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ABSTRACT  

Shehzad Zafar Sheikh: Defects in macrophage specific homeostatic pathways   in 

inflammatory bowel diseases 

                        “Under the direction of Dr. Scott E. Plevy” 

 

 Intestinal macrophages are specialized to carry out their functions in the local 

antigen- and microbiota-rich environment. They are refractory to the induction of pro-

inflammatory cytokines, yet still display potent phagocytic and bactericidal activity. These 

adaptations allow the intestinal macrophage to eradicate microbes that breach the intestinal 

epithelial barrier while maintaining local tissue homeostasis.  

The inflammatory bowel diseases, Crohn’s disease and ulcerative colitis, results from 

an inappropriately directed inflammatory response to the enteric microbiota in a genetically 

susceptible host. In contrast to the characteristic anti-inflammatory phenotypic and 

functional profile of normal intestinal macrophages, these macrophages react to luminal 

microbes and become potent producers of proinflammatory cytokines such as IL-12 family 

members. IL-12 and 23 are heterodimeric cytokines produced by macrophages and 

dendritic cells that are important bridges between innate and adaptive immunity.  

Although the molecular events that lead to the expression of IL-12 and Il-23 in 

macrophages through TLR signaling have been well defined, anti-inflammatory pathways 
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that lead to inhibition of these cytokines in macrophages have not been fully elucidated. 

We identify two important homeostatic pathways; IFN-γ and HO-1 that regulate enteric 

microbiota-induced production of IL-12 and 23 by macrophages. IFN-γ inhibits TLR 

induced IL-23 expression in macrophages, and these events prevent the initiation and 

progression of spontaneous IL-23-driven experimental colitis in IL-10 deficient (IL-10-/-) 

mice. Moreover, we demonstrate that enteric microbiota-induced heme-oxygenase 1 (HO-

1) is critical in the prevention of experimental colitis, through inhibition of IL-12 family 

members and augmentation of macrophage microbicidal pathways.  

In our first study we demonstrate that IFN-γ has anti-inflammatory properties in 

murine models of Th1/Th17 mediated experimental colitis through attenuation of TLR-

mediated IL-23 expression in macrophages. In the second series of experiments, using 

germ-free WT and colitis-prone IL-10-/- mice we show that intestinal HO-1 expression 

induced by the enteric microbiota is an important homeostatic pathway. We also identify 

signaling pathways (MyDD88, MAPK and Pi3K) essential for HO-1 induction in 

macrophages. Finally, in our third study, protective effects of the HO-1 pathway were 

determined in Th2-mediated chronic colonic inflammation in T cell receptor- alpha (TCRα) 

deficient (-/-) mice. TCRα-/- mice exposed to carbon monoxide (CO) or treated with a 

pharmacologic HO-1 inducer demonstrated significant amelioration of active colitis. We 

demonstrate that HO-1 regulates mucosal innate immune responses in the TCRα-/- mouse 

through IL-10 induction in colonic macrophages. 
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1.1. The Inflammatory bowel diseases 

 The inflammatory bowel diseases (IBD), Crohn’s disease (CD) and ulcerative coltitis 

(UC) are chronic inflammatory disorders of the gastrointestinal tract that are defined by 

clinical and pathological features. As many as 1.4 million persons in the United States and 

2.2 million persons in Europe suffer from these diseases. Although the incidence and 

prevalence of CD and UC are beginning to stabilize in high-incidence areas such as 

northern Europe and North America, they continue to rise in low-incidence areas such as 

southern Europe, Asia, and much of the developing world (1). Breakdown of immune 

tolerance, i.e. loss of attenuated innate and adaptive immune responses against the enteric-

microbiota, may initiate IBD in genetically susceptible individuals (2). The onset of IBD 

typically occurs in the second and third decades of life and a majority of affected individuals 

progress to relapsing and chronic disease (2). CD is characterized by aggregation of 

macrophages and T cells that frequently form non-caseating granulomas. Gastrointestinal 

involvement in CD is patchy and segmental, involving both the small bowel and colon, and 

inflammation typically transmural (ie, extending through all layers of the bowel wall). Key 

features of UC include diffuse superficial mucosal inflammation that extends proximally from 

the rectum to a varying degree but is confined to the colon. Histopathological features 

include the presence of a significant number of neutrophils within the lamina propria and the 

crypts, where they form micro-abscesses and depletion of goblet cell (2). Despite a continual 

evolution of therapy for IBD over the past decade and the development of new classes of 

immunologic interventions (anti-TNFs, anti-integrin monoclonal antibodies), toxicities and a 

lack of complete response associated with these therapeutic agents demonstrate an unmet 

need for identification of new potential targets for safer therapy.     
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 Intestinal inflammation in IBD results from an inappropriately directed inflammatory 

response to the enteric-microbiota in a genetically susceptible host. Genome wide 

association searches (GWAS) for IBD susceptibility loci have successfully identified genes 

that affect barrier function, innate and adaptive immune responses in the intestines. The 

genetic variants that confer Crohn’s disease risk highlight the importance of innate immunity 

include NOD2 (also designated CARD15 and IBD1) IBD5, IL23R and ATG16L1 (3). 

Interestingly, some genes associated with CD and UC  (IL23R) are also associated with 

other chronic inflammatory disorders (psoriasis, spondyloarthrpathies, autoimmune 

thyroiditis), suggesting that a subset of IBD patients share common immune response 

defects with these other conditions (3). Despite identification of these important genetic 

variants underlying mechanisms, functional and biological correlations that cause disease 

remain largely unexplored.  

 

1.2. The mucosal innate immune response 

 The innate immune system contributes to the functional integrity of the intestinal 

mucosa in health and disease through monitoring of luminal contents, especially the 

microbiota. Key participants in innate immune mediated defenses in the intestine are 

macrophages. Distinct classes of receptors i.e. Toll-like receptors (TLRs) recognize 

microbial molecular patterns and are central to the innate immune response (4). 11 human 

TLRs have been identified. TLRs are expressed in macrophages in addition to many other 

cell types, including the intestinal epithelium (4). Engagement of these bacterial receptors 

stimulate central signaling cascades that include nuclear factor-κB (NF-κB), 

AKT/phosphatidylinositol-3’-kinase (PI3K), and mitogen-activated protein kinase (MAPK) 

pathways (Figure 1) (5). These pathways are regulated through induction of inhibitory 
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molecules, including IκBα, IL-10, and transforming growth factor (TGF)-β (4).  Mutations in 

TLRs have been found to be associated with IBD suggesting that this innate immune 

detection system is key for regulating mucosal homeostasis (3).  

 In health, the vast majority of microbial molecular patterns recognized by TLRs in the 

intestine are not from pathogens but from the enteric-microbiota. TLR signaling in the 

intestine therefore acts as a double edge sword. TLR expression by intestinal epithelial cells 

(IECs) shows a polarized pattern.  For example, in the small intestine TLR3, TLR4 and TLR5 

expression is found predominantly on basolateral surfaces of villus enterocytes (6, 7). In the 

healthy colon, TLR3 and TLR5 are abundantly expressed, whereas TLR2 and TLR4 

expression is low(8). Apical TLR signaling in IECs has been shown to be important for 

epithelial cell proliferation, IgA production, maintenance of epithelial tight junctions, and 

antimicrobial peptide expression(7). Despite these beneficial effects on the intestinal 

epithelium, breaches of the epithelial barrier can trigger pro-inflammatory responses by 

engagement of basolateral TLRs as well as underlying lamina propria macrophages and 

DCs. This was demonstrated by using mice that lack specific TLRs or components of the 

TLR signaling pathway and subjecting them to acute chemical injury in order to disrupt the 

epithelial barrier. Dextran sodium sulfate (DSS) causes injury to colonic epithelial cells and 

allows access of luminal bacteria to the lamina propria. MyD88, TLR2 or TLR4 deficient 

mice are more susceptible to DSS-induced injury than wild type mice (9-11). This 

observation was confirmed using antibody neutralization of TLR4 or an LPS antagonist (12, 

13). DSS treated MyD88 and TLR4 deficient mice demonstrated marked decrease in 

epithelial cell proliferation an increased apoptosis (4, 14).   Therefore, under physiological 

conditions, bacteria that are unable to penetrate the epithelial barrier (non-pathogenic 

enteric-microbiota) engage apical TLRs and elicit a homeostatic, anti-inflammatory 

response. Pathogenic bacteria that are able to breach the barrier elicit a pro-inflammatory 
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response. However, IECs from patients with IBD express higher levels of TLR4 compared to 

IECs from healthy controls (8). Inflammatory cytokines like IFN-γ and TNF have been shown 

to induce transcription of TLR4 and its co-receptor MD2 (15, 16). Although cytokine-

mediated induction of TLRs may allow for their selective expression, a cytokine rich milieu 

and permeable epithelial barrier in IBD results in a constant engagement of upregualted 

TLRs both across the intestinal epithelial and lamina propria resulting in a vicious cycle of 

inflammation.    

 Unlike TLRs, NOD (nucleotide-binding oligomerization domain) 1 and NOD2 are 

intracellular microbial recognition molecules of the NLR (NOD-like receptor) family (17). Like 

the TLRs, these proteins are also implicated in the detection of bacterial products and 

regulate pro-inflammatory pathways in response to bacteria by inducing signaling pathways 

such as NF-кB and MAPKs. However, the NOD proteins act independently of the TLR 

cascade, but potently synergize with the latter to trigger innate immune responses to 

microbes (17). Most importantly, mutations in NOD2 have been shown to confer 

susceptibility to several chronic inflammatory disorders, including CD, Blau syndrome and 

early-onset sarcoidosis, underscoring the role of NOD2 in inflammatory homoeostasis (18, 

19).  

 The gastrointestinal innate immune system is in a perpetual state of 

hyporesponsiveness. Intestinal macrophages show attenuated proliferation and chemotactic 

activity in response to either microbial ligands or host cytokines/chemokines despite 

possessing the molecular mechanisms to elaborate strong phagocytic and bactericidal 

responses(20). However, in IBD, following an inflammatory signal, circulating monocytes 

migrate to the intestinal mucosa and these cells, unlike resident macrophages, express 
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TREM1, TLRs (TLR 2,4 and CD14) and are capable of a rapid response to potential luminal 

triggers e.g. microbiota and microbiota associated products  (21).  

 

1.3. The enteric-microbiota in health and disease. 

 The bacterial component of the enteric-microbiota represents diverse bacterial 

species, with the lowest total concentration of microbes found in the duodenum and steadily 

increasing until the peak density of 1011–1012 cfu/ml of luminal content in the colon (22, 23). 

Colonization of the gut with the microbiota occurs immediately after birth followed by a 

succession of populations until a stable, adult microbiota has been established. However, 

physiological and environmental conditions eventually determine bacterial density and 

diversity. Firmicutes and Bacteroidetes dominate the enteric-microbiota in mammals but the 

bacterial genera and species diversity is huge (24).  

 Mammals live in a homeostatic symbiosis with their enteric-microbiota. The host 

provides the microbiota with nutrients and a stable environment; whereas the microbiota 

helps shaping the host's enteric mucosa and provides nutritional contributions. Wild type 

mice treated with broad-spectrum antibiotics or antibodies to TLR4 become susceptible to 

DSS-induced injury akin to mice with TLR-deficiency, suggesting that the enteric-microbiota 

are required for optimal epithelial expression of genes involved in maintenance of  the 

mucosal barrier (10).  

 Recently, the enteric-microbiota has been implicated in human obesity, diabetes and 

cardiovascular diseases (25). When GF mice were conventionalized with a microbiota 

harvested from conventionally raised mice the body fat content increased 60% compared 

with GF animals. GF mice also had a higher metabolic rate, increased leptin levels and 
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increased insulin (26). Similarly, GF mice colonized with microbiota from a mouse with an 

obese phenotype (ob/ob) gained significantly more body fat than mice receiving microbiota 

from lean mice, suggesting a contributory effect of the microbiota composition on 

development of obesity (27). The obese microbiota (Bacteroidetes) is enriched for genes 

encoding enzymes that break down otherwise indigestible dietary polysaccharides and may 

have an increased capacity to harvest energy from the diet (27).  

 Escherichia coli (E.coli) were one of the first bacteria to be linked with IBD. 

Enterobacterial counts have been found to be up to four-fold higher in IBD patient tissues 

compared to controls, with increased numbers of E. coli belonging to the B2+D group, which 

is associated with increased pathogenic potential (28). CD patients with active disease have 

been observed to have increased numbers of fecal enterobacteria (28), while E. coli has 

been reported to account for between 50 to 100% of the bacteria in chronic lesions of the 

ileal mucosa (29). Thirty-six percent of Crohn’s patients with ileal involvement were shown to 

be colonized by adherent and invasive E. coli. The isolates were observed to be able to 

replicate in macrophages without causing cell death (30),and release large amounts of TNF.  

 However, the importance of the enteric-microbiota in IBD pathogenesis is supported 

by numerous lines of evidence from experimental models. IBD is not observed when colitis-

prone mouse strains are maintained GF, but emerges when mice are colonized with normal 

enteric bacterial constituents (31). Moreover, colitis can be induced in a susceptible murine 

strain with a single species of non-pathogenic bacteria, for example, Enterococcus faecalis 

in the IL-10-/- mouse (31). The enteric-microbiota has been shown to shape the 

development, distribution, activation level, differentiation status, and inflammatory profile of 

dendritic cells (DCs), macrophages, natural killer (NK) cells, B cells, CD4+ T cells, and CD8+ 

T cells in these susceptible murine strains of colitis (29, 32).  
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 Genetically engineered mice deficient in IL-10 (IL-10-/-) display an intestinal 

phenotype of diarrhea, rectal prolapse, and inflammation. Recent mechanistic studies in IL-

10-/- mice have associated uncontrolled IL-23 production by activated macrophages that 

drive CD4+ Th17 cells with the development of enterocolitis (33). No colitis is observed in 

mice lacking IL-10 and IL-23. However, mice deficient in both IL-12 and IL-10 developed 

colitis of similar severity to IL-10-/- mice. Recombinant IL-23 also exacerbated experimental 

colitis induced in RAG-/- mice by memory T cells (CD4+CD45RBlow) transferred from 

diseased IL-10-/- mice (33). Our studies employ this IL-23 driven model of colitis, the IL-10-/- 

mouse to demonstrate two important in vivo homeostatic pathways in the pathogenesis of 

colitis, IFN-γ and heme oxygenase-1 (HO-1).   

 

1.4. Classification of macrophages 

 Macrophages are primary responders to many endogenous and exogenous danger 

signals. Innate responses are rapid, initiated within minutes, and directed toward conserved 

patterns of carbohydrate and lipid structures on infectious agents (PAMPs) recognized by 

the germ line-encoded macrophage pattern recognition, TLRs (34). A common myeloid 

progenitor cell gives rise to monocytes which are released from the bone marrow into the 

bloodstream. These peripheral blood mononuclear cells (PBMCs) migrate to almost all the 

tissues in the body under a steady state or in response to inflammation. Innate and adaptive 

signals can then influence macrophage physiology, and these alterations allow 

macrophages to participate in homeostatic processes, such as tissue remodeling, wound 

healing, and host defense (35).  
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Macrophages have long been classified as M1 (high IL-12 and low IL-10 producing) 

macrophages and M2 macrophages (low IL-12 and high IL-10 producing). The M1 

designation is usually reserved for classically activated macrophages and the M2 

designation for alternatively activated macrophages (36). However, recent work has 

identified a wide spectrum of macrophage phenotypes. M1 or classically activated 

macrophages are produced during cell-mediated immune responses requiring both IFN-γ 

and TNF. However, this two-signal requirement can be bypassed by certain TLR agonists 

that induce both TNF and IFN-β (37). Classically activated macrophages form an integral 

component of host defense through production of pro-inflammatory cytokines like IL-1, IL-6, 

IL-12 and IL-23 (37). Additionally, these effectors are essential for eradication of intracellular 

microorganisms (20). Indeed, mice lacking IFN-γ expression are more susceptible to various 

bacterial, protozoan or viral infections, as are humans with genetic mutations in these 

signaling pathways (38). Although these classically activated macrophages are vital 

components of host defense their activation must be strictly controlled. These macrophages 

are key mediators of the pathology that occurs during several chronic inflammatory 

disorders, including rheumatoid arthritis and inflammatory bowel disease.  

The M2, or alternatively activated macrophages represent a wide array of 

macrophage phenotypes (36). Part of this spectrum includes macrophages with wound-

healing and regulatory properties (39). In response to injury, early increase in IL-4 rapidly 

converts resident macrophages into a population of cells programmed to promote wound 

healing through production of extracellular matrix (40). Th2 type adaptive immune 

responses can also lead to production of IL-4 and IL-13 (41). Despite decreased antigen 

presentation capacity and reduced pro-inflammatory cytokine secretion, these macrophages 

can secrete components of the extracellular matrix and primarily function to augment wound 

healing (41).   
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Similarly to M1 and wound healing macrophages, regulatory macrophages arise 

following innate or adaptive immune responses and have been shown to dampen the 

immune response and limit inflammation (39). Despite subtle differences between various 

regulatory macrophage subpopulations most require two stimuli to induce anti-inflammatory 

activity. The first signal (immune complexes, prostaglandins, and adenosine or apoptotic 

cells) generally has little or no stimulatory function on its own. However, when combined 

with a second stimulus, such as a TLR ligand, the two signals lead to generation of IL-10 

producing macrophages (42). Production of IL-10 and the ability to suppress IL-12 

production is a hallmark of most regulatory macrophages (43).  

 

1.5. Resident intestinal macrophages 

The local intestinal microenvironment substantially affects the functional and 

phenotypic differentiation of macrophages. The mucosa of the small and large intestine 

represents the largest reservoir of tissue macrophages in humans and mice (44) (45).  

Intestinal lamina propria macrophages are separated from the epithelial cells by the 

basement membrane. However, subepithelial macrophages may directly interact with 

intestinal epithelial cells by sending cellular extensions through pores in the basement 

membrane (46).  In contrast to their progenitor cells, the resident monocytes, intestinal 

macrophages do not serve as professional antigen-presenting cells (APC) due to their low 

cell surface expression of CD40, CD80, and CD86 (47). Intestinal macrophages are also 

deficient in several innate immune recognition mechanisms and activating receptors (TLR2, 

TLR4 and CD14) that make them refractory to LPS and other PAMPs (heat-killed S. aureus 

muramyl dipeptides), which are present abundantly in the intestinal microflora (48, 49). They 

also lack the Fc receptors for IgA (CD89) and for IgG (CD16, CD32, and CD64) and the 
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complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18). Similarly, most 

intestinal macrophages also lack the integrin α2β1 (LFA-1 and CD11a/CD18) (49, 50). 

Intestinal macrophages also mostly lack the triggering receptor expressed on myeloid cells-1 

(TREM-1), an efficient amplifier of acute and chronic inflammatory reactions that is generally 

expressed on most monocytes and macrophages of secondary lymphoid organs (22).  

Intestinal lamina propria macrophages under physiological conditions are generally 

not only refractory to the induction of proinflammatory cytokine production by PAMPs but 

also by cytokines (e.g., TNF, IFN-γ), or upon phagocytosis of necrotic cells (20). This is in 

sharp contrast to most other tissue macrophages and blood monocytes. Intestinal epithelial 

cells, subepithelial myofibroblasts, fibroblasts, lamina propria lymphocytes, and 

intraepithelial lymphocytes (IELs) are all able to produce soluble factors, particularly, TGF-β 

and IL-10, which may affect the phenotypic and functional properties of intestinal 

macrophages (51, 52).  

However, these adaptations made by intestinal macrophages do not impair the 

phagocytic activity which is exceptionally potent. Compared to circulating monocytes, 

intestinal macrophages are highly effective at killing phagocytosed microorganisms like S. 

typhimurium and E. coli (50). Phagocytosis of apoptotic cells by intestinal macrophages also 

induces secretion of immunosuppressive cytokines such as IL-10, whereas the secretion of 

proinflammatory cytokines such as TNF, IL-12, IL-6 and IL-1β is significantly reduced (53). 

Therefore, intestinal macrophages are globally downregulated for pro-inflammatory cytokine 

production, regardless of whether the stimulus is a soluble factor or a phagocytic event. 
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1.6. The intestinal macrophage in the IBDs 

In patients with active IBD, the numbers of macrophages are increased in the 

inflamed intestinal mucosa (2). Many of these macrophages display a different phenotypic 

and functional profile than under healthy conditions. Macrophages in the inflamed mucosa 

express relevant levels of T cell co-stimulatory molecules such as CD40, CD80, and CD86 

(47). Furthermore, subsets of intestinal macrophages express TLR2, TLR4, CD89 and 

TREM1 at the site of intestinal inflammation (20) (48). Similarly, a series of studies (18–22) 

have shown that a high proportion of the macrophages in the inflamed mucosa of patients 

with IBD express CD14. The absence of these receptors on intestinal macrophages has 

important functional implications. CD14 expressing macrophages (CD14+) infiltrating the 

mucosa in IBD produce larger amounts of IL-12, IL-23 and TNF-α compared with those in 

normal controls. These CD14+ macrophages produce IFN-γ that further triggers abnormal 

macrophage differentiation with an IL-23-hyperproducing phenotype. In these inflammatory 

conditions, the close proximity of subepithelial macrophages to the intestinal microbiota thus 

results in a constant, excessive activation of the mucosal innate immune system (54). 

CD14+ intestinal macrophages from CD patients respond vigorously to in vitro microbial 

stimulation with production of even more TNF, IL-12 and IL-23, compared with CD14- 

intestinal macrophages and PBMCs (55). CD14+ macrophages also express TREM1. 

TREM-1 triggers the synthesis and secretion of proinflammatory cytokines such as IL-1β, 

MCP-1, IL-6 and IL-8, and consequently local tissue destruction (21). Macrophages are also 

the main source of TNF during the pathogenesis of IBD.  The striking effects of this TNF-

targeted therapy may in IBD also be attributed to the cell-depleting effect of some of these 

therapies, including the removal of TNF membrane bound expressing 

monocytes/macrophages (56). The absence of CD14, the receptor for complexes of LPS 

and TLR4 is also consistent with the inability of intestinal macrophages to effectively perform 
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phagocytosis, a feature well suited to macrophages that reside in an environment rich in 

LPS.  Phagocytosis of bovine serum albumin (BSA) beads is potent in CD14 expressing 

macrophages, but not in CD14–/CD89– intestinal macrophages (50).  

An impaired ability to eradicate intracellular pathogens by macrophages in IBD may 

also be secondary to their inability to secrete proinflammatory cytokines in response to 

bacteria or specific TLR agonists. It has been provocatively speculated that despite normal 

levels and stability of cytokine messenger RNA, intracellular levels of TNF were abnormally 

low in CD macrophages. Coupled with reduced secretion, these findings indicate 

accelerated intracellular defects in genes notably those encoding proteins involved in vesicle 

trafficking may result in an abnormal proportion of cytokines being routed to lysosomes and 

degraded rather than being released through the normal secretory pathway (57).  

Other important features that characterize intestinal macrophages include CD80 

expression (23) and respiratory burst activity (24) present in macrophages in the inflamed 

mucosa of patients with CD. These studies highlight the distinct functional characteristics of 

intestinal resident macrophages in patients with IBD.  

