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ABSTRACT 

LIMEI RAN: Improving Land Surface Modeling Using Satellite and Field Observation Data for 

a Meteorology and Air Quality Modeling System 

(Under the direction of Larry E. Band) 

  

Ingesting MODIS satellite derived leaf area index (LAI), fraction of absorbed 

photosynthetically active radiation (FPAR), and albedo into the Pleim-Xiu (PX) land surface 

model (LSM) in the combined meteorology and air quality modeling system WRF/CMAQ, 

composed of the Weather Research and Forecast (WRF) model and Community Multiscale Air 

Quality (CMAQ), adds realism to the system especially for vegetation fractional coverage in 

western drylands because the PX LSM intentionally exaggerates vegetation coverage in these 

sparsely vegetated areas for more effective soil moisture nudging for surface temperature and 

water vapor mixing ratio estimations.  Initial simulations with realistic MODIS vegetation show 

mixed results with greater error and bias in daytime temperature and greater high bias for ozone 

concentrations but reduced error and bias in moisture over the western arid regions.  

Incorporating yearlong MODIS input into an updated WRF/CMAQ with recent improvements in 

vegetation, soil, and boundary layer processes results in improved 2 m temperature (T) and 

mixing ratio (Q), 10 m wind speed, and surface ozone simulations across the U.S. WRF/CMAQ 

12km domain compared to the initial simulations.  Yearlong MODIS input helps reduce bias of 

the 2 m Q estimation during the growing season from April to September.  Improvements follow 

the green up in the southeast from April and move towards the west and north through August.  

A coupled photosynthesis-stomatal conductance model with two-big leaf canopy scaling (PX 
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PSN) is developed for the PX LSM in a diagnostic box model.  The PX PSN shows distinct 

advantages in simulating latent heat over landscapes with short vegetation such as grassland and 

cropland.  The advanced approach performs exceptionally well in simulating ozone deposition 

velocity and flux while the current PX approach significantly overestimates.   

The future work is to implement the evaluated photosynthesis-based stomatal 

conductance model into WRF/CMAQ PX LSM with MODIS input.  More research should be 

conducted to evaluate the influence of MODIS albedo with realistic diurnal and seasonable 

changes on the system.  The final goal of this research is to implement and evaluate the impacts 

of air pollutants such as O3 on CO2 assimilation for ecosystem assessments. 

  



v 

 

 

To Jonathan, Andre, and Julianne Pleim and my parents Chao Ran and Dazhen Qi 

 

  



vi 

 

 

ACKNOWLEDGEMENTS 

I have many people to thank for supporting and helping me on this long study and 

research journey while working at the same time.  I am very grateful to my advisor, Larry Band, 

for his valuable advice and continuous support.  My committee has been helpful and supportive 

on guiding me through the research.  Frank Binkowski has always been there to help and I learnt 

a lot not only from talking to him routinely but also from many research articles he sent to me 

related to my research.  Adel Hanna is always supportive on my research and encouraged me 

year after year.  Much of my knowledge on photosynthesis modeling is from Conghe Song from 

whom I took two classes which benefit my last chapter research greatly.  I am thankful for his 

guidance on the photosynthesis research.  My understanding on atmosphere chemistry and 

modeling is attributable to Jason West and it is very rewarding to take his class related to my 

research. 

I am thankful to many research scientists at the U.S. Environmental Protection Agency 

for their support and help.  Robert Gilliam kindly helped me on WRF simulations and input files.  

My research benefited a lot from his many suggestions on meteorology simulations and 

evaluations.  Christian Hogrefe helped me on 2006 CONUS emission input and CMAQ initial 

and boundary condition inputs which were used for the AQMEII-2 study.  His kindly 

suggestions and prompt helps on data input files and processing scripts made WRF/CMAQ 

simulations successful.  John Walker kindly provided the measurements with ozone fluxes at 

Duke Forest Open Field/US-Dk1.  Without his ozone flux measurement data, the last chapter 



vii 

 

research will not be complete.  K. Wyat Appel provided AMET air quality analysis scripts on 

processing CMAQ output data for evaluation.   

