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ABSTRACT 

Susan Rubin Rasmussen 
Acoustic Measurement of Emotion Expression of Women with Chronic Knee Pain 

(Under the direction of Dr. Jo Ann Dalton) 
 
 

The purpose of this study was to determine if change in acoustic parameters of 

sustained vowel vocalization occurred in women with and without chronic knee pain when 

asked to rise from sitting to standing and if changes could be associated with occurrence of 

an emotion. Scherer’s component process model of emotion and sequential check theory of 

emotion differentiation provided the framework for the study. Acoustic parameters evaluated 

were mean fundamental frequency, highest fundamental frequency, lowest fundamental 

frequency, range of fundamental frequency, jitter, shimmer, amplitude perturbation quotient, 

and three formant frequencies. Depression, anxiety and anger were measured and entered as 

interactions in mixed models to determine the influence of mood-related measures on 

acoustic parameters with non-pain and pain samples and with two levels of pain intensity.  

The sample consisted of 62 women 45 years of age or older: 32 women with knee 

pain of longer than 6 months’ duration and 30 women with no musculoskeletal pain for 

comparison. Significant differences in range of fundamental frequency and jitter were 

observed between the non-pain and pain groups with stand tasks. Differences in shimmer, 

amplitude perturbation quotient and F2 were demonstrated between two pain intensity 

groups. Differences in range of F0 and jitter were associated with interactions of anxiety and 

anger.  
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To those whose pain remains unrecognized. 
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CHAPTER ONE 

INTRODUCTION 

 

Nearly one-third of the general population reports chronic pain symptoms (M. Clark, 

2005). About half of patients when asked if pain management was adequate reported it was 

not (Joint Commission on Accreditation of Healthcare Organizations, 2003). In addition, 

chronic non-malignant pain is associated with limitation of activities of daily living, anxiety, 

and depression (O'Reilly & Doherty, 2003). Limitation of activity increases with age with 

13.1% reporting limitations between 45-54 years of age, 20.7% between 55 and 64 years of 

age, and 34.4% at 65 years of age and older (Centers for Disease Control and Prevention & 

National Center for Chronic Disease Prevention and Health Promotion(U.S.), 2004; Centers 

for Disease Control and Prevention & National Center for Health Statistics (U.S.), 2005). 

Of 46 million Americans with self-reported and diagnosed arthritis, 19 million 

indicate they have activity limitation due to arthritis (Hootman, Bolen, Helmick, & 

Langmaid, 2006). Arthritis pain contributes to this functional disability (Creamer, 

Lethbridge-Cejku, & Hochberg, 2000; Sniezek, 2004) as well as anxiety and depression. The 

need to prevent disability secondary to chronic pain and loss of function requires prompt 

recognition and action to prevent disability in this growing segment of the population 

(Elders, 2000). Because statistics indicate that osteoarthritis is self-managed for long periods 

before health care is sought, prompt detection of changes in pain and the emotional reaction 



  

2 

 

to it could reduce functional disability and, ultimately, promote better pain management 

(Creamer et al., 1999; Lin et al., 2003). 

While pain is recognized as having a psychological component in addition to the 

protective physiological reflex (Melzack & Wall, 1965; Price, Riley, & Wade, 2001; 

Sherrington, 1906), acceptance of a biopsychosocial model of medicine (Engel, 1977) and of 

pain (Blackwell, Galbraith, & Dahl, 1984) is fairly recent. In 1994, the International 

Association for the Study of Pain defined pain as “…an unpleasant sensory and emotional 

experience associated with actual and potential tissue damage, or described in terms of such 

damage” (Merskey, Bogduk, & International Association for the Study of Pain. Task Force 

on Taxonomy, 1994)  reflecting the inclusion of emotional influence on pain. Emphasizing 

reaction to pain, Price (1999) proposed that pain is “a somatic perception containing (1) a 

bodily sensation with qualities like those reported during tissue-damaging stimulation, (2) an 

experienced threat associated with this sensation, and (3) a feeling of unpleasantness or other 

negative emotion based on this experienced threat (pp. 1-2). Although recent research 

suggests that pain be considered a “homeostatic emotion” (A. D. Craig, 2003a, 2003b), most 

research has focused on the sensory component of pain (Price, 2000).  

Although a patient’s self-report of pain is described as the most reliable indicator of 

pain (Keefe, 2000; McCaffery, 1972), self-report has been labeled “contaminated” 

(Pennebaker, 2000) by some clinicians and researchers who consider self-report of pain to be 

influenced by physiological, cognitive, emotional, cultural and environmental factors (Jensen 

& Karoly, 2001). Attention continues to focus on the assessment and management of pain by 

adhering to standards that focus on single-item numerical measurements of pain intensity 

(Joint Commission on Accreditation of Healthcare Organizations, 2001) used in research 
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settings and drug effectiveness studies (Ozyuvaci, Yanmaz Alnigenis, & Altan, 2004; Price, 

McGrath, Rafii, & Buckingham, 1983; Schwartz, Turturro, Istvan, & Larkin, 2000) such as 

the visual analogue scale (VAS; (Price et al., 1983) and the numerical rating scale (NRS; 

(Daut, Cleeland, & Flanery, 1983 ).  

The VAS and NRS provide measures of sensory intensity useful in acute and chronic 

pain assessment (Ferraz et al., 1990; Paice & Cohen, 1997). Both of these single-item scales 

require cognitive evaluation, or appraisal, of the sensory experience and quantification of the 

sensation with an abstract number. The VAS was designed to measure attitudes or 

characteristics thought to exist along a continuum rather than in distinct categories like mild, 

moderate, and severe (Gould, Kelly, Goldstone, & Gammon, 2001). In order to capture the 

person’s perception of pain, the VAS requires the person to indicate the level of pain by 

marking a point that describes the pain experienced on a 10-centimeter line with verbal 

anchors of “no pain” and “pain as bad as you can imagine” at opposite ends of the line. The 

score on the VAS is the distance in millimeters from the “no pain” end to the patient’s mark. 

In contrast to the VAS, the NRS requires patients to use discrete categories to rate 

their pain “on a scale of 0 to10 with 0 meaning no pain and 10 meaning pain as bad as you 

can imagine (or the worst you have had)” (Daut et al., 1983). Variations in the printed form 

of the VAS and NRS exist. In print, the NRS may appear with a line with the 100 points from 

0 to 100 indicated (Jensen, Karoly, & Braver, 1986). In clinical areas, patients may be asked 

to verbally rate pain intensity with the verbal rating scale (VRS), an adaptation of the NRS 

that requires the patient to verbally assign a number to the intensity of pain experienced 

(Paice & Cohen, 1997). Problems occur when scales with different rating ranges, (e.g., 0-5, 

0-10, or 0-100) are used by different providers and misinterpretation of the patient rating 
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occurs (Dalton & McNaull, 1998; Lund et al., 2005) or when the patient has misinterpreted 

what the task is meant to measure (de C. Williams, Davies, & Chadury, 2000).  

The Problem 

Sources indicate that despite the use of intensity rating in the management of acute 

and chronic pain, patients’ reports indicate pain management continues to be inadequate (J. 

Brody, 2005; Collins et al., 2000; Teno, Weitzen, Wetle, & Mor, 2001). While thorough pain 

assessment should include the emotional component of pain (Gonzales, Martelli, & Baker, 

2000), single-item rating scales do not capture pain affect, or emotional reaction to painful 

stimuli, a significant component of chronic pain experience (Price et al., 2001). Assessment 

of affective response has used self-report using a single-item (Wade, Price, Hamer, Schwartz, 

& Hart, 1990), more lengthy written instruments, observation, and psychophysiological 

measures. However, psychological instruments used to measure emotional state in pain 

research tap into more enduring patterns of temperament and, thus, do not capture the short-

term emotional reaction to pain.  In addition, such instruments often increase subject burden 

because they require cognitive skills persons in pain may not be able to use at the time of 

testing (Fernandez, Clark, & Rudick-Davis, 1999). Completion of standard psychological 

instruments, therefore, may not provide a real-time indication of emotional state.  

Because emotion precedes the occurrence of pain behaviors and verbal self-report of 

pain (Damasio, 1999), reliable measurement of emotional reaction probably would be less 

influenced by social constraints if verbalization and cognition were removed. Supporting 

Buck’s (1984) findings, Hadjistavropoulos and Craig (2002) note that observed behavior 

tends to be automatic and involuntary while self-report is controlled by cognitive centers and 



  

5 

 

is subject to purposeful re-shaping.  Emotional expression can be observed in automatic 

facial expressions (Dalton, Brown, Carlson, McNutt, & Greer, 1999; Ekman, 2003; Ekman & 

Friesen, 1978), body postures and movements (Darwin, 1872/1955). Because of rapid 

emotional changes and the effect of masking and social constraints, cues to the presence of 

emotions have been studied via visual and auditory channels since they are less subject to 

social constraint than self-report (Juslin & Scherer, 2005 ). While facial expression is a 

readily observable reaction to a situation or person, the vocal channel of expression has been 

found to “leak,” or be less influenced by display rules of appropriate behavior associated 

with emotion expression, providing more affective information than face (Hochschild, 1979; 

Kemper, 2000; Planalp, 1999). 

The Purpose 

Because emotion can be carried in the vocal signal (van Bezooyen, 1984) and 

paralinguistic content is less subject to voluntary control by the speaker (Hadjistavropoulos 

& Craig, 2002), acoustic analysis of vocalization during increased pain could provide 

information about emotional state as well as indicate the meaning the pain has for the person 

with pain. Although emotion research has used acoustic analysis of voice, little information 

is available on patterns of vocalization associated with chronic non-cancer pain and its 

emotional component. The purpose of this investigation is to determine whether acoustic 

parameters change in vocalizations associated with chronic pain induction and if patterns of 

the signal indicate a type of emotional reaction to chronic pain. 



  

 

CHAPTER TWO 

CONCEPTUAL FRAMEWORK 

Cannon (1915, 1928, 1929) and Selye (1956, 1973, 1985) both noted the influence of 

emotional reaction to internal and external environmental stressors. Although appraisal was 

first suggested by Aristotle (Solomon, 2000) and later by Darwin (1872/1955), it was 

Arnold’s effort to reintroduce appraisal (Arnold, 1960) at the height of behaviorism that 

probably is responsible for the beginnings of appraisal theory development.  Lazarus’ focus 

on the cognitive aspects of psychological stress (Lazarus, 1966) and, later, (Lazarus & 

Folkman, 1984) on adaptation to stressors and coping provided the foundation for cognitive 

psychological study of emotion (Laukka, 2004). Cognitive theories of emotion assume that 

an individual’s cognitive ability to process contextual information and to recall experiences 

will facilitate coping, adaptation, and survival from situations or objects perceived as 

threatening, dangerous, or challenging (Lazarus, Averill, & Opton, 1970 ). In contrast to 

other theories of emotion based on undifferentiated activation or arousal (Duffy, 1934; 

Schacter & Singer, 1962), appraisal theories claim emotions follow an individual’s 

evaluations of events or situations (Arnold, 1969; Frijda, 1994; Roseman & Smith, 2001; K. 

Scherer, 1984). Mandler (1975) proposed cognitive appraisal of the event and arousal as 

being essential for emotion and that appraisal alone could generate the level of arousal. 

Lazarus and Folkman (1984) recognized the individual arrives at each event with values, 
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beliefs, and goals that influence appraisal and lead to specific patterns of arousal rather than 

the diffuse, generalized arousal proposed by earlier theories. Previous experience coping with 

a stressor influences how well a new event is managed and choice of activities used to 

regulate emotion. Assumptions of appraisal theory include the following: 

1. Emotion is a system that is organized to provide primarily adaptive capability.  

2. Emotions are generated and differentiated by appraisals. 

3. Differences in appraisal can account for individual and temporal differences in 

emotional response. 

4. All situations to which the same appraisal pattern is assigned will evoke the 

same emotions. 

5. Appraisals precede and elicit emotions. 

6. The appraisal process makes it likely that the emotions will be appropriate 

responses to the situations in which they occur. 

7. The appraisal system has evolved to process information that predicts when 

particular emotional responses are likely to provide effective coping. 

8. Conflicting, involuntary, or inappropriate appraisal may account for irrational 

aspects of emotions. 

9. Changes in appraisal may account for developmentally and clinically induced 

changes in emotion. 

       (Planalp, 1999; Roseman & Smith, 2001).  

While emotion theorists like Lazarus (1966), Frijda (1986), Smith and Ellsworth 

(1985) agree that emotion has different components (like antecedent event, appraisal, feeling, 

activation, behavior), theorists disagree on which components are essential and the order in 
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which the components appear.  Level of cognition has sparked the largest controversy with 

Zajonc (1984) arguing for minimal cognition and Lazarus et al. (Lazarus, 1984; Lazarus et 

al., 1970 ) arguing for increasing level of cognition with appraisals. Componential theories of 

emotion argue that emotion causes cognitive activity along with other characteristics of 

physiological arousal, action tendencies, motor expression, and feeling states (K. Scherer & 

Ellgring, 2007a). To more precisely define the phenomenon of emotion elicitation and 

patterns of response, componential theories have developed detailed predictions of changes 

that occur in response to specific appraisals (K. Scherer & Ellgring, 2007b; C. Smith & 

Ellsworth, 1985). These theories also propose that a larger number of well-defined emotions 

exist in contrast to the limited number proposed in discrete emotion theories(K. Scherer & 

Ellgring, 2007a).  

Scherer’s Component Process Model and Theory of Sequential Evaluation Checks 

The theoretical framework selected for this study is the component process model of 

emotion and the sequential check theory (SECs) of emotion differentiation developed by 

Klaus Scherer (1984, 1986, 2001a). Scherer, a social psychologist, first studied nonverbal 

communication with studies related to personality and expression of stress (Giles, Scherer, & 

Taylor, 1979; K. Scherer, 1981; K. Scherer & Giles, 1979). Using a process model view of 

stress and appraisal, Scherer provided a cognitive psychological approach to emotion that 

builds on work describing the expression of emotion and evolution (Darwin, 1872/1955; 

Wilson, 2006); work on psychological aspects of stress, appraisal, adaptation, and coping 

(Arnold, 1960; Bombardier, D'Amico, & Jordan, 1990; Frijda, 1986; Lazarus, 1966; Lazarus 

& Folkman, 1984 ); and work on emotion (Arnold, 1969; Damasio, 1999; Ekman, Levenson, 
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& Friesen, 1983; Frijda, 1986, 1994; Porges, 2001; K. Scherer & Ekman, 1984; Zajonc, 

1984).   

Scherer’s theory is based on studies of emotion and emotion portrayal (Ladd, 

Silverman, Tolkmitt, Bergmann, & Scherer, 1985; K. Scherer, 1978; K. Scherer, Banse, 

Wallbott, & Goldbeck, 1991; K. Scherer & Ceschi, 1997). As cognitive theory of stress and 

emotion developed, Scherer incorporated aspects of cognitive (Arnold, 1960; Lazarus et al., 

1970 ) and physiological theory (Gellhorn, 1970) with his acoustic studies of vocal 

expression (Ladd et al., 1985; K. Scherer, 1986; K. Scherer, Ladd, & Silverman, 1984). 

Dissatisfied with the limitation of discrete and dimensional theories of emotion, Scherer 

(2001b) proposed a component process model in which an antecedent event causes a series of 

evaluations in a prescribed order that can lead to a limitless number of emotion 

combinations. Like Darwin’s phylogenetic theory of emotion, Scherer notes that some 

combinations occur more frequently in daily life and induce consistent reactions as the result 

of nervous system development (Darwin, 1872/1955). In contrast to Ekman’s (1992) support 

of “basic emotions,” Scherer refers to emotions of anger, disgust, fear, happiness, and 

sadness as “modal” emotions (K. Scherer, 1986) with the possibility of an unlimited number 

of emotions and emotion blends. According to Scherer, restriction of the number of emotions 

has contributed to the lack of significant findings in studies since some emotions, like anger, 

would be expected to be different based on intensity of physiological activation as well as 

potency of the reaction. Anger that is “cold” results in irritation or less ergotropic, or energy 

expending, behavior than “hot” anger that leads to rage. Consequently, acoustic parameters 

would be dissimilar due to physiological differences although participants report “anger.” 
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Most cognitive appraisal theories do not explain the rapid change that occurs with 

environmental encounters that do not allow time for the cognitive processing necessary for 

action, like acute injury (Damasio, 1994; Lazarus & Folkman, 1984). Increased somatic 

nervous system activation expected with heightened emotion increases striated muscle 

tension that fosters the “fight or flight” phenomenon when an organism is exposed to a 

threatening adversary (Cannon, 1929) or “freezing “when the organism is alone and escape is 

not possible (Porges, 2001). Such changes cause characteristic increases in fundamental 

frequency level and range by increasing tension of muscles that support vocal folds (Gobl & 

Chasaide, 2003), the so-called “push effect ” of physiological activation (K. Scherer, 1984). 

Effects of cultural constraints on emotion expression are referred to as “pull effects,” 

describing the effort to suppress emotional expression.  

Scherer’s theory (1986, 2001a) incorporates physiological mechanisms to predict 

parameters altered with different emotions. Scherer uses Gellhorn’s classification of 

autonomic nervous system (ANS) activation with ergotropic arousal for sympathetic nervous 

system dominance causing energy expenditure and trophotropic, or energy restoring, arousal 

for parasympathetic dominance promoting energy conservation (Gellhorn, 1970).  

The effect of the ANS activation on the speech production system cannot be 

overstated (Juslin & Laukka, 2001). Although the vocal folds do not possess nerve supply, 

the recurrent laryngeal and superior laryngeal nerves, branches of the vagus nerve, innervate 

the laryngeal muscles and are primarily parasympathetic in nature (Chagnon, Papagiannis, 

Mylnarck, & Massie, 2005; Jiang, Lin, & Hanson, 2000). Changes in subglottal pressure due 

to altered respiration, secretion of mucus and saliva, and tone of facial and supralaryngeal 
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muscles all contribute to changes in fundamental frequency, intensity and resonance (C. 

Williams & Stevens, 1981). 

Fundamental frequency (F0), the acoustic correlate of pitch, changes with strong 

emotions like hot anger, fear/panic, and elation. These emotions are associated with intense 

physiological activation or arousal indicated by changes in respiratory rate and depth, 

subglottal pressure, and glottal tension. 

Intensity changes in the speech signal are perceived as loudness and are reflected in 

amplitude of the waveform. Increased amplitude is seen with strong positive emotion  like 

elation as well as strong negative emotion like rage/anger (K. Scherer & Ceschi, 1997) that 

cause physiological activation. 

Resonance changes in the speech signal, often referred to as voice quality changes, 

can be noted in formant changes and distribution of frequencies in the energy spectrum 

(Laver, 1991). A formant is a frequency at which a particular vocal tract is more efficient 

than nearby frequencies. Formants are not due to source-spectrum properties but rather to the 

amplitude and articulators of the vocal tract (Baken & Orlikoff, 2000, p. 258). Formant 

precision of the first formant (F1) and second formant (F2) can indicate coping strategy of a 

speaker under cognitive or emotional stress (Tolkmitt & Scherer, 1986).  

In his review of studies of vocal cues of emotion, Scherer categorized findings on the 

basis of the emotions (1986). For purposes of the current investigation’s consideration of the 

emotions of anxiety, sadness, and anger, it is important to note that Scherer’s category labels 

indicate the level of physiological arousal expected to color expression. For example, Scherer 

differentiates emotions with more qualitative descriptors (e.g., “cold” anger associated with 

irritation versus “hot” anger associated with rage) to indicate potency. Sadness/dejection is 
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differentiated from grief/despair, worry/anxiety is differentiated from fear/panic, 

irritation/cold anger is differentiated from rage/hot anger. The additional descriptors provide 

clarification about the strength or potency of the emotion being described. Scherer’s 

component process model recognizes that physiological changes occurring in emotional 

states alter phonation and resonance and suggests acoustic parameters of vocal expression of 

emotion be used to differentiate emotions (Banse & Scherer, 1996; K. Scherer, 1984, 1986).  

The component patterning theory (K. Scherer, 1984, 1986, 2001a), recognizes the 

interplay of the neuroendocrine system, autonomic nervous system, and somatic nervous 

system in appraisal. Appraisals of relevance, implications, coping potential, and normative 

significance result in different subsystem changes (K. Scherer, 1984). Scherer described 

sequential evaluation checks (Table 1) as a means of explaining the reasons for these 

differences in emotion. Sequential evaluation checks (SECs) are cognitive evaluations of an 

event or object that take place in the same order whenever a situation presents itself.  
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Table 1. 
 
Scherer's Sequential Evaluation Checks (1986, 2001) 

Check Level of Awareness Positive Negative  

Novelty Change in stimulation Not novel, 

expected 

Novel, 

unexpected 

Intrinsic 

Pleasantness 

Stimulus event evaluated with 

innate or learned detectors 

Pleasant, 

Approach 

tendencies 

Unpleasant, 

Avoidance 

tendencies 

Goal / Need 

Significance 

Stimulus influence on goals, 

needs, survival 

Relevant 

Conducive to 

Goals 

Response not 

required 

Relevant 

Obstructive to 

Goals 

Urgent response  

Coping Potential Ability to adapt to event and 

consequences 

Did not cause 

event 

Control 

High power 

Adjustment 

possible 

Caused event 

 

No control 

Low power 

Adjustment 

unlikely 

Norm/Self 

Compatibility 

Behavior conform to person,  

social, cultural norms/ 

expectations of self and others 

Internal 

standards and  

External 

standards 

surpassed 

Internal standards 

violated 

External 

standards violated 
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Once it is determined that an antecedent event or situation is judged “relevant” to an 

individual’s goals or concerns, components of cognition, physiological regulation, 

motivation, motor expression, and monitoring-feeling respond with adjustments (Banse & 

Scherer, 1996).  

The sequence of the checks incorporates recent neuroscience findings. Dichotomous 

decisions are predicted to be made almost automatically with the early checks of novelty and 

pleasantness. This finding is borne out in neuropsychological studies where the amygdala is 

thought to trigger the somatic response when detecting “novel” or “unexpected” stimuli 

(Bechara, Damasio, & Damasio, 2003; Phelps & LeDoux, 2005). Unpleasantness has also 

been associated with rapid evaluation in experimental pain studies (Rainville, Duncan, Price, 

Carrier, & Bushnell, 1997). For example, as a greater amount of cognition is required, more 

time is needed to process the evaluation using cortical information regarding past experience 

and coping strategies. A final check for cultural norms and self-concept requires more 

cortical activity (Bechara et al., 2003). While the process is open to re-evaluation of the  

stimulus at any point, closure is required to prevent indecision in the individual and 

physiological systems (K. Scherer, 2001a).  

This component process model of emotion proposes that changes in acoustic 

parameters occur with each sequential evaluation check and each successive check modifies 

the evaluation of the previous check so an unlimited combination of evaluation outcomes is 

possible, leading to more rather than fewer emotional responses. Studies suggest that a 

recurring event is not appraised as novel and early SECs are passed over to deal with more 

cognitively (K. Scherer, 1986) demanding evaluation checks (Johnstone, Van Reekum, Hird, 

Kirsner, & Scherer, 2005; K. Scherer, 2001a). Because some situations present themselves 
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frequently in normal living, it is expected that some patterns of evaluation and emotional 

reaction will occur more often (K. Scherer, 1986). Because persons in the transition period 

from acute to chronic pain are confronted with frequent pain episodes, it is expected that each 

pain-inducing event may induce frequent appraisals of the pain’s significance to well-being 

or goals that lead to physiological changes and behaviors that reflect emotional reaction. The 

SECs of goal need/significance and coping potential checks seem to resonate with the stage 

of extended pain affect suggested by Riley and Wade (2004) where patients evaluate goals 

and self-image and the need for change. If so, measures of voice might provide information 

about the emotional status of persons in pain. 



  

 

CHAPTER THREE 

REVIEW OF LITERATURE 

Because this study incorporates theory related to pain, emotion, and linguistics, 

literature was reviewed that could provide information on relevant research. A general 

overview of stress, emotion, emotion expression, acoustic analysis, and chronic pain follows.  

Stress 

Pain sensation, or nociception, is classified as a stressor since it precedes 

physiological and psychological changes that comprise the acute stress response and 

disruption of homeostasis (Chrousos, 1992; Chrousos & Gold, 1992; Cousins & Power, 

1999).  Thus, stimulus – response theories of pain and studies of nociception that include 

specificity and patterning theories provide the basis for much of the research about pain 

(Price & Bushnell, 2004). The gate control theory of pain (Melzack & Casey, 1968; Melzack 

& Wall, 1965) proposes that pain is composed of sensory, affective, and evaluative 

dimensions. In the years since the theory was first introduced, investigations of experimental 

and clinical pain have indicated that the emotional component of pain influences the pain 

intensity experienced (Ochsner et al., 2006; Rainville, Carrier, Hofbauer, Bushnell, & 

Duncan, 1999). While study of nociception continued and new mechanisms and 

neurotransmitters were discovered, the gate control theory sparked cognitive psychological 

research that recognized cortical influences on pain perception and control. Although the 
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unpleasant or aversive nature of pain diverts attention away from other activities (Grisart & 

Plaghki, 1999),  pain can also be ignored or tolerated at levels that vary from high to low in 

some contexts (Boston & Sharpe, 2005; Crombez, Eccleston, Baeyens, van Houdenhove, & 

van den Broeck, 1999; Seminowicz & Davis, 2006).  

The definition of stress as the disruption of homeostasis (Chrousos & Gold, 1992) 

highlights the importance of Cannon’s early work on homeostasis (Cannon, 1915, 1929) and 

the work of Selye describing the effects of chronic stress on the body  (Selye, 1955, 1956, 

1959). While in early work, Cannon and Selye provide physiological evidence of the 

connection of stress to tissue pathology (Cannon, 1915; Selye, 1955), later work provides the 

link of psychological stress to pathology (Selye, 1961, 1985). Stressor is a term used to 

describe a physiological or psychological stimulus that threatens to alter homeostasis and 

activate neural, hormonal, or behavioral responses (Chrousos & Gold, 1992).   

Painful stimuli may act as a stressor when these responses are activated or when prior 

experience modifies responses influencing perception of intensity and consequences of the 

painful stimulus (Melzack, 1999). Because of the aversive nature of pain, emotional reaction 

to pain is often negative, with the person in pain noticing and trying to avoid having the pain. 

Because genetic history and learning experiences are unique to an individual, a variety of 

responses should be possible. However, Darwin (1872/1955) found that responses to 

environmental stimuli with specific behaviors like freezing, fighting, or fleeing were similar 

across species and are important to survival of species. Cannon (1929) associated acute pain 

with an interruption of homeostasis and focused on activation of the sympathetic nervous 

system with observable features like pupil dilation, increased heart rate, and increased 

skeletal muscle tension. These changes characterize the energy expenditure needed for the 
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“fight or flight response” when threat is recognized and indicate level of arousal. Whether 

arousal occurs prior to the event or following the appraisal is the basis of controversy in 

psychological theories.  

Although chronic pain is a stressor (Dysvik, Natvig, Eikeland, & Lindstrom, 2005; 

Ruhl, 1999), it does not always demonstrate the distinctive signs of sympathetic nervous 

system activation. Adaptation to a chronic stressor like pain may result in reduced 

sympathetic response, possibly related to hypocortisol levels resulting in dominance of 

parasympathetic input (Glass et al., 2004; Heim, Ehlert, & Hellhammer, 2000; Hellhammer, 

Schlotz, Stone, Pirke, & Hellhammer, 2004). Parasympathetic activation is characterized by 

efforts to restore homeostasis, counteracting sympathetic activation through decreased heart 

rate, decreased respiratory rate, and rest or inactivity. While heart rate is often thought to 

provide an indication of arousal and pain intensity, the possibility of a gender effect also 

exists (Tousignant-Laflamme, Rainville, & Marchand, 2005). In their study of 39 non-pain 

subjects using experiment thermal pain, Tousignant-LaFlamme et al. (2005) found that heart 

rate was highly correlated with pain intensity (r = .77) and pain unpleasantness (r = .86), and 

heart rate in men, while correlation was absent in female subjects (intensity, r = -0.2; 

unpleasantness, r = 0.001).  

Much of the cognitive psychological research of emotion relies on theory related to 

stress, coping and adaptation introduced by Lazarus and Folkman (Lazarus, 1966; Lazarus & 

Folkman, 1984). In this particular cognitive theory, an individual experiences a stressor, 

appraises its significance to his or her well-being or survival and his or her ability to cope 

with the stressor, experiences a physiological reaction, and undergoes a behavioral response 

(Lazarus, 1966). It is the appraisal of a stressor – be it an event, an object, or the occurrence 
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of pain – that sets off a cascade of neurophysiological events that trigger the internal feeling, 

sometimes referred to as arousal, leading to observable behaviors or emotions that express 

the feeling state (Damasio, 1994). 

Emotion 

The terms affect, feeling, emotion, mood, and temperament are often used 

interchangeably in the literature (Alpert & Rosen, 1990) to refer to the phenomenological 

response to an object, person, or situation. Fernandez et al. define affect as the collection of 

emotions, moods, and temperaments. Feeling refers to the intrapersonal awareness of 

muscular and endocrine activity and is only recognized by the individual experiencing the 

feeling (Damasio, 2003; Fernandez et al., 1999) and lasts briefly, i.e., seconds or minutes.  

Emotion, from the Latin root e-movere, “to move out,” (Oxford English Dictionary Online, 

2005) refers to the extra-personal or observable evidence of this muscular and endocrine 

activity in expressive behavior. Emotion occurs when specific patterns of varied and complex 

physiological reactions are touched off by brain systems when an individual is exposed to an 

image, object or situation external or internal to an individual and lasts from minutes to hours 

(Damasio, 2000). Mood refers to a prevailing emotional disposition over an extended period 

of time with little variation in intensity over hours or days (Fernandez et al., 1999). 

Temperament is used to describe a tendency of an individual to experience specific emotions 

or mood more frequently for an extended period and provides a basis for future appraisals. 

Temperament is considered to be the result of learning and inherited traits, and it is 

temperament that is tapped in psychological inventories of anxiety, depression, and anger 

(Fernandez et al., 1999). Emotion, the observable evidence of muscular and autonomic 
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nervous system change, is the focus of this investigation although temperament was 

measured with psychological inventories. 

While pain may not be widely acknowledged as an emotion, pain does evoke emotion 

(Damasio, 2000) as evidenced by the occurrence of predominately negative emotions of 

depression, anger, and anxiety associated with chronic pain (Price & Bushnell, 2004). Study 

of emotion has a long history of study in biological(Darwin, 1872/1955) , physiological 

(Cannon, 1915), psychological (Arnold, 1960; James, 1884), sociological (Kemper, 2000), 

and cultural (Mesquita & Frijda, 1992; K. Scherer & Wallbott, 1994) disciplines. While there 

is some consensus that emotion is a process with multiple components, many theories include 

some combination of cognitive appraisal, subjective feeling, physiological arousal, motor 

expression, action tendency, and regulation (Laukka, 2004; Planalp, 1999). However, the 

mechanism of the process from a stimulus or antecedent event, to the feeling generated, and 

finally to the observable behaviors is not fully understood (Damasio, 1994, 1999; Eich, 

Kihlstrom, Bower, Forgas, & Niedenthal, 2000; Porges, 1997). Cognitive psychologists 

propose that emotions result from evaluations or appraisals of events or situations, and 

emotions may change over short periods of time, i.e., minutes or hours (Arnold, 1960; 

Lazarus, 1968). However, other prominent researchers do not acknowledge this need for 

complex cognitive activity, or even consciousness, for emotions to occur (LeDoux, 2002; 

Zajonc, 1984).  

Undifferentiated activation or arousal was thought to cause emotional responses and 

psychophysiological measures were employed to empirically demonstrate level of arousal 

and explain the emotional states that occurred. Arousal or activation theories of emotion were 

developed from these psychophysiological studies (Duffy, 1934; Schacter & Singer, 1962). 
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Because the relationship of arousal and emotion is prominent, researchers assumed arousal 

was the primary cause of emotion. However, Schacter and Singer’s (1962) experiment of 

injecting epinephrine to induce emotion did not explain how emotions differ despite similar 

levels of arousal (Planalp, 1999).  

Appraisal theories suggest that emotions follow an individual’s evaluations of events 

or situations and the relation of the evaluation to goals and plans (Arnold, 1969; Frijda, 1994; 

Roseman & Smith, 2001; K. Scherer, 1984). Disagreement in appraisal theory exists about 

the number and way that emotions should be described, producing discrete, dimensional, and 

process theories.  

Discrete emotion theories propose that a small number of emotions exist (e.g., anger, 

fear, sadness, and joy) and that each has it own specific and individualized pattern of 

components. Because consciousness, not cognition is required, emotions are possible in 

infants.  Because each emotion is thought to have distinguishable facial expressions, 

Ekman’s (1992) work with facial expression supports discrete emotions theory.  

Dimensional emotion theories focus on subjective feeling and identify a small 

number of dimensions to account for emotional states. For example, Wundt (1912/1924) 

proposed three dimensions – pleasure-displeasure, strain-relaxation, and excitement-

calmness. The circumplex model of emotion (Larsen & Diener, 1992; J. Russell, 1980) 

proposed structuring emotional states using two dimensions – pleasure-displeasure and  

arousal-sleep – and organizing affect terms in a circle around the two axes with certain states 

– excitement, distress, depression, sleepiness -  methodically positioned based on their 

relation to the two dimensions (Altaribba, Basnight, & Canary, 2003). Ortony et al. (1988) 

observed that all emotion terms are valenced leading to good-bad, pleasant-unpleasant 
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ratings. A two-dimensional model having an activation dimension ranging from sleep to 

excitement and a valence dimension ranging from displeasure to pleasure has been proposed 

(Laukka, Juslin, & Bresin, 2005).  

In a follow-up study to determine how many dimensions might be involved in vocal 

expression of emotion, Laukka et al. (2005)  asked participants to evaluate portrayals of 

emotion using four dimensions. While distinct patterns for various emotions were found with 

only three dimensions – activation, valence, and potency – four dimensions, including 

emotion intensity, were related to vocal cues (Laukka et al., 2005).  

Strength of the emotion has also been suggested as a third dimension that is included 

in the individual’s coping appraisal and differentiation of negative emotions (C. Smith & 

Ellsworth, 1985).In addition to the previous dimensions, action tendencies or action readiness 

(Frijda, 1986) may be used to differentiate emotions. Action readiness refers to “involuntary, 

nonhabitual action control” (Frijda, 2000 p.63) that is separate from cognition and decision-

making.  

In contrast to discrete and dimensional theories, process theories of emotion identify 

components that work together to form an emotion and, because subtle differences can occur, 

an unlimited number of emotions and blends of emotions is possible (Planalp, 1999). Process 

theories can identify discrete categories of emotions, like fear and anger, by identifying the 

events, appraisals, action tendencies, behaviors, physiological reactions, and regulation. But 

these theories can also explain why differences exist in emotions that appear similar, e.g., 

emotions such as guilt and shame as well as blended emotions like happiness and sadness at a 

wedding. Because of their ability to incorporate the recurring and the highly individual 

experiences humans have (Planalp, 1999), process theories are more likely to provide 
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guidance in emotion assessment of persons with chronic pain since they have varied disease 

etiologies, experiences, cognitive abilities, and personalities. 

The ability to probe the brain non-invasively with functional magnetic resonance 

imaging (fMRI) and positron emission tomography (PET) have allowed study of brain 

activity when an emotion is recalled or induced in conscious adults (Kalisch, Wiech, 

Critchley, & Dolan, 2006; Liotti et al., 2000) and shown the interconnectivity of various 

brain locations in emotion processing. Among these locations, the amygdala, hippocampus, 

cingulate and prefrontal cortex play important roles in danger detection, recall of past 

experience, memory of past coping strategies, and adaptation. All of these skills allow the 

organism, in this case, the human, to survive in a complicated environment. Communication 

of emotion provides signals of danger, dominance, submissiveness, and sexual access that 

allows the species to reproduce and survive (Kemper, 2000). Because humans have evolved 

to possess large cortices that allow them to learn from past experiences and well-placed 

larynges that allow them to communicate through language and other means of expression, 

they have become more social animals. Vocal and facial signals that were more automatic 

may now be more subject to the constraints of social norms.  

Emotion Expression 

Although Darwin’s study of emotional expression in man and animals (1872/1955) 

provides the foundation for much of the work on emotion and its communication 

(Bachorowski & Owren, 2003; Davidson, 2003), the link of emotion and expression can be 

seen in the works of Aristotle on rhetoric.  
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However, expression and communication of emotion are not one and the same. To 

clarify, expression is defined as that part of emotion that is essential to the experience of 

emotion; it occurs involuntarily through facial, vocal, and body cues (Buck, 1984). 

Communication occurs only if the speaker intends for it to occur, requires an individual to 

step away from feeling the emotion, and is shaped by the environment or perception of the 

audience (Planalp, 1999). Communication requires a common code or shared language 

(Akmajian, Demers, Farmer, & Harnish, 1995). Communication, consequently, is heavily 

influenced by social and cultural norms that can constrain emotional expression (Planalp, 

1999). Efforts to determine emotional state from emotional expression through only one 

channel is difficult. Fortunately, a combination of cues and the multiplicity of cues in 

different channels provide a recognizable pattern of behavior that signals emotion to an 

observer (Ekman, 2003; Planalp, DeFrancisco, & Rutherford, 1996).  

Because emotion precedes the occurrence of behavior and verbal self-report 

(Damasio, 1999), reliable measurement of emotional reaction would be less influenced by 

social constraints if verbalization and the cognitive level it requires were removed.  

Emotional expression can be observed in automatic facial expressions (Ekman, 2003; Ekman 

& Friesen, 1978), body postures, and movements (Darwin, 1872/1955) as well as voice. 

Supporting Buck’s (1984)  findings, Hadjistavropoulos and Craig (2002) note that observed 

behavior tends to be automatic and involuntary while self-report is controlled by cognitive 

centers and is subject to purposeful re-shaping.  

Because of the rapid changes possible with emotion and the effects of masking and 

social constraints, cues to the presence of emotions have been studied via visual and auditory 

channels because they are less subject to social constraint than self-report (Juslin & Scherer, 
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2005 ). Much of the research on emotional expression has used facial expressiveness as an 

indicator of emotion occurrence (K. Craig & Patrick, 1985; Ekman & Friesen, 1978; J. 

Russell, Bachorowski, & Fernandez-Dols, 2003; Wallbott & Scherer, 1991; Wilson, 2006). 

While facial expression is readily observable reaction to a situation or person, the vocal 

channel of expression has been found to “leak” more affective information, or to be less 

influenced by cultural display rules of appropriate behavior associated with emotion 

expression (Hochschild, 1979; Kemper, 2000; Planalp, 1999). Voice becomes so important to 

individual’s identity that family and friends can recognize not only the person, but subtle 

variation in speech patterns that signal particular emotions even over the telephone where 

frequencies are reduced. 

Although emotion can be carried in the vocal signal (van Bezooyen, 1984) and one is 

able to identify current emotional state from acoustic properties of voice like loudness and 

pitch (Friedhoff, Alpert, & Kurtzberg, 1962), study of emotion in voice has not progressed as 

rapidly as that of facial expression (K. Scherer, 1986). Because a limited number of encoders 

and few common acoustic and physiological measures were used, results of many studies 

cannot be generalized (Laukka, 2004; K. Scherer, 1986). Although many studies of vocal 

expression of emotion are reported, few theories have been available to foster hypothesis 

development derived from the synthesis of similar parameters (Banse & Scherer, 1996; K. 

Scherer, 1986). Few theories predict cues based on physiological changes known to occur in 

response to emotion and none as complete as Scherer’s theory (Juslin & Laukka, 2001). 

Voice carries emotional content detectable by human decoders (Monnot, Orbelo, 

Riccardo, Sikka, & Rossa, 2003; K. Scherer, 1986; K. Scherer & Zei, 1988). Further, 

emotions have been more accurately detected by human decoders than the computer systems 
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designed to perform acoustic analysis of voice, however this difference may be due to the 

equipment and parameters used.  Listeners have achieved accuracy rates four to five times 

that expected by chance (Monnot et al., 2003; Pittam & Scherer, 1993). The absence of 

significant findings from computer assisted programs is attributed to the use of few 

parameters of fundamental frequency (K. Scherer, 1986), only a few emotions (Banse & 

Scherer, 1996), and few encoders in studies (Juslin & Laukka, 2001).  

Emotional expressions are classified by whether they are naturally expressed, 

induced, and portrayed. Natural expressions of emotion have been studied using recordings 

of events like a broadcaster’s reporting of the crash of the Hindenburg (C. Williams & 

Stevens, 1972) and cosmonauts’ reaction to emergency situation in space (Simonov & 

Frolov, 1973). These reactions are of high intensity not present in the moment-to-moment 

changes of natural emotion. Scherer  notes the difficulty in capturing natural emotion due to 

ethical constraints that limit induction of heightened emotional states of fear, grief, 

depression, and anger. Induction of emotion, often in the form of recalling an event, is 

reported in a variety of studies, some related to pain (Rainville, Bao, & Chretien, 2005; K. 

Scherer, 2003; Weisenberg, Raz, & Hener, 1998). Induction of pain, while done in 

experimental research, has limited generalization to naturally occurring pain since 

participants are aware that pain is under the control of the experimenter and will stop when 

they signal. Portrayal of emotion by actors and healthy volunteers (Bachorowski & Owren, 

1995; L. Brody & Hall, 2000; K. Scherer, 1986; van Bezooyen, 1984) has been used and 

justified as stronger than naturally occurring emotional behaviors and well-differentiated. 

While use of portrayal is stereotypical, some cues like jitter are not thought to be under 
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voluntary control and, therefore, would not be evident in acoustic recordings (Bachorowski 

& Owren, 1995).   

Cross-cultural studies of facial  and vocal expression  of emotion demonstrated 

similarities in interpretation of facial expression, but also confusion of interpretation of some 

facial expressions of anger and joy (Ekman & Friesen, 1988; K. Scherer & Wallbott, 1994). 

While Scherer (K. Scherer, 1986) recognizes that there is the possibility of an unlimited 

number and blends of emotions, he also notes that certain emotions occur more frequently. In 

a study of vocal expression across cultures, support for the universality of vocal expression 

of seven emotions (i.e., joy, anger, fear, sadness, disgust, shame, and guilt) is found in studies 

encompassing 37 countries (K. Scherer & Wallbott, 1994) .  

Paralinguistic content (i.e., content due to intonation, intensity or duration) may 

provide additional data on which to base clinical assessments. The absence of information 

about adults’ paralinguistic content of pain expression limits its usefulness as an indicator to 

assist in chronic pain management. Selection of a participant sample with chronic ongoing 

pain that can be influenced by normal activities of daily living could provide a means of 

measuring naturally occurring emotional reaction to pain as well as information on the utility 

of acoustic analysis in emotion. 

Chronic Pain 

Response to acute pain is characterized sympathetic nervous system activation and 

with fear and behaviors that avoid or reduce pain or attempt to get help from others in 

relieving the pain. When the pain is relieved, the emotional response dissipates. However, 

chronic non-cancer (CNP) pain tends to be characterized by predominance of an affective-
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motivational component with negative affect and sometimes maladaptive pain behaviors 

(Riley & Wade, 2004). Vicious cycles that promote increased pain, disability, and depression 

can occur (Bálint, 2002) and the risk of suicide with chronic non-cancer pain is present 

especially in elders with multiple chronic illnesses (Fishbain, 1999; M. T. Smith, Edwards, 

Robinson, & Dworkin, 2004). Because effects of pain and the delay for treatment of many 

chronic conditions that are associated with aging, the impact of emotional as well as sensory 

aspects of persistent pain needs to be assessed quickly to minimize disability (Elders, 2000). 

CNP like the acute phenomenon demonstrates sex differences (Berkley, 1997; Unruh, 

1996). Not only is the experience of clinical and experimental pain (Lautenbacher & 

Rollman, 1993; Morin, Lund, Villarroel, Clokie, & Feine, 2000; Riley, Robinson, Wise, 

Myers, & Fillingim, 1998) different for males and females, but response to analgesics is 

different as well (Fillingim & Ness, 2000; Mogil et al., 2005). Sex differences in emotional 

response to CNP have been demonstrated with frustration and depression associated with 

usual and high pain unpleasantness while frustration is associated with pain intensity in 

women. Men, on the other hand, reported frustration with pain unpleasantness and depression 

and anxiety associated with pain intensity (Riley, Robinson, Wade, Myers, & Price, 2001). 

Because women are overrepresented in many chronic conditions (Fillingim & Ness, 2000) 

and have been reported to be more expressive of emotion (Eckert, 1989), selection of women 

as subjects was done to highlight the change in vocal aspects of pain occurrence.  

The progression from acute pain to chronic pain has been described as going from a 

stage of fear, anxiety, and worry to a stage of increased psychological and behavioral 

problems related to distress, anger, and depression, and culminating with extensive 

psychological, physical, and social issues (Gatchel & Epker, 1999). Price et al. (2001) define 
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pain affect as the end product of many contributing processes that includes pain sensation, 

arousal, autonomic and somatomotor activation, as well as cognitive appraisals or meanings. 

Because the experience of CNP is quite different from the acute pain experience, pain 

processing is thought to be more complex than the more automatic reaction to pain that 

occurs when touching a hot stove. Psychological stages of pain processing have been 

suggested that provide an indication of how acute and chronic pain experience could differ 

and which neuroanatomical sites are likely to be involved (Price & Bushnell, 2004).  

Price and Bushnell (2004) note pain unpleasantness has several sources  that combine 

with context appraisal to produce a “felt meaning” that is reliant on the body’s prior pain 

experience and the level of pain unpleasantness: sources include pain sensory qualities, 

arousal, as well as visceral and somatomotor responses. This felt meaning leads to immediate 

pain affect (Price & Bushnell, 2004, p.7). While appraisal of immediate pain affect is 

centered on the imminent threat to the body, extended pain affect, based on reflective 

cognitive appraisals, is pain-oriented and the threat to self. Reflective cognitive appraisals 

include concerns about the effect of pain on well-being, future goals, and ability to live with 

the pain (Price & Bushnell, 2004). Because of the influence of duration of pain on cognitive, 

affective and behavioral aspects of pain, researchers (Riley & Wade, 2004) note extended 

pain affect is influenced by beliefs, meanings, and expectations. Unlike the chronic pain 

criterion of 6 months duration, this pain processing model identifies the individual’s 

appraisal as critical and suggests a person with pain of a shorter duration than six months 

could demonstrate extended pain affect. 

Because subjective experience also affects emotions, expectancy of a goal and desire 

to achieve a goal can be described in positive (approach) or negative (avoidance) terms. 
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Expectancy refers to “the experienced likelihood of an outcome” (Vase, Price, Verne, & 

Robinson, 2004, p. 213) while desire refers to “the experiential dimension of wanting 

something to happen or avoid something happening” (Vase et al., 2004, p. 214). Since 

persons with CNP have experienced their pain for some time, anticipation of pain influences 

goals and their achievement. Price (1999) found experience increased intensity of 

remembered pain and there was a higher correlation of expected pain intensity and 

remembered pain than of expected pain and actual pain measured concurrently. Rainville et 

al. (Rainville, 2004; Rainville et al., 2005) found that changes in pain unpleasantness more 

strongly predicted changes in emotional dimensions of desire, expectation, valence, felt 

arousal, and dominance than pain intensity. Expectation, however, was also found to 

contribute to pain intensity supporting Price’s findings of the correlation of expected and 

remembered pain (Price, 1999).  

Pain affect varies widely between persons due to the individual’s appraisal (Lazarus 

& Folkman, 1984) or cognitive evaluation of the stimulus or situation determined by the 

individual’s interpretation of reality or beliefs. Appraisal of a threatening situation is more 

likely to signal the need for coping strategies and greater likelihood that the type of strategies 

selected will be emotion-focused (Dysvik et al., 2005). Appraisal of a situation as 

challenging is more likely to result in problem-focused coping strategies. Further, if the 

individual believes he or she is unable to manage pain, pain unpleasantness is also increased. 

Cognitive-behavioral interventions for chronic pain aim to reduce emotional reaction to pain 

that interfere with activity with the assumption that cognition does influence emotional 

reaction (Dobson & Craig, 1996; Haythornthwaite, Menefee, Heinberg, & Clark, 1998).  



  

31 

 

Stress and adaptation through coping are key concepts to the management of CNP 

(Haythornthwaite et al., 1998; Keefe et al., 1997). Researchers consider pain that continues 

beyond the time of normal healing, disrupts sleep and normal activities, and no longer 

provides an adaptive function should be classified as chronic (National Pharmaceutical 

Council Inc., 2001). The gradual decrease in pain with tissue healing and the close 

correlation of pain to tissue pathology seen with acute pain may be minimal or absent in 

CNP. Emotional response to CNP is not related solely to tissue damage, but includes the 

prospect of enduring unrelieved pain for the rest of one’s life and the threat to sense of self 

and long-term goals (Riley & Wade, 2004). Cassell (1999) refers to this reaction of fear to 

the threat to self as “suffering.” 

A four-stage model of pain-processing has been outlined that suggests that emotional 

reaction to acute and chronic pain is differentiated by neural activation (Riley & Wade, 2004; 

Wade, Dougherty, Archer, & Price, 1996). Extended pain affect, or secondary emotional 

reaction, occurs when the individual must re-evaluate self concept and goals (Wade et al., 

1996). Specifically, CNP is often associated with negative affect, including depression 

(Dworkin & Gitlin, 1991; Fishbain, 1999; Geisser, Robinson, Keefe, & Weiner, 1994; Katon, 

2003; McCracken, Vowles, & Eccleston, 2004; Turk & Okifuji, 1994), anxiety (Dehghani, 

Sharpe, & Nicholas, 2003; Eccleston, Crombez, Aldrich, & Stannard, 2001; Wade, 

Dougherty, Hart, & Cook, 1992), and anger (Fernandez & Turk, 1995; Kerns, Rosenberg, & 

Jacob, 1994). These negative emotions influence chronic pain appraisal (Fernandez & Turk, 

1995; Nelson & Novy, 1997) and the transition from acute pain to chronic pain (Linton, 

2004). Each of these reactions requires different types of interventions (Dalton, Keefe, 

Carlson, & Youngblood, 2004; Klaber Moffett, Carr, & Howarth, 2004; McCracken & Turk, 
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2002). Additionally, clinical studies indicate that timing of interventions employed in CNP 

plays a role in the prevention of disability as well as return to work (Marhold, Linton, & 

Melin, 2002; Sharpe et al., 2001) making early assessment of pain appraisal important to the 

success of interventions. Methods to assess emotional reaction to pain include paper-and-

pencil instruments requiring cognitive ability (Beck, Ward, Mendelson, Mock, & Erbaugh, 

1961; Spielberger, 1983, 1999; Spielberger, Jacobs, Russell, & Crane, 1983) and imaging 

technology to identify areas of brain activation associated with specific emotional responses 

(Duncan, Bushnell, & Lavigne, 1989; Kremer & Atkinson, 1981; Rainville, Feine, Bushnell, 

& Duncan, 1992; Strigo, Bushnell, Boivin, & Duncan, 2002). 

Attempting to measure affective response has led some researchers to consider verbal 

descriptors requiring cognitive skills (Fernandez & Towery, 1996; Gracely, McGrath, & 

Dubner, 1978; Melzack, 1975; Melzack & Torgerson, 1971; Tearnan & Cleeland, 1990).  

Persons who perceive a threatening situation when experiencing experimental pain used 

more affective than sensory descriptors (Boston & Sharpe, 2005) demonstrating the effect of 

appraisal. In addition, persons with CNP tend to use more affective descriptors than persons 

with cancer pain (Dalton & Feuerstein, 1989) or acute postoperative pain (Agnew & 

Merskey, 1976). Lack of prior life experience with CNP and duration may contribute to 

increased emotional response as persons attempt to signal distress and obtain assistance of 

others. The reaction to pain, as in fear of pain with movement, has been related to decreased 

function (Dehghani, Sharpe, & Nicholas, 2004; Pfingsten et al., 2001), and observation of 

behaviors has been employed as an indicator of disability (Keefe et al., 1997; Keefe et al., 

2000). Self-efficacy, or the confidence that one can continue activities, has been found to be 

associated with maintenance of activities in spite of pain. 
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Negative emotions like sadness, anger, or fear commonly observed in chronic pain 

(Kerns et al., 1994; Riley et al., 2001) have been studied using vocal analysis (K. Scherer & 

Zei, 1988; Sobin & Alpert, 1999; Wallbott & Scherer, 1986). Because interventions for 

depression, anger, and anxiety with chronic pain use strategies specific to the particular state 

(Nicholson, Gramling, Ong, & Buenevar, 2003; Paquet, Kergoat, & Dube, 2005), attention to 

the acoustic signal could lead to more appropriate and timely management of these emotional 

problems as well as pain. 

Acoustic Analysis and Voice 

Acoustic analysis of vocalizations provides a measure of an organism’s response to 

internal or external environmental stimuli through an indirect means of observing muscle 

tension via vocal fold vibration (Johnstone et al., 2007) and resonances since the neck, 

larynx, and folds are supported by numerous muscle groups (Copstead & Banasik, 2000). 

Vocal tract resonances are expected to be influenced by tension in the musculature of the 

face and neck, the faucal and pharyngeal settings (K. Scherer, 1986), and precision of 

articulation (Johnson, 2003). While acoustic measures have not been found to be as sensitive 

to emotion detection as the perceptual capabilities of the human ear (Juslin & Laukka, 2001), 

these measures provide a way of identifying major contributors to emotional speech that can 

be subjected to perception testing. 

Studies of naturally occurring emotion using acoustic analysis have used psychiatric 

as well as normal populations (Alpert, Pouget, & Silva, 2001; Louth, Williamson, Alpert, 

Pouget, & Hare, 1998; Sobin & Alpert, 1999) . Some of the earliest observations of emotion 
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in voice were by psychiatrists using tape-recorded sessions of patients (Friedhoff et al., 

1962).  

Studies of portrayed emotion expression (Pittam & Scherer, 1993; K. Scherer, 1986; 

K. Scherer, 1997) have demonstrated certain acoustic parameters, like fundamental 

frequency (F0) and amplitude are associated with emotions. Prosodic (e.g., intonational and 

rhythm aspects) and acoustic parameters related to voice quality (i.e., jitter and shimmer) are 

suggested as indicators of emotion in voice (Brenner, Shipp, Doherty, & Morrissey, 1983; K. 

Scherer, Schorr, & Johnstone, 2001).  

Use of acoustic analysis with emotion expression builds on autonomic nervous 

system activation in response to a stressor and the arousal that produces a feeling and 

motivates emotional expression (Damasio, 1994; Ekman et al., 1983). Acoustic analysis of 

voice provides a means of indirectly assessing level of muscle tension via vocal fold 

vibration as well as alteration in the resonance frequencies in the oropharyngeal tract 

(Ladefoged, 2001). Although various theories about the physical aspects of speech exist, the 

source-filter model for speech contends that the complex wave that is produced in speech 

depends on the source, or  glottal wave, and the filter, or those amplification and attenuation 

features that are made by the vocal tract’s frequency response curve (K. Russell, 2005). The 

vocal tract includes the entire supralaryngeal space through the lips (Figure 1).  
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Figure 1. Schematic of vocal tract. 
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While hearing is not in the scope of the current study, it is the hearing process that 

measuring devices attempt to mimic and has implications to data collection. A common 

oversimplification states speech is composed of sound waves that hit the tympanic membrane 

making sound leading us to believe tiny curved lines proceed out mouths to ears. In actuality, 

speech results from alterations in air pressure released from the vocal tract that moves air 

molecules in a pulse-like wave that moves forward as well as backward (Henderson, 2004). 

Under normal circumstances, the vocal folds have an opening between them called the 

glottis that allows breathing. When the glottis is closed and the vocal folds are within close 

approximation, pressure behind the folds increases and passage of air from the lungs through 

the larynx causes the folds to vibrate. This vibration, referred to as glottal pulses, disrupts 

airflow.  Fundamental frequency is the lowest rate of repetition of the changes in air pressure 

at the glottis and is expressed in cycles per second or Hertz (Hz) (Ladefoged, 2001). The 

measurement of fundamental frequency (F0) indicates the frequency of vibration of vocal 

folds at the glottis (Johnson, 2003). Air then passes through supralaryngeal structures – 

pharynx, oral cavity, nasal cavity, tongue, teeth, hard and soft palates, and lips – each of 

which contributes to alteration in airflow. These alterations cause formation of resonances 

that are unique to the individual. (National Center for Voice and Speech, 2005).  

Recording of a clean, strong vocal signal needed for acoustic analysis requires 

consideration of microphone, recording device, and environment. Microphone requirements 

to be considered are (1) sensitivity, (2) impedance, (3) frequency response, and (4) 

directionality (Baken & Orlikoff, 2000) (Table 2). First, sensitivity refers to the effectiveness 

of a microphone in converting acoustical to electrical energy with many ranging from -51 to -

60 decibels (dB). Decibel is the unit of measurement of amplitude or loudness based on the 
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bel first developed by Alexander Graham Bell (Johnson, 2003). The range of microphones is 

so low at the microphone since most systems amplify the signal.  

Second, impedance is measured in ohms (Ω), referring to the resistance to current 

flow to an amplifier, in the case of the microphone, or other circuit. Impedance, usually 

around 200 Ω, should match the amplifier input with a mismatch increasing noise and 

reducing sensitivity.  

Thirdly, frequency response refers to the microphone’s ability to remain equally 

sensitive over all frequencies, or have a reasonably flat curve when dB are plotted against 

frequency. A microphone that has a frequency range (usually 20 Hz to 20 kHz) that includes 

all frequencies the ear can hear is the standard.  

Lastly, directionality refers to the sensitivity of microphone design to sounds coming 

from different directions and is plotted on polar response graphs of concentric circles spaced 

5 dB apart that indicate the angle from which sound comes to the microphone. Omni-

directional microphones are sensitive to sound coming from behind and in front of the 

microphone and would be useful in recording several persons around a table. Unidirectional 

microphones are sensitive to sound coming in from the direction the microphone is aimed, 

dampening the input of other sound sources and having a cardioid (or heart-shaped) pattern 

of response useful in recording for acoustic analysis (Baken & Orlikoff, 2000).  
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Table 2.  
 
Microphone Evaluation Criteria 

Microphone Characteristic Definition Range 

Sensitivity Effectiveness in conversion 

of acoustical to electrical 

energy 

-51 to -60 dB 

Impedance Resistance of current flow 

to amplifier 

200 Ω 

Frequency Response Ability to demonstrate 

equal sensitivity over all 

frequencies 

20 Hz to 20 kHz 

 Directionality 

 

 

        

         1. Omnidirectional 

 

 

               

          2. Unidirectional 

Sensitivity to sounds 

coming from different 

directions to the 

microphone 

 

Sensitivity to sound coming 

from behind and in front of 

microphone 

 

Sensitivity to sound coming 

from the where the 

microphone aimed, 

dampens other input 

 

 

 

 

Round polar response graph 

 

 

 

Cardioid polar response 

graph 
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Microphones are designed to perform like the ear, converting mechanical energy from 

air pressure waves striking the diaphragm to electrical energy. Various types of microphones 

have been developed to answer specific needs. Dynamic microphones have a metallic  

diaphragm placed closely to a coil of wire connected to a magnet that generates a magnetic 

field around the coil. When the diaphragm moves from air pressure, it displaces the magnetic 

field generating an electric charge. The speed of the displacement determines the degree of 

electric charge produced. Although the dynamic microphone is durable, of moderate cost, 

and has good frequency-response, it can generate internal noise.  

