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ABSTRACT 
 

SAMANTHA S. BURG:  An Investigation of Dimensionality across Grade Levels and 

Effects on Vertical Linking for Elementary Grade Mathematics Achievement Tests 

(Under the direction of Gregory J. Cizek) 

 

It is a widely held belief that mathematical content strands reflect different constructs 

which produce multidimensionality in mathematical achievement tests for Grade 3-8.  This 

study analyzes the dimensional structure of mathematical achievement tests aligned to 

NCTM content strands using four different methods for assessing dimensionality.  The effect 

of including off-grade linking items as a potential source of dimensionality was also 

considered.  The results indicate that although mathematical achievement tests for Grades 3-8 

are complex and exhibit some multidimensionality, the sources of dimensionality are not 

related to the content strands or the inclusion of several off-grade linking items.  The 

complexity of the data structure along with the known overlap of mathematical skills suggest 

that mathematical achievement tests could represent a fundamentally unidimensional 

construct.  Refining the definition of dimensionality to include “detectable dimensionality” is 

discussed. 
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CHAPTER 1 

 

INTRODUCTION 
 

Measurement is the process of assigning a number to represent the relationship 

between the item or characteristic under study and a unit of measurement; a scale weighs a 

person in pounds, a protractor measures an angle in degrees.  Measuring instruments are the 

means by which this translation is made and all measuring instruments are subject to varying 

degrees of instrument error.  In some ways, quantifying or measuring student achievement is 

not very different from measuring physical qualities—the researcher should use the most 

accurate, precise, appropriate instrument available to minimize instrument error.  While no 

single instrument or assessment approach can perfectly measure student achievement, one of 

the most prevalent measures of achievement in grades K-12 is the standardized multiple 

choice test.  To ensure that test scores are meaningful and provide accurate data and 

information, developing a high-quality, suitable measurement instrument is important. 

In any specific area of K-12 instruction, developing valid tests that consistently and 

fairly assess the domain the test is intended to measure requires many steps and decisions 

throughout the entire test development, administration, and scoring process.  In broad terms, 

these steps include: clearly defining the construct; preparing test specifications; conducting 

item development and analyzes; gathering validity evidence; and scaling and reporting test 

results.  A unifying concept that underlies these central issues in test development is test 

dimensionality.  Because it affects so much of the test development process--and thereby 
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affects the meaning of test scores-- further understanding of test dimensionality, sources of 

multidimensionality, assessment of dimensional structure, and consequences of violations of 

dimensionality assumptions is warranted. 

What is Test Dimensionality? 

In the context of measuring student achievement, test dimensionality is defined as the 

number of examinee characteristics or abilities measured by the items comprising an 

achievement test.  The term achievement is used hereafter as an all-purpose expression for 

what the student knows and is able to do with respect to a specific domain. However, the 

terms ability, latent ability, construct, dimension, and factor are also used interchangeably to 

refer to the concept or characteristic that a test is designed to measure.  A construct is a 

theoretical representation of the underlying trait, concept, attribute, process and/or structure 

that the test is designed to measure (Messick, 1989). 

A test can be considered to measure one latent trait, construct or ability (in which case 

it is called unidimensional) or a combination of abilities (in which it is referred to as 

multidimensional).  The dimensional structure of a test is intricately tied into the purpose and 

definition of the construct to be measured.  Some tests are designed to be unidimensional 

while other tests are developed to measure several factors.  However, it is sometimes the case 

that a test that is intended to be unidimensional may unintentionally be measuring more than 

one latent variable.  Wainer and Thissen (1996) distinguished between two types of 

multidimensional tests:  those with fixed multidimensionality and those with random 

multidimensionality.  Tate (2002) similarly distinguished between planned and unintentional 

sources of dimensionality.  Fixed or planned multidimensionality refers to the inclusion of 

several content areas or process levels in the test specifications and development.  Random or 
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unintentional multidimensionality can be caused by many different sources which are 

described next. 

 

Sources of Dimensionality and IRT Models 

Many of the models used to analyze test data and develop test scores assume 

unidimensionality but this assumption cannot be strictly met because there are always other 

cognitive, personality, and test-taking factors that have an impact on test performance to 

some extent (Hambleton & Swaminathan, 1985).  It is important to note that the 

dimensionality of a test also depends on the interaction of a set of items with a particular 

sample of examinees from its underlying population (Ackerman, 1994; Hattie, 1985; 

Reckase, 1990).  Examinees differ in many ways, such as level of test anxiety, mathematics 

anxiety, motivation, out-of-class learning experiences that are relevant to in-school learning 

experiences, test taking skills and strategies, and other physical, cognitive, emotional, and 

personality characteristics that can influence test performance.  These factors are in addition 

to and/or influence the dominant ability intended to be measured by a set of test items.  

Furthermore, it is possible for a test to be unidimensional within one population of examinees 

but multidimensional in another.  Even if a test model is used that does not assume 

unidimensionality, the presence of multidimensionality can still be problematic and demand 

the attention of the test developers.  According to Embretson and Reise (2000): 

Most commonly employed IRT models assume that a single latent-trait 

dimension underlies the probability of an item response...even in the 

application of multidimensional IRT models, the correct number of latent 

factors must be identified a priori, and hence, determining dimensionality is a 

critical issue in IRT modeling regardless of whether unidimensional or 

multidimensional models are being considered (p. 227). 
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However, while traditional IRT requires that the test be unidimensional, 

multidimensional item response theory (MIRT) allows the data to reflect more than one 

construct.  Extensive research and the availability of greater computing power have 

opened up the availability and possibilities of MIRT.  However, when MIRT models 

are used, reporting a single score is problematic.  Score interpretation becomes 

increasing difficult when the items measure more than one construct or ability (Hattie, 

1984).  Determining which model is appropriate is an important decision and uncritical 

use of IRT models can result in serious statistical errors which then affect accuracy of 

individual examinee scores and inferences (Nandakumar, 1991).  It is easy to conclude 

from this work that it is important for researchers to investigate dimensionality before 

applying IRT procedures for test development or scoring (Drasgow & Parsons, 1983; 

Stout, 2002). 

 

An Example of Dimensionality in Mathematics Assessment 

A specific example of the interaction of intended test characteristics and examinee 

characteristics can be seen in the measurement of mathematics achievement.  Mathematics 

achievement tests have become more applied and contextual in part due to curriculum 

reforms fostered by the National Council of Teachers of Mathematics (NCTM).  The NCTM 

Principles and Standards for School Mathematics (National Council of Teachers of 

Mathematics, 2000, hereafter NCTM Standards) provide educators with a vision of what it 

means to understand and know mathematics and outline the mathematics content and 

processes that students should be able to know and use as they progress through school.  To 

encourage learning and conceptual understanding, an emphasis is placed on application and 
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context as evident in an NCTM statement of belief:  “Learning mathematics is enhanced 

when content is placed in context and is connected to other subject areas and when students 

are given multiple opportunities to apply mathematics in meaningful ways as part of the 

learning process” (National Council of Teachers of Mathematics, 2006).  However, from a 

psychometric perspective adding emphasis on problem solving, mathematics reasoning and 

mathematical communication could result in a multidimensional test compared to a test 

intended only to measure computational knowledge and skill (Walker & Beretvas, 2000).  

That is, other unintended factors such as reading profiency and/or cultural knowledge have 

been added to the measurement target.  If there is variability in the examinee population in 

terms of reading ability, this would introduce a construct-irrelevant factor and could weaken 

validity evidence.  It is also possible that test scores of different subpopulations may be 

differentially affected by different sources of other variation induced by the context itself 

(Crocker & Algina, 1986).  The context may be difficult to translate across subpopulations 

such as those associated with different areas of the country, differences in social-economic 

status, various immigrate groups, students for whom English is a second language, and other 

cultural dissimilarities. 

 

Dimensionality, Curriculum, and Large-Scale Assessment 

The complicated nature of mathematics and the curriculum standards most states have 

adopted also contribute to other possible sources of dimensionality.  In addition to 

application and process skills mentioned previously, the NCTM Standards highlight the 

growth of expectations in five content areas (called “strands”):  Number Sense and 

Operations, Algebra, Geometry, Measurement, Data Analysis and Probability.  It is not 
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expected that every topic would be addressed to the same extent instructionally each year; 

rather, students would develop a certain depth of understanding of concepts and acquire 

certain levels of fluency in a curriculum so that subsequent instruction can build on this 

understanding.  For example, the curriculum for students in earlier elementary school would 

have a heavier focus on Number Sense and would introduce the simple ideas of Algebra.  As 

the students progress through elementary school toward middle school, the curricular 

emphasis changes; instructional time spent on Number Sense and Operations would decrease 

while the focus on Algebra would increase. 

The NCTM Standards provide guidelines for curriculums that many states have 

adopted or follow closely.  While the instructional emphasis of the different mathematics 

strands changes over a typical mathematics curriculum, standardized tests report a single 

mathematics achievement or proficiency score at each grade.  Because “achievement tests 

that are constructed with an emphasis on content specifications are likely not to be 

unidimensional” (Reckase, Davey, & Ackerman, 1989, p.2),  further research is needed to 

explore the unintentional sources of multidimensionality that may arise due to mathematics 

test construction traditions that follow the NCTM Standards and explore whether test 

dimensionality changes with the grade appropriate curriculum. 

 

Dimensionality, Linking, and Score Interpretation 

In addition to test development, one of the most important activities of a testing 

program is the reporting and interpretation of test scores.  Test scores are usually reported on 

scales designed to assist score interpretation.  According to the Standards for Educational 

and Psychological Testing (American Educational Research Association, American 
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Psychological Association, & National Council on Measurement in Education), “scale scores 

are often created to enhance comparability across different forms of the same test, across 

different test formats or administration conditions or even across test designed to measure 

different constructs” (1999, p. 49). 

There are many situations in which different examinees are measured with different 

instruments that are supposed to measure the same construct.  For example, due to test 

security concerns, many testing programs develop alternate (sometimes called parallel or 

equivalent) forms for each grade and use the scores from these forms interchangeably.  

Alternate forms are constructed to the same content and test specifications but might differ 

somewhat in difficulty.  The process of placing scores from alternate forms on a common 

scale and adjusting for possible differences in difficulty is done using various equating 

methods (Kolen & Brennan, 2004).  Equating is a statistical process that is used to adjust 

scores on test forms so that scores on the forms are on the same scale.  Equating done for the 

purpose of establishing comparability of scores from alternate forms is sometimes referred to 

as horizontal equating. 

Other situations in which different examinees are measured with different, 

purposefully non-equivalent instruments involve the creation of vertical or developmental 

scales.  Similar to equating, there are processes more properly referred to as scaling to 

achieve comparability (American Educational Research Association et al., 1999) or linking 

(Linn, 1993).  Vertical scaling (frequently called vertical “equating”) is one of these 

processes and is often used to create developmental scores for achievement tests (Kolen & 

Brennan, 2004).  For some applications such as value-added modeling and growth modeling 
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used for tracking student progress and achievement over time, a valid vertical scale is 

needed. 

In the context of educational achievement testing, vertical scaling places scores from 

tests intended for different educational levels on the same scale; the tests differ in difficulty 

but are intended to measure the same construct.  As part of the vertical scale development, 

tests for a given grade level are often constructed to include items that are below-grade level, 

above-grade level, or both, in addition to the appropriate on-grade-level items.  These below- 

and above-grade items represent potential sources of unintentional dimensionality due to the 

out-of-grade content of the items or their likely differences in difficulty, readability, and so 

on. 

According to Crocker and Algina, “an issue that must be considered in a vertical 

equating project is the possibility that tests differ substantially in difficulty also differ in the 

traits they measure despite having similar content” (1986, p. 474).  In the case of vertically-

scaled mathematics achievement tests designed to measure a mathematics curriculum that 

changes over grades to reflect the emphasis of the different strands, a test that also changed 

to reflect these content differences could introduce different traits being measured across the 

grades.  Reckase (2004) has given an illustration of this problem: 

For math,  tests at 3
rd

 grade measure predominantly arithmetic skills.  By 8
th

 

grade, the test shifts to problem solving, pre-algebra and algebra skills.  Yet, 

the way the results are reported on the vertical scales seem to imply that the 

tests are measuring the same thing…more complicated is that within test at a 

grade, the difficult items may be measuring different combinations of skills 

than easy items … growth in student performance may take a circuitous path 

through many domains of test content (pp. 118-119). 
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In summary, whether developing and analyzing items, equating forms or establishing a 

vertical scale, the assessment the dimensional structure of tests is an important and ongoing 

activity. 

 

Assessment of Dimensional Structure 

There is no consensus in the measurement community on what constitutes best 

professional practice for assessing dimensionality, although a number of sound approaches 

exist.  Historically, linear factor analytic methods have been used to investigate the internal 

structure of tests, although there are problems with this approach.  Namely, the relationship 

between item performance and the underlying latent ability is often nonlinear (Hattie, 1984) 

and there is no standard criterion for determining the number of meaningful factors.  The use 

of different decision rules such as Cattell’s Scree test (plotting the eigenvalues), the Kaiser 

rule, and the minimum average partial (MAP) method are recommended when attempting to 

determine the number of dimensions to retain in an exploratory factor analysis (Preacher & 

MacCallum, 2003).  However, although these approaches are widely used, it has been 

suggested that “researchers should now be starting to move away from reporting heuristic 

indices such as ‘variance accounted for by the first factor’ or ‘ratio of the first to second 

eigenvalue’ and start implementing the new procedures that tackle these issues” (Embretson 

& Reise, 2000, p. 245). 

The dimensionality assessment and methods/programs currently available are a 

dramatic improvement over the often ad hoc methods that were common 15 years ago (Tate, 

2002).  These newer procedures include a family of item factor analytic procedures which are 

extensions of linear factor analysis modified to better model dichotomous item responses.  
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Another family of newer procedures test the assumption of unidimensionality by considering 

local independence and examining the conditional item associations.  Both families have 

strengths and limitations.  Further details of dimensionality assessment methods will be 

discussed in the next chapter. 

 

Consequences of Violations of Dimensionality Assumptions 

It is reasonable to ask the question, “If a test is intended to be unidimensional, but it is 

determined analytically to be measuring more than one dimension, what are the 

consequences of such a situation?”  In practical test development for many large-scale 

achievement tests, unidimensionality is assumed by the chosen measurement models (often a 

Rasch model).  Thus, the consequences of violations of unidimensionality assumption must 

be considered.  Violations are typically associated with three areas:  item analysis, validity, 

and linking. 

The first area of concern is item analysis.  Items are typically analyzed using item 

response theory (IRT); IRT models are widely used to develop and score K-12 achievement 

tests and many of the IRT models typically used in these contexts require the assumptions of 

unidimensionality and local independence.  Local independence is related to 

unidimensionality.  Local independence asserts that, after taking an examinee’s ability into 

account, no relationship exists between the examinee’s responses to different items on the 

test.  However,  “many educational and psychological tests are inherently multidimensional, 

meaning these test measure two or more constructs” (Ackerman, Gierl, & Walker, 2003, p. 

198); that is, test item responses may not always be locally independent.  Traub and Lam 

purport “the assumption of unidimensionality seems inappropriate for many kinds of test 
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data, especially those pertaining to tests of educational achievement” (1985, p. 22).  There is 

also increasing recognition of the multidimensional nature of educational and psychological 

instruments (Embretson & Reise, 2000; Roussos, Stout, & Marden, 1998) as well as the 

findings that real test data often cannot be well modeled by locally independent 

unidimensional models (Ansley & Forsyth, 1985; Nandakumar, 1991; Reckase, 1979; 

Reckase, Carlson, & Ackerman, 1985). 

Previous research has shown that using unidimensional models with 

multidimensional data can be problematic (Ansley & Forsyth, 1985; Drasgow & Parsons, 

1983; Reckase, 1979).  Walker and Beretvas (2000) have addressed concerns about 

dimensionality specifically in the context of mathematics achievement tests.  According to 

these authors, while there is always some degree of measurement error involved,  “by 

continuing to model mathematical proficiency using a model that assumes the construct is 

unidimensional, when we have substantive and empirical reasons to believe mathematical 

proficiency is a multidimensional construct, we are, perhaps unwittingly, increasing our error 

of measurement” (p. 24). 

Item analysis often involves the estimation of IRT item and ability parameters.  An 

oft-cited advantage of using an IRT approach is the property of invariance of item and ability 

parameters that are generated by the IRT models.  This property states that the parameters 

that characterize an item do not depend on the ability distribution of the examinees who 

responded to the items and the parameter estimate that characterizes an examinee does not 

depend on the particular set of test items the examinee was administered.  However, 

“parameter invariance properties... can no longer be completely trusted when the assumption 

of unidimensionality is violated” (Tate, 2002, p. 188).  Because the invariance property is a 
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cornerstone of IRT and makes possible important applications such as equating, item 

banking, investigation of item bias, and adaptive testing (Hambleton, Swaminathan, & 

Rogers, 1991),  the violation of the unidimensionality assumption can have serious 

consequences for these applications. 

In addition to affecting model fit and item parameter estimation, violations of 

dimensionality can make gathering validity evidence difficult.  Assessment of statistical test 

structure can provide empirical support of the content and cognitive process aspects of test 

validity (AERA/APA/NCME, 1999).  Indications of multidimensionality could weaken the 

validity evidence.  Unintended factors introduce construct-irrelevant abilities which pose 

threats to test fairness due to item bias and differential item functioning (DIF). On the other 

hand, the finding that more than one construct is measured by a test may support the test 

framework if multidimensionality was intended.  

Finally, although dimensionality is related to nearly every other aspect of 

measurement, it is of particular concern if it is necessary to link tests.  Kolen and Brennan 

(2004) note that there are several factors that might affect linking: the design of the data 

collection, the complexity (dimensionality) of the subject matter area and the curriculum 

dependence of the subject matter.  And, as noted by Chin, Kim, and Nering, “linking scores 

from several measurements can only be sensible when all measurements involved share a 

single underlying construct.  This unidimensionality assumption is often questionable for a 

vertical scaling operation” (Chin, Kim, & Nering, 2006, p. 2).  Dimensionality violations can 

affect the construction of vertical scales via the IRT parameter estimations that are used in 

the developmental methods. 



 13 

When using IRT scaling methods, item parameters are typically estimated by 

concurrent estimation which requires only one computer run, or by separate estimation which 

involves estimating parameters for each grade.  Violation of the unidimensionality 

assumption might be most severe when concurrent estimation is used since the assumption 

“requires that a single ability be measured across all grades, which seems unlikely with 

achievement tests” (Kolen & Brennan, 2004, p. 391).  With separate estimation, violations of 

the IRT unidimensionality assumption may have less impact on the parameter estimates 

because the parameters are estimated for only one grade level at a time (Young, 2006). 

 

Summary and Purpose of the Study 

The extent and importance of educational testing has increased in recent years.  

Children entering kindergarten are tested several times each year as they progress from grade 

to grade until they reach high school where they encounter a graduation test and most likely 

admission tests to college and career placement.  The high stakes attached to these test results 

affect not only students but also parents, teachers and administrators as well.  Evidence of 

student learning and accountability are important issues.  Therefore, the ability to quantify 

student achievement and learning has become a critical and constructive tool. 

In addition to the increased prevalence of educational testing, standardized testing has 

also received an increased amount of criticism and controversy.  Parents and educators are 

concerned about the effects of test anxiety, the narrowing of the curriculum and the amount 

of time spent preparing for tests to name a few typical critiques.  These points are well taken 

and monitoring the use and consequences of testing is warranted.  This involves policy and 

decisions that many school boards confront and debate quite regularly.  However there is 
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another aspect to consider—the technical quality of the tests themselves.  If such important 

consequences and rewards are being attached to the scores, growth, annual yearly progress 

(AYP), then the technical quality of the tests that are being administered should be monitored 

as well. 

One of the fundamental responsibilities of test developers is to ensure that these tests 

are high quality, fair, meaningful and valid instruments of student achievement.  Assessment 

of test dimensionality is an important part of the development, evaluation, and maintenance 

of large-scale tests and scales.  Test dimensionality is the minimum number of abilities that 

accounts for student performance on a set of items.  It is a key concept that underlies most of 

the central issues in the development and use of large-scale tests.  Many of the commonly 

used test models assume unidimensionality.  These test models are the basis for developing 

student scores and it is these student scores to which are attached high stakes for both 

students and schools.  Unidimensionality is also assumed in the development of vertical 

scales which are used to monitor student growth over time.  However, multidimensionality 

may be present (either intentionally or unintentionally). 

Unintentional sources of multidimensionality may exist particularly in a subject like 

mathematics where mathematics achievement tests typically measure a combination of 

several areas such as algebra and geometry.  Unintentional sources of multidimensionality 

may also be introduced when developing a vertical scale and the inclusion of off-grade-level 

items on a test.  Therefore the purpose of this study is twofold; 1) to examine the stability of 

the dimensional structure across elementary grades mathematics achievement tests; and 2) to 

investigate the dimensional structure of these mathematics achievement tests in situations 
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where vertical linking items (below and above grade level) are included in on-grade level 

tests.



CHAPTER 2 

REVIEW OF LITERATURE 

As previously noted, test dimensionality is defined as the minimum number of 

abilities or constructs measured by a set of test items.  Dimensionality assessment and the 

implications of dimensionality are important and evolving areas in psychometric research.  

Historically, methods for calculating many of the proposed dimensionality indices were ad 

hoc with little or no rationale and no empirical support (Hattie, 1985).  However, recent 

theoretical and empirical work and greater computing resources have yielded promising new 

perspectives and methods. 

This chapter provides a review of the research on dimensionality.  The first section 

discusses conceptual and mathematical definitions of dimensionality as well as related issues 

such as factor structure and local independence.  The second section explores possible 

sources of dimensionality including differences in examinees and unintended sources of 

dimensionality that are relevant to the specific context of the proposed study: mathematics 

achievement testing.  The third section reviews methods of investigating dimensional 

structure.  The methods are categorized into two families: parametric and nonparametric 

methods.  The final section presents consequences of violating dimensionality assumptions 

and is divided into the three test development areas affected by dimensional assumptions: 

item analysis, validity and linking. 
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Defining Test Dimensionality and Related Topics 

When defining what constitutes the dimensional structure of a test, several 

perspectives and related topics must be considered.  For example, there are two frequent uses 

of the term test dimensionality, one referring to the psychological dimensionality of a test 

and the other to the statistical dimensionality of a test.  It is also important to consider the 

related concept of conditional independence of item scores.  This concept is the basis of 

many dimensionality-related topics (e.g. local item dependence) and applications (e.g., factor 

analysis).  In the following section, the various ways in which test dimensionality can be 

defined are described.  The general approaches to dimensionality include: a contrast between 

psychological and statistical dimensionality, applications of conditional independence, the 

relationship between dimensionality and local independence, evaluating assumptions of local 

independence, and other issues related to dimensionality. 

 

Psychological and Statistical Dimensionality 

A distinction is often made to the meaning of the term dimensionality.  One common 

application of the term dimensionality refers to the number of hypothesized psychological 

constructs believed to be account for performance on a test (psychological dimensionality).  

Another use refers to the minimum number of variables that are needed to summarize a 

matrix of item response data (statistical dimensionality) (Reckase, 1990).  The psychological 

definition emphasizes the actual test content and cognitive processes required by examinees 

to respond to items on the test.  It could also be considered as the substantive hypotheses and 

interpretations.  For example, a mathematics word problem could be hypothesized to require 

two dimensions (perhaps numerical computation and verbal reasoning) to respond to the 
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item.  Statistical dimensionality uses quantitative analytic methods to assess the 

interrelationships of the item responses.  The meaning of these two uses may or may not be 

the same.  According to Reckase: 

Differences in level on the mathematical variables may not translate directly 

into differences on the psychological constructs.  Whether or not they have the 

same meaning is a question of the validity of the measures obtained using the 

particular mathematical model of the interactions of persons and test items. 

(1990, p. 2-3) 

 

Gathering all available validity evidence to support inferences based on test scores is 

a critical component of a testing program and therefore the psychological and statistical 

dimensions must be considered simultaneously.  Because “the nature and dimensionality of 

the interitem structure should reflect the nature and dimensionality of the construct domain” 

(Messick, 1993, pp. 43-44),  Camilli, Wang and Fesq (1995) believed that judgments 

regarding the content of a test should also affect those regarding the dimensionality of the 

test.  They argue that statistical procedures alone (such as factor analysis) provide an 

incomplete conceptualization of dimensionality because dimensionality is dependent not only 

on the set of items and a particular set of examinees, but also on the test use.  Similarly, Tate 

(2002) recommended that determination of dimensionality should be guided by substantive 

considerations based on the content and purpose of the test.  Therefore, the final assessment 

of dimensionality should incorporate both judgments about test content and statistical 

analyses evidence.  While substantive considerations may involve qualitative expert review,  

test dimensionality based on statistical criteria requires an empirical model.  The foundation 

for these statistical models is conditional independence of the item scores. 
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Conditional Independence 

Two random variables (i.e., examinee responses to two items), x1 and x2, are 

conditionally independent given θ if, once θ is known, the value of x2 does not add any 

additional information about x1.  In other words, the trait value (θ) provides all the relevant 

information about an examinee’s performance.  Slightly different, but conceptually similar, 

forms of conditional independence of item scores are used in factor analysis and in item 

response theory (Lord & Novick, 1968).  In IRT, conditional independence is described in 

terms of local item independence.  When a pair of items is locally independent, the 

conditional probability given an examinee’s ability level, θ, is the product of the probabilities 

for separate items.  That is, once θ known, then the performance on one item is independent 

from another item.  Similarly, for factor analysis, once the first factor (θ) is defined and 

removed (i.e., conditioned on) from the data, the residual correlation matrix describes any 

unaccounted factors or other abilities.  Researchers have investigated dimensionality using 

two approaches to conditional independence: (1) evaluating the assumptions of local 

independence and (2) a factor analytic perspective. 

 

Dimensionality and Local Independence 

One of the forms used to express conditional independence is local independence.  

Test dimensionality is closely related to the concept of local independence.  According to 

Lord and Novick (1968), local independence means that “within any group of examinees all 

characterized by the same values kθθθ ,,, 21 K , the (conditional) distributions of the item 

scores are all independent of each other” (p. 361).  In other words, once the k-common traits 
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are controlled for, the responses to any item are unrelated to the responses to any other item.  

A more formal mathematical definition is as follows:  
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where U represents a vector of binary variables taking the values of 0 or 1, θ  is a k-

dimensional vector of latent traits and { }P  represents probability and { }iP  represents an 

item response function.  If a population of examinees is characterized by k latent traits which 

completely span (i.e., define) the latent space, then the responses of a subpopulation of 

examinees with fixed values for θ  are mutually independent.  If, however, a model specifies 

a number of latent traits less than k, which do not completely span the latent space, then there 

will still remain mutual dependencies among the items for fixed values of θ (Berger & Knol, 

1990).  In summary, according to Lord and Novick (1968), “the assumption of local 

independence is equivalent to the assumption that the '21 ,,, kθθθ K  under consideration span 

the complete latent space” (p. 361). 

It follows that “in order to determine the dimensionality of a set of items it is 

necessary and sufficient to identify the minimal set of traits such that at all fixed levels of 

these traits the item responses are independent” (Hattie, Krakowski, Rogers, & Swaminathan, 

1996, p. 1).  McDonald (1981) noted that local independence is the principle on which the 

notion of dimensionality is founded.  Furthermore, Traub (1983) concluded that there is no 

meaningful definition of unidimensionality and no basis for a test of dimensionality without 

local independence. 

An item might display local dependence because responses to the item are related to 

(i.e., not independent of) responses to one or more other items, again controlling for ability 
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level.  For example, local dependencies might be seen in the items that follow a passage on a 

reading comprehension test.  Local dependencies might also appear when speediness of test 

completion is a factor; some of the items at the end of the test might be omitted and thus be 

locally dependent (Chen & Thissen, 1997).  Item dependencies can be positive or negative 

(Habing & Roussos, 2003; Yen, 1984).  Locally dependent items are redundant in the sense 

that they contain less information than the IRT model would predict.  Dependencies can also 

have an effect on item parameter estimates.  Clusters of locally dependent items make a test 

multidimensional (Wainer & Thissen, 1996).  There are several indices to measure local 

dependence (Chen & Thissen, 1997) and also several methods of assessing dimensionality 

based upon local item dependencies (Tate, 2003). 

 

Evaluating assumptions of local independence.  As previously shown, evaluating the 

number of latent traits needed to obtain local independence provides a powerful tool for 

assessing test dimensionality.  In particular, the traditional IRT conceptualization of 

dimensionality makes no distinction between major (dominant) and minor dimensions 

(Nandakumar, 1991).  The notion that test performance is governed by a dominant latent trait 

and several nuisance or nondominant latent traits has necessitated a distinction between strict 

dimensionality and essential dimensionality.  To illustrate these concepts it is first necessary 

to consider that IRT models require a dual assumption:  local independence and 

monotonicity.  Therefore, dimensionality can be defined as the minimum number of traits 

necessary to satisfy local independence and monotonicity (Stout, 1990).  A monotonically 

increasing function is one that preserves the order with increasing values; if x1 > x2 then f(x1) 

> f(x2).  Items in an achievement test should have a monotonically increasing item response 
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functions; the more ability possessed by the examinee, the greater the probability of success 

(van der Linden & Hambleton, 1997).  Using Stout’s definition, the difference between strict 

and essential dimensionality is the difference in conditions of local independence.  Strict 

dimensionality requires the strong principle of local independence (SLI).   

The strong principle of local independence (SLI), which requires that item responses 

be statistically independent for fixed values of the traits, is very stringent.  It is 

mathematically defined by McDonald & Mok (1995) as: 

∏
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Notice that the definition of SLI given in Equation 2 is simply the definition of local 

independence presented in Equation 1.  SLI requires that, for fixed values of the traits, not 

only the covariances be 0, but that all higher-order moments be products of the univariate 

moments.  That is, local independence is a broader assumption than zero correlations;  local 

independence also includes nonlinear and higher- order relationships among the items 

(Embretson & Reise, 2000).  SLI is almost impossible to attain in practice (Stout et al., 

1996).  Researchers have proposed two weaker forms of SLI: 1) the weak principle of local 

independence (WLI) and 2) an even weaker form called the principle of essential 

independence (EI) (Stout, 1990).  Many of the techniques for assessing test dimensionality 

are grounded in at least one of these three principles of local independence. 

The weak principle of local independence (WLI) requires that only the covariances 

among the items be 0 for fixed values of the traits.  McDonald (1981) defined the weak form 

of local independence by, 

kjUUCov kj ≠= ,0}|,{ θ  
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When the item responses (conditional on the trait values) have a multivariate normal density, 

the weak principle implies the stronger principle.  McDonald also argued that in practice SLI 

is rarely violated in cases where WLI holds true. 

The principle of essential local item independence (EI) is a weakest form of SLI 

(Stout, 1990).  While WLI requires the covariances to be zero for all θ, EI merely requires 

that the average of the magnitude (absolute value) of the covariances conditioned on a fixed 

value of the latent traits converges to zero as the test becomes very long.  In other words, 

essential independence requires that the average value of ( )θ=Θ|, ji UUCov  over all item 

pairs approach zero for all θ as the test length increases (Nandakumar & Stout, 1993).  

Assuming essential unidimensionality requires that the items exhibit EI.  Essential 

unidimensionality is based on the premise that a dominant trait exists with the possible 

presence of several minor dimensions.  It assumes the dominant dimension is so strong that 

the trait estimates are not affected by the presence of smaller dimensions (Smith, Jr., 2004). 

 

Dimensionality and Factor Analysis 

Another important approach to assessing dimensionality using conditional 

independence is factor analysis.  Factor analysis explores the covariances among items and is 

an empirical way of studying the construct(s) measured by a test.  If the test is designed to 

measure a certain number of factors (constructs), the items should group themselves 

according to the factors they were intended to measure.  The magnitude of the item loadings 

across factors may be used to assess the dimensionality of a test.  The larger the loading 

value, the stronger the relationship between the item and the factor.  For example, if a set of 

items is constructed to measure only one construct, then each item should have a large 
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loading only on that one factor and have weak, almost negligible loadings on any additional 

factors. 

Defining and removing the first factor is roughly equivalent to conditioning on θ.  If 

the residual correlations are all zero, then one factor accounts for the differences in test 

performance.  Or in terms of local independence, there are no local item dependencies since 

locally dependent items would have nonzero residual correlations after removal of the first 

factor.  However, if a set of items has unusually large residual correlations (indicating local 

dependences), then two or more factors could also be defined.  Factor analytic procedures are 

available to explore and measure the correlations among factors. 

 

Other Issues Related to Dimensionality 

There are three other issues related to dimensionality that will be described in this 

section.  These issues are related to possible correlations among traits or factors.  For one, 

some researchers have suggested that a test may be considered to be unidimensional if the 

items assess the same combination of skills.  This slight deviation of the traditional IRT 

concept of unidimensionality has been raised by Reckase and Ackerman (1986).  A second 

issue, situated in the factor analytic framework, is test structure.  To examine this issue, 

distinctions among types of factorially simple and types of factorially complex test structures 

are described.  The last issue introduces compensatory and noncompensatory models. 

 



 25 

Unidimensionality and Combination of Same Skills 

Reckase and Ackerman (1986) have argued that the concept of unidimensionality 

required by IRT (i.e., all persons with the same estimate of ability have the same probability 

of a correct response for each item) is not the same as the commonly held conception of 

unidimensionality.  According to Reckase and Ackerman, the IRT definition “does not 

require that the estimate of ability be a function of a single psychological trait or construct.  

As an alternative, each item could require the same combination of traits or constructs” (pp. 

2-3).  Therefore, from an IRT perspective, a test would be unidimensional as long as all of 

the items required the same combination of skills. 

To pursue their alternative conceptualization, Reckase and Ackerman (1986) studied 

selected mathematics achievement items using a multidimensional item difficulty (MID) 

statistic.  This statistic indicates the combination of skills that form a multidimensional space 

for which the test item provides the best discrimination.  It is described by two pieces of 

information:  the direction from the origin of the multidimensional space to the point in the 

space where the item is most discriminating, and the distance from the origin to that point.  

Thus, a set of items with the same direction function as if they were unidimensional even 

though they may require more than one skill to respond correctly.  Items that have different 

directions will form a multidimensional set from the IRT perspective.  Once the MID 

statistics were computed, items were sorted according to direction and then the item sets 

were analyzed using a specified unidimensional IRT model.  The results strongly supported 

the conception of unidimensionality suggested by a common direction in the 

multidimensional space for a set of items and the use of MID statistics in forming 

unidimensional item sets. 



 26 

The results obtained by Reckase and Ackerman (1986) were supported in further 

studies of both simulated and real data by Reckase, Ackerman, and Carlson (1988).  These 

authors concluded that “rather than specifying that items need to measure only a single trait, 

the results presented here show that the unidimensionality assumption implies that items need 

only measure the same composite of abilities as indicated by multidimensional IRT analysis” 

(p. 203).  However, it seems like a composite is fairly unique to each set of items.  Therefore, 

writing new items, developing test forms and equating procedures that all measure or 

combine to measure the same, exact initial composite of skills would be extremely difficult. 

 

Factor Analysis and Test Structure 

Another topic related to dimensionality is test structure.  Recall that in factor analytic 

terms, test dimensionality is described by factor loadings.  A set of items that load on only 

one factor is called factorially simple; it measures one underlying attribute.  A conceptual 

schematic of a factorially simple test structure is shown in Figure 2.1 (a).  In Figure 2.1, the 

items are represented by dots and the distance from the origin to the dot is, in a very 

simplistic approach, a measure of the magnitude of the item’s discrimination.  The more 

highly discriminating items have longer distances.  Notice that a unidimensional test is 

factorially simple; all the items lie along one dimension. 
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Figure 2.1. Conceptual schematics of test structures. 

