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ABSTRACT 

Laura Rose Neser: The Timing of Laramide Deformation in the Northern Rocky Mountains 

(Under the direction of Kevin G. Stewart) 

 

 Along the western edge of the Bighorn Basin in northwestern Wyoming, geologic 

mapping of Late Cretaceous-Paleogene sediments has revealed a deep paleovalley that formed in 

the latest Cretaceous. The paleovalley was a principal control for the timing and type of 

Paleogene sediments deposited in the area. Tilting in the latest Cretaceous led to the erosion of 

these Cretaceous rocks, and subsequent deformation occurred in the latest Paleocene-early 

Eocene that steeply tilted them along with basal late Paleocene-early Eocene Willwood rocks to 

their present-day orientations. The extent of the paleovalley included the Line Creek, Clarks 

Fork Canyon, and Kimball Bench areas.  

 There have been varying interpretations regarding the direction(s) of shortening during 

Laramide deformation of the Rocky Mountains. Our research has revealed a complex multi-stage 

Laramide deformational history that resulted in the development of variously oriented structures 

as well as differently aged angular unconformities within Cretaceous-Paleogene strata along the 

western edge of the Bighorn Basin. In the northern Rocky Mountains, there were three stages of 

deformation with differing shortening directions. The three stages of deformation occurred as a 

result of (1) north-northeast-directed shortening in the latest Cretaceous-early Paleocene; (2) 

east-northeast-directed shortening in the late Paleocene; and (3) east-directed shortening in the 

early Eocene.  
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 Deformed late Paleocene-early Eocene Willwood sediments are adjacent to a complex 

system of Laramide structures and in our study area, the absolute ages of these Willwood 

sediments are not well constrained. We calculated the age of the youngest deformed Willwood 

sediments based on chronostratigraphy tied to climate cycles. Our analyses also revealed a 

significant spectral peak corresponding to a cycle thickness of 13.1 meters, which correlates with 

a 21-ky climatic precession cycle. This indicates that precession-scale climate variations likely 

affected paleosol development within the Willwood Formation by way of cyclic changes from 

mostly overbank mudstone deposition to channel-avulsion deposition. Our study has revealed 

that deformation began in the early Eocene in the Kimball Bench area along the western edge of 

the Bighorn Basin. It is apparent that during Paleogene deposition, there was a complex 

deformational history along the western edge of the Bighorn Basin.  

 

 

 

 

 

 

 



v 

 

ACKNOWLEDGEMENTS 

I would like to thank my faculty advisor Dr. Kevin Stewart, as well as my committee members 

Dr. Lou Bartek, Dr. Jonathan Lees, Dr. Lonnie Leithold, and Dr. Tamlin Pavelsky for their 

guidance and oversight of this project.  

I would also like to thank the U.S. Geological Survey Educational Component of the National 

Cooperative Geologic Mapping Program, the Geological Society of America, the Rocky 

Mountain Section of the Society for Sedimentary Geology, the Tobacco Root Geological 

Society, and the University of North Carolina for funding this project.  

I would like to acknowledge Mark McCarty of Two Dot Ranch, Don Tolman, Jim and Ginger 

Dager, and Mary Barreda for allowing me access to map on their property.  

I would like to thank my family for their support along with their endless jokes about me never 

finishing graduate school. I would especially like to thank my field assistants Karen 

Bossenbroek, Will Frazier, Siobhan Kenney, Jason Hallman, and Mallory Nickel. This project 

would not have been possible without these amazing people who trekked through lightning 

storms, hail storms, snake-infested hillsides, and made nightly trips to the Whisky River with me.



vi 

 

TABLE OF CONTENTS 

LIST OF FIGURES………………………………………………………………………….…...ix 

LIST OF TABLES……………………………………………………………………………...xiii 

LIST OF ABBREVIATIONS…………………………………………………………………...xiv 

CHAPTER 1: A LATE CRETACEOUS PALEOVALLEY IN THE VICINITY  

OF CLARKS FORK CANYON AND RESULTING PALEOGENE FACIES  

DEVELOPMENT, NORTHWESTERN WYOMING……………………………………………1 

 Introduction………………………………………………………………………………..1 

 Geological Setting…………………………………………………………………………3 

  Late Cretaceous Formations………………………………………………………5 

  Paleocene-Eocene Formations…………………………………………………….6 

 Geologic Mapping and Interpretation……………………………………………………..9 

  Line Creek………………………………………………………………………..11 

  Clarks Fork Canyon……………………………………………………………...17 

  Kimball Bench…………………………………………………………………...22 

  West of Heart Mountain………………………………………………………….27 

 Geometry of Pre-Paleogene Cretaceous Strata…………………………………………..35 

  Discussion of Cretaceous-Paleogene Relationships within the  

  Paleovalley……………………………………………………………………….38 

 Discussion………………………………………………………………………………..39 

  Removal of Late Cretaceous Sediments, Paleogene Facies  

  Development……………………………………………………………………..40 

  Development of a Late Cretaceous Paleovalley…...…………………………….42



vii 

 

Conclusions……………………………………………………………………………....43 

 References………………………………………………………………………………..45 

CHAPTER 2: MULTI-STAGE LARAMIDE SHORTENING AS REVEALED  

BY CRETACEOUS-PALEOGENE UNCONFORMITIES IN THE VICINITY  

OF HEART MOUNTAIN, NORTHWESTERN WYOMING………………………………….49 

 Introduction………………………………………………………………………………49 

 Regional Setting………………………………………………………………………….52 

  Structural Geology……………………………………………………………….52 

  Late Cretaceous-Paleogene Sedimentation in the Bighorn Basin………………..53 

 Mapping of Cretaceous-Paleogene Strata near Heart Mountain…………………………54 

  Northwest of Heart Mountain……………………………………………………57 

  Southwest of Heart Mountain……………………………………………………61 

  Southeast of Heart Mountain…………………………………………………….71 

  Joints in Cretaceous Strata Northwest of Heart Mountain……………………….76 

 Discussion………………………………………………………………………………..80 

  Cretaceous-Paleogene Angular Unconformities…………………………………80 

  Timing of Deformation…………………………………………………………..80 

  Shortening Directions Associated with Deformation……………………………85 

 Conclusions………………………………………………………………………………89 

 References………………………………………………………………………………..90 

CHAPTER 3: SPECTRAL ANALYSIS OF THE LATE PALEOCENE- 

EARLY EOCENE WILLWOOD FORMATION AND THE TIMING OF  

LARAMIDE DEFORMATION, NORTHWESTERN BIGHORN BASIN,  

WYOMING……………………………………………………………………………………...94 

 Introduction………………………………………………………………………………94 

 Geological Setting………………………………………………………………………..97 



viii 

 

  Astronomical Cycles in the Willwood Formation……………………………...101 

  Paleocene-Eocene Thermal Maximum…………………………………………102 

 Constraining the Timing of Deformation………………………………………………103 

  Previous Spectral Analyses, Willwood Formation.…………………………….106 

  Spectral Analysis and Absolute Age Calculations……………………………...108 

  Spectral Analysis Conclusions………………………………………………….121 

 Discussion of Deformation History…………………………………………………….121 

 Conclusions……………………………………………………………………………..125 

 References....……………………………………………………………………………126 

  



ix 

 

LIST OF FIGURES 

CHAPTER 1 FIGURES 

Figure 1. Geologic map of the western Bighorn Basin and adjacent Laramide  

 structures with Chapter 1 study area labeled ............……………………………………..4 

Figure 2. Geologic map of Linley Conglomerate outcrop in the northwestern  

 Bighorn Basin……………………………………………………………………………..7 

Figure 3. Geologic map of Chapter 1 study locations…………………………………………...10 

Figure 4. Generalized stratigraphy of Late Cretaceous-Paleogene formations  

 along the western edge of the Bighorn Basin…………………………………………....12 

Figure 5. Geologic map of the Line Creek area………………………………………………….13 

Figure 6. Cross section in the Line Creek area…………………………………………...……...13 

Figure 7. Photograph of Willwood conglomerate in the Line Creek area……………….............14 

Figure 8. Photograph of preserved bedding in the Willwood Formation in the  

 Line Creek area…………………………………………………………………………..16 

Figure 9. Geologic map of the Clarks Fork Canyon area………………………………………..18 

Figure 10. Cross section in the Clarks Fork Canyon area………………………………………..19 

Figure 11. Photograph of Willwood conglomerate in the Clarks Fork Canyon  

 area……………………………………………………………………………………….21 

Figure 12. Geologic map of the Kimball Bench area……………………………………………23 

Figure 13. Photographs of lag deposits in the Willwood Formation in the  

 Kimball Bench area………………………………………………………………………25 

Figure 14. Photograph of soft-sediment deformation in the Willwood Formation 

 in the Kimball Bench area………………………………………………………………..25 

Figure 15. Photographs of fine-grained Willwood and Willwood conglomerate  

 in the Kimball Bench area………………………………………………………………..26 

Figure 16. Aerial photograph and line drawing of the Willwood-Mesaverde  

 contact in the Kimball Bench area……………………………………………….............28 

Figure 17. Cross section in the Kimball Bench area……………………………………………..29 



x 

 

Figure 18. Photograph of the Willwood-Mesaverde contact in the Kimball  

 Bench area………………………………………………………………………………..29 

Figure 19. Photographs of Willwood conglomerate in the area west of Heart  

 Mountain…………………………………………………………………………………30 

Figure 20. Geologic map of the area west of Heart Mountain…………………………………...32 

Figure 21. Cross section in the area west of Heart Mountain……………………………............32 

Figure 22. Photographs of Willwood-Cretaceous angular unconformity in the  

 area west of Heart Mountain……………………………………………………………..33 

Figure 23. Photograph of slickensides in the Willwood Formation southwest  

 of Heart Mountain………………………………………………………………………..34 

Figure 24. Photograph of rip-up clasts in the Willwood Formation northwest  

 of Heart Mountain………………………………………………………………………..36 

Figure 25. Cross section along western edge of Bighorn Basin.………………………………...37 

Figure 26. Block diagrams of development of paleovalley and subsequent  

 infill………………………………………………………………………………………44 

CHAPTER 2 FIGURES 

Figure 1. Reference map of study area and satellite image of northwestern  

 Wyoming…………………………………………………………………………………50 

Figure 2. Geologic map of the western Bighorn Basin and adjacent Laramide  

 Structures with Chapter 2 study area labeled…………………………………………….51 

Figure 3. Geologic map of Heart Mountain area with Chapter 2 study areas  

 outlined…………………………………………………………………………………..56 

Figure 4. Geologic map of the area northwest of Heart Mountain………………………………58 

Figure 5. Photographs of cross bedding in the Willwood Formation northwest 

 of Heart Mountain………………………………………………………………………..59 

Figure 6. Photograph of rip-up clasts in the Willwood Formation northwest  

 of Heart Mountain………………………………………………………………………..59 

Figure 7. Photograph of plant fossils in the Willwood Formation northwest 

 of Heart Mountain………………………………………………………………………..60 



xi 

 

Figure 8. Cross section in the area northwest of Heart Mountain……………………………….60 

Figure 9. Photograph of conglomerate in the Fort Union Formation northwest 

 of Heart Mountain………………………………………………………………………..62 

Figure 10. Photograph of angular unconformity between Willwood and Lance 

 Formations northwest of Heart Mountain………………………………………………..62 

Figure 11. Equal area projections northwest of Heart Mountain………………………………...63 

Figure 12. Geologic map of the area southwest of Heart Mountain……………………………..64 

Figure 13. Photograph of slickensides in the Willwood Formation southwest 

 of Heart Mountain………………………………………………………………………..65 

Figure 14. Photograph of Willwood conglomerate southwest of Heart Mountain ….…………..65 

Figure 15. Photograph of Fort Union conglomerate southwest of Heart  

 Mountain…………………………………………………………………………………67 

Figure 16. Cross section in the area southwest of Heart Mountain……………………………...68 

Figure 17. Equal area projections southwest of Heart Mountain………………………………...69 

Figure 18. Geologic map of the area southeast of Heart Mountain with  

 remapped Lance-Fort Union contact…………………………………………………….70 

Figure 19. Geologic map of the Fort Union-Willwood contact southeast of 

 Heart Mountain…………………………………………………………………………..72 

Figure 20. Photograph of Willwood-Fort Union contact southeast of Heart  

 Mountain…………………………………………………………………………………73 

Figure 21. Equal area projection southeast of Heart Mountain………………………………….74 

Figure 22. Satellite image of cobble-bearing sandstone in the Fort Union  

 Formation………………………………………………………………………………...75 

Figure 23. Photograph of cobble-bearing sandstone in the Fort Union  

 Formation………………………………………………………………………………...77 

Figure 24. Geologic map southeast of Heart Mountain showing fold axis in the  

 Fort Union Formation ……….…………………………………………………………..78  

Figure 25. Geologic map of Hogan Reservoir…………………………………………………...79 



xii 

 

Figure 26. Rose diagram near Hogan Reservoir…………………………………...…………….81 

Figure 27. Equal area projections of Late Cretaceous bedding southwest and  

 northwest of Heart Mountain…………………………………………………………….82 

Figure 28. Equal area projections of Late Cretaceous-Paleogene bedding   

 northwest and southwest of Heart Mountain…………………………………………….83 

Figure 29. Shortening directions during three stages of deformation along the 

 western edge of the Bighorn Basin………………………………………………………87 

CHAPTER 3 FIGURES 

Figure 1. Reference map of study area and satellite image of northwestern  

 Wyoming…………………………………………………………………………………95 

Figure 2. Geologic map of the Kimball Bench area……………………………………………104 

Figure 3. Photograph of Willwood at Kimball Bench……………………………………....….104 

Figure 4. 7RP and Kimball Bench spectral analysis sections…………………………………..105 

Figure 5. Photographs of excavation sites……………………………………………………...110 

Figure 6. Photographs of prepared spectral analysis samples…………………………………..111 

Figure 7. Comparison of Chapter 3 redness values with previous studies……………………..113 

Figure 8. CIELAB color chart………………………………………………………………….114 

Figure 9. Stratigraphic level vs. redness plot…………………………………………………...115 

Figure 10. Fast Fourier transform power spectra……………………………………………….116 

Figure 11. Cross section showing thickness between fossil localities………………………….118 

Figure 12. Aerial photograph of fossil localities……………………………………………….120 

Figure 13. Aerial photograph of projected PETM location…………………………………….120 

Figure 14. Photograph and redness curve in 7RP section………………………………………123 

  



xiii 

 

LIST OF TABLES 

Table  

 1. Restored Cretaceous bedding orientations along western edge of the 

  Bighorn Basin……………………………………………………………………36 

  



xiv 

 

LIST OF ABBREVIATIONS 

‰       per mil 

δ
13

C      delta 13C 

a*      redness 

CIE      carbon isotope excursion 

cm      centimeter  

FFT      fast Fourier transform      

km      kilometer 

ky       thousand years 

LPTM      late(st) Paleocene thermal maximum 

m      meter 

Ma      million years before present 

my      million years 

P-E      Paleocene-Eocene 

PETM      Paleocene-Eocene Thermal Maximum 



1 

 

CHAPTER 1: A LATE CRETACEOUS PALEOVALLEY IN THE VICINITY OF 

CLARKS FORK CANYON AND RESULTING PALEOGENE FACIES 

DEVELOPMENT, NORTHWESTERN WYOMING 

 

Introduction 

 Foreland basins contain a record of the tectonic history of their adjacent mountain belts, 

and the strata within a foreland basin can be used to accurately interpret the manner in which that 

basin was filled (Flemings and Jordan, 1989). Syntectonic deposits in foreland basins also 

contain subtle indicators of tectonic activity, including changes in clast composition that record 

uplift and erosion of the source areas (Colombo, 1994). The progressive erosion of rock units 

and deposition of the eroded material can record the rates and timing of deformation in the 

source area (DeCelles et al., 1987; DeCelles and Hertel, 1989). It is important, however, to 

understand the paleotopography of such an area, because paleotopography exerts significant 

control on the distribution of siliciclastics sediments within the depocenter (Oplustil, 2005). 

 The topography of the earth’s surface is crucially important in both climatic and tectonic 

studies. Various methods have been used to constrain paleotopography including paleobotany, 

cosmogenic nuclides, isotopic composition of authigenic minerals, sedimentologic provenance 

studies, and apatite fission-track evidence (DeCelles et al., 1991b; Omar et al., 1994; Brook et 

al., 1995; Forest et al., 1999; Chamberlain and Poage, 2000; Mulch et al., 2006). Paleovalleys are 

part of regional unconformities that give important constraints on the development of foreland 

systems (Sears and Ryan, 2003). In this paper, we focus on structural and sedimentologic 



2 

 

information to estimate the paleotopography along the western edge of the Bighorn Basin in 

northwestern Wyoming. 

 Our research revealed a deep paleovalley along the western edge of the Bighorn Basin 

which was the result of differential erosion of the Late Cretaceous rocks east of the nascent uplift 

of the Beartooth Mountains. Topographic features such as valleys can have an important control 

on the distribution of sediments in an area (Oplustil, 2005), and the paleovalley in the vicinity of 

the Clarks Fork Canyon played a central role in the evolution of the basin. Structural-topographic 

highs often serve as intrabasinal sources of sediment (Meyers et al., 1992), and the Beartooth 

uplift provided the source sediment for Paleogene deposits within the paleovalley and 

surrounding areas along the western edge of the Bighorn Basin. DeCelles et al. (1991a,b) used 

lithologic provenance modeling to describe the nature of deposition during uplift of the 

Beartooth Mountains. They attributed the changes in source sediment composition to changes in 

source-area relief of the Beartooth block throughout time. Source-area relief played a 

fundamental role in determining the type of sediment that was deposited in the basin (DeCelles 

et al., 1991b); however, paleotopography must equally be considered as it also governed the 

location and type of sediment.  

 During the late Paleocene, the Clarks Fork Canyon area subsided and filled with detritus 

sourced from the Beartooth uplift (Hickey, 1980; Gingerich, 1983). However, there is a 

compositional difference in deposits which are considered contemporaneous (Dutcher et al., 

1986; DeCelles et al., 1991a,b) at varying locations along the western edge of the Bighorn Basin. 