To circumvent the internal noise and boost the signal, condenser microphones add a 

capacitor and require a small battery to maintain a slight charge across the diaphragm and 

backplate. The amount of charge is proportional to the displacement of the diaphragm and, 

because displacement is very small, requires amplification. A condenser microphone has a 

flat response over a wide range of frequencies, or higher sensitivity than the dynamic 

microphones. Although more expensive and more sensitive to abuse, the condenser 

microphone is recommended for precision measurement of sound pressure and is 

recommended for acoustic measurement of voice (Baken & Orlikoff, 2000; Titze & 

Winholtz, 1993).   

Recording systems for voice have been refined and analog recording using magnetic 

tape has been almost totally replaced by digital recording equipment. Laptop computers offer 

the ability to record a digital signal using installed or available add-on sound cards. 

Recordings are digitized immediately so environmental noise must be considered (Deliyski, 

Evans, & Shaw, 2005). Because sound cards are cheaply mass-produced for computer 

installation, features like sound-to-noise levels may not be the same for each card and 
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specifications may change at the computer manufacturer without notice. All of these 

situations lead to possible introduction of noise by the sound card (Deliyski, Evans et al., 

2005). After analyzing various combinations of equipment commonly used in speech labs, a 

comparison study recommends professional-grade data acquisition systems and high quality 

microphones to control for extraneous noise (Deliyski, Shaw, & Evans, 2005). 

While calculations before the advent of computers were tedious or impossible, the use 

of Fourier series has revolutionized analysis of speech waveforms and computer programs 

have made these analyses widely accessible. Fourier, a French mathematician and physicist 

during the French Revolutionary period, developed Fourier series, a mathematical means of 

determining the component simple waves in a complex wave composed of periodic 

sinusoidal waves. Because the speech waveform is relatively periodic (Johnson, 2003; K. N. 

Stevens, 2000), Fourier series has led to the development of other mathematical methods 

among them the fast Fourier transform (FFT) and the discrete Fourier transform (DFT).  

The FFT is an algorithm used in digital signal processing to calculate the Fourier 

transform or spectrum of the signal. The FFT algorithm supports four types of windows – 

Bartlett, Hann (also called Hanning), Hamming, and Blackman - used to minimize end-point 

mismatch if a waveform is not cut precisely at matching points at each end of the waveform. 

The Blackman window is favored by some due to its additional cosine calculation that 

reduces ripple due to truncation required in analysis of segments (Theussl, 1999). The 

number of data points that are used in the FFT must be equal to a 2n  number since the FFT 

uses a base 2 logarithm (Dataq Instruments Inc., 2002).  

If a more accurately selected part of the waveform is needed than FFT can provide, a 

discrete Fourier transform can be used by selecting the portion of the waveform and a DFT 
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will be calculated after the FFT to produce a power spectrum for that selected sample. Time 

resolution and frequency resolution are important considerations with FFT. Frequency 

resolution is better when more samples are included or a larger window is used. Time 

resolution is improved with a smaller window, but too few points may be sampled and 

frequencies will be missed causing aliasing, a misrepresentation of frequencies present in a 

waveform (Johnson, 2003). The power spectrum now provides a description of the 

frequencies within the waveform that previously only provided information on amplitude and 

time (Dataq Instruments Inc., 2002). However this picture only gives a view of what 

happened at one point in time.  

To observe what changes occur over time in an utterance, a number of spectra are 

needed. A spectrogram provide a description of waveform based on frequency on the vertical 

axis, time on the horizontal axis, and amplitude indicated by shades of gray. Using FFT 

analysis to calculate individual spectra and changing the window size, it is possible to handle 

time and frequency resolution problems mentioned earlier. With a narrow-band spectrogram, 

long analysis windows (e.g., 0.05 sec) are used resulting in high frequency resolution but low 

time resolution and damping resulting in better visualization of the harmonics. 

With wide-band spectrogram, a short time window is used (e.g., 0.005 sec) resulting 

in frequency resolution that is wider than most harmonic spacing so the harmonics are no 

longer clearly visible.  However, high damping leads to smoothing of the spectrum 

allowing visualization of dark bands indicative of formants used in data collection.  In 

addition, better time resolution demonstrates rapid changes in the waveform (University 

College London. Department of Phonetics and Linguistics, 2006).  
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Along with the ability to record higher quality speech samples, detection and 

measurement of emotion in voice requires analysis of the signal using various acoustic 

parameters. Scherer’s work  is among the earliest to address emotion in the voice and 

continues to guide this area of research. Analyses of the studies of vocal cues in emotion 

expression find that few acoustic cues have been analyzed (Laukka, 2004; K. Scherer, 1986) 

despite the advances in analysis programs.  

Measures of frequency have often been associated with signaling of emotion since 

frequency is a strong perceptual cue (Barrett, Pike, & Paus, 2004; Brenner et al., 1983; 

Monnot et al., 2003; Ohala, 1983). Fundamental frequency (F0), the lowest frequency simple 

wave, is lower in males than females because the size difference inside the larynx is 60% 

greater in males than females (Baken & Orlikoff, 2000; National Center for Voice and 

Speech, 2005; K. N. Stevens, 2000). Since sympathetic activation usually increases striated 

muscle tension and vocal cords are supported by muscles in the larynx, it is hypothesized that 

increased muscle tension pulls the vocal folds taut and thinning them resulting in higher 

pitch.  

Parasympathetic influence is observed when sympathetic activation is reduced or with 

restoration of homeostasis. Parasympathetic activation results in relaxation of the 

musculature, thickening of the vocal folds, and lower pitch associated with sadness.   

Although pitch, or its acoustic correlate, fundamental frequency (F0), is the most frequently 

obtained parameter (Johnstone & Scherer, 2000) and pitch tends to indicate level of arousal 

(Bänziger & Scherer, 2005; Johnstone et al., 2005), pitch by itself has not been found to 

differentiate emotional states well (Sobin & Alpert, 1999). Age does influence pitch with 

older women developing lower F0 while older men develop an increase in F0 (Baken, 2005). 
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Other F0 parameters as F0 maximum, minimum, range, variability, and jitter have been 

considered valuable (Juslin & Laukka, 2003; K. Scherer, 1986).  

Perturbation of fundamental frequency, the variability in frequency from period-to-

period, is called jitter. Because each period coincides with vocal fold vibration, jitter is used 

to indirectly assess vibration and voice pathology (Brockmann, Storck, Carding, & Drinnan, 

2007). Sources of jitter include neurogenic, aerodynamic, mechanical, stylistic and chaotic 

oscillation factors (Baken & Orlikoff, 2000). Although jitter has held some promise as an 

indicator of emotion, it has not been reliable. Because of the sex difference in fundamental 

frequency (Baken & Orlikoff, 2000; K. N. Stevens, 2000), only women will be studied to 

increase potential effect size since no estimates of F0 in chronic pain are available.  

Perturbation of amplitude, the variability in intensity from cycle to cycle, is called 

shimmer. Sources of shimmer are unclear, but shimmer is inversely proportional to mean 

vocal intensity (Baken & Orlikoff, 2000). Effort to provide a quiet environment and 

computer system during data collection will aid in providing optimal voice signal in order to 

eliminate measurement error that results due to noise (Deliyski, Evans et al., 2005; Deliyski, 

Shaw et al., 2005) 

Elements of voice quality (i.e., creaky, breathy, harsh, tense, lax) can be potential 

sources of emotional information (Murray & Arnott, 1993). While assessment of voice 

quality has been based on subjective evaluation, Laver’s  effort to identify and quantify 

phonetic characteristics of various qualitative evaluations allows increased reliability and 

comparison of data not possible with subjective labels.  
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Because the shape of the vocal tract is altered by articulators (i.e., tongue, lips, teeth 

and nasal passages), musculature of the neck and oropharynx, and the presence of saliva and 

mucus, different configurations produce a specific pattern of resonance frequencies of vowels  

called formants. Formants, especially the first and second formants, are thought to carry 

emotional content of speech (K. Scherer et al.; Tolkmitt, Helfrich, Standke, & Scherer, 

1982). Because of its role in articulation, the tongue plays an important role in formant 

production due to its segmental muscular architecture and very complex innervation (Stone, 

Epstein, & Iskarous, 2004).  Measurement of formants and other acoustic properties of voice 

can be done non-invasively using special recording equipment and acoustic analysis 

programs. Related to articulation,  speech alternating motor rates requiring coordination of 

articulatory structures of the jaws, lips, and tongue were observed to be slower in person 

having higher intensity chronic back pain (Roy, Volinn, Merrill, & Chapman, 2009).   

Acoustic measurements have been used to demonstrate the various changes specific 

to the sequential evaluation checks (SECs) proposed (Johnstone et al., 2005; K. Scherer, 

1997; van Reekum et al., 2004). Recent studies have indicated that all sequential evaluation 

checks in the Scherer theory may not be evident. For example, if the situation or event has 

been encountered frequently, the checks for novelty and implications may be bypassed (van 

Reekum et al., 2004). The changes in voice anticipated would be based on the subsequent 

checks of coping potential and normative significance. In cases where the stimulus has been 

experienced frequently in similar situations, the stimulus (i.e., pain in this study), may be 

anticipated and the arousal may precede a stimulus (Landon, 1989; Porro et al., 2002).  

Addition of the categorization of anger, fear, and sadness as “cold” /“hot” or 

“weak”/strong” in terms of emotion intensity has allowed for more careful specification of 
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changes in parameters for emotions. Juslin and Laukka (2001) investigated encoding of 

emotion using parameters and predictions of Scherer (K. Scherer, 1986), finding 33% of 

predictions exactly matched results while 57% of predictions were in the same direction of 

results. While jitter did not have a significant main effect, it did interact with emotion and 

emotion intensity to exert a significant interaction effect.  

It is anticipated that emotional response to pain would affect physiological arousal 

due to movement, i.e., increased heart rate, as well as acoustic parameters of voice that are 

associated with sympathetic nervous system activation. 



  

 

CHAPTER FOUR 

METHODS  

 

Study Purpose 

Because pain is a stressor capable of inducing emotional reaction, voice is thought to 

carry paralinguistic content related to emotional state that could signal the need for 

intervention. However, little information is available on patterns of vocalization associated 

with chronic non-cancer pain and its emotional component. Because research suggests that 

pain has an emotional component that is not being assessed in clinical settings and voice may 

carry emotional content that could aid in assessment of and more appropriate intervention for 

chronic pain, the purpose of this investigation is to determine whether acoustic parameters 

change in vocalizations associated with chronic pain induction and if patterns of the signal 

indicate a type of emotional reaction to chronic pain. 

Research Design 

An exploratory, descriptive, longitudinal design was used to describe the effect of 

chronic pain on repeated measures of the acoustic parameters of voice in women with and 

without knee pain performing usual activities that might exacerbate chronic knee pain.  

Longitudinal method was selected as repeated measures were collected from the same 

subject over time. Subjects underwent a standard protocol that included administration of 

written questionnaires and measurement of physical characteristics, followed by 
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measurement of pulse rate and acoustical measurements when seated and upon standing. 

Pulse rate and acoustical measurements were completed a two times to acclimate the subject 

to the equipment and tasks and to reduce anxiety about performance or the possibility of 

experimental pain induction. Because theory related to emotion indicates that anticipation of 

an event could cause physiological changes in response to a challenge or threat (Lazarus & 

Folkman, 1984), continuous pulse rate was obtained to determine if greater change occurred 

in the pain group prior to movement tasks than the non-pain group. The sit-to-stand activity 

was also used to determine functional disability in movement from sit-to-stand.  

Research Questions 

The specific research questions that were addressed in this exploratory, descriptive, 

longitudinal study include:  

 
1. How does pulse rate differ between women with and without chronic knee pain: 

A. While seated at rest? 

B. When anticipating change of position from sitting to standing? 

C. After standing? 

2. How do various acoustic parameters (i.e., mean fundamental frequency, lowest 

fundamental frequency,  highest fundamental frequency, range of fundamental 

frequency, jitter, shimmer, amplitude perturbation quotient, and three formant  

frequencies) extracted from sustained vowel utterances of women with and without 

chronic knee pain differ with change of position? 

3. How do various acoustic parameters (i.e., mean fundamental frequency, lowest 

fundamental frequency, highest fundamental frequency, range of fundamental 
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frequency,  jitter, shimmer, amplitude perturbation quotient, and three formant 

frequencies) extracted from sustained vowel utterances of women with chronic 

knee pain differ with pain intensity? 

4. How do various acoustic parameters (i.e., mean fundamental frequency, lowest 

fundamental frequency, highest fundamental frequency, range of fundamental 

frequency, jitter, shimmer, amplitude perturbation quotient, and three formant 

frequencies) extracted from sustained vowel utterances differ in relation to 

psychological variables (i.e., depression, anxiety, and anger) reported by women 

with and without chronic knee pain?  

5.  How does disability influence verbal and written reports of pain intensity reported 

by women with and without chronic knee pain?  

Setting 

Initial testing took place in the Biobehavioral Laboratory (BBL) of the University of 

North Carolina at Chapel Hill School of Nursing. The BBL is on the ground floor, with 

kitchen area for simple meal preparation, handicapped accessible rooms and bathrooms.   

Parking in the Bell Tower or on Medical Drive was arranged when possible but was a 

concern for subjects given the construction in the area. Evening and weekend sessions were 

scheduled to facilitate parking and access to the BBL. The investigator would arrange to 

reserve a space for the subject and escort her to the BBL. Bus transportation and 

transportation from retirement communities was available, but limited after 7:00 pm when 

subjects usually completed testing. More subjects were recruited in the late spring and 

summer when daylight hours were extended. The location allowed employees to participate 
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and the late afternoon time did not appear to interfere with recruitment of subjects who could 

come after work or weekends. Wheelchairs and walkers were available, on loan, from the 

Clinical Education Resource Center.  Handicapped restroom facilities were located in the 

BBL. 

The BBL includes sound attenuated rooms, typically used for cognitive testing, as 

well as audio-video recording capabilities, fluorescent and incandescent lighting, and 

temperature controls. More accurate equipment for weight, height, and blood pressure were 

available than in a community setting. Computer support with a variety of desktop and laptop 

computers as well as data acquisition and analysis programs were available. Recording of 

voice and videotaping of the movement task took place in room 310B of the School of 

Nursing that was found to have much lower noise levels than the BBL rooms (Appendix 1), 

but did not have temperature control conducive to the extended period of written testing.  

Recordings were done in a room in the School of Nursing with lower noise levels 

than the BBL since the room was not currently connected to the heating and air conditioning 

system. Although the quieter room required subjects to walk to another location, the noise 

generated by the ventilation system would have required subjects to increase intensity to 80 

dB for the 20 sustained vowels and may have been too difficult for some subjects. Situational 

issues of scheduling around room availability and parking ensured  pain group subjects 

would come after a day’s worth of normal activity, and thus, more prone to have increased 

pain. While being able to test in the same area where subjects arrived was planned initially, 

the change for the quiet test room was worth the inconvenience.  
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Subjects 

In order to obtain a sample with chronic knee pain, potential subjects for the pain 

group needed to report knee pain of 6 months or longer duration to comply with the 

definition of chronic by the International Association for the Study of Pain (Merskey et al., 

1994). The comparison group was composed of females 45 years of age or older with no 

musculoskeletal pain. Males, younger females, and children were excluded from this study 

because different acoustic parameter levels, especially fundamental frequency, are used to 

establish algorithms and the higher frequencies of children and lower frequencies of males 

would skew results (K. N. Stevens, 2000) and could reduce the likelihood of detecting a 

significant change in voice with movement.   

Since females 45 years of age and older have a higher incidence osteoarthritis of the 

knee  and of knee pain that could be induced by sit-to-stand movement (Woolf & Pfleger, 

2003), and since females are also thought to encode emotion better than males (K. Scherer et 

al., 1991), female subjects 45 years of age and older were selected in order to increase effect 

size. Subjects were recruited by flyers and word of mouth. Persons interested called a 

telephone number and were screened for qualification. Males and children were excluded due 

to differences in fundamental frequency. Potential subjects were required to have a health 

care provider. Inclusion and exclusion criteria (Figures 2 and 3) were reviewed in the 

telephone screening interview and again at enrollment on the consent form. Because the data 

collection would take place after working hours and on weekends, safety of the subjects was 

important. 

Of the 103 persons who responded to recruitment flyers, seventy-seven women 

qualified and were enrolled. Fifteen of the enrolled subjects were not included in the final 
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Inclusion Criteria Exclusion Criteria 

Ambulate and stand independently Males and children 

Competent in English 

   Speak and understand English 

   Read magazines and newspapers in English 

   Write in English 

Respiratory or oral conditions that limit breathing 

or speaking as cancer of the lung, larynx, mouth, 

or lip; cleft lip or palate; asthma, COPD, allergies 

that cause wheezing; and routine use of inhaled 

corticosteroids (Balter, Adams, & Chapman, 

2001). 

Hold a pencil and write Cognitive impairment due to learning problems 

or learning disability, illness or surgery that 

resulted in a decrease in memory or other mental 

function 

Travel to UNC School of Nursing Cardiovascular problems like stroke, 

transient ischemic attacks, requirement of 

beta blocker medication, or heart attack in 

the past three months 

Consent to audio taping and videotaping of the 

recording session 

Metabolic problems like liver disease or 

kidney disease requiring fluid restriction 

and/or renal dialysis 

 Neurological problems like seizures and 

Parkinson’s Disease 

 Eye, ear, nose and throat problems like 

vision problems that prevent reading 

ordinary print even with glasses; difficulty 

understanding conversations; difficulty with 

slurring of speech; poorly fitting dentures; 

and hearing aids required to hear normal 

conversation. 

Figure 2. Subject inclusion and exclusion criteria reviewed at telephone interview. 
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 Exclusion Criteria 

 Skin problems like open areas or rash on 

hands and fingers 

 Hormonal problems like treatments requiring 

the use of male hormones 

 Musculoskeletal problems like difficulty 

using hands to hold a pencil and difficulty 

writing; inability to stand unassisted or stand 

for several minutes; and history of tripping or 

falling 

 Joint pain on movement for the non-pain 

group 

 Professional singing or acting experience 

 Inability to say a sustained “ah” for 4 

seconds 

 Knee surgery less than one year ago or 

amputation 

Figure 3. Additional exclusion criteria reviewed at telephone interview. 
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analysis. Among these fifteen subjects, three women were excluded due to presence of 

conditions not revealed during the screening interview or enrollment; two subjects became ill 

during the study and could not complete the session; ten subjects had insufficient video, 

acoustic or pulse rate data for the analysis. Of the twenty-six persons who were not enrolled, 

fourteen did not meet inclusion criteria and twelve could not be reached for follow-up, were 

not interested in participation, or had transportation issues. 

Power Analysis 

Since difference in acoustic parameters associated with chronic pain was being tested 

and no effect size has previously been reported, the effect size was an estimate based on pain 

intensity as low (0.2) to moderate (0.5) size employing Cohen’s parameters (Cohen, 1988). 

Power and Precision software (Borenstein, Rothstein, & Cohen, 1997) was employed, using 

the convention of adequate statistical power level of 0.80 and beta of 0.20. Because 

differences in the interval scale data of acoustic parameters of voice before standing and after 

standing of the non-pain sample and the chronic pain sample would provide outcome data, a 

paired t-test for between group differences in pain intensity provided a statistical measure 

appropriate for comparison since there is no such measure available in mixed models. 

Calculation using Power and Precision (Borenstein et al., 1997) indicated that a sample size 

of 40 for each group would be sufficient to demonstrate an effect size of .56 at a .80 level and 

beta of 0.20.  
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Variables and Measurement 

Because objective measurement of pain is not possible, this study’s purpose was to 

determine whether the impact of pain can be detected in voice. Concepts important to this 

study included pain, voice quality, emotion, and physical function. Measurement of acoustic 

parameters of voice, pulse rate, and physical function of a normal activity were used as 

measures of reaction to self-induced pain in movement tasks. Occurrence of emotion was 

defined as a physiological response to a stimulus and was indicated by the objective measure 

pulse rate change and written self-report of felt emotion. Mood is defined as an enduring 

emotional state. In order to provide validated measures of a subject’s usual mood or 

temperament, psychological inventories measuring anxiety, anger, and depression were 

included. Specific instrumentation used is described below and listed (Appendix 11). 

Descriptive Variables 

Descriptive data were collected that provided information for exclusion and 

comparisons of groups during the telephone screening interview or after enrollment (Table 

3). Because pulse was obtained with different equipment than that used for continuous pulse 

rate, these data and blood pressure and temperature data were used for descriptive and safety 

purposes and not included in data analysis. 
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Table 3.  
 
Descriptive Variables and Measurement Schedule 

Variable Measurement Obtained Time 

Health History Health Screening 

Questionnaire 

Telephone Interview 

 

T1 

Demographic 

Information 

DIDS BBL T2 

BP DIDS, Dinamapp BBL T2, 3, 4, 10 

Temperature DIDS, Dinamapp BBL T2 

Pulse DIDS, Dinamapp BBL T2, 3, 4, 10 

BBL – Biobehavioral Laboratory 

 

Independent Variables 

Independent variables (Table 4) provided baseline data related to physical characteristics, 

psychological distress, and pain-specific characteristics or attitudes and were collected prior 

to the acoustic testing session in the BBL.  
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Table 4.  
 
Independent Variables and Measurement Schedule 

Variable Measurement Location Time 

Height DIDS, Stadiometer BBL T2 

Weight DIDS, Scale-Tronix 5600 

Stand-On Scale 

BBL T2 

Body Mass Index DIDS, CDC Website BBL T2 

Pain-Specific - Duration BPI  BBL T2 

Attitudes about Pain-Related 

Disability  
SOPA-35 – Disability Scale BBL T2 

Pain Intensity VAS-PI BBL T2 

Pain Unpleasantness VAS-UNP BBL T2 

Pain-Specific -Disability BPI – Pain Interference Scale BBL T2 

Depression Beck Depression Inventory-

II 

BBL T2 

State and Trait Anxiety Spielberger State-Trait 

Anxiety Inventory 

BBL T2 

State and Trait Anger Spielberger State-Trait 

Anger Expression Inventory  

BBL T2 

Emotion Occurrence Emotion Presence and 

Rating Scale 

BBL T2 

Functional Ability Arthritis Self-Efficacy Scale 

– Self-Efficacy for Physical 

Function Scale 

BBL T2 

 

Dependent Variables 

Pain-specific data, occurrence of an emotion, observation of movement, and acoustic 

parameters were obtained at intervals (Table 5). Pulse rate was recorded continuously during 

the acoustic session. Timing of the measures is graphically outlined (Tables 6, 7, and 8). 
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Table 5.  
 
Dependent Variables and Measurement Schedule 

Variable Measurement Location Time 

Pain Intensity VAS-PI 310B T4, 6, 8, 10 

Pain Unpleasantness VAS-UNP 310B T4, 6, 8, 10 

Emotion Occurrence EPRS 310B T4, 6, 8, 10 

Observed Disability Sit-to-Stand Time 310B T5-T6, 

T9-T10 

Acoustic Parameters Mean Fundamental 
Frequency 

310B T4, 6, 8, 10 

 Range of F0 310B T4, 6, 8, 10 

 Flo 310B T4, 6, 8, 10 

 Fhi 310B T4, 6, 8, 10 

 Jitter 310B T4, 6, 8, 10 

 Shimmer 310B T4, 6, 8, 10 

 Amplitude Perturbation 
Quotient 

310B T4, 6, 8, 10 

 Formant Frequencies 

 (F1, F2, F3) 

310B T4, 6, 8, 10 

Pulse Rate Pulse Oximeter 310B Continuous 

BBL – Biobehavioral Laboratory; 310B – Acoustics Recording Room



  

 

Table 6.  
 

Time of Descriptive Variable Measurement 

Measure T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

Location Call BBL BBL 310B 310B 310B 310B 310B 310B 310B 310B 310B 

TEMP  X           

PULSE  X X X        X 

RESP  X X X        X 

BP  X X X        X 

HT  X           

WT  X           

HSQ X            

DIDS  X X X        X 

BBL – Biobehavioral Laboratory; 310B – Acoustics Recording Room 
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Table 7. 
 

 Time of Independent Variable Measurement 

Measure T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

Location BBL 310B 310B 310B 310B 310B 310B 310B 310B 310B 

BPI X          

SOPA-35 X          

BDI- II X          

STAI X          

STAXI X          

ASES X          

 BBL – Biobehavioral Laboratory; 310B – Acoustics Recording Room 

 

59 



  

 

 
Table 8.  

 
Time of Dependent Variable Measurement 

Measure T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

Location BBL BBL 310B 310B 310B 310B 310B 310B 310B 310B 310B 

VAS-PI X X X  X  X  X   

VRP   X  X  X  X   

EPRS X X X  X  X  X   

Mean Pulse 

Rate 

  
X X X  X X X  

 

Acoustic 

Measures 

  X 

sit 

 X 

stand 

 X 

sit 

 X 

stand 

  

BBL – Biobehavioral Laboratory; 310B – Acoustics Recording Room 

 

 

60 



  

61 

 

Instruments 

Pain Measures 

Measures of pain intensity and unpleasantness and its effect on activities and attitudes 

were measured at baseline. Intensity and unpleasantness were assessed at intervals during the 

acoustic measurement session tasks. 

Brief Pain Inventory (BPI) (Cleeland, 1991b)  

The BPI is a 32-item, self-report instrument initially designed to provide measures of 

pain severity and pain interference of cancer pain in a format that was short and 

unambiguous (Daut & Cleeland, 1982). The instrument has two scales – pain severity and 

pain interference. The pain severity scale includes four items that rate pain at its “worst” and 

“least” in the last week, “on the average,” and “right now.”  The pain interference scale 

includes seven items that describe impact of pain on general activity, mood, walking ability, 

normal work, relations with others, sleep, and enjoyment of life.  Item response format is an 

11 point numerical rating scale labeled as 0% - 100% for pain severity items and 0 to10 for 

pain interference items.  No algorithm for scoring is provided, but scale scores can be 

obtained by using the arithmetic mean of the four pain severity items and the seven 

interference items.  

Validity of the BPI for use with non-cancer pain was first established with a sample 

of 250 primary care patients with arthritis and low back pain - osteoarthritis (56%), 

rheumatoid arthritis (44%), low back pain with worker’s compensation (50%), and low back 

pain without worker’s compensation (50%) (Keller et al., 2004). Internal consistency of BPI 

pain severity scale (α = 0.89) and for the BPI interference (α = 0.95) were similar to the 
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cancer pain results (α = 0.77 - 0.91). More recent studies with osteoarthritis samples 

(Mendoza, Mayne, Rublee, & Cleeland, 2006; V. S. Williams, Smith, & Fehnel, 2006) have 

supported the initial findings with Cronbach alpha coefficients ranging from 0.86-0.96 on six 

consecutive days using a modified short form of the BPI  (Mendoza et al., 2006). Construct 

validity of the BPI using factor analysis determined that the best structure was a two-factor 

solution explaining 67% of the variance in earlier work, but a three factor solution that 

included eight items describing  “pain intensity, impact of pain on mood, and impact of pain 

on physical activity” accounted for 86% of the variance with an osteoarthritis sample 

(Mendoza et al., 2006). Two items on the pain interference scale –“sleep” and “enjoyment of 

life” – did not load on one factor and were dropped from subsequent analyses in the Mendoza 

et al. (2006) study. Correlation of BPI scale scores with the Health Assessment Questionnaire 

(HAQ) (Fries, 1978), a condition-specific pain measure for arthritis disability usually 

considered as a quality of life measure, was moderate with r = 0.58 for severity and was 

higher with r = 0.69 for interference. High correlation with the generic pain measure, SF-36 

(Rand Health Science Program, 1992; Ware & Sherbourne, 1992), and bodily pain scale (r = 

0.74 for BPI pain severity and r = 0.70 for BPI interference) indicates that the two 

instruments measure similar constructs (Keller et al., 2004). Convergent validity of the pain 

scale was demonstrated by correlations at or above 0.60 with the pain visual analog scale 

(VAS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) 

(Mendoza et al., 2006).  

In this study, all items of the BPI pain interference scale were used to provide a 

scores used in describing self-evaluated effect of pain on function or disability. Inclusion of a 

body outline that the participant is asked to shade in the location where pain is present can 
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provide an indicator of pain involvement in other areas and was used in clarifying pain 

reported in non-pain subjects. Since the BPI provides valid and reliable measures of pain 

severity and interference with usual activities, has readability compatible with grade-school 

reading levels, and takes approximately 10-15 minutes to complete, it was selected for this 

study. Directions to participants noted that while the instrument was developed specifically 

for persons with cancer pain, it has been used with pain of other types. Changes were written 

for Item 21 on the BPI to indicate that the primary condition was “arthritis or knee pain” and 

a medical condition unrelated to the primary condition was “diabetes.” 

Survey of Pain Attitudes-35 (SOPA-35) (Jensen & Karoly, 1989; Jensen, Karoly, & Huger, 

1987; Jensen, Turner, & Romano, 2000; Jensen, Turner, Romano, & Lawler, 1994)  

Three versions of the SOPA have been developed. A recent instrument is composed 

of 57 items and assesses seven pain-related beliefs thought to influence adjustment to chronic 

pain. These beliefs are defined as follows: 

1. “Control – belief in one’s personal control over pain 
2. Solicitude – belief in the appropriateness of solicitous responses from one’s 

family when in pain 
3. Medication – belief that medications are appropriate for chronic pain problems 
4. Disability – belief in oneself as unable to function because of pain 
5. Emotion – belief in the relationship between emotions and pain 
6. Medical cure – belief that a medical cure exists for one’s pain problem  
7. Harm – belief that pain signifies damage and that exercise should be restricted.” 

         (Jensen et al., 1994) 

The original instrument had 24 items on five subscales – control, disability, medical 

cures, solicitude, and medication (Jensen et al., 1987). A second version included the 

emotion subscale and had 35 items (Jensen & Karoly, 1989). Because the length of the 

instrument precluded its use in many research and clinical settings, a shorter version based on 

criteria used to develop the SOPA-57 was developed (Jensen et al., 2000). Items were 
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retained from the original instrument if they had an absolute value correlation with the parent 

scale of 0.30 and a difference of greater than 0.10 between the item-parent scale correlation 

and the correlation between the item and each of the other scale. Five items per scale were 

selected. Responses were selected on a 5-point rating scale with 0 indicating the statement is 

“very untrue for me” and 4 indicating the statement is “very true for me.” Some items are 

reverse-scored. Subscale scores are calculated by adding all the ratings for items in the scale 

after transforming reverse-scored items and then dividing by the number of items answered 

in each scale. Higher scores indicate strong beliefs associated with pain behaviors. Internal 

consistencies of the SOPA-35 range from a moderate to high value of 0.66 for the Harm 

subscale to an adequate level (> 0.70) for four subscales (i.e., Disability, Medical Cure, Pain 

Control, and Medication) to an excellent level (>0.80) for Emotion and Solicitude. Test-retest 

reliabilities obtained at post-treatment to 2 weeks and 2 weeks to 1 month follow-up were 

greater than 0.70 for all subscales of the SOPA-35. Correlation of the subscales of the SOPA-

35 and the SOPA-57 ranged from 0.91 to 0.98 at the one month follow-up.  

Construct validity was established for the SOPA using comparison with criterion 

measures of pain coping responses with the Chronic Pain Coping Inventory (Jensen, Turner, 

Romano, & Strom, 1995), disability with the Roland-Morris Disability Scale (Roland & 

Morris, 1983), depression with the CES-D (Radloff, 1977), and number of physician visits 

for pain. Significant, moderate (r >0.30) relationships occurred with all subscales of the 

SOPA-35 and criterion measures except for the Medical Cure subscale. Subscales of any of 

the versions of the SOPA have strengths and weaknesses (Jensen et al., 2000) and the SOPA-

57 is the most reliable with internal consistencies ranging from 0.70 to 0.84.  
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For this study, the scale score for disability provided a self-report of disability related 

to pain as well as other pain-specific attitudes. The disability scale demonstrated adequate 

internal consistency (Cronbach alpha raw = 0.74, standardized 0.75), and the instrument 

demonstrated similar internal consistency as a whole (Cronbach alpha raw = 0.77, 

standardized = 0.76 )(Jensen et al., 2000). The SOPA-35 was considered adequate for 

purposes of this study and chosen over the SOPA-57 due to subject burden of additional 

items. Format was changed to include 16 font typeface and printed on ivory paper to foster 

readability for the sample. 

Visual Analogue Scale (VAS) for Pain Intensity (Price et al., 1983)(Appendix 12) and Visual 

Analogue Scale (VAS) for Unpleasantness (Price et al., 1983) (Appendix 13) 

The visual analogue format used for both of these instruments is customarily a 

horizontal or vertical 10 cm line anchored at each end by labels that indicate the range under 

consideration, i.e., “no pain” and “pain as bad as I can imagine.”  In addition to pain 

intensity, use of the VAS has been used to describe pain unpleasantness (Price et al., 2001). 

Persons are instructed to make a mark across the line that represents level of pain intensity or 

degree of “bother” with pain unpleasantness. Scoring of the VAS is done by measuring in 

millimeters the distance from the “no pain” end to the person’s mark; it provides interval 

level data. Because this scale requires measurement to obtain a score, care is needed to insure 

that copying of the scales provides a true 100 mm line for participants to mark. Lines were 

drawn on each instrument to insure accurate length was provided. 

Validity of the VAS has been established using experimental and chronic pain (Price 

et al., 1983) and comparison with the numerical rating scale (Good et al., 2001). Once the 

participant understands the VAS, the instrument is completed in seconds making it useful 
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when rapid response is desired. Its use in clinical studies has demonstrated utility in analgesic 

dose effectiveness (Aubrun, Langeron, Quesnel, Coriat, & Riou, 2003) and studies of 

cognitive attention to odors and pain (Villemure, Slotnick, & Bushnell, 2003).  

The Visual Analogue Scale for Pain Intensity (VAS-PI) requires careful instruction at 

the time of administration and careful examination of the marking, especially with non-pain 

subjects. It is important that subjects are instructed to mark across the line only if pain is 

present.  

The Visual Analogue Scale of Pain Unpleasantness (VAS-UNP) requires careful 

instruction at the time of testing similar to that involved with the VAS-PI.  

In this study, the VAS-PI and VAS-UNP were used to obtain real-time self-report of 

pain intensity and pain unpleasantness. The VAS can be completed while seated and after 

standing and added supplemental information to the pain intensity measured by verbal report.  

Verbal Rating of Pain (VRP) (Appendix 22) 

 The Verbal Rating of Pain (VRP) scale asks a person to self-report pain intensity 

using a numerical rating scale in the sentence, “My pain now is about a ___ (where 0 

indicates no pain and 10 indicates the worst pain you can imagine),” leaving the subject to 

complete the sentence with a number that best describes pain intensity (McDowell & Newell, 

1996). Verbal pain ratings have been used in clinical trials of drugs as well experimental pain 

to provide a subjective measure of intensity (Gursoy et al., 2007; Price, Patel, Robinson, & 

Staud, 2008; Skovlund, Bretthauer, Grotmol, Larsen, & Hoff, 2005). In addition to a rating of 

pain intensity, the sentence used to obtain VRP was employed in the acoustic session of this 

study to capture the vowel /ə/ (i.e., “ah”) in connected speech with “a-bout” and “a.” 
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Psychological Measures 

Measures related to enduring emotional states, or moods, were collected one time in 

the BBL along with the baseline pain measures. Measures of emotion occurrence and 

intensity were assessed during the acoustic measurement session tasks at the same time the 

pain intensity and unpleasantness ratings were obtained. 

Beck Depression Inventory - Second Edition (BDI-II) (Beck, Steer, & Brown, 1996)  

Since depression often co-exists with chronic illness and chronic pain, but may not be 

identified in primary care settings (Blackburn-Munro & Blackburn-Munro, 2001; J. W. 

Williams, Noel, Cordes, Ramirez, & Pignone, 2002) and potential suicidal risk is present, the 

Beck Depression Inventory - Second Edition (BDI-II) was used for case-finding capability 

and current mood. Composed of 21 items, the BDI-II is designed to evaluate levels of 

depression of adult and adolescents 13 years of age and older. The original BDI (Beck et al., 

1961) evaluated depression based on appearance, thought content, vegetative signs, and 

psychosocial performance observed by psychiatrists. The BDI-II has been revised to assess 

symptoms listed for depressive disorder in the Diagnostic and Statistical Manual for Mental 

Disorders – Fourth Edition (American Psychiatric Association, 1994). Internal consistency of 

the BDI-II was evaluated with coefficient α ranging from 0.92 to 0.93 provided by samples 

of psychiatric outpatients and college students, respectively. Test-retest reliability was 

determined with a small sample of psychiatric outpatients at their  

first and second therapy sessions. Tests one week apart found a significant correlation of 

scores (r = .93, p < .001).  

Construct validity has been tested comparing scores on the BDI-IA to BDI-II (r = 

.93), the Beck Hopelessness Scale (r = .68), the Scale for Suicidal Ideation (r = .37), the 
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Beck Anxiety Inventory (r = .60), the Hamilton Psychiatric Rating Scale for Depression (r = 

.71), and the Hamilton Rating Scale for Anxiety (r = .47) (Beck et al., 1996). Factorial 

validity of the BDI-II is evident in the intercorrelation of the 21 items; the iterated principal-

factor analysis with Promax rotation identified two factors with eigenvalues of 4.61 and 4.41. 

The first factor is associated with somatic-affective aspect of self-reported depression. The 

second factor is more reflective of cognitive aspects of self-reported depression.  

A person rates statements for the best description of how he or she has been feeling in 

the past 2 weeks, using a 4-point scale with 0 indicating the symptom listed is not present to 

3 indicating symptom is present all the time. According to Williams et al. (2002), the BDI is 

reported as easy to read and takes from 2-5 minutes to complete. It can also be administered 

verbally  (Beck et al., 1996). Item scores are added to produce interval level data as a 

depression score ranging from 0-63. Guidelines are provided for cutoff scores that include: 1-

13, minimal depression; 14-19, mild depression; 20-28, moderate depression; and 29-63, 

severe depression  Studies have demonstrated that depressed individuals have altered speech 

rate and increased pauses (Alpert et al., 2001; Friedhoff et al., 1962). Because a prevailing 

mood of depression is likely to affect pain as well as voice, the BDI-II may provide a reliable 

baseline measure for later comparisons and analyses as well as a warning of possible suicidal 

risk since chronic musculoskeletal pain has a reported attempted suicide rate of  5%  (M. T. 

Smith et al., 2004).  

In this study, the BDI-II was used to determine the presence of depression and 

provide a measure of current depressed or sad mood. Prior to consent, potential participants 

were informed that if scores were at a level indicative of risk, a letter would be provided that 

they could take to their physician if they wished. Persons with scores in the mild-severe 



  

69 

 

range were told of the result and a letter that indicated BDI-II results (Appendix 21) was 

given to the participant to provide to her personal physician if she chose. Because the type 

face of the BDI-II was small and printed on a colored background, the format was modified 

to 16 font typeface on ivory paper to foster readability with this sample. 

Spielberger State-Trait Anxiety Inventory (STAI) (Spielberger, 1983)  

The STAI is a reliable psychological measure of transient or state anxiety. State 

anxiety is a condition that may fluctuate depending on situations and the individual’s 

proneness to anxiety, or trait anxiety. The two scales of the STAI have a total of 40 items, 

with each scale’s 20 items rating how subjects generally feel (trait) and how they feel at a 

specific time (state) using a 4- point scale where 1 = “not at all” and 4 = “very much so” 

providing ordinal level data. The instrument is written at a fifth grade reading level and may 

take 5 to 10 minutes to complete. 

Internal consistency using Cronbach’s alpha coefficients is reported to range from 

0.83-0.92 for state anxiety and 0.86 to 0.92 for trait anxiety.  Test-retest reliability 

coefficients are reported to range from 0.73-0.86 and 0.86-0.92 for trait anxiety, but 

somewhat lower for state anxiety with coefficients ranging from 0.16-0.54 and 0.83-0.92 

(Soderstrom & Grimm, 2004). Construct validity has been determined in medical patients 

(Derogatis & Wise, 1989).  

There is evidence that women 75 years of age and older score higher on trait anxiety 

scale of the STAI than men of the same age. Scores on anxiety scales often are significantly 

correlated with the Beck Depression Inventory as these measures contribute to distress or 

negative affectivity (D. A. Clark, Steer, & Beck, 1994). Reasons for this correlation may be 

due to a variety of reasons: (1) anxiety and depression may coexist together, (2) the two 
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conditions may have the same underlying cause, (3) one condition predisposes the individual 

to the other condition, and (4) definitional overlap results in similar items on diagnostic 

instruments (Frances et al., 1992).  

In this study, the instrument was used to provide measures of the current (or state) 

and enduring (or trait) level of anxiety since anxiety was expected to affect vocal 

measurements. The format was modified to 16 font typeface on ivory paper to foster 

readability with this sample. 

State-Trait Anger Expression Inventory-2 (STAXI-2) (Spielberger, 1999)  

While the State-Trait Anger Scale (Spielberger et al., 1983) provided information on 

the frequency and intensity of anger, it became clear to the instrument developers that 

expression of the anger and the degree to which a person tries to control anger was also 

important. The tendency to hold angry feelings in, i.e., “anger-in,” was associated with 

cardiovascular changes like hypertension and coronary heart disease (Julius, Harburg, 

Cottington, & Johnson, 1986). Expression of anger through aggressive behavior motivated by 

angry feeling, i.e., “anger-out,” was associated with significantly lower diastolic blood 

pressure and slightly lower systolic blood pressure. Anger expression and anger control 

scales were developed by asking the participants to respond with how their anger usually is 

expressed and how they control anger (Spielberger, 1999). Acoustic measures of vocal 

expression of emotion have reported characteristics of anger in voice (Johnstone & Scherer, 

2000). Anger is associated with chronic pain (Fernandez & Turk, 1995) along with the 

inability to verbalize negative feelings (Kerns et al., 1994).  

In this study, the STAXI-2 scores on state and trait anger scale were used to provide a 

current (or state) and enduring (or trait) measure of angry or irritated mood. The STAXI-2 
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was selected to determine if a relationship to acoustic measures existed with this sample. 

Format was changed to foster readability with this sample using 16 font typeface and printing 

on ivory paper. 

Emotion Presence and Rating Scale (EPRS) (Appendix 14) 

The emotion presence and rating scale was developed by the investigator and has not 

been validated. The EPRS was intended to provide a self-report measure of the occurrence of 

three specific emotions. It was introduced at the same time other cognitive evaluations were 

requested to isolate that activity from the vocalization and physiological measures. The 

subject was asked to evaluate if she was irritated or angry, sad or depressed, and anxious or 

fearful by circling “yes” or “no.” If the participant answered “yes,” she was asked to indicate 

how much she felt that emotion by rating the experience from 1 = slightly to 3 = very much. 

Scoring consists of 0 for “no” response, 1 for “slightly,” 2 for mid-range selection, and 3 for 

“very much.” Scores could range from 0 to 9. The EPRS has not been validated and was used 

only to determine if the subject experienced different emotions during the study. Few 

subjects reported experiencing emotion during the intervals of the study. In this study, the 

scale attempted to measure occurrence of short-term intensity of the emotion experienced. 

The instrument used a 16 font typeface and was printed on ivory paper. 

Acoustic Measures 

Acoustic samples were recorded using the Computerized Speech Laboratory and 

analyzed using software associated with that program as well as the Multi-Dimensional 

Voice Program.  
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Computerized Speech Laboratory (CSL) 4500 (KayPENTAX, 2004)  

Vocal signals were obtained and analyzed using software programs developed by Kay 

Elemetrics for use with their Computerized Speech Laboratory (CSL) with Multi 

Dimensional Voice Program (MDVP). Records were saved as .wav files. CSL is a hardware 

and software speech analysis system that includes acquisition, playback, editing, and analysis 

capabilities. The Model 4500 has four channel capability, phono and XLR connections, and 

preamplifier. It has a 24-bit quantization range, and can sample at a total rate of 200 kHz, or 

50 kHz per channel. The system can provide pitch, intensity, Fast Fourier Transform series 

data, digital filtering, and data log features. CSL requires a host desktop computer that 

incorporates a PCI card interface (KayPENTAX, 2004). The Dell Optiplex Pentium 4 

desktop computer with 504 MB of RAM and a 2.8 GB hard-drive and a sound card designed 

for voice evaluation had been installed by KayPENTAX in the Model 4500. The system 

provides high quality measurement of speech parameters and avoids some measurement error 

that environmental noise and regular laptop and desktop sound cards introduce (Deliyski, 

Evans et al., 2005; Deliyski, Shaw et al., 2005).  

Pitch contour, energy contour, formant history, voiced period marks, spectrogram, 

linear predictive coding and fast Fourier transform analysis settings were configured in 

advance of subject recruitment (Figure 6 and 7). The configurations were used with every 

subject.  

Time for the investigator to learn the system and analyses was required. Experience 

with linguistics/phonetics, recording and analysis was necessary. Expert advice on 

configuration cannot be overstated and was obtained from Dr. David Zajac, Associate 
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Professor, Craniofacial Research, School of Dentistry, University of North Carolina at 

Chapel Hill. In addition, customer support at KayPENTAX provided excellent advice.  

Multi-Dimensional Voice Program (MVDP)(KayPENTAX Corporation, 2005)  

MDVP is an optional software program for the CSL system. The advanced level 

program is capable of calculating 22 different voicing parameters and includes comparison to 

a database. The program is used primarily in analysis of dysphonic voice but studies have 

also used MVDP in analysis of normal voices (Bhuta, Patrick, & Garnett, 2004; Nicastri, 

Chiarella, Gallo, Catalano, & Cassandro, 2004; Pützer, 2001). It requires the professional 

hardware associated with CSL for high quality voice acquisition. In addition to the ability to 

record multiple tokens in succession, MDVP provides a radial graph comparing subject data 

to normative values. Use of MVDP with CSL is reported to provide more accurate jitter and 

shimmer measurements in an environment where computer fan noise is present (Carson, 

Ingrisano, & Eggleston, 2003). Because computer fan noise and other environmental noise 

were expected, MVDP provided a more reliable method of measurement and analysis than 

other systems available. This program allows for adjustment of the wide-bandwidth setting to 

450 Hz to accommodate high-pitched speakers possible in an all female sample. 

Configuration is nearly identical to CSL settings (Figures 4 and 5). 

Range of F0 is not directly obtained from CSL or MDVP, but was determined by 

subtracting Flo from high fundamental frequencies (Fhi) measurements provided by MDVP. 

Range of F0 indicates the variation in frequencies used by an individual. In this study, range 

provided information of the frequencies used by a subject when phonating a vowel for four 

seconds. Because Flo, Fhi, and range of F0 are fundamental frequency derived measures, 
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these measures may be detected by human hearing and would be important to perception and 

intervention studies in the future. 
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Analysis Setting CSL MDVP 

Spectrogram 

    

 

Analysis 

   Window weighting 

   Pre-Emphasis 

75 points 

Blackman 

0.80 

75 points 

Blackman 

0.80 

 Frequency Display 

Show % Nyquist 

Linear 

0 -100%  

Linear 

0-100%  

Voiced Period Marks Impulse location 

Range 

Zero offset 

Zero crossings 

70-300 Hz  

0 

Zero crossings 

70-300 Hz  

0 

Pitch Contour Analysis 

Range 

Smoothing 

Pitch sensitivity 

Pitch Synchronous 

70-350 Hz 

None 

Default - 100 

Not checked 

70-350 Hz 

None 

Default - 100 

Energy Contour Analysis 

Display range 

Pitch synchronous 

30-80 dB 

Pitch synchronous 

30-80 dB 

Formant History Analysis 

   Filter Order 

  Window-weighting 

  Pre-Emphasis 

  Framing 

   Frame size 

   Frame advance 

Frequency Display 

Show % Nyquist  

Show  

Autocorrelation 

24 

Blackman 

0.900 

Use VPM 

10 msec unvoiced 

Default -10 msec 

Linear 

0-100 % 

Formants with       

BW< 500 Hz 

Autocorrelation 

24 

Blackman 

0.900 

Show only voiced  

25 msec 

Default – 10 msec 

Linear 

0-100 % 

Formants with       

BW< 500 Hz 

Figure 4. Configuration of settings for Computerized Speech Laboratory and Multi-
Dimensional Voice Program. 
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Analysis Setting CSL MDVP 

Linear Predictive 

Coding 

Analysis 

  Analysis Method  

  Frame Length 

  Filter Order 

  Window-weighting 

   Pre-Emphasis 

Display 

    X-Axis 

      Show % Nyquist 

     Y-Axis 

Smoothing Level 

Frequency Report 

Pitch Synchronous 

Autocorrelation 

20 msec 

24 

Blackman 

0.9 

 

 

0-100% 

-20 to 30 dB 

- 

Hz 

Pitch Synchronous 

Autocorrelation 

20 msec 

24 

Blackman 

0.9 

 

 

0-100% 

0-80 dB 

None 

Bark and Hz 

FFT Analysis Analysis  

  Size 

  Frame Size  

  Window-weighting 

  Pre-Emphasis 

Display 

     X-Axis 

      Show % Nyquist 

     Y-Axis 

Smoothing Level 

Frequency Report  

 

1024 points 

Match FFT size 

Blackman 

0.0 

 

0-4000 Hz default 

0-100% 

0-80 dB 

None 

Hz 

 

1024 points 

Match FFT size 

Blackman 

0.0 

 

 

0-100% 

0-80 dB 

None 

Bark and Hz 

Figure 5. Configuration of settings for Computerized Speech Laboratory and Multi-
Dimensional Voice Program (Continued). 
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The timing of the acoustic variables is outlined (Figures 6 and 7). Time 4 readings 

took place while seated after the movement from the BBL. While effect of movement to the 

acoustic testing room was acknowledged, Time 4 measurements provide an “at rest” 

recording and might be considered “baseline.” Written measures of pain intensity, pain 

unpleasantness, and emotion presence took place after the vocal tasks at the same time point.



  

 

 
 

Variable Name Abbreviation Definition 

T4 

First 

Seated 

T6 

First 

Stand 

T8 

Second 

Seated 

T10 

Second 

Stand 

Fundamental 

Frequency 

F0 Rate at which a waveform repeats per unit of time  

expressed in Hz, one cycle per second 

X X X X 

Mean 

Fundamental 

Frequency 

MF0 Average of fundamental frequencies during 

phonation 

X X X X 

Lowest 

Fundamental 

Frequency 

Flo Lowest fundamental frequency for all extracted 

pitch periods in an utterance 

X X X X 

Highest 

Fundamental 

Frequency 

Fhi Highest fundamental frequency for all extracted 

pitch periods in an utterance 

X X X X 

Range of F0 

Frequencies 

Range Difference between highest fundamental frequency 

and lowest fundamental frequency 

X X X X 

Figure 6. Acoustic dependent variables and measurement schedule. 
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Variable Name 

 

Abbreviation 

 

Definition 

T4 

First 

Seated 

T6 

First 

Stand 

T8 

Second 

Seated 

T10 

Second 

Stand 

Jitter in Percent Jitter Aperiodic irregularity in glottal pulses relative 

evaluation of period to period variability in pitch 

within analyzed voice sample 

X X X X 

Shimmer Shimmer Aperiodic irregularity in intensity; perturbation of 

amplitude 

X X X X 

Amplitude 

Perturbation 

Quotient 

APQ Relative evaluation of period-to-period variability of 

the peak–to-peak amplitude at smoothing of level of 

11periods 

X X X X 

Mean Formant 

Frequencies 

 

F1 

F2 

F3 

Mean resonances of the vocal tract or overtones X X X X 

Figure 7. Acoustic dependent variables and measurement schedule (Continued). 
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Continuous Physiological Measures 

Datex-Ohmeda 3900 Pulse Oximeter (Datex-Ohmeda, 1998) 

Arterial oxygen saturation and pulse rate was measured by the Datex-Ohmeda 3900 

Pulse Oximeter (Datex-Ohmeda, 1998) that is able to transfer current or trend SpO2 and 

pulse rate analog data to a computer. Use of heart rate as a physiological measure of arousal 

has been used in emotion studies (Bazhenova, Plonskaia, & Porges, 2001; Crucian et al., 

2000). In order to avoid the need to have participants disrobe and have electrocardiogram 

leads attached that could restrict movement, and because telemetry was not affordable, pulse 

oximetry was employed. Pulse rate, not heart rate, is reported.  It is unclear that a chronic 

pain induces arousal before movement, in anticipation of movement, or after movement. 

Because movement alone causes an increased heart rate, monitoring of pulse rate provides a 

physiological measure to assess if arousal occurs. Pulse rate was checked before the 

command to stand, e.g., anticipation of stand task, in order to provide more accurate 

determination the timing of pulse rate changes.  

The default low SpO2 alarm is set at 85% with the Datex-Ohmeda 3900 pulse 

oximeter. Pulse rates may range from 20 to 255 beats per minute (bpm), making this monitor 

capable of use with infants as well as adults. Alarms can be set to signal high pulse rate at 

130 bpm and low rate 40 bpm but were silenced for the study. Averaging mode is set for 

every 12 seconds but can be adjusted to a short interval of 3 seconds and a medium length 

interval of 6 seconds. Since change in emotional state is reported to be short (Rainville et al., 

2005; van Reekum et al., 2004), the 3 second interval was chosen for this study to provide 
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more accurate pulse rate changes. Synchronization of the pulse oximeter and video camera 

clock to the computer clock was essential to allow analysis of events and pulse rate.  

A finger sensor was attached to the middle finger of the non-dominant hand to allow 

marking of written instruments. The clip-on sensor designed for adults was found to be loose 

on many women’s fingers requiring tape around the sensor to prevent lost data. 

Consequently, a pediatric sensor was used and, when taped, was less bulky and more reliable 

with movement. Use of hypoallergenic tape seemed sufficient to secure the sensor. Nail 

polish did not affect the signal capture. While nail polish remover packets were available, 

none was used.  

The A-to-D converter was attached between the output of the pulse oximeter and the 

computer where WinDaq software was used to collect and digitize both SpO2 and pulse rate 

data. While SpO2 data were screened, analysis was not included in this investigation as 

respiratory disease was an exclusion criterion. Electrical inspection of this equipment was 

handled by the BBL and UNC Hospital Medical Engineering. 

In this study, the average pulse rate of a three second sample was determined at six 

times: (1) Time 4 while seated before vocal tasks, (2) Time 5 before first command to stand, 

(3) Time 6 after standing and vocal tasks, (4) Time 8 while seated before vocal tasks, (5) 

Time 9 before second command to stand, and (6) Time 10 after standing and vocal tasks. 

Physical Function  

Sony Handicam Digital Camera Recorder Model DCR TRV103  

The Handicam video camera was situated on a tripod and was used to capture head-

to-toe recording of the sit-to-stand movement tasks. Although the picture quality was not of 
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high resolution due to lighting, it was adequate and use of two camera set-up would have 

been difficult for the investigator to manage. Recording on tape required digitization and re-

recording to CD. Only the ID number was saved on the recordings. Protocols for equipment 

set-up included synchronization of the camera time with the computer clock where 

physiological data is being captured.  

In this study, the difference in time of the first indication of intent to stand and time 

when the subject was standing with weight on both feet and hands at sides was determined as  

sit-to-stand time for both tasks. Shorter sit-to-stand times were expected to be indicative of 

physical pain and disability due to osteoarthritis or joint pain. While the plan was to time the 

sit-to-stand tasks using the time stamp on the recording, it was necessary to have slower, 

frame-by-frame advancement capability to determine onset of movement as well as 

completion of stand. Use of Observer XT provided more accurate timing of the responses. 

The timing format (minutes:seconds.thousandths of a second) reported by Observer could not 

be directly imported into Excel and then to SAS (minutes:seconds:hundredths of a second). 

Reconfiguration of the data was required. 

Arthritis Self-Efficacy Scale (ASES) (Lorig, Chastain, Ung, Shoor, & Holman, 1989; 

Stanford Patient Education Research Center)  

The ASES was developed using rheumatologist and patient focus group participation 

in item generation. A subject rates certainty of ability, or self-efficacy, to perform a variety of 

activities on an interval scale ranging from 1 = “very uncertain” to 10 = “very certain,” 

providing ordinal level data. Internal consistency reported with coefficient α estimates for the 

physical function self-efficacy (FSE) scale with 9 items was .89, for the other arthritis 

symptoms self-efficacy (OSE) scale with 6 items was .87, and for the pain management self-
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efficacy (PSE) scale with 5 items was .76.  Factorial validity was evaluated and three factors, 

self-efficacy for physical function (FSE) associated with function or disability, self-efficacy 

for controlling other arthritis symptoms (OSE) highly related to depression, and pain 

management self-efficacy (PSE) were identified in a replication study (Lorig et al., 1989). A 

correlation of .61 between patient perceived performance and actual performance rated by 

trained, but blinded, observers is moderately high and establishes concurrent validity of the 

FSE subscale (Lorig et al., 1989; Redman, 1998).  

The ASES self-efficacy for physical function scale was used to provide a self-report 

of physical ability to perform specific activities requiring large and small musculoskeletal 

movement with higher scores indicating confidence in ability to perform activities and lower 

score indicating reduced confidence in ability to perform the activities. This score was 

expected to contrast with the objective measure of disability (i.e., the sit-to-stand times) and 

the subjective measure of disability (i.e., the BPI pain interference scale score). A difference 

in acoustic parameters of persons scoring higher on self-efficacy scales and persons with 

lower self-efficacy scores was anticipated. The downloaded format from the Internet had 

small font that would be difficult for an older sample to read. Format was changed to 16 font 

typeface and printed on ivory paper to foster readability of this sample.  

Descriptive Variables 

Health Screening Questionnaire (HSQ) (Appendix 6) 

The Health Screening Questionnaire was an investigator-designed instrument used to 

determine the presence of medical conditions that would exclude potential participants from 

the sample. Because this screening took place prior to written consent, care was taken to 
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maintain the privacy of the caller by obtaining verbal consent prior to asking about categories 

of conditions that could interfere with ambulation or respiration. 

Demographic Information and Data Sheet (DIDS) (Appendix 10) 

This investigator-designed form was intended to be a guided interview tool used 

following enrollment to collect information about age, ethnicity, education, and occupational 

experience not included on other forms but needed to answer the research questions. In 

addition, the form included space for recording of physical data like height, weight, BMI, and 

vital signs for later data entry. 

Procedure  

Recruitment 

After obtaining approval from the Nursing Institutional Review Board at the 

University of North Carolina at Chapel Hill (Appendix 2) and permission from retailers, 

community groups, and university authorities, flyers, some with cards including telephone 

number to  call for information, (Appendix 3) were provided to senior centers, pharmacies, a 

wellness center, a public library, a community group, an orthopedic nurse practitioner, two 

retirement communities, a grocery store, a fitness center, physical therapy centers, and 

campus buildings. These agencies were contacted and provided approval for posting of the 

flyers (Appendix 5).  

