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ABSTRACT

YEONSEUNG CHUNG: Nonparametric Bayesian Inferences on
Predictor-Dependent Response Distributions.
(Under the direction of Dr. David Dunson.)

A common statistical problem in biomedical research is to characterize the relationship be-

tween a response and predictors. The heterogeneity among subjects causes the response distri-

bution to change across the predictor space in distributional characteristics such as skewness,

quantiles and residual variation. In such settings, it would be appealing to model the condi-

tional response distributions as flexibly changing across the predictors while conducting variable

selection to identify important predictors both locally (within some local regions) and globally

(across the entire range of the predictor space) for the response distribution change.

Nonparametric Bayes methods have been very useful for flexible modeling where nonpara-

metric distributions are assumed unknown and assigned priors such as the Dirichlet process

(DP). In recent years, there has been a growing interest in extending the DP to a prior model

for predictor-dependent unknown distributions, so that the extended priors are applied to flexible

conditional distribution modeling. However, for most of the proposed extensions, construction

is not simple and computation can be quite difficult. In addition, literature has been focused

on estimation and few attempts have been made to address related hypothesis testing problems

such as variable selection.

Paper 1 proposes a local Dirichlet process (lDP) as a generalization of the Dirichlet pro-

cess to provide a prior distribution for a collection of random probability measures indexed

by predictors. The lDP involves a simple construction, results in a marginal Dirichlet process

prior for the random measure at any specific predictor value, and leads to a straightforward

posterior computation. In paper 2, we propose a more general approach not only estimating

the conditional response distribution but also identifying important predictors for the response
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distribution change both with local regions and globally. This is achieved through the probit

stick-breaking process mixture (PSBPM) of normal linear regressions where the PSBP is a newly

proposed prior for dependent probability measures and particularly convenient to incorporate

variable selection structure. In paper 3, we extend the paper 2 method for longitudinal out-

comes which are correlated within subject. The PSBPM of linear mixed effect (LME) model is

considered allowing for individual variability within a mixture component.
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CHAPTER 1

INTRODUCTION

In biomedical research, one wishes to study the relationship between a response and predictors.

A common interest may be to characterize how the mean response changes as the predictors

change. However, there often exists heterogeneity among subjects in the impact of predictors

on the response. Such heterogeneity causes the response distribution to change as the predic-

tors change, not only in mean but also in other characteristics such as skewness, quantiles and

residual variation. In addition, important predictors for the response distribution may change

unexpectedly across the predictor space. Hence, it is appealing if one can flexibly estimate the

conditional distribution of a response addressing the distributional changes across the predictor

space and can perform hypothesis testing to detect the changes in distribution or to identify

important predictors for the distribution change both within some local regions and globally. In

particular, subset selection is of interest in performing inferences on effects of particular predic-

tors and in building sparse predictive models. Sparsity is of paramount importance in modeling

of conditional distributions with many candidate predictors due to the curse of dimensionality.

In such settings, nonparametric Bayes methods are very useful where unknown quantities

are assigned nonparametric probability measures that are also assumed unknown and assigned

priors such as the Dirichlet process (DP) (Ferguson, 1973, 1974). In particular, the Dirichlet

process mixture (DPM) (Lo, 1984; Escobar, 1994; Escobar and West, 1995) model has popularly

been used to smooth any distributional shape as an infinite mixture model. For the problem of



flexible characterization of predictor-dependent response distributions, one may fit DPM models

separately for different predictor levels, which results in smooth estimation of predictor-specific

response distributions. However, the approach of fitting several DPM models at different pre-

dictor levels is disadvantageous in that it neither models trends nor borrows information across

the predictor space, which is particularly important in applications having a modest number

of subjects. In addition, the approach requires some arbitrary categorization for continuous

predictors, which can discard valuable information. Furthermore, as the number of predictor

categories increases, estimation and testing efficiency may decrease.

In recent years, there has been a growing interest in extending the DP to a prior model for

predictor-dependent unknown probability measures. Most of this literature has relied on extend-

ing the stick-breaking representation of the DP (Sethuraman, 1994) and has been stimulated by

the dependent Dirichlet process (DDP) framework proposed by MacEachern (1999, 2000, 2001),

which replaces the atoms in the stick-breaking representation of the DP with stochastic pro-

cesses. The DDP structure has been adopted to develop ANOVA-type dependence for random

probability measures (De Iorio et al., 2004), for flexible spatial modeling (Gelfand et al., 2004),

and for inferences on stochastic ordering (Dunson and Peddada, 2008). The specification of

the DDP used in applications incorporates dependence only through the atoms while assuming

fixed weights. In other recent work, Griffin and Steel (2006; 2008) proposed an order-based

DDP (πDDP) which allows varying weights, while Duan et al. (2005) developed a multivariate

stick-breaking process for spatial data. In addition, Teh et al. (2004) proposed the hierarchi-

cal Dirichlet process (hDP) which generates group-specific random probability measures having

group-dependent weights but sharing atoms in their stick-breaking forms.

Alternatively, convex combinations of independent DPs have been used for modeling collec-

tions of dependent random measures. Müller et al. (2004) used this idea to allow dependence

across experiments combining a global component and experiment-specific components drawn

from DPs. Dunson (2006) proposed an alternative dynamic mixture of DPs (DMDP), which

is appropriate for modeling of changes with a categorical predictor or discrete time index. A

related idea was used by Pennell and Dunson (2006) to develop dynamic frailty models for event
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time data. In addition, Rodriguez et al. (2008) used DP-type combination of DPs called nested

DP (nDP) which was motivated by the idea of clustering groups and subjects within a group

simultaneously. Recently, the idea has been extended to continuous covariate cases by Dunson

et al. (2007) and Dunson and Park (2008).

However, for most of the DP-extended priors discussed so far, they are limited either to the

cases of categorical predictors or, for continuous predictor cases, to complicated computation

causing the methods to be unaccessible in many applications. In addition, this literature has

been focused on estimation and few attempts have been made to address related hypothesis

testing problems such as variable selection or detecting distributional changes both globally

(across the entire predictor space) and locally (within some local predictor regions). In fact,

there has been limited focus on hypothesis testing and model selection in Bayesian nonparametric

literature. Basu and Chib (2003) proposed an approach for calculating marginal likelihoods

and Bayes factors for comparing DPM models. But this approach is not directly applicable

to our local variable selection problem. Pennell and Dunson (2008) proposed a method for

testing distributional changes in response across an ordinal predictor while Dunson and Pedadda

(2008) tested equalities in group specific response distributions against a stochastic ordering.

Both approaches deal with a categorical predictor whereas we seek for a methodology that can

incorporate a mix of continuous predictors as well as categorical predictors.

Motivated by this, paper 1 proposes a local Dirichlet process (lDP) as a generalization

of the Dirichlet process to provide a prior distribution for a collection of random probability

measures indexed by predictors. The lDP should be useful to other alternative prior models

for dependent random probability measures in that it involves a simple construction, results

in a marginal Dirichlet process prior for the random measure at any specific predictor value,

and leads to a straightforward posterior computation. Theoretical properties are considered and

a blocked Gibbs sampler is proposed for posterior computation in lDP mixture models. The

methods are illustrated in a conditional distribution modeling setting using simulated examples

and an epidemiologic application.

In paper 2, we propose a more general approach for conditional distribution modeling where

3



we not only estimate the conditional response distribution addressing the distributional changes

across the predictor space, but also identify important predictors for the response distribution

change both with local regions and globally. We first introduce the probit stick-breaking process

(PSBP) as a prior for an uncountable collection of predictor-dependent random probability

measures and propose a PSBP mixture (PSBPM) of normal linear regressions. A global variable

selection structure is incorporated to drop unimportant predictors out from the model using the

posterior inclusion probabilities. Local variable selection is conducted relying on the conditional

distribution estimates at different predictor points. An efficient stochastic search sampling

algorithm is proposed for posterior computation. The methods are illustrated through simulation

and applied to an epidemiologic study.

In paper 3, we extend the method proposed in paper 2 to a more general setting where out-

comes are measured multiple times per subject (e.g. longitudinal data analysis) and correlated

within subject. We consider a probit stick-breaking process mixture (PSBPM) of linear mixed

effects (LME) model. The PSBPM of LME model characterizes the conditional response distri-

bution as predictor-dependent mixture of LME model which accounts for individual variability

within each mixture component and induces nonlinear effects of predictors on the response dis-

tribution characteristics such as mean or quantiles. In addition, the model is formulated for

conducting formal hypothesis testing of variable selection and goodness-of-fit for a LME model.

The methods are illustrated through a simulation study and application to a German study of

childhood growth.
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CHAPTER 2

LITERATURE REVIEW

This chapter consists of literature review for: (1) the Dirichlet process (DP) as a prior model

for a random probability measure, (2) various extensions of the DP as a prior model for a

collection of predictor-dependent probability measures, (3) nonparametric Bayes estimation

for predictor-dependent response distributions, (4) nonparametric Bayes hypothesis testing in

predictor-dependent response distributions.

2.1 The Dirichlet Process (DP)

Bayesian inference involves placing distributions over variables in a statistical model. More

flexibly, one can place a prior distribution over the space of distributions. The Dirichlet process

(DP) is a popularly used prior model for an unknown distribution. In this section, the literature

about the DP and its important properties are reviewed.

2.1.1 Definition

The Dirichlet distribution forms the first step toward understanding the Dirichlet process

(DP). The Dirichlet distribution is a multi-parameter generalization of the Beta distribution.

Consider a k-dimensional random vector p = {p1, . . . , pk}. The Dirichlet distribution on p is



given by

P (p|α,M) =
Γ(α)∏k

i=1 Γ(αmi)

k∏
i=1

pαmi−1
i , (2.1)

where M = {m1, . . . ,mk} is the mean value of p and α is a precision parameter that says how

concentrated the distribution is around M . Both M and p sum to unity. α can be regarded

as the number of pseudo-measurements observed to obtain M . The greater the number of

pseudo-measurements is, the more our confidence in M is, and hence, the more the distribution

is concentrated around M .

The Dirichlet distribution defines a distribution over a space of discrete distributions. Let

p = {p1, . . . , pk} be a probability distribution on the discrete space X = {X1, . . . ,Xk} such that

P (X = Xi) = pi, where X is a random variable in the space X . Sampling a Dirichlet from (2.1)

results in a distribution p on the discrete space X . The Dirichlet distribution defined on a space

of discrete probability measures on X can be noted as:

p(X1), . . . ,p(Xk) ∼ Dirichlet(αm1, . . . , αmk) (2.2)

If we consider a continuous sample space Θ and its disjoint partition such as Θ = ∪ki=1Bi, it is

apparent that a Dirichlet distribution exists on every disjoint partition of a continuous space Θ

because the partition {B1, . . . , Bk} is itself a discrete space.

Now consider a probability space (Θ,B, G), where Θ ⊂ <d, B corresponds to the Borel

σ-algebra of subsets of <d, and G is a probability measure on (Θ,B). Also, consider an-

other probability space (G, C,P), where G is the space of probability measures G defined on

(Θ,B) and C is the corresponding σ-algebra. Then, the DP with base measure G0 and preci-

sion α, denoted as DP(αG0), is a measure P defined on (G, C) such that G(B1), . . . , G(Bk) ∼

Dirichlet(αG0(B1), . . . , αG0(Bk)) for any disjoint partition {B1, . . . , Bk} of Θ (Ferguson, 1973,

1974).
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2.1.2 Polya urn scheme

The formal definition of the DP described in the previous section does not lend itself to an

understanding of its distributional property. One way of understanding the DP more intuitively

is connecting it to the Polya urn scheme (Blackwell and MacQueen, 1973; Escobar, 1994).

Consider an urn with α balls, of which initially αmj are of color j, 1 ≤ j ≤ k (assuming for

now that all the αmj are integers). We draw balls at random from the urn, replacing each ball

by two balls of the same color. Let Xi = j if the ith ball is of color j. Then,

p(X1 = j) =
αmj

α

p(X2 = j|X1) =
αmj + 1(X1 = j)

α + 1
...

p(Xn = j|X1, . . . , Xn−1) =
αmj +

∑n−1
k=1 1(Xk = j)

α + n− 1
(2.3)

We call this sequence X1, . . . , Xn as a Polya urn sequence.

Let φi be ith sample from G with G ∼ DP(αG0). Then, it was shown that marginalizing

over G, φi is generated according to the following sequence:

φ1 ∼ G0

φ2|φ1 ∼
αG0 + δφ1

α + 1
...

φn|φ1, . . . , φn−1 ∼
αG0 +

∑n−1
k=1 δφk

α + n− 1
, (2.4)

where δφi is a degenerate measure concentrated at φi. The sequence in (2.4) can be viewed as a

Polya urn sequence by considering the limit as the number of colors in the Polya urn tends to

a continuum. We call (2.4) the Polya urn scheme for the marginal distribution of a sample φi

from a random probability measure G following a DP(αG0).

The Polya urn scheme of the DP results in a clustering structure amongst φ1, . . . , φn with the

7



following conditional distribution of each φi, given φ(i) = {φ1, . . . , φi−1, φi+1, . . . , φn} (MacEach-

ern, 1994; West et al., 1994).

φi|φ(i) ∼
(

α

α + n− 1

)
G0 +

(
1

α + n− 1

) k(i)∑
j=1

n
(i)
j δθ(i)j

, (2.5)

where φ(i) takes on k(i) distinct values that are θ
(i)
j for j = 1, . . . , k(i), and n

(i)
j is the number

of samples taking θ
(i)
j in φ(i). Similarly, the predictive distribution of a future φi for i = n + 1

given φ = {φ1, . . . , φn} follows:

φn+1|φ ∼
(

α

α + n

)
G0 +

(
1

α + n

) k∑
j=1

njδθj , (2.6)

where φ takes on k distinct values that are θj for j = 1, . . . , k, and nj is the number of samples

taking θj in φ.

2.1.3 Stick-breaking representation

An important representation of the DP is the stick-breaking representation constructed by

Sethuraman (1994). The random probability measure G sampled from a DP(αG0) is represented

as:

G =
∞∑
h=1

phδθh , (2.7)

where ph = Vh
∏h−1

l=1 (1 − Vl) with Vh
iid∼ Beta(1, α) and θh

iid∼ G0 for h = 1, . . . ,∞. The

ph are called stick-breaking random weights and θh called random atoms. It was shown that∑∞
h=1 ph ≈ 1 almost surely to ensure G is an appropriate probability measure. This stick-

breading representation makes clear the fact that a realization G from a DP(αG0) is a discrete

distribution with infinitely many atoms. This representation forms the basis for developing

efficient Gibbs sampling algorithm that doesn’t require marginalization over G (discussed in

section 2.1.5) and for extending of the DP to prior models for correlated random probability

8



measures (reviewed in section 2.2.1).

2.1.4 Dirichlet process mixture (DPM)

The DP generates a random distribution that is almost surely discrete, which is problematic

in modeling a continuous distribution. A simple solution to this problem is to use a Dirichlet

process mixture (DPM) (Lo, 1984; Escobar, 1994; Escobar and West, 1995). Let yi be ith

subject’s response following a continuous distribution F with unknown parameter φi, where φi

follows an unknown probability measure G. By placing a DP prior for G, we model the marginal

distribution F as a DPM model ensuring that yi has a continuous distribution while still relaxing

the distributional assumptions. The hierarchical structure of the DPM model is expressed as:

yi|φi ∼ F (·;φi)

φi|G ∼ G(·)

G|α,ψ ∼ DP (αG0(·;ψ)), (2.8)

where ψ are the parameters of the parametric distribution G0.

In recent years, with the availability of simple and efficient methods for posterior compu-

tation (see section 2.1.5), the DPM model has been widely used in many applications, which

include finance (Kacperczyk et al., 2003), econometrics (Chib and Hamilton, 2002), epidemi-

ology (Dunson, 2005), genomics (Xing et al., 2004; Kim et al., 2007), medicine (Kottas et al.,

2002; Bigelow and Dunson, 2008), and machine learning (Beal et al., 2002 and Blei et al., 2004).

2.1.5 Posterior computation for DPMs

Analytic derivation of the posterior distributions for random quantities of interest is prohib-

ited for the DPM models. Much of the DPM literature has been devoted to develop the Markov

chain Monte Carlo (MCMC) techniques which allow sampling-based posterior inference in the

DPM models.
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There are two possible approaches in the MCMC techniques for the DPM models. The

first one, called the marginal method, was introduced by Escobar (1994) and Escobar and West

(1995), and has been substantially improved in MacEachern (1994), Müller et al. (1996) and par-

ticularly in MacEachern and Müller (1998) and Neal (2000). The marginal approach integrates

out the random distribution G over the DP prior and uses convenient Polya urn representa-

tion within a Gibbs sampler to obtain posterior samples. Although simple to implement, this

marginal method has a main drawback that a single-component updating Gibbs sampler is used

to sample from a multivariate distribution of dependent variables, which results in problems in

moving clusters around the posterior space, and therefore the mixing can be very slow even for

moderately sized data sets. To improve the slow mixing problem, several MCMC samplers have

been recently proposed based on the split-merge moves. Green and Richardson (2001) proposed

one based on the reversible-jump procedure in which numerous ways to propose the split move

are possible. Jain and Neal (2004) introduced a Metropolis-Hastings technique with split-merge

proposals for conjugate DPM models and the idea was extended to a non-conjugate cases (Jain

and Neal, 2007). Dahl (2003) suggested a sequentially-allocated split-merge sampler (SAMS) as

an alternative to Jain and Neal (2004) approach.

Another MCMC tool, called the conditional approach or blocked Gibbs sampler, has been

advocated by Ishwaran and Zarepour (2000) and Ishwaran and James (2001), who found that

it can lead to considerably more robust convergence properties than the marginal approach.

The conditional method, instead of integrating it out, augments the random distribution G

and updates it as part of the MCMC algorithm. By doing so, the variables to be updated are

partitioned in a small number of blocks, where the variables within each block are conditionally

independent given the variables in other blocks, which leads to efficient updating of the vari-

ables as a block. This is advantageous over the marginal approach, which destroys conditional

dependence structure. Moreover, we can directly obtain realizations of random distribution G,

which allows for the inference on the underlying distribution G. However, because the Dirichlet

process cannot be finitely represented, Ishwaran and Zarepour (2000) suggest to approximate

it using a truncation of the random distribution for practical implementation, which produces
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error depending on the truncation accuracy. Avoiding such approximation, Papaspiliopoulos

and Roberts (2004) designed an MCMC algorithm which samples from the exact posterior dis-

tribution of all quantities of interest based on the technique of retrospective sampling. More

recently, Walker (2007) proposed slice sampling idea which avoids both marginalization and

truncation.

Alternatively to the MCMC methods, other techniques for posterior inference in the DPM

models have been proposed. This literature include sequential importance sampling (MacEach-

ern et al., 1999) and variational methods (Blei and Jordan, 2006).

2.2 DP-Extended Priors for Dependent Probability Mea-

sures

The DP is a prior model for an unknown probability measure. However, modeling the rela-

tionship between predictors and the unknown probability measures cannot be achieved directly

using the DP. In this section, the work for developing prior models for predictor-dependent

unknown probability measures is reviewed.