Our research indicates that the Late Cretaceous paleovalley was a principal control for the timing 

and type of Paleogene deposits in these areas, with deposition occurring first in the deepest part 

of the paleovalley and becoming more widespread as the valley was filled. Well-exposed 
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Paleogene sediments along the western edge of the Bighorn Basin were ideal for this study, as 

ancient topographic features can be recognized where post-depositional controls are favorable to 

their preservation (Corcoran, 2008), for instance in the vicinity of Clarks Fork Canyon. Our field 

mapping of Paleogene facies along the western edge of the Bighorn Basin reveals the existence 

of a relict Late Cretaceous paleovalley that resulted from removal of over 4,000 feet of Late 

Cretaceous strata prior to Paleogene deposition. 

Geological Setting 

 Synkinematic late Paleocene and Eocene sediments rest on top of Cretaceous rocks along 

at least a 30 kilometer-long segment of the western edge of the Bighorn Basin of northwestern 

Wyoming (Fig. 1). The Laramide Beartooth Mountains are a 130-by-60-kilometer uplifted block 

of Precambrian crystalline rocks located in the northern Rocky Mountains of northwestern 

Wyoming and south-central Montana (Fig. 1). The crystalline core of the range is roughly 

rectangular, with its long axis oriented northwest-southeast (Dutcher et al., 1986). The east flank 

of the Beartooth uplift is oriented roughly north-south (Fig. 1). Along the east and northeast, 

folded and faulted Paleozoic and Mesozoic strata border the mountains. During the Late 

Cretaceous, andesites and dacites were intruded into the range. All of these rock types can be 

found as clasts in the Paleocene Beartooth Conglomerate, which was deposited during uplift of 

the Beartooth Mountains (DeCelles et al., 1991b).  

 The Absaroka volcanic field was active in from the early middle Eocene to the late 

Eocene, extending from northwestern Wyoming into southwestern Montana. The volcanic field 

contains andesite, basalt, and related intrusive rocks which constitute part of the present-day 

Beartooth Mountains and are also present north of the range (Smedes and Prostka, 1972).  At the 

southern end of the Beartooth Mountains, the hanging wall of the Beartooth Arch is folded into  
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Figure 1. Simplified geologic map of the western Bighorn Basin and adjacent Laramide 

structures, modified from Neely and Erslev, 2009. Black box outlines study area (Figure 3).  
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the E-W trending Pat O’Hara Mountain, an anomalously east-plunging, south-facing anticline 

(Neely and Erslev, 2009). The western terminus of the Pat O’Hara Mountain anticline reveals the 

Mississippian Madison Limestone gently folded into the crest of the NW-trending Rattlesnake 

Mountain anticline (Fig. 1; Neely and Erslev, 2009). Here, the Rattlesnake Mountain anticline 

terminates at Pat O’Hara Mountain (Neely, 2006).  

Late Cretaceous Formations  

 In northwestern Wyoming, the Cretaceous Cody Shale ranges in thickness from 500 to 

1000 meters thick, composed dominantly of marine shale, siltstone, and sandstone (Kauffman, 

1977). The lower part consists of predominantly interbedded shale and siltstone which coarsens 

upward into interbedded shale, siltstone, and sandstone (Kauffman, 1977). The upper part 

consists of buff sandy shale and thinly laminated buff sandstone (Pierce, 1965, 1966, 1968, 1997; 

Lillegraven, 2004). 

Above the Cody Shale, the Cretaceous Mesaverde Formation is comprised of interbedded 

sandstone and shale in its upper part, and massive light-buff, ledge-forming sandstones with thin 

coal beds in the lower part (Pierce, 1965, 1966, 1997; Lillegraven, 2004). The thickness of this 

unit in our study area is about 330 meters (Pierce, 1966). 

The Mesaverde Formation is beneath the Cretaceous Meeteetse Formation, which 

includes gray to white clayey sand, drab sandstone, gray-brown shale, and bentonitic clay 

(Pierce, 1965, 1966, 1997). The remains of fossil plants are abundant within the formation, and 

locally it may contain thin lignite beds. The Meeteetse Formation is poorly indurated, valley 

forming, and markedly bentonitic. This unit has a thickness of about 360 meters (Pierce, 1965, 

1966, 1997; Lillegraven, 2004). 
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The uppermost Cretaceous Formation is the Lance, which is 100 to 500 meters thick and 

comprises a sequence of thick-bedded, buff-colored fluvial sandstones interbedded with drab to 

green shales (Pierce, 1966, 1997). It contains medium- to very fine-grained sandstones, silty-

sandstones, siltstones, and mudstones (Webb and Steel, 2001).  

Paleocene-Eocene Formations  

 Above the Cretaceous Lance Formation, the late Paleocene Fort Union Formation 

preserves internal angular unconformities that record synkinematic uplift and sedimentation. In 

northwestern Wyoming, the Fort Union Formation is comprised of synkinematic alluvial fan 

deposits and fluvial deposits (Hickey, 1980; Johnson and Middleton, 1990).  

 DeCelles et al. (1991b) defines the Paleocene Beartooth Conglomerate as the coarse 

conglomerate interbedded with minor sandstones and siltstones that crops out on the northeastern 

and eastern border of the Beartooth Mountains, extending from the north side of the Clarks Fork 

of the Yellowstone River (WY) to the west side of West Red Lodge Creek (MT) (Fig. 2). Due to 

similarities in lithology and stratigraphic position, Lopez (2005) classified the Beartooth 

Conglomerate along with the Laramide synorogenic deposits of Flueckinger (1970) as part of the 

Linley Conglomerate Member of the Fort Union Formation. For the same reason, we use the 

term Linley Conglomerate to describe the late Paleocene sediments that occur along the northern 

and eastern mountain front of the Beartooth Mountains, considered to be Laramide synorogenic 

deposits (Lopez, 2005).  

 In the late Paleocene Epoch, bedload-dominated streams coming off alluvial fans during 

uplift of the Beartooth Mountains deposited coarse sediments of the Linley Conglomerate 

(DeCelles et al., 1991a). The Linley Conglomerate consists of mainly red-brown to gray-brown 

interbedded conglomerate, coarse-grained sandstone, siltstone, and mudstone, with the coarser  
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Figure 2. Geologic map of the northwestern Bighorn Basin and adjacent Laramide structures, 

after DeCelles et al., 1991. Map shows locations of Linley Conglomerate facies based on clast 

type. DeCelles et al. (1991) referred to the Linley Conglomerate member of the Fort Union 

Formation as the ―Beartooth Conglomerate‖ and defined it as the coarse conglomerate 

interbedded with minor sandstones and siltstones that outcrops on the northeastern and eastern 

border of the Beartooth Mountains.  
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facies generally found near the mountain front (Lopez, 2005). The Linley Conglomerate is the 

uppermost member of the Paleocene Fort Union Formation and contains intraformational folds, 

faults, and unconformities that DeCelles et al. (1991a,b) used to infer that the uplift of the 

Beartooth Mountains occurred in the late Paleocene (DeCelles et al., 1991a,b). The Linley 

Conglomerate contains metamorphic, igneous, and sedimentary clasts derived from the 

Precambrian-through-Cretaceous rocks that constitute the Beartooth Mountains. 

 Jobling (1974) proposed a lithofacies of this member of the Fort Union Formation which 

existed adjacent to and parallel to the eastern perimeter of the Beartooth Mountains, called the 

―Proximal facies‖. The lower part of the Proximal facies consists of pebble conglomerates, 

coarse sandstones, and siltstones. In the lower part, conglomerate clasts are mostly Paleozoic 

limestone and black chert, with rare metamorphic and igneous rock fragments. The upper part of 

the Proximal facies includes pebble to boulder conglomerates interstratified with fine-to -coarse 

sandstones, siltstones, and minor shales. In the upper part of the Proximal facies, conglomerate 

clasts are mostly metamorphic and igneous rock fragments with some Paleozoic limestone clasts 

(Jobling, 1974). The changes in composition of the conglomerate clasts in Jobling’s Proximal 

facies reflect the unroofing of the Beartooth Mountains, where clasts from the sedimentary cover 

are found near the base and clasts from the Precambrian basement occur higher in the section 

(Lopez, 2005). Six to eight kilometers east of the range front, the Linley Conglomerate grades 

laterally into lacustrine deposits, overbank mudstones, and fluvial sandstones of the Fort Union 

Formation (DeCelles, 1991b).  

The late Paleocene-Eocene Willwood Formation consists of fluvial and alluvial pebbly-

to-fine-grained sandstones, variegated mudstones, and locally abundant carbonaceous shales. 

The maximum thickness of the formation is 1200 meters near Heart Mountain. The presence of 
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red beds has commonly been used to differentiate it from the Paleocene Fort Union Formation 

(Gingerich, 1983).   

 In northwestern Wyoming and south-central Montana, the same strata have been mapped 

as both the late Paleocene-Eocene Willwood Formation and upper members of the Paleocene 

Fort Union Formation. Pierce (1965a, 1965b, 1966, 1968) appears to have mapped post- 

Cretaceous rocks containing red beds along the mountain front as the Willwood Formation. Just 

north of Line Creek in Montana, Lopez (2001) mapped the same rocks as the Fort Union 

Formation. In this paper, all late Paleocene-Eocene rocks in contact with Cretaceous sediments 

are referred to as ―Willwood Formation‖ with the exception of the area near Heart Mountain 

where the Fort Union Formation is easily distinguished from the overlying Willwood Formation. 

Geologic Mapping and Interpretation 

 We focused our field study in four specific areas along a 30 kilometer-long segment of 

the western edge of the Bighorn Basin in Park County, Wyoming (Fig. 1). These areas include 

(1) Line Creek; (2) Clarks Fork Canyon; (3) Kimball Bench; and (4) Heart Mountain (Fig. 3). 

We chose these locations because the Paleogene-Cretaceous contacts are exposed at the surface. 

For Paleogene Willwood conglomerates, we used clast-types to determine their stratigraphic 

level (and therefore relative age) within the Willwood Formation. Crystalline-clast 

conglomerates correspond to younger Willwood sediments, as they were deposited during the 

final unroofing stages of the crystalline-cored Beartooth uplift. Sedimentary-clast conglomerates 

are older Willwood deposits, as they formed during early Beartooth unroofing stages during the 

removal of the sedimentary cover (Jobling, 1974; Dutcher et al., 1986; Hickey et al., 1986; 

DeCelles et al., 1991b.; Lopez, 2005). 

  



10 

 

 
Figure 3. Generalized geologic map, modified from Pierce (1965). Boxes show locations of areas 

of interest based on exposure of Paleogene-Cretaceous contacts. North to south: Line Creek area; 

Clarks Fork Canyon area; Kimball Bench area; Heart Mountain area. 
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Line Creek  

 In the Line Creek area (Fig. 3), Meeteetse Formation rocks are in contact with the 

overlying Paleogene Willwood Formation. Well data in the northwestern Bighorn Basin show 

that near the Beartooth mountain front, the Lance Formation has an average thickness of 420 

meters and the underlying Meeteetse Formation has a thickness of 280 meters (Fig. 4; Finn et al., 

2010). Our map of the Line Creek area shows that the Willwood-Meeteetse contact is located 

200 meters east of the Meeteetse-Mesaverde contact (Fig. 5). Using the mapped width of the 

formation and the dip of the layers, the preserved thickness of the Meeteetse Formation is 140 

meters, as shown in our cross section through the Line Creek area (Fig. 6). The uppermost 

Cretaceous Lance Formation is completely absent in this area. In addition, the upper 140 meters 

of the Meeteetse Formation are missing, indicating that at least 560 meters of Cretaceous 

sediments were eroded away before Paleogene deposition began. The basal Willwood sediments 

here are characterized by interbedded red and tan siltstones, fine-to-coarse-grained sandstones, 

and pebble- to cobble-sized conglomerates (Fig. 7). The conglomerates are approximately 80% 

crystalline-clast and 20% sedimentary clast. The long axes of the crystalline clasts are 5-20 

centimeters and the long axes of the sedimentary clasts are 2-5 centimeters. The matrix within 

the conglomerates consists of gray and red sand-sized grains. The presence of predominately 

crystalline clasts in the Willwood indicates that at the time of deposition, unroofing of the 

Beartooth Mountains to the west had progressed from erosion of the Upper Paleozoic-Mesozoic 

sedimentary cover to the point where the Middle and Lower Paleozoic crystalline core of the 

Beartooth block had been exposed. The red beds in the Willwood suggest that the sediments 

were subaerially exposed, interpreted to reflect a relatively dry environment of deposition (Bown 

and Kraus, 1987).  
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Figure 4. Stratigraphic column of Late Cretaceous-Paleogene formations. Approximate 

thicknesses along the northwestern margin of the Bighorn Basin from Impel Corp. O’Hara 

Federal 5-24 well, presented in Finn et al., 2010. 
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Figure 5. Geologic map of the Line Creek area. The Paleogene Willwood Formation transitions 

from gently dipping basinward to steeply tilted near the mountain front where it is in contact 

with the steeply tilted Cretaceous Meeteetse Formation in this area (Cretaceous Lance Formation 

is absent). A-A’ is line of section in Figure 6. 

 

 
 

Figure 6. West-east cross section in the Line Creek area. The Cretaceous Lance Formation is 

absent and the Cretaceous Meeteetse Formation is 140 meters thick, indicating that 

approximately 560 meters of Cretaceous sediments were eroded away prior to Willwood 

deposition. In this area, the Paleogene Willwood Formation is steeply tilted along with the Late 

Cretaceous formations. 
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Figure 7. Pebble- to cobble-sized crystalline-clast conglomerates of the basal Willwood 

Formation, Line Creek area (clasts range 5-20 cm). Clasts are approximately 80% crystalline and 

20% sedimentary, indicating that at the time of deposition, unroofing of the Beartooth Mountains 

had progressed to the point where the Middle and Lower Paleozoic crystalline core of the 

Beartooth block had been exposed. 
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 In and around our study areas, Lillegraven (2009) proposed the existence of large-scale 

thrust faulting at the base of the Willwood. His proposed west-vergent thrust faults created 

approximately 30 kilometers of displacement along the western edge of the Bighorn Basin. A 

problem exists with this interpretation, however, as the siltstones and shales of the Willwood 

Formation are easily deformed. In the Kimball Bench area, we did find evidence of faulting 

within the Willwood, indicated by offset bedding and a shatter zone at the fault where bedding 

has been destroyed. This fault created approximately 15 meters of offset and resulted in a 4-

meter-wide shatter zone. Thus, thrust faulting on the scale of multiple kilometers would 

necessitate a fault zone tens of meters wide in the Willwood Formation. 

 In the Line Creek area, Lillegraven (2009) described basal Willwood as containing 

―semi-chaotic bedding of mudstone rip-ups and pebbles in [the] thrust zone.‖ However, we 

found that bedding is well-preserved in the basal Willwood and upper Meeteetse layers with no 

distinct shatter zone near the contact. Another common feature of faulting is slickensided 

surfaces, of which we found none after excavating around the contact. In the Line Creek area, 

Mowry Shale rocks are faulted with a few meters of offset; however there was no evidence of 

offset or a shatter zone near the base of the Willwood Formation (Fig. 8). It is probable that the 

―pebbles in [the] thrust zone‖ described by Lillegraven (2009) are in fact lag deposits, which are 

numerous throughout the Willwood Formation. 

 Structurally, the basal late Paleocene-Eocene Willwood Formation is steeply tilted to 

overturned and in depositional contact with underlying tilted Cretaceous Meeteetse sediments in 

the Line Creek area (Fig. 5, 6). Approximately 28 kilometers northeast of the Line Creek area, 

Lopez (2001) mapped gently-dipping Cretaceous Lance Formation in the Bighorn Basin. In the 

Line Creek area, Lance rocks are completely absent, indicating that they were eroded away at the  
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Figure 8. Preserved bedding at base of Willwood Formation, Line Creek area. In this area, 

Lillegraven (2009) described basal Willwood as containing ―semi-chaotic bedding of mudstone 

rip-ups and pebbles in [the] thrust zone‖; however, bedding is well-preserved with no evidence 

of offset or a shatter zone near the base of the Willwood. Compass points north, pencil is parallel 

to bedding. 
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mountain front but preserved in the basin. Regarding the timing of deformation, the presence of 

the Lance Formation in the basin suggests that Late Cretaceous rocks including the Lance were 

deposited together and then slightly tilted, eroding away the uppermost Cretaceous rocks, the 

Lance Formation. After the removal of Lance strata near the mountain front, deposition of the 

Willwood Formation began. Continued deformation tilted Late Cretaceous and Paleogene rocks 

together, resulting in the present-day orientations of these rocks near the mountain front (Fig. 5). 

Basinward of the Paleogene-Cretaceous contact, upper Willwood Formation sediments transition 

to gently-dipping. The dominance of crystalline clasts in basal Willwood conglomerates 

indicates deposition post-dating that of basal Willwood in the Clarks Fork Canyon area, Kimball 

Bench area, and area west of Heart Mountain. Here, the paleovalley did not receive Paleogene 

sediments until the deeper parts of the valley were filled.  