 

A concept similar to Reckase and Ackerman’s idea of a composite unidimensional 

trait is a factorially complex structure.  If an item or a test measures two or more factors, it is 

referred to as factorially complex.  There are three types of factorially complex tests 

depending on the data: simple structure, approximate simple structure, and complex 

structure.  Simplified schematics for these structures are shown in Figure 2.1 (b) – (e). 

If each item on a test measures one, and only one dimension, the test structure is 

labeled as exact or simple structure.  Exact or simple structure is defined to exist for a k-

dimensional test if a k-dimensional latent coordination system exists such that all the items 

lie along the coordinate axes (Stout et al., 1996).  A two dimensional (k=2) example of 

simple structure in shown in Figure 2.1 (c).  Notice that all the items lie closely along the two 

dimensional axes.  In factor analytic terms, simple structure refers to the situation in which 
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the factor loadings are either very large, suggesting a clear relationship between the item and 

factor, or very small suggesting no relationship at all between the item and factor (L. D. 

McLeod, Swygert, & Thissen, 2001).  However, real test data are rarely represented by 

simple structure. 

An alternative to simple structure is approximate simple structure, in which an item 

primarily measures one dimension, with loadings to a lesser extent on the other dimension(s).  

There are two possible scenarios. One possibility is the presence of a dominant dimension 

with one or more nuisance dimensions present as in the case of essentially unidimensional 

shown in Figure 2.1 (b).  The items do not lie as closely around θ1 as they do for the 

unidimensional case in (a) indicating the correlation of the items to θ2 as well as θ1.  A 

second scenario would be the multidimensional equivalent to essential unidimensionality.  

Two dominant dimensions are shown in Figure 2.1 (d).  In this two-dimensional example, the 

items lie in a close sector around the two-dimensional coordinate axes.  In other words, items 

that display approximate simple structure are mainly sensitive to one trait and only 

marginally to other traits. 

If the items load highly on multiple dimensions, then the structure is referred to as a 

complex structure.  Complex structure is typical of most educational testing (Ackerman et al., 

2003; Sass & Walker, 2006).  A complex structure is displayed when the items lie throughout 

the two-dimensional coordinate axes (i.e., items measure a range of skills in the θ1θ2 

composite) (Ackerman et al., 2003; Gierl, Tan, & Wang, 2005; Stout et al., 1996).  This is 

shown in Figure 2.1 (e).  The items along the axes measure one of two dimensions.  Also 

notice the items that appear in-between the two axes.  These items measure a composite or 

combination of both dimensions.  For example, a mathematics test could conceivably be 
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constructed of subsets of items.  One subset of items might require algebra skills, θ1; another 

subset might involve geometry understanding, θ2; still another subset might require a 

combination of both algebra and geometry proficiencies, θ1θ2. 

 

Compensatory and Noncompensatory Models 

A third issue to consider when describing multidimensional models is the potential 

presence of compensation among the abilities required to answer test items correctly.  

Compensatory models assume that high ability on one dimension can compensate for low 

ability on another dimension in terms of the probability of a correct response.  In 

noncompensatory models, sufficient levels of each measured ability are required, and a 

deficiency in one ability cannot be completely offset through an increase in others.  The 

question of whether the compensatory or the noncompensatory model is more appropriate in 

applied testing situations is debatable.  Either way, some researchers have suggested that 

there is no way to practically determine whether real data are compensatory or 

noncompensatory (Way, Ansley, & Forsyth, 1988). 

Summary 

This portion of the review of literature has summarized the general definitions and 

topics associated with dimensionality.  Dimensionality typically has two connotations: the 

number of hypothesized, psychological constructs measured by a set of items, and the 

statistical model needed to describe the interrelationships among item responses.  Both 

perspectives are important to understanding what items/ tests are measuring and evaluating 

the congruence of the nominal, intended test specifications with the effective test structure.  
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The foundation of the statistical analyses and test theory models used to describe and thereby 

assess dimensionality is conditional independence.  Forms of conditional independence are 

the basis for methods such as factor analysis and local independence.  The principle of local 

independence provides a mathematical definition such that once the number of traits is 

determined and conditioned on, the responses to items are statistically independent.  This 

strong assumption is rarely met in real test data due to the presence of either intentional or 

unintentional sources of dimensionality.  The distinction between intentional (multiple 

dimensions) or unintentional (perhaps a dominant dimension with nuisance factors) sources 

is considered in the next section.   
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Sources of Dimensionality 

Achievement test data are often intentionally or unintentionally multidimensional.  

When an achievement test is purposely designed to measure a constellation of differing 

knowledge domains, skills, or constructs, multidimensionality is intended, or at least 

expected.  However, in other contexts, multidimensionality may not be intended.  Sources of 

multidimensionality include the many individual differences each examinee brings into a test 

administration.  Multidimensionality can also be the consequence of content complexity.   

For example, mathematics educators, including the National Council of Teachers of 

Mathematics (NCTM), have struggled with defining and agreeing on evidence of 

mathematical proficiency particularly in regards to procedural knowledge and conceptual 

knowledge.  Furthermore, the distinct content areas that comprise grade-level content in 

mathematics and emphasis on applications and conceptual knowledge create complex 

mathematics curricula and potentially multidimensional assessments.  Other sources of 

multidimensionality may result from the test development process including test 

specifications, item difficulty and linking projects such as vertical scaling. The following 

sections describe in greater detail these potential sources of multidimensionality, with special 

attention to the presence of multidimensionality in linked assessments. 

 

Differences in Examinees 

As previously mentioned, assessment of dimensionality is related to the concept of 

conditional independence.  In IRT, conditional independence is described in terms of local 

item independence. The assumption of local independence is not satisfied if the inter-item 
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correlations differ across subpopulations of examinees with equal latent trait values (θ).  That 

is, items should not perform differently for subgroups of examinees with equal θ values.  

However there are always other cognitive, personality, and test-taking factors that have an 

impact on test performance and affect an examinee’s observed score (Hambleton & 

Swaminathan, 1985).  For example, poor performance on a mathematics test may be 

attributed to test anxiety and/or math anxiety.  For certain students, stereotype threat may 

impact test performance.  The research of Steele and his colleagues suggests that societal 

stereotypes (i.e. certain groups like females or African-Americans do not do well at math), 

not solely mathematics proficiency, impairs standardized test performance of females and 

African Americans (Steele, 1997).  Another unintended source of multidimensionality is 

differences in examinee motivation.  Motivational effects can have impact on test 

performance positively as well as negatively.  For example, test developers grapple with 

differential motivation and effort of students, particularly those of high school age, on field 

test (or non-operational) items.  In addition, some students will be more persistent that others 

during testing. 

There are at least two other factors related to the individual examinees that will 

produce unintentional test multidimensionality:  speed of test taking and willingness to guess 

(Traub, 1983).  If the test administration is timed, then speed of work is introduced as a 

factor.  For examinees with the same score on the latent variable in question (e.g., 

mathematics computation), a timed test administration will separate those who work quickly 

to answer all the items in allotted time from those who do not.  If test items are amenable to 

guessing, then local independence assumptions would be violated when examinees with 

equal standing on the latent construct and different propensities to guess are confronted by an 
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item for which the do not know the correct response.  Failure to consider guessing effects 

could “produce artificial factors and misleading information as to the number of factors 

needed to account for the data” (Lawrence & Dorans, 1987, p. 2).  Furthermore, in a recent 

study comparing methods for assessing dimensionality and factor structure for binary scored 

items in which the examinees may be guessing, Stone and Yeh (2006) found that if guessing 

is relevant to the testing application, then modeling guessing in the analysis of dimensionality 

may be important.  This supported similar results reported previously by Tate (2003). 

In conclusion, examinees vary widely in their cognitive processes, personality, 

psychological attributes, and educational characteristics.  Individuals also differ in terms of 

cultural factors and out-of-school learning experiences that are relevant to in-school learning 

and classroom experiences.  While tests are intended to measure an individual’s achievement, 

care must be taken to ensure that a test is not measuring other unintended individual 

differences such as anxiety or motivation. 

In addition to individual examinee differences, various classroom circumstances can 

introduce multidimensionality.  These can include “the effects of improved teaching methods 

on more recent samples of students, changes in emphasis and curriculum that took place 

between pretest and operational administration, and the ability of examinees to recognize and 

therefore have different motivation on pretest section” (Stocking & Eignor, 1986, p. 21). This 

can vary widely from student to student, even within the same class (Traub, 1983).  

Classrooms in turn are shaped by several factors particularly the curriculum and subject 

matter.  Mathematics content presents many challenging topics so possible sources of 

multidimensionality are introduced due to current theories of mathematical proficiency, 

methodological approaches to teaching, and NCTM influences in curricula. 
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Mathematical Proficiency 

Previously in this chapter, consideration was given to defining what constitutes the 

dimensional structure of a test.  Consideration is especially warranted when the construct to 

be measured is mathematical proficiency (also referred to as mathematics achievement).  

Mathematics proficiency is a complex and multifaceted domain as shown in Figure 2.2.  For 

example, under the umbrella of mathematical proficiency are distinct subdomains or strands 

such as Geometry and Algebra that comprise related, but different, knowledge and skills. 

Within each strand, a mathematically proficient student would need to possess the skills to be 

able to do computations as well as applications or problems situated within a given context. 

Underlying these skills are procedural knowledge and conceptual knowledge, respectively.  

Rittle-Johnshon, Siegler and Alibali (2001) offered the following definitions of procedural 

and conceptual knowledge:  

We define procedural knowledge as the ability to execute action sequences to 

solve problems.  This type of knowledge is tied to specific problem types and 

therefore is not widely generalizable ... such as counting a row of objects or 

solving standard arithmetic computations... we define conceptual knowledge 

as implicit or explicit understanding of the principles that govern a domain 

and of the interrelations between units of knowledge in a domain.  This 

knowledge is flexible and not tied to specific problem types and is therefore 

generalizable. (p . 346-347) 

 

Thus, procedural knowledge refers to computational skills (e.g., adding two digit numbers), 

knowledge facts (e.g., multiplication tables) or solving one-step equations.  Conceptual 

knowledge typically includes other processes such as reasoning, reading, problem solving, 

communication and making connections among topics.  The NCTM Standards describe these 

as “process standards”. 
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Figure 2.2. Components of Mathematical Proficiency 

 

Educators disagree regarding the introduction and emphasis of procedural knowledge 

and conceptual knowledge (sometimes referred to as conceptual understanding or learning 

with understanding).  Most theories of the development of procedural knowledge and 

conceptual knowledge have focused on which type of knowledge first develops in a given 

domain (e.g. counting, simple arithmetic, adding fractions).  Mathematics education 

researchers debate whether students learn best by memorizing procedural knowledge (such as 

multiplication facts) or by emphasizing the concepts behind the procedures (i.e., modeling 

and understanding the reasoning of the multiplication process).  According to procedure-first 
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concepts of why the skills work the way they do.  On the other hand, concepts-first theories 

purport that students initially develop conceptual knowledge and then use this conceptual 

knowledge to generate procedures.  While some researchers (e.g., Carpenter & Lehrer, 1991),  

reported that there is a mounting body of evidence that supports the importance of learning 

with understanding from the beginning, other researchers (Rittle-Johnson et al., 2001) 

hypothesized that student’s conceptual and procedural knowledge develop iteratively.  That 

is, an increase in one type of knowledge leads to gain in the other type of knowledge.  The 

reform efforts and standards developed by the NCTM have largely embodied an emphasis on 

instilling conceptual knowledge before teaching procedure knowledge. 

 

Assessing Mathematical Proficiency 

Measuring conceptual knowledge and process skills is challenging.  Rittle-Johnson, 

Siegler, Alibali observed that “to assess conceptual knowledge, researchers often use novel 

tasks, such as counting in nonstandard way or evaluating unfamiliar procedures” (2001, p. 

347).  The NCTM Standards emphasize the need for students to spend more time on problem 

solving and reasoning skills particularly with non-routine mathematical items that students 

would encounter outside the classroom.  This shift to a more authentic tasks provides a fairly 

multidimensional vision of what it means to know and understand mathematics (Romberg, 

1995).  According to Romberg,  

For a task to be considered "authentic," it should not easily fit into neat 

categories of single content areas and single processes. Solving nonroutine 

problems usually involves multiple processes and cuts across mathematical 

domains. Making connections necessarily involves blurring the lines between 

content and processes. (p. 9) 
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Nonroutine items that are designed to measure problem solving and reasoning skills 

are often placed in situational contexts that require students be able to read and comprehend 

the problems.  However, context can add potential cultural loadings to an item or test.  

Certain words or context may not be understood by all examinees depending on their SES, 

gender, educational background, personal experiences, region of residency, or other factors.  

In addition to mathematical proficiency, context inserts another dimension by requiring 

reading ability.  Many mathematics problems require two skills: a verbal skill to determine 

what is required by the problem and a mathematical skill to solve the problem (Reckase & 

Ackerman, 1986). 

Language ability is, in general, a predictor of math performance.  Carpenter, Corbitt, 

Kepner, Linquist and Reys (1980) reported that 10% to 30% of children perform worse on 

word problems than on comparable problems presented in numeric format.  Many 

researchers have concluded that the discrepancy between performance on verbal and numeric 

format problems strongly suggests that factors other than mathematical skill contribute to 

success in solving word problems and that the interaction between language and mathematics 

achievement is real (Abedi & Lord, 2001; L. D. McLeod et al., 2001).  According to Reckase 

(1990),  

Numerical computation and verbal reasoning are said to be required to 

successfully perform on a mathematics story [word] problem.  Numerical 

computation and verbal reasoning are two psychological dimensions that are 

hypothesized to exist to explain differences in performance on the test item. 

(p. 4) 

 

To investigate the contribution of these two factors, Abedi and Lord (2001) acquired 

released items from the National Assessment of Educational Progress (NAEP) and modified 

the items to reduce their linguistic complexity.  These items (both the original and the 
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modified versions) were then administered to over 1,100 8
th

 grade students.  Linguistic 

modification of test items resulted in significant differences in math performance; scores on 

the linguistically modified version were slightly higher.  The results also showed several 

other group differences on test performance overall (i.e., both the original and the modified 

versions of the items).  For example, there were differences in math performance with respect 

to SES but not gender.  Students who were English language learners (ELLs) scored lower on 

the math test than proficient speakers of English.  These results were consistent with previous 

research studies.  Reckase, Davey and Ackerman (1989) reported “there is a fairly clear 

distinction between the arithmetic items that are in story [word] problem format and those 

items that only require computation or formula manipulation.  However, the constructs 

measured by these two different types of items are highly intercorrelated” (p. 10).  A 

mathematics test that contains some items that are strictly computational and other items that 

involve verbal material is not likely to be unidimensional (Kolen & Brennan, 2004).  This 

type of mathematics test would, in effect, be an assessment of at least two abilities (i.e., 

reading  and  mathematics.   

Placing mathematical problems in context is not the only challenge to measuring 

mathematical knowledge.  Guided by the conceptual knowledge framework of the NCTM 

Standards, some large scale testing programs have incorporated polytomous, constructed-

response items to measure the communication of mathematical ideas.  These items attempt to 

capture the process of learning in addition to the product (Walker & Beretvas, 2000).  In 

order to do well on items measuring mathematical communication, such items may require 

that students be able to clearly communicate graphically, numerically, and/or in writing.  It 
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was determined that such items function differently in favor of proficient writers and the data 

were considered to be multidimensional (Walker & Beretvas, 2000). 

 

Mathematics Standards and Classrooms 

Many states, schools and classrooms have modeled their curriculum and methods 

after the NCTM Standards.  Other more populous states such as California or Texas use 

state-developed curricular frameworks that are similar to NCTM Standards.  The similarity 

actually stems from the reference of state curricular guidelines during the development of 

NCTM Standards.  For example, the California Framework (California Department of 

Education, 1985) was mentioned frequently during the writing of the NCTM standards (D. B. 

McLeod, Stake, Schappelle, Mellissinos, & Gierl, 1996).  The California Framework 

contains five content strands (Number Sense; Algebra and Functions; Measurement and 

Geometry; Statistics, Data Analysis, and Probability; and Mathematical Reasoning).  Notice 

these strands are very similar to the NCTM Standards strands but with a slight variation.  

The NCTM Standards split Measurement and Geometry into two strands and refer to 

Mathematical Reasoning as a process skill that is integrated throughout the curricula and 

grades (National Council of Teachers of Mathematics, 2000).  Regardless, as indicated 

previously, many aspects of the instructional environment can introduce multidimensionality.  

One source is the curriculum itself which delineates the coverage of topics, the depth of those 

topics and when (grade-wise) topics are introduced.  It appears that by the current definition 

of mathematical understanding (i.e., NCTM) and perhaps by its very nature, mathematics 

proficiency is multidimensional.  This is further corroborated by the different content areas as 

defined by the NCTM Standards. 
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The NCTM Standards are descriptions of what mathematics instruction should enable 

students to know and to do by specifying the understanding, knowledge and skills that 

students should acquire from prekindergarten through grade 12.  The NCTM Standards are 

divided between content standards and process standards.  The content standards explicitly 

describe the content students should learn in five strands:  (1) Numbers and Operations, (2) 

Algebra, (3) Geometry, (4) Measurement, and (5) Data Analysis and Probability.  The 

process standards emphasize the need for students to spend more time on mathematical 

problem solving and reasoning, communicating mathematical ideas, making connections 

among mathematical topics and exploring relationships among representations of 

mathematical forms.  Both the content standards and the process standards may cause 

unintended sources of test dimensionality. 

 

Mathematics Curriculum 

Mathematics is a multifaceted domain which requires a comprehensive curriculum 

which in turn introduces other possible sources of multidimensionality.  The various 

mathematical topics are reflected in the content standards developed as part of the NCTM 

Standards.  The NCTM Standards view a coherent curriculum as one that effectively 

organizes and integrates important mathematical ideas so that students can see how the ideas 

build on or connect with other ideas.  In other words, the curriculum is designed to deepen 

conceptual understanding.  A key strategy for accomplishing this goal is to address each of 

the five strands during a school year.  The amount of instructional time spent on each strand 

varies by grade level.  Based upon the NCTM Principles and Standards (National Council of 

Teachers of Mathematics, 2000) which were shaped by the theoretical perspectives, 
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methodologies, and findings of research (Ferrini-Mundy & Martin, 2003), NCTM developed 

a figure that demonstrates roughly how content strands might receive different emphases 

across the grade bands.  This graphical representation is shown in Figure 2.3.  For example, 

note the amount of coverage that is allotted to Number Sense and Operations shown in 

Figure 2.3; this strand receives considerable emphasis in the early elementary years but 

decreases over time.  The opposite is true for the Algebra strand; it receives little emphasis in 

the early elementary years but emphasis increases across the grades. 

 

 

Figure 2.3.  NCTM Content Standards Across the Grade Bands (National Council of 

Teachers of Mathematics, 2000) 

Source:  (National Council of Teachers of Mathematics, 2000) 

 

Research on curricular differences and dimensionality is rather limited.  Phillips and 

Mehrens (1987) investigated whether linear factor analysis (a commonly used method to 

investigate dimensionality) was sensitive to measurable curricular differences within a school 

district.  In other words, the authors were interested in whether the curricular differences 

were great enough to disturb the measurement of the intended ability.  The authors 
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considered curricular differences to be differences in the stress placed on the results of 

standardized tests by the principals, different textbooks and other curricular materials used, 

and the differences in amount and focus teachers placed on the test content and results.  The 

analyses used both student test scores and responses of school personnel to rate each school 

in the district on the match between instruction in the building to the standardized test.  

Based upon the results, the authors concluded that “curricular heterogeneity appeared not to 

be a potent concern in the possible violation of the unidimensionality assumption of IRT” (p. 

14).  However, the authors cautioned that several important issues should be considered in 

interpreting the results.  Several concerns stemmed from the use of linear factor analysis and 

tetrachoric correlations (these will be discussed in the assessment section of this chapter) and 

methods of quantifying curricular differences.  Note that the curricular differences did not 

take into account the content areas across grades and alignment to standards.  This is an 

unexplored area in educational measurement and will be addressed in the proposed study. 

To the extent that test developers—including states that produce standards-referenced 

tests to comply with No Child Left Behind (NCLB)—adhere to the NCTM Standards, their 

tests will reflect the NCTM content emphases (Feuer, Holland, B.F., Bertenthal, & Hemphill, 

1999).  As illustrated in Figure 2.4, the content strands present two potential sources of 

dimensionality: the division of mathematical content into the strands themselves and the 

grade-varying strand emphasis.  The division of mathematical knowledge into the strands 

themselves potentially creates sources of dimensionality.  By establishing the different 

strands, the NCTM Standards are indicating special knowledge and skills that are unique for 

a specific domain (e.g., Geometry compared to Algebra).  Therefore, items written to specific 

strands could potentially create a dimensional structure reflecting those intended strands.   
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Consequently, reporting one “math” total score across grades could be problematic.  

For example, a single mathematics score is reported for a Grade 3 examinee and a single 

mathematics score is reported for a Grade 8 examinee.  However, due to the changing strand 

emphasis over the curriculum, a Grade 3 form is more heavily weighted on number sense and 

operations while the Grade 8 form reflects the dominant focus on algebraic reasoning and 

skills.  A single total score usually implies a unitary construct and vice versa (Messick, 

1993). 

The NCTM Standards have been widely adopted by states on a general level. 

However, at a specific level, adherence to them may vary.  Differential probabilities of 

success could be due to lack of emphasis on or lack of introduction of some aspect of 

mathematical knowledge (Bogan & Yen, 1983).  “Achievement tests are typically designed 

to measure a complex of skills related to a curriculum area.  These tests are inherently 

multidimensional in what they measure. Yet, a single score is often reported to summarize an 

examinees performance on such a test” (Reckase et al., 1989, p. 9).   

 

Figure 2.4. Possible Sources of Multidimensionality Related to NCTM Content Strands 
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Mathematics Assessments and Dimensionality 

With the potential for both unintended and intended multidimensionality,  it is not 

surprising that previous research studies have found mathematical assessments to be 

multidimensional.  In a validation study of National Education Longitudinal Study of 1988 

(NELS:88), Kupermintz and Snow (1997) demonstrated that achievement on the NELS:88 

mathematics test is not adequately represented by a single dimension.  They factor analyzed 

the multiple-choice test in mathematics and the results yielded several interpretable 

achievement dimensions (two to five dimensions including mathematical reasoning and 

knowledge).  In another recent study, Gierl, Tan and Wang (2005) used several methods to 

assess the cognitive dimensions that characterize student performance on the SAT.  (The 

specific methods will be described later in this chapter.)  The math section of the SAT 

contains 54 items and covers mathematical concepts in four areas: Number and Operations; 

Algebra I, II and Functions; Geometry; and Statistics, Probability, and Data Analysis.  While 

both multiple-choice and constructed response item formats were used, both item types were 

scored dichotomously.  Exploratory analyses indicated two dimensions with a moderate 

correlation among dimensions.  The confirmatory analyses also revealed multidimensionality 

in the SAT data.  The authors concluded that there is a “multidimensional basis for test score 

inferences on the mathematics section of the SAT” (p. 26). 

Overall, previous research has shown that mathematics content tends to be 

multidimensional.  The grade-varying strands can cause potential sources of 

multidimensionality.  This multidimensionality must be taken into account for many reasons, 

including when developing valid scales needed to for growth modeling and value-added 
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modeling.  Possible sources related to the test development process including vertical scaling 

will be discussed in the next section. 

 

Test Development 

Several of the steps in the test development process can introduce sources of 

multidimensionality.  As mentioned previously, some of these sources of multidimensionality 

can be intentional (i.e., tests developed to report subscores) or more likely, 

multidimensionality develops unintentionally.  Test specifications and linking projects such 

as vertical scaling can create unplanned sources of multidimensionality. 

 

Test Specifications 

After the purpose(s) of the test are clarified, the next step is to specify the attributes of 

the test which will guide subsequent item development and form assembly.  According to 

Millman and Greene, “the major function of this is step is ... to enhance the ultimate validity 

of the test-score inferences...foremost among the attributes of a test requiring specification is 

its content” (1989, p. 338).  These specifications describe either the number or the proportion 

of items from each sub domain that are to be included on the final version of the test.  

Ironically, this attempt to establish content validity, can also highlight intentional (or 

unintentional) sources of multidimensionality depending on the test purpose. 

Reckase (1979) has observed that “achievement tests are not usually constructed 

using methodology designed to yield factor pure measures....items are written to match the 

specifications. The tests produced in this way seldom measure a single trait and often will be 
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factorially complex” (p. 208).  Reckase, Davey and Ackerman (1989) expanded further on 

this relationship of dimensionality and test specifications by commenting that, 

Achievement tests that are constructed with an emphasis on content 

specifications are likely not to be unidimensional and it is uncertain whether 

the current test construction process yields tests that are parallel in a 

multidimensional sense when that is not specifically stated as a requirement in 

the test development process. (p. 2) 

 

Linking Methods and Practices 

Linking distinct assessments is necessary in many testing programs.  In general, 

linking means putting scores from two or more tests on the same scale.  For example, 

alternate forms of a grade 5 mathematics achievement may be administered but the scores 

from all versions are reported on the same scale.  The process of linking allows test scores 

obtained on one test to be related or converted to test scores on another test.  Linking is 

commonly compared to the well-known relationship between temperature measured on the 

Fahrenheit and Celsius scales.  The relationship, 32
5

9
+= CF  or equivalently, 

( )32
9

5
−= FC  permits a kind of linking between these two temperature scales. 

Various techniques are available to link one assessment to another.  However, a 

confusing array of terminology in the literature has been associated with those techniques 

and the terms are not always used consistently (Kolen & Whitney, 1982).  For example, the 

word linking is a generic term that includes a variety of approaches to make results of one 

assessment comparable to those of another.  Efforts have been made to bring coherence to the 

terminology (Feuer et al., 1999; Kolen & Whitney, 1982; Linn, 1993; Mislevy, 1992).  There 

are four categories or forms of linking which are listed here in terms of the strength of the 
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resulting linkage:  equating, calibration, projection and moderation.  Equating is the strongest 

or most demanding form of linking and the one with the most technical support.  When a 

linking relationship is truly “equating”, the relationship is invariant across the different 

populations.  That is, the equated scores can be used interchangeably.  Calibration links test 

or assessments that are constructed for different purposes and use different content 

frameworks or test specifications.  Many of the statistical methods used in equating can be 

used in calibration but the resulting relationships are not likely to be invariant across different 

populations.  Projection is a unidirectional form of linking that is used to predict or project 

scores on one test from the scores on another test.  There is no expectation or requirement 

that the two tests are measuring the same construct.  Moderation is the weakest form of 

linking and is used when the tests have different blueprints and are given to different, 

nonequivalent groups of examinees.  There are two types of moderation:  statistical 

moderation (often called “distribution matching”) and social moderation which involves 

direct judgments concerning the comparability of performance levels on different 

assessments. 

There also exist subtle differences in the taxonomy of types given above.  Consider 

the second method listed, calibration.  There are several connotations of “calibration”.  The 

Standards for Educational and Psychological Testing refer to this type of linking as “scaling 

to achieve comparability” (AERA, APA &  NCME, 1999, p. 52).  Vertical scaling is often 

referred to as vertical equating but it is typically considered a form of calibration.  However 

some researchers have argued that vertical scaling is more a combination of projection and 

moderation (Lissitz & Huynh, 2003).  Regardless, vertical scaling offers methods for 

assessing student gains over time and is an important procedure in educational testing. 
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Vertical Scaling 

As a consequence of the NCLB legislation, a pressing issue for many states is 

demonstrating adequate yearly progress for each student.  Adequate yearly progress (AYP) 

requires a group of students to make substantial academic progress (i.e., growth) every year 

in every class.  Successfully estimating the progress or growth of competence requires 

modeling the developmental trajectory.  Vertical scaling can be used to construct such a 

developmental scale.  The goal of vertical scaling is to place tests that differ in difficulty but 

are intended to measure similar constructs on the same scale.  It implies that the same 

dimensions are the focus of the teacher’s efforts in each grade (Lissitz & Huynh, 2003).  

However, multiple test levels of mathematics may not be measuring the same construct due 

to potential sources of multidimensionality stemming from the changing curriculum and 

content emphasis across grades. 

Constructing a vertical scale across grades is very complex due to the difficulty of 

measuring and modeling student learning.  For example, as Kolen and Brennan (2004) 

observe, “students learn so much during their grade school years, that using a single set of 

test questions over a wide range of educational levels can be problematic” (p. 372).  

Modeling the learning process in mathematics is complicated because new topics and skills 

are being introduced at all grades; it is not learning how to improve one “math” skill but 

rather expanding and building new knowledge.  In a recent study of vertical scaling of 

science achievement tests Reckase and Martineau (2004),  made the following comments: 

Students do not gain knowledge in multiple content areas in a uniform way.  

Rather, the growth is on different dimensions at different times.  The tests also 

reflect different skills and knowledge at different grade levels.  These suggest 
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that multidimensional models are needed to reflect the complexities of vertical 

scaling of science achievement. (p. 18) 

 

Mathematical achievement may not be all that dissimilar from science achievement.  Like 

science, mathematics has multiple content areas (e.g., NCTM strands) and students are 

learning different skills and knowledge at different grade levels.  Many of the procedures for 

linking score scales assume that the tests are measuring the same construct and that the forms 

are reasonably parallel in their construction.  Neither of these assumptions is met when the 

tests are designed for different grade levels (Reckase & Martineau, 2004). 

 

Item Difficulty 

Obviously, items written for students in upper elementary grades will be more 

difficult than for students in earlier grades.  Item difficulty can introduce another source of 

multidimensionality, particularly in vertical scaling projects.  In IRT, item difficulty is 

described by a parameter that is sometimes referred to as the location parameter.  This 

parameter is symbolized bi, which represents the difficulty, b, for an item, i.  In the simplest, 

one-parameter (i.e., Rasch) IRT model, bi is the point on the ability scale where the 

probability of a correct response is 0.5.  An item with a higher value of bi requires a greater 

ability for an examinee to have a 50% chance of getting the item correct; hence, the harder 

the item.  On one hand, difficult items are useful to distinguish different ability levels.  

However, the purpose of vertical scaling is to place tests that differ in difficulty but are 

intended to measure similar constructs on the same scale (Kolen & Brennan, 2004). 

Dimensionality can be confounded with item difficulty in several ways.  For example, 

factors might represent items with comparable difficulty levels rather than items that measure 
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distinct dimensions (Ackerman et al., 2003).  Reckase (1990) also observed that when the 

psychological dimensions are strongly confounded with the difficulty of the test items, the 

data might appear to be unidimensional.  Unidimensionality is assumed because there is little 

variation in the probability of correct response on the items measuring other dimensions 

when there is little variation in the probability of a correct response on the items measuring 

the first dimension. 

In another possible scenario, the difficult items in a test may be measuring a different 

combination of skills than the easy items (Reckase, 2004).  This is of particular concern with 

developing mathematics tests and developing vertical scales.  For example, the easier items 

on a mathematics test assess more arithmetic problem solving or computation skills.  The 

more difficult items tend to be a combination of domains such as solving a coordinate 

geometry problem using matrix algebra.  As a result, differences in scores at the bottom end 

of the scale are more indicative of differences in computational skills while the differences in 

the upper portion of the scale reflect differences in skills for manipulating matrix algebra 

skills (Miller & Hirsh, 1992).  The development of vertical scales is also affected by a 

broader application of this pattern.  Grade 3 tests predominantly measure arithmetic skills but 

by Grade 8 the test emphasis shifts to more problems solving and algebraic skills.  Reckase 

(2004) recently remarked that “it is unlikely that vertically-scaled, grade-level tests have 

been analyzed to discover the multivariate structure and the relationship of that structure to 

item difficulty, or that the creation of multiple forms takes these relationships into account” 

(p.118). 
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Building a Vertical Scale 

As illustrated in Figure 2.5, there are three designs used to collect data for vertical 

scaling: common item design, equivalent groups design and scaling test design.  The common 

item design takes advantage of the overlapping structure of elementary achievement tests.  It 

is comprised of two parts: a block of items that are common between adjacent grades 

(sometimes above and below grades) and a block of appropriate grade level items.  A 

common item design is shown in Figure 2.6.  Item block b is the common block of items 

representing material that overlaps in grade 3 and grade 4 (e.g., adding single digit numbers).  

Item block c links grade 5 to grade 4 and is linked to grade 3 through the grade 4 level using 

a linking chain.  A similar process is used to link the grade 6, 7 and 8 levels to the grade 3 

level (which is considered the base level for this example).  Note that any grade level can be 

chosen as the base level and the links would go up/down from the base level.  Since the 

common item design is considered the easiest and most commonly used design and was used 

to collect the original data that this study is based upon, descriptions of the other data 

collection designs will be omitted here but can be found in Crocker and Algina (1986) and 

Kolen and Brennan (2004). 
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Figure 2.5. Methods and Options for Vertical Scaling 
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3 √√√√ √√√√      

4  √√√√ √√√√     

5   √√√√ √√√√    

6    √√√√ √√√√   

7     √√√√ √√√√  
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8      √√√√ √√√√ 

Figure 2.6. Illustration of a common item design. 

 

The possibility that tests that differ substantially in difficulty might also differ in the 

traits they measure despite having similar content is an issue that must be considered during 

in vertical scaling procedures (Crocker & Algina, 1986).  These differences in difficulty, 

content and traits could be possible sources of dimensionality and create unintended 

multidimensionality.  Under the common item design, IRT parameters are estimated either 

using separate computer runs or concurrent/ simultaneous computer runs (see Figure 2.5).  

Multidimensionality could have an impact on IRT parameter estimations.  According to 

Kolen and Brennan (2004), minor violations of unidimensionality are possible with separate 

runs while more severe violations could result during concurrent runs. 

Consider first the case of separate runs where IRT parameters are estimated 

separately at each grade with only a small set of adjacent-grade items included for linking 

purposes (as in the common items linking design).  Violations of unidimensionality tend to 

be minor and might have less impact since the bulk of the test material is grade appropriate.  

Nonetheless, above and below grade level items that are present for linking purposes could 
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create potential sources of multidimensionality.  Although it is  hoped that students retain 

content material from the previous year, students perform better on material that was more 

recently taught so fourth graders responding to third grade items/content (on a grade 4 form) 

might perform differently than had they responded to the third grade items during the third 

grade.  Above grade items, like fifth grade items on a fourth grade form, present the issue of 

item difficulty and content coverage.  In other words, a fourth grade student might find the 

fifth grade items more difficult because they have not reached or been exposed to deeper 

level of fifth grade content.  The presence of off grade level items could affect the 

dimensional structure of the test.  One purpose of this study is to investigate the presence of 

off-items on the dimensionality of a grade level form. 

The second method of obtaining estimates of IRT parameters from common item 

design is concurrent computer runs.  Basically, all the data, regardless of grade, are examined 

simultaneously.  The violation of unidimensionality might be quite severe with concurrent 

estimation.  This is of particular concern given a complex content such as mathematics where 

the curriculum reflects changes in the mathematical strand emphases from grade to grade.  

“If the curriculum content, and consequently the tests content, change dramatically from 

grade to grade, a single common dimension is unlikely to be attainable” (Chin et al., 2006, p. 