2.2.1 Dependent Dirichlet process (DDP) and its variations

MacEachern (1999, 2000, 2001) proposed the dependent Dirichlet process (DDP) as a prior

model for dependent distributions. Consider a collection of predictor-dependent random mea-

sures GX = {Gx : x ∈ X}, where X is a predictor space. The DDP defines a probability

distribution Gx for each x as Gx =
∑
phδθxh , where ph are stick-breaking random weights as

in a DP and θxh are predictor-dependent random atoms. In the ”single-p DDP”, a special case

of the DDP, the weights ph are common to all Gx while the dependence is induced across x by

assuming that θh = {θxh : x ∈ X} are iid realizations of a stochastic process in x (e.g. Gaus-

sian process). Independence across h, together with the stick-breaking weights ph, guarantees

that Gx marginally follows a DP. Dependence in the sample path of the stochastic process θh
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introduces the desired dependence across x.

De Iorio et al. (2004) used the DDP structure to develop an ANOVA-like probability model

over a collection of random distributions. They considered a categorical predictor x, which, for

simplicity of explanation, is bivariate as x = (v, w)′ with v ∈ {1, . . . , V } and w ∈ {1, . . . ,W}.

Using the DDP framework to induce an ANOVA-type dependence among Gx, they defined

Gx =
∑
phδθxh , where θxh = mh + Avh + Bwh with mh

iid∼ G0
m, Avh

iid∼ G0
Av, and Bwh

iid∼ G0
Bw for

v = 1, . . . , V and w = 1, . . . ,W . They referred to this probability model as ANOVA-DDP(α,G0)

where G0 = (G0
m, {G0

Av}Vv=1, {G0
Bw}Ww=1).

Gelfand et al. (2005) applied the DDP framework to develop a spatial DP process (SDP)

model for spatial data. They considered a point-referenced spatial data assumed to arise as

a sample from a realization of a random field (random process) YD = {Y (s) : s ∈ D} with

D ⊂ <d. Simply using the DDP idea, YD was modeled as a random spatial process denoted by∑∞
h=1 phδθh,D , where ph are the stick-breaking weights as in DP and θh,D = {θh(s) : s ∈ D} is

a stochastic process G0 over the D. Letting s(n) = (s1, . . . , sn) be a specific distinct locations

in D where the observations are collected, the full data set consists of the collection of vectors

Y = {Y (s1), . . . , Y (sn)}. Then, the SDP induces a random probability measureG(n) on the space

of distribution functions for Y as G(n) ∼ DP (αG
(n)
0 ), where G

(n)
0 is an n-variate distribution for

Y induced by G0. With the joint distribution using the same set of stick-breaking weights for

any group of n locations, the SDP results in the common surface selection for all locations in

the group.

The DDP structure also has been used by Dunson and Peddada (2008) to propose restricted

dependent Dirichlet process (rDDP) which has a full support in the space of stochastically

ordered random distributions. They considered a collection of probability measures {P1, . . . , Pk}

that belongs to the following convex subset of PK :

CE = {(P1, . . . , PK) ⊂ PK : Pi � Pj ∀(i, j) ∈ E}, (2.9)

where PK is the set of K × 1 collections of probability measures on (X ,B) and E ⊂ (1, . . . , K)2
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is a partial ordering. Here, Pi � Pj denotes that Pj is stochastically larger than Pi such as

Pi(x,∞) ≤ Pj(x,∞) for all x. As a prior for (P1, . . . , PK) ∈ CE, the proposed rDDP defines Pk

as:

Pk =
∞∑
h=1

phδθhk , ph = Vh
∏
l<h

(1− Vl), k = 1, . . . , K, (2.10)

where ph are stick-breaking weights with Vh
iid∼ Beta(1, α) and θh = (θh1, . . . , θhK)′

iid∼ P0 are ran-

dom atoms. Here, P0 is a Borel probability measure defined on SE, where SE = {(s1, . . . , sK) ∈

XK : si ≤ sj ∀(i, j) ∈ E}.

Relaxing the fixed weight assumption in the DDP framework used so far, Griffin and Steel

(2006) proposed an ordered DDP (πDDP) which results in predictor-dependent weights as well

as predictor-dependent atoms. For a collection of predictor-dependent random distributions,

GX , the πDDP defines Gx as:

Gx =

n(x)∑
l=1

pl(x)δθπl(x)
, pl(x) = Vπl(x)

∏
j<l

(1− Vπj(x)), ∀x ∈ X (2.11)

where θh
iid∼ G0, Vh

iid∼ Beta(1, α), for h = 1, . . . ,∞, and π(x) = {π1(x), . . . , πn(x)(x)} is an

ordering for the stick-breaking construction of Gx at the predictor point x, which is assigned an

ordering process {π(x) : x ∈ X}.

Duan et al. (2006) also relaxed the fixed weight assumption in the Gelfand et al. (2005) SDP

and proposed a generalized SDP (GSDP) as a multivariate generalization of the stick-breaking

prior, which enables different surfaces to be assumed at different locations. The GSDP generates

a spatial process for YD such that, for any set of locations s(n) ∈ D,

Y (s1), . . . , Y (sn) ∼
∞∑
i1=1

. . .
∞∑
in=1

pi1,...,inδθ∗i1 (s1), . . . , δθ∗in (sn), (2.12)

where the θ∗j are independent and identically distributed as G0, ij is an abbreviation for i(sj), j =

1, 2, . . . , n, and the weights {pi1,...,in}, conditionally on the locations, have a distribution defined
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on the infinite dimensional simplex:

P = {pi1,...,in ≥ 0 :
∞∑
i1=1

. . .

∞∑
in=1

pi1,...,in = 1}. (2.13)

Another relevant extension of the DP is the hierarchical Dirichlet process (hDP) proposed by

Teh et al. (2004). The hDP generates group-specific random distributions Gj from a DP(αG0),

where G0 is drawn from another DP(γH). The fact that G0 is discrete ensures that Gj are

dependent across different groups through sharing the atoms. The stick-breaking forms of G0

and Gj are more informative of this dependence structure as:

G0 =
∞∑
h=1

βhδθh , Gj =
∞∑
h=1

pjhδθh , (2.14)

where βh and θh are random stick-breaking weights and atoms from DP(γH) and pjh are group-

dependent random weights constructed based on the random weights βh of DP(γH) and ph of

DP(α,G0). This can be viewed as the case of group-dependent weights with fixed atoms in the

DDP framework.

2.2.2 Convex combinations of DPs

A different approach that has been used for developing prior models inducing predictor-

dependence is using linear combinations of realizations of Dirichlet process(es). Müller et al.

(2004) proposed a prior model for k experiment-dependent distributions as a linear combina-

tion of one global component G∗0 and k experiment-specific innovation measures G∗1, . . . , G
∗
k,

with all G∗h assigned independent DP (αh, G0h), for h = 0, . . . , k. The hth experiment-specific

distribution is expressed as Gh = πG∗0 + (1− π)G∗h.

Dunson (2006) proposed a related approach, which incorporates information on ordering in

an ordinal predictor and avoids the over-specification problem of Müller et al. (2004) approach,

that is, k + 1 random measures are incorporated to characterize k unknown distributions. The

proposed dynamic mixture of Dirichelt process (DMDP) defines the predictor-specific random
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distributions as:

G1 ∼ DP (α0G0)

G2 = (1− π1)G1 + π1G
∗
1,

...

Gh = (1− πh−1)Gh−1 + πh−1G
∗
h−1

= wh1G1 +
h−1∑
l=1

wh,l+1G
∗
l (2.15)

where G∗1 ∼ DP (α1G01), G∗l
ind∼ DP(αlG0l) for l = 1, . . . , h−1, 0 ≤ πl ≤ 1, whl = πl−1

∏h−1
m=1(1−

πm) for l = 1, . . . , h − 1 and whl = πh−1 for l = h with π0 = 1, G∗l are innovation distributions

that characterize changes in the distribution caused by increasing the predictor level from l to

l + 1, and G0l are known distributions. As we move from predictor level from l to l + 1, we

decrease the weights assigned to G1, G
∗
1, . . . , G

∗
l−1 and introduce a new unknown distribution to

our mixture, G∗l . This evolution in Gh is reasonable in a situation where as the predictor level

increases, more changes in the response distribution are expected.

Rodriguez et al. (2008) proposed another type of linear combination of DP realizations,

called nested Dirichlet process (nDP), which defines hth group-dependent random distribution

as Gh =
∑∞

l=1 π
∗
lG
∗
l ,where π∗l = v∗l

∏l−1
j=1(1 − v∗j ) with v∗j

iid∼ Beta(1, α), and G∗l
iid∼ DP (βG0).

The i.i.d. realizations of a DP (βG0), G∗l , are linearly combined with another DP stick-breaking

weights π∗l . When the nDP is considered as a prior for group-dependent mixture distributions

in a mixture model, it induces clustering predictor groups while identifying clusters of subjects

within each predictor group.

While the above three prior models were for a categorical predictor case, similar idea was

used for a continuous predictor case. Dunson et al. (2006) proposed a weighted mixture of DPs

(WMDP) which defines a random distribution at a particular predictor point x as:

Gx =
n∑
j=1

bj(x)G∗xj , G∗xj
iid∼ DP(αG0), for j = 1, . . . , n, ∀x ∈ X , (2.16)
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where b(x) = (b1(x), . . . , bn(x))′ is a predictor-dependent weight function mapping from X →

Pn, with Pn being the n-dimensional probability simplex, so that bj(x) ≥ 0, j = 1, . . . , n,

and b(x)′1n = 1, for all x ∈ X . The collection G∗X = {G∗xi ; i = 1, . . . , n} consists of i.i.d.

realizations from a DP(αG0) indexed by sampled predictor values xi. Hence, the WMDP for

GX = {Gx; x ∈ X} is defined by placing a DP-distributed basis random measures at each

of the sample predictor values, and then mixing across these basis measures to construct an

uncountable collection of random probability measures for all possible predictor values x ∈ X .

For the weight function b(x), they used a kernel-based weighting scheme such as:

bj(x) =
γjK(x,xj)∑n
l=1 γlK(x,xl)

, j = 1, . . . , n, ∀x ∈ X , (2.17)

where γ = (γ1, . . . , γn)′ represent weights on the different basis locations, and K : X ×X → <+

is a kernel function, such as K(x,x′) = exp(−ψ||x− x′||2).

Avoiding the sample dependence of the WMDP, which is problematic from a Bayesian per-

spective and results in some unappealing properties, Dunson and Park (2008) proposed a class

of kernel stick-breaking process (KSBP) to be used as a sample-free prior for GX , which induces

a predictor-dependent prediction rule upon marginalization. The KSBP defines Gx as:

Gx =
∞∑
h=1

Ph(x)G∗h,

Ph(x) = W (x;Vh,Γh)
∏
l<h

{
1−W (x;Vl,Γl)

}
W (x;Vh,Γh) = VhK(x,Γh), ∀x ∈ X , (2.18)

where Γh
iid∼ H are random locations, Vh

ind∼ beta(ah, bh) are probability weights, and G∗h
iid∼ Q

are probability measures, for h = 1, . . . ,∞. Here, H is a probability measure defined on X ′

which may or may not correspond to X , Q is a probability measure on a space of probability

measures such as a DP, and K : <p×<p → [0, 1] is a bounded kernel function, which is initially

assumed to be known. Note that (2.18) formulates Gx as a predictor-dependent mixture over

an infinite sequence of basis probability measures G∗h that are located at Γh for h = 1, . . . ,∞.
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Bases located close to x and having a smaller index, h, will tend to receive higher probability

weight. In this manner, the KSBP accommodates dependence between Gx and Gx′ .

2.3 Nonparametric Bayes Estimation for Predictor-Dependent

Response Distributions

Recall that our goal is to flexibly characterize the relationship between a response y ∈ Y and

predictors x = (x1, . . . , xp)
′ ∈ X . The challenge is that a parametric form for the conditional

distribution of y given x is unknown and the changes in the distributional shape needs to be

addressed across the predictors x. In this section, nonparametric Bayes methods for flexible

conditional distribution modeling are reviewed.

2.3.1 DPM of regressions and its predictor-dependent extension

It is well known that a mixture of a sufficiently-large number of normal densities can ap-

proximate any smooth density. For a flexible characterization of the conditional density of a

response given predictors, one can consider the following mixture of regression models:

f(yi|xi) =

∫
f(yi|xi, φi)dGxi(φi), (2.19)

where f(yi|xi, φi) = N(yi; x
′
iβi, σ

2
i ), with φi = (βi, σ

2
i ). Depending on the choice of Gxi , the

model (2.19) encompasses a wide variety of flexible regression models as special cases including

normal linear regression, linear regression with the residual density modeled as a finite/infinite

mixture of normals, and a finite/infinite mixture of regressions.

In nonparametric Bayes methods, one choice of Gxi is such that Gxi ≡ G is assumed unknown

and assigned a DP(αG0) prior, under which the model (2.19) becomes an infinite mixture of
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regressions as:

f(yi|xi) =
∞∑
h=1

phN(yi; x
′
iβh, σ

2
h), (2.20)

where ph are an infinite sequence of random stick-breaking weights and (βh, σ
2
h) are random

atoms i.i.d. sampled from G0. The DPM of regressions in (2.20) is relatively flexible in that it

incorporates an infinite number of normal linear regression components with a few components

having most of the weights depending on the precision prior α, particularly when the number

of mixture components is uncertain. However, assuming that the weights ph are constant across

the predictors still restricts the conditional density in that the shape of residual variation is the

same across the predictors and the mean regression structure is linear as:

E(yi|xi) =
∞∑
h=1

phx
′
iβh =

∞∑
h=1

ph

p∑
j=1

xijβhj =

p∑
j=1

xij

∞∑
h=1

phβhj = x′iβ̄, (2.21)

where β̄ =
∑∞

h=1 phβhj.

Applying the prior models for a collection of predictor-dependent random distributions, the

assumption Gxi ≡ G in the DPM of regression model can be relaxed. As reviewed in section 2.2,

any prior model P for GX = {Gxi xi ∈ X} can be incorporated in the mixture model specified

in (2.19) as:

f(yi|xi) =

∫
f(yi|xi, φi)dGxi(φi),

GX = {Gxi xi ∈ X}, GX ∼ P , (2.22)

where f(yi|xi, φi) = N(yi; x
′
iβi, σ

2
i ), with φi = (βi, σ

2
i ). Dunson et al. (2007), Griffin and Steel,

(2006), and Dunson and Park (2008) applied their prior models to the model (2.22) and showed

good performances in characterizing predictor-dependent response distributions.
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2.3.2 DPM for the joint distribution of response and predictors

Alternatively, instead of assuming that the predictors to be included are known, Müller et

al. (1996) proposed a different approach for flexible characterization of the conditional density

of response given predictors. The joint density of response and predictors was modeled as a DP

normal mixture model, which leads to the conditional density as an infinite mixture of regression

models, with the mixture weights varying with predictors. Let yi be ith subject’s response and

xi be ith subject’s predictors. For zi = (yi,x
′
i)
′, the DP normal mixture model is expressed as:

f(zi) =

∫
N(zi;µzi,Σzi)dG(µzi,Σzi)

G ∼ DP (αG0) (2.23)

This leads to f(zi) =
∑∞

h=1 phN(zi;µ
∗
zh,Σ

∗
zh), which also leads to the conditional density f(yi|xi)

as:

f(yi|xi) =
f(zi)

f(xi)
=

∑∞
h=1 phN(zi;µ

∗
zh,Σ

∗
zh)∑∞

h=1 phN(xi;µ∗xh,Σ
∗
xh)

=

∑∞
h=1 phN(yi; x

′
iβ
∗
h, σ

∗2
h )N(xi;µ

∗
xh,Σ

∗
xh)∑∞

h=1 phN(xi;µ∗xh,Σ
∗
xh)

=
∞∑
h=1

ph(xi)N(yi; x
′
iβ
∗
h, σ

∗2
h ), (2.24)

which is an infinite mixture of regression models, with the mixture weights ph(xi) varying with

predictors, where ph(xi) =
phN(xi;µ∗xh,Σ

∗
xh)∑∞

h=1 phN(xi;µ∗xh,Σ
∗
xh)

.

2.4 Nonparametric Bayes Hypothesis Testing in Predictor-

Dependent Response Distributions

A flexible characterization of the relationship between a response and predictors involves

not only the estimation of the predictor-specific response distribution but also the hypothesis

testing of the distributional changes across the predictors or for model selection through the
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identification of significantly associated predictors both globally and locally. In this section,

little work addressing the related problems is reviewed.

2.4.1 Model selection

Basu and Chib (2003) proposed an approach comparing semi-parametric models, constructed

under the DPM framework, with alternative semi-parametric Bayesian models. They considered

a model space {M1, . . . ,MJ}, where one (or more) of the models is a DPM model. Given a

data y = (y1, . . . ,yn), they suggested a formal Bayesian approach comparing any two models

Mr and Ms using the Bayes factor which is the ratio of marginal likelihoods as:

Brs =
m(y|Mr)

m(y|Ms)
(2.25)

For the DPM models, the calculation of marginal likelihoods required an integration over the

space of the infinite dimensional parameter G, and an additional integration over the prior

distribution of the hyper-parameters. Since the direct calculation is impossible, they based the

marginal likelihood estimation on the approach of Chib (1995), which uses the representation of

the marginal likelihood that is amenable to calculation by MCMC methods. The Chib (1995)

approach required the estimation of both likelihood and posterior ordinates of the DPM model

at a single high-density point. The posterior ordinate computation was simply based on the

output produced by the MCMC algorithms while the computation for the likelihood ordinate

was devised via collapsed sequentially importance sampling (SIS), which is a variant of the SIS

method introduced by Kong et al. (1994). Although the method is innovative for the comparison

of DPM models including covariates and hierarchical prior structure, it is not directly applicable

to the local variable selection problem.
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2.4.2 Testing for distributional changes

Pennell and Dunson (2007) proposed a method for testing for distribution changes across

an ordinal predictor. They considered the predictor-specific response distribution as predictor-

dependent mixture model using the DMDP prior (Dunson, 2006) for the mixture distributions.

The model is expressed as:

fh(yhi) =

∫
N(yhi;µhi,Σhi)dGh(µhi,Σhi)

{G1, . . . , GK} ∼ DMDP (πl, αl, G0l, l = 1, . . . , K − 1) (2.26)

Here, it is immediately apparent that differences in mixture distributions, Gh and Gh+1, imply

differences in the response distributions, fh and fh+1. Hence, the local null hypothesis was

defined with respect to the total variation (tv) distances between two mixture distributions of

adjacent predictor levels as follows:

H0h : ||Gh+1 −Gh||TV ≤ ε, for h = 1, . . . , K − 1, (2.27)

where ε is some small constant such that when H0h holds, there is no appreciable difference in

the mixture distributions across groups h and h+ 1. It was shown that the tv distance between

Gh+1 and Gh is totally controlled by πh, so the local null can be equivalently stated as:

H0h : πh ≤ ε∗, for h = 1, . . . , K − 1, (2.28)

Placing a prior πh ∼ p0hUniform(0, ε∗) + (1 − p0h)Uniform(ε∗, 1) for πh, for h = 1, . . . , K − 1,

allowed for calculating the posterior probability for H0h. The global null of no changes in

response distribution across groups (H0) corresponds to the intersection of theses local nulls.