Clarks Fork Canyon 

 South of the Line Creek area is the Clarks Fork Canyon area (Fig. 3). Here, Mesaverde 

Formation is the youngest Cretaceous unit in contact with the overlying Paleogene Willwood 

Formation. The entire Late Cretaceous Lance and Meeteetse Formations, along with a part of the 

upper Mesaverde Formation, are absent in this area. Well data show the approximate thicknesses 

of these formations as follows: Lance Formation, 400 meters; Meeteetse Formation, 280 meters; 

and Mesaverde Formation, 250 meters (Fig. 4; Finn et al., 2010). Our map of the Clarks Fork 

Canyon area shows that the Willwood-Mesaverde contact is located 210 meters east of the 

Mesaverde-Cody contact (Fig. 9). Using our measured attitudes of the strata, we calculated the 

true thickness of the Mesaverde Formation in this area to be 190 meters, seen in our cross section 

through the Clarks Fork Canyon area (Fig. 10). In addition, the upper 90 meters of the  
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Figure 9. Geologic map of the Clarks Fork Canyon area. The Paleogene Willwood Formation is 

steeply tilted to overturned and in conformable contact with underlying tilted Mesaverde 

sediments (Cretaceous Meeteetse and Lance formations are absent).  B-B’ is line of section in 

Figure 10. 
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Figure 10. West-east cross section in the Clarks Fork Canyon area. The Cretaceous Meeteetse 

and Lance formations are absent and the Cretaceous Mesaverde Formation is 190 meters thick, 

indicating that approximately 790 meters of Cretaceous sediments were eroded away prior to 

Willwood deposition. In this area, the Paleogene Willwood Formation is steeply tilted to 

overturned along with the Late Cretaceous formations. 
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Mesaverde Formation are missing, indicating that approximately 790 meters of Cretaceous 

sediments were eroded away.  

 It is difficult to determine if basal Willwood was eroded away along with Late 

Cretaceous rocks in the Clarks Fork Canyon area. The oldest preserved Willwood sediments in 

the area consist of tan and brown medium-to-coarse-grained sandstones containing thin coal 

seams interbedded with sedimentary-clast conglomerates, predominantly limestone cobbles (Fig. 

11). The conglomerates in the Willwood contain poorly sorted, rounded sedimentary clasts 

measuring less than 1 centimeter to 15 centimeters in length. The clasts include limestone, chert, 

and sandstone. Higher in the section, the Willwood Formation transitions to mostly brown and 

beige fine-grained siltstones and shales, interbedded with coal seams and conglomeratic pebble 

lags. The presence of sedimentary-clast conglomerate in the Willwood here indicates that 

deposition occurred during early unroofing stages of the Beartooth Mountains to the west, during 

removal of the sedimentary cover of the Beartooths.  

 In the Kimball Bench area, fine-grained basal Willwood sediments sourced from the 

nascent Beartooth Mountains were deposited prior to deposition of sedimentary-clast 

conglomeratic Willwood. There is a lack of fine-grained basal Willwood in the Clarks Fork 

Canyon area and it is likely that this area is near the mouth of the paleovalley. This would cause 

the fine-grained lower Willwood sediments to bypass the Clarks Fork Canyon area during the 

erosion of the nascent Beartooth Mountains. In the Clarks Fork Canyon area, basal Willwood is 

conglomeratic. As the fine-grained sediments filled the more distal parts of the paleovalley, 

erosion to the west progressed past the point where the Mesozoic and Upper Paleozoic 

sedimentary cover of the Beartooths was exposed, leading to deposition of sedimentary-clast 

conglomerates of the Willwood Formation in the Clarks Fork Canyon area and above the fine-

grained deposits in the Kimball Bench area.  
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Figure 11. Pebble- to cobble-sized sedimentary-clast Willwood Formation conglomerates in the 

Clarks Fork Canyon area (hammer length 30 cm). Clasts are predominately limestone with some 

chert and sandstone. The presence of sedimentary-clast conglomerate in the Willwood here 

indicates that deposition occurred during early unroofing stages of the Beartooth Mountains to 

the west, during removal of the sedimentary cover of the Beartooths.  
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 In the Clarks Fork Canyon area, basal Willwood sediments are steeply tilted to 

overturned and in depositional contact with underlying tilted Mesaverde sediments (Fig. 9, 10). 

The depositional contact between Mesaverde and Willwood strata suggests that major 

deformation of these formations occurred after deposition of at least lower Willwood rocks. In 

this area, the lack of red beds in the Willwood Formation and the presence of coal seams are 

interpreted to reflect a relatively wet environment of deposition (Bown and Kraus, 1987).  

Kimball Bench 

 In the Kimball Bench area to the south of the Clarks Fork Canyon area (Fig. 3), basal 

Paleogene Willwood sediments are in contact with Cretaceous formations of varying ages 

including the Meeteetse, Mesaverde, and Cody Shale (Fig. 12). Near the mountain front, well 

data show the approximate thicknesses of these formations as follows: Lance Formation, 400 

meters; Meeteetse Formation, 280 meters; Mesaverde Formation, 250 meters; and Cody Shale, 

570 meters (Fig. 4; Finn et al., 2010). The deepest section of the paleovalley is where the 

Willwood rocks are in contact with the Cody Shale. Our map of the Kimball Bench area shows a 

distance of 580 meters between the Willwood-Cody contact and the Cody-Frontier contact (Fig. 

12). Using our measured orientations of the beds, the thickness of the Cody Shale is calculated to 

be 530 meters thick here. In addition to 50 meters of the upper part of the Cody Shale missing, 

the Mesaverde, Meeteetse, and Lance Formations are also absent. This means that where 

Willwood rocks are in contact with the Cody Shale, nearly 1000 meters of Cretaceous rocks were 

eroded away. It is possible that basal Willwood strata were deposited and eroded along with 

Cretaceous rocks; however, due to the preserved fine-grained basal Willwood below 

conglomeratic Willwood at Kimball Bench, it is likely that little to no Willwood was eroded 

away before deformation began.  



23 

 

.  

 

Figure 12. Geologic map of the Kimball Bench area. The Paleogene Willwood Formation 

transitions from gently dipping basinward to steeply tilted near the mountain front where it is in 

contact with Cretaceous formations of varying ages including the Meeteetse, Mesaverde, and 

Cody Shale (Cretaceous Lance Formation is absent). C-C’ is line of section in Figure 17. 
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 Lillegraven (2009) described the Willwood-Mesaverde contact in the Kimball Bench area 

as a ―thrust zone…of chaotically deformed black mudstone abundantly admixed with rip-up 

pebbles of siltstone and sandstone within base of Willwood Formation hanging wall.‖ We 

mapped the Mesaverde-Willwood contact throughout the Kimball Bench area and found well-

preserved bedding at the base of the Willwood. It is probable that the ―rip-up pebbles of siltstone 

and sandstones‖ are lag deposits which are commonly found throughout both the Willwood and 

Mesaverde Formations (Fig. 13). ―Chaotically deformed black mudstone‖ may refer to fine-

grained organic-rich shaly Willwood which is commonly found in the formation, although we 

did not find evidence of chaotic deformation. It is possible Lillegraven (2009) was referring to 

soft-sediment deformation, also common in the Willwood Formation (Fig. 14).  

 Where basal Willwood is in contact with the Mesaverde, the lowest Willwood sediments 

consist of variegated shales, claystones, and siltstones, transitioning up-section into pebble-to-

cobble-sized sedimentary-clast conglomerates interbedded with sandstones, siltstones, and shales 

(Fig. 15). We interpreted these sediments to reflect deposition in a relatively dry environment 

due to the presence of red beds. Recall that in the Clarks Fork Canyon area, basal Willwood is 

also in contact with the Mesaverde; however, these sediments consist of conglomeratic 

Willwood rather than the fine-grained basal Willwood in the Kimball Bench area. Regarding the 

history of deformation, it is likely that the fine-grained sediments of the basal Willwood in the 

Kimball Bench area were sourced from sediments eroded off the nascent Beartooth Mountains to 

the west. Because these lower Willwood deposits were eroded from the Clarks Fork Canyon area 

but preserved in the Kimball Bench area, it is likely that the Clarks Fork Canyon area was closer 

to the mouth of the paleovalley, resulting in the bypass and/or erosion of the earliest Willwood 

deposits during early deformation. The sedimentary-clast conglomerates were then sourced from  
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Figure 13. Typical lag deposits in the Paleogene Willwood Formation, Kimball Bench area.  

 

 
 

Figure 14. Soft-sediment deformation in the Paleogene Willwood Formation, Kimball Bench 

area. 
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Figure 15. Willwood Formation sediments in the Kimball Bench area. (A) Fine grained basal 

Willwood strata near the Willwood-Cody contact, sourced from sediments eroded off the nascent 

Beartooth Mountains to the west. (B) Limestone-clast conglomeratic Willwood up-section from 

fine-grained sediments, sourced from the Mesozoic and Upper Paleozoic sedimentary cover 

during the unroofing of the Beartooth Mountains, prior to exposure of the crystalline core of the 

mountains 
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the Mesozoic and Upper Paleozoic sedimentary cover during the unroofing of the Beartooth 

Mountains, prior to exposure of the crystalline core of the mountains. 

 In the Kimball Bench area south of the Cody-Willwood contact, the lower Willwood 

contact cuts into the Cretaceous Mesaverde Formation. The thickness of Mesaverde strata visibly 

decreases to the north, indicating that the paleovalley cut deeper into the Cretaceous section, 

ultimately cutting out the entire Mesaverde Formation and the top of the Cody Shale (Fig. 16, 

Fig. 12). Where Willwood sediments are in contact with Cody Shale, the deepest part of the 

paleovalley had formed. After the paleovalley formed, Willwood sediments were deposited on 

Late Cretaceous rocks. There was continued deformation which tilted Willwood strata along 

with Late Cretaceous rocks of varying ages (Fig. 12, 17, 18). 

West of Heart Mountain 

 In the southernmost part of the study area, the area west of Heart Mountain (Fig. 3), 

Willwood Formation strata consist of brown-to-tan sandstones and variegated siltstones 

interbedded with pebble-sized sedimentary-clast conglomerates (Fig. 19). The long axes of the 

conglomerate clasts are less than 6 centimeters and are predominately made up of black chert 

and quartz. The clasts are well-rounded and poorly sorted. The sedimentary-clast conglomerates 

in the Willwood Formation in this area suggest that the source sediments came from the 

Mesozoic and Upper Paleozoic sedimentary cover on the Beartooths, after the fine-grained 

sediments of the nascent Beartooths bypassed the Clarks Fork Canyon area and deposited in the 

Kimball Bench area.  

 The presence of red beds indicates that the basal Willwood in this area were likely 

deposited in a relatively dry environment of deposition (Bown and Kraus, 1987). In this location, 

basal Willwood is in contact with Late Cretaceous and late Paleocene formations of varying  
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Figure 16. Top: aerial photo from Google Earth in Kimball Bench area. Bottom: line drawing of 

aerial photo in Kimball Bench area. Here, the Paleogene Willwood Formation cuts into the 

Cretaceous Mesaverde Formation (Cretaceous Meeteetse and Lance formations are absent). The 

thickness of Mesaverde strata visibly decreases to the north, indicating that the paleovalley cut 

deeper into the Cretaceous section, ultimately cutting out the entire Mesaverde Formation and 

the top of the Cody Shale. 
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Figure 17. Southwest- northeast cross section in the Kimball Bench area. The Cretaceous 

Meeteetse and Lance formations are absent, indicating that approximately 700 meters of 

Cretaceous sediments were eroded away prior to Willwood deposition. In this area, the 

Paleogene Willwood Formation is steeply tilted to overturned along with the Late Cretaceous 

formations. 

 

 
 

Figure 18. Willwood Formation sediments tilted with Cretaceous Mesaverde Formation 

sediments in the Kimball Bench area (Cretaceous Lance and Meeteetse formations are absent). In 

this area, differential erosion removed Late Cretaceous rocks during formation of the 

paleovalley, followed by Paleogene Willwood deposition and then major deformation which 

tilted the rocks together. 



30 

 

 
 

Figure 19. Sedimentary-clast Willwood Formation conglomerates in the area west of Heart 

Mountain (clasts < 6 cm). Clasts are predominately black chert and quartz, indicating that at the 

time of deposition, conglomerate clasts were sourced from the Mesozoic and Upper Paleozoic 

sedimentary cover during the unroofing of the Beartooth Mountains, prior to exposure of the 

crystalline core of the mountains. 
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ages, including the Cretaceous Meeteetse Formation, the Cretaceous Lance Formation, and the 

late Paleocene Fort Union Formation (Fig. 20). The uppermost Cretaceous Lance Formation is 

420 meters thick in this area, similar to the thickness shown in a well log a few kilometers south 

of the area (Finn et al., 2010). This indicates that little to no erosion occurred prior to Paleogene 

deposition. Basal Willwood sediments are in angular discordance with underlying formations, as 

Willwood layers are gently dipping and the underlying Cretaceous and late Paleocene layers are 

tilted (Fig. 21, 22). The nature of this angular unconformity indicates that a majority of 

deformation in this area occurred prior to Willwood deposition and therefore earlier than a 

majority of deformation in the other study areas where we see Paleogene and Late Cretaceous 

rocks tilted together. It is possible that punctuated deformation events occurred, first in the area 

west of Heart Mountain, followed by further deformation northward after deposition of lower 

Willwood sediments. This could suggest that deformation in the area west of Heart Mountain 

was occurring during the development of the Pat O’Hara anticline to the west, and that the 

Kimball Bench, Clarks Fork Canyon, and Line Creek areas were later deformed during the 

unroofing of the Beartooth Mountains.   

 Lillegraven (2009) suggested that a thrust fault exists at the Willwood-Fort Union contact 

southwest of Heart Mountain. He described the thrust fault as an ―unweathered, strongly 

slickensided, abrupt contact between well-indurated and apparently little-deformed sandstone 

units occurring in opposed hanging wall and footwall.‖ We excavated the Willwood-Fort Union 

contact near Lillegraven’s site and did find abundant slickensides in Willwood sediments. 

However, these slickensides are randomly oriented, indicating that they formed from shrink-

swell rather than faulting (Fig. 23; Kraus and Aslan, 1993). At the Willwood-Lance contact 

northwest of Heart Mountain, Lillegraven (2009) described a thrust zone as a ―chaotic mélange  
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Figure 20. Geologic map of the area west of Heart Mountain. The Paleogene Willwood 

Formation is gently-dipping and rests at angular discordance on top of tilted Late Cretaceous and 

late Paleocene formations of varying ages including the Cretaceous Meeteetse, Cretaceous 

Lance, and Paleocene Fort Union formations. D-D’ is line of section in Figure 21. 

 

 
 

Figure 21. West-east cross section in the area west of Heart Mountain. In this area, the Paleogene 

Willwood Formation is gently dipping on top of tilted Late Cretaceous-Paleocene formations. 

This indicates that a majority of deformation in this area occurred prior to Willwood deposition 

and therefore earlier than a majority of deformation in the other study areas.  
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Figure 22. Gently-dipping Paleogene Willwood on top of tilted Cretaceous rocks west of Heart 

Mountain. The nature of this angular unconformity indicates that a majority of deformation in 

this area occurred prior to Willwood deposition and therefore earlier than a majority of 

deformation in the other study areas where we see Paleogene and Late Cretaceous rocks tilted 

together. 
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Figure 23. Multi-directional slickensided shale in the Willwood Formation, southwest of Heart 

Mountain. Black lines highlight various directions of slickensides, indicating that they formed 

from shrink-swell cycles rather than faulting. 
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of strongly slickensided mudstone and sandstone rip-up clasts.‖ Once again, we did find 

slickensides in this area but they were randomly oriented as a result of shrink-swell. We also 

found rip-up clasts near the Willwood-Lance contact, but determined that they were depositional 

rip-up clasts within lag deposits, as bedding was preserved at the contact where they were found 

(Fig. 24). 

Geometry of Pre-Paleogene Cretaceous Strata 

 The varying ages of the Cretaceous rocks in contact with Paleogene strata along the 

western edge of the Bighorn Basin could be the result of a deep paleovalley eroded into 

Cretaceous rocks, down to the Cody Shale in the deepest part of the valley. Another possibility is 

that there was a broad, east-west trending anticline prior to Paleogene deposition that was 

subsequently eroded, exposing Cody Shale in the core and progressively younger Cretaceous 

rocks along its flanks. 

 In order to determine whether an anticline was present prior to Paleogene deposition, we 

rotated lowermost Willwood strata to horizontal and rotated the adjacent Cretaceous units the 

same amount. This should show the orientation of the Cretaceous rocks immediately prior to 

Willwood deposition.  If there was an anticline present, the rotated Cretaceous strata should be 

north-dipping in the north, south-dipping in the south, and nearly horizontal at the fold hinge of 

the anticline.  

 We restored the Paleogene rocks to horizontal at ten locations in our field area. Table 1 

lists the present-day strikes and dips of Cretaceous and Paleogene rocks at each location as well 

as the restored strikes and dips of Cretaceous rocks prior to Paleogene deposition. At localities 2, 

3, 5, 6, and 8 (Table 1; Fig. 25), restored Cretaceous beds have a nearly horizontal dip in similar 

orientation with Willwood strata. At all other localities, restored Cretaceous orientations dip  
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Figure 24. Depositional rip-up clasts in the basal Willwood Formation, northwest of Heart 

Mountain. In this area, Lillegraven (2009) described a ―chaotic mélange of strongly slickensided 

mudstone and sandstone rip-up clasts in [the] thrust zone within base of shallowly dipping 

Willwood formation‖; however, we only found depositional rip-up clasts in this area. 

 

Location 

Number 

Present-day 

Cretaceous 

strike and dip 

Present-day 

Paleogene 

strike and dip 

Restored 

Cretaceous 

strike and dip 

Number of 

Cretaceous 

Measurements 

Number of 

Paleogene 

measurements 

1 169°, 79° W 356°, 86° E 331°, 17° E 5 4 

2 002°, 71° E 007°, 75° E 231°, 06° N 2 4 

3 190°, 76° W 185°, 69° W 223°, 08° W 6 1 

4 171°, 58° W 343°, 88° E 355°, 34° E 1 3 

5 346°, 60° E 345°, 60° E 084°, 01° S 7 8 

6 333°, 45° E 333°, 40° E 336°, 05° E 6 7 

7 333°, 44° E 324°, 28° E 347°, 17° E 8 5 

8 319°, 33° E 317°, 25° E 325°, 08° E 1 1 

9 330°, 20° E 301°, 11° E 356°, 12° E 1 2 

10 332°, 57° E 329°, 46° E 340°, 10° E 3 18 

Table 1. Paleogene-Cretaceous orientations in ten locations along the western edge of the 

Bighorn Basin (see Figure 25 for map locations).  
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Figure 25. North-south cross section of paleovalley before major tilting. Geologic map inset 

shows location of A-A’ line, restored Cretaceous bedding orientations labeled by locality, and 

locations of fossil data from Hickey (1980), Rose (1981), Gingerich (1990), and Johnson and 

Middleton (1990). In the cross section: brackets are labeled with the range of ages for each fossil 

locality. Dashed lines represent approximated isochrones at 56-54 Ma. Location and type of 

Willwood conglomerates were determined from our mapping data along with Flueckinger (1970) 

and Dutcher et al. (1986) Paleogene conglomerate clast count data. Restored Cretaceous bedding 

orientations (labeled on inset) were found by rotating present-day Paleogene bedding 

orientations to horizontal and recording the resulting restored Cretaceous bedding orientations. 
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eastward in angular discordance with the overlying Willwood Formation (Table 1; Fig. 25). We 

used the restored bedding data in Table 1 to create a cross section through the western edge of 

the Bighorn Basin (Fig. 25). Our cross section indicates that the orientations of the restored 

Cretaceous strata in contact with the Willwood Formation do not support the existence of a broad 

anticline along the entire eastern flank of the Wyoming Beartooth Mountains and east of Pat 

O’Hara Mountain (Fig. 25).  