2).  However, there has been little research done to investigate potential changes to the 

dimensional structure of mathematics achievement tests across grades.  Given the content, 

the strands, the changing emphasis from more computational skills to problem solving, this 

remains an important but unaddressed issue.  Another purpose of this study is to explore this 

potential invariance of the mathematics achievement structure. 
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Summary 

Any factor that influences an examinee’s score on a test, other than the intended 

latent variable threatens the assumption of unidimensionality.  Mathematics proficiency 

stems from a multifaceted content domain.  It also presents possible sources of 

multidimensionality due to the diverse content strands, problem types and formats for 

assessing conceptual knowledge and the changing curricula emphases over grades.  The 

developmental level at which various cognitive skills are mastered is an important 

educational issue and necessitates constructing a developmental, vertical scale to place tests 

that differ in difficulty but measuring similar constructs on the same scale.  Appropriate 

content and item difficulty are significant dilemmas in vertical linking.  Tests that measure 

different dimensions of a content domain must be viewed judiciously in any linkage project.  

Unidimensionality should never be assumed but should always be verified (Ackerman, 

1994).  Therefore, procedures for assessing the correct number of interpretable dimensions 

are a critical element in the test development process. 
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Procedures for Assessing Dimensionality 

 

Investigating the dimensional structure of a test can be done in many different ways.  

The goal of this section is to present a brief introduction to some of the more popular 

procedures that are available for the empirical assessment of test structure.  An overview of 

the procedures is presented in Table 2.1.  Note that the table has two categorizations of 

methods: parametric and nonparametric.  Assessment methods can be viewed as members of 

two different families, one based on parametric models and the other consisting of 

nonparametric methods.  Parametric methods will be discussed first, followed by the 

nonparametric and then a comparison of the approaches.  Note that the many of the 

procedures (parametric and nonparametric) are based on local item independence as shown in 

Figure 2.7. 

 

Overview 

The difference between parametric and nonparametric methods is the specification of 

the item response function.  In IRT, the probability of success on item i is usually presented 

as Pi(θ).  This function is known as the item response function (IRF).  This function has also 

been called the item characteristic curve (ICC) and trace line (van der Linden & Hambleton, 

1997).  Parametric methods assume a particular parametric model for the IRF.  

Nonparametric methods assume only that the IRF is monotonic. 

As previously discussed in this chapter, conditional independence in IRT is described 

by local item independence and the evaluation of the number of latent traits needed to 
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maintain local independence provides a powerful tool to assess test dimensionality.  

Therefore, many of the programs used to assess dimensionality are grounded in one of the 

three forms of local item independence:  strict, weak and essential (see Figure 2.1).  Recall 

that the strong local independence (SLI) requires that the items are completely independent 

once the vector of latent trait(s) is accounted for.  The weaker form of local item 

independence, (WLI), only requires that the covariance between item pairs once the latent 

trait(s) have been accounted for is zero.  Note that procedures using SLI and WLI require 

IRT model parameters be estimated (i.e., are parametric methods) and both types of 

procedures will yield goodness-of-fit indices and residual covariances.  The weakest form of 

local item independence is based on the principle of essential item independence (EI).  

Procedures utilizing EI (i.e., the nonparametric approaches) do not require IRT model 

parameter estimation and are looking for a dominant factor (in tests designed to be 

unidimensional) or the possible presence of other dimensions (in tests intended to be 

multidimensional). 

 

Parametric Methods 

The goal of parametric modeling is to provide a parsimonious and quantitative 

description of data structure.  Parametric methods comprise several approaches:  classical 

factor analytic, item factor analytic, IRT, or some combination of the last two.  The classical 

factor analytic approaches and programs refer to the traditional, linear factor analysis of 

correlation matrices.  The item factor analytic perspective is an extension of classical factor 

analysis.  It uses a nonlinear relationship between the probability of a correct examinee 

response and one or more examinee latent factors or abilities.  In this regard, item factor 
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analysis models are equivalent to MIRT models (McDonald & Mok, 1995).  Additional IRT 

perspectives include analyzing the local item dependencies and using principal components 

to assess the residuals of data fitted with the Rasch model. 

 

Parametric Methods: Linear Factor Analysis 

Historically, test dimensionality has been investigated using linear factor analysis 

methods.  As mentioned earlier, the objective of factor analysis is to uncover the structure 

that produces the correlations in test data.  Factor analysis assumes that correlation among 

items arises because of their dependency on one or more of the same factors.  The influence 

of the factors on test items is measured by factor loadings.  Factor loadings are equivalent to 

regression coefficients, representing the influence of a factor (independent variable) on an 

item (dependent variable).  The numerical value of a factor loading indicates the strength of 

the influence of the factor on the items (i.e., higher values signify stronger influences, and 

lower values indicate less influence or no relationship).  Typically, statistical applications 

used for performing factor analyses begin with Pearson product-moment correlations (or 

covariances) among the variables.  The Pearson product-moment correlation coefficient is 

generally applied in situations where the relationship between two variables is approximately 

linear and both variables are measured on a continuous scale.  Carroll (1945) observed that 

the Pearson product-moment coefficient tends to decrease as the variability in item difficulty 

increases.  This may produce spurious difficulty factors. 
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To avoid some of the difficulties produced by using Pearson correlations, tetrachoric 

correlations have been used instead.  A tetrachoric correlation is another type of correlation 

coefficient and is applicable when both variables are dichotomies that are assumed to 

represent underlying bivariate normal distributions, as might be the case when a dichotomous 

test item is used to measure some dimension of achievement.  Several methods of factor 

analysis based on tetrachoric correlations are available in the Mplus program (L. K. Muthen 

& Muthen, 1998) and TESTFACT (Bock, Gibbons, Schilling, & Muraki, 1999).  One 

method, the unweighted least squares (ULS) exploratory factor analysis option, has been 

found to perform well in large-scale applications (Knol & Berger, 1991).  Another method, a 

robust weighted least squares (WLS) procedure, has been proposed as a confirmatory 

approach for dichotomous variables (B. Muthen, 1993).  Confirmatory approaches require 

hypotheses to guide the model selection and suggest factors or groupings.  For example, in a 

confirmatory factor analysis of a mathematics assessment, content areas (algebra, geometry, 

etc.), test specifications, skills categories, or item types are obvious factors or groups. 

The use of tetrachoric correlations presents several problems.  First, tetrachoric 

matrices for item-level data are often not positive definite (i.e., the matrices are not invertible 

and therefore are problematic in some factor modeling equations).  Second, tetrachoric 

correlations are difficult to compute when the correlation values approach the extremes (+1).  

Third, tetrachoric correlations estimate a correlation based on hypothesized normal variables 

when, in fact, only binary scores were observed, and normality thus may be an invalid 

assumption.  Fourth, it has been found that linear factor analyses using tetrachoric 

correlations indicate more factors than are actually present in the data (Hambleton & 

Rovinelli, 1986; Nandakumar, 1994).  Finally, there is no standard approach in factor 
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analytic theory for determining the number of meaningful factors.  This has caused Reckase, 

Carlson and Ackerman (1985) to conclude that “under fairly common conditions, factor 

analysis of tetrachoric correlations does not recover the underlying structure of dichotomous 

data” (p. 1).   

As another alternative to factor analysis using tetrachoric correlations, some 

researchers have turned to item factor analytic, IRT-based and nonparametric methods to 

assess test structure.  The following sections describe these approaches. 

 

Parametric Methods: Item Factor Analysis 

Item factor analysis models have been developed as extensions of the classical linear 

factor analysis.  There are two types of item factor analysis that will be discussed in this 

section: nonlinear and full-information.  The nonlinear model is basically a modified linear 

factor analysis.  Both approaches use summary information (i.e., proportions for nonlinear 

models and correlations in linear models) to model the relationship between the item 

response and the latent trait(s), however the full-information model uses all the information 

present in the data to estimate model parameters. 

 

Nonlinear item factor analysis.  Several research studies have concluded that the 

relationship between item performance and underlying latent ability is nonlinear (Ackerman 

et al., 2003; Hattie, 1984).  Nonlinearity can result in a mismatch between model and data.  A 

nonlinear item factor model is a combination of the classical linear factor model with a 

nonlinear component expressing the probability of a correct answer to an item as a function 

of an associated latent response variable for the item.  In other words, a nonlinear model is 
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similar in many respects to its linear counterpart with one major exception, the relationship 

of the observed responses to the underlying trait.  As the names imply, the linear factor 

model assumes this relationship to be linear, and the nonlinear model assumes a nonlinear 

relationship.  It accounts for the nonlinear relationships among the variables by using higher 

order polynomials in the factor model (e.g., quadratic and cubic terms).  As described by 

Nandakumar, “factor models with linear and quadratic terms were able to fit the data better 

than models with just linear terms” (1994, p. 32).  Nonlinear factor item analysis is similar to 

linear factor analysis in that it operates on the correlation matrix.  Nonlinear factor analysis 

methods are directly related to MIRT procedures. 

Research has been inclusive about the success of nonlinear factor models to 

accurately determine test structure.  Hattie, Krakowski, Rogers, and Swaminathan (1996) 

found that nonlinear factor models were not as effective in discriminating between 

unidimensional and multidimensional data sets as their linear counterparts.  However 

Hambleton and Rovinelli (1986), using simulated data, concluded that linear factor analysis 

overestimated the number of underlying dimensions while nonlinear factor analysis led to 

correct determination of the item dimensionality.  NOHARM and CHIDIM are two programs 

based upon nonlinear factor analysis. 

 

NOHARM program.  A program that utilizes nonlinear factor analysis methods and is 

commonly employed by the measurement community is NOHARM (Normal Ogive by 

Harmonic Analysis Robust Method).  McDonald (1967, 1981) developed the NOHARM 

methodology, and the NOHARM software program was developed by Fraser and McDonald 

(1988).  Instead of using tetrachoric correlations,  NOHARM minimizes the unweighted 
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least-squares (ULS) difference between observed values (proportions of item pairs that are 

passed) and expectations (based on a third-degree polynomial function) (Stone & Yeh, 2006).  

It computes the residual covariances of the items after fitting a model—the user specifies the 

number of dimensions—and calculates the root mean square of the covariances as an overall 

measure of misfit of the model to the data.  In other words, the residual matrix offers an 

indication of how well the principle of local independence has been satisfied given the 

prescribed model. More information about the NOHARM method and program is provided 

in Appendix A. 

Recent research by Tate (2003) found that NOHARM does of good job of identifying 

the presence of multidimensional data and of recovering the intended factor structure except 

in the cases where item discrimination parameter values are 1.5 or greater, which are 

considered to be very large.  In a recent study using a Monte Carlo simulation, Finch (2006) 

compared the factor recovery performance for Varimax and Promax methods of rotation 

using NOHARM.  For his study, Finch used Varimax, a common type of orthogonal rotation, 

and Promax, a common type of oblique rotation with NOHARM.  The results suggested the 

two approaches were equally able to recover the underlying factor structure, regardless of the 

factor correlations, although the oblique method was better able to identify the presence of a 

simple structure.   

 

CHIDIM program.  Another nonlinear factor analysis approach to assessing 

dimensionality is the CHIDIM program (De Champlain & Tang, 1997).  It is an extension of 

the NOHARM method and program; in fact, CHIDIM requires the observed and residual 

matrices computed in NOHARM as input.  Gessaroli and De Champlain (1996) proposed 
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that an approximate χ
2
 statistic based on McDonald’s nonlinear factor analytic model could 

be used to test for the number of dimensions underlying the responses to a set of items.  In 

the context of assessing the results of nonlinear factor analysis,  the χ
2
 statistic tests the null 

hypothesis that the off-diagonal elements in a matrix of residual correlations are equal to 

zero.  In other words,  CHIDIM is an approximate chi-square test of the fit of an estimated 

NOHARM model to assess test dimensionality. 

 

Parametric Methods: Full-information Item Factor Analysis 

To avoid spurious difficulty factors and other problems associated with factor 

analysis of correlation coefficients, Bock, Gibbons, and Muraki (1988) proposed another 

method of nonlinear factor analysis, called full-information item factor analysis, to assess test 

structure,.  Full-information factor analysis is a technique based on multidimensional item 

response theory models.  Because it is directly based in item response theory, it uses the data 

frequencies of all distinct item response vectors and does not require calculation of inter-item 

correlation coefficients.  Stated differently, full-information factor analysis is based upon the 

concept that all the information available from the entire response matrix is used rather than 

just the covariance or correlation matrix. 

TESTFACT is a full-information-based method that maximizes the likelihood of the 

factor model parameters give the observed pattern of correct and incorrect item responses 

(Stone & Yeh, 2006).  In other words, TESTFACT utilizes the information from the 

individual responses directly rather than relying on summary statistics, namely the 

covariances or correlations, like in NOHARM.  The TESTFACT model uses a linear 

common factor model to relate unobservable response process variables to underlying 
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factors, and uses a normal ogive IRT model to relate observed item performance to each 

item’s underlying item response process variable (Dorans & Lawrence, 1999).  The 

TESTFACT program (Bock et al., 1999) uses marginal maximum likelihood estimates to 

provide “full-information” estimates.  Tate (2003) found that TESTFACT performed well in 

recovering data structure in exploratory and in limited bifactor confirmatory approaches.  In 

another study, Schaeffer and Kingston (1988) used TESTFACT to examine the factor 

structure of the GRE General Test and to appraise the extent to which an analytical factor 

could be identified that was distinguishable from verbal and quantitative factors.  

Implications of the results questioned the utility of including analytical reasoning and logical 

reasoning in the same total GRE score. 

 

Parametric Methods: Local Item Dependencies 

In addition to both linear and nonlinear factor analytic approaches to assessing test 

dimensionality, there are also parametric methods based in IRT.  Recall that the dimensional 

structure of a test can be defined in terms of conditional independence and more specifically 

in terms of local item independence in IRT.  Violations of local independence are also 

referred to as local item dependences (LID), and procedures have been developed to detect 

these violations. 

 

IRTNEW program.  Several of procedures used to detect LID are bundled together in 

a software package entitled, IRTNEW.  IRTNEW (Chen, 1993) provides five different 

indices of LID and are parametric in the sense that the conditioning is based on the 

unidimensional IRT model.  One of the indices reported in IRTNEW is Yen’s (1984) Q3 
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index.  Q3 is the correlation over examinees of the residuals for an item pair, where the 

residual for each item and examinee is the difference between the item response (0 or 1) and 

the expected probability of correct response to the item for the examinee.  The other four 

indices yielded by IRTNEW were presented and studied by Chen and Thissen (1997).  These 

indices are based on the tables of the observed and expected frequencies of correct and 

incorrect responses for the item pairs.  Two of the unsigned indices are provided by the 

Pearson’s χ
2
 statistic and the Likelihood Ratio G

2
 statistic; both are distributed approximately 

as χ
2
.  The two signed indices, the standardized coefficient difference (or φ  index) and the 

standardized log-odds ratio difference (or LOR index) are measures of association between 

item pairs and expected to be distributed normally with mean 0 and variance of 1. 

Chen and Thissen found that the four indices appeared to be sensitive in detecting 

local dependence (i.e., multidimensionality) among items.  However, when compared to the 

Q3, the four indices were somewhat less powerful in detecting local dependence caused by 

the underlying factor structure, but the indices were equally as powerful as the Q3 in 

detecting local dependence related to situational behavior, such as students omitting items at 

the end of a long test due to time constraints.  The problem of inflation of family-wise error 

rate complicates the use of the measures to test for all item pairs (i.e. the omnibus null 

hypothesis that all conditional associations are zero) and is therefore not practical for 

assessing an entire test form.  However, IRTNEW can be useful in at least two ways: testing 

a relatively small number of selected item pairs and as an exploratory search for any 

problematic item pairs by identifying outliers in the distribution of all conditional 

associations (Tate, 2002). 
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Parametric Methods: Principal Components Analysis 

Another parametric technique for assessing dimensionality is principal components 

analysis (PCA).  The objective of PCA is similar to factor analysis: determine the latent 

structure underlying a set of variables.  However, PCA and factor analysis are not the same 

or suitable substitutes (MacCallum, 2004).  While the differences between and long-standing 

controversies involving these methods are beyond the scope this study, it suffices to say that 

PCA analyzes variance and factor analysis analyzes covariance (Tabachnick & Fidell, 2001).  

To assess the structure of the data, principal component analysis (PCA) applies a model then 

examines the residuals for any identifiable structure.  It extracts the maximum variance from 

the data set with each component in an attempt to explain the variance.  All the variance is 

distributed to components, including error and unique variance for each observed variable.  

The first principal component is the linear combination of observed variables that maximally 

separates examinees by maximizing the variance of their component scores; the first 

component extracts the most variance.  Using the residual correlations, other components are 

considered.  The process is repeated until there is no identifiable pattern remaining in the 

residuals.  Note that for unidimensionality, one component would explain the most variance 

with little or no distinguished pattern in the residuals (i.e., random noise). 

 

WINSTEPS.  According to Smith, Jr., “the use of linear factor analytic models are not 

appropriate methods for assessing the unidimensionality requirement of Rasch models as 

these methods assume a normal distribution of the data, whereas Rasch models make no such 

assumption” (2004, p. 577).  Therefore, PCA is widely used as a method for assessing 
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dimensionality when assuming the Rasch model.  This is operationalized in the WINSTEPS 

program as follows. 

WINSTEPS applies a Rasch model and uses PCA to analyze the residual correlation 

matrix.  Note that the Rasch model constructs a one dimensional measurement system 

regardless of the dimensionality of the data (Linacre, 1998) and, therefore, if the Rasch 

model fits the data well, then all the information in the data would be explained by the single 

latent variable and there would be no pattern in the residuals.  In other words, the Rasch 

dimension is hypothesized to be the first dimension and explains most of the variance.  Using 

PCA, WINSTEPS looks for other contrasts that explain remaining variation.  Structure in the 

residuals indicates a possible second dimension.  WINSTEPS will reiterate the PCA process 

again except this second time it is looking for possible patterns in the residuals after the 

Rasch dimension and the first factor have been applied.  This is repeated, if necessary, until 

no further patterns in the residuals are found.  However, preferably one contrast suffices, 

indicating a good fit of the unidimensional Rasch model. 

 

Nonparametric Methods 

Nonparametric approaches to measure test dimensionality were motivated by (1) in 

some cases, failure of parametric IRT models; and (2) utility of nonparametric methods in 

situations with small number of items and examinees (Tate, 2003).  Nonparametric methods 

assume only that the item response function (IRF) is monotonic and, therefore, offer the 

freedom from dependence on highly-prescriptive assumed models by parametric approaches.  

That is, nonparametric models do not use IRT models and, therefore, do not have to estimate 

model parameters or be constrained by model specificity.  By using a nonparametric method, 
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one does not confound lack of model fit by a particular unidimensional parametric family of 

models when working with potentially multidimensional data (Stout, 2002). 

The three nonparametric methods described in the following sections are based on 

local item dependencies (also referred to as conditional item covariances), with the 

conditioning based on a single test score.  These differ from the IRTNEW approach 

mentioned previously in two ways.  First, each is based on a nonparametric computation of 

conditional item covariances.  That is, for each item pair, students are separated into groups 

with respect to their number correct score on the remaining test items.  The covariance of the 

responses of the two items is computed for each group, and the final conditional item 

covariance is computed as a weighted or unweighted average of the group values.  Second, 

each of the three nonparametric methods provides a global treatment of all conditional 

covariances for a given test rather than the simple review of all pair-wise indices employed in 

IRTNEW.  According to Stout et al. (1996), each of the three methods addresses a different 

aspect of test structure but “together they provide an almost complete summary of the test’s 

dimensional characteristics” (p. 351). 

 

Nonparametric Methods: DIMTEST 

DIMTEST (Stout, 1987) is a software program for testing the IRT assumption of 

local independence for a set of items.  Specifically, it is testing the EI form of local 

independence (see Figure 2.1) that states the average between-item residual covariances after 

fitting a one-factor model approaches zero as the test length increases.  Recall that EI 

considers the presence of a dominant trait that is so strong that examinee trait levels are 

unaffected by the presence of smaller, nuisance factors and influences.  DIMTEST uses 



 71 

Stout’s T statistic for a nonparametric test of unidimensionality.  The T statistic is used to test 

the null hypothesis that the essential dimensionality of a set of items is 1.  Further description 

and information about the DIMTEST program, methodology and Stout’s T statistic are 

provided in Appendix A. 

Overall research studies have reported positively on the ability of DIMTEST to 

correctly identify unidimensionality/multidimensionality of simulated test data (Tate, 2003).  

DIMTEST is able to discriminate between unidimensional and two-dimensional tests for a 

variety of simulated data when the correlation between abilities was as high as .7 

(Nandakumar & Stout, 1993; Stout, 1987).  Additionally, Nandakumar (1991) found 

DIMTEST is able to assess essential dimensionality in the possible presence of several minor 

dimensions; the statistical procedure has good power and functions as a hypothesis test of 

whether the essential dimensionality is one or exceeds one.  However, (Kirisci, Hsu, & Yu, 

2001) reported that DIMTEST is sensitive to the methods used to generate multidimensional 

data and performs poorly with partially compensatory data.  A study by Hattie, Krakowski, 

Rogers and Swaminathan (1996) showed that DIMTEST is not appropriate when the 

tetrachoric correlation matrix used to identify the AT items is nonpositive definite or when 

the underlying multidimensional model is not compensatory. The study also reported that the 

T-statistic was not monotonically related to the underlying dimensionality and, therefore, 

should not be used as a general index of magnitude of dimensionality (Hattie et al., 1996; 

Perkhounkova & Dunbar, 1999). It has also been reported that DIMTEST may be more 

effective when used with larger samples of examinees, has low power for short tests, and is 

influenced by the number of items in a cluster assessing one trait (van Abswoude, van der 

Ark, & Sijtsma, 2004).  Other concerns have been raised about the performance of 
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DIMTEST with an increasing mismatch between item difficulties and the ability distribution 

(Seraphine, 2000). 

 

Nonparametric Methods: DETECT 

Zhang (1996) developed a theory of conditional covariances that purported the 

expected conditional item pair covariances to be highly informative about the dimensional 

complexity of the latent space required to produce local independence.  That is, conditional 

item covariances provide information about the dimensional complexity of test data.  Note 

that a unidimensional test is the simplest latent structure possible.  Therefore, the goal of the 

Dimensionality Evaluation to Enumerate Contributing Traits (DETECT) index and program 

(Kim, 1994; Stout et al., 1996; Zhang & Stout, 1999) is to estimate the extent of 

multidimensionality in the structure underlying test data.  It is an exploratory nonparametric 

dimensionality assessment procedure that searches through various partitions of the test items 

to maximize the DETECT index.  This index is created by computing all item covariances 

after conditioning on the examinees’ scores using the remaining items.  For any partition, the 

DETECT index is defined in terms of the average of all of the signed (+1 if the items are in 

the same cluster of P, -1 otherwise) conditional item covariances.  In other words, each 

covariance for an item pair in the same partition is multiplied by positive one, whereas each 

covariance for a pair spanning two different partitions is multiplied by negative one.  When 

the index is maximized, it represents the degree of dimensionality present in a partition.  The 

maximization of the DETECT index also produces item clusters that offer insight into the 

nature of the test structure.  Additional details and explanations of DETECT are presented in 

Appendix A. 
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Nonparametric Methods: Hierarchical Cluster Analysis 

Cluster analysis, also called data segmentation, is a procedure for grouping or 

segmenting a collection of objects (e.g., items) into subsets or "clusters", such that those 

objects within each cluster are more closely related to one another than objects assigned to 

different clusters.  This clustering is based on the notion of degree of similarity (or 

dissimilarity) between the individual objects being clustered.  One major method of 

clustering is hierarchical clustering.  In hierarchical clustering a series of partitions takes 

place, which may run from a single cluster containing all objects to n clusters each containing 

a single object.  The former is referred to as divisive methods, and the latter procedure is an 

agglomerative method.  Agglomerative hierarchical clustering starts with every single object 

in a single cluster. Then, in each successive iteration, it agglomerates (merges) the closest 

pair of clusters by satisfying some similarity criteria (in this case the correlation coefficient), 

until all of the data are in one cluster.  In other words, items are clustered into progressively 

larger groups deemed to be dimensionally homogenous starting with each item constituting 

its own cluster and concluding with all items in one cluster. 

 

HCA/CCPROX.  To assess test dimensionality, two programs have been developed to 

jointly conduct agglomerative hierarchical cluster analysis, HCA and CCPROX (Roussos, 

1992).  The core of the approach is a new item-pair conditional covariance-based proximity 

measure.  The resulting cluster analysis progressively forms item clusters based on 

item/cluster proximity;  the clusters of items formed early on in the analysis help to identify 

those items with the strongest local item dependencies.  In simulation studies, when 
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approximate simple structure holds, the procedure can correctly partition the test into 

dimensionally homogenous item clusters for very high correlations between latent 

dimensions (Roussos et al., 1998). 

 

Comparison of Methods 

In addition to the previously mentioned studies of individual programs, several 

studies have been conducted to compare the different approaches to assessing dimensionality 

of a set of item responses (Hambleton & Rovinelli, 1986; Hattie, 1985; Hattie et al., 1996; 

Nandakumar, 1994; Tate, 2003).  The results have been largely inclusive.  Hattie (1985) 

considered over 80 indices and found that many of the indices based on reliability, 

component analysis, and linear and nonlinear factor analysis were ineffective in determining 

the underlying structure of the simulation data particularly when the factors were 

intercorrelated.  However, Hattie concluded that methods based on McDonald’s NOHARM 

could be used as a decision criterion and was a reasonable first step.  In contrast, Tate (2003) 

concluded the following from his recent, exhaustive comparison study: 

For the most part, all methods performed reasonably well over a relatively 

wide range of conditions.  The several exceptions to this outcome occurred 

when the test data departed significantly from the assumptions or inherent 

limitations associated with a method, for example, when guessing was present 

but not allowed in the analysis or when the multidimensional test structure 

was nonsimple but the goal of the method was to estimate the amount of 

multidimensional simple structure. (p. 159) 

Thus, while it seems that the measurement community cannot agree on either a standard for 

measuring dimensionality or how the different methods compare, the research does agree on 
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one thing—correlated factors (i.e., one displaying a non-simple structure) complicate the 

determination of dimensionality. 

Other researchers have used several procedures for assessing dimensionality and 

compare the results across the selected methods.  These procedures can produce two possible 

results: (1) the methods confirm one another or (2) the methods offer different conclusions 

which the researcher must resolve.  For example, Gierl, Tan, and Want (2005) used both 

parametric (NOHARM) and nonparametric methods (DIMTEST and DETECT) to identify 

content and cognitive dimensions on the mathematics and critical reading sections of the 

SAT.  Their methodology extended previous SAT studies which only drew on one procedure 

(factor analysis) by comparing the results of the different approaches.  The comparison 

yielded similar results that allowed the researchers to conclude that there is a 

“multidimensional basis for test score inferences on the mathematics and critical reading 

sections of the SAT” (p. 26).  However, in a recent article describing the use of MIRT, 

Ackerman, Gierl, and Walker (2003) employed three nonparametric methods (DIMTEST, 

DETECT, and HCA) to illustrate a  systematic approach for investigating the dimensionality 

of test data and found conflicting analyses leaving the researcher to resolve the different 

results.  Additionally, the authors remarked that assessment procedures should be viewed 

cautiously as “these procedures are only tools” (p.39) that have yielded promising results in 

simulation studies but produced relatively few published studies using real test data, and 

should be used in conjunction with substantive judgment (i.e., procedures involving content 

expert reviewers and/or psychological perspectives). 
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Summary 

An important step in any test development process is to assess the dimensionality of 

the instrument.  Because there is no consensus or standard within the measurement 

community regarding a procedure for assessing dimensionality, the developer has several 

tools with which to accomplish this task.  One family of methods assumes a parametric 

approach.  Linear and item factor analyses, full-information analysis, and detecting local item 

dependencies are among the parametric methods.  Another family of methods is 

nonparametric approaches.  These methods are based on conditional item covariances 

(conditioned on a single test score) and do not require a specific model.  Regardless of 

approach, all procedures, parametric or nonparametric, are working with different forms of 

the same basis of dimensionality--conditional independence of item scores.  Interestingly, 

comparison studies of the different methods have not yielded any one discernable, superior 

approach; they all seem to work reasonably well.  So researchers continue to wrestle with the 

question of how to best assess dimensionality just as they continue to debate the 

consequences of dimensionality, which will be considered in the next section. 

 

Consequences of Violations of Dimensionality Assumptions 

The previous sections discussed sources of dimensionality and different approaches 

for assessing the dimensionality of test data.  Although there is not one acceptable method for 

assessing dimensionality, researchers do appear to agree that educational achievement data 

are often multidimensional.  However, many large scale testing programs use unidimensional 

models which raises the question: what (if any) are the consequences of using 

multidimensional data with a model that assumes unidimensional data?  Much research has 
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been devoted to investigating the consequences, but the results have been inconsistent, in part 

due to the disagreement within the measurement community about what constitutes test 

dimensionality, appropriate evidence for concluding multidimensionality exists, and the 

seriousness of violating assumptions of unidimensionality.  The next section considers the 

consequences of violations of dimensionality assumptions in three key areas:  1) parameter 

estimation, 2) vertical scaling, and 3) gathering validity evidence.  Because discussion of 

these three key areas involves both IRT and MIRT, a brief introduction of these models and 

basic concepts is provided before discussing the literature. 

 

Introduction and Basic Models of IRT and MIRT 

The purpose of this section is to present the basic principles of IRT and MIRT models 

in order to facilitate the review of research on the consequences of violating dimensionality 

assumptions of the models.  It is not meant to capture the history, development and technical 

depth of IRT and MIRT.  There are many book-length treatments, as well as chapters, that 

discuss the concepts of IRT and MIRT in great detail (Crocker & Algina, 1986; Embretson & 

Reise, 2000; Hambleton, 1993; Hambleton & Swaminathan, 1985; Hambleton et al., 1991; 

Smith Jr. & Smith, 2004; Thissen & Wainer, 2001; van der Linden & Hambleton, 1997). 

 

IRT Models 

Unidimensional IRT models the relationship between a person’s ability and responses 

to test items.  At the center of the theory is a mathematical model of how examinees, at 

different ability levels for the trait, are expected to respond to a given item.  A variety of 
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mathematical forms have been suggested as models for this relationship, but, by far, the 

normal and logistic ogive are preferred by theoreticians (Bejar, 1980).  IRT rests on two 

basic postulates: (a) the performance of an examinee on a test can be predicted (or explained) 

by a set of factors called traits, latent traits, or abilities represented by the symbol theta (θ); 

and (b) the relationship between examinees’ item performance and the set of traits underlying 

item performance can be described by a monotonically increasing function called an item 

characteristic function or item characteristic curve (ICC).  In most applications of IRT, the 

ICC has the shape of an S-shaped curve, with ability level (i.e., θ) plotted on the x axis and 

the probability of a correct response plotted on the y axis. Examinees with higher values on 

the trait will have higher probabilities of answering the item correctly than examinees with 

lower levels of the trait.  The height of the curve above any given value of θ represents the 

proportion of examinees at that ability level who can answer the item correctly.  The equation 

for a normal ogive ICC is typically written as  

( ) ∫
∞−

=
w

i dzzfP )(θ  

where ( )θiP  is the proportion of examinees with latent ability θ who answer item i correctly.  

The expression on the right side is the cumulative normal ogive.  It means that the area 

between ∞−  and w under the normal ogive must be calculated.  The quantity w is a real 

number and is determined by the equation 

( )baw −= θ  

The values of the a and b parameters will vary over items on a test and are denoted as ai and 

bi where the subscript i corresponds to item i on a test.  The ai parameter is called the item 

discrimination parameter.  It is proportional to the slope of the ICC at the point bi on the 
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ability scale.  As noted earlier, the bi is referred to as the item difficulty parameter.  It is the 

point on the ability scale where the probability of a correct response is 0.5. 

Although early ICC functions utilized the normal ogive, it has been replaced by three 

logistic models which require simpler computations. The cumulative logistic distribution 

function has the general form  
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where e is the base of the natural logarithm and x is a variable that takes on different values 

depending on the model; the models differ in the number of item parameters used.  The one-

parameter logistic model (1PL) is given by 
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It is one of the most widely used IRT models.  An equivalent 1PL model is the Rasch model.  

From one perspective, Rasch models are special cases of IRT models, although another 

perspective asserts that Rasch models stem from a distinct paradigm that is model-driven and 

not data-driven (Andrich, 2004).  That is, rather than using the data/items to determine the 

appropriate model, the Rasch model is assumed and then one finds items that fit the model.  

An advantage of the 1PL/Rasch model is that the raw score is a sufficient statistic for 

estimating ability. 

Rewriting the equation for the 1PL model and including the ai and bi parameters as 

well as a scaling factor required to approximate the normal ogive yields a logistic function.  

The two-parameter logistic model (2PL) is given by: 
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Similarly the three-parameter logistic model (3PL) is given by: 
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Note the addition of additional ci parameter in the model.  This is referred to as the pseudo-

chance-level parameter and often inaccurately referred to as the pseudo-guessing parameter. 

 

MIRT Models 

Multidimensional item response theory (MIRT) is similar to IRT in that it is also 

modeling the interaction between a person and a test item.  The biggest difference between 

MIRT and IRT is that rather than using a single ability (θ) to describe a person, MIRT 

describes the characteristics of the person using a vector of variables representing abilities or 

hypothetical constructs (Reckase, 1997).  In other words, rather than having one distinct θ or 

ability construct, MIRT models can accommodate any number of constructs or a composite 

of the constructs.  Within a unidimensional framework, an item discriminates, to varying 

degrees, among all levels of the underlying trait, although there is a range in which the 

discrimination is optimal.  In a multidimensional framework, an item has the capability of 

distinguishing among levels of many composites, but optimally among levels of just one 

composite trait (Ackerman, 1996).  The goal of dimensionality assessment in MIRT is to 

identify this composite of abilities or constructs. 

There are two types of MIRT models used to describe dichotomously scored item 

response data—compensatory and noncompensatory.  In terms of probability of a correct 

response, compensatory models allow high ability on one dimension to compensate for low 

ability on another dimension while noncompensatory models do not permit compensation 
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among dimensions.  Presently, no computer software programs exist to estimate 

noncompensatory model parameters (Ackerman, 1994;  1996) so only compensatory MIRT 

models will be discussed.  The following is the expression for an m-dimensional 

compensatory multidimensional model: 
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where θik is the ability parameter for person i for dimension k, 

ajk is the discrimination parameter for item j for dimension k, 

bjk is the difficulty parameter for item j for dimension k, and 

cj is the pseudo chance-level (i.e., “guessing”) parameter for item j. 

 

Comparing IRT and MIRT 

While MIRT addresses the multidimensional nature of many educational data sets, its 

applicability and usefulness to testing programs is questionable.  In a recent presentation, 

Martineau and his colleagues (Martineau, Subedi, Ward, Li, & Diao, 2006) suggest that 

while truly unidimensional data are rarely observed in educational achievement tests, MIRT 

is not a useful choice either: despite its 30+ years of research, MIRT has seen negligible 

application in educational achievement testing contexts; it is impractical due to its relatively 

higher cost and availability of software;  replication is a problem; and difficulties exist in 

interpretability of MIRT results.  Specifically, the complexity and the uncertainty about the 

definition of a dimension in MIRT models has caused some researchers to contend that 
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MIRT cannot be applied in practical testing situations (Kirisci et al., 2001; Luecht & Miller, 

1992).   

In contrast, when tests measure one latent trait, a single score can be assigned to each 

examinee, and the interpretation of test performance is unambiguous.  According to Reckase 

and Ackerman (1986), “the more complex the function of the skills required to relate the 

skills to the total score on the test, the more difficult is the task of interpreting the score” (p. 

2).  In addition, if a test is truly multidimensional, it becomes impossible to rank order test-

takers without implicitly or explicitly weighting the dimensions (Ackerman, 1992).   