Furthermore, Dunson and Peddada (2008) proposed a method for testing equalities of distri-

butions against stochastically ordered alternatives in the rDDP mixture model framework (Refer

to the summary in section 2.2.2). For a two group problem where P1 � P2, they considered
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rDDP with P0 chosen as:

f(θ1,θ2) = f1(θ1){π0δ0(θ2 − θ1) + (1− π0)f2(θ2 − θ1)}, (2.29)

where X = <, f1(·) is a density on < (e.g. Gaussian), 0 ≤ π0 ≤ 1 is the prior probability of

θ1 = θ = 2, and f2(·) is a density with support on <+ (e.g. truncated Gaussian). To formally

assess how close P1 and P2, they defined a distance metric as:

d12 = max
x∈X

∣∣∣∣P2(x,∞)− P1(x,∞)

∣∣∣∣ (2.30)

and formulate the null hypothesis that P1 and P2 are close in some sense to an alternative of

stochastic ordering as:

H0 : d12 ≤ ε and d12 > ε, (2.31)

where ε > 0 is a small positive constant. The posterior probability for the null hypotheses were

calculated based on the fact that d12 =
∑∞

h=1 ph1(βh > 0) ∼ Beta(α(1−π0), απ0). The idea was

generalized to multiple group cases and the global null hypothesis was defined as:

H0 : ∪K−1
k=1 H0k

where H0k : dk,k+1 ≤ ε and H1kdk,k+1 > ε (2.32)
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CHAPTER 3

THE LOCAL DIRICHLET PROCESS

(LDP)

3.1 Introduction

In recent years, there has been a dramatic increase in applications of nonparametric Bayes

methods, motivated largely by the availability of simple and efficient methods for posterior

computation in Dirichlet process mixture (DPM) models (Lo, 1984; Escobar, 1994; Escobar

and West, 1995). The DPM models incorporate Dirichlet process (DP) priors (Ferguson, 1973,

1974) for components in Bayesian hierarchical models, resulting in an extremely flexible class

of models. Due to the flexibility and ease in implementation, DPM models are now routinely

implemented in a wide variety of applications, ranging from machine learning (Beal et al., 2002

and Blei et al., 2004) to genomics (Xing et al., 2004 and Kim et al., 2006).

In many settings, it is natural to consider generalizations of the DP and DPM-based models

to accommodate dependence. For example, one may be interested in studying changes in a

density with predictors. Following Lo (1984), one can use a DPM for Bayes inference on a single

density as follows:

f(y) =

∫
Ω

k(y, u)G(du), (3.1)



where k(y, u) is a non-negative valued kernel defined on (D × Ω,F × B) such that for each

u ∈ Ω,
∫
D k(y, u)dy = 1 and for each y ∈ D,

∫
Ω
k(y, u)G(du) < ∞ with D,Ω Borel subsets

of Euclidean spaces and F ,B the corresponding σ-fields, and G is a finite random probability

measure on (Ω,B) following a DP. A natural extension for modeling of a conditional density

f(y|x) for x ∈ X , with X a Lebesgue measurable subset of <p, is as follows:

f(y|x) =

∫
Ω

k(y, u)Gx(du), (3.2)

where the mixing measure Gx is now indexed by the predictor value. We are then faced with

modeling a collection of random mixing measures denoted as GX = {Gx : x ∈ X}.

Recent work on defining priors for collections of random probability measures has primar-

ily relied on extending the stick-breaking representation of the DP (Sethuraman, 1994). This

literature was stimulated by the dependent Dirichlet process (DDP) framework proposed by

MacEachern (1999, 2000, 2001), which replaces the atoms in the Sethuraman (1994) representa-

tion with stochastic processes. The DDP framework has been adopted to develop ANOVA-type

models for random probability measures (De Iorio et al., 2004), for flexible spatial modeling

(Gelfand et al., 2004), in time series applications (Caron et al., 2006), and for inferences on

stochastic ordering (Dunson and Peddada, 2008). The specification of the DDP used in ap-

plications incorporates dependence only through the atoms while assuming fixed weights. In

other recent work, Griffin and Steel (2006) proposed an order-based DDP (πDDP) which allows

varying weights, while Duan et al. (2005) developed a multivariate stick-breaking process for

spatial data.

Alternatively, convex combinations of independent DPs can be used for modeling collections

of dependent random measures. Müller et al.(2004) proposed this idea to allow dependence

across experiments and discrete dynamic settings were considered by Pennell and Dunson (2006)

and Dunson (2006). Recently, the idea has been extended to continuous covariate cases by

Dunson et al. (2007) and Dunson and Park (2008).

Some desirable properties of a prior for a collection, GX = {Gx : x ∈ X}, of predictor-
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dependent probability measures are: (1) increasing dependence in Gx and Gx′ with decreasing

distance between x and x′; (2) simple and interpretable expressions for the expectation and

variance of each Gx as well as the correlation between Gx and Gx′ ; (3) Gx has a marginal DP

prior for all x ∈ X ; (4) posterior computation can proceed efficiently through a straightforward

MCMC algorithm in a broad variety of applications. Although the DDP, πDDP and the prior

proposed by Duan et al. (2005) achieve (1), πDDP and Duan et al. (2005) approaches are not

straightforward to implement in general applications. The fixed stick-breaking weights version

of the DDP tends to be easy to implement, but has the disadvantage of not allowing locally

adaptive mixture weights. The kernel mixture approaches of Dunson et al. (2007) and Dunson

and Park (2008) lack the marginal DP property (3). Property (3) is appealing in that there is

rich theoretical literature on DPs, showing posterior consistency (Ghosal et al., 1999 and Lijoi

et al., 2005) and rates of convergence (Ghosal and Van der Vaart, 2007).

This article proposes a simple extension of the DP, which provides an alternative to the fixed

weights DDP in order to allow local adaptivity, while also achieving properties (1)-(4). The

prior is constructed by first assigning stick-breaking weights and atoms to random locations in a

predictor space. Each predictor-dependent random probability measure is formulated using the

random weights and atoms located in a neighborhood about that predictor value. Dependence

is induced by local sharing of random components. We call this prior the local Dirichlet process

(lDP).

Section 2 describes stick-breaking priors for collections of predictor-dependent random proba-

bility measures. Section 3 introduces the lDP and discusses properties. Computation is described

in section 4. Sections 5 and 6 include simulation studies and an epidemiologic application. Sec-

tion 7 concludes with a discussion. Proofs are included in appendices.
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3.2 Predictor-Dependent Stick-Breaking Priors

3.2.1 Stick-Breaking Priors

Ishwaran and James (2001) proposed a general class of stick-breaking priors for random

probability measures. This class provides a useful starting point in considering extensions to

allow predictor dependence.

Definition 1. A random probability measure, G, has a stick-breaking prior (SBP) if

G =
N∑
h=1

phδθh , 0 ≤ ph ≤ 1,
N∑
h=1

ph = 1 a.s., (3.3)

where δθ is a discrete measure concentrated at θ, ph = Vh
∏

l<h(1−Vl) are random weights with

Vh
ind∼ Beta(ah, bh) independently from θh

iid∼ G0 with G0 a non-atomic base probability measure.

For N = ∞, the condition
∑N

h=1 ph = 1 a.s. is satisfied by Lemma 1 in Ishwaran and James

(2001). For finite N, the condition is satisfied by letting VN = 1.

There are many processes that fall into this class of SBP. The DP corresponds to the special

case in which N = ∞, ah = 1 and bh = α as established in Sethuraman (1994). The two-

parameter Poisson-Dirichlet process corresponds to the case where N = ∞, ah = 1 − a, and

bh = b+ha with 0 ≤ a < 1 and b > −a (Pitman 1995, 1996). Additional special cases are listed

in Ishwaran and James (2001).

3.2.2 Predictor-Dependent Stick-Breaking Priors

Consider an uncountable collection of predictor-dependent random probability measures,

GX = {Gx : x ∈ X}. The predictor space X is a Lebesgue measurable subset of Euclidian space

and the random measures Gx are defined on (Ω,B) where Ω is a complete and separable metric

space and B is a corresponding Borel σ-algebra. Let P be a probability measure on (M,N )

where M is the space of uncountable collections of random probability measures Gx and N is

the corresponding Borel σ-algebra. Then, GX ∼ P denotes that P is a prior on the random

collection GX .
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We call P a predictor-dependent stick-breaking prior (SBPX ) if Gx ∈ GX ∼ P can be repre-

sented as:

Gx =

N(x)∑
h=1

ph(x)δθh(x)

with 0 ≤ ph(x) ≤ 1 and

N(x)∑
h=1

ph(x) = 1 a.s., ∀x ∈ X , (3.4)

where the random weights ph(x) have a stick-breaking form, ph(x) and θh(x) are predictor-

dependent, and N(x) is also indexed by the predictor value x. Depending on how we form ph(x),

θh(x) and N(x), different dependencies among Gx are induced. Several interesting priors, such

as the DDP, πDDP and the prior proposed by Duan et al. (2005) fall into the SBPX class. In

the next section, we propose a new choice of SBPX deemed the local Dirichlet process (lDP).

3.3 Local Dirichlet Process

3.3.1 Formulation

Formulating the local Dirichlet process (lDP) starts with obtaining the following three se-

quences of mutually independent global random components:

Γ = {Γh, h = 1, . . . ,∞}, V = {Vh, h = 1, . . . ,∞}, Θ = {θh, h = 1, . . . ,∞}, (3.5)

where Γh
iid∼ H are locations, Vh

iid∼ Beta(1, α) are probability weights, and θh
iid∼ G0 are atoms.

G0 is a probability measure on (Ω,B) on which Gx will be defined and H is a probability measure

on (X ′,A) where A is a Borel σ-algebra of subsets of X ′ and X ′ is a Lebesgue measurable

subset of Euclidian space that may or may not correspond to the predictor space X . For a

given predictor space X , we introduce the probability space (X ′,A, H) such that it satisfies the

following regularity condition from which one can deduce X ⊂ X ′:
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Condition 1. For all x ∈ X and ψ > 0, H(ηψx ) > 0, where ηψx = {x′ : d(x,x′) < ψ, x′ ∈ X ′}

is defined as a ψ-neighborhood around a point x ∈ X with d : X ×X ′ → <+ being some distance

measure.

Next, focusing on a local predictor point x ∈ X , we define sets of local random components

for x as:

Γ(x) = {Γh, h ∈ Lx}, V(x) = {Vh, h ∈ Lx}, Θ(x) = {θh, h ∈ Lx}, (3.6)

where Lx = {h : d(x,Γh) < ψ, h = 1, . . . ,∞} is a predictor-dependent set indexing the locations

belonging to the ψ-neighborhood of x, ηψx , which is defined on X ′ by ψ and d(·, ·). Hence, the sets

V(x) and Θ(x) contain the random weights and atoms that are assigned to the locations Γ(x)

in ηψx . Here, ψ controls the neighborhood size. For simplicity, we treat ψ as fixed throughout

the paper, though one can obtain a more flexible class of priors by assuming a hyper prior for

ψ.

Using the local random components in (3.6), we consider the following form for Gx:

Gx =

N(x)∑
l=1

pl(x)δθπl(x)
with pl(x) = Vπl(x)

∏
j<l

(1− Vπj(x)), (3.7)

where N(x) is the cardinality of Lx and πl(x) is the lth ordered index in Lx. Then, condition

1 ensures that the following lemma holds (refer to the proof of lemma 1 in the appendix).

Lemma 1. For all x ∈ X , N(x) =∞ and
∑N(x)

l=1 pl(x) = 1 almost surely.

By Lemma 1, it is apparent that Gx formed as in (3.7) is a well-defined stick-breaking random

probability measure for x. It is also straightforward that we can define Gx for all x ∈ X by

(3.6) and (3.7) using the global components in (3.5). Therefore, given α,G0, H, ψ with a choice

of d(·, ·), the steps from (3.5) through (3.7) defines a new choice of predictor-dependent stick-

breaking prior (SBPX ) for GX , deemed the local Dirichlet process (lDP). We use the shorthand

notation GX = {Gx : x ∈ X} ∼ lDP(α,G0, H, ψ) to denote that GX is assigned a lDP with

hyperparameters α,G0, H, ψ.
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Figure 1. Graphical illustration for lDP formulation
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FIGURE 3.1: Black asterisks are the first 100 random locations generated on X ′ = [0, 1]2 from
H=Uniform([0,1]2). Red dashed circle indicates the neighborhood of the red crossed predictor
point x = (0.5, 0.3)′ determined by Euclidian distance d(·) and ψ = 0.2. (Vh, θh) for h = 1, . . . , 10
are the the first 10 random pairs of weight and atom assigned to the first 10 random locations
Γh for h = 1, . . . , 10.

Figure 3.1 illustrates the lDP formulation graphically for a case where X = [0, 1]2 and

GX ∼ lDP(α,G0, H, ψ) with H=Uniform([0, 1]2) leading to X = X ′ and ψ = 0.2. For a simple

illustration, we consider Euclidian distance for d(·, ·) for bivariate predictors. Random locations
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in [0, 1]2 are generated from a uniform distribution, with the first 100 locations plotted as ’∗’

in Figure 3.1. The random pair of weight and atom (Vh, θh) is placed at location Γh, with the

first 10 pairs labeled in Figure 3.1. For a predictor value x = (0.5, 0.3)′, the red dashed circle

indicates the neighborhood of x, ηψx . Then, Gx at x = (0.5, 0.3)′ is constructed using the weights

and atoms within the dashed circle in the order of the index to formulate the stick-breaking

representation. For all other x ∈ X , Gx are formed following the same steps.

From Figure 3.1, it is apparent that the dependence between Gx and Gx′ increases as the

distance between x and x′ decreases. For closer x and x′, their neighborhoods overlap more so

that similar components are used for constructing Gx and Gx′ , while if x and x′ are far apart,

there will be at most a small area of intersection so that few to none of the random components

are shared. In the non-overlapping case, Gx and G′x are assigned independent DP priors, as is

clear from Theorem 1 and the subsequent development.

Theorem 1. If GX ∼ lDP (α,G0, H, ψ), for any x ∈ X , Gx ∼ DP (αG0).

The marginal DP property shown in Theorem 1 is appealing in allowing one to rely directly

on the rich literature on properties of the DP to obtain insight into the prior for the random

probability measure at any particular predictor value. However, unlike the DP, the lDP allows

the probability measure to vary with predictors, while borrowing information across local regions

of the predictor space. This is accomplished through incorporating shared random components.

Due to the sharing and to the almost sure discreteness property of each Gx, the lDP will induce

local clustering of subjects according to their predictor values. Theorem 2 illustrates this local

clustering property more clearly.

Theorem 2. Suppose GX ∼ lDP (α,G0, H, ψ) and φi|Gxi
ind∼ Gxi , for i = 1, . . . , n, with xi

denoting the predictor value for subject i. Then,

κxi,xj = Pr(φi = φj |xi,xj, α, ψ) =
2Pxi,xj

(1 + Pxi,xj
)α + 2

, for any xi,xj ∈ X ,

where Pxi,xj =
H(ηψxi

⋂
ηψxj )

H(ηψxi
⋃
ηψxj )

is the conditional probability of Γh falling within the intersection

region ηψxi ∩ η
ψ
xj

given Γh ∈ ηψxi ∪ η
ψ
xj

.
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The clustering probability κxi,xj increases from 0 when ηψxi
⋂
ηψxj = ∅ to 1/(α + 1) when

xi = xj which is the case of Pxi,xj = 1. This implies that, for fixed α, the clustering probability

under GX ∼ lDP(α,G0, H, ψ) is bounded above by the clustering probability under the global

DP, which takes Gx ≡ G ∼ DP (αG0), leading to Pr(φi = φj |α) = 1/(α + 1). Also, note that

small values of the precision parameter α will induce Vh values that are close to one. This in

turn causes a small number of atoms in each neighborhood to dominate, inducing few local

clusters. However, when ψ is small and hence neighborhood sizes are small, there will still be

many clusters across X .

It is interesting to consider relationships between the lDP and other priors proposed in the

literature in limiting special cases. First, note that the lDP converges to the DP as ψ →

∞, so that all the neighborhoods around each of the predictor values encompass the entire

predictor space. Also, the lDP(α,G0, H, ψ) corresponds to a limiting case of the kernel stick-

breaking process (KSBP) (Dunson and Park, 2008), in which the kernel is defined as K(x,Γ) =

1
(
d(x,Γ) < ψ

)
and the DP placed at each location have precision parameters → 0.

3.3.2 Moments and Correlation

From Theorem 1 and properties of the DP, GX ∼ lDP (α,G0, H, ψ) implies, for any x ∈ X ,

E{Gx(B)} = G0(B) and V ar{Gx(B)} =
G0(B)(1−G0(B))

1 + α
, ∀B ∈ B (3.8)

Next, let us consider the correlation between Gx1 and Gx2 , for any x1,x2 ∈ X . First, we

show the correlation conditionally on the locations Γ but marginalizing out the weights V and

atoms Θ. As discussed in section 3.1, if Γ is given, the lDP can be regarded as a special case of

the πDDP. Hence, following Theorem 1 in Griffin and Steel (2006), for any x1,x2 ∈ X ,

ρx1,x2(Γ) = Corr{Gx1(B), Gx2(B)|Γ}

=
2

α + 2

∑
h∈Lx1∩Lx2

(
α

α + 2

)#Sh( α

α + 1

)#S′h
, ∀B ∈ B, (3.9)
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where #S is the cardinality of the set S , Sh = A1h ∩ A2h, S ′h = A1h ∪ A2h − Sh, and Akh =

{πj(xk) : j < l, πl(xk) = h} for h ∈ Lx1 ∩ Lx2 . In other words, #Sh is the number of indices on

the locations Γ that are below h and are shared in the neighborhoods of x1 and x2, while #S ′h is

the number of indices that are below h and belong to the neighborhoods of either x1 or x2 but

not both. For a given h, reducing #Sh by one induces adding two elements to S ′h, thus reducing

the correlation, as expected. From expression (3.9), it is clear that the neighborhoods around

x1 and x2 are increasingly overlapping and the correlation between Gx1 and Gx2 increases as

x1 → x2. Expression (3.9) is particularly useful in being free of dependence on B.

Marginalizing the correlation in (3.9) over the prior for the random locations Γ is equivalent

to marginalizing out the #Sh and #S ′h for h ∈ Lx1 ∩ Lx2 . In considering the correlation

between Gx1 and Gx2 , we can ignore the Γh for h ∈ {1, . . . ,∞} \ Lx1 ∪ Lx2 and focus on the

Γh only for h ∈ Lx1 ∪ Lx2 . Let γj be the jth ordered component of Lx1 ∪ Lx2 . For example, if

Lx1 ∪ Lx2 = {1, 3, 5, 6, 7, 8, . . .}, γ1 = 1, γ2 = 3, γ3 = 5, γ4 = 6, · · · . Let Zγj = 1(γj ∈ Lx1 ∩ Lx2)

be an indicator for whether Γγj are shared by the neighborhoods of x1 and x2 or not. Then, the

formula in (3.9) can be reexpressed with respect to Zγj as follows:

ρx1,x2(Γ) = Corr{Gx1(B), Gx2(B)|Γ}

=
2

α + 2

∞∑
j=1

Zγj

(
α

α + 2

)∑j−1
k=1 Zγk

(
α

α + 1

)j−1−
∑j−1
k=1 Zγk

(3.10)

Note that it is straightforward to show that Zγj
iid∼ Bernoulli(Px1,x2), for j = 1, . . . ,∞,

with Px1,x2 =
H(ηψx1

⋂
ηψx2

)

H(ηψx1

⋃
ηψx2

)
the conditional probability of Γh falling within the intersection region

ηψx1
∩ ηψx2

given Γh ∈ ηψx1
∪ ηψx2

. Finally, marginalizing out {Zγj}∞j=1 results in the following

Theorem.