Discussion of Cretaceous-Paleogene Relationships within the Paleovalley 

 Based on our field mapping, we found that the basal Willwood sediments in contact with 

the oldest Cretaceous rocks are located in the Kimball Bench area, where basal Willwood is seen 

tilted similarly to Cretaceous Cody Shale. Along the western edge of the Bighorn Basin, basal 

Willwood sediments in contact with underlying Cretaceous rocks of varying ages indicate that a 

deep paleovalley existed in this area prior to Paleogene Willwood deposition (Fig. 25). 

Conglomerate clast count data from Flueckinger (1970) and lithological data from Dutcher et al. 

(1986) along with our own mapping data was used to determine the stratigraphic position and 

lithologies of Paleogene infill in various parts of the paleovalley (Fig. 25). The deepest parts of 

this paleovalley were in the Kimball Bench area which filled first with fine-grained sediments 

sourced from the nascent Beartooth Mountains to the west. The mouth of the paleovalley was 

likely at present-day Clarks Fork Canyon which allowed for bypass of the earliest Willwood 

sediments through the Clarks Fork Canyon area into the Kimball Bench area. As the deeper 

sections of the paleovalley were filled, sediment deposition became more widespread with 

sedimentary-clast conglomeratic Willwood being deposited across the Clarks Fork Canyon and 

Kimball Bench areas. Finally, the Line Creek area was filled with crystalline-clast conglomeratic 

Willwood, reflecting the later stages of unroofing of the Beartooth Mountains (Fig. 25). Based 
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on the angular discordance of gently-dipping sedimentary-clast conglomeratic Willwood with 

underlying tilted Paleocene-Cretaceous strata, the area west of Heart Mountain has a different 

deformation history than the other study areas. This reflects an earlier period of deformation 

prior to deposition of sedimentary-clast conglomeratic Willwood, which can be explained by 

slightly earlier uplift of the Pat O’Hara anticline prior to the unroofing of the Beartooth 

Mountains. 

 We attempted to constrain absolute ages of Paleogene infill of the paleovalley through 

the use of late Paleocene-Eocene fossil ages. Previous studies by Hickey (1980), Rose (1981), 

Gingerich (1990), and Johnson and Middleton (1990) describe fossil locations with given age 

ranges along the western edge of the Bighorn Basin. We were able to calculate the true 

stratigraphic thickness of the Willwood at each fossil locality, which we superimposed onto our 

paleovalley cross section (Fig. 25). We projected the fossil age ranges onto the paleovalley as 

age brackets; however, we found that a complication in using these fossil localities is that they 

are basinward of the Cretaceous-Paleogene geologic map contacts. In some places, the fossil 

localities are 6- 7 km east of the Cretaceous-Paleogene geologic map contacts (Fig. 25). Because 

sediment accumulation rates vary with geographical location, the specific stratigraphic position 

of each fossil locality may not be correlative with the same stratigraphic position directly above 

the exposed Cretaceous-Paleogene contact westward. 

Discussion 

 In this study, we used structural and sedimentologic information to estimate 

paleotopography along the western edge of the Bighorn Basin. The nature of Cretaceous-

Paleogene contacts and the thicknesses of sediments have revealed a deep paleovalley carved 

into Late Cretaceous layers (Fig. 25). The Cretaceous rocks in contact with the basal Paleogene 
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Willwood Formation vary in age along the basin edge, and these varying ages indicate that there 

was differential erosion of the Late Cretaceous layers which resulted in a paleovalley that was 

filled in by Paleogene sediments.   

Removal of Late Cretaceous Sediments, Paleogene Facies Development 

 In the deepest part of the paleovalley around the Kimball Bench area (Fig. 12), the 

Cretaceous Cody Shale is in contact with basal Willwood sediments. In this area, at least 1200 

meters of Cretaceous sediments (Mesaverde, Meeteetse, and Lance Formations) were eroded 

away before Paleogene deposition began. In the Clarks Fork Canyon area (Fig. 9), basal 

Willwood sediments rest on top of sediments of the lower Mesaverde Formation. Here, at least 

1100 meters of Cretaceous sediments were removed before deposition of Willwood. In the Line 

Creek area (Fig. 5), basal Willwood is in contact with the Cretaceous Meeteetse Formation. In 

this area, about 400 meters of Cretaceous sediments were eroded away before Willwood 

deposition. In the area west of Heart Mountain (Fig. 20), gently-dipping Willwood strata rest on 

top of steeply tilted Late Cretaceous-Paleocene rocks. Where Willwood sits atop Paleocene Fort 

Union sediments, little to no erosion occurred prior to Willwood deposition.  

 Various facies of the Willwood Formation were deposited at varying depths of the 

paleovalley, with earliest deposition in the deepest areas first. The facies reflect the unroofing of 

the Beartooth block, with fine-grained facies deposition occurring first in the deepest areas, 

followed by deposition of limestone-clast conglomerates and finally crystalline-clast 

conglomerates. These facies correlate with their stratigraphic position and therefore allow for an 

interpretation of the topography of the paleovalley at their time of deposition.  

 In the Line Creek study area, basal Willwood sediments are characterized by fine grained 

red and tan siltstones and sandstones interbedded with cobble-sized crystalline-clast 
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conglomerates (Fig. 7). The dominance of crystalline clasts indicates that these Willwood 

sediments were deposited during late stages of unroofing, past the point where the crystalline 

core of the Beartooth block had been exposed. South of the Line Creek area in the Clarks Fork 

Canyon area, basal Willwood is dominated by sedimentary-clast conglomerates, mostly 

limestone cobbles (Fig. 11). Here, the Willwood represents earlier deposition than the 

crystalline-clast conglomeratic Willwood from the Line Creek study area. The Willwood present 

in the Clarks Fork Canyon area was deposited during earlier unroofing stages of the Beartooth 

Mountains. In this area, the Willwood Formation grades into brown and beige shales, siltstones, 

and sandstones containing some conglomeratic lags, seen up-section from the conglomerate-

dominated Willwood.  

 In the Kimball Bench area, basal Willwood consists of a thick section (~50 visible 

meters) of variegated fine-grained material (Fig. 15). Up-section from this, the Willwood 

Formation grades into pebble to cobble-sized sedimentary-clast conglomeratic sediments. Here, 

the fine-grained basal sediments correlate with earliest Willwood deposition as a result of the 

earliest erosion of the nascent Beartooth Mountains to the west. In the area west of Heart 

Mountain, the Willwood Formation is comprised of tan to brown shales, siltstones, and 

sandstones interbedded with pebble to cobble-sized sedimentary-clast conglomerates (Fig.19). 

The sedimentary-clast conglomerates were deposited during removal of the Upper Paleozoic-

Mesozoic sedimentary cover of the Beartooths to the west. 

 Another notable feature of the Willwood Formation is the presence or lack of red beds in 

certain areas. The presence of red beds indicates subaerial exposure of sediments after 

deposition, suggesting a relatively dry terrestrial environment of deposition. The lack of red beds 

in the Willwood Formation correlates with wetter environments of deposition. In the deepest part 
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of the paleovalley around the Kimball Bench area, basal Willwood contains variegated red, tan, 

and brown beds, indicating a relatively dry setting. In the Clarks Fork Canyon area, sediments of 

the Willwood Formation are at a higher stratigraphic position than those in the Kimball Bench 

area. These Willwood sediments contain coal seams and lack the presence of red beds, indicative 

of a wetter environment at the time of deposition. Up-section of these deposits, particularly in the 

Line Creek area, Willwood sediments consist of interbedded tan to red rocks. Here, the 

environment once again became drier at the time of deposition. 

 Slight angular unconformities between Cretaceous and Paleogene rocks in some areas 

suggest that the Cretaceous layers had been somewhat tilted before Paleogene deposition. 

However, present-day orientations among these formations in most areas are still very similar 

and this suggests that deposition of Willwood occurred during the earliest stages of tilting, before 

major uplift that resulted in the steep tilting of the Cretaceous and Paleogene layers together. 

Development of a Late Cretaceous Paleovalley 

 Our research has allowed for an understanding of events that led to the present-day 

orientation of Late Cretaceous and Paleogene sediments along the western edge of the Bighorn 

Basin in northwestern Wyoming (Fig. 26). Before unroofing of the Beartooth Mountains began, 

there was deposition of original flat-lying Cretaceous layers (Fig. 26A). After their deposition, 

slight tilting and differential erosion occurred as a result of tectonism beginning to the west, 

resulting in a large drainage area centered near the present day mouth of the Clarks Fork Canyon. 

This reflected the first stages of uplift of the Beartooth Mountains (Fig. 26B). This was how the 

paleovalley formed, with the deepest part located in the Kimball Bench area. After the erosion of 

Cretaceous layers, deposition of the Willwood Formation began. Fine-grained Willwood was 

deposited on top of the Cretaceous Cody Shale early on in the deepest part of the paleovalley in 
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the Kimball Bench area (Fig. 26C). Sedimentary-clast conglomerates within the Willwood were 

then deposited in the Kimball Bench and Clarks Fork Canyon areas, reflecting early unroofing 

stages of the Beartooth block to the west (Fig. 26D). As deposition continued, Willwood 

sediments changed from being dominated by limestone-clast conglomerate to crystalline-clast 

conglomerate which reflected later stages of the Beartooth uplift as the crystalline core was 

unroofed (Fig. 26E). Lastly, major tilting occurred, resulting in the present-day orientations of 

the Paleogene and Cretaceous rocks in the area.   

Conclusions 

 Historically, Late Cretaceous and Paleogene sediments have been used to explain the 

timing of uplift and deposition correlating with the unroofing of the Beartooth Mountains in this 

part of northwestern Wyoming (Jobling, 1974; Dutcher et al., 1986; Hickey et al., 1986; Parker 

and Jones, 1986; DeCelles et al., 1991b.). Our study of Cretaceous-Paleogene geology in 

northwestern Wyoming represents the first to use structural and sedimentologic data along the 

western edge of the Bighorn Basin in order to reconstruct the paleotopography that existed along 

the western edge of the Bighorn Basin prior to and during the unroofing of the Beartooth 

Mountains. Our data have revealed a deep paleovalley carved into Cretaceous sediments prior to 

Paleogene deposition, which explains most of the unconformities present within these layers. 

This has also led to an interpretation that links the nature and ages of the Cretaceous-Paleogene 

contacts to the deformation and depositional history along the western edge of the Bighorn Basin 

in a way that hasn’t been suggested before.   
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Figure 26. Block diagrams showing formation of paleovalley and subsequent Willwood 

deposition along the western edge of the Bighorn Basin. A. Deposition of original flat-lying 

Cretaceous layers. B. Slight tilting and differential erosion of Late Cretaceous layers. C. 

Beginning of fine-grained Willwood deposition. D. Sedimentary-clast conglomeratic Willwood 

deposition. E. Crystalline-clast conglomeratic Willwood deposition. After the carving and 

subsequent infill of the paleovalley, major tilting occurred, resulting in the present-day 

orientations of the Paleogene and Cretaceous rocks in the area.   
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CHAPTER 2: MULTI-STAGE LARAMIDE SHORTENING AS REVEALED BY 

CRETACEOUS-PALEOGENE UNCONFORMITIES IN THE VICINITY OF HEART 

MOUNTAIN, NORTHWESTERN WYOMING 

 

Introduction 

 The Bighorn Basin is a topographic and structural basin bordered by Laramide structures 

(Fig.1; Bown, 1980). The Pryor, Bighorn, Bridger, Owl Creek, and Absaroka ranges border the 

north, east, south, southwest, and west edges of the basin, respectively (Bucher et al., 1933). The 

basin is bounded on the northwest by the Beartooth uplift. South of the Beartooth Mountains, the 

Pat O’Hara and Rattlesnake Mountain structures bound the basin (Fig. 2). In some areas along 

the western edge of the basin, the contact between the Cretaceous and Paleogene rocks is 

conformable; in other places the contact is either a disconformity or an angular unconformity 

(Pierce, 1965a, 1965b, 1966, 1968). Along the northwestern edge of the Bighorn Basin, 

Laramide structures have varying orientations. There have been multiple interpretations 

regarding their orientations: Wise (2000) suggested that different orientations reflect a change in 

shortening directions during the Laramide, while Neely and Erslev (2009) proposed that one 

dominant shortening direction reactivated pre-existing basement structures which resulted in 

varying orientations.  

 Heart Mountain is located near the western edge of the Bighorn Basin (Fig. 2). The 

Paleocene Fort Union Formation and late Paleocene-Eocene Willwood Formation in the vicinity 

of Heart Mountain were last mapped in detail by Lillegraven (2009) and previous to that by 

Pierce (1937 and 1938). Pierce’s mapping revealed an angular unconformity between the 
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Figure 1. Location map of the Clarks Fork and Bighorn Basins and bounding Laramide ranges. 

Satellite image from Google Earth. 
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Figure 2. Simplified geologic map of the western Bighorn Basin and adjacent Laramide 

structures, modified from Neely and Erslev, 2009. Black box outlines study area (Figure 3).  
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Willwood Formation and underlying tilted Fort Union Formation and Late Cretaceous layers. 

Lillegraven interpreted the contact at the base of the Willwood Formation as a west-vergent 

thrust fault with tens of kilometers of slip. In this study, we utilized field-based mapping in order 

to resolve the depositional and/or deformational nature of Cretaceous-Paleogene contacts in the 

vicinity of Heart Mountain.  

Regional Setting 

Structural Geology 

 The Clarks Fork and Bighorn Basins of northwestern Wyoming developed during uplift 

of the Rocky Mountains (Gingerich and Clyde, 2001). Mountainous areas including the Bighorn, 

Owl Creek, Beartooth, and Pryor Mountains around the Bighorn Basin uplifted during the 

middle-late Laramide orogeny (Fig. 1; Foose et al., 1961; Bown, 1980). The northern limit of the 

basin does not have a bounding mountain mass; instead, the Nye-Bowler zone forms a structural 

boundary where Precambrian basement has moved both vertically and horizontally (Foose et al., 

1961). South of the Beartooths, the Pat O’Hara and Rattlesnake Mountain structures bound the 

basin. Our study area is focused in the northwestern Bighorn Basin in the vicinity of Heart 

Mountain, located east of Pat O’ Hara Mountain, southeast of the Beartooth uplift and northeast 

of Rattlesnake Mountain (Fig. 2). The Rattlesnake Mountain anticline is northwest trending and 

approximately 27 km long (Fig. 2; Neely, 2006). It is asymmetric, with its backlimb dipping 12-

15° NE and the forelimb overturned and dipping 45° SW. At its northwest end, the backlimb and 

crest of the Rattlesnake Mountain structure terminates into the crest of the east-west trending Pat 

O’Hara Mountain anticline (Fig. 2; Neely, 2006). North of the Pat O’Hara anticline, the 

Beartooth Mountains are a 130 by 60 km block of Precambrian crystalline rocks. Major uplift of 

the Beartooths occurred in the middle-late Paleocene, culminating during the early Eocene 
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(Foose et al., 1961; DeCelles et al., 1991). By the mid-Eocene, the Beartooths had reached their 

present structural relief with respect to adjacent crustal blocks; however, the Beartooths had not 

reached their present topographic relief until regional uplift of the Middle Rocky Mountains in 

the Miocene-Pliocene (Foose et al., 1961). The eastern edge of the Beartooth Mountains trends 

north-south in the vicinity of our study area (Fig. 2).  

 In northwestern Wyoming, there are differently-oriented Laramide structures bounding 

the western edge of the Bighorn Basin: the eastern edge of the Beartooth mountain front trends 

north-south, Rattlesnake Mountain anticline trends northwest, and the Pat O’Hara Mountain 

anticline trends east-west. In a study by Wise (2000), he used structural data near Red Lodge, 

Montana to constrain the kinematics of deformation and concluded that eastward escape 

tectonics caused a change in the thrust direction during Laramide compression of the Beartooth 

uplift, from a north-northeast direction to an east-directed compression. In a study by Neely and 

Erslev (2009), they collected data from 1581 slickensided minor faults which revealed a regional 

shortening direction of 065°. In their study, they suggested that differently-oriented Laramide 

structures in this area were in fact the result of fault-propagation and fault-bend folding 

combined with unidirectional compression that reactivated pre-existing basement weaknesses 

(Neely and Erslev, 2009). This paper addresses the nature of geologic contacts and the timing of 

deformation events in the vicinity of Heart Mountain in order to explain the present-day 

orientations of Cretaceous-Paleogene sediments and to relate these orientations to episodes of 

Laramide shortening. 

