (due to 

the low solubility of CuCl2/Phen). 350µL of this solution was transferred to a 2-dram vial and 

then diluted to 3.5 mL total solution volume of CuCl2/Phen. 3mL of this solution was transferred 

to a quartz cuvette and a UV/Vis spectrum was obtained. 

 

 

 

[CuCl/Phen]2 + NCP: To the cuvette containing [CuCl/Phen]2 discussed above, was added 1 

mL of 7.5 x 10-3 M solution of NCP in MeCN (5 equiv relative to Cu+). The solution 

immediately lost its orange color and became a light blue solution. Adjusted concentrations of 

Cu+ and NCP were 3.75 x 10-4 M and 1.875 x 10-3 M respectively. A UV/vis spectrum was 

recorded immediately after mixing the solution. 
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Solutions of [CuBr/Bpy]2, CuBr2/Bpy, and DEBM were made analogously to their counterparts 

as described above.  

 

UV/vis spectra were taken on a Hewlett-Packard 8453 Chemstation absorption spectrometer. 

[CuBr/Bpy]2: A solution of [CuBr/Bpy]2 was prepared by weighing equimolar amounts of CuBr 

and 2,2′-bipyridine into a vial (0.05 mmol). In a glovebox, 10 mL MeCN (N2 sparged) was added 

to give a 5 x 10-3 M solution of the complex. 350µL of this solution was transferred to a 2-dram 

vial and then diluted to 3.5 mL total volume, giving a 5 x 10-4 M solution of [CuBr/Bpy]2. 3mL 

of this solution was transferred to a quartz cuvette and a UV/vis spectrum was obtained. 
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CuBr2/Bpy: A saturated solution of CuBr2/Bpy was prepared by weighing equimolar amounts of 

CuBr2 and 2,2′-bipyridine into a vial (0.05 mmol). In a glovebox 10 mL MeCN (N2 sparged) was 

added to give a saturated solution of unknown concentration of CuBr2/Bpy (due to the low 

solubility of CuBr2/Bpy). 350µL of this solution was transferred to a 2-dram vial and then diluted 

to 3.5 mL total solution volume of CuBr2/Bpy. 3mL of this solution was transferred to a quartz 

cuvette and a UV/vis spectrum was obtained. 
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[CuBr/Bpy]2 + DEBM: To the cuvette containing [CuBr/Bpy]2 discussed above, was added 1 

mL of 7.5 x 10-3 M solution of DEBM in MeCN (5 equiv relative to Cu+). The solution 

immediately lost its orange color and became a light blue solution. Adjusted concentrations of 

Cu+ and DEBM were 3.75 x 10-4 M and 1.875 x 10-3 M respectively. A UV/Vis spectrum was 

recorded immediately after mixing the solution. 
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Upon the addition of the respective halogenating reagents to each Cu+ complex, the characteristic 

absorbance (439 nm for [CuCl/Phen]2 and 424 nm for [CuBr/Bpy]2) immediately disappeared. In 

both cases new features were observed which closely correspond with those observed in the 

UV/vis spectrum of the independently synthesized Cu2+ complexes. This is sufficient evidence to 

support the oxidation of the Cu+ metal center. Unfortunately, due to the very low solubility of 

both Cu2+ complexes quantitative data could not be recorded and the present data cannot be used 

to determine whether CuCl2/Phen or CuBr2/Bpy are the sole products of the oxidation. While at 

least some amount of Cu2+ does seem to be forming, it is still feasible that a Cu(III) intermediate 

could be formed under these conditions as well.  
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