Murine models of experimental colitis have also demonstrated the importance of 

appropriate macrophage regulation for maintaining local tissue homeostasis in the 

intestines. Selective disruption of Stat3 leads to impaired IL-10signaling in macrophages 

consequently leads to the development of colitis (58). Similarly, IL-10−/− mice spontaneously 

develop colitis as a consequence of the preferential macrophage differentiation into 

proinflammatory subsets that produce large amounts of IL-12 and IL-23 (59). The depletion 

of macrophages in these IL-10−/− mice prevents the development of colitis (54). The 

importance of intestinal macrophages in maintaining adaptive immune homeostasis was 

recently highlighted in studies showing that that IL-10 secreted from resident intestinal 
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macrophages acts in a paracrine manner on regulatory T cell (Treg) cells to maintain Foxp3 

expression (60). These Foxp3 expressing Treg cells have been shown to suppress the 

activity of Th1 and Th17 cells in inflamed tissues (2). The notion that resident macrophages 

in patients with IBD display distinct phenotypic characteristics compared with resident 

intestinal macrophages under physiological conditions was further supported by studies 

demonstrating mutations in genes encoding the IL10R subunit proteins IIL10RA and 

IL10RB) in patients with early-onset enterocolitis (61). Consistent with this observation was 

the increased secretion of TNF, MIP1α, MIP1β, MCP1 and RANTES in PBMCs from 

patients who were deficient in IL10R subunit proteins suggesting exaggerated 

proinflammatory immune responses in the intestine (61). 

 

1.7. Adaptive mucosal immune responses in the IBDs. 

Recent GWAS in patients with the IBDs reveal an important role for mucosal innate 

immune responses to the enteric-microbiota. Ultimately the innate immune response 

activates specific effector T cell populations that perpetuate chronic intestinal inflammation. 

Effector CD4+T cells have been subdivided into functional subsets, Th1, Th2, and Th17 

based on the cytokines they secrete.  Each of these T cell subsets can be detected in CD 

and UC and may play pathogenic or even protective roles. Cytokines derived from 

macrophages and DCs initiate the transcriptional programs that specify effector T cell 

differentiation. These transcription factors and secreted cytokines are crucial for lineage self-

preservation through positive feedback and cross-regulatory inhibition of other lineages. 

Until recently it was widely believed that mature CD4+ effector T cells are inherently stable 

and non-plastic. However, emerging evidence now demonstrates T regulatory (see below)-

to-Th17 and Th17-to-Th1 transitions.  
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Th1 cells develop in response to antigenic engagement of the T cell receptor through 

sequential activation of signal transducer of activated T cells (STAT)-1 and STAT4 by IFN-γ 

and IL-12 (62). This promotes induction of T-box transcription factor expressed in T cells (T-

bet) and IFN-γ, its signature transcription factor and cytokine, respectively. In the intestine 

IL-27, another member of the IL-12 cytokine family can also induce expression of T-bet in a 

STAT1-dependent manner (63, 64), and regulate Th1 differentiation. Human CD and most 

experimental models of colitis were originally attributed to Th1-mediated pathogenesis. For 

example, studies in the CD45RBhi T cell transfer and IL-10-/- mice revealed that colitis was 

ameliorated with the administration of IFN-γ blocking antibody (65, 66).  Similarly, adoptive 

transfer of T cells deficient in T-bet failed to induce colitis. However, showing that 

pathogenesis in the adoptive transfer model of colitis isn’t strictly Th1-mediated, the transfer 

of IFN-γ-/- CD4+CD45RBhi T cells induces colitis (67). Consistent with this observation, 

chronic colitis induced by the intestinal commensal organism Helicobacter hepaticus, also 

developed in mice deficient for both IL-10 and IFN-γ, suggesting IFN-γ independent effector 

mechanisms (68).  Human CD was initially postulated to result from an exaggerated Th1 

response, based on elevated frequencies of IFN-γ and T-bet-expressing CD4+ T cells in 

inflamed intestines (67, 69, 70).  

Th2 cells develop primarily in response to helminthes and allergens. Th2 cells 

differentiate from naïve T cells under the influence of IL-4, which activates STAT6 and 

induces upregulation of the Th2 lineage-specifying transcription factor GATA3 (71). IL-4, IL-

5 and IL-13 are hallmark cytokines produced by Th2 cells (72). The oxazolone challenge 

model of experimental colitis is characterized by IL-4-, IL-5-, and IL-13-secreting CD4+ T 

cells in the inflamed colon. Importantly, administration of anti- IL-4 suppresses disease 

activity (73). In a chronic variant of the oxazalone model, intestinal inflammation is also 

dependent on NK T cell produced IL-13, especially in late stages of inflammation. Th2 cell 
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responses are rapidly induced in the intestines of mice infected with intestinal helminithic 

parasites. Parasite infection results in the activation of intestinal epithelial cells (IECs) to 

produce thymic stromal lymphopoietin (TSLP). TSLP-activated DCs have been shown to 

drive Th2 responses as well as negatively regulate IL-12 and IL-23 dependent responses in 

the intestine (74). Similarly, constitutively expressed IL-25 in the intestine heightens 

expression of Th2 effector cytokines IL-5 and IL-13, both major players in driving chronic 

colonic inflammation in UC. IL-25 has also been shown to inhibit IL-23 dependent mucosal 

immune responses in the colon (75). Finally, CD1d-restricted natural killer T (NKT) cells that 

produce IL-13 have also been shown to be important in the induction and amplification of 

Th2-cytokine-driven intestinal inflammation in ulcerative colitis (76). 

In contrast to CD, early descriptive studies in human UC patients showed the 

presence of Th2 cyokines in the colon (77). However, human T cell biology is complex, and 

when characterizing intestinal T cell responses in heterogeneous disease populations, the 

Th1/Th2 classification that may be relevant to mice is overly simplistic. Indeed, Th17 

populations have now been identified in inflamed mucosa from CD and UC patients. 

Th17 cells are specific effectors that play a role in host defense against extracellular 

bacteria and fungi. Their differentiation is induced by combined actions of TGF-β and IL-6 

that results in the sequential recruitment of STAT3 and retinoic acid receptor-related orphan 

nuclear receptor (ROR)γt (78). Additionally, cooperation with other transcription factors like 

IRF-4, aryl hydrocarbon receptor, AP-1, and RORα also affects Th17 lineage differentiation 

(79) (80, 81) (82) (83). IL-17A and IL-17F are signature Th17 cell cytokines that promote 

neutrophil development and recruitment, and enhance epithelial barrier function.  IL-22, 

another Th17 cytokine, is important in intestinal epithelial barrier function (84). IL-22 also 

acts as a growth factor for Th17 cells in an autocrine manner. Developing Th17 cells acquire 



17 

 

responsiveness to IL-23 through upregulation of the inducible component of the IL-23 

receptor (IL-23R) (85). IL-23 is critical for late developmental functions of Th17 cells, 

essential for their immune-effector activity and pathogenicity (86) (87). Adoptive transfer of 

intestinal bacteria-reactive Th17 cells into RAG-/- recipient mice induces more severe colitis 

than comparable transfers of Th1 cells (32). Treatment with an IL-23 monoclonal antibody 

inhibits colitis development when administered at the time of transfer and also suppresses 

ongoing disease. This is associated with the depletion of the transferred Th17 effectors (88). 

Furthermore, deletion of Il23a, but, not Il12a inhibits spontaneous colitis in IL-10-/- mice 

implicating IL-23, and not IL-12, in the spontaneous colitis that develops in this model (33).  

Similarly, treatment with IL-23 accelerates disease onset in RAG-/- recipients of memory T 

cells harvested from IL-10-/- mice (33). Although Th1 effector pathways cannot be completely 

disregarded in CD, emerging studies with the discovery of Th17 cells have implicated a 

dominant role for Th17 in CD and UC pathogenesis. 

Interestingly, a sizeable fraction of CD4+ T cells recovered from mucosal 

compartments of colitic mice following CD45RBhi T cell transfer and IL-10-/- mice reveal a 

distinct subset of  ‘‘double producers’’ that express both IL-17 and IFN-γ (89) (33). 

Collectively, these results implicate IL-23-dependent Th17 effector mechanisms in the 

development of chronic intestinal inflammation. IL-17A producing lymphocytes are readily 

detectable in both CD and UC lesions, the frequencies are higher in CD and correlate with 

disease activity.  Ongoing studies will further elucidate the contribution of IL-17 in the human 

IBDs. 

Regulatory T cells (Tregs) have also emerged as important mediators of intestinal 

homeostasis (90). In addition to thymic-derived Treg cells, induced Treg cells may be 

generated in the periphery from activated effector memory CD41 CD25+ cells (91).  TGF-β 
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promotes the development of Foxp3+ Tregs that are associated with suppression of the 

inflammatory response (92). In contrast, in the presence of proinflammatory cytokines such 

as IL-6, TGF-β induces the differentiation of Th17 cells. The complex interactions between 

IL-17 and TGF-β influence intestinal homeostasis and may affect initiation, persistence and 

relapses in human IBD. In the lamina propria, Treg cells may have evolved to suppress 

immune responses to enteric microbiota. CD8+ regulatory cells (CD81+, CD282+) have 

been described in IBD (93). These cells are reduced or absent in lamina propria of patients 

with IBD. B cells that are produce IL-10 and are CD1d restricted also have a regulatory role 

in intestinal inflammation, on the basis of observations in a number of murine models (94). 

Unlike CD4+ Treg cells, these cells are seen only in states of inflammation and suppress 

progression rather than initiation of murine colitis.  

A unique and previously unappreciated feature of CD4+ T cell biology has recently 

been described: Plasticity among CD4+ effector and regulatory T cell lineages. CD4+ T cells 

expressing both Foxp3 and RORγt have been detected in the normal intestines of both mice 

and humans, residing alongside subsets that express one or the other of these factors (95) 

(96) (97). Additionally, CD4+ T cells isolated from the intestinal mucosa of CD patients 

demonstrate distinct subsets of Th1 and Th17 cells, as well as IL-17 and IFN-γ double-

expressing CD4+ T cells (98). Importantly, a feature common to mice and humans is that 

when Th17 precursors are adoptively transferred into immunodeficient recipients a subset of 

these Th17 cells transitions to Th1-type cells. However, memory Th17 cells isolated from the 

mesenteric lymph nodes of WT mice are resistant to transition to Th1 cells (99), implying 

that under certain conditions, the Th17 program becomes fixed. Mechanisms involved in 

programming CD4+ T cell plasticity remain poorly understood.  

. 
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1.8. IL-12 family members and the IBDs 

Of the pro-inflammatory genes that are induced in macrophages through interactions 

with microbes, IL-12 family members play a central role in intestinal inflammation in IBD 

(100). IL-12 and 23 are heterodimeric cytokines produced by macrophages and DCs. They 

share a common p40 subunit covalently linked to distinct p35 and p19 chains, respectively 

(101). The discovery of the IL-12 family member IL-23 has lead to a major paradigm shift in 

our understanding of inflammatory immune responses. In patients with IBD, there is 

increased expression of IL-23 in inflamed intestinal mucosa (102, 103). IL-23 plays the 

major pathogenic role in chronic intestinal inflammation as spontaneous colitis does not 

develop in IL-10-/- mice crossed with IL-23 p19-/- mice(33). Both IL-12 and IL-23 are involved 

in inducing and maintaining a Th1 and Th17 responses, respectively (104, 105). 

Inappropriate regulation of IL-23 may lead to immune-mediated inflammatory disorders such 

as IBD and multiple sclerosis(100, 106). A variety of rodents that harbor mutations in 

immune response genes develop IBD. Most of the models manifest Th1/Th17-mediated 

intestinal inflammation. IL-10 deficient mice develop chronic enterocolitis that is dependent 

on the presence of the enteric-microbiota(107). Direct evidence for the role of IL-12 and IL-

23 in chronic mucosal inflammation has emerged from this and other murine models where 

treatment with anti-IL-12 p40 and anti-IL-23 antibodies results in histopathologic 

improvement (108, 109). Th1/Th17-mediated mouse models of chronic intestinal 

inflammation share several important immunologic features with the human IBD. Increased 

production of Th1/Th17 cytokines and IL-12 and IL-23 has been detected in lamina propria 

cells isolated from CD patients (110, 111). Thus, therapies that inhibit mucosal Th1/Th17 

responses and IL-23 may be clinically effective (112, 113), and are being studied in human 

CD.   
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1.9. IL-23 in Th17 Immune responses 

Early work emphasized redundant functions for IL-12 and IL-23.  For example, IL-12 

p40-/- (Il12b-/-) mice which lack biologically active IL-12 and IL-23, and IL-12 p35-/- (Il12a-/-) 

mice which only lack IL-12, both demonstrate aberrant immune responses to pathogens. 

However, significant phenotypic differences between Il12b-/- and Il12a-/- mice ultimately led 

to the identification and the description of non-redundant functions for IL-23. Importantly, 

Il12a-/- mice developed increased severity of inflammatory diseases such as experimental 

allergic encephalomyelitis (EAE) and collagen induced arthritis (CIA), while Il12b-/- mice 

were protected from inflammation (101).  Similar to Il12b-/- mice, Il23a-/- mice were resistant 

to development of EAE and CIA (101, 106).  IL-23, unlike IL-12, promotes a distinct CD4+ T 

cell phenotype characterized by the production of the inflammatory cytokine IL-17.  These 

so-called Th17 cells develop distinct from the Th1 (IFN-γ producing) and Th2 (IL-4, IL-5, IL-

13 producing) lineages under the influence of IL-6 and TGF-β (114).  IL-23 enhances Th17 

function and survival by acting on differentiated Th17 cells which express the IL-23 receptor.  

Development of Th1, Th2, and Th17 cells are mutually exclusive as differentiation of one 

subset is inhibited by the presence of another (86, 114-116).  Indeed, IFN-γ, the signature 

Th1 cytokine induced by IL-12, inhibits Th17 development (117). Enterocolitis in IL-10-/- mice 

was initially thought to be perpetuated by over-expression of Th1 cytokines driven by IL-12. 

However, IL-10-/- mice crossed with Il23a-/- mice did not develop colitis. Importantly, IL-10-/- 

mice crossed with Il12a-/- mice developed colitis of similar severity to the IL-10-/- founders 

(33). These studies demonstrate that IL-23, not IL-12, is the major driving force in many 

forms of chronic intestinal inflammation.  
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1.10. Molecular regulation of the Il23a promoter 

Recent work revealed the important requirement for NF-κB in LPS-mediated 

activation of Il23a transcription. NF-κB comprises a group of structurally related proteins that 

includes five members in mammals: p65 (RelA), c-Rel, Rel-B, p50, and p52; which can 

homo- and heterodimerize. NF-κB, an inducible transcription factor, plays an essential role 

in the inflammatory response through the regulation of genes encoding pro-inflammatory 

cytokines, chemokines, and adhesion molecules(118, 119). The Il23a promoter contains 

three NF-κB binding sites. Mutation of either of two binding sites resulted in complete loss of 

Il23a promoter activity induced by TLR ligands. Additionally, Il23a mRNA levels were 

dramatically reduced in c-Rel- and RelA-deficient macrophages (120, 121).  

Inducible chromatin modifications serve as an important restriction point in TLR-

regulated gene expression. Acetylation of key amino acids on histone proteins decreases 

their affinity for DNA, and results in a DNA structure that is more permissive to subsequent 

recruitment of transcription factors. Important co-activators such as p300 and CBP have 

been implicated in the positive regulation of Il12b. Conversely, histone deacetylases 

(HDACs) catalyze the deacytelation of histone proteins and are classically associated with 

the inactivation of gene expression (122). LPS induced TLR stimulation resulted in the rapid 

and dramatic changes in Il12b in murine macrophages by histone acetylation at the Il12b 

locus, enabling transcription factor recruitment (123). With the recent shift in focus from IL-

12 to IL-23 in immune mediated pathology, it is important to characterize the epigenetic 

regulation of the Il23a gene locus.  
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1.11. IFN-γ and IL-12 family members.  

IFN-γ strongly synergizes with bacterial products to activate and sustain production 

of IL-12 by DCs and macrophages (100, 110, 124). How IFN-γ regulates IL-23 has yet to be 

demonstrated. Our lab and others have extensively characterized the regulation of the Il12b 

promoter by IFN-γ (125-127). Several IFN-γ induced interferon regulatory factors (IRFs) 

participate in the expression of IL-12. IRF-1 is required for activation of the IL-12 p35 (Il12a) 

gene but does not affect Il12b gene expression (128, 129). IRF-8 activates both p35 and 

p40 gene expression, and synergizes with TLR stimulation (130). The protective role of IRF-

1 in mucosal inflammation was recently demonstrated in chemically induced murine colitis 

by the administration of dextran sodium sulfate (DSS) (131). IRF-1-/- mice demonstrated a 

dramatic increase in lethality and colitis severity compared with wild type mice. Interestingly, 

a 250 kb risk haplotype within the IBD5 locus on chromosome 5q31 that is significantly 

associated with CD contains the gene for IRF1 (132-134).  

 Although IFN-γ potently augments Th1-mediated immune responses (25), it also has 

protective properties in inflammatory disease models. For example, IFN-γ gene deletion or 

administration of anti-IFN-γ antibodies leads to increased severity of EAE and CIA (106) 

(135) (136) (137). A number of mechanisms have been proposed to explain the protective 

effect of IFN-γ in autoimmunity. IFN-γ directly inhibits Th17 differentiation (138). 

Furthermore, conversion of CD4+CD25− T cells into CD4+ CD25+ T regulatory cells 

requires IFN-γ, and limits severity of inflammation in EAE (139). Beyond these effects on T 

cell responses, little is known about homeostatic effects of IFN-γ on innate immunity. IFN-γ 

was previously shown to abrogate the ability of mycobacteria-infected murine DCs to induce 

Th17 cells by increasing IL-12 and decreasing IL-23 (117). Our work will reveal that IFN-γ, 
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long proposed to be pro-inflammatory, plays a protective role in the early initiation stages of 

murine experimental colitis, predominantly through inhibition of IL-23 in macrophages.  

 

1.12 Environmental factors in the pathogenesis of the IBDs.  

 Recent worldwide trends in IBD epidemiology support a strong role for the 

environment. In addition to the enteric-microbiota, factors such as non-steroidal anti-

inflammatory drug (NSAIDs) use, oral contraceptive use, appendectomy, dietary factors 

(e.g. refined sugar, fat, and fast food), perinatal events, and childhood infections have been 

associated with IBD (140) (141) (142) (143). Economic development, leading to improved 

hygiene and other changes in lifestyle ('westernized lifestyle') have also been implicated in 

the increase in IBD (144).  

 The role of the environment in the pathogenesis of IBD is perhaps most clearly 

demonstrated by the epidemiological observation that cigarette smoking is protective against 

the development of UC (145). However, the etiology of this protective effect remains unclear. 

Cigarette smoke is a complex mix of over 500 characterized compounds, each of which may 

exert independent immunologic effects. Therapeutic trial experience in UC patients treated 

with nicotine gum and transdermal nicotine has been inconclusive (146, 147). Based on 

recent findings, the immunomodulatory effects of cigarette smoke may in part be explained 

by CO (148). Blood carboxyhemoglobin levels, a measure of systemic exposure to CO, 

range from 1% to 18% in active smokers (149).  

 The idea of a gaseous molecule exerting biological function has been well known for 

greater than one hundred years. Ironically CO was originally used to assist in the description 

of how hemoglobin carries oxygen. CO has been classified as a toxic entity, lethal to aerobic 
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life and one of the primary pollutants in industrial society. Surprisingly, CO has recently 

emerged, akin to nitric oxide, to possess potent cytoprotective and immunologic functions. 

CO exerts key physiological function in various models of tissue inflammation and injury, 

including endotoxic shock, hepatic injury, and organ xenotransplantation(150, 151).  In each 

instance CO-mediated protection was associated with inhibition of the inflammatory 

response. Macrophages exposed to LPS in the presence of CO produced significantly less 

TNF, and this effect was concentration dependent (from 10–500 ppm CO) (152). In a sepsis 

model where a sublethal dose of LPS (1 mg/kg) was administered, mice also produced 

significantly less TNF when exposed to CO in vivo. Furthermore, serum IL-10 increased in 

response to LPS in CO exposed mice. In our current studies, we demonstrate that CO may 

ameliorate murine experimental colitis. In normal physiology, heme oxygenase-1 (HO-1) 

enzymatically degrades heme in the body generating low levels of CO (153). We have 

previously demonstrated that CO ameliorates colitis in colitis prone IL-10-/- mice through a 

HO-1 dependent pathway in macrophages. In our current study we show that HO-1 and CO 

protect against mucosal immune responses to the enteric-microbiota through increase in 

macrophage IL-10 production and by enhancing the ability of macrophages to eradicate 

intracellular bacteria. 

 

1.13. The anti-inflammatory molecule: Heme oxygenase-1 (HO-1). 

 HO catalyzes the first and rate-limiting step in the degradation of heme to yield 

equimolar quantities of biliverdin, CO, and iron (154). Three isoforms of HO exist; HO-1 is 

highly inducible while HO-2 and HO-3 are constitutively expressed (155). In addition to  

heme degradation, HO-1  plays a vital function in maintaining cellular homeostasis. HO-1 is 

highly induced by a variety of agents causing oxidative stress and inflammation (156). 
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Indeed, the induction of endogenous HO-1 provides protection against LPS-induced tissue 

injury (157). Furthermore, recent analysis of HO-1 deficient (hmox1-/-) mice has 

strengthened the emerging paradigm that HO-1 is an important molecule in host defense 

against stress. HO-1-/- mice exhibited increased susceptibility to oxidative stress such as 

LPS. These mice also demonstrate an exaggerated Th1 response (158). Our group was the 

first to demonstrate that CO ameliorates active intestinal inflammation in IL-10-/- mouse. CO 

exerted its anti-inflammatory effects specifically through induction of HO-1 which in turn 

inhibited IL-12 expression in macrophages.  Our current studies reveal that the enteric- 

microbiota regulates HO-1 in the murine colon. In colitis-prone IL-10-/- mice, enteric-

microbiota induced HO-1 is defective resulting in chronic inflammation. Mechanistically, HO-

1 derived CO enhances the ability of macrophages to eradicate intracellular bacteria.  

 

1.14 . Defects in macrophage specific homeostatic pathways in the IBDs. 