Cards with the name of the study – “Voice and Knee Pain Study” - and the local 

telephone number to call for more information were included in a pocket on two flyers or as 

a tear-off strip with study name and telephone number on flyers. Recruitment of the non-pain 

group required an additional flyer design and broader posting.  
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Telephone access had recording capability and provided a message notifying callers 

about the “Voice and Knee Pain Study” requesting the caller to leave a number for a return 

call between 6:00 and 9:00 PM. The investigator used a telephone script (Appendix 4), 

asking how the person heard about the study and explaining that the study’s purpose was to 

determine whether the impact of pain can be detected in voice. The initial screening criteria, 

e.g., female 45 years of age or older with OA of the knee and pain lasting 6 months or more 

for the pain sample or female 45 years of age or older without joint pain on movement for the 

non-pain sample, were reviewed to determine if the caller qualified. The recruitment 

telephone interviews were held in the evening so privacy was maintained at the investigator 

telephone.  If the volunteer met initial screening criteria, she was told that she might qualify 

and was asked for verbal consent for the interviewer to ask more detailed questions about 

age, ethnicity, diagnosis of osteoarthritis, treatment of pain, and health problems included in 

the Health Screening Questionnaire (HSQ) (Appendix 6) that could affect voice and that the 

interview would take approximately 15-20 minutes. If the time was not convenient, 

permission to call later was obtained. If the time was convenient, the Health Screening 

Questionnaire was administered and provided self-reported information about existence of 

health conditions. Responses to interview and health screening questions were self-reported 

by volunteers. After review of the volunteer’s responses to exclusion criteria listed in the 

health screening questionnaire, determination of status as a study participant was made.  

If qualified, the volunteer was asked if she would participate in testing that required 

travel to UNC School of Nursing and stay for 2-2.5 hours. Afternoon or early evening 

appointments were preferred to allow for parking and easier building access for persons with 
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limited mobility as well as to avoid interference with circadian rhythm effects on heart rate 

variability in persons with chronic conditions (Burger, Charlamb, & Sherman, 1999). 

The volunteer was told that during her appointment, she would receive two copies of 

the Informed Consent that outline the details of participation. If she agreed to participate, she 

would sign one copy to remain with the study investigator and the unsigned consent would 

be given to the participant. The study session would begin after the consent was signed. 

 Timing of subject activities and measurements were described to the volunteer caller 

(Figure 10). First, she would have her routine vital signs measured including temperature, 

pulse, respirations and blood pressure - as well as height and weight. Then she would 

complete several written tests that take approximately 1 hour. She would receive a sandwich 

snack, beverage and water. She would also be asked to rate her pain and emotions at 

intervals. During the part of the study where voice and movement were recorded with audio 

and video equipment, she would be fitted for and wear (1) head-mounted microphone and ( 

2) pulse monitoring device that involves attaching a small device to a finger. After 

performing three vocal tasks, she would need to rise to a standing position from a seated 

position and remain standing for about 3 minutes two different times. She would receive 30 

dollars in appreciation for her participation, transportation costs, and parking. She was also 

told she could withdraw at any time. 

Permission was requested for mailing address and a telephone number where the 

volunteer could receive a follow-up letter (Appendix 7) and a call on the day of the 

appointment to remind her of the date and time of the session as well as directions to the 

BBL and parking. The volunteer was asked not to eat a large meal before coming to the 

appointment. Address information and telephone number were obtained and recorded on the 
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intake form in the log book. The caller was reminded to keep the card with the Voice and 

Knee Pain telephone number that she called since that number would always be a way to 

reach the study director. After asking if there were any further questions, the caller was 

thanked for her interest in participation. A mobile telephone number was provided in the 

follow-up letter and during the telephone contact on the day of the study in case the 

participant needed directions.  

The interviews usually lasted 15-20 minutes with much of the time spent scheduling, 

obtaining a mailing address, and snack preferences. Check of the room schedule at the time 

of scheduling was important. Once the appointment was scheduled, the letter with map and 

instructions was prepared and mailed. 

Enrollment  

The protocol for the enrollment and the consent form is provided (Appendices 8 and 

9). Prior to meeting the volunteer, the investigator set-up of equipment required 30 minutes 

(Appendices 19 and 20). Subjects were called to verify arrival time and time allowed after 

equipment set-up to hold a parking place for the subject. Volunteers were escorted to the 

BBL and walking ability was assessed as they walked the sidewalks and hall. Once inside the 

BBL, the plan for the study was discussed and the consent provided. A timeline of study 

activities indicates the physical activity required of the subject (Figure 8) and measures that 

taken at different time-points and in different rooms – the Biobehavioral Laboratory and 

Room 310B. 
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Time 7 – Pulse while Seated  

Time 3 – Walk to Elevator and Room 310B, Vital Signs, Acclimate to Acoustic 
and Pulse Oximetry Equipment, VAS-PI, VAS-UNP, EPRS 

Time 5 – Anticipation of First Stand Pulse 

Time 8 –Second Seated Task, VAS-PI, VAS-UNP, VRP, EPRS, Pulse at Second 
Seated  

Time 10 – Second Stand Task, VAS-PI, VAS-UNP, VRP, EPRS, Pulse at 
Second Stand 

Time 4 –First Seated Task, Practice of Vocal Tasks, VAS-PI, VAS-UNP, VRP, 
EPRS, Pulse at First Seated  

Time 9 – Anticipation of Second Stand Pulse 

Time 6 – First Stand Task, VAS-PI, VAS-UNP, VRP, EPRS, Pulse at First Stand  

Time 11- Seated, Removal of Equipment, Vital Signs 

Time 1 – Telephone Screening 

Interview with Health Screening 

Questionnaire for Possible 

Time 2 – Walk to BBL, Enrollment, 

Physical Data, Administer Written 

Psychological and Pain-Specific 

Instruments; Vital Signs, VAS-PI, VAS-

UNP, EPRS before and after Written 

Instruments 

Time 12 – Walk to Elevator from Room 310B, Rest Room, Walk Hall to Exit 
and Transportation 

A
coustic  S

ession 

Figure 8. Timeline for subject activities. 
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Baseline Data Collection – BBL. 

The demographic data and information sheet (DIDS) (Appendix 9) was completed 

with only the assigned identification number listed (i.e., mmddyy#). Various equipment was 

used in the collection of physical measurement data (Figure 9). After the baseline vital signs, 

height, and weight were obtained, the subject began completion of written instruments. 

Several printed instruments were used in the study to assess subject temperament, 

attitudes, pain intensity, and pain unpleasantness that required subject completion. When 

instruments were first purchased and/or obtained, it became clear that they were not designed 

for the visual needs of an older population. Several required reprinting to increase 

readability. Written instruments were printed on ivory paper instead of white to foster 

readability. In addition, because a font size of 16 is recommended with older adults with 

visual deficits, instruments were reproduced in a 16 font size. Order of instrument 

administration was varied by altering the order of the tests in each packet with the BPI given 

last to encourage focus on pain. Time required for testing was estimated based on reports and 

confirmed in the feasibility study (Table 9). 
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Measurement Equipment 

Weight Scale-Tronix 5600 Portable Stand On Scale 

Height Perspective Enterprise Stadiometer 

Temperature IVAC Electronic Oral Thermometer 

Pulse Dinamap 1846 SX 

Blood Pressure Dinamap 1846 SX 

SpO2 Datex-Ohmeda 3900 pulse oximeter 

Figure 9. Equipment for baseline physical measurements. 
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Table 9.  
 
Instrument Completion Times 

Instrument Time to Complete 

BPI 10 minutes 

STAI 10-20 minutes 

STAXI-2 12 -15 minutes 

BDI-II 5-10 minutes 

SOPA-35 7-10 minutes 

ASES 5-10 minutes 

VAS-Pain Intensity Less than 1 minute 

VAS –Pain Unpleasantness Less than1 minute 

Emotion Presence and Rating Scale Less than 1 minute 

Total Approx. 1.25 hours 

 

After one-half hour of testing, or if the participant appeared fatigued, a 10-minute 

break with a beverage was offered and provided. After completing the instruments, the 

participant was provided a sandwich snack and beverage and a restroom break. Effort was 

taken to put subjects at ease prior to the acoustic testing to reduce anxiety and stress that 

could interfere with measurement of the influence of pain on movement that was estimated to 

be of small effect size. Scoring of the BDI-II was completed during this time to determine if 

there was a need for referral (Appendix 17). Five women were given letters they could 

provide to their health care providers.  
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Acoustical Data Collection – Room 310B 

After completion of the written instruments and a snack, the subject moved to the 

acoustics session in Room 310B where the recording session began (Appendix 21). While the 

CSL system was loaded on a pneumatic-wheeled cart to allow transport to the study area and 

safe storage, this type of transport is not recommended for acoustical instrumentation. The 

size and nature of equipment makes transport to various clinical sites difficult and not 

recommended due to the sensitivity of the instrumentation.  

Because the quality of acoustic measures relies on high quality acquisition, the AKG 

C420 head-mounted condenser microphone with 20-20kHz frequency response and a 

cardioid response pattern (AKG Acoustics) was added to the CSL system. Head-mounting 

allowed for the movement required in this study. This microphone has been recommended 

for voice measurement (Titze & Winholtz, 1993) and has been found to introduce very little 

noise when used with the CSL system (Deliyski, Evans et al., 2005). The CSL system 

includes a desk-mount microphone that would not be compatible with movement required.  

The microphone head was placed 5 cm from the corner of the subject’s mouth. Check 

of the sound transmission by having the participant speak normally was performed to assure 

quality of the signal and amplitude of at least 60 dB, or 30 dB above the nearly 30 dB level 

of room noise. 

Data were collected and inputs processed by a Dell Optiplex Pentium 4 desktop 

computer with 504 MB of RAM and a 2.8 GB hard-drive. The Computerized Speech 

Laboratory (CSL) and Multi-Dimensional Voice Program (MDVP) were configured to use 

the multiple token protocol with sustained vowels in MDVP and analysis of the connected 

speech samples in CSL. 
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Multi-channel physiologic recorders can be connected through A-to-D converters 

attached to computer and WinDaq data acquisition software  (Dataq Instruments Inc., 2002) 

was installed on the hard drive to collect the recorded data. An event marker and vocal 

announcement audible on the videotape was included to aid in synchronizing the video data, 

acoustic analysis, and physiological data for analysis. Pulse rate data were acquired via 

Datex-Ohmeda 3900 pulse oximeter set that averaged pulse rate every three seconds and 

transmitted to the A-to-D converter. Video recording used a camcorder camera on a tripod to 

allow more accurate coding and analysis of the sit-to-stand transitions. The video camera 

clock and computer clock were synchronized in the equipment set-up. The length of time to 

rise from a sitting position to a vertical standing position was to provide an indicator of 

disability.  

It was necessary to be aware of a change in pain intensity and occurrence of an 

emotional change to determine if these measures correlated with the acoustic parameters of 

voice. Therefore, frequent assessments of pain intensity, pain unpleasantness, and emotion 

presence were made (Error! Reference source not found.Error! Reference source not 

found.). 
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Table 10. 
 
 Dependent Variables Associated with Physical Activity and Measurement Times 

Variable Name Instrument/Subscale Time of Administration 

Pain severity now VAS-PI T 2,3,4,6,8,10 

Pain unpleasantness VAS-UNP T 2,3,4,6,8,10 

Sad Now 0 to 3 rating T 2,3,4,6,8,10 

Angry now 0 to 3 rating T 2,3,4,6,8,10 

Anxious now 0 to 3 rating T 2,3,4,6,8,10 

Mean Pulse Rate At rest, seated T4, T8 

Mean Pulse Rate  At anticipation of stand T5, T9 

Mean Pulse Rate End of complete stand T6, T10 

 

Once in the test room, several activities occurred: vital signs were taken; VAS-PI, 

VAS-UNP, and EPRS were completed; subject was acclimated to the equipment (i.e., 

microphone and pulse oximetry); and instruction and practice of the three verbal tasks and 

the movement tasks were performed (Appendix 21).  

The microphone and pulse oximeter were shown to the participant and explained. 

Persons wearing glasses were asked to take them off while the microphone was situated and 

then glasses were replaced. Placement of the microphone head was set at 5 cm from the 

corner of the mouth, but might be able to be moved out farther as cardioid pattern may be 

able to capture the signal at a greater distance. Once the equipment was in place, the 

microphone was demonstrated and the participant’s recorded voice and heart rate was 

observed on the computer screen and the pulse oximeter monitor. Observation of pulse rate 
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and participant comfort was assessed during equipment placement to note signs of increased 

anxiety that could affect written testing and vocal samples. Time to allow participant training 

and relaxation was anticipated to take 10-15 minutes, but a reduced time frame was used 

when comfort was reported by the participant. Practice with the subject phonating to ensure 

60-65dB intensity was done prior to the actual recording. All participants were offered and 

provided water to insure adequate moisture in the oral cavity at the beginning of and during 

the session. Alarms were silenced to avoid influencing participant and recording. Once 

activation of the video camera, the WinDaq software, and MDVP program occurred and the 

subject was instructed, the investigator coordinated recording, signaled the subject, triggered 

the event marker, and saved sound files.  

In order to capture frequencies of voice, a sampling rate of 22.05 kHz (i.e., employing 

Nyquist frequency, or a frequency greater that half the sampling rate) is usually sufficient to 

capture frequencies of voice. Aliasing can occur if a “…continuous signal contains frequency 

components that are higher than half the sampling rate” (Johnson, 2003 p.23). The signal 

completes more than one cycle between successive samples and the sample appears to be 

from a lower frequency waveform, totally missing the higher frequency components.  In 

order to avoid aliasing and insure acquisition of the data needed, a sampling rate of 44.1 kHz 

was selected in the MVDP computer software for recording. Sound files were saved as .wav 

files on the computer and copied onto a compact disk. Identification numbers were assigned 

to the participant files, with “a” and “c” indicating the seated recordings and with “b” and 

“d” indicating the standing recordings. The vocal segment of the study was explained to the 

participant. All participants were offered water to moisten the oral tract as resonances are 

affected by lack of moisture. The participant sat comfortably in a chair with arms such that 
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the participant’s back rests against the back of the chair and both feet were flat on the floor. 

No table was in front of the participant to allow the video camera to capture the movement of 

the sit-to-stand sequence.  

The investigator demonstrated the vowel that the participant would say, holding it for 

4 seconds. Because a number of prolonged vowel utterances were recorded, each particular 

instance is referred to as a token (Oxford English Dictionary Online, 2005).  In order to  

obtain a sufficient number of tokens for analysis (R. C. Scherer, Vail, & Guo, 1995), multiple 

tokens protocol in the MDVP advanced program was used (5 tokens x 2 seated tasks x 2 

standing tasks = 20 tokens). The investigator used a hand signal to indicate when the first 

vowel should be started and when the each succeeding speech token should begin and 

nodded her head when the screen was filled and vocal production could be stopped. The 

subject was advised to indicate when she needed to rest or take a drink of water.  

When the participant indicated readiness, the signal was given and the participant 

phonated, or said, the vowel /ə/ and repeat the vowel five different times with approximately 

30 seconds between each token. The participant was then asked if she was having pain and 

asked to say, “My pain now is about a (number from 0-10)” (Appendix 22). Capture of two 

additional clear /ə/ tokens with “a-bout” and “a” in the sentence, “My pain now is about a 

___ (0 – 10),” were planned. Many speech samples were either absent or too short to be used 

for connected speech analysis. Prompting for the vowel change during the session was 

ineffective as it often resulted in subjects overemphasizing the vowel intensity or reverting to 

use their normal, automatic /e/ (i.e., “ay”) or /eI/  (i.e., “ay-e ̅“) after one or two focused 
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efforts. The subject then completed the written VAS for pain intensity and unpleasantness 

and the EPRS. 

On completion of the seated recordings, the participant was asked to rise from the 

chair and stand with weight distributed equally on both legs and feet. The event marker was 

activated immediately prior to the command to stand was given. Two event marks were 

activated when participant made her first move to rise – arms or hands move or on armrests 

or move back forward from chair. When both feet had equal weight distribution, i.e., no 

leaning to one side, and the back was upright, the event marker was activated three times. 

Videotape was used to provide audio record of the event marker activation and the sequence 

in which participants respond and stand in order to determine lag time and estimate disability 

by time from sit to fully standing with arms at sides. In order to capture the early signs of 

change due to movement or pain, the participant was asked to begin phonating once fully 

standing – approximately 30 seconds after standing. The subject provided 5 /ɐ/ tokens as 

before, and completed the connected speech sample, i.e., “My pain is about a (0-10).” The 

participant was asked to rate pain intensity and unpleasantness on the VAS scales again and 

rate emotional presence on numerical rating scales. 

The participant was asked to sit and the event marker pressed 4 times when 

participant was seated. When seated with the back touching the back of the chair, the 

participant was given the opportunity to take a drink of water. Then the third series of five 

tokens and the connected speech sample were collected and another set of written ratings of 

pain intensity, pain unpleasantness, and emotion presence were completed.  
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Prior to giving the second command to stand one long and one short event mark was 

made. Movement to rise – e.g., movement of the head, arms or hands to armrests, or back 

from back of chair – received one long and two short event marks. When the participant 

completed standing, the event maker was struck one long and three short times. After 

standing for 15 seconds with weight distributed on both feet, the participant phonated /ə/ five 

times with approximately 30 seconds between each token and then stated, “My pain is about 

a (0-10).” After completing the five tokens and the connected speech sample, the participant 

was again asked to rate pain intensity, pain unpleasantness, and emotion presence. The 

participant sat down, and once seated, one long and four short event marks were made. After 

allowing a short period of time while the subject was seated at rest, the WinDaq program was 

stopped and the pulse oximetry file saved to a separate subject file. The microphone and 

pulse oximetry sensor were then removed.  

Vital signs consisting of pulse, respirations, and blood pressure were obtained and 

recorded at intervals. Pulse rate below 60 and over 100 beats per minute and blood pressure 

above the established norm of 140/90 for hypertension (Bickley & Szilagyi, 2007; Chobanian 

et al., 2003) were considered abnormal. If vital signs were found to be above or below 

normal, the participant was provided with a card with the readings on it (Appendix 16) and a 

letter of referral to provide to her physician (Appendix 18).  Seventeen women were given 

letters for increased blood pressure and 2 women were given letters for low blood pressure. If 

there was no physician of record, the subject should not have been enrolled. However, plans 

included the possibility of referral to Student Health Action Coalition or the UNC emergency 

room No women were referred to these agencies. The participant was provided opportunity 
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to use the restroom prior to departure and was given $30 for time, parking, and gas. 

Participants were given a comment sheet to provide suggestions about the study along with 

an addressed, stamped envelope (Appendix 19) that could be anonymously returned by mail 

to the investigator.  

Data Processing 

 Following the acoustic session, videotape files were digitized and saved to compact 

disk with the subject’s identification number. Voice samples were saved as raw data and 

copies of the .wav files were low-pass filtered and down-sampled to 22 kHz to facilitate 

interpretation. All files were used unless a file was shorter than 3.75 sec. All tokens were 

analyzed for all the acoustic parameters with the exception of the token used for formant 

analysis.  

In order to obtain a stable segment of sustained vowel for analysis of formant 

frequencies, the third or middle token of each task’s five tokens obtained was used. This 

token was judged to be more likely to be free of increased amplitude encountered in early 

tokens of a task or shortened as subject ran out of breath on later tokens in a task. Two 

seconds of the token at the center of the token were selected to provide a stable vowel 

nucleus for subsequent analysis. 

Data from the inventories and acoustic analysis program were first entered into Excel 

spreadsheet program (Microsoft, 2003) twice and these files imported into SAS 9.1.3 (SAS 

Institute Inc., 2002) where PROC COMPARE procedure  was used to eliminate 

typographical entry errors (SAS Institute, 1999). Because longitudinal data analysis was 

planned, the data was recorded in person-period, also referred to as “long” or multivariate 
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format, where each subject has multiple records, one for each measurement time point 

(Singer & Willett, 2003). 

Confidentiality was maintained by assignment of an identification number when the 

participant was enrolled (i.e., mmddyy#), through use of only first name (if participant 

agreed), and with storage of the log book and data (written instruments, demographic 

information, audio, and video recordings) in a locked file cabinet in a locked location. All 

written instruments were de-identified using the identification number instead of name, birth 

date, or other personal information. 

Data Analysis 

Analysis was determined by the unique characteristics of the dataset as well as 

assumptions of statistical methods. The rationale for the method of analysis is included to 

address the choice of linear mixed model analysis.  

Overview 

Since repeated measurement of continuous data collected on the same subject at 

different times produced longitudinal data (Verbeke & Molenberghs, 2000; West, Welch, & 

Gałecky, 2007), this study is a longitudinal design. Unlike the broad, or univariate, data entry 

with one line for each subject and multiple observations listed, data entry for longitudinal 

data in long form requires long format with a record entered for each observation. While data 

transformation or re-entry is possible, it is time-consuming. In this study, the additional 

complexity of formant data nested in person-level at multiple times provided an additional 

layer of complexity in model development.  
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The study was designed to include repeated measurement of continuous data on 

outcome variables of pain intensity, pain unpleasantness, and acoustic parameters in order to 

describe whether a change exists between the non-pain and pain samples. Repeated measures 

analysis of variance (RM ANOVA) is used to address the issue of correlation of data from 

the same subject since this correlation conflicts with the assumption of independence of data 

of more commonly used statistical tests like analysis of variance (ANOVA). In addition, RM 

ANOVA is a stronger statistical test than mixed models analysis (Krueger & Tian, 2004). 

However, RM ANOVA has strong assumptions and requirements for its use. Pertinent to this 

study is the RM ANOVA assumption of complete data and the requirement that subjects with 

missing data be excluded from the analysis. Over the year long data collection period, 

missing data occurred. RM ANOVA would require deletion of several subjects’ data, 

reducing power to demonstrate an effect. Also, RM ANOVA requires that any missing data 

must be missing completely at random. Because most missing data were vital signs 

measurement and verbal ratings of pain related to the lack of protocol adherence by the 

investigator, the data cannot be considered missing completely at random. Lastly, an 

assumption of RM ANOVA is that variances of the groups are equal. The variance and 

covariance of the non-pain and pain group were different on many variables and non-

normality would need to be addressed. It became clear that another statistical method was 

needed for analysis of the data and mixed model method was investigated. 

Multilevel analysis describes a group of statistical methods using hierarchical linear 

regression models (Bijleveld & van der Kamp, 1998). Multilevel analysis, also referred to as  

linear mixed models and general linear mixed models, has it roots in Airy’s 1861 formulation 

of a one-way random-effects model to describe observations of night sky (West et al., 2007), 
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but, because of complexity of hand calculation, this type of model was not widely used. With 

the availability of computers and statistical software, calculations necessary to address the 

covariance parameters with mixed models became possible.  

 Using regression strategies, the method became more widely used to address the 

hierarchical nature of agricultural data (Brown & Prescott, 2006), educational research data 

(Raudenbush, 1988), and repeated measures of longitudinal data (West et al., 2007). A 

problem encountered in use of traditional regression analyses is that aggregation of the 

individual level variables to the group level tends to provide regression coefficients unlike 

those that would result from regression at the individual level. With multilevel analysis, 

variables can exert different effects at different levels and effects can vary between units or 

individuals as well as demonstrate interactions between levels or groups (van der Leeden, 

1998).  

 Assumptions of mixed models are more flexible than RM ANOVA in 

that incomplete data are allowable since there is a weaker missing data assumption of 

missing at random (Singer, 1998). Specifically, mixed models can be used to estimate 

parameters as long as the data is missing completely at random, meaning there is no 

 relationship between the cause of the missing data and the dependent variable. Unlike, RM 

ANOVA, irregularly time longitudinal data and time-varying covariates are also allowed in 

 mixed models. Both RM ANOVA and mixed models assume that the variable, particularly 

the dependent variable is normally distributed. In general, mixed models are also more robust 

to violation of this assumption than RM ANOVA but even mixed model are not robust 

against extreme violations in the normality assumption. Thus, in this analysis, it was believed 

that the missing data was missing at random and the distributions of all variables were 
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examined for extreme violations of the normality assumptions. Nonparametric approaches 

were used to answer the research question that addressed (1) non-pain and pain group pulse 

rates with weigh and BMI and (2) classes based on pain intensity as groups/classes were non-

normally distributed on variables of interest and were of small sample size. While large 

samples and datasets have used mixed models to demonstrate individual and groups effects, 

small groups have been able to demonstrate group and individual effects as well (Oman, 

Shapiro, Thoresen, Plante, & Flinders, 2008; Payne, Held, Thorpe, & Shaw, 2008).  

 Fixed and random effects are evaluated in mixed models. Fixed effects, also called 

regression coefficients, are based on means of the group and describe the relationship of the 

dependent variable and predictor variables between individuals (or fixed factors). Random 

effects are random values associated with random factors, or within subject data, and utilize 

variance and covariance parameters to incorporate individual data. In order to determine 

whether acoustic parameters of voice changed with pain or movement, use of a mixed model 

methodology was considered appropriate given its flexibility in dealing with correlation of 

data from repeated measures. To summarize, group data provide the fixed effects portion of 

the model specification, while individual data provide random effects portion of the model. 

Because this study aimed to describe differences between groups and because of limited 

sample size, only fixed effects were evaluated. The mixed model method with repeated 

measures is designed to analyze within-subject factor and between-subject factors estimating 

the covariance parameters in order to utilize the correlation (West et al., 2007). SAS 9.1.3 

(SAS Institute Inc., 2002) and the PROC MIXED procedure was used for analyses.  

 In studies using repeated measures, groups are considered as the first level and the 

individual subjects as the second level (Singer & Willett, 2003). In this study, subjects are the 
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first level and time is the second level. The format of general linear mixed models would take 

the form:  

Y ijk = β0j +β1j X ijk +εijk 

where Yijk  is the variable of interest with subject i in group j at time k (Littell, Milliken, 

Stroup, Wolfinger, & Schabenberger, 2006; van der Leeden, 1998). Imagining the variables 

are Y = acoustic variable and X= a matrix that includes group factor, time factor and 

independent variables (i.e., VAS-PI, VAS-UNP,…etc.), β0j indicates the intercept of the 

linear mixed model. β1j indicates the expected change of Yijk for each increase or decrease 

per unit of X ijk. The error term, εijk, represents the error of Yijk, and is assumed to follow a 

normal distribution with a mean of zero and a variance of Σ
2. Different types of coding can 

be employed for mixed models with reference and cell mean coding most commonly used. 

Cell mean coding provides results that are “easier to interpret,” (Muller & Fetterman, 2003) 

and was chosen because of the complexity of the nested formant data and the focus on fixed 

not random effects. In cell means coding, the intercept effect is shared by the factors and 

embedded into groups at different levels, not averaged. Reference coding is used to show 

difference between grand mean and marginal means and would take the form of: 

E[ Y ij] = µ + aj. 

where aj refers to marginal mean. With cell mean coding, only the group means are of interest 

and the formula is: 

E[Y ij]  = µj 

where µj is the group mean and is equal to the grand mean plus the cell mean.  

The fixed effects model used maximum likelihood method to estimate model 

parameters. The Kenward-Rogers (KR) correction was used to address issues related to 
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unbalanced data and repeated measures in order to reduce the likelihood of Type 1 error 

(Padilla & Algina, 2004). A compound symmetry variance-covariance structure was judged 

to be the best type of structure based on the limited sample size and the short measurement 

intervals. Compound symmetry had the highest goodness-of-fit statistics, but when formant 

frequencies were analyzed a Kronecker product of compound symmetry combined with 

unstructured provided estimations when compound symmetry alone did not.  

Estimates, similar to contrasts in analysis of variance (ANOVA), were developed 

using covariance parameter estimates. Estimates were used instead of contrasts in order to 

obtain more precise information about group mean differences. Non-pain or lower pain 

intensity groups’ data were entered into the model first so estimates are based upon 

difference from the non-pain or lower pain intensity group means. Significance level was set 

at the .05 level. Several comparisons were performed on the data of the two groups. 

Dunnett’s adjustment, the default in PROC MIXED for multiple comparisons between two 

groups, was used. 

In order to examine the stability of those models that attained significance, further 

analysis was performed in PROC MIXED and consisted of plots of fitted residuals and 

influence diagnostics (Littell et al., 2006) as part of perturbation analysis. Perturbation 

analysis is intended to describe the stability of model output given alterations in input and aid 

in determination of the need to modify a model. Perturbation analysis includes graphical 

analysis of fitted residuals, goodness of fit statistics on residuals, collinearity diagnostics, and 

influence diagnostics (Littell et al., 2006, pp. 413-414). Because only fixed effects were 

analyzed in this study, those diagnostics related to fixed effects as Cook’s D, COVRATIO, 

and graphical evaluations were used in this phase of analysis.  
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Student’s t-test was used to demonstrate difference between groups with some 

variables. When unequal variance was demonstrated, the folded F (F1) test was used to 

determine the t-test result reported. 

 Because some sample data was non-normal, scatter plots of residual versus the linear 

predictor were assessed for tortuous character that could indicate the need for data 

transformation. Log transformation provided improvement in tortuous character and 

interpretable results and was chosen for diagnostic analyses. When the log transformation 

yielded less tortuous plot and Cook’s D less than .05 in the influential subjects than the 

original model, the log transformation model was selected. It should be noted that p-values in 

the log transformation can not be equated to p-values in the mixed model results.  The mean 

differences of the groups were included to indicate the magnitude of group difference. 

Correlation matrices were evaluated to determine linear relationships of variables that 

warranted inclusion (i.e., r > 0.5). While correlation does not establish causality, a reliable 

relationship must exist between variables in order to establish a link between observed 

phenomena and other variables to allow comparison with the conceptual framework. The 

Pearson product-moment correlation or linear correlation, r,  is used to determine the level of 

correlation with values ranging from -1.0 to +1.0 with negative values indicative of the 

degree of a negative relationship of variables and positive values indicative of the degree of a 

positive relationship of variables. A Pearson product moment correlation coefficient of zero 

is indicative of no correlation or a non-linear relationship of variables. Assumptions of the 

Pearson product-moment correlation include bivariate normal distribution of the variables 

and independence of the consideration of mixed models analysis. Once variables that showed 

promise(r > 0.6) were determined, it was possible to develop models of the data.  
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Analysis of Research Question 1 

1. How does pulse rate differ between women with and without chronic knee pain: 

   A. While seated at rest? 

B. When anticipating change of position from sitting to standing? 

C. After standing? 

In order to establish that a physiological change, or an “emotion,” occurred in 

response to the movement task, pulse rate at three different intervals was evaluated to 

determine if and when significant differences occurred between the two groups could be 

associated with pain. Calculations were based on three seconds of pulse data from pulse 

oximetry. Mean pulse rate was determined  (1) while seated at rest occurred prior to any 

testing, (2) three seconds in advance of the event marker click prior to the first command to 

stand, (3) after the participant stood for the length of the first stand position after vocal 

testing, (4) following the second seated vocal testing, (5) three seconds in advance of  the 

event mark click prior to the second command to stand, and (6) when the participant stood 

for the length of the second stand position after vocal testing.  

Since two standing tasks occur, each participant had two sets of seated and standing 

data over the four tasks. While Student’s t-test could be used to evaluate the data, the data did 

not meet the assumption of independence. A paired t-test was used to compare the non-pain 

and pain groups after establishing that each group’s data did not differ related to time. An α 

equal to or less than .05 was selected to demonstrate significance in statistical tests. 

Mixed models method provided a method of evaluating change over the entire session 

given the correlation of individual data and the variance of pulse rates. It was thought that a 

difference would exist between the groups. Diagnostics of the model of pulse and movement 
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were completed and log transformation of the model was performed and entered into PROC 

MIXED to evaluate the model’s stability to perturbation of input. 

Analysis of Question 2 

2.  How do various acoustic parameters (i.e., mean fundamental frequency, lowest 

fundamental frequency, highest fundamental frequency,  range of fundamental 

frequency, jitter, shimmer, amplitude perturbation quotient, and three formant 

frequencies) extracted from sustained vowel utterances of women with and without 

chronic knee pain differ with change of position? 

It was not clear how change in position might influence the acoustic parameters so 

comparison of parameters sitting and standing of all subjects provided baseline information 

of the change in acoustics of women of this age when changing position. Comparison of 

mean values of the acoustic measures during seated and standing tasks were done to 

determine the level of change. The table of the mean values of the parameters at each 

position provided useful information about the role of movement on acoustic parameters. Use 

of mixed models allowed evaluation of the change over time of all the subjects controlling 

for group.  

One subject in the pain group was found to have much higher frequencies in the first 

seated task and, on review of the recording, it was noted that she sang the vowels. Since these 

values influence all the pain group acoustic measurements of first seated, the first seated 

sustained vowel tokens of this subjects were deleted from the dataset.  

The adjustment approaches of mixed models are the same as those in the General 

Linear Model (GLM) (Littell et al., 2006). In this study, the Dunnett’s adjustment, the default 

adjustment for all pairwise comparisons in PROC MIXED, was used. An α at the 0.05 level 



  

109 

 

was selected to demonstrate significance. It was thought that the change of position would 

cause a change in mean acoustic parameters and would be different between the non-pain 

comparison group and pain group.  

Analysis of Research Question 3 

3. How do various acoustic parameters (i.e., mean fundamental frequency, lowest 

fundamental frequency, highest fundamental frequency, range of fundamental 

frequency, jitter, shimmer, amplitude perturbation quotient , and three formant 

frequencies) extracted from sustained vowel utterances of women with chronic 

knee pain differ with pain intensity? 

This question addressed pain intensity differences and, since the non-pain group did 

not have pain, categorization of the pain group by pain intensity was required. In order to 

establish two intensity levels, the 100 mm on the VAS were divided into 10 equal portions 

and the definitions of mild, moderate, and severe pain based on a 0-10 scale (Kapstad, 

Hanestad, Langeland, Rustoen, & Stavem, 2008) was applied to the VAS-PI scores to 

categorize two pain groups. In studies of pain rating, researchers reported that with chronic 

and arthritis pain, written numerical rating scale scores of 0-4 could be considered mild pain, 

ratings of 5-6 could be considered moderate pain, and ratings of 7-10 could be considered 

severe pain (Paul, Zelman, Smith, & Miaskowski, 2005; Serlin, Mendoza, Nakamura, 

Edwards, & Cleeland, 1995). Because few subjects in the pain group reported severe pain 

and ratings were in the low to moderate range (range 0-99, median 10.25, SD = 22.56), a cut-

point of 15 on the Visual Analog Scale for Pain Intensity (VAS-PI) was established. Those 

subjects with mean VAS-PI ratings from 0 – 14.9 mm comprised the low intensity class 
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(LIC) (N = 20). Subjects with mean VAS-PI ratings of 15 mm or greater comprised the 

moderate intensity class (MIC) (N = 12). 

For this question, ratings of 0-4 or mild pain would include 0-49 mm on the VAS-PI, 

ratings of 5-6 or moderate pain would include 50-69 mm on the VAS-PI, and ratings of 7-10 

or severe pain would include 70-100 mm on the VAS-PI. 

Because the tokens of a subject who sang the sustained vowels at the first seated task 

influenced the acoustic measurements, this subjects data at first seated was removed from the 

LIC data. The other data of this subject was used in the study analyses. 

Mixed models method was used to compare verbal pain ratings and written VAS-PI 

scores to acoustic parameters and compare the changes between groups that occurred across 

the four tasks. However, the non-normal distribution of data was observed in the LI and MI 

classes. Since there were small numbers of subjects in each group, nonparametric statistical 

analyses using Wilcoxon rank sum test for two independent samples. Monte-Carlo estimates 

of the exact test were performed as needed. The Wilcoxon rank sum test is also referred to as 

the Mann-Whitney test for two independent samples. While Fisher’s exact test can be used to 

determine the probability of the Wilcoxon result, SAS 9.1.3 warns that these calculations 

require much time and computer memory. Monte Carlo estimation is “…a nonparametric  

method of statistical inference … produces a sampling distribution based on the actual data” 

(Garson, 2008) and can be added to syntax to produce probability and confidence levels in 

SAS 9.1.3.  

 It was not known if differences in pain intensity would alter parameters significantly. 

Given Scherer’s model, it was thought that higher intensity pain would be ergotropic, or 
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energy-expending, and thus alter acoustic parameters, rejecting the null hypothesis H0: µ1 = 

µ2 that the non-pain group means would be the same as the pain group means. 

Analysis for Research Question 4 

4.   How do various acoustic parameters (i.e., mean fundamental frequency, highest 

fundamental frequency, lowest fundamental frequency, range of fundamental 

frequency, jitter, shimmer, amplitude perturbation quotient, and formant 

frequencies) extracted from sustained vowel utterances differ in relation to 

psychological variables (i.e., depression, anxiety, and anger) reported by women 

with and without chronic knee pain?  

Frequencies, ranges, means, and standard deviations of scores on the psychological 

inventories were computed. A correlation matrix was developed to evaluate the relationship 

of the variables. Pearson product-moment correlation coefficients greater than 0.6 indicate a 

medium sized correlation (Green & Salkind, 2003) and indicate an association worthy of 

investigation. Mixed models method was then used to determine the influence of 

psychological variables on acoustic parameters using interaction statements. The sample 

mean for depression, state anxiety, trait anxiety, state anger, and trait anger was included in 

models as an interaction term in order to compare the change in acoustic parameters related 

to these variables between the groups. In other words, estimates were used to evaluate the 

difference in group means in relation to the sample mean level of the variable.  

Diagnostic techniques were performed with those fixed effects models where 

significant group mean differences were observed to determine stability of model output to 

perturbation or changes in model input that could occur with future studies or samples. 
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Influence diagnostics evaluated changes of input that occur with deletion of observations and 

graphics indicated linearity of bivariate relationships. 

Because multiple statistical tests were used, concern that multiple comparison 

statistical tests could cause an increase in Type 1 error was raised. Adjustments can be 

incorporated in mixed models and in SAS version 9.1.3, Dunnett’s correction is the default 

and was used in this study 

Cook’s D statistic was used to determine likelihood distance of an observation and to 

assess the possibility of outlier influence of an observation on fixed effects estimates (Littell 

et al., 2006). The criterion for identification of influential subjects or outliers in this sample 

was a Cook’s D statistic greater than 0.2. While this distance is greater than normally used, 

this level identified outlier and more influential data more readily in a sample known to have 

unequal variances.  

The COVRATIO statistic evaluates the precision of using full data with values 

greater than 1.0 or use of a reduced data set with COVRATIO values less than 1.0 (Littell et 

al., 2006). COVRATIO was used to estimate model stability by observing the suggested 

number of deletions required.  

Once diagnostics were performed on models with the interaction terms that have 

significant results, log transformation was done to address the unequal variance of the 

groups. This perturbation of input provided information about the potential stability of the 

model in future samples. Diagnostics were then performed on the log transformation model 

and, if improvement was evident in the plot of residuals, Cook’s D, or COVRATIO, the log 

transformation model was entered into PROC MIXED. Significant findings in the log 

transformation model that matched the original model indicated the original model’s stability 
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to perturbation.  Original models judged stable identified the potential relationship of the 

psychological variable to the acoustic parameters and provide guidance for future 

investigations. 

One pain group subject was identified as having an outlier score on the BDI-II that 

influenced the acoustic parameter analyses. This subject’s data was omitted from the 

depression interaction analyses, but her data was included in other study analyses.  

Analysis of Research Question 5 

 5. How does disability influence verbal and written reports of pain intensity and 

written report of pain unpleasantness reported by women with and without chronic 

knee pain? 

Differences in the non-pain and in the LIC and MIC were expected in measures of 

disability and written and verbal report of pain intensity. Time required to move from sit to 

stand was determined using the time stamp on the video record and additional timing with 

Observer XT (Noldus Information Technology, 2007) software. Two VAS pain intensity, 

two VAS pain unpleasantness ratings, and two verbal pain ratings were obtained after the 

subject had been standing for the vocal tasks. Comparison of the pain and non-pain group 

and of the LIC and MIC observed disability, self-evaluated disability, pain intensity and pain 

unpleasantness ratings was done using paired t-tests to determine if differences across time 

within the group or class. If no difference was observed, the ratings from the stand tasks 

could be combined for the pain group.  A correlation matrix of the variables was developed 

to provide information about the bivariate relationship of the measures of the pain subjects. 

Folded F test, F1, was used to determine if equal variances existed that would allow use of 

the t-test comparison. Due to small sample size, when unequal variance was observed, 
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nonparametric statistical tests were planned and included Wilcoxon rank sum statistic, 

normal or t-approximation appropriate to sample size, and Fisher’s exact test.



  

 

 

CHAPTER 5  

RESULTS 

 

The purpose of this investigation was to determine whether acoustic parameters 

change with chronic pain induction and if patterns of vocal signal indicate emotional reaction 

to chronic pain. Specifically, the study examined acoustic changes in women with and 

without pain when chronic pain was induced by a normal activity of daily living.  

Characteristics of the Sample 

Of the 103 persons who responded to recruitment flyers, 77 women qualified and 

were enrolled. Fifteen of the enrolled subjects were not included in the final analysis. Three 

women were excluded due to presence of conditions not revealed during the screening 

interview or enrollment. Two subjects became ill during the study and could not complete the 

session. Ten subjects had insufficient video, acoustic or pulse rate data for the analysis. 

Twenty-six persons were not enrolled. Fourteen did not meet inclusion criteria and 12 could 

not be reached for follow-up, were not interested in participation, or had transportation 

issues. Thirty subjects were enrolled in the non-pain group and 32 were enrolled in the pain 

group. 

The sample was well-educated. The mean level of education of the non-pain group 

was 16.93 years (range of 12-24 years) and the mean level of education of the pain group was 

16.31 years (range of 10-20 years). The group mean differences in education were not 
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significantly different [t(60) = 1.59, p = 0.12]. Many subjects were employed at the 

university and of higher education levels. However, there were a few subjects with high 

school or less. Subjects did not have difficulty reading or completing instruments. Questions 

were related to metaphors used in the inventories (i.e., “I am a steady person,” “I boil inside, 

but try not to show it.”).  

Because height is thought to influence acoustic parameters in men (Fitch, 2000), 

height was measured.  Mean height of the non-pain group was 163.6 centimeters and the 

mean height of the pain group was 165.2 centimeters but the variances were unequal [F1 (29, 

31) = 2.24, p = 0.03]. Using the Satterthwaite t-test, the group differences in height were not 

statistically significant [t (50.1) = 0.91, p = 0.37]. 

Mean weight in the non-pain group was 143.08 pounds (range: 101.8 to 220.5) and 

mean weight in the pain group was 200.66 pounds (range: 120.8 to 373.2). Variances were 

unequal [F1 (31, 29) = 6.14, p<.0001]. Using Satterthwaite t-test results, group differences in 

weight were statistically significant [t (41.4) = 5.11, p = <.0001]. 

Mean BMI of non-pain group was 24.04 (range: 18 – 35.3) while the mean BMI of 

the pain group was 33.49 (range: 20.4 - 62.1). Since a BMI of 25 indicates overweight and 30 

indicates obesity, the non-pain group was observed to be of normal weight and the pain 

group was observed to be obese. Variances were unequal [F1 (31, 29) = 8.76, p =<.0001]. 

Using Satterthwaite t-test results, group differences in BMI were statistically significant 

[t(38.4) = 4.94, p <.0001].  

While ethnic diversity was evident in the sample with White, Black, and mixed races 

represented in both groups (Table 11), the two groups did not differ significantly in terms of 

ethnic composition using (Z = -0.31, t-approx. = 0.76, Fisher’s exact test = 0.13). When the 
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pain group was classified by pain intensity, two of the eleven subjects in the moderate 

intensity pain class were black. 

Table 11.  
 
Demographic Data: Number and Percentage of Sample and Group by Ethnicity 

Ethnicity 
Sample  

(N =62 ) 

Non-Pain  

(N = 30) 

Pain 

(N = 32) 
Z 

t-approx-

imation 

Fisher’s 

exact test 

White 

Black 

Asian 

Mixed 

48 (77%) 

10 (16%) 

3 (4.8%) 

1 (1.6%) 

24 (80%) 

3 (10%) 

3 (10%) 

0 

24 (75%) 

7 (21.8%) 

0 

1 (3.1%) 

 

-0.31 

 

-0.76 

 

0.13 

 

The work status of subjects in the two groups was varied, with similar proportions in 

the work force or retired (Table 12). The non-pain group had 11 subjects working full-time 

outside-the-home compared to the pain group with 14 working full time. The pain and non-

pain group had 6 subjects working part-time outside the home. Eight subjects of the non-pain 

group and ten subjects of the pain group were retired. Two non-pain subjects were retired, 

but working part-time while one pain subject was retired but working part-time. One non-

pain subject identified herself as a homemaker and 1 non-pain subject described herself as 

unemployed. One pain group subject described herself as retired and “other.”  Group 

differences in work status were not significant (Z = 0.61, t-approx. = 0.55, Fisher’s exact test 

= 0.77).  
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Table 12.  
 
Demographic Data: Number and Percentage of Sample and Groups by Work Status 

Work Status 
Sample 

(N =62 ) 

Non-Pain 

(N = 30) 

Pain  

(N = 32) 
Z 

t-

approx-

imation 

Fisher’s 

exact test 

Full-Time 

Outside Home 

Part-Time 

Outside the 

Home 

Homemaker 

Retired 

Unemployed 

Retired, 

Working Part-

Time 

Retired, 

“Other” 

Other 

25 (40.32%) 

 

12 (19.35%) 

 

 

1 (1.61%) 

18 (29.03%) 

1 (1.61%) 

2 (3.23%) 

 

 

1 (1.61%) 

 

2 (3.23%) 

11 (36.67%) 

 

6 (20%) 

 

 

1 (3.33%) 

8 (26.67%) 

1 (3.33%) 

2 (6.67%) 

 

 

0 

 

1 (3.33%) 

14 (43.75%) 

 

6 (18.75%) 

 

 

0 

10 (31.25%) 

0 

0 

 

 

1 (1.61%) 

 

1 (1.61%) 

 

 

 

 

0.61 

 

 

 

 

0.55 

 

 

 

 

0.77 

 

Living arrangements were similar between the two groups (Table 13). Nearly 40% of 

the sample lived alone with some relying on others for transportation. Eleven subjects of the 

non-pain group reported living alone, while 13 subjects in the pain group lived alone.  
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Table 13.  
 
Demographic Data: Number and Percentage of Sample and Groups by Living Arrangement 

Living 

Arrangement 

Sample  

(N =62 ) 

Non-Pain  

(N = 30) 

Pain  

(N = 32) 
Z 

t-

approx 

Fisher’s 

exact test 

No One 

Spouse/Partner 

Child 

Spouse/Partner 

and Child 

24 (38.71%) 

33 (53.23%) 

3 (4.84%) 

2 (3.23%) 

11 (36.67%) 

17 (56.67%) 

1 (3.33%) 

1 (3.3%) 

13 (40.63%) 

16 (50%) 

2 (6.25%) 

1 (3.13%) 

 

0.15 

 

 

0.88 

 

0.96 

 

Seventeen subjects of the non-pain group lived with a spouse, partner, friend, or 

roommate while 16 subjects of the pain group reported living with a spouse, partner, friend 

or roommate. Only one subject in the non-pain group and two in the pain group reported 

living with a child. Only one subject in the non-pain group and 1 in the pain group (3.13%) 

reported living with a spouse or partner and a child. Using Fisher’s exact test, group 

differences in living arrangements were not significant (Z = 0.15, 2-sided t-approximation = 

0.88, p = 0.96). 

While the groups were similar in many respects, differences in report of pain and its 

impact were critical to the study aim. To verify group assignment, non-pain subjects who 

reported pain intensity and interference scores on the BPI were questioned following 

instrument administration.  All indicated they had described pain related to headache, cardiac 

discomfort, eye strain, and not knee pain. After verifying the pain status of the non-pain 
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subject, scores on the BPI were changed to zero in order to comply with the instruction that 

only knee pain was to be addressed in the instruments.  

In order to verify the presence or absence of  pain of the non-pain and pain groups, 

the Visual Analogue Scale for Pain Intensity (VAS-PI) (Price et al., 1983) was administered 

at intervals during the study.  The VAS-PI requires the subject to mark across a line to 

indicate the level of pain intensity experienced. Although subjects were instructed to mark 

how intense their knee pain was, some non-pain subjects placed marks slightly above the “no 

pain” point on the pain scale.  

Univariate plots indicated non-normality of the interval level data related to pain 

intensity. Preliminary nonparametric statistical analyses that included Wilcoxon rank sum 

statistic, 2-sided normal approximation, and Fisher’s exact test determined that group 

differences in written pain intensity were statistically significant at all tasks (Table 14).  

Table 14. 
 
 Mean Scores and Difference in VAS-PI between Non-Pain and Pain Groups by Task 

Task 

Non-Pain 

(N = 30) 

M Score 

Pain 

(N = 32) 

M Score 

SD 

Under 

Null 

Z 

2-sided 

normal 

approximation 

Fisher’s exact 

test 

Before 
Inventories 

21.37 *40.32 64.58 -4.47 <.0001 3.09E-06 

After 
Inventories 

17.83 44.31 68.62 -5.97 <.0001 4.55E-11 

First seated 17.50 **43.50 65.13 -5.98 <.0001 3.33E-11 

First Stand 18.37 *43.23 67.65 -5.60 <.0001 1.10E-09 

Second Seated ***20.03 40.94 66.49 -4.77 <.0001 4.91E-07 

Second Stand 20.73 41.59 67.97 -4.74 <.0001 6.18E-07 

*N = 31. ** N = 30. ***N = 29. 
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Duration of knee pain or osteoarthritis (OA) was collected in months on the BPI and 

presented a calculation issue for subjects. The non-pain group subjects who reported having 

OA but without knee or musculoskeletal pain reported a shorter mean duration of 36.9 (SD = 

101.4) months, or over three years. Subjects in the pain group reported having OA or knee 

pain for an average of 62.48 (SD = 82.93) months, over five years. The variances were not 

different [F1 (27, 28) = 1.49, p = 0.3] and the difference between the groups was not 

significant [t (55) = -1.04, p = 0.30].  

When the pain group’s data was examined by intensity, duration was shorter for the 

moderate intensity pain (M = 59.78 months, SD = 76.56 months) than the low intensity pain 

group (M = 65.16 months, SD = 89.69 months). Subjects reported difficulty differentiating 

when symptoms began and when they were diagnosed.  

In addition to duration, the BPI requested that subjects indicate pain location sites. 

The non-pain group described pain from headache, a cardiac disorder, wrist, leg, and hip but 

indicated they did not have knee or musculoskeletal pain currently. Three subjects (out of 

thirty) in the non-pain group listed more than one site for pain. In the pain group, three 

subjects listed only one site (knee pain) while 21 subjects listed more than one site for pain. 

Cronbach’s alpha was used to determine internal consistency of the psychological 

instruments indicative of enduring mood (Table 15). Initially, means were not imputed for 

missing items. Some subjects’ STAI data were incomplete and their data was deleted from 

the Cronbach’s alpha calculation because SAS 9.1 required complete subject data for 

computation of Cronbach’s alpha. When STAI means were imputed, the raw and 

standardized Cronbach’s alphas were 0.9 and the results were within acceptable norms 

reported for the instruments. 
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Table 15. Cronbach's Alpha for Mood-Related Inventories 

Inventory/Scale Norm N Raw alpha 
Standardized 

alpha 

BDI-II 0.93 61 0.895 0.899 

STAI 

          State Anxiety 

         Trait Anxiety 

 

0.93 

0.91 

 

54 

60 

 

0.76 

0.90 

 

0.77 

0.91 

STAXI-2 

State Anger 

Trait Anger 

           AX-I 

           AX-O 

            AC-O 

            AC-I 

 

0.92 

0.84 

0.76 

0.67 

0.85 

0.92 

 

60 

62 

62 

62 

61 

62 

 

0.88 

0.74 

0.62 

0.71 

0.85 

0.88 

 

. 

0.76 

0.60 

0.72 

0.86 

0.88 

 

Cronbach’s alpha was calculated for the pain-specific measures (Table 16). Because 

the non-pain sample did not complete the BPI pain severity and pain interference scales, 

Cronbach’s alpha could not be calculated for the entire sample. In addition, some subjects did 

not complete all VAS-PI and VAS-UNP scales and their data were omitted from Cronbach’s 

alpha analysis as complete data is required by SAS 9.1 for this statistical test. These subjects’ 

data were included in subsequent sample analyses. 
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Table 16.  
 
Cronbach's Alpha for Pain-Specific Inventories 

Inventory/Scale Norm N 
Raw 

alpha 

Standardized 

alpha 

ASES 

      Pain Self-Efficacy 

      Function Self-Efficacy 

      Other Symptoms Self-Efficacy 

 

0.76 

0.89 

0.87 

 

61 

61 

61 

 

0.82 

0.92 

0.92 

 

0.83 

0.94 

0.92 

BPI 

      Pain Interference – 7 items 

      Pain Severity – 4 items 

 

0.91 

0.89 

 

32 

31 

 

0.92 

0.83 

 

0.93 

0.84 

SOPA-35 

          Pain Control 

          Disability 

          Harm 

          Emotion 

          Medications 

          Solicitude 

          Medical Cure 

 

0.78 

0.70 

0.66 

0.81 

0.78 

0.81 

0.74 

 

62 

62 

62 

62 

62 

60 

62 

 

0.73 

0.74 

0.64 

0.72 

0.59 

0.79 

0.73 

 

0.73 

0.75 

0.65 

0.71 

0.62 

0.79 

0.73 

VAS-PI – 6 repeated  57 0.96 0.97 

VAS-UNP – 6 repeated  57 0.97 0.97 

VRP – 4 repeated  62 0.99 0.99 
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Results of Research Question Analyses  

Research Question 1 

The first research question addressed difference in pulse rates between women with 

and without chronic knee pain while seated, at rest, in anticipation of standing, and after 

standing in order to assess physiological arousal with the tasks. Pulse rates were based upon 

pulse oximetry data obtained during the acoustics session. Pulse rates were unable to be 

calculated for one non-pain subject at two rest periods and for one non-pain subject at second 

anticipation task. Because group variance in pulse rate was unequal, Wilcoxon rank sum 

statistic with 2-sided normal approximation and Fisher’s exact test were performed.  

Between groups, pulse rate across the tasks were different only at second anticipation 

(Table 17). Pulse rates for the non-pain and pain group did not differ at the first seated task 

(Z = -0.82, normal approx. = 0.41, Fisher’s exact test = 0.41) or at second seated (Z = -0.92, 

normal approx. = 0.36, Fisher’s exact test = 0.36). Pulse rates for the non-pain and pain 

group did not differ at the first anticipation task (Z = -1.71, normal approx. = 0.09, Fisher’s 

exact test = 0.09), but did demonstrate difference at the second anticipation task (Z = -2.49, 

normal approx. = 0.01, Fisher’s exact test = 0.01). Pulse rates were not different at the first 

stand task (Z = -0.87, normal approx. = 0.39, Fisher’s exact test = 0.39) or at the second 

stand task (Z = -1.01, normal approx. = 0.31, Fisher’s exact test = 0.32). 
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Table 17. 
 
 Difference in Pulse Rate of Non-Pain and Pain Group by Task 

Task 

Non-Pain  

(N = 30) 

M score 

Pain  

(N =32) 

M score 

Z 
2-sided normal 

approximation 

Fisher’s 

exact test 

First Seated  *29.02 32.80 -0.82 0.41 0.41 

First 

Anticipation 

*26.90 34.72 -1.71 0.09 0.09 

First Stand 29.43 33.44 -0.87 0.39 0.39 

Second Seated  29.30 33.56 -0.92 0.36 0.36 

Second 

Anticipation 

*25.03 36.41 -2.49 0.01 0.01 

Second Stand 29.10 33.75 -1.01 0.31 0.32 

*N = 29. 

Because sample weight and BMI data were not normally distributed and thought to 

influence pulse rate, non-parametric analyses using Wilcoxon rank sum with 2-sided t- 

approximations and Fisher’s exact test were performed.   

In order to analyze the effect of weight using Wilcoxon rank sum, the sample was 

divided into two groups based on weight. Using the Center for Disease Control guideline for 

overweight designated at BMI of 25 and the group mean height of 64.1 inches, a cut-point for 

overweight was established at 145 lbs using the formula for BMI [(lbs.(in.)2*703](Centers for 

Disease Control and Prevention, 2006). 

To evaluate the effect of weight on pulse rate with movement tasks, the sample was 

divided on the basis of 145 lb. indicating overweight given the mean height of the sample, 
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64.1 inches. The normal weight group (N = 18) included 16 subjects from the non-pain group 

and 2 subjects from the pain group. The overweight group (N = 44) included 14 subjects 

from the non-pain group and 30 subjects from the pain group. Because of the non-normal 

distribution of the sample, the nonparametric statistics, Spearman rs and Fisher’s exact test, 

were used to analyze the sample data.  Significant difference in the normal and overweight 

group pulse rates was demonstrated at two pulse measurement time points. The normal 

weight group and overweight group demonstrated the largest differences in pulse with the 

two anticipation measurements. The 2-sided t-approximation and Fisher’s exact test for first 

anticipation pulse was less than the 2-sided t-approximation and Fisher’s exact test second 

anticipation pulse indicating differential effect of the task. Because pulse rate increased in 

anticipation of standing for the overweight group and the group was composed of non-pain 

and pain subjects, the response observed could be attributed to physical exertion as well as 

anticipation of pain.  

Pulse rates for the normal weight and overweight groups’ were not different at first 

seated (Z = -1.54, t-approx. = 0.13, Fisher’s exact test = 0.12) or at second seated (Z = -1.47, 

t-approx. = 0.15, Fisher’s exact test = 0.14). There was significant difference in pulse rate 

between the normal weight and overweight groups at first anticipation (Z = - 2.80, t-approx. 

= .007, Fisher’s exact test = 0.004) and at second anticipation (Z = -3.03, t-approx. = 0.004, 

Fisher’s exact test = 0.002). Pulse rates were not different at first stand (Z = -1.34, t-approx. 

= 0.19, Fisher’s exact test = 0.18) or at second stand (Z = 1.19, t-approx. = 0.24, Fisher’s 

exact test = 0.24) (Table 18).   
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Table 18.  
 
Difference in Pulse Rate between Weight Classes by Task 

Task 

Normal Weight 

(N = 21) 

M score 

Overweight 

(N = 41) 

M score 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First Seated *25.98 33.45 -1.54 0.13 0.12 

First 

Anticipation 

*21.85 35.46 -2.8 0.007 0.004 

First Stand 27.19 33.71 -1.34 0.19 0.18 

Second Seated 26.76 33.93 -1.47 0.15 0.14 

Second 

Anticipation 

21.48 **36.0 -3.03 0.004 0.002 

Second Stand 27.67 33.46 -1.19 0.24 0.24 

*N = 20. **N = 40. 

 

To evaluate the effect of BMI on pulse rate with movement tasks, the total sample 

was divided into two groups using BMI with the overweight/obese group consisting of 

subjects with a BMI equal to or greater than 25 and the normal weight group consisting of 

subjects with a BMI less than 25. The normal weight group (N = 24) included 20 subjects 

from the non-pain group and 4 subjects from the pain group. The overweight/obese group (N 

= 38) included 10 non-pain subjects and 28 pain subjects. When Spearman rs and Fisher’s 

exact test were used, significant difference was observed across all six of the pulse rate 

measurements with the two largest differences occurring with the two anticipation of 

standing measurements.  
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The normal weight and overweight/obese groups were significantly different in pulse 

rate at all tasks when the effect of BMI was included (Table 19). Group mean difference was 

significant at first seated (Z = -2.63, t-approx. = 0.01, Fisher’s exact test = 0.01) and second 

seated (Z = -2.55, t-approx. = 0.01, Fisher’s exact test = 0.01). Pulse rates as first anticipation 

(Z = -3.88, t-approx. = 0.0003, Fisher’s exact test = 5.68E-05) and second anticipation (Z = -

4.0, t-approx. = 0.0002, Fisher’s exact test = 3.134E-05) were different between the groups. 

First stand (Z = -2.33, t-approx. = 0.02, Fisher’s exact test = 0.02) and second stand (Z = -

2.09, t-approx. = 0.04, Fisher’s exact test = 0.04) pulse rates were significantly different 

when BMI was included. 