Late Cretaceous-Paleogene Sedimentation in the Bighorn Basin 

 Continental sedimentation in the Bighorn Basin commenced in the latest Cretaceous, 

resulting in the accumulation of approximately 6400 meters of lacustrine and fluvial sediments in 
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the deepest parts of the basin by the end of the Eocene (Bown, 1980). The Cretaceous Mesaverde 

Formation consists of massive sandstones with thin coal beds in the lower part, overlain by 

interbedded sandstone and shale in the upper part. Above the Mesaverde is the Cretaceous 

Meeteetse Formation, consisting of interbedded clayey sand, sandstone, and shale (Lillegraven, 

2004). The Cretaceous Lance Formation overlies the Meeteetse Formation, comprised of fluvial 

sandstones interbedded with siltstones, mudstones, and shales (Webb and Steel, 2001).  

 There was rapid accumulation of fluvial and paludal sediments in the basin during the 

Paleocene, resulting in the development of the Fort Union Formation. Along the northwestern 

margin of the basin, the upper part of the Paleocene Fort Union Formation consists of alluvial 

fan and fluvial deposits which preserve internal angular unconformities that developed during 

synkinematic uplift of the Beartooths and accompanying sedimentation (Gingerich, 1983). The 

upper part of the formation contains interbedded conglomerates, sandstones, siltstones, and 

mudstones. The late Paleocene-Eocene Willwood Formation was deposited mainly by 

meandering streams on broad floodplains in the basin. Some carbonaceous shales and coal beds 

formed in ponds, backswamps, and other low-lying areas on the floodplain (Bown, 1980). 

Deposition was punctuated by intervals of nondeposition and ensuing soil formation, which 

resulted in the present-day variegated paleosols seen throughout the Willwood Formation (Bown, 

1979; Kraus, 1979). The thickness of the Paleocene and Eocene rocks varies greatly throughout 

the basin, ranging from 400 m to over 2,430 m (Neasham and Vondra, 1972; Blackstone, 1986).  

Mapping of Cretaceous-Paleogene Strata near Heart Mountain 

 Previous mapping by Pierce (1966) revealed an angular unconformity northwest of Heart 

Mountain between the gently dipping late Paleocene-Eocene Willwood Formation and 

underlying tilted Paleocene Fort Union Formation and Late Cretaceous layers. Southwest and 
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southeast of Heart Mountain, Pierce mapped approximate contacts at the base of the Willwood 

and took sparse bedding measurements near these contacts. We chose three study areas in the 

vicinity of Heart Mountain based on critical exposures of contacts between basal Paleogene 

Willwood strata and underlying Cretaceous-Paleocene rocks. These areas include northwest of 

Heart Mountain, southwest of Heart Mountain, and southeast of Heart Mountain (Fig. 3).  

 In the vicinity of Heart Mountain, Willwood sediments are in contact with Paleocene Fort 

Union and Late Cretaceous sediments. We focused mapping at the contacts, measuring bedding 

orientations and describing the sediments in detail. In the field, we mapped the late Paleocene-

Eocene Willwood Formation based on the presence of variegated paleosols interbedded with tan-

to-brown coarse-grained sandstones. Below the Willwood, the Paleocene Fort Union Formation 

is comprised of tan to brown sandstones, siltstones, and conglomerates. The formation contains 

coarse-grained sandstones with locally interbedded black chert conglomerate deposits. During 

geologic mapping, we used the presence of black chert-pebble conglomerates in the Fort Union 

Formation to distinguish it from the basal Willwood Formation. Sedimentary-clast Fort Union 

conglomerates near the base of the Willwood Formation were mapped northwest, southwest, and 

southeast of Heart Mountain. The deposits contain predominantly black chert clasts, and the 

conglomerates have a similar lithology: coarse sand matrix, clast supported with poorly sorted, 

well rounded, predominantly dark colored chert clasts. There are some limestone clasts present 

and the conglomerate clast composition is approximately 70% chert and 30% limestone, with 

clasts ranging from <1 to 8 cm in diameter. The conglomerates are commonly interbedded with 

tan, coarse-grained, cross-bedded sandstones of the Fort Union Formation. Based on their similar 

lithology and stratigraphic position in relation to the basal Willwood Formation, it is likely that 

the black-chert conglomerates and interbedded sandstones of the Fort Union Formation formed  
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Figure 3. Geologic map in the vicinity of Heart Mountain. Black boxes outline study areas where 

basal contacts of the late Paleocene-Eocene Willwood Formation are well exposed. 
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in the same depositional setting; therefore, the black chert conglomerates mapped near Heart 

Mountain represent synchronous deposits. This indicates that there was a complex deformational 

history during Fort Union deposition, as the black chert conglomerate of the upper Fort Union 

Formation is steeply folded northwest of Heart Mountain but gently-dipping southwest and 

southeast of Heart Mountain. Along the western edge of the Bighorn Basin, Lillegraven (2009) 

interpreted basal Willwood contacts as west-directed faults in multiple locations, including 

locations in the vicinity of Heart Mountain. During field work, we excavated and described basal 

Willwood sediments in order to determine whether the contacts were faulted or depositional.  

Northwest of Heart Mountain 

 Northwest of Heart Mountain, Willwood rocks are in contact with Cretaceous Meeteetse, 

Cretaceous Lance, and Paleocene Fort Union strata (Fig. 4). Willwood sediments here generally 

contain coarse-grained sandstones and sedimentary-clast conglomerates. The sandstones are 

coarse grained, poorly cemented, and gray, tan, and brown in color. Certain sandstones in the 

Willwood are strongly cross bedded and contain limestone-clast pebble lags (Fig. 5). Where 

Willwood is in contact with Lance Formation, Lillegraven (2009) described a ―chaotic mélange 

of strongly slickensided mudstone and sandstone rip-up clasts in [the] thrust zone within base of 

shallowly dipping Willwood formation.‖ We investigated this location and did find clasts in the 

Willwood; however, these are sedimentary rip-up clasts and were not produced by faulting (Fig. 

6). Instead of slickensides, we found carbonaceous segments of plant fossils within mudstone 

pieces, commonly found in the Willwood Formation (Fig. 7).  

 Northwest of Heart Mountain, Paleocene Fort Union sediments are steeply dipping, 

oriented similarly to underlying Cretaceous rocks (Fig. 8). Conglomerates in the Fort Union 

Formation contain well-rounded, poorly sorted, less-than-1-to-8-centimeter sedimentary clasts  
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Figure 4. Geologic map of the study area northwest of Heart Mountain. The late Paleocene-

Eocene Willwood Formation is gently-dipping and rests at angular discordance on top of tilted 

Late Cretaceous and late Paleocene formations of varying ages including the Cretaceous 

Meeteetse, Cretaceous Lance, and Paleocene Fort Union formations. A-A’ is line of section in 

Figure 8. 



59 

 

 
 

Figure 5. Cross bedding in Willwood sandstone outcrops northwest of Heart Mountain. Hammer 

length 30 cm. 

 

 
 

Figure 6. Depositional rip-up clasts in the basal Willwood Formation, northwest of Heart 

Mountain. In this area, Lillegraven (2009) described a ―chaotic mélange of strongly slickensided 

mudstone and sandstone rip-up clasts in [the] thrust zone within base of shallowly dipping 

Willwood formation‖; instead of a thrust zone within basal Willwood, only depositional rip-up 

clasts are present. 
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Figure 7. Carbonaceous plant fossils found in basal Willwood strata, northwest of Heart 

Mountain. Lillegraven (2009) described a ―chaotic mélange of strongly slickensided mudstone 

and sandstone rip-up clasts in [the] thrust zone within base of shallowly dipping Willwood 

formation‖; instead of slickensides, carbonaceous segments of plant fossils within mudstone 

pieces are present. 

 

 
 

Figure 8. West-east cross section in the area northwest of Heart Mountain. The Paleogene 

Willwood Formation is gently dipping on top of tilted Late Cretaceous-Paleocene formations. 
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which include predominantly black chert (~70%), gray chert, some red chert, and some 

limestone clasts. The conglomerates have very coarse sandstone matrices and commonly incise 

into sandstones below (Fig. 9). late Paleocene-Eocene Willwood sediments are gently-dipping 

and lie in angular discordance with underlying tilted Paleocene Fort Union strata. Where 

Willwood is in contact with the Cretaceous Lance Formation, the Lance is steeply dipping in 

contact with flat-lying Willwood sediments (Fig. 10). Equal area projections showing density 

contours of poles to bedding clearly show an angular unconformity between the tilted Lance and 

Fort Union Formations and overlying gently-dipping Willwood (Fig. 11). Lance and Fort Union 

strata have mean strike and dip of 328°, 52° and 346°, 42°, respectively (following the right-hand 

rule), whereas Willwood layers have a mean strike and dip of 297°, 09°. 

Southwest of Heart Mountain 

 In the area southwest of Heart Mountain (Fig. 12), the Willwood Formation is 

characterized by interbedded shale, sandstone, and conglomerate. The sandstones are generally 

tan to brown and coarse-grained, interbedded with finer grained shaly strata. Fine-grained layers 

in the Willwood here consist of mottled red and gray silty shale with some black shale layers. 

Lillegraven (2009) described thrust faulting at the Willwood-Fort Union contact, citing 

―abundant slickensides above [a] sharp contact.‖ We investigated the Willwood-Fort Union 

contact southwest of Heart Mountain and found that some shaly layers in the Willwood display 

slickensides; however, the slickensides are oriented in multiple directions, indicating that they 

likely are a result of soil shrink-swell cycles rather than faulting (Fig. 13). 

 Southwest of Heart Mountain, conglomerates in the Willwood contain predominantly 

sedimentary clasts, greater than 85% chert, with some limestone and some crystalline clasts. The 

clasts are well-rounded and generally less than or equal to 15 cm in diameter (Fig. 14). Below  
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Figure 9. Conglomerate incising into sandstone in the Paleocene Fort Union Formation, 

northwest of Heart Mountain. Conglomerates in the Fort Union Formation contain well-rounded, 

poorly sorted, less-than-1- to 8-centimeter sedimentary clasts which include predominately black 

chert (~70%), gray chert, some red chert, and some limestone clasts. 

 

 
 

Figure 10. Angular discordance between tilted Cretaceous Lance Formation and gently-dipping 

late Paleocene-Eocene Willwood Formation northwest of Heart Mountain. View to the southeast. 
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Figure 11. Equal area projections showing density contours of poles to bedding orientations of 

the tilted Cretaceous Lance, Paleocene Fort Union Formation and the gently-dipping late 

Paleocene-Eocene Willwood Formation, northwest of Heart Mountain. Mean strike and dip of 

Cretaceous-Paleocene bedding below Willwood Formation: strike 341°, dip 44°NE; mean strike 

and dip of late Paleocene-Eocene Willwood Formation: 298°, 10°N. Equal area projections 

created using GEOrient version 9.5.0.  
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Figure 12. Geologic map of the area southwest of Heart Mountain. The late Paleocene-Eocene 

Willwood and Paleocene Fort Union formations are gently-dipping and rest at angular 

discordance on top of the tilted Cretaceous Lance Formation. B-B’ is line of section in Figure 16. 
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Figure 13. Multi-directional slickensided shale in the Willwood Formation, southwest of Heart 

Mountain. Black lines highlight various directions of slickensides, indicating that they formed 

from shrink-swell cycles rather than faulting. 

 

 
 

Figure 14. Gently-dipping sandstone overlying sedimentary-clast conglomerate of the Willwood 

Formation, southwest of Heart Mountain. Conglomerate clasts are >85% chert, <15% limestone 

and crystalline (clasts are ≤15 cm). Hammer length 30 cm. 
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the Willwood Formation, the Fort Union Formation contains interbedded sandstones, siltstones, 

and conglomerates. The conglomerates have tan, coarse-sand matrices and are clast supported, 

with poorly sorted, rounded, less than 1- to 20-cm predominately sedimentary clasts. Clasts in 

the Fort Union here include predominately black chert (>70%), limestone, and quartz (Fig. 15). 

The black chert conglomerate of the upper Fort Union is gently dipping southwest of Heart 

Mountain, differing in orientation from the coeval black-chert conglomerate layer that is tilted 

west and northwest of Heart Mountain. In this area, the Cretaceous Lance Formation is steeply 

dipping and lies in angular discordance beneath the gently-dipping Fort Union Formation, which 

is in conformable contact with the overlying gently-dipping Willwood Formation (Fig. 16). The 

Lance is characterized by thick, buff-colored sandstones interbedded with tan to gray shales. 

Equal area projections show differing bedding orientations between the tilted Cretaceous Lance 

Formation and overlying gently-dipping Fort Union and Willwood Formations (Fig. 17). In this 

area, Lance strata have a mean strike and dip of 301°, 55° (following the right-hand rule), 

whereas Fort Union and Willwood layers have mean strike and dips of 327°, 13° and 016°, 10°, 

respectively. 

 South of the area that we mapped, Pierce (1966) mapped an approximate location for the 

Lance-Fort Union contact. The contact geometry as drawn by Pierce implies that the Fort Union 

is steeply dipping in this area. However, the Fort Union strata near the basal contact dip gently. It 

is possible that there is an internal angular unconformity within the Fort Union Formation as the 

mapping by Pierce indicates; however, the mapped contacts in this area are approximate and due 

to the proximity of a shallowly-dipping Fort Union measurement to the contact, it is likely that 

this section was incorrectly mapped and requires revision. Using the topography of the area, we 

remapped this area with a more accurate Lance-Fort Union contact geometry (Fig. 18).  
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Figure 15. Interbedded sandstone and sedimentary-clast conglomerate in gently-dipping Fort 

Union Formation, southwest of Heart Mountain. Conglomerate clasts are >70% chert, <30% 

limestone and quartz. Clasts are <1-20 centimeters in diameter. 
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Figure 16. Southwest-northeast cross section southwest of Heart Mountain showing steeply 

dipping Cretaceous layers below the gently dipping Paleocene Fort Union and late Paleocene-

Eocene Willwood Formations. 
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Figure 17. Equal area projections showing density contours of poles to bedding orientations of 

the tilted Late Cretaceous strata, gently-dipping Paleocene Fort Union Formation and the gently-

dipping late Paleocene-Eocene Willwood Formation, southwest of Heart Mountain. Mean strike 

and dip of Late Cretaceous  bedding below Paleogene Fort Union and Willwood Formations: 

strike 303°, dip 53°N; mean strike and dip of Paleogene Fort Union Willwood Formations: 348°, 

11°N. Equal area projections created using GEOrient version 9.5.0.  
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Figure 18. Geologic map of the area southeast of Heart Mountain. The Lance-Fort Union contact 

was remapped in order to resolve the incorrect contact geometry from previous mapping by 

Pierce (1966). 
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Southeast of Heart Mountain 

 In the area southeast of Heart Mountain (Fig. 19), conglomerate clasts in the upper part of 

the Fort Union include predominantly chert (>70%) and limestone. The black chert conglomerate 

layer of the upper Fort Union is gently dipping southeast of Heart Mountain, similar in 

orientation with the synchronous black chert conglomerate layer that is gently-dipping southwest 

of Heart Mountain. At the Fort Union-Willwood contact at his Site 16, Lillegraven described a 

―strongly jointed, c. 18 m long, >3 m thick, allochthonous sandstone mass, severely shattered 

along base, wholly encased within c. 9 m-thick dark mudstone exhibiting fabric with many sharp 

bends.‖ We visited this site and did not find evidence for faulting (Fig. 20). We were able to 

excavate into the mudstone and found that bedding was well-preserved and lacked fault 

indicators, such as slickensides or fault breccia. In this area, the Paleocene Fort Union Formation 

and late Paleocene-Eocene Willwood Formation are in conformable contact. Equal area 

projections showing density contours of poles to bedding show similar orientations of the gently-

dipping Fort Union and Willwood Formations southeast of Heart Mountain (Fig. 21). Here, the 

mean orientation of Fort Union strata is 311°, 12°NE and the mean orientation of Willwood 

strata is 310°, 09°NE. Combined, the Fort Union and Willwood have a mean bedding orientation 

of 311°, 11°NE (Fig. 21).  

 Southeast of Heart Mountain, Lillegraven (2009) described an ―almost horizontal bed of 

Quaternary cobble-bearing sandstone set with angular unconformity atop northeast-dipping Fort 

Union Formation.‖ We mapped the outcrop during field research and then used Google Earth to 

trace the rocks to a known outcrop of Fort Union sediments (Fig. 22). We also traveled to this 

site during field work and determined that the ―Quaternary cobble-bearing sandstone‖ does not 

match the description of known Quaternary conglomeratic deposits in the vicinity of Heart  
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Figure 19. Geologic map of the area southeast of Heart Mountain. The late Paleocene-Eocene 

Willwood Formation is in conformable contact with the Paleocene Fort Union Formation in this 

area.  
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Figure 20. Photo taken by the authors showing site Lillegraven (2009) described as ―view to 

southeast, with two arrows pointing to correlative stratigraphic levels within a broad and 

complex fault zone (heavily deformed strata between dashed lines) near base of Willwood 

Formation.‖  In this photo, undeformed well-preserved layers of the Willwood (Tw) and Fort 

Union (Tfu) formations are visible. In this area, we excavated into fine grained strata and found 

that the sediments lacked fault indicators, such as slickensides or fault breccia. 
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Figure 21. Equal area projections showing density contours of poles to bedding orientations of 

the gently-dipping Paleocene Fort Union and late Paleocene-Eocene Willwood Formations, 

southeast of Heart Mountain. Mean strike and dip of Paleogene Fort Union and Willwood 

Formations: strike 311°, dip 11°N. Equal area projections created using GEOrient version 9.5.0. 
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Figure 22. Google Earth image showing horizontal bedding, described by Lillegraven (2009) as 

―Quaternary cobble-bearing sandstone.‖  Northeast-dipping Fort Union Formation is seen in the 

foreground. Known Fort Union sediments outcrop along strike from ―Quaternary cobble-bearing 

sandstone‖ from Lillegraven (2009), indicating that the ―Quaternary cobble-bearing sandstone‖ 

is part of the Paleocene Fort Union Formation. 
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Mountain. Quaternary conglomeratic deposits around Heart Mountain are generally very poorly 

cemented and flat-lying; the ―Quaternary cobble-bearing sandstone‖ from Lillegraven (2009) is 

well-cemented and tilted in some places, indicating that it is indeed part of the Fort Union 

Formation. Northeast of Lillegraven’s ―almost horizontal bed of Quaternary cobble-bearing 

sandstone,‖ the Fort Union Formation is seen tilted, dipping to the northeast (Fig. 23).  Where it 

is tilted, the Fort Union is in similar orientation to the ―northeast-dipping Fort Union Formation‖ 

from Lillegraven (2009). Using this information, we mapped the near-horizontal bed of cobble-

bearing sandstone as the Fort Union Formation and determined that there is a fold within the Fort 

Union Formation southeast of Heart Mountain. Proximal to the location of northeast- dipping 

Fort Union strata, basal Willwood strata near the Willwood-Fort Union contact are also 

northeast- dipping in similar orientation (Fig. 24). This suggests that upper Fort Union and lower 

Willwood rocks were folded together during a stage of deformation in the latest Paleocene-early 

Eocene.   