 In summary, altered immune responses to the enteric-microbiota and other 

environmental triggers in a genetically susceptible host lead to chronic intestinal 

inflammation. This dissertation focuses on macrophage specific regulatory pathways that 

are protective against the initiation and perpetuation of chronic intestinal inflammation. We 

identify IL-23 as a central mediator of experimental colitis. We reveal an anti-inflammatory 

role for IFN-γ in IBD through regulation of IL-12 family members. Furthermore, we identify 

HO-1 and its byproduct, CO as important ‘molecular brakes’ on the pro-inflammatory 

immune response to enteric- microbiota in IBD. In essence our studies further elucidate the 

key complex genetic, environmental and immune elements implicated in IBD pathogenesis.   
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 Figure 1. TLR signaling pathways. Stimulation of TLRs triggers the association of MyD88 
(myeloid differentiation primary-response protein 88), which in turn recruits IRAK4 (IL-1R-
associated kinase 4), thereby allowing the association of IRAK1. IRAK4 then induces the 
phosphorylation of IRAK1. TRAF6 (tumour-necrosis-factor-receptor-associated factor 6) is 
also recruited to the receptor complex, by associating with phosphorylated IRAK1. 
Phosphorylated IRAK1 and TRAF6 then dissociate from the receptor and form a complex 
with TAK1 (transforming-growth-factor- -activated kinase), TAB1 (TAK1-binding protein 1), 
which induces the phosphorylation of TAB2 and TAK1. IRAK1 is degraded at the plasma 
membrane, and the remaining complex (consisting of TRAF6, TAK1, TAB1 and TAB2) 
translocates to the cytosol, where it associates with the ubiquitin ligases UBC13 (ubiquitin-
conjugating enzyme 13) and UEV1A (ubiquitin-conjugating enzyme E2 variant 1). This leads 
to the ubiquitylation of TRAF6, which induces the activation of TAK1. TAK1, in turn, 
phosphorylates both mitogen-activated protein (MAP) kinases and the IKK complex 
(inhibitor of nuclear factor- B (I B)-kinase complex), which consists of IKK-α, IKK-β and 
IKKγ (nuclear factor- B (NF- B) essential modulator, NEMO). The IKK complex
phosphorylates IкB, which leads to its ubiquitylation and subsequent degradation. This 
allows NF- B to translocate to the nucleus and induce the expression of its target genes. 
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CHAPTER 2 

IFN-γ IS A NEGATIVE REGULATOR OF IL-23 IN MURINE MACROPHAGES AND 

EXPERIMENTAL COLITIS 

SHEHZAD Z. SHEIKH, KATSUYOSHI MATSUOKA, TAKU KOBAYASHI, FENGLING LI, 
TARA RUBINAS,  SCOTT E. PLEVY 



   

2.1 Abstract  

Rationale: IL-12 and IL-23 are heterodimeric cytokines expressed in macrophages 

composed of a common p40 subunit (Il12b) and a p35 (Il12a) and p19 subunit (Il23a), 

respectively. IL-23 regulation is established as a central event in the pathogenesis of the 

inflammatory bowel diseases (IBD). Objectives: Here, we determine molecular mechanisms 

of Il23a regulation in murine macrophages and elucidate novel Il23a regulatory pathways in 

experimental colitis. Results: We demonstrate that IFN-γ attenuates LPS mediated IL-23 

expression in murine macrophages. Mechanistically, IFN-γ inhibits Il23a promoter activation 

through interferon regulatory factor (IRF)-1, NF-κB interactions, and histone modifications. 

Moreover, intestinal inflammation is inhibited by IFN-γ signaling through attenuation of Il23a 

gene expression. The enteric-microbiota induce colonic IL-23 in colitis-prone IL-10-/- mice 

but not wild type mice when transitioned from germ-free to conventionalized microbiota. 

Importantly, IFN-γ receptor 1/IL-10 and IRF-1/IL-10 double deficient mice demonstrate 

increased colonic inflammation and IL23a expression compared to IL-10-/- mice. Colonic 

CD11b+ macrophages are a source of IL-23 and a target for IFN-γ. Conclusions: This study 

describes an important anti-inflammatory role for IFN-γ through inhibition of IL-23 in 

macrophages. Converging human genetic and functional findings suggest that IL-23, IFN-у 

and IRF-1 may be important pathogenic molecules in human IBD. 

 45



   

2.2 Introduction 

The inflammatory bowel diseases (IBD) result from inappropriately directed inflammatory 

responses to the enteric-microbiota in a genetically susceptible host (1). Key participants in 

the innate immune response to the enteric-microbiota are macrophages and dendritic cells 

(DCs)  (2). These cells recognize microbial products through pattern recognition receptors 

and elaborate inflammatory cytokines that recruit other inflammatory cells and activate T cell 

responses (3). Of the inflammatory genes that are induced in macrophages through 

interactions with microbes, IL-12 family members play a central role in mediating intestinal 

inflammation (4). Recently the IL-12 family member IL-23 has been implicated in the 

pathogenesis of human IBD (5, 6). Anti-IL-12/23 antibodies ameliorate colitis in experimental 

models such as IL-10-/- mice (5, 7) and show promise in early clinical trials in human Crohn’s 

disease (CD) (8, 9). However, the molecular regulation and the biological significance of 

Il23a expression in chronic intestinal inflammation are incompletely understood.  

 IL-12 and IL-23 are heterodimeric cytokines composed of a common p40 subunit and 

a p35 and p19 subunit, respectively (10). The IL-12 p40 (Il12b) and IL-23 p19 (Il23a) 

subunits are expressed in macrophages and DCs and are induced by microbial stimuli such 

as LPS (11).  IL-23, unlike IL-12, promotes a distinct CD4+ T cell phenotype characterized 

by the production of the cytokine IL-17, denoted TH17 cells. IL-23 enhances TH17 function 

and survival by acting on differentiated TH17 cells which express the IL-23 receptor. 

Development of TH1, TH2, and TH17 cells are mutually exclusive as differentiation of one 

subset is inhibited by the presence of another (12).  Indeed, IFN-γ, the signature TH1 

cytokine induced by IL-12, inhibits TH17 development (13). Moreover, IFN-γ strongly 

synergizes with bacterial products to activate and sustain production of IL-12 by DCs and 

macrophages (14).  
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 Although the molecular events leading to T cell subset differentiation are well studied 

in T cells, less is known about the coordinate regulation of IL-12 family members in 

macrophages. Here, we demonstrate that IFN-γ inhibits LPS-mediated Il23a expression in 

murine macrophages through recruitment of interferon regulatory factor (IRF)-1 to an 

interferon stimulated response element (ISRE), and through inhibition of NF-κB recruitment 

to the IL23a promoter. In contrast, IFN-γ augments LPS induced Il12b and Il12a expression. 

Our experiments also suggest that intestinal inflammation is inhibited by IFN-γ through 

attenuation of Il23a gene expression.  Importantly, the enteric-microbiota induce colonic IL-

23 in colitis-prone IL-10-/- mice but not wild type mice when transitioned from germ-free (GF) 

to conventionalized (CNV) microbiota. IL-10/IRF-1 (IL-10/IRF-1-/-) and IL-10/IFN-γR1 (IL-

10/IFN-γR1-/-) double deficient mice reveal increased colonic Il23a gene expression and 

more severe inflammation compared to IL-10-/- mice. We implicate colonic CD11b+ 

macrophages as a primary source of IL-23 and a target for IFN-γ during the initiation of 

spontaneously occurring colonic inflammation.  
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2.3 Results 

2.3.1 IFN-γ inhibits LPS-induced IL-23 in murine macrophages. IL-23, IL-12 p40 and IL-

12 p70 expression was studied in bone marrow-derived macrophages (BMMs) from 

C57BL/6 mice. LPS was a potent inducer of IL-12 p40, IL-12 p70, and IL-23 protein 

expression. IFN-γ significantly inhibited LPS-induced IL-23. However, IFN-γ and LPS 

synergistically induced IL-12 p40 and IL-12 p70 in BMMs, as previously reported (4, 15). 

Consequently, in LPS-activated BMMs from interferon-γ receptor 1 (IFN-γR1)-/- mice, a loss 

of IFN-γ mediated IL-23 inhibition (Figure 2.1A), as well as IL-12 p40 (Figure 2.1B) and p70 

(Figure 2.1C) synergistic induction was observed.  

 The kinetics of Il23a and Il12b mRNA expression was next determined in LPS-

stimulated BMMs, with or without IFN-γ. Il23a was rapidly induced by LPS one hour after 

stimulation. Notably, IFN-γ inhibited LPS induced Il23a and augmented Il12b mRNA 

expression. Il23a expression levels returned to baseline by 6 hours, while LPS plus IFN-γ 

induced Il12b continued to rise (Figure 2.1D). These results reveal important differences 

between the regulation of Il23a; which is rapidly induced, rapidly diminished, and strongly 

inhibited by IFN-γ; compared to Il12b.  

IL-10 inhibits LPS-induced IL-23, IL-12 p40 and IL-12 p70 in macrophages 

(Supplemental Figure 2.1A-C) (16, 17). Whether the inhibitory effects of IFN-γ on IL-23 

expression were dependent on the production of IL-10 in BMMs was next determined. IL-10-

/- macrophages demonstrate significantly enhanced LPS-induced IL-23 secretion compared 

to wild type (WT) BMMs. IFN-γ inhibited IL-23 expression in IL-10-/- BMMs, and inhibition 

was abrogated in IL-10-/-/IFN-γR1-/- double deficient (IL-10/IFN-γR1-/-) BMMs (Figure 2.2A). 

IFN-у-mediated synergistic induction of IL-12 p40 (Figure 2.2B) and IL-12 p70 (Figure 2.2C) 
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was also abrogated in IL-10/IFN-γR1-/- BMMs. These results suggest that IFN-γ inhibits IL-23 

in macrophages through IL-10 independent mechanisms.  

2.3.2 Il23a is a primary response gene. The inflammatory response against microbes 

requires rapid and selective activation of numerous genes in macrophages. Primary 

response genes have promoters that either exist in an open chromatin structure and/or 

undergo rapid nucleosome remodeling. In contrast, secondary response genes with delayed 

induction kinetics require selective ATP dependent nucleosome remodeling at their 

promoters and new protein synthesis prior to transcription initiation (18). In the presence of 

the protein synthesis inhibitor cyclohexamide, Il23a was rapidly induced by LPS in BMMs 

(Figure 2.3; Supplemental Figure 2.2, upper panel). The preservation of Il23a induction in 

the absence of new protein synthesis is consistent with other described primary response 

genes such as tnf and Cxcl2 (Supplemental Figure 2.2, upper panel), as recently reported 

(18). Unlike Il23a, Il12b induction is dramatically reduced in the absence of new protein 

synthesis, similar to other secondary response genes such as inos and Il6 (Figure 2.3; 

Supplemental Figure 2.2, lower panel) (18). Interestingly, in the absence of new protein 

synthesis, IFN-γ mediated inhibition of LPS induced Il23a is preserved at 1 hour but lost at 3 

hours, suggesting multiple mechanisms through which IFN-γ inhibits Il23a gene expression. 

In contrast, Il12b induction by LPS and IFN-γ remains inhibited at 1 and 3 hours in the 

absence of new protein synthesis (Figure 2.3). These results further characterize Il23a as a 

primary response gene and provide insight into diverse mechanisms through which IFN-у 

may negatively regulate its transcription. 

 

2.3.3 Characterization of an ISRE in the Il23a promoter. To characterize potential IFN-γ 

responsive regulatory regions within the Il23a locus, conserved nucleotide sequences (CNS) 
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were identified in multiple species around the Il23a gene (Supplemental Figure 2.3A). Within 

a murine proximal promoter CNS, a putative interferon stimulated response element (ISRE) 

was located at -378 to -384 with respect to the transcription start site (Supplemental Figure 

2.3A).  A 1.8 kb fragment of the promoter containing this ISRE was cloned upstream of a 

luciferase reporter gene (provided by Dr. Y.H. Chen, University of Pennsylvania School of 

Medicine) for functional analyses (Supplemental Figure 2.3B). AMAXA Nucleofector 

technology was optimized to transiently transfect BMMs (transfection efficiencies of 50% are 

routinely obtained; data not shown). LPS strongly induced Il23a promoter activity and IFN-γ 

inhibited luciferase activity. BMMs transfected with a reporter plasmid containing a site 

directed mutation within the ISRE demonstrated abrogation of IFN-γ inhibition of LPS-

induced luciferase activity (Figure 2.4A). These results suggest that interactions on or 

around this ISRE are important for regulation of the Il23a by LPS and IFN-γ. 

 

2.3.4 Interferon regulatory factors (IRFs) interact with an ISRE in the Il23a promoter. 

To determine DNA-protein interactions at the Il23a promoter ISRE, electrophoretic mobility 

shift assays (EMSA) and chromatin immunoprecipitation (ChIP) experiments were 

performed. Using an EMSA probe that spans the Il23a promoter sequence –368 to –388 

(368/388, containing the ISRE), nuclear extracts from LPS and IFN-γ activated BMMs 

demonstrated enhanced protein binding (Figure 2.4B, complexes I and II, Lanes 3-11) 

compared to extracts from unstimulated cells. An EMSA probe (368/388m) with a mutated 

sequence from –378 to –384 within the ISRE abrogated DNA binding of complexes I and II 

(Figure 2.4B, Lane 12). Likewise, competition experiments with unlabelled double stranded 

oligonucleotides corresponding to probe 368/388 (368/388u, Figure 2.4B, Lane 6) revealed 

significant loss of complex I and II DNA binding.  When nuclear extracts from LPS and IFN-ү 

stimulated BMMs were pre-incubated with specific antibodies to IRF-1, but not IRF-2 and 8; 
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inhibition and supershift of complexes I and II were observed, suggesting recruitment of IRF-

1 to the ISRE on the Il23a promoter (Figure 2.4B Lane 7). As another negative control, 

antibodies to c-Rel did not inhibit or supershift complexes I or II (Figure 2.4B, Lane 10). 

To assess whether IRFs associate with the Il23a ISRE in vivo, chromatin 

immunoprecipitation (ChIP) experiments were performed using IRF-1, IRF-2 and IRF-8 

antibodies and cross-linked chromatin prepared from unstimulated or LPS + IFN-γ activated 

BMMs. Quantitative real-time PCR analysis (using PCR primers spanning the ISRE) of DNA 

immunoprecipitated with IRF antibodies revealed that IRF-1, 2 and 8 associate with the 

ISRE of the Il23a promoter in LPS-activated BMMs (Figure 2.4C, left panel). However, the 

PCR signal was markedly increased in ChIPs with the IRF-1 antibody 1 hour post LPS and 

IFN-γ stimulation compared with IRF-2 and IRF-8 (Figure 2.4C, left panel). The ISRE region 

was not enriched when a rabbit polyclonal IgG antibody was used as a control (Figure 2.4C, 

left panel). ChIP experiments at the Il12b locus using PCR primers that amplified sequences 

that include an ISRE (-62 to -71) demonstrate that IRF-8 association is augmented in LPS 

and IFN-γ-activated BMMs relative to IRF-1 and IRF-2 (Figure 2.4C, right panel), as 

previously reported (15). 

 

2.3.5 IRF-1 negatively regulates LPS-induced Il23a gene expression in BMMs. The 

functional role of IRF-1 in IL-23 regulation was next studied. LPS-activated IL-23 protein 

secretion was significantly enhanced in BMMs from IRF-1-/- mice compared to WT BMMs. 

IFN-γ inhibited LPS-induced IL-23 in both WT and IRF-1-/- BMMs (Figure 2.5A).  In the 

presence of IFN-γ, IL-23 levels were higher in IRF-1-/- BMMs than in LPS-activated WT 

BMMs, although inhibition of LPS-induced IL-23 was still apparent. LPS and IFN-γ-

stimulated IRF-1-/- BMMs revealed significantly reduced levels of IL-12 p70 (Figure 2.5B) 
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and minimal differences in IL-12 p40 protein (Figure 2.5C) compared to WT BMMs, as 

previously reported (16). To validate these findings, IRF-1 expression in WT BMMs was 

inhibited using siRNA. LPS-induced Il23a mRNA was significantly increased in WT BMMs 

transfected with IRF-1 siRNA compared with WT BMMs transfected with control scrambled 

siRNA (Figure 2.5D, lower panel). Western blot analysis confirmed that IRF-1 siRNA 

effectively decreased IRF-1 expression (Figure 2.5D, upper panel).These results implicate 

IRF-1 as a negative regulator of LPS-induced Il23a. These experiments also suggest that 

IRF-1 is involved in IFN-γ mediated inhibition of IL-23, but IFN-γ also has IRF-1 independent 

effects on IL-23 expression. 

 

2.3.6 IFN-γ prevents RelA binding to the Il23a promoter. Two NF-κB sites have been 

reported to mediate LPS-induced activation of the Il23a promoter in murine macrophages 

(19, 20). BMMs were cultured with LPS plus IFN-γ, and occupancy of RelA on the distal 

Il23a NF-κB binding site (see Supplemental Figure 2.3B) was analyzed by ChIP using PCR 

primers from -549 to -680. Recruitment of RelA was demonstrated 1 hour after LPS 

stimulation. IFN-γ inhibited LPS-induced RelA recruitment to the Il23a promoter and 

enhanced the recruitment of NF-κB p50 (Figure 2.6A). Interestingly, LPS-induced RelA 

occupancy of the Il23a proximal promoter was prolonged in IRF-1-/- BMMs compared to WT 

BMMs (Figure 2.6B). 

Histone acetylation is associated with transcriptionally active chromatin (21). The 

core histone H4 was acetylated (H4Act) one hour after LPS stimulation at the distal Il23a 

NF-κB binding site. IFN-γ inhibited LPS-induced histone H4 acetylation (Figure 2.6C). In 

contrast, as previously reported (22), LPS plus IFN-γ stimulation was associated with 

histone H4 acetylation around an NF-κB site in the Il12b proximal promoter (Figure 2.6D). 
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Therefore, IFN-γ may limit RelA access to the Il23a promoter by altering the dynamics of 

NF-κB subunit recruitment and chromatin level nucleosome remodeling by regulating 

covalent histone modifications. Additionally, IRF-1 may prevent prolonged Il23a promoter 

occupancy by RelA. 

 

2.3.7 The enteric-microbiota induce colonic IL-23 expression in IL-10 deficient (IL-10-/-) 

mice. IL-10-/- mice develop chronic intestinal inflammation mediated by IL-23 (5). We 

investigated the role of the enteric-microbiota in the regulation of mucosal IL-23 in wild type 

(WT) and IL-10-/- mice raised germ free (GF) and transitioned to a conventionalized (CNV) 

specific pathogen free microbiota at 8 weeks of age. Two weeks after transition, colonic 

explants from CNV IL-10-/- mice secreted significantly more IL-23 (Figure 2.7A) than GF WT, 

GF IL-10-/- and CNV WT mice. A significant increase in colonic Il23a (Figure 2.7B) mRNA 

was detected in IL-10-/- compared to WT mice as early as 7 days post-colonization with 

enteric- microbiota. Additionally, secretion of the IL-23 target IL-17 (Figure 2.7C) from 

colonic explants of CNV IL-10-/- mice was markedly increased compared to GF and CNV WT 

mice and GF IL-10-/- mice. Increased colonic expression of IL-23 correlated with severity of 

intestinal inflammation (Figure 2.7D). IL-12 p40 (Supplemental Figure 2.4A) and Il12b 

mRNA (Supplemental Figure 2.4B) were also increased in colons from CNV IL-10-/- mice 

compared to GF WT, GF IL-10-/- and CNV WT mice. However, IL-12 p70 secretion was 

undetectable. These results further implicate IL-23 and not IL-12 in the pathogenesis of 

enteric-microbiota dependent colitis in IL-10-/- mice.  

 

2.3.8 IFN-γ inhibits Il23a expression in colonic CD11b+ lamina propria cells from IL-10-

/- mice. Colonic CD11b+ lamina propria mononuclear cells (LPMC) from IL-10-/- mice were 
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the primary source of Il12a, Il12b and Il23a (Figure 2.8A). IFN-γ inhibited heat killed E. coli-

induced expression of Il23a in colonic CD11b+ IL-10-/- LPMC, while Il12b expression was 

augmented. Heat killed E. coli-stimulated WT colonic CD11b+ LPMC did not demonstrate 

Il23a or Il12b induction (Figure 2.8B). These studies show that IFN-γ and IL-10 are negative 

regulators of IL-23 in colonic macrophages.   

 

 

2.3.9 Increased mucosal expression of IL-23 correlates with severity of colonic 

inflammation in IFN-γR1/IL-10 -/- and IRF-1/IL-10-/- mice. To understand consequences of 

IFN-γ and IRF-1 deficiency in the development of colitis, colonic inflammation and IL-23 

expression was determined in IL-10-/-, IFN-γR1/IL-10 -/- and IRF-1/IL-10-/- mice. Eight week 

old IL-10-/- mice demonstrated minimal or no inflammatory changes. However, age matched 

littermate IL-10/IFN-γR1 -/- and IL-10/IRF-1-/- mice developed significant colonic inflammation 

(Figure 2.9A). By 20 weeks of age, 50% (5/10 mice) of IL-10/IRF-1-/- and 30% (3/10 mice) 

IL-10/IFN-γR1-/- mice developed rectal prolapse, a sign of significant inflammatory disease, 

whereas no IL-10-/- mice developed rectal prolapse (data not shown). Severity of colonic 

inflammation correlated with increased colonic Il23a expression and IL-23 secretion in 

supernatants from colon explant cultures (Figure 2.9B and 2.9C, respectively). There were 

no significant differences in colonic Il12b and Il12a expression between IL-10-/-, IFN-γR1/IL-

10 -/- and IRF-1/IL-10-/- mice (Supplemental Figure 2.5). Moreover, IRF-1/IL-10-/- colonic 

CD11b+ LPMCs demonstrated increased basal and heat killed E. coli-activated Il23a 

expression compared to IL-10-/- and WT CD11b+ LPMCs (Figure 2.9D). These experiments 

implicate IFN-γ and IRF-1 as negative regulators of IL-23 and colonic inflammation in IL-10-/- 
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mice, and suggest that a primary defect in Il23a inhibition in colonic macrophages may 

underlie the phenotype of severe IBD in IFN-γR1/IL-10 -/- and IRF-1/IL-10-/- mice. 
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2.4 Discussion 

We have identified anti-inflammatory properties of IFN-γ signaling in murine macrophages 

and experimental colitis. IFN-γ inhibits IL-23 expression in macrophages activated through 

TLR pathways. Mechanistically, IFN-γ regulates IL-23 through IRF-1, NF-κB interactions, 

and histone modifications around an ISRE and an NF-κB site in the Il23a promoter. We 

propose that local effects of IFN-γ signaling in the intestine may be essential in maintaining 

homeostasis through inhibition of IL-23. This hypothesis is supported in vivo through several 

experimental observations. The enteric-microbiota induce colonic IL-23 in colitis-prone IL-10-

/- mice but not wild type mice when transitioned from GF to CNV microbiota. Moreover, IFN-

γR1/IL-10-/- and IRF-1/IL-10-/- mice demonstrate increased colonic inflammation and 

mucosal IL-23 expression compared to IL-10-/- mice.  Colonic CD11b+ macrophages are 

implicated as a primary source of IL-23 and a target for IFN-γ during the initiation of 

spontaneously occurring colonic inflammation.  

 Elucidation of IL-23 biology has led to advances in our understanding of 

inflammatory immune responses previously ascribed to IL-12. For example, IL-10-/- mice 

crossed with Il23a-/- mice do not develop colitis, while IL-10-/- mice crossed with Il12a-/- mice 

develop colitis of similar severity to the IL-10-/- founders (23). Previous studies in GF IL-10-/- 

reveal that enteric bacteria are necessary for the development of spontaneous colitis (24). 

Although we detected abundant colonic IL-23 in conventionalized GF IL-10-/- mice, IL-12 p70 

levels were undetectable, despite histological evidence of colitis as early as 2 weeks post-

colonization. Consistent with our results in WT mice, the enteric-microbiota was shown to 

play an inhibitory role in the expression of IL-23 with subsequent effects on expansion and 

survival of TH17 cells in the colon (25).   
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Although IFN-γ potently augments Th1-mediated immune responses (26), it also has 

protective properties in inflammatory disease models. For example, IFN-γ gene deletion or 

administration of anti-IFN-γ antibodies leads to increased severity of experimental 

autoimmune encephalomyelitis (EAE) and collagen induced arthritis (10, 27-30). A number 

of mechanisms have been proposed to explain the protective effect of IFN-γ in 

autoimmunity. IFN-γ directly inhibits TH17 differentiation (31).  Furthermore, conversion of 

CD4+CD25− T cells into CD4+ CD25+ T regulatory cells requires IFN-γ, and limits severity of 

inflammation in EAE (32). Beyond these effects on T cell responses, little is known about 

homeostatic effects of IFN-γ on innate immunity. IFN-γ was previously shown to abrogate 

the ability of mycobacteria-infected murine dendritic cells to induce TH17 cells by increasing 

IL-12 and decreasing IL-23 (13).   