Theorem 3. If GX ∼ lDP (α,G0, H, ψ), for any x1,x2 ∈ X ,

ρx1,x2 = Corr{Gx1(B), Gx2(B)} =
2Px1,x2(α + 1)

(1 + Px1,x2)α + 2
, ∀B ∈ B

The correlation is expressed only in terms of Px1,x2 and α. Regardless of α, the correlation is
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1 if x1 = x2 which implies the neighborhoods around x1,x2 are identical and Px1,x2=1. Also,

the correlation is 0 when the neighborhoods are non-overlapping with Px1,x2=0. In addition,

Px1,x2 ≤ ρx1,x2 ≤ 1 and ρx1,x2 increases as α increases for fixed Px1,x2 . When α → 0, the

correlation converges to Px1,x2 . Meanwhile, when α→∞, the correlation converges to
2Px1,x2

1+Px1,x2
.

Note that Px1,x2 depends on H, ψ, and the locations x1 and x2 given a choice of d(·, ·). When

X ′ for H is chosen to satisfy Condition 2, some appealing properties result.

Condition 2. For all x ∈ X with X being p-dimensional, {x∗; d(x∗,x) < ψ,x∗ ∈ <p} ⊂ X ′.

From condition 2, one can deduce that X ′ contains all the points in <p within the distance of

ψ from x for any x ∈ X . Under condition 2, with H chosen to be a uniform probability measure

on a bounded space X ′, Px1,x2 depends only on ψ and d(x1,x2) which is the distance between x1

and x2, but not on the exact locations of x1 and x2 in X . Hence, upon examination of Theorem

3, it is apparent that condition 2 implies an isotropic correlation structure, which is an appealing

default in the absence of prior knowledge of changes in the correlation structure according to

the locations in X . Figure 3.2 shows how the correlation ρx1,x2 changes as a function of d(x1,x2)

in the case where x ∈ X = [0, 1] and H is Uniform([−ψ, 1 + ψ]) so that X ′ = [−ψ, 1 + ψ] and

condition 2 holds for different ψ with d(·, ·) corresponding to the Euclidian distance. The ρx1,x2

decays from 1 to 0 as d(x1,x2) increases and the decay is faster for smaller ψ. As ψ →∞, the

decay line gets closer to a horizontal line at ρx1,x2 = 1, which is the case of lDP=DP. Also, for

a given ψ and d(x1,x2), the ρx1,x2 is higher as α → ∞. Although the choice of d(·, ·) being

Euclidian makes the curves in Figure 3.2 close to linear, the curvature can easily be changed by

choosing a different distance measure d(·, ·).

3.3.3 Truncation Approximation

Finite approximations to infinite stick-breaking priors form the basis for commonly-used

computational algorithms (Ishwaran and James, 2001). In this subsection, we discuss a finite

dimensional approximation to the lDP.

Since the lDP has the marginal DP property, let us recall the finite dimensional DP. Ishwaran
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FIGURE 3.2: Change in correlation ρx1,x2 over the change in distance d(x1,x2) for different α
and ψ: α = 0.0001 (red dashed), α = 1 (blue dot-dashed), α = 10 (green dotted), α = 10000
(black solid).

and James (2001) defines an N-truncation of the DP (DPN) by discarding the N+1, N+2, . . . ,∞

terms and replacing pN with 1 −
∑N−1

h=1 ph in the DP stick-breaking form in (3.3). They show

that the DPN approximates the DP well in terms of the total variation (tv) norm of the marginal

densities of the data obtained from the corresponding DPM models. According to their Theorem
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2,

||µN − µ∞|| ≤ 4

[
1− E

{(N−1∑
h=1

ph

)n}]
≈ 4n× exp{−(N − 1)/α}, (3.11)

where || · || is tv norm, µN and µ∞ are the marginal probability measures for the data from the

DPMN and DPM models, and n is the sample size. Note that the sample size has a modest

effect on the bound for a reasonably large value of N and the bound decreases exponentially

with N increasing, implying that even for a fairly large sample size, the DPMN approximates

the DP well with moderate N.

Following a similar route, let us define an N-truncation of the lDP (lDPN) as follows:

Definition 3. For a finite N, let ΓN = {Γh, h = 1, . . . , N}, VN = {Vh, h = 1, . . . , N},

and ΘN = {θh, h = 1, . . . , N} be the sets of global random locations, weights, and atoms,

respectively. Distributional assumptions for Γh, Vh, and θh are the same as in (3.5) and the

corresponding local sets are defined as in (3.6). Then, GX ∼ lDPN(α,G0, H, ψ) if

Gx =

N(x)−1∑
l=1

pl(x)δθπl(x)
+

(
1−

N(x)−1∑
l=1

pl(x)

)
δθπN(x)(x)

with pl(x) = Vπl(x)

∏
j<l

(1− Vπj(x)) for l = 1, . . . , N(x)− 1

The Gx in Definition 3 has a similar form to G =
∑N

h=1 phδθh obtained from the DPN except

that N in G is replaced by N(x) in Gx and N in DPN is fixed while N(x) in lDPN is random.

Focusing on a particular predictor value x, it is easy to show that N(x) ∼ Binomial(N,Px),

where N is the total number of global locations in lDPN and Px = H(ηψx ) is the probability

that a location belongs to the neighborhood around x, ηψx . Then, marginalizing out N(x) in

the bound on the tv distance between the marginal densities of an observation obtained at a

particular predictor value x from the lDPM and lDPMN models results in Theorem 4.

Theorem 4. Define a model (3.2) with GX ∼ lDP(α,G0, H, ψ) as local Dirichlet process

mixture (lDPM) model. lDPMN corresponds to (3.2) with GX ∼ lDPN(α,G0, H, ψ). Suppose
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an observation is obtained from lDPMN and lDPM models at x. Then,

||µN(x)− µ∞(x)|| ≤ 4

(
α + 1

α

){
1−

(
1

α + 1

)
Px

}N
,

where µN(x) and µ∞(x) are the marginal probability measures for the observation. Notice that

the bound decreases exponentially with N increasing, suggesting that we can obtain a good

approximation to the lDP using a moderate N, as long as α is small and the neighborhood size

is not too small. In particular, we require a large N for a given level of accuracy as ψ → 0, since

Px decreases as the size of ηψx decreases.

3.4 Posterior Computation

We develop an MCMC algorithm based on the blocked Gibbs sampler (Ishwaran and James,

2001) for an lDPMN model. For simplicity in exposition, we describe a Gibbs sampling algorithm

for a particular hierarchical model, though the approach can be easily adapted for computation

in a broad variety of other settings. We let

f(yi |xi, τ) =

∫
f(yi |xi,βi, τ) dGxi(βi) for i = 1, . . . , n

GX ∼ lDPN(α,G0, H, ψ), (3.12)

where f(yi |xi,βi, τ) = N(yi; xi
′
βi, τ

−1) with βi = (βi1, . . . , βip)
′. For simplicity, we consider

a univariate predictor case where p = 2 and x′i = (1, xi) with d(·, ·) Euclidian distance but

the generalization to multiple predictors or to using different distance metric is straightforward.

G0 is assumed to be Np(µβ,Σβ), H is assumed to be Uniform(aΓ, bΓ) and additional conjugate

priors are assigned for τ , α, µβ and Σβ.

Let Ki be an indicator variable denoting that Ki = h implies ith subject is assigned to the

hth mixture component. Then, the hierarchical structure of the model (3.12) with respect to
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the random variables is recast as follows.

(yi|xi,β∗, τ,K) ∼ N(xi
′
β∗Ki , τ

−1), i = 1, . . . , n

(Ki|V,Γ) ∼
N(xi)∑
l=1

pl(xi)δπl(xi)(·), i = 1, . . . , n

(Vh|α) ∼ Beta(1, α), h = 1, . . . , N

(Γh) ∼ Uniform(aΓ, bΓ), h = 1, . . . , N

(β∗h|µβ,Σβ) ∼ Np(µβ,Σβ), h = 1, . . . , N

µβ ∼ Np(µ0,Σµ)

Σ−1
β ∼ Wishart({ν0Σ0}−1, ν0)

τ ∼ Gamma(ν1, ν2)

α ∼ Gamma(η1, η2), (3.13)

where β∗ = {β∗h, h = 1, . . . , N}, K = {Ki, i = 1 . . . , n}, V = {Vh, h = 1, . . . , N}, and Γ =

{Γh, h = 1, . . . , N}. The full conditionals for each of the random components are based on the

following joint distribution.

(y,K,V,Γ,β∗,µβ,Σβ, τ, α)

∝ (y|β∗, τ,K)(K|V,Γ)(V|α)(Γ)(β∗|µβ,Σβ)(µβ)(Σβ)(τ)(α) (3.14)

Then, the Gibbs sampler proceeds by sampling from the following conditional posterior distri-

butions:
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(a) Conditional for Ki, i = 1, . . . , n

(Ki|y,V,Γ,β∗, τ) ∼
N(xi)∑
l=1

p′l(xi)δπl(xi)(Ki)

p′l(xi) =
N(yi; x

′
iβ
∗
πl(xi)

, τ−1)pl(xi)∑N(xi)
l=1 N(yi; x

′
iβ
∗
πl(xi)

, τ−1)pl(xi)

pl(xi) = Vπl(xi)
∏
j<l

(1− Vπj(xi)) for l < N(xi)

pl(xi) =
∏
j<l

(1− Vπj(xi)) for l = N(xi)

(b) Conditional for Vh, h = 1, . . . , N

(Vh|K,Γ, α) ∼ Beta(1 +
n∑
i=1

1(Ki = h and Ki 6= πN(xi)(xi)), α +
n∑
i=1

1(Ki > h))

(c) Conditional for Γh, h = 1, . . . , N

(Γh|K,V) ∼ Uniform(max[ max
i;Ki=h

(xi − ψ), aΓ],min[ min
i;Ki=h

(xi + ψ), aΓ])

(d) Conditional for β∗h, h = 1, . . . , N

(β∗h|y,K,µβ,Σβ, τ) ∼ Np(µ̂βh, Σ̂βh)

µ̂βh = Σ̂βh[Σ
−1
β µβ + τXihyih]

Σ̂βh = [Σβ
−1 + τXihX

′
ih]
−1,

where yih is nh×1 response vector and X′ih is nh×p design matrix for the subjects with Ki = h

and nh is the number of those subjects.
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(e) Conditional for µβ

(µβ|β∗,Σβ) ∼ Np(µ̂0, Σ̂µ)

µ̂0 = Σ̂µ[Σ−1
µ µ0 + Σ−1

β

N∑
h=1

β∗h]

Σ̂µ = [Σ−1
µ +NΣ−1

β ]−1

(f) Conditional for Σ−1
β

(Σ−1
β |β

∗,µβ) ∼Wishart([
N∑
h=1

(β∗h − µβ)(β∗h − µβ)′ + ν0Σ0]−1, N + ν0)

(g) Conditional for τ

(τ |y,β∗,K) ∼ Gamma(ν1 +
n

2
, ν2 +

1

2

n∑
i=1

(yi − xi
′β∗Ki)

2)

(h) Conditional for α

(α|V) ∼ Gamma(η1 +N, η2 −
N∑
h=1

log(1− Vh))

Note that this Gibbs sampling algorithm consists only of simple steps for sampling from standard

distributions and is no more complex than blocked Gibbs samplers for DPMs. In addition, we

have observed good computational performance, in terms of mixing and convergence rates, in

simulated and real data applications.

3.5 Simulation Examples

We obtained data from two simulated examples, where n = 500 and a univariate predictor xi

was simulated from Uniform(0,1). Case 1 was a null case where yi was generated from a normal

regression model N(yi;−1 + 2xi, 0.01). Case 2 was a mixture of two normal linear regression
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models, with the mixture weights depending on the predictor, with the error variance differing,

and with a non-linear mean function for the second component:

f(yi |xi) = e−2xiN(yi;xi, 0.01) + (1− e−2xi)N(yi;x
4
i , 0.04) (3.15)

We applied the lDPMN model in (3.12) to the simulated data with N=50. Based on the

results, N=50 seems to be chosen to be large enough since the higher clusters having higher

indices are not used in any of the subjects or are used in only a small proportion of them. Also,

repeating the analysis for twice N, we obtained very similar results, suggesting that the results

are robust to the choice of N, as long as N is not chosen to be small.

For the hyperparameters, we let ν1 = ν2 = 0.01, η1 = η2 = 2, ν0 = p, Σ0 = Ip, µ0 = 0,

Σµ = n(X′X)−1, aΓ = −0.05, and bΓ = 1.05. The neighborhood size ψ = 0.05 was chosen such

that the average number of subjects belonging to the neighborhoods around each predictor value

in the sample is ≈ n/10. We analyzed the simulated data using the proposed Gibbs sampling

algorithm run for 10,000 iterations with a 5,000 iteration burn-in. The convergence and mixing

of the MCMC algorithm were good (trace plots not shown). Also, results tended to be robust

to repeating analysis with reasonable alternative hyperparameter values.

For case 1, as shown in Figure 3.3, the predictive mean regression curve (blue dashed, right

bottom panel), the true linear regression function (red solid), and the pointwise 95% credible

intervals (green dashed) were almost the same. Figure 3.3 also shows the predictive densities

(blue dashed) at the 10th, 25th, 50th, 75th, and 90th sample percentiles of xi, with these

densities almost indistinguishable from the true densities (red solid).

For case 2, Figure 3.4 shows an x − y plot (right bottom panel) of the data along with

the estimated predictive mean curve (blue dashed), which closely follows the true mean curve

(red solid). Figure 3.4 also shows the estimated predictive densities (blue dashed) correspond

approximately to the true densities (red solid) in most cases and the 95% credible intervals

(green dashed) closely cover the true densities in all cases.

Repeating the analysis for case 2, but with βi
iid∼ G and G ∼ DP (αG0), we obtained poor
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results (density estimates diverged substantially from true densities, posterior mean curve failed

to capture true non-linear function), suggesting that a DPM model is inadequate.
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FIGURE 3.3: Results for simulation case 1: True conditional densities of y|x (red solid), predic-
tive conditional densities (blue dot-dashed), and 95% pointwise credible intervals (green dashed).
The lower right panel shows the data (black dots), along with true (red solid) and estimated
mean (blue dashed) regression curves superimposed with 95% credible line (green dashed).
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FIGURE 3.4: Results for simulation case 2: True conditional densities of y|x (red solid), predic-
tive conditional densities (blue dot-dashed), and 95% pointwise credible intervals (green dashed).
The lower right panel shows the data (black dots), along with true (red solid) and estimated
mean (blue dashed) regression curves superimposed with 95% credible line (green dashed).
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3.6 Epidemiological Application

3.6.1 Background and Motivation

In diabetic studies, interest often focuses on the relationship between 2-hour serum insulin

levels (indicator for insulin sensitivity/resistence) and 2-hour plasma glucose levels (indicator

for diabetic risk) that are measured in the oral glucose tolerance test (OGTT). Although most

studies examine the mean change of the 2-hour insulin versus 2-hour glucose, it would be more

interesting to assess the whole distributional change of the 2-hour insulin level across the range

of the 2-hour glucose levels.

We obtained data from a study which followed a sample of Pima Indians from a population

near Phoenix, Arizona since 1965. This study was conducted by the National Institute of

Diabetes and Digestive and Kidney Disease, with the Pima Indians chosen because of their

high risk of diabetes. Using these data, our goal is conducting inferences on changes in the 2-

hour serum insulin distribution with changes in 2-hour glucose level without making restrictive

assumptions, such as normality or a constant residual variation. Certainly, it is biologically

plausible that the insulin distribution is non-normal and should change as the glucose level

changes not only in mean but also in other features such as skewness, residual variation, and

modality.

3.6.2 Analysis and Results

For woman i (i = 1, . . . , 393), let yi correspond to the 2-hour serum insulin level measured in

µU/ml (micro Units per milliliter) and let xi denote the 2-hour plasma glucose level measured in

mg/dl (milligrams per deciliter). We applied the lDPMN model described in (3.12), after scaling

y and x by dividing by 100. Hyperparameters were set to be the same as in the simulation study

except that ψ = 0.08 such that n/10 subjects belong to each neighborhood on average and

aΓ = min(xi)−ψ, and bΓ = max(xi) +ψ such that the edge effects are avoided in the inference.

We analyzed the data using the proposed Gibbs sampling algorithm run for 10,000 iterations
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with a 5,000 iteration burn-in. The convergence and mixing of the MCMC algorithm were good

(Trace plots not shown) and results were robust with reasonable alternative hyperparameter

values.
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with 95% credible line (green dashed).
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Figure 3.5 shows the predictive distributions for the insulin level at various empirical per-

centiles of the glucose level. As the glucose level increases, there is a slightly nonlinear change in

the mean insulin level (right bottom panel) and a dramatic increase in the heaviness of the right

tail of the insulin distribution. Also, some multi-modality in the insulin distribution appears as

the glucose level falls into the pre-diabetes range (140-200 mg/dl) and closer to the cut point

(200mg/dl) for the diagnosis of diabetes. This shift in the shape of the insulin distribution

biologically implies that the women with pre-diabetes are expected to have different insulin sen-

sitivities, which may further induce different diabetic risks even for the same glucose level. This

may be due to unadjusted covariates or unmeasured risk factors. Such distributional changes

in response induced by predictors (e.g. risk factor, exposure, treatment, and etc.) is pervasive

in epidemiologic studies, but is not at all well characterized by standard regression models that

do not allow the whole distribution to flexibly change with predictors.

3.7 Discussion

This article proposed a new stick-breaking prior for the collection of predictor-dependent ran-

dom probability measures. The prior, called the lDP, is a useful alternative to recently developed

prior models that induce predictor-dependence among distributions. Its marginal DP structure

should be useful in considering theoretical properties, such as posterior consistency and rates

of convergence. A related formulation was independently developed by Griffin and Steel (2008)

although the lDP is appealing in its simplicity for construction and computation. In particular,

the construction is intuitive and leads to simple expressions for the dependence in random mea-

sures at different locations, while also leading to straightforward posterior computation relying

on truncation with a fair amount of accuracy.

Although we have focused on a conditional density estimation application, there are many

interesting applications of the lDP to be considered in future work. First, the DP is widely used

to induce a prior on a random partition or clustering structure (Quintana, 2006; Kim et al.,

2006). In such settings, the DP has the potential disadvantage of requiring an exchangeability
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assumption, which may be violated when predictors are available that can inform about the

clustering. The lDP provides a straightforward mechanism for local, predictor-dependent clus-

tering, which can be used as an alternative to product partition models (Quintana and Iglesias,

2003) and model-based clustering approaches (Fraley and Raftery, 2002). It is of interest to

explore the theoretical properties of the induced prior on the random partition. In this respect,

it is likely that the hyperparameter ψ plays a key role. Hence, as a more robust data-driven

approach one may consider fully Bayes or empirical Bayes methods for allowing uncertainty in

ψ.
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CHAPTER 4

NONPARAMETRIC BAYES

CONDITIONAL DISTRIBUTION

MODELING WITH VARIABLE

SELECTION

4.1 Introduction

This article focuses on flexible modeling of the conditional density of a response variable

Y given multiple predictors X = (X1, . . . , Xp)
′. We treat f(Y |X) as unknown and potentially

changing in shape as X varies. In addition, our emphasis is on selecting the subset of predictors

that have any impact on the response distribution change, either within some local regions of

the predictor space or globally. Subset selection is of interest in performing inferences on effects

of particular predictors and in building sparse predictive models. Sparsity is of paramount

importance in modeling of conditional distributions with many candidate predictors due to the

curse of dimensionality.