Table 19.  
 
Difference in Pulse Rate between Classes based on BMI by Task 

Task 

Normal 

Weight  

(N = 24) 

M score 

Overweight / 

Obese 

(N =38) 

M score 

Z 

2-sided t-

approximation Fisher’s 

exact test 

First Seated  *23.28 35.67 -2.63 0.01 0.008 

First 

Anticipation 

*19.65 37.87 -3.88 0.0003 5.68E-05 

First Stand 24.75 35.76 -2.33 0.023 0.02 

Second Seated  24.13 36.16 -2.55 0.01 0.01 

Second 

Anticipation 

*19.30 38.08 -4.0 0.0002 3.13E-05 

Second Stand 25.46 35.32 -2.09 0.04 0.04 
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To evaluate the effect of pain intensity on pulse rate with movement tasks, the pain 

group was divided into two classes based on average VAS-PI ratings collected during the 

study: low intensity pain class (LIC) and moderate intensity pain class (MIC). Subjects with 

a mean VAS-PI of 0 to 14.99 comprised the LIC (N = 20) and subjects with a mean of 15 and 

or greater (N = 12) comprised the MIC. The LIC and MIC demonstrated unequal variance in 

pulse rate [F1(119,71) = 1.59, p = 0.03] although the pulse rates were not significantly 

different [t(176) = 1.70, p = 0.09].  

Unlike the non-pain and pain group, the pain intensity classes demonstrated equal 

variance with weight [F1(19, 11)= 2.03, p = 0.23] and BMI [F1(19, 11) = 1.65, p = 0.40] and 

did not differ in weight [t(30) = 0.41, p = 0.68] or BMI [t(30) = 0.46, p = 0.65]. Because this 

sample was small, Wilcoxon rank sum statistic with 2-sided t-approximation and Fisher’s 

exact test were performed to evaluate pulse rates between the classes. No significant 

difference was observed at any of the tasks (Table 20). However, the pulse rate was higher 

for the LIC across all tasks except the second stand task. Pulse rates were similar at first 

seated (Z = -0.84, t-approx. = 0.41, Fisher’s exact test = 0.41) and at second seated (Z = -

0.88, t-approx. = 0.39, Fisher’s exact test = 0.38).  The pulse rates at first anticipation of 

standing (Z = -0.68, t-approx. = 0.50, Fisher’s exact test = 0.50) and second anticipation of 

standing (Z = -1.15, t-approx. = 0.26, Fisher’s exact test = 0.26) demonstrated increasing 

difference but it was not significant. Pulse rates of the LIC and MIC at the first stand 

demonstrated the largest between class difference, but the difference did not reach statistical 

significance (Z = -1.50, t-approx. = 0.13, Fisher’s exact test = 0.14). Pulse rates of the MIC 

at second stand demonstrated a marked increase while the LIC pulse rate decreased.  Despite 
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these changes, the LIC and MIC pulse rates were not different at second stand (Z = 0.25, t-

approx. = 0.80, Fisher’s exact test = 0.80). 

Table 20. 
 
 Difference in Pulse Rate of Pain Intensity Classes by Task 

Task 

Low Intensity 

Pain Class 

(N = 20) 

M score 

Moderate 

Intensity Class 

(N = 12) 

M score 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First Seated  17.60 14.67 -0.84 0.41 0.41 

First 

Anticipation 

17.40 15.00 -0.68 0.50 0.50 

First Stand 18.45 13.25 -1.50 0.13 0.14 

Second Seated  17.65 14.58 -0.88 0.39 0.38 

Second 

Anticipation 

18.00 14.00 -1.15 0.26 0.26 

Second Stand 16.15 17.08 0.25 0.80 0.80 

 

Research Question 2. 

Various acoustic parameters (i.e., mean fundamental frequency, lowest fundamental 

frequency, highest fundamental frequency, range of fundamental frequency, jitter, shimmer, 

amplitude perturbation quotient, and three formant frequencies) were extracted from 

sustained vowel utterances of women with and without chronic knee pain to determine if 

difference in parameters occurred with change of position. 
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Mean Fundamental Frequency (MF0) 

Mean fundamental frequency (MF0) was similar between the two groups (Table 21) at 

the first seated task [t-value(658) = -0.02,  p= 0.99). There was a decrease in MF0 for both 

groups with the first standing task [t-value(658) = 0.90,  p = 0.37]; the pain group 

demonstrated a greater decrease in MF0 than the non-pain group. The non-pain group MF0 

increased from the first seated task to the second seated task while the pain group MF0 

decreased [t-value(658)= 0.66,  p =0.51].  With the second stand task, both groups’ MF0 

decreased at second seated to the same level as at first stand task [t-value(658) = 0.90, p = 

0.37]. Group mean differences in MF0 were not significant. 

Table 21.  
 
Group Means and Difference in Mean Fundamental Frequency by Task 

Task 

Non-Pain 

N = 30 

M (SE) 

Pain 

N = 32 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated 180.06 (4.40) 180.17 (4.26) -0.10 (6.13) 65.8 -0.02 0.99 

First Stand 178.84 (4.40) 174.84 (4.26) 5.52 (6.13) 65.8 0.90 0.37 

Second Seated 180.53 (4.40) 175.01(4.26) 4.05 (6.13) 65.8 0.66 0.51 

Second Stand 179.98 (4.40) 174.46 (4.26) 5.52 (6.13) 65.8 0.90 0.90 

Note. Means are in Hz. 
 

Lowest Fundamental Frequency (Flo) 

The pain group demonstrated the lower frequencies than the non-pain group when Flo 

was measured across tasks (Table 22). In the first seated task, difference in Flo between 
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groups was small [t-value(66.7) = 0.14, p = 0.89]. Increased differences in Flo were observed 

at first stand [t-value(66.7) = 1.46, p = 0.15] and at second seated [t-value(66.7) = 1.23, p 

=0.22].  The largest mean difference occurred at second stand [t –value(66.7)= 1.66, p = 

0.10] when the pain group’s Flo decreased to its lowest mean frequency. Group mean 

differences in Flo were not significant.  

Table 22.  
 
Group Means and Difference in Lowest Fundamental Frequency by Task 

Task 

Non-Pain 

N = 30 

M (SE) 

Pain 

N = 32 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated  169.26 (4.46) 168.38 (4.32) 0.88 (6.21) 66.7 0.14 0.89 

First Stand 169.31 (4.46) 160.27 (4.32) 9.04 (6.21) 66.7 1.46 0.15 

Second Seated  171.5 (4.46) 163.85 (4.32) 7.65 (6.21) 66.7 1.23 0.22 

Second Stand 171.42 (4.46) 161.11 (4.32) 10.31 (6.21) 66.7 1.66  0.10 

Note. Means are in Hz. 

Highest Fundamental Frequency (Fhi) 

The highest fundamental frequencies occurring with the production of the sustained 

vowel were in the pain group in all but the second seated task (Table 23). There was 

increased variance in the pain group’s Fhi at first seated and examination of the diagnostics 

indicated an outlier may have influenced this variance (Cook’s D = 1.39). Further, this 

subject’s data was quite different in the other tasks compared to the first seated data. Audio 

review indicated the subject sang the vowel with the seated task.   

Diagnostics were performed initially on the full model and subsequently on the model 

with the first seated data of the outlier subject excluded. With the exclusion of first seated 
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data of this one subject, the largest Cook’s D for the sample decreased from 1.39 to 0.08. 

Because Fhi was used to calculate range of F0, this reduced data set is used for subsequent 

analyses of Flo, Fhi, and range of F0. No group mean differences in Fhi were significant. 

When the reduced data set was entered into PROC MIXED, the non-pain group had 

lower Fhi than the pain group at first seated [t-value(76.9) = -0.67, p = 0.88]. Both the non-

pain group and pain group Fhi decreased at first stand [t-value(76.5) = -0.46, p = 0.65]. At 

second seated, the non-pain group increased Fhi while the pain group had a decrease in Fhi 

[t-value(76.5) = 0.48, p = 0.64]. The non-group decreased Fhi at second stand while the pain 

group experienced and increase [t-value(76.3) = -0.01, p = 0.99]. No significant group 

difference in Fhi was observed.  

Table 23.  
 
Group Means and Difference in Reduced Model of Highest Fundamental Frequency by Task 

Task 

Non-Pain  

N=30 

M (SE) 

Pain  

N=32 

M (SE) 

Group Mean 

Difference  

 (SE) 

df t-value p 

First Seated  191.68 (4.84)  *192.67 (4.84) -0.99(6.73) 76.9 -0.15 0.88 

First Stand 188.51 (4.84) 191.6 (4.66) -3.10 (6.72) 76.5 -0.46 0.65 

Second Seated  190.88 (4.84) 187.68 (4.66) 3.20 (6.72) 76.5 0.48 0.64 

Second Stand 189.34 (4.83) 189.38 (4.66) -0.04 (6.71) 76.3 -0.01 0.99 

*N = 31. Note: Means are in Hz. 

Range of Fundamental Frequency 

Because range of F0 employed Fhi and Flo values and Fhi was shown to be 

influenced by an outlier, the deleted data set from the Fhi analysis (see previous Fhi analysis) 

was employed. Subjects demonstrated group mean differences in the range of frequencies 
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used during the two seated tasks (Table 24).  Range of fundamental frequency for the non-

pain group was less than the pain group range of F0 at the first seated task [t-value(141) = - 

1.3, p = 0.20]). While range of F0 decreased from first seated to first stand in the non-pain 

group, range of F0 increased in the pain group resulting in a significant group mean 

difference [t-value(139) = -2.82, p = 0.006]. At the second seated task, range of F0 for the 

non-pain group was nearly equal to first stand. Range of F0 decreased for the pain group at 

second seated and the difference in range of F0 between the groups was no longer significant 

at second seated [t-value(139) = -1.04, p =0.30]. The non-pain group range of F0 decreased at 

second stand while the pain group range of F0 increased resulting in significant difference [t-

value(139) = -2.48, p = 0.01]. Group mean differences in range of fundamental frequency 

were statistically significant at both stand tasks.  

Table 24.  
 
Group Means and Difference in Reduced Model of Range of Fundamental Frequency by 
Task 

 

Task 

Non-Pain  

N = 30 

M (SE) 

Pain  

N=32 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated  22.52 (3.02) *27.87 (2.96) -5.47 (4.23) 141 -1.30 0.20 

First Stand  19.46 (3.02) 31.33 (2.92) -11.88 (4.21) 139 -2.82 0.006 

Second Seated  19.47 (3.02) 23.83 (2.92) -4.36 (4.21) 139 -1.04 0.30 

Second Stand  17.83 (3.02) 28.27 (2.92) -10.44 (4.21) 139 -2.48 0.01 

*N=31. Note. Means are cited in Hz. 

 Diagnostics were performed on the model with the reduced data set and the plot of 

residuals demonstrated some tortuous character (Appendix 23). No subjects had Cook’s D 

greater than 0.2. Seven sample subjects had COVRATIO less than 1.0. Six subjects, 1 from 
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the non-pain group and 5 from the pain group, were identified as having increased Cook’s D 

ranging from 0.63 to 0.16. COVRATIO was less than 1.0 for all the 6 influential subjects. 

Range of F0 was increased for all the influential subjects with 4 having one range of F0 

measurement greater than 90 Hz.  

Because of the tortuous nature of the residual plot and the range of the Cook’s D 

statistics (Appendix 23), log transformation was done to examine model stability. With log 

transformation, the residual plot improved (Appendix 23), no subjects had Cook’s D greater 

than 0.2, and 10 subjects had COVRATIO less than 1.0.  Six subjects identified as influential 

in both diagnostic analyses had increased Cook’s D (Appendix 23). COVRATIO ranged 

from 0.64 – 0.94 in the log transformation model. Since low COVRATIO indicates increased 

precision of estimates can be obtained with deletion of influential subjects (Littell et al., 

2006), both models would require deletion to improve precision. 

Influential subjects in the original model had one or more large range of F0 values 

while 3 influential subjects in the log transformation model had low range of F0 values and 3 

subjects had high range of F0 values. Because range of F0 is determined by high and low 

fundamental frequencies, the influence of low values as well as high values must be 

considered. The log transformation model included influential subjects with high and low 

extreme scores while the original model did not.  

The log transformation model was entered into PROC MIXED. Mean differences 

between groups were greatest at the stand tasks and the pain group had the larger ranges of F0 

(Table 25). Group mean differences in range of F0 at the first seated [t-value(113) = 0.65, p = 

0.52] and second seated tasks [t-value(111) = -0.84, p = 0.40] were not significant (Table 

26). Group mean at first stand [t-value(111) = -2.22, p = 0.03] and second stand [t-value(111) 
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= -2.17, p = 0.03] were significant with log transformation (Table 26). Since group mean 

differences in range of F0 at first and second stand were also significant in the original model, 

the original model was accepted as stable.  

Table 25.  
 
Group Means and Difference of Log Transformation of Reduced Model of Range of 
Fundamental Frequency by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

First Seated 20.0 (1.10) *21.89 (1.10) -1.89 

First Stand 18.27 (1.10) 24.87 (1.10) -6.6 

Second Seated 17.87 (1.10) 20.08 (1.10) -2.21 

Second Stand 16.5 (1.10) 22.29 (1.10) -5.79 

*N =31. 

 

Table 26.  
 
Results of Log Transformation of Reduced Model of Range of Fundamental Frequency by 
Task 

Task 
Group Mean 

Ratio 
SE df t-value p 

First Seated .91 1.15 113 0.65 0.52 

First Stand .73 1.15 111  -2.22 0.03 

Second Seated .89 1.15 111 -0.84 0.40 

Second Stand .74 1.15 111 -2.17 0.03 
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Jitter in Percent 

Jitter can be expressed in percent or as absolute measures that ignore speaker F0 

(Baken & Orlikoff, 2000). To aid in interpretability, jitter in percent was selected.  

The entire data set was used for the analysis of jitter. The non-pain group 

demonstrated less jitter than the pain group across all tasks. At the first seated task, the pain 

group demonstrated a higher level of jitter than the non-pain group [t-value(73.3) = -1.41, p = 

0.16]. While the mean level of jitter of both groups decreased from first seated to first stand, 

the pain group mean jitter remained higher than mean jitter in the non-pain group [t-

value(73.3) = -1.91, p = 0.06].  Jitter in both groups increased slightly at the second seated 

task [t-value(73.3) = -1.53, p = 0.13]  However, at second stand, there was a decrease in the 

non-pain group jitter and an increase in jitter in the pain group [t-value(73.3) = -2.70,  p = 

0.009]. Group mean difference in jitter in percent was significant at the second stand (Table 

27). 

Table 27.  
 
Group Means and Difference in Jitter in Percent by Task 

Task 

Non-Pain 

M (SE) 

Pain 

M  (SE) 

Group Mean Difference 

M (SE) 
df t-value p 

First Seated 0.94 (0.44) 1.11 (0.60) -0.17 (0.12) 73.3 -1.41 0.16 

First Stand 0.81 (0.33) 1.03 (0.61) -0.23 (0.12) 73.3 -1.91 0.06 

Second Seated 0.86 (0.46) 1.05 (0.67) -0.18 (0.12) 73.3 -1.53 0.13 

Second Stand 0.78 (0.50) 1.11 (0.63) -0.32 (0.12) 73.3 2.70 0.009 
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Diagnostics were performed on the original model and tortuous character at both ends 

of the residuals plot was noted (Appendix 23). Eight subjects had Cook’s D greater than 0.2 

and 9 subjects had COVRATIO less than 1.0. Eight subjects, 3 from the non-pain group and 

5 from the pain group, were identified as influential (Appendix 23) with Cook’s D greater 

than 0.2 and COVRATIO ranged from 0.49 to 1.18.  Jitter levels ranged from 0.2 to 0.36 

with these subjects. All 8 subjects had one or more jitter values greater than 1.5% and 6 

subjects had one jitter value greater than 2.0%.  

When the log transformation was performed, the plot of residuals became more linear 

(Appendix 23).  Three subjects had Cook’s D greater than 0.2 Eight subjects had 

COVRATIO less than 1.0. The pain group had higher levels of jitter at all tasks. Three 

influential subjects were identified with Cook’s D ranging from 0.29 to 0.35(Appendix 23); 1 

subject was from the pain group and 2 were from the non-pain group. One subject had lower 

jitter levels ranging from 0.22% to 0.74% while the other 2 subjects had jitter levels greater 

than 1.5%. COVRATIO ranged from 0.66 to 0.78. Greatest group mean difference occurred 

at second stand (Table28). The log transformation model demonstrated significant difference 

in jitter between groups at the second stand task (Table 29). This significant difference also 

occurred at the second stand task in the original model. The original model was accepted as 

stable. 
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Table 28. 
 
 Group Means and Difference in Log Transformation Model of Jitter in Percent by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

First Seated 0.85 0.95 -0.1 

First Stand 0.74 0.90 -0.16 

Second Seated 0.76 0.86 -0.1 

Second Stand 0.68 0.93 -0.25 

 

Table 29.  
 
Results of Log Transformation of Model of Jitter in Percent by Task 

Task 
Group 

Mean Ratio 
SE df t-value p 

First Seated 0.89 1.13 71.4 -0.89 0.37 

First Stand 0.82 1.13 71.4 -1.61 0.11 

Second Seated 0.89 1.13 71.4 -0.97 0.33 

Second Stand 0.73 1.13 71.4 -2.58 0.01 

 

Shimmer  

Group mean differences in shimmer existed across all tasks (Table 30). Significant 

group mean difference was observed at first stand. Non-pain group level of shimmer was less 

than the pain group’s shimmer level at the first seated task [t-value(69.7) = -0.79, p = 0.43] 

After standing, mean level of shimmer decreased in the non-pain group and increased in the 
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pain group. The mean difference in shimmer between the groups at first stand was 

statistically significant [t – value (69.7) = -1.96, p = 0.05]. The non-pain group’s mean 

shimmer increase from first stand to second seated task was greater than the pain group’s 

mean shimmer level [t-value(69.7) = -1.35, p = 0.18]. Both groups’ level of shimmer 

decreased at second stand although the decrease in the non-pain group shimmer was greater 

than the decrease in the pain group [t-value(69.7) = -1.62, p = 0.11]. 

Table 30.  
 
Group Means and Difference in Model of Shimmer in Percent by Task 

Task 

Non-Pain  

N = 30 

M (SE) 

Pain  

N = 32 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated  2.82 (0.93) 3.05 (1.43) -0.23 (0.28) 69.7 -0.79 0.43 

First Stand  2.53 (0.68) 3.09 (1.72) -0.56 (0.28) 69.7 -1.96 0.05 

Second Seated 2.71 (0.73) 3.10 (1.62) -0.39 (0.28) 69.7 -1.35 0.18 

Second Stand  2.53 (0.77) 2.99 (1.47) -0.46 (0.28)  69.7 -1.62 0.11 

 

Diagnostics were performed on the complete data set. Residual plots had tortuous 

tails, 4 subjects had Cook’s D greater than 0.2, and 6 subjects had COVRATIO greater than 

1.0. Four subjects were identified as influential with Cook’s D ranging from 0.37 to 0.47: one 

in the non-pain group and 3 in the pain group. COVRATIO ranged from 0.37 to 0.7 with 

these subjects. Shimmer ranged from 1.54 to 7.77 and all influential subjects had a shimmer 

level at one task greater than 5.5. Because the plot of residuals was tortuous and the 

COVRATIO indicated the need for deletion, log transformation was performed. 
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With log transformation, the plot of residuals became more linear (Appendix 23), 4 

subjects had Cook’s D greater than 0.2, and 7 subjects had COVRATIO less than 1.0.  

After log transformation of the original model, 4 influential subjects had Cook’s D greater 

than 0.2 with 3 of four subjects identified in the original model (Appendix 23): 1 subject 

from the non-pain group and 3 subjects from the pain group. Cook’s D ranged from 0.29 to 

0.37. COVRATIO ranged from 0.69 to 0.75. The log transformation model was judged more 

stable than the original model. The non-pain subject’s shimmer levels (range : 0.91 to 2.53) 

were lower than 3 pain subjects’ shimmer levels (range : 1.89 to 7.77). Although group mean 

differences in shimmer were greater at first and second stand (Table 31), no significant 

difference in shimmer between groups was observed when the log transformation model was 

entered into PROC MIXED (Table 32). The original model of group difference in shimmer 

was judged unstable. 

Table 31.  
 
Group Means and Difference in Log Transformation of Model of Shimmer in Percent by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

First Seated 2.69 (1.06) 2.79 (1.06) -0.1 

First Stand 2.44 (1.06) 2.78 (1.06) -0.34 

Second Seated 2.61 (1.06) 2.79 (1.06) -0.18 

Second Stand 2.41 (1.06) 2.71 (1.06) -0.3 
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Table 32. 
 
 Results of Log Transforamtion of Model of Shimmer in Percent by Task 

Task 
Group Mean 

Ratio 
SE df t-value p 

First Seated 0.96 1.09 71 -0.44 0.66 

First Stand 0.88 1.09 71 -1.58 0.12 

Second Seated 0.93 1.09 71  -0.79 0.43 

Second Stand 0.88 1.09 71 -1.44 0.15 

 

Amplitude Perturbation Quotient (APQ) 

Amplitude perturbation quotient (APQ) was greater for the pain group than the non-

pain group across all tasks (Table 33). The non-pain group APQ decreased across all time 

points. The difference between groups was not statistically significant at the first seated task 

[t-value(70) = -0.86, p = 039].  With first stand, APQ decreased in the non-pain group while 

APQ increased in the pain group [t- value(70) = -1.99,  p = 0.05). The pain group APQ 

decreased at the second seated task, while the non-pain group APQ did not change [t-value = 

-1.75, p =0.08]. The pain group APQ was higher than the non-pain group at the second stand. 

The groups were not different in APQ at second stand [t-value(70) = 1.56, p = 0.12]. Group 

mean difference in APQ at the first stand task was significant. 
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Table 33.  
 
Group Means and Difference in Model of Amplitude Perturbation Quotient by Task 

Task 

Non-Pain  

(N = 30) 

M (SE) 

Pain  

(N = 32) 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value 

 

p 

First Seated  1.97 (0.64) 2.14 (1.00) -0.18 (0.21) 70 -0.86 0.39 

First Stand 1.90 (0.61) 2.31(1.34) -0.41 (0.21) 70 -1.99 0.05 

Second Seated  1.90 (0.50) 2.26 (1.14) -0.36 (0.21) 70 -1.75 0.08 

Second Stand 1.86 (0.54) 2.18 (1.01) 0.32 (0.21) 70 -1.56 0.12 

 

Diagnostics were performed. In the original model, 6 subjects had Cook’s D greater 

than 0.2 and 7 subjects had COVRATIO less than 1.0. Cook’s D ranged from 0 to 0.8 with 6 

subjects identified with Cook’s D greater than 0.2(Appendix 23): 4 subjects from the pain 

group and 2 subjects from the non-pain group. COVRATIO ranged from 0.26 to 0.78 in this 

group of influential subjects indicating deletion could improve the model stability. Influential 

subjects’ APQ data ranged from 1.11 to 5.71 with all 6 subjects having one APQ greater than 

3.0.  

Some improvement in the plot of scaled residuals was observed with log 

transformation (Appendix 23). Diagnostics of the log transformation model were performed 

and indicated 5 subjects with Cook’s D greater than 0.2 and 7 subjects with COVRATIO less 

than 1.0. Cook’s D ranged from 0 to over 0.45with 5 subjects having Cook’s D greater than 

0.2: 2 subjects from the non-pain group and 3subjects from the pain group. Three subjects 

were identified in the original model diagnostics. COVRATIO ranged from 0.55 to 0.83 
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indicating that deletion could improve the model. Influential subjects’ APQ data ranged from 

1.11 to 5.71.  

The log transformation model was entered into PROC MIXED. The pain group had 

higher APQ across all tasks (Table 34). At first seated, the non-pain group APQ was the 

highest of the four tasks while the pain group APQ was at its lowest of the four tasks.  Group 

mean difference in APQ was not significant [t-value(77.3) = -0.67, p = 0.5]. At first stand the 

non-pain group decreased APQ and the pain group increased APQ increasing group mean 

difference [t-value(77.3) = -1.64, p = 0.10]. At second seated the non-pain group APQ 

increased and the pain group APQ remained similar to first stand resulting in a change in 

group mean difference [t-value(77.3) = -1.52, p = 0.13].At second stand both groups 

decreased APQ but the non-pain group decrease was larger than the pain group [t-value(77.3) 

= -1.57, p = 0.12]. Because the log transformation model (Table 35) did not identify 

significant difference at any of the tasks, the original model was judged unstable. 

Table 34.  
 
Group Means and Difference in Log Transformation of Model of Amplitude Perturbation 
Quotient by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

First Seated 1.88 (1.06) 1.98 (1.06) -0.1 

First Stand 1.81 (1.06) 2.06 (1.06) -0.25 

Second Seated 1.83 (1.06) 2.06 (1.06) -0.17 

Second Stand 1.78 (1.06) 2.01 (1.06) -0.23 
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Table 35.  
 
Results of Log Transformation of Model of Amplitude Perturbation by Task 

Task 
Group Mean 

Ratio 
SE df t-value p 

First Seated .95 1.08 77.3 -0.67 0.51 

First Stand .88 1.08 77.3 -1.64 0.10 

Second Seated .89 1.08 77.3 -1.52 0.13 

Second Stand .88 1.08 77.3 -1.57 0.12 

 

Formant Frequencies 

A stable waveform is necessary for accurate analysis of formant frequencies. Two 

seconds at the center of the four-second sustained vowel sample at each task were selected in 

order to remove perturbations that can occur at the beginning and end of an utterance. 

Formant analysis was performed to obtain frequencies for the first three formants. No 

significant differences were found with formant frequencies between the non-pain and pain 

groups with the first seated and stand tasks (Table 36) or with the second seated and stand 

tasks (Table 37). 

First Seated 

Mean formant frequencies for F1 at the first seated task were higher for the non-pain 

group than the pain group [t-value(196) = 0.31, p = 0.75]. Mean formant frequencies of F2 [t 

–value(149) = - 0.49,  p = 0.63] and at F3 [t –value(153)= - 0.43, p = 0.67] were higher for 

the pain group. No group differences in formant frequencies were statistically significant at 

the first seated task. 
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First Stand   

 At the first stand, the non-pain group had higher frequencies in three formants than 

the pain group. While the pain group had lower F1, F2, and F3 frequencies than the non-pain 

group, the pain group’s formant frequencies were higher than frequencies demonstrated at 

first seated.  Mean F1 frequencies were higher for both groups than at first seated [t-

value(196) = 1.23, p = 0.22]. F2 frequencies also were higher [t-value(149) = 0.49, p = 0.63]. 

F3 frequencies increased for the non-pain group, but F3 frequencies decreased for the pain 

group [t-value(153) = 0.46, p = 0.65].  No group differences in formant frequencies were 

statistically significant at first stand task. 

Second Seated 

At the second seated task, mean formant frequencies for all formants were higher for 

the non-pain group than the pain group. F1 frequencies of the two groups were not 

statistically different at second seated [t-value(196) = 1.29, p = 0.20]. The non-pain group 

increased frequencies at F2 while the non-pain group had lower F2 frequencies compared to 

first stand [t-value (149) = 1.15, p = 0.25]. F3 frequencies increased for both groups at second 

stand [t-value(153) = 0.91, p = 0.36). No group differences in formant frequencies were 

significant at the second seated task. 

Second Stand 

A different pattern in the formants developed at second stand (Table 40). The non-

pain group continued to have higher mean frequencies in F1 than the pain group, but group 

mean difference of F1 was not significant [t-value(196) = 1.40, p = 0.16]. F2 frequencies were 

higher for the non-pain group than the pain group at second stand [t-value(149) = 1.41, p = 

0.16] but the difference between groups was not significant. The pain group had higher 
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frequencies at F3 than the non-pain group for the first time since the first seated task 

increasing the group mean difference [t-value = -1.64, p = 0.10]. No group differences in 

formant frequencies were significant at the second stand task. 

Table 36.  
 
Group Means and Difference in Model of Formant Frequencies by First Seated and First 
Stand Tasks 

Task Formant 
Non-Pain 

M (SE) 

Pain 

M (SE) 

Group Mean 

Difference 

(SE) 

 

df 
t- 

value 

 

p 

First 

Seated 

1 758.58 (0.38) *742.52 (0.36) 16.07 (0.52) 196 0.31 0.76 

2 1598.61 (0.89) 1659.38 (0.87) -60.77 (1.25) 149 -0.49 0.63 

3 3137.69 (1.32) 3217.14 (1.28) -79.45 (1.83) 153 -0.43 0.67 

First 

Stand 

1 824.90 (0.38) 760.35 (0.36) 64.55 (0.52) 196 1.23 0.22 

2 1664.91 (0.89) 1604.28 (0.87) 60.64 (1.25) 149 0.49 0.63 

3 3215.18 (1.32) 3130.74 (1.28) 84.43 (1.83) 153 0.46 0.65 

*N = 31. Note. Means are in Hz. 
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Table 37. 
 
 Group Means and Difference in Model of Formant Frequencies by Second Seated and 
Second Stand Tasks 

Task Formant 
Non-Pain 

M (SE) 

Pain 

M (SE) 

Group Mean 

Difference 

(SE) 

 

df 
t- 

value 
p 

Second 

Seated 

1 826.25 (0.38) 758.68 (0.36) 67.56 (0.52) 196 1.29 0.20 

2 1731.94 (0.89) 1588.34 (0.87) 143.59(1.25) 149 1.15 0.25 

3 3326.60 (1.32) 3159.76 (1.28) 166.84(1.83) 153 0.91 0.36 

Second 

Stand 

1 816.42 (0.38) 742.84 (0.36) 73.58 (0.52) 196 1.40 0.16 

2 1730.49 (0.89) 1555.39 (0.87) 175.10 (1.25) 149 1.41 0.16 

3 3326.28 (1.32) 3025.22 (1.28) 301.06 (1.83) 153 1.64 0.10 

Note. Means are in Hz. 

 

Diagnostic techniques were applied to fixed effects models of acoustic parameters 

that had demonstrated significant differences with change of position. Log transformation 

was used to determine stability to perturbation and log transformation models were entered 

into PROC MIXED. Fixed effects models of range of F0 and jitter demonstrated stable 

significant differences between the pain and non-pain groups with stand tasks (Table 38). 

While significant group mean difference in jitter was demonstrated by the original sample at 

first stand task, significance was not demonstrated following log transformation indicating 

instability to perturbation of data input. Although shimmer and amplitude perturbation 

quotient demonstrated significant differences in the original models, significance was not 
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found in log transformation models indicating potential instability of the model in different 

samples or populations. 

Table 38.  
 
Significant Acoustic Parameter Differences between Non-Pain and Pain Group by Task 

Parameter Task 

Non-Pain 

M (SE) 

Pain  

 

M (SE) 

Group 

Mean 

Difference 

(SE) 

df t-value p 

Range of 

F0 

First Stand  19.46 

(3.02) 

31.33 

(2.92) 

-11.88 

(4.21) 

139 -2.82 0.006 

Second Stand  17.83 

(3.02) 

28.27 

(2.92) 

-10.44 

(4.21) 

139 -2.48 0.01 

Jitter Second Stand 0.78 

(0.50) 

1.11 

(0.63) 

-0.32 

(0.12) 

73.3 2.70 0.009 
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Research Question 3 

In order to determine if difference in acoustic parameters occurred with pain 

intensity, various acoustic parameters (i.e., mean fundamental frequency, range of 

fundamental frequency, lowest fundamental frequency, jitter, shimmer, amplitude 

perturbation quotient, and  three formant frequencies) extracted from sustained vowel 

utterances of women with chronic knee pain who differed in level of pain intensity were 

evaluated. The pain group was divided into two classes based on average VAS-PI ratings 

collected during the study: low intensity pain class (LIC) and moderate intensity pain class 

(MIC). Subjects with a mean VAS-PI of 0 to 14.99 comprised the LIC (N = 20) and subjects 

with a mean of 15 and or greater (N = 12) comprised the MIC. Because one subject who had 

the influential outlier score on Fhi at the first seated task was in the pain group and, 

specifically, in the LIC, her data was deleted in the first seated analyses. Univariate analysis 

of the mean VAS-PI scores indicated non-normality with Shapiro-Wilk statistic of 0.83 (p 

<.0001) and non-parametric analyses were conducted using Wilcoxon rank sum with 2-sided 

t- approximation and Fisher’s exact test.  As noted previously, Wilcoxon rank sum statistic is 

unable to address time-varying data and Wilcoxon rank sum statistics were performed for 

each task and for each formant.  

Mean Fundamental Frequency (MF0) 

The LIC (N = 20) demonstrated higher mean score across all tasks than the MIC (N = 

12) (Table 37). At first seated, the LIC (N = 19) mean score was higher than the MIC mean 

score (Z = -0.34, t-approx.  = 0.73, Fisher’s exact test = 0.73). The LIC MF0 increased at first 
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stand as the MIC MF0 decreased (Z = -1.03, t-approx. = 0.31, Fisher’s exact test = 0.31). At 

the second seated task, the LIC MF0 score increased but the MIC MF0 continued to decrease 

(Z = -1.07, t-approx. =0.29, Fisher’s exact test = 0.29). At second stand, the LIC MF0 

decreased and the MIC MF0 increased (Z = -0.45, t-approx. = 0.66, Fisher’s exact test = 

0.66); both had higher mean scores at second stand than at first seated. No significant 

differences in MF0 related to pain intensity class were observed at any of the tasks (Table 

39). 

Table 39. Low and Moderate Intensity Pain Class Difference in Mean Fundamental 
Frequency 

Task 

Low Intensity 

Class  

(N = 20) 

M score 

Moderate 

Intensity Class 

(N = 12) 

M score 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First Seated *16.47 15.25 -0.34 0.73 0.73 

First Stand 17.85 14.25 -1.03 0.31 0.31 

Second Seated 17.90 14.17 -1.07 0.29 0.29 

Second Stand 17.10 15.50 -0.45 0.66 0.66 

*N = 19. 
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Lowest Fundamental Frequency (Flo) 

Flo frequencies were higher in the LIC across all tasks (Table 40). Both classes’ Flo 

frequencies increased at stand tasks. The LIC demonstrated lowest Flo at first seated while 

the MIC Flo at first seated demonstrated its second highest Flo (Z = -0.83, t-approx. = 0.41, 

Fisher’s exact test = 0.41). Both the LI and MI classes increased Flo at first stand (Z = -0.95, 

t-approx. = 0.35, Fisher’s exact test = 0.35). At second seated, the LIC increased Flo while 

the MIC had decreased Flo leading to the largest difference in Flo (Z = -1.5, t-approx. = 0.14, 

Fisher’s exact test = 0.14). Flo decreased in the LIC at second stand but Flo increased in the 

MIC at second stand (Z = -1.11, t-approx. = 0.28, Fisher’s exact test = 0.28). No significant 

differences in Flo related to pain intensity class were observed at any of the tasks. 

Table 40.  
 
Low and Moderate Intensity Pain Class Difference in Lowest Fundamental Frequency by 
Task 

Task 

Low Intensity 

Class  

M score 

Moderate 

Intensity Class  

M score 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First Seated 17.11 14.25 -0.83 0.41 0.41 

First Stand 17.75 14.42 -0.95 0.35 0.35 

Second Seated 18.45 13.25 -1.5 0.14 0.14 

Second Stand 17.95 14.08 -1.11 0.28 0.28 
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Highest Fundamental Frequency (Fhi)  

The LIC Fhi demonstrated lower frequencies than the MIC at first seated (Z = 0.26, t-

approx. = 0.79, Fisher’s exact test = 0.8) (Table 41). The LIC demonstrated increased Fhi at 

first stand while the MIC decreased Fhi at first stand (Z = -0.49, t-approx. = 0.63, Fisher’s 

exact test = 0.63). At second seated, the LIC increase resulted in higher Fhi than the MIC and 

the largest difference in Fhi between the classes occurred (Z = -0.88, t-approx. = 0.38, exact 

test = 0.39).  The LIC decreased Fhi at second stand while the MIC demonstrated increased 

Fhi (Z = -0.02, Fisher’s exact test = 0.98) making Fhi of both classes similar at second stand 

(Table 41). No significant differences in Fhi related to pain intensity class were observed at 

any of the tasks. 

Table 41.  
 
Low and Moderate Intensity Pain Class Difference in Highest Fundamental Frequency by 
Task 

Task 

Low Intensity 

Class  

M score 

Moderate 

Intensity Class 

M score 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First Seated 15.63 16.58 0.26 0.79 0.8 

First Stand 17.15 15.42 -0.49 0.63 0.63 

Second Seated 17.65 14.58 -0.88 0.38 0.39 

Second Stand 16.55 16.41 -0.02 0.98 0.98 
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Range of Fundamental Frequency 

The LIC range of F0 was narrower than the MIC across all tasks (Table 42). The LIC 

range of F0 was most narrow at first seated while the MIC range was widest at first seated (Z 

= 1.85, t-approx. = 0.07, Fisher’s exact test = 0.06). The LIC’s range of F0 increased at first 

stand while the MIC decreased range of F0 at first stand (Z = 0.6, t-approx. = 0.55, Fisher’s 

exact test = 0.55). The LIC had reduced range of F0 at second seated while the MIC’s range 

of F0 demonstrated increase at second seated (Z = 1.46, t-approx. = 0.15, Fisher’s exact test = 

0.15). The LIC had increased range of F0 at second stand while the MIC’s range of F0 

decreased (Z = 1.23, t-approx. = 0.23, Fisher’s exact test = 0.22). No significant differences 

in range of F0 related to pain intensity class were observed at any of the tasks. 

Table 42. 
 
 Low and Moderate Intensity Pain Class Difference in Range of Fundamental Frequency by 
Task 

Task 

Low Intensity 

Class  

M score 

Moderate 

Intensity Class 

M score 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First Seated 13.58 19.83 1.85 0.07 0.06 

First Stand 15.7 17.8 0.6 0.55 0.55 

Second Seated 14.60 19.67 1.46 0.15 0.15 

Second Stand 14.9 19.17 1.23 0.23 0.22 
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Jitter 

 The MIC had higher levels of jitter than the LIC across all tasks and the MIC level of 

jitter increased with each task (Table 43). At first seated, the MIC had an increased level of 

jitter compared to the LIC, (Z = 1.2, t-approx. = 0.24, Fisher’s exact test = 0.24). The LIC 

and MIC levels of jitter both increased at the first stand (Z = 1.07, t-approx = 0.29, Fisher’s 

exact test = 0.29).  While the LIC demonstrated decreased jitter at second seated, the MIC 

continued to increase level of jitter (Z = 1.54, t-approx. = 0.13, Fisher’s exact test = 0.13). 

The LIC and MIC both demonstrated small levels of change in jitter at second stand (Z = 

1.56, t-approx. = 0.13, Fisher’s exact test = 0.12). No significant differences in jitter related 

to pain intensity class was observed at any of the tasks. 

Table 43.  
 
Low and Moderate Intensity Pain Class Difference in Jitter in Percent by Task 

Task 

Low 

Intensity 

Class 

M score 

Moderate 

Intensity  

Class 

M score 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First Seated 14.42 18.50 1.2 0.24 0.24 

First Stand 15.10 18.83 1.07 0.29 0.29 

Second Seated 14.5 19.83 1.54 0.13 0.13 

Second Stand 14.48 19.88 1.56 0.13 0.12 
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Shimmer  

The MIC had higher levels of shimmer than the LIC across all tasks (Table 44). At 

first seated, the MIC had a significantly greater level of shimmer than the LIC (Z = 2.53, t-

approx. = 0.02, Fisher’s exact test = 0.01). At first stand, the LIC’s level of shimmer 

demonstrated an increase to its highest level while the MIC’s level of shimmer decreased to 

its lowest level of shimmer (Z = 1.46, t-approx. = 0.15, Fisher’s exact test = 0.15).  The LIC 

level of shimmer decreased at second seated as the MIC level of shimmer increased resulting 

in significant difference (Z = 2.39, t-approx. = 0.02, Fisher’s exact test = 0.02). At second 

stand, the LIC had decreased shimmer level while the MIC shimmer level increased to its 

highest level (Z = 2.49, t-approx. = 0.02, Fisher’s exact test = 0.01). Significant differences 

in level of shimmer related to pain intensity class were observed at first seated, second 

seated, and second stand tasks. 

Table 44.  
 
Low and Moderate Intensity Pain Class Difference in Shimmer in Percent by Task 

Task 

Low 

Intensity 

Class 

M score 

Moderate 

Intensity 

Class 

M score 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First Seated 12.68 21.25 2.53 0.02 0.01 

First Stand 14.6 19.67 1.46 0.15 0.15 

Second Seated 13.4 21.67 2.39 0.02 0.02 

Second Stand 13.28 21.88 2.49 0.02 0.01 
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Amplitude Perturbation Quotient (APQ) 

The LIC’s level of APQ was less than the MIC’s APQ in all tasks (Table 45). The 

MIC level of APQ was greater than the LIC at the first seated task when the LIC 

demonstrated its lowest APQ (Z = 1.93, t-approx. = 0.06, Fisher’s exact test = 0.05). The LIC 

demonstrated an increase in APQ at first stand while the MIC APQ decreased at first stand (Z 

= 0.45, t-approx. = 0 .45, Fisher’s exact test = 0.66). At second seated, the LIC’s APQ 

decreased while the MIC’s APQ increased to the level of APQ demonstrated at first seated (Z 

= 1.62, t-approx. = 0.12, Fisher’s exact test = 0.11). The LIC’s level of APQ continued to 

decrease at second stand while the MIC level of APQ increased to its highest level (Z = 2.00, 

t-approx. = 0.05, Fisher’s exact test = 0.04). Significant differences in amplitude perturbation 

quotient related to pain intensity class were observed at first seated and second stand tasks. 

Table 45.  
 
Low and Moderate Intensity Pain Class Difference in Amplitude Perturbation Quotient by 
Task 

Task 

Low  

Intensity 

Class 

M score 

Moderate 

Intensity  

Class 

M score 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First Seated 13.47 20.0 1.93 0.06 0.05 

First Stand 15.9 17.5 0.45 0.66 0.66 

Second Seated 14.4 20.0 1.62 0.12 0.11 

Second Stand 13.9 20.83 2.00 0.05 0.04 
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Formant Frequencies 

First Seated 

 At the first seated task, F1 frequencies were higher for the LIC than the MIC (Z = -

0.29, t-approx. = 0.77, Fisher’s exact test = 0.77). In contrast, F2 frequencies (Z = 1.19, t-

approx. = 0.24, Fisher’s exact test = 0.24) and F3 frequencies were higher for the MIC than 

the LIC (Z = 0.84, t-approx. = 0.41, Fisher’s exact test = 0.41). No significant differences in 

formant frequencies between pain intensity classes at the first seated task were observed 

(Table 46). 

 First Stand 

 At the first stand task, F1 frequencies were higher for the LIC than the MIC (Z 

= -0.68, t-approx. = 0.50, Fisher’s exact test = 0.50). However, F2 frequencies (Z = 0.60, t-

approx. = 0.55, Fisher’s exact test = 0.55) and F3 frequencies were higher for the MIC (Z = 

0.25, t-approx. = 0.80, Fisher’s exact test = 0.80). No significant differences in formant 

frequencies between pain intensity classes at the first stand task were observed. 

Second Seated 

 At the second seated task, F1 frequencies were higher for the MIC than the LIC (Z = 

0.18, t-approx. = 0.86, Fisher’s exact test = 0.86). F2 frequencies increased for the MIC as F2 

decreased in the LIC resulting in a significant difference (Z = 2.28, t-approx. = 0.03, Fisher’s 

exact test = 0.02).  F3 frequencies continued to be higher for the MI group than the LIC at 

second seated (Z = 1.03, t-approx. = 0.31, Fisher’s exact test = 0.31). Significant group mean 

difference in F2 between pain intensity classes at the second seated task was observed. 
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Second Stand 

At second stand, F1 frequencies were higher for the LIC (Z = -0.21, t-approx. = 0.83, 

Fisher’s exact test = 0.83). F2 frequencies were similar for LIC and MIC (Z = 0.0, t-approx. = 

1.0, Fisher’s exact test = 1.0). MIC F3 frequencies were higher than the LIC F3 frequencies at 

second stand (Z = 0.06, t-approx. = 0.95, Fisher’s exact test = 0.95). No significant 

difference in formant frequencies between pain intensity classes at second stand was 

observed (Table 46). 

Table 46.  
 
Low and Moderate Intensity Pain Class Difference in Formant Frequencies by Task 

Task Formant 

Low 

Intensity 

Class 

(N =20) 

M Score 

Moderate 

Intensity 

Class 

(N = 12) 

M Score 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First Seated  F1 16.9 15.8 -0.29 0.77 0.77 

F2 14.95 19.08 1.19 0.24 0.24 

F3 15.40 18.33 0.84 0.41 0.41 

First Stand F1 17.4 15.0 -0.68 0.50 0.50 

F2 15.70 17.83 0.60 0.55 0.55 

F3 16.15 17.08 0.25 0.80 0.80 

Second Seated F1 16.25 16.92 0.18 0.86 0.86 

F2 13.55 21.42 2.28 0.03 0.02 

F3 15.15 18.75 1.03 0.31 0.31 

Second Stand F1 16.8 16.0 -0.21 0.83 0.83 

F2 16.5 16.5 0.0 1.0 1.0 

F3 16.4 16.67 0.06 0.95 0.95 

 

When the influence of pain intensity on acoustic parameters with movement tasks 

was investigated, significant difference was observed with shimmer at first seated, second 
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seated and second stand tasks; with amplitude perturbation quotient at first seated and second 

stand; and with the second formant of the second seated task (Table 47).  

Table 47.  
 
Significant Acoustic Parameter Differences between Pain Intensity Classes by Task 

Parameter Task 

Low 

Intensity 

Class 

M score 

Moderate 

Intensity 

Class 

M score 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

Shimmer First Seated 12.68 21.25 2.53 0.02 0.01 

Second Seated 13.4 21.67 2.39 0.02 0.02 

Second Stand  13.28 21.88 2.49 0.02 0.01 

APQ First Seated 13.47 20.0 1.93 0.06 0.05 

 Second Stand 13.9 20.83 2.00 0.05 0.04 

F2 Second Seated 13.55 21.42 2.28 0.03 0.02 
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Research Question 4 

Various acoustic parameters (i.e., mean fundamental frequency, lowest fundamental 

frequency, highest fundamental frequency, range of fundamental frequency, jitter, shimmer, 

amplitude perturbation quotient, and three formant frequencies) were extracted from 

sustained vowel utterances of women with and without chronic knee pain to determine if 

difference occurred in relation to psychological variables (i.e., depression, anxiety, and 

anger) reported by women with and without chronic knee pain with change of position. 

Because emotion expression related to pain is presumed to be related to mood, mood states 

were evaluated using established, validated instruments for depression, anxiety, and anger 

(Table 48). State and trait measures of anxiety and anger were both evaluated to determine 

reaction to the study session. 

 Internal consistency of the inventories was assessed using Cronbach’s alpha for the 

instruments’ subscales. Because none of the subjects reported state anger, variance was not 

available to calculate Cronbach’s alpha. Some missing data occurred with inventories and 

SAS deleted those subjects from the Cronbach’s alpha analysis. Subject data was used in 

subsequent study analyses. Although lower than the norms, internal consistency was judged 

adequate for all the inventories.  
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Table 48.  
 
Cronbach's Alpha for Mood-Related Inventories 

Inventory/Scale Norm N Raw Alpha 
Standardized 

Alpha 

BDI-2 0.93 61 0.895 0.899 

STAI 

       State Anxiety 

       Trait Anxiety 

 

0.93 

0.91 

 

54 

60 

 

0.76 

0.90 

 

0.77 

0.91 

STAXI-2 

       State Anger 

       Trait Anger          

 

0.92 

0.84 

 

60 

62 

 

0.88 

0.74 

 

. 

0.76 

 

Sample means on the inventories were used to determine the influence of existing 

moods on the acoustic parameters (Table 49). Group and individual difference in a particular 

mood-related variable was adjusted by introducing the sample mean. If group mean 

difference increased and significant difference was demonstrated, support was provided for 

inferring that a particular variable exerted influence on a specific acoustic parameter.  

In order to determine group mean differences on inventories, equality of variance was 

evaluated using F1. Unequal variance between groups was demonstrated on all but one of the 

inventory scales and Satterthwaite t-test results were reported for those scales: depression, 

state anger, state anxiety, and trait anxiety (Table 49). Trait anger scores demonstrated equal 

variance and pooled t-test was reported.  
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Table 49.  
 
Sample and Group Means and Difference in Mood-Related Inventory Scores 

Inventory 
Sample Non-Pain  Pain  

df t-test p 
M (SD) M (SD) Range M (SD) Range 

BDI-II 5.25 

(6.28) 

2.77 

(3.19) 

0 – 10 7.58 

(7.6) 
0 - 36 

42.2 3.29  0.002 

State 

Anxiety 

25.31 

(5.17) 

24.77 

(4.1) 

20 - 37 25.8 

(6.09) 

20 - 43 54.6 -0.80 0.43 

Trait 

Anxiety 

33.00 

(6.97) 

31.37 

(5.48) 

23 - 47 34.53 

(8.01) 

23 - 52 55 -1.83 0.07 

State 

Anger 

15.5 

(2.06) 

15.2 

(0.76) 

14 - 18 15.78 

(2.79) 

14 - 30 35.9 -1.13 0.26 

Trait 

Anger 

15.2 

(3.23) 

15.17 

(3.46) 

10 - 22 15.28 

(3.11) 

10 - 24 60 -0.14† 0.89 

†Pooled t-test. 
 

Among all the validated mood-related inventories administered, only depression 

scores demonstrated significant difference between the two groups (t = -3.29, p = 0.002). The 

non-pain group mean score on the BDI-II was 2.77 (SD = 3.19) while the pain group mean 

score was 7.58 (SD = 7.6). Neither group mean score was in the moderately depressed range 

established by Beck et al. (1996). No subjects in the non-pain group had scores above the 

cut-point score of 13 for mild depression. Four subjects in the pain group had BDI-II scores 

indicative of mild depression and one subject had a score indicative of severe depression.  All 

subjects with scores above the minimal cut point (0-13) (Beck et al., 1996) were made aware 

of their score and provided a letter to inform their physicians (Appendix 17 ) about the results 

if the subjects desired.  
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The non-pain and pain groups reported similar low levels of trait anger [t(60) = 0.14, 

p = 0.89).  Trait anxiety was higher in the pain group but were not statistically significant 

[t(55) = -1.83, p = 0.07].  

When mean scores on depression, state anxiety, trait anxiety, state anger, and trait 

anger were included as interactions in mixed models, significant group mean differences in 

acoustic parameters occurred.  

Effect of Depression 

The BDI-II sample mean of 5.25 (SD = 6.28) was lower than the mean reported for 

the non-depressed normative group (M = 7.65, SD = 5.9) and lower than the cut point of 13 

used as an indicator of mild depressive symptoms established by the instrument’s developers. 

Significant group mean differences related to depression were observed with the following 

acoustic parameters: (1) lowest fundamental frequency (Flo) at first and second stand;  (2 ) 

range of fundamental frequency (range of F0) at first and second stand;  (3) level of jitter at 

second stand; and (4) formant frequencies in the second seated and second stand tasks.  

Depression and Lowest Fundamental Frequency (Flo) 

When depression was added as an interaction term to the original model, lowest 

fundamental frequencies were higher for the non-pain group than the pain group and 

increased across the four tasks (Table 50). Flo for the pain group (est. M = 167.48) was lower 

than the non-pain group (est. M = 173.86) at first seated; the difference was not significant [t-

value(68.7) = 0.89, p = 0.38]. Flo in the pain group decreased at the first stand but increased 

for the non-pain group [t-value(68.7) = 1.98, p = 0.05]. Flo increased for both groups at the 

second seated task, but group mean difference was not significant [t-value (68.7) = 1.64, p = 

0.11].  Flo decreased in the pain group at the second stand and significant difference between 
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the non-pain and pain groups was observed [t-value(68.7) = 2.20, p = 0.03]. Significant 

difference in Flo between pain and non-pain groups occurred at the two stand tasks. 

Table 50. 
 
 Group Means and Difference in Lowest Fundamental Frequency Related to Depression by 
Task 

Task 

Non-Pain  

(N=30) 

M (SE)  

Pain  

(N=32) 

M (SE)  

Group Mean 

Difference  

(SE) 

df t-value p 

First Seated 173.86 (5.64) 167.48 (4.49) 6.39 (7.21) 68.7 0.89 0.38 

First Stand 174.37 (5.64) 160.11 (4.49) 14.25 (7.21) 68.7 1.98 0.05 

Second Seated 175.18 (5.64) 163.38 (4.49) 11.80 (7.21) 68.7 1.64 0.11 

Second Stand 176.61 (5.64) 160.76 (4.49) 15.85 (7.21) 68.7 2.20 0.03 

Note. Means are in Hz. 

Diagnostics performed on the model indicated 3 subjects with Cook’s D greater than 

0.2 and 9 subjects with COVRATIO less than 1.0. In the 5 influential subjects identified, 

COVRATIO ranged from 0.27 to 14.4 (Appendix 23): 1 from the non-pain group and 4 from 

the pain group.  The subject with the highest COVRATIO also had the highest BDI-II score 

of 38. Flo ranged from 89.65 to 312.57.  

The log transformation model did not improve the residuals plot. Five subjects had 

Cook’s D greater than 0.2 and 9 subjects had COVRATIO greater than 1.0. Of the 5 

influential subjects, COVRATIO ranged from 0.269 to 14.42. BDI-II scores ranged from 1 to 

36 for these 5 subjects.  

A subject’s data identified with high Cook’s D and COVRATIO in both models was 

examined. This subject’s BDI-II score was 36 and the next highest BDI-II score in this 

sample was 22. Diagnostics techniques identified this subject as an outlier influencing the 
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outcome. Her data was deleted from the depression analyses, but in this exploratory study, 

her data was retained for other analyses.  

Another subject’s data was identified as influential deleted in previous analyses of 

Flo, Fhi, and range of F0 due the effect of singing the vowel at the first seated task. Because 

of outlier status, this subject’s first seated acoustic data were also deleted from depression 

and other mood-related analyses.  

With these deletions, 30 subjects in the pain group were included in the first seated 

analyses and 31 subjects in the first stand, second seated, and second stand analyses of lowest 

fundamental frequency related to depression. The sample mean BDI-II score changed in 

response to these deletions (M = 4.75, SD = 4.93) as did the pain group BDI-II score 

distribution (M = 6.66, SD = 5.56, range = 0 – 22). The revised sample mean for depression 

was entered as an interaction term in the reduced model and in the diagnostics. 

The non-pain group had higher Flo across all tasks (Table 51). At first seated, the 

pain group Flo was the lowest of the four tasks.  Group mean difference between the non-

pain and pain groups in Flo related to depression was significant at first seated [t-value(69.7) 

= 2.30, p = 0.02]. At first stand, the pain group’s Flo decreased and difference increased and 

group mean difference in Flo related to depression was significant [t-value(69.7) = 1.99, p = 

0.05]. Flo increased for both groups at second seated and difference decreased [t-value(69.7) 

= 1.72,  p = 0.09]. The pain group decreased in Flo at second stand while the non-pain group 

demonstrated higher Flo and significant group mean difference in Flo related to depression 

was observed  at second stand [t-value(69.7) = 2.22, p = 0.03]. Group mean differences 

between non-pain and pain groups in Flo related to depression at first seated, first stand and 

second stand were significant. 
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Table 51.  
 
Group Means and Difference in Reduced Model of Lowest Fundamental Frequency Related 
to Depression by Task 

Task 

Non-Pain  

(N=30) 

M (SE)  

Pain  

(N=31) 

M (SE)  

Group Mean 

Difference  

(SE) 

df t-value p 

First Seated 172.94 6(5.0) *156.90(4.45) 16.03 (6.74) 69.7 2.30 0.02 

First Stand 173.35 (4.99) 159.84 (4.45) 13.41 (6.74) 69.7 1.99 0.05 

Second Seated 174.44 (4.99) 162.82 (4.45) 11.62 (6.74) 69.7 1.72 0.09 

Second Stand 175.56 (4.99) 160.64 (4.45) 14.93 (6.74) 69.7 2.22 0.03 

*N = 30. Note. Means are in Hz. 

Diagnostics performed on the reduced model with the new sample mean identified 6 

influential subjects; 1 subject was from  the non-pain group and 5 subjects were from the 

pain group with Cook’s D greater than 0.2. COVRATIO ranged from 0.38 to 1.26 with these 

6 subjects (Appendix 23) and BDI-II scores ranged from 0 to 22 with the highest score 

associated with the highest COVRATIO. Flo ranged from 111.26 to 219.66 Hz.  

Log transformation of the sample was performed. Diagnostics of the log 

transformation of the reduced model identified 6 influential subjects with Cook’s D greater 

than 0.2 and 8 subjects with COVRATIO less than 1.0.  COVRATIO ranged from 0.18 to 

3.12. The non-pain group had the highest Flo at all tasks (Table 51). Influential subjects 

included 5 subjects identified in the reduced model. In addition to 5 pain group members 

with high Flo, one non-pain group subject not identified in the reduced model was identified 

as influential in the log transformation model. BDI-II scores of identified subjects ranged 

from 0 to 22. When the log transformation model was entered into PROC MIXED, group 
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mean differences were greater at second stand, first stand, and second seated respectively 

(Table 52).  

Table 52.  
 
Group Means and Difference in Log Transformation of Reduced Model of Lowest 
Fundamental Frequency by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain 

(N=31) 

M (SE) 

Group Mean 

Difference 

 First Seated 170.32 (1.03) *161.69 (1.03) 4.61 

First Stand 171.52 (1.03) 158.90 (1.03) 12.62 

Second Seated 172.41 (103) 161.74 (1.03) 10.67 

Second Stand 173.43 (1.03) 159.25 (1.03) 14.18 

*N=30. Note. Means are in Hz. 

Group mean difference in Flo at second stand remained significant [t-value(64.6) = 2.15,  p = 

0.04] as it was in the reduced model (Table 53). Because significant difference in Flo related 

to depression between the non-pain and pain group was observed only at second stand with 

the log transformation model (Table 53), and the reduced model identified significant 

difference at three tasks, the original model was judged unstable.
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Table 53.  
 
Results of Log Transformation of Reduced Model of Lowest Fundamental Frequency Related 
to Task 

Task 
Group 

Mean Ratio 
SE df t-value p 

First Seated 1.05 1.04 64.7 1.31 0.20 

First Stand 1.08 1.04 64.6 1.92 0.06 

Second Seated 1.07 1.04 64.6 1.61 0.11 

Second Stand 1.09 1.04 64.6 2.15 0.04 

 

Depression and Range of Fundamental Frequency 

When the revised sample mean for depression scores was added as an interaction 

term to the deletion model, range of F0 was wider for the pain group than the non-pain group 

in all tasks (Table 54). While the non-pain group range of F0 became narrower across the 

four tasks, the pain group range of F0 became wider at first stand [t-value(77.0) = -2.21, p = 

0.03] and second stand [t –value(77.0) = -2.07, p = 0.04). Group mean differences in range of 

F0 related to depression at first seated [t-value(77.3) = -0.80, p = 0.43] and second seated [t-

value(77.0) = -0.85, p = 0.40] were not significant. Group mean difference between the non-

pain and pain groups in range of F0 related to depression was significant at the first and 

second stand tasks. 
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Table 54.  
 