Joints in Cretaceous Strata Northwest of Heart Mountain 

 Joints are fractures that form without significant displacement parallel to the fracture and 

that display only slight movement normal to the fracture plane. Joint systems can be used to 

reveal the sequence and timing of tectonic events, and orientations of systematic fractures reflect 

the orientation of the principal stress directions involved in deformation (Fossen, 2010). North-

striking tilted Cretaceous strata in the vicinity of Hogan Reservoir are indicative of an episode of 

east-directed shortening. The Cretaceous strata also display systematic joints that we used to find 

shortening directions in this area (Fig. 25). We measured 69 joints in the Cretaceous Frontier 

Formation on the northern shore of Hogan Reservoir. After rotating bedding to horizontal, the 

mean strike of the joints is 020°, indicating that there is strong evidence for north-northeast to  
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Figure 23. Unit described by Lillegraven (2009) as ―Quaternary cobble-bearing sandstone.‖  

Photo shows unit dipping to the northeast and flat-lying to the southwest, indicating that it is part 

of the Paleocene Fort Union Formation. View to the southeast.  
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Figure 24. Geologic map of the area southeast of Heart Mountain. The Paleocene Fort Union 

Formation and late Paleocene-Eocene Willwood Formation are folded in this area where they 

transition from nearly horizontal to northeast-dipping. 
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Figure 25. Geologic map of Hogan Reservoir. Cretaceous strata generally strike north-south in 

this area and contain joint sets used to find shortening directions in this area. 
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south-southwest-directed shortening (Fig. 26). It is probable that the joints at Hogan Reservoir 

formed as a result of north-northeast-directed shortening whereas the present-day north-striking 

Cretaceous strata were tilted as a result of east-directed shortening. 

Discussion 

Cretaceous-Paleogene Angular Unconformities 

 Southwest of Heart Mountain, Late Cretaceous rocks generally strike northwest-southeast 

and lie in angular discordance with the overlying Fort Union and Willwood Formations (Fig. 16). 

Northward, the Late Cretaceous strata transition to a north-south orientation where they are tilted 

conformably with the overlying Fort Union Formation (Fig. 27). Recall that northwest of Heart 

Mountain, the Late Cretaceous-Fort Union strata lie at angular discordance with the overlying 

gently-dipping Willwood Formation (Fig. 8). Synchronous black chert conglomerate in the upper 

Fort Union Formation changes orientation from steeply dipping and in conformable contact with 

Late Cretaceous strata northwest of Heart Mountain to nearly horizontal and at angular 

discordance with Late Cretaceous strata southwest of Heart Mountain. Equal area projections 

clearly show differences in orientations below and above angular unconformities northwest and 

southwest of Heart Mountain (Fig. 28). The differing ages of the unconformities suggest that 

they formed at different times. South and southeast of Heart Mountain, the Willwood Formation 

is in conformable depositional contact with the Fort Union Formation and a thin section of upper 

Fort Union and lower Willwood strata can be seen slightly folded in some places. 

Timing of Deformation 

 Differences in the orientation of Late Cretaceous rocks as well as the differing ages of 

tilted sediments indicate that northwest and southwest of Heart Mountain, deformation occurred 

at different times and with different shortening directions. Southwest of Heart Mountain,  
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Figure 26. Rose diagram showing orientations of joints found in north-south striking Cretaceous 

strata near Hogan Reservoir. Bedding is rotated to horizontal. Mean strike of joints is 020°, 

indicating north-northeast to south-southwest directed shortening. 
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Figure 27. Equal area projections showing differences in mean bedding orientations of Late 

Cretaceous layers, southwest and northwest of Heart Mountain. Southwest of Heart Mountain, 

the mean bedding orientation is 296°, 53°N.  Northwest of Heart Mountain, the mean bedding 

orientation is 331°, 50°E. Equal area projections created using GEOrient version 9.5.0. 
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Figure 28. Equal area projections showing density contours of Late Cretaceous layers, Paleocene 

Fort Union Formation, and late Paleocene-Eocene Willwood Formation above vs. below 

unconformities northwest and southwest of Heart Mountain. Northwest of Heart Mountain, 

projections show tilted Lance and Fort Union Formations below gently-dipping Willwood 

Formation. Southwest of Heart Mountain, projections show tilted Late Cretaceous beds below 

gently-dipping Fort Union and Willwood Formations. Equal area projections created using 

GEOrient version 9.5.0. 
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deformation occurred in the latest Cretaceous-early Paleocene, prior to deposition of the 

Paleocene Fort Union Formation. After the tilting of Late Cretaceous strata up to and including 

Lance, Paleocene Fort Union and late Paleocene-Eocene Willwood sediments were deposited 

unconformably on top of Cretaceous rocks. Northwest of Heart Mountain, deformation occurred 

in the late Paleocene, resulting in the tilting of Late Cretaceous formations as well as the 

Paleocene Fort Union Formation. In the latest Paleocene, Willwood sediments were deposited on 

top of steeply dipping Cretaceous-Paleocene rocks. Southeast of Heart Mountain, a fold is 

evident within the Fort Union Formation where it can be seen northeast- dipping and in contact 

with nearly horizontal Fort Union rocks (Fig. 23). The northeast-dipping Fort Union rocks are in 

similar orientation to tilted basal Willwood strata near the Willwood-Fort Union contact 

southeast of Heart Mountain. This indicates that some deformation occurred that folded a thin 

layer of basal Willwood and upper Fort Union strata together, likely synchronous with the 

deformation that tilted Late Cretaceous-Paleocene Fort Union strata in similar orientation 

northwest of Heart Mountain. North of the Heart Mountain area, Late Cretaceous-Paleogene 

rocks are deformed to the east of the Beartooth Mountains and Dead Indian Hill. Previous work 

by DeCelles et al. (1991) has shown that the Paleocene Fort Union Formation along the 

northwestern Bighorn Basin margin was deformed in the late Paleocene. Our mapping of 

deformed late Paleocene-early Eocene Willwood strata east of the Beartooths and Dead Indian 

Hill suggest that deformation also occurred in the early Eocene.  

 Our deformation ages are in disagreement with some previous studies focused on the 

Beartooth uplift: mapping by Pierce (1966) indicated that deformation occurred up to the latest 

Paleocene; DeCelles et al. (1991) proposed that Beartooth deformation began and ended in the 

late Paleocene; and Wise (2000) suggested that it occurred throughout the Paleocene, ending in 
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the late Paleocene. However, our deformation ages are also in agreement with other studies 

based in the northwestern Bighorn Basin: Dutcher et al. (1986) suggested that synorogenic 

sediments were late Paleocene in age, but considered that syntectonic deposition may have 

continued into the Eocene; and Stearns et al. (1974) suggested that the entire region near 

Rattlesnake Mountain began deforming in the uppermost Cretaceous and lasted into the Eocene. 

Gries (1990) suggested that the Laramide Orogeny occurred from the Late Cretaceous to late 

Eocene, specifying that the Beartooth uplift occurred during the Paleocene and the Pat O’Hara 

uplift occurred in the early to middle Eocene. Our study has indicated that deformation along the 

western edge of the Bighorn Basin was occurring from the latest Cretaceous into the early 

Eocene, generally in agreement with the range of ages proposed for the Laramide Orogeny. 

Shortening Directions Associated with Deformation  

 Along the western edge of the Bighorn Basin, differently oriented Late Cretaceous-

Paleogene strata reflect a change in shortening directions, from north-northeast- to east-directed. 

It is likely that a first episode of north-northeast-directed deformation occurred during uplift of 

the Pat O’Hara mountain block, which strikes roughly WNW and resulted in tilted Late 

Cretaceous strata that strike WNW southwest of Heart Mountain. This was followed by a second 

episode of east-northeast-directed deformation during uplift of the Beartooth block, which strikes 

roughly north and resulted in tilted Late Cretaceous-Paleocene strata that strike nearly due N  

northwest of Heart Mountain and along the eastern front of the Beartooths. A final stage of east-

directed deformation occurred in the early Eocene as a result of the uplift of Dead Indian Hill 

and continued uplift of the Beartooth Mountains; this episode tilted Late Cretaceous-early 

Eocene rocks east of Dead Indian Hill and east of the Beartooths, re-deforming the Late 
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Cretaceous-Paleocene strata along the northwestern Bighorn Basin margin and resulting in their 

present-day orientations (Fig. 29). 

 Near Hogan Reservoir northwest of Heart Mountain, north-striking tilted Cretaceous 

strata formed as a result of east-directed shortening; however, systematic joints within the Late 

Cretaceous strata indicate a dominant shortening direction of 020° when beds are rotated to 

horizontal. In a previous study, Wise (2000) proposed that there was a change in shortening 

directions during Laramide deformation of the Beartooth Mountains, from north-northeast-

directed to east-directed. Our study at Hogan Reservoir is in agreement with his hypothesis; it is 

apparent that the joints formed during the first stage of north-northeast-directed shortening 

whereas the Late Cretaceous strata were folded to their present orientation as a result of later 

east-directed shortening during uplift of Dead Indian Hill to the west. 

 Previous studies have cited a variety of local and large-scale controls to explain variously 

oriented structures throughout the Rocky Mountains. Proposed controls have included localized 

pre-orogenic ductile fabrics (Erslev and Koenig, 2009), pre-existing major faults that may have 

been reactivated depending on their proximity to basement-involved arches (Brown, 1993), 

large-scale reactivation of pre-existing basement structures (Neely and Erslev, 2009), inversion 

of Proterozoic extensional fault systems and structures (Marshak et al., 2000; Timmons et al., 

2001), the trajectory of Farallon-North American relative plate motions (Saleeby, 2003), a 

change in movement of the North American plate from west to southwest to south (Gries, 1983, 

1990), and unimodal ENE-WSW shortening and compression (Erslev and Koenig, 2009). 

Studies have shown that there were both internal and external controls on the development of 

Laramide structures throughout the Rocky Mountains, and the orientations of the Laramide 

structures are important when determining which control(s) exerted the most influence on their  
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Figure 29. Simplified geologic maps of the western Bighorn Basin and adjacent Laramide 

structures showing shortening directions during the three stages of deformation. On each map, 

actively deforming Laramide structures are labeled; arrows show direction of shortening. Three 

stages of deformation include (1) latest Cretaceous-early Paleocene NNE-SSW shortening as a 

result of Pat O’Hara and Rattlesnake Mountain uplifts; (2) late Paleocene ENE-WSW shortening 

as a result of Beartooth uplift; (3) early Eocene E-W shortening as a result of Dead Indian Hill 

uplift and continued Beartooth uplift.  
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development (Brown, 1988). Our research has revealed that multiple shortening directions at 

various intervals of deformation exerted major control on the orientations of Laramide structures 

along the western edge of the Bighorn Basin. The orientations of structures in our study area 

suggest that (1) NNE-directed shortening, (2) ENE-directed shortening, and (3) E-directed 

shortening occurred from the latest Cretaceous to early Eocene. This interpretation is in 

disagreement with shortening directions from several previous studies of the entire Laramide 

Orogeny: some studies suggested a single crustal shortening direction, generally ENE or NE 

(Dickinson and Snyder, 1978; Bird, 1984, 1988; Sales, 1968; Stone, 1969; Lowell, 1983; 

Blackstone, 1990; Erslev, 1993) while other studies suggested changes in shortening from 

generally E-directed to more NE- or N-directed (Gries, 1983, 1990; Chapin and Cather, 1981).  

 A few studies are in agreement with ours, describing a change in shortening directions 

during the Laramide Orogeny from ENE-directed to E-directed (Bird, 1998; Bergerat et al., 

1992). The orientation of their first episode of ENE-directed shortening corresponds with our 

second episode of ENE-directed shortening, and the orientation of their second episode of E-

directed shortening corresponds with our third episode of E-directed shortening. It is evident that 

NNE-directed shortening during the first stage of Laramide deformation in northwestern 

Wyoming was a unique event likely resulting from the WNW-striking Pat O’Hara uplift and 

NW-striking Rattlesnake Mountain uplift. Our proposed shortening directions are in agreement 

with the change in Beartooth thrust directions from north-northeast to east proposed by Wise 

(2000); however, Wise cited escape tectonics around the Precambrian Stillwater Complex as the 

principal control on thrust directions. Our research suggests that changes in shortening directions 

during multi-stage Laramide deformation were the principal control that resulted in the present-

day orientations of the Laramide structures along the western edge of the Bighorn Basin.  
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Conclusions 

 Our research has revealed differently oriented Late Cretaceous-Paleogene strata that 

reflect a change in shortening directions during Laramide deformation. A first episode of north-

northeast-directed deformation occurred during the latest Cretaceous-early Paleocene and 

resulted in tilted Late Cretaceous strata southwest of Heart Mountain. A second episode of east-

northeast-directed deformation occurred during the late Paleocene and resulted in tilted Late 

Cretaceous-Paleocene strata northwest of Heart Mountain and along the eastern front of the 

Beartooths. A third and final stage of east-directed deformation occurred in the early Eocene and 

resulted in deformation of Late Cretaceous-early Eocene rocks east of Dead Indian Hill and east 

of the Beartooths. Near Hogan Reservoir, it is apparent that joints in Cretaceous strata formed 

during the first stage of shortening during the Pat O’Hara uplift, followed by folding of the 

Cretaceous strata to their present orientation during the final stage of shortening during the Dead 

Indian Hill uplift. Shortening directions were a major external control on the development of the 

Rocky Mountains during the Laramide Orogeny and previous work has shown that many ranges 

within the Rockies developed as a result of a combination of internal and external controls. 
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CHAPTER 3: SPECTRAL ANALYSIS OF THE LATE PALEOCENE-EARLY EOCENE 

WILLWOOD FORMATION AND THE TIMING OF LARAMIDE DEFORMATION, 

NORTHWESTERN BIGHORN BASIN, WYOMING 

 

Introduction 

 In the latest Cretaceous-Paleocene, deformation of the Beartooth Mountains led to the 

development of the Clarks Fork and Bighorn Basins in northwestern Wyoming (Johnson and 

Middleton, 1990; Fig. 1). Associated with this uplift, in the late Paleocene, a thick alluvial 

sequence of sandstone and conglomerate was deposited adjacent to and sourced from the eastern 

flank of the rising Beartooth Mountains (Johnson and Middleton, 1990). In the Clarks Fork and 

Bighorn Basins, the Paleocene Fort Union and late Paleocene-early Eocene Willwood 

Formations are the only two Paleogene formations exposed, both of which contain rocks 

deposited synkinematically during the unroofing of the Beartooth Mountains and adjacent 

Laramide mountain ranges (Gingerich, 1983; Johnson and Middleton, 1990). Lithologic, 

stratigraphic and structural features of the uppermost member of the Fort Union Formation have 

been used to constrain the timing of unroofing of the Beartooth Mountains (DeCelles et al., 

1991). Previous studies have also used provenance modeling and palynologic analyses of 

syntectonic Fort Union deposits to constrain the timing and kinematics of Paleocene uplift along 

the western edge of the Bighorn and Clarks Fork Basins (Jobling, 1974; Dutcher et al., 1986; 

DeCelles et al., 1991). There has been a range of ages proposed for the onset and end of 

deformation along the western edge of the Clarks Fork and Bighorn Basins (Pierce, 1965; 

Dutcher et al., 1986; DeCelles et al., 1991; Wise, 2000; Neely, 2006), and this study aims to 



95 

 

 
 

Figure 1. Location map of the Clarks Fork and Bighorn Basins and bounding Laramide ranges. 

Satellite image from Google Earth. 
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further constrain the kinematic history of Laramide deformation using sediment accumulation 

rate calculations and spectral analyses. 

 The Willwood Formation locally contains abundant vertebrate fossils that have yielded a 

high-resolution biostratigraphy in mostly undeformed sediments in the central Bighorn Basin 

(Rose, 1981; Gingerich, 1989). The formation also contains mammalian fossils that are 

characteristic of the Paleocene-Eocene boundary (Gingerich, 1989) as well as the carbon isotope 

excursion, or CIE (Koch et al., 1992) that is associated with the Paleocene-Eocene Thermal 

Maximum (PETM). Along the western edge of the Bighorn Basin, a sparse number of fossil 

localities have been discovered in deformed Paleogene strata. Near the Beartooth Mountain 

front, there have been no studies that attempt to correlate deformed Willwood beds with 

undeformed strata farther basinward. In order to constrain the timing of deformation in 

Paleogene sediments near the mountain front, absent high-resolution biostratigraphy, other 

methods are necessary.  

 The Willwood Formation contains paleosols that alternate rhythmically on various scales. 