A recent study demonstrated that CD patients have increased numbers of intestinal 

CD14+CD33+ macrophages that produce IL-23, TNF, and IL-6. Differentiation of human 

peripheral blood macrophages in the presence of IFN-γ resulted in a macrophage 

phenotype similar to CD intestinal macrophages that secrete IL-23 (33). However, prolonged 

culture with IFN-γ affected macrophage maturation. Direct effects of IFN-γ on IL-23 

expression in differentiated human macrophages were not tested in this study. Moreover, 

mouse models allow description of events during the initiation of spontaneous colitis. By 

utilizing GF mice transitioned to a CNV microbiota, and through studies in IL-10-/-, IFN-

γR1/IL-10-/- and IRF-1/IL-10-/- mice, we have clarified mechanisms that may be operative at 

disease onset. It is possible that with longstanding inflammation, as in human IBD, other 

mechanisms become more relevant. However, there also may be differences in Il23a 

regulation between murine and human cells. 

IL-10-/- mice on a C57BL/6 background are relatively resistant to spontaneous colitis 

(34). IFN-γ and IRF-1 deficiency severely exacerbated IL-23 mediated colitis in IL-10-/- mice 

 57



   

on this resistant background.  A limitation of our analysis is that IFN-γ and IRF-1 deficiency 

affects multiple innate and adaptive immune pathways (35). However, as in vivo proof of 

concept that IFN-γ regulates Il23a, we demonstrated increased Il23a expression in the colon 

and in colonic CD11b+ cells from IRF-1/IL-10-/- mice compared to IL-10-/- mice.   

Our results provide new insights into transcriptional inhibition of Il23a. Recent work 

revealed the involvement of NF-κB in LPS-mediated activation of Il23a transcription (19, 20). 

Additionally, Il23a mRNA levels were dramatically reduced in c-Rel and RelA deficient 

macrophages (19, 20). We demonstrate that Il23a expression has markedly different 

kinetics of induction and is regulated through notably divergent mechanisms compared to 

another NF-κB dependent gene, IL-12 p40 (Il12b). Where IFN-γ potently synergizes with 

bacterial products for optimal induction of Il12b gene expression (36), IFN-γ inhibits LPS-

mediated Il23a expression, surprisingly, through effects on NF-κB DNA binding. Our results 

demonstrate recruitment of p50 to the Il23a promoter in IFN-γ activated macrophages, 

consistent with reports of increased Il23a expression in p52-deficient macrophages (37). 

DNA binding factors, including NF-κB, cannot access chromatin that is in a condensed state. 

Accessibility to chromatin is enhanced through ATP-dependent nucleosome remodeling 

complexes or histone modifications (38). We demonstrate that in addition to IRF recruitment, 

IFN-γ prevents acetylation of the core histone H4, limiting access of transcription factors to 

the Il23a promoter.  

The IRF family is a group of transcription factors that respond to signals from type I 

and II interferons. They share significant homology in their N-terminal domains that interact 

with a consensus DNA sequence, the ISRE (39). Several IRFs participate in the expression 

of IL-12 family members. IRF-1 is required for activation of the Il12a gene but does not 

affect Il12b gene expression (16). IRF-8 activates both Il23a and Il12b gene expression (36). 

We identify an ISRE in the Il23a promoter critically located between two proximal NF-κB 
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sites and show that IRF-1 is a negative regulator. IRFs can interact with other transcription 

factors, including NF-κB, NFAT, STAT and Ets families, to affect target gene transcription 

(39). In the absence of IRF-1, RelA recruitment to the Il23a promoter in macrophages is 

prolonged, suggesting that IRF-1 functionally interacts with NF-κB. Although LPS-induced 

IL-23 was increased in IRF-1-/- BMMs, inhibitory effects of IFN-γ were still evident. It is 

plausible that in the absence of IRF-1 other IRFs play a compensatory inhibitory role (40, 

41). Alternatively, IRF independent mechanisms may exist through which IFN-γ regulates 

Il23a expression. 

We confirm a recent report showing Il23a is a primary response gene, differing from 

Il12b, a secondary response gene (18). Interestingly, in the absence of new protein 

synthesis, IFN-γ inhibits LPS activated Il23a expression at one hour. This finding is 

consistent with our observation that IFN-γ inhibits RelA recruitment to the Il23a promoter, a 

rapidly occurring event. However, by three hours, the inhibitory effect of IFN-γ on LPS 

activated Il23a expression required new protein synthesis, suggesting multiple mechanisms 

through which IFN-γ inhibits Il23a gene expression. Future studies will identify factors 

responsible for rapid Il23a gene induction and inhibition as well as those recruited to modify 

long term gene activation.  

Differences in regulation of the p19 subunit of IL-23 and the common p40 subunit of 

IL-12 and IL-23 may represent an important in vivo check point to shape the subsequent T 

cell response. Hypothetically, as TH1 and TH17 responses are counter-regulatory, IFN-γ may 

act directly upon the macrophage to attenuate TH17 responses through inhibition of IL-23. 

We also further implicate macrophage-derived IL-23 in the initiation of experimental colitis, 

highlighting the protective effects of IFN-γ signaling in IL-10-/- mice. Recently, genome wide 

association studies (GWAS) in human IBD have provided insight into the contributions of 

single nucleotide polymorphisms (SNPs) located in genomic loci relevant to the IL-12/23 
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pathway. Chromosome 1p31 harbors the IL23R gene, containing SNPs which confer 

susceptibility to or protection against IBD. Similarly, SNPs within the Il12b gene on 

chromosome 5q33 confer susceptibility to CD and UC (42). A recent GWAS in ulcerative 

colitis patients revealed that the most significant chromosome 12q15 association signal was 

located in a region proximal to the IFNG (IFN-γ) gene (43). Moreover, a 250 kb risk 

haplotype within the IBD5 locus on chromosome 5q31 associated with CD contains the 

gene for IRF1 (44, 45). Therefore, converging genetic and functional findings suggest that 

IL-23, IFN-γ and IRF-1 may be important pathogenic molecules and therapeutic targets in 

human IBD. 
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2.5 Materials and Methods 

Mice.  Wild-type and genetically deficient mice (WT, IL-10-/-, IRF-γ R1-/- , IRF-1-/-, IL-10/ IRF-

γ R1-/-, IL-10/IRF-1-/-) in specific pathogen free conventionalized housing (CNV) were on the 

C57BL/6 background (Jackson Laboratories) and matched for age in all experiments. All 

genetically deficient mice assessed for spontaneous colitis were littermates. 129S6/SvEv GF 

mice (WT and IL-10 -/-) were Caesarian derived and were maintained according to standard 

techniques (46) in Trexler flexible film isolators at the Gnotobiotic Animal Facility of the 

Center for Gastrointestinal Biology and Disease at the University of North Carolina, Chapel 

Hill. CNV mice were maintained in a dedicated room at the University of North Carolina 

Laboratory Animal Resources Facility. GF status was monitored every 2 weeks by aerobic 

and anaerobic culture and gram stain of stool samples and/or bedding material. Mice were 

colonized with enteric-microbiota at 10-12 weeks of age with a murine microbiota that was 

isolated from WT mice raised in SPF conditions (24). Additionally, CNV mice were 

determined to be negative for Helicobacter species (Helicobacter bilis, Helicobacter  

hepaticus, Helicobacter  rodentium, Helicobacter trogontum and Helicobacter sp.) using 

Helicobacter PCR profile performed on freshly harvested fecal pellets (RADIL Laboratories, 

Columbia MO). All animals were housed in accordance with guidelines from the American 

Association for Laboratory Animal Care and Research Protocols and experiments were 

approved by the Institutional Animal Care and Use Committee of the University of North 

Carolina. At the end of the study period, animals were euthanized using excess CO2 

inhalation.  

Murine bone marrow-derived macrophages. Bone-marrow-derived macrophages (BMMs) 

were harvested as previously described (47). Briefly, BMMs were grown for 7 days in RPMI 

1640 containing 10% FCS, 10mM HEPES, 1% penicillin/streptomycin and supplemented 
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with 40 ng/ml GM-CSF (Peprotech, Rocky Hill, NJ). BMMs were stimulated with 100 ng/ml of 

high purity LPS and/or 10 ng/ml of IFN-γ (Invivogen, San Diego, CA). 

Cytokine ELISAs. Murine IL-12 p40, IL-12 p70, IFN-γ and IL-17 immunoassay kits (R&D 

Systems) and IL-23 (eBioscience) were used according to the manufacturers’ instructions. 

Western immunoblot. Western blot analyses were performed on whole cell extracts as 

described previously (47). Anti–IRF-1 antibodies were from Santa Cruz Biotechnology, Inc, 

CA and β-actin antibodies were purchased from Abcam, MA. 

RNA extraction and quantitative real-time RT PCR (qRT-PCR) analysis. Total RNA was 

extracted with RNeasy kit (Qiagen) and reverse-transcribed with ramdom hexamers using 

Superscript reverse transcriptase II (Invitrogen). Complementary DNA was analyzed by 

quantitative real-time PCR using SYBR Green Master Mix (Applied Biosystems) on a HT-

7900  

(Applied Biosystems). Single-product amplification was confirmed by melting-curve analysis. 

Primer sequences are as follow: Il23a Forward 5’-gacccacaaggactcaaggac-3’, Reverse 5’-

atggggctatcagggagtagag-3’, Il12b Forward 5’-cgcaagaaagaaaagatgaaggag-3’, Reverse 5’-

ttgcattggacttcggtagatg-3’; Il12a Forward 5’-cattctagacaagggcatgctg-3’, Reverse 5’-

ttttcactctgtaagggtctgcttc-3’, β-Actin Forward 5’-agccatgtacgtagccatccag-3’, Reverse  

5’-tggcgtgagggagagcatag-3’. Expression was normalized to β-Actin and represented as fold 

induction over unstimulated cells. 

Plasmids. The Il23a 1.8 kb luciferase construct was kindly provided Dr. Y.H. Chen 

(Department of Pathology and Laboratory Medicine, School of Medicine, University of 

Pennsylvania) (19). The QuikChange XL system (Stratagene) was used to make mutations 

in the ISRE in the Il23a murine promoter according to manufacturer’s instructions. Mutations 
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were confirmed by sequencing. The Il23a promoter coordinates were determined relative to 

a dominant transcription start site (TIS) previously described (48).  

Transient transfections. Bone marrow-derived murine macrophages were transiently 

transfected using AMAXA Nucleofector Technology (AMAXA) by the described protocol for 

murine macrophages. After incubation for 3 hours at 37oC, the cells were either unactivated 

or activated with 100 ng/ml LPS, 10 ng/ml IFN-γ, or both. 24 h after activation, the cells were 

harvested using 1X Reporter Lysis Buffer (Promega). Luciferase activity was determined 

from 20 μl of cell extract as described previously (15). Cells were co-transfected with a 

constitutively active HSP promoter that expresses β-galactosidase to monitor transfection 

efficiency. IRF-1 siRNA and control scrambled siRNA was purchased from Santa Cruz.  

Colonic tissue explant cultures. Sections of the transverse colon were processed as 

previously described (49). Tissue fragments (0.5 g dry weight) were incubated in 1.0 ml 

RPMI 1640 supplemented with 50 μg/ml gentamicin, 100 U/ml penicillin, 100 μg/ml 

streptomycin, 0.25 μg/ml fungizone (GIBCO BRL), and 5% heat-inactivated fetal calf serum. 

Tissue fragment supernatants were collected after 24 hours for cytokine ELISAs. 

Preparation of heat-killed bacteria. E. coli in log-phase growth was harvested and washed  

twice with ice-cold PBS. Bacterial suspensions were, then, heated at 80°C for 30 minutes, 

washed, resuspended in PBS, and stored at –80°C. Complete killing was confirmed by 72-

hour incubation at 37°C on plate medium. Heat-killed bacteria were added at multiplicity of 

infection (M.O.I.) = 10. 

Isolation of colonic macrophages. Lamina propria cells (LPCs) were isolated from mouse 

colon by a modified enzymatic method (50). Briefly, colons were dissected into small pieces, 

and washed three times in Hank’s buffered saline solution (HBSS) containing 2.5% FBS. 

The last wash was done with 1mM DTT to remove mucus. The pieces were, then, incubated 
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in HBSS containing 1mM EDTA three times for 20 min each at 37°C. The remaining tissue 

was digested in HBSS containing 1 mg/ml collagenase type IV (Sigma-Aldrich, St. Louis, 

MO) for 1.5 hours at 37°C. The supernatant was collected, filtered and centrifuged to obtain 

a cell pellet. LPCs were isolated by density gradient centrifugation using 40 % and 75 % 

Percoll solution (GE Healthcare, Piscataway, NJ). The intermediate layer containing LPCs 

was collected. LPCs were further separated into CD11b+ cells using anti-CD11b 

microbeads (Miltenyi Biotec, Auburn, CA). Purity was more than 90% by flow cytometric 

analysis (data not shown). 

Histology. Colonic tissue sections were fixed in 10% buffered formalin and embedded in 

paraffin. 4-μm-thick sections were stained with hematoxylin and eosin. Spontaneous colitis 

scoring was adapted from the criteria reported by Berg et al, as previously described (49). 

All histological scores were determined by a staff pathologist (T. Rubinas) who was blinded 

to the experimental protocols. 

Chromatin immunoprecipitation assays (ChIP). ChIP was performed with ChIP-IT 

Express kit (Active Motif, Carlsbad, CA) according to manufacturer’s protocol. Briefly, 2X106 

BMDMs were stimulated, washed with PBS, and fixed with 0.8% formaldehyde for 10 

minutes at room temperature. Formaldehyde fixation was stopped with the addition of 125 

mM glycine. Fixed cells were harvested, lysed, and sonicated for 5 cycles of 20-second 

on/20-second off with Sonic Dismembrator 60 (Thermo Fisher Scientific, Waltham, MA).  

DNA-protein complexes were immunoprecipitated with specific antibodies (Anti–IRF-1, 2, 8, 

RelA , p50 and rabbit polyclonal IgG, Santa Cruz Biotechnology Inc, CA.), H4Act (Upstate, 

N.Y) eluted, and reverse-cross linked. Quantitative real-time PCR primers for the Il23a 

promoter (κ1 : Forward 5’-taggctaagcaggctgagaaatg-3’, Reverse 5’- gccctggttttgaaggtgatag-

3’, a154 bp product;  and ISRE: Forward 5’-gagatgaatgagtgctgttttgg-3’, Reverse 5’- 

agaaggggcagggaagtaatg-3’, a 198 bp product), real-time PCR primers for the Il12b promoter 
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(ISRE Forward 5’-tgtgaaaagaaaggggaaagtgag-3’, Reverse 5’- ctcctggtttgccatcgtttt-3’, with a 

197 bp product), Real-time PCR primers for Nuc1 region on Il12b promoter Forward 5’- 

gaaggaacagtgggtgtccag-3’, Reverse 5’- agggagttagcgacagggaag-3’ with a 131 bp product, 

immunoprecipitated DNA and input DNA (diluted 10-fold) were amplified. ChIP data is 

represented as % input.  

Electrophoretic mobility shift assays (EMSA). BMM nuclear extracts were prepared by 

modified Dignam protocol, as previously described (15). Briefly, BMMs were untreated or 

treated with LPS (100 ng/mL) with or without IFN-γ (10 ng/ml). Synthetic, double-stranded 

oligonucleotides were designed to span the Il23a promoter region from –368 bp to –388 bp. 

The EMSA probe 368/388m contains a mutated sequence from –372 to –378. DNA 

oligonucleotides were end labeled with [ -32P] ATP, and 4 µg of nuclear extract was 

incubated with 1 ng of labeled probe in binding buffer containing 10 mM HEPES (pH 7.5), 1 

mM EDTA, 50 mM NaCl, 1 mM dithiothreitol, and 50 µg/ml poly(dI-dC). After incubation at 

room temperature for 20–30 min, the mixture was electrophoresed on a 6% polyacrylamide 

gel in 0.5 x Tris-boric acid-EDTA buffer. For competition experiments, 100- fold molar excess 

of unlabeled oligonucleotides was added to the reaction mixture before adding labeled 

probes. For supershift assays, 1.5 µg of a rabbit polyclonal antibody raised against specific 

IRF family members (IRF-1, 2 and 8, Santa Cruz) was added to nuclear extracts from LPS 

and IFN-γ stimulated BMMs 30 minutes prior to the probe. 

Statistical Analysis. Statistical significance for data subsets from experiments performed in 

cells was assessed by the two-tailed Student’s t-test. Statistical significance for in vivo data 

subsets was assessed by the Mann-Whitney U test (SPSS, Chicago, IL, USA) ) with 

Bonferroni correction. 
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Figure 2.1. IFN-γ negatively regulates LPS-mediated IL-23 expression in 
macrophages. BMMs from WT and IFN-γR1 deficient mice were cultured in the presence of 
LPS (100 ng/ml) with or without IFN-γ (10 ng/ml). Supernatants from BMMs were analyzed 
for (A) IL-23, (B) IL-12 p40 and (C) IL-12 p70 protein expression by ELISA. Results are 
expressed as mean+SEM of triplicate cultures and are representative of 3 independent 
experiments. (D) WT BMMs were stimulated with LPS (100 ng/ml) and IFN-γ (10 ng/ml) for 
different times prior to total RNA isolation. Il23a, Il12b and β-actin mRNA expression was 
detected by real-time RT-PCR (Applied Biosystems). Results are expressed as fold 
induction normalized to β-actin and are representative of 3 independent experiments. 
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Figure 2.2.  IFN-γ negatively regulates LPS-mediated IL-23 expression in IL-10-/- 

acrophages. BMMs from WT, IL-10 and IL-10/IFN-γR1 deficient mice were cultured in the 
resence of LPS (black bars, 100 ng/ml) and IFN-γ (grey bars, 10 ng/ml). Supernatants from 
ultured BMMs were analyzed for (A) IL-23, (B) IL-12 p40 and (C) IL-12 p70 protein 
xpression by ELISA. Results are expressed as mean+

m
p
c
e SEM of triplicate cultures and are 
representative of 3 independent experiments.   
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Figure 2.3.  Il23a is a primary response gene. BMMs were incubated for 30 minutes with 
DMSO or cyclohexamide (5 μg/mL) and then stimulated with LPS (100 ng/mL)+IFN-γ (10 
ng/mL). Il23a and Il12b mRNA was analyzed by real time RT-PCR at 1 hour (left panel) and 
3 hours (right panel) post stimulation. Results are representative of 3 independent 
experiments with similar results. 
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Figure 2.4. Interferon regulatory factors (IRFs) interact with an ISRE in the Il23a 
promoter. (A) BMMs were transfected with an Il23a promoter luciferase reporter plasmid or 
a promoter containing a mutant ISRE, and cultured with LPS (100 ng/ml)+IFN-γ (10 ng/ml) 
for 18 h. Reporter activity is presented as luciferase units normalized to HSP-promoter β-
galactosidase activity. Data represent mean ± SEM of 3 independent experiments.  *p<0.05 
vs. LPS-stimulated Il23a promoter. (B) EMSA probe 368/388 spans the Il23a promoter 
equence –368 to –388. The EMSA probe 368/388m contains a mutant ISRE from –378 to 

–384. 32P-labeled probes 368/388 (lanes 2–4) and 368/388m (lane 12) were incubated with 
uclear extracts from untreated (lane 2), LPS-activated (lane 3), IFN-γ-activated (lane 4), 

γ- and LPS-activated BMMs (lanes 5-12). Lane 1 represents free probe (FP). Two 
rotein-DNA complexes (I and II) were detected with probe 368/388. 100-fold molar excess 
f unlabelled probe (368/388u, lane 6) was added to compete for binding to the labeled 

probe. Probe 368/388 was incubated with nuclear extracts from IFN-γ/LPS-treated BMMs 
ells at room temperature for 30 min, then polyclonal antibodies against c-Rel (lane 10), 

IRF-1, IRF-2, and IRF-8 (lanes 7–9). (C) Formaldehyde-cross-linked chromatin samples 
om BMMs treated with LPS (100 ng/ml) and IFN-γ (10 ng/ml) were immunoprecipitated 

gG antibodies. Quantitative real-time PCR analysis 
itated and input DNA. Results are reported as enrichment (% input) 

f IRF DNA binding. The figure represents results from one of 3 independently conducted 
experiments with identical results. 
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Figure 2.5.  IRF-1 is a negative regulator of Il23a in macrophages. BMMs from WT and 
IRF-1-/- mice were cultured in the presence of LPS (100 ng/ml, black bars) and IFN-γ (10 
ng/ml, grey bars). (A) IL-23, (B) IL-12 p70 and (C) IL-12 p40 protein was analyzed by 
ELISA. Data represent mean±SEM, 3 independent experiments,*p<0.05 vs. WT LPS (D) 
WT BMMs were transfected for 18 h with 100 nM of control scrambled siRNA or 100 nM of 
IRF-1 siRNA and stimulated with LPS (100 ng/ml) and IFN-γ (10 ng/ml). IRF-1 silencing was 
analyzed by western blot (upper panel) and Il23a mRNA (lower panel) was determined by 
RT-PCR. Results are representative of 3 independent experiments. 
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Figure 2.6.  IFN-γ inhibits RelA binding to the Il23a promoter.  (A) Binding of RelA and 
p50 to the distal NF-κB site on the endogenous WT Il23a promoter was assessed by Ch
hour after incubation with LPS+IFN-у. Formaldehyde-cross-linked chromatin samples from 
BMMs were immunoprecipitated with anti-RelA and anti-p50 (Santa Cruz Biotechnology,
CA) antibodies. Real-time PCR was performed on precipitated DNA samples. Results are 
presented as enrichment (% input) of RelA DNA binding are representative of 3 independ
experiments with similar results. (B) Binding of RelA to the distal NF-κB site on the 
endogenous WT and IRF-1-/- Il23a promoter was assessed by ChIP at 0.5, 1 and 2 hours 
post LPS stimulation. Results are presented as enrichment (% input) of RelA DNA binding
on the Il23a promoter. (C) Acetylation at histone 4 (H4Act) to the distal NF-κB site on the 
endogenous WT Il23a promoter and (D) nucleosome 1 (Nuc1) on the Il12b promoter was 
assessed by ChIP 1 hour after incu