 I am grateful for the help from Aijun Xiu on WRF data assimilation method and the 

support from many of my friends who have always been there when I am in need. 

My last and most important acknowledgement goes to my family.  I am grateful to my 

husband’s unconditional support not only on my research but also around the house.  I thank his 

tireless explanations on the WRF/CMAQ modeling system and flux computation.  The love and 

encouragement from my husband and my children kept me sane when I was busy around my 

work, research and housework.  My parents’ support and love are also the key to keep me going 

over these years in the program without quitting during difficult times.  My sister Shunlan kindly  

took care of my children when there were meetings.  I am also thankful for the support from my 

sister Lijun for taking care of my children when they were young.  I am grateful to the support 

and help from my late father-in-law.  He provided us so many wonderful meals at Carolina 

Meadows when we were busy.  None of this would have been possible without the support, 

patience and love of my family over these years, to whom this dissertation is dedicated.     

  



viii 

 

 

TABLE OF CONTENTS 

 

LIST OF TABLES ......................................................................................................................... xi 

LIST OF FIGURES ...................................................................................................................... xii 

LIST OF ABBREVIATIONS ...................................................................................................... xix 

LIST OF SYMBOLES .................................................................................................................xxv 

CHAPTER 1: INTRODUCTION ....................................................................................................1 

1.1 Introduction ...................................................................................................................... 1 

1.2 Objective .......................................................................................................................... 2 

1.3 Method ............................................................................................................................. 2 

1.4 Expected Results .............................................................................................................. 4 

CHAPTER 2: SENSITIVITY OF THE WEATHER RESEARCH AND 

FORECAST/COMMUNITY MULTISCALE AIR QUALITY 

MODELING SYSTEM TO MODIS LAI, FPAR, AND ALBEDO ................................................5 

Abstract ....................................................................................................................................... 5 

2.1 Introduction ...................................................................................................................... 6 

2.2 Evaluation of Current WRF/CMAQ .............................................................................. 11 

2.2.1 Leaf Area Index ...................................................................................................... 11 

2.2.2 Vegetation Fraction ................................................................................................. 14 

2.2.3 Albedo ..................................................................................................................... 15 

2.3 Data and Methods........................................................................................................... 17 

2.3.1 MODIS Data ........................................................................................................... 18 

2.3.2 WRF/CMAQ Modeling .......................................................................................... 21 



ix 

 

2.4 Results and Analysis ...................................................................................................... 23 

2.4.1 Surface T, Q and O3 ............................................................................................... 24 

2.4.2 Surface Fluxes and PBLH ....................................................................................... 33 

2.4.3 Precipitation and NH4 Wet Deposition .................................................................. 38 

2.5 Conclusions and Future Work ........................................................................................ 41 

REFERENCES ......................................................................................................................... 45 

CHAPTER 3: IMPROVED METEOROLOGY FROM AN UPDATED 

WRF/CMAQ MODELING SYSTEM WITH MODIS VEGETATION 

AND ALBEDO ..............................................................................................................................53 

Abstract ..................................................................................................................................... 53 

3.1 Introduction .................................................................................................................... 54 

3.2 Vegetation and Soil Process Improvements ................................................................... 59 

3.2.1 Vegetation Processes .............................................................................................. 60 

3.2.2 Soil Processes.......................................................................................................... 63 

3.3 Data and Methods........................................................................................................... 66 

3.3.1 MODIS Data ........................................................................................................... 67 

3.3.2 WRF and CMAQ Modeling.................................................................................... 68 

3.4 Data and Methods........................................................................................................... 70 

3.4.1 Assessment of Updated WRF/CMAQ .................................................................... 71 

3.4.2 Annual WRF Simulations ....................................................................................... 81 

3.4.3 April-August-October Ozone Simulations ............................................................. 90 

3.5 Conclusions and Future Plans ........................................................................................ 94 