Although computing power can address some of the complexities of MIRT parameter 

estimation, the greatest impediments of applying MIRT models are score interpretation (van 

Abswoude et al., 2004) and difficulty of linking tests that measure composite abilities.  When 

a single score is used to summarize or represent test performance,  unidimensional linking 

procedures are typically used (Hirsh, 1989).  If however, multidimensional models are used, 

then the single score represents a composite of abilities; and thus linking equivalent forms of 

a test (i.e., equating) or different forms of a test across grades (i.e., vertical scaling) is not 

feasible.  Further, it appears that the development of test items (and test forms) that measure 

the same composite of abilities is currently an unproven goal. 

Given the difficulty of multidimensional score interpretation and multidimensional 

linking, many researchers have asserted that unidimensional tests may be preferred where 

possible.  Stout (1987) believes that there are at least three reasons why it is essential that a 

test be unidimensional: 

First, it is often vital that a test that purports to measure the level of a certain 

ability is in reality not significant [sic] contaminated by varying levels of one 

or more other abilities displayed by examinees taking the test...second, it is 

essential that a test designed to be used in the measurement of individual 
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differences must in fact measure a unified ‘trait’...finally, unidimensionality 

must be (at least approximately) satisfied if much of the standard response 

theory methodology is to be trusted as valid. (p. 589-590) 

Hattie (1985) also contended that one of the most critical and basic assumptions of 

measurement theory is that a set of items forming an instrument all measure just one thing in 

common.  This conclusion was based on two assertions.  For one, like Stout (1987), Hattie 

recognized that the unidimensionality assumption provided the basis of most mathematical 

measurement models.  The second argument was more substantive: “To make psychological 

sense when relating variables, ordering persons on some attribute, forming groups on the 

basis of some variable, or making comments about individual differences, the variable must 

be unidimensional” (p. 139).  Since most IRT measurement models and score reports assume 

unidimensionality, researchers have thus focused their attention on investigating the 

consequences of violating assumptions of unidimensionality, particularly the possible effects 

on item parameter and ability estimates. 

 

Consequences of Violations on Parameter Estimation 

Investigating the dimensional structure of a test should be an important step in any 

test development process.  Violations of dimensionality assumptions can potentially affect 

model parameter estimates including person parameter estimates used for score reporting.  

Importantly, the effects of inaccurate item or person parameter estimates are not merely 

statistical issues, but have substantial practical relevance.  For example, many of the state 

administered end of the year and/or graduation tests are considered to be high-stakes tests, 

meaning that important consequences are attached to students test performance.  

Additionally, meeting the requirements of NCLB is also tied to student scores.  Therefore, 
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error in calculating student scores could have tremendous impact on students, teachers, 

school districts and administrators.  However, the research of the effect on model parameter 

estimates stemming from the use of unidimensional methods with multidimensional data has 

been largely inconclusive. 

When a unidimensional IRT model fits the test data, several desirable features are 

obtained.  In IRT, item and ability parameters are said to be sample invariant.  This means 

that examinee ability estimates are not dependent on the sample of test items used to estimate 

them, and item parameters are not dependent on the ability distribution of the examinees (i.e., 

item parameter estimates obtained in different groups of examinees will be the same except 

for measurement error).  Another desirable feature of IRT is that estimates of standard errors 

for individual ability estimates, rather than a single estimate of error for all examinees, can be 

obtained.  However, these properties are only realized when the given data fit the IRT model 

and assumptions.  Misfit of the IRT model through the violation of the assumption of 

unidimensionality can result in underestimation of the standard errors for the examinee 

ability parameter estimates (Wainer & Wang, 2001).  It can also underestimate the effect size 

of the difference in means of two grade level tests in a linking project (Reckase & Li, 2006). 

Early research on the effects of violating the assumption of unidimensionality on 

parameter estimation was conducted by Ansley and Forsyth (1985).  In a study using data 

generated to fit a noncompensatory two-dimensional MIRT model, the authors concluded 

that “violations of the assumption of unidimensionality do have an effect on the parameter 

estimation for the modified three-parameter logistic model” (p. 47).  More specifically, it was 

found that the â  values were best considered as averages of the true a1 and a2 values where 

a1 and a2 are discrimination parameters for the two dimensions. The b̂  values appeared to be 
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overestimates of the true b1 values only rather than a combination of b1 and b2.  (Note that the 

c parameter was set equal to .2 for each item.)  The estimated θ values were most correlated 

to the averages of the true θ values.  These conclusions were similar to the results of a study 

done by Stocking and Eignor (1986).  In that study, simulations using a 3PL model were 

conducted to study the impact of multidimensionality in the data on preequating.  The 

invariance property of true item parameters suggests that is it possible to equate a test before 

it is actually administered as long as the true item parameters are known.  This procedure is 

called preequating and is used heavily in adaptive testing situations.  Multidimensionality 

was generated in the simulated response data.  Responses for some items were generated 

using a certain true ability and responses to other items were generated using a second true 

ability.  In other words, an examinee would need one ability to respond to some items and 

another ability to respond to other items on the test.  This would result in a multidimensional 

test.  The authors concluded that “the introduction of a particular kind of multidimensionality 

in the data can have a large impact of estimation precision when the IRT model is 

unidimensional” (p. 40). 

Contrary to these findings, Embretson and Reise (2000) observed the following in a 

recent review of dimensionality research: 

The effect on parameter estimation of small departures from 

unidimensionality remains undemonstrated.  In fact, some research indicates 

that IRT model parameter estimation is fairly robust to minor violations of 

unidimensionality, especially if the latent-trait (factors) are highly correlated 

or if secondary dimensions are relatively small. (p. 231) 

The former observations were primarily based upon the work of Reckase (1979) and 

Drasgrow and Parsons (1983).  Reckase (1979) evaluated the 1PL and 3PL models for use 

with both real and simulated multivariate data.  He concluded the 1PL and 3PL models 

estimate different abilities when independent factors are present; the 3PL model estimates 
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one factor while the 1PL model estimates the sum of the factors.  Both models estimate the 

first principal component, when it large relative to the other factors.  Although item 

calibration results will be unstable, Reckase also found accurate ability estimates can be 

obtained from the models in the presence of a dominant or potent first factor even when the 

first factor accounts for less than 10% of the test variance (although item calibration results 

will be unstable).  For acceptable calibration, the first factor should account for at least 20% 

of the test variance.  For tests with several equally potent dimensions, the one-parameter 

ability estimates were best considered as the sum or average of the abilities required for each 

dimension (Ansley & Forsyth, 1985). 

Drasgow and Parsons (1983) used several simulated item pools that ranged from the 

truly unidimensional to an inconsequential (i.e., very weak) general latent trait.  The item 

pools were used to simulate varying degress of prepotency (i.e. domination) that is required 

by the software program LOGIST (Wingersky, Barton, & Lord, 1982) in order to recover the 

general latent trait and not be drawn to a latent trait underlying a cluster of items.  Drasgow 

and Parsons concluded the following: 

If a single dominant latent trait is not sufficiently prepotent [influential], the 

results presented here clearly show that a unidimensional model is inadequate. 

However, it is important to note that unidimensional models do provide a 

good description of multidimensional data sets when the dominant latent trait 

is sufficiently prepotent. (p. 198) 

In other words, according to Reckase (1979) and Drasgow and Parsons (1983), the influence 

of multidimensionality depends on the degree to which there is a dominant latent trait. 
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Exploring Inconsistent Findings 

There are several hypotheses about why the studies of the impact of 

unidimensionality assumption violations have been inconclusive.  One possible reason for 

discrepancy is differences in the definition of a dimension.  More specifically, by one 

definition,  a test is considered to be unidimensional in that it measures only one skill or 

ability while, from another perspective, a test would be considered to be unidimensional in 

that  the test measures the same composite of several, possibly correlated skills.  The impact 

of multidimensionality appears to be strongly related to the correlations of the dimensions or 

skills.  When the multidimensionality is due almost entirely to the planned test structure and 

the associated component abilities are at least moderately correlated, typical uses of the test 

scores may be robust to the violation of the assumption of unidimensionality (Tate, 2002).  If 

correlations vary greatly or are very low (r<.4), then MIRT should be used.  Furthermore 

“when the component abilities measured by the test are weakly correlated or when there are 

strong construct-irrelevant factors, the consequences of the violation [of unidimensionality] 

may be serious for test validity, fairness and score comparability” (Tate, 2002, p. 192). 

A second possible reason for inconclusive results of violation studies is the effect of 

the estimation method used by the estimation program (Kirisci, Hsu, & Yu, 2001).  LOGIST 

and WINSTEPS (Linacre, 2005) use joint maximum likelihood to estimate model 

parameters.  Other common software programs, such as BILOG (Mislevy & Bock, 1984), 

MULTILOG (Thissen, 1991) and XCALIBRE (Assessment Systems Corporation, 1996), use 

marginal maximum likelihood procedures.  When different estimation programs are used by 

different studies, inconsistencies in resulting estimated parameters can be expected (Baker, 

1987).   
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Kirisci, Hsu, and Yu (2001) recently investigated the sensitivity of 2PL model 

parameter estimates derived from BILOG, MULTILOG and XCALIBRE when the 

unidimensionality assumption was violated and the underlying θ distribution was not 

multivariate normal.  Data with three dimensions were simulated and then six experimental 

conditions were constructed for each program: two types of dimensionality (one-

dimensional, three correlated dimensions) crossed with three θ distributions (normal, skewed, 

or peaked).  They discovered there was an interaction between program and dimensionality 

indicating that the robustness of the conclusions about the unidimensionality assumption was 

a function of the estimation program.  Although BILOG produced the smallest root mean 

square error overall, MULTILOG and XCALIBRE showed less variance in model parameter 

estimation due to the violation of unidimensionality. 

A third possible reason for the inconclusive findings about the effects of 

multidimensionality is the differences in how the multidimensional data were generated for 

the studies (Kirisci et al., 2001).  Multidimensional data are typically generated by one of two 

methods:  a factor-analytic approach or a MIRT model.  Studies employing multidimensional 

data generated by a MIRT model tend to show that violation of the unidimensionality 

assumption can seriously affect item parameter estimation (Doody, 1985; Kirisci et al., 2001; 

Reckase, 1987). However, studies using multidimensional data generated by a factor-analytic 

approach tend to show that a unidimensional IRT model is robust to moderate degrees of 

multidimensionality.  For example, Ansley and Forsyth (1985) criticized both the Reckase 

(1979) and Drasgow and Parsons (1983) studies for the factor analysis model used to assess 

dimensionality as well as to generate simulated data.  According to Ansley and Forsyth, the 

relationship between the factor analysis model and the logistic model is not precisely defined, 
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thus generating data to fit a factor analysis model “might not yield a completely clear picture 

of the effects of using a unidimensional logistic model with multidimensional data” (p. 39). 

 

Consequences of Violations on Vertical Scaling 

In addition to potential influences on model parameters and validity evidence, 

violations of unidimensionality assumptions can also have an impact on vertical scaling.  

According to Bogan and Yen (1983), the assumption of unidimensionality frequently does 

not appear to be met in many testing situations, yet the need for vertical scaling exists.  As 

mentioned previously, vertical scales are used in situations when different examinees are 

measured with different, purposefully non-equivalent instruments to create vertical or 

developmental scales for achievement tests (Kolen & Brennan, 2004).  Therefore, the issue 

becomes the robustness of vertical scaling versus the violation of the unidimensionality 

assumption.  This next section describes two groups of research investigating vertical scaling 

and assumptions of dimensionality.  The first group focuses on the 3PL model and the second 

group utilizes the Rasch model. 

 

Three Parameter Model (3PL) and Vertical Scaling 

A research study done by Bogan and Yen (1983) examined how robust three-

parameter vertical scaling is to violation of the unidimensionality assumption underlying the 

linking.  Four two-trait data configurations and one unidimensional data configuration were 

simulated for three differences in mean difficulty between two tests to be vertical scaled.  

The accuracy of the vertical link was examined by comparing the estimated thetas for all 
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simulees on the easier test with the estimated mean for all simulees on the harder test.  The 

comparison considered the standardized root mean squared differences (SRMSD), 

standardized mean differences (SMD), the ratio of the standard deviations, and correlations.  

The results indicated that vertical linkings for the multidimensional configurations were as 

good as those for the unidimensional configuration when either the correlations or SRMSD 

were examined.  However, investigation of the SMD, which is an estimate of the overall bias 

between the estimated thetas for all simulees on the easier test with the estimated thetas for 

all simulees on the harder test, showed conflicting results.  The multidimensional tests 

usually had less accurate linking (i.e., greater differences in estimated thetas) than the 

unidimensional tests, particularly when the tests to be linked differed in difficulty. 

In another study of the robustness of item and ability parameter estimation to 

unidimensionality violation using the 3PL, Doody (1985) simulated 10 two-trait and one 

unidimensional test configurations for a 30-item test and 6,000 simulees.  The results of this 

study indicated that “the poorest item parameter estimates occur for the situation in which 

one test is unidimensional and one is multidimensional” (p. 64). 

In a recent study, Chin, Kim and Nering (2006) examined the following five design 

and statistical factors on vertical scaling: (1) separation of grade overlap (i.e., ability 

differences between grades), (2) number of grade levels/forms to be vertically linked, (3) 

length of the common item block, (4) difficulty range of the common items, and (5) 

parameter estimation methods.  A Monte Carlo simulation was used to study the influence of 

these five factors on IRT vertical scaling.  The test was assumed to have a fixed length of 60 

items for each grade level and 10,000 examinees were generated for each grade level group.  

The five factors were fully crossed, resulting in 108 study conditions.  For each condition, 
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where estimation convergence was obtained, the estimated grade level ability means and 

within grade level variances were calculated in order to examine whether artificial grade-to-

grade growth and/or grade-to-grade variability patterns exist.  Root mean square errors 

(RMSE) and bias were calculated separately for model parameters in order to assess 

estimation accuracy.  The results were inconclusive: the five factor levels interacted with 

each other and therefore, the authors were unable to make specific conclusions.    Concurrent 

calibration was generally less affected by common block design decisions than separate 

calibration and it generally “produced satisfying results until the range of the latent trait 

continuum involved is ‘overly’ stretched” (p. 15).  However, the authors observed a potential 

limitation of concurrent calibration: concurrent calibration might yield unstable results or 

possibly not obtain a convergent estimate when the number of forms to be linked is large and 

the ability/difficulty spectrum extends.  In other words, concurrent calibration may be 

problematic when there are a large number of groups to be vertically scaled and/or when the 

ability differences among groups are large. 

 

Rasch Model and Vertical Linking 

In addition to studies of the 3PL model, the consequences of violating the assumption 

of unidimensionality on vertical scaling have also been investigated when the Rasch model is 

employed.  Previous research about the application of the Rasch model to vertical scaling has 

yielded mixed findings.  Several studies concluded that the Rasch model does not appear to 

work well for vertical linking of multiple choice tests (Holmes, 1982; Loyd & Hoover, 1980; 

Skaggs & Lissitz, 1986; Slinde & Linn, 1978, 1979).  Holmes (1982) observed that the 

unsatisfactory results of vertical linkings with the Rasch model may be due in part to the lack 
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of fit of items to the model.  Holmes also found that the Rasch model does not provide a 

satisfactory means of vertical equating across the entire ability range.  Skaggs and Lissitz 

(1986) demonstrated that for vertical linking, the Rasch model was less robust to violations 

of its assumptions than for horizontal equating. 

Slinde and Linn (1978) conducted a vertical linking investigation with the Rasch 

model to link subtests of a 36-item mathematics achievement test.  The basis of the subtests 

was the difficulty level of the items: one subtest contained difficult items and one included 

easy items.  The subtests were administered to a sample of incoming college freshmen that 

was divided into high, medium and low ability groups based on their performance on the 

easy subtest.  Item difficulty estimates were calculated on the entire test (i.e., combined set of 

difficult and easy items) for both the high and the low ability groups.  The middle group was 

not used to obtain estimates but instead was used the compare the equivalence of the easy 

and difficult subtests when the ability estimates were derived from the high and the low 

groups.  Results indicated that an examinee of middle ability would do better to take a more 

difficult test when the estimates are obtained from the high group, and would do better to 

take an easier test when the estimates are obtained from a low ability group.  More generally, 

this finding means that the item parameters are not invariant across groups and may depend 

on the sample used to obtain the estimates.  This is not a desirable feature for two tests that 

are to be vertically linked, and casts doubt on the application of Rasch models for vertical 

linking.  The study was criticized for the division of the sample population into ability groups 

based on performance on the easy subtest for the same test used for vertical linking 

(Gustafsson, 1979).  However, Slinde and Linn (1979) conducted a reanalysis with another 

data set and the results generally supported the earlier study. 
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Loyd and Hoover (1980) also explored the application of the Rasch model to the 

vertical scaling of levels of the Iowa Tests of Basic Skills (ITBS) Math Computations Test.  

Unlike the Slide and Linn (1978) study mentioned previously, Loyd and Hoover did not form 

ability groups based on test performance, but used grade groupings that would be more 

typical to a practical application of vertical scaling.  They used three levels of the ITBS and 

three samples of pupils from the 6
th

 through the 8
th

 grades.  Linkings were conducted across 

adjacent grades (e.g., linking grade 6 and 7 items) and non-adjacent levels (e.g., grade 6 

compared to grade 8) using the three samples as separate calibrations groups.  If the Rasch 

model were appropriate for vertically scaling this test, then the calibrations should be 

consistent in determining ability estimates for the separate ability groups and the vertical 

scaling of both adjacent and nonadjacent levels should be invariant with respect to groups.  

Their results supported the Slinde and Linn studies (1978, 1979) in that the linking between 

any two levels was influenced by the group upon which the linking was based.  In other 

words, the vertical scaling of these levels of the mathematics computation test was not 

independent of the ability group used in the linking. 

Loyd and Hoover (Loyd & Hoover, 1980) observed that a student who takes an easier 

(lower) level test and has his/her scores linked to a more difficult level will have a higher 

resultant score than when the linking is based on the higher ability group.  Similarly, for 

students who take a more difficult (higher) level of the test and then have his/her scores 

linked to an easier (lower) level, the resulting scores will be more favorable (i.e., higher) 

when the linking is based on the lower ability group.  In looking for causes of the inadequate 

Rasch vertical scaling, Loyd and Hoover considered violations of the underlying assumptions 

including the assumption of unidimensionality.  They then looked at the potential influence 
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of the mathematical content using a principal axis factor analysis of the total item pool.  

Specifically, there were concerns that curriculum content across grade levels, particularly in 

mathematics, might not represent a unidimensional scale.  The analysis showed that more 

than one factor was present in the total item pool.  The authors did not explicitly attempt to 

define these factors, but suggested that mathematics performance may be differentially 

dependent upon school curriculum.  For example, a sixth grade student may have the same 

probability as an eighth grade student of answering items related to working with whole 

numbers but the probabilities of answering correctly on a subset of items involving decimals 

or fractions could differ considerably for the same two students. 

Overall, the results of these studies suggest that vertical scaling is most sensible when 

the instruments to be linked can be viewed as representing a developmental continuum for a 

subject area and where true scores on the two instruments are functionally related (Harris, 

1991).  While Chin, Kim and Nering (2006) cautioned that “vertical scaling probably should 

never be carried out unless there is a satisfying demonstration of unidimensionality across 

grade levels involved” (p.17), it was also been shown that a dominant factor or highly 

correlated factors can possibly satisfy the assumption of unidimensionality.  The issue of test 

content across test levels appears to be a critical one and deserves further exploration (Skaggs 

& Lissitz, 1981). 

 

Consequences of Violations on Validity Evidence 

A measurement issue that subsumes considerations of parameter estimation, vertical 

scaling, and all other dimensionality concerns is that of validity.  Test scores are typically 

used to draw inferences about examinee behavior in situations beyond the testing session 
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(Crocker & Algina, 1986).  Responsible use of test scores requires that the test user be able to 

justify the inferences (Crocker & Algina, 1986).  Such justification requires reliability of the 

test scores and validity evidence.  Reliability refers to the consistency of measurements when 

the testing procedure is repeated on a population of individuals or groups (AERA, APA, 

NCME, 1999).  Validation can be viewed as developing a scientifically sound argument to 

support the intended interpretation of test scores and their relevance to the proposed use 

(AERA et al., 1999).  Validity is the degree to which all the accumulated evidence supports 

the intended interpretation of the test scores for the proposed purpose.  According to the 

Standards for Educational and Psychological Testing (AERA et al., 1999), validity evidence 

can be based on examination of test content, response processes, internal structure, relations 

to other variables, and consequences of testing.  Validity evidence based on internal structure 

of a test indicates the degree to which the relationships among test items and test components 

conform to the construct on which the proposed test score interpretations are based.  That is, 

analyses of internal structure suggest how well the test items and components associate with 

the construct of interest.  Recall that test dimensionality is defined as the minimum number 

of abilities measured by a set of test items.  Therefore, understanding the dimensional 

structure of a test can provide insight and validity evidence based on the internal structure of 

a test.  Coefficient alpha, factor analysis and other methods are typically included as evidence 

for the internal structure of an instrument.  In addition, use of a theory, such as IRT, that 

posits unidimensionality can yield evidence of unidimensionality.  Negligence in rigorous 

assessment of test dimensionality may result in construct validity problems; different scores 

on the test may represent different substantive interpretations in terms of the constructs that 

underlie them (Jang & Roussos, in press).  When unidimensionality is intended but not 
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realized, the validity of test scores based on IRT models is in question (Messick, 1993) 

particularly when a single total score is reported.  Although MIRT models offer a method to 

represent multidimensional data, as previously mentioned a significant concern with MIRT 

models is understanding the meaning of the dimensions which can be a combination of 

underlying traits thus making score interpretations, linking, and the gathering of validity 

evidence extremely difficult. 

 

Summary 

The consequences of violating the assumption of unidimensionality have important 

implications on many facets of the test development process including parameter estimation, 

vertical scaling, and gathering validity evidence.  Test items and student performance are 

analyzed using mathematical models such as IRT or MIRT which assume certain a 

dimensional structure.  Therefore, misdiagnosis or misrepresentation of the dimensional 

structure can impact model parameter estimates including person ability estimates (i.e., 

student scores).  The dimensional structure of a test is also used to provide one type of 

validity evidence based upon the internal structure of a test.  Because validity refers to the 

degree to which evidence and theory support the interpretations of test scores, it is a 

fundamental consideration in test development.  Modeling student growth and adequately 

yearly progress have also become important considerations in a testing program.  This has 

necessitated the use of vertical scales that model the mathematical developmental continuum 

across grades and content standards.  While previous research on the consequences of 

violating the assumption of unidimensionality has been inconclusive due to differences about 
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definitions and evidence of dimensionality, it seems that eliminating any error is 

advantageous with so many high-stakes associated with the test results. 

 

Research Questions 

In order to determine item characteristics, student performance levels and link test 

forms, many of the commonly used item response models assume unidimensionality.  

However, educational achievement tests often assess more than one skill or ability either 

intentionally or unintentionally.  The nature of mathematical content and understanding 

introduces several potential, unintentional sources of dimensionality.  The issue of 

dimensionality of mathematical content across grade levels is a critical concern to the 

validity and development of both end of year achievement tests and monitoring student 

growth over time.  Previous research studies on test dimensionality have been largely based 

on simulated data sets and, in particular, have been inconclusive about the number of 

dimension(s) assessed in a typical, statewide-mathematics achievement test.  From this 

review of literature, it appears that it is not accurate to assume that statewide tests measure a 

well-defined unidimensional construct and more empirical evidence is required to 

substantiate this claim. 

 

Question 1: To what extent is the dimensional structure of typical statewide mathematics 

achievement tests aligned to NCTM content strands invariant across grades 3-8? 

Question 2:  Does the presence of linking items (below and/or above grade level) change the 

dimensional structure of typical statewide mathematics achievement tests 

aligned to NCTM content strands? 
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Question 3: Do different approaches to assessing dimensionality lead to different 

conclusions about the dimensional structure of typical statewide mathematics 

achievement tests aligned to NCTM content strands?



CHAPTER 3 

METHODOLOGY 

Unidimensionality is assumed in many commonly-used IRT models.  The presence of 

unidimensionality can simplify score interpretation, strengthen vertical scaling projects, and 

provide validity evidence regarding the internal structure of a test that is purported and 

developed to measure a single construct such as mathematics achievement.  However, 

unintentional sources of multidimensionality may be present particularly in a complex 

subject like mathematics where mathematics achievement tests typically measure a 

combination of several subdomains such as algebra and geometry.  Therefore, assessment 

and consideration of the test structure is a critical part of the development and evaluation of 

large-scale tests.   This importance is widely recognized and yet “the question of what to take 

as evidence of multidimensionality has yet to be answered in a way that is widely accepted 

by IRT analysts of different theoretical backgrounds” (Traub & Lam, 1985, p. 27).   

One purpose of this study was to assess potential changes in the dimensionality and 

factor structure of mathematics achievement tests aligned to NCTM standards across Grades 

3-8.  A second purpose was to assess dimensional structure in those tests when out-of-level 

items are included in the tests for the purpose of establishing a cross-grade (i.e., vertical) 

scale.  Finally, a third purpose was to provide a methodological comparison of methods for 

assessing the dimensionality and factor structure of these mathematics achievement tests.  

Given the lack of consensus in the measurement community, four widely applied methods 

will be used to investigate structure of the data. The four methods will be used to examine the 
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stability of the test structure across Grades 3-8.  The specific research questions to be 

addressed include:  

 

Question 1: To what extent is the dimensional structure of typical statewide mathematics 

achievement tests aligned to NCTM content strands invariant across grades 3-8? 

Question 2:  Does the presence of linking items (below and/or above grade level) change the 

dimensional structure of typical statewide mathematics achievement tests 

aligned to NCTM content strands? 

Question 3: Do different approaches to assessing dimensionality lead to different 

conclusions about the dimensional structure of typical statewide mathematics 

achievement tests aligned to NCTM content strands? 

 

Overview 

The proposed study used data collected in February 2004 as part of a large-scale field 

study.  Several school districts across the country agreed to participate in the study which 

resulted in a large and diverse sample of elementary and middle schools students.  Field tests 

were administered at each grade level.  Each field test form consisted of 30 multiple choice 

items which included a common block of items from out of grade level (below- and above–

grade level) for vertical scaling. For example, the grade 4 form included Grade 4 (on-grade) 

items, and items from Grade 3 and Grade 5 (off-grade) as well. All items in each form were 

multiple-choice format and dichotomously scored. 

Assessment of dimensionality was analyzed using four approaches.  The approaches 

included two parametric approaches (item factor analysis and principal components) and two 
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nonparametric approaches (assessment of essential dimensionality and conditional 

covariance).  Table 2.1 identifies each approach and the corresponding implementation 

software.  The following section of this chapter describes the participants, instruments, and 

linking design of the mathematics achievement tests used to collect the data and the specific 

approaches used to assess the dimensionality of these tests. 

 

Participants 

Data were collected on a total of 9,165 students in grades 2 through 9 in 34 schools 

from 14 districts across six states (California, Indiana, Massachusetts, North Carolina, Utah, 

and Wisconsin). Table 3.1 shows the field study participation by state, district, school, and 

number of participating students (n).  The participants were diverse in their geographical 

location as well as the size and type of community (e.g., suburban; small town, city or rural 

communities; and urban).  Table 3.2 shows the breakdown of the number and gender of 

participants by grades. 

 

Measures 

Each of the mathematics achievement tests was developed in the same way including 

attention to content specification, item writing and review, and field testing. The content 

specifications required that the items be aligned with the five content strands suggested in the 

National Council of Teachers of Mathematics framework (NCTM, 2000) which are as 

follows: 

1. Numbers and operations 
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2. Geometry 

3. Algebra/Patterns and functions 

4. Data analysis and probability 

5. Measurement 
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Table 3.1 Field study participation by state and school 

State District School n (%) 

CA Eureka Union Ridgeview School 316 (3.2%) 

IN Alexandria Community Cunningham Elementary 108 (1.1%) 

IN Alexandria Community Thurston Elementary 309 (3.1%) 

IN Brownsburg Community Brownsburg 344 (3.5%) 

MA Dennis-Yarmouth Regional Wixon 125 (1.3%) 

NC Durham Public Schools Parkwood Elementary 594 (6.0%) 

NC Iredell-Statesville Public Schools Brawley Middle 238 (2.4%) 

NC Wilkes County Schools CB Eller 210 (2.1%) 

NC Wilkes County Schools CC Wright 264 (2.7%) 

NC Wilkes County Schools East Wilkes Middle 392 (4.0%) 

NC Wilkes County Schools Fairplains 98 (1.0%) 

NC Wilkes County Schools Millers Creek 400 (4.1%) 

NC Wilkes County Schools Moravian Falls 143 (1.5%) 

NC Wilkes County Schools Mt. Pleasant 144 (1.5%) 

NC Wilkes County Schools Mtn. View 392 (4.0%) 

NC Wilkes County Schools Mulberry 208 (2.1%) 

NC Wilkes County Schools North Wilkes Middle 552 (5.6%) 

NC Wilkes County Schools Roaring River 144 (1.5%) 

NC Wilkes County Schools Traphill 85 (0.9%) 

NC Wilkes County Schools Union 172 (1.7%) 
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State District School n (%) 

NC Wilkes County Schools Wilkesboro 269 (2.7%) 

UT Cache County Schools Nibley Elementary 74 (0.8%) 

WI Dalaven-Darien School Dist Darien Elementary 137 (1.4%) 

WI Dalaven-Darien School Dist Wileman Elementary 129 (1.3%) 

WI Manitowoc Public School Dist Jackson Elementary 232 (2.4%) 

WI Manitowoc Public School Dist Jefferson 346 (3.5%) 

WI Manitowoc Public School Dist Washington Jr. High School 581 (5.9%) 

WI Manitowoc Public School Dist Wilson Jr. High School 344 (3.5%) 

WI Sch Dist of South Milwaukee Blakewood Elementary 253 (2.6%) 

WI Sch Dist of South Milwaukee Lakeview Elementary 202 (2.1%) 

WI Sch Dist of South Milwaukee Luther Elementary 128 (1.3%) 

WI Sch Dist of South Milwaukee Rawson Elementary 277 (2.8%) 

WI Sch Dist of South Milwaukee South Milwaukee High School 920 (9.3%) 

WI Sch Dist of South Milwaukee South Milwaukee Middle Sch 717 (7.3%) 
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Table 3.2 Field study participation by grade and gender 

Grade Level n Percent Female (n) Percent Male (n) 

2 1,283 48.1 (562) 51.9 (606) 

3 1,354 51.9 (667) 48.1 (617) 

4 1,454 47.7 (644) 52.3 (705) 

5 1,344 48.9 (622) 51.1 (650) 

6 976 47.7 (423) 52.3 (463) 

7 1,250 49.8 (618) 50.2 (622) 

8 1,015 51.9 (518) 48.1 (481) 

9 489 52.0 (252) 48.0 (233) 

 

All items were written and reviewed by trained item writers who were experienced 

mathematics educators and item-development specialists and therefore familiar with 

mathematical achievement of students at various grade levels.  Item writers were also trained 

in the development of multiple-choice items.  Training included materials related to 

sensitivity issues as represented in the concepts of universal design and fair access 

(Thompson, Johnstone, & Thurlow, 2002) which emphasize equal treatment of the sexes, fair 

representation of minority groups, and the fair representation of and access for disabled 

individuals.  Items were then reviewed by content and psychometric experts to ensure quality 

of the response options and sensitivity issues. 

The linking plan called for three forms of 30 items at each grade and employed a 

common-item design to create the vertical scale.  Therefore, some items were administered to 

the intended grade and were also placed on off-grade forms (above or below one grade).  
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Items that were placed as below-grade linking items (i.e., Grade 3 items on a Grade 4 form) 

were specifically chosen to represent fundamental subject matter that an on-grade student 

would be expected to answer correctly.  That is, the below-grade items were items from the 

previous grade and should reflect material an on-grade student has previously learned.  

However, the above-grade items were chosen based on strand and could potentially affect the 

performance of the on-grade students due to anxiety, motivation, lack of exposure to the 

content, etc.  In each form, more of the linking items were below-grade items (typically 2-4 

items per form) than above grade items (each form contained two above-grade items).  The 

data from the on-grade items were explored Research Question 1.  Data from the both on-

grade and off-grade items were utilized in Research Question 2.  An illustration of the 

composition of a Grade 4 form is shown in Figure 3.1. 

 

Figure 3.1  Example of a Grade 4 Form 

On-grade Items 

(Grade 4) 

Research Question 1 

Research Question 2 

Below-grade 

items; n=3 

(Grade 3) 

Above-grade 

items; n=2 

(Grade 5) 

 

 ni  = 25 
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Table 3.3 presents the number of items per strand or a “strand profile” for each grade.  

Notice that the number of items per strand varies from grade to grade.  The Grade 3 form had 

eight “Numbers and Operations” items, three “Geometry” items, six “Algebra and Patterns” 

items, three “Data Analysis and Probability” items and six “Measurement” items.  The Grade 

4 form strand profile was seven, six, two, five, and five items, respectively.  Many statewide 

mathematics achievement tests aligned to NCTM content strands have different test 

specifications (i.e., different number of items per strand) for each grade to reflect the 

changing curricular standards across the grades.  For example, a state assessment might 

specify that 35-40% of the total test items should come from Numbers and Operations on a 

Grade 3 form where only 10-15% of the total test items come from Numbers and Operations 

on a Grade 8 form. 

The last row in Table 3.3 shows the total number of on-grade items that were placed 

on each form.  Notice that the number of on-grade items varied from grade to grade.  

Consider Grade 3 and Grade 4 again.  Twenty-six of the 30 items on the Grade 3 form were 

Grade 3 items and therefore four items were off-grade level.  The Grade 4 form contained 25 

Grade 4 items and five items that were from Grades 3 or 5. 
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Table 3.3  Number of on-grade items per strand by grade level form 

Strand 
Grade 

3 
Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 

Numbers & 

Operations 
8 7 7 8 6 4 

Geometry 3 6 4 4 4 6 

Algebra & Patterns  6 2 5 4 5 8 

Data Analysis & 

Probability 
3 5 3 4 4 2 

Measurement 6 5 6 6 6 4 

Total  26 25 25 26 24 24 
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Selection of Specific Approaches and Software 

In the previous chapter, many of the different ways to assess dimensionality were 

discussed.  Researchers do not agree on a single method for assessing test dimensionality.  

Additionally, Embretson and Reise (2000) in their recent review and critique of 

dimensionality assessment suggested that: 

“...researchers should now be starting to move away from reporting heuristic 

indices such as ‘variance accounted for by the first factor’ or ‘ratio of first to 

second eigenvalue’ and start implementing the new procedures that tackle 

these issues in a much more sophisticated manner. …[W]e recommend more 

application of Stout’s procedure for determining essential dimensionality 

and/or application of appropriate techniques such are found in TESTFACT, 

POLYFACT, NOHARM, and LISCOMP.”  (p. 245) 

Using this suggestion and similar research done by Gierl, Tan, and Wang (2005) to 

identify content and cognitive dimensions on the SAT, this study used the following methods 

and software packages (see Table 2.1): item factor analysis (NOHARM), principal 

component analysis (WINSTEPS), assessment of essential dimensionality (DIMTEST), and 

exploring the conditional covariances (DETECT).  All four approaches have been shown to 

be effective indices of dimensional structure.  Recall that DIMTEST and DETECT are both 

nonparametric procedures.  They are popular because they avoid the strong parametric 

modeling assumption while still adhering to the fundamental principles of item response 

theory (Roussos et al., 1998).   Recall also that NOHARM uses item factor analysis.  There 

are several advantages to a factor analytic approach to multidimensional data structure.  One, 

the multidimensional model allows the correlation between underlying factors to be 

estimated.  Two, the common factor parameterization allows factor analysis interpretative 

conventions to aid in the interpretation of multidimensional solutions (Gierl et al., 2005). 
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While the first three programs must be run separately to assess dimensionality and 

then require another program to estimate item and person parameters, assessing 

dimensionality in Rasch measurement via WINSTEPS is slightly different.  As Smith, Jr., 

has indicated, “the use of linear factor analytic models are not appropriate methods for 

assessing the unidimensionality requirement of Rasch models as these methods assume a 

normal distribution of the data, whereas Rasch models make no such assumption” (Smith Jr., 

2004, p. 577).  Within the Rasch approach, the fit of the data to the unidimensionality 

requirement is often addressed internally using, for example, the discrepancy between the 

observed and the model expected responses.  These discrepancies are also referred to as 

residuals.  WINSTEPS is a Rasch-based computer program that utilizes principal component 

analysis (PCA) to assess dimensionality by looking at the residuals.  However “criteria have 

yet to be established for when a deviation becomes a dimension so PCA is indicative, but not 

definitive, about secondary dimensions” (Linacre, 2005, p. 261).  Therefore, several 

approaches or indicators of dimensionality will be considered.  More information about each 

of the four programs, their assumptions, and the resulting output is presented in Appendix A.  