Il23a H4Act  Il12b H4Act 
C D 

IFN-у. Results are presented as 
enrichment (% input) of H4Act binding are representative of 3 independent experiments with 
similar results.  
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 expressed as mean + 
SEM from 3 mice per group and are representative of 2 independent transitioned 
experimental cohorts, *p<0.05 vs. WT CNV.   
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Figure 2.7. The enteric-microbiota regulate IL-23 expression in IL-10
1
conventionalized (CNV) mice at 8-10 weeks of age (3 mice per group). (A) IL-23 secretion 
post-colonization with enteric-microbiota in colonic explant cultures was determined by 
ELISA (B) Real time RT-PCR of colonic Il23a mRNA expression in WT (solid line) and IL-
/- (dashed line) normalized to β-actin at 7, 14 and 21 days post-CNV with enteric-microbiot
and (C) IL-17 secretion post-colonization with enteric-microbiota in colonic explant cultures 
was determined by ELISA. (D) Colitis scores of GF and CNV WT and IL-10-/- mice.  Results 
are presented as the sum of four averaged scores from five regions of the large intestine 
graded by a pathologist (T.R.) blinded to the groups (49). Results are
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Figure 2.8. Colonic CD11b+ lamina propria mononuclear cell (LPMC) in IL-10-/- mice 
are the primary source of Il12a, Il12b and Il23a. Lamina propria cells (LPMCs) were 
isolated from WT and IL-10-/- mouse colons and further separated into CD11b+ cells using 
anti-CD11b microbeads (Miltenyi Biotec, Auburn, CA). (A) Basal expression of Il12a
and Il23a mRNA was detected by real-time RT-PCR. (B) CD11b+ and CD11b- LPMCs were
activated with heat killed E.coli (multiplicity of infection 10:1) + IFN-у (10 ng/mL) for 2 hours
prior to total RNA isolation. Il23a, Il12b and β-actin mRNA expression was detected by real
time RT-PCR (Applied Biosystems). Results are expressed as fold induction normalized to
β-actin and represent LPMCs pooled from 3 individual mouse colons, and replicated 3 
times.  
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Figure 2.9. Increased mucosal expression of IL-23 in IFN-γR1/IL-10 -/- and IRF-1/IL-10-/- 

mice. (A) Colitis scores of WT, IRF-1-/-, IFN-γR1-/-, IL-10-/-, IFN-γR1/IL-10 -/- and IRF-1/IL-10-/- 

mice raised in conventionalized housing at 8 weeks of age. Results are presented as the 
sum total of four averaged scores from five regions of the large intestine graded by a 
pathologist (T.R.) blinded to the groups using standard scoring system. (B) Colonic Il23a 
mRNA was examined using real-time RT-PCR and (C) IL-23 protein in supernatants from 
olon explants cultures were analyzed using cytokine specific ELISA and from WT, IL-10-/-, 

IFN-γR1/IL-10 -/- and IRF-1/IL-10-/- mice. Results are expressed as mean + SEM from 4-5 
mice per group, *p<0.05 vs. IL-10-/- mice. (D) CD11b+ and CD11b- LPMCs Lamina isolated 
from WT, IL-10-/-, and IL-10/IRF-1-/- mouse were unstimulated (Un) or activated with heat 
killed E.coli (H.K. E.coli), multiplicity of infection (10:1). Total RNA was isolated (Qiagen 
RNeasy Mini Kit) and Il23a and β-actin mRNA expression was detected by real-time RT-
PCR. Results are expressed as fold induction relative to WT CD11b+ stimulated with H.K. 
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E.coli and normalized to β-actin and represent LPMCs pooled from 3 individual mouse 
colons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 2.1. IL-10 is a negative regulator of IL-23 in macrophages. BMMs 
from WT mice were cultured in the presence of LPS (100 ng/ml) and recombinant IL-10 (10 
ng/ml). Supernatants from cultured BMMs were analyzed for (A) IL-23, (B) IL-12 p40 and 
(C) IL-12 p70 protein expression by ELISA. Results are expressed as mean+SEM of 
triplicate cultures and are representative of 3 independent experiments (p<0.05 vs. LPS
stimulat

 
ed BMMs).    
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upplemental Figure 2.2. Il23a is a primary response gene. BMMs were incubated for 30 
inutes with DMSO (dashed line) or cyclohexamide (5 μg/mL, solid line) and then 

timulated with LPS (100 ng/mL). Primary response (Il23a, tnf and Cxcl2) and secondary 
sponse gene (Il12b, Il6 and inos) mRNA induction was analyzed using RT-PCR. Results 

re representative of 3 independent experiments with similar results 
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ithin a conserved nucleotide 
equence (CNS) in the Il23a promoter. (A) Using ECR Genome Browser 
ttp://ecrbrowser.dcode.org/), CNS’s (red) were identified across multiple species in the 

23a murine promoter relative to the human genome. A putative interferon stimulated 
sponse element (ISRE) was identified from -378 to -384 with respect to the transcription 

start site. (B) Schematic representation of the murine Il23a promoter region (top panel) and 
e luciferase reporter construct generated (bottom panel). The NF- B sites designated κ1, 

2, and κ3 are -82, -618, and -960 bp upstream of the transcription start site (TIS), 
respectively (48). The luciferase reporter construct contains all three putative NF- B sites 

 

 

 

 

 

 

Supplemental Figure 2.3. Characterization of an ISRE w
s
(h
Il
re

th
κ

upstream of a luciferase open reading frame. The ISRE (-378 to -384) is located between 
the NF-κB binding sites κ1 and κ2. 
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e IL-12 expression in IL-10-/- 
mice. WT and IL-10-/- mice raised in germ free (GF) conditions were colonized with enteric 
microbiota from conventionalized (CNV) mice at 8-10 weeks of age (3 mice per group). (A) 
IL-12 p40 secretion post-colonization with enteric-microbiota was determined by ELISA in 
colonic explant cultures. (B) Real time RT-PCR of colonic Il12b  mRNA expression in WT 
(solid line) and IL-10-/- (dashed line) normalized to β-actin at 7, 14 and 21 days post-CNV 
with enteric- microbiota Results are expressed as mean + SEM from 3 mice per group and 
are representative of 2 independent transitioned experimental cohorts, *p<0.05 vs. WT CNV.
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Supplemental Figure 2.4. The enteric-microbiota regulat
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Supplemental Figure 2.5.  Expression of IL-12 family members in IFN-γR1/IL-10 -/- and
IRF-1 /IL-10-/- mice.  Colonic Il12b and Il12a mRNA and was examined using real-time RT-
PCR from WT, IL-10-/-, IFN-γR1/IL-10 -/- and IRF-1/IL-10-/- mice. Results are expressed as 
mean + SEM from 4-5 mice per group and were not statistically different vs. IL-10-/- mice. 

 



 

 

 

 

 

 

CHAPTER 3 

HEME OXYGENASE 1 (HO-1) EXPRESSION AND FUNCTION IS PROTECTIVE 

AGAINST MUCOSAL IMMUNE RESPONSES TO THE ENTERIC- MICROBIOTA 

SHEHZAD Z. SHEIKH, KATSUYOSHI MATSUOKA, HOUDA ELLOUMI, ERIN STEINBACH, 

FENGLING LI, TAKU KOBAYASHI, TARA RUBINAS, SCOTT E. PLEVY 
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3.1. ABSTRACT 

Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that plays a critical role in 

host defense against oxidant-induced injury. HO-1 catalyzes the first and rate-limiting step in 

the oxidative degradation of heme to carbon monoxide (CO), biliverdin and ferrous iron. We 

have previously demonstrated that carbon monoxide (CO) suppresses chronic intestinal 

inflammation in IL-10 deficient (IL-10-/-) mice through a HO-1 dependent pathway. Here, we 

elucidate mechanisms through which HO-1 expression and function impact innate immune 

responses to the enteric-microbiota.  Wild type (WT) and colitis-prone IL-10-/- mice (n=5) 

raised in a germ-free environment (GF) were transitioned to conventionalized specific 

pathogen free housing (SPF). HO-1 mRNA (Hmox1) and protein were induced in the colons 

from WT SPF-transitioned but not in colons from IL-10-/- mice. In addition, in SPF-

transitioned WT and IL-10-/- mice, colonic HO-1 expression inversely correlated with colonic 

inflammation and expression of IL-12, IL-23, and TNF. Pharmacological induction of HO-1 

prevents the initiation of enteric-microbiota induced colitis in IL-10-/- mice. Based on these 

results, we further explored the role of IL-10 in the regulation of HO-1 in murine 

macrophages. IL-10-/- bone marrow-derived macrophages (BMMs) showed significantly 

reduced LPS-stimulated Hmox1 and protein expression compared to WT BMMs. 

Furthermore, the addition of IL-10 restored HO-1 expression in IL-10-/- BMMs and enhanced 

expression in WT BMMs. Defects in intracellular bactericidal activity in macrophages have 

been implicated in the pathogenesis of IBD. To assess the role of CO and HO-1 in 

intracellular eradication of enteric bacteria, BMMs were cultured with E. coli (K-12) and a 

gentamicin protection assay was used to assess bactericidal responses. CO-exposed BMMs 

demonstrated increased HO-1 expression and enhanced bacterial killing compared to air-

exposed BMMs. CO-induced enhanced bactericidal activity correlated with reduced 

secretion of IL-12 p40. To specifically study the role of HO-1, retrovirus transduced RAW 
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264.7 macrophages that over-express HO-1 were cultured with E. coli.  Enhanced bacterial 

killing was demonstrated in RAW 264.7 macrophages over-expressing HO-1. In conclusion, 

the enteric-microbiota regulates HO-1 expression in the murine colon through IL-10 

dependent mechanisms. Macrophage HO-1 expression enhances enteric bactericidal 

activity. These finding elucidate important homeostatic pathways mediated by HO-1 I 

mucosal immunity, and suggest that HO-1 induction is am attractive therapeutic target in 

chronic inflammatory bowel diseases. 
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3.2. Introduction 

 

The pathogenesis of the human inflammatory bowel diseases (IBD) involves 

interactions between complex genetic, immunologic and environmental factors (1). The role 

of the environment in the pathogenesis of IBD is perhaps best evident by the 

epidemiological observation that cigarette smoking is protective against the development of 

human ulcerative colitis (UC) (2). However, factors that contribute to these protective effects 

remain unclear. Carbon monoxide (CO), a major component of cigarette smoke, has been 

shown to have anti-inflammatory effects in murine models of sepsis, postoperative ileus and 

organ xenotransplantation (3) (4) (5) (6). Mammalian cells generate CO endogenously as a 

product of heme degradation by the heme oxygenase (HO) enzymes. Heme oxygenase-1 

(HO-1) is a cytoprotective enzyme that plays a critical role in defending the body against 

oxidant-induced injury (7). HO-1 catalyzes the first and rate-limiting step in the oxidative 

degradation of heme to carbon monoxide (CO), biliverdin and ferrous iron. Biliverdin is 

converted to bilirubin, a potent endogenous anti-oxidant with recently described anti-

inflammatory properties (7). CO has numerous biological functions including anti-

inflammatory properties (8). In acute models of inflammation, such as endotoxin exposure, 

HO-1 deficient (Hmox1-/-) mice are susceptible to oxidant-induced tissue injury and death 

(9). In contrast, administration of CO or biliverdin to animals exposed to endoxin decreases 

inflammation and attenuates end-organ injury (10) (11) (12) (13). Although these results 

demonstrate beneficial effects of HO-1 and its products during purely acute inflammatory 

processes, there is less certainty to the role of HO-1 in chronic models of inflammation such 

as experimental colitis, collagen induced arthritis (CIA) and experimental autoimmune 

encephalitis (EAE). Our group was the first to demonstrate that CO ameliorates active 
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inflammation in a model of chronic IBD, IL-10 deficient (IL-10-/-) mice, through induction of 

HO-1 (14).  

 The intestinal tract contains the largest number of macrophages in the body and 

these cells are strategically located directly underneath the epithelial layer (15). Intestinal 

macrophages have a different phenotype from other tissue macrophages in that they ingest 

and may kill microbes but they do not mediate strong pro-inflammatory responses upon 

microbial recognition (16). These properties make the intestinal macrophage an important 

component of host innate immune responses to enteric-microbiota. HO-1 and CO have 

been demonstrated to play an important role in antimicrobial processes. Endogenous HO-1 

enhances bacterial clearance, in part, by increasing phagocytic activity against E. faecalis in 

a murine model of polymicrobial sepsis. These effects have been attributed to CO, as a CO-

releasing molecule (CORM) enhanced phagocytosis in mice and rescued Hmox1-/- mice 

from lethality in polymicrobial sepsis (17).  

In this study, we demonstrate that LPS induces HO-1 in wild type (WT) but not IL-10-

/- bone marrow derived macrophages (BMMs). Expression of HO-1 is dependent on IL-10 

and MyD88. Additionally, we demonstrate that the enteric-microbiota induce colonic 

expression of HO-1 in WT but not IL-10-/- mice. HO-1 expression inversely correlates with 

colonic inflammation and IL-12, IL-23 and TNF expression in IL-10-/-. Moreover, HO-1 

derived CO is important in enhancing macrophage bactericidal activity, which in turn 

correlates with protection against colitis in IL-10-/- mice. Overall, these studies further 

advance the understanding of the balance between pro- and anti-inflammatory mediators in 

enteric-microbiota induced intestinal inflammation, and highlight HO-1 as an important 

therapeutic target in IBD.   
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3.3. Results 

3.3.1 Enteric-microbiota regulate heme oxygenase-1 (HO-1) expression in the colon.  

To determined the effects of enteric-microbiota in regulating colonic HO-1 gene (Hmox1) 

expression in the colon, WT and colitis-prone IL-10-/- mice born and raised in GF 

environment were colonized with a specific pathogen free enteric-microbiota 

(conventionalized, CNV). WT but not IL-10-/- mice demonstrated increased Hmox1 

expression in the colon (Figure 3.1A). Attenuated colonic Hmox1 expression correlated with 

the development of colonic inflammation in IL-10-/- mice 14 days post-CNV (Figure 

3.1B).Pro-inflammatory cytokines gene expression, II12b (Figure 3.1C and tnf (Figure 3.1D) 

were increased in IL-10-/- but not WT colons.  

 Next, we performed a kinetic analysis of HO-1 expression in the colons of WT and 

IL-10-/- GF mice transitioned into a CNV microbiota at 3, 7 and 14 days post-colonization.  

HO-1 expression was induced in WT colons but not IL-10-/- colons at day 3, 17 and 14 post-

CNV (Figure 3.2A). The increase in colonic HO-1 was also demonstrated by 

immunohistochemistry in WT (Figure 3.2B, upper panel) compared with IL-10-/- mice (Figure 

2B, lower panel).  Finally, we determined the expression of HO-1 in colonic CD11b+ lamina 

propria mononuclear cells (LPMCs), representing predominantly an intestinal macrophage 

population. Colonic CD11b+ LPMCs from IL-10-/- mice demonstrate markedly reduced 

expression of Hmox1 expression compared to WT CD 11b+ LPMC (Figure 3.2C). These 

results suggest that enteric-microbiota induced HO-1 expression in the colon is protective 

against initiation of intestinal inflammation. 
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3.3.2 LPS and IL-10 regulate HO-1 expression in macrophages.  Next, we determined 

mechanisms through which enteric-bacteria regulate HO-1 in murine macrophages. BMMs 

from WT and IL-10-/- mice were stimulated with LPS + IL-10 and expression of Hmox1 

mRNA and HO-1 protein was determined. IL-10-/- BMMs demonstrated decreased 

expression of Hmox1 compared to WT BMMs. Addition of recombinant IL-10 restored 

Hmox1 mRNA and protein expression in IL-10-/- BMMs (Figure 3.3A and B). Moreover, 

incubation of WT BMMs with an IL-10 antibody inhibited LPS induced expression of HO-1. 

Furthermore, addition of recombinant IL-10 augmented LPS induced HO-1 expression in 

WT BMMs and restored expression in IL-10-/-BMMs (Figure 3.3B). Consequently, IL-12 p40 

expression was increased in IL-10-/- BMMs compared to WT BMMs, and suppressed with the 

addition of IL-10 (Supplemental Figure 3.1A). These results demonstrate that LPS and IL-10 

are regulators of HO-1 in macrophages.  

 

3.3.3 TLR induced HO-1 in macrophages is MyD88 dependent. Toll-like receptors (TLRs) 

recognize specific molecular patterns present in a broad range of microbial pathogens. TLR 

activation utilizes a common signal transduction pathway initiated by the adaptor protein 

MyD88. MyD88-independent signaling is unique to TLR3 and TLR4 activation (18). To 

further elucidate TLR mediated induction of HO-1, WT and MyD88-/- BMMs were stimulated 

with MyD88 dependent (sBLP, LPS, flagellin and CpG DNA) and MyD88/TIR-domain-

containing adapter-inducing interferon-β (TRIF) dependent ligands (poly iC). Interestingly, 

sBLP, poly iC, LPS, flagellin and CpG DNA induced HO-1 expression in WT but not MyD88-/- 

BMMs (Figure 3.3C). Expression of inducible nitric oxide (iNOS), a TRIF dependent gene 

(19), is equivalent in MyD88-/- and WT BMMs, while HO-1 expression was absent (Figure 

3.3C). Addition of recombinant IL-10 restored HO-1 expression in MyD88-/- BMMs, 
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suggesting that IL-10 induced expression of HO-1 in macrophages is independent of TLR 

mediated signaling pathways. As previously reported, TLR mediated IL-10 expression, 

another MyD88 dependent gene, was abrogated in MyD88-/- BMMs (Supplemental Figure 

3.1B). These results demonstrate that HO-1 expression in macrophages is dependent on 

both MyD88 and IL-10. 

 

3.3.4 Other signal transduction pathways and HO-1 expression in macrophages. 

Inducers of HO-1 activate protein phosphorylation-dependent signaling cascades that 

ultimately converge on the transcription factors that regulate the Hmox1 gene. MAP kinases 

are serine/threonine-specific protein kinases that respond to extracellular stimuli and 

regulate varied cellular activities, such as gene expression, mitosis, differentiation, 

proliferation, and cell survival/apoptosis (10). MAPK kinases have been implicated in the 

induction of HO-1. We examined the role of two primary signaling cascades of the MAPK 

superfamily. First, treatment of WT BMMs with pharmacological inhibitor of p38 MAPK 

SB203580 resulted in reduction in LPS induced HO-1 protein expression (Figure 3.4A). 

Second, treatment with ERK1/2 inhibitor PD98059 had no effect on LPS induced HO-1 

protein expression. Interestingly, p38 MAPK inhibition did not affect IL-10 induced HO-1 

expression in WT BMMs (Figure 3.4A). 

  A limited number of studies have examined the role of the PI3K cell survival pathway 

in Hmox1 gene regulation. PI3K, a ubiquitous lipid-modifying enzyme consisting of a p85 

regulatory subunit and a p110 catalytic subunit, responds to activation by diverse stimuli 

including growth factors, cytokines, and cytotoxic agents (10). WT BMMs treated with PI3K 

inhibitor LY294002 resulted in significant reduction in LPS activated HO-1 protein induction 

(Figure 3.4B). Likewise, relatively few studies have implied roles for protein kinases (PK) 

http://en.wikipedia.org/wiki/Serine/threonine-specific_protein_kinase
http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Mitosis
http://en.wikipedia.org/wiki/Cellular_differentiation
http://en.wikipedia.org/wiki/Apoptosis
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A/G/C in Hmox1 regulation. WT BMMs treated with PKC inhibitor Ro31-8220 had no effect 

on LPS induced HO-1 protein expression in macrophages (Figure 3.4B). Overall, our studies 

indicate that the regulation of Hmox1 gene expression in macrophages appears to involve 

protein phosphorylation cascades that converge on transcriptional activators or repressors 

leading to HO-1 induction. 

 

3.3.5 Induction of HO-1 is protective against the initiation of colitis induced by the 

enteric-microbiota.  We investigated the protective effects of colonic HO-1 expression in 

the prevention of enteric-microbiota induced colitis in IL-10-/- mice. GF IL-10-/- mice were 

administered 5 mg/kg cobalt protoporphyrin (CoPP), an inducer of HO-1, or vehicle (DMSO) 

intraperitoneally (IP), for two weeks prior to conventionalization. CoPP treated GF IL-10-/- 

mice demonstrated a robust increase in colonic HO-1 protein expression compared with 

vehicle treated mice (Figure 3.5A). Post-conventionalization, WT (vehicle treated) and IL-10-

/- mice treated with CoPP demonstrated increased colonic HO-1 expression compared to 

vehicle treated CNV IL-10-/- mice (Figure 3.5B). IL-10-/- mice treated with CoPP demonstrated 

less severe colitis compared to vehicle treated group (Figure 3.5C). IL-12 p40 secretion in 

supernatants from colonic explants cultures was also significantly reduced in CoPP treated 

IL-10 mice compared to vehicle treated controls (Figure 3.5D). Our results demonstrate that 

induction of colonic HO-1 expression is protective against enteric -microbiota induced colitis 

in IL-10-/- mice.  

 

3.3.6 HO-1 derived CO is enhances macrophage bactericidal activity. Resident 

macrophages adapt to the antigen rich intestinal environment by acquiring a phenotype that 
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is refractory to the induction of proinflammatory cytokine production by PAMPs (20).  

However, intestinal macrophages are not impaired in their phagocytic activity of enteric 

bacteria like E. coli which is exceptionally potent (21). Patients with Crohn’s disease also 

demonstrate defective bacterial clearance by macrophages (22). Recently, HO-1 derived 

CO has been shown to enhance bacterial clearance by increasing the endogenous 

antimicrobial response (17). Compounds known as CO-releasing molecules (CORM) such 

as CORM-186 have the ability to release CO in vivo (23). CO is able to diffuse across cell 

boundaries and exhibit biological functions on neighboring cells. Therefore, studies were 

performed to determine whether HO-1 or CO affect the ability of macrophages to eradicate 

intracellular enteric bacteria. WT BMMs were transfected with Hmox1 siRNA using AMAXA 

nucleofector technology. Significant knockdown of HO-1 was observed in Hmox1 siRNA 

transfected BMMs compared with scrambled siRNA transfected controls (Figure 3.6A).  

Using gentamicin protection assays, Hmox1 siRNA transfected BMMs showed impaired 

killing of intracellular commensal K12 E. coli compared with scrambled siRNA transfected 

controls (Figure 3.6B). Similarly, in RAW 264 macrophages stably transfected to over-

express HO-1 (provided by Leo Otterbein, Beth Israel-Deaconess Medical Center,, Boston, 

MA) also demonstrated enhanced E. coli clearance compared with control transfected RAW 

264 cells (Figure 3.6C). Finally, to demonstrate that bactericidal activity mediated by HO-1 is 

mediated by its metabolitic product CO, WT BMMs were incubated with CORM-186 (100 

ug/ml) or inactive (i) CORM-186. Incubation with CORM-186 enhanced macrophage 

bactericidal activity in control and Hmox1 siRNA transfected cells compared to iCORM-186 

treated macrophages (Figure 3.6D). IL-10-/- BMMS, defective in TLR mediated HO-1 

expression, also demonstrated impaired killing of intracellular E. coli compared with WT 

BMMs (Figure 3.6D). Incubation with CORM-186 (100 ug/ml) resulted in enhanced 

clearance of intracellular E. coli in WT and IL-10-/- BMMs. Our results demonstrate that HO-1 
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derived CO enhances macrophage bactericidal activity against a commensal enteric 

bacterium.    