REFERENCES ......................................................................................................................... 99 

CHAPTER 4: A PHOTOSYNTHESIS-BASED TWO-LEAF CANOPY 

STOMATAL CONDUCTANCE MODEL FOR WRF/CMAQ WITH 

MODIS INPUT ............................................................................................................................109 

Abstract ................................................................................................................................... 109 



x 

 

4.1 Introduction .................................................................................................................. 110 

4.2 Photosynthesis-based Stomatal Conductance Approach ............................................. 115 

4.2.1 Stomatal Conductance .......................................................................................... 116 

4.2.2 Leaf-scale Photosynthesis ..................................................................................... 118 

4.2.3 Leaf to Canopy Scaling ......................................................................................... 122 

4.2.4 Box Model Implementation .................................................................................. 126 

4.2.5 Photosynthesis-based Model ................................................................................. 127 

4.3 Model Evaluation and Analysis ................................................................................... 133 

4.3.1 FLUXNET Site Simulations ................................................................................. 136 

4.3.2 Ozone Site Simulations ......................................................................................... 149 

4.4 Conclusions and Future Work ...................................................................................... 154 

REFERENCES ....................................................................................................................... 159 

CHAPTER 5: SYNTHESIS .........................................................................................................167 

5.1 Summary ...................................................................................................................... 167 

5.2 Future Plans .................................................................................................................. 172 

5.3 Significance .................................................................................................................. 173 

 

  



xi 

 

LIST OF TABLES 

Table 3.1. Domain-wide statistical metrics for simulated 2 m T, 2 m Q, 

and 10 m WS using the previous WRF [Ran et al., 2015] and the 

updated WRF for the base and MODIS cases against MADIS 

observations over the period from 10 August to 9 September 2006. .................................... 72 

Table 3.2.  Domain-wide statistical metrics for the simulated daily 

maximum 8 h average O3 concentration (ppb) from the base and 

MODIS cases against EPA AQS site observations for April, August, 

and October 2006. ................................................................................................................. 93 

Table 4.1.  Site and key parameters for selected four FLUXNET sites 

and EPA flux ozone site. ..................................................................................................... 135 

   



xii 

 

LIST OF FIGURES 

Figure 2.1.  PX LSM WRF, MODIS, and FLUNXET LAI comparisons.  

The LAI graphs on the left have LAI on the vertical axis and day of 

year with 1 for Jan. 1, 2006 on the horizontal axis................................................................ 13 

Figure 2.2.  PX WRF vegetation cover and MODIS gridded FPAR used 

as the surrogate of vegetation cover fraction for 2006-08-10. .............................................. 15 

Figure 2.3.  PX WRF, SURFRAD, and MODIS albedo comparisons.  

The albedo graphs on the left have albedo (%) on the vertical axis 

and local time zone hour of day on the horizontal axis. ........................................................ 17 

Figure 2.4.  Statistical metrics (y axis) vs. observation range (x axis) for 

2 m T (K) and Q (g kg
-1

) over the period from Aug. 10 – Sept. 9, 

2006.  The top plots are for 2 m T and the bottom for 2 m Q.  The 

two plots on the left are from the base case meteorology and the 

plots on the right are from the LAI-FPAR case. ................................................................... 26 

Figure 2.5.  Mean Bias Difference (LAI-FPAR Case – Base Case) spatial 

and histogram plots over the period from Aug. 10 – Sept. 9, 2006.  