Group Means and Difference in Reduced Model of Range of Fundamental Frequency 
Related to Depression by Task 

Task 

Non-Pain  

(N=30) 

M (SE)  

Pain  

(N=31) 

M (SE)  

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated 22.47 (2.88) *25.56 (2.54) -3.08 (3.84) 77.3 -0.80 0.43 

First Stand 20.31 (2.88) 28.80 (2.54) -8.49 (3.83) 77.0 -2.17 0.03 

Second Seated 19.06 (2.88) 22.33 (2.54) -3.27 (3.83) 77.0 -0.85 0.40 

Second Stand 18.30 (2.88) 26.23 (2.54) -7.94 (3.83) 77.0 -2.07 0.04 

*N = 30. Note. Means are in Hz. 

Diagnostics were performed using the reduced model previously described. Six 

subjects had Cook’s D greater than 0.2 and 7 subjects had COVRATIO less than 1.0. Four 

subjects had COVRATIO greater than 2.0.  Six influential subjects from the pain group were 

identified with Cook’s D greater than 0.2 and COVRATIO ranging from 0.1068 to 3.06. All 

subjects had one range of F0 over 30 Hz; 4 subjects had one range of F0 greater than 60 Hz. 

BDI-II scores of the 5 subjects ranged from 1 to 22. The subject with the highest 

COVRATIO had the smallest ranges of F0 of the 6 subjects and the highest BDI score.  

 Diagnostics of log transformation of the reduced model identified 6 influential 

subjects as having Cook’s D greater than 0.2 and 10 subjects with COVRATIO less than 1.0. 

Two subjects had COVRATIO greater than 2.0. Subjects with Cook’s D greater than 0.2 also 

had COVRATIO ranging from 0.40 to 3.19: 5 subjects from the pain group and 1 subject 

from the non-pain group. Three of the pain group subjects were identified in the reduced 

model diagnostics. The non-pain subject had one range of F0 measurement over 70 Hz and 
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BDI score was 10. The largest group mean differences were at the stand tasks (Table 55). 

The log transformation of the deleted model showed improved residual plots (Appendix 23). 

The log transformation model did not demonstrate significant difference in range of 

fundamental frequency between groups at any task (Table 56). The reduced model was 

judged unstable.  

Table 55.  
 
Group Means and Difference in Log Transformation of Reduced Model of Range of 
Fundamental Frequency Related to Depression by Task 

Task 

Non-Pain 

(N=30) 

M (SE) 

Pain 

(N=31) 

M (SE) 

Group Mean 

Difference 

First Seated 20.42 (1.10) *19.96 (1.09) 0.46 

First Stand 19.17 (1.10) 22.63 (1.09) -3.46 

Second Seated 17.67 (1.10) 18.65 (1.09) -0.98 

Second Stand 16.82 (1.10) 20.66 (1.09) -3.84 

*N=30. Note. Means are in Hz. 

Table 56.  
 
Results of Log Transforamtion of Reduced Model of Range of Fundamental Frequency 
Related to Depression by Task 

Task 
Group Mean 

Ratio 
SE df t-value p 

First Seated 1.02 1.14 71.5 0.17 0.86 

First Stand 0.85 1.14 71.2 -1.26 0.21 

Second Seated 0.95 1.14 71.2 -0.41 0.68 

Second Stand 0.81 1.14 71.2 -1.55 0.13 
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Depression and Jitter 

When the revised sample mean of depression scores was added as an interaction term 

to the original model, level of jitter was greater for the pain group than the non-pain group 

across all tasks (Table 57). Group mean difference in jitter at the first seated task was not 

significant [t-value(72.9) = -0.53, p = 0.82]. Both group’s level of jitter decreased at the first 

stand [t-value(72.9) = -1.28, p = 0.20]. At second seated, both groups’ levels of jitter was 

similar to first stand [t-value(72.9) = -1.22, p = 0.23]. At second stand, the pain group’s jitter 

increased to a level greater than it’s  first seated level while the non-pain group’s jitter was 

the lowest of all tasks [t-value(72.9) = -1.95, p = 0.06]. No significant group mean difference 

of the non-pain and pain group in jitter related to depression was observed.  

Table 57.  
 
Group Means and Difference in Reduced Model of Jitter in Percent Related to Depression by 
Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=31) 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated 0.95 (0.10) 1.00 (0.09) -0.06 (0.13) 72.9 -0.53 0.82 

First Stand 0.81 (0.10) 0.98 (0.09) -0.17 (0.13) 72.9 -1.28 0.20 

Second Seated 0.82 (0.10)  0.98 (0.09) -0.16 (0.13) 72.9 -1.22 0.23 

Second Stand 0.76 (0.10) 1.02 (0.09) -0.25 72.9 -1.95 0.06 

*N = 30. Note. Means are in Hz. 
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Depression and Formant Frequencies 

When the revised sample mean of depression scores was added as an interaction term 

to the model, formant frequencies were higher for the non-pain group with the exception of 

F2 and F3 at first seated (Table 58).  

First Seated. 

At first seated, the formants did not differ between groups at F1 [t-value(213)  = 0.62, 

p = 0.53],  F2 [ t-value(174) = -0.13, p = 0.89] of F3 [t-value(176) = -0.01, p = 0.99].  

First Stand. 

At first stand, the non-pain group increased frequencies in all formants while the non-

pain group increased in F1 and F3, but not in F2. The formants at first stand did not differ 

between groups at F1 [t-value(213) = 0.89, p = 0.38], F2 [t-value(174) = 0.18, p = 0.86], and 

F3 [t-value(176) = 0.26, p = 0.80].  

Second Seated. 

However, at the second seated task, the non-pain group demonstrated a marked 

increase in F1 and F2 while the pain group had decreases in F1 and F2 and significant mean 

difference between groups at F1 [t-value(213) = 2.03, p = .04] and F2 [t-value(174) = 2.18, p 

= 0.03] was observed. While the non-pain group had a marked increase in F3, significant 

group difference in F3 at the second seated task [t-value(176) = 1.77, p = 0.08] did not occur.  

Second Stand. 

At second stand, both group decreased frequencies in F1, F2, and F3. F1 differences 

between the two groups were not significant [t-value(213) = 1.91, p = 0.06]. However, 

decreases in F2 [t-value(174) = 1.97 , p = .05] and decreases in F3 [t-value(176) = 2.20, p = 

0.03] by both groups at second stand influenced group mean differences. Significant group 
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mean differences in F1 and F2 at second seated and in F2 and F3 at second stand occurred with 

the interaction of depression.  

Diagnostics performed on the reduced model identified 1 subject with Cook’s D 

greater than 0.2 and 7 subjects with COVRATIO less than 1.0. The 1 influential non-pain 

group subject with Cook’s D greater than 0.2 had COVRATIO of 0.00. Examination of this  

subject’s mean formant data found marked increases in F2 and F3 at the second seated and 

second stand tasks. Five subjects had COVRATIO greater than 10.0 and ranging from 14.07 

to 296.90: 2 subjects from the pain group and 4 from the non-pain group with the large 

COVRATIO indicating the need to consider this subject’s data more carefully. 

Diagnostics of the log transformation of the reduced model identified no subjects with 

Cook’s D greater than 0.2, but 1 subject with Cook’s D greater than 0.1: the same subject 

identified in the reduced model. Eleven subjects had COVRATIO less than 1.0. Six subjects 

had COVRATIO greater than 1.0: 3 from the non-pain group and 3 from the pain group. Five 

subjects were identified in reduced model diagnostics and 1 pain subject not previously 

identified became influential with log transformation. BDI-II scores ranged from 9-22 with 

these 6 subjects. Range of BDI-II scores for the non-pain group was 8 to 10 while range of 

BDI-II scores for the pain group was17 to 22. 
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Table 58. 
 
 Group Means and Difference in Reduced Model of Formant Frequencies Related to 
Depression by Task 

Task Formant 

Non-Pain  

(N =30) 

M (SE) 

Pain  

 (N = 31) 

M (SE) 

Group 

Mean 

Difference 

(SE) 

df t-value p 

First Seated  F1 772.47 

(0.44) 

*735.67 

(0.39) 

36.80 

(0.59) 

213 0.62 0.53 

F2 1609.51 

(1.02) 

*1627.70 

(0.90) 

-18.19 

(1.36) 

174 -0.13 0.89 

F3 3120.94 

(1.56) 

*3123.40 

(1.37) 

-2.46 

(2.08) 

176 -0.01 0.99 

First Stand F1 832.97 

(0.44) 

780.35 

(0.39) 

52.61 

(0.59) 

213 0.89 0.38 

F2 1634.00 

(1.03) 

1609.99 

(0.90) 

24.01 

(1.36) 

174 0.18 0.86 

F3 3193.65 

(1.56) 

3139.75 

(1.37) 

53.90 

(2.08) 

176 0.26 0.80 

Second Seated F1 885.17 

(0.45) 

764.91 

(0.39) 

120.26 

(0.59) 

213 2.03 0.04 

F2 1861.27 

(1.02) 

1563.10 

(0.90) 

298.17 

(1.36) 

174 2.18 0.03 

F3 3489.82 

(1.56) 

3121.95 

(1.37) 

367.86 

(2.08) 

176 1.77 0.08 

Second Stand F1 864.60 

(0.44) 

751.26 

(0.39) 

113.34 

(0.59) 

213 1.91 0.06 

F2 1824.42 

(1.02) 

1555.30 

(0.90) 

269.12 

(1.36) 

174 1.97 0.05 

F3 3420.28 

(1.94) 

3009.48 

(1.37) 

457.51 

(2.08) 

176 220 0.03 

*N = 30. Note. Means are in Hz. 
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Some improvement in plot of residuals was observed with the log transformation 

(Appendix 23). Although there were no subjects with Cook’s D greater than 0.2, 11 subjects 

had COVRATIO less than 1.0. Six subjects had COVRATIO over 10.0. When the log 

transformation model was entered into PROC MIXED, the non-pain group had higher 

formant frequencies than the pain group except F2 and F3 at first seated (Table 59).  

Table 59.  
 
Group Means and Difference in Log Transformation of Reduced Model of Formant 
Frequencies Related to Depression by Task 

Task Formant 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=31) 

M (SE) 

Group Mean 

Difference 

 First Seated F1 725.87 (1.08) *706.82 (1.07) 19.05 

 F2 1586.95 (1.05) *1645.29 (1.05) -58.34 

 F3 3096.94 (1.04) *3200.53 (1.04) -103.59 

First Stand F1 814.50 (1.08) 732.43 (1.07) 82.07 

 F2 1607.40 (1.05) 1572.26 (1.05) 35.14 

 F3 3173.44 (1.04) 3093.54 (1.04) 79.9 

Second Seated F1 839.47 (1.08) 720.66  (1.07) 118.81  

 F2 1733.63 (1.05) 1536.36 (1.05) 197.27  

 F3 3353.87 (1.04) 3073.80  (1.04) 280.07 

Second Stand F1 839.22 (1.08) 719.65 (1.07) 119.57 

 F2 1732.76 (1.05) 1535.74 (1.05)  197.02 

 F3 3332.81 (1.04)  2975.51 (1.04) 357.3 

*N=30. Note. Means are in Hz. 
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Significant difference between the non-pain and pain groups was observed in formant 

frequencies with F3 at the second stand task when depression was entered into the analysis [t-

value(170) = 2.09, p = 0.04] (Table 60). Although the difference in F3 at second stand was 

Table 60.  
 
Results of Log Transformation of Reduced Model of Formant Frequencies Related to 
Depression by Task 

Task Formant 
Group Mean 

Ratio 

SE df t-value p 

First Seated F1 1.02 1.10 204 0.27 0.79 

 F2 0.96 1.07 167 -0.53 0.59 

 F3 0.97 1.06 170 -0.60 0.55 

First Stand F1 1.11 1.10 203 1.08 0.28 

 F2 1.02 1.07 167 0.33 0.74 

 F3 1.03 1.06 170 0.47 0.64 

Second Seated F1 1.16 1.10 203 1.55 0.12 

 F2 1.13 1.07 167 1.79 0.08 

 F3 1.09 1.06 170 1.61 0.11 

Second Stand F1 1.16 1.10 203 1.56 0.12 

 F2 1.13 1.07 167 1.78 0.08 

 F3 1.12 1.06 170 2.09 0.04 

 

observed in the reduced model, F1 and F2 differences at second seated and F2 difference at 

second stand were not observed following log transformation. The reduced model of the 

interaction of depression with formant frequency was judged unstable.  
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Effect of State Anxiety 

The sample mean of the state anxiety scale of the STAI (M = 25.3, SD = 5.17) was 

lower than the norm of 35.20 for working adult females established by instrument 

developers. With the addition of state anxiety, significant group mean difference with the 

interaction of state anxiety was noted with the following acoustic parameters: (1) range of 

fundamental frequencies across three tasks, (2) jitter at second stand, and (3) APQ at first 

stand.  Range, jitter, shimmer, and APQ were higher for the pain group than the non-pain 

group in all tasks, but statistical difference was only found at the two stand tasks with range, 

jitter, and APQ. 

State Anxiety and Range of Fundamental Frequency 

Because range of F0 was influenced by one subject’s Fhi at the first seated task, the 

reduced data set was used for the analysis of the effect of state anxiety on range of F0 (Table 

61). When state anxiety was added as an interaction term to the model, the pain group had 

wider range of F0 than the non-pain group across all tasks. At first seated, the non-pain group 

demonstrated its widest range of F0 while the pain group had its second widest range of F0 [t-

value(84) = -1.34, p = 0.18]. Range of F0 for the pain group increased at the first stand while 

non-pain group range of F0 narrowed [t-value(84) = -3.40, p = .001]. The pain group’s range 

of F0 narrowed at second seated while the non-pain group’s range of F0 did not change [t-

value(84) = -1.32, p = 0.19]. The pain group’s range of F0 increased at second stand to a 

range greater than first seated while the non-pain group’s range of F0 became more narrow[t-

value(84) = -3.04, p = .003]. The non-pain group demonstrated a narrower range of 

fundamental frequencies than the pain group. Non-pain group range of F0 narrowed across 
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the four tasks. Group mean differences between the non-pain and pain groups in range of F0 

related to state anxiety were significant at first stand and second stand. 

Table 61.  
 
Group and Means Difference in Reduced Model of Range of Fundamental Frequency 
Related to State Anxiety by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=31) 

M (SE) 

Group Mean 

Difference  

(SE) 

df t-value p 

First Seated 22.21 (2.57) *26.99 (2.47) -4.78 (3.56) 84 -1.34 0.18 

First Stand 19.39 (2.57) 31.52 (2.47) -12.12 (3.56) 84 -3.40 0.001 

Second Seated 19.39 (2.57) 24.11 (2.47) -4.72 (3.56 84 -1.32 0.19 

Second Seated 17.98 (2.57) 28.82 (2.47) -10.84 (3.56) 84 -3.04 0.003 

*N = 30. Note. Means are in Hz. 

Diagnostics were performed and 6 subjects were identified with Cook’s D greater 

than 0.2 and 9 subjects with COVRATIO less than 1.0. In the group of 6 influential subjects, 

Cook’s D ranged from 0.24 to 0.54 and COVRATIO ranged from 0.10 to 4.20: 5 subjects 

from the pain group and 1 subject from the non-pain group. State anxiety scale scores ranged 

from 20 (3 subjects) to 43.  

Log transformation was performed and diagnostics of log transformation of the 

reduced model identified 6 subjects with Cook’s D of 0.2 or higher and 12 subjects with 

COVRATIO less than 1.0. The 6 influential subjects had Cook’s D of 0.2 or higher and 

COVRATIO ranging from 0.4 to 5.31: 3 subjects from the pain group and 3 subjects from the 

non-pain group. The non-pain subjects had state anxiety scores of 20 and 37. Pain group 

subjects had state anxiety scores ranging from 21 to 43. The highest COVRATIO was 

associated with the subject having the highest state anxiety score of 43. Residual plots 



  

180 

 

showed improvement with the log transformation model (Appendix 23) and the log 

transformation model was entered into PROC MIXED. The pain group had the largest range 

of F0 at all tasks (Table 62).  

Table 62.  
 
Group Means and Difference in Log Transformation of Reduced Model of Range of 
Fundamental Frequency Related to State Anxiety by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

 First Seated 19.91 (1.09) *21.98 (1.09) -1.99 

First Stand 18.21 (1.09) 24.96 (1.09) -6.75 

Second Seated 17.77 (1.09) 20.21 (1.09) -2.44 

Second Stand 16.61 (1.09) 22.57 (1.09) -5.96 

*N = 30. Note: Means are in Hz. 

 

In the log transformation of the reduced model, significant group mean difference in 

range of F0 between non-pain and pain groups was observed at first stand [t-value(75) = -

2.54, p = 0.01) and at second stand [t(75) = -2.47, p = 0.02] (Table 63).  Because these 

findings were similar to the original reduced model, the reduced model was judged as stable. 
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Table 63. 
 
 Results of Log Transformation of Reduced Model of Range of Fundamental Frequency 
Related to State Anxiety by Task 

Task 
Group Mean 

Ratio 
SE df t-value p 

First Seated 0.91 1.13 75.5 -0.79 043 

First Stand 0.73 1.13 75 -2.54 0.01 

Second Seated 1.14 1.13 75 -1.03 0.30 

Second Stand 0.74 1.13 75 -2.47 0.02 

 

State Anxiety and Jitter 

When state anxiety was added as an interaction term to the model, the level of jitter 

was greater for the pain group across all four tasks (Table 64). At first stand, the level of jitter 

was higher in the pain group than the non-pain group but group mean difference was not 

significant [t-value(73.1) = -1.12, p = 0.27]. At first stand, the level of jitter decreased for 

both groups [t-value(73.1) = -1.93, p = 0.06]. At second seated, jitter increased for both 

groups although the pain group jitter level remained higher than the non-pain group jitter 

level [t-value(73.1) = -1.49, p = 0.14]. However, at second stand, the non-pain group level of 

jitter dropped while the pain group level increased and the group mean difference in jitter 

became significant [t-value(73.1) = -2.79, p = .007].  Group mean difference in jitter related 

to state anxiety between the non-pain and pain groups was significant at the second stand 

task. 
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Table 64.  
 
Group Means and Difference in Model of Jitter in Percent Related to State Anxiety by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated 0.95 (0.09) 1.10 (0.08) 0.17 (0.12) 73.1 -1.12 0.27 

First Stand 0.81 (0.09) 1.04 (0.08) -0.23 (0.12) 73.1 -1.93 0.06 

Second Seated 0.87 (0.09) 1.05 (0.08) -0.18 (0.12) 73.1 -1.49 0.14 

Second Stand 0.78 (0.09) 1.12 (0.08) -0.34 (0.12) 73.1 -2.79 0.007 

 

Diagnostics were performed and 4 subjects with Cook’s D greater than 0.2 and 9 

subjects with COVRATIO less than 1.0 were identified (Appendix 23). Four influential 

subjects were identified with Cook’s D greater than 0.2: 2 subjects in the non-pain group and 

2 in the pain group. COVRATIO of the 4 identified subjects ranged from 0.26 to 5.92. 

Examination of the data found one non-pain subject had low jitter levels ranging from 0.53 to 

0.83 and a state anxiety score of 37. The second non-pain subject had jitter levels ranging 

from 0.56 to 2.77 and a state anxiety score below the mean of 20. One pain group subject’s 

levels of jitter were all greater than 1.5 and state anxiety score was 47. The second pain 

group subject had jitter levels ranging from 0.8 to 2.18 and state anxiety score of 32. 

Log transformation of the reduced model was performed and diagnostics of the log 

transformation model indentified 4 influential subjects with Cook’s D greater than 0.2. Three 

of those identified were influential subjects in the reduced model. The newly identified 

subject was from the pain group and had jitter levels ranging from 0.32 to 0.83 as well as a 
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state anxiety score of 36. Some improvement was noted in the residuals plot (Appendix 23) 

and the log transformation model was entered into PROC MIXED. The pain group had 

higher levels of jitter across all tasks (Table 65). Significant group mean difference in jitter 

related to state anxiety was observed at the second stand task [t-value (71.4) = -2.58, p = 

0.01] (Table 66) as it had been in the original model. The original model was accepted as 

stable. 

Table 65. 
 
 Group Means and Difference in Log Transformation of Model of Jitter in Percent Related to 
State Anxiety by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

First Seated 0.86 (1.09) 0.95 (1.09) -0.09 

First Stand 0.74 (1.09) 0.90 (1.09) -0.16 

Second Seated 0.77 (1.09) 0.86 (1.09) -0.09 

Second Stand 0.69 (1.09) 0.93 (1.09) -0.24 

 
 

Table 66.  
 
Results of Log Transformation of Model of Jitter in Percent Related to State Anxiety by Task 

Task 
Group Mean 

Ratio 
SE df t-value p 

First Seated .91 1.13 71.7 -0.77 0.44 

First Stand .82 1.13 71.4 -1.62 0.11 

Second Seated .90 1.13 71.4 -0.88 0.38 

Second Stand .73 1.13 71.4 -2.58 0.01 
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State Anxiety and Amplitude Perturbation Quotient (APQ) 

When state anxiety was added as an interaction term to the reduced model, amplitude 

perturbation quotient (APQ) was higher across all tasks for the pain group (Table 67). At first 

seated, the non-pain group’s level of APQ was at it highest level for the four tasks. However, 

group mean difference in APQ was not significant at first seated [t-value(70) = -0.59, p = 

0.56]. The drop in the non-pain group’s APQ at first stand was contrasted by the pain group 

increase in APQ and significant group mean difference was observed [t-value(70) = -1.98, p 

= .05]. Both groups had decreased APQ at the second seated but the difference was not 

significant [t-value(70) = -1.79, p = 0.08]. Decreases in APQ by both groups occurred at 

second stand, but group mean difference in APQ was not significant [t-value(70) =-1.59, p = 

0.12]. 

Table 67.  
 
Group Means and Difference in Reduced Model of Amplitude Perturbation Quotient Related 
to State Anxiety by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain 

(N=32) 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated 1.96 (0.15) *2.09 (0.15) -0.12 (0.21) 70 -0.59 0.56 

First Stand 1.89 (0.15)  2.31 (0.15) -0.42 (0.21) 70 -1.98 0.05 

Second Seated 1.89 (0.15) 2.26 (0.15) -0,.38 (0.21) 70 -1.79 0.08 

Second Stand 1.85 (0.15) 2.19 (0.15) -0.33 (0.21) 70 -1.59  0.12 

*N = 31. 

Diagnostics were performed on the reduced model and 5 subjects had Cook’s D 

greater than 0.2 and 8 subjects had COVRATIO less than 1.0 (Appendix 23).  Five influential 

subjects, 4 from the pain group and 1 from the non-pain group, were identified with Cook’s 
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D greater than 0.2 and COVRATIO ranging from 0.07 to 1.19. State anxiety scores for these 

four subjects ranged from 20 to 36, with 3 subjects having scores higher than the sample 

mean. The subject with state anxiety score of 20, the lowest of the four subjects, had APQ 

levels ranging from 6.01 and 7.33 indicating the subject‘s influence. Four COVRATIO less 

than 1.0 indicated that influential subject deletion could improve the model. 

Log transformation was performed and identified 5 subjects with Cook’s D greater 

than 0.2 and 8 subjects with COVRATIO less than 1.0. Of the influential subjects with 

Cook’s D greater than 0.2 and COVRATIO less than 1.0, 4 had been identified in the 

reduced model diagnostics. One influential subject from the non-pain group was newly 

identified with log transformation from the non-pain group but had COVRATIO of 5.93. The 

pain group had greater APQ than the non-pain group (Table 68). Log transformation of the 

model did not improve linearity of the plot of residuals although the distribution of residuals 

was improved (Appendix 23). The non-pain subject’s state anxiety score of 37 was elevated 

compared to the sample mean of 25.31, and this subject’s COVRATIO was the highest of the 

sample. When the log transformation model was entered into PROC MIXED, the pain group 

continued to have higher APQ (Table 69). However, no significant difference in APQ related 

to state anxiety between the non-pain and pain groups was found at any of the tasks (Table 

69). The reduced model of the effect of state anxiety on APQ was judged unstable. 



  

186 

 

 

Table 68.  
 
Group Means and Difference of Log Transformation of Reduced Model of Amplitude 
Perturbation Quotient Related to State Anxiety by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

First Seated 1.88 (1.06) *1.97 (1.06) -0.09 

First Stand 1.81 (1.06) 2.06 (1.06) -0.25 

Second Seated 1.82 (1.06) 2.06 (1.06) -0.24 

Second Stand 1.78 (1.06) 2.02(1.06) -0.24 

*N=31. 

 

Table 69.  
 
Results of Log Transformation of Reduced Model of Amplitude Perturbation Quotient 
Related to State Anxiety by Task 

Task 
Group Mean 

Ratio 
SE df t-value p 

First Seated .95  1.08 71.6 -0.62 0.54 

First Stand .88 1.08 71.3 -1.66 0.10 

Second Seated .88 1.08 71.3 -1.56 0.12 

Second Stand .88 1.08 71.3 -1.60 0.11 

 

Effect of Trait Anxiety 

The sample mean for trait anxiety on the STAI trait anxiety scale was 33.0 (SD = 

6.97) and this mean was lower than the norm for working females of 34.79 (SD = 9.22). 



  

187 

 

Significant group mean differences with the interaction of trait anxiety had been observed 

with the following acoustic parameters: (1) range of fundamental frequency, (2) jitter, and (3) 

formant frequencies. Because range of F0 was influenced by the Fhi and Flo of the subject 

who sang first seated vowels, the reduced data set was used for this analysis. 

Trait Anxiety and Range of Fundamental Frequencies 

When trait anxiety was added to the model as an interaction term, range of 

fundamental frequencies was greater for the pain group than the non-pain group at all tasks 

with significant difference observed at first stand and second stand (Table 70). Group mean 

differences at first seated [t-value(83.1)= -1.26, p = 0.21] and second seated[t-value(83.1)= -

1.24, p = 0.22] were not significant.  At first and second stand, the non-pain group had 

decreases in range of F0 while the pain group had increases in range of F0. Significant group 

mean difference in range of F0 was observed at first stand [t-value(83.1) = 3.13, p = 0.002] 

and second stand [t-value(83.1) = -3.03, p = 0.003]. The non-pain group range of F0 at first 

seated task decreased across the next three tasks, ending with a range of F0 lower than the 

first seated range. In contrast to the non-pain group narrowing of range of F0, the pain 

group’s range of F0 pattern demonstrated an increase at first stand, a decrease at the second 

seated, and an increase at second stand to a level higher than the range of F0 obtained at first 

seated. Group mean differences in range of F0 related to trait anxiety were significant at first 

and second stand tasks. 
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Table 70.  
 
Group Means and Difference of Reduced Model of Range of Fundamental Frequency 
Related to Trait Anxiety by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated 21.74 (2.69) *26.41 (2.54) -4.67 (3.70) 83.1 -1.26 0.21 

First Stand 19.22 (2.69) 30.78 (2.54) -11.55 (3.70) 83.1 -3.13 0.002 

Second Seated 19.04 (2.69) 23.64 (2.54) -4.60 (3.70) 83.1 -1.24 0.22 

Second Stand 17.79 (2.69) 28.98 (2.54) -11.20 (3.70) 83.1 -3.03 0.003 

*N=31. Note. Means are in Hz. 

Diagnostics were performed and identified 5 subjects with Cook’s D greater than 0.2 

and 8 subjects with COVRATIO less than 1.0. Five influential subjects with Cook’s D 

greater than 0.2 were identified: 1 subject from the non-pain group and 4 subjects from the 

pain group.  Three pain subjects also had at least one range of F0 greater than 90 Hz. 

COVRATIO of the 5 influential subjects ranged from 0.1098 to 0.7701. The subject with the 

highest COVRATIO also had the highest trait anxiety score, but did not have Cook’s D 

greater than 0.2. Trait anxiety scores of the influential subjects ranged from 24 to 40 with 4 

scores below the sample mean.  

Log transformation improved the model residuals and identified 5 subjects with 

Cook’s D greater than 0.2 and 10 subjects with COVRATIO less than 1.0. Of the 5 

influential subjects identified with Cook’s D greater than 0.2, 2 subjects were from the non-

pain group and three from the pain group. Cook’s D ranged from 0.21 to 0.58. For these 5 

subjects, COVRATIO ranged from 0.39 to 4.07 with 3 COVRATIO below 1.0 indicating 
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model improvement with deletion. Trait anxiety scores of the 5 influential subjects ranged 

from 24 to 52 with 2 scores below the sample mean and the higher trait anxiety scores 

associated with the higher COVRATIOs.  

The log transformation model was entered into PROC MIXED. The pain group 

demonstrated wider range than the non-pain group with the greatest mean differences at first 

stand and second stand (Table 71). After log transformation, significant group mean 

difference between non-pain and pain groups was observed in range of F0 related to trait 

anxiety at first stand [t-value(74.8) = -2.36, p = 0.02] and second stand [t-value(74.8) = -2.58, 

p = 0.01] (Table 72). Since these findings were present in the reduced model, the reduced 

model was judged as stable. 

Table 71.  
 
Group Means and Difference of Log Transformation of Reduced Model of Range of 
Fundamental Frequency Related to Trait Anxiety by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

 

First Seated 19.61 (1.10) *21.48 (1.09) -1.87 

First Stand 18.02 (1.10) 24.34 (1.09) -6.32 

Second Seated 17.34 (1.10) 19.78 (1.09) -2.44 

Second Stand 16.28 (1.10) 22.60 (1.09) -6.32 

*N=31. Note. Means are in Hz. 
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Table 72.  
 
Results of Log Transformation of Reduced Model of Range of Fundamental Frequency 
Related to Trait Anxiety by Task 

Task 
Group Mean 

Ratio 

SE df t-value p 

First Seated 0.91 1.14 75.1 -0.71 0.48 

First Stand 0.74 1.14 74.8 -2.36 0.02 

Second Seated 0.88 1.14 74.8 -1.04 0.30 

Second Stand 0.72 1.14 74.8 -2.58 0.01 

 

Trait Anxiety and Jitter in Percent 

When trait anxiety was added to the model, jitter was higher for the pain group across all 

tasks (Table 73). At first seated, the difference between groups was not significant [t- = -

1.14, p = 0.26]. A decrease in the non-pain and pain groups’ level of jitter and significant 

group mean difference occurred at first stand [t-value(77.3) =-1.97, p = .05]. The non-pain 

group jitter level increased at second seated and group mean difference was reduced [t-

value(77.3) = -1.57, p = 0.12]. At second stand, an increase in jitter in the pain group and a 

decrease in jitter in the non-pain group occurred and significant group mean difference in 

jitter was observed  [t-value(77.3) = - 3.14, p = .002). Group mean differences between the 

non-pain and pain groups in jitter with interaction of trait anxiety were significant at first 

stand and second stand with a reduced model. 
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Table 73.  
 
Group Means and Difference in Model of Jitter in Percent and Trait Anxiety by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated 0.92 (0.09) 1.07 (0.09) -0.14 (0.13) 77.3 -1.14 0.26 

First Stand 0.79 (0.09) 1.03 (0.09) -0.25 (0.13) 77.3 -1.97 0.05 

Second Seated 0.85 (0.09) 1.04 (0.09) -0.20 (0.13) 77.3 -1.57 0.12 

Second Stand 0.73 (0.09) 1.12 (0.09) -0.39 (0.13) 77.3 -3.14 0.002 

 

Diagnostics of the model were performed and 2 subjects had Cook’s D greater than 

0.2 and 9 subjects had COVRATIO less than 1.0. The 2 influential subjects identified with  

Cook’s D greater than 0.2 were in the non-pain group. With these subjects, COVRATIO 

ranged from 0.32 to 4.91 with the subject with trait anxiety score of 47 also having the 

highest COVRATIO of the sample. Jitter ranged from 0.53 to 0.83 for the influential subject 

with the highest COVRATIO while jitter levels ranged from 0.56 to 2.77 for the influential 

subject with the COVRATIO less than 1.0. 

Log transformation was performed improving the residual plots (Appendix 23). 

Diagnostics identified 3 subjects with Cook’s D greater than 0.2 and 8 subjects with 

COVRATIO less than 1.0. Two of the influential subjects were in the non-pain group and 

were identified in the reduced model. In addition, 1 subject from the pain group was 

identified as influential with log transformation. Cook’s D ranged from 0.20 to 0.42 and 

COVRATIO ranged from 0.61 to 4.48 with the influential subjects. The newly identified pain 

subject trait anxiety score was 47.  
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The log transformation model was entered into PROC MIXED. The pain group had 

jitter levels greater than the non-pain group across all tasks with greater mean difference at 

first stand (group mean difference = -0.16) and second stand (group mean difference = -0.28) 

(Table 74). Group mean difference in jitter with the interaction of trait anxiety was observed 

at second stand as in the original model, but not in first stand as previously observed (Table 

75). The reduced model was judged unstable. 

Table 74.  
 
Group Means and Difference in Log Transformation of Model of Jitter in Percent Related to 
Trait Anxiety by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

First Seated 0.84 (1.09) 0.93 (1.09) -0.09 

First Stand 0.73(1.09) 0.89 (1.09) -0.16 

Second Seated 0.75 (1.09) 0.85 (1.09) -0.10 

Second Stand 0.65 (1.09) 0.93 (1.09) -0.28 

 

When the log transformation of the reduced model was entered into PROC MIXED, 

significant group mean difference in jitter with the interaction of trait anxiety was observed at 

second stand [t-value(-74.8) = -2.96, p = 0.004] as in the reduced model. However, 

significant group mean difference was not observed at first stand [t-value(74.8) = -1.66, p = 

0.10] (Table 75) as in the reduced model (Table 73), the reduced model was judged unstable. 
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Table 75.  
 
Results of Log Transformation of Model of Jitter in Percent Related to Trait Anxiety by Task 

Task 
Group Mean 

Ratio 

SE df t-value p 

First Seated .89 0.12 74.8 -0.90 0.37 

First Stand .81 0.12 74.8 -1.66 0.10 

Second Seated .88 0.12 74.8 -1.06 0.29 

Second Stand .69 0.12 74.8 -2.96 0.004 

 

Trait Anxiety and Formant Frequencies 

Formant frequencies demonstrated increasing difference across tasks when trait 

anxiety was added to the model as an interaction term with the non-pain group using higher 

frequencies (Table 76). However, it was not until F3 at second stand that the difference 

became significant [t-value(153) = 1.94, p = 0.05] .  

First Seated. 

F1 frequencies were higher for the non-pain group at all tasks. At first seated the non-

pain group produced its lowest F1 frequencies (est. M = 757.14) as did the pain group (est. M 

= 725.25) but group mean difference was not significant [t-value(194) = 0.57, p = 0.57]. At 

first seated, F2 was lower for the non-pain group (est. M = 1586.72) than the pain group (est. 

M = 1637.37] [t-value(151) = -0.39, p = 0.69]. The pain group had higher F3 (est. M = 

3150.43) than the non-pain group (est. M = 3124.28) at first seated, but the difference was 

not significant [t-value(153) = -0.13, p = 0.89]. 
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First Stand. 

At first stand, both groups increased F1 with the non-pain group having a greater 

increase and greater difference occurred [t-value(194) = 1.16, p = 0.25]. The non-pain group 

F2 increased at first stand (est. M = 1639.44) while the pain group F2 decreased (est. M = 

1602.27) [t-value(151) = 0.29, p = 0.77]. The pain group F3 decreased at first stand as the 

non-pain group F3 increased [t-value(153) = 0.42, p = 0.68]. 

Second Seated. 

At second seated, the pain group decreased F1 (est. M = 747.98) as the non-pain group 

increase F1 frequencies (est. M = 823.68) but the difference still was not significant [t-

value(194) = 1.36, p = 0.18]. The non-pain group F2 continued to be higher than the pain 

group at second seated (est. M = 1757.00) as the pain group F2 continued to decrease at 

second seated (est. M = 1571.92).  Group mean differences in F2 with the interaction of trait 

anxiety were not significant at second seated [t-value(151) = 1.44, p  = 0.15] . The increase in 

F3 at second seated for the pain group was less than the increase seen in the non-pain group 

and difference increased but was not significant [t-value(153) = 1.22, p = 0.22]. 

Second Stand. 

The pain group decreased F1 at second stand (est. M = 742.32) as did the non-pain 

group (est. M = 821.63). The difference between groups in F1 with the interaction of trait 

anxiety at second stand was not significant [t-value(194) = 1.42, p = 0.16]. F2 at second stand 

for the non-pain group (est. M = 1769.26) and pain group (est. M = 1558.82) were not 

significantly different [t-value(151) = 1.63, p = 0.10]. A drop in F3 at second stand by the 

pain group and an increase in F3 by the non-pain group resulted in the only significant group 
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mean difference in formant frequencies with the interaction of trait anxiety [t-value(153) = 

1.94, p = 0.05] (Table 76).  

Diagnostics were performed and one subject had Cook’s D greater than 0.2 and 10 

subjects had COVRATIO less than 1.0. The 1 influential subject had a Cook’s D value of 

0.29 with COVRATIO of 0.00. This subject had a trait anxiety score of 38, higher than the 

sample mean. In addition to high trait anxiety, this subject’s F1 ranged from 720.82 Hz to 

1096.16 Hz, F2 ranged from 1384.01 Hz to 1916.47 Hz, and F3 ranged from 2898.31 Hz to 

3361.68 Hz. In addition to this subject, 9 subjects had COVRATIO less than 1.0; of these, 4 

were less than 0.5. 

Log transformation of the reduced model was performed resulting in improvement 

noted in the residual plots (Appendix 23). Diagnostics identified the same influential subject 

identified in the reduced model diagnostics, but Cook’s D was now 0.16 and COVRATIO of 

0.01. Eleven additional subjects had COVRATIO less than 1.0 and 7 of these subjects had 

COVRATIO less than 0.5.  

Because the residual plots demonstrated improvement, the log transformation model 

was entered into PROC MIXED. Differences in mean formant frequencies were observed 

after exponentiation with larger group mean differences associated with the later tasks (Table 

77). However, no significant difference was found with the interaction of trait anxiety and 

formant frequencies at any task (Table 78). The reduced model was judged unstable. 
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Table 76.  
 
Group Means and Difference in Reduced Model of Formant Frequencies Related to Trait 
Anxiety by Task 

Task Formant 

Non-Pain 

(N =30) 

M (SE) 

Pain 

(N = 32) 

M (SE) 

Group 

Mean 

Difference 

(SE) 

df t-value p 

First Seated  F1 757.14 

(0.41) 

*725.25 

(0.38) 

0.32 

(0.56) 

194 0.57 0.57 

F2 1586.72 

(0.94) 

*1637.37 

(0.88) 

-0.51 

(1.29) 

151 -0.39 0.69 

F3 3124.28 

(1.43) 

*3150.43 

(1.35) 

-0.26 

(1.96) 

153 -0.13 0.89 

First Stand F1 817.23 

(0.41) 

752.79 

(0.38) 

0.64 

(0.56) 

194 1.16 0.25 

F2 1639.44 

(0.94) 

1602.27 

(0.88) 

0.37 

(1.29) 

151 0.29 0.77 

F3 3205.27 

(1.43) 

3123.04 

(1.35) 

0.82 

(1.96) 

153 0.42 0.68 

Second Seated F1 823.68 

(0.41) 

747.98 

(0.38) 

0.76 

(0.56) 

194 1.36 0.18 

F2 1757.00 

(0.94) 

1571.92 

(0.88) 

1.85 

(1.29) 

151 1.44 0.15 

F3 3368.78 

(1.43) 

3129.28 

(1.35) 

2.40 

(1.96) 

153 1.22 0.22 

Second Stand F1 821.63 

(0.41) 

742.32 

(0.38) 

0.79 

(0.56) 

194 1.42 0.16 

 

F2 1769.26 

(0.94) 

1558.82 

(0.88) 

2.10 

(1.29) 

151 1.63 0.10 

F3 3399.71 

(1.43) 

3019.50 

(1.35) 

3.80 

(1.96) 

153 1.94 0.05 

*N=31. Note. Means are in Hz.  
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Table 77.  
 
Group Means and Difference in Log Transformation of Reduced Model of Formant 
Frequencies Related to Trait Anxiety by Task 

Task Formant 

Non-Pain  

(N =30) 

M (SE) 

Pain  

 (N = 32) 

M (SE) 

Group Mean 

Difference 

 

First Seated  F1 702.10 (1.07) *693.24 (1.07) 8.86 

F2 1567.24 (1.05) *1654.20 (1.05) -86.96 

F3 3101.9 (1.04) *3220.43 (1.04) -118.53 

First Stand F1 790.35 (1.07) 698.11 (1.07) 92.24 

F2 1612.06 (1.05) 1562.7 (1.04) 49.36 

F3 3183.93 (1.04) 3068.89 (1.04) 115.04 

Second Seated F1 760.65 (1.07) 701.18 (1.07) 59.47 

F2 1656.18 (1.05) 1545.76 (1.04) 110.72 

F3 3253.45 (1.04) 3082.42 (1.04) 171.03 

Second Stand F1 788.45 (1.07) 708.73 (1.07) 79.72 

F2 1696.92 (1.05) 1540.05 (1.04) 156.87 

F3 3287.13 (1.04) 2990.72 (1.04) 296.41 

*N=31. Note. Means are in Hz. 
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Table 78.  
 
Results of Log Transformation of Reduced Model of Formant Frequencies Related to Trait 
Anxiety by Task 

Task Formant 
Group Mean 

Ratio 

SE df t-value p 

First Seated F1 1.01 1.10 184 -0.14 0.89 

 F2 0.95 1.07 147 -0.85 0.40 

 F3 0.96 1.05 149 -0.73 0.47 

First Stand F1 1.13 1.10 183 1.33 0.18 

 F2 1.03 1.07 146 0.49 0.63 

 F3 1.04 1.05 148 0.71 0.48 

Second Seated F1 1.08 1.10 183 0.87 0.38 

 F2 1.07 1.07 146 1.08 0.28 

 F3 1.06 1.05 148 1.05 0.30 

Second Stand F1 1.11 1.10 183 1.15 0.25 

 F2 1.10 1.07 146 1.52 0.13 

 F3 1.10 1.05 148 1.83 0.07 

 

Effect of State Anger 

The sample mean for state anger on the STAXI-2 was 15.5 (SD = 2.06) and was 

lower than the norm of 17.9 (SD = 5.26) with normal adult females established by the 

instrument developers. Significant group mean differences were observed with the 
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interaction of state anger on the following acoustic parameters: (1) range of fundamental 

frequencies and (2) jitter.  

State Anger and Range of Fundamental Frequencies 

When the mean state anger was added as an interaction term to the reduced model 

(deleting the first seated acoustic measurements of the subject who sang the first seated 

vowels), range of fundamental frequencies continued to be greater for the pain group than the 

non-pain group across all tasks (Table79). At first seated, the pain group range of F0 was 

greater than the non-pain group [t-value(77.6) = -1.00, p = 0.32]. At first stand, the pain 

group’s range of F0 increase as the non-pain group’s range of F0 decreased resulting in 

significant difference [t-value(77.6) = -3.07, p = .003]. Both groups decreased range of F0 at 

second seated task, but the decrease was greater for the pain group and the difference 

between groups was no longer significant [t-value(77.6) = -0.99, p = 0.33]. At second stand, 

the pain group again increased range of F0 while the non-pain group’s range of F0 was 

reduced [t-value(77.6) = -2.82, p = .006].  

Table 79.  
 
Group Means and Difference in Reduced Model of Range of Fundamental Frequency 
Related to State Anger by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated 23.14 (2.72) *26.80 (2.46) -3.66 (3.67) 77.6 -1.00 0.32 

First Stand 20.13 (2.72) 31.41 (2.46) -11.28 (3.67) 77.6 -3.07 0.003 

Second Seated 19.89 (2.72) 23.52 (2.46) -3.63 (3.67) 77.6 -0.99 0.33 

Second Stand 18.05 (2.72) 28.41 (2.46) -10.36 (3.67) 77.6 -2.82 0.006 

*N=31. Note. Means are in Hz. 
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Diagnostics were performed and identified 4 influential pain group subjects with 

Cook’s D greater than 0.2 and ranging from 0.29 to 1.96. COVRATIO ranged from 0.1 to 

4061.4. The next highest COVRATIO was 20.5. Nine subjects had COVRATIO less than 

1.0. State anger scores ranged from 15 (for three subjects) to 30. Range of F0 ranged from 

15.19 to 105.19 Hz and 3 subjects had at least one range of F0 greater than 95 Hz. The pain 

group subject with the state anger score of 30 also possessed the highest COVRATIO, the 

largest Cook’s D, and the most restricted ranges of F0 between 23.29 and 43.17.  

Log transformation of the reduced model was performed and some improvement in 

the residuals plots was noted (Appendix 23). Three subjects had Cook’s D greater than 0.2 

and 9 subjects had COVRATIO less than 1.0. Three influential subjects were identified with 

Cook’s D greater than 0.2; 2 pain group subjects were identified in the reduced model 

diagnostics and 1 non-pain group subject was identified with the log transformation. Cook’s 

D ranged from 0.20 to 3.46.  COVRATIO ranged from 0.4 to 3895.3. The high COVRATIO 

was identified with the same subject in the reduced model analysis. The newly identified 

non-pain subject had a state anger score of 19.5 and range of F0 from 22.33 to 30.13.  

The log transformation model was entered into PROC MIXED. The pain group had 

the largest range of F0 related to state anger across all tasks (Table 80). At first seated, the 

difference between groups was not significant [t-value(75.5) = -0.35, p = 0.73] (Table 84). At 

first stand, the pain group increased its range of F0 while the non-pain group narrowed its 

range of F0 [t-value(75.1) = -2.10, p = 0.04]. Both groups narrowed range of F0 at the second 

seated task and group mean difference decreased [t-value(75.1) = -0.61, p = 0.54]. At second 

stand, the pain group range of F0 became wider as the non-pain group range of F0 narrowed 
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and  significantly greater mean difference occurred  [t-value(75.1) = -2.19, p = 0.03]. 

Significant group mean difference in the interaction of state anger and range of F0 occurred at 

first stand [t-value(75.1) = -2.10, p = 0.04] and second stand [t-value(75.1) = -2.19, p = 0.03] 

(Table 81) and were found at the same tasks as the reduced model (Table 79). The reduced 

model was judged stable. 

Table 80.  
 
Group Means and Difference in Log Transformation of Reduced Model of Range of 
Fundamental Frequency Related to State Anger by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

First Seated 20.75 (1.10) *21.72 (1.09) -0.97 

First Stand 18.94 (1.10) 24.81  (1.09) -5.87 

Second Seated 18.31 (1.10) 19.80 (1.09) -1.49 

Second Stand 16.81 (1.10) 22.27 (1.09) -5.46 

*N=31. Note. Means are in Hz. 

 

Table 81.  
 
Results of Log Transformation of Reduced Model of Range of Fundamental Frequency 
Related to State Anger by Task 

Task 
Group Mean 

Ratio 
SE df t-value p 

First Seated .96 1.14 75.5 -0.35 0.73 

First Stand .76 1.14 75.1 -2.10 0.04 

Second Seated .92 1.14 75.1 -0.61 0.54 

Second Stand .76 1.14 75.1 -2.19 0.03 
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Although the reduced model was stable to perturbation, the COVRATIO of 4061.4 of 

one subject was extreme and the influence exerted on results with the small sample was 

explored. The data of the influential subject with the extreme COVRATIO were deleted 

along with the data of the subject with the sung vowel at first seated and this further reduced 

model of range of F0 related to state anger was re-entered into PROC MIXED. After these 

deletions, the pain group’s range of F0 was wider than the non-pain group across all tasks 

while the non-pain group’s range of F0 became narrower at each task. At first seated, the 

groups were not were not significantly different in range of F0 [t-value(76.0) = -1.32, p = 

0.19]. At first stand, the pain group had it widest range of F0 and the groups were 

significantly different [t-value(75.7) = -2.97, p = 0.004]. At second seated, both groups had 

reduced range of F0 and significant difference was not observed [t-value(75.7) = - 0.86, p = 

0.39]. At second stand, the pain group had a wider range of F0 and the non-pain group range 

was more restricted and the group mean difference became significant [t-value(75.7) = -2.70, 

p = 0.009]. Changes were observed between results of the reduced model (Table 79) and the 

further reduced model (Table 82) but significant difference occurred at the same stand tasks. 

Table 82.  
 
Group Means and Difference in a Further Reduced Model of Range of Fundamental 
Frequency Related to State Anger by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=31) 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated 23.14 (2.75) *28.10(2.55) -4.96 (3.75) 76.0 -1.32 0.19 

First Stand 20.13 (2.72) 31.24 (2.55) -11.11 (3.75) 75.7 -2.97 0.004 

Second Seated 19.89 (2.75) 23.10 (2.55) -3.21(3.75) 75.7 -0.86 0.40 

Second Stand 18.05 (2.75) 28.41 (2.55) -10.11 (3.75) 75.7 -2.70 0.009 
*N=30. Note. Means are in Hz. 
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 Diagnostics demonstrated some improvement in linearity of the residuals (Appendix 

23). Five subjects with Cook’s D greater than 0.2 (range: 0.31 to 1.30) and 7 subjects with 

COVRATIO less than 1.0 (range: 0.09 to 142.66) were identified. The five influential 

subjects with Cook’s D greater than 0.2 were all pain group subjects. The COVRATIO of 

these subjects ranged from .09 to 142.66. One subject with high Cook’s D, high 

COVRATIO, and state anger score of 20 was not identified as an influential subject in the 

previous reduced data set. Two non-pain group subjects had COVRATIO less than 1.0. State 

anger scores for the influential subjects ranged from 15 (for three subjects) to 20. 

 Log transformation of this further reduced model was performed and linearity was 

improved over the non-transformed model (Appendix 23). Four subjects were identified with 

Cook’s D greater than 0.2 (range: 0.21 to 1.27): 1 from the non-pain group and 3 from the 

pain group. Thirteen subjects had COVRATIO less than 1.0. Three of the 4 influential 

subjects had COVRATIO greater that 1.0 (range: 1.47 to 142.68).  State anger scores ranged 

from 15 to 20. 

 The log transformation model was entered into PROC MIXED. The pain group had 

the broadest range of F0 across all tasks and the non-pain group range of F0 narrowed with 

each task (Table 83). The pain group range of F0 at first seated increased following the 

deletion of the second subject, increasing the group mean difference. The difference was not 

significant [t-value(76) = -0.47, p = 0.64]. At first stand, the pain group range of F0 was 

greater than the non-pain group, but less than the pain group range in the previous reduced 

model. The group mean difference in range of F0 related to state anger at first stand in the 

further reduced model was significant [t-value(75.7) = -2.07, p = 0.04].  At second seated, a 

narrowing of the pain group’s range of F0 was observed while the non-pain group’s range 
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also became narrower. The group mean difference at second seated was not significant [t-

value(75.7) = -0.55, p = 0.58]. At second stand, the pain group range of F0 was broader than 

it was at first seated and the non-pain group range was the most narrow of all tasks. The 

group mean difference in range of F0 related to state anger was significant at second stand [t-

value(75.7) = -2.17, p = 0.03]. The group mean differences in range of F0 related to state 

anger between the non-pain and pain group were significant at the first stand and second 

stand tasks (Table 84). Because group mean differences were the same in the log 

transformation of the reduced model and the further reduced model, the reduced model was 

judged stable. In subsequent analyses, the data of the subject with the extreme COVRATIO 

was included and the further reduced model was not used. 

Table 83.  
 
Group Means and Difference in Log Transformation of Further Reduced Model of Range of 
Fundamental Frequency Related to State Anger by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=31) 

M (SE) 

Group Mean 

Difference 

First Seated 20.75 (1.10) *22.05 (1.09) -1.3 

First Stand 18.94 (1.10) 24.74  (1.09) -5.84 

Second Seated 18.31 (1.10) 19.66 (1.09) -1.35 

Second Stand 16.81 (1.10) 22.27 (1.09) -5.46 

*N=30. Note. Means are in Hz. 
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Table 84.  

Results of Log Transformation of Further Reduced Model of Range of Fundamental 
Frequency Related to State Anger by Task 

Task 
Group Mean 

Ratio 
SE df t-value p 

First Seated .94 1.14 76 -0.47 0.64 

First Stand .77 1.14 75.7 -2.07 0.04 

Second Seated .93 1.14 75.7 -0.55 0.58 

Second Stand .75 1.14 75.7 -2.17 0.03 

 

State Anger and Jitter in Percent 

When state anger was added as an interaction term to the model of jitter, jitter was 

higher for the pain group across all tasks (Table 85). At first seated, the pain group’s level of 

jitter was greater than the non-pain group jitter [t-value(77.1) = -0.84, p = 0.41]. Both groups 

had decreased levels of jitter at first stand [t-value(77.1) = -1.56, p = 0.12].  Both groups had 

increases in jitter at second seated but difference was not significant [t-value(77.1) = -1.23, p 

= 0.22]. At second stand, the pain group’s jitter level increased as the non-pain group’s jitter 

decreased and resulted in a significant group mean difference. [t-value (77.1) = -2.35, p = 

0.02). 
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Table 85. 

 Group Means and Difference in Model of Jitter in Percent Related to State Anger by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated 0.95 (0.09) *1.06 (0.08) -0.11 (0.13) 77.1 -0.84 0.41 

First Stand 0.84 (0.09) 1.03 (0.08) -0.20 (0.13) 77.1 -1.56 0.12 

Second Seated 0.89 (0.09) 1.04 (0.08) -0.16 (0.13) 77.1 -1.23 0.22 

Second Stand 0.80 (0.09) 1.10 (0.08) -0.30 (0.13) 77.1 -2.35 0.02 

*N = 31. 

Diagnostics were performed and 3 influential subjects were identified with Cook’s D 

greater than 0.2: 2 non-pain subjects and 1 pain group subject. COVRATIO was less than 1.0 

in ten sample subjects: 2 non-pain group subjects and 8 pain group subjects. Cook’s D ranged 

from 0.23 to 2.40 and COVRATIO ranged from 0.2 to 3686.7. State anger ranged from 17 to 

30. The subject with the highest Cook’s D and COVRATIO also had the highest state anger 

score of this group. Jitter ranged from 0.56 to 2.77. 

 Log transformation was performed and diagnostics of the log transformation model 

identified 3 influential subjects having Cook’s D greater than 0.2: 2 non-pain subjects and 1 

pain subject. Eleven subjects had COVRATIO less than 1.0 in the transformation model. One 

non-pain subject was not previously identified as influential in the reduced model replaced a 

non-pain subject in the transformation model. Cook’s D ranged from 0.27 to 2.45 and 

COVRATIO ranged from 2.7 to 3616.7 with these 3 subjects.  The subject with the highest 

Cook’s D, COVRATIO, and state anger score was identified in the diagnostics of the reduced 

model and continued to be influential.  
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 Improvement was noted in the residual plots (Appendix 23) and the log 

transformation model was entered into PROC MIXED. The pain group had higher levels of 

jitter than the non-pain group at all tasks with the largest difference occurring at second stand 

(Table 86).  

Table 86.  
 
Group Means and Difference in Log Transformation of Model of Jitter in Percent Related to 
State Anger by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

First Seated 0.86 (1.10) *0.93 (1.09) -0.07 

First Stand 0.76 (1.10) 0.90  (1.09) -0.14 

Second Seated 0.78 (1.10) 0.85 (1.09) -0.07 

Second Stand 0.70 (1.10) 0.92 (1.09) -0.22 

*N = 31. 

At first seated, both groups had their highest level of jitter [t-value(75.3) = -0.54, p = 

0.59]. At first stand, the non-pain group had larger decrease in jitter than the pain group [t-

value(75) =  -1.27, p = 0.21]. The pain group had a larger decrease in jitter than the non-pain 

group at second seated [t-value(75) = 0.74, p = 0.46]. Significant group mean difference in 

jitter related to state anger was observed at second stand [t-value(75) = -2.16, p = 0.03] as it 

was in the reduced model (Table 87). The original model was judged stable. 
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Table 87.  
 
Results of Log Transformation of Model of Jitter in Percent Related to State Anger by Task 

Task 
Group Mean 

Ratio 

SE df t-value p 

First Seated 0.93 1.13 75.3 -0.54 0.59 

First Stand 0.85 1.13 75 -1.27 0.21 

Second Seated 0.91 1.13 75 -0.74 0.46 

Second Stand 0.76 1.13 75 -2.16 0.03 

 

Effect of Trait Anger 

The sample mean for trait anger on the STAXI-2 was 15.23 (SD = 6.97) and was 

lower than the norm of 17.89 (SD = 4.94) for adult women cited by the instrument’s 

developers. Significant group mean differences between groups occurred with the interaction 

of trait anger with the following acoustic parameters: (1) range of fundamental frequencies 

and (2) jitter. 

Trait Anger and Range of Fundamental Frequencies 

When trait anger was added as an interaction term in the reduced model, range of F0 

was greater for the pain group than the non-pain group at all four tasks (Table 88). At first 

seated, the pain group’s range of F0 (est. M = 26.97) was greater than the non-pain group 

range of F0 (est. M = 22.47) but the difference was not significant [t-value(84.8) = -1.28, p = 

0.20]. Range of F0 increased at first stand for the pain group but decreased for the non-pain 

group resulting in a significant difference [t-value(84.8) = -3.39 = p = 0.001]. At second 
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seated, the non-pain group had an increase in range of F0 (est. M = 19.44) while the pain 

group experienced a decrease in range of F0 (est. M = 2389.56). At second stand, the non-

pain group decreased range of F0 to the group’s lowest level (est. M = 17.82) and the pain 

group increased range of F0 (est. M = 28.36). The group mean difference in range of F0 

related to trait anger was significant at second stand [t-value(84.8) =  -3.00, p = 0.004]. 

Significant differences were observed in range of F0 with the interaction of trait anger at first 

and second stand. 

Table 88.  
 
Group Means and Difference in Reduced Model of Range of Fundamental Frequency 
Related to Trait Anger by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated 22.47 (2.53) *26.97 (2.45) -4.50 (3.52) 84.8 -1.28 0.20 

First Stand 19.43 (2.53) 31/36 (2.45) -11.94 (3.52) 84.8 -3.39 0.001 

Second Seated 19.44 (2.53) 23.90 (2.45) -4.45 (3.52) 84.8 -1.27 0.21 

Second Stand 17.82 (2.53) 28.36 (2.45) -10.55 (3.52) 84.8 -3.00 0.004 

*N=31. Note. Means are in Hz. 

Diagnostics were performed on the model and three subjects had Cook’s D greater 

than 0.2 and 8 subjects had COVRATIO less than 1.0. Three influential subjects had Cook’s 

D greater than 0.2 and COVRATIO less than 1.0. These 3 subjects were from the pain group 

with Cook’s D ranging from 0.21 to 0.46 and COVRATIO ranging from 0.09 to 0.22. Trait 

anger scores ranged from 12 to 15; lower than the norm stated by the STAXI-2 developers. 

Range of F0 for the 3 influential subjects ranged from 15.19 to 105.19 with both of these 

ranges from the same subject and all 3 subjects having a range greater than 90 Hz. 
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Log transformation of the reduced model was performed and improvement in the 

linearity of the plot of residuals occurred (Appendix 23). Diagnostics of the log 

transformation of the reduced model identified 2 subjects with Cook’s D greater than 0.2 and 

12 subjects with COVRATIO less than 1.0.The 2 influential subjects were from the pain 

group and identified in the diagnostics of the reduced model. Cook’s D ranged from .24 to 

.26 and COVRATIO ranged from 0.35 to 0.56 with these 2 subjects. Trait anger scores were 

12 and 13. 