Additional information about the decision criteria used in the programs is presented later in 

this chapter. 
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Plan of Analysis 

For this study, four approaches were used:  item factor analysis, principal 

components, assessment of essential dimensionality and conditional covariances.  These 

approaches offer different lenses from which to view dimensionality and have been shown to 

be effective indices of dimensionality in previous research (Tate, 2003).  The methods are 

implemented in different software packages.  As shown in Table 2.1, item factor analysis is 

implemented using the NOHARM program, principal component analysis is conducted using 

WINSTEPS, assessment of essential dimensionality is done using DIMTEST, and exploring 

the conditional covariances is conducted by DETECT.  Table 3.4 summarizes the plan of 

analysis by research question. 

 

Methods 

DETECT can only be run in an exploratory mode and therefore it was used as an 

initial attempt to identify the dimensional structure of the forms.  The results of DETECT 

also provided clusters that were helpful in understanding how the items work together (or 

not).  Confirmatory analyses using the content strands as the hypothesized structure were 

then conducted using NOHARM, WINSTEPS and DIMTEST.  Only on-grade item data 

were used for the dimensional analysis of each form (Research Question 1).  That is, only the 

25 items at the Grade 4 level were used to analyze the dimensional structure of the Grade 4 

form.  The hypothesis test of essential unidimensionality was assessed.  In addition, the 

content strands served as an organizing principle with which confirmatory analyses were 

done.  Strands represent potential factors or dimensions and thus confirmatory analyses were 
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conducted looking for five dimensions.  Previous research has shown that the strands tend to 

be highly correlated so the exploratory results using DETECT was also considered to better 

understand how the items were clustering and the number of possible dimensions to consider 

in the confirmatory analyses. 

Both on-grade and off-grade items were considered for Research Question 2.  The 

analyses were completed using two datasets: (1) the below- and on-grade items and (2) the 

above-and on-grade items.  Referring to the Grade 4 form example again, one set of analyses 

was conducted using 25 on-grade items (Grade 4) as well as two below-grade items (Grade 

3).  A second set of analyses were completed using 25 on-grade items (Grade 4) and three 

items from above-grade (Grade 5).  The confirmatory analyses explored whether datasets 

containing on- and off-grade level items reflect the two different grades represented by the 

items.  For the Grade 4 example, two confirmatory analyses (one for Grade 3 and 4 items, 

another for Grade 4 and 5 items) tested whether the construct(s) measured differs across the 

grade levels. 

 

Criteria for Assessing Dimensionality 

A summary of the criteria for the different programs and approaches is presented in 

Table 3.5.  In an exploratory analysis, information about the number of dimensions found 

using DETECT was considered.  DETECT output provided several pieces of information.  

One index (DMax) reflects the degree of multidimensionality and another index (rMax) reports 

on whether the data are displaying simple or complex structure.  Confirmatory analyses were 

done using DIMTEST, NOHARM and WINSTEPS.  DIMTEST calculates a T-statistic and 

associated p-value; the null hypothesis of unidimensionality will be tested at the α = .05 
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level.  NOHARM output includes Tanaka’s Index (Tanaka, 1993) and the root mean square 

residual (RMSR).  While there are no definitive guidelines to interpret Tanaka’s index, a 

higher value indicates a better fit of a multidimensional model.  A RMSR equal to or less 

than four times the reciprocal of the square root of the sample size, 







≤

n
RMSR

1
4 , implies 

good model fit (Fraser & McDonald, 1988).  WINSTEPS divides the variance into explained 

and unexplained portions.  Large values of explained variance compared to smaller amounts 

of unexplained variance indicate a unidimensional model is fitting the data well.  WINSTEPS 

output also includes eigenvalues. 

The programs used different approaches to assess the dimensional structure and 

therefore different indices and results were reported.  The results of each program were 

compared to summarize the dimensional structure of the mathematics tests.  Because this was 

a multi-method study, “the results from these procedures vary in their ability to discern the 

signal of the valid skills form construct irrelevant noise leaving the researcher to resolve the 

different results” (Ackerman et al., 2003, p. 41).  In other words, it was expected that the 

program assessments would most likely be different from one another so consistency in 

statistical methods as well as substantive judgment guided the conclusions. 
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Table 3.4  Outline of Procedures by Research Question 

Research Question Exploratory Analysis Confirmatory Analyses 

Question 1: Invariance of 

dimensional structure across 

grade levels. 

NOTE:  For the analysis, a 

subset of only on-grade items 

will be included.  Confirmatory 

analyses will be based upon 

content strands. 

Method/Program 

• Conditional 

covariance/DET

ECT 

 

Method/Program 

• Assessment of 

essential 

dimensionality/ 

DIMTEST 

• Item Factor 

analysis/NOHARM 

• Principal components/ 

WINSTEPS 

Question 2: Effect on 

dimensionality of the presence 

of linking items. 

NOTE: For this analysis, grade 

level and linking items are 

included.  The dimensionality 

of the subtests (above- and on-

grade items and below- and on-

grade items) will be compared 

to on-grade items alone. 

Method/Program 

• Conditional 

covariance/DET

ECT 

 

Method/Program 

• Assessment of 

essential 

dimensionality/ 

DIMTEST 

• Item Factor 

analysis/NOHARM 

• Principal components/ 

WINSTEPS 
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Research Question Exploratory Analysis Confirmatory Analyses 

Question 3:  Comparison of the 

different approaches to 

assessing dimensionality 

The number of dimensions suggested and other 

information generated by the results of four approaches 

and programs will be compared. 
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 Summary and Limitations 

The psychometric models used in the context of many mathematics achievement tests 

assume a unidimensional construct is being measured.  However, mathematics achievement 

tests reflect a complex subject that spans five content strands and skills that build from grade 

to grade.  In order to better understand the measurement of mathematics achievement and 

possible sources of unintended multidimensionality, this study addressed several key 

questions.  The first question considered the dimensional structure of mathematics 

achievement tests across grades.  That is, does the within-grade dimensional structure of a 

mathematics achievement test change from a Grade 3 to Grade 8?  The second question 

addressed potential effects of the presence of off-grade items that were included in on-grade 

forms for the purpose of creating a cross-grade (i.e., vertical scale).  In particular, this 

question addressed whether out-of-level (i.e., above- and below-grade) items affect the 

dimensional structure of an on-grade form.  The last research question was directly tied into 

the methods of assessing dimensionality and explored whether the different approaches to 

assessing dimensionality led to different conclusions regarding the dimensional structure. 

There are several approaches to assessing dimensionality and this study utilized four of the 

most commonly used methods: item factor analysis (NOHARM), principal component 

analysis (WINSTEPS), assessment of essential dimensionality (DIMTEST), and exploring 

the conditional covariances (DETECT).   

There are several limitations of this study.  First, this study was based upon analyses 

of real test data (as opposed to simulated data) and therefore the “true” underlying factor 

structure was unknown.  Second, it is possible that the instructional and curricular emphases 

would result in weak factor changes across grades.  Third, the mathematics content strands 
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might be so highly correlated that the dimensional structure could be considered essentially 

unidimensional even in the presence of confirmed multidimensionality.  There are also 

several limitations associated with the field test design.  For example, the data offer a limited 

number of available items, particularly the off-grade items on each form.  The off-grade 

items could also affect the performance of on-grade students.  While the off-grade items were 

specifically chosen to represent approachable material for an on-grade student, the presence 

of off-grade items may affect student performance due to anxiety, lack of motivation, or 

curricular differences. 

 

 



CHAPTER 4 

RESULTS 

Using real test data and applying a variety of popular dimensionality assessment 

methods, the test structures of mathematical achievement tests were examined across Grades 

3-8.  Both exploratory, confirmatory or a combination of both approaches were used when 

appropriate.  The first research question required analyses using on-grade items only.  

Therefore, only Grade 3 items were considered for the assessment of the Grade 3 test 

structure, only Grade 4 items for the Grade 4 test, etc.  The second research question 

included off-grade level items which is typical of a vertical scale linking design.  The results 

related to the first research question (on-grade items) are presented first, followed by those 

for research question two (off-grade items).  The final section in this chapter offers a 

comparison of the different solutions and approaches as stated in research question three. 

 

Results for Dimensional Structure across Grades 

The following section presents the results of Research Question 1: the dimensional 

structure across mathematical achievement tests Grades 3 through 8.  Each set of on-grade 

items were analyzed for possible sources of dimensionality related to five mathematical 

content strands.  The analyses were also used to compare test structures across grades.  The 

original expectation was the tests would be essentially unidimensional or would exhibit only 

modest amounts of multidimensionality due to the different strands. 
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Conditional Item Covariance and On-Grade Items 

The first method used to assess potential changes in dimensional structure across the 

grade levels studied was an analysis of conditional item covariances.  Conditional item 

covariances provide information about the dimensional complexity and structure of test data.  

The DETECT program was used to investigate conditional item covariances.  The program 

provides three pieces of summary information that bear on test structure: (1) the DETECT 

Index (Dmax) which indicates the amount of multidimensional simple structure; (2) the rmax 

index which indicates whether the data are displaying simple or complex structure; and (3) 

the number of clusters needed to maximize Dmax where the number of clusters is theoretically 

equal to the number of dominant abilities or dimensions of the test.  However, one condition 

must be noted about the relationship between dimensions and clusters: the number of 

dominant abilities measured by the test is indicated by the number of clusters only in the 

optimal partition of items for a test that is essentially multidimensional and exhibits simple 

structure. 

The results from DETECT for on-grade items are shown in Table 4.1.  The second 

column presents the Dmax index, which ranged from 0.4148 to 0.6536.  Dmax values greater 

than 0.10 but less than 0 .50 suggest a weak amount of multidimensionality and Dmax values 

greater than 0.51 and less than 1.0 suggest a moderate amount of multidimensionality (Kim, 

1994).  Therefore, the values obtained in these analyses indicate a weak amount of 

multidimensionality in Grades 3-6 and a moderate amount of multidimensionality in Grades 

7 and 8.   
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The rmax index, shown in third column of Table 4.1, ranged from 0.4998 to 0.6197.  

An rmax value greater than 0.80 suggest the data display approximate simple structure while 

an rMax value less than 0.80 implies a complex structure (Kim, 1994).  The magnitude of the 

values of rmax shown in Table 4.1 generally indicates that the test forms analyzed exhibited 

complex structure.  The last column in Table 4.1 presents the number of clusters DETECT 

used to calculate the Dmax and rmax indices for each test.  Four of the six forms exhibited five 

clusters (Grade 3, 5, 6, and 8) while items from Grades 4 and 7 were partitioned into four 

clusters. 

 

Table 4.1  Results of Conditional Covariance Analysis (DETECT) of On-Grade Items 

Grade Dmax r max No. of Clusters 

Grade 3 0.4558 0.5534 5 

Grade 4 0.4905 0.6032 4 

Grade 5 0.4148 0.4998 5 

Grade 6 0.4550 0.5204 5 

Grade 7 0.6536 0.6119 4 

Grade 8 0.5631 0.6197 5 

 

Zhang and Stout (1999) found that while the clusters partitioned by DETECT are 

more accurate when rmax is greater than 0.80 (i.e., approximate simple structure), DETECT is 

still very informative when approximate simple structure fails to hold.  Therefore, the 

clusters were examined further but caution should be exercised when interpreting the cluster 

results.  The clusters for the Grade 3 on-grade items are shown in Table 4.2.  The first row 

displays the total number of items per cluster.  The subsequent rows show the number of 
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items per strand in each cluster.  For example, Cluster 1 consisted of 12 items (out of 26 

items on the form).  Four of those items were from the Numbers and Operations strand, one 

item from the Geometry strand, five items from the Algebra and Pattern Recognition strand, 

and one item each from the Data Analysis and Probability strand and the Measurement 

strand.  Recall that each item was written to a specific content strand and the test 

specifications required items from all five strands.  The clusters however do not match item 

designated strands indicating that the item clusters do not appear to be based on the content 

strands.  For example, as can be seen in the table, the eight items that were designated as 

being in the Numbers and Operations content strand were identified by DETECT as failing to 

cluster together as intended, but were distributed across three clusters: Cluster 1, Cluster 2, 

and Cluster 3.  The clustering of items for the other grades were similar to the clusters for 

Grade 3 in that item clusters did not appear to be strand-based.  The results for the other 

grades are presented in Appendix B. 
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Table 4.2  Distribution of Strand-Designated Items by Cluster and Content Strand for  

Grade 3 

 Distribution of Strand-Designated Items by Cluster  

Content Strand Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total 

Numbers & 

Operations 
4 3 1 0 0 8 

Geometry 1 0 0 1 1 3 

Algebra & 

Patterns 
5 0 1 0 0 6 

Data Analysis & 

Probability 
1 2 0 0 0 3 

Measurement 1 2 0 2 1 6 

Total Number of 

Items in Cluster 

12 7 

2 

3 2 26 

 

Assessment of Essential Dimensionality of On-Grade Items 

The second method used to assess potential changes in dimensional structure across 

the grade levels studied was an assessment of essential dimensionality.  DIMTEST uses 

Stout’s T statistic for a nonparametric test of unidimensionality.  The T statistic is used to test 

the null hypothesis that a set of items is essentially unidimensional.  The p-values from 

applying confirmatory DIMTEST (based on strands) are presented in Table 4.3.  To control 

for family-wise error rate when testing five comparisons (i.e., five content areas), the False 

Detection Rate (FDR) was utilized.  According to Benjamini and Hochberg (1995),  FDR has 
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higher power than the Bonferroni method, and it controls for Type I errors better than testing 

without adjustment than Bonferroni and other post-hoc comparison techniques.  To 

implement the FDR method, the p-values associated with the content areas are ordered from 

smallest to largest values within each grade level.  The smallest p-value is compared to a 

critical value of 1*.05/5, or .01.  If the smallest p-value is larger than the critical p-value, no 

further comparisons are necessary and the null hypothesis of interest is retained.  As can be 

seen in Table 4.3, the smallest p-values for Grades 3, 4, 6, 7 and 8 exceed the critical value of 

.01 and are therefore not significant at the .01 level. Thus, the null hypothesis of essential 

unidimensionality cannot be rejected for these comparisons.  However, since the smallest p-

value for Grade 5 is significant, then the second smallest p-value is considered.  According to 

the FDR technique, the second smallest p-value is tested against 2*.05/5, or .02.  This is not 

significant so no further tests are warranted.  The DIMTEST results for Grade 5 test suggest 

that the Numbers and Operations items are dimensionally different from the other items. 

In summary, when a set of items based on content strand was compared to the items 

on the rest of the test, the null hypothesis of essential unidimensionality could not be rejected 

for all strands in Grades 3, 4, 6, 7 and 8.  In other words, subsets of items based on content 

were not dimensionally different from the remaining items suggesting that the data are 

essentially unidimensional.  However, Grade 5 results displayed a slightly different story.  

The items designated as Numbers and Operations for Grade 5 suggest a potentially different 

dimension than the remaining Grade 5 items from the other four strands. 
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Table 4.3  P-values from DIMTEST Using On-grade Items 

Content Strand Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 

Numbers & Operations 0.8497 0.1290 0.0660 0.1961 0.2605 0.1218 

Geometry 0.2742 0.3558 0.0154 0.3299 0.6492 0.2822 

Algebra and Patterns 0.1133 0.1122 0.3674 0.4419 0.0354 0.6955 

Data Analysis & 

Probability 

0.9863 0.4373 0.1655 0.8989 0.6453 0.1827 

Measurement 0.1038 0.6310 0.4281 0.4253 0.0243 0.9407 

 

 

Nonlinear Item Factor Analysis of On-Grade Items 

The third method used to answer Research Question 1 (that is, potential changes in 

dimensional structure across grade levels) was an item factor analysis approach.  This 

approach was performed using the software program NOHARM which is based on a 

nonlinear factor analytic approach.  NOHARM computes the residual covariances of the 

items after fitting a model (the user specifies the number of dimensions) and calculates the 

root mean square of the residual covariances as an overall measure of misfit of the model to 

the data.  In other words, the residual matrix offers an indication of how well the principle of 

local independence has been satisfied given the prescribed model. 

Initially, a confirmatory analysis was conducted in NOHARM.  The hypothesis of 

five dimensions (based on content strands) was tested.  The results for each grade are shown 

in Table 4.4.  The root mean square residual (RMSR) is an indicator of model fit; RMSR=0 

indicates a perfect model fit and increasingly higher values indicate worse fit (Kline, 2005).  

The RMSR values were relatively small across the grades, ranging from 0.0089 to 0.0174, 
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signifying very little misfit of the data to a five-dimensional model.  Tanaka’s index is 

another fit index and it ranges from 0 to 1; while there are no specific interpretive guidelines, 

better fit is indicated by values closer to 1 (Tanaka, 1993).  Tanaka’s index was higher in 

Grades 3 and 4 than Grade 5-8 indicating a better fit for a 5-dimensional model in the lower 

grades than the higher grades. 

Table 4.4.  Confirmatory Nonlinear Item Factor Analysis Results (NOHARM) for On-Grade 

Items (Five-Dimensions) 

Grade RMSR Tanaka's Index 

Grade 3 0.0101 0.9568 

Grade 4 0.0089 0.9556 

Grade 5 0.0174 0.8950 

Grade 6 0.0151 0.9098 

Grade 7 0.0174 0.8931 

Grade 8 0.0142 0.9159 

Note. The five dimensions were based on the five mathematical content areas. 

 

To further investigate the structure of the tests, exploratory analyses were then 

conducted with NOHARM to allow the number of dimensions to vary.  That is, each form 

was analyzed in NOHARM using one, two, three, four and five dimensions in turn.  The 

results for each grade are displayed in Table 4.5 and Table 4.6.  Overall, each condition at 

each grade results in a small RMSR and a high Tanaka’s Index, indicating a good model fit.  

To determine the estimated number of dimensions using the exploratory NOHARM, the 

percent decrease in RMSR was calculated.  These results are shown in Table 4.6.  For this 

study, the assessment of test dimensionality in an exploratory analysis was based on 
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consideration of the degree of improvement of model fit with increasing dimensionality of 

the model.  Following the previous research of Tate (2003), test dimensionality was defined 

as the highest dimensional model that still produced an approximately 10% or greater 

decrease in the RMSR over the preceding model.  

Interpretation of the results shown in Table 4.6 can be illustrated by considering the 

first row which shows the results for Grade 3.  The RMSR associated with the 

unidimensional solution is 0.0105; when a second factor is added to the model, the RMSR is 

0.0087, a difference of 0.0018, which represents a 17.1% decrease.  Continuing an 

examination of the Grade 3 results, a third dimension is associated with a 0.0077 which 

results in a decrease of 11%.  The addition of a fourth factor, the RMSR is 0.0070 which only 

decreases the RMSR by 9% so a four-factor solution is not considered.  Using this 10% 

decrease in RMSR criteria, the estimated number of dimensions for each grade level is given 

in the last column.  Based on interpreting the amount of decrease in the RMSR, at least one 

dimension is possible for the Grade 5 form, Grades 3, 4 and 6 forms could have two or three 

dimensions, Grade 7 items could have as many as four dimensions and the Grade 8 items 

exhibited at least 5 dimensions.  It is important to note that many of the comparisons hovered 

around the 10% decrease in RMSR used as a criterion.  Use of this criterion in an equivalent 

sample of data would likely produce different results and therefore the interpretations from 

these results should be considered with caution. 
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To further investigate these potential multidimensional findings, the factor loadings 

produced by NOHARM in an exploratory five-dimensional case were examined for patterns 

among the factor loadings and content strands.  In addition, to the initial factor loadings 

NOHARM also produces rotated sets of factor loadings.  Rotation is ordinarily used after 

factor extraction to maximize high correlations and minimize low ones.  A most commonly 

used orthogonal rotation is varimax.  The goal of varimax is to simplify factors by 

maximizing the variance of the loadings within factors—loadings that are high after 

extraction become higher after rotation and loadings that are low become lower thereby 

making factor interpretation easier.  An orthogonal rotation was selected to explore distinct, 

uncorrelated dimensions that would be expected if the content strands represented different 

constructs or abilities.  Correlated factors make interpretation of the factor loadings difficult.  

Furthermore, in a recent study using a Monte Carlo simulation, Finch (2006) compared the 

factor recovery performance for Varimax and Promax methods of rotation using NOHARM.  

His results suggested the two approaches were equally able to recover the underlying factor 

structure, regardless of the factor correlations. 

The varimax rotated factor loadings for an exploratory five dimensional structure in 

the Grade 3 items are shown in Table 4.7.  The content strand for each set of items is given in 

the first column.  The highest factor loading for each item is in bold.  For example, Item 1 

loads highest on Factor 1.  Items 1 through 9 are specified as items assessing Numbers and 

Operations.  However, notice the highest factor loadings for Items 1, 7 and 8 are on Factor 1; 

Items 2, 3 and 9 load on Factor 2; and, Items 4 and 6 load on Factor 4.  Interestingly, all 

items for Algebra and Patterns load on the second factor in addition to several items from the 

other strands.  There are several items (Items 6 and 21) whose highest loadings are negative 
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indicating an inverse relationship to the factor.  The items do not load according to the 

content strand as expected if multidimensionality was due to differences in skills or content 

specific to that strand.  Grades 4- 8 NOHARM factor loadings for the 5-dimensional model 

are presented in Appendix C.  The loadings were similar to those presented for Grade 3 in 

that the items do not load according to the content strands. 

To simplify the factor loadings table and look for potential patterns, a summary of the 

number of items by content strand and factor is shown in Table 4.8.  The last row of each 

grade level table displays the number of total items that load on each factor obtained in these 

analyses.  The other rows in each table show the number of items that load on each factor by 

the intended content strand.  For example, consider the portion of Table 4.8 that shows 

results for Grade 3.  As can be seen in the last column of that table,  8 of the 26 items on the 

test were intended to measure the Number and Operations strand.  However, as can be seen 

in the first row of the table, three of those items loaded on Factor 1, three items loaded on 

Factor 2, and two items loaded on Factor 3.  Overall, the tables illustrate that, across Grades 

3 through 8, the items do not tend to load according to the content strands as expected if a 

potential source of multidimensionality was due to differences in skills or content specific.  

Looking at the Algebra and Patterns strand across grades shows that while the items on 

Grades 3-6 tend to load on the same factor, the item loadings spread across all factors at 

Grades 7 and 8.  Therefore the results from the nonlinear item factor analysis indicate content 

strands do not appear to be potential sources of multidimensionality in the test structure of 

mathematics achievement tests in Grades 3–8 (Research Question 1). 
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Table 4.7. Nonlinear Item Factor Analysis (NOHARM) Factor Loadings for Grade 3 (i=26) 

 Varimax Rotated Factor Loadings 

Strand Item # Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

1 0.415 0.377 0.069 0.085 0.114 

2 -0.014 0.473 0.154 0.208 -0.087 

3 0.193 0.495 0.029 0.104 0.134 

4 0.234 0.278 0.012 0.645 -0.238 

6 0.187 0.127 -0.094 -0.215 0.082 

7 0.379 0.305 0.271 0.125 -0.115 

8 0.324 -0.068 -0.094 0.020 -0.041 

Numbers and 

Operations 

9 0.197 0.434 0.086 0.078 0.218 

10 -0.004 0.534 -0.133 0.042 -0.030 

11 0.175 0.309 -0.282 0.377 0.141 Geometry 

12 0.093 0.078 0.011 0.118 0.239 

14 -0.028 0.413 0.086 0.132 -0.017 

15 -0.013 0.563 -0.006 0.186 -0.098 

16 0.080 0.173 -0.017 0.120 0.051 

17 -0.042 0.677 0.090 0.122 0.294 

18 0.088 0.663 0.067 0.030 -0.209 

Algebra & 

Patterns 

19 0.125 0.667 0.055 -0.173 0.108 

20 0.076 0.734 -0.151 0.120 0.230 

21 0.085 0.025 -0.001 0.037 -0.558 

Data 

Analysis & 

Probability 22 0.535 0.106 0.052 0.297 0.176 

23 0.111 0.055 0.044 0.315 0.073 

24 0.261 -0.057 0.167 0.167 0.023 

25 0.688 0.207 0.394 0.096 -0.101 

26 -0.066 0.319 0.714 0.082 0.093 

28 0.094 -0.061 0.302 0.006 -0.001 

Measurement 

30 0.071 0.253 0.042 0.431 0.150 
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Table 4.8. Summary of NOHARM Factor Loadings by Content Strand 

Grade 3 
Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 
Total 

Numbers & Operations 3 3 0 2 0 8 

Geometry 0 1 0 1 1 3 

Algebra & Patterns 0 6 0 0 0 6 

Data Analysis & 

Probability 
1 1 0 0 1 3 

Measurement 2 0 2 2 0 6 

Total 6 11 2 5 2 26 

       

Grade 4 
Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 
Total 

Numbers & Operations 4 0 3 0 0 7 

Geometry 2 1 2 1 0 6 

Algebra & Patterns 0 1 0 0 1 2 

Data Analysis & 

Probability 2 0 1 0 2 
5 

Measurement 3 0 0 0 2 5 

Total 11 2 6 1 5 25 

       

Grade 5 
Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 
Total 

Numbers & Operations 3 0 0 3 1 7 

Geometry 0 2 1 1 0 4 

Algebra & Patterns 0 4 0 1 0 5 

Data Analysis & 

Probability 
0 2 1 0 0 3 

Measurement 0 1 1 1 2 5 

Total 3 9 3 6 3 24 

       

Grade 6 
Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 
Total 

Numbers & Operations 3 3 0 0 2 8 

Geometry 2 0 0 0 2 4 

Algebra & Patterns 0 1 0 0 2 3 

Data Analysis & 

Probability 
2 0 1 0 1 4 

Measurement 1 0 0 2 2 5 

Total 8 4 1 2 9 24 
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Grade 7 

Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 
Total 

Numbers & Operations 3 2 1 0 0 6 

Geometry 1 0 1 2 0 4 

Algebra & Patterns 2 2 0 0 1 5 

Data Analysis & 

Probability 
1 1 2 0 0 4 

Measurement 1 1 2 1 0 5 

Total 8 6 6 3 1 24 

       

Grade 8 

Factor 

1 

Factor 

2 

Factor 

3 

Factor 

4 

Factor 

5 
Total 

Numbers & Operations 1 2 0 1 0 4 

Geometry 3 2 0 1 0 6 

Algebra & Patterns 3 0 3 2 0 8 

Data Analysis & 

Probability 
0 0 0 0 2 2 

Measurement 1 2 0 0 1 4 

Total 8 6 3 4 3 24 

 

Principal Components Analysis of On-Grade Items 

The final method used to explore potential changes in dimensional structure across 

grades (that is, Research Question One) was a principal components analysis of residuals.  

Using principal components analysis (PCA), the software program WINSTEPS identifies 

secondary dimensions in the data by the decomposition of the observed residuals.  Residuals 

are deviations in obtained data from what is predicted based on application of a statistical 

model--in this case, Rasch model.  Note that WINSTEPS applies a Rasch analysis (i.e., a 

one-dimensional measurement system) regardless of the dimensionality of the data.  High 

correlation of residuals for two items indicates that they may not be locally independent.  

That is, both items may be measuring some other shared dimension. 
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The results of the PCA analyses of residuals are presented in Table 4.9.  The table is 

divided into sections by grades. The initial row in each section presents the on-grade items 

(the other rows pertain to the off-grade linking items and will be discussed in the next 

section).  Eigenvalues are the variances of the principal components. Because the principal 

components analysis was conducted on the correlation matrix, the variables are standardized, 

which means that the each item has a variance of 1, and the total variance is equal to the 

number of items used in the test, in this case (for Grade 3), 26. In other words, there is one 

unit of information per item so the eigenvalues sum to the number of items.  The first 

component will always account for the most variance (and hence have the highest 

eigenvalue), and the next component will account for as much of the left over variance as it 

can, and so on.  Hence, each successive component will account for less and less variance.  

Each residual factor is then measured by the strength of the residual dimension in eigenvalue 

units; the more eigenvalue units, the stronger the residual dimension.  Previous simulation 

studies have shown that random data (i.e., noise) can have eigenvalues of size 1.4 therefore 

WINSTEPS and PCA analysis use 1.4 as a cutoff value (Linacre, 2005).  That is, a residual 

factor with an eigenvalue greater than 1.4 could potentially be a valid factor (i.e., enduring or 

repeatable structure) but if its eigenvalue is less than 1.4 then it most likely noise, random 

error, etc. 

Columns three through six in Table 4.9 show the eigenvalue units for each residual 

factor or dimension.  The first dimension identified in the WINSTEPS analysis is the primary 

(i.e., intended unidimensional) structure in the data as posited by the Rasch model (Linacre, 

2005).  PCA is used to analyze the residuals to determine any possible secondary dimensions 

that could explain residual variation beyond that which is accounted for by the model.  For 
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example, in the Grade 3 form, the first factor after fitting a Rasch model has the strength of 

two items.  The PCA analysis is applied again and the results are presented in second residual 

factor column of Table 4.9.  Therefore, continuing with the Grade 3 example, the findings 

suggest the second residual factor after removing the primary dimension and the first residual 

factor has the strength of 1.5 items.  The next column denotes that a possible third residual 

factor after fitting a Rasch model and accounting for the two previous residual factors.  This 

third residual factor has the strength of 1.4 items.  Since random data (i.e., noise) can have 

eigenvalues of size 1.4, there is little evidence of an enduring structure (Linacre, 2005) and 

therefore WINSTEPS ends the analysis. 

Overall, as shown in the third column of Table 4.9, the first residual factors do not 

show much strength; the subsequent factors show even less strength.  The first residual factor 

of Grades 4 and 7 accounted for the most unexplained variance (2.2 eigenvalue units), 

followed by Grades 3 and 8 (2 eigenvalue units) and Grades 5 and 6 (1.6 eigenvalue units).  

This indicates that after the unidimensional model has been applied to the data, there is little 

evidence of structure--that is, additional dimensions--in the residuals. 

WINSTEPS output also includes principal components factor plots of the 

standardized residuals.  Figure 4.1 a-c shows the first, second and third residual factor plots 

respectively for Grade 3 on-grade items.  The X-axis is the measurement axis (i.e., the 

posited single dimension).  This dimension has been extracted from the data prior to the 

analysis of the residuals.  The items are labeled with their content strand designation: (1) 

numbers and operations, (2) geometry, (3) algebra and patterns, (4) data analysis and 

probability and (5) measurement.  The trend in Figure 4.1 (a) shows a positive correlation 
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between Rasch item measures and factor loadings.  However, notice that this trend 

disappears as the second and third factors are analyzed (Figure 4.1 b and c). 
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            (c) Third Factor 

Figure 4.1. Principal Components (Standardized Residual) Factor Plots of Grade 3 On-Grade 

Items  

 

The WINSTEPS results for Grade 4 and Grade 7 were similar to Grade 3 results 
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(Figure 4.2 a) appear to be more random and do not show the positive correlation between 

mathematical proficiency and factor loading as did the first factor in Grade 3 (Figure 4.1a).  

The second and third residual factor plots also display random placement.  The residual 

factor plots for Grades 6 and 8 are shown in Appendix D. 
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(c) Third Factor 

Figure 4.2. Principal Components (Standardized Residual) Factor Plots of Grade 5 On-Grade 

Items  

 

2.001.000.00-1.00-2.00-3.00

Mathematical Proficiency

0.60

0.40

0.20

0.00

-0.20

-0.40

-0.60

F
a

c
to

r 
L

o
a
d

in
g

5

5

5

5 5

4

4

4

3

3

3

3

3

2

2

2

2

1

1

1

1

1

1

1



 

 142 

Summary of Dimensionality of On-grade Items across Grades 3-8 

Research Question 1 focused on potential dimensional changes across mathematics 

achievement tests in Grades 3-8.  In the preceding sections, conditional covariance, 

assessment of essential dimensionality, nonlinear item factor analysis and principal 

component factor analyses were performed to evaluate whether the test structure.  Overall, 

results applying a conditional covariance analysis approach using the software program 

DETECT indicated that the on-grade items exhibit weak to moderate amounts of 

multidimensionality and a complex structure.  Recall that when a test exhibits complex 

structure, some item responses are effectively determined by more than one ability.  If each 

item on a test measures one, and only one dimension, the test structure is labeled as exact or 

simple structure.  If the items load highly on multiple dimensions, then the structure is 

referred to as a complex structure.  Item factor analysis using NOHARM and principal 

component analyses using WINSTEPS show some evidence of multidimensionality but the 

results from the assessment of dimensionality employed in DIMTEST purport that the 

multidimensionality does not appear to be related to the five mathematical content strands.  

The number of potential dimensions seems to vary slightly and randomly across Grades 3- 8.  

That is, there does not seem to be relationship among the number of potential dimensions and 

grade level.  However, the results suggest that overall the five content strands are not 

possible sources of dimensionality of mathematics achievement tests for Grades 3-8. 
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Results for Inclusion of Linking Items 

The second research question considered the possible change in dimensional structure 

within a grade level test due to the inclusion of off-grade level linking items. There are two 

types of off-grade items:  items from a grade below and items from a grade above the level of 

a form. The inclusion of off-grade items is a widely used method for developing a vertical 

scale to span two or more grades.  The following sections present the results of analyses 

where off-grade items (i.e., items written to other grade levels) are included on a grade level 

form.  The number of off-grade items included in the grade level forms examined in this 

study was very small (typically two to four items), although this, too, is typical of vertical 

scaling designs in K-12 educational achievement testing.  

 

Conditional Item Covariance and Inclusion of Linking Items 

The first method used to assess potential changes in dimensional structure due to the 

inclusion of linking items was an analysis of conditional item covariances.  Exploratory 

DETECT was applied to off-grade item data using two different runs.  First, on- and below-

grade items were explored and then data for on- and above-grade items were examined.  The 

results are presented in Table 4.10.  When below-grade items were included in the DETECT 

analyses, Dmax ranged from 0.3794-0.6595 indicating weak to moderate multidimensionality.  

The rmax index ranged from 0.4843-0.6074 signifying complex structure.  The number of 

clusters ranged from 4-6.  As shown in Table 4.10, these results were similar to the findings 

for the on-grade items alone (shown in the first column).  Including above-grade items 

showed similar results to the on-grade items alone as well as the inclusion of below-grade 
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items:  Dmax ranged from 0.4199-0.5724, rmax ranged from 0.4760-0.5976, and the number of 

clusters ranged from four to five.  Again, applying the guidelines mentioned previously 

regarding the magnitudes of the Dmax and rmax indices, these analyses reveal that the 

inclusion of off-grade items results in data that display weak to moderate multidimensionality 

and complex structure. 