The top row is for 2 m T (K) and the bottom row is for Q(g kg
-1

). ....................................... 27 

Figure 2.6.  ASOS measurement site 2 m T (K) and Q (g kg
-1

) time series 

comparison for the period from Aug. 15-25, 2006. KDAG site is in 

black line, LAI-FPAR case is in red line, and base case is in blue 

line. Site grid cell has VF 0.669 and LAI 2.282 for the base case and 

VF 0.186 and LAI 1.258 for the LAI-FPAR case. ................................................................ 29 

Figure 2.7.  ASOS measurement site 2 m T (K) and Q (g kg
-1

) time series 

comparison for the period from Aug. 15-25, 2006. KPGA site is in 

black line, LAI-FPAR case is in red line, and base case is in blue 

line. Site grid cell has VF 0.580 and LAI 1.918 for the base case and 

VF 0.105 and LAI 1.227 for the LAI-FPAR case. ................................................................ 30 

Figure 2.8.  Mean bias difference (CMAQ LAI-FPAR-Albedo Case – 

Base Case) spatial plot for daily maximum 8-hour average O3 (ppb) 

over the period from Aug. 10-30, 2006. ................................................................................ 32 

Figure 2.9.  Mean bias (MB) and root mean square error (RMSE) of 

daily maximum 8-hour average O3 (ppb) over the binned 

observation range for CMAQ LAI-FPAR-Albedo Case (in red) and 

Base Case (in blue) from Aug. 10-30, 2006.  Line length is for the 

range of MB and RMSE, triangle for the median, and asterisk for 

the mean................................................................................................................................. 32 

Figure 2.10.  Tonzi-CA FLUXNET measurement latent and sensible 

Heat (W m
-2

) comparison for the period from Aug. 8-13, 2006.  



xiii 

 

FLUXNET site is in blue line, base case is in red line, and LAI-

FPAR case is in green line. .................................................................................................... 34 

Figure 2.11.  LAI for 20Z, August 10, 2006 and average differences of 

latent heat (W m
-2

), 2 m T (K), and PBLH (m) between the LAI-

FPAR case and base case for 20 UTC from August 10 to September 

09, 2006. ................................................................................................................................ 35 

Figure 2.12.  Albedo (fraction) for 20Z, August 10, 2006 and average 

differences of surface skin T (K), 2 m T (K) and PBLH (m) between 

the albedo case and the base case for 20 UTC from August 10 to 

September 09, 2006. .............................................................................................................. 36 

Figure 2.13.  Difference of ozone deposition velocity (cm s
-1

) and ozone 

concentration (ppmV) at the surface layer between the CMAQ LAI-

FPAR-albedo case and base case for 20Z, August 10, 2006. ................................................ 38 

Figure 2.14. Monthly precipitation difference (mm) of the LAI-FPAR 

case and the base case from the PRISM precipitation for August 

2006. ...................................................................................................................................... 39 

Figure 2.15.  Mean bias difference of precipitation (mm) between the 

LAI-FPAR-Albedo case and the base case at the National 

Atmospheric Deposition Program (NADP) sites for August. ............................................... 40 

Figure 2.16.  Mean bias difference of NH4 wet deposition (kg ha
-1

) 

between the LAI-FPAR-Albedo case and the base case at the 

National Atmospheric Deposition Program (NADP) sites for 

August.................................................................................................................................... 41 

Figure 3.1.  Original (F1_old) and improved (F1_new) F1 functions with 

incoming solar radiation Rg (W m
-2

) in the PX LSM Jarvis stomatal 

conductance function. F1 (scalar) represents the impact of Rg on 

stomatal conductance or photosynthesis when other factors are at 

optimal conditions. F1 is computed for broadleaf forest type with 

assumed Rstmin=200 (s m
-1

), Rstmax=5000.0 (s m
-1

), and LAI=5.5(m
2
 

m
-2

). ....................................................................................................................................... 62 

Figure 3.2.  Comparison of soil resistances computed based four 

formulations described by Sakaguchi and Zeng [2009], Sellers et al. 