There is a rich literature on frequentist methods for conditional distribution estimation. Fan

et al. (1996) proposed a double-kernel local linear approach. Fan and Yim (2004) developed



a cross validation approach for bandwidth selection. Related frequentist methods have been

considered by Hall et al. (1999) and Hyndman and Yao (2002) among others. Müller et al.

(1996) proposed a Bayesian approach to nonlinear regression, which was conceptually related to

the double-kernel approach. In particular, in order to induce a prior on the unknown function,

E(Y |X), Müller et al. (1996) proposed to model the joint density of (Y,X) using a Dirichlet

process mixture (DPM) of Gaussians (Lo, 1984; Escobar, 1994; Escobar and West, 1995). Al-

ternative classes of nonparametric priors that can potentially be used for modeling f(Y |X) have

been proposed by MacEachern (1999), Griffin and Steel (2006; 2007), Dunson et al. (2007), and

Dunson and Park (2008).

The focus in the above literature has been on estimation and, to our knowledge, there has

been essentially no consideration of the important problems of variable selection and hypothesis

testing in the general setting of conditional distribution modeling with multiple discrete and

continuous candidate predictors. The methods that have been recently proposed are limited

in scope to particular cases. Pennell and Dunson (2008) developed a method for testing for

changes in unknown distributions across levels of an ordinal predictor. Based on dependent

Dirichlet processes (DDPs) with fixed weights, Dunson and Peddada (2008) developed methods

for estimating and testing of stochastically ordered distributions across groups.

This article proposes a general Bayesian nonparametric approach for variable selection and

hypothesis testing in conditional distribution modeling, avoiding the fixed weights assumption

that limits flexibility in building sparse models. We first introduce the probit stick-breaking

process (PSBP) as a new choice of prior for an uncountable collection of predictor-dependent

random probability measures. The PSBP has distinct advantages over previous formulations in

terms of computational tractability, which is particularly important in variable selection settings

as marginal likelihoods need to be calculated. For modeling conditional distributions, we propose

a PSBP mixture (PSBPM) of normal linear regressions, resulting in an infinite mixture with

mixing weights varying with predictors.

The primary emphasis of this article is on variable selection and we allow predictors to

drop out of the model through zeroing of coefficients in the PSBPM specification. This is care-
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fully formulated to allow development of an efficient stochastic search variable selection (SSVS)

algorithm, which can be used to simultaneously search the model space, estimate posterior in-

clusion probabilities for the predictors, and obtain model-averaged conditional density estimates

and predictive distributions. In addition, local variable selection is conducted using the total

variation distance of the conditional distribution estimates at different predictor points. Our

approach generalizes the SSVS algorithms for linear regression (George and McCulloch, 1997)

and non-linear mean and variance regression (Chan et al., 2006; Leslie, Kohn and Nott, 2007) to

settings in which conditional response distributions change nonparametrically with predictors.

There have been a number of recent articles considering variable selection and hypothesis

testing in models with DP components. Dahl and Newton (2007) and MacLehose et al. (2007)

independently developed methods that use a DP to cluster predictor effects. Kim et al. (2006)

proposed to use a DPM model for selecting classifying variables in a multivariate response while

clustering subjects based on the selected variables. Basu and Chib (2003) proposed a general

MCMC algorithm for calculating Bayes factors for comparing DPMs.

None of these methods consider the general problem of selecting predictors to include in a

flexible model for the conditional distribution of a response variable. Our proposed approach

allows the quantiles of the response distribution to change differentially with predictors, while

accommodating local and global variable selection and hypothesis testing. This is useful both

when interest focuses on assessing the effects of predictors, and when one wants to build a

flexible but parsimonious model for prediction. Section 2 proposes the PSBP and considers

basic properties. Section 3 discusses the PSBPM for the conditional distribution modeling with

variable selection. Section 4 develops an MCMC sampling SSVS algorithm for the PSBPM.

Section 5 and 6 include a simulation study and an epidemiological application, respectively.

Section 7 concludes with discussion.
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4.2 The Probit Stick-Breaking Process

4.2.1 Formulation

Consider an uncountable collection of predictor-dependent random probability measures,

PX = {Px : x ∈ X}, where X is the sample space for the predictors x = (x1, . . . ,xp)′. The

random measures Px are defined on (Ω,B(Ω)) where Ω is a complete and separable metric space

and B(A) denotes a Borel σ-algebra of subsets of A. Let Q be a probability measure on (M,N )

where M is the space of PX and N is a corresponding σ-algebra of subsets of M. We propose

a new choice of Q deemed the probit stick-breaking process (PSBP).

To induce Q, we start with a stick-breaking formulation for each Px as:

Px =
∞∑
h=1

πh(x)δθh
, ∀x ∈ X , (4.1)

where πh(x) is a probability weight on the hth component and δθ is a probability measure with

all its mass at θ. We assume θh ∼ P0 where P0 is a probability measure on (Ω,B(Ω)) which

Px is defined on. In order to induce a prior for πh(x), independently from θh, we introduce the

following countable sequences of mutually independent random components:

αh ∼ N(µ, 1), ψh = {ψhj}pj=1 ∼ G, Γh = {Γhj}pj=1 ∼ H, (4.2)

where G and H are distributions over a measurable Polish spaces (Lψ,B(Lψ)) and (LΓ,B(LΓ)),

respectively. Using αh,ψh, and Γh, we form the probability weights πh(x) as:

πh(x) = Φ(ηh(x))
∏
l<h

{
1−Φ(ηl(x))

}

with ηh(x) = αh −
p∑
j=1

ψhj|xj − Γhj|, ∀x ∈ X (4.3)

where Φ(·) is the cumulative distribution function of the standard normal, N(0, 1). Then, we

obtain the following lemma. Proof is in Appendix.
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Lemma 1.
∑∞

h=1 πh(x) = 1 a.s., ∀x ∈ X

By Lemma 1, Px in (4.1) is a well defined probability measure on (Ω,B) for all x ∈ X and the

formulation from (4.1) through (4.3) defines a prior Q for PX deemed the probit stick-breaking

process (PSBP). The shorthand notation PX ∼ PSBP (µ,G,H, P0) is used to denote that PX

follows the PSBP with hyperparameters, µ,G,H, P0.

In order to motivate the formulation, we first discuss a special case where G = δ0p and 0p

is p × 1 vector of zeros. In this case, ηh(x) = αh and πh(x) = Φ(αh)
∏

l<h(1 − Φ(αh)) for all

x ∈ X . Because πh(x) does not depend on x, we obtain

Px = P =
∞∑
h=1

πhδθh with πh = Φ(αh)
∏
l<h

(1− Φ(αl)), ∀x ∈ X (4.4)

Note that P in (4.4) is quite similar to the stick-breaking representation of the DP(λP0) (Sethu-

raman, 1994) where πh = Vh
∏

l<h(1− Vl) with Vh ∼ Beta(1, λ). As λ > 0 controls the precision

in the DP with small values favoring allocating most of the probability to the first few compo-

nents, µ ∈ < in the PSBP controls precision with large values assigning high probability to the

first few components.

Although the PSBP special case in (4.4) and the DP are very closely related, the PSBP has

considerable advantages in generalizations to accommodate predictor-dependence in the stick-

breaking weights as in (4.3). Given x, each πh(x) is linked through the index h to each location

Γh. If hth location Γh is far from x, ηh(x) is a large negative number, so that Φ(ηh(x)) is a

positive number close to zero. Because Φ(ηh(x)) is the portion to be taken from the remainder of

the unit length stick for πh(x), small Φ(ηh(x)) leaves more portion of the stick for other locations

to take and πh(x) is small relative to the other πl(x) for l 6= h. In addition, by allowing ψh to

vary with h, we accommodate spatially-adaptive dependence, with more rapid changes occurring

in certain regions of X .

Current generalizations of the DP to incorporate predictor-dependence in πh(x), including

the πDDP (Griffin and Steel, 2007) and the KSBP (Dunson and Park, 2008), have more compli-

cated structure than (4.3) and the updating algorithm for the random components in πh(x) is
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not straightforward. However, the probit-based weight structure in (4.3) allows for using a data

augmentation approach in order to obtain conjugacy so that the random components αh,ψh,Γh

are more efficiently updated as discussed in section 4. Achieving conjugacy is particularly im-

portant in developing an efficient algorithm for variable selection and calculation of posterior

model probabilities.

4.2.2 Moments

We first consider the moments of Px conditionally on αh,ψh,Γh, but marginalizing out the

atoms θh over P0. For all B ∈ B(Ω), the first and second moments are

E{Px(B)|αh,ψh,Γh} =
∞∑
h=1

πh(x)E{δθh
(B)} = P0(B)

E{Px(B)2|αh,ψh,Γh} =

[ ∞∑
h=1

πh(x)2E{δθh
(B)2}

]
+

[ ∞∑
h=1

∑
l 6=h

πh(x)πl(x)E{δθh
(B)}E{δθl

(B)}
]

=
∞∑
h=1

πh(x)2
[
E{δθh

(B)2} −P0(B)2
]

+ P0(B)2

= ||πh(x)||2{P0(B)−P0(B)2}+ P0(B)2

= ||πh(x)||2P0(B) + {1− ||πh(x)||2}P0(B)2 (4.5)

Also, the correlation is

Corr{Px(B), Px′(B)|αh,ψh,Γh} =

∑∞
h=1 πh(x)πh(x′)

{
∑∞

h=1 πh(x)2}1/2{
∑∞

h=1 πh(x′)2}1/2

=
< πh(x), πh(x′) >

||πh(x)|| · ||πh(x′)||
(4.6)

Note that the correlation is bounded above by 1 from the Cauchy-Schwarz inequality and goes

to 1 in the limit as x → x′. Because the correlation is not dependent on B, we obtain a single

quantity given x and x′. Also, the correlation does not depend on the choice of P0.
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Next, we consider the moments of Px marginalizing out αh,ψh,Γh as well as θh. Letting

Uh(x) = Φ(ηh(x)), we regard Uh(x) as a random variable following a probability distribution

Fx. Note that Fx is induced through N(µ, 1), G, and H although its analytical expression is

not straightforward. Because αh,ψh,Γh are iid, we have Uh(x)
iid∼ Fx for h = 1, . . . ,∞. Letting

µ(x) = EFx{Uh(x)}, µ(2)(x) = EFx{Uh(x)2}, and µ(x,x′) = EFx{Uh(x)Uh(x′)}, we can show

that

E{Px(B)} = P0(B)

Var{Px(B)} =
µ(2)(x){P0(B)−P0(B)2}

2µ(x)− µ(2)(x)

Corr{Px(B), Px′(B)} =

[
µ(x,x′)

µ(x) + µ(x′)− µ(x,x′)

]
×
[
{2µ(x)− µ(2)(x)}{2µ(x′)− µ(2)(x′)}

µ(2)(x)µ(2)(x′)

]1/2

(4.7)

Similar to the conditional moments, the correlation is not dependent either on B or on P0 and

only depends on the moments of Uh(x). Proofs for (4.6) and (4.7) follow similar lines for the

moments of the KSBP (Dunson and Park, 2008).
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4.3 Conditional Distribution Modeling With Variable Se-

lection

4.3.1 Model Specification

Let y be a univariate continuous response and x = (x1, . . . ,xp)′ be a vector of p continuous

predictors. We consider the following PSBP mixture (PSBPM) for f(y|x).

f(y|x) =

∫
N(y; x′0β, τ

−1)dPx(β, τ)

PX = {Px : x ∈ X} ∼ PSBP(µ,G,H,P0), (4.8)

where x0 = (1,x′)′ is the predictor vector including an intercept and β = (β0, . . . , βp)
′ is a

vector of regression coefficients. Applying the stick-breaking form in (4.1) with θh = (β∗h, τ
∗
h)

and β∗h = (β∗h0, . . . , β
∗
hp)
′, we obtain

f(y|x) =
∞∑
h=1

πh(x)N(y; x′0β
∗
h, τ

∗−1
h ), (4.9)

which is an infinite mixture of normal linear regressions with mixture weights varying with

predictors. The finite mixture of linear regression framework has been considered in the neural

computing literature under the name of Hierarchical Mixtures of Experts (HME) (Jordan and

Jacobs, 1994). Some Bayesian work for the finite HME model include Peng et al. (1996), Jiang

and Tanner (1999) and Geweke and Keane (2007). The infinite HME can be obtained using

nonparametric Bayesian approaches proposed by Müller et al. (1996), Griffin and Steel (2006;

2007), and Dunson and Park (2008).

In our experience based on simulation studies, the predictor-dependent mixture structure in

(4.9) tends to produce accurate estimates of f(y|x) in regions of the predictor space for which

ample data are available. However, as the number of predictors increase and the observations

become increasingly sparse, estimation performance (judged in terms of the Kullback-Leibler

(KL) divergence from the true density and/or mean integrated square error) tends to diminish.
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In addition, it is often of primary interest in many applications to conduct local or global variable

selection and hypothesis testing to identify important predictors in conditional distribution

modeling, which has not been addressed in the literature.

In order to address the curse of dimensionality in estimation and our interest in testing

and variable selection, we incorporate a variable selection structure through G and P0 in (4.8).

Letting γhj be an inclusion indicator variable for the jth predictor in the hth mixture component,

we induce G and P0 through the following distributions for ψh and θh.

ψh = {ψhj}pj=1 ∼
p∏
j=1

{
1(γhj = 0)δ0(ψhj) + 1(γhj = 1)N+(ψhj;µψj , τ

−1
ψj

)

}
θh = (β∗h, τ

∗
h) ∼ Npγh+1(β∗γh,h; 0,Σγh,h)× δ0(β∗γ̄h,h)×Gamma(τ ∗h ; aτ , bτ ), (4.10)

where N+ denotes a truncated normal distribution bounded below by zero, β∗γh,h is the vector of

regression coefficients corresponding to γhj = 1 including intercept, β∗γ̄h,h is the coefficient vector

with γhj = 0, and pγh =
∑p

j=1 γhj. Note that γhj controls local inclusion of the jth predictor,

with γhj = 0 implying that ψhj = 0 and β∗hj = 0. A value of β∗hj = 0 leads to the jth predictor

assigned a coefficient of zero in the hth linear regression model in (4.9), while a value of ψhj = 0

leads to excluding the jth predictor from the hth predictor-dependent stick-breaking weight in

the expression for πh(x). Clearly, if γhj = 0 for h = 1, . . . ,∞, then the jth predictor will be

globally excluded from the model. To allow uncertainty in γhj, we let

γhj ∼ Bernoulli(γhj;κj), (4.11)

where κj is the prior probability of γhj = 1 for the jth predictor. To borrow information across

mixture components, we use the sparseness-favoring prior of Lucas et al. (2006), with

κj ∼ 1(wj = 0)δ0(κj) + 1(wj = 1)Beta(κj; aκj , bκj) for j = 1, . . . , p

wj ∼ Bernoulli(wj; 0.5), (4.12)
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which modifies the typical beta hyper-prior to allow exclusion of a predictor from all the mixture

components.

In Bayes variable selection, it is important to choose the prior distributions for the coefficients

within each model carefully. In variable selection for normal linear regression, Zellner’s g-prior

(Zellner, 1986) is widely used, with mixtures of g-priors (Liang et al, 2008) providing a clear

improvement. Theses priors can be used directly for the coefficients in each mixture component

as follows.

β∗γh,h|τ
∗
h ∼ N(β∗γh,h; 0,Σγh,h)

Σγh,h = ng−1(X′γhXγh)−1/τ ∗h with g ∼ Gamma(g; ag,bg), (4.13)

where n is the number of subjects and Xγh is the design matrix corresponding to γhj = 1

including intercept.

4.3.2 Hypothesis Formulation

We first consider a global null hypothesis for selecting important predictors. As discussed

with the variable selection structure in (4.10), one can consider a global point null hypothesis for

exclusion of the jth predictor as H0j : γhj = 0 for h = 1, . . . ,∞. However, considering such H0j

seems overly restrictive because the weights πh(x) in (4.9) tend to decrease towards zero rapidly

as h increases, suggesting that the mixture components of higher order than some moderate

number N may not be practically important for modeling f(y|x). In addition, the infiniteness in

H0j makes the calculation of prior and posterior probabilities for the null hypotheses infeasible.

If one can determine a finite number N such that
∑∞

N+1 πh(x) ≈ 0, one may focus on the mixture

components of lower order than N for the inference.

One possible strategy is to base hypothesis testing only on the subset of components that

are occupied by subjects in the sample, and hence have posterior distributions that differ from

their priors. This results in an empirical Bayes-type approach in which the data inform about

the complexity of the null hypothesis. In particular, we formalize the null hypothesis of no effect

56



of the jth predictor as follows:

HN
0j : γhj = 0 for h = 1, . . . , N, (4.14)

where N is a finite number large enough so that the posterior distributions of γhj|κj for h > N

are not different from the prior distributions of γhj|κj. In order to find such an N , we examine

the following hierarchical structure of the PSBPM in (4.8).

yi|Si,PX ∼ N(yi; x
′
i0β
∗
Si
, τ ∗−1

Si
)

Si|PX ∼
∞∑
h=1

πh(xi)δh(Si)

PX = {Px : x ∈ X} ∼ PSBP (µ,G,H, P0), (4.15)

where yi is the ith subject’s response and Si is a latent variable such that Si = h denotes that

the ith subject is assigned to hth mixture component. Given (yi, Si) for i = 1, . . . , n, we obtain

N = maxni=1(Si) for which the following theorem holds. Proof is in the Appendix.

Theorem 1. Suppose yi|xi ∼ f(y|x) and f(y|x) is assumed to be a PSBPM as in

(4.8) with G and P0 chosen as in (4.10) and (5.8). Let l(y,S|H0j) and l(y,S|HN
0j) be

the marginal likelihoods for (y,S) under H0j and HN
0j where y = (y1, . . . ,yn)′ and

S = (S1, . . . , Sn)′. Then, the ratio R =
l(y,S|H0j)

l(y,S|HN
0j)

does not depend on (y,S).

Theorem 1 implies that the complete data (y,S) contain no information to distinguish between

H0j and HN
0j , so the prior and posterior distributions for γhj|κj for h > N become the same.

Hence, inferences based on higher-order null hypotheses than HN
0j may be unreliable being overly-

sensitive to the choice of prior. This sensitivity to the prior may result in lack of consistency

in hypothesis testing, and other unappealing properties. Basing hypothesis tests in nonpara-

metric models on finitely many parameters is also appealing from a practical perspective, since

calculation of posterior probabilities and Bayes factors becomes feasible.

Next, we consider local hypothesis testing for the predictors identified as important by testing
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HN
0j . Because it is not straightforward how to use γhj for local null hypothesis formulation, we

rely on the model-averaged conditional distribution estimates at different predictor points. For

the jth predictor, one may consider testing if the conditional distributions are different between

xj and x′j adjusted for the other predictors at fixed values x∗(j) = (x∗1, . . . ,x
∗
j−1,x

∗
j+1, . . . ,x

∗
p)′.