 

3.3.7 HO-1 derived carbon monoxide (CO) is protective against progression of murine 

colitis.  Short term administration of the cyclooxygease inhibitor piroxicam has been shown 

to accelerate the development and severity of chronic colitis in IL-10-/- mice. Homozygous IL-

10-/- mice on C57BL/6 background (5–6 weeks of age) were given piroxicam for 14 days at a 

dose of 200 ppm in the diet. As an in vivo correlate, we next determined whether CO would 

have an impact on colitis severity in piroxicam treated IL-10-/- mice. Following piroxicam 

treatment for 14 days, 30 mg/kg of CORM-186 or iCORM-186 was injected into the 

peritoneum twice daily for 2 weeks. Endogenously generated CO and exogenous CO gas, 

inhaled at doses whereby the oxygen-carrying capacity of hemoglobin is not severely 

compromised (carboxy-hemoglobin, HbCO<20%), has been shown to elicit protection and 

beneficial outcomes, covering a vast array of responses against multiple organ injury, 

inflammation, apoptosis, cell proliferation, vasoconstriction and both systemic and 

pulmonary hypertension. HbCO levels in CORM-186 treated mice ranged from 9-13% 

compared to <1-3% in iCORM-186 treated group (data not shown). CORM-186 treated mice 

had a significant decrease in colitis scores compared with iCORM-treated mice (Figure 

3.7A). CORM-186 treated IL-10-/- mice also demonstrated less colonic secretion of IL-12 p40 

in colon explant cultures (Figure 3.B).  

 

3.3.8 Pharmacological induction of HO-1 and CORM-186 enhance phagolysosome 

formation in macrophages. HO-1 and CO have been implicated in enhancing macrophage 
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phagocytosis. HO-1 and CO also both enhance the ability to eradicate intracellular E. coli. 

Recently, alterations in phagosomal function have emerged as a central focus in the 

macrophage’s ability to eradicate intracellular bacteria. However, mechanisms responsible 

these defects remain elusive. We next sought to determine if induction of HO-1 (CoPP) or 

treatment with CORM-186 affect phagolysosome formation in macrophages. WT BMMS 

were incubated with medium containing LysoTracker®, a weak base that permeated cell 

membranes and fluoresces upon protonation in low-pH environments. LysoTracker® detects 

phagolysosomal acidification (Figure 3.8A). eGFP labeled E.coli were used as a positive 

control to demonstrate phagolysosomal activation. CoPP and CORM-186 treated WT BMMs 

had significantly increased percentage of LysoTracker®-positive cells (Figure 3.8B) 

demonstrating that HO-1 and CO may enhance phagolysosomal activation.  
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3.4. Discussion 

These experiments demonstrate the importance of colonic HO-1 expression in 

protecting against mucosal innate immune responses to enteric-microbiota. The enteric -

microbiota induce colonic HO-1 in WT but not colitis-prone IL-10-/- mice in a GF environment 

when transitioned to CNV housing. Pharmacological induction of HO-1 in IL-10-/- GF mice 

prior to colonization with enteric-microbiota is protective against the initiation of colitis. 

Mechanistically, LPS and IL-10 regulate HO-1 expression in BMMs and colonic CD11b+ 

LPMCs. TLR mediated regulation of HO-1 in macrophages is MyD88 dependent. Our 

experiments also reveal that protective effects of HO-1 in colitis are through CO, one of the 

by-products of heme metabolism, and suggest that, in part, CO and HO-1 may exert 

mucosal protection through enhancement of bactericidal pathways..  

In a murine model of acute mucosal injury (dextran sodium sulfate–induced colitis), 

the HO-1 inducer CoPP modestly ameliorated inflammatory changes, but CO had no effect 

(24). In addition, pharmacologic inhibition of HO-1 exacerbated TNBS-induced acute colitis 

in rats (25). Our group was the first to suggest an anti-inflammatory role for CO in chronic 

intestinal inflammation and the first to modulate the HO-1 pathway in established chronic 

intestinal inflammation (14). Accumulating evidence suggests that the dynamic balance 

between the enteric-microbiota and host innate responses in the intestine has a pivotal role 

in the initiation and pathogenesis of chronic IBD (26). The importance of the microbiota is 

directly supported by studies in a variety of murine strains in which 'spontaneous' chronic 

colitis is dependent on the presence of the enteric-microbiota (27). Utilizing GF WT and 

colitis-prone IL-10-/- mice, this study is the first to demonstrate that the enteric-microbiota 

regulate expression of HO-1 in the murine colon. Enteric-microbiota induced colonic HO-1 

inversely correlates with colonic inflammation and pro-inflammatory cytokine secreation in 
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IL-10-/- mice. Decreased Hmox1 expression was also evident in CD 11b+ LPMCs from IL-10-

/- mice compared to WT mice.  

A variety of physiological and non-physiological stressors, including endotoxin, 

inflammatory cytokines, ultraviolet A radiation (UVA), hyperthermia, and heavy metals, 

stimulate HO-1 expression and activity, primarily via activation of the Hmox1 gene. LPS 

stimulates HO-1 in WT but not IL-10-/- BMMs. However, IL-10 still induced HO-1 in MyD88-/- 

BMMs, suggesting an alternative signaling pathway from TLR ligands (Figure 3.3C). Lee 

and colleagues demonstrated that IL-10 induces expression of HO-1 via a p38 mitogen-

activated protein kinase (MAPK)-dependent pathway (28). Interestingly, inhibition of p38 

also repressed LPS induced HO-1 in BMMs but inhibition of ERK had no apparent effects 

(Figure 3.4). This is in agreement with a substantial amount of data that supports a role for 

the MAPK cascades in signal-mediated Hmox1 activation (29) (30). Interestingly, decreased 

HO-1 induction by MAPK p38 inhibition may be specific to macrophages. Studies utilizing 

the p38 inhibitor SB 203580 in other cell types such as rat hepatocytes is not inhibited. This 

may point to effects of specific isoforms of p38, as the α- and β-isozymes of p38 that are 

direct targets of p38 MAPK inhibitor SB 203580(30). We also show the importance of PI3K 

in LPS mediated induction of HO-1 in macrophages. This is supported by studies 

demonstrating that specific inhibitors of PI3K blocked Nrf2 activation, the major transcription 

factor involved in Hmox1 gene expression, upon oxidative stress in H4IIE hepatoma 

cells(31). Similarly, inhibitors of PI3K blocked the activation of Hmox1 by 15d-PGJ2 in human 

lymphocytes (32). In similar studies using murine macrophages, the PI3K inhibitor LY294002 

also blocked ho-1 activation by LPS (33). 

LPS and inflammatory cytokines (IL-1β and TNF) are widely recognized as potent 

inducers of HO-1 expression, and several studies have linked NF-κB and AP-1 factors in this 



response (34) (35). However, given the absence of a clearly identified, functional NF- B 

binding site, how NF- B promotes Hmox1 gene transcription becomes a matter of 

speculation (36). Prior studies have provided support for NF-κB in Hmox1 regulation with the 

use of chemical and gene-based inhibitors (37) (38). Our study is the first to demonstrate 

that TLR mediated regulation of HO-1 is dependent on MyD88 in BMMs.  

Patients with Crohn’s disease demonstrate defective macrophage bacterial 

clearance (22). HO-1 derived CO has been shown to enhance bacterial clearance by 

increasing the endogenous antimicrobial response without inhibiting the inflammatory 

response (17). Similarly, Otterbein and colleagues have shown in vitro that CO increased 

macrophage phagocytosis of E.coli in the RAW 264.7 cell line (11). CO has also been 

reported to inhibit TLR pathways that results in a decrease production of pro-inflammatory 

cytokines, such as TNF in macrophages (39). We were interested in studying whether 

suppression of an inflammatory response by HO-1 and CO could involve the ability of 

macrophages to eradicate commensal bacteria like E.coli. Hmox1 gene knockdown using 

siRNA markedly reduced the ability of macrophages to eradicate intracellular E.coli. 

Importantly, IL-10-/- BMMs, defective in LPS mediated induction of HO-1, also demonstrated 

decreased bactericidal activity. CO enhanced macrophage bactericidal activity against E.coli 

in both WT and IL-10-/- BMMs. Administration of CORM-186 to colitis-prone IL-10-/- mice 

decreased intestinal inflammation and colonic IL-12 p40 secretion. Chung and colleagues 

recently demonstrated that CORMs increase phagocytosis, decrease circulating bacterial 

counts and rescue HO-1-/- mice from the exaggerated mortality of polymicrobial sepsis.  

 Our study also reveals a novel pathway through which HO-1 and CO affects 

macrophage bactericidal activity. Pharmacological induction of HO-1 with CoPP or 

incubation with CORM-186 results in significantly increased phagolysosomal activation in 
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macrophages associated with enhanced killing of intracellular E. coli. Macrophages can kill 

or limit the replication of microorganisms through many possible mechanisms including the 

limitation of available nutrients, production of antimicrobial peptides, reactive oxygen and 

nitrogen species (ROS/RNS) and lysosomal enzymes  (1). Phagolysosome formation is an 

early but critical aspect through which macrophages eradicate intracellular pathogens. 

Indeed, in humans, chronic granulomatous disease (CGD) is a consequence of a genetic 

alteration that results in defective phagolysosomal activation. CGD patients are not only 

susceptible to bacterial infections but also develop IBD. Furthermore, the importance of 

microbicidal pathways in the pathogenesis of IBD was highlighted by the discovery that a 

synonymous SNP in the auto-phagocytic gene ATG16L1 and a SNP in the phagosomal 

gene NCF4 are associated with enhanced risk for IBD (40, 41). 

In conclusion the enteric-microbiota induce HO-1 in the colons of WT but not colitis 

prone IL-10-/-mice. Pharmacological induction of HO-1 in GF IL-10-/- mice prior to 

colonization with enteric-microbiota reduces colonic inflammation. HO-1 and its metabolic 

product CO exert their anti-inflammatory effects through enhancement of macrophage 

bactericidal activity. Defective HO-1 induction in macrophages may lead to defective 

intracellular responses to commensal enteric bacteria, therefore contributing to the 

pathogenesis of IBD.  
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3.5. Materials and Methods 

Mice.  Wild-type and genetically deficient mice (WT, IL-10-/-, MyD88-/-) in specific pathogen 

free conventionalized housing (CNV) were on the C57BL/6 background (Jackson 

Laboratories) and matched for age in all experiments. All genetically deficient mice 

assessed for spontaneous colitis were littermates. 129S6/SvEv GF mice (WT and IL-10 -/-) 

were Caesarian derived and were maintained according to standard techniques (42) in 

Trexler flexible film isolators at the Gnotobiotic Animal Facility of the Center for 

Gastrointestinal Biology and Disease at the University of North Carolina, Chapel Hill. CNV 

mice were maintained in a dedicated room at the University of North Carolina Laboratory 

Animal Resources Facility. GF status was monitored every 2 weeks by aerobic and 

anaerobic culture and gram stain of stool samples and/or bedding material. Mice were 

colonized with enteric-microbiota at 10-12 weeks of age with a murine microbiota that was 

isolated from WT mice raised in SPF conditions (43). GF IL-10-/- mice were injected intra-

peritoneal (IP) with 5 mg/kg of cobalt protoporphyrin (CoPP). Similarly IL-10-/- mice raised in 

CNV environment were injected IP with 30 mg/kg of CORM-186 or inactive CORM-186, 

twice daily for two weeks.  Additionally, CNV mice were determined to be negative for 

Helicobacter species (Helicobacter bilis, Helicobacter  hepaticus, Helicobacter  rodentium, 

Helicobacter trogontum and Helicobacter sp.) using Helicobacter PCR profile performed on 

freshly harvested fecal pellets (RADIL Laboratories, Columbia MO). All animals were 

housed in accordance with guidelines from the American Association for Laboratory Animal 

Care and Research Protocols and experiments were approved by the Institutional Animal 

Care and Use Committee of the University of North Carolina. At the end of the study period, 

animals were euthanized using excess CO2 inhalation.  
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Murine bone marrow-derived macrophages. Bone-marrow-derived macrophages (BMMs) 

were harvested as previously described (44). Briefly, BMMs were grown for 7 days in RPMI 

1640 containing 10% FCS, 10mM HEPES, 1% penicillin/streptomycin and supplemented 

with 40 ng/ml GM-CSF (Peprotech, Rocky Hill, NJ). BMMs were stimulated with 100 ng/ml of 

high purity LPS and/or 10 ng/ml of IFN-γ (Invivogen, San Diego, CA). 

Cytokine ELISAs. Murine IL-12 p40 immunoassay kits (R&D Systems) was used according 

to the manufacturers’ instructions. 

Western immunoblot. Western blot analyses were performed on whole cell extracts as 

described previously (44). Anti–HO-1 antibodies were from Stressgen, MI and β-actin 

antibodies were purchased from Abcam, MA.  

Soluble inhibitors. Soluble inhibitors for ERK1/2 (PD 98059), p38 MAPK (SB 203680), 

PKC (Ro31-8220) and PI3K (LY 294003) were obtained from Calbiochem, CA..  

RNA extraction and quantitative real-time RT PCR (qRT-PCR) analysis. Total RNA was 

extracted with RNeasy kit (Qiagen) and reverse-transcribed with ramdom hexamers using 

Superscript reverse transcriptase II (Invitrogen). Complementary DNA was analyzed by 

quantitative real-time PCR using SYBR Green Master Mix (Applied Biosystems) on a HT-

7900  (Applied Biosystems). Single-product amplification was confirmed by melting-curve 

analysis. Primer sequences are as follow: Hmox1 Forward 5’-ccagagtttccgcatacaacc-3’, 

Reverse 5’-tctctggacacctgacccttcg-3’, Il12b Forward 5’-cgcaagaaagaaaagatgaaggag-3’, 

Reverse 5’-ttgcattggacttcggtagatg-3’; tnf Forward 5’ β-Actin Forward 5’-

agccatgtacgtagccatccag-3’, Reverse 5’-tggcgtgagggagagcatag-3’. Expression was 

normalized to β-Actin and represented as fold induction over unstimulated cells. 
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Transient siRNA transfections. Bone marrow-derived murine macrophages were 

transiently transfected with ON-TARGETplus Hmox1 siRNA, Chicago, IL using AMAXA 

Nucleofector Technology (AMAXA) by the described protocol for murine macrophages. After 

incubation for 12 hours at 37oC, the cells were either unactivated or activated with 100 ng/ml 

LPS, 10 ng/ml IFN-γ, or both. Control scrambled siRNA was purchased from Dharmacon, IL.  

Colonic tissue explant cultures. Sections of the transverse colon were processed as 

previously described (14). Tissue fragments (0.5 g dry weight) were incubated in 1.0 ml 

RPMI 1640 supplemented with 50 μg/ml gentamicin, 100 U/ml penicillin, 100 μg/ml 

streptomycin, 0.25 μg/ml fungizone (GIBCO BRL), and 5% heat-inactivated fetal calf serum. 

Tissue fragment supernatants were collected after 24 hours for cytokine ELISAs. 

Preparation of heat-killed bacteria. E. coli in log-phase growth was harvested and washed 

twice with ice-cold PBS. Bacterial suspensions were, then, heated at 80°C for 30 minutes, 

washed, resuspended in PBS, and stored at –80°C. Complete killing was confirmed by 72-

hour incubation at 37°C on plate medium. Heat-killed bacteria were added at multiplicity of 

infection (M.O.I.) = 10. 

Isolation of colonic macrophages. Lamina propria cells (LPCs) were isolated from mouse 

colon by a modified enzymatic method (45). Briefly, colons were dissected into small pieces, 

and washed three times in Hank’s buffered saline solution (HBSS) containing 2.5% FBS. 

The last wash was done with 1mM DTT to remove mucus. The pieces were, then, incubated 

in HBSS containing 1mM EDTA three times for 20 min each at 37°C. The remaining tissue 

was digested in HBSS containing 1 mg/ml collagenase type IV (Sigma-Aldrich, St. Louis, 

MO) for 1.5 hours at 37°C. The supernatant was collected, filtered and centrifuged to obtain 

a cell pellet. LPCs were isolated by density gradient centrifugation using 40 % and 75 % 

Percoll solution (GE Healthcare, Piscataway, NJ). The intermediate layer containing LPCs 
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was collected. LPCs were further separated into CD11b+ cells using anti-CD11b 

microbeads (Miltenyi Biotec, Auburn, CA). Purity was more than 90% by flow cytometric 

analysis (data not shown). 

Histology. Colonic tissue sections were fixed in 10% buffered formalin and embedded in 

paraffin. 4-μm-thick sections were stained with hematoxylin and eosin. Spontaneous colitis 

scoring was adapted from the criteria reported by Berg et al, as previously described (14). 

All histological scores were determined by a staff pathologist (T. Rubinas) who was blinded 

to the experimental protocols.  

Immunohistochemistry. Colonic tissue sections were fixed in 10% formalin and cut into 4 

μm-thick paraffin sections and placed on microscope slides. Tissue sections were stained 

with rabbit anti-HO-1 (Stressgen, MI), at a 1:500 dilution for overnight at 4oC. Samples were 

then incubated for 1 hour at room temperature with secondary antibody (1:500 dilution of 

rabbit anti-mouse (SantaCruz, CA). Rabbit nonimmune serum or secondary antibody alone 

was used as controls and nonspecific immunostaining was not observed (data not shown). 

Slides were viewed on an Olympus Flouview 1000 confocal microscope (Olympus America, 

Melville, NY). 

Gentamicin protection assay. 1x106 WT and IL-10-/- BMMs were cultured in 12-well plates 

in triplicate and incubate with E.coli K12 at 10:1 ratio in antibiotic-free medium for 1 hour. 

Cells were then washed with PBS plus gentamicin (200 μg/ml) and incubated in medium 

supplemented with gentamicin (200 μg/ml) at 37°C for an additional hour to eliminate 

extracellular bacteria. New medium supplemented with gentamicin (100 mg/ml is added to 

the cells. At 12 hours, a batch of cells are lysed with 1% Triton X-100,  diluted, plated on BHI 

agar plates, and incubated at 37°C overnight.  Colony-forming units (CFUs) calculated at 1 

hour were determine total uptake of bacteria (phagocytosis). The CFUs recovered at 12 
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hours were represented as the percent survival of total bacteria phagocytosed at the 1 hour 

time point. CORM-186 and inactive CORM-186 were added to the cells after the initial 

elimination of extracellular bacteria and incubated for 12 hours thereafter.   

Statistical Analysis. Statistical significance for data subsets from experiments performed in 

cells was assessed by the two-tailed Student’s t-test. Statistical significance for in vivo data 

subsets was assessed by the Mann-Whitney U test (SPSS, Chicago, IL, USA) ) with 

Bonferroni correction.  
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Figure 3.1. The enteric-microbiota regulate colonic Hmox1 expression in WT but not 
IL-10-/- mice. WT and IL-10-/- mice raised in germ free (GF) conditions were colonized with 
enteric-microbiota from conventionalized (CNV) mice  at 8-10 weeks of age (3 mice per 
group). Colons were harvested at 14 days post-CNV. (A) Total RNA was isolated (Qiagen 
RNeasy Mini Kit) and and β-actin mRNA expression was detected by real-time RT-PCR 
(Applied Biosystems). Results are expressed as mean + SEM from 3 mice per group and 
are representative of 3 independent transitioned experimental cohorts, *p<0.05 vs. WT CNV.  
(B) Colitis scores of 8-wk-old GF WT and IL-10-/- mice.  Results are presented as the sum 
total of four averaged scores from five regions of the large intestine graded by a pathologist 
(T.R.) blinded to the groups using a standard scoring system (14). Results are expressed as 
mean + SD from 3 mice per group and are representative of 3 independent transitioned 
experimental cohorts, *p<0.05 vs. WT CNV. (C) Total colonic RNA was isolated and Il12b 
and (D) tnf expression detected by real-time RT-PCR (Applied Biosystem). Results are 
expressed as mean + SEM from 3 mice per group and are representative of 3 independent 
transitioned experimental cohorts, *p<0.05 vs. WT CNV. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Kinetic analysis of HO-1 protein expression in WT but not IL-10-/- mice. WT 
and IL-10-/- mice raised in germ free (GF) conditions were colonized with enteric- microbiota 
from conventionalized (CNV) mice  at 8-10 weeks of age (3 mice per group). Colons were 
harvested at day 3, 7, 14 and 21 days post-CNV. (A) Total colonic protein was isolated and 
analyzed for HO-1 expression using Western blot. Data is representative of 3 similar blots 
from 3 different mice per time point. (B) Immunohistochemical analysis of intestinal HO-1 
protein expression from WT and IL-10-/- CNV mice.  Depicted intestinal sections were 
matched for similar histologic colitis activity. (C) CD11b+ and CD11b- LPMCs isolated from 
WT and IL-10-/- mice were analyzed for baseline Hmox1 expression. Total RNA was isolated 
(Qiagen RNeasy Mini Kit) and Hmox1 and β-actin mRNA expression was detected by real-
time RT-PCR (Applied Biosystems). Results are expressed as fold induction relative to WT 
represent LPMCs pooled from 3 individual mouse colons. 
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FIGURE 3.3. LPS and IL-10 induce HO-1 in murine macrophages. WT and IL-10-bone 
marrow derived macrophages (BMMs) were stimulated with (A) LPS (100 ng/mL) + IL-10 
(10 ng/mL). Total RNA was isolated (Qiagen RNeasy Mini Kit) and analyzed for Hmox1 and 
β-actin mRNA expression was detected by real-time RT-PCR (Applied Biosystems). Results 
are expressed as mean + SEM from 3 independent experiments. (B) WT and IL-10-/-  BMMs 
were stimulated with LPS (100 ng/mL) in the presence of IL-10 (10 ng/mL), and anti-1IL-10 
antibody (10 ug/mL). HO-1 protein was analyzed by western blotting. Data is representative 
of 5 independent experiments with similar results. (C) WT and MyD88-/- BMMs were 
stimulated with LPS (100 ng/mL), CpG (1 μM), SbLP (100 ng/mL), polyI:C (50 ng/mL) and 
IL-10 (10 ng/mL), ug/mL). HO-1 protein was analyzed by western blotting. Data is 
representative of 3 independent experiments.  
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Figure 3.4. Other signal transduction pathways in HO-1 induction in macrophages. 
WT BMMs were stimulated with LPS in the presence of MAPK p38 inhibitor (A) SB 203580 
(10μM), ERK1/2 inhibitor PD 98059 (50 μM), protein kinase C (PKC) inhibitor Ro31-8220 
(5μM) and IL-10 (10 ng/mL), (B) PI3K inhibitor LY 294002 (10μM), cyclohexamide (10 
μg/mL) and actinomycin D (1 μg/mL). HO-1 protein was analyzed by Western blotting. 
Results are representative of 3 independent experiments.  
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Figure 3.5. HO-1 induction prevents enteric-microbiota induced colitis in IL-10-/- mice. 
Germ free (GF) IL-10 -/- mice were injected intraperitoneally (IP) with 5ug/kg of cobalt 
protoporphyrin (CoPP). (A) Colons harvested 7 days after CoPP administration revealed 
increased colonic expression of HO-1 compared to vehicle treated mice. (B) WT CNV and 
CoPP treated IL-10-/- mice demonstrated colonic HO-1 protein expression compared with 
vehicle treated IL-10 CNV mice. (C) CoPP treated IL-10-/- mice revealed less intestinal 
inflammation compared to vehicle group. (D) Spontaneous IL-12 p40 secretion was 
determined in cell free supernatants from colonic explants by ELISA. (p<0.05 vs. vehicle 
treated IL-10-/- mice, n=4 mice per group)  
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Figure 3.6. Hmox1 derived carbon monoxide (CO) is important for macrophage 
bactericidal activity. (A) siRNA was used to knock down Hmox1 in WT BMMs. Total 
protein was isolated and analyzed for HO-1 expression to assess effective gene silencing. 
(B) Cells were analyzed for macrophage bactericidal activity against E.coli K12 using 
gentamicin protection assay.  siRNA transfected cells were cultured in the presence of  
CORM-186 to study the effect of CO on bactericidal activity. Results are representative of 3 
independently performed experiments. (C) RAW 264 macrophages engineered to over-
express Hmox1 were used to perform a gentamicin protection assay against E.coli K12. 
Results are representative of 3 independently performed experiments. (D) WT and IL-10-/- 