The number of clusters and the make-up of the clusters differed depending on which 

items were included.  Further exploration of these clusters from Grade 3 is shown in Table 

4.11.  The first three rows display the item numbers per cluster based on the grade level of 

the items: the first row contains Grade 3 items only; the second row displays Grades 2 and 3 

items and the third row pertains to Grades 3 and 4 items.  The off-grade item numbers are 

bolded and underlined.  These items tended to be dispersed throughout the clusters.  The 

fourth row shows the common items across clusters.  For example, Items 2, 3, 9, 10, 15, 18, 

19, and 20 were placed in the same cluster across all three conditions (i.e., on-grade, above-

grade, and below-grade).  The last row in Table 4.11 displays the test specifications of items 

and content strand.  That is, items 1-9 were intended to measure the Numbers and Operations 

strand.  It is interesting to note, however, that the clusters do not generally follow the 

intended content strands.  If the clusters were indeed representing different dimensions based 

on content then Cluster 1 should contain only items 1-9.  The cluster analyses presented here 

for Grade 3 were typical for the DETECT clusters in the other grades.  Results for the other 

grades are provided in Appendix E. 
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 Assessment of Essential Dimensionality When Off-Grade Items Are Included 

A second approach to answering Research Question 2 regarding the potential affects 

on dimensionality of including linking items involved assessing the essential dimensionality 

of the data via the computer program DIMTEST.  The results of applying DIMTEST when 

off-grade items are included are shown in Table 4.12.  The results for below- and on-grade 

items are shown in the shaded rows; results for the above- and on-grade items are presented 

in the unshaded rows.  The first column in the table provides the grade and item 

combinations and the second column specifies the number of off-grade items included in 

each grade level form.  The last column provides the p-values associated with the T statistics 

that DIMTEST calculates.  As seen in the last column, the p-values generated by DIMTEST 

do not permit the null hypotheses of unidimensionality to be rejected.  That is, for none of the 

grade levels does the inclusion of off-grade items result in a test that is dimensionally distinct 

from one that is constructed of on-grade items only. 
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Table 4.12.  Assessment of Essential Unidimensionality (DIMTEST) Including Off-Grade 

Items  

Item Levels No. of Off-Grade Items p-value 

Grade 3: G2&3 Items 2 0.3278 

Grade 3: G3&4 Items 2 0.5584 

Grade 4: G3&4 Items 3 0.212 

Grade 4: G4&5 Items 2 0.1075 

Grade 5: G4&5 Items 4 0.5300 

Grade 5: G5&6 Items 2 0.6125 

Grade 6: G5&6 Items 4 0.9924 

Grade 6: G6&7 Items 2 0.4672 

Grade 7: G6&7 Items 4 0.4349 

Grade 7: G7&8 Items 2 0.5921 

Grade 8: G7&8 Items 4 0.3675 

Grade 8: G8&9 Items 2 0.8157 

 

 

Nonlinear Item Factor Analysis When Linking Items Are Included 

Another approach to examining the presence of linking items on dimensional 

structure (i.e., Research Question 2) is nonlinear item factor analysis.  It was hypothesized 

that there would be two dimensions related to the grade level: one dimension representing on 

on-grade items and a second dimension resulting from the off-grade level items.  Therefore, 

confirmatory factor analyses using the software program NOHARM and a priori 

specification of two dimensions was applied to the datasets containing on- and off-grade 
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items.  The results for the two-dimensional analyses are presented in Table 4.13.  The results 

for below- and on-grade items are shown in the shaded rows and the above- and on-grade 

items are presented in the unshaded rows.  The RMSR were small, ranging from 0.0092 to 

0.0122 for below- and on-grade items and from 0.0093 to 0.0117 for the above-and on-grade 

items.  Tanaka’s Index ranged from 0.9475 to 0.9598 and 0.9414 to 0.9609, respectively.  

Recall that interpretation is rather limited because currently there are no specific guidelines 

for RMSR or Tanaka’s Index.  In general, a good model fit is indicated by a small RMSR 

(i.e., close to zero) and a high Tanaka’s index (closer to 1). 
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Table 4.13.  Confirmatory Nonlinear Item Factor Analysis (NOHARM) for Off-Grade Items 

(Two Dimensions) 

Item Levels RMSR Tanaka's Index 

Grade 3: G2&3 Items 0.0103 0.9541 

Grade 3: G3&4 Items 0.0106 0.9503 

Grade 4: G3&4 Items 0.0092 0.9511 

Grade 4: G4&5 Items 0.0093 0.9513 

Grade 5: G4&5 Items 0.0101 0.9598 

Grade 5: G5&6 Items 0.0104 0.9609 

Grade 6: G5&6 Items 0.0112 0.9455 

Grade 6: G6&7 Items 0.0114 0.9462 

Grade 7: G6&7 Items 0.0122 0.9414 

Grade 7: G7&8 Items 0.0118 0.9476 

Grade 8: G7&8 Items 0.0110 0.9475 

Grade 8: G8&9 Items 0.0117 0.9408 

 

Exploratory analyses were also conducted to determine where the off-grade items 

would load on a two-factor solution if NOHARM selected the factor loadings.  The results 

for the analyses of Grade 3 data are shown in Table 4.14.  The underlined values emphasize 

the off-grade items.  In left panel of Table 4.14, items 5 and 26 are the below-grade (Grade 2) 

items administered with the Grade 3 form.  In right panel of Table 4.14, items 13 and 29 are 

above-grade items (Grade 4) included on the Grade 3 form.  The bolding denotes the largest 

factor loading for each item.  The off-grade items do not appear to form a separate factor in 

either the below- or above-grade items and even appear to load on different factors.  The 

clusterings appeared to be random and no observable pattern in the item types was 
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distinguished.  The results for Grades 4-8 were similar to Grade 3 and are presented in 

Appendix F.  These results indicate that the presence of a small number of linking items do 

not appear to change the dimensional structure of the test forms. 
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Table 4.14.  NOHARM Factor Loadings for Grade 3: On-and Off-Grade Items 

Grades 2 and 3  Grades 3 and 4 

Item # Factor 1 Factor 2  Item # Factor 1 Factor 2 

1 0.431 0.344  1 0.417 0.358 

2 0.517 0.083  2 0.480 0.093 

3 0.523 0.137  3 0.523 0.155 

4 0.337 0.399  4 0.329 0.399 

5 0.643 0.121  6 0.114 -0.001 

6 0.082 0.002  7 0.321 0.443 

7 0.329 0.438  8 -0.061 0.228 

8 -0.06 0.251  9 0.472 0.211 

9 0.512 0.163  10 0.543 -0.064 

10 0.515 -0.101  11 0.364 0.191 

11 0.321 0.136  12 0.149 0.097 

12 0.151 0.09  13 0.474 0.089 

14 0.417 0.02  14 0.427 0.016 

15 0.564 0.017  15 0.556 0.019 

16 0.185 0.091  16 0.207 0.080 

17 0.726 -0.053  17 0.723 -0.038 

18 0.577 0.054  18 0.604 0.074 

19 0.638 -0.028  19 0.625 -0.015 

20 0.776 -0.056  20 0.778 -0.024 

21 -0.022 0.097  21 -0.035 0.066 

22 0.21 0.531  22 0.190 0.569 

23 0.105 0.223  23 0.113 0.242 

24 0.017 0.355  24 -0.007 0.350 

25 0.259 0.715  25 0.231 0.698 

26 0.353 0.18  26 0.324 0.152 

27 0.622 0.241  28 -0.026 0.174 

28 -0.027 0.196  29 0.291 0.385 

30 0.318 0.207  30 0.321 0.248 
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Principal Components Analysis for Inclusion of Off-Grade Items 

The final method used to assess Research Question 2 (potential influence of off-grade 

level items on the dimensional structure) was a principal components analysis.  The principal 

components analyses for the off-grade items using WINSTEPS with Grade 3 items is shown 

in Table 4.15.  For comparison purposes, the first row contains the results from on-grade 

items only.  The next two rows show the eigenvalue units for off-grade items.  Note that the 

amounts of unexplained variance explained by additional factors are similar to the 

corresponding results for the on-grade items.  The residuals from the Grade 2 and 3 items 

displayed a fourth factor but it the eigenvalue is very small.  

 

Table 4.15.  Principal Components Analyses Results for Grade 3 On- and Off-Grade Items 

Grade 

Total 

Unexplained 

Variance 

(Eigenvalue 

units) 

1st Residual 

Factor 

(Eigenvalue 

units) 

2nd Residual 

Factor 

(Eigenvalue 

units) 

3rd Residual 

Factor 

(Eigenvalue 

units) 

4th Residual 

Factor 

(Eigenvalue 

units) 

Grade 3: G3 

Items Only 
26 2 1.5 1.4 na 

Grade 3: 

G2 & 3 

Items 

28 2.1 1.4 1.5 1.4 

Grade 3: 

G3 & 4 

Items 

28 2 1.5 1.5 na 
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The factor plots of the residuals based on the inclusion of Grade 2 items on the Grade 

3 form are shown in Figure 4.3 a-d.  The item labels show the grade level of the item (G2 or 

G3). The Grade 2 items are also marked with an asterisk (�) in the figures.  These plots were 

basically identical to the plots for the on-grade items only presented previously in Figure 4.1 

a-c.  The first factor (after extracting the primary dimension) plot shows a positive 

correlation between the mathematical proficiency and the factor loading (Figure 4.3 a).   

The other plots of the residuals in Figure 4.3 (b-d) display residuals that are more 

random and do not appear to follow a trend which suggests that there is no further important 

or enduring structure in the data.  That is, a unidimensional model appears to fit the data well. 

Analyzing Grades 3 and 4 items on the Grade 3 form using WINSTEPS produced the 

factor residual plots shown in Figure 4.4 a-c.  Notice that the positive trend seen in the first 

factor of both on-grade and below/on grade items does not appear when items from Grades 3 

and 4 are used (Figure 4.4 a) and the residuals are more dispersed.  This random pattern is 

also seen in the second and third factors.  The residual factor plots from the other forms using 

the respective off-grade items are shown in Appendix G. 
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Figure 4.3.  Principal Components (Standardized Residual) Factor Plots of Grade 3: Grade 2 

and 3 Items 
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Note: Off-grade items are designated with a � symbol. 

(a) First Factor           (b) Second Factor 

1.000.00-1.00-2.00

Mathematical Proficiency

0.60

0.40

0.20

0.00

-0.20

-0.40

-0.60

F
a
c

to
r 

L
o

a
d

in
g

G4

G4

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3

G3 G3

 

(c) Third Factor 

Figure 4.4.  Principal Components (Standardized Residual) Factor Plots of Grade 3: Grade 3 

and 4 Items 
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Summary of Investigation of Including Off-Grade Items on Test Dimensionality 

Research question 2 considered possible changes in the dimensional structure of on-

grade level form when off-grade items are included on the test form.  Overall, the inclusion 

of off-grade items in the test structure analyses did not appear to change the dimensionality 

results.  As in the analysis previously reported regarding the dimensional structure of on-

grade items (i.e., research question 1), the software used to gauge dimensionality (DETECT) 

again identified weak to moderate multidimensionality and complex structure.  The inclusion 

of off-grade items tended to change the clustering of items compared to the clustering that 

was obtained from analysis of on-grade items alone.  According to the results produced by 

the software program designed to assess essential unidimensionality (i.e., DIMTEST), off-

grade items were not dimensionally different from on-grade items which was evidenced by 

the factor loadings obtained by the nonlinear item factor analysis approach using NOHARM.  

The principal components analysis of residuals found little structure in the residuals that 

would suggest the presence of multidimensionality when off-grade items are included in a 

grade level form. 
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Comparison of Methods 

Research question 3 concerned possible differences in the results of dimensionality 

analyses yielded by the various approaches and software programs. This last section 

describes comparisons of those different results.  As expected, the different methods and 

programs lead to different conclusions about the test structure not only regarding the number 

of dimensions but also regarding the items that comprise those dimensions.  In addition, the 

unique pieces of information offered by each program can be combined together to better 

understand the data structure. 

Previously the results for exploratory approaches to the investigation of test structure 

for on-grade items using DETECT and NOHARM were presented.  DIMTEST is also 

capable of doing an exploratory analysis as well.  When DIMTEST is used in this way, rather 

than the researcher specifying the initial subtest, the program “ATFIND” is used to determine 

the most homogenous subtest from all the items on the form.  Table 4.16 presents the results 

of exploratory DIMTEST using the on-grade items.  Recall that DIMTEST tests the 

hypothesis of essential unidimensionality.  According to the exploratory DIMTEST, essential 

unidimensionality holds for Grade 4 and Grade 6 forms.  However, while DIMTEST does 

not find evidence that Grades 3, 5, 7 and 8 display essential unidimensionality, it cannot 

determine how many more dimensions are present. 
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Table 4.16.  Results of Exploratory Assessment of Essential Unidimensionality (DIMTEST) 

Using On-Grade Items 

Grade  p-value Result 

Grade 3 0.0222 Reject Ho 

Grade 4 0.0456 Retain Ho 

Grade 5 0.0067 Reject Ho 

Grade 6 0.0955 Retain Ho 

Grade 7 0.0081 Reject Ho 

Grade 8 0.0011 Reject Ho 

 

 

A comparison of the number of resulting dimensions from DETECT, DIMTEST, 

NOHARM and WINSTEPS for on-grade items are shown in Table 4.17.  This table was 

created by combining the results of the exploratory analyses presented previously in Tables 

4.1, 4.3, 4.6, and 4.9.  Across the grade levels studied, the clustering of items produced by 

DETECT suggests that the number of dimensions ranges from four to five.  The hypothesis 

tests in DIMTEST reject essential unidimensionality in four of the six grades.  The number of 

dimensions estimated using NOHARM ranges from one to over five.  The principal 

components analysis (PCA) of residuals using WINSTEPS did not identify any pattern in the 

residuals once the unidimensional (Rasch) model had been fitted to the data. 
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Table 4.17. Summary of Overall Exploratory Analyses Using On-Grade Items 

Grade  

Conditional 

Item 

Covariance 

(DETECT) 

Assessment of 

Essential 

Unidimensionality 

(DIMTEST) 

Nonlinear 

Item Factor 

Analysis 

(NOHARM) 

PCA 

Analysis of 

Residuals 

(WINSTEPS) 

Grade 3 5 >1 2 or 3 1 

Grade 4 4 ~1 2 or 3 1 

Grade 5 5 >1 1 1 

Grade 6 5 ~1 2 or 3 1 

Grade 7 4 >1 4 1 

Grade 8 5 >1 5+ 1 

 

Additional output produced by the software programs DETECT, DIMTEST and 

NOHARM was considered more in depth.  For example, both DETECT and NOHARM 

indicate that there are at least five dimensions in the Grade 8 data.  (Note: while Grade 3 

examples were presented throughout this chapter, Grade 8 was chosen for this particular 

example because both DETECT and NOHARM suggest that there are five dimensions and 

therefore the five dimensions suggested by DETECT could be compared with the five 

dimensions suggested by NOHARM for Grade 8.  Grade 3 does not allow that five-five 

comparison.  In Grade 3,  DETECT suggests there are five possible clusters but NOHARM 

results suggests two or three.)   However, the clusters and factors are not comprised of the 

same items.  Consider the comparison of the Grade 8 results shown in Table 4.18.  The items 

that make up the clusters and the items with the largest factor loadings are not the same 

items.  Cluster 1 and Factor 1 both contain eight items but the items are not the same eight 

items.  There are only three items (Items 1, 10 and 22) that are common in both Cluster 1 and 
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Factor 1. Comparisons for the other grades are found in Appendix H.  These comparisons 

also showed a disparity between the DETECT item clusters and the NOHARM factor 

loadings. 

Another comparison can also be made using the ATFIND items from DIMTEST.  

Recall that the ATFIND procedure in DIMTEST finds the most homogenous subset of items 

from the entire form.  The items found by ATFIND for the Grade 8 form are listed in the 

third row of Table 4.18.  Note that the “most homogenous items” found by 

ATFIND/DIMTEST are not the same set of items clustered by DETECT or loaded on factors 

by NOHARM.   

 

Table 4.18. Comparison of Exploratory Results from Grade 8 On-Grade Items by Software 

Program 

Software 

Program  
Results 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

DETECT 1,  2,  3,  8,  

10, 13,  15,  

22,  27 

4,  7,  12, 16, 

18,  29 

11,  21,  25,  

28 

14,  17,  20,  

30 
20 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

NOHARM 1, 10, 11, 12, 

20, 21, 22, 30 

2, 3, 8, 13, 

27, 29 14, 15, 16 4, 7, 17, 18 24, 25, 28 

AT Subtest     

DIMTEST 4, 5, 13, 15, 

17, 20, 22, 23     
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Summary 

Three research questions were explored using data from typical mathematics 

achievement tests for Grades 3-8.  The exploration was conducted using four different 

approaches:  conditional item covariances, assessment of essential unidimensionality, 

nonlinear factor analysis, and principal components analysis.  Research question 1 

considered possible influence of five mathematical content areas on the dimensional 

structure.  While the data did display small to moderate amounts of multidimensionality and 

was complex in nature, this did not appear to be generated by the five content areas.  

Research question 2 explored the use of off-grade items in a linking project.  The scope was 

rather limited with so few off-grade items but the available data did not appear to be 

influenced by the inclusion of off-grade items.  In regards to Research Question 3, each of 

the software programs designed to provide information relevant to assessment of test 

structure appears to offer a unique piece of information to the bigger picture of 

dimensionality.  For example, DETECT estimates the amount of multidimensionality and 

complexity of the data structure and this information is helpful in interpreting the NOHARM 

factor loadings where each item loads on each factor (implying a complex structure). 

Overall, determining test structure is a complicated endeavor particularly when the 

data display complex structure as is typical of educational data.  Therefore, the question of 

dimensionality is not appropriately viewed as a “yes/no” question, but as a question of “how 

much?”.  How much multidimensionality can be present before parameter estimates become 

affected?  How much multidimensionality can be permitted before validity evidence is 

threatened?  How much correlation is needed between factors before they constitute a single 

dimension?  The next chapter expands on these future research questions in light of the 
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findings of this study to move to a better understanding of dimensionality of educational test 

data.



CHAPTER 5 

CONCLUSIONS AND DISCUSSION 

Assessing the dimensionality of test data is an important yet difficult task, particularly 

when working with real test data where the true underlying factor structure is unknown.  As 

Ackerman, Gierl, and Walker have observed, “working with real test data is never easy and 

rarely are the interpretations straightforward” (2003, p. 38).  The psychometric community 

must attend to this caution and carefully evaluate the results of dimensionality assessment 

with substantive interpretation.  For example, the results of this study suggest that the test 

structure for the Grades 3 – 8 mathematics achievement tests are complex and display weak 

to moderate amounts of multidimensionality.  However, that primary finding is only part of 

the story.  The rest of the story unfolds when other factors, related to the process of learning, 

factors affecting tests in general and mathematical tests in particular, are considered before 

making confident claims about test structure. 

The following sections of this chapter will first summarize some of the key findings 

of this study and interpretations of those findings, following a brief review of the study’s 

limitations.  Next, the concept of dimensionality itself will be examined, and a refined 

process for examining dimensionality will be proposed. Finally, the chapter will conclude 

with suggestions for future research in this area. 
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Research Summary and Interpretations 

Before beginning a summary of the key findings of this research, it is important 

to review some limitations of the study sample, design, and analysis.  One limitation of 

this study was the length of each test (24 -28 items).  This limitation is particularly 

important in regards to Research Question 2 (i.e., the inclusion of off-grade level items 

on the dimensional structure).  Due to the linking study design, each on-grade form 

contained only a few off-grade items (2-4 items).  This linking design was a limitation 

because more off-grade items could potentially exhibit dimensionality due to content 

exposure, curricular and/or difficulty factors.  In addition, the item format used for all 

of the mathematics items studies was limited to four-option multiple-choice items; 

therefore, the results can not be extended automatically to different item formats.  In 

this study, four methods were used for investigating dimensional structure.  Each of the 

four dimensionality assessment methods and programs introduces its own set of 

limitations as well.  For example, two of the approaches (conditional item covariance 

and assessment of essential unidimensionality) are nonparametric approaches and two 

methods are parametric (nonlinear factor analysis and principal components analysis).  

Parametric methods assume a particular parametric model for the IRF while the 

nonparametric methods assume only that the IRF is monotonic.  Therefore, assuming a 

particular parametric model might or might not fit the data well.  One parametric model 

in particular, the Rasch model (1-PL), has additional limitations.  Other IRT models 

include parameters for differences in item discrimination (2-PL) and guessing (3-PL) 

but WINSTEPS only employs the Rasch model.  It is a possibility that some findings in 

the study would have differed or other interpretations been plausible had additional 
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parameters been included in item calibrations (e.g., guessing, discrimination).  

Appendix A contains more information about each program used in this study.   

These limitations notwithstanding, this study yielded insights into what is known 

about the dimensionality of mathematics achievement tests, how that dimensionality is 

affected when out-of-level linking items are embedded in mathematics achievement tests for 

the purpose of creating vertical (i.e., across-grade) scales, and how various procedures for 

assessing dimensionality perform in these contexts.  These findings correspond to the three 

main research questions addressed in this study and the following summary of findings is 

organized according to those research questions. 

The first research question explored the dimensional structure across mathematical 

achievement tests for Grades 3 through 8, in which only on-grade items were considered.  

Overall, the results suggested each grade level test form displayed a complex structure with 

weak to moderate degrees of multidimensionality.  While the number of potential dimensions 

seems to vary slightly and randomly across Grades 3- 8, the results suggest that overall the 

five content strands are not possible sources of dimensionality of mathematics achievement 

tests for Grades 3-8.  Potential sources of multidimensionality could be related to item 

difficulty as well as differing item demands such as reading loads introduced by highly 

contextualized problem situations, interpreting graphs or figures, inclusion of math 

vocabulary and/or symbols, whether a tool such as a protractor or ruler is needed or the 

number system involved in the item (whole numbers, decimals, fractions, positive/negative 

integers, etc.). 

The second research question considered the possible change in dimensional structure 

within a grade level test due to the inclusion of off-grade level linking items (i.e., items from 
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a grade below and items from a grade above the level of a form).  The analyses of this study 

did not indicate that the inclusion of off-grade items resulted in a test that is dimensionality 

distinct from one that is constructed of on-grade items only.  This conclusion was consistent 

across Grades 3 – 8. 

Research question 3 explored possible differences in the results of dimensionality 

analyses yielded by the various approaches and software programs.  The different methods 

and programs lead to different conclusions about the test structure not only regarding the 

number of dimensions but also regarding the items that comprise those dimensions.  

Although different results were produced, it was also learned that the specific pieces of 

information offered by each program could be integrated together to better understand the 

data structure.  For example, DETECT clusters could be compared to the factor loadings 

determined by NOHARM to determine which items seem to be working together.  Overall 

however, as expected, the results produced by the various approaches suggested the 

mathematics tests analyzed in this study displayed complex structures with weak to moderate 

amounts of multidimensionality.  The extent and implications of this multidimensionality are 

interpreted in the following sections. 

 

Complex Structure 

The results of the conditional item covariance and DETECT’s rmax index and the 

factor loadings yielded by the nonlinear item factor analysis operationalized by NOHARM 

suggested a complex test structure in the mathematics achievement tests across grades 3-8 

(see Tables 4.1 and 4.7 respectively).  Recall from Chapter 2 that if each item on a test 

measures one, and only one dimension, the test structure is labeled as exact or simple 
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structure (see Figure 2.1).  If the items load highly on multiple dimensions, then the structure 

is referred to as a complex structure.  When a test exhibits complex structure, some item 

responses are effectively determined by more than one ability or construct.  When complex 

structure is observed, the type of test, the overall content, and the substantive and cognitive 

aspects of mathematics curriculum, instruction, language, and other assessment issues must 

be considered. 

Many mathematical skills span content strands and are used in conjunction with other 

skills and/or in subsequent skills.  Mathematics is often conceptualized as being made up of 

separate strands (as shown in Figure 2.3 of the NCTM content standards across grade bands) 

but this tends to be more an organizing principle for curriculums and textbooks rather than an 

indication of the structure of multidimensionality in the mathematical achievement construct.  

The results of this study did not show a relationship between dimensionality and the content 

strands.  Additionally, these findings support the NCTM Connections Standard which 

proposed that all students (prekindergarten through Grade 12) should be able to make and use 

connections among mathematical ideas and see how the mathematical ideas interconnect.  

According to NCTM, “mathematics is not a collection of separate strands or standards, even 

though it is often partioned and presented in this manner” (National Council of Teachers of 

Mathematics, 2000, p. 64). 

There is, however, a great amount of overlap and correlation in mathematical topics, 

skills and strands.  For example, consider basic addition of whole numbers which is classified 

as a skill in the Numbers and Operations strand.  Knowing addition facts leads to other skills 

such as (1) subtraction facts (also in the Numbers and Operations strand),  (2) finding the 

mean of a set of data (Data Analysis and Probability strand) and (3) determining whether 
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angles in a figure are complimentary or supplementary (Geometry strand).  The last 

illustration (3) is particularly interesting.  There tends to be more distinction or difference 

between algebra and geometry particularly when geometry involves learning basic shapes, 

properties of figures or spatial reasoning.  However, at some point the content strands 

intertwine again, as geometry problems require students to use the four basic operations 

(addition, subtraction, multiplication and division) to find perimeters, areas and volumes or 

basic algebra skills and algebraic thinking to solve for a missing angle or side length.  Thus, 

given the complex nature of mathematical skills and their correlations, the complex nature of 

the test structure is not surprising; indeed, it should be expected.  The study results reflect the 

interconnectivity of the strands. 

While the determination of complex structure in the data does not indicate the number 

of dimensions, it does suggest something about interaction of the dimensions.  Figure 5.1 

illustrates two possible relationships of factors of a complex structure. Figure 5.1(a) 

illustrates less correlation among five factors while Figure 5.1(b) displays five factors that are 

more correlated.  Regarding the highly correlated factors observed in the mathematics 

achievement test data analyzed in this study, a relevant analogy, or image is that of a rope.  A 

rope is made up of different fibers or strands that can be distinguished but are wound together 

to produce one rope as illustrated in Figure 5.2.  If the constructs of a test are represented by 

fibers of the rope, this analogy shows how several dimensions might seem distinct and yet 

are woven together so tightly (i.e., correlated) that the minor dimensions blend into a single 

more prominent cable.  Therefore, the complexity of the data structure along with the known 

overlap of mathematics skills perhaps suggest that mathematics achievement tests could 

represent a fundamentally unidimensional construct.  Importantly, it should be noted here 
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that the phrase, “essential unidimensionality”, is being avoided as it denotes a specific 

statistical model developed by Stout and Nandakumar (Nandakumar, 1991, 1993; Stout, 

1987, 1990; Stout et al., 1996). (Nandakumar, 1991, , 1993; Stout, 1987, , 1990; Stout et al., 

1996) 

 

 

   

 

(a) Distinct Dimensions   (b) Highly Correlated Dimensions 

Figure 5.1.  Graphic Representations of Complex Structure and Multidimensionality 
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Adapted from Kilpatrick, Swafford and Findell (2001). 

Figure 5.2.  Relationships among Mathematical Strands 

 

Interpretation of Multidimensionality 

Although the complex nature of both the mathematical content and mathematical 

achievement test structure must be acknowledged, it is also important to evaluate the 

evidence of weak to moderate amounts of multidimensionality in the test data.  The response 

to an item is often dependent upon several secondary dimensions in addition to the 

hypothesized primary dimension or proficiency (Traub, 1983).  Dimensionality is a property 

of both the test and the examinee population taking the test (Hattie, 1985; Nandakumar & 
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Stout, 1993; Reckase, 1990; Tate, 2002).  There are several important features that are 

examinee-by-instrument interaction that can possibly confound dimensionality: namely, item 

difficulty and reading demand of mathematical items. 

 

Item Difficulty and Dimensionality 

Dimensionality can be confounded with item difficulty if the factors represent items 

with comparable difficulty levels as opposed to items that measure distinct dimensions 

(Ackerman et al., 2003).  In order to examine possible effects of item difficulty, p-values 

were used as measures for item difficulty.  The WINSTEPS standardized residual plots were 

modified so that the item labels displayed the item p-values.  Figure 5.3 (a-c) shows the 

modified WINSTEPS residual plots for Grade 3 items that were originally presented in 

Figure 4.1(a-c).  The first residual plot (after removing the first, predominant factor) 

presented in (a) shows a positive correlation between the harder items (those items with 

lower p-values indicating fewer students answered the items correctly) and the easier items 

(higher p-values).  However, a similar relationship (i.e., a positive correlation) is not readily 

apparent in the second and third residual plots (Figure 5.3 b and c).  This would indicate that 

item difficulty explains much of the variance in the first residual plot and once it is removed 

or accounted for, then there is little, if any, remaining structure in the residuals.  The other 

grades (4-8) showed similar results and the plots for these grades are presented in Appendix 

I. 
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     (c) Third Factor 

Figure 5.3.  Principal Components (Standardized Residual) Factor Plots of Grade 3 
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The clusters of items identified by the conditional item covariance analysis conducted 

using DETECT showed evidence of a difficulty factor as well.  Consider the Grade 3 results 

shown in Table 5.1.  The majority of the easiest (highest p-values) items are clustered in 

Cluster 1.  The mean p-value of the items in Cluster 1 is 0.68 whereas the mean p-values of 

items in Clusters 2, 3, 4 and 5 are 0.44, 0.29, 0.34 and 0.37 respectively.  The results for 

Grades 4-8 showed similar patterns and are presented in Appendix J. 

 

Table 5.1  DETECT Cluster Results with Item P-Values for Grade 3 

Item # P-Value  Item # P-Value  Item # P-Value 

Cluster 1   Cluster 2   Cluster 3  

20 0.83  4 0.75  16 0.31 

15 0.82  21 0.55  6 0.26 

17 0.79  7 0.49  Mean 0.29 

10 0.77  24 0.45    

3 0.76  22 0.30  Cluster 4  

19 0.70  8 0.30  11 0.40 

18 0.68  25 0.25  23 0.38 

2 0.66  Mean 0.44  30 0.25 

26 0.64     Mean 0.34 

14 0.53       

9 0.51     Cluster 5  

1 0.47     28 0.41 

Mean 0.68     12 0.32 

      Mean 0.37 

 

 Similar patterns, suggesting a difficulty factor, were evident in the exploratory factor 

analysis loadings produced by NOHARM.  The p-values and factor loadings are shown for a 

two-factor solution for the Grade 3 form in Table 5.2 and a three-factor solution in Table 5.3.  

It appears that in each solution there is a factor where most items with high p-values load.  

For example, in the two-factor solution most of the items with the highest p-values load on 
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the first factor.  The mean of the p-values of the items in the first factor is 0.57 compared to 

the mean of the second factor which is 0.43.  The differences in the means are even greater 

when considering a three-factor solution as shown in Table 5.3.  The second factor contains 

items with a mean p-value of 0.66 compared to first and third factors where the mean p-

values are 0.38 and 0.47 respectively.  Similar results were found for the other grades and 

those results are given in Appendix K. 

 

Table 5.2  NOHARM Factor Loadings for Grade 3 Two-Factor Solution 

First Factor   Second Factor 

Item Factor Loading P-value  Item Factor Loading P-value 

20 0.763 0.83  4 0.400 0.75 

15 0.564 0.82  21 0.102 0.55 

17 0.717 0.79  7 0.433 0.49 

10 0.519 0.77  24 0.358 0.45 

3 0.537 0.76  28 0.197 0.41 

19 0.633 0.70  23 0.216 0.38 

18 0.615 0.68  22 0.527 0.30 

2 0.488 0.66  8 0.245 0.30 

26 0.332 0.64  25 0.718 0.25 

14 0.427 0.53   Mean p-value: 0.43 

9 0.482 0.51     

1 0.428 0.47     

11 0.362 0.40     

12 0.136 0.32     

16 0.201 0.31     

6 0.104 0.26     

30 0.343 0.25     

 Mean p-value: 0.57     
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Table 5.3  NOHARM Factor Loadings for Grade 3 Three-Factor Solution 

First Factor  Second Factor  Third Factor 

Ite

m 

Factor 

Loading P-value  

Ite

m 

Factor 

Loading P-value  

Ite

m 

Factor 

Loading P-value 

4 0.485 0.75  20 0.736 0.83  7 0.410 0.49 

24 0.254 0.45  15 0.550 0.82  21 0.143 0.55 

11 0.496 0.40  17 0.710 0.79  25 0.662 0.25 

23 0.281 0.38  10 0.512 0.77  26 0.432 0.64 

12 0.179 0.32  3 0.501 0.76  28 0.287 0.41 

16 0.155 0.31  4 0.267 0.75  Mean p-value: 0.47 

8 0.262 0.30  19 0.646 0.70     

22 0.603 0.30  18 0.619 0.68     

30 0.325 0.25  2 0.486 0.66     

Mean p-value: 0.38  14 0.426 0.53     

    9 0.446 0.51     

    1 0.366 0.47     

    6 0.096 0.26     

    Mean p-value: 0.66     

 

Reading Demand and Dimensionality 

Currently, many mathematics achievement tests consist of both decontextualized 

computation and moderately to highly contextualized problem-solving items.  The problem 

solving items contain more verbiage that could require an additional ability (i.e., reading) not 

essential for the solution of the more decontextualized mathematical computation items.  

Consider the contrast of items shown in Figure 5.4.  The mathematics item shown in the first 

panel of Figure 5.4 requires more reading and understanding of the context than does the 

item shown in the second panel.  In a recent simulation study, Beretvas and Williams (2004) 

found that a hierarchical generalized linear models (HGLM) showed promise as a method for 

detecting this type of differential item functioning (i.e., strong readers’ mathematical 
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performance is different than the performance of students with lower reading ability).  This 

suggests directions for future research that are discussed in the next section.   

 

 

Figure 5.4.  Sample Mathematics Items 

 

Multidimensionality introduced by reading and language issues may have particular 

impact on English language learners.  According to Hofstetter (2003), numerous factors 

account for the differential performance between English learners and non-English learners.  

For example, given equal knowledge of mathematics content and procedures, students with 

less proficiency in English are more likely to be assigned to a lower level mathematics class 

than their English peers which could limit their exposure to the mathematics content typically 

found on standardized tests.  Depending on their level of fluency, English learners take 

longer to complete tests as they engage in decoding and encoding strategies between their 

native language and English.  In general, “assessments administered in English tend to 

measure English learners’ language proficiency rather than content knowledge” (p. 162).  

This likely (unintended) presence of multidimensionality attributable to language proficiency 

would clearly threaten the validity of the inferences based on such tests.   
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Refining the Definition of Dimensionality 

Over 20 years ago, Drasgow and Parsons (1983) recommended viewing 

dimensionality as a continuum.  This call was reiterated more recently by Smith, Jr. (2004) in 

the following statement: 

Therefore unidimensionality should not be viewed as a dichotomous yes or no 

decision, but rather as a continuum.  A relevant research question then 

becomes, ‘At what point on the continuum does multidimensionality threaten 

the interpretation of the item and person estimates?’ (p. 576) 

With ongoing efforts to refine the assessment methods of detecting statistical dimensionality 

and with advances in cognitive modeling procedures, it seems that now is the time to move 

away from a dichotomous view of dimensionality and move toward detectable 

dimensionality and the integration of several current research areas. 