Letting d(xj, x
′
j)|x∗(j) = supy∈<|F (y|xj,x∗(j)) − F(y|x′j,x∗(j))|, we propose a local interval null hy-

pothesis as:

H0j(xj, x
′
j|x∗(j)) : d(xj, x

′
j)|x∗(j) < ε, (4.16)

where ε is a small positive constant. This null implies the total variation distance between the

conditional distributions at xj and x′j adjusted for the other predictors is negligible. Prior or

posterior probabilities can be calculated by specifying a fine grid of values for y wide enough

to cover the minimum and maximum of yi. Using (4.16), we can further consider the local

null hypothesis of equality of the conditional distributions across a region Aj ⊂ Xj with Xj jth

predictor space as:

H0j(Aj|x∗(j)) : supxj ,x′j∈Aj{d(xj, x
′
j)|x∗(j)} < ε, (4.17)

This implies that the total variation distance between the conditional distributions at any two

points in Aj adjusted for the other predictors is negligible. Considering that the PSBPM charac-

terizes the conditional distributions very flexibly, hypothesis testing for (4.16) and (4.17) would

be sensitive to the choice of x∗(j), in particular, when jth predictor interacts with any of the other

predictors. Given the flexibility of the model, inferences on the interactions among predictors

are not trivial and can be further research topics.
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4.4 Posterior Computation

4.4.1 Model and MCMC algorithm

We develop an MCMC algorithm for the PSBPM following the specification in (4.8) with G

and P0 chosen as in (4.10) with (5.8), (4.12) and (4.13). For H, we consider Γh = {Γhj}pj=1 ∼∏p
j=1

∑Mj

m=1 δΓ∗mj
(Γhj) where Γ∗mj for m = 1, . . . ,Mj are pre-specified grid values for jth predic-

tor. In addition, we assume µ ∼ N(µ;µµ, τ
−1
µ ). In order to sample finite number of random

components for Px, we rely on a modification of the blocked Gibbs sampler (Ishwaran and James,

2001) with the truncation level T.

The updating steps are in the Appendix. Note that all full conditionals are very straight-

forward. In step 1, Si is sampled from a multinomial. For updating the weight components,

αh,ψh,Γh, we use a data augmentation approach. For Si = h, we introduce Zil = 0 for

l = 1, . . . , Si − 1 and Zil = 1 for l = Si where

Zil = 1(Z∗il > 0)

Z∗il ∼ N

(
Z∗il;αh −

p∑
j=1

ψhj|xij − Γhj|, 1
)

(4.18)

For Si = T , we introduce Z∗il only for l = 1, . . . , T − 1 because we let Φ(ηT (x)) = 1 so that∑T
h=1 πh(x) = 1. Given Z∗il, we update αh,ψh,Γh from their conjugate full conditionals (Steps

2-4). The atoms, β∗h, τ
∗
h , and other hyperparameters are also updated from their conjugate full

conditionals (Steps 5-10). Finally, we update γhj based on the marginal likelihoods for (y,S)

(Step 11). Note that this step generalizes the SSVS step for linear regression (George and

McCulloch, 1997).

4.4.2 Default Choices for Hyperparameters

Prior to analysis, we standardize the response and predictors. For the standardized data,

we propose the following default choices for the hyperparameters. For G, µψj = 0, τψj = 1 for
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j = 1, . . . , p. For P0, ag = bg = 0.5 and aτ = bτ = 0.5. For H, we choose 50 equally spaced grid

points for Γ∗mj in (-2.5, 2.5) for all j. For others, aκj = bκj = 0.5 for all j and µµ = 0, τµ = 1.

We let ε = 0.05 in defining local null hypotheses as this implies negligible local changes in the

conditional densities under the null in simulations (not shown). For truncation, we let T = 20

which was shown to be large enough because N tends to converge to a small number (≤ 10).

We have found good performance for these choices of hyperparameter values in a wide variety

of simulation studies, a subset of which will be presented in the next Section. It is important to

acknowledge that results are not entirely robust to hyperparameter choice in that high variance

priors can lead one to overly-favor the null hypothesis corresponding to exclusion of all the

candidate predictors. This is a well known issue in Bayesian methods for model and variable

selection, and is by no means unique to the nonparametric mixture models considered here.

Refer, for example, to Liang et al. (2008) for a recent review of default priors for parametric

variable selection.

4.5 Simulation Study

In order to illustrate the proposed method and to assess the performance, we conduct a

simulation study. We first generate xij
iid∼ Uniform(xij;−2, 2) for i = 1, . . . , n and j = 1, . . . , p.

The response is generated for a null case (1) and two alternative cases (2) and (3).

(1) yi
iid∼ 0.5N(yi; 1, 1) + 0.5N(yi;−1, 0.52)

(2) yi
iid∼ N(yi; 2xi1 − 3xi2 + xi4 − xi5, 1)

(3) yi
iid∼ 0.5N(yi; 10, (2 + 4e−min(xi1,0))2) + 0.5N(yi;−10 + 5xi2, 5

2) (4.19)

The case (1) is a mixture of two normals with no change in f(y|x) across x. The case (2) is a

standard normal linear regression where f(y|x) changes only in mean as x changes. The case

(3) is a mixture of two normals where the variance for the 1st mixture component decreases

monotonically as x1 increases and the location for the 2nd component shifts to the right as x2
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increases. In particular, x1 has a local impact only when x1 < 0 having no effect on E(y|x)

while x2 has a global impact on E(y|x).

4.5.1 Simple Application of PSBPM

We begin with p = 10 and n = 1000. After standardizing y, we applied the PSBPM with

the priors and hyperparameters discussed in sections 3 and 4. The MCMC algorithm described

in section 4.1 was run for 10,000 iterations, with the first 5,000 iterations discarded as burn-ins.

The MCMC chain appeared to converge rapidly and to mix efficiently based on the trace plots.

In case (1), Pr(HN
0j |Data) was above 0.9 for all j, suggesting that none of the predictors are

important. The true conditional response density f(y|x∗) with x∗ various predictor points was

almost the same as the predictive density f̂(y|x∗) with its 95% credible intervals very narrow.

In case (2), Pr(HN
0j |Data) = 0 for j = 1, 2, 4, 5 and above 0.8 for the other j, implying that the

PSBPM correctly selects important predictors in a simple normal linear regression case. The

true and predictive response densities were almost the same at various predictor points x∗.

In case (3), Figure 4.1 shows that Pr(HN
0j |Data) are 0 for j = 1, 2 and above 0.8 for

j ≥ 3. The PSBPM correctly identified x1 and x2 as important for the change in f(y|x)

although x1 is only locally important having no impact on E(y|x). Figure 4.1 also shows that

Pr(H01(max(x1), x1)|Data) is 0 for x1 < 0, increases towards 1 for x1 > 0 reflecting the local

impact of x1. Meanwhile, Pr(H02(max(x2), x2)|Data) is 0 across x2 because x2 is globally im-

portant. Figure 4.2 shows that the predictive density (dashed) with its 95% credible intervals

(dash-dotted) closely follows the true one (solid) reflecting the shape change across x1 and x2.

In order to evaluate scalability to larger numbers of candidate predictors, we applied the

PSBPM for all 3 cases in (4.19) with p = 10, 15, 20 and n = 800, 1000, 1200. The results were

similar to p = 10 and n = 1000 implying that the PSBPM is robust to moderate sample sizes

and can handle reasonably many predictors. In addition, we conducted a sensitivity analysis

for different choices of hyperparameters within a reasonable range and found similar results

regardless of the choice. Finally, we applied the method to 100 replicates of each simulation case
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and found that the results were consistent among the replicates (Results not shown). Letting

Pr(H0j|Data) < 0.05 as a significant evidence for rejecting H0j against the alternative, we

obtained 98% of rejecting rate on average for important predictors and 95% of not-rejecting rate

for unimportant predictors out of 100 replicated data sets in each simulation case.
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FIGURE 4.1: Top - Posterior probabilities for HN
0j for j = 1, . . . , 10; Middle - Posterior probabil-

ities for H01(max(x1), x1) with x1 varying across 40 grid points; Bottom - Posterior probabilities
for H02(max(x2), x2) with x2 varying across 40 grid points
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FIGURE 4.2: True (solid), Predictive (dashed) conditional response density f̂(y|x∗) with 95%
credible intervals (dash-dotted) at x∗ = (x1,x2, x̄3, . . . , x̄10) with x1 and x2 varying among 5th,
50th, 95th empirical percentiles

4.5.2 Comparison with a simple and a competing method

In order to illustrate the potential of the PSBPM, we compare it with a simple method and

a competing method for the simulation cases in (4.19) with p = 10 and n = 1000. For a simple

one, we consider a standard linear regression with SSVS (George and McCulloch, 1997) (LR-
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SSVS) where prior structure for regression coefficients is consistent to (4.10) with (5.8), (4.12),

(4.13). As a competitor, we consider Bayesian Additive Regression Trees (BART) (Chipman

et al., 2006). Although BART focuses on mean response, we chose BART because there is

no competing method which performs variable selection in the general setting of conditional

distribution modeling and the BART is a recently proposed flexible mean regression model

shown to be comparable with its competitors while allowing for variable selection based on

the partial dependence plot (PDP) (Chipman et al., 2006). Implementing BART using the R

statistical software, we consider a default setting for priors and hyperparameters.

In case (1), we obtained Pr(βj = 0|Data)≈ 1 for all j with LR-SSVS and none of the

predictors appeared to have an impact on the mean response with BART based on the PDP.

In case (2), both LR-SSVS and BART correctly identified xj for j = 1, 2, 4, 5 as important.

Predictive performance for E(y|x) was good for both methods in both cases. This implies that

the PSBPM, LR-SSVS and BART are comparable in a null case or a simple linear regression case

with respect to variable selection and mean prediction. However, for a non-normal response data

such as case (1), the LR-SSVS and BART would not be comparable with PSBPM for distribution

prediction because of their normality assumption. Although there is a recent extension of BART

that allows nonparametric modeling of the residual distribution using DP mixtures, our approach

is still dramatically more flexible in allowing the residual distribution to change flexibly over the

predictor space. In addition, the PDP is not a formal approach for variable selection, and is not

comparable to the posterior inclusion probabilities and Bayes factors provided by LR-SSVS or

PSBM.

In case (3), LR-SSVS detected only x2 as important with Pr(β2 = 0|Data)=0. Pr(β1 =

0|Data)=0.87 and Pr(βj = 0|Data) was above 0.9 for j ≥ 3. Meanwhile, BART showed a strong

evidence that x1 has an impact but not so much for the other predictors. This suggests that

the PSBPM identifies important predictors correctly while LR-SSVS and BART fail to do so,

in particular, when predictors have impacts not only on the mean but also on the shape or

tails of the response distribution substantially. This is not an unusual scenario in applications,

since such behavior is a natural consequence when the predictors are not related to the typical
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FIGURE 4.3: True mean E(y|x) (’o’), Predictive mean Ê(y|x) (’x’), observed data y (’*’) across
x2 : Top - PSBPM; Middle - LR-SSVS; Bottom - BART

response but instead to risk of extremes. For example, these extremes may correspond to adverse

health responses or unusual financial or meteorological events. In addition, we compared the

three methods with respect to mean prediction for 200 in-sample predictor points. Figure 4.3

shows the scatter plot for predictive mean Ê(y|x) and true mean E(y|x) along with the observed

response y versus x2. PSBPM (top) and LR-SSVS (middle) were comparable in that Ê(y|x)

65



is almost indistinguishable from E(y|x) while BART (bottom) performed poorer with Ê(y|x)

scattering around E(y|x).

4.6 Epidemiological Application

4.6.1 Motivation and Background

In epidemiological studies for diabetes, interest can be on characterizing the relationship

between glucose tolerance (GT) and insulin sensitivity (IS) and other diabetes risk factors.

GT is measured by 2-hour plasma glucose level (mg/dl) in the oral glucose tolerance test and

indicates how fast glucose is cleared from the blood. GT is also used to diagnose type 2 diabetes

using < 140 (normal), [140, 200] (pre-diabetes), and > 200 (diabetes). IS provides an indicator

of how well the body responds to insulin, a hormone regulating movement of glucose from the

blood to body cells. Although it is well known that low IS is related to poor GT (high 2-hour

plasma glucose level), previous studies have either categorized IS and GT prior to analysis or

focused on linear associations. These approaches discard information and can yield misleading

inferences. Biologically, one anticipates changes in the shape of the 2-hour glucose distribution

with changes in IS and other risk factors for diabetes, such as age, blood pressures, or obesity

measures.

Data were obtained from the Insulin Resistance Atherosclerosis Study (IRAS) (Wagenknecht

et al., 1995), which was a prospective study designed to assess the relationships among IS and

cardiovascular disease risk factors in a large multi-ethnic cohort. Figure 4.4 plots 2-hour plasma

glucose level against IS, age, waist-to-hip ratio (WTH), body mass index (BMI), diastolic blood

pressure (DBP), and systolic blood pressure (SBP). Examining the data, one notes a large right

skew in the glucose distribution, with the distributional shape changing with IS. The changes of

the glucose distribution with BMI may be local, while the other predictors may have negligible

impact on the glucose distribution. As linear or non-linear mean or median regression models

are not supported for these data, our goal is to apply the proposed method that allows the

66



distribution of 2-hour glucose to change flexibly with the different risk factors under study,

while also allowing risk factors to drop out of the model and to have effects that are local to

particular regions of the predictor space.
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FIGURE 4.4: Data from IRAS study : y = 2-hour glucose level (mg/dl); x1 = insulin sensitivity;
x2 = age; x3 = waist to hip ratio; x4 = body mass index; x5 = diastolic blood pressure; x6 =
systolic blood pressure
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4.6.2 Analysis

We analyzed the IRAS study data focusing on the relationship between 2-hour glucose level

and 6 predictors shown in Figure 4.4. For i = 1, . . . , 868, yi = 2-hour glucose level (mg/dl),

xi1 = IS, xi2 = age, xi3 = WTH, xi4 = BMI, xi5 = DBP, and xi6 = SBP. Prior to the analysis,

we standardized both response and predictors. Firstly, we applied the simple LR-SSVS and

obtained Pr(βj = 0|Data) = 0.00, 0.65, 0.00, 0.94, 0.14, 0.01, for j = 1, . . . , 6. In order to

better meet the normality assumption, we fit the LR-SSVS for log-transformed response and

obtained Pr(βj = 0|Data) = 0.00, 0.14, 0.00, 0.71, 0.00, 0.23, for j = 1, . . . , 6. IS, WTH, DBP,

and SBP were found to be important and age was added with log-transformation. Secondly, we

applied the BART and found strong evidence for the effect of IS and some evidence for the other

predictors with/without log transformation based on the partial-dependence plots. However, the

residual plots showed that the constant normal residual assumption is strongly violated so the

results may not be reliable.

Next, we applied the PSBPM and obtained Pr(HN
j |Data) = 0.00, 0.00, 0.87, 0.97, 0.97,

0.78, indicating that only IS and age are important predictors. The results for IS and age are

consistent with LR-SVSS and BART applied to log-transformed glucose level while inconsistent

results were shown for the other predictors. We suspect that such inconsistency may result from

the restrictive assumption of LR-SSVS and BART for the residual distribution. In order to

examine how IS and age affect the 2-hour glucose distribution, we obtained predictive density

f̂(y|x∗) at x∗ = (x1,x2, x̄3, . . . , x̄10) with x1 and x2 varying among 5th, 50th, 95th empirical

percentiles. Figure 4.5 shows that the glucose density has a very heavy right tail for low IS (x1)

but, as IS increases, the right tail disappears making the mode become higher. In fact, the right

tail seems to characterize the group of people whose 2-hour glucose level is above 200(mg/dl)

(Reference line is 0.2 with standardization). This implies that there may be underlying genetic

factors or unadjusted risk factors that can explain such heavy right tail shape of 2-hour glucose

level for the people with low IS other than the predictors included in the current model. In

addition, the right tail becomes heavier as age (x2) increases especially for those subjects with
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low IS, meaning that aging is also related to poor GT. Local hypothesis testing for IS and

age adjusting for the other predictors showed that both IS and age globally affects the glucose

distribution with no interaction between IS and aging.
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4.7 Discussion

We propose a nonparametric Bayesian approach for conditional distribution modeling with

variable selection. We first introduce the probit stick-breaking process (PSBP) as a new choice

of prior for an uncountable collection of predictor-dependent random probability measures and

consider a PSBP mixture (PSBPM) of normal linear regressions, resulting in an infinite mixture

with mixing weights varying with predictors. Incorporating variable selection structure in both

regression coefficients and mixing weights, we allow predictors to drop out of the model or to

be included in the model such that local or global effects for the conditional distribution change

can be assessed.

The proposed method is innovative in that it deals with variable selection and local and

global hypothesis testing problems in the general setting of conditional distribution modeling.

The method should be useful in many applications where interest is not only on the conditional

mean response but also on the overall shape or tails of the conditional response distribution, in

particular, when the response distribution changes in shape not following standard parametric

assumptions across the predictor space. In present paper, we only illustrated continuous pre-

dictor cases but we note that the method can easily be generalized to incorporate categorical

predictors (Results not shown).

Although the PSBPM performed well in various simulation studies, there is much room

to improve because of the model complexity. First, it would not be feasible to implement the

method if too many candidate predictors are considered or to obtain reliable results if only small

samples are available. In addition, there is a need for the development of efficient approaches

for formal hypothesis testing of interactions and for identifying local regions of high-dimensional

predictor spaces across which response distributions change.
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CHAPTER 5

BAYES VARIABLE SELECTION IN

LATENT CLASS MODELING OF

LONGITUDINAL DATA

5.1 Introduction

The enormous increase in the incidence of obesity over the past several decades has led

to a great deal of concern among public health researchers, clinicians and the general public.

Obesity is a complex health condition, which results from the interplay of genetics, diet and other

environmental factors. As weight loss intervention programs for adults are often unsuccessful,

there is considerable interest in identifying prenatal and childhood risk factors predictive of the

later development of obesity, with the hope that early interventions and behavioral modifications

may be more efficacious. Our motivation is drawn from a German study of childhood growth

(Fenske et al., 2008), which recorded body mass index (BMI) over time for 3097 children starting

at birth and continuing to age 5.

Potentially, one could use a linear mixed effects (LME) model (Laird and Ware, 1982) for data

of this type. However, the assumptions of linearity of the growth trajectories and normality of

the random effects characterizing variability in the trajectories are clearly questionable. Latent



class trajectory (LCT) models (Muthén and Shedden, 1999) provide a flexible alternative, which

relies on using a finite mixture of normals for the random effects distribution, while allowing

non-linear trajectories through the use of polynomials. In this framework, a polytomous logistic

regression model is used to relate predictors to the probability of allocation to each latent

class, with data for individuals in a class characterized using an LME model. Nagin (1999)

proposed an alternative approach, which instead assumed that individuals within a class had

identical random effects, leading to clustering of individuals according to their growth trajectory

(Roeder, Lynch and Nagin, 1999). This type of approach can be implemented routine in SAS

(Jones, Nagin and Roeder, 2001).

As noted in Bigelow and Dunson (2008), there are some drawbacks to these frequentist finite

mixture modeling-based approaches. The first is the need to estimate the number of latent

classes, k, and then condition inferences on this estimate. The typical estimation strategy relies

on fitting the model for different choices of k, and choosing k̂ based on the BIC. The BIC is

not theoretically justified in this mixture model setting, and it is appealing to allow uncertainty

in estimation of k in performing inferences. In addition, a more biologically realistic model

would allow the number of classes represented in the sample to increase with sample size, as

there may be occasional introduction of an individual having a rare health condition leading to

a very different growth trajectory than observed in previous subjects. To allow uncertainty in

estimating k, while allowing the number of classes to grow at a rate proportional to α log n, with

n the number of subjects, one can use the following Dirichlet process mixture (DPM) model

(Escobar and West, 1995; Bush and MacEachern, 1996; Kleinman and Ibrahim, 1998):

yij = x′ijβi + εij, εij ∼ N(0, τ−1)

βi ∼ P, P ∼ DP (αP0), (5.1)

where yij is the jth observation on individual i, xij = (xij1, . . . , xijq)
′ is a vector of time-

dependent predictors, βi = (βi1, . . . , βiq)
′ are subject-specific random effects, P is an unknown

random effects distribution, and DP (αP0) denotes a Dirichlet process (DP) prior (Ferguson,
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1973; 1974) with precision α and base distribution P0.