Because of the improvement in linearity of residuals with log transformation, the 

model was entered into PROC MIXED. The pain group had greater range of F0 than the  

non-pain group at all tasks with the non-pain group decreasing range of F0 at each task (Table 

89). At first seated, the non-pain group had its highest range of F0 but pain group range of F0 

was greater and the group mean difference was not significant [t-value(76.1) = -0.80, p = 

0.43]. The pain group increased its range of F0 at first stand as the non-pain group range of F0 

decreased and a significant difference in range of F0 occurred [t-value(75.8) = -2.57, p = 

0.01] (Table 90).  At second seated, both groups experienced a decrease in range of F0 and 

the pain group had its lowest range of F0, but group mean difference was no longer 

significant [t-value(75.8) = -1.0, p = 0.32]. The pain group range of F0 increased at second 

stand while the non-pain group range of F0 decreased and the difference was significant [t-

value(75.8) = -2.52, p = 0.01]. Because the log transformation model demonstrated 

significant group mean differences in range of F0 with the interaction of trait anger at the first 

and second stand tasks as were demonstrated in the reduced model, the reduced model was 

judged stable. 
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Table 89. 
 
Group Means and Difference in Log Transformation of Reduced Model of Range of 
Fundamental Frequency Related to Trait Anger 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

First Seated 19.95 (1.09) *21.97 (1.09) 2.02 

First Stand 18.24 (1.09) 24.90 (1.09) 6.66 

Second Seated 17.83 (1.09) 20.13 (1.09) 2.3 

Second Stand 16.48 (1.09) 22.36 (1.09) 5.88 

*N=31.Note. Means are in Hz. 

 

Table 90.  
 
Results of Log Transformation of Reduced Model of Range of Fundamental Frequency 
Related to Trait Anger by Task 

Task 
Group Mean 

Ratio 

SE df t-value p 

First Seated .91  1.13 76.1 -0.80 0.43 

First Stand .73 1.13 75.8 -2.57 0.01 

Second Seated .89 1.13 75.8 -1.00 0.32 

Second Stand .74 1.13 75.8 -2.52 0.01 
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Trait Anger and Jitter 

When the sample mean of trait anger was added as an interaction term to the model, 

jitter was higher in the pain group across all tasks (Table 91). Jitter was highest for the non-

pain group at the first seated task but the group mean difference was not significant [t-

value(78.8) = -1.21, p =0.23]. Jitter decreased at first stand in both groups. With a greater 

decrease at first stand for the non-pain group, the group mean difference became significant 

[t-value(78.8) = -1.97, p = 0.05]. Jitter increased in the pain group and in the non-pain group 

at second seated, but group mean difference was reduced [t-value(78.8) = -1.61, p = 0.11]. At 

second stand, jitter increased in the pain group but decreased in the non-pain group 

contributing to the difference [t-value(78.8) = -2.79, p = 0.01). 

Table 91.  
 
Group Means and Difference in Model of Jitter in Percent Related to Trait Anger by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

(SE) 

df t-value p 

First Seated 0.94 (0.08) 1.08 (0.08) -0.14 (0.12) 78.8 -1.21 0.22 

First Stand 0.80 (0.08) 1.03 (0.08) -0.23 (0.12) 78.8 -1.97 0.05 

Second Seated 0.86 (0.08) 1.05 (0.08) -0.19 (0.12) 78.8 -1.61 0.11 

Second Stand 0.78 (0.08) 1.11 (0.08) -2.79 (0.12) 78.8 -2.79 0.007 

 

 Diagnostics were performed on the model of jitter related to trait anger and 2 subjects 

had Cook’s D greater than 0.2 and 9 subjects had COVRATIO less than 1.0. The 2 influential 

subjects with Cook’s D greater than 0.2 and ranging from 0.30 to 0.31were from both the 

non-pain and pain groups. COVRATIO ranged from 0.23 to 1.14.  Trait anger scores were 10 
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for the pain group subject and 13 for the non-pain group subject. Jitter ranged from 0.56 to 

2.77 across the tasks.  

Log transformation of the model was performed and diagnostics indicated 

improvement in the linear plot of residuals (Appendix 23). No influential subjects were 

identified with Cook’s D greater than 0.2. Seven subjects were identified with Cook’s D 

greater than 0.1. The subjects identified in the reduced model had a Cook’s D ranging from 

0.15 to 0.19 with the log transformation.  In the group of 7 subjects having Cook’s D greater 

than 0.1, COVRATIO ranged from 0.35 to 2.30.  Trait anger scores ranged from 10 to 22. 

Because of the improvement observed with transformation, the log transformation 

model was entered into PROC MIXED. The pain group level of jitter was higher than the 

non-pain group at all tasks (Table 92). At first seated, both groups demonstrated their highest 

levels of jitter for the study session but group mean difference was not significant [t-

value(76.6) = -0.89, p = 0.34]. At first stand, both groups decreased in level of jitter with the 

non-pain group having a greater decrease increasing group mean difference [t-value(76.2) = -

1.70, p = 0.09]. At second seated, the pain group decreased jitter level while the non-pain 

group increased jitter reducing group mean difference [t-value(76.2) = -1.07, p = 0.29]. At 

second stand, the non-pain group decreased jitter as the pain group increased jitter resulting 

in significant group mean difference in jitter related to trait anger [t-value(76.2) = -2.72, p = 

0.008]. Because the log transformation model identified significant group mean difference 

only at the second stand task (Table 93) compared to the reduced model identification of 

significance at the two stand tasks, the original model was judged unstable.  
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Table 92.  
 
Group Means and Difference in Log Transformation of Model of Jitter in Percent Related to 
Trait Anger by Task 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference 

First Seated 0.85 (1.09) 0.94(1.08) -0.09 

First Stand 0.74 (1.09) 0.90 (1.08) -0.16 

Second Seated 0.76 (1.09) 0.86 (1.08) -0.1 

Second Stand 0.68 (1.09) 0.93 (1.08) -0.25 

 

Table 93.  
 
Results of Log Transformation Model of Jitter in Percent Related to Trait Anger by Task 

Task 
Group Mean 

Ratio 

SE df t-value p 

First Seated .89 1.12 76.6 -0.89 0.34 

First Stand .82 1.12 76.2 -1.70 0.09 

Second Seated .88 1.12 76.2 -1.07 0.29 

Second Stand .73 1.12 76.2 -2.72 0.008 

 

In summary, building on models of acoustic parameters with movement tasks of non-

pain and pain subjects (Table 38), fixed effects were estimated using mixed model with an 

interaction term that included the sample mean of these mood-related measures. Acoustic 

parameter differences were found to be influenced by depression, anxiety, and anger. 

Following use of diagnostic techniques, significant differences between the non-pain and 
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pain groups were observed with two acoustic parameters at stand tasks: (1) range of 

fundamental frequencies with state and trait anxiety and state and trait anger (Table 94) and 

(2) jitter with state anxiety and state anger (Table 95). No significant group mean differences 

were observed with the interaction of depression and any of the study acoustic parameters.     

Table 94.  
 
Stable Significant Group Differences in Range of Fundamental Frequency Related to Mood-
Related Variables 

Mood-

Related 

Variable 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference  

(SE) 

df t-value p 

State 

Anxiety 
First Stand 19.39 (2.57) 31.52 (2.47) -12.12(3.56) 84 -3.40 0.001 

State 

Anxiety 

Second Seated 17.98 (2.57) 28.82 (2.47) -10.84(3.56) 84 -3.04 0.003 

Trait 

Anxiety 

First Stand 19.22 (2.69) 30.78 (2.54) -11.55 (3.70) 83.1 -3.13 0.002 

Trait 

Anxiety 

Second Stand 17.79 (2.69) 28.98 (2.54) -11.20 (3.70) 83.1 -3.03 0.003 

State 

Anger 

First Stand 20.13 (2.78) 31.41 (2.51) -11.28 (3.74) 83.6 -3.02 0.003 

State 

Anger 

Second Stand 18.05 (2.78) 28.41 (2.51) -10.36 (3.50) 83.6 -2.77 0.007 

Trait 

Anger 

First Stand 19.43 (2.53) 31/36 (2.45) -11.94 (3.52) 84.8 -3.39 0.001 

Trait 

Anger 

Second Stand 17.82 (2.53) 28.36 (2.45) -10.55 (3.52) 84.8 -3.00 0.004 
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Table 95.  
 
Stable Significant Group Differences in Jitter in Percent Related to Mood-Related Variables 

Mood-

Related 

Variable 

Task 

Non-Pain  

(N=30) 

M (SE) 

Pain  

(N=32) 

M (SE) 

Group Mean 

Difference  

(SE) 

df t-value p 

State 

Anxiety 

First Stand 0.81 (0.09) 1.04 (0.08) -0.23 (0.12) 77.4 -1.92 0.06 

State 

Anxiety 

Second Stand 0.78 (0.09) 1.12 (0.08) -0.34 (0.12) 77.4 -2.77 0.007 

State 

Anger 

Second Stand 0.80 (0.09) 1.10 (0.08) -0.30 (0.13) 77.1 -2.35 0.02 

 

Research Question 5 

The influence of disability on the verbal and written reports of pain intensity and 

written reports of pain unpleasantness of women with chronic knee pain was investigated. 

Disability in the non-pain and pain group for this the study was measured using (1) 

observation of the time to rise from sitting to standing position and (2) three self-evaluation 

measures of ability and disability: the pain interference scale of the BPI, the disability scale 

of the SOPA, and the self-efficacy for physical function scale of the ASES. Verbal and 

written self-reports of pain intensity were measured using the VRP and the VAS-PI. Written 

self-report of pain unpleasantness was measured using the VAS-UNP to explore the 

relationship of this measure of emotional reaction to pain intensity and disability measures. 

Initial evaluation of group and class differences with the variables was done using Wilcoxon 
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rank sum statistic. The Z continuity correction of 0.5 was included. The standard deviation 

expected under the null hypothesis was reported. 

Variables of pain intensity, pain unpleasantness, and observed disability variables 

were measured across time.  In order to combine the data for correlation analyses that would 

address the relationship of these variables, there was a need to confirm that there was no 

difference in the ratings within group or within class of the ratings across time. Analyses of 

the non-pain group using the VRP were not possible due to the absence of variance and floor 

effect. Analyses using the pain interference scale data were not possible with the non-pain 

group since subjects did not complete the scale. Because unequal variance within the LIC 

and MIC was present, correlation analyses of the LIC and MIC data were performed using 

the nonparametric Spearman rank correlation coefficient, rs. 

Observed Disability  

Measurement of observed disability used the video recording of the movement from 

both sit to stand tasks. While the activity was intended to induce pain in the knee for the 

study, the time to rise was thought to be indicative of disability related to the knee pain. 

Movements of first stand and second stand were timed for this particular question.  

Non-Pain and Pain Group Observed Disability 

The non-pain group required less time to rise to standing at first stand (M = 5.31, SD 

= 1.6) than the pain group (first stand: M = 8.56 sec, SD = 4.58 sec). The non-pain group also 

required less time to rise to standing at second stand (M = 5.63 sec, SD = 1.00 sec) than the 

pain group (M = 9.41 sec, SD = 4.87 sec). Because variances were unequal, Wilcoxon rank 

sum statistic, 2-sided normal approximation, and Fisher’s exact test were used and indicated 

significant group mean difference between the pain group and non-pain group in time to 
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stand with both stand tasks (first stand: Z = -3.44, normal approx. p = 0.0006, Fisher’s exact 

test = 0.0004) (second stand: Z = -5.04, normal approx. p < .0001, Fisher’s exact test = 

6.00E-08) (Table 96).  

 
Table 96.  
 
Difference in Observed Disability of Non-Pain and Pain Group by Task 

Task 

Non-Pain  

(N = 30) 

M Score 

Pain 

(N = 32) 

M Score 

SD 

Under 

Null 

Z 

2-sided 

normal  

approximation 

Fisher’s exact 

test 

First stand *22.83 38.41 68.89 -3.44 0.001 4.11E-04 

Second Stand 19.72 42.55 70.02 -5.04 <.0001 6.00E-08 

*N = 29. 

Paired t-test results indicated there was no difference in the time to rise to standing at 

first and second stand for the non-pain group [pooled t(57)= - 0.90, p = 0.37] or for the pain 

group [pooled t(62) = - 0.71, p = 0.48].   

Low and Moderate Intensity Class - Observed Disability 

Because variances were known to be unequal between the LIC and MIC and sample 

size was small, LIC and MIC times to rise from sitting to standing at the two stand tasks were 

compared using Wilcoxon rank sum statistic, two-sided t-approximation, and Fisher’s exact 

test. The LIC mean score on time to stand at first stand (M score = 15.63) was less than the 

MIC mean score (M score = 17.96) (Table 97). At second stand, the LIC mean time to stand 

(M score = 14.05) remained less than the MIC mean time to stand (M score = 20.58). The 

difference between the classes in time to rise from sitting to standing at first stand (Z = 0.66, 

t-approx. = 0.51, Fisher’s exact test = 0.25) was not statistically significant (Table 97). 

However, a decrease in the LIC time and the increase in the MIC time were observed at the 
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second stand, and significant difference in observed disability between the LIC and MIC at 

second stand was demonstrated (Z = 1.90, t-approx = 0.07, Fisher’s exact test = 0.05). 

Table 97.  
 
Difference in Observed Disability of Low and Moderate Intensity Pain Classes by Task 

Task 

Low 

Intensity 

Class 

(N = 20) 

M Score 

Moderate 

Intensity 

Class 

(N = 12) 

M Score 

 

SD 

 Under 

Null 

Z 
2-sided t-

approx. 

Fisher’s 

exact test 

First Stand 15.63  17.96  25.57 0.66 0.51 0.51 

Second Stand 14.05  20.58  25.48 1.90 0.07 0.05 

 

Self-Evaluated Disability  

Self-evaluation of disability was obtained from self-report data of the pain 

interference scale of the BPI, the self-efficacy for physical function scale of the ASES (FSE), 

and the disability scale of the SOPA.  

Self-Evaluated Disability – Pain Interference Scores for Pain Group. 

BPI directions instructed persons who had not had pain or taken pain medication in 

the past week not to complete the inventory after 10 items. Therefore, non-pain subjects did 

not complete the pain severity and pain interference scales related to knee pain.  

Pain interference scale scores can range from 0 to 70. The non-pain group had 0 

ratings for pain interference due to knee pain. The scores of the pain group on the seven-item 

pain interference scale of the BPI (M = 24.69, SD = 18.39) indicated that subjects in the pain 

group reported moderate level of pain interference in daily life activities. However, the range 

in scores from 0 to 61 indicates that some pain group subjects considered themselves more 
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disabled by pain than the pain group mean described. The non-pain and pain group 

demonstrated unequal variance (F1 = Infinity, p <.0001) and significant difference [t(31) = -

8.45, p <.0001]. 

The LIC and MIC pain interference scores demonstrated equal variance [F 1 (11, 19)= 

2.17, p = 0.13) and significant difference in pain interference scores [t(30) = -2.84, p = 0.01]. 

Further investigation of LIC and MIC pain interference scores was done using Wilcoxon 

rank sum statistic with 2-sided t-approximation and Fisher’s exact test. Results indicated that 

the LIC group had significantly lower pain interference scores than the MIC pain interference 

scores (Z = 2.57, t-approx. p = 0.02, exact test = 0.008). 

Self-Evaluated Disability – Self-Efficacy for Physical Function Scale of ASES. 

The FSE scale of the ASES (range = 9 - 90) uses a task-oriented measure of 

confidence in performing specific activities. Activities evaluated include those associated 

with hand function as well as mobility.  

Mean FSE scores indicated both the non-pain group (M = 83.37, SD = 11.66) and 

pain group (M = 72.91, SD = 17.32) felt confident they could perform many of the tasks 

independently with the non-pain group more confident than the pain group. Wilcoxon rank 

sum statistic, 2-sided normal approximation, and Fisher’s exact test were performed since 

unequal variance [F1 (31, 29) = 2.21, p = 0.04] was present. When Wilcoxon rank sum was 

calculated, the non-pain group reported greater FSE (M score = 39.67, SD = 69.88) than the 

pain group (M score = 23.85, SD = 69.88) leading to a significant difference between the 

groups (Z = 3.50, normal approx. p =.0005, Fisher’s exact test = 6.00E-04).   
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When the FSE scores of the LIC and MIC were evaluated, LIC and MIC FSE scores 

demonstrated equal variance [F 1(11, 19) = 2.38, p = 0.09). Significant group difference in 

FSE scores between the LIC and MIC was observed [t(30) = 3.96,  p = 0.0004].  

Self-Evaluated Disability – Disability Subscale of SOPA. 

Scores on the attitude about pain-related disability obtained from the SOPA disability 

subscale (range: 0 to 4) indicated some subjects had beliefs about pain that contribute to 

maladaptive coping. 

The non-pain group scores (M = 0.55, SD = 0.54) and pain group scores (M = 1.34, 

SD = 1.0) indicated the pain group reported more attitudes related to maladaptive coping with 

pain than the non-pain group.  Because variances were unequal [F1 (31, 29) = 3.38, p = 

0.0014], Wilcoxon rank sum statistic, 2-sided normal approximation, and Fisher’s exact test 

were performed. Significant difference in disability subscale scores between the non-pain (M 

score = 23.82, SD = 70.39) and pain group (M score = 38.70, SD = 70.39) was observed (Z = 

-3.27, normal approx. = 0.001, Fisher’s exact test = 0.0008). 

Subject attitude about disability related to pain of the LIC and MIC subjects was 

evaluated using Student’s t-test since the groups were independent and the nvariances were 

equal [F1(19, 11) = 1.01, p = 1.00]. No significant difference in attitude about disability due 

to pain between the classes was demonstrated [t(30) = -1.95, p = 0.06].  

Pain Intensity 

Comparison of pain intensity between the groups used the mean of scores on the 

visual analogue scale of pain intensity (VAS-PI) (range: 0 to 100) and the Verbal Pain Rating 

(VRP) (range: 0 to 10) over the study session. Because movement tasks were intended to 

increase pain using a normal activity, only the VAS-PI and VRP ratings obtained during the 
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movement tasks during the acoustics session were used in the following analyses. Because of 

the unequal variances of the groups and classes, nonparametric statistical analyses were used. 

Pain Intensity – VAS-PI Scores for Non-Pain and Pain Groups 

 Scores on the VAS-PI indicated that the non-pain group had low levels of pain (M = 

0.5 mm, SD = 0.90 mm, median = 0) in comparison to the pain group (M = 19.84 mm, SD = 

23.92 mm, median = 10 mm). Paired t-tests were used to determine within group differences 

in VAS-PI scores with seated and stand tasks. Within-group VAS-PI scores at the seated 

tasks were not different for the non-pain group [t (28) = -0.30, p = 0.77] or the pain group 

[t(29) = 1.14, p = 0.26]. Within-group VAS-PI scores at the stand tasks were not different for 

the non-pain group [t(29) = 1.18, p = 0.25] or for the pain group [t(30) = -0.59, p = 0.56] 

(Table 98). 

Table 98.  
 
Within-Group Differences in Written Pain Intensity Scores of Non-Pain and Pain Group by 
Task 

Tasks Group 
VAS-PI 

M (SD) 
df t-test p 

Seated Non-Pain -0.05 (0.94) 28 -0.30 0.77 

 Pain 2.85 (13.64) 29 1.14 0.26 

Stand Non-Pain 0.15 (0.70) 29 1.18 0.25 

 Pain -1.31 (12.3) 30 -0.59 0.56 

 

Because variances between non-pain and pain groups were unequal and both groups 

had 30 or more subjects, Wilcoxon rank sum statistic, 2-sided normal approximation (with a 

continuity correction of .5), and Fisher’s exact test were used to determine between-group 

difference at the stand tasks.  
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Significant difference in VAS-PI ratings between the non-pain and pain groups was 

observed at all tasks (Table 99). At the first seated task, the non-pain group reported its 

lowest VAS-PI rating (M score = 17.5, SD = 65.13) while the pain group reported its highest 

VAS-PI rating (M score = 43.50, SD = 65.13). First seated VAS-PI ratings demonstrated the 

greatest group mean difference (Z = -5.98, normal approx. < .0001, Fisher’s exact test = 

3.33E-11). At first stand, the non-pain rating increased (M score 18.37, SD = 67.65) and pain 

group mean score decreased (M score = 43.23, SD = 67.65) but group difference remained 

statistically significant (Z = -5.60, normal approx. < .00001,   p =<.0001, Fisher’s exact test 

= 1.10E-09). At second seated, non-pain group VAS-PI ratings increased (M score = 20.02, 

SD = 66.49) as the pain group VAS-PI ratings decreased (M score = 40.94, SD = 

66.49).Significant difference between the non-pain and pain groups was observed in the 

VAS-PI ratings at the second seated (Z = -4.77, normal approx. < .0001, Fisher’s exact test = 

4.91E-07). At second stand, the non-pain group VAS-PI increased (M score = 20.73, SD = 

67.97) as did the pain group VAS-PI ratings (M score = 41.59, SD = 67.97) and significant 

difference in non-pain and pain group VAS-PI scores continued (Z = -4.74, normal approx. p 

<.0001, Fisher’s exact test = 6.18E-07). 
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Table 99.  
 
Group Difference in Written Pain Intensity Scores of Non-Pain and Pain Groups by Task 

Task 

Non-Pain  

(N = 30) 

M Score  

Pain  

(N = 32) 

M Score 

SD 

Under 

Null 

Z 
2-sided t-

approximation 

Fisher’s exact 

test 

First seated 17.50  *43.50  65.13 -5.98 <.0001 3.33E-11 

First Stand 18.37  ** 43.23  67.65 -5.60 <.0001 1.10E-09 

Second Seated *** 20.03  40.94  66.49 -4.77 <.0001 4.91E-07 

Second Stand 20.73  41.59  67.97 -4.74 <.0001 6.18E-07 

*N = 30. **N = 31. ***N = 29. 

Pain Intensity - Written Rating of Pain Intensity of LIC and MIC 

 In order for the research question to evaluate the relationship of report of pain 

intensity and disability, the data of persons with pain must be evaluated. Because variances 

of written pain intensity were not equal in LIC and MIC across all tasks [F1 (22, 39) = 17.49, 

p < .0001], written ratings of low intensity class (N = 20) and the moderate intensity class (N 

= 12) were compared using Wilcoxon rank sum statistic, 2-sided t-approximation, and 

Fisher’s exact test. 

 At first stand, both groups reported their lowest written pain intensity ratings (Table 

103). The LIC VAS-PI rating (M score 10.11, SD = 23.19) and MIC VAS-PI rating (M score 

= 24.82, SD = 23.19) were significantly different (Z = 4.40, 2-sided t-approx. = 0.0001, 

Fisher’s exact test = 1.10E-07). At first stand, LIC VAS-PI ratings (M score = 10.65, SD = 

24.20) and MIC VAS-PI ratings (M score = 10.65, SD = 24.20) were significantly different 

(Z = 4.40, 2-sided t-approx. = 0.0001, Fisher’s exact test =1.54E-07). At second seated, the 

LIC ratings decreased (M score = 10.60, SD = 25.56) while the MIC ratings increased (M 
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score = 26.33, SD = 25.56) leading to the largest difference between the groups (Z = 4.60, 2-

sided t-approx. = <.0001, Fisher’s exact test = 3.10E-08). At second stand, LIC VAS-PI 

ratings increased (M score = 10.75, SD = 25.55) as the MIC VAS-PI ratings decreased (M 

score = 26.08, SD = 25.55) and significant difference continued (Z = 4.48, 2-sided t-approx. 

<.0001, Fisher’s exact test = 1.59E-07) (Table 100). The LIC and MIC differed in written 

report of pain intensity at all tasks.  

 
Table 100.  
 
Group Difference in Written Pain Intensity Scores of Low and Moderate Intensity Pain 
Classes by Task 

Task 

Low 

Intensity 

Class 

(N = 20) 

Mean Score  

Moderate 

Intensity 

Class 

(N = 12) 

Mean Score 

 

SD 

Under 

Null 

Z 
2-sided t-

approximation 

Fisher’s exact 

test 

First seated *10.11 24.82 23.19 4.40 0.0001 1.09E-07 

First Stand 10.65 **25.73 24.20 4.40 0.0001 1.54E-07 

Second Seated 10.60 26.33 25.56 4.60 <.0001 3.10E-08 

Second Stand 10.75 26.08 25.55 4.48 <.001 1.59E-07 

*N = 19. **N = 11. 

 

Pain Intensity – Verbal Rating of Pain Intensity of Non-Pain and Pain Groups 

Scores on the VRP indicated that the non-pain group reported no pain (M = 0, SD = 0, 

median = 0) in comparison to the pain group report of mild pain (M = 2.46, SD = 2.15, 

median = 2.0). When paired t-tests were used to determine within group differences in VRP 

with seated tasks, within group VRP scores were not different across the tasks in the non-
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pain group [t(29) = -0.29, p = 0.77] or in the pain group [t(29) = -0.34, p = 0.74]. Using 

paired t-tests, VRP were not different for stand tasks for the non-pain group [t(29) = 0.54, p = 

0.59] or for the pain group [t(30) = -0.09, p = 0.93] (Table 101). No significant within group 

difference was observed in verbal pain ratings across the two seated or the two stand tasks. 

Table 101.  
 
Within-Group Difference in Verbal Rating of Pain Intensity of Non-Pain and Pain Group by 
Task 

Tasks Group 
VRP 

M (SD) 
df t-test p 

Seated Non-Pain -0.034 (0.64) 28 -0.29 0.77 

 Pain -0.82 (13.27) 29 -0.34 0.73 

Stand Non-Pain 0.07 (0.68) 29 0.54 0.59 

 Pain 0.16 (10.14) 30 0.09 0.93 

 

The VRP ratings of the non-pain group and pain group were not normally distributed 

and variances were not equal at first stand [F1 (31, 28) = infinity, p<.0001] or second stand 

[F1 31, 29) = infinity, p < .0001]. The non-pain group reported no pain while the pain group 

reported mild levels of pain (M = 2.46, SD = 2.15). Significant difference between the non-

pain and pain group was present at all tasks when Wilcoxon rank sum statistic, normal 

approximation, and Fisher’s exact test were used but the lack of variance in the non-pain 

group is evident in the results (Table102).  

At first stand, the groups are different (Z = -6.13, normal approximation <.0001, 

Fisher’s exact test = 1.11E-11) due to increased mean score of the pain group (M score = 

43.69) compared to the non-pain mean score (M score = 18.5). The pain group kept this mean 

score through the remaining tasks. At first stand, the non-pain group VRP mean score 
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decreased (M score = 17.00) while the pain group VRP increased (M score = 49.30) and 

resulted in the largest difference (Z = -6.40, normal approximation <.0001, Fisher’s exact test 

= 9.48E-13). At second seated, the non-pain group mean score increased (M score = 18.5) 

while the pain group mean score continues steady (M score = 43.69) with the difference 

similar to first seated (Z = -6.13, normal approximation = < .0001, Fisher’s exact test = 

1.20E-11). At second stand, the mean scores remained the same as at second seated but the 

mean difference changed (Z = -6.14, normal approximation < .0001, Fisher’s exact test = 

1.28E-11).  

Table 102. 
 
 Group Difference in Verbal Rating of Pain Intensity of Non-Pain and Pain Group by Task 

Task 

Non-Pain  

(N = 30) 

M Score  

Pain  

(N = 32) 

M Score 

SD 

Under 

Null 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First seated 18.5 43.69 63.53 -6.13 < .0001 1.11E-11 

First Stand 17.0 43.69 63.53 -6.40 < .0001 9.48E-13 

Second Seated 18.5 43.69 63.51 -6.13 < .0001 1.20E-11 

Second Stand 18.5 43.69 63.49 -6.14 < .0001 1.28E-11 

 

Pain Intensity – Verbal Rating of Pain of LIC and MIC 

Verbal rating of pain of the low and moderate pain intensity classes were compared 

using the Wilcoxon rank sum statistic, 2-sided t- approximation, and Fisher’s exact test to 

determine if the classes differed in verbal rating of pain intensity by task. The MIC had 

higher verbal pain ratings at all tasks (Table 103). At first seated, the LIC VRP (M score = 

10.73, SD = 25.27) was less than the MIC VRP (M score = 26.13. SD = 25.27) resulting in 

significant difference between the classes (Z = 4.55, 2-sided t-approx. < .0001, Fisher’s exact 
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test = 8.8E-08). At first stand, both the LIC VRP (M score = 11.15, SD = 25.31) and the MIC 

VRP (M score = 25.42, SD = 25.31) increased and group difference remained significant (Z = 

4.21, -sided t-approx. = .0002, Fisher’s exact test = 2.08E-06). At the second seated, the LIC 

VRP decreased (M score = 10.80, SD = 25.24) and MIC increased (M score = 26.00,  SD = 

25.24) leading to the greatest difference of all the tasks (Z = 4.40, 2-sided t-approx. < .0001, 

Fisher’s exact test = 3.54-08). At second stand, the LIC VRP increased (M score = 10.83, SD 

= 25.17) and MIC VRP decreased (M score = 25.96, SD = 25.96) but the classes remained 

significantly different (Z = 4.50, 2-sided t-approx. < .0001, Fisher’s exact test = 1.37-07). 

Table 103.  
 
Group Difference in Verbal Rating of Pain Intensity of Low and Moderate Pain Intensity 
Classes by Task 

Task 

Low 

Intensity 

Class 

(N = 20) 

M Score  

Moderate 

Intensity 

Class 

(N = 12) 

M Score 

SD 

Under 

Null 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First seated 10.73  26.13  25.27 4.55 < .0001 8.86E-08 

First Stand 11.15  25.42  25.31 4.21 0.0002 2.08E-06 

Second Seated 10.80  26.00  25.24 4.50 < .0001 3.54E-08 

Second Stand 10.83  25.96  25.17 4.50 < .0001 1.37E-07 

 

Pain Unpleasantness 

Because emotional reaction to pain was reported using the VAS-UNP, differences in 

ratings of pain unpleasantness were evaluated using the Wilcoxon rank sum statistic, 2-sided 

normal approximation for the non-pain and pain groups,  2-sided t-approximation for the LIC 

and MIC, and Fisher’s exact test. This evaluation was added to determine the relationship of 
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the VAS-UNP to the pain intensity measures taken with movement, observational disability 

measures, and self-evaluation of disability measures. 

Pain Unpleasantness Ratings of Non-Pain and Pain Groups 

The Wilcoxon rank sum statistic was used to determine the difference in VAS-UNP 

between non-pain and pain groups. VAS-UNP ratings were significantly different at all tasks 

(Table 104). At first seated, the non-pain group report of pain unpleasantness (M score = 

18.77, SD = 64.10) and the pain group report of pain unpleasantness (M score = 42.23, SD = 

64.10) were significantly different (Z = -5.48, 2-sided normal approximation < .0001, 

Fisher’s exact test = 3.17E-09). At first stand, the non-pain group VAS-UNP rating remained 

stable (M score = 18.77, SD = 66.56) while the pain group VAS-UNP increased (M score = 

42.84, SD = 66.56) leading to greater difference (Z = -5.51, 2-sided normal approximation < 

.0001, Fisher’s exact test = 2.69E-09). At second seated, the non-pain group reported 

increased pain unpleasantness (M score = 19.74, SD = 65.79) as the pain group reported a 

decrease in pain unpleasantness (M score = 41.20, SD = 65.79) reducing the difference (Z = -

5.00, 2-sided normal approximation < .0001, Fisher’s exact test = 1.56E-07). The pain group 

reported its highest level of unpleasantness at second stand (M score = 43.27, SD = 67.99) 

while the non-pain group VAS-UNP decreased from the second seated rating (M score = 

18.95, SD = 67.99). Ratings of pain unpleasantness at second stand demonstrated the largest 

difference between non-pain and pain groups (Z = -5.53, 2-sided normal approximation < 

.0001, Fisher’s exact test = 2.40E-09). 
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Table 104.  

Group Difference in Written Pain Unpleasantness Scores of Non-Pain and Pain Groups by 
Task 

Task 

Non-Pain  

(N = 20) 

M Score   

Pain  

(N = 12) 

M Score 

SD 

Under 

Null 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First seated 18.77  42.23  64.10 -5.48  < .0001 3.17E-09 

First Stand 18.77  42.84  66.56 -5.51 < .0001 2.69E-09 

Second Seated 41.20  41.20  65.79 -4.96 < .0001 1.56E-07 

Second Stand 18.95  43.27  67.99 -5.53 < .0001 2.40E-09 

 

Pain Unpleasantness Ratings of LIC and MIC 

The VAS-UNP ratings by the LIC and MIC demonstrated significant difference at all 

tasks (Table 105). At first stand, the LIC reported its lowest level of pain unpleasantness (M 

score = 10.0, SD = 23.16) while the MIC had higher VAS-UNP (M score = 25.0, SD = 23.16) 

leading to the largest difference at all tasks (Z = 4.49, 2-sided t-approximation = 0.0001, 

Fisher’s exact test = 1.83E-08).  At first stand, the LIC reported its highest VAS-UNP rating 

(M score = 11.13, SD = 24.17) while the MIC VAS-UNP decreased (M score = 24.86, SD = 

24.17). Difference at first stand decreased but remained significant (Z = 4.01, 2-sided t-

approximation = 0.0004, Fisher’s exact test = 6.63E-06). At second seated, LIC VAS-UNP 

ratings decreased (M score = 11.10, SD = 25.53) while MIC ratings of unpleasantness 

increased (M score = 25.5, SD = 25.53) and the difference between the classes was greater (Z 

= 4.21, 2-sided t-approximation = 0.0002, Fisher’s exact test = 2.13E-06). The MIC reported 

its greatest pain unpleasantness at second stand (M score = 25.67, SD = 25.62) while the LIC 

group decreased VAS-UNP ratings. The difference in pain unpleasantness remained 
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significant at second stand (Z = 4.27, 2-sided t-approximation = 0.0002, Fisher’s exact test = 

1.08E-06).  

Table 105.  
 
Group Difference in Written Pain Unpleasantness Scores of Low and Moderate Intensity 
Pain Classes by Task 

Task 

Low 

Intensity 

Class 

(N = 20) 

M Score  

Moderate 

Intensity 

Class 

(N = 12) 

M Score 

SD 

Under 

Null 

Z 
2-sided t-

approximation 

Fisher’s 

exact test 

First seated 10.0  25.0  23.16 4.49 0.0001 1.83E-08 

First Stand 11.13  24.86  24.17 4.01 0.0004 6.63E-06 

Second Seated 11.10  25.50  25.53 4.21 0.0002 2.13E-06 

Second Stand 11.00  25.67  26.62 4.27 0.0002 1.08E-06 

 

Preliminary analyses of paired t-tests of the non-pain and pain groups and the LIC 

and MIC data at stand tasks were performed to determine if difference existed within each 

group at the stand tasks that would preclude combining group and class data for correlation 

analysis. Paired t-tests were performed using observed disability, VAS-PI, VRP, and VAS-

UNP data. 

 Paired t-tests of observed disability ratings indicated no difference in the non-pain 

group data [t(28) = -0.82, p = 0.42] or in the pain group data [t(31) = -0.82, p = 0.42] at the 

two stand tasks. Paired t-tests of the VAS-PI ratings indicated no difference in written pain 

intensity rating in the non-pain group data [t(29) = 1.18, p = 0.25]at the two stand tasks or in 

the pain group data [t(30) = -0.59, p = 0.56] at the two stand tasks. Paired t-tests of the VRPs 

indicated no difference in verbal pain intensity rating of the non-pain group data at the two 
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stand tasks [t(29) = 0.54, p = 0.59] or in the pain group data [t(30) = 0.09, p = 0.93] at the 

two stand tasks. Paired t-tests of the VAS-UNP ratings indicated no difference in the written 

rating of pain unpleasantness in non-pain group data [t(29) = 0.54, p = 0.59] at the two stand 

task or in the pain group data [t(30) = 0.09, p = 0.93] at the two stand tasks. Because there 

was no change related to time, the VAS-PI, VRP, and VAS-UNP data of each group were 

combined for the correlation analysis. 

Correlation of Disability and Pain Intensity Variables 

Since the non-pain and pain group data were interval level and non-normal, the 

nonparametric correlation coefficient, Spearman rs, was used. Lack of correlation in the non-

pain group VRP and pain interference scores was related to lack of variance in VRP or lack 

of pain interference data and those data are not included (Table 106). Strong bivariate 

correlations, where rs is greater than 0.5, existed between non-pain group VAS-PI and VAS-

UNP ratings (rs = 0.82, p <.0001) and self-efficacy for physical function and scores on the 

SOPA disability scale (rs = - 0.57, p < .0001). Moderate bivariate correlations existed 

between non-pain group scores for self-efficacy for physical function and VAS-UNP (rs = -

0.36, p =0.005) and self-efficacy for physical function and VAS-PI (rs = -0.29, p = 0.02). 

Weak bivariate correlation, those where rs was greater than 0.1 but less than 0.29, existed 

between non-pain group scores for observed disability and scores on the SOPA disability 

scale (rs = 0.10, p = 0.44) and observed disability and self-efficacy for physical function (rs = 

-0.10, p = 0.44). 
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Table 106.  
 
Correlation of Non-Pain Group Disability and Pain Measures 
 

Observed 

Disability 

VAS -

PI 

SOPA 

Disability Scale 

ASES 

Self-Efficacy for 

Physical Function 

VAS -

UNP 

Observed Disability 1.0 

59 
    

VAS-PI 0.03 
0.85 
59 

1.0 

60 

   

SOPA 

Disability Scale 

0.10 
0.44 
59 

-0.06 
0.65 
60 

1.0 

60 

  

ASES 

Self- Efficacy for 

Physical Function 

-0.10 
0.44 
59 

-0.29 
0.02 
60 

-0.57 
< .0001 
60 

1.0 

60 

 

VAS-UNP -0.03 
0.83 
59 

0.82 
< .0001 
60 

-0.08 
0.53 
60 

-0.36 
0.005 
60 

 

1.0 

60 

 

Pain group correlation data included the BPI pain interference scale and the VRP 

ratings (Table 107). When the pain group data was evaluated using Spearman rs, strong 

bivariate correlations occurred with pain measures: (1) VAS-PI and VRP (rs = 0.88, p 

<.0001), (2) VAS-UNP and VAS-PI (rs = 0.88, p <.0001), and (3) VAS-UNP and VRP (rs = 

0.80, p < .0001). A number of strong bivariate correlations existed with disability measures: 

(1) self-efficacy for physical function and SOPA disability scale scores (rs = -0.66, p < 

.0001), (2) pain interference scale and SOPA disability scale scores (rs = 0.64, p <.0001), (3) 
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self-efficacy for physical function and pain interference scale scores (rs = -0.56, p <.0001), 

and (4) SOPA disability scale scores and observed disability (rs = 0.51, p < .0001).  

Several moderate bivariate correlations of pain measures existed : (1) VAS-PI ratings 

and self-efficacy for physical function  scale scores (rs = -0.46, p = 0.0002), (2) VRP ratings 

and self-efficacy for physical function (rs = -0.45, p = 0.0002), (3) VRP ratings and SOPA 

disability scale scores (rs = 0.44, p = 0.0003), (4) VRP ratings and pain interference scale 

scores (rs = 0.44, p = 0.0003), (5) VAS-UNP ratings and self-efficacy for physical function 

scale scores (rs = -0.40, p = 0.0001), (6).VAS-UNP ratings and pain interference scale scores 

(rs = 0.34, p = 0.006), (7) VRP ratings and observed disability scores ( rs = 0.34, p = 0.005), 

and (8) VAS-PI ratings and pain interference scale scores (rs = 0.33, p = 0.008). Moderate 

bivariate correlation of existed with observed disability and pain interference scale scores (rs 

= 0.42, p = 0.0005).  

Weak bivariate correlation of pain measures existed: (1)  VAS-PI ratings and SOPA 

disability scale scores (rs = 0.29, p = 0.02),  (2) VAS-UNP ratings and SOPA disability scale 

scores (rs = 0.21, p = 0.10), (3) VAS-PI ratings and observed disability (rs = 0.13, p = 0.32), 

(4) VAS-UNP ratings and VAS-UNP ratings and observed disability (rs = 0.10, p = 0.41) and 

(5) VAS-PI ratings and observed disability scores (rs = 0.10, p = 0.41). Weak bivariate 

correlation occurred with disability measures of observed disability and self-efficacy of 

physical function (rs = -.20, p = 0.11). 

Correlations of VAS-PI, VAS-UNP, and VRP with other pain measures were strong 

(Table 107).  The VRP correlation with the VAS-PI and the correlation of the VAS-PI and  
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Table 107.  
 
Correlation of Pain Group Disability and Pain Measures 

 

Observed 
Disability 

VAS-PI VRP 

SOPA  
Disability 

Scale 

BPI 
 Pain 

Interference 
Scale 

ASES 
Self-

Efficacy for 
Physical 
Function 

VAS-
UNP 

Observed 
Disability 

1.00 

64 

      

VAS-PI 0.13 
0.32 
63 

1.00 

63 

     

VRP 0.34 
0.005 

64 

0.88 
<.0001 

63 

1.00 

64 

    

SOPA 
Disability 
Scale 

0.51 
<.0001 

64 

0.29 
0.02 
63 

0.44 
0.0003 

64 

1.00 

64 

   

BPI  
 Pain 
Interference 
Scale 

0.42 
0.0005 

64 

0.33 
0.0008 

63 

0.44 
0.0003 

64 

0.64 
<.0001 

64 

1.00 
 

64 

  

ASES 
Self-Efficacy 
for Physical 
Function 

-0.20 
0.11 
64 

-0.46 
0.0002 

63 

-0.45 
0.0002 

64 

-0.66 
<.0001 

64 

-0.56 
<.0001 

64 

1.00 
 

64 

 

VAS-UNP 0.10 
0.41 
63 

0.88 
<.0001 

63 

0.80 
<.0001 

63 

0.21 
0.006 

63 

0.34 
0.006 

63 

-0.40 
0.001 

63 

1.00 
 

63 
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VAS-UNP (rs = 0.88, p < .0001) were the highest correlation observed with the pain group. 

The correlation of the VAS-PI and VAS-UNP in the non-pain group was the highest of the 

variables investigated (rs = 0.82, p < .0001).  

Correlations of the three self-evaluated disability/ability measures with other self- 

evaluated disability /FSE measures were strong. The negative correlation of FSE with the 

SOPA disability scale score (rs = -0.66, p < .0001) was the highest of these measures. The 

pain interference scale of the BPI was strongly correlated with the SOPA disability scale (rs 

= 0.64, p < .0001). The negative correlation of the self-efficacy for physical function scale 

with the pain interference scale was strong (rs = -0.56, p < .0001) but less than the correlation 

with the SOPA disability scale. 

Correlations of observed disability with the self-evaluated disability/ self-efficacy for 

ability measures were varied. Observed disability correlations ranged from strong with the 

SOPA disability scale (rs = 0.51, p < .0001) to moderate with the BPI pain interference scale 

(rs = 0.42, p = 0.0005) to weak with the FSE (rs = -0.20, p = 0.11).  

Correlations of the pain measures with self-evaluated disability measures were varied. 

The VRP was moderately correlated with the BPI pain interference scale (measured only 

with the pain group) (rs = .44, p = 0.0003) and with the SOPA disability scale (rs = .44, p = 

0.0003). VAS-PI correlations were weaker than those of the VRP with self-evaluated 

disability/ self-efficacy for ability. The VAS-PI was moderately correlated with FSE (rs = -

0.46, p = 0.0002) and pain interference (rs = 0.33, p = 0.008). Weak correlation was observed 

with VAS-PI scores and the SOPA disability scale (rs = 0.29, p = 0.02).  VAS-UNP ratings 

were moderately correlated with FSE scores (rs = -0.40, p = 0.001) and pain interference 
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scores (rs = 0.34, p = 0.006). Correlation of the VAS-UNP scores with the SOPA disability 

scale scores were weak (rs = 0.21, p = 0.10). High ratings on the VRP appear more strongly 

associated with measures that tap domains other than pain and physical disability than the 

VAS-PI and the VAS-UNP.   

Correlation of pain measures and observed disability were not strong. Correlation of 

the VRP with observed disability in the pain group was moderate (rs = 0.34, p = 0.005) but 

stronger than the other two written pain measures. The VAS-PI and observed disability were 

weakly correlated (rs = 0.13, p = 0.32). The VAS-UNP and observed disability were more 

weakly correlated (rs = 0.10, p = 0.41) than the VAS-PI. When the VRP is multiplied by 100 

to equate to the VAS-PI, subjects rated pain lower on the VRP.  

While it was thought that increased disability was related to increased report of pain, 

in this sample, disability was not strongly correlated to pain characterized by low and 

moderate intensity chronic knee pain. In addition, when asked to rate pain intensity, subjects’ 

verbal ratings of pain were lower than written reports of pain intensity. 



  

 

 

CHAPTER SIX 

DISCUSSION 

 

Pain  has been described as a homeostatic emotion due to its ability to effect 

physiological change and  motivate behavioral change to reduce or avoid it’s aversive nature 

(A. D. Craig, 2003b). Emotion influences vocal signal (Banse & Scherer, 1996; Wallbott & 

Scherer, 1986) and differences in vocal signal have been related to predictions of emotion 

expression proposed by a componential theory of affective expression (K. Scherer, 1986; K. 

Scherer & Ellgring, 2007b). Because nurses and health care providers rely on verbal self -

report of pain to assess and modify care, investigation of vocalization associated with an 

increase in chronic pain and its emotional response is relevant to pain management.  

This exploratory study investigated whether change in acoustic parameters of the 

vocal signal occurs with an increase in chronic pain and if change in acoustic parameters 

could indicate the specific type of emotional reaction to chronic pain.  

The Method 

The study required development of an innovative method to assess the emotional 

reaction to pain independent of the cognitive influence required by written or verbal 

numerical scales for pain measurement. The method included strategies for recording 

observational data as well as applying statistical techniques that would allow comparison of 

the observed data with theoretical predictions. The observational method required increasing 
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chronic pain and measuring of acoustic and physiological data at rest and during the pain 

induction activity. Because emotion is defined by the occurrence of a physiological response 

to a stimulus or event, physiological data was obtained to determine that an emotion occurred 

in anticipation of a painful stimulus in the pain group. Comparison of outcomes for the 

chronic pain sample and a non-pain sample allowed evaluation of differences in acoustic 

parameters associated with a movement task thought to increase knee pain.  

The purpose of the study was to develop a real-time indicator of emotional reaction to 

chronic pain in contrast to written psychological instruments designed to measure state and 

trait levels of mood, or the enduring pattern of emotional response in an individual. Because 

chronic pain is associated with negative affective states of depression, anxiety, and anger and 

these moods may influence short-term emotional reaction, assessments of these mood states 

required use of validated instruments to provide information on subjects’ enduring patterns of 

emotion. Although moods are not emotions, mood state measured by the inventories 

provided a proxy for emotional state. Change in acoustic parameters were predicted to occur 

with emotional state (K. Scherer, 1986) and use of the proxy for emotional state allowed 

comparison of observed acoustic parameter changes with these predictions of acoustic 

parameter changes. Because the non-pain group was expected to be more closely aligned 

with the predictions based on normal response to emotion, significant difference between the 

non-pain and pain group could signal increased pain presence. Therefore, sample mean 

scores on scales for depression, anxiety, and anger became proxies for emotional states. 

Since group mean levels of depression, anxiety and anger were lower than norms established 

by instrument developers, it suggests that these moods all related to Scherer’s lower intensity 

emotional states not higher intensity emotions: sadness/dejection not grief/despair, 
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anxiety/worry not fear/panic, and irritation/cold anger not rage/hot anger (K. Scherer, 1986). 

Sadness/dejection is identified as a more trophotropic emotion associated with 

parasympathetic nervous system predominance. Anxiety/worry and irritation/cold rage are 

identified as more ergotropic emotions and associated with sympathetic nervous system 

predominance. 

Anticipating that performance anxiety and equipment would affect the acoustic 

samples of the first task, a second movement task was included in the study’s protocol. 

Acclimation of subjects to the equipment and learning of the procedure was seen as 

influencing the difference in the two movement tasks. While some nervous behavior was 

present with the first task, subjects demonstrated learning of the behaviors required with the 

second task. Because anxiety was a mood of interest, the decision to analyze both tasks was 

made in order to detect differences between the two tasks that could relate to performance 

anxiety. No difference in within group pulse rate between the two movement tasks was 

observed indicating that the level of anxiety was not significant.  

The sample of 62 volunteers was recruited from a university setting and was well-

educated. The intent was to study chronic knee pain common in community-living women in 

order to obtain data about natural response to chronic knee pain. Because of the exploratory 

nature of this study, the need to recruit a variety of subjects to determine more information 

about the relationship of movement, pain, and voice was important.  Although the sample 

size was small, ethnic diversity was present.  

Ability to read, understand, and speak English was a requirement; however, 

information about cultural background beyond racial group membership was not collected. 

Because the university community attracts persons from various parts of the country and 
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world, speech patterns, speech rates, and pronunciation were varied and regional dialects 

were present. The study design included a connected speech sample to allow capture of the 

vowel /ə/ in the context of usual speech. However, it was difficult to capture /a/ in the 

connected speech sample because of the substitution of /ei/ and /e/ that is prevalent in 

southern United States. In addition, some subjects spoke quickly or slurred words leading to 

limited length of vowel samples for analysis. Because connected speech samples could not be 

obtained for the sample, connected speech vowels were not analyzed with this sample.   

 Use of the head-mounted microphone facilitated capture of the acoustic samples with 

the movement tasks. Placement of the microphone near the outer corner of the mouth 

reduced noise interference with subject movement and wearing the head-mounting did not 

bother subjects. Default settings for intensity were used with the Computerized Speech 

Laboratory and Multi-Dimensional Voice Program, and high intensity bursts from a few 

subjects meant samples could not be analyzed. Occurrence of bursts required repeating the 

vowels and connected speech samples. The restriction of vocal intensity to 60-65 dB to 

accommodate older women and the multiple tokens may have been unnecessary. 

 In this study, reports of Fhi results identified a subject’s first seated tokens 

demonstrated much higher F0 that subsided with correction in the subsequent tokens. When 

the subject’s videotape was reviewed to determine what might have caused this error, the 

subject was found to have sung the vowel at the first seated task and was prompted to speak 

for the subsequent tasks. The association of singing with the sustained vowel production was 

unexpected, but important to correct in acoustic data collection. 



  

242 

 

 Use of other acoustical analysis programs could be incorporated, but CSL and MDVP 

system allowed rapid collection of the multiple samples and analysis of several parameters. 

While learning features of the programs and adjusting the settings required technical support, 

advice was available from KayPENTAX and a committee member. While the equipment was 

transportable within the building, the desktop computer system, CSL hardware, and speaker 

were cushioned by pneumatic tires to protect the sensitive electronics. 

The protocol’s requirement of five 4-second long sustained vowels with each task 

may have promoted mouth dryness or fatigue that was intended to demonstrate physiological 

arousal. Room temperature also increased during the acoustic sessions in the summer due to 

lack of air conditioning. Subjects were allowed to take drinks of water if desired during the 

study. Therefore, it is possible that the fluid intake by some subjects, but not all, confounded 

the effect of decreased saliva production on formants associated with sympathetic nervous 

system activation.  

 Although the use of pulse oximetry prevented subject disrobing, obtaining  several 

seconds of pulse uninterrupted by voice or movement at rest, in anticipation of standing, and 

while standing to assess physiological changes with the two sit-to-stand tasks proved 

difficult. A three-second observation was the largest period obtainable for most of the sample 

and, coincidentally, three seconds was the shortest interval that could be programmed on the 

pulse oximetry equipment to average pulse. Since emotional change may occur in periods 

shorter than three seconds, the magnitude of a brief change in pulse rate that lasted for only 

one or two seconds could be reduced with pulse oximetry averaging and the restricted time 

period selected for measurement. 
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 Videotaping of the recording session used a camcorder that captured the head-to-toe 

image of the subject’s for the timing of the sit-to-stand task that assessed observed disability. 

Image resolution was sufficient for this measurement. Although the audio track of the 

recording was not used for acoustical measurements, the audio track verified the activation of 

the marker for the physiological data, an important cue for the pulse rate measurement. When 

pulse rate data was erratic, the recording clarified subject activity important in answering 

research questions. 

 Recommendations on improvements to implementation of this method are addressed 

later in the implications for future research.  

The Outcomes 

This investigation demonstrated that pulse rates differered in non-pain and pain 

samples subjected to sit-to-stand task as a means of increasing pain on movement. Pulse rate 

was selected in this study for its rapid response rate and ability to be monitored with 

movement and voice recordings during the study. The choice of pulse oximetry was 

attractive as it avoided disrobing subjects or further restricting movement with 

electrocardiographic leads.  However, data analysis demonstrated problems related to 

averaging that occurs with pulse oximetry. 

Emotion research has viewed physiological change as an important indicator of 

arousal necessary to appraisal in the emotion experience. Because appraisal theory predicts 

that anticipation of a stressful event will increase arousal, it was thought that physiological 

change at the anticipation of standing would be greater due to unconscious anticipation of 

painful movement and greatest at the first anticipation of standing measurement due to 

uncertainty about the procedure. Nonparametric analyses determined pulse rates were 
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significantly different between the groups at all tasks related to weight and BMI. The 

influence of body size suggested that factors in addition to arousal could be involved in the 

pulse rate differences. However, the differences between the groups at the two anticipation 

tasks were much greater than the group differences at other tasks.  

The inclusion of the sit-to-stand task and the exertion required to change position may 

have introduced a confounder to measurement of pulse as indicator of emotion with this 

sample. Because of the difference in weight and BMI, the sit-to-stand task may have 

introduced physiological and anatomical changes like Valsalva maneuver and lung capacity 

changes that are influenced by body size factors and were not measured. In addition, weight-

shifting from one leg to the other observed in the pain group with stand tasks may have 

influenced pulse, lung expansion, and acoustic parameters as well. 

Because weight and BMI were not different between the LIC and MIC, the data of the 

LIC and MIC were analyzed to further explore the influence of pain intensity on pulse rate. 

The lack of significant difference in pulse rate was unexpected given the difference between 

the LIC and MIC in pain intensity and unpleasantness ratings. Two possible reasons for this 

absence of difference in pulse exist. First,  the trend of the MIC to have lower pulse rates 

than the LIC until the second stand task suggests possible adaptation to chronic pain and the 

restorative function of the parasympathetic nervous system thought to dampen sympathetic 

nervous system reactivity (Hellhammer et al., 2004). Second, the lack of correlation of the 

pulse with pain intensity in the MIC supports earlier findings of a gender difference in pulse 

with pain intensity (Tousignant-Laflamme et al., 2005). The decrease in pulse rate of the LIC 

and the increase in pulse rate of the MIC at the second stand task suggests appraisal 
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processing differences related to coping potential or self compatibility checks resulting in 

different neuroendocrine system activation (K. Scherer, 2001a).  

In addition to the increased pain and unpleasantness at the second stand task, 

subjects’ recognition that this task signaled the end of the study session may have triggered 

thoughts about other activities, increasing mental load and, subsequently, increasing pulse 

rate. Scherer (2001a) suggests that a delay in response can occur when an appraisal requires 

more complex processing of information related to the stimulus. Physical exertion and 

fatigue associated with both sustained vocalization and movement tasks may have added 

physical stress to the mental loading. The observed pulse rate increase of the MIC at the 

second stand task could be indicative of this additive effect of multiple stressors of mental 

load as well as emotional arousal that are described by Myrtek et al. (2005).   

The increase in pulse in the pain group at the anticipation of standing, likely due to 

the larger number of LIC subjects, cannot be attributed to anticipation of a painful activity 

alone. Possible reasons for the pulse increase in the pain group or lack of variation in the 

non-pain group include medications, level of conditioning, room temperature, metabolism of 

the snack prior to the acoustic measurements, and fear of pain being inflicted.  These factors 

were not controlled in this exploratory investigation and could contribute to the results. Since 

the purpose of measuring pulse rate was to indicate an emotion had occurred, the findings do 

not clearly establish emotion change.  

Non-pain versus pain group differences in acoustic parameters were notable for 

differences in range of F0 and jitter but not for MF0, Flo, Fhi, shimmer and APQ. Analysis of 

acoustic parameters demonstrated change in range of F0 and jitter with increased pain was 

associated with the movement tasks in the pain and non-pain group. Observation of a 
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significant difference between non-pain and pain groups with an acoustic parameter capable 

of being perceived by ear was a desired, although not expected, outcome of this study with 

the low level of activity required. While human hearing has been shown to be sensitive to 

acoustic changes associated with emotion (Luo, Fu, & Galvin, 2007), cues to emotion often 

rely on fundamental frequency, or its perceptual correlate, pitch. Although higher frequencies 

capture the attention of the listener and are used to notify of the need for assistance (Luo et 

al., 2007; Noyes, Hellier, & Edworthy, 2006), human hearing is reported to be more sensitive 

to changes in lower frequencies (Johnson, 2003). However, the lower frequencies used by the 

pain group may attract less listener attention in a noisy environment despite this sensitivity.  

While change in fundamental frequency is easily detected by listeners and increase in 

F0 is known to occur with acute pain (B. J. Stevens, Johnston, & Horton, 1994), no 

significant difference in F0 or MF0 were demonstrated in this sample. Because lower pitch 

occurs in older women, this finding verified the groups did not differ due to an decrease or 

increase in F0 for one group. In addition, this finding suggests that non-pain and pain subjects 

were not experiencing acute pain in response to the movement task, but could indicate the 

chronic pain group was experiencing a different type of stimulus.  

Based on reports of monotone with depression, three additional characteristics of 

fundamental frequency were investigated: Flo, Fhi, and range of F0. Along with the higher 

pulse rate with movement tasks, the pain group demonstrated lower F0, lower Flo, and 

increased range of F0 compared to the non-pain group. This association of heart rate and 

lower F0 supported Orlikoff and Baken (1989) suggestion that changes in mean F0 during 

heartbeat were related to the systolic increase in blood volume to the vocal folds’ muscular 

body resulting in decreased F0. In this sample of older women, use of medications and 
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medical conditions that affect cardiovascular performance are acknowledged as possible 

confounders. Since detailed medication histories were not taken, the effects of medications 

may have increased or decreased the observed pulse rate and cardiac output to musculature 

underlying the vocal fold mucosa and, thus, may have influenced F0.  

The increase in group mean differences in Flo across tasks, although not statistically 

significant, was interesting. While discussion of range of F0 often indicates use of higher 

frequencies in females, the difference in the non-pain and pain group occurred due to use of 

lower frequencies. Differences in Flo at first stand (9.04 Hz) and second stand (10.68 Hz) 

were large enough to be detectable by ear. Since the pain group demonstrated lower 

frequencies, there is potential use for Flo as an indicator of chronic pain if significance can 

be demonstrated in a larger sample. 

Though not statistically significant, group mean differences in Fhi between non-pain 

and pain groups ranged between 0.04 to 3.20 Hz across the four tasks. These differences 

would not be easily detected by ear. Increased use of higher frequencies indicative of more 

acute pain were not expected with chronic pain. 

Range of F0 was different between the non-pain and pain groups and the difference 

was statistically significant. This difference is unusual because range of F0 became 

significantly wider due to use of lower frequencies for the pain group compared to the non-

pain group although the groups did not differ in F0 and MF0. In depression, restricted pitch 

variability has been reported (Cannizzaro, Harel, Reilly, Chappell, & Snyder, 2004). 