BMMs were analyzed for macrophage bactericidal activity against E.coli K12 using 
gentamicin protection assay. BMMs were also cultured in the presence of CORM-186 or 
inactive CORM-186 (iCORM-186) to study the effects of CO on bactericidal activity. Results 
are representative of 3 independently performed experiments.  
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Figure 3.7. CO-Releasing Molecule (CORM-186) ameliorates piroxicam induced colitis 
in IL-10-/- mice. (A) Piroxicam treated IL-10-/- mice were administered , CO-Releasing 
Molecule, CORM-186 (30mg/kg)  IP for 2 weeks. CORM-186 treated mice showed less 
inflammation as compared to inactive CORM-186 (iCORM186) treated controls. (B) 
Spontaneous IL-12 p40 secretion was determined in cell free supernatant from colonic 
explants by ELISA. (*p<0.05 vs. iCORM-186 treated IL-10 -/- mice, n=8-9 mice per group)  
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Figure 3.8. Cobalt protoporphyrin (CoPP) and CORM-186 enhance phagolysosomal 
activation. BMMs from WT were incubated with CoPP (10 μM) and CORM-186 (100 μM) 
following which cells were treated with LysoTracker® (100 nM), fixed in 4% 
paraformaldehyde and stained with nuclear stain Topro-3, 5nM (Invitrogen). (A) 
Representative LysoTracker® –positive cells (red) and nuclei (magenta) from vehicle treated 
(left upper panel), CORM-186 treated (upper right panel), CoPP treated (lower left panel) 
and eGFP- E.coli incubated, positive control (lower right panel) were visualized by confocal 
carl zeiss LSM 710 laser scanning microscopemicroscopy. (B) LysoTracker-positive cells 
were calculated as a percentage of total cells. At least 10 high powered fields and at least 
100 cells were counted.  Error bars represented mean + SEM. * p<0.05  **p<0.01 vs. vehicle 
treated control BMMs.  
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Supplemental Figure 3.1. LPS and IL-10 regulate IL-12 and HO-1 in murine 
macrophages. WT and IL-10-/- bone marrow derived macrophages (BMMs) were stimulated 
with (A) LPS (100 ng/mL) + IL-10 (10 ng/mL) and anti-IL-10 antibody (10 ug/mL). IL-12 p40 
secretion was measured in cell free supernantants 24 hours after stimulation using cytokine 
specific ELISA. Results are a representative from 3 independent experiments with similar 
results. (B) WT and MYD88-/- BMMs were stimulated with LPS (100 ng/mL), CpG (5 
ug/mL), SbLP (100 ng/mL), and IL-10 (10 ng/mL), ug/mL). IL-10 secretion in cell free 
supernatants was analyzed using cytokine specific ELISA. Data is representative of 3 
independent experiments. 
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4.1. Abstract 

Rationale: The metabolic product of the heme oxygenase-1 (HO-1) pathway, carbon 

monoxide (CO) exerts immunomodulatory effects in numerous disease models.  We have 

previously demonstrated that CO suppresses chronic inflammation in Th1/17-mediated 

experimental colitis in IL-10-/- mice through an HO-1 dependent pathway.  In this study, 

homeostatic effects of the HO-1 pathway were determined in Th2-mediated chronic colonic 

inflammation in T cell receptor- alpha (TCRα) deficient (-/-) mice. Methods. TCRα -/- mice 

were exposed to CO or treated with the pharmacologic HO-1 inducer cobalt protoporphyrin 

(CoPP) to assess anti-inflammatory effects on colitis and cytokine expression. Results: 

TCRα -/- mice exposed to CO or treated with CoPP demonstrated significant amelioration of 

active colitis compared to the respective control groups.  CO and CoPP suppressed colonic 

IL-1β, TNF and IL-4 production, while intestinal IL-10 protein secretion was induced.  In 

macrophages, CO induced IL-10 expression through an HO-1 dependent pathway. 

Conclusions: CO and induction of HO-1 suppresses Th2 mediated colitis in TCRα-/- 

mice. The anti-inflammatory effect of CO and HO-1 is likely in part through induction of IL-

10. This study provides further evidence that HO-1 is an important homeostatic pathway in 

mucosal inflammation with pleiotropic anti-inflammatory effects, and that targeting HO-1 is a 

promising therapeutic strategy in chronic inflammatory bowel diseases.  
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4.2. Introduction 

Cigarette smoking is perhaps the most significant environmental risk factor identified in the 

human inflammatory bowel diseases (IBD), Crohn’s disease (CD) and ulcerative colitis (UC). 

Meta-analyses have shown that the risk of developing UC in current smokers is 

approximately 40% that of nonsmokers (1). Furthermore, former smokers are at 

approximately a 1.7 times increased risk of developing UC (2). Some studies even suggest 

a dose-response, with heavier smokers having greater protection (1). Even passive smoking 

in childhood may confer protection against UC (3). Based on these compelling 

epidemiological observations, one of the important unanswered questions in IBD is how 

does cigarette smoking mediate this protective effect? Remarkably, the influence of 

cigarette smoking on CD is opposite: CD patients who smoke have an aggressive disease 

course compared to non-smokers, with more rapid progression to surgery and faster 

postoperative recurrences (4). 

One possible mediator that may contribute to the beneficial association between 

smoking and ulcerative colitis is the gaseous molecule, carbon monoxide (CO). Carbon 

monoxide is a prominent component of cigarette smoke. Blood carboxyhemoglobin levels, a 

measure of systemic exposure to CO, have been reported to range from 1% to 18% in 

active smokers (5). The endogenous enzyme, heme oxygenase-1 (HO-1) mediates the 

degradation of heme into equimolar quantities of carbon monoxide (CO), iron, and biliverdin 

(BV). HO-1 and its metabolic products regulate immune responses, tissue injury and repair 

(6). We have previously shown that CO ameliorates active inflammation in an experimental 

model of chronic IBD, IL-10 deficient (-/-) mice, through induction of HO-1(7).   

Cytokines elaborated by CD4+ helper T cells play a key role in the regulation of 

immune responses in the intestine. CD4+ T cells have been divided into functionally 
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important subsets based on the cytokines they produce (8). Although these subdivisions 

represent a reduction of complex biology, most applicable to the mouse, they provide a 

framework to understand mucosal T cell responses in human IBD. T-helper-1 cells (Th1) 

produce the inflammatory cytokines IFN-γ and IL-2. These cells and cytokines are the 

hallmarks of cell-mediated immunity, necessary for the eradication of intracellular pathogens 

and the development of long-term immunity against infectious agents (8). Numerous mouse 

models of IBD are characterized by an overabundance of intestinal Th1 cytokines. CD was 

initially described as a prototype Th1-mediated chronic inflammatory disorder, characterized 

by mucosal granulomas (the histologic hallmark of a Th1 response), increased expression of 

IFN-γ, as well as increased IL-12 and IL-18, two cytokines necessary for the Th1 

development (9, 10). However, the discovery of the IL-12 cytokine-family member IL-23 

which shares a common p40 subunit with IL-12 has lead to a paradigm shift in our 

understanding of inflammatory responses in IBD (11) (12). IL-23, unlike IL-12, promotes a 

distinct CD4+ T cell activation state characterized by the production of the cytokine IL-17.  

These Th17 cells develop distinct from the Th1 lineage.  IL-23 enhances Th17 function and 

survival by acting on differentiated Th17 cells which express the IL-23 receptor (13).  A 

pivotal role for IL-23 and Th17 cells has been demonstrated in experimental IBD models 

such as the IL-10-/- mouse, and recent genetic and immunologic findings highlight the 

importance of this pathway in human IBD (14) (15)  

T-helper-2 cells produce the cytokines IL-4, IL-5, and IL-13 (16). These cytokines 

provide help for B cell antibody production, and in the mucosal immune system are involved 

in host defense against extracellular helminthic parasites (17). Inflammation in UC has been 

characterized as mediated by Th2 cytokines (18). Lamina propria T cells from UC patients 

produce IL-13 and IL-5, and little IFN-γ (19). Although multiple experimental models of 

chronic Th1/17-driven intestinal inflammation have been elucidated, few have been 
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described where disease occurs in a Th2 cytokine milieu. Mice with targeted disruption of 

the T cell receptor alpha gene (TCRα-/-) perhaps most closely resemble the colonic Th2 

signature that characterizes human UC. IL-4 and IL-1β play an important role in the 

development of colitis in TCR alpha-/- mice (20).  T cells, B cells and autoantibodies are 

essential for the development of colitis in TCRα-/- mice. However, the role of macrophages in 

the pathogenesis of chronic intestinal inflammation in TCRα-/- mice is unknown.  

Our previous work has shown that CO and HO-1 induction ameliorates colonic 

inflammation in a Th1/Th17 mediated model of intestinal inflammation, IL-10-/- mice (7). To 

model the protective effects of cigarette smoking in human UC, we now study CO and the 

HO-1 pathway in a murine model with immunologic similarities to ulcerative colitis. We 

demonstrate anti-inflammatory effects of CO in spontaneous Th2-mediated colitis in TCRα-/- 

mice. Exposure of TCRα-/- mice to CO is associated with histologic improvement, and 

suppression of the inflammatory cytokines IL-1β, IL-4 and TNF in the colon. 

Pharmacological induction of HO-1 recapitulates the immunomodulatory effects of CO, 

attenuates colonic inflammation and inhibits colonic inflammatory cytokine secretion. 

Histological improvement with CO exposure and HO-1 induction in TCRα-/- mice also 

correlates with induction of the anti-inflammatory cytokine IL-10 in colonic macrophages. 
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4.3. Results 

4.3.1. CO exposure ameliorates Th2 mediated colitis in TCRα -/- mice. TCRα -/-mice were 

exposed to 250 ppm of CO from 10 to 15 weeks of age (n=10) and compared to a control 

group (n=10) exposed to ambient air. Mice in both treatment groups were matched for age, 

sex and initial body weight.  CO-exposed mice showed an increase in body weight 

compared to mice housed in ambient air (Figure 4.1A). Assessment of histological 

improvement was performed by a pathologist blinded to treatment groups. Mice exposed to 

CO demonstrated significantly reduced histologic inflammation (Figure 4.1B). 

 Whether CO exposure affects colonic cytokine expression in TCRα -/- mice was next 

determined. Colonic explant cultures from TCRα -/- mice exposed to CO in vivo for 4 weeks 

produced less IL-1β, IL-4, TNF and IL-17 (Figure 4.2A and B), correlating with histological 

improvement. CO also induced colonic IL-10 secretion compared to explant cultures from air 

exposed TCRα -/- mice (Figure 4.2A).  

As IL-10 is an important regulatory cytokine, correlations between CO exposure and 

colonic IL-10 induction were further explored. Ten week old TCRα-/- mice were divided into 

three groups: Group 1 was exposed to CO (250 ppm) for four weeks, group 2 was exposed 

to air for four weeks, and group 3 was exposed to CO for two weeks and then transferred to 

ambient air for two weeks. Mice exposed to CO demonstrated increased secretion of IL-10 

in colonic explants. Mice transferred from CO exposure to air after 2 weeks showed 

intermediate IL-10 secretion, with more colonic IL-10 compared to air exposed mice, but less 

than mice continually exposed to CO (Figure 4.3). These findings suggest that CO may 

ameliorate inflammation through induction of IL-10. Furthermore, as IL-10 secretion is 

increased 2 weeks after removing mice from CO, CO may induce a durable change in a cell 

population that secretes IL-10 in the colon.  
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4.3.2. CO induces IL-10 in macrophages through induction of HO-1. To study regulation 

of IL-10 by CO in macrophages, bone marrow-derived macrophages (BMMs) from wild type 

and TCRα -/- mice were stimulated with LPS in CO (250 ppm) or ambient air. As previously 

described (21), CO augmented LPS stimulated IL-10 secretion in BMMs (Figure 4.4A). We 

have previously shown that CO inhibits LPS/IFN-γ mediated IL-12 p40 expression through a 

HO-1 dependent mechanism. BMMs from HO-1 deficient (Hmox1-/-) mice were stimulated 

with LPS in presence or absence of CO and then cultured for 24 hours. Compared to wild 

type macrophages, in hmox-/- BMMs, CO failed to induce IL-10 secretion (Figure 4.4B). 

These results suggest that IL-10 secretion in murine macrophages in response to CO is HO-

1 dependent. 

 

4.3.3. HO-1 induction recapitulates immunomodulatory effects of CO in vivo. To 

understand the role of HO-1 in the anti-inflammatory effects of CO in vivo, TCRα -/- mice 

were treated with a pharmacological inducer of HO-1, cobalt protoporphyrin (CoPP, 5 

mg/kg) intraperitoneally twice weekly for two weeks and compared to PBS treated controls. 

CoPP treatment resulted in robust induction of HO-1 mRNA (Hmox1) expression in colonic 

CD11b- and CD11b+ lamina propria mononuclear cell (LPMC) populations (Figure 4.5A). 

CoPP treatment resulted in decreased colonic inflammation compared to PBS treated mice 

as indicated by improved histological scores (Figure 4.5B). Colonic explant cultures 

revealed decreased IL-4, IL-1β, and TNF secretion in CoPP-treated TCRα-/- mice compared 

to PBS treated control mice (Figure 4.6A and 4.6B).  
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Next, we sought to determine the effects of HO-1 induction on IL-10 secretion in the 

colon. Intestinal CD11b+ colonic LPMCs were the primary source of IL-10 from CoPP 

treated TCRα-/- mice compared with PBS treated controls (Figure 4.7A). As a control, no 

differences in IL-12 p40 were detected from CD11b+ LPMCs between the two groups 

(Figure 4.7B).  

Regulatory FoxP3+ T and CD11d+ B cells have been previously demonstrated to be 

a source of IL-10 production in the intestine and have important anti-inflammatory roles in 

murine IBD (22). However, no differences in numbers of IL-10 expressing CD1d+ B cells 

from mesenteric lymph nodes (MLN) lymphocytes were detected between air-exposed and 

CO-exposed TCRα-/- mice (Supplemental Figure 4.1). Interestingly, a marked decrease in 

numbers of Cd4+ FoxP3+ T cells are found in TCRα -/- mice compared to wild type mice 

(Supplemental Figure 4.2). These results strongly implicate CD11b+ LPMCs as the primary 

source of IL-10 in the TCRα-/- mice.  
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4.4. Discussion 

In summary, CO exposure ameliorates Th2-mediated chronic colitis in TCRα -/- mice. The 

effects of CO were recapitulated by pharmacologic HO-1 induction. CO and heme 

oxygenase-1 induction resulted in increased intestinal IL-10 expression in the CD11b+ 

population of cells, and inhibition of inflammatory cytokines.  

We have previously demonstrated that CO ameliorates colitis in IL-10-/- mice. IL-10-/- 

mice exhibit a predominant Th1/17-mediated immune pathology. The immune protective 

effects of CO in IL-10-/- mice was attributed in part to inhibition of the synergistic activation of 

IL-12 p40 by LPS/IFN-γ (7). Our current study elucidates the anti-inflammatory effects of CO 

in TCRα -/- mice characterized by increased colonic Th2 cytokine expression.  

Several regulatory B cell populations have been characterized in TCRα -/- mice. A 

subset of regulatory B cells has been identified as an important source of IL-10 and was 

responsible for inhibiting IL-1β and amelioration of colitis in TCRα -/- mice (23, 24). However, 

we could not discern any difference in numbers of CD1d+ MLNs from CO-exposed TCRα -/- 

mice compared to air exposed mice. An IL-12-producing regulatory B-cell subset that 

develops in the presence of IL-10 has also been shown to be involved in the regulation of 

colonic inflammation in this model (22). During experimental protocols of CO exposure and 

pharmacologic HO-1 induction, we demonstrate induction of colonic IL-10 in the CD11b+ 

LPMC fraction, containing predominantly macrophages but dendritic cells as well. We also 

detected expression of the IL-12 p40 subunit exclusively in the lamina propria CD11b+ cell 

population, and were unable to detect IL-12 p70 in colonic explants (data not shown). These 

findings may suggest that CO and HO-1 induction, possibly through IL-10, has anti-

inflammatory effects that extend beyond induction of previously described regulatory B cell 

populations in this model.  
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IL-10 is expressed in may cell types, including macrophages, dendritic cells, B cells 

and regulatory T cells (Treg) (25). Our analysis revealed a significant numerical deficiency of 

FoxP3+ T cells in the spleen and MLNs of TCRα -/- mice compared to wild type mice. This 

finding allows for speculation that Treg deficiency in TCRα -/- mice may contribute to chronic 

intestinal inflammation. CO has been shown to induce Tregs in other model systems (26). 

Hence, we conclude that Tregs are not an important source of IL-10 in TCRα -/- mice (26). 

Recently, the IL-10 family member IL-22 expressed by Th17 cells was demonstrated 

to ameliorate colitis in TCRα -/- mice (27). We unexpectedly detected a Th17 cytokine 

signature in colonic explants from TCRα -/- mice with abundant levels of IL-17.  The IL-17 

producing cell population(s) remains to be determined. Given recent reports, it is interesting 

to speculate that γδ T cells may be a source of IL-17 (28).  Interestingly, IL-17 levels 

decreasing following CO exposure or HO-1 induction, correlating with histologic 

improvement. It will be of interest in future studies to determine whether IL-22 is involved in 

the protective effects of CO/HO-1 in this model, as IL-22 is a potent inducer of IL-10. The 

description of a Th17 signature in TCRα -/- mice is also likely validates this as a model for 

human UC, where the same susceptibility genes that lie within the IL-23/Th17 pathway 

confer susceptibility to CD and UC (15). Likewise, current biological interventions that inhibit 

TNF and are widely employed for the treatment of moderate to severe UC and CD (29, 30). 

CO and pharmacological induction of HO-1 with CoPP resulted in a significant decrease in 

TNF secretion from TCRα -/- colons which may underlie the therapeutic effect.  

Activated macrophages and DCs are an abundant source of IL-10 (25). CO 

augments LPS induced IL-10 secretion from TCRα -/- BMMs. We have previously 

demonstrated that CO ameliorates colitis in the IL-10-/- mouse, a Th1/Th17-mediated model 

of chronic intestinal inflammation through induction of HO-1 (7). Administration of CoPP also 
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ameliorates colitis in TCRα -/- mice. Specifically, TCRα-/- mice treated with CoPP resulted in 

a specific increase in IL-10 secretion from only CD11b+ LPMCs. These findings further 

support the recent identification of IL-10 producing CD11b+ LPMCs that act in part on Treg 

cells to maintain their expression of Foxp3 that is lost in inflammatory conditions in T cell-

transfer murine colitis (31).  

These results are unique since they are the first to characterize the anti-inflammatory 

properties of CO in a Th2-mediated model of inflammation. The anti-inflammatory effects of 

CO are attributed to the induction of HO-1 and IL-10, and highlight the importance of CO 

and HO-1 now in several experimental models of intestinal inflammation. These studies 

suggest that HO-1 is a central regulator of intestinal homeostasis through pleiotropic 

mechanisms and that understanding its role is of mechanistic and therapeutic relevance in 

human IBD.  
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4.5. Materials and Methods 

Mice. Wild type and TCRα-/- mice were obtained from The Jackson Laboratory. All wild-type 

and genetically deficient mice used in this study were on the C57BL/6 background and 

matched for age and sex in all experiments. All animals were housed in accordance with 

guidelines from the American Association for Laboratory Animal Care and Research 

Protocols and were approved by the Institutional Animal Care and Use Committee of the 

University of Pittsburgh and the University of North Carolina Schools of Medicine. At the end 

of the study period, animals were euthanized using excess CO2 inhalation. Immediately 

afterward, blood by cardiac puncture (carboxyhemoglobin determination), spleens, intestinal 

tissue samples, and femurs were collected. BM-derived macrophages and splenocytes were 

cultured as described previously (7). 

CO exposure. Mice or macrophages were exposed to compressed air or CO at a 

concentration of 250 ppm as previously described (7). Briefly, CO at a concentration of 1% 

(10,000 ppm) was mixed with compressed air before delivery into the exposure chamber. 

Flow into animal chamber was maintained at rate of 12 liters/min and into the cell culture 

chamber at a rate of 2 liters/min. The cell culture chamber was humidified and maintained at 

37oC. A CO analyzer (Interscan) was used to measure CO levels continuously in the 

chambers. Cardiac blood samples (0.2 ml) were taken immediately after the mice were 

sacrificed to measure carboxyhemoglobin using a hemoximeter (OSM3; Radiometer 

Copenhagen). 

Cytokine ELISAs. Linco Cytokine-16 plex Mouse ELISA was performed for IL-4, IL-1β, IL-

10, TNF and IL-17 ((Millipore, Billerica, MA) as per manufacturer’s instructions. Murine IL-12 

p40 and IL-10 were measure with cytokine specific immunoassay kits (R&D Systems, 

Minneapolis, MN). 
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Intestinal tissue explant cultures. Colonic tissue fragments (0.5 g dry weight) were 

isolated and incubated in 1.0 ml RPMI 1640 supplemented with 50 μg/ ml gentamicin, 100 

U/ml penicillin, 100 _g/ml streptomycin, 0.25 μg/ml fungizone (GIBCO BRL), and 5% heat-

inactivated fetal calf serum as previously described (7). Tissue fragment supernatants were 

collected after 24 h for cytokine ELISAs. 

Isolation of colonic macrophages. Lamina propria cells were isolated from the mouse 

colon by an enzymatic method as previously described (32). Briefly, colons were dissected 

into small pieces, and washed three times in Hank’s buffered saline solution (HBSS) 

containing 2.5% FBS. The last wash was done with 1mM DTT to remove mucus. The pieces 

were, then, incubated in HBSS containing 1mM EDTA three times for 20 min each at 37°C. 

The remaining tissue was digested in HBSS containing 1 mg/ml collagenase type IV 

(Sigma-Aldrich, St. Louis, MO) for 1.5 hours at 37°C. The supernatant was collected, filtered 

and centrifuged to obtain a cell pellet. LPCs were isolated by density gradient centrifugation 

using 40 % and 75 % Percoll solution (GE Healthcare, Piscataway, NJ). The intermediate 

layer containing LPCs was collected. LPCs were further separated into CD11b positive cells 

using anti-CD11b microbeads (Miltenyi Biotec, Auburn, CA). Purity was more than 90% by 

flow cytometric analysis.  

Flow cytometry. Splenocytes from CO and air exposed mice were collected and were 

stained for cell surface markers as previously described (33). Cells were first stained 

extracellularly with fluorescein isothiocyanate–conjugated anti-CD4+ (RM4-5) were fixed and 

permeabilized with Cytofix/Cytoperm solution (BD Pharmingen) and then were stained 

intracellularly with allophycocyanin-conjugated anti-FoxP3 (FJK-16s). Mesenteric lymph 

node cells were isolated as previously described(33) and stained with the B cell marker 

fluorescein isothiocyanate (FITC) anti-mouse B220 and cell surface marker phycoerythrin 
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(PE) anti-mouse CD1d (1B1) (eBioscience). Samples were acquired on a FACSCalibur 

(Becton Dickinson and Company, NJ, USA) and data were analyzed with CellQuest Pro 

software (BD Biosciences, San Jose, CA).  