The stacking patterns in the Willwood have been attributed to various mechanisms including 

autocyclic floodplain development (Clyde and Christensen, 2003; Abels et al., 2013), tectonics 

(Bown and Kraus, 1993), and climate (Kraus and Aslan, 1993; Aziz et al., 2008; Abels et al., 

2013).  The 55.8 Ma PETM is recorded in both marine and terrestrial sections around the world 

(Kennett and Stott, 1991; Koch et al., 1992; Bralower et al., 1997; Zachos et al., 2005; Röhl et 

al., 2007; Schouten et al., 2007). It occurred during deposition of the Willwood Formation in the 

Bighorn Basin, resulting in the development of thick, well-developed, densely spaced red-to-

purple paleosols (Kraus and Riggins, 2002; Kraus and Davies-Vollum, 2004).  
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 We used sparse fossil data in the Kimball Bench area to calculate possible sediment 

accumulation rates during basal Willwood deposition. The range of accumulation rates was used 

to calculate a range of possible absolute ages of the youngest deformed Willwood beds and 

therefore the age of onset of deformation in this area. We then performed spectral analyses of 

deformed basal Willwood strata in the Kimball Bench area which we used to confirm the 

location of Willwood strata that match the description of beds deposited during the 55.8 Ma 

PETM and therefore assign a specific absolute age to the deformed sediments. Spectral peaks 

from our analyses correspond with orbital climatic cycles, indicating that precessional cyclicity 

influenced paleosol development during Paleogene Willwood deposition. Similar studies have 

used spectral analyses of Willwood strata in the Bighorn Basin with the goal of correlating 

spectral peaks with orbital climate cycles and also to locate the 55.8 Ma PETM (Aziz et al., 

2008; Abels et al., 2013); in these studies, a portable photospectrometer was used to take color 

measurements. For our spectral analyses, we used a digital camera and ENVI software to take 

color measurements of basal Willwood sediments in lieu of a portable photospectrometer 

(method by Levin et al., 2005). In this study, we use a novel approach to determine the absolute 

age of deformed basal Willwood strata in the Kimball Bench area and therefore the timing of 

deformation along the western edge of the Bighorn Basin.   

Geological Setting 

 The late Paleocene-early Eocene Willwood Formation rests conformably above the 

Paleocene Fort Union Formation in the central Bighorn Basin (Neasham and Vondra, 1972). In 

the central-northern Bighorn Basin, both the Fort Union and Willwood Formations consist of 

thick fluvial and lacustrine deposits (Fricke et al., 1998). Along the southwestern margin of the 
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basin, the Willwood Formation rests on top of the Cretaceous Lance and Paleocene Fort Union 

Formations in angular discordance (Van Houten, 1944; Gingerich, 1983).  

 In the Clarks Fork and Bighorn Basins, the Fort Union Formation consists of fluvial and 

alluvial conglomerate, sandstone, siltstone, and mudstone deposits which are lithologically 

heterogeneous and divided into members (Gingerich, 1983; Johnson and Middleton, 1990). Near 

the western edge of the Clarks Fork Basin, the Fort Union also contains lacustrine, paludal, and 

conglomeratic layers along with the more fluvial facies (Hickey, 1980). Along the western edge 

of the Bighorn Basin, the Fort Union attains its maximum thickness of 3500 meters (Gingerich, 

1983). The formation is lithologically heterogeneous and has been divided into separate 

members/units (Jobling, 1974; Dutcher et al., 1986; Johnson and Middleton, 1990). Proximal to 

the mountain front, the uppermost member of the Fort Union Formation consists of a sequence of 

Laramide synorogenic interbedded conglomerate, coarse-grained sandstone, and siltstone 

deposits. The synorogenic uppermost member of the Fort Union Formation  has previously been 

referred to as the Beartooth Conglomerate (DeCelles et al., 1991), Linley Conglomerate 

(Flueckinger, 1970), and Proximal facies of the Fort Union Formation (Jobling, 1974). Along the 

western edge of the basins, this uppermost member of the Fort Union Formation was deposited 

in response to major uplift of the Beartooth Mountains in the Paleocene. Previous workers have 

used provenance modeling, palynologic analyses of carbonaceous sediments, and lithologic, 

stratigraphic and structural relations of syntectonic Fort Union deposits to constrain the timing 

and kinematics of Paleocene uplift (Jobling, 1974; Dutcher et al., 1986; DeCelles et al., 1991). 

Palynomorphs and megaflora in the Fort Union Formation indicate a Paleocene age of 

deposition, although the age range of the species present does not rule out an Eocene age for the 

stratigraphically highest intervals (Jobling, 1974; Dutcher et al., 1986).  
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 A 1300-meter thick sequence of late Paleocene synorogenic sediments is exposed along 

the eastern front of the Beartooth Mountains (Flueckinger, 1970). Previous studies provide 

conflicting interpretations of the ages of these rocks. Pierce (1965) mapped the sequence as the 

basal Willwood Formation and Johnson and Middleton (1990) retained the basal Willwood 

designation; Flueckinger (1970) considered the deposits late Paleocene in age; Hickey (1980) 

considered the sequence Clarkforkian in age (56.8-55.4 Ma) and referred to it as the 

―conglomeratic member of the Fort Union Formation‖; and Gingerich (1983) suggested that the 

sequence may be as old as Tiffanian (60.2-56.8 Ma). In the central and southern Clarks Fork 

Basin, the sequence contains red paleosols which are indicative of deposits in the Willwood 

Formation (Hickey, 1980). Therefore, we consider the synorogenic deposits as part of the basal 

Willwood Formation. 

 The late Paleocene-Eocene Willwood Formation is a thick sedimentary unit that overlies 

the Paleocene Fort Union Formation. The Willwood is traditionally distinguished from the Fort 

Union Formation by the presence of variegated paleosols (Van Houten, 1944). The Willwood 

Formation consists of alluvial fan conglomerates along the margins of the basin that grade into 

predominantly fluvial deposits basinward (Neasham and Vondra, 1972). Van Houten (1944) 

described four mammalian faunas in the Willwood Formation. The oldest mammal fossils found 

in the Willwood are latest Paleocene in age and the youngest are from the early Eocene (Van 

Houten, 1944). Throughout the Bighorn Basin and Clarks Fork Basin, the Willwood Formation 

consists of a thick sequence of fluvial and alluvial sandstones, siltstones, and mudstones 

(Gingerich, 1983; Kraus and Davies-Vollum, 2004). The thickness of the formation varies 

throughout the basin, although an average thickness of 760 meters is generally accepted (Van 

Houten, 1944; Neasham and Vondra, 1972). The Willwood Formation also contains variegated 
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paleosols and shales interbedded with sandstones and conglomerates (Van Houten, 1944). The 

paleosols contain a variety of colors including red, orange, purple, gray, tan, and brown (Bown 

and Kraus, 1981). The Beartooth, Bighorn, and Owl Creek ranges were the main source of 

sediments (Kraus and Davies-Vollum, 2004), although it is generally accepted that most 

orogenic uplift had ended prior to Willwood deposition (Omar et al., 1994).  

 Along the western edge of the Bighorn Basin, Willwood strata are steeply tilted to 

overturned where they are in similar orientation to underlying tilted Cretaceous rocks. 

Basinward, Willwood beds transition to nearly horizontal. North of the Kimball Bench area near 

the Wyoming-Montana border, a cross section from Pierce (1965) shows a strong angular 

unconformity between tilted Cretaceous rocks and the overlying gently dipping Paleogene 

Willwood Formation. The cross section by Pierce (1965) has been used to support the idea that 

the Willwood Formation is a post-orogenic deposit. However, our mapping has shown that the 

Willwood Formation transitions from gently dipping to steeply tilted where it is in conformable 

contact with underlying tilted Cretaceous formations along the western edge of the Bighorn 

Basin. The goal of this study is to constrain the timing of deformation along the western edge of 

the Bighorn Basin during Paleogene deposition. The Kimball Bench area is ideal for this study 

because it contains a continuous exposure of steeply tilted Paleogene Willwood strata that 

progressively decrease dip to nearly horizontal basinward (Fig. 3). Because there are no internal 

angular unconformities visible within the sequence of progressively tilted beds, the youngest 

deformed Willwood strata correspond with the timing of the earliest possible onset of 

deformation in this area. 
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Astronomical Cycles in the Willwood Formation 

 Previous studies have shown that the Willwood Formation contains cyclic deposits with 

periods that correlate with precession-scale climate cycles and sub-Milankovitch millennial-scale 

cycles (Aziz et al., 2008; Abels et al., 2013). Variegated paleosols in the Willwood Formation 

display rhythmic stacking patterns, which have been explained by a variety of mechanisms: 

autocyclic floodplain development (Clyde and Christensen, 2003; Abels et al., 2013), tectonics 

(Bown and Kraus, 1993), and climate (Kraus and Aslan, 1993; Aziz et al., 2008; Abels et al., 

2013).  Overbank deposits generally have slower accumulation rates which allow for mature 

paleosol development, whereas the rapid emplacement of channel-avulsion deposits interrupts 

soil formation processes (Aziz et al., 2008). Precession-scale climatic cycles have been shown to 

affect the rate of avulsion-belt deposition in the Willwood Formation, where variations in climate 

induced avulsions that occurred with a regular period close to 21,000 years (Kraus and Aslan, 

1993).  

 In the north-central Bighorn Basin, the Willwood Formation contains overbank and 

avulsion deposits that alternate with a cycle thickness of 7.1 meters and a periodicity of 21.6 ky 

(Abels et al., 2013). This periodicity is within the range of precession-scale climatic cycle 

periods in the early Eocene which indicates that the alternating deposits were likely influenced 

by cyclic astronomically forced climate change. Aziz et al. (2008) used spectral analyses of 

redness in alternating paleosols to constrain astronomical climate control on paleosol stacking 

patterns in the Willwood Formation. Their sections for analysis were located in the northern 

Bighorn Basin at Polecat Bench and in the central Bighorn Basin at Red Butte. Their study 

revealed that there were two significant cycles evident within the stacking patterns in the 

Willwood: a ~21 ky climatic precession cycle and a 7-8 ky millennial-scale sub-Milankovitch 
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cycle. At Polecat Bench and Red Butte, astronomical climate variations likely affected paleosol 

development through cyclic changes in Willwood deposition (Aziz et al., 2008).  

Paleocene-Eocene Thermal Maximum 

 At the end of the Paleocene, there was a short-term rapid warming event known as the 

Paleocene-Eocene thermal maximum (PETM), previously referred to as the late(st) Paleocene 

thermal maximum, or LPTM (Fricke et al., 1998, Röhl et al., 2000). The PETM is characterized 

by a negative carbon isotope excursion (CIE) which occurred on a global scale (Kennett and 

Stott, 1991; Koch et al., 1992; Bralower et al., 1997, Schouten et al., 2007; Zachos et al., 2007). 

At this time, there was a sudden decrease in the δ
13

C of biogenic marine carbonate by 2.5-4.5 ‰, 

recorded in benthic and planktonic foraminifera from the latest Paleocene. The drop in carbon 

isotope ratio was accompanied by mass extinction of benthic foraminifera, changes in ocean 

chemistry and circulation, and marine warming (Koch et al., 1992; Röhl et al., 2000). A 

continental carbon isotope excursion was also recorded in the δ
13

C of paleosol carbonate and 

enamel apatite which was similar to the marine carbon isotope excursion in magnitude and 

duration (Koch et al., 1992).  

 The geologic age of the Paleocene-Eocene (P-E) boundary is defined as the base of the 

PETM CIE (Dupuis et al., 2003). The P-E boundary was recently constrained using an 

astronomically calibrated timescale (Charles et al., 2011). In their study in Spitsbergen, Charles 

et al. (2011) used U/Pb isotopic dating of zircons from a bentonite layer within the PETM and 

cyclostratigraphic analysis of the CIE to determine the age of the P-E boundary. Their study 

presented an age range between 55.728 and 55.964 Ma for the P-E boundary, coeval with the 

base of the PETM CIE. Röhl et al. (2007) used orbital chronology from cycle stratigraphic 
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records and analysis of extraterrestrial helium isotopes to find the total duration of the PETM, 

estimated to be ~170 ky.  

Constraining the Timing of Deformation 

 In the Kimball Bench area of the northwestern Bighorn Basin (Fig. 2), deformed late 

Paleocene-early Eocene Willwood layers are well exposed. Willwood strata are nearly horizontal 

in the northeast part of the Kimball Bench area, gradually increasing dip to nearly vertical in the 

southwest part. Within the progressively tilted beds, there are no visible internal angular 

unconformities, suggesting that deformation occurred no earlier than after deposition of the 

youngest tilted bed (Fig. 3). The goal of this study is to find the age of the youngest deformed 

Willwood strata in this area, representing the oldest possible age of deformation. In order to do 

this, we used available fossil localities from Rose (1981) and Gingerich and Clyde (2001) and 

the orientations of Willwood strata in the Kimball Bench area to calculate the true stratigraphic 

thicknesses between each fossil. We then used the age ranges associated with each fossil locality 

(known from Gingerich, 1976; Rose, 1981; Gingerich, 1983, 2001) and the stratigraphic 

distances between them to calculate a minimum and maximum sediment accumulation rate for 

Willwood deposition in the Kimball Bench area.  

 Certain beds in the Kimball Bench area contain thick, well-developed, densely spaced red 

to purple paleosols that match the description of beds deposited during the 55.8 Ma PETM. We 

chose two sections in the Kimball Bench area for spectral analysis based on the presence of beds 

that matched this description: the 7RP section and the Kimball Bench section (Fig. 4). Locating 

beds that were deposited during the PETM allowed us to anchor deformed Willwood strata in the 

Kimball Bench area to an absolute age. After constraining the absolute ages of deformed 

Willwood strata using fossil data and the location of the 55.8 Ma PETM, we were able to use our  
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Figure 2. Left: geologic map of the northwestern Bighorn Basin and adjacent Laramide 

structures, modified from Neely and Erslev, 2009. Right: geologic map of the Kimball Bench 

study area. 

 

 
 

Figure 3. Photograph of progressively tilted late Paleocene-early Eocene Willwood strata at 

Kimball Bench. Within the progressively tilted beds, there are no visible internal angular 

unconformities, suggesting that deformation occurred after deposition of the youngest tilted bed. 
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Figure 4. Top: geologic map of the Kimball Bench area showing the locations of the two 

stratigraphic sections (7RP and Kimball Bench) used for spectral analysis. Bottom:  aerial photos 

of 7RP and Kimball Bench sections used for spectral analysis. Aerial photos from GoogleEarth. 
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sediment accumulation rate to calculate the age of the youngest deformed Willwood beds in the 

Kimball Bench area. These strata correspond with the timing of the earliest possible onset of 

Paleogene deformation in this area.  

Previous Spectral Analyses, Willwood Formation 

 Aziz et al. (2008) performed spectral analyses on flat-lying Willwood strata in two 

locations in the Bighorn Basin: (1) Polecat Bench (PCB), located in the northern Bighorn Basin 

approximately 30 km northeast of Cody; and (2) Red Butte (RB), located in the central Bighorn 

Basin approximately 90 km southeast of Cody. In their study, Aziz et al. (2008) took color 

measurements using a portable photospectrometer (Minolta CM 508i), which gives a value at 

each level after automatically calculating an average of three measurements. They took 

measurements at average sampling intervals of 14.5 cm in the PCB section and 21 cm in the RB 

section. The redness (a* value) color record of each section was used for spectral analysis. 

Redness (a* value) is a coordinate in the CIE L*a*b* (CIELAB) color space, which describes all 

the colors visible to the human eye. The three coordinates of CIELAB include lightness (L*), the 

position between red and green (a*), and the position between yellow and blue (b*). Negative 

values for a* indicate greener colors, while positive a* values indicate more red (Fig. 8). Aziz et 

al. (2008) performed time-series analyses of their a* vs. stratigraphic level records of the PCB 

and RB sections using the Blackman-Tukey and MC-CLEAN methods. Their time-series 

analyses revealed multiple spectral peaks within each section, which they used to evaluate 

paleosol cyclicity in the Willwood Formation. The goal of their study was to attribute a 

mechanism to the rhythmic stacking patterns seen in Willwood paleosols. To do this, they first 

needed to match up the spectral peaks from their time-series analyses with absolute-age data.   
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They used absolute-age data based on carbon isotope records, paleomagnetic data, and sparse 

fossil data from previous studies. After they matched their stratigraphic sections to absolute-age 

records, Aziz et al. (2008) calculated a sediment accumulation rate of 391 m/my for this part of 

the Bighorn Basin. Using this sediment accumulation rate, they calculated the minimum and 

maximum cycle thicknesses that corresponded to the 19-23 ky orbital precession cycle. A 7.4 

meter cycle thickness was calculated for the 19 ky Milankovitch precession cycle and a 9 meter 

cycle thickness for the 21 ky Milankovitch precession cycle. Their time-series analysis of the 

Polecat Bench data showed a peak at 7.7 meters which corresponds with the 20 ky orbital 

precession cycle. The time-series analysis of the Polecat Bench data also revealed a peak at ~3.3 

meters which correlates with a period of ~8 ky, similar to millennial-scale sub-Milankovitch 

cycles found in successions of lacustrine and marine sediments of Pliocene-Pleistocene age. 

There were other spectral peaks in their time-series analyses, but Aziz et al. (2008) determined 

that they were ―weakly resolved…due to the dominance of the 3.3 m and 7.7 m spectral 

components‖ and therefore were not of use to correlate with Willwood cyclicity. Their study 

suggested that precession and millennial-scale climate variations affected paleosol development 

in the Willwood Formation through cyclic changes from predominately overbank deposition 

with extensive paleosol development to predominately channel-avulsion deposition with periodic 

halts in soil formation (paleosols) because of high sediment accumulation rates (Aziz et al., 

2008). 

 Abels et al. (2013) did a similar study in which they estimated a cyclicity of 21.6 ky 

within Willwood strata in the Deer Creek Amphitheater section in the McCullough Peaks area, 

located in the northern Bighorn Basin approximately 25 km northeast of Cody. In their study, 

they measured stratigraphic sections by digging ~1 m wide trenches down to fresh rock and 



108 

 

designated field units based on lithologies. They measured color reflectance in the field at 10 cm 

vertical resolution using a portable photospectrometer (Minolta CM 508i) and performed time-

series analyses of their color records using the Redfit program (Schulz and Mudelsee, 2002) and 

the Analyseries 1-1 program (Paillard et al., 1996). The power spectra of their color records 

showed peaks that corresponded to cycle thicknesses between 4.5 and 8.5 meters with a 

dominant cycle thickness of 7.1 meters. They compared three previously calculated sediment 

accumulation rates to find an average sediment accumulation rate of ~329 m/my for their study. 