Although the pain group demonstrated significantly greater depression than the non-pain 

group, the pain group’s mean level of depression was less than mild depression level reported 

by the instrument’s designer. Because the pain sample was ambulatory and not severely 
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disabled, their use of a wide range of F0 with lower frequencies may demonstrate the early 

effects of low level depression. Because studies with clinically depressed subjects report 

narrower or more restricted use of low frequencies, findings of narrow range of F0 may 

develop as the level of depression increases. Because treatment of depression has been shown 

to reduce chronic pain, an early indicator of depression could signal the impact of pain as 

well as lead to earlier recognition and treatment of depression.  

While jitter is not a feature of speech detectable by ear and levels are usually low in 

healthy voices (Baken & Orlikoff, 2000), statistically significant difference in jitter was 

observed between the non-pain and pain groups at the second stand task with higher levels of 

jitter in the pain group at all tasks. Increases in jitter and shimmer that occur in aging may 

relate to this sample (Baken, 2005) and increased jitter and shimmer have been associated 

with restriction in vocal intensity (Brockmann et al., 2007). Although both groups were 

instructed and monitored to produce vowels at the same 60-65 dB level, only the pain group 

demonstrated the increased level of jitter although the groups did not differ in age. 

Significant difference in jitter was observed between the non-pain and pain groups at the 

second stand task. The lack of significant difference at first stand may result from low 

statistical power, an additive effect, or fatigue.  

Shimmer and APQ are measures related to short-term perturbation in amplitude. 

While statistically significant differences between the non-pain and pain groups in shimmer 

and APQ were not stable to log transformation, shimmer and APQ demonstrated significant 

difference in the LIC and MIC when pain intensity was considered. Elevation of shimmer 

may have been influenced by restriction of intensity and (Brockmann et al., 2007). The MIC 

had the higher levels of shimmer and APQ when compared to the LIC making its presence as 
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an indicator of pain intensity important. Since these parameters are not normally observed, 

the appearance of significant and increased levels of shimmer and APQ in this small pain 

group is noteworthy.  

The difference in formant frequencies between the non-pain and pain groups did not 

achieve significance.  Although formants demonstrated increasing difference with the second 

movement tasks compared to the first movement tasks, the increasing difference in 

frequencies in later tasks may be more related to fatigue or mouth dryness, than emotional 

response. The production of five tokens of four seconds in length and the use of an open 

vowel may have reduced saliva production more than a change due to a change in emotion; 

thus, decreasing the opportunity to capture articulation differences predicted to influence 

formants because of emotion change.  

Predictions of acoustic parameters associated with emotional states  were provided to 

encourage testing of Scherer’s sequential evaluation theory of emotion differentiation  (K. 

Scherer, 1986, 2003) but predictions were based on persons who were not having pain. While 

the level of pain reported was limited to the low and moderate range, the movement tasks 

may not have increased pain intensity in pain subjects enough to influence F0. Significant 

difference in acoustic parameters of range of F0 and jitter between pain and non-pain groups 

with the low effect size of the movement task and following log transformation was 

encouraging.  

The impact of pain intensity differences on acoustic parameters was statistically 

significant with shimmer, APQ and F2. However, because class sizes based on pain intensity 

were small and variances of the parameters were unequal, nonparametric statistical 

techniques were required with ranked data for comparison. Although a few subjects reported 
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severe levels of pain, the majority of this ambulatory and community-based sample reported 

mild and moderate levels of pain intensity. 

Unlike findings using the non-pain and pain groups, parameters based on frequency 

(e.g., range of F0 and jitter) did not demonstrate significant difference between classes based 

on pain intensity. However, difference between the low intensity class (LIC) and moderate 

intensity class (MIC) was observed with parameters related to perturbation of amplitude 

(e.g., shimmer and APQ) and with F2 at the second seated task. Although the classes were 

statistically different with respect to pain intensity, weight and BMI were not different 

between classes as in non-pain and pain groups. The moderate intensity class demonstrated 

greater levels of shimmer and APQ across all the tasks. Shimmer and APQ are parameters 

not normally observed at the level seen in the LIC and MIC and were not observed in the 

non-pain group. Because the LIC had lower levels of shimmer and APQ across tasks and a 

different response to stand tasks from the MIC, these parameters have potential for 

differentiating changes in intensity of pain and significance observed in this small sample is 

encouraging.  

Significant difference between the LIC and MIC was observed with F2 at the second 

seated task. Coincidentally, the second seated task was also the task demonstrating the largest 

difference in VAS-PI for the LIC and MIC. Significant difference was not observed in any 

other tasks’ analyses of formant frequencies. A decrease in the frequencies used could be 

related to relaxation of vocal folds after the standing task, but the increase in F2 observed by 

the MIC is usually associated with increased sympathetic nervous system activity, unusual 

with a seated task expected to relieve pain. If Scherer’s theory were applied, this increase 

could be related to ergotropic emotional reactions related to unpleasantness checks, i.e., 
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anxiety or anger. Increased flexion of the knee joint when seated may have caused increased 

pain in the MIC women due to more joint involvement. 

Examination of group differences in acoustic parameters with the relation of 

depression, anxiety, or anger provided further insight into the potential role of acoustic 

parameters in pain assessment since persons with pain may respond with these mood states or 

emotions. Recruitment of clinically depressed, anxious, or angry subjects was not feasible 

and experimental induction of mood or emotion was not within the focus of this study of the 

influence of a natural increase in chronic pain on acoustic parameters. However, the 

influence of these three psychological variables on acoustic parameters could be estimated 

using mixed models with the addition of an interaction statement. Although a combination of 

these psychological variables exists in every individual, the aim of this exploratory study was 

to determine if presence of an emotion would influence acoustic parameters with any 

selectivity.  

Enduring moods were used as proxies for emotional states since these moods can be 

measured with validated instruments and have been used with chronic pain research. While 

moods measured by the psychological inventories are not emotions, level of mood can be 

indicative of the subject’s enduring pattern of mood likely to influence behavioral responses 

to pain. Scherer predictions of acoustic parameters did not consider the presence of pain. 

Thus, when significant differences in acoustic parameters between the non-pain and pain 

group with these interactions occurred, the presence of chronic pain may contribute to the 

acoustic parameter differences.  

Because predictions of the acoustic parameter changes come from the component 

process model of emotion, the moods measured were classified based on neuroendocrine 
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activation. While the emotion state of sadness/dejection is described as being driven by a 

predominance of parasympathetic nervous system input, or trophotropic arousal. Depression, 

a trophotropic mood, was reported with low but significantly different scores between the 

non-pain and pain groups.  The low level of depression may contribute to the lack of acoustic 

difference observed between the groups when sadness/depression was considered.  

The emotion states of anxiety/worry and irritation/cold anger were described by the 

model as being driven by a predominance of sympathetic nervous system input, or ergotropic 

arousal (K. Scherer, 1986). Since pulse rate difference was not observed when the effect of 

weight and BMI were considered, sympathetic activation cannot be assumed. Because 

sympathetic activation is a criterion of the emotional states of anxiety and anger in appraisal 

theory, these emotions were not experienced, but it is unclear what level of sympathetic 

activation is required for anxiety/worry or irritation/cold anger.  

Acoustic parameters that had demonstrated significant findings in non-interaction 

models of the non-pain and pain groups were included in analyses that incorporated the 

mood-related inventory sample mean as an interaction term: Flo, range of F0, jitter, and 

formant frequencies. The stringent requirement that significant findings in the log 

transformation model mirror significant findings in the non-interaction model was applied in 

order to accept an acoustic parameter as associated with a particular emotion. Insufficient 

power and low sample mean scores on the inventories may have contributed to the lack of 

significant difference at the same tasks observed in the non-interaction models.  

Depression 

No acoustic parameters were found to match the significant differences seen in the 

reduced models after log transformation. Because depression literature has indicated 
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monotone and decreased pitch are characteristics of depression, report of parameters that 

continued to demonstrate significant difference after log transformation is included: Flo at 

second stand and F3 at second stand. 

Fundamental frequency-related parameters did not demonstrate stability with the 

interaction of depression in this study, although research on depression (Alpert, 1983; Sobin 

& Alpert, 1999) found pitch to be lower with sadness and depression. Flo was expected to be 

different between the groups given the significant difference in BDI-II scores. The 

occurrence of significant difference in Flo only at the second stand could indicate latency of 

the response or an additive effect. Given the findings related to range of F0 with other 

emotions, Flo remains theoretically interesting with depression.  

 Formant frequencies were measured to indicate change in muscle tension of the 

vocal tract and facial musculature and change in saliva production resulting from emotional 

reaction to increased pain. While the presence of F3 at second stand with increased pain 

intensity is potentially important, all significant differences identified in reduced models, 

e.g., F1 and F2 at second stand, did not survive log transformation.  

Formant frequencies should not be discounted on the basis of these findings, 

however. In the emotional differentiation theory, the evaluation of unpleasantness, as when 

pain is anticipated or experienced, results in faucal (the section between the mouth and 

pharynx) and pharyngeal tension that reduces the space for air in the vocal tract and increases 

formant frequencies. Higher frequencies located in F2 and F3 would be expected as well as 

higher F1 mean. In contrast, relaxation of the vocal tract with the evaluation of pleasantness 

or with greater parasympathetic activation would increase space for air, reduce formant 

frequencies, and lower the F1 frequency. Thus, observation of the raising and lowering of 
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formant frequency provides information about physiological and emotional state through the 

effect of arousal (Johnstone, Van Reekum, & Scherer, 2001; K. Scherer, 1986). Given 

predictions based on unpleasantness, higher F3 observed in the non-pain group would indicate 

unpleasantness while the pain group lower F3 frequencies would indicate pleasantness. 

Because the non-pain and pain group demonstrated significantly different VAS-UNP scores 

with the pain group having higher unpleasantness scores at second stand, the lower F3 

frequency for the pain group after log transformation would seem to contradict theoretical 

predictions. However, higher frequencies in the non-pain group could reflect unpleasantness 

related to the heat or fatigue while lower formant frequencies of the pain group could reflect 

the effect of the parasympathetic nervous system related to significantly different level of 

depression or the presence of moderate intensity chronic pain. The significance at the second 

stand could indicate that parasympathetic dominance suppressed acoustic parameter change 

and that an additive effect is needed to demonstrate a difference.   

Anxiety 

Because the levels of anxiety reported by both groups on state and trait measurement 

of anxiety were lower than norms reported by Spielberger (1999), significant differences 

between the non-pain and pain groups in range of F0 and jitter when the interaction  

emotional state of anxiety/worry was introduced were unexpected. The low level of anxiety 

may be more characteristic of anxiety/worry as described by Scherer (1986) than fear as 

measured by the anxiety instrument. Although the STAI was completed in a strange, novel 

environment, state anxiety was not measured while wearing equipment used in the acoustics 

session. The need to perform vocal tasks and wear strange equipment may have evoked a 
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different state when the acoustic parameters were captured than the state measured earlier in 

the study session.  

Although higher frequencies are associated with acute anxiety  (Fuller, Horii, & 

Conner, 1992), the groups were not different with respect to state anxiety and higher 

frequencies were not expected. Range of F0 was predicted to increase with fear/terror, but no 

prediction was given for the state of anxiety/worry. Range of F0 decreased with the non-pain 

group despite the interaction and did not support the prediciton. In contrast, the wider range 

of F0 with a low level of anxiety reported in the pain group supported the prediction and 

could suggest the increase in pain intensity not present in the non-pain group influenced this 

increase in range of F0 with standing or an evaluation check of goal/need obtrusiveness 

occurred to explain this disparate finding.  

While jitter was predicted to occur with more intense emotions of fear/terror and 

rage/hot anger, jitter was observed with the pain group at the second stand task with both 

state and trait anxiety interactions following log transformation. This finding is important, 

though unexpected, given the low levels of anxiety. Because pain unpleasantness was highest 

for the pain group at the second stand task and pulse significantly different at the second 

anticipation task, difference in jitter could indicate (1) the additive effect of the movement 

and cognitive tasks or (2) the latency of the emotional reaction to chronic pain presence or 

some other physiological source associated with standing. 

Anger 

Significant difference between non-pain and pain groups was observed when state 

and trait anger were included as interaction statements with range of F0 and jitter in a reduced 

model. Anger is demonstrated through sympathetic nervous system response to unexpected 
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and interference with goal achievement by an outside agent (K. Scherer, 1986). The levels of 

anger reported on the state and trait anger scales were lower than the norm reported for 

women (Spielberger, 1999) and irritation/cold anger emotional state was used for predictions 

of acoustic parameters changes. Effort to provide a pleasant environment that would 

highlight natural pain presence due to movement may have resulted in lower levels of state 

anger (or irritation) description for evaluation of feelings “right now” compared to trait anger 

or how subjects “generally feel.” Since anger expression is not socially appropriate for 

females in different cultures (Driscoll, Zinkivskay, Evans, & Campbell, 2006; Thomas, 

2005), low state and trait anger scores may result from concern about self-presentation on the 

inventory.  

Differences between the non-pain and pain groups in range of F0 at both stand tasks 

despite low levels of state and trait anger were stable to log transformation. Scherer’s (1986) 

predicted decrease in range of F0 as an indicator of irritation/cold anger was supported by the 

decrease in range of F0 in the non-pain group. However, the increase in range of F0 by the 

pain group with both stand tasks suggests the possible influence of another emotion’s 

presence. Specifically, the presence of chronic pain is suggested as another influence in this 

sample. The occurrence of significant difference between the groups in range of F0 at both 

stand tasks coincides with the occurrence of significance at both stand tasks when state and 

trait anxiety were considered. 

Significant difference between non-pain and pain groups in the model of jitter with 

the interaction of state and trait anger was observed only at the second stand task, the same 

pattern observed with state and trait anxiety. Jitter is predicted to occur with rage/hot anger in 

the component process model (K. Scherer, 1986), but not with low levels of anger, or 



  

257 

 

irritation/cold anger, evidenced in this sample. Irritation/cold anger could be similar to the 

frustration that correlated with pain intensity in women reported by Riley et al. (2001) 

although the highest levels of pain intensity were not at the second stand were the highest 

levels of jitter occurred. Stability of jitter demonstrated at only the second stand task with the 

state and trait anger interaction may be indicative of the low state anger scores, an additive 

effect of movement, or latency of the effect of pain or other physiological mechanism. 

Although the presence of jitter in the non-pain group may be related to the low intensity 

restriction on vowel production, the occurrence of increased jitter with the pain group 

suggests that pain presence may have provided additional sympathetic activation that 

contributed to differences not predicted in Scherer’s theory.    

With respect to the influence of emotion on acoustic parameters, differences between 

non-pain and pain groups occurring with the interaction of mean state and trait anxiety scores 

and mean state and trait anger scores were observed with range of F0 at both standing tasks, 

mirroring the differences observed in the reduced models. Therefore, range of F0 is seen as 

an acoustic parameter potentially useful in indicating sympathetically-driven emotion and 

chronic pain presence.  While the differences between non-pain and pain groups in jitter with 

the interaction of state and trait anxiety and state and trait anger were significant following 

log transformation at the second standing task, the differences did not mirror the significant 

differences at first and second standing task with the original model. However, jitter should 

be considered potentially important given its demonstrated stability to log transformation. 

However, limited sample size, the use of statistical techniques to evaluate the effect of mood, 

and the occurrence of confounders should be considered.  
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The relationship of written and verbal pain intensity ratings to disability was not 

strong and differed based on method of rating intensity. The verbal rating of pain correlated 

more highly with the observed disability measure than the written pain intensity measure. 

The written pain unpleasantness scale demonstrated a weak correlation with observed 

disability. The SOPA disability scale and BPI pain interference scale that incorporate 

psychosocial aspects of chronic pain demonstrated stronger correlation with observed 

disability than pain intensity and unpleasantness measures suggesting that pain should not be 

considered a complete determinant of functional disability. 

Ratings of pain intensity at seated and stand tasks within each group did not differ 

across time indicating that repeated measurement did not alter within group findings. The 

occurrence of written pain intensity ratings by the non-pain group was unexpected since 

subjects were recruited as having no musculoskeletal pain and non-pain group VRP ratings 

were zero. Differences in responses on the VAS-PI and VRP by the pain group were also 

noted with VRP mean ratings higher than the mean VAS-PI ratings.  

Although it seemed logical to assume that disability associated with knee pain would 

be related to the pain experienced, that assumption is not borne out by the results of this 

study. While it cannot be assumed that the non-group was not limited in some way given the 

occurrence of VAS-PI ratings, the non-pain group provided the measure of “normal” ability 

to rise from seated to standing for this study. The non-pain group effectively demonstrated 

limitations of the pain group. While the non-pain group’s time to rise from sitting to standing 

ranged from 3 to 10 seconds, the pain group required from 2 to 31 seconds. To further clarify 

the relationship of observed disability and pain intensity, the pain group was divided by pain 

intensity. The lower intensity pain class (LIC) required from 3 to 16 seconds to rise from sit-
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to-stand, while the moderate intensity class (MIC) required from 2 to 31 seconds. The LIC 

demonstrated greater observed disability than the non-pain group along with low intensity 

pain reports. Greater observed disability was present in the MIC although there were subjects 

demonstrating low observed disability scores with moderate reports of pain. While the 

subjects were required to be mobile in order to participate in this study, this sample of 

community-living women over 45 years of age demonstrated obvious mobility problems 

despite the low to moderate reports of pain intensity.  

Timing of highest pain intensity ratings of the non-pain group and pain group as well 

as the lower intensity and moderate intensity classes demonstrated interesting differences. 

The non-pain group’s VAS-PI mean score was highest at the second stand task and could be 

associated with movement. In contrast, the pain group reported its highest VAS-PI mean 

score at the first seated task and this task demonstrated the largest difference in VAS-PI 

between the non-pain and pain groups. While the first seated mean score was not associated 

with the sit-to-stand movement tasks, the rating followed travel from the BBL to the acoustic 

testing room and equipment acclimation. Not surprisingly, the largest difference in non-pain 

and pain group VAS-PI mean scores was at this first seated task and suggests that this task 

presented greater difficulty for pain group subjects. The largest difference between LIC and 

MIC occurred with the second seated task when the MIC reported its highest intensity pain. 

Seated position, not standing, as a source of greater pain intensity was unexpected. 

Despite the VAS-PI differences at seated tasks, the difference in VRP between the 

non-pain and pain group was greatest at the first stand task. While the highest VRP ratings of 

the MIC occurred at the first seated task, the highest LIC mean VRP ratings occurred at first 

stand. Because the LIC composed the larger portion of the pain group, the LIC’s influence on 
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the VRP at the first stand could explain the difference.  It should be noted that when 

standing, many subjects shifted weight from one leg to the other, apparently to relieve 

pressure or pain on the affected knee(s). 

Multiplication of the VRP by would be expected to have an equivalent VAS-PI rating 

since both are measures of pain intensity. However, VRP ratings were higher than VAS-PI 

scores in all groups except the MIC. Difference in the VAS-PI ratings compared to a 

numerical rating scale has been reported in acute pain (Holdgate, Asha, Craig, & Thompson, 

2003) and this difference may address pragmatic factors of social interaction that occur when 

seeking pain relief from another person.  

The level of pain unpleasantness, a written measure of emotional response to pain 

was thought to play a role in disability and VAS-UNP ratings were scrutinized more 

carefully. Consideration of the difference between intensity and “bother” when marking the 

scales took very little time with this sample. During the study, subjects tended to mark the 

VAS-UNP at the same point they marked the VAS-PI. The non-pain group VAS-UNP 

ratings demonstrated this tendency with mean ratings on the scales differing by about 0.1 mm 

across tasks. The largest VAS-UNP scores in the pain group occurred at second stand 

although the highest VAS-PI occurred at the first seated task. This finding of greater 

unpleasantness at second stand as well as the stability of range of F0 and jitter  at the second 

stand supports the Rainville et al. (2004; 2005)observation that unpleasantness predicted 

changes in arousal and dominance.  The ratings were not the same for pain unpleasantness as 

for pain intensity in the pain group as they were in the non-pain group indicating that subjects 

with pain may differentiate intensity and unpleasantness better than those reporting no pain. 
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When the LIC and MIC mean ratings of pain intensity and pain unpleasantness were 

examined, patterns were somewhat different.  The classes’ largest difference in VAS-PI 

occurred with the second seated task while the greatest difference between the classes with 

VAS-UNP occurred with the first seated task. Movement to standing increased pain intensity 

and unpleasantness for the LIC subjects but seated position increased pain intensity and 

unpleasantness for the MIC subjects. In addition, appraisal of the stimulus for some subjects 

appears to have been insufficient to generate a physiological response. Some pain group 

subjects noted stiffness in the knees improved with walking to the acoustics testing room and 

several commented that climbing stairs would have increased pain more than rising from 

sitting position.  

Self-efficacy was considered as a possible contributor to the difference in VAS-PI 

and VAS-UNP. The pain group self-efficacy for physical function scores were lower than the 

non-pain group. When the LIC and MIC self efficacy scores were reviewed, LIC self-

efficacy for physical function was more similar to those in the non-pain group than the MIC, 

indicating that self-efficacy for physical function might play a role in the LIC pain intensity 

and pain unpleasantness  ratings.   

The pain group reported pain interference with everyday activities on the BPI pain 

interference scale. The degree to which pain interfered was more evident when the LIC and 

MIC pain interference scales scores were compared. Although 7 of the 20 LIC members had 

pain interference scores greater than 20, only 3 of the 10 MIC members had pain interference 

scores less than 20, with 6 having scores greater than 35. Because the original BPI pain 

interference scale was used, subjects were reporting mood, function and activities. The BPI 
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pain interference scale demonstrated higher correlation with the VRP than the VAS-PI or the 

VAS-UNP. 

 Disability reported on the SOPA scale was greater for the pain group in comparison 

to the non-pain group. The MIC reported a significantly greater amount of disability on the 

SOPA than the LIC. Because the SOPA scale was designed to measure beliefs about pain, 

this finding provides a link between pain ratings and disability that incorporates the 

individual’s perceptions about or reaction to pain’s effect on activity.  

The weak correlation of the pain intensity scales with observed disability indicated 

that although pain contributes to disability, pain may not be contributing as much to observed 

or self-evaluated disability as expected. The higher correlation of the VRP rating than the 

VAS-PI with observed disability is interesting given that the VRP and VAS-PI did not appear 

to measure the same construct in the LIC as in the MIC. Higher VRP correlations with self-

evaluations of disability than the correlation with the VAS-PI demonstrate that the two pain 

intensity scales tapped different aspects of pain experience in this sample.  

In contrast to the relationship of the pain intensity measures with disability, the VAS-

PI and VRP correlated negatively with the ASES Self Efficacy for Physical Function scale 

but at nearly the same level. Confidence that one can perform an activity might provide a 

better self-evaluation measure when function is the area of interest.  

The current study did not use the modified BPI and its revised procedure for scoring 

pain interference and severity with chronic pain samples (Mendoza et al., 2006). However, 

the findings of this study would support the new pain interference scale and its recognition of 

the need to separate pain, mood, and activity factors in the scale.  
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Findings indicate that pain intensity ratings did not have a strong relationship with 

observed disability. While correlated to disability, pain intensity and unpleasantness ratings 

do not explain the level of disability observed. Further, pain intensity measures used in this 

study, the VAS-PI and VRP, may not communicate the same characteristics of pain intensity 

given the difference in ratings of the persons with different intensity pain. Verbal 

communication of pain appears to involve social and pragmatic issues different from the 

cognitive skills used with written communication of pain. Because verbal and written 

communication of pain vary and may not be possible in some clinical situations, additional 

assessments beyond the VAS-PI and VRP are necessary to determine the impact of chronic 

pain on the individual and level of function.  

Strengths and Limitations 

While the bulk of emotion research has measured facial expression and is now more 

focused on brain imaging, voice provides an important source of information readily 

available to nurses and other health care providers that is under-utilized and has been under-

studied.  Although vocal signaling of infants experiencing acute pain has been measured by 

researchers in order to remove the cognitive influence of culture and learning, chronic pain 

experience is strongly influenced by culture and learning. Study of emotional response to 

pain, therefore, needs to study signaling of adults in order to appreciate the difference in the 

acute and chronic pain phenomena. Since adults comprise the largest chronic pain 

population, this study’s focus on voice quality in an adult sample with a common chronic 

pain disorder addressed a gap in the literature on communication of pain.  
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The study was among the first to incorporate study of voice quality in pain expression 

with adults and one of a few studies to include movement with acoustic measurement. 

Because movement is an important part of function and function has become a criterion for 

successful pain management, the ability to identify the effect of pain on movement is 

important in maintaining and promoting physical activity. The aims of this study required the 

development of an innovative measurement method designed to capture of the emotional 

change in voice that occurs in reaction to an increase in chronic pain with movement. 

Problems were discovered in the use of the movement task; however, preliminary results 

indicate that acoustic parameters may describe differences in non-pain and pain subjects and 

different pain intensities. 

The use of the CSL and MDVP programs provided strength to the study. The 

equipment coupled with the recommended microphone allowed capture of data and analysis 

of a variety of parameters important to demonstration of this method’s feasibility. Early pilot 

testing indicated the need for more environmental control of noise interference and the use of 

the head-mounted microphone with its close-to-mouth proximity reduced low level room 

interference. While such environmental control is not possible in clinical settings, in this 

early stage of method development, this control was necessary.  

Strength of this exploratory study and quasi-experimental design was provided by use 

of a pain group and non-pain, comparison group. Subjects were of the same sex, similar age 

and spoke English. Comparison of the acoustic parameters was free of the variation that 

could occur with age, sex, and language differences. Subjects came from a variety of ethnic 

backgrounds and provided a level of heterogeneity important in an exploratory study. The 
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non-pain group acoustic parameters allowed comparison with acoustic parameters predicted 

to change with emotions. 

Because the study intended to capture natural emotional reaction to pain, strength of 

this study was provided by the recruitment of subjects who were not actors. Emotion studies 

that have relied on emotion portrayal have found the emotional reaction captured using actors 

is of larger effect size than natural emotion observed in everyday settings (Bänziger & 

Scherer, 2005). By using non-actors, it was expected that the effect size would be small, but 

more representative of the natural presentation of pain.  

Limitations of the study are related to sample size. Use of additional methods of 

recruitment such as the following could be more productive than flyers: advertisement in 

local papers and on buses, inclusion on the University clinical trial web announcements, and 

attendance at more community agency functions. Because the equipment selected for 

acoustical and physiological data collection was not easily transportable and sound 

attenuation was important, subjects were required to travel to the testing site. This 

requirement influenced recruitment. The location of the testing site and the times for testing 

may have limited participation of women with more significant limitation of ambulation 

although some women used assistive devices.  

Telephone recruitment screening was limited to subject report of health problems. 

Although exclusion criteria were numerous, exclusion of pain clinic patients and persons 

treated for psychopathology was omitted. The influence of subjects who reported pain clinic 

treatment and/or treatment for depression after enrollment was observed in analyses of 

depression and pain intensity. Influence of this data was reduced by deletion of an 
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observation when outlier status was established, but the remaining subject data were retained 

for subsequent analyses.  

The variance in the sample weight and BMI, small sample size, and the averaging of 

pulse rate limited the measurement of change due to emotional arousal. The differences 

observed in this sample provide an avenue of research related to the relation of 

cardiovascular response to movement and chronic pain. Because a significant change in jitter 

with a standing task could indicate a link to heart rate and exertion related to body size, use 

of jitter as a potential indicator of change in reaction to pain requires clarification of the 

effect of heart rate and body size on acoustics with standing. Small sample size and variance 

limited the use of parametric statistics that would have provided a more definitive answer to 

questions related to pulse rate and movement 

The study was limited to study of middle-aged and older females. Therefore, results 

cannot be generalized to different age groups of females or males. Subjects were usually 

residents of the university community in southeastern United States and generalization to a 

broader population is not possible. While heterogeneity was desired, the presence of various 

regional dialects resulted in inability to use connected speech samples due to the use of /e/ or 

/eI/ instead of /ə/. 

The range of pain intensity was limited in this study. Although the intent of the study 

was to use multiple levels of the chronic knee pain intensity present in community-living 

women as the stimulus, travel to the study site may have limited recruitment to women who 

were willing and able to leave home for participation in research.  
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Inclusion of the second movement task to address acclimation to equipment may have 

introduced a limitation. While elimination of one task’s data could have simplified data 

analysis, use of both sit-to-stand tasks and the occurrence of missing data required use of 

longitudinal analyses that were more complex than the repeated measures ANOVA originally 

planned. The decision to retain data that could have been eliminated if ANOVA methods 

were used required use of mixed model strategies. The mixed models were limited to fixed 

effects for this study. Other mixed model techniques could have provided greater information 

and could be employed with later analyses. Variance of the sample was statistically 

challenging, but provided useful information for future sample selection and exclusion 

criteria.  

Implications for Future Research 

The method requires further refinement and testing. In order for that to occur with 

pain samples, more precise measurement of moment-to-moment changes in physiological 

and emotional, or feeling, state will need to be included in future studies. Increase in pulse 

with anticipation of standing by the pain group warrants further attention. The difference in 

pulse increase may indicate an involuntary signal of the emotional or cognitive preparation 

for what is perceived by the individual with arthritis as a stressful task, but normal activity 

for the rest of the population. The significant difference in group weight and BMI and their 

effect on the heart rate and acoustics should be controlled in future studies.  Because 

movement is often reduced with chronic pain, inclusion of movement tasks in this method 

seemed important. The physiological and anatomical changes that occur with movement and 

speech require more careful study with non-pain subjects. Once the timing of the change in 
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heart rate and acoustic changes are better understood in normal subjects, movement studies 

that compare non-pain and pain subjects matched by BMI would more clearly define this 

phenomenon. 

While this study focused on the sit-to-stand task as a means of inducing a change in 

pain intensity, the onset and frequency of a weight-shifting strategy from one leg to the other 

seemed to be an immediate and unconscious action by pain group subjects that may provide 

an indicator of disease progression or an indirect measure of pain. Studies that collect 

radiological findings along with the observation of the unconscious weight-shifting behavior 

would be important to determining how the observed behavior is related to the degree of joint 

involvement. 

Because within group differences in this sample in pulse did not change over time, 

future studies may be able to eliminate the repetition of the sit-to-stand task when assessing 

emotional response to movement. This change could be advantageous in terms of reduced 

subject burden and less complex statistical analyses. Devising movement tasks that increase 

pain intensity would increase the effect size and promote capture of changes that occur with 

appraisal. 

Increasing vocal intensity of subjects during collection of tokens could clarify the 

occurrence of jitter, shimmer, and APQ observed in this sample and age group. Readjustment 

of the microphone head placement and the analysis program intensity settings will be 

necessary. Although not measured in this study, individual differences like thickness of 

musculature, missing teeth or dentures, and nasal congestion, for example, could also cause 

changes in formants from person to person.    
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Although differences in the low and moderate intensity pain classes was observed 

with acoustic parameters, samples with higher intensity pain should be recruited from clinical 

settings to. While study of subjects in their natural settings would provide more natural data, 

transport of acoustic equipment to homes would be expensive, if not impossible, and sound 

attenuation could not be controlled. 

Instruments used to assess pain compared well with each other, but appear to capture 

different aspects of the pain response when compared with other instruments. Careful 

instruction of subjects on the completion of the VAS scale is vital to its use and 

interpretation, especially with non-pain subjects. Alternatives to paper and pencil methods of 

collecting VAS information are recommended with a movement task that includes other 

equipment or sensors that interfere with writing ability. While the difference observed 

between written and verbal pain intensity self-report is not new, understanding of the 

differences observed between verbal and written pain intensity ratings in clinical settings 

continues to be important to assessment and management of pain.  

Subjects’ ratings were often higher on the VRP than the VAS-PI. The difference 

between written and verbal ratings raises questions about influence of self-presentation and 

pragmatism on verbal report. Study of the patient-preferred pain management strategy and 

the written and verbal pain intensity rating could demonstrate the place of pragmatics and 

negotiation in clinical settings more fully. 

The difference in the association of the VAS-PI and VRP to disability measures is of 

special concern. Because observed disability was not strongly correlated with pain intensity, 

provider judgments about disability used as an indicator of pain intensity in acute and chronic 

conditions may erroneous. Healthcare providers may need to consider multiple factors in 
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chronic pain assessment: observe movement tasks, self-report of pain, self-report of level of 

function. Use of additional methods of assessment of pain and disability are needed to 

identify and address needs of persons with pain and chronic conditions. 

Findings of this study can provide direction for future studies of acoustics and pain by 

demonstrating those acoustic parameters that have potential value, strategies that confound or 

contribute to better studies, and information on aging voice. While range of F0 may not be 

easily perceived by ear in a short utterance, the possibility that attentive caregiver could 

detect this change in a patient provides potential for further study. Because jitter is not 

detected by ear, its use would require use of specialized equipment by caregivers. It would be 

premature to say that acoustic parameters are able to capture the emotional aspect of chronic 

pain. However, differences observed in range and jitter associated with the stand tasks 

warrant further investigation. A larger sample, more stringent controls, and refinement of 

recording protocol would lead to clearer specification of elements of voice quality involved 

in pain expression.  

Future studies of acoustic parameters of males and persons with different chronic pain 

conditions would be important to compare changes thought to be due to pain experience. 

Because gender-specific differences have been demonstrated with pain and voice, it is 

expected that differences in male and female acoustic responses to pain may differ.  Once 

parameters can be established with verbal and cognitively stable persons, use of acoustic 

parameters with cognitively impaired or unconscious individuals is seen as a method of more 

accurately assessing pain in these groups.   

Provider-patient interaction models have been developed (Cox, 1986; 

Hadjistavropoulos & Craig, 2002) and have addressed content about what is literally said in 
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words. While words carry information and are easily captured and transcribed, how the 

words are said communicates meaning. Nursing intervention relies on accurate interpretation 

of communication that includes emotion expression. Being alert to change in vocalization 

provides a means of assessing change and reduces intuition or chance from chronic pain 

management.  

Conclusions 

Of several acoustic parameters investigated, significant difference in range of 

fundamental frequency, jitter, shimmer, and amplitude perturbation quotient were associated 

with movement tasks that increased knee pain in women with chronic knee pain. While it is 

not clear why subjects with pain demonstrate these parameters with standing, this association 

was significant in a small sample. Statistical influence of measures of depression, anger, and 

anxiety through mixed model interaction has been shown to affect acoustical parameters 

involved in emotion expression that supports some predictions of the component process 

model of emotion.  
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Appendix 1. Preliminary Work 
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In preparation for this investigation, a course project in sociolinguistics introduced 

acoustic analysis. Later, a course in linguistic phonetics introduced the techniques involved 

in phonetic analysis. Course activities included a small research project involving recruitment 

and voice sample collection that prompted plans for this investigation with assistance of the 

UNC School of Nursing, Biobehavioral Laboratory (BBL). The aim of the preliminary work 

was to determine if an adequate signal could be obtained with currently available equipment 

and to develop the study protocol.  

Room Noise 

Preliminary data collection indicated room noise levels could be interfering with the 

capture of a clean signal with the Sony Vaio notebook computer (PCG-GRX 500P Pentium 

4) with Creative Labs soundcard and Praat software (Boersma & Weenink, 2004). This 

computer was used to record voice and collect physiological measures, heart rate and spO2, 

from the Ohmeda pulse oximeter (Datex-Ohmeda, 1998) using a Dataq analog-to-digital 

converter (Dataq Instruments Inc., 2005).  

Frequency-weighted sound level measurements are based on the threshold of hearing, 

or 0.0dB, and would correspond to an anechoic chamber. The A scale, the most commonly 

used weighting, uses a set of filters to adjust the component frequencies to approximate the 

contribution the frequencies make to the perception of loudness via the human ear (Baken & 

Orlikoff, 2000). Room sound levels were measured with a RadioShack digital sound level 
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meter (RadioShack Corporation, 2000) in the BBL and environmental noise ranges from 54-

61 dB A-weighting in the BBL as well as other areas in the new addition to the building 

when measured at the level of the microphone and chair location. Attempt to minimize 

turbulence by covering the vent screen over the duct did not reduce the noise appreciably.       

Although a sound-attenuated chamber is located on campus in Dey Hall, it is located some 

distance from parking making it difficult for participants to find and involves considerable 

walking. Recording for analysis in this chamber requires turning off the lights and fan which 

would make videotaping impossible, and these conditions would likely interfere with 

participant comfort and feeling of security.  

In order to search for quieter surroundings, a sound level meter capable of measuring 

sound below 50dB, the lowest level the RadioShack meter, was needed. Dr. Joseph Hall, of 

the Audiology Department, UNC School of Medicine, subsequently measured sound pressure 

levels (SPLs) in various rooms being considered. A Larson-Davis 800B sound level meter 

with a Model 2559 ½ inch random incidence microphone and Model 826B preamplifier 

(Larson Davis, 1994) was used to determine A-weightings  (Table 1).  

Because Room 310 B in the School of Nursing, with 28 dB of room noise, was much 

quieter and could be reserved for use in the late afternoon and evening, it was determine that 

it would be an optimal environment for voice recording. However, using this room required 

participants to walk the length of the hall to the elevator, ride to third floor via elevator, and 

make a similar return trip when the subject’s acoustic studies were completed. Activity 

tolerance was monitored by observing the subject’s  respirations while walking and 
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Table 1. 

Sound Level in Potential Recording Sites 

Room Sound Level 

(A weighting) in dB 

BBL 44 

BBL, Room 16 44 

BBL, Room 17 46 

Room 310 B 28 

Room 310 C 27 

Room 3 39 

 

 

measuring vital signs after she reached the testing room. 

Soundcard and Notebook Noise 

Because the effect size was anticipated to be small (0.34) in the proposed study, effort 

to reduce error due to noise was important. In addition to room noise, the noise introduced by 

the sound card housed in the laptop could interfere with recording quality (Deliyski, Evans et 

al., 2005). Since specifications for the computer’s soundcard were not available, a Creative 

Labs Sound Blaster Audigy 2 notebook soundcard (Creative Labs, 2005) for the Sony Vaio 

laptop was purchased. This soundcard allowed 8, 16, and 24-bit analog-to-digital conversion 

during recording and sampling rates ranged from 11.025 to 96 kHz.  

Recent research indicated that notebook computer soundcard, fan noise, and 

environmental noise introduce measurement error that can be remedied by use of specific 
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microphone and vocal analysis systems (Deliyski, Evans et al., 2005; Titze & Winholtz, 

1993) . Research on voice quality and clinical measurement of non-dysphonic and aging 

voice have also reported data using the Computer Sound Laboratory and the Multi 

Dimensional Voice Program by Kay Elemetrics (now KayPENTAX) (Bhuta et al., 2004; Xue 

& Hao, 2003; Yiu, L., Longland, & Mitchell, 2000) so the CSL 4500 and Multi-Dimensional 

Voice Program (MDVP) software was viewed as another, more expensive, means of 

reducing internal noise and obtaining comparable results for the current research.. 

Consultation with Dr. Ditimar Deliyski at the University of South Carolina, Columbia 

obtained advice to further improve the sound issues in the study. To overcome the 60 dB 

environmental noise, samples would need to have an intensity 30-40 dB greater than the 

room noise (Deliyski, Shaw et al., 2005). However, this advice raised concern that the older 

age women would not be able to sustain the intensity needed for 5 seconds. Addition of an 

Auto-Buddy preamplifier by M-Audio (M-Audio, 2005) was suggested as an inexpensive 

addition to complement the microphone and amplify the signal. This preamplifier has a 

frequency response of 5Hz-50 kHz that includes range of normal voice and maximum 

microphone gain of 60 dB (M-Audio, 2005). After addition of the preamplifier, signal 

improvement was observed when the preamplifier gain was set at approximately 6 dB and a 

surge protection device was used. 
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Recording and Analysis Software 

Praat v. 4.3.12, a vocal analysis program (Boersma & Weenink, 2004), was becoming 

more popular in linguistic education, cited in linguistic research,  but little use has been 

reported in clinical research. Praat was used for recording among volunteers in the feasibility 

study. The program had the advantage of being available at no cost and it is frequently 

updated to provide new and more precise features. The program also has the capability of 

providing acoustic parameters like pitch, intensity, formants and spectrograph information. 

Availability of a program, Vowel Data Capture (Kendall, 2003), that provided vowel 

information – F0, F1, F2, F3, and duration – would reduce error and investigator influence 

when hand scaling to determine parameters from the midpoint of the vowel selection and 

provided the means to transfer data to text files used in data analysis programs.  

Because an intensity of 60-65 dB is needed to compensate for the noise interference, 

monitoring of intensity was important.  While Praat software is easy to use to detect intensity 

of the speech sample, it required 5-10 seconds for each sample (with three vowels in each 

sample). It was difficult to evaluate intensity with Praat to insure the adequacy of intensity, 

return to the recording window, and provide suggestions to the participant prior to the next 

data collection in a period of one minute. Because adequacy of the vowel production is 

important to analyses, it is important to insure intensity of the tokens, but increased time 

spent could interfere in capturing the acoustic changes desired. 

Although problems were encountered in recording with Praat, the program’s 

algorithms were available and measurements provided an additional means for comparison 

with other research with non-clinical samples. Since data saved as .wav files can be 

reanalyzed, there is the possibility of re-analysis with Praat  
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Disability Measure and Camcorder Placement 

Because access to radiographic information and physician diagnoses was not planned, 

an estimate of disease involvement based on mobility was needed. Specifically, in this study 

time to rise from a seated position was been suggested as an indicator of restricted mobility 

due to osteoarthritis of the knee and hip. While it was understood that this measure was 

subject to a number of causes, it provided a comparison measure across the participants in the 

sample. 

Coding of the position change was planned to start from the time the participant’s 

back moved away from the chair back, but that angle could be obtained with one camera. 

During testing, it was observed that four of five persons placed their hands on the armrests 

before moving forward in the chair. One subject who had recently had knee surgery placed 

hands and arms on the armrests to lift herself forward in the chair. Given these results, coding 

was planned to consider the possibility that several movements are possible starting points 

like shift of gaze, replanting of feet in front of chair, leaning over the knees. Stand was also 

evaluated and an upright position with back straight, weight on both legs, and hands at sides 

was determined to be the ending position. Because time-stamping is included on the 

videotape, duration of the movement changes can be determined to the nearest hundredth 

second. Use of the Observer XT program (Noldus Information Technology, 2007)  to code 

and obtain frame-by-frame advancement of the video recording was also added to obtain 

more fine-grained assessment of the time of start to stand and completed stand. The Observer 

XT time format was not compatible with the Excel spreadsheet and SAS 9.1.3 so time to 

convert to compatible data was required. 



  

280 

 

Written Instruments 

Written instruments were administered to volunteers between 45 and 85 years of age 

to determine the time needed for testing. During this time,  Multidimensional Pain Inventory 

(MPI)(Kerns, Turk, & Rudy, 1985) and Biobehavioral Pain Profile (Dalton, Feuerstein, 

Carlson, & Roghman, 1994) were also administered. It was subsequently decided that the 

Brief Pain Inventory (Cleeland, 1991a) and the Survey of Pain Attitudes-35 Items (SOPA-

35)(Jensen & Karoly, 1989; Jensen et al., 2000) provided a more consistent response format 

with the Beck Depression Inventory-II(Beck et al., 1996), Arthritis Self-Efficacy Scale 

(Lorig, Chastain, Ung, Shoor, & Holman, 1998), Spielberger State-Trait Anxiety Inventory 

(STAI)(Spielberger, 1983), and the Spielberger State-Trait Anger Expression Inventory 

(STAXI). The BPI also includes a pain interference measure, and is reported to require 

slightly less time to complete than the MPI. Since the BPI and SOPA-35 have established 

reliabilities (Jensen et al., 2000; Keller et al., 2004; Tan, Jensen, Thornby, & Shanti, 2004) 

and have been used in chronic pain research for some time, the change reduced the need for 

participants to learn many formats and provide more reliable data.  

Participant Sample for Preliminary Study 

A study of normal participants was performed to determine implementation and 

analysis issues that could influence outcome. Data obtained with this convenience sample 

will not be used in the analysis or included for publication.  

Heterogeneity in sample selection for the feasibility study was important to determine 

problems with equipment, instruments, and protocol. Because the age of onset of 

osteoarthritis pain symptoms is around 40-50 years of age and voice changes occur with 

aging (Linville & Fisher, 1985; Xue & Hao, 2003), recruitment of participants that provide 
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comparable ages and different pitch ranges was important. Since chronic pain’s effect on 

acoustic parameters of voice has not been reported, recruitment of participants who have 

chronic pain due to osteoarthritis or other conditions affecting the knee was important to 

evaluating instrument sensitivity to change of position from non-weight-bearing sitting 

position to full weight-bearing position standing.  

Racial and ethnic diversity was important since African Americans have greater 

incidence of osteoarthritis than White Non-Hispanic, Hispanic, and Asian ethnic groups 

(Elliott et al., 2007; Sowers, Lachance, Hochberg, & Jamadar, 2000; Wright, Riggs, Lisse, & 

Chen, 2008) and willingness to express pain varies in cultures (Mechanic, 1976). This need 

for diversity prompted a visit to recruit at a senior center with a large number of black 

attendees. Educational level has been reported to influence scores on some instruments 

(Brandt, Spencer, & Folstein, 1988; de Jager, Budge, & Clarke, 2003; Tombaugh & 

McIntyre, 1992). Inclusion of participants with no high school, high school, and college level 

experience is important and data on educational level was obtained in order to define the 

groups’ level of education for comparison. Evaluation of independence in ambulation 

included subjects’ use of canes, crutches, walkers, and wheelchairs. Inclusion of persons who 

use such assistive devices could demonstrate problems in the use of heart rate monitoring 

equipment, the head-mounted microphone, and method to time the transition from sitting to 

standing position.  

In order to obtain reasonable estimates of the time necessary to complete instruments, 

acclimate to equipment, as well as to refine the protocol, the convenience sample criteria 

included women who:  
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Had osteoarthritis of the knee or similar orthopedic problem of the knee to judge time 

needed to rise to standing and standing tolerance. 

Were over 65 years to provide estimates of time to complete instruments. 

Had pitch differences to provide testing of recording and analysis equipment. 

Could critique the process and voice the participant’s perspective. 

Wore glasses to use with head-mounted microphone. 

Had a hearing aid to use with head-mounted microphone. 

Were able to read and write English. 

Were willing to complete telephone interview. 

Were willing to complete instruments. 

Were able to come to the BBL 

Had no cardiovascular or respiratory conditions limiting breathing with activity. 

Were independent in ambulation and standing- with assistive devices, when necessary. 

Were able to use hands to complete instruments. 

Four female volunteers and one male volunteer were recruited to practice the protocol 

and troubleshoot equipment, instrument, and environmental issues. Because the age and 

educational level of participants used in the vocal analysis protocol were unlike the older, 

community sample anticipated, two female volunteers from a community, both over 70 years 

of age, completed the battery of written instruments. 

Summary of Preliminary Work 

As mentioned earlier, change of written instruments was thought to provide more 

continuity for participants in terms of response formats. Subsequent retesting with volunteers 



  

283 

 

confirmed that the time needed was somewhat less and new instrument formats did not cause 

confusion. 

The trial of the protocol uncovered problems associated with the complexity of the 

system, i.e., lack of event marks during the movement and expression tasks, calibration of the 

heart rate data, and consistent signaling method for participant vocalization. While these 

findings were important to the protocol, limited data was collected that could be compared. 

Since most of the protocol practice used a male voice, that data was not able to be compared 

to female volunteers. 

Given the number of possible areas of error introduced by environmental noise, 

soundcard and laptop noise, and the problems associated with intensity evaluation, purchase 

of the Computerized Speech Laboratory and MDVP software used in research (Carson et al., 

2003; Childers, 1997; Nicastri et al., 2004; Yiu et al., 2000) was arranged. The advantage of 

determining intensity while recording as well as the demonstrated performance of the system 

(Deliyski, Evans et al., 2005; Deliyski, Shaw et al., 2005) made this system’s acquisition 

important to the reliability of the study. 

Changes in the protocol were made in response to observations during the trials. 

Heart rate did increase with the change in position as well as in response to vocalization and 

emotional reaction. Event marks on the physiological data needed to be indicative of those 

events important to study hypotheses. Change of position, pain presence, and reaction to pain 

were considered to be important. After trials had begun, it became apparent that reaction to 

the change of position caused a change in heart rate that could confound measurement of 

arousal in response to pain. Event mark prior to the time of the command to stand was 

planned to be the time indicator. When the event mark was not recorded, the sound of the 
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event mark on the video was used as an indicator of timing for the pulse oximetry file and 

three second interval could then be evaluated for mean pulse rate. It was anticipated that 

arousal would occur with the anticipation of standing in persons who experience pain 

consistently on standing and this physiological change would indicate emotional arousal. 

Increase in heart rate immediately following the command rather than after standing seemed 

theoretically sound given the appraisal and arousal literature. While a pulse increase after 

standing would have relevance to cardiovascular status, an increase while still seated would 

not be prompted by the same cardiovascular demand, but more likely due to a sympathetic 

nervous system stress response. 
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Appendix 3. Recruitment Flyers 
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Got Knees?

Women 45 years of 
age and older with and 
without knee pain are 
asked to participate 
in a nursing research 
study to determine 
the effect of pain on 
voice.

No blood drawn
Snack and $30 provided

Call for information about participation: 919-968-8774

Voice and Knee Pain Research Voice and Knee Pain Research

919-968-8774             919-968-8774  
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Got pain in your knee?
Or even if you don’t!

If you are a 
woman 45 years 
of age or older, 
with no singing or 

acting training, you 
can participate in a 

nursing 
research study 
of the effect of 
pain on voice. 

please call 

919-968-8774

No blood draws!
$30 after 
completion of 
inventories and 
audio and video 
recording
Sandwich and 
drink

919-968-8774            919-968-8774                   919-968-8774

Approved
IRB. UNC-CH
March 15, 2007
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Appendix 4. Recruitment Telephone Screening Script 
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Recruitment Telephone Screening Script 

 

Obtain ID # from log and enter caller’s name on log.   

Caller’s ID number_______ 

Date: ___________ Time: ________________  

Person taking call: ________________ 

Information for the telephone interviewer: The investigator or research assistant will 

identify himself or herself to the woman. Text in italics will be read to callers. 

 

Step 1 
Thank you for calling about the study. I am ________. This telephone interview will 

take about 20 minutes of your time. Is it convenient for you to talk now? 

 

Continue if OK now and if the present time is not convenient, arrange a time for interview   
and note in the log the preferred time for a return call. 

 

Before I explain more about the research study, I’d like to know where you found out 

about the study. 

 

Write contact source in log. 

 

To give you an overview, this nursing research study is aimed at looking for the reaction 

of women with chronic pain in acoustic, or sound, measurements of voice. In addition, group 

of women without chronic pain will be needed for comparison.  I will be asking each 

participant to complete several written tests, wear a head-mounted microphone and have 

pulse monitoring, and sit and then rise to standing position where she will remain for several 

minutes. The sit-to-stand task will be done two times. Video and audio recording will take 

place during the voice and sit-to-stand movement parts of the study. 
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If you are willing to be in the research study, I will ask your age, sex, general questions 

about your pain, and your vocal training. There is additional screening about health 

problems to help determine if you match what is needed in the study.  If at any point during 

the questions, you do not match what I need, I will stop the interview. You may also stop the 

interview at any time.  

Do you have any questions before I continue? 

If you are willing to answer these questions, please give me your consent to continue 

with this interview and for me to ask you the questions. 

Verbal Consent given by ____________________ to __________________ 

(caller)   (researcher) 

 

on ___________________ at ___________ AM or PM. 

(date)   (time) 

Go to Step 2 

 
Step 2 

 First, are you a woman? 

 YES – Go to step 3 
  NO – End interview with thanks for interest 
Step 3 

 Are you 45 years of age or older? 

 YES - Go to step 4 
 NO – End interview with thanks for interest 
Step 4 
Do you have a regular health care provider? 
 YES – Go to next step 
 NO – End interview with thanks for interest 
Step 5 

 Has a doctor told you that you have osteoarthritis in your knee? 

 YES – Go to step 6 
 NO – Go to step 9 
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Step 6 
 Do you have osteoarthritis or pain in your knee? 

 YES – Go to step 7 
 NO – Go to Step 8 
 
Step 7 

 Which knee is affected? 

 (Mark all that apply) 
  Right ____ 

  Left ____ 

  Both ____ 

 
   Go to step 8 
Step 8 
Do you have pain in your feet, ankle, hip, back, or anywhere other than your knee that affects 
walking or standing for any period of time?  
 YES - Would you say your pain is greatest in the knee? 
 YES – Continue screening . 
    Go to Step 10 
 NO - You may qualify for the non-pain group in this research study. May I ask you 
questions to see if you qualify for that group?  
 NO- End interview with thanks for interest 
 
 
Step 9 

 How long have you had pain in your knee? 

 If less than 6 months – end interview with thanks for interest 
 If more than 6 months, write it in the blank 
 ________________months / years (Circle time)  
 
   Go to step 10 
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Step 10  
 Have you had surgery on either of your knees? 

 YES – How long has it been since your surgery? 
(If less than 1 year, end interview with thanks for interest) 
Go to step 11 if more than one year since last surgery. 
 NO - Go to step 11 
 
Step 11 

 Are you able to stand and walk unassisted? 

 YES –Go to step12 
 NO – End interview with thanks for interest 
 
Step 12 

 Are you able to rise from a seated position to standing unassisted? 

   YES – Go to step 13 
 NO – End interview with thanks for interest 
 
Step 13 

 Are you able to stand for five minutes? 

 YES – Go to step 14 
 NO – End interview with thanks for interest 
 
Step 14 
 
 Could you say “ah” and continue to say it at a comfortable loudness for 4 seconds? 
 YES – Would you please demonstrate for me now? 
 (Time the duration of the vowel production.) 
            Thank you.  
                     Go to step 15 
 NO – End interview with thanks for interest 
 

Step 15 
  Are you a trained singer or actor? 

 YES – End interview with thanks for interest 
 NO – Go to step 16 
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Step 16 

 Can you read and write English? 

 YES – Go to step 17 
 NO – End interview with thanks for interest 
 
Step 17 

 Are you able to read magazines and the newspaper in English? 

 YES – Go to step 18 
 NO – End interview with thanks for interest 
 
Step 18 

You may qualify for this research study. I would like to ask you some questions abut your 

health history that may take 10 minutes more. Are you interested and have the time to answer 

these questions now or is there a better time? 

 YES – Go to step 19 
 NO – Schedule a time to call back. Write time and day in log.  
 

  Thank you for your time. I will look forward to talking with you again at: 

____________AM/PM on _____________day _____________date. 

Step 19 * 
 

*Go to Health Screening Questionnaire (HSQ) (Appendix 6) 

After completion of the HSQ – determine from items selected on HSQ if caller 
qualifies for the study. 

 
Step 20 

You qualify to be a participant in this study. If you consent to participate, testing that is 

part of the study would take an additional 2-2 ½ hours and takes place at the UNC-CH 

School of Nursing. Psychological testing, physical measures like height, weight, and blood 

pressure as well as measurement of aspects of voice while sitting and standing will be done. 

The movement tasks and the associated voice measurements will require audio and 

videotaping. If elevation of vital signs or any factors measured on the personality tests are 

elevated, you will be given a letter to provide to your primary care provider. If there is  
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concern about your safety, you may be asked to contact the provider or I will notify the 

provider of the specific concern. 

 I will provide you with $30, partially to cover expenses you may encounter. A visitor 

parking pass can be arranged for the Bell Tower parking lot and sessions can be scheduled 

in the evening when parking is free and closer to the School of Nursing.  Should you 

withdraw before completing the study, I will provide you with $10. 

 If you are interested in participating, I can schedule an appointment if that is 

convenient.  

  YES – Go to Step 22 
  NO – Go to Step 21 

 

Step 21 

I am sorry that you are not interested in proceeding at this time  

If it is not convenient to schedule at this time, please keep the card and number and call 

when it is more convenient for you. (end interview with thanks for interest) 

 

Step 22 
Is an afternoon or evening appointment more convenient? 

 

 Afternoon – Go to step 23 
 Evening – Go to step 27 
 
Step 23  
AFTERNOON APPOINTMENTS 

In scheduling afternoon appointments, I ask that you avoid eating a large meal three 

hours prior to the testing.  I will provide a light snack and drinks. Parking is available at Bell 

Tower parking lot. A map will be included in the appointment reminder I plan to send you. If 

someone is bringing you, I suggest that you ask to be dropped off at the Medical Drive 

entrance to the ground floor of the School of Nursing. Bus service is available to Carrington 
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 Hall. Please let me know your preference. I will be waiting to help you to the testing area 

and you will identify me by the yellow apron I will wear. 

Check the appointment book to see what is available. 

Do you have any questions so far? I have been giving you a lot to absorb. 

  Allow some time and then proceed. 
What day is better for you?  

Attempt to schedule within the next two weeks of the call if at all possible. 
   Schedule day in appointments. 
    Go to Step 24 
 
Step 24 

 In anticipation of you providing written consent and participating in this research 
study, I prefer to schedule a two-hour session. When is it convenient for you to arrive on 
__________? 

(date) 
 
 YES –Go to Step 25 
 NO – Would an evening time be better? 
 Go to Step 27 
 
Step 25 

 Then I will plan for you to arrive at ______ on ______. I would expect you would 

need to be here until _______. I would like to provide a sandwich and drink for you. Is there 

a type of sandwich and beverage you prefer (i.e., ham, turkey, with cheese, vegetarian, soft 

drink, tea)? Are there dietary restrictions I need to consider? 

   YES – Fill in the information with the appointment 

   NO – Go to Step 26 
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Step 26 

I would like to send an appointment reminder for the screening with a map. Would you 

mind giving me an address where the reminder can be sent? 

 

YES – Go to Step 30 
  NO – fill in the information below 
  Mailing address: I will get name from log book 

   ____________________________ 

   ____________________________ 

    ______________ 

ZIP code 

 
Step 27 
 EVENING APPOINTMENTS 

In scheduling evening appointments, we ask that you avoid eating a large meal three 

hours prior to the session. I do provide a light snack and drinks. Parking is available in the 

Bell Tower lot. Parking may be available across Medical Drive from the School of Nursing 

after 5 PM . Maps will be included in the appointment reminder I plan to send. Please let me 

know your preference I will be waiting to help you to the testing area since doors are locked 

at 5:30 PM and, you will identify me by the yellow apron I will wear.  

 

Are there any questions so far? 

 Allow some time for the questions. 

What evening is better for you? 

 Gives evening. 

  Go to step 28 
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Step 28 
 I prefer to schedule for a two-hour session in anticipation of you providing written 

consent and participating in this research study.  What time is it convenient for you to on 
__________? 

(date)  

 Gives time – check schedule 

   Go to Step 29 

 
Step 29 

Then I will plan for you to arrive at _______ on ______.  If you decide to participate in 
            (time)     (date) 
this research study, I have included time for you to be here  2 hours. I would like to 

provide a sandwich and drink for you. Is there a type of sandwich and beverage you 

prefer (i.e., ham, turkey, with cheese, vegetarian, soft drink, tea)? Are there dietary 

restrictions I need to consider? 

  YES – Write down on sheet with address information. Go to Step 30 
  NO – Continue with Step 30 

Step 30 
I would like to send an appointment reminder for the screening with maps. Would you 

mind giving me your name and an address where the reminder can be sent? 

  YES – go to Step 32 
  NO – fill in the information below  
  Mailing address: I will get name from log book 

   ___________________________ 

   ____________________________ 

    ______________ZIP code 

   Go to Step 31 
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Step 31 

If there is a number where you can be reached to be reminded of this appointment, I can 

give you a reminder call. Do mind receiving a reminder call? 

   YES – go to step 33 
   NO – go to step 32 

 
Step 32 

 The telephone number where you may be reached is? 