Histology. Colons were removed after mice were euthanized and rinsed with cold PBS to 

remove fecal material. Tissue sections were fixed in 10% buffered formalin and embedded 

in paraffin. 5-μm-thick sections were stained with hematoxylin and eosin. Colitis scores (0–

4) were determined by a staff pathologist who was blinded to the experimental protocol 

using the criteria reported by Berg et al (34).  20 separate microscopic fields (magnification 

of 100X) were evaluated for each mouse by a pathologist (A.R. Sepulveda) blinded to the 

treatment groups. 

Data analysis. Statistical significance for data subsets from experiments performed in cells 

was assessed by the two-tailed Student’s t-test. Statistical significance for in vivo data 

subsets was assessed by the Mann-Whitney U test (SPSS, Chicago, IL, USA) ) with 

Bonferroni correction. 
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Figure 4.1. CO ameliorates Th2-mediated colitis in TCRα-/- mice. TCRα-/- mice were 
housed in ambient air or a chamber maintaining a constant concentration of CO at 250 ppm 
(n=10 each) from 16 through 20 weeks of life. (A) CO exposed mice gained more weight 
than air exposed mice. (B) Colitis scores were significantly decreased in CO exposed 
compared to control mice (**p<0.001). 
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Figure 4. 2. CO exposure affects colonic cytokine secretion in TCRα-/- mice. 
Spontaneous protein secretion determined in 24 hour supernatants from intestinal explants 
from CO- and air-exposed TCRα -/- mice. (A) Spontaneous IL-10 and IL-4 using cytokine 
specific ELISA (B) IL-1β, TNF and IL-17 protein secretion using Linco 16-multiplex cytokine 
assay respectively. Each result represents the mean ± SD of triplicate assays.  
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Figure 4.3. CO induces intestinal IL-10 protein secretion in TCRα-/- mice. 10 wk old 
TCRα-/- mice were divided into three groups: either exposed to CO (250 ppm, black bar) for 
four weeks, exposed to air for four weeks (white bar) or exposed to CO for two weeks and 
then transferred to ambient air housing condition (grey bar). Spontaneous IL-10 secretion 
was measured in full length colonic cell free supernatants using cytokine specific IL-10 
ELISA.  
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Figure 4.4. CO induced IL-10 in murine macrophages via induction of the HO-1 
pathway.  (A) BM-derived murine macrophages from wild type and (B) HO-1-/- mice were 
cultured in CO (250 ppm) or ambient air. Following activation with LPS (1 mg/ml), IL-10 
protein secretion was assayed from supernatants at 24 hours by ELISA. Representative of 3 
independent experiments with similar results. 
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Figure 4.5. HO-1 inducer (cobalt protoporphyrin) ameliorates colitis in TCRα-/- mice.  
Twenty week old TCRα-/- mice were treated with i.p. injection of cobalt protoporphyrin 
(CoPP, 5 mg/kg twice/weekly for two weeks) (n=8) and control mice were treated with PBS 
vehicle i.p. (n=12). (A) Lamina propria cells (LPMCs) were isolated from colons of TCRα-/- 
mice treated with vehicle (white bars) and CoPP (black bars) and further separated into 
intestinal macrophages (CD11b+) cells using anti-CD11b microbeads (Miltenyi Biotec, 
Auburn, CA) and analyzed for HO-1 mRNA (Hmox1) expression. (B) CoPP injected mice 
had significantly less severe colitis (left panel) and fewer fields with mild (scores of 1-2) and 
severe colitis (scores of 3-4) and significantly more fields with no colitis (scores of 0) (right 
panel).  
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Figure 4.6. HO-1 inducer (cobalt protoporphyrin) reduces secretion of pro-
inflammatory cytokines in TCRα-/- mice. Spontaneous protein secretion determined in 24 
hour supernatants from intestinal explants from 5mg/kg of CoPP (n=12) and PBS Vehicle 
(n=8) i.p. treated TCRα -/- mice. (A) IL-4, (B) IL-1β, TNF and IL-17 secretion by Linco 16-
multiplex cytokine ELISA. Results represent mean±SD of triplicate assays of pooled 
intestinal explants 
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Figure 4.7. CD11b+ lamina propria mononuclear cells are the major source of IL-10 in 
TCRα-/-. LPMCs were isolated from colons of TCRα-/- mice treated with vehicle (n=4, white 
bars) and CoPP (n=5, black bars) and further separated into intestinal macrophages 
(CD11b+) cells using anti-CD11b microbeads (Miltenyi Biotec, Auburn, CA). Supernatants 
from pooled CD11b+ and CD11b- LPMCs in each group plated at a concentration of 1X10^6 / 
mL in a 96 well tissue-culture plate were harvested 15 hours later and (A) IL-10 and (B) IL-
12 p40 cytokine secretion determined using specific ELISA.  
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Supplemental Figure 4.1. CO does not induce CD1d+ B cells MLNs of CO and air 
exposed TCRα-/- mice and B220+ MLN cells were isolated and pooled (n=3) and stained for 
CD1d. Percentages of CD1d high positive cells were compared between Air- and CO- 
exposed mice.  
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Supplemental Figure 4.2. Regulatory Tcells are absent in TCRα-/- mice. Splenocytes 
from WT and TCRα-/- mice were isolated and pooled (n=3) and stained for CD4 and FOXP3 
and compared to those of air-exposed mice. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE PERSPECTIVES 
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5.1. Summary 

 The gastrointestinal immune system is able to discriminate between the commensal 

microbiota and enteric pathogens. Macrophages are central to the maintenance of immune 

homeostasis in the intestines. Alterations in macrophage specific homeostatic pathways 

lead to chronic intestinal inflammation. Unlike resident intestinal macrophages, 

macrophages in the inflamed mucosa of IBD patients react vigorously to the enteric-

microbiota to produce a robust inflammatory response characterized by IL-12 and IL-23 

production. This in turn leads to differentiation and proliferation of pathogenic Th1/Th17 cell 

populations.    

Our studies implicate two ‘checkpoints’ that are important in maintaining mucosal 

immune homeostasis. First, we demonstrate that IFN-γ, best known for promoting 

inflammation, may be protective during the initiation phase of intestinal inflammation through 

inhibition of IL-23 in macrophages. Second, we further characterize HO-1 as a molecular 

brake on innate immune activation of macrophages in Th1/Th17 and Th2 mediated models 

of experimental colitis.  

Mechanistically, IFN-γ mediated inhibition is through two distinct pathways. First, 

IFN-γ alters LPS induced recruitment of NF-κB subunits to the Il23a murine promoter, 

specifically through inhibition of the RelA but potentiating p50 subunits. Similarly, inhibition 

of histone H4 acetylation indicates that IFN-γ may alter chromatin structure at the Il23a locus 

that in turn may directly affect the recruitment of these factors. Second, IRF-1 is also a 

negative regulator of LPS induced IL-23. IRF-1 deficient BMMs demonstrate more IL-23 

expression compared with WT BMMs. IFN-γR1/IL-10-/- IRF-1/IL-10-/- mice are also develop 

more severe colitis compared to IL-10-/- mice. Finally, the enteric-microbiota induced a 

transient surge of ifng in GF WT mice transitioned to a CNV microbiota that inversely 
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correlates with Il23a expression. This negative regulatory checkpoint has important 

implications, given the inability of IFN-γ to inhibit Il23a in IL-10-/- GF mice transitioned to CNV 

microbiota that go on to develop colitis.  

Interestingly, GF IL-10-/- mice also fail to induce HO-1 in the colon when compared to 

WT GF mice transitioned to a CNV microbiota. Our studies demonstrate that HO-1 induction 

in macrophages dampens innate immune responses, specifically to the enteric- microbiota.  

WT BMMs transfected with Hmox1 siRNA show poor bactericidal activity against 

commensal E.coli. HO-1 derived CO seems to be the final mediator that enhances the ability 

of macrophages to eradicate intracellular bacteria. Both HO-1 and CO are protective against 

microbiota induced colitis in IL-10-/- mice. Finally, the protective effects of HO-1 and CO were 

also demonstrated in a Th2 mediated model of experimental colitis. CO and HO-1 induction 

ameliorate intestinal inflammation in the TCRα-/- mouse, specifically through induction of IL-

10 in CD11b+ LPMCs. Our study will be the first to characterize the role of macrophages in 

maintaining immune homeostasis in the TCRα-/- mouse.  

 

5.2. Developing models to study in vivo real time regulation of IL-12 family members

  

Despite the importance of IL-12 and IL-23 in immunity and inflammation, methods to 

follow the production of these cytokines or the cells that produce them in vivo are limited. 

DCs constitute heterogeneous populations that are few in number and turnover rapidly after 

activation. Macrophages are just as diverse, and their residence in tissues makes their 

recovery difficult. To further study in vivo regulation of IL-23 we can produce transgenic mice 

that are modified so that an Il23a allele is modified to express linked fluorescent reporter 
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proteins, thus efficiently marking Il23a expressing cells. With commercially available Il12b 

reporter mouse the generation of an Il23a/Il12b single and double reporter transgenic 

mouse will allow for the study of regulation of IL-12 family members in vivo. This double 

reporter can be utilized to study regulation of Il23a and Il12b in various models of murine 

IBD, including IL-10-/- mice.  

 

5.3. Role of IFN-γ in shaping macrophage activation phenotypes in the intestine 

We show that IFN-γ inhibits Il23a in CD11b+LPMC in WT and IL-10-/- mice. IFN-

γR1/IL-10 and IRF-1/IL-10-/- colonic CD11b+ LPMCs produce more Il23a compared with WT 

and IL-10-/- CD11b+ LPMCs.  CD11b+ LPMCs cells represent a heterogenous population of 

macrophages and DCs. However, there are subpopulations of colonic macrophages that 

include CD11b+CD11c- cells (low IL-12 and high IL-10) versus CD11b+CD11c+ (high IL-12 

and low IL-10) (1). Further studies can be performed to correlate the effect of IFN-γ on 

specific macrophage activation phenotypes. It will be interesting to study phenotypic and 

functional characteristics of specific intestinal macrophage populations that express IL-23, 

whether they differ from IL-12 or IL-10 expressing populations, and whether their 

development is independent of the enteric- microbiota. Additionally, in the future, the 

contribution of IL-10 to inhibition of inflammatory innate immune responses to enteric-

microbiota can be investigated through exogenous administration of IL-10 in IL-10-/- mice on 

transfer to CNV conditions and studying Il23a and Il12b expression. 

We characterize Il23a as a primary response gene. Indeed, colonization of GF WT 

and colitis prone IL-10-/- mice with the microbiota leads to an early activation of Il23a in the 

colon. The rapid extinguishing of Il23a in WT GF mice colonized with enteric-microbiota is 
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associated with a transient surge in mucosal ifg expression. However, ifng and Il23a levels 

both continue to rise over time in the IL-10-/- mice, correlating with worsened colitis. This 

raises the intriguing hypothesis that depending on the stage of colitis, IFN-γ may 

diametrically regulate mucosal immune responses. Through generation of inducible 

macrophage/DC specific IFN-γR1-/- mice, the effects of IFN-γ on early versus late disease 

pathogenesis can be studied. Based on our study, we would predict that loss of IFN-γ 

signaling will worsen initiation of colitis but improve late disease course. 

We also demonstrate that IFN-γ promotes the recruitment of NF-κB p50 to the Il23a 

promoter. NF-κB RelA-/- and p65-/- BMMs demonstrate markedly decreased TLR mediated 

Il23a gene induction (2). p50-/- and p50/p65-/- develop worsened Helicobacter hepaticus 

induced colitis compared with WT mice (3). It remains to be seen whether mucosal Il23a 

gene expression, specifically in intestinal macrophage populations, is altered in these mice 

and contributes to disease pathogenesis.  

Finally, we examine potential protective effects of IFN-γ and IRF-1 in an experimental 

model that is dependent on both innate and adaptive immune responses.  Notably, IFN-γ 

clearly can affect multiple immune pathways and the protective effects we observed may be 

multifactorial. Therefore, it will be important to determine if the role of IFN-γ in colonic IL-23 

inhibition in experimental models dependent on innate immunity. Fortunately, such models 

have been developed and represent an important future goal of this project. To discern a 

macrophage specific role in colitis development, cell type specific deletions of IFN-γR1 and 

IRF-1; and models that are completely T cell independent (RAG-/- mice treated with anti-

CD40 or colonized with Helicobacter hepaticus) will be developed (4, 5).  

 



154 

 

5.4. Epigenetic regulation of Il23a  

Characterization of an ISRE in the Il23a promoter led to our conclusion that IRF-1 is 

an IFN-γ inducible negative regulator of Il23a.  This ISRE is uniquely placed within an area 

of conserved nucleotide sequences, which also harbors two critical NF-κB binding sites, 

essential for induction of Il23a promoter activity by LPS (2, 6). Whereas cytoplasmic 

activation of NF-κB leads to nuclear import and binding to a multitude of gene promoters, 

“epigenetic” mechanisms superimposed on the primary genetic code have yet to be fully 

elucidated. Before the NF-κB family member RelA accesses its DNA-binding sites, a 

transition from a condensed to a decondensed chromatin structure needs to occur (7). We 

show that Il23a is an ‘early response gene’, unlike Il12b, which has been characterized as a 

‘secondary response gene’ (8), implying distinct regulatory mechanisms. Further studies will 

look at various chromatin remodeling enzymes such as CBP/p300, BRG1/BRM1, and 

SWI/SNF to assess how NF-κB subunits and other IRFs may interact with co-

activators/repressors in macrophages to regulate IL-12 and IL-23 gene activation versus 

inhibition.  

 

5.5. Role of HO-1 expression and function in regulating mucosal innate immune 

responses 

 We show that GF IL-10-/- mice, unlike GF WT mice, failed to up-regulate colonic HO-

1 on transition to a CNV microbiota. TLR ligands and IL-10 are important regulators of HO-1 

in macrophages. HO-1 plays an important role in antimicrobial process while inhibiting the 

inflammatory response. We also demonstrate that HO-1 expression and function is 

important for the macrophage’s ability to eradicate intracellular enteric bacteria. With 
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accumulating evidence demonstrating the importance of microbial communities in the 

pathogenesis of IBD, future studies can address the preferential induction of HO-1 by 

monoassociation of GF IL-10-/- mice with strains of colitogenic (NC 101) versus non-

colitogenic (K12) E. coli. Likewise it is intriguing to speculate that beneficial bacterial 

constituents such as probiotic bacteria may exert anti-inflammatory effect through induction 

of intestinal HO-1.  

Bacteria have been shown to generate and secrete large amounts of extracellular 

ATP (9). Furthermore, treatment of GF mice with ATP markedly increases the numbers of 

IL-17-producing CD4+ cells and worsens enteric-microbiota induced coltiis (10). Regulation 

of HO-1 by ATP remains to be understood. Use of bacterial strains that lack the ability to 

generate ATP (ATPase deficient) to monoassociate GF IL-10-/- mice and correlate with HO-1 

expression and function can highlight the importance of bacterial derived ATP in colitis 

pathogenesis.  Similarly, retinoic acid receptor agonists (RARs) have been shown to 

promote regulatory Foxp3+CD4+ T cells and inhibit Th17 cells. Given that multiple regulatory 

cytokines, including IL-10, have been implicated in functioning through what has been 

popularly called ‘the HO-1 therapeutic funnel’ (11), it is also important to study whether 

these RARs function partly through induction of HO-1. Finally, further studies with 

macrophage specific Hmox1 over expressing and knockout murine models can demonstrate 

the protective role of HO-1 expression in the pathogenesis of IBD, specifically when crossed 

with colitis-prone models like the IL-10-/- mouse. 
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5.6. Carbon monoxide (CO) as a therapeutic modality for IBD 

 We demonstrate that CO ameliorates colitis in both Th1/Th17 and Th2 driven models 

of experimental colitis. We also report for the first time the potential therapeutic benefit of a 

CO releasing molecule (CORM) in ameliorating chronic intestinal inflammation in IL-10-/- 

mice. CO and CORMs enhance the ability of macrophages to eradicate intracellular 

bacteria. Future studies will address alterations in microbial communities after treatment with 

CORMs using terminal restriction fragment length polymorphism (TRFLP) and 

pyrosequencing on stool and intestinal mucosal samples. Indeed, if the mechanisms for 

intracellular inhibition and killing are diminished in IBD as indicated by our work and others 

(12) (13), then persistent survival may stimulate inflammation through numerous innate and 

adaptive pathways. The role of CO in altering disease course can be correlated with host 

gene expression profiles, metabolomic profiling of microbes and metagenomic approaches 

that may in turn help narrow the microbial factors central to disease pathogenesis 

Accumulating studies strongly suggest that endogenously generated CO and 

exogenous CO gas, inhaled at doses whereby the oxygen-carrying capacity of hemoglobin 

is not severely compromised (HbCO<20%), elicits protection and beneficial outcomes in 

multiple organ injury, inflammation, apoptosis, cell proliferation, vasoconstriction and both 

systemic and pulmonary hypertension. In fact, a therapeutic role for CO is being actively 

explored in many human diseases. The effects of inhaled CO are being investigated in a 

phase 2 study in patients receiving renal transplants (14). Similarly, recent studies by 

Hoetzel et al. reveal that inhaled CO during mechanical ventilation protects against 

mechanical ventilation injury by reduction in cytokine production and lung recruitment of 

neutrophils and macrophages via PPARγ (15). Goebel et al. demonstrated that 

preoperatively inhaled CO inhibited pulmonary inflammation and reduced post-operative 
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complication rates in cardiopulmonary bypass surgeries (16, 17). Ongoing studies are 

evaluating the benefit of inhaled CO during endotoxaemia in humans (18).  

With the recent development of controlled methods for CO delivery (CORMs) to 

target these different pathological conditions, the prospect of CO as a therapeutic option is 

even more of a possibility. Although administration of small amounts of CO gas is likely 

feasible, gaseous compounds are difficult to deliver directly in an accurate manner. CO 

liberated from CORMs can be precisely controlled and delivered at given concentrations 

through all possible routes of administration, unlike CO gas, which can be delivered 

effectively only by inhalation. Therefore, future studies can be performed to develop other 

routes through which CORMs may be administered to target colonic inflammation, including 

oral and intrarectal routes. We used CORM-186, a water soluble compound that results in 

fast CO release in an aqueous solution. Use of other CORM compounds e.g. CORM-A1, the 

release of which is slow and strictly pH dependent, may offer exciting possibilities in direct 

drug delivery to specific inflamed areas of the intestine (19).  

Finally, an interesting and well established clinical observation in patients with IBD is 

that cigarette smoking, while protective in UC, worsens disease course in CD. We have 

demonstrated a protective effect of CO in ameliorating colitis in IL-10-/- mice. However, 

cigarette smoke contains a host of other chemicals that may potentiate or counter the 

beneficial effects of CO. For example, the aryl hydrocarbon receptor (AHR) is a ligand-

activated member of Period (Per)/Arnt/Sim family of transcription factors (20). The AHR 

mediates the biological and toxic responses of a class of environmental pollutants including 

man-made toxicant aromatic hydrocarbons found abundantly in cigarette smoke (20). AHRs 

are abundantly expressed on Th17, where its activation leads to production of IL-22 (21). 
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They are also found on regulatory (Treg) T cell populations (22). However, the role of AHRs 

on macrophages and in the pathogenesis of IBD remains unexplored.  

 

5.7. Genetics and IBD 

We are only beginning to functionally dissect the numerous genetic variants in IBD 

susceptibility. Recent understanding of genetic variation within the human genome has lead 

to the development of genome-wide association studies (GWAS) to identify genetic risk 

factors for these complex polygenic diseases. Both the innate and adaptive immune 

responses have been implicated by the discovery of genetic associations in IBD. In the 

innate immune system, the association of CD with polymorphisms in NOD2 (CARD15) and 

the two autophagy-related genes, ATG16L1 and IRGM, suggest an abnormal recognition 

and handling of intracellular bacteria in IBD (23). The critical role of the IL-23 pathway in IBD 

pathogenesis was confirmed by the association of several SNPs throughout the IL23R gene 

that afford protection and susceptibility to CD and UC. Similarly, in a large meta-analysis of 

genome wide association studies (GWAS) of cohorts of European and North American 

ancestry, components of the IL-23 signaling pathway (IL23R, IL12B, STAT3 and JAK2) were 

implicated with the highest level of association with Crohn's disease. Additonally, within a 

few kb of the UC risk loci on chromosomes 1p36 and 12q15 determined by GWAS was 

shown to harbor the ifng gene (24). 

 We have identified that IFN-γ induced IRF-1 is a negative regulator of IL-23. 

Interestingly, the IBD5 locus on chromosome 5q31 contains the IRF-1 gene. Similarly, 

haplotype analysis revealed a putative functional HO-1 promoter polymorphisms, one (S/A 

haplotype) conferring a strong protective effect whereas the other (L/A haplotype) showed 
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the opposite tendency in patients with rheumatoid arthritis (25). Ongoing studies can search 

for more complete genotype–phenotype correlations and for independent evidence of the 

functional consequences of sequence alteration within the Hmox1, ifng and irf1 gene loci.  

 

5.8 Conclusion 

In conclusion, altered macrophage function is central to the pathogeneisis of IBD. 

This has been confirmed with identification of multiple genetic susceptibility genes for IBD 

that belong to specific innate immune pathways. IL-23 is a critical mediator of chronic 

intestinal inflammation. Indeed, intestinal macrophages in the inflamed mucosa of IBD 

patients differ significantly in phenotype from the resident intestinal macrophage under 

physiological conditions.  This reveals a critical failure of macrophages as gatekeepers that 

drive immune responses to either tolerance induction or initiation of inflammatory reactions.  

We identify three macrophage specific homeostatic checkpoints that are critical in 

regulating mucosal immune responses to the enteric-microbiota. Heme oxygenase-1 (HO-1) 

and carbon monoxide (CO) act as important homeostatic checkpoints in regulating pro-

inflammatory immune responses in macrophages through IL-10 or by regulating the ability of 

macrophages to eradicate intracellular bacteria. IFN-γ inhibits T-helper (TH) 17 cells 

proliferation through inhibition of TLR induced Il23a macrophages. Mechanistically, IFN-γ 

inhibits IL-23 in macrophages through alterations in NF-κB and IRF recruitment to the Il23a 

promoter (Figure 5). 

Further studies should characterize detailed mechanisms of how local macrophages 

functionally differentiate and participate in the pathogenesis of IBD. This may allow for 

designing specific strategies to target the induction of dysregulated immune responses and 
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excessive inflammation. IL-12 family members, IL-12 and IL-23 along with anti-inflammatory 

molecules like HO-1 may play an important role in the plasticity of these macrophages and 

require further study. 
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Figure 5.  A schematic representation of the IL-23 regulation in macrophages. The 
enteric-microbiota represents an important environmental trigger for mucosal immune 
responses. We identify heme oxygenase-1 (HO-1) and carbon monoxide (CO) as important 
homeostatic checkpoints in regulating pro-inflammatory immune responses in macrophages. 
Both HO-1 and CO mediate their protective effects in murine experimental colitis through 
regulation of IL-10 or by regulating the ability of macrophages to eradicate intracellular 
bacteria. IFN-γ inhibits T-helper (TH) 17 cells proliferation through inhibition of TLR induced 
Il23a macrophages. Mechanistically, IFN-γ inhibits IL-23 in macrophages through alterations 
in NF-κB and IRF recruitment to the Il23a promoter.   
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