As is clear from the Sethuraman (1994) stick-breaking representation of the DP, the semi-

parametric Bayes random effects model in (5.1) implies that βi ∼ P =
∑∞

h=1 πhδβ∗h
, with δθ

denoting a distribution concentrated at θ. Hence, the random effects distribution is discrete and

individuals will be allocated to clusters, with each cluster having a distinct random effects vector.

As the random effects characterize the growth trajectory, trajectory clusters will be obtained

automatically. This property was used by Ray and Mallick (2006) for wavelet-based functional

clustering, while Wang, Ray and Mallick (2007) and Bigelow and Dunson (2008) independently

extended this type of approach for joint modeling with functional predictors. DPMs have been

widely used to allow for unknown random effects distributions in Bayesian hierarchical models,

with Ohlssen, Sharples and Spiegelhalter (2007) providing a recent tutorial on the practical

implementation.

Unfortunately, DPMs for random effects distributions do not allow us to directly address

our interests in identifying predictors of the growth trajectory. In addition, although there is

an increasingly-rich literature on methods for generalizing DPMs to allow predictor dependence

(Griffin and Steel, 2006; Dunson et al., 2007; Dunson and Park, 2008, among others), such

methods do not allow for variable selection, with the exception of a recent approach proposed

by Chung and Dunson (2008). The Chung and Dunson (2008) method relied on a probit stick-

breaking process (PSBP), which was carefully defined to allow Bayesian variable selection to

be implemented via a simple stochastic search variable selection (SSVS) algorithm (George

and McCulloch, 1993; 1997). The goal of the current paper is to generalize this approach to

the longitudinal data setting, with the applied emphasis being the selection of predictors of

trajectories in childhood growth. The proposed approach is highly-flexible in allowing the mean

and quantile trajectories to vary flexibly with the selected predictors, allowing one to conduct

inferences on risk of overweight or obesity without relying on pre-specified BMI categories. It

is important to avoid categorizing BMI to avoid sensitivity to cutoffs and to allow finer-scale

inferences. For example, there are considerable clinical differences within the overweight and

obesity categories.
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Section 2 defines the variable selection problem and nonparametric Bayes approach. Section

3 develops an algorithm for posterior computation. Section 4 considers a simulation study.

Section 5 applies the method to the German growth data set, and Section 6 discusses the

results.

5.2 Mixture Models for Longitudinal Data with Variable

Selection

5.2.1 Predictor-Dependent Mixture Model

For i = 1, . . . , n, let yi = (yi1, . . . , yini)
′ be the ith subject’s longitudinal response vec-

tor and Xi = (xi1, . . . ,xini)
′ be the ith subject’s time-varying predictor matrix, where xij =

(xij1, . . . , xijq)
′ denotes the ith subject’s predictor vector at time tij, for j = 1, . . . , ni. The

following normal linear random effects model provides a simple model for characterizing these

data:

yi = Xiβi + εi, εi ∼ Nni(0, τ
−1Ini)

βi ∼ Np(θ,Ω), (5.2)

where βi = (βi1, . . . , βiq)
′ are subject-specific random effects, which are assumed independent of

the residual εi. By including non-linear basis functions evaluated at tij within the xit vector, one

can accommodate flexible non-linear trajectories within the framework of (5.2). For instance,

one can consider a cubic spline with two knots as xij = (tij, t
2
ij, t

3
ij, (tij− t0)3

+, (tij− t1)3
+)′, where

tij is the ith subject’s jth measurement time and t0 and t1 are pre-specified knots.

Extending model (5.2) to a LCT framework, we use (5.2) to characterize the data for subjects

within a class, while allowing the random effects distribution parameters and residual precision

to vary across classes. In particular, letting Si ∈ {1, . . . , N} denote the latent class for subject
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i, with N an upper bound on the number of classes occupied by the n subjects, we let

yi = Xiβi + εi, εi|Si ∼ Nni(0, τ
∗−1
Si

I)

βi|Si ∼ Nq(θ
∗
Si
,Ω∗Si),

Si|wi ∼
N∑
h=1

πh(wi)δh, (5.3)

where {τ ∗h ,θ
∗
h,Ω

∗
h} are parameters specific to class h, for h = 1, . . . , N , wi = (wi1, . . . , wip)

′

is a vector of predictors for subject i, δh is a distribution concentrated at h, and πh(w) =

Pr(Si = h |wi = w) is the probability of allocation to class h given predictors w. Note that the

allocation probability depends on the predictors which allows for predictor-dependent clustering

of subjects into different trajectory classes.

In Bayesian framework, uncertainty can be allowed for the number of latent classes, N , class-

specific parameters, {τ ∗h ,θ
∗
h,Ω

∗
h}, and predictor-dependent allocation probabilities πh(w). Such

uncertainty can be obtained by adding the following hierarchy in model (5.2).

{τi,θi,Ωi} ∼ Pwi
,

PW = {Pw : w ∈ W} ∼ PSBP(µ, P0, G,H), (5.4)

where Pw is random distribution indexed by w, PW is an uncountable collection of Pw, and PSBP

(µ, P0, G,H) denotes the probit stick-breaking process with hyperparameters of µ, P0, G,H

(Chung and Dunson, 2008) as a prior for PW . More intuition for the prior structure (5.4)

can be obtained by expressing Pw in the stick-breaking representation as follows.

Pw =
∞∑
h=1

πh(w)δφh
,

πh(w) = Φ(ηh(w))
∏
l<h

{
1−Φ(ηl(w))

}
,

ηh(w) = αh −
p∑

k=1

ψhk|wk − Γhk|, ∀w ∈ W , (5.5)
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where πh(w) are random stick-breaking weights, φh are random atoms corresponding to {τ ∗h ,θ
∗
h,Ω

∗
h}

in model (5.3), and Φ(·) is cumulative distribution function of the standard normal, N(0, 1).

The uncertainty for the weights and atoms is allowed through

φh ∼ P0, αh ∼ N(αh;µ, 1), ψh = {ψhk}pk=1 ∼ G, Γh = {Γhk}pk=1 ∼ H, (5.6)

where P0 is a known distribution which class-specific parameters follow, G is a known distribution

defined on a positive support, and H is a known distribution from which the random locations

are drawn. Although Pw is defined as an infinitely discrete distribution, πh(w) decreases toward

zero rapidly as h increases and subject allocation tends to happen mostly among the first N

mixture components where N is a finite constant such that
∑∞

h=N+1 πh(w) ≈ 0. Hence, model

(5.2) with (5.4) provides a Bayesian specification of the proposed LCT model specified in (5.3).

We call this the PSBP mixture of linear mixed effects models (PSBPM-LME) hereafter.

5.2.2 Variable Selection and Hypothesis Testing

Our emphasis is on identifying the predictors of the longitudinal trajectory. If kth predictor

has an impact on classifying subjects into different trajectory classes, the predictor should be

included in the allocation probability πh(w). Otherwise, we would drop it from the model. This

inclusion or exclusion of a predictor in the model can effectively be done introducing a variable

selection structure in G as follows.

ψh = {ψhk}pk=1 ∼ G ≡
p∏

k=1

{1(ωhk = 0)δ0(ψhk) + 1(ωhk 6= 0)N+(ψhk;µψk , τ
−1
ψk

)}, (5.7)

where ωhk is the inclusion indicator for kth predictor in hth mixture weight and N+ denotes a

truncated normal distribution bounded below by zero. For uncertainty of predictor inclusion,

we let

ωhk ∼ Bernoulli(ωhk;κωk) for k = 1, . . . , p (5.8)
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Note that ωhk controls local inclusion of the kth predictor in the model, with ωhk = 0 implying

that ψhk = 0 which leads to excluding the kth predictor from the hth predictor-dependent

allocation probability πh(w). Clearly, if ωhk = 0 for h = 1, . . . ,∞, then the kth predictor will

be globally excluded from the model playing no role in subject allocation to trajectory classes.

Based on the structure in (5.7) and (5.8), we proposed the following null hypothesis for

excluding kth predictor from the model.

HN
0k : ωhk = 0 for h = 1, . . . , N (5.9)

where N = maxni=1{Si} and Si is the class which ith subject belongs to. Conceptually, N =∞

makes more sense because the PSBPM-REM assumes infinite number of latent classes. However,

using N = ∞ is overly restrictive as πh(x) decreases towards zero rapidly as h increases and∑∞
N+1 πh(x) ≈ 0 after a finite number N. In fact, following Theorem 1 of Chung and Dunson

(2008), we can show that the ratio of likelihoods under HN
0k with N =∞ and N = maxni=1{Si}

for the complete data (Y,S) with Y = {yi}ni=1 and S = {Si}ni=1 does not depend on (Y,S).

This implies the data has no information to distinguish between N = ∞ and N = maxni=1{Si}

in HN
0k.

5.3 Posterior Computation

5.3.1 MCMC algorithm

We develop an MCMC algorithm for the PSBPM-REM specified in (5.2) with (5.4) where

G is chosen as in (5.7) with (5.8). For P0 and H, we assume

{τ ∗h ,θ∗h,Ω∗h} ∼ P0 ≡ Gamma(τ ∗h ; aτ , bτ )×
q∏
r=1

N(θ∗hr; 0, λ−1
r )×Wishart(Ω∗−1

h ; ν0,Ω
−1
0 )

Γh = {Γhk}pk=1 ∼ H ≡
p∏

k=1

Mk∑
m=1

δΓ∗mk
(Γhk),
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where Γ∗mk for m = 1, . . . ,Mk are pre-specified grid values for kth predictor. In addition, we

assume λr ∼ Gamma(λr; aλr , bλr) and µ ∼ N(µ;µµ, τ
−1
µ ). In order to sample finite number of

random components for Pw, we rely on a modification of the blocked Gibbs sampler (Ishwaran

and James, 2001) with the truncation level T.

The updating steps are in the Appendix. Note that all full conditionals are very straight-

forward. In step 1, Si is sampled from a multinomial. For updating the weight components,

αh,ψh,Γh, we use a data augmentation approach as in Chung and Dunson (2008). For Si = h,

we introduce Zil = 0 for l = 1, . . . , Si − 1 and Zil = 1 for l = Si where

Zil = 1(Z∗il > 0)

Z∗il ∼ N

(
Z∗il;αh −

p∑
k=1

ψhk|wik − Γhk|, 1
)

(5.10)

For Si = T , we introduce Z∗il only for l = 1, . . . , T − 1 because we let Φ(ηT (w)) = 1 so that∑T
h=1 πh(w) = 1. Given Z∗il, we update αh,ψh,Γh from their conjugate full conditionals (Steps

2-4). The atoms, θ∗h, τ
∗
h ,Ω

∗
h,βi, and other hyperparameters are also updated from their conjugate

full conditionals (Steps 5-10). Finally, we update ωhk and based on the marginal likelihoods for

y = {yi}ni=1 and S = {Si}ni=1, respectively (Step 11).

5.3.2 Default Choices for Hyperparameters

Prior to analysis, we standardize the response and predictors. For the standardized data,

we propose the following default choices for the hyperparameters. For G, µψk = 0, τψk = 1 for

j = 1, . . . , p. For P0, aλr = bλr = 0.5, aτ = bτ = 0.5, ν0 = 2,Ω0 = 0.1I. For H, we choose 50

equally spaced grid points for Γ∗mk in (-2.5, 2.5) for all k. For others, κωk = 0.5 for all k and

µµ = 0, τµ = 1. For truncation, we let T = 20 which was shown to be large enough because N

tends to converge to a small number (≤ 10).
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5.4 Simulation Study

In order to illustrate the method, we conduct a simulation study. For i = 1, . . . , n, the

predictors wi = (wi1, . . . ,wip)′ are generated as

wik
iid∼ Uniform(wik;−2, 2)

We consider equally-spaced time points as tij = j for j = 1, . . . , J and standardize tij prior to

analysis. Then, the response is obtained for the following cases.

Case (1) yij = x′ijβi + εij, εij ∼ N(0, τ−1), βi ∼ Nq(θ,Ω),

xij = (t3
ij, {ti3 + (tij − ti3)+}3)′, τ = 1, θ = (5,−5)′, Ω = [0.5,0.1 ; 0.1,0.2]

Case (2) yij = x′ijβi + εij, εij ∼ N(0, τ ∗−1
Si

), βi ∼ Nq(θ∗Si
,Ω∗Si

), Pr(Si = h) =
4∑

h=1

1

4
δh

If Si = 1, xij = tij, τ = 1, θ = −5, Ω = 0.2

If Si = 2, xij = (t3
ij, (tij − ti2)3)′, τ = 1, θ = (5,−2)′, Ω = [0.1,0.1 ; 0.1,0.1]

If Si = 3, xij = (t2
ij, (tij − ti4)2)′, τ = 1, θ = (0,5)′, Ω = [0.2,0.0 ; 0.0,0.2]

If Si = 4, xij = (t2
ij, (tij − ti2)2)′, τ = 1, θ = (0,5)′, Ω = [0.2,0.0 ; 0.0,0.2]

Case (3) yij = x′ijβi + εij, εij ∼ N(0, τ ∗−1
Si

), βi ∼ Nq(θ∗Si
,Ω∗Si

)

If wi1 < −0.7, same as Si = 1 in case (2)

If − 0.7 < wi1 < 0.7, same as Si = 2 in case (2)

If wi1 > 0.7 and wi2 < 0, same as Si = 3 in case (2)

If wi1 > 0.7 and wi2 < 0, same as Si = 4 in case (2)

For all cases, n = 500, p = 5, J = 8 were commonly chosen. Case (1) is a null case where all

subjects belong to one trajectory class with individual variability (Figure 5.1). In case (2) and

(3), there exist 4 trajectory groups (linear and polynomial splines) and they are not related to

predictors in case (2) while w1 and w2 are the predictors of trajectories.
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After standardizing yij, we applied the model (5.2) with (5.4) using the choices of priors and

hyperparameters discussed in section 2 and 3 and the following basis functions for xij.

xij = (tij, t
2
ij, t

3
ij, (tij − ti2)3, (tij − ti4)3)′

The MCMC algorithm described in section 3.1 was run for 1,000 iterations, with the first 500

iterations discarded as burn-ins. The MCMC chain appeared to converge rapidly and to mix

efficiently.

In case (1), Pr(HN
0k|Data) = 0.77, 0.79, 0.79, 0.78, 0.78 for k = 1, . . . , 5 showing that none of

the predictors is related to the trajectories. Figure 5.1 shows the simulated (left) and estimated

(right) individual trajectories (black) with population mean (red) of case (1). Figure 5.2 shows

individual trajectories for 4 different groups in case (2) and (3). We obtained Pr(HN
0k|Data) =

0.64, 0.64, 0.63, 0.67, 0.58 in case (2) while Pr(HN
0k|Data) = 0.00, 0.00, 0.58, 0.63, 0.70 in case (3).

This implies that the method detects the predictors w1 and w2 of trajectories well among other

candidate predictors. Figure 5.3 shows the estimated trajectories classified by w1 and w2 in case

(2) (left 4 panels) and case (3) (right 4 panels) suggesting that the method clusters the overtime

trajectories well based on the important predictors w1 and w2.
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FIGURE 5.1: Case (1); simulated trajectory (left), estimated trajectory (right)
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FIGURE 5.2: Case (2) and (3); simulated trajectories for 4 different groups. For case (3),
G1 : w1 < −0.7, G2 : −0.7 < w1 < 0.7, G3 : w1 > 0.7 and w2 < 0, G4 : w1 > 0.7 and w2 > 0
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FIGURE 5.3: Case (3); estimated trajectories depending on w1 and w2
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CHAPTER 6

CONCLUDING REMARKS AND

FUTURE RESEARCH

The goal of this research is to develop nonparametric Bayes methodology for studying the

relationship between a continuous response and predictors in a very flexible way. Primary

focuses are on (1) estimating the conditional response distributions as flexibly changing across

the predictor space, (2) testing hypothesis for identifying important predictors having effects on

the response distribution both globally and within local regions of the predictor space. Although

literature in nonparametric conditional distribution modeling is rich in frequentist framework

and more recently in Bayesian framework, the contributions of this research are (1) to obtain a

more intuitive and simpler approach so that the methods should be practically useful in many

applications, (2) to introduce a formal hypothesis testing procedure for variable selection in

conditional distribution modeling which has been addressed with limitations in scope by existing

methods, (3) to extend the approach to a general setting where measurements are repeatedly

obtained per subject and correlated within subject.

In chapter 3, we proposed a new stick-breaking prior for the collection of predictor-dependent

random probability measures. The prior, called the lDP, was shown to be a useful alternative

to recently developed prior models that induce predictor-dependence among distributions. The

marginal DP structure of lDP should be useful in considering theoretical properties, such as



posterior consistency and rates of convergence. The lDP is also appealing in that the con-

struction is intuitive and leads to simple and interpretable expressions for the dependence in

random measures at different locations, while also leading to straightforward posterior compu-

tation relying on truncation with a fair amount of accuracy. Such desirable properties of lDP

were illustrated in conditional distribution modeling framework through lDP mixture of normal

linear regressions.

In chapter 4, we proposed a more general approach for conditional distribution modeling with

variable selection. The probit stick-breaking process (PSBP) was introduced as a new choice of

prior for an uncountable collection of predictor-dependent random probability measures. The

PSBP was shown to be a well-defined flexible prior for the dependent probability measures and

particularly convenient for posterior computation and incorporating variable selection structure.

We considered the PSBP mixture (PSBPM) of normal linear regressions for modeling the condi-

tional distributions incorporating variable selection structure in both regression coefficients and

mixing weights. Such structure allowed predictors to drop out of the model or to be included in

the model so that the predictors’ effects can be formally assessed both globally and locally using

posterior inclusion probabilities. Using data augmentation technique, we developed an efficient

stochastic search variable selection (SSVS) algorithm. Although we only illustrated continuous

predictor cases in chapter 4, the method was shown to be generalized to incorporate categorical

predictors.

In chapter 5, we extended the paper 2 method for longitudinal data setting where the re-

sponse is measured over time per subject and considering within-subject dependence is desirable.

Adding random effects in each mixture component, we considered the PSBPM of linear mixed

effects (LME) model instead of the PSBPM of normal linear regressions. The PSBPM of LME

model characterized the response distribution as predictor-dependent mixture of LME model

which accounted for individual variability within each cluster. A variable selection structure

was incorporated in the model allowing for formal testing of predictors’ effects on the response

distribution features such as mean or quantiles. In addition, using the fact that the model

embeds a simple LME model as a special case, we proposed a formal testing of goodness of fit
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(GOF) for a LME model.

We have shown that the proposed methods in chapters 3,4,5 performed well in various sim-

ulation cases and provided interesting results in epidemiological applications. However, there

are a number of problems to be addressed for the methods to be more reliable and practical.

Specific to each chapter, the issues are summarized as follows.