The proposed term, detectable dimensionality, refers to the number of dimensions 

such that items work together cohesively and research is moved towards constructing a 

theory about the learning process.  Unlike Stout’s definition of essential dimensionality 

which relies solely on a statistical model of dimensionality, the definition of detectable 

dimensionality requires the user to refer to the data analysis to inform the measurement 

process thereby moving towards a theory of content learning (Burdick, Stenner, & Kyngdon, 

2007).  The basis of detectable dimensionality is the observed patterns and integration of 

both statistical and psychological dimensionality frameworks.  According to Briggs and 

Wilson (2004), “the art of assessing dimensionality is to find the smallest number of latent 

ability domains such that they are both statistically well-defined and substantively 

meaningful” (p. 323).   

Recall from Chapter 2, a distinction is often made to the meaning of the term 

dimensionality.  One common application of the term dimensionality refers to the number of 
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hypothesized psychological constructs believed to account for performance on a test 

(psychological dimensionality); it emphasizes the actual test content and cognitive processes 

required by examinees to respond to items on the test and could also be considered as the 

substantive hypotheses and interpretations.  Another use refers to the minimum number of 

variables that are needed to summarize a matrix of item response data (statistical 

dimensionality) (Reckase, 1990).  Statistical dimensionality uses quantitative analytic 

methods to assess the interrelationships of the item responses.  However, these two 

definitions often result in identifying different numbers of significant dimensions.  Most 

researchers would agree with Reckase that “psychological processes have consistently been 

found to be more complex than they first appear” (1997, p. 25).  However, it also seems like 

there is a fine line between assuming too few and too many dimensions.  According to Stone 

and Yeh (2006), “if dimensionality is overestimated, more parameters are estimated, which 

in turn increases estimation error” (p. 194).  Similarly Tate (2003) notes,  “when analyzing 

real test data, analysts have long recognized that the number of factors of some practical 

importance may often be smaller than the number that can be supported statistically” (p. 

197). 

Refining the definition of dimensionality to encompass both statistical and 

psychological substantiation has its foundation in the previous work of Camilli, Wang and 

Fesq (1995) who argued that statistical procedures alone (such as factor analysis) provide an 

incomplete conceptualization of dimensionality because dimensionality is dependent not only 

on the set of items and a particular set of examinees, but also on test use.  Tate (2002) 

similarly recommended that determination of dimensionality should be guided by substantive 

considerations based on the content and purpose of the test.  Therefore, the final assessment 



 

 179 

of dimensionality should incorporate both judgments about test content and psychological 

processes, as well as, statistical evidence.   

Under the definition of detectable dimensionality, the tests used in this study could be 

categorized as “detectably unidimensional.”  That is, there is evidence of a complex structure 

with multidimensionality but substantively there are no theoretical, a priori explanations for 

dimensions beyond the first.  The dimensions are not consistently reproducible especially 

when item difficulty and reading ability are taken into account.  Referring to the rope image 

in Figure 5.2, the rope could be seen as “detectably unidimensional” and weak to moderate 

amounts of multidimensionality could be described as detecting an area where the strands of 

the rope become more pronounced-as in a figure/ground context where the one or more 

strands become more salient or perceptible, yet are still a part of the whole.  In other words, a 

distinct dimension may be a perspective issue, or may depend on how much one part of the 

rope is examined. 

Detectable dimensionality can also be thought of in terms often used in applied 

statistics.  Traditional investigations of dimensionality look for statistical significance (of 

factors, etc.) while detectable dimensionality is analogous to considering the practical 

significance.  It integrates the statistical significance with content areas and cognitive theory.  

Many of the results from both the statistical models and the current cognitive diagnostic 

models are exploring responses at an atomic level.  This is helpful and informative 

information and yet it still does not address whether there are truly distinct or correlated 

skills being measured.  Detectable dimensionality allows both types of information to be 

placed within a content area and used to inform the measurement process. 
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Implications for Practice 

The results of this study have several implications for test development and reporting.  

First, the results of this study support the use and development of vertical scaling.  Inclusion 

of off-grade items used in the common item design does not appear to be potential sources of 

multidimensionality.  Specifically, the results of this study showed that the inclusion of up to 

four common items, administered above or below one grade, does not substantially alter the 

dimensional structure of a test.  In addition, dimensionality does not appear to be related to 

content strands for Grades 3-8.  Thus, modest changes in the curriculum across grades, in test 

specifications for contiguous grade levels, or in content standards purposefully developed 

with the aim of vertical articulation (such as these characteristics were represented in the test 

development procedures for the tests studied here) should not present a major impediment to 

the ability to implement a vertical scale.  

Second, the results of this study demonstrated a lack of relationship between 

dimensionality and the intended mathematical content strands.  In terms of score reporting, 

this finding suggests that the common practice of  reporting separate strand-based scores (i.e., 

a score for Numbers and Operations, another score for Measurement, etc.) does not have 

strong psychometric support.  Alternatively, some researchers have recently suggested that 

accumulating information from items outside of those within an intended content strand 

shows promise as a means of enhancing the validity and utility of strand-based scores 

(Edwards & Vevea, 2006).  Regardless of the eventual contribution of augmentation 

approaches, it is clear that content strands are useful for organizing curriculums and test 

specifications and therefore have utility independent of their dimensional structure. 
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The lack of relationship between dimensionality and the intended mathematical 

content strands suggest that the NCTM Connections standard may be functioning as 

intended.  That is, the items developed for the mathematics tests used in this study appear to 

require students  to  make connections across the five different content strands.  These results 

should encourage teachers, schools, and curriculum materials to continue to emphasize and 

build upon these connections to deepen students’ mathematical reasoning skills and 

conceptual understanding.  Rather than teach a skill one time and typically out of context, it 

should be reviewed when it comes up again and particularly when it is used in a context.  For 

example, students learn how to add, subtract, multiple and divide integer numbers (numbers 

and operations strand) and are typically taught these as stand alone skills.  However, working 

with integers becomes critical when learning to solve one- and two-step algebraic equations 

and integers are important when finding distances in the coordinate plane during a geometry 

lesson.  It is important that the curriculum and textbooks work with teachers to build these 

connections for the students.  It is also important teachers have a chance to explore these 

connections either with other mathematics teachers in group or lesson discussions or during 

professional development workshops which focus on the developmental, essentially 

unidimensional nature of mathematics. 

The results of this study also emphasize the connectedness of mathematical topics 

such that knowing how mathematical skills build and relate to one another could be useful in 

other ways.  Diagnostic information and determination of a potential need for early 

intervention strategies would be greatly aided by knowing how to approach mathematical 

skills and topics by bringing in related skills that a student better understands or feels more 
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confident.  It is vital to prevent students from falling behind in their mathematical 

proficiency, becoming frustrated or math anxious or a combination thereof. 

 

Suggestions for Future Research 

The present study provides some initial answers to the questions about the 

relationship of five mathematical content strands and dimensionality for on-grade items and 

about the inclusion of off-grade level items.  However, many questions remain unanswered.  

Therefore, additional studies should be undertaken to evaluate dimensionality of other 

mathematics achievement tests with and without off-grade level items.  The outcomes from 

these additional studies will provide researchers and practioners with a better understanding 

of the dimensional structure of mathematics achievement tests and the relationships among 

mathematical skills.  In addition, future studies could yield better guidelines for whether an 

IRT or a MIRT model is appropriate. 

 

Reading and Mathematics 

Further exploration of the reading and mathematics connection is warranted as this 

appears to be a multi-faceted relationship.  For example, there are literature books which 

incorporate mathematics as part of the story and there are story or word problems in 

mathematics.  But there are also more overlapping areas and skills such as vocabulary.  

While vocabulary is part of the reading and comprehension process, how does mathematical 

vocabulary relate to mathematical learning?  Figure 5.5 illustrates different ways in which 

mathematical vocabulary can be embedded in a question.  All three questions are asking the 
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student to determine the “perimeter” so a student has to recognize what the word perimeter 

means in (a) and (b) as how one calculates the perimeter.  The question in (c) requires 

students to recognize the context in which perimeter is applicable.  Item (a) however not only 

uses the word “rectangle” but illustrates it as well.  Items (b) and (c) require that a student 

know the word rectangle and what it describes.  In all three items, students would need to 

know basic properties about rectangles (i.e., four sides, pairs of congruent sides, etc.) in order 

to answer the questions correctly.  Understanding how to read mathematics is an important 

concept in the development of mathematical learning.  More dialogue and research within the 

content areas can help inform the “reading” necessary in mathematics. 

 

  

Figure 5.5.  Mathematical Vocabulary Examples 

What is the perimeter 

of the following 

rectangle? 

6 in. 

12 in. 

What is the perimeter of a 

rectangle with sides 6 in. and 

12 in. ? 

Emma has a garden that is rectangular in shape.  One side is 6ft long and the 

other side is 12 ft long.  How much fencing would Emma need to fence in her 

garden? 

(a) 

(b) 

(c) 
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Distinguishing the reading demand of mathematics items would aid in the exploration 

of the similarities and differences of reading and mathematical learning.  Future research 

studies are necessary to look at the possible relationship between reading demands and 

dimensional structure.  That is, are highly contextualized problems causing unintentional 

sources of dimensionality on mathematics achievement tests?  Items could be rated for the 

amount of reading, the type of reading required (i.e., word problems, graphs, charts, etc.) and 

the mathematical vocabulary necessary to successfully solve a question.  The data are then 

explored using the assessment methods of this study to determine whether dimensional 

differences result from items with higher reading loads.  In addition, it is also necessary to 

investigate the potential impact of including differences in item discrimination and guessing. 

 

Beyond Grades 3-8 Mathematics 

The results of this study regarding the inclusion of off-grade level items should be 

extended to consider when more linking items are used.  That is, what dimensional changes 

(if any) are introduced when the linking design requires more off-grade items to be included?  

It would also be interesting to consider the difficulty of the off-grade items and compare 

parameter estimates—is there evidence of differential item functioning (DIF)?  This would 

be particularly relevant for the above-grade items.  Is this material that an on-grade student 

has the mathematical background for or is it due to differences in instructional and curricular 

emphases? 

Future studies should also extend dimensionality studies to high school and college 

level mathematics.  There is very little research exploring the dimensional structure of upper 

level mathematics.   For example, research is needed to assess whether an end of course type 
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of test administered for a Geometry course is unidimensional.  Geometry courses in the past 

focused on formal proofs and reasoning skills.  However, these skills are de-emphasized in 

recent books and curricula and more attention is given to problem solving.  Consider the item 

presented in Figure 5.6.   The “geometry” needed to set up a solution for this item is 

recognizing a triangle and that the sum of the interior angles of a triangle is 180°.  The actual 

solution additionally involves algebraic skills- that is, solving the equation, 110 + 40 + x 

=180. 

 

  

Figure 5.6.  Geometry Item Example 

 

Item format is another possible source of intentional or unintentional dimensionality.  

This research study was limited to a four-choice format.  But as states try to create more 

authentic tasks for mathematical assessments, more types of formats such as gridded, open-

ended responses are being used to capture process skills such as problem solving, critical 

reasoning and communication.  Perhounkova and Dunbar (1999) used real test data with 

DIMTEST and Poly-DIMTEST to explore the potential influence of item format on 

dimensionality of tests.  They found that “combining items of different formats may 

introduce additional complexity into the dimensionality structure of the composite test” (p. 

110° 

x 

40° Find the value of x. 
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29).  In order to test students’ mathematical communication skills, the state of Washington 

has included items on the Washington Assessment of Students’ Learning (WASL) which 

require students to write responses to mathematical problems.  Walker and Beretvas (2000) 

have found that these types of tests are multidimensional: “one representing an examinee’s 

ability to communicate about mathematics and another representing an examinee’s ability to 

solve mathematical problems” (p.7).  Additionally, van der Linden and Hambleton (1997) 

commented that the inclusion of polytomous response data are not the only feature 

introduced by a new format.  They suggest that “many of these new formats often require 

examinees to use more than one skill such as problem solving, critical thinking, reasoning, 

organization and writing” (p. 221).  There has also been an ongoing line of research indicates 

that a change in test format actually changes the measured construct (see Perhounkova and 

Dunbar, 1999).  These are important questions and issues that impact test development, 

particularly what is taken as validity evidence.  Much research has been done inquiring about 

the teaching and learning of mathematics.  It is important that assessment methods integrate 

these ideas and concepts in item development. 

Better understanding of mathematical thinking and types of assessment can also 

extend beyond mathematics into other content areas such as science.  Science is not only 

similar to mathematics by the use of specific content vocabulary (i.e., density, velocity, etc.) 

and the use of contextualized/ decontextualized items, it also incorporates many 

mathematical and reading skills.  Future studies are needed to better understanding the 

dimensional structure of science test data especially how it relates to the mathematical and 

reading demands of the items. 
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Modeling and Assessing Dimensionality 

Continued work on methods for determining and assessing statistical dimensionality 

is needed.  There is evidence that unidimensional IRT models are robust to some departure 

from unidimensionality but further research is needed to determine how much departure is 

unacceptable.  Ongoing research is also needed to further explore the application and use of 

MIRT models.  In a recent presentation, Martineau and his colleagues (Martineau et al., 

2006) suggested that while truly unidimensional data are rarely observed in educational 

achievement tests, MIRT is not a useful choice either: despite its 30+ years of research, 

MIRT has seen negligible application in educational achievement testing contexts; it is often 

considered to be impractical due to its relatively higher cost and availability of software;  

replication is a problem; and difficulties exist in interpretability of MIRT results.  

Specifically, the complexity and the uncertainty about the definition of a dimension in MIRT 

models has caused some researchers to contend that MIRT cannot be applied in practical 

testing situations (Kirisci et al., 2001; Luecht & Miller, 1992).   

Perhaps the greatest impediments of applying MIRT models are score interpretation 

(van Abswoude et al., 2004) and difficulty of linking tests that measure composite abilities.  

If multidimensional models are used, then the single score represents a composite of abilities; 

and thus linking equivalent forms of a test (i.e., equating) or different forms of a test across 

grades (i.e., vertical scaling) is not feasible.  Further, it appears that the development of test 

items (and test forms) that measure the same composite of abilities is currently an unproven 

goal. 

Finally, ongoing research should continue to suggest new and better ways to measure 

dimensionality.  For example, Bejar (1983) expanded the definition of unidimensionality to 
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include items functioning in unison.  Burdick, Stenner and Kyngdon (Burdick et al., 2007) 

have recently begun work on a similar type model where dimensionality is defined by items 

that rank order students in the same way.  More research is also needed to better understand 

the correlation of dimensions and its affect on measuring and detecting one or more 

dimensions.  In particular, future research studies should address the correlation requirements 

needed for detectable dimensionality. 

 

Conclusions 

This research study, like other studies involving educational data, shows how 

important the assessment of dimensionality is to a testing program and yet how intricate and 

complex the task is.  It does not however preclude a testing program from periodically 

assessing “whether the test assembly process is producing tests that are in accord with the 

test construction blueprint” (Dorans & Lawrence, 1999, p.5) or from conducting periodic 

checks of the stability of a common scale over time as proposed in Standard 4.17 of the 

Standards for Educational and Psychological Testing (American Educational Research 

Association et al., 1999).  Detectable dimensionality integrates two important 

characterizations of dimensionality: psychological meaning and statistical fit.  It is only when 

these two components support one another that the true test structure can be assessed and 

interpreted and perhaps more importantly that the implications for the educational process be 

clarified. 



 

 189 

APPENDIX A:  PROGRAMS FOR ASSESSING TEST DIMENSIONALITY 
 

 

This appendix provides greater detail about the technical information of approaches 

and software programs used to assess test dimensionality described in Chapters 2 and 3: item 

factor analysis (NOHARM), principal component analysis (WINSTEPS), assessment of 

essential dimensionality (DIMTEST), and exploring the conditional covariances (DETECT).  

All four approaches have been shown to be effective indices of dimensional structure.  

NOHARM and WINSTEPS are parametric methods and DIMTEST and DETECT are 

nonparametric methods.  The difference between parametric and nonparametric is the 

specification of the item response function.  In IRT, the probability of success on item i is 

usually presented as Pi(θ).  This function is known as the item response function (IRF).  

Parametric methods assume a particular parametric model for the IRF.  Nonparametric 

methods assume only that the IRF is monotonic. 

 

NOHARM 

One of the most widely used nonlinear factor-analytic approaches is the Normal-

Ogive Harmonic Analysis Robust Method (NOHARM).  NOHARM refers both to a model 

that was developed by McDonald (McDonald, 1967) and to a program written by Fraser and 

McDonald (Fraser & McDonald, 1988) which uses the NOHARM model.  The model can be 

presented as either the latent trait or the common factor parameterization. The program was 

written to fit unidimensional and multidimensional normal ogive models of latent trait theory 

to dichotomous data, as presented by McDonald (McDonald, 1967).  NOHARM can be run 

either in exploratory or confirmatory mode and provides Varimax and Promax rotated factor 

solutions.  It does not used tetrachoric correlations but instead minimizes the unweighted 
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least squares (ULS) difference among observed proportions that pairs of items are passed and 

expectations based on a third-degree polynomial function implied by the factor model.  

NOHARM outputs a residual matrix of differences among observed and expected 

proportions, as well as the root mean square residual(RMSR) as an overall index of model fit 

(Stone & Yeh, 2006). 

NOHARM uses a k-dimensional normal ogive model and is given by the following 

equation: 

{ }kikiiiNP θβθβθββ ++++= L22110  

where  

N is the normal ogive function,  

θ is the latent ability the vector, 

 
i

i
i

t

ψ
β =0  and  

for the kth dimension 
i

i
i ψ

λ
β = .   

Note that in the equations above, t is the threshold value such that if an examinee’s 

proficiency is beyond t then they will get the item correct; if not, the item will be incorrect.  λ 

is the common factor loading and ψ is the explained item variance. 

The NOHARM output file includes several sections. In the first section NOHARM 

summarizes the input data such as the title and the number of items, dimensions, and 

subjects. It also includes the sample correlation matrix, the fixed guessing parameters, pattern 

matrices and initial value matrices. The second section contains results for both the latent 

trait and common factor parameterization.  The results of the latent trait parameterization 

include the following: 
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• final item parameter estimates (the item location, βi0 and item discriminations 

βi ),  

• correlations among factors,  

• the residual matrix, 

• two summaries of the matrix (sum of squares of the residuals and the RMSR), 

and 

• Tanaka’s unweighted least squares goodness of fit index (Tanaka, 1993). 

 

The common factor parameterization for the factor-analytic model is defined as: 

ikikiiy δθλθλ ++= K11  

where  

yi is conceptualized as a continuous latent response pr opensity (for each item 

score there exists an underlying item-specific threshold that 

corresponds to the difficulty level of the item where the examinee 

must exceed this threshold to get the item correct), 

[ ]ki λλλλ ,,, 21 K=  is the factor-loading vector, 

( )kθθθ ,,, 21 K=θ  is the examine trait vector having mean 0 and covariance Φ 

and, 

δi is a residual term distributed (0, ψi). 
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Referring to the common factor model, NOHARM also includes the following values for the 

common factor model reparameterization: 

• threshold values,  

• unique variances, 

• factor loadings and 

• the Varimax (orthogonal) and Promax (oblique) factor loadings and factor 

correlations (exploratory mode only). 

 

One of the advantages of the nonlinear factor analytic approach is the interpretative 

assistance.  For example, the λs estimated by NOHARM can be interpreted as factor loadings 

which can be used to identify those items that appear to cluster together.  This in turn can be 

helpful in identifying the nature of the underlying latent trait being measured by the items. 

The proportion of ys (i.e., common factor model) not accounted for by the dimensions is 

represented by the ψs, a measure of the item uniqueness.  The ts can aid in the understanding 

of item difficulty. The inverse normal transformation of the item difficulty level is 

represented by t=N
-1

(pi) meaning that positive ts indicate easier items and negative ts 

represent harder items. 

The following methods are available for assessing model-data fit (Ackerman et al., 

2003, p. 44): 

1) Difference between observed and reproduced correlation matrix is small 

producing small sum of squares of residuals and root mean square residual 

(RMSR). 
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2) Compare unidimensional model to multidimensional model by comparing the 

residuals of each model 

3) Chi-square fit statistic (also based on residual matrix) 

The chi-square fit statistic is based on testing the null hypothesis that the off-diagonal 

elements in the residual correlation matrix produced by the factor analysis are equal to zero 

(Gessaroli & De Champlain, 1996).  If the null is not rejected, the fitted model adequately 

approximates the observed correlations among the items.  Therefore if the fitted model was 

unidimensional, then the null hypothesis of unidimensionality would not be rejected. 

 

WINSTEPS 

WINSTEPS is based upon a Rasch model and uses joint maximum likelihood 

estimation (JMLE) procedures to estimate item and person parameters.  JMLE is more 

flexible for missing data than is conditional maximum likelihood estimate (CMLE) or 

modified maximum likelihood estimation (MMLE) (Linacre, 2005); it does not assume a 

person distribution.  WINSTEPS begins with a central estimate for each person measure and 

item calibration unless predetermined values are provided by the analyst.  An iterative 

version of the PROX (normal approximation) algorithm is used to reach a rough convergence 

to the observed data pattern.  The JMLE method is then implemented to refine the estimates 

using proportional curve fitting. 

The Rasch model constructs a one dimensional measurement system regardless of the 

dimensionality of the data (Linacre, 1998).  Ideally if the unidimensional Rasch model fits 

well, then all the information in the data would be explained by the single latent variable.  

The residuals (the differences between what a model predicts and what is observed) could 
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then be considered noise, would be independent of each other and when standardized would 

follow a normal distribution.  Therefore all elements of an inter-item residual correlation 

matrix would be zero if the data fit the model.  WINSTEPS asserts that all the residual 

variance is due to common factors, and places 1’s in the diagonal of the inter-items residual 

correlation matrix, and the empirical correlations among the standardized residuals in the off-

diagonal elements (Linacre, 2005). 

In order to check that all items share the same dimension, WINSTEPS identifies 

substructures in the data by performing a principal-components/contrast decomposition of the 

observation residuals (Linacre, 2005).  Principal components analysis (PCA) is a technique 

for simplifying a dataset. It is a linear transformation that transforms the data to a new 

coordinate system such that the greatest variance by any projection of the data aligns on the 

first coordinate (called the first principal component), the second greatest variance on the 

second coordinate, and so on.  The manual for WINSTEPS cautions users that Rasch-

residual-based PCA is not to be interpreted as a usual factor analysis.  “The [PCA] 

components show contrasts between opposing factors, not loadings on one factor” like factor 

analysis (p. 261).  In typical factor analysis, the researcher is looking for shared factors and 

to assign the items to the factors in a way that is as meaningful as possible; it is aimed at 

explaining common variance.  The purpose of PCA is not to construct variables but to 

explain total variance.  The Rasch dimension is hypothesized to be the first dimension.  The 

residuals are then analyzed; the researcher is looking for the contrast in the residuals that 

explains the most variance.  If the contrast is very weak (i.e., noise), then there is no second 

dimension.  If there is structure to the residuals, then the contrast is considered the second 

dimension in the data and similar procedures are followed for exploring for a third 
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dimension, etc.  In Rasch analysis, it is hoped that contrasts are not found and if there are, 

then the fewest number of contrasts are desired.   

In PCA, components are assigned eigenvalues.  Basically, the eigenvalues of an inter-

item correlation matrix is often used as an indication fo the number of factors underlying the 

item responses.  More specifically, “an eigenvalue is equal to the sum of the squared loadings 

of the indicators on the component or the factor with which the eigenvalue is associated” 

(Pedhazur & Schmelkin, 1991).  The variance that the solution accounts for is associated 

with the eigenvalue.  Simulation studies indicate the eigenvalues less that 1.4 are at the 

random level (i.e. noise) (Smith & Miao, 1994) or can sometimes be as high as 2.0 (Raiche, 

2005).  In addition,  “Ben Wright recommends that the analyst split the test into two halves, 

assigning the items, top vs. bottom of the first component in the residuals...cross-plot the 

person measures.  If the plot would lead you to different conclusions about the persons 

depending on the test half, then there is a multidimensionality” (Linacre, 2005, p. 266). 

 

DIMTEST 

DIMTEST is an asymptotically justified non-parametric procedure that provides a test 

of hypothesis of unidimensionality of a test data set. The program was developed and written 

by Nandakumar and Stout (1993) and is based upon Stout’s concept of essential 

dimensionality (Stipek, 1987; Stout, 1990) which emerges from the theory of essential local 

independence (Nandakumar, 1991). The use of DIMTEST however does not require 

acceptance of Stout’s concept of essential dimensionality –it can be viewed as a technique to 

detect sizable lack of fit of a locally independent unidimensional latent trait model 

(Nandakumar & Stout, 1993).  “A test is considered essentially unidimensional when the 
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average between-item residual covariances after fitting a one-factor model approaches zero 

as the length of the test increases” (Embretson & Reise, 2000, p. 230). Since its initial 

development, DIMTEST has undergone two major revisions: the first by (Nandakumar & 

Stout, 1993) and the second by Froelich and Habing (2001).  This most recent version will be 

used in the analysis. 

Essential dimensionality is based upon the concept of essential independence.  An 

item pool U is said to be essentially independent (EI) with respect to the latent variable θ, if 

U satisfies 
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The essential dimensionality (dE) of an item pool U is then defined as the minimal 

dimensionality necessary to satisfy the assumption of essential independence.  When dE=1, 

essential unidimensionality is said to hold.  Essential unidimensionality holds when only one 

dominant dimension influences the examinees performance on a set of test items.    

DIMTEST assesses the relationship among subsets of items based on conditional item 

covariances.  A small subtest of items is referred to as the assessment subtest (AT) because 

its responses will be used to assess the test’s dimensionality.   The larger set of remaining 

items is used to partition the examinees into groups for a stratified analysis and is referred to 

as the partitioning subtest (PT). If a test is unidimensional then the conditional covariance 

between any two items on as the AT is zero after conditioning on the PT.  If the conditional 

covariance between any two items on the AT is greater than zero after conditioning on the 

PT, then a test is multidimensional.  Note that testing whether the conditional covariance 



 

 197 

between any two items is zero is analogous to testing the assumption of weak local 

independence (Gierl et al., 2005).   

Based upon their PT score, each examinee is assigned to one of K subgroups. Two 

variance estimates, the total variance estimate and the “unidimensional” variance estimate, 

are computed using items on the AT (Nandakumar & Stout, 1993).  Or in terms of the 

conditional covariances, the variance difference between the total test variability (σ2
X)  and 

item variability for examinees with the same score, k, on the PT (Gierl et al., 2005) is:  
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By calculating the covariance for examinees with the same score, k, on the PT, the 

conditional covariances can be calculated as shown in the following equation: 
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The difference in these variance estimates is then normalized by an appropriate 

normalizing constant, S
2

k  (the asymptotic variance of TL,k), and summed over the subgroups 

to obtain the statistic, TL.  In other words, TL is based on the sum of the estimated conditional 

covariances among the AT items for examinees that have obtained the same score, k, on the 

PT items.  Specifically, 
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The DIMTEST statistic is then defined as  

2

BL TT
T

−
=  where  BT  corrects for bias introduced by a finite length test.   

The test statistic, T, represents the degree of dimensional distinctiveness of the two 

clusters of items and is based on the fundamental principle that local independence should 

hold approximately when sampling from a subpopulation of examinees of approximately 

equal θ level (Hattie et al., 1996). Under typical conditions, the original DIMTEST statistic T 

(Stout, 1987) and the more powerful T’ (Nandakumar & Stout, 1993) are distributed 

asymptotically standard normal when a test is unidimensional (van Abswoude et al., 2004). 

Therefore, given a significance level α and the upper 100(1-α) percentile of a standard 

normal distribution, Zα, the null hypothesis of dE=1is rejected if T’> Zα.   

Recall that DIMTEST requires two subtests, AT and PT.  If DIMTEST is being used 

in a confirmatory analysis, the user selects items for the AT based on prior expectations such 

as test specifications or content strands.  When operating DIMTEST in an exploratory mode, 

a method call ATFIND identifies items for the AT by using non-parametric conditional 

covariance dimensionality programs DETECT and HCA/CCPROX (The William Stout 

Institute for Measurement, 2005).  ATFIND generates four output files: TEMP.OUT, 

PROX.OUT, HCA.OUT, and ATLIST.IN.  ATLIST.IN is needed to tell DIMTEST which 

items are in the AT.  The TEMP.OUT file contains a summary of the CCPROX analysis 

while the PROX.OUT file reports the conditional-covariance based proximity measures for 
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the item pairs as calculated by CCPROX.  This output could be used as input for the HCA 

cluster analysis program.  The HCA. OUT file is generated by the HCA cluster analysis 

program and contains a list of item clusters starting with the smaller cluster of items and 

ending with the largest cluster of items that are closer in dimensionality. 

Once the ATLIST.IN file is either generated or user specified, DIMTEST can be run. 

There are two output files, DIMTEST.OUT and KERNPTS.  DIMTEST.OUT contains a 

summary of the input, specifications, etc. and the final values for TL, TB bar, as well as the 

resulting T and its p-value.  The KERNPTS provides estimated unidimensional item response 

function (IRF) for every item and can be used for diagnostic purposes to check whether the 

estimated IRFs seem reasonable in cases where the researcher suspects a problem. 

 

DETECT 

Another nonparametric approach to assessing dimensionality is the Dimensionality 

Evaluation to Enumerate Contributing Traits (DETECT) index and program (Kim, 1994; 

Stout et al., 1996; Zhang & Stout, 1999). The DETECT index was proposed by Kim (1994) 

to be data-driven index of dimensionality that would identify the number of distinct latent 

dimensions, estimate the amount of test multidimensionality and assign items to appropriate 

homogenous clusters when approximate simple structure exists.  DETECT relies on the 

covariances of items conditioned on an estimate of the test composite ability.  Test composite 

(θTT) is defined to be a particular linear combination of the test’s complete latent trait 

variables (Zhang & Stout, 1999).  

The DETECT method searches for a good or best (if it exists) choice of partitioning 

the test items into dimensionally homogenous clusters that maximize the DETECT index, 
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D(P).  When the test exhibits approximate simple structure, the number of cluster resulting 

from the optimal partition will be equal to the number of dominant dimensions.  The value of 

the index represents the magnitude of departure from being perfectly fitted by a 

unidimensional model. It is created by computing all item covariances after conditioning on 

the examinees’ scores using the remaining items and can be computed: 
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where n is the number of dichotomous items on a test, P denotes the partitioning of n items 

into k clusters, ΘTT is the test composite, Xi and Xj are scores on items i and j, and  
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The covariance is estimated using a contingency table approach that assumes no 

particular parametric form of the IRF (Finch & Habing, 2005).  Checking of each possible 

partitioning of items would be computationally intensive so DETECT begins with the set of 

partitions generated using the HCA/CCPROX procedure and then uses a genetic algorithm to 

search for the maximum D(P
*
) or DMax  where P

*
 refers to the partition that maximizes D(P).  

For unidimensional data, the conditional covariances of the homogeneous item clusters will 

be positive while the not particularly homogenous items will contribute negative values and 

thus, the resulting D(P
*
) index will be close to zero.  If the underlying structure of the data is 

more multidimensional, the positive within-cluster conditional covariances and the negative 

between-cluster conditional covariances result in a D(P
*
) index that is greater than zero 

(Gierl et al., 2005).  Kim (1994) suggests that a D(P
*
) index less than 0.10 indicates that the 

data can be considered unidimensional; an index between 0.10 and 0.50 suggests a weak 

amount of dimensionality; an index between 0.51 and 1.00 is considered a moderate amount 
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of dimensionality and an index greater than 1.00 would indicate a strong amount of 

dimensionality. 

After reaching the search’s stopping rule, DETECT reports the number of clusters in 

the final solution (equal to the number of dimensions), item membership for each cluster, the 

DETECT index and another index, r, which represents how well the underlying structure of 

the data approximates a simple structure. It is defined as,  

( )
( )*

*

~
PD

PD
rMax =  where ( )

( )
[ ]∑

≤≤≤

Θ
−

=
Nji

TTji XXCovE
nn

PD
1

* )|,(
1

2~
. 