 ________________ 
(telephone number of caller)  

Go to Step 33 

 

Step 33 

Thank you for your interest in this research study and agreeing to consider 

participation. I appreciate you taking time to help me.  If you need assistance finding the 

School of Nursing, you may call my mobile number: 

  919-360-6350 

If I don’t answer, please leave a voice message with a number where you may be 

reached and I will return your call. 

    Go to Step 35 

 

Step 34 

Thank you for your interest in this research study. If it is not convenient to schedule at 

this time and you wish to at a later date, please keep the card with our telephone number to 

reach me later. I appreciate you taking time to talk. Thank you and goodbye. 

 

Step 35 

 Thank you for your interest in this research study. I appreciate you taking time to talk 

and look forward to seeing you on ___________ at _______. Thank you and goodbye. 

     date           time 
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Appendix 5. Agencies for Subject Recruitment 
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Flyer Placement Approved by Agencies 

Type of Agency Name Address Contact Person 

Senior Center Chapel Hill Senior 

Center at Galleria 

400 S. Elliott Road 

Chapel Hill, NC 27516 

Myra Austin 

 Hillsborough Senior 

Center 

515 Meadowlands Drive 

Hillsborough, NC 

Myra Austin 

 Northside Senior 

Center 

404 N. Caldwell 

Chapel Hill, NC 27514 

Corina Riley 

 Seymour Center 2551 Homestead Drive 

Chapel Hill, NC 27516 

Myra Austin 

Pharmacy CVS Pharmacy 300 N. Greensboro 

Carrboro, NC 275110 

Glen  

 Eckerd Pharmacy Glenwood Shopping Center 

Chapel Hill, NC 27517 

Carol  

 Kerr Drug University Mall 

Chapel Hill, NC 27514 

 

Wellness Center UNC Wellness 

Center at 

Meadowmont 

100 Sprunt Street 

Chapel Hill, NC 27517 

Betsy Carter 

Public Library   Chapel Hill Public 

Library 

100 Library Drive 

Chapel Hill, NC 27514 

Claudia Dayson 

Community 

Group 

Arthritis Support 

Group 

 Cindy  Johnson 
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Flyer Placement Approved by Agencies 

Type of Agency Name Address Contact Person 

Orthopedics 

Clinic 

UNC Orthopaedics 

Clinic 

Dept. of Orthopaedics 

CB# 7055 

UNC School of Medicine 

Chapel Hill, NC 27599-

7055 

Tom Bush, NP 

 

Retirement 

Community 

The Cedars of 

Chapel Hill 

Program Director 

100 Cedar Club Circle 

Chapel Hill, NC 27517 

Joan Welch   

 Carolina Meadows 100 Carolina Meadows 

Drive 

Chapel Hill, NC 27517 

Bobbie Gray 

UNC - Chapel 

Hill 

Campus Buildings Schools of Medicine, 

Pharmacy, Social Work, 

Education, Public Health, 

Information &Library 

Science: Undergraduate 

Library, Davis Library 

Administrative Staff 

in Dean’s Office  

or Library 

Churches Newman Catholic 

Student Center 

Parish 

218 Pittsboro Street 

Chapel Hill, NC 27516 

Tracy Ocampo 

 Holy Trinity 

Lutheran Church 

300 E Rosemary Street 

Chapel Hill, NC 27514 

Audrey Burke 
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 Flyer Placement Approved by Agencies 

Type of Agency Name Address Contact Person 

Fitness Center Peak Fitness  257 Elliott Road 

Chapel Hill, NC 27514 

 

Physical 

Therapy Center 

Comprehensive 

Physical Therapy 

Center 

115 Timberhill Place 

Chapel Hill, NC  

 

 Balanced Movement 

Studio 

304 W. Weaver Street 

Carrboro, NC 27510 
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Appendix 6. Health Screening Questionnaire 
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Health Screening Questionnaire 

(Step 19 of Telephone Screening) 
 “I will read several lists of health problems or illnesses that may affect your ability to 

participate in this study. Please let me read the list and then tell me if you have had any of 

the problems in the list. You do not need to tell me which conditions just answer ‘Yes’ at the 

end of the list.” 

Do you have now or have you ever had: 
Cardiovascular Problems like: 

Stroke          
Transient Ischemic Attacks or TIA      
Surgery to clear arteries to the brain or endarterectomy    
Hypertension not under control  
Taking beta-blockers   
Heart attack      
Change in memory, ability to talk or solve problems 24 hours after the heart attack   
Heart surgery               
Resuscitated or had CPR         Yes___ No____ 
 

Metabolic Problems like: 

Liver disease 
Kidney disease requiring renal dialysis 
Insulin dependent diabetes mellitus 
Drink beer, wine, or other alcoholic beverages every day or less often  
If daily, more than three drinks/day      Yes___ No___ 
 

Neurological Problems that would include: 
Learning problems or learning disability 
Head injury with a loss of consciousness longer than 5 minutes 
Unconscious longer than 1 hour other than for surgery 
Seizures     
Brain tumor 
HIV, AIDS, Syphilis 
Brain surgery 
Parkinson’s Disease    
Meningitis or encephalitis     
Illness or surgery that resulted in a decrease in memory or other mental function 
Depression or psychosis 
Had electroshock therapy      Yes___ No____ 
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ENT Problems like: 

Vision problems that prevent you from reading ordinary print even with glasses  
Difficulty understanding conversations 
Difficulty with slurring of speech 
Poorly fitting dentures      Yes____ No____ 
 

Respiratory Problems like 

Smoking cigarettes or cigars for more than 1 year 
Cancer of the lung, larynx (or voice box), mouth, or lip in past five years 
Cleft lip or palate 
Asthma, COPD, allergies that cause wheezing, or other respiratory disease  
Routine use of inhaled corticosteroids      Yes ____ No____ 
 

Skin Problems like 

Currently have open areas or rash on hands or forearms  Yes____ No ____ 

Hormonal Problems like 

Treatments requiring use of male hormones    Yes ____ No ___ 

Musculoskeletal Problems like 

Difficulty using hands - to hold pencils 
Difficulty writing your name 
Unable to walk unassisted 
Unable to stand unassisted 
Unable to stand for any length of time 
Tripping or falls  
Lupus or SLE        Yes ____ No ___ 

ANY YES REPLIES  - I am sorry that you do not match characteristics we need for this 

study. I do appreciate your willingness to help and the time you have spent on the interview. 

Thank you. (End the conversation) 

ALL NO REPLIES – Return to Telephone Script, Step 20 to encourage participation. 
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Appendix 7. Follow-Up Reminder Notice and Map 
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Date 
Name 
Address 
Dear            

Thank you again for volunteering to participate in the Voice and Knee Pain Research 
Study.  You are presently scheduled to come to the Biobehavioral Laboratory, Room 10 at 
the School of Nursing at the University of North Carolina on:  

_______________________ at ________________. 

         (Date)    (Time) 

As you may recall, the aim of the study is to determine the relationship between 
acoustic measures in voice to the pain induced by movement from sitting to standing in 
women 45 years of age and older with and without chronic knee pain. Your participation 
should not cause you more pain than usual if you have knee pain.  In total, the testing has 
taken about two hours, including the time for the snack, but time usually passes pretty 
quickly.  

Please do not have a big meal within 3 hours of coming because a big meal may alter 
your voice measurements.  I will provide you with a snack and a beverage.    
 I am including a sheet of instructions and a map of the campus.  On the day of your 
appointment, I would appreciate you calling me (919-360-6350) as you leave so I can be 
waiting for you at your destination point here at the School. I will wear a yellow apron so 
you can identify me.  If you need a wheelchair for long distances, please call me at least 
2days in advance so I may have one available for you to use. 
 I very much want to make this experience to be as enjoyable as possible, so please call 
me with any questions or concerns.  You will be provided $30 to cover any costs incurred as 
a result of participating in this study.  Needless to say, I look forward to meeting you and 
thank you again for volunteering. 
 
Sincerely, 
 
Susan R. Rasmussen, MSN, APRN-BC 
Doctoral Student 
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Information Sheet 
 
1. The School of Nursing is located at the corner of South Columbia Street and Medical 
Drive. 
 
2. The study is being conducted at the Biobehavioral Laboratory, Room 10, of Carrington 
Hall, the School of Nursing building. The telephone number to the laboratory is 919-966-
7598 should you need help finding it. You can also call me for instructions 919-360-6350. 
 
3. If you would prefer not to drive, you may ride one of the Chapel Hill Transit buses free of 
charge. There is a bus stop located directly in front of the School of Nursing on Columbia 
Street that serves many of the routes. 
 
4. If you will be dropped off by someone else, I recommend turning left onto Medical Drive 
from Columbia Street, and I will meet you on the sidewalk at the west end of the building 
closest to Columbia Street. 
 
5. If you choose to drive, more specific directions follow.  On the day of your appointment, 
call me as you are leaving home and meet me on Medical Drive (see the directions on the 
following page). 
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Directions to School of Nursing 

1. North on 15-501 Bypass (from Burlington/Carrboro):  

Take the Chapel Hill-Pittsboro exit. At the stoplight, make a left onto South 

Columbia Street. Follow the road up the hill and go through the South Columbia and 

Manning Drive intersection. Start to get into the right lane, if parking on Medical 

Drive,  go past the School of Nursing (on your right) and immediately turn right onto 

Medical Drive. UNC disability parking spaces are on the left and are available after 5 

PM. If going to the Bell Tower lot, continue past the School of Nursing bearing to the 

right and make a right turn onto South Road. Turn right at the next stop light. I will 

meet you wearing a yellow apron and will escort you to the laboratory.  

2. South on 15-501 Bypass (from University Mall/Durham):  

After passing University Mall, move to the right lane in order to turn right at the third 

(Manning Drive - Smith Center) exit. There is a stoplight where you will need to 

make a right turn onto Manning Drive. Follow the road up the hill, pass through the 

construction and pass the hospital moving to the right lane, and make a right turn onto 

South Columbia Street. There are a changing number of traffic lights, but usually 

Columbia is the 5th light.  If parking on Medical Drive, stay in the right lane and 

follow the buses. After you pass Carrington Hall, you will immediately turn right 

onto Medical Drive. UNC disability parking spaces are on the left and are available 

after 5 PM. I will be in the yellow apron. I will meet you wearing a yellow apron and 

will escort you to the laboratory.  

3. From Highway 54 (RTP or Raleigh): 

Take Highway 54 (Raleigh Road), past Glen Lennox, and go under the 15-501 

bypass. Go up the hill to the stop light at Country Club Drive. The School of 

Government will be to your left. Continue on (Raleigh Road changes to) South Road 

through stoplight at Raleigh Road (Fetzer Gymnasium is to your left). If going to park 

on Medical Drive, proceed through the intersection at Columbia, going up the hill on 

what is now McCauley Street. Turn left at the traffic light at Pittsboro Road. Stay in 

the left lane, bearing left as Pittsboro divides. Turn left onto Columbia Street and 
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move to the right lane. You will pass one traffic light at the Health Sciences Library. 

Follow buses as you will be turning right immediately after the Carrington Hall bus 

stop. UNC disability parking spaces are on the left and are available after 5 PM. I will 

be in the yellow apron. I will meet you and escort you to the laboratory. 

4. From Downtown Chapel Hill (Coming from Franklin Street):   

At the stoplight at the intersection of Franklin and Columbia, make a left turn onto 

South Columbia Street (Spanky's is on this corner). At the second stop light, make a 

right turn onto Cameron Avenue and move into the left lane. At the next stoplight, 

make a left onto Pittsboro Street. To park on Medical Drive, stay in the left lane, 

bearing left as Pittsboro divides. Turn left onto Columbia Street and move to the right 

lane. You will pass one traffic light at the Health Sciences Library. Follow buses as 

you will be turning right immediately after the Carrington Hall bus stop. UNC 

disability parking spaces are on the left and are available after 5 PM. I will be in the 

yellow apron. I will meet you and escort you to the laboratory. To park in the Bell 

Tower lot, remain in the left lane and turn left on McCauley Street. Follow the street 

through the traffic light at Columbia. The street name becomes South Road. Turn 

right at the next stop light at the Bell Tower parking lot. I will meet you at the gate in 

a yellow apron and will escort you to the laboratory.  

 

PLEASE REFER TO THE MAP  
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Appendix 8. Consent Form 
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Appendix 9. Enrollment and Data Collection Script 
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Enrollment and Data Collection Script 

 

The participant will be directed to parking by staff or investigator wearing yellow 

apron at the time of arrival. Assistance to the BBL will be provided as the entrances are 

locked after 5:30 PM and several entrances exist. The need for wheelchair or avoidance of 

steps will be determined at the time of the telephone contact as well as on arrival of the 

participant. While the participant proceeds to the BBL, assessment of the ability to stand for 

three to five minutes independently is done using the following criteria: requires one-person-

assist to transfer from car, unable to transfer to wheelchair independently, unstable gait with 

assistive device, shortness of breath with ambulation and transfer, and dizziness when 

standing. Any of these observations will be noted and transferred to Demographic Data 

Sheet. 

 

Hello, _________. I am Susan Rasmussen, the (nurse researcher/doctoral student) 

you talked with on the telephone about the voice and chronic pain study. Thank you for 

your interest in the project and welcome to the School of Nursing and the Biobehavioral 

Laboratory. There are several rooms here as well as restroom facilities. After your 

drive, do you need a drink or restroom?  

 

Bottled water will be provided once in the BBL. 
Participant and significant other will be shown to the restroom. It will also allow further 
assessment of mobility.  

 

IF YES – Assist participant to restroom, a drink, and then proceed to main room 
IF NO – Offer a chair. 
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Once comfortable, the investigator and participant (and friend/family, if present) will return 

to the main room of the BBL where the consent will be discussed and inventories will be 

reviewed and administered. Comfortable seating with arms is available at tables with 

fluorescent lighting. Explanation of the study will commence. 

 

 

As I mentioned on the telephone, the purpose of this study is to determine if aspects 

of voice change when persons have pain. It would be helpful for nurses to know what to 

listen for when caring for patients since no studies of chronic pain and voice have been 

reported. Since persons with knee pain experience pain with normal activity, I would 

expect that you are familiar with pain. 

 I will ask you to provide personal information and complete several questionnaires 

that look at anxiety, depression, anger, activity, and pain that take about 30-60 minutes. 

This information will be kept confidential.  There will be a break for a snack and 

beverage before we move to the other room. There, you will be asked to wear a head-

mounted microphone and a pulse monitor on your finger.   

While you are sitting, I will signal with my hand for you to repeat ”ah”, holding it 

for 4 seconds. Then there will be a pause of about 30 seconds. Then I will ask you to say 

“ah” again. I will ask that you do that five times for a total of 5“ah”sand a statement 

about your pain rating.  Then, I will ask you to stand and repeat “ah” five times like 

before, holding it for four seconds and pausing for 30 seconds between. While you are 

standing I will ask you to rate your pain, how unpleasant it is, and rate emotions you 
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might be experiencing on a form and say, “My pain is about a (number from 0-10).” 

You will need to be able to stand for 3 minutes. You may use a walker or cane, but you 

can not have a person help you. There will be videotaping of this part of the study to 

provide me a way to accurately check some times later. All of these records will be 

stored in a locked area with access restricted to only me and persons helping with the 

study. This vocal part of the study will take about 30-40 minutes. Do you think you are 

able to do this? 

 

IF YES – Fine. I will continue to explain the study. 

IF NO – Thank you for your time in coming here today. I am sorry you made this trip 

unnecessarily. (Provide with snack and drink, incentive for non-participant of $10). 

 

 I do not anticipate there are any risks outside usual, but the questionnaires may 

upset you and the voice exercise might make your mouth dry or cause you to feel you are 

running out of breath. There are no needle sticks and no blood drawing involved. You 

should feel free to ask for a break or drink at any time. Should you desire, you may also 

quit the study at any time. I will provide monetary reimbursement for your time and 

travel in the form of $30 if you complete the study and $10 if you withdraw. Do you have 

any questions?  

 

IF YES – (Answer as completely as possible. Demonstrate [a] exercise if needed.) 

IF NO- (Proceed to explain the consent.) 
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I will then ask you to read this consent form and sign one copy that will remain with 

me. You will keep the second copy. I will give you some time to read it over. If you have 

questions, please feel free to ask. 

 

[Two copies of the Consent (Appendix 8) are given to the participant and significant other to 

review while investigator remains in the room.] 

 

  Any questions? 

 

  IF YES – Answer the questions posed. 

  IF NO – Proceed. 

 

Thank you for agreeing to participate. I will ask your family/friend to wait outside 

or return for you about 3 hours.  

(Escort family/friend to hall and provide reading material or map of the campus. 

Synchronize watches to be able to meet them at an agreed upon time on return.) 

 

I would like to start by getting some routine measurements of height, weight, 

temperature, and routine vital signs. 

 [Demographic information collection begins (Appendix 8)]. Vital signs are 

obtained using the IVAC Electronic Oral Thermometer and Dynamap 1846 SX. Weight is 

obtained using the Scale-Tronix 5600 Portable Stand On Scale and recorded in pounds and 
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kilograms. Height will be obtained using the stadiometer in the BBL. Respirations are 

counted for 1 minute as participant reads materials.] 

 

(VAS for Pain Intensity of clipboard) 

 

There are some measures I will be doing a few times while you are here. First, I am 

going to ask you to place a mark on the line to indicate how much your pain hurts right 

now. 

 

(VAS for Pain Unpleasantness) 

 

Now, I am going to ask you to place a mark on the line to indicate how much your 

pain bothers you right now. 

I will be asking if you experience any emotions or feelings at intervals during the 

study. Please indicate if you felt any of these before coming and up to right now. Next 

time, you will be recalling from this time to the time I give you the form. 

Thank you. Now I will move on to the questionnaires I mentioned. These may take 

some time. There are no right or wrong answers. Just answer the questions as honestly 

as you can. 

 

(Place the Demographic Information and Data Sheet, VAS-PI, VAS-UPL in folder. 

Take a questionnaire packet out of box. Provide participant with pencils with grips.) 



  

332 

 

Are you comfortable in this chair? Is the lighting and temperature alright? Would 

you like a drink? 

 IF NO – make necessary adjustments 

 IF YES – hand participant the envelope 

 

In this envelope are several questionnaires. Some of them are psychological 

inventories since chronic pain often causes persons to become anxious, sad, or angry. 

Although I do not expect there to be any problem, if there is any indication that you are 

at risk, I will let you know and ask to notify your health care provider. I ask that you 

answer all the questions. It is best to give the answer that first comes to you and move on 

to the next item rather than spending too much time considering your answer. One of the 

questionnaires was designed for persons with cancer pain. When you encounter 

questions that refer to “diagnosis,” answer questions as if they were “arthritis.”  

I will stay nearby in case you have questions about the directions. Each 

questionnaire is different and some have questions printed on the back of the page. 

Please make sure you answer all the questions. 

Are you ready? 

 

 IF NO – find out reason(s) and remediate. 

 IF YES – You can begin. 

 

Respirations are counted for 1 minute and recorded while the participant completes 

the questionnaires. When the participant has completed the questionnaires, they are collected 
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and reviewed for missing items. Completed questionnaires are placed in the participant 

folder. The participant is asked to review incomplete questionnaires. 

 

After ½ hour, the opportunity for a break is presented.  

 

After completion of the questionnaires, a snack and drink are provided at the table 

before moving to vocalization. Provision of time for handwashing and glucose testing is 

included before the snack. 

 

If you are finished and ready, we can move to the other room. We need to walk to 

the elevator and then the length of the hall to get to a more quiet room. Are you ready 

for a walk?  

 

Monitor participant respiratory and ambulation status. 

(Entry to Room 310B may be intimidating if the participant has never seen 

camcorder, computer equipment, and oximeter. Effort to acclimate the participant to 

equipment and reduce situational anxiety is attempted.) 

 

Before you sit down, I will make sure the camera is set to get a picture of you from 

head-to-toe when you stand. So if you could stand in front of this chair for a moment, I 

will adjust the camera. 
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Once in the room, participant is shown to a chair with arms. Before sitting, camcorder 

focus is adjusted to allow head-to-toe video capture and the camera is placed on “Standby.” 

 

That’s done. Thank you. Please have a seat. 

I realize this looks like a lot of equipment, and you are probably wondering what it 

does. 

First, none of it should hurt you. Can I show you what it does? 

 

IF YES – Proceed to give a brief demonstration of the microphone, oximeter, and 

camcorder. Allow her to handle and try the equipment to become acclimated to the 

environment. 

IF NO – Ask if there is something wrong. 

 

In order to record your voice, I have this special microphone that will allow you to 

stand up without moving the microphone. The company says it can be used by singers 

and aerobics instructors but I don’t think you will need to move around that much. You 

may need to take off glasses while I fit this to you so it doesn’t wobble.  

 

(Adjust the headband of the AKG 420C to participant. Adjust distance from 

microphone head to lips – 5 cm.) 

  

How does that feel? Need any adjustment? 
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  (Replace glasses.) 

 

If that is feeling okay, I’ll need to use one finger to record your pulse. Are you right-

handed? 

  

 IF YES – use left hand for Ohmeda 3900 oximeter sensor and hypoallergenic 

tape to hold snugly. 

 IF NO- use right hand for Ohmeda 3900 oximeter sensor and hypoallergenic 

to hold snugly. 

   

This is a pulse oximeter and records your pulse rate and measures the level of 

oxygen in your blood.  

Let’s see if we are connected and registering.  

 

(Show participant tracing of pulse and her spO2. Turn off alarm. Turn camcorder to 

RECORD.)  

 

I am going to ask you to rate your pain intensity, pain unpleasantness, and emotions 

again. Are you able to mark the line with your free hand? 

 (Provide the VAS-PI and VAS-UNP one at a time on clipboard with pencil. 

When completed, remove sheets and place in folder. Leave two blank forms and the Emotion 

Presence form for the last rating to one side. Turn WinDaq to RECORD.) 
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Thank you. Now, I am going to show you how I would like you to say “ah” for me.  

(Refer to Appendix  for vocal data collection process.) 

 

Before you leave, I would like to check your blood pressure and vital signs one last 

time.  

   

(Check vital signs and record on the data sheet as post-study vital signs. Write these 

on a card for the participant to take.) 

(If there are abnormally high or low vital signs, refer participant to their health care 

provider.) (Enclose letter to provider if BDI score greater than 13) 

 

 Do you need a drink or to use the restroom before you leave? 

 

  (Direct to the restroom facilities in room. Get a bottle of water.) 

 

If you would like to provide comments about the study, I have a form with some 

areas listed or you can write any comments down that you like on the back as well. You 

may send it back later in this stamped, self-addressed envelope. Please do not sign the 

form or put your address on the envelope. 

   

[Provide the Comments sheet (Appendix 15) and envelope.] 
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Thank you for participating in this study. Here is a record of your height, weight, 

blood pressure and pulse while you were here. Reimbursement for your time and travel 

expenses is in this envelope. If you wish to know how about the results of the study, 

please leave me the address where you would like a brief summary sent. 

If that is all I can do for you, I will help you to your car.    
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Appendix 10. Demographic Information and Data Sheet
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Demographic Information and Data Sheet 

Participant ID____________ 

 

Date of Telephone Interview ___________ 
Date of Testing ____________   Time__________ 
Weather___________  
Barometric Pressure ___________ 
Mobility Observation 

1. Requires one-person-assist to transfer from car ___ 

2. Uses assistive device ____ 

3. Unable to transfer to/from wheelchair independently ___ 

4. Unstable gait with assistive device ___ 

5. Shortness of breath with ambulation and transfer ___  

6. Dizziness when standing ___ 

What is your age? ______         
Which of the following do you consider as your race or ethnicity?  
White   Black   Asian   Hispanic American Native   Mixed   Other____ 

Do you live alone? Yes   No 

IF YES 

With whom do you live?  

What is the relationship of that person to you? 
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Participant ID __________  

Do you have children: Yes   No   

Name or Gender of Children Age 

  

  

  

  

  

Do you have chronic illnesses that I should be aware of while you are here? Yes No 

What are they? 

 

Allergies? 

 

Sensitivities to: 

Do you have a regular health care provider? Yes No  

What is your health care provider’s name? __________________________ 

 Do you know the address? Yes  No  

  _____________________________ 

  _____________________________ 
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Participant ID _______________ 

 

Are you currently considering surgery for your knee pain?  Yes  No 

How soon do you anticipate having surgery?   

   _______days _______weeks______months_______year(s) 

Have you known anyone who has had surgery on his/her knee?  Yes  No 

Did they have a good experience?  Yes   No 

What medications do you currently take? 

   

 When did you last take pain medication(s)? 

____________________ taken at __________             

    (name and dose)   (time) 

 

____________________ taken at __________ 

    (name and dose)   (time)   

 

Do you drink caffeinated beverages (coffee, Coke/Pepsi, tea)?  Yes  No 

Have you had a caffeinated beverage in the past four hours?  Yes  No 

Do you drink alcoholic beverages?  Yes  No 

Have you had an alcoholic beverage in the past four hours?  Yes  No 
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Participant ID __________________ 

Physical Data 

Height ____ft _______inches   ___________cm 

Weight __________lbs ________Kg 

BMI_____ 

 Pre-Study Vital Signs 

Temperature _________  

Pulse ___________ 

Blood Pressure ________/_______ 

 Respirations (Counted 1 minute)_________ 

 After Completion of Inventories 

 Pulse ____________ 

 Respirations __________ 

 Blood Pressure_________/_________ 

 After Arrival to Acoustics Room  

Time Recording Began _____________ 

 Pulse ____________ 

 Respirations ____________ 

 Blood Pressure _________/__________ 

 Post-Study Vital Signs 

Time Recording Finished ______________ 

Temperature _________  

Pulse ___________ 

 Respirations (Counted 1 minute)_________ 

Blood Pressure__________/__________ 

Referral Letter Given to Participant for BDI score?  YES  NO 

Referral Letter Given to Participant for Vital Signs?  YES  NO 
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Appendix 11. Instruments 
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Written instruments used to measure independent variables in this investigation included: 

Brief Pain Inventory (BPI) (Cleeland, 1991b),   

Survey of Pain Beliefs-35 (SOPA-35) (Jensen & Karoly, 1989)  

Beck Depression Inventory – Second Edition (BDI-II) (Beck et al., 1996) 

Spielberger State-Trait Anxiety Inventory (STAI) (Spielberger, 1983)  

Spielberger State-Trait Anger Expression Inventory (STAXI-2) (Appendix 16)  

Modified Arthritis Self Efficacy Scale (ASES) (Lorig et al., 1989; Stanford Patient 

Education Research Center) 

 

Instruments used to measure dependent variables were: 

Visual Analogue Scale for Pain Intensity (Appendix 10) 

Visual Analogue Scale for Pain Unpleasantness (Appendix 11). 

Emotion Presence and Rating Scale (Appendix 18) 

Verbal Rating of Pain (Appendix 26) 

Computerized Speech Laboratory (KayPENTAX, 2004) 

Multi-Dimensional Voice Program (KayPENTAX Corporation, 2005) 

AKG C420 Microphone (AKG Acoustics, 2005) 

Datex-Ohmeda 3900 Pulse Oximeter (Datex-Ohmeda, 1998) 

Sony Digital Handicam Digital Camera Recorder Model DCR-TRV103 
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Appendix 12. Visual Analogue Scale for Pain Intensity 
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Participant ID _____________ 
Place a mark on the line to indicate how much the pain hurts right now. 

Pain as bad as I can imagine 

 

 

 

 

 

 

 

 

 

 

No pain 
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Appendix 13. Visual Analogue Scale for Pain Unpleasantness 
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Participant ID ___________ 

Place a mark on the line to indicate how much your pain bothers you right now . 

The most unpleasant pain I can imagine 

 

 

 

 

 

 

 

 

 

 

Not unpleasant at all 

 



  

349 

 

Appendix 14. Emotion Presence and Rating Scale 
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Participant ID ____________ 

 

Please indicate if  you experienced any of these emotions.  

If you did experience any of the emotions, please circle the number that indicates how 

much you felt that particular emotion. 

 

1. I felt irritated or angry.  Yes No 

1   2   3 

slightly    very much 

 

 

2. I felt sad or depressed.  Yes No 

1   2   3 

slightly    very much 

 

 

3. I felt anxious or fearful .  Yes No 

1   2   3 

slightly    very much 
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Appendix 15. Post-Study Comments 
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In order to improve research procedures, please take some time to jot some comments 

about what might be done to make this type of study better in the future? 

1. Getting word of the study to you? 

2. Calling to sign up? 

3. Parking? 

4. Paper and pencil tests? 

 Pain 

 Anxiety 

 Depression 

 Anger 

 Arthritis 

 Health screening 

 

5. Voice testing? 

6. Microphone? 

7. Pulse equipment? 

8. Snacks? 

9. Room? 

10. Chair? 
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Appendix 16. Physical Data Card 
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Name_________________________________ Date ________________ 

Ht. ________inches 

Wt._________ lbs. 

BMI _______ 

    Temperature Pulse     Respirations     Blood Pressure 

    

    

    

    

 

Susan Rasmussen, MSN, APRN, BC 
Voice and Pain Study 

UNC-CH School of Nursing 
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Appendix 17. Physician Referral Letter for BDI-II Score 
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Dear Health Care Provider,  

Your patient, ___________________, was seen on ____________as part of a nursing 

research project, Acoustic Measurement of Emotion Expression of Women with Chronic 

Knee Pain.. As part of the study, participants undergo evaluation for depression with the 

Beck Depression Inventory – Second Edition. Her score was ___ of a maximum of 63 points. 

Person with scores of 14-19 are considered to have mild depression. Persons with scores of 

20-28 are considered to have moderate depression. Persons with scores of 29-63 are 

considered to have severe depression. 

Because I do not know if this score represents a change or if she is currently treated, I 

am referring her to you for follow-up. I have also mentioned the mental health services here 

at UNC Healthcare to her and her family member. 

If you receive this letter from her, it is an indication of her concern as well. 

 

Sincerely,  

 

Susan R. Rasmussen, MSN, APRN, BC 

314-M Carrington Hall 

University of North Carolina at Chapel Hill 

Chapel Hill, NC 27599-7460 
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Appendix 18. Physician Referral Letter for Abnormal Vital Signs 
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Dear Health Care Provider, 

 

Your patient, ___________________, was seen today as part of a nursing research 

project, Acoustic Parameters of Vocalizations of Women with Chronic Pain. As part of the 

study routine vital signs were taken using the Dinamap 1846 SX and verified by auscultation. 

The blood pressure was _______/________, pulse was _______, and respirations (full 

minute) ______ with spO2 ______. 

Because I do not know if these readings represent a change or if she is currently 

treated, I am referring her to you for follow-up.  

If you receive this letter from her, it is an indication of her concern as well. 

 

Sincerely,  

 

Susan R. Rasmussen, MSN, APRN, BC 

314-M Carrington Hall 

University of North Carolina at Chapel Hill 

Chapel Hill, NC 27599-7460 
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Appendix 19.  Check List for Study Session 
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Room  

Lights on –fluorescent 

Temperature, barometric pressure, weather,  recorded 

Bottled water chilled, cup, straw 

Snack ready 

Yellow apron 

 

Equipment 

Camcorder (check battery), power cord, tripod, remote (check battery), tape cassette 

rewound 

Cart – mic, thermometer, pulse oximeter sensor, pad of paper , pencil, clipboard with 

pen, VAS-PI (3) , VAS-UNP (3),  Emotion Presence (1), RadioShack sound 

level meter,  tissues  

Arm chair positioned under light 

Turn on computer, CSL, oximeter, camcorder, printer 

Silence oximeter alarm, pulse rate volume turned down 

Synchronize clock on computer with camcorder  

Camcorder to tripod. On standby. Camcorder remote near computer. 

Microphone with clean windscreen to Channel 1 of CSL.  

Open DATAQ – Open WinDaq File, name file (ddmmyy#), set file size to 2 hrs., 

STOP 

Record file name and participant in log, Rasmussen data file folder named with ID 

number 

WinDaq to RECORD 
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Calibrate oximeter and record  

Analog – change 0 to 1 volt  

Waveform menu 

WinDaq to STOP/STBY after calibration 

MDVP Advanced Program on, sampling rate to 44,100, Protocol - Multiple tokens; 

Formant History settings to max number. 

 

Participant Session 

Participant arrives and is accompanied to testing area 

Restroom facilities pointed out and comfortable chair selected. 

Availability of water and beverage of choice (will have been ascertained in telephone 

interview) 

Explanation of the study and consent signed. Demographic information obtained. Vital 

signs, height, and weight measured.  

Pain intensity, unpleasantness, and emotion presence recorded. 

Instruments explained. Instrument packet and pencils provided.  

Participant completes instruments while investigator available for questions.  

Will take between 30-60 minutes. Provide beverage of choice. 

Snack provided on completion of instruments. 

Participant vital signs after written instruments completed. 

Bathroom break before move to 310B 

Walk the length of hall to elevator – monitor tolerance, time. Elevator to third floor 

and then walk to 310B. 
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Participant enters, to chair – observe ht and adjust camcorder to capture head when 

standing 

Participant BP, HR, R, pain, unpleasantness, and emotion presence  ratings recorded.. 

Drink of water, microphone, and oximeter fitted to participant 

 Check pulse ox. tracing 

Check camcorder focus, to record using remote,  

WinDaq to RECORD, write down time of start. 

New file in CSL Main Program  

Test intensity – 65 dB target with RadioShack meter on 

Demonstrate and practice sustained phonation of /a/  

using screen or clock to demonstrate  4 seconds, intensity needed, signals, 

stop if need drink or break. Check CSL Analysis for intensity. Show filling of 

window on screen and play back.  

Discard and start participant file in MVDP Advanced Program. 

Review test with participant.  

Event mark #1 before Cue. Click OK to record once participant has started. 

Record and save each of five tokens to Raw Data-Participant ID# folder;   

Attempt to record q. 30-45 sec 

Record “My pain is about a ____.” Save as .wav  

After Seated T4 – MDVP Analysis, Save as ID#a 

Event mark x 2 – give verbal command to stand  

Observe for Hands on armrests, back from chair, balance 

Event mark x 3 – Back straight, fully standing.  
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Record and save each of five tokens to Raw Data-Participant ID#  folder. 

Attempt to record within a few seconds of fully standing. Then q. 30-45 sec. 

for remaining tokens 

Record “My pain is about a ____.” Save as .wav  

After Standing T6 – MDVP Analysis, Save as ID#b. 

Pain intensity and unpleasantness ratings and Emotion Presence form.  

Participant may sit –  

Event mark x 4 when seated. Write time. 

Drink of water? Rest? 

Repeat sitting and standing tasks  

While sitting, record and save each of five tokens to Raw Data-Participant ID#folder; 

Attempt to record q. 30-45 sec. 

Record “My pain is about a ____.” Save as .wav  

After Seated T8 – MDVP Analysis, Save as ID#c 

Pain intensity and unpleasantness ratings and Emotion Presence form.  

Event mark x 5 – give verbal command to stand  

Observe for Hands on armrests, back from chair, balance 

Event mark x 6 – Back straight, fully standing.  

Record and save each of five tokens to Raw Data-Participant ID# folder.  

Attempt to record within a few seconds of fully standing.  

Then q. 30-45 sec. for remaining tokens 

Record “My pain is about a ____.” Save as .wav  

After Standing T10 – MDVP Analysis, Save as ID#d. 
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Pain and unpleasantness ratings and Emotion Presence form.  

Participant may sit –  

Event mark x 7 when seated. Write time. 

Remove mic and oximeter sensor; measure BP, HR, R. 

Drink of water?  

WinDaq – make sure cal marks on file before EXIT, save to Desktop: file 

“Rasmussen/ Raw Data/Participant#”  

Camcorder to standby via remote 

MDVP files to participant data folder; raw WinDaq file to data folder 

Offer drink of water, incentive, comments envelope, and thanks. Accompany 

participant to door and family member/car 

Data Calibration and Save 

Copy WinDaq file for calibration; rename copy,  

Raw WinDaq in “Rasmussen” –“Raw Data” folder 

Open WinDaq “Cal” file 

Cursor at 0 point of calibration 

Highlight channel; Edit 

Low cal – SpO2 0, Engr = %; HR 20, Engr=BPM 

Cursor to well into 1 point of calibration 

High Cal – SpO2 100; HR 255 

Once WinDaqCal file calibrated – Save all 

Move WinDaqCal file to Desktop:RasmussenData – Cal Data folder# 

Remove camcorder tape 
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Rewind – note total time of recording  

Follow steps of digitizing protocol, burn CD 

CD to computer CD-ROM, open 

Drag sound files and WinDaq files in Desktop:RasmussenData folder ID #  

to “data” box on right  

Right click to initiate CD burning 

Label with ID# using permanent marker; Store in jewel case in locked file.  

Archive copy made 
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Appendix 20. Equipment Set-Up 
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Equipment Set-Up 

Monster Surge Protector 

 Plug into outlet to reduce 60-cycle interference 

  Mounted on cart. 

Check Tires 

Dell Optiplex Desktop Computer  

 Power supply to power strip 

 Turn on 

 Click on Clock to show setting information 

 

Sony Digital x 360 Camcorder, power cord  

 Spare batteries for remote  

 Install 8 mm tape – make sure it is free of recording, rewound 

 Turn on, open viewer 

 Menu – Clock setting 

Set date, clock to 1 minute ahead of computer clock 

Press Menu – Clock –  

when computer clock reaches 59 seconds to synchronize with 

computer;  

compare to computer clock.  

Close Menu. 

 Attach to tripod – adjust height, attach power cord, focus on chair 

 Remote to STBY. 

May need to push red standby button to activate if wait is too long.  

 

Datex-Ohmeda 3900/3900P Pulse Oximeter 

 Plug unit to power strip 

 Connection of pulse oximeter to Dataq Di-158U A-D converter  

  Analog inputs - spO2 , pulse rate, event marker 

 A-D converter to computer via USB port 
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 Press Power button 

 Turn HR volume down to lowest setting, alarm off 

 

Pad of paper and pencil to record time of recording 

Clipboard for participant forms 

Bottled water, chilled, for participant 

 

Hewlett-Packard 5940 DeskJet printer 

 Available to print radial graph of MDVP Analysis, Letter to HCP 

 Adequate ink in tricolor and black ink cartridges 

 Adequate paper supply 

  

WinDaq Data Acquisition Program 

 Select DATAQ Instrument Hardware Manager program icon 

 “Find Devices” 

“Start WinDaq” 

File 

 Record 

 Name File – ddmmyy# 

 Change recording time from 0 to 2 hours 

  OK  

Check the voltage limits on each channel. Adjust in Options-Limits if necessary 

 Pulse rate and spo2 should be -1.25 and +.1.25. Event marker -2 and +2 

Oximeter Calibration 

 Press Menu button 

 Press button next to Settings on screen 

 Press first button - associated with arrow down - to move to Analog 

 Change from 0 to 1.0 volt by pressing second button associated with +/- 

  Watch waveform on WinDaq file 

 Should see the increase to .5 and 1.0 volt 
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 Allow to run for 3 seconds 

 Resume 0 volt setting to end calibration mark step 

 Change from Menu to Waveform, Alarm off 

Place sensor on finger to observe waveform on oximeter and WinDaq 

Remove sensor 

WinDaq to STOP/STBY until participant arrives 

 

CSL – Sound Conditioning Unit 

 Press “Power” button 

 Gain set at second mark on Channel 1 

 Do not press MRP button 

 

AKG-C420 Head-Mounted Microphone  

Insert mic head into clean foam windshield 

(cleaned with antibacterial detergent and dried after each participant; rotation 

of 4 windscreens) 

 Insert XLR connection of mic into Channel 1 XLR connection CSL 

Once CSL on – press F12 to check mic is recording 

Earphones  

 Insert in earphone input of CSL 

CSL Programs  

 CSL – ready for demo and to test participant intensity, 

 Multi-Dimensional Voice Program (MDVP) 

 Multi-Dimensional Voice Program (MDVP) Advanced 

RadioShack Sound Level Meter 

 Batteries functioning?   Extra available on cart 
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Appendix 21. Recording Session Protocol 
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Recording Session Protocol 

 

Participant Preparation 

Participant arrives after completion of instruments, snack, ht and wt measurement 

Welcome, assess tolerance of walking,  

Have participant stand in front of chair briefly  

 Focus camera 

 Adjust for standing height 

Seat in Chair, ask to sit with back close to back of chair 

Turn camcorder to RECORD, write the time on pad 

 Take vital signs 

Obtain pain intensity, pain unpleasantness, and emotion presence ratings 

Bottle of water within participant’s reach. 

 

Oximeter to Seated Participant 

Explain oximeter, place sensor on participant 

 Non-dominant hand, middle finger, 

 Make sure Waveform setting is observed  

 WinDaq to RECORD 

Observe waveform on oximeter screen 

  Should note voltage changes in spO2 and HR recordings on WinDaq 

 

Microphone to Seated Participant 

Explain microphone and CSL. Position mic on participant  

Note if hearing aid (?feedback) 

 Remove glasses first if present 

Place mic, adjust to fit snugly to back of head to minimize shifting when 

standing 

 Replace glasses  

 Position mic head 4 cm (use small ruler), 45 degree angle from lips 
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Show participant how to signal (hand to mouth like holding a glass) if needing drink 

 

CSL Practice 

 Open CSL Main Program  

  Demonstrate recording to reduce anxiety – Name file #p 

 

Ask participant to say /a/ when cued by hand 

  Cue; Press F12 

  Participant says /ə/ at normal sound level for 4 sec, fill screen 

  Press Space bar to stop 

 Activate B window 

Select CSL Analysis/Energy Contour/ 

Note intensity on RadioShack Sound level meter – must be 30-40 dB 

over room noise of 30 dB – about 65dB 

  If not reaching 60 dB, practice until level is obtained 

 

Vocalization Recording 

 Select “MDVP Advanced” 

   Record mono sound 

   Set sampling rate at 44.1 kHz 

   Set Formant History at “36” 

 Participant to phonate /ə/ for 4 secs to fill screen 

 Have Participant Practice /ə/ and “My pain is about a ___.” 

  Refer to visual aids prior to task 

  Cue to start 

  Click OK to record when phonation begins 

  Press space bar to stop recording when screen filled  

Nod to participant to stop. 

  MDVP Analysis/Energy Contour – Check for intensity  
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Seated Recordings -Time 4 

 

WinDaq - Event Mark #1 to indicate start of recordings  

MDVP Advanced Program – Protocols/Multiple Tokens/Record and Analyze 

Five Tokens 

 Settings – sampling at 44.1 kHz, formant hx at 36 

Window should appear asking if you wish to record 

If inadequate sample, do not save but repeat the recording until 5 adequate tokens are 

obtained 

 

Seated #T4 – name #a file,  

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - #a1 

   Observe radial graph 

   Aim for 30-45 seconds between recordings 

 

Seated #a2 – name file #a2 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

Save recording to Raw Data folder - #a2 

   Observe radial graph 

 

Seated #a3 – name file #a3, Hand Cue to begin 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - #a3 

   Observe radial graph 
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Seated #a4– name file #a4, Hand Cue to begin 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - #a4 

   Observe radial graph 

 

Seated #a5 – name file #a5 Hand Cue to begin 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - #a5 

   Observe radial graph 

 

While seated, participant ready? Has visual aid? 

Name file #apain” 

Hand cue to begin 

Says “My pain now is about a (0-10).” 

 

Participant remains seated. 

Completes pain rating and unpleasantness rating and Emotion 

Presence forms 

  Select MDVP Analysis/NumericalData 

Type in Participant ID#T4 as “Name”  

   “Save” 

   Type of File – “All Files” 

   Select “Comma” 

   Save in Raw Data folder/Participant ID# 

  “Need a drink?” 
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Standing Recordings – Time 6 

 

   WinDaq Event Mark #2 

Instruct participant you will cue next recordings to occur after 

she stands  

   Event mark prior to command 

   Instruct to stand  

WinDaq Event mark #3 when back straight after fully standing  

Select MDVP Advanced/ Protocol/Multiple Tokens/Record  

   and Analyze 5 Tokens 

 

Standing #b1– name file #b1  

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - #b1 

   Observe radial graph 

 

Standing #b2 – name file #b2 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

Save recording to Raw Data folder - #b2 

   Observe radial graph 

 

Standing #b3 – name file #b3 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - #b3 

   Observe radial graph 
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Standing #b4– name file #b4 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - #b4 

   Observe radial graph 

 

Standing #b5 – name file #b5 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - #b5 

   Observe radial graph 

 

MDVP Advanced/Protocol/MDVP Analysis/Numerical 

Type Participant ID#b as “Name” 

   Save As Type – “All Files” 

   Select “Comma” 

   Select “Raw Data Folder/Participant ID#”  

Name file #bpain 

Participant standing – ready?  has visual aid? 

Hand cue to begin 

Says “My pain now is about a (0-10).” 

Save file as bpain.wav 

 

Participant Remains Standing 

Completes pain rating and unpleasantness rating and Emotion Presence forms 

Participant Sits 

WinDaq Event Marker #4 when seated 

When participant feels rested, has had a drink, and restroom break, recording session 

resumes. 
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Seated Recordings – Time 8 

   

Seated #c1 – name #c1 file,  

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - # 

   Observe radial graph 

   Aim for 30-45 seconds between recording 

 

Seated #c2 – name file #c2 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - # 

   Observe radial graph 

 

Seated #c3 – name file #c3, Hand Cue to begin 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - #c3 

   Observe radial graph 

 

Seated #c4 – name file #c4, Hand Cue to begin 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - #c4 

   Observe radial graph 

 

Seated #c5 – name file #c5, Hand Cue to begin 

Hand Cue to begin /ə/ 4 secs 
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Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - #c5 

   Observe radial graph 

 

While seated, participant ready? Has visual aid? 

 

Name file #cpain 

Hand cue to begin 

Says “My pain now is about a (0-10).” 

 

Participant remains seated. 

Completes pain rating and unpleasantness rating and Emotion 

Presence forms 

   Select MDVP Analysis/NumericalData 

   Type in Participant ID#cpain as “Name”  

   “Save” 

    Type of File – “All Files” 

    Select “Comma” 

    Save in Raw Data folder/Participant ID# 

 

  “Need a drink?” 

 

Standing Recordings  - Time 10 

 

WinDaq Event Mark #5 – Before command 

Instruct participant you will cue next recordings to occur after she 

stands  

   Instruct to stand  

WinDaq Event mark #6 when back straight after fully standing  

Select MDVP Advanced/ Protocol/Multiple Tokens/Record and Analyze 5 Tokens 
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Standing #d1 – name file #d1  

Hand Cue to begin /ə/ 4  secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - # 

   Observe radial graph 

 

Standing #d2 – name file #d2 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - # 

   Observe radial graph 

 

Standing #d3 – name file #d3 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - # 

   Observe radial graph 

Standing #d4 – name file #d4 

   Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - # 

   Observe radial graph 

 

Standing #d5 – name file #d5 

Hand Cue to begin /ə/ 4 secs 

Press OK – continue to fill screen, space bar to stop recording 

   Save recording to Raw Data folder - # 

   Observe radial graph 
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MDVP Advanced/Protocol/MDVP Analysis/Numerical 

 Type Participant ID#dpain as “Name” 

 Save As Type – “All Files” 

  Select “Comma” 

  Select “Raw Data Folder/Participant ID#”  

   

Participant Remains Standing 

Hand cue to begin 

Says “My pain now is about a (0-10).” 

Name file #dpain 

Completes pain intensity rating, unpleasantness rating and 

Emotion Presence forms 

Participant Sits 

  WinDaq Event Marker #7 when seated 

 

Video camcorder to STANDBY.  

Note time on pad for length of recording 

 Remove oximeter sensor 

 Take off glasses 

 Remove Mic 

 Replace glasses 

 Obtain Vital signs – record on data sheet 

 Participant given Comments sheet and envelope 

Provide Incentive and Thanks 

Escort/Assist to car  
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Appendix 22. Verbal Rating of Pain Visual Aid 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

My pain now is 

about a ______. 
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9 10 

 

8 7 6 5 4 3 2 1 0 

NO 

PAIN 

 
PAIN AS 
BAD AS I 
CAN 
IMAGINE 
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Appendix 23. PROC MIXED Influence Diagnostics Graphic Output 
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Research Question 1. Change in Pulse Rate with Movement 

 
Plot of residuals for original model of pulse rate change with movement tasks. 
 

 

 
Influence diagnostics of original model of pulse rate change with tasks. 
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Research Question 1 (Continued). Change in Pulse Rate with Movement 

 
Plot of residuals of log transformed model of pulse rate change with movement tasks. 

 
 
 

 
Influence diagnostics of log transformed model for pulse change with tasks. 



 

  

387 

 

Research Question 2. Change in Range of F0 with Tasks 

 
Plot of residuals for original model of range of fundamental frequency with reduced data set. 

 

 
Influence diagnostics of original model of range of fundamental frequency with reduced data set. 
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Research Question 2 (Continued). Change in Range of F0 with Tasks 

 
Plot of residuals of log transformation model of range of fundamental frequency with reduced data 

set. 
 

 
Influence diagnostics of log transformation model of range of fundamental frequency with reduced 

data set. 



 

  

389 

 

Research Question 2 (Continued). Change in Jitter with Tasks 

 
Plot of residuals for original model of jitter in percent 

 

 
Influence diagnostics of original model of jitter in percent. 
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Research Question 2 (Continued). Change in Jitter with Tasks 

 
Plot of residuals for log transformation model of jitter in percent. 

 

 
Influence diagnostics of log transformation model of jitter in percent. 
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Research Question 2 (Continued). Change in Shimmer with Tasks 

 
Plot of residuals for original model of shimmer. 

 

 
Influence diagnostics for original model of shimmer. 
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Research Question 2 (Continued). Change in Shimmer with Tasks 

 
Plot of residuals for log transformation model of shimmer. 

 

 
Influence diagnostics of log transformation model of shimmer. 
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Research Question 2 (Continued). Change in Amplitude Perturbation Quotient with Tasks 

 
Plot of residuals for original model of APQ. 

 
 

 
Influence diagnostics of original model of APQ. 
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Research Question 2 (Continued). Change in Amplitude Perturbation Quotient with Tasks 

 
Plot of residuals for log transformation model of APQ. 

 

 
Influence diagnostics of log transformation model of APQ. 
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Research Question 3. Change in Formant Frequencies with Tasks Related to Pain Intensity 

 
Plot of residuals of original model of formant frequencies related to pain intensity over tasks. 
 

 
Influence diagnostics of original model of formant frequencies. 
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Research Question 3. Change in Formant Frequencies with Tasks Related to Pain Intensity 

 
Plot of residuals of log transformation model of formant frequencies related to pain intensity 

over tasks. 
 

 
Influence diagnostics of log transformation model of formant frequencies. 
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Research Question 4. Change in Acoustic Parameters with Psychological Variables –
Depression and Flo (Lowest Fundamental Frequency) 

 
Plot of residuals of original model for interaction of depression with lowest fundamental 

frequency. 
 

 
Influence diagnostics for original model for interaction of depression with lowest 

fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables –Depression and Flo (Lowest Fundamental Frequency) 

 
Plot of residuals for log transformation of original model of interaction of depression with 

lowest fundamental frequency. 
 

 
Influence diagnostics for log transformation of original model of interaction of depression 

with lowest fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables –Depression and Flo (Lowest Fundamental Frequency) 

 
Plot of residuals of reduced model for interaction of depression on lowest fundamental 
frequency. 

 

 
Influence diagnostics of reduced model for interaction on depression on lowest fundamental 
frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables –Depression and Flo (Lowest Fundamental Frequency) 

 
Plot of residuals for log transformation of reduced model of interaction of depression with 

lowest fundamental frequency. 
 

 
Influence diagnostics of log transformation of reduced model of interaction of depression 
with lowest fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables –Depression and Fhi (Highest Fundamental Frequency) 

 
Plot of residuals of reduced model for interaction of depression with highest fundamental 

frequency with new BDI-II sample mean. 
 

 
Influence diagnostics of reduced model for interaction of depression with highest 

fundamental frequency with new BDI-II sample mean. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables –Depression and Fhi (Highest Fundamental Frequency) 

 
Plot of residuals for log transformation of reduced model of interaction of depression with 

highest fundamental frequency with new BDI-II sample mean. 
 
 

 
Influence diagnostics of log transformation of reduced model of interaction of depression 

with highest fundamental frequency with new BDI-II sample mean. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables –Depression and Range of Fundamental Frequency 

 
Plots of residuals for reduced model of interaction of depression with range of fundamental 

frequency. 
 

 
Influence diagnostics for reduced model of interaction of depression with range of 

fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables –Depression and Range of Fundamental Frequency 
 

 
Plots of residuals for reduced model of interaction of depression with range of fundamental 

frequency with new BDI-II sample mean. 
 

 
Influence diagnostics for reduced model of interaction of depression with range of 

fundamental frequency with new sample BDI-II mean. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables –Depression and Range of Fundamental Frequency 

 
Plot of residuals for log transformation of reduced model of interaction of depression with 

range of fundamental frequency. 
 

 
Influence diagnostics of log transformation of reduced model of interaction of depression 

with range of fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables –Depression and Jitter 

 
Plots of residuals of reduced model of interaction of depression with jitter. 

 
 

 
Influence diagnostics of reduced model of interaction of depression with jitter. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables –Depression and Jitter 

 
Plot of residuals for log transformation of reduced model of interaction of depression with 

jitter. 
 

 
Influence diagnostics of log transformation of reduced model of interaction of depression 

with jitter. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables –Depression and Formant Frequencies  
 

 
Plots of residuals of reduced model of interaction of depression with formant frequencies. 

 

 
Influence diagnostics of reduced model of interaction of depression with formant 

frequencies. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables –Depression and Formant Frequencies 

 
Plots of residuals of log transformation of reduced model of interaction of depression with 

formant frequencies. 
 

 
Influence diagnostics of log transformation of reduced model of interaction of depression 

with formant frequencies. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – State Anxiety and Range of Fundamental Frequency 

 
Plots of residuals of model of interaction of state anxiety with range of fundamental 

frequency. 
 

 
Influence diagnostics of model of interaction of state anxiety with range of fundamental 

frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – State Anxiety and Range of Fundamental Frequency 
 

 
Plot of residuals for log transformation of reduced model of interaction of state anxiety with 

range of fundamental frequency. 
 

 
Influence diagnostics of log transformation of reduced model of interaction of state anxiety 

with range of fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological  
Variables – State Anxiety and Range of Fundamental Frequency 

 
Plot of residuals of deleted model of interaction of state anxiety with range of fundamental 

frequency. 
 

 
Influence diagnostics of deleted model of interaction of state anxiety with range of 

fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – State Anxiety and Range of Fundamental Frequency 

 
Plots of residuals of log transformation of reduced model interaction of state anxiety with 

range of fundamental frequency. 
 

 
Influence diagnostics of log transformation of reduced model of interaction of state anxiety 

with range of fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – State Anxiety and Jitter 

 
Plots of residuals for original model of interaction of state anxiety with jitter. 

 

 
Influence diagnostics for original model of interaction of state anxiety with jitter. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – State Anxiety and Jitter 

 
Plots of residuals of log transformation of reduced model of interaction of state anxiety with 

jitter. 
 

 
Influence diagnostics of log transformation of reduced model of interaction of state anxiety 

with jitter. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – State Anxiety and Amplitude Perturbation Quotient 
 

 
Plot of residuals for reduced model of interaction of state anxiety with APQ. 

 

 
Influence diagnostics for reduced model of interaction of state anxiety with APQ. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – State Anxiety and Amplitude Perturbation Quotient 
 

 
Plots of residuals for log transformation of reduced model of interaction of state anxiety with 

APQ. 
 

 
Influence diagnostics for log transformation of reduced model of interaction of state anxiety 

with APQ. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – Trait Anxiety and Range of Fundamental Frequency 
 

 
Plot of residuals of reduced model of interaction of trait anxiety with range of fundamental 

frequency. 
 

 
Influence diagnostics for reduced model of interaction of trait anxiety with range of 

fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – Trait Anxiety and Range of Fundamental Frequency 

 

 
Plots of residuals for log transformation of reduced model of interaction of trait anxiety with 

range of fundamental frequency. 
 

 
Influence diagnostics for log transformation of reduced model of interaction of trait anxiety 

with range of fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – Trait Anxiety and Jitter 

 

 
Plots of residuals of reduced model of interaction of trait anxiety with jitter. 

  

 
Influence diagnostics of reduced model interaction of trait anxiety with jitter. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – Trait Anxiety and Jitter 
 

 
Plots of residuals of log transformation model of interaction of trait anxiety with jitter. 

 

 
Influence diagnostics of log transformation model of interaction of trait anxiety with jitter. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – Trait Anxiety and Formant Frequencies 
 

 
Plots of residuals of reduced model interaction of trait anxiety with formant frequencies. 

 

 
Influence diagnostics of reduced model of interaction of trait anxiety with formant 

frequencies. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – Trait Anxiety and Formant Frequencies 
 

 
Plots of residuals with log transformation of reduced model of interaction of trait anxiety 

with formant frequencies. 
 

 
Influence diagnostics of log transformation of reduced model of interaction of trait anxiety 

with formant frequencies. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – State Anger and Range of Fundamental Frequency 
 

 
Plots of residuals of the reduced model of interaction of state anger with range of 

fundamental frequency. 
 

 
Influence diagnostics of reduced model of interaction of state anger with range of 

fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – State Anger and Range of Fundamental Frequency  

 
Plots of residuals with log transformation of reduced model of interaction of state anger with 

range of fundamental frequency. 
 

 
Influence diagnostics of log transformation of reduced model of interaction of state anger 

with range of fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – State Anger and Range of Fundamental Frequency  
 

 
Plots of residuals of the further reduced model of interaction of state anger with range of 

fundamental frequency– subject with high COVRATIO deleted. 
 

 
Influence diagnostics of further reduced model of interaction of state anger with range of 

fundamental frequency – subject with high COVRATIO deleted. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – State Anger and Range of Fundamental Frequency 
 

 
Plots of residuals of the log transformation of further reduced model of interaction of state 

anger with range of fundamental frequency – subject with high COVRATIO deleted. 
 

 
Influence diagnostics of the log transformation of further reduced model of interaction of 
state anger with range of fundamental frequency– subject with high COVRATIO deleted. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – State Anger and Jitter  
 

 
Plots of residuals of model of interaction of state anger with jitter. 

 

 
Influence diagnostics of model of interaction of state anger with jitter. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – State Anger and Jitter 
 

 
Plots of residuals of log transformation model of interaction of state anger with jitter. 

 
 

 
Influence diagnostics of log transformation of model of interaction of state anger with jitter. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – Trait Anger and Range of Fundamental Frequency   
 

 
Plots of residuals of reduced model of interaction of trait anger with range of 

fundamental frequency. 

 
Influence diagnostics of reduced model of interaction of trait anger with range of 

fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – Trait Anger and Range of Fundamental Frequency   
 

 
Plots of residuals of log transformation of reduced model of interaction of trait anger with 

range of fundamental frequency 
 

 
Influence diagnostics of log transformation of reduced model of interaction of trait anger 

with range of fundamental frequency. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – Trait Anger and Jitter   

 
Plots of residuals for reduced model of interaction of trait anger with jitter. 

 

 
Influence diagnostics for reduced model of interaction of trait anger with jitter. 
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Research Question 4 (Continued). Change in Acoustic Parameters with Psychological 
Variables – Trait Anger and Jitter   
 

 
Plots of residuals of log transformation of reduced model of interaction of trait anger with 

jitter. 
 

 
Influence diagnostics of log transformation model of interaction of trait anger with jitter. 
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