• Chapter 3

- The hyperparameter ψ plays an important role and a fixed constant assumption made

in paper 1 is restrictive. The method should be improved such that uncertainty for ψ is

allowed particularly in an adaptive way that the neighborhood size can differ at different

predictor regions depending on the data richness and sparsity (e.g. ψx) or each mixture

component can have its own neighborhood size depending on its location on the space X ′

(e.g. ψh).

- Relying on truncation approach for posterior computation approximates the infinite

probability measure into a finite one. This can be improved using other approaches which

avoid both truncation and marginalization. Such methods include retrospective sampling

(Papaspiliopoulos and Roberts, 2007) and slice sampling (Walker, 2007)

• Chapter 4

- The method should be improved such that implementing with high-dimensional predic-

tors is feasible and reliable results can be obtained although relatively small samples are

available.

- Efficient approaches should be developed for formal hypothesis testing of interactions

among the predictors and for identifying local regions of high-dimensional predictor spaces

across which the response distribution changes.

• Chapter 5

- The method should be improved to incorporate random effect selection along with fixed

effect selection. As the marginal likelihoods for model comparison are not available in

closed forms with variable selection structure for random effects, approximation techniques
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may make the computation more straightforward without involving complicated MCMC

sampling techniques. Allowing random effect selection overcomes the limitation of current

approach where the predictors with mixed effects cannot be tested for their effects on other

response distribution features than the marginal mean.

In addition, more general to nonparametric Bayes methodology, the following issues can be

listed.

• Improvement for computational time is needed, in particular, for high-dimensional set-

tings which become common in many applications with the development of technology to

generate complex data.

• Prior specification is of concern given that nonparametric Bayes approach is infinitely

parameterized and requires a number of hyperparameters to be specified. It has been

shown that results can be sensitive to the choice of hyperparameters in many cases.

• Improvement for mixing of the MCMC chain is important, in particular, for variable selec-

tion or hypothesis testing problem where one often has multi-modal posterior distributions

and it is hard to prevent the chain from staying in local modes.

• Developing formal methods for hypothesis testing is important for various research ques-

tions that can arise in highly flexible nonparametric model (e.g. model selection, assessing

the goodness of fit for parametric models, testing for interactions among the predictors in

conditional distribution modeling)
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APPENDIX A

Proofs in Chapter 3

Proof of Lemma 1

An infinite number of locations Γ = {Γh, h = 1, . . . ,∞} are generated from H on X ′. Any

ψ-neighborhood of x defined as ηψx = {x′ : d(x,x′) < ψ, x′ ∈ X ′} with ψ > 0 is a subset of X ′.

The regularity condition 1 for H ensures that there is a positive probability for a location Γh to

be generated in any ηψx . Therefore, there are also an infinite number of locations in ηψx for all

x ∈ X and ψ > 0, which implies N(x) = ∞. Then,
∑N(x)

l=1 pl(x) almost surely by lemma 1 in

Ishwaran and James (2001).

Proof of Theorem 1

Assume that GX ∼ lDP (α,G0, H, ψ). Then, from the definition of the lDP in (5)-(7), we can

reexpress (7) as Gx =
∑N(x)

l=1 V
(x)
l

∏
j<l(1−V

(x)
j )δ

θ
(x)
l

, where V
(x)
l is the lth element of V(x) and

θ
(x)
l is the lth element of Θ(x). Note that it follows from the proof of Lemma 1 that N(x) =∞.

Since the random weights and atoms are generated by iid sampling from Beta(1, α) and G0,

respectively, independently from the location, we have V
(x)
l

iid∼ Beta(1, α) independently from

Θ
(x)
l

iid∼ G0, for l = 1, . . . ,∞. Hence, it follows directly from Sethuraman’s (1994) representation

of the DP, that Gx ∼ DP (αG0), ∀x ∈ X .
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Proof of Theorem 2

Given Γ and V,

Pr(φi = φj|xi,xj,Γ,V, ψ) =
∑

{(k,l):πk(xi)=πl(xj)}

pk(xi)pl(xj)

=
∑

h∈Lxi∩Lxj

V 2
h

∏
m∈Sh

(1− Vm)2
∏
n∈S′h

(1− Vn)

For the definition of Sh and S ′h, refer to the equation (3.9) in section 3.2. Marginalizing out V

over the Beta distribution,

Pr(φi = φj|xi,xj,Γ, α, ψ) =
2

(α + 1)(α + 2)

∑
h∈Lxi∩Lxj

(
α

α + 2

)#Sh( α

α + 1

)#S′h

In order to marginalize out Sh and S ′h, we introduce Zγj
iid∼ Bernoulli (Pxi,xj) as described in the

formulations from (3.9) through (3.10) in section 3.2. Then,

Pr(φi = φj|xi,xj,Γ, α, ψ) =
2

(α + 1)(α + 2)

∞∑
j=1

Zγj

(
α

α + 2

)∑j−1
k=1 Zγk

(
α

α + 1

)j−1−
∑j−1
k=1 Zγk

After marginalizing out the {Zγj}∞j=1 as in the proof of theorem 3, we obtain:

Pr(φi = φj|xi,xj, α, ψ) =

[
2

(α + 1)(α + 2)

][
Pxi,xj(α + 2)(α + 1)

α(1 + Pxi,xj) + 2

]
=

2Pxi,xj

(1 + Pxi,xj)α + 2

Proof of Theorem 3

From (3.10),

Corr{Gx1(B), Gx2(B)|Γ} =
2

α + 2

∞∑
j=1

Zγj

(
α + 1

α + 2

)∑j−1
k=1 Zγk

(
α

α + 1

)j−1

,

where Zγj are iid draws from Bernoulli(Px1,x2). Taking expectation of {Zγj}∞j=1 with respect to
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Bernoulli(Px1,x2),

E[Corr{Gx1(B), Gx2(B)}] =
2

α + 2
Px1,x2

∞∑
j=1

(
α

α + 1

)j−1

E

[(
α + 1

α + 2

)Yj]
,

where Yj ∼ Binomial(j − 1, Px1,x2). Using the Binomial Theorem, the expectation on the right

is marginalized out with respect to Binomial(j − 1, Px1,x2), which results in

Corr{Gx1(B), Gx2(B)} =
2

α + 2
Px1,x2

∞∑
j=1

[
−αPx1,x2

(α + 2)(α + 1)
+

α

α + 1

]j−1

Since | −αPx1,x2

(α+2)(α+1)
+ α

α+1
| ≤ 1, the infinite sum on the right converges. Then,

Corr{Gx1(B), Gx2(B)} =

(
2Px1,x2

α + 2

)(
(α + 2)(α + 1)

α(1 + Px1,x2) + 2

)
=

2Px1,x2(α + 1)

(1 + Px1,x2)α + 2

Proof of Theorem 4

Due to the marginal DP property and using the inequality on the left in (3.11) with n=1, we

get ||µN(x)−µ∞(x)|| ≤ 4

(
1−E

[(∑N(x)−1
h=1 ph

)])
, where µN , µ∞, N in (3.11) are replaced by

µN(x), µ∞(x), N(x), respectively, and n is substituted by 1. Here, N(x) is random differently

from N in (3.11). Conditioned on N(x) but marginalizing out ph, we get ||µN(x) − µ∞(x)|| ≤

4E

[(
α

1+α

)N(x)−1]
. Note that N(x) ∼ Binomial(N,Px) as discussed in section 3.3. Then, using

the Binomial Theorem, we obtain ||µN(x)− µ∞(x)|| ≤ 4

(
α+1
α

)[
1−

(
1

α+1

)
Px

]N
.
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APPENDIX B

Proofs in Chapter 4

Proof of Lemma 1

Following the proof of Lemma 1 for the KSBP (Dunson and Park, 2008),
∑∞

h=1 πh(x) = 1 a.s.

iff
∑∞

h=1 log{1−Φ(ηh(x))} = −∞ a.s. Also,
∑∞

h=1 log{1−Φ(ηh(x))} = −∞ iff
∑∞

h=1E[log{1−

Φ(ηh(x))}] = −∞. Because log{1− Φ(ηh(x))} ≤ 0, the condition is satisfied.

Proof of Theorem 1

Let θh = (β∗h, τ
∗
h), ξh = (αh,ψh,Γh), and γh = {γhj}pj=1. Also, let Θ = {θh}∞h=1, Ξ = {ξh}∞h=1,

and Λ = {γh}∞h=1. Given Λ, the marginal likelihood for (y,S) is:

l(y,S|Λ) =

∫ n∏
i=1

(yi|xi,θSi
)
∞∏

h=1

(θh|γh)dΘ×
∫ n∏

i=1

(Si|xi,Ξ)
∞∏

h=1

(ξh|γh)dΞ (B.1)

Because Si ≤ N , we reexpress (B.1) as:

l(y,S|Λ) =

∫ n∏
i=1

(yi|xi,θSi
)

N∏
h=1

(θh|γh)dΘN ×
∫ ∏

h>N

(θh|γh)dΘN
+

×
∫ n∏

i=1

(Si|xi,Ξ
N)

N∏
h=1

(ξh|γh)dΞN ×
∫ ∏

h>N

(ξh|γh)dΞN
+

=

∫ n∏
i=1

(yi|xi,θSi
)

N∏
h=1

(θh|γh)dΘN ×
∫ n∏

i=1

(Si|xi,Ξ
N)

N∏
h=1

(ξh|γh)dΞN

= l(y,S|ΛN)

where ΘN = {θh}Nh=1, ΘN
+ = {θh}h>N , ΞN = {ξh}Nh=1, ΞN

+ = {ξh}h>N , ΛN = {γh}Nh=1, and
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ΛN
+ = {γh}h>N . Then,

R =
l(y,S|H0j)

l(y,S|HN
0j)

=

∫
l(y,S|Λ)(Λ|H0j)dΛ∫
l(y,S|Λ)(Λ|HN

0j)dΛ

=

∫
l(y,S|ΛN)(ΛN|H0j)dΛN ×

∫
(ΛN

+ |H0j)dΛN
+∫

l(y,S|ΛN)(ΛN|HN
0j)dΛN ×

∫
(ΛN

+ |HN
0j)dΛN

+

=

∫
l(y,S|ΛN)(ΛN|H0j)dΛN∫
l(y,S|ΛN)(ΛN|HN

0j)dΛN

= 1,

because (ΛN |H0j) = (ΛN |HN
0j). The ratio R does not depend on (y,S).

MCMC algorithm

1. Update Si for i = 1, . . . , n : With πh(xi) = Φ(ηh(xi))
∏

l<h(1−Φ(ηl(xi))),

Pr(Si = h) =
πh(xi)N(yi; xi0

′β∗h, τ
∗−1
h )∑T

h=1 πh(xi)N(yi; xi0
′β∗h, τ

∗−1
h )

2. Update αh for h = 1, . . . , T − 1 : With nh =
∑n

i=1 1(Si ≥ h),

αh ∼ N(αh; [nh + 1]−1[
∑
i:Si≥h

W ∗
ih + µ], [nh + 1]−1),

where W ∗
ih = Z∗ih +

∑p
j=1 ψhj|xij − Γhj|.

3. Update ψhj for j = 1, . . . , p and h = 1, . . . , T − 1 : If γhj = 0, ψhj = 0. If γhj = 1,

ψhj ∼ N+(ψhj; [τψj +
∑
i:Si≥h

|xij − Γhj|2]−1[τψjµψj +
∑
i:Si≥h

|xij − Γhj|U∗ih], [τψj +
∑
i:Si≥h

|xij − Γhj|2]−1),

where U∗ih = αh − Z∗ih −
∑p

k=1,k 6=j ψhk|xik − Γhk|.
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4. Update Γhj for j = 1, . . . , p and h = 1, . . . , T − 1 : If γhj = 0, don’t update. If γhj = 1,

Pr(Γhj = Γ∗mj) =

1
Mj

∏
i:Si≥hN(Z∗ih;αh −

∑
k=1,k 6=p ψhk|xik − Γhk| − ψhj|xij − Γ∗mj|, 1)∑Mj

m=1
1
Mj

∏
i:Si≥hN(Z∗ih;αh −

∑
k=1,k 6=p ψhk|xik − Γhk| − ψhj|xij − Γ∗mj|, 1)

5. Update β∗h for h = 1, . . . , T : With β∗h = (β∗γh,h,β
∗
γ̄h,h

), β∗γ̄h,h = 0.

β∗γh,h ∼ N(β∗γh,h; [τ ∗hX′γh,hXγh,h + Σ−1
γh,h

]−1[τ ∗hX′γh,hyh], [τ ∗hX′γh,hXγh,h + Σ−1
γh,h

]−1),

where Xγh,h is the design matrix of the predictors corresponding to γhj = 1 and Si = h

and yh is the response vector corresponding to Si = h.

6. Update τ ∗h for h = 1, . . . , T : With kh =
∑n

i=1 1(Si = h) and pγh =
∑p

j=1 γhj,

τ ∗h ∼ Gamma(τ ∗h ; aτ +
kh
2

+
pγh + 1

2
,

bτ +
1

2
(yh −Xγh,hβ

∗
γh,h

)′(yh −Xγh,hβ
∗
γh,h

) +
g

2n
β∗
′

γh,h
(X′γhXγh)β∗γh,h)

7. Update g :

g ∼ Gamma(g ; ag +

∑T
h=1(pγh + 1)

2
, bg +

T∑
h=1

τ ∗h
2n
β∗
′

γh,h
(X′γhXγh)β∗γh,h)

8. Update κj for j = 1, . . . , p : If wj = 0, κj = 0. If wj = 1,

κj ∼ Beta(aκj + qj, bκj + T − qj) with qj =
T∑
h=1

γhj

9. Update wj for j = 1, . . . , p : If
∑T

h=1 γhj > 0, wj = 1. If
∑T

h=1 γhj = 0,

Pr(wj = 1) =

Γ(bκj+T )Γ(aκj+bκj )

Γ(bκj )Γ(aκj+bκj+T )

1 +
Γ(bκj+T )Γ(aκj+bκj )

Γ(bκj )Γ(aκj+bκj+T )
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10. Update µ :

µ ∼ N(µ; , [T − 1 + τµ]−1[
T−1∑
h=1

αh + τµµµ], [T − 1 + τµ]−1)

11. Update γhj for j = 1, . . . , p and h = 1, . . . , T :

Pr(γhj = 1) =
ahj

ahj + bhj
,

ahj = κj ×
∫ ∏

i:Si≥h,Si 6=T

N(Z∗ih;αh −
p∑
j=1

ψhj|xij − Γhj|, 1)N+(ψhj;µψj , τ
−1
ψj

)dψhj

×
∫ ∏

Si=h

N(yi; x
′
i0β
∗
h, τ

∗−1
h )N(β∗hj;µβj , τ

−1
βj

)dβ∗hj

bhj = (1− κj)×
∏

i:Si≥h,Si 6=T

N(Z∗ih;αh −
p∑

k=1,k 6=j

ψhk|xik − Γhk|, 1)

×
∏
Si=h

N(yi; x
′
(−j)i0β

∗
(−j)h, τ

∗−1
h ),

where µβj and τβj in ahj are the conditional mean and precision for β∗hj given β∗(−j)γh,h

obtained from Npγh
(β∗γh,h; 0, ng

−1(X′γhXγh)−1/τ ∗h).
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APPENDIX C

Proofs in Chapter 5

MCMC algorithm

1. Update Si for i = 1, . . . , n : With πh(wi) = Φ(ηh(wi))
∏

l<h(1−Φ(ηl(wi))),

Pr(Si = h) =
πh(wi)N(yi; Xiβi, τ

∗−1
h Ini

)N(βi;θ
∗
h,Ω

∗
h)∑T

h=1 πh(wi)N(yi; Xiβi, τ
∗−1
h Ini

)N(βi;θ
∗
h,Ω

∗
h)

2. Update αh for h = 1, . . . , T − 1 : With nh =
∑n

i=1 1(Si ≥ h),

αh ∼ N(αh; [nh + 1]−1[
∑
i:Si≥h

W ∗
ih + µ], [nh + 1]−1),

where W ∗
ih = Z∗ih +

∑p
k=1 ψhk|wik − Γhk|.

3. Update ψhk for k = 1, . . . , p and h = 1, . . . , T − 1 : If ωhk = 0, ψhk = 0. If ωhk = 1,

ψhk ∼ N+(ψhk; [τψk +
∑
i:Si≥h

|wik − Γhk|2]−1[τψkµψk +
∑
i:Si≥h

|wik − Γhk|U∗ih], [τψk +
∑
i:Si≥h

|wik − Γhk|2]−1),

where U∗ih = αh − Z∗ih −
∑p

s=1,s 6=k ψhs|wis − Γhs|.

4. Update Γhk for k = 1, . . . , p and h = 1, . . . , T − 1 : If ωhk = 0, don’t update. If ωhk = 1,

Pr(Γhk = Γ∗mk) =
1
Mk

∏
i:Si≥hN(Z∗ih;αh −

∑
s=1,s 6=k ψhs|wis − Γhs| − ψhk|wik − Γ∗mk|, 1)∑Mk

m=1
1
Mk

∏
i:Si≥hN(Z∗ih;αh −

∑
s=1,s 6=k ψhs|wis − Γhs| − ψhk|wik − Γ∗mk|, 1)
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5. Update θ∗h for h = 1, . . . , T : With nh =
∑n

i=1 1(Si = h),

θ∗h ∼ N(θ∗h ; [nhΩ
∗−1
h + Σ−1

0 ]−1[Ω∗−1
h

∑
i:Si=h

βi + Σ−1
0 θ0], [nhΩ

∗−1
h + Σ−1

0 ]−1)

where θ0 = 0 and Σ0 is a diagonal matrix with λ−1
r diagonal elements.

6. Update τ ∗h for h = 1, . . . , T : With kh =
∑

i:Si=h
ni,

τ ∗h ∼ Gamma(τ ∗h ; aτ +
kh
2
, bτ +

1

2

∑
i:Si=h

(yi −Xiβi)
′(yi −Xiβi)

7. Update Ω∗h for h = 1, . . . , T : With nh =
∑n

i=1 1(Si = h),

Ω∗−1
h ∼Wishart(Ω∗−1

h ; ν0 + nh, [Ω0 +
∑
i:Si=h

(βi − θ∗h)(βi − θ∗h)′]−1)

8. Update βi for i = 1, . . . , n :

βi ∼ Nq(βi; [Ω∗−1
Si

+ τ ∗SiX
′
iXi]

−1[Ω∗−1
Si
θ∗Si

+ τ ∗Si
X′iyi], [Ω

∗−1
Si

+ τ ∗Si
X′iXi]

−1)

9. Update λr for r = 1, . . . , q :

λr ∼ Gamma(λr; aλr +
1

2
T, bλr +

1

2

T∑
h=1

θ∗2hr)

10. Update µ :

µ ∼ N(µ; [T − 1 + τµ]−1[
T−1∑
h=1

αh + τµµµ], [T − 1 + τµ]−1)

11. Update ωhk for k = 1, . . . , p and h = 1, . . . , T :

Pr(ωhk = 1) =
ahk

ahk + bhk
,
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ahk = κωk ×
∫ ∏

i:Si≥h,Si 6=T

N(Z∗ih;αh −
p∑

k=1

ψhk|wik − Γhk|, 1)N+(ψhk;µψk , τ
−1
ψk

)dψhk

bhk = (1− κωk)×
∏

i:Si≥h,Si 6=T

N(Z∗ih;αh −
p∑

s=1,s 6=k

ψhs|wis − Γhs|, 1)
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