Using this rate, their dominant cycle thickness of 7.1 meters corresponds with average cycle 

duration of 21.6 ky, within the duration of the orbital precession period. The study by Abels et al. 

(2013) is in agreement with that of Aziz et al. (2008), suggesting that astronomically forced 

climate change directly contributed to the development of alternating intervals of red paleosols 

that formed on overbank mudstones and intervening heterolithic intervals that display weak 

paleosol development.  

Spectral Analysis and Absolute Age Calculations 

 For this study, we performed a similar analysis to that of Aziz et al. (2008) and Abels et 

al. (2013). They utilized a photospectrometer to measure redness values of Willwood sediments 

in each of their studies; however, we used a digital camera and ENVI software to measure 

redness values using the method described in Levin et al. (2005). Spectrophotometers have a 

high cost associated with them and field spectrometers are difficult to travel with over rugged 

terrain (Levin et al., 2007). When we began this project, we were able to obtain a portable 

photospectrometer (ASD Fieldspec3) to measure color records in the field. We found that it was 

difficult and time-consuming to carry the photospectrometer over long distances and up the steep 

slopes of deformed strata in our study area. Levin et al. (2007) outlined a method of measuring 
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color records using a digital camera and ENVI software, which we utilized for this study due to 

the low cost and simplicity. We collected samples from two stratigraphic sections: the first 

section, KB-AB, is 111 m thick. The second section, KB-C and KB-DEF, is 320 m thick, located 

one kilometer northeast of the lower section (Fig. 4). We excavated each section, digging ~1 m 

wide trenches. We dug down to fresh surfaces and took samples at 30 cm intervals in the 7RP 

and Kimball Bench sections for analysis (Fig. 5). We crushed each sample and air-dried them for 

a minimum of seven days before sieving them to remove larger pieces of rock. Each sample was 

carefully flattened using a textbook that was set on top of the sample in order to eliminate 

shadows from larger pieces of rock. We originally placed color strips around each sample which 

we had planned to use to calibrate the camera RGB values as outlined in Levin et al. (2007); 

however, when we measured the RGB values in the color strips for the first ten samples, we did 

not see any discrepancies among RGB values from each color strip and therefore concluded that 

it was not necessary to measure the RGB values of the color strips for every sample. The redness 

values we obtained were also very similar to those from Aziz et al. (2008) and Abels et al. 

(2013), indicating that the values we obtained using this method are accurate and reproducible. A 

10 megapixel digital camera (Nikon D40x) was positioned on a tripod with the lens facing 

downward toward the sample. Images were taken in natural light with no flash and no artificial 

lighting system (Fig. 6). The camera used JPEG standard compression for photographs, which 

Levin et al. (2007) demonstrated ―did not hamper the accurate identification of the samples’ 

color.‖ JPEG images have a high compression ratio which allows for a greater number of 

photographs to be taken and stored, which is important for field-based projects such as this one 

(Levin et al., 2007). To measure redness values, we processed the digital images using ENVI 5.0 

software. For each image, we defined a region of interest (ROI) over the central part of the  
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Figure 5. Excavation sites where we collected samples for spectral analysis. Samples were taken 

perpendicular to the strike of bedding at 30 cm increments at each section. 
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Figure 6. Examples of prepared samples photographed for spectral analysis. Samples were 

crushed, dried, and photographed. Before photographing each sample, we used a sieve to remove 

larger chunks of rock and then flattened the fine sediments using a textbook. Width of sample 

area is approximately 15 cm. 
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sample. ENVI was used calculate the RGB values within each ROI. Using the OpenRGB 

program, we converted the RGB values for each sample to CIELAB color space, in which a* is 

the redness value. We used 3-5 photographs per sample and averaged the redness values to 

obtain an average a* per sample for our analysis. We then compared our redness values to those 

of the studies by Aziz et al. (2008) and Abels et al. (2013). Our maximum redness values are 

similar to their maximum values while our minimum redness values have a greater magnitude 

than theirs (Fig. 7). The greater magnitude of negative redness values indicates that our samples 

contained more green than the samples in the Aziz et al. (2008) and Abels et al. (2013) studies 

(Fig. 8).  

 We performed a time-series analysis of our a* vs. stratigraphic level record (Fig. 9) using 

the fast Fourier transform (FFT) method in Microsoft Excel 2010 (Klingenerg, 2005). Our time-

series analysis revealed multiple spectral peaks within our sections which we used to evaluate 

cyclicity in the Willwood Formation (Fig. 10). To determine which (if any) orbital climatic 

cycles correspond with spectral peaks in our data, we first needed to match up the spectral peaks 

from our time-series analysis with absolute-age data. We used sparse mammalian fossil localities 

in the Kimball Bench area to calculate sediment accumulation rates during Willwood deposition. 

Spectral peaks from our FFT correspond with cycle thicknesses and in order to test whether the 

cycle thicknesses from the FFT can be correlated with specific orbital climatic cycles such as the 

19-23 ky precession cycle, the sedimentation rate was multiplied by the period of the cycle in 

question. In the study by Aziz et al. (2008), they calculated a sediment accumulation rate of 391 

m/my in the northern Bighorn Basin, which indicated that a cycle thickness between 7.4 and 9 

meters corresponded with a 19-23 ky precession cycle (391 m/my * 0.019 my = 7.4 m) in that 

part of the basin. There are numerous spectral peaks in our FFT, most of which do not   
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Figure 7. Comparison of redness values from Abels et al., 2013 (upper portion), this study 

(middle portion), and Aziz et al., 2008 (lower portion). Our maximum redness values are similar 

to those of the other studies while our minimum redness values have a greater magnitude than 

those of the other studies (indicates that our samples contain more green than other studies). 
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Figure 8. CIELAB color chart. Redness value (a*) is along the horizontal axis. 
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Figure 9. Stratigraphic level (m) vs. redness (a*) plot. KB-AB is from the 7RP section, KB-C 

and KB-DEF are from the Kimball Bench section. Black bars represent missing sections in data. 
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Figure 10. Fast Fourier transform power spectra for a* records. Spectral peaks were used to find 

correlation with cycle thicknesses; dominant peaks are labeled with cycle thickness in meters. 
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correspond with orbital climatic cycles (Fig. 10). These peaks likely reflect autogenic or 

allogenic variations that are not forced by the precession cycle, such as autocyclic floodplain 

development (Clyde and Christensen, 2003; Abels et al., 2013) or tectonics (Bown and Kraus,  

1993). If a spectral peak from our FFT corresponds with a precession-scale climate cycle, it 

would suggest that the development of paleosols in the Willwood Formation was likely affected 

by cyclic changes as a result of climate variations. 

 In the vicinity of Kimball Bench, there are three mammalian fossil localities with 

established age ranges from studies by Rose (1981) and Gingerich and Clyde (2001). Each fossil 

locality has a small map area less than 240 square meters in which it was found and for our 

calculations, we chose a location in the mid-point of each area. Each fossil locality also has a 

minimum and maximum possible age associated with it and these age ranges were used to 

calculate the minimum and maximum possible sediment accumulation rates in this area. The true 

stratigraphic thicknesses among the fossil localities are required to calculate the possible 

sediment accumulation rates. In order to measure the true thicknesses, we created a cross section 

through their locations (Fig. 11). Using the true thicknesses between the fossil localities, we 

calculated the minimum and maximum sediment accumulation rates.  

 Fossils were described in localities SC-143 and SC-168 (Fig. 11) in a study by Rose 

(1981). Rose placed both fossil localities in the Plesiadapis cookei Zone, which ranges in age 

from 55.68 to 55.36 Ma (Gingerich, 1976; Rose, 1981; Gingerich, 1983, 2001). Using our cross 

section through the fossil locations, we were able to calculate the minimum sediment 

accumulation rate in this area. Using an age of 55.68 Ma for fossils in locality SC-143 and 55.36 

Ma for fossils in locality SC-168, we calculated a minimum sediment accumulation rate of 396 

m/my. We calculated a maximum sediment accumulation rate using the ages of 55.68 Ma and  
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Figure 11. Top: generalized geologic map of the Kimball Bench area with line of section, 

spectral sections, and fossil locations labeled. Bottom: cross section used to find true 

stratigraphic thicknesses among fossils which were used to calculate the minimum and maximum 

sediment accumulation rates. 
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55.60 Ma for SC-143 and SC-168, respectively. This resulted in a calculated sediment 

accumulation rate of 1584 m/my A few kilometers east of the Kimball Bench area, Gingerich 

(2003) estimated a sediment accumulation rate of 467 m/my and Aziz et al. (2008) estimated a  

rate of 391 m/my. Given the proximity of their study areas to our study location, we can use a 

more reasonable range of possible sediment accumulation rates in the Kimball Bench area, 

between 396 (our calculated minimum) and 700 m/my. 

 In order to estimate the most probable sediment accumulation rate in the Kimball Bench 

area, we tested various possible rates by superimposing the projected location of the PETM onto 

high-resolution aerial photos based on each sediment accumulation rate. In the Willwood 

Formation, the PETM is marked by the development of densely spaced, well developed, red to 

purple paleosols. After superimposing possible projected locations of the PETM onto aerial 

photos, we looked for beds that matched the description of PETM beds. With most sediment 

accumulation rates, the projected locations of the PETM lie on drab gray and tan beds or 

sometimes grass-covered beds (Fig. 12). With a sediment accumulation rate of 610 m/my, we 

found that the projected PETM lies on the base of our KB-AB section, which is comprised of 

densely spaced, well developed, red to purple paleosols that match the description of beds 

deposited during the PETM (Fig. 13). Therefore, we used a sediment accumulation rate of 610 

m/my for Willwood deposition in the Kimball Bench area and concluded that the PETM is 

reflected in Willwood sediments of the 7RP section. Using this sediment accumulation rate, we 

are able to calculate cycle thicknesses that correlate with precession-scale orbital cycles with 

durations between 19 and 23 ky: for the 19 ky cycle, 610 m/my * .019 my = 11.6 meter cycle 

thickness; for the 23 ky cycle, 610 m/my * .023 my = 14.0 meter cycle thickness. In our Fourier 

analysis, there is one spectral peak that corresponds to a 13.1 meter cycle thickness, within the  
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Figure 12. Aerial photo showing fossil locations, spectral section 7RP location, and projected 

locations of the PETM based on varying sediment accumulation rates including 396 m/m.y. and 

700 m/m.y. Often, projected locations of the PETM lie on drab gray and tan beds, as seen in this 

figure. Aerial photo is from ESRI ArcMap Basemap. 

 

 
 

Figure 13. Aerial photo showing fossil locations, spectral section 7RP location, and the projected 

location of the PETM based on a sediment accumulation rate of 610 m/m.y. With a sediment 

accumulation rate of 610 m/m.y., the projected location of the PETM lies on beds that match the 

description of beds deposited during the PETM: densely spaced, well developed, red to purple 

paleosols. Aerial photo is from ESRI ArcMap Basemap. 
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range of precession-scale cycle thicknesses. The 13.1 meter cycle thickness corresponds to an 

astronomical cycle duration of ~21 ky (13.1 m / 510 m/my = .021 my). 

Spectral Analysis Conclusions 

 The Fourier transform of our redness plots reveal multiple spectral peaks, only one of 

which corresponds to a precession-scale astronomical cycles. Other dominant peaks from the 

Fourier analysis correspond with various cycle thicknesses, likely reflecting autogenic or 

allogenic variations that are not forced by the astronomical precession cycle, such as autocyclic 

floodplain development (Clyde and Christensen, 2003; Abels et al., 2013) and/or tectonics 

(Bown and Kraus, 1993). The 13.1 meter cycle thickness corresponds with a 21 ky cycle 

duration, indicating that precession-scale climate variations likely affected the development of 

paleosols within the Willwood Formation through cyclic changes from predominately overbank 

mudstone deposition (favorable to development of paleosols) to predominately channel-avulsion 

deposition which results in weak to no paleosol development. Paleosol development was 

probably also affected by autocyclic and allogenic variations, indicated by multiple spectral 

peaks in the Fourier transform that do not correspond with precession-scale cyclicity.  

Discussion of Deformation History 

 Our calculated sediment accumulation rate of 610 m/my is significantly higher than those 

from studies by Gingerich (467 m/my; 2003) and Aziz et al. (391 m/my; 2008). Because their 

study areas are located basinward from ours, it is reasonable to expect that sediment 

accumulation rates were lower in the basin than near the mountain front during Paleogene 

deposition. Recall that in the Kimball Bench area, deformed Willwood sediments do not contain 

internal angular unconformities; therefore, the earliest age of deformation corresponds to the 

youngest age of tilted Willwood strata. Because the top of the Willwood has been eroded away, 
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we calculated a range of possible deformation ages that correspond with a range of Willwood 

thicknesses. In the Kimball Bench area, the minimum thickness of deformed sediments was 

determined using our geologic map of the area (Fig. 2). Using a sediment accumulation rate of 

610 m/my and a minimum thickness of 1085 meters, the youngest deformed Willwood sediments 

are estimated at 54.2 Ma. It is possible that faulting in the Willwood thickened the sediments in 

the Kimball Bench area, which would result in a younger calculated age of deformation; 

however, the only visible faulting in the Kimball Bench area was found during field work and 

displays 10’s of meters of thrust faulting that we accounted for in our calculations (~ 60 meters 

of displacement).  

 Because fossil localities SC-143 and SC-168 have a range of ages associated with them, a 

range of sediment accumulation rates can be calculated for Paleogene deposition in the Kimball 

Bench area. The location of the PETM in the Kimball Bench area is not well-constrained; 

however, after scanning aerial photos for beds matching the description of those deposited during 

the PETM, it is reasonable to assume that the PETM corresponds to the exposed Willwood beds 

that are stratigraphically below fossil locality SC-143 and display a prominent exposure of thick, 

well developed, densely spaced, red to purple paleosols (Fig. 13). Using a sediment 

accumulation rate of 610 m/my, the projected PETM is located in Willwood sediments in the 

7RP section which matches the description of beds deposited during the PETM and contain high 

redness values measured during spectral analysis (Fig. 14). Northeast of the 7RP section near 

fossil localities SC-143 and SC-168, aerial photos show a thick section of densely spaced bright 

red paleosols that also match the description of beds deposited during the PETM (Fig. 14). The 

strata in this location correspond with a stratigraphic level younger than fossil locality SC-143  
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Figure 14. 7RP section in the Kimball Bench area. A sediment accumulation rate of 610 m/my 

projects the PETM onto this section where paleosols match the description of those deposited 

during the PETM. Plot of stratigraphic level vs. redness was obtained during spectral analysis 

and shows high redness values in the 7RP section. 
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and because the 55.8 Ma PETM is older than fossil locality SC-143, we can reject the possibility 

that this sequence of paleosols was deposited during the PETM.  

 Previous studies have suggested a range of ages for the final stages of deformation along 

the western edge of the Bighorn Basin, from the end of the Paleocene (Pierce, 1965; DeCelles et 

al., 1991; Wise, 2000) to sometime during the Eocene (Dutcher et al., 1986; Neely, 2006). A 

study by Neser et al. (Chapter 1) revealed the existence of a deep paleovalley that was carved 

into Late Cretaceous strata along the western edge of the Bighorn Basin prior to Paleogene 

Willwood deposition. This paleovalley was the result of slight tilting and differential erosion of 

Late Cretaceous rocks as tectonism began to the west, prior to the majority of deformation along 

the western edge of the Bighorn Basin. The deepest section of the paleovalley was in the Kimball 

Bench area which filled first with fine-grained sediments sourced from the nascent Beartooth 

Mountains to the west. As the paleovalley filled, there was more widespread deposition of 

Willwood strata that occurred during the unroofing of the Beartooth Mountains. Lastly, there 

was the primary phase of deformation which folded both Willwood and Late Cretaceous rocks, 

resulting in the present-day orientation of Paleogene and Cretaceous rocks along the western 

edge of the Bighorn Basin. This study indicates that in the Kimball Bench area, the oldest 

possible age of onset for Paleogene deformation began 54.2 Ma. This resulted in steeply tilted to 

vertical Late Cretaceous-Paleogene Willwood strata near the basin edge, with the Willwood 

Formation transitioning to nearly horizontal basinward. Because deformed upper Willwood 

sediments have been eroded away near the basin edge, it is difficult to constrain the final stages 

of deformation. However, this study has given insight into the timing of deformation of 

Willwood sediments in this part of Wyoming, which occurred a few million years later than 

previously thought.  
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Conclusions 

 Along the western edge of the Bighorn Basin in northwestern Wyoming, synkinematic 

Paleocene Fort Union deposits have previously been used to constrain the timing of Laramide 

deformation in the northern Rocky Mountains (Jobling, 1974; Dutcher et al., 1986; DeCelles et 

al., 1991). Our study has revealed steeply tilted late Paleocene-early Eocene Willwood strata in 

the Kimball Bench area, indicating that deformation occurred after deposition of at least the 

lower Willwood. This study represents the first to use a digital camera and ENVI software for 

spectral analyses which we used to constrain the ages of deformed Paleogene sediments along 

the western edge of the Bighorn Basin. The use of a digital camera as an alternative tool for a 

photospectrometer allows for a fast, easy, objective method to quantitatively take color 

measurements in addition to reducing cost and increasing simplicity. We utilized this method of 

spectral analysis to obtain the absolute age of deformation with precision that previous studies of 

deformed strata along the western edge of the Bighorn Basin have not achieved before. Our 

analyses revealed a significant spectral peak corresponding with a 21-ky climatic precession 

cycle, indicating that precession-scale climate variations likely affected paleosol development 

within the Willwood Formation by way of cyclic changes from overbank mudstone deposition to 

channel-avulsion deposition. Our analyses also indicated that deformation in the Kimball Bench 

area began after the previously accepted Paleocene age of deformation along the western edge of 

the Bighorn Basin (Jobling, 1974; Dutcher et al., 1986; DeCelles et al., 1991), at least 1.6 Ma 

into the Eocene. This study has demonstrated that there is a complex multi-stage deformational 

history in this part of the Rocky Mountains during late Paleocene and early Eocene deposition. 
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