It compares the maximum value of the partition to the average absolute value for the 

conditional covariance across all item combinations (Gierl et al., 2005).  An approximate 

simple structure will result in values of r greater than 0.80 and a complex structure is 

suggested by r values less than 0.80 (Kim, 1994).  Simulations studies have shown that 

DETECT correctly identifies the correct partition when r is greater than 0.80 (i..e. the data 

display approximate simple structure) but when r is less that 0.80 (i.e. complex structure) the 

results and interpretation become unclear (Gierl et al., 2005; Zhang & Stout, 1999).  van 

Abswoude, van der Ark and Sijtsma compared DETECT to several other methods for 

determining the dimensionality of item response data (2004).  Their results indicated that 

DETECT was superior to Mokken Scale Analysis for Polytomous Items (MSP) and in most 

cases to HCA/CCPROX in retrieving simulated data structure .  van Abswoude, van der Ark 

and Sijtsma also found that DETECT may be more effective in larger samples and is 

influenced by the number of items in a cluster assessing one trait. 
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APPENDIX B: RESULTS FROM DETECT 

Table B.1   Distribution of Strand-Designated Items by Cluster and Content Strand for 

Grade 4 

   Distribution of Strand-Designated Items by Cluster  

Content Strand Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total 

Numbers & 

Operations 
3 3 1 0 na 7 

Geometry 
2 1 0 3 na 6 

Algebra & 

Patterns 
0 0 2 0 na 2 

Data Analysis & 

Probability 
3 0 2 0 na 5 

Measurement 
3 0 1 1 na 5 

Total Number of 

Items in Cluster 11 4 6 4 0 25 

 

Table B.2   Distribution of Strand-Designated Items by Cluster and Content Strand for 

Grade 5 

   Distribution of Strand-Designated Items by Cluster  

Content Strand Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total 

Numbers & 

Operations 
4 2 1 0 0 7 

Geometry 
0 1 0 3 0 4 

Algebra & 

Patterns 
1 1 2 1 0 5 

Data Analysis & 

Probability 
0 0 0 2 1 3 

Measurement 
3 0 0 2 0 5 

Total Number of 

Items in Cluster 8 4 3 8 1 24 
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Table B.3   Distribution of Strand-Designated Items by Cluster and Content Strand for 

Grade 6 

   Distribution of Strand-Designated Items by Cluster  

Content Strand Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total 

Numbers & 

Operations 
1 2 2 1 2 8 

Geometry 
1 0 1 0 2 4 

Algebra & 

Patterns 
0 1 0 0 2 3 

Data Analysis & 

Probability 
0 0 2 1 1 4 

Measurement 
0 1 1 1 2 5 

Total Number of 

Items in Cluster 2 4 6 3 9 24 

 

Table B.4   Distribution of Strand-Designated Items by Cluster and Content Strand for 

Grade 7 

   Distribution of Strand-Designated Items by Cluster  

Content Strand Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total 

Numbers & 

Operations 
4 2 0 0 na 6 

Geometry 
2 1 1 0 na 4 

Algebra & 

Patterns 
1 2 0 2 na 5 

Data Analysis & 

Probability 
3 1 0 0 na 4 

Measurement 
2 2 1 0 na 5 

Total Number of 

Items in Cluster 12 8 2 2 0 24 
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Table B.5   Distribution of Strand-Designated Items by Cluster and Content Strand for 

Grade 8 

 

   Distribution of Strand-Designated Items by Cluster  

Content Strand Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total 

Numbers & 

Operations 
3 1 0 0 0 4 

Geometry 
3 2 1 0 0 6 

Algebra & 

Patterns 
2 2 1 3 0 8 

Data Analysis & 

Probability 
0 0 1 0 1 2 

Measurement 
1 1 1 1 0 4 

Total Number of 

Items in Cluster 9 6 4 4 1 24 
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APPENDIX C: NONLINEAR ITEM FACTOR ANALYSIS (NOHARM) 

FACTOR LOADINGS FOR ON-GRADE ITEMS (5-DIMENSIONS) 

Table C.1 Nonlinear Item Factor Analysis (NOHARM) Factor Loadings for Grade 4 

1 0.598 0.126 0.097 -0.118 -0.003 

2 0.525 0.168 0.055 -0.102 -0.056 

3 0.220 -0.125 0.045 -0.102 0.177 

4 0.173 -0.048 0.310 -0.027 0.039 

5 -0.309 0.196 -0.142 -0.085 0.038 

6 0.159 -0.296 0.520 -0.133 0.101 

Numbers & 

Operations 

7 0.306 0.162 -0.554 0.072 0.342 

9 0.497 -0.033 -0.319 0.045 0.021 

10 -0.033 -0.216 0.050 0.033 -0.088 

12 0.016 0.061 0.302 0.049 -0.070 

13 0.269 0.258 0.128 0.111 -0.206 

14 0.190 -0.051 0.149 0.966 0.077 

Geometry 

15 0.042 -0.043 -0.255 -0.078 0.008 

17 
0.245 0.931 0.254 0.018 0.090 Algebra & 

Patterns 

18 
0.170 0.188 -0.033 -0.053 0.203 

20 0.710 0.172 -0.142 0.075 0.302 

21 0.887 -0.069 -0.420 0.112 0.140 

22 0.116 -0.003 -0.054 0.068 0.243 

23 -0.143 0.056 0.173 -0.031 0.227 

Data Analysis 

& Probability 

24 0.087 0.002 -0.159 -0.125 0.023 

25 0.446 0.030 0.046 0.005 0.031 

26 0.476 0.217 -0.090 0.102 0.146 

27 -0.170 0.166 -0.007 0.066 0.683 

28 0.560 0.058 0.001 0.042 -0.040 

Measurement 

30 -0.162 -0.053 0.200 0.148 -0.298 

Total 25 11 2 6 1 5 

 Varimax Rotated Factor Loadings 

Strand Item # Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
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Table C.2 Nonlinear Item Factor Analysis (NOHARM) Factor Loadings for Grade 5 

1 0.528 0.021 0.073 0.064 0.009 

2 0.506 0.218 0.186 0.030 0.198 

3 0.302 0.154 -0.094 0.005 0.416 

4 0.103 0.002 0.188 0.244 0.050 

5 0.345 0.255 0.264 0.072 0.021 

7 0.141 0.247 -0.015 0.340 0.271 

Numbers &  

Operations 

8 0.199 0.013 -0.021 0.743 -0.067 

10 -0.221 0.202 0.011 0.551 0.254 

11 -0.069 0.526 0.152 0.393 0.070 

12 0.153 0.751 0.232 -0.060 -0.100 
Geometry 

14 0.038 0.330 0.482 0.222 0.006 

17 -0.077 0.494 0.158 0.206 0.299 

18 0.074 0.200 0.014 0.004 0.068 

19 0.312 0.374 0.103 0.112 0.229 

20 0.108 0.151 0.294 0.359 0.069 

Algebra &  

Patterns 

21 0.197 0.291 -0.013 0.116 0.077 

22 0.169 0.282 0.155 0.091 0.103 

24 0.001 0.341 0.333 0.097 0.243 

Data 

Analysis & 

Probability 
25 0.063 0.010 0.403 -0.074 0.073 

26 0.202 0.237 0.196 0.145 0.282 

27 0.239 0.281 0.089 0.307 0.271 

28 0.314 0.357 0.115 0.209 0.088 

29 0.004 0.045 0.461 0.160 0.600 

Measurement 

30 0.190 0.211 0.626 0.144 -0.032 

Total 24 3 9 3 6 3 

 

 Varimax Rotated Factor Loadings 

Strand Item # Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
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Table C.3 Nonlinear Item Factor Analysis (NOHARM) Factor Loadings for Grade 6 

  Varimax Rotated Factor Loadings 

Strand Item # 

Factor  

1 

Factor  

2 Factor 3 Factor 4 

Factor 

5 

1 0.327 -0.055 0.124 0.024 0.017 

2 -0.063 0.741 0.12 0.03 0.038 

3 0.426 0.008 -0.179 0.017 0.042 

4 0.198 0.375 -0.062 -0.158 0.221 

5 -0.077 0.414 -0.074 -0.098 0.595 

6 0.296 0.262 0.261 -0.127 0.182 

8 0.25 0.332 0.102 0.173 0.162 

Numbers and Operations 

10 -0.013 0.084 0.091 -0.106 0.647 

11 0.274 0.123 0.081 0.145 0.527 

12 0.45 0.02 -0.025 0.105 0.144 

13 0.208 0.028 0.31 -0.09 0.094 
Geometry 

14 -0.019 -0.054 -0.421 0.17 0.446 

15 0.095 0.374 0.126 -0.075 0.457 

16 0.154 0.071 0.042 -0.026 0.488 Algebra & Patterns 

19 0.037 0.506 -0.055 0.088 0.259 

20 -0.103 0.057 0.663 0.177 0.462 

22 0.454 0.258 0.051 -0.245 0.067 

23 0.339 0.278 0.059 0.087 0.295 

Data Analysis & 

Probability 

24 0.319 0.268 0.106 -0.125 0.358 

25 0.134 0.083 0.09 0.014 0.212 

26 0.284 0.208 0.136 0.799 -0.026 

27 0.512 0.109 0.214 0.169 0.046 

28 0.003 0.062 0.106 -0.516 0.085 

Measurement 

30 0.112 0.135 0.074 -0.119 0.46 

Total 24 8 4 1 2 9 
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Table C.4 Nonlinear Item Factor Analysis (NOHARM) Factor Loadings for Grade 7 

  Varimax Rotated Factor Loadings 

Strand Item # Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

1 0.467 0.29 0.072 -0.216 0.053 

2 0.03 0.194 -0.012 0.045 -0.002 

3 0.222 0.287 -0.278 0.127 -0.007 

4 0.483 -0.127 0.205 0.239 0.394 

5 0.389 -0.083 0.373 0.023 0.275 

Numbers and 

Operations 

7 0.447 0.165 0.499 -0.365 0.185 

9 0.641 -0.214 0.212 0.083 0.11 

10 0.379 -0.106 0.724 0.081 -0.176 

11 0.106 0.166 0.097 0.469 0.33 
Geometry 

13 0.059 0.174 0.201 0.226 0.045 

15 -0.035 0.141 0.013 -0.007 0.024 

16 -0.127 0.498 -0.234 -0.063 0.051 

17 0.124 -0.097 0.082 0.076 -0.469 

18 0.448 0.085 0.098 -0.008 -0.168 

Algebra & 

Patterns 

19 0.595 0.098 0.188 0.037 -0.101 

20 0.206 -0.13 0.457 -0.215 -0.01 

21 0.314 -0.017 0.171 0.25 -0.099 

22 0.066 0.034 0.601 0.126 0.131 

Data 

Analysis & 

Probability 
23 0.241 0.467 0.256 0.326 -0.187 

24 0.179 0.072 0.442 0.29 -0.149 

25 -0.311 0.212 -0.058 0.029 0.037 

27 0.027 0.364 0.207 0.219 0.011 

29 0.304 0.1 0.475 0.063 -0.205 

Measurement 

30 -0.033 0.017 -0.02 0.175 -0.032 

Total 24 8 6 6 3 1 
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Table C.5 Nonlinear Item Factor Analysis (NOHARM) Factor Loadings for Grade 8 

  Varimax Rotated Factor Loadings 

Strand Item # Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

1 0.556 0.216 0.083 0.063 -0.032 

2 0.171 0.615 -0.104 0.164 0.014 

3 0.264 0.542 0.112 0.065 -0.050 

Numbers & 

 Operations 

4 0.207 0.325 0.115 0.630 0.109 

7 0.189 -0.024 -0.070 0.584 -0.079 

8 0.273 0.581 -0.061 0.062 -0.132 

10 0.443 0.184 0.164 0.054 0.030 

11 0.418 0.121 -0.057 0.099 0.166 

12 0.736 0.081 -0.034 0.293 0.058 

Geometry 

13 0.239 0.619 0.310 0.050 0.017 

14 0.284 0.055 0.318 0.137 -0.064 

15 0.297 0.241 0.516 0.093 0.199 

16 -0.034 -0.092 -0.370 0.109 0.043 

17 0.186 0.060 -0.027 -0.289 0.167 

18 -0.002 0.147 -0.120 0.579 0.429 

20 0.528 0.014 0.281 -0.048 0.307 

21 0.316 0.242 -0.244 -0.062 0.290 

Algebra & 

Patterns 

22 0.398 0.213 0.201 -0.007 0.031 

24 -0.121 -0.036 0.194 -0.058 0.338 
Data 

Analysis & 

Probability 
25 0.188 -0.005 -0.131 0.132 0.552 

27 0.114 0.562 0.168 0.091 0.244 

28 0.181 0.025 0.007 -0.060 0.506 

29 0.027 -0.454 -0.185 0.191 -0.056 
Measurement 

30 0.358 0.123 0.027 -0.061 0.091 

Total 24 8 6 3 4 3 
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APPENDIX D: PRINCIPAL COMPONENTS (STANDARDIZED 

RESIDUAL) FACTOR PLOTS FOR ON-GRADE ITEMS 
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Figure D.1. Principal Components (Standardized Residual) Factor Plots of Grade 4 On-

Grade Items 
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Figure D.2.  Principal Components (Standardized Residual) Factor Plots of Grade 6 On-

Grade Items 
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Figure D.3. Principal Components (Standardized Residual) Factor Plots of Grade 7 On-

Grade Items 
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(c) Third Factor 

Figure D. 4.  Principal Components (Standardized Residual) Factor Plots of Grade 8 On-

Grade Items 
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APPENDIX E:  CLUSTER RESULTS FOR INCLUDING ON-GRADE  

AND OFF-GRADE ITEMS USING CONDITIONAL ITEM  

COVARIANCES (DETECT) 

 



 

 215 

 



 

 216 

 



 

 217 

 



 

 218 

 



 

 219 



 

 220 

APPENDIX F: NOHARM FACTOR LOADINGS FOR OFF GRADE ITEMS 

Table F.1 Grade 4: On- and Off-Grade Items  

Grade 3 and 4  Grade 4 and 5 

Item 

Number Factor 1 Factor 2  

Item 

Number 

Factor 

1 

Factor 

2 

1 0.572 0.008  1 0.571 -0.019 

2 0.465 0.057  2 0.530 -0.024 

3 0.189 0.055  3 0.178 0.016 

4 0.175 -0.267  4 0.219 -0.299 

5 -0.289 0.167  5 -0.320 0.209 

6 0.079 -0.298  6 0.084 -0.354 

7 0.233 0.774  7 0.310 0.721 

9 0.444 0.302  8 0.518 0.085 

10 -0.072 -0.139  9 0.413 0.267 

12 0.060 -0.269  10 -0.038 -0.160 

13 0.320 -0.166  11 0.335 -0.006 

14 0.257 -0.148  12 0.087 -0.275 

15 0.030 0.214  13 0.267 -0.155 

16 0.415 -0.132  14 0.231 -0.094 

17 0.411 0.001  15 0.012 0.234 

18 0.231 0.166  17 0.426 0.020 

19 0.849 0.079  18 0.250 0.164 

20 0.658 0.330  20 0.718 0.279 

21 0.827 0.502  21 0.841 0.436 

22 0.205 0.075  22 0.168 0.140 

23 -0.075 -0.036  23 -0.102 -0.024 

24 0.052 0.147  24 0.059 0.183 

25 0.515 -0.049  25 0.466 -0.046 

26 0.549 0.168  26 0.548 0.173 

27 -0.036 0.181  27 -0.010 0.229 

28 0.581 -0.028  28 0.541 -0.023 

29 0.369 -0.133  30 -0.147 -0.322 

30 -0.101 -0.400     
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Table F.2 Grade 5: On- and Off- Grade Items  

G4 and 5  G5 and 6 

Item 

Number Factor 1 Factor 2  

Item 

Number Factor 1 Factor 2 

1 0.230 0.140  1 0.221 0.135 

2 0.423 0.198  2 0.426 0.270 

3 0.117 0.333  3 0.352 0.086 

4 0.192 0.140  4 0.156 0.183 

5 0.434 0.168  5 0.292 0.334 

6 0.037 0.591  7 0.340 0.248 

7 0.140 0.537  8 0.377 0.103 

8 0.119 0.391  10 0.438 0.125 

9 0.217 0.391  11 0.331 0.436 

10 0.049 0.541  12 0.241 0.488 

11 0.322 0.481  14 0.162 0.563 

12 0.458 0.292  15 0.225 0.019 

13 0.193 0.430  16 0.567 0.138 

14 0.520 0.218  17 0.278 0.457 

17 0.382 0.356  18 0.256 0.049 

18 0.101 0.187  19 0.442 0.315 

19 0.423 0.271  20 0.269 0.346 

20 0.382 0.190  21 0.453 0.071 

21 0.173 0.281  22 0.259 0.276 

22 0.293 0.215  24 0.088 0.561 

23 0.479 0.199  25 -0.040 0.320 

24 0.469 0.206  26 0.294 0.352 

25 0.401 -0.142  27 0.474 0.280 

26 0.355 0.295  28 0.409 0.317 

27 0.293 0.469  29 0.212 0.433 

28 0.324 0.409  30 0.073 0.616 

29 0.429 0.223     

30 0.639 0.036     
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Table F.3 Grade 6: On- and Off- Grade Items  

G5 and 6  G6 and 7 

Item 

Number Factor 1 Factor 2  

Item 

Number Factor 1 Factor 2 

1 0.291 -0.045  1 0.294 -0.019 

2 0.114 0.384  2 0.109 0.370 

3 0.253 0.023  3 0.329 0.002 

4 0.286 0.364  4 0.246 0.375 

5 -0.032 0.754  5 -0.024 0.735 

6 0.270 0.361  6 0.346 0.337 

7 0.360 0.404  8 0.344 0.268 

8 0.378 0.279  10 -0.054 0.613 

9 0.230 0.751  11 0.230 0.488 

10 0.014 0.597  12 0.442 0.082 

11 0.263 0.525  13 0.162 0.135 

12 0.524 0.045  14 -0.014 0.213 

13 0.157 0.140  15 0.165 0.605 

14 -0.084 0.227  16 0.092 0.442 

15 0.180 0.584  17 0.159 -0.002 

16 0.084 0.449  19 0.143 0.451 

18 0.010 0.263  20 0.033 0.415 

19 0.179 0.463  21 0.380 0.369 

20 0.117 0.389  22 0.434 0.216 

22 0.421 0.200  23 0.415 0.380 

23 0.427 0.349  24 0.317 0.453 

24 0.301 0.444  25 0.091 0.237 

25 0.131 0.218  26 0.445 0.005 

26 0.395 -0.009  27 0.601 0.061 

27 0.594 0.056  28 -0.009 0.176 

28 0.003 0.125  30 0.079 0.470 

29 0.645 0.319     

30 0.143 0.441     
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Table F.4 Grade 7: On- and Off-Grade Items  

G6 and 7  G7 and 8 

Item 

Number Factor 1 Factor 2  

Item 

Number Factor 1 Factor 2 

1 0.302 0.266  1 0.447 0.076 

2 -0.036 0.164  2 0.155 -0.103 

3 -0.117 0.326  3 0.452 -0.410 

4 0.478 0.039  4 0.417 0.293 

5 0.529 0.040  5 0.378 0.398 

7 0.582 0.108  6 0.686 0.089 

8 0.083 0.267  7 0.458 0.418 

9 0.614 -0.019  9 0.411 0.405 

10 0.744 0.127  10 0.297 0.773 

11 0.169 0.170  11 0.351 -0.037 

13 0.141 0.249  12 -0.027 0.082 

14 0.678 -0.175  13 0.194 0.108 

15 -0.020 0.051  15 0.094 -0.088 

16 -0.391 0.335  16 0.101 -0.417 

17 0.144 0.102  17 0.034 0.154 

18 0.369 0.160  18 0.402 0.152 

19 0.468 0.271  19 0.459 0.303 

20 0.506 -0.134  20 0.151 0.464 

21 0.325 0.206  21 0.329 0.211 

22 0.470 0.081  22 0.242 0.437 

23 0.240 0.612  23 0.361 0.149 

24 0.416 0.283  24 0.228 0.406 

25 -0.288 0.109  25 -0.058 -0.264 

26 0.151 0.561  27 0.255 0.035 

27 0.090 0.403  29 0.336 0.449 

28 0.428 0.072  30 -0.008 -0.022 

29 0.516 0.297     

30 0.003 0.018     
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Table F.5 Grade 8: On- and Off- Grade Items  

G7 and 8  G8 and 9 

Item 

Number Factor 1 Factor 2  

Item 

Number Factor 1 Factor 2 

1 0.489 0.133  1 0.386 0.376 

2 0.479 0.209  2 0.106 0.565 

3 0.553 0.121  3 0.098 0.603 

4 0.313 0.671  4 0.431 0.363 

5 0.485 0.404  6 0.513 -0.254 

7 0.027 0.496  7 0.310 0.072 

8 0.530 0.107  8 0.126 0.559 

9 0.375 0.251  10 0.358 0.316 

10 0.491 0.115  11 0.311 0.271 

11 0.330 0.221  12 0.581 0.343 

12 0.465 0.391  13 0.112 0.704 

13 0.729 0.100  14 0.223 0.207 

14 0.292 0.107  15 0.308 0.400 

15 0.518 0.121  16 0.031 -0.159 

16 -0.204 0.134  17 0.167 0.024 

17 0.182 -0.194  18 0.453 0.043 

18 0.036 0.659  20 0.568 0.172 

19 0.741 0.135  21 0.303 0.183 

20 0.505 0.087  22 0.264 0.370 

21 0.277 0.118  24 0.138 -0.089 

22 0.449 0.023  25 0.375 0.015 

23 0.403 0.093  26 0.303 0.380 

24 0.050 -0.001  27 0.116 0.593 

25 0.111 0.300  28 0.374 0.005 

27 0.513 0.208  29 0.198 -0.470 

28 0.183 0.110  30 0.264 0.203 

29 -0.423 0.188     

30 0.303 0.005     
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APPENDIX G: PRINCIPAL COMPONENTS (STANDARDIZED 

RESIDUAL) FACTOR PLOTS OF ON- AND OFF-GRADE ITEMS 
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Figure G.1. Grade 4: Grade 3 and 4 Items  
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(c) Third Factor 

 

Figure G.2.  Grade 4: Grade 4 and 5 Items 
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(c) Third Factor 

 

Figure G.3.  Grade 5: Grade 4 and 5 Items 
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Note: Off-grade items are designated with a � symbol. 
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(c) Third Factor 

 

Figure G.4.  Grade 5: Grade 5 and 6 Items 
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Note: Off-grade items are designated with a � symbol. 

(a) First Factor           (b) Second Factor 
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  (c) Third Factor           (d) Fourth Factor 

 

Figure G.5.  Grade 6: Grade 5 and 6 Items 
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Note: Off-grade items are designated with a � symbol. 

(a) First Factor           (b) Second Factor 
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(c) Third Factor 

 

Figure G.6. Grade 6: Grade 6 and 7 Items 
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Note: Off-grade items are designated with a � symbol. 

(a) First Factor           (b) Second Factor 
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  (c) Third Factor           (d) Fourth Factor 

 

Figure G.7. Grade 7: Grade 6 and 7 Items 
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Note: Off-grade items are designated with a � symbol. 

(a) First Factor           (b) Second Factor 
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(c) Third Factor 

 

Figure G.8.  Grade 7: Grade 7 and 8 Items 
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Note: Off-grade items are designated with a � symbol. 

(a) First Factor           (b) Second Factor 
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(c) Third Factor 

 

Figure G.9.  Grade 8: Grade 7 and 8 Items 
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Note: Off-grade items are designated with a � symbol. 

(a) First Factor           (b) Second Factor 
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(c) Third Factor 

Figure G.10.  Grade 8: Grade 8 and 9 Items 
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APPENDIX H: COMPARISON OF EXPLORATORY RESULTS OF ON-

GRADE ITEMS BY SOFTWARE PROGRAM 
 

Table H.1 Comparison of Exploratory Results from Grade 3 On-Grade Items by Software 

Program 

Software 

Program Results 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

DETECT 1, 2, 3, 9, 10, 

14, 15, 17, 18, 

19, 20, 26 

4, 7, 8, 21, 

22, 24, 25 6, 16 11, 23, 30 12, 28 

Factor 1 Factor 2 Factor 3   

NOHARM 

(3 Factors) 
1, 2, 3, 4, 6, 9, 

10, 14, 15, 17, 

18, 19, 20 

4, 8, 11, 12, 

16, 22, 23, 

24, 30 

7, 21, 25, 

26, 28 
  

Factor 1 Factor 2    

NOHARM 

(2 Factors) 

1, 2, 3, 6, 9, 

10, 11, 12, 14, 

15, 16, 17, 18, 

19, 20, 26, 30 

4, 7, 8, 21, 

22, 23, 24, 

25, 28 
   

AT Subtest     

DIMTEST 7, 8, 21, 24, 

25, 26, 28     
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Table H.2 Comparison of Exploratory Results from Grade 4 On-Grade Items by Software 

Program 

 

Software 

Program 
Results 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

DETECT 
1, 2, 7, 9, 15, 

20, 21, 24, 25, 

26, 28 

3, 4, 6, 10 
5, 17, 18, 

22, 23, 27 

12, 13, 14,  

30 
 

Factor 1 Factor 2 Factor 3   

NOHARM 

(3 Factors) 
1, 2, 3, 5, 9, 

13, 14, 17, 20, 

21, 25, 26, 28 

4, 6, 7, 12, 

15, 22, 24, 

30 

10, 18, 23, 

27 
 

 

Factor 1 Factor 2    

NOHARM 

(2 Factors) 

1, 2, 3, 5, 9, 

13, 14, 17, 18, 

20, 21, 23, 25, 

26, 28 

4, 6, 7, 10, 

12, 15, 22, 

24, 27, 30 

  

 

AT Subtest     
DIMTEST 3, 4, 6, 10, 12, 

14, 30     
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Table H.3 Comparison of Exploratory Results from Grade 5 On-Grade Items by Software 

Program 

 

Software 

Program 
Results 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

DETECT 
1, 2, 3, 6, 19, 

26, 27, 28 4, 8, 10, 20 5, 18, 21 

11, 12, 14, 

17, 24, 25, 

29, 30 22 

Factor 1     

NOHARM 

1, 2, 3, 4, 5, 7, 

8, 10, 11, 12, 

14, 17, 18, 19, 

20, 21, 22, 24, 

25, 26, 27, 28, 

29, 30     

AT Subtest     
DIMTEST 1, 2, 3, 7, 19, 

26, 27, 28     
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Table H.4 Comparison of Exploratory Results from Grade 6 On-Grade Items by Software 

Program 

 

Software 

Program 
Results 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

DETECT 
1, 13 2, 8, 19, 26 

3, 6, 12, 22, 

23, 27 

5, 10, 11, 

14, 15, 16, 

20, 25, 30 

4, 24, 28 

Factor 1 Factor 2 Factor 3   

NOHARM 

(3 Factors) 
5, 10, 11, 14, 

15, 16, 20, 24, 

25, 28, 30 

1, 3, 6, 8, 12, 

13, 22, 23, 

26, 27 

2, 4, 8 ,9   

Factor 1 Factor 2    

NOHARM 

(2 Factors) 

2, 4, 5, 6, 10, 

11, 14, 15, 16, 

19, 20, 23, 24, 

25, 28, 30 

1, 3, 8, 12, 

13, 22, 26, 

27 

   

AT Subtest     

DIMTEST 2, 4, 6, 8, 19, 

22, 23, 24, 28 
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Table H.5 Comparison of Exploratory Results from Grade 7 On-Grade Items by Software 

Program 

 

Software 

Program 
Results 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 

DETECT 
1,  4,  5,  7,  9, 

10, 19, 20, 21,  

22,  24,  29 

2, 3, 11, 15, 

16, 23,  25,  

27 

13,  30 15, 18 

Factor 1 Factor 2 Factor 3 Factor 4 

NOHARM 11, 13, 17, 21, 

23, 24, 29, 30 

1, 4, 5, 9, 18, 

19, 25 

3, 7, 10, 20, 

22 
2, 15, 16, 27 

AT Subtest    

DIMTEST 3, 11, 15, 16, 

25 
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APPENDIX I: WINSTEPS RESIDUAL PLOTS  

OF ON-GRADE ITEMS BY P-VALUES 
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     (c) Third Factor 

 

Figure I.1. Grade 4 WINSTEPS Residual Plots of On-Grade Items By P-Values 
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     (c) Third Factor 

 

Figure I.2.  Grade 5 WINSTEPS Residual Plots of On-Grade Items by P-Values 
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     (c) Third Factor 

 

Figure I. 3.  Grade 6 WINSTEPS Residual Plots of On-Grade Items by P-Values 
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     (c) Third Factor 

 

Figure I.4.  Grade 7 WINSTEPS Residual Plots of On-Grade Items by P-Values 
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     (c) Third Factor 

 

Figure I.5.  Grade 8 WINSTEPS Residual Plots of On-Grade Items by P-Values 
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APPENDIX J: P-VALUES FOR DETECT CLUSTERS 

 
Table J.1 DETECT Cluster P-Values for Grade 4 

Item P-value  Item P-value  Item P-value  Item P-value 

Cluster 

1   

Cluster 

2   

Cluster 

3   

Cluster 

4  

1 0.79  5 0.22  3 0.25  12 0.53 

2 0.63  17 0.22  4 0.21  13 0.59 

7 0.86  18 0.45  6 0.34  14 0.57 

8 0.86  22 0.21  10 0.19  30 0.12 

13 0.59  23 0.15  Mean: 0.25  Mean: 0.45 

16 0.53  27 0.24       

17 0.22  Mean: 0.25       

20 0.81          

21 0.92          

22 0.21          

24 0.23          

Mean: 0.60          

 

Table J.2 DETECT Cluster P-Values for Grade 5 

Item 

P-

value  Item 

P-

value  Item 

P-

value  Item 

P-

value  Item 

P-

value 

Cluster 1  Cluster 2  Cluster 3  Cluster 4  Cluster 5 

28 0.74  11 0.71  10 0.89  21 0.43  22 0.34 

27 0.63  12 0.62  20 0.72  5 0.37   0.34 

19 0.56  29 0.53  8 0.56  18 0.18    

2 0.48  17 0.5  4 0.42  Mean: 0.33    

1 0.42  24 0.45  Mean: 0.65       

26 0.42  14 0.44          

6 0.37  30 0.4          

3 0.27  25 0.19          

Mean: 0.49  Mean: 0.48          
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Table J.3 DETECT Cluster P-Values for Grade 6 

Item 

P-

value  Item 

P-

value  Item 

P-

value  Item 

P-

value  Item 

P-

value 

Cluster 1  Cluster 2  Cluster 3  Cluster 4  Cluster 5 

5 0.86  3 0.58  2 0.51  4 0.61  1 0.22 

10 0.83  6 0.26  8 0.30  24 0.44  13 0.35 

11 0.80  12 0.48  19 0.58  28 0.26  

Mea

n: 0.29 

14 0.38  22 0.61  26 0.19  

Mea

n: 0.44    

15 0.60  23 0.66  

Mea

n: 0.40       

16 0.58  27 0.25          

20 0.67  

Mea

n: 0.47          

25 0.52             

30 0.63             

Mea

n: 0.65             

 

Table J.4 DETECT Cluster P-Values for Grade 7 

Item P-value  Item P-value  Item P-value  Item P-value 

Cluster 1  Cluster 2  Cluster 3  Cluster 4 

19 0.63  23 0.59  18 0.31  30 0.26 

5 0.59  3 0.46  15 0.23  13 0.24 

7 0.58  2 0.34  Mean: 0.27  Mean: 0.25 

10 0.58  16 0.32       

1 0.54  27 0.27       

29 0.49  15 0.23       

4 0.48  11 0.11       

9 0.47  25 0.10       

22 0.47  Mean: 0.30       

20 0.44          

24 0.43          

21 0.33          

Mean: 0.50          
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Table J.5 DETECT Cluster P-Values for Grade 8 

Item 

P-

value  Item 

P-

value  Item 

P-

value  Item 

P-

value  Item 

P-

value 

Cluster 1  Cluster 2  Cluster 3  Cluster 4  Cluster 5 

1 0.37  4 0.59  11 0.29  14 0.53  20 0.16 

2 0.68  7 0.48  21 0.22  17 0.27  

Mea

n: 0.16 

3 0.65  12 0.24  25 0.31  20 0.16    

8 0.63  16 0.18  28 0.14  30 0.31    

10 0.25  18 0.6  

Mea

n: 0.24  

Mea

n: 0.32    

13 0.77  29 0.12          

15 0.44  

Mea

n: 0.37          

22 0.34             

27 0.64             

Mea

n: 0.53             
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APPENDIX K: NOHARM FACTOR LOADINGS AND P-VALUES  

FOR ON-GRADE ITEMS 

 
Table K.1 Grade 4 NOHARM Two Factor Solution 

First Factor  Second Factor 

Item Factor Loading  

P-

value  Item Factor Loading  P-value 

21 0.855 0.92  7 0.724 0.86 

20 0.736 0.81  15 0.230 0.53 

9 0.451 0.80  27 0.229 0.24 

1 0.599 0.79  24 0.169 0.23 

26 0.524 0.71  22 0.142 0.21 

25 0.451 0.65  10 -0.152 0.19 

2 0.523 0.63  12 -0.274 0.53 

13 0.324 0.59  4 -0.288 0.21 

14 0.209 0.57  30 -0.321 0.12 

28 0.560 0.55  6 -0.367 0.34 

18 0.215 0.45   Mean p-value 0.35 

3 0.178 0.25     

17 0.431 0.22     

5 -0.270 0.22     

23 -0.096 0.15     

 Mean p-value 0.55     
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Table K.2 Grade 4 NOHARM Three Factor Solutions 

First Factor  Second Factor  Third Factor 

Ite

m 

Factor 

Loading  P-value  Item 

Factor 

Loading  P-value  

Ite

m 

Factor 

Loading  P-value 

21 0.817 0.92  7 0.671 0.86  18 0.237 0.45 

20 0.692 0.81  15 0.263 0.53  27 0.300 0.24 

9 0.448 0.80  12 -0.310 0.53  10 -0.244 0.19 

1 0.595 0.79  6 -0.282 0.34  23 0.128 0.15 

26 0.484 0.71  24 0.188 0.23  Mean p-value: 0.26 

25 0.462 0.65  22 0.136 0.21     

2 0.513 0.63  4 -0.246 0.21     

13 0.315 0.59  30 -0.300 0.12     

14 0.209 0.57  Mean p-value: 0.38     

28 0.577 0.55         

3 0.196 0.25         

5 -0.323 0.22         

17 0.355 0.22         

Mean p-value: 0.59         
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Table K.3 Grade 5 NOHARM One Factor Solution 

Factor 

Item Factor Loading  P-value 

1 0.258 0.42 

2 0.472 0.48 

3 0.297 0.27 

4 0.239 0.42 

5 0.443 0.37 

7 0.424 0.57 

8 0.313 0.56 

10 0.364 0.89 

11 0.548 0.71 

12 0.534 0.62 

14 0.524 0.44 

17 0.524 0.50 

18 0.184 0.18 

19 0.517 0.56 

20 0.435 0.72 

21 0.320 0.43 

22 0.384 0.34 

24 0.486 0.45 

25 0.211 0.19 

26 0.469 0.42 

27 0.520 0.63 

28 0.506 0.74 

29 0.468 0.53 

30 0.516 0.40 
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Table K.4 Grade 6 NOHARM Two Factor Solution 

First Factor  Second Factor 

Item Factor Loading  P-value  Item Factor Loading  P-value 

5 0.716 0.86  22 0.376 0.61 

10 0.600 0.83  3 0.373 0.58 

11 0.496 0.80  12 0.455 0.48 

20 0.419 0.67  13 0.194 0.35 

23 0.401 0.66  8 0.339 0.30 

30 0.474 0.63  27 0.565 0.25 

4 0.395 0.61  1 0.329 0.22 

15 0.620 0.60  26 0.433 0.19 

16 0.440 0.58  Mean p-value: 0.37 

19 0.456 0.58     

25 0.232 0.52     

2 0.406 0.51     

24 0.478 0.44     

14 0.184 0.38     

6 0.370 0.26     

28 0.185 0.26     

Mean p-value: 0.57     

 



 

 252 

Table K.5 Grade 6 NOHARM Three Factor Solution 

First Factor  Second Factor 
 

Third Factor 

Ite

m 

Factor 

Loading  P-value  Item 

Factor 

Loading  P-value  Item 

Factor 

Loading  P-value 

5 0.613 0.86  23 0.383 0.66  4 0.309 0.61 

10 0.688 0.83  22 0.381 0.61  19 0.437 0.58 

11 0.502 0.80  3 0.379 0.58  2 0.833 0.51 

20 0.379 0.67  12 0.483 0.48  8 0.333 0.30 

30 0.487 0.63  13 0.203 0.35  Mean p-value: 0.50 

15 0.484 0.60  8 0.333 0.30     

16 0.491 0.58  6 0.297 0.26     

25 0.206 0.52  27 0.569 0.25     

24 0.383 0.44  1 0.333 0.22     

14 0.289 0.38  26 0.405 0.19     

28 0.182 0.26  Mean p-value: 0.39     

Mean p-value: 0.60         
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Table K.6 Grade 7 NOHARM Four Factor Solution 

First Factor  Second Factor  Third Factor 

Ite

m 

Factor 

Loading  P-value  

Ite

m 

Factor 

Loading  P-value  

Ite

m 

Factor 

Loading  P-value 

11 0.241 0.11  1 0.431 0.54  3 -0.319 0.46 

13 0.255 0.24  4 0.518 0.48  7 0.617 0.58 

17 0.275 0.37  5 0.447 0.59  10 0.608 0.58 

21 0.334 0.33  9 0.706 0.47  20 0.508 0.44 

23 0.540 0.59  18 0.374 0.31  22 0.477 0.47 

24 0.498 0.43  19 0.525 0.63  Mean p-value: 0.51 

29 0.387 0.49  25 -0.324 0.10     

30 0.149 0.26  Mean p-value: 0.45     

Mean p-value: 0.35      Fourth Factor 

        

Ite

m 

Factor 

Loading  P-value 

        2 0.193 0.34 

        15 0.140 0.23 

        16 0.516 0.32 

        27 0.298 0.27 

        Mean p-value: 0.29 
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Table K.7 Grade 8 NOHARM Five Factor Solution 

First Factor  Second Factor  Third Factor 

Ite

m 

Factor 

Loading  P-value  

Ite

m 

Factor 

Loading  P-value  

Ite

m 

Factor 

Loading  P-value 

1 0.556 0.37  13 0.619 0.77  14 0.318 0.53 

22 0.398 0.34  2 0.615 0.68  15 0.516 0.44 

30 0.358 0.31  3 0.542 0.65  16 -0.370 0.18 

11 0.418 0.29  27 0.562 0.64  Mean p-value: 0.38 

10 0.443 0.25  8 0.581 0.63     

12 0.736 0.24  29 -0.454 0.12     

21 0.316 0.22  Mean p-value: 0.58     

20 0.528 0.16         

Mean p-value: 0.27         

    Fourth Factor  Fifth Factor 

    

Ite

m 

Factor 

Loading  P-value  

Ite

m 

Factor 

Loading  P-value 

    18 0.579 0.60  25 0.552 0.31 

    4 0.630 0.59  24 0.338 0.28 

    7 0.584 0.48  28 0.506 0.14 

    17 -0.289 0.27  Mean p-value: 0.24 

    Mean p-value: 0.49     
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