[1992], Lee and Pielke [1992], and Kondo et al. [1990] for sandy 

loam soil. Soil resistances are computed with wfc=0.195 m
3
 m

-3
, 

wsat=0.435 m
3
 m

-3
, wres=0.01 m

3
 m

-3
, b=4.9, d1=1.75 cm, and Raw=50 

s m
-1

. ...................................................................................................................................... 66 

Figure 3.3.  Diurnal domain-wide statistical metrics (y axis) for 

simulated 2 m T (K) against MADIS observations over the period 

from 10 August to 9 September 2006.  The x axis is time of day 



xiv 

 

with UTC hours.  The left column is for the previous WRF [Ran et 

al., 2015] and the right column is for the updated WRF.  The top 

row is for the base case simulations without MODIS input and the 

bottom row is for the MODIS case simulations. ................................................................... 73 

Figure 3.4.  Diurnal domain-wide statistical metrics (y axis) for 

simulated 2 m Q (g kg
-1

) against MADIS observations over the 

period from 10 August to 9 September 2006.  The x axis is time of 

day with UTC hours.  The left column is for the previous WRF [Ran 

et al., 2015] and the right column is for the updated WRF.  The top 

row is for the base case simulations without MODIS input and the 

bottom row is for the MODIS case simulations. ................................................................... 74 

Figure 3.5.  Spatial plots for the differences of the absolute mean biases 

(MODIS case – base case) for WRF simulations against MADIS 

observation sites over the period from 10 August to 9 September 

2006.  The left column is for the previous WRF [Ran et al., 2015] 

and the right column is for the updated WRF.  The top row is for 2 

m T (K) and the bottom row is for 2 m Q (g kg
-1

). ................................................................ 76 

Figure 3.6.  Spatial plots of statistical metrics for WRF simulations with 

MODIS input against MADIS observation sites over the period from 

10 August to 9 September 2006.  The left column is for the mean 

bias of the MODIS case using the previous model [Ran et al., 2015], 

the middle column is for the difference of the absolute mean biases 

between the MODIS cases using the updated model and previous 

model, and the right column is for the difference of the mean 

absolute errors.  The top row is for 2 m T (K) and the bottom row is 

for 2 m Q (g kg
-1

)................................................................................................................... 77 

Figure 3.7.  Evaluation of daily maximum 8 h average O3 (ppb) 

simulated with MODIS input using the updated WRF/CMAQ and 

the previous WRF/CMAQ [Ran et al., 2015] over the period from 

10 to 30 August 2006 against the EPA AQS sites.  The top plot 

displays mean of daily maximum 8 h average O3 from the previous 

system (blue line), updated system (red line) and all AQS sites 

(black line).  The spatial plot shows the difference of absolute mean 

bias for daily maximum 8 h average O3 between the updated system 

and previous system. ............................................................................................................. 79 

Figure 3.8.  Mean bias (MB, left plot) and root-mean-square error 

(RMSE, right plot) of daily maximum 8 h average O3 (ppb) 

simulated with MODIS input using the updated WRF/CMAQ (in 

red) and the previous WRF/CMAQ (in blue) [Ran et al., 2015] over 

the period from 10 to 30 August 2006 against the binned AQS 

observation ranges.  Line length is for the inner quartile range of 



xv 

 

MB and RMSE, triangle and circle for the median, and asterisk for 

the mean................................................................................................................................. 80 

Figure 3.9.  2006 monthly and daily average statistical metrics for 2 m Q 

(g kg
-1

, y axis) domain-wide for the base and MODIS WRF 

simulations against MADIS observations.  The left graph is for the 

monthly averages of the mean biases and mean absolute errors.  The 

right graph is for the daily average of the mean biases and root mean 

square errors. ......................................................................................................................... 82 

Figure 3.10.  April 2006 LAI (m
2
 m

-2
), latent heat (W m

-2
), and 2 m Q (g 

kg
-1

) spatial evaluation.  The top row is for the monthly average LAI 

from the MODIS case (top left) and base case (top middle) and for 

the difference of the average LAI between the two cases (top right). 

The bottom left plot is for the difference of the monthly average 

latent heat between the two cases for 20 UTC.  The bottom middle 

plot is for the mean bias of 2 m Q from the MODIS case against 

MADIS observations.  The bottom right plot is the difference of 

absolute mean bias for 2 m Q between the two cases. .......................................................... 85 

Figure 3.11.  May 2006 LAI (m
2
 m

-2
), latent heat (W m

-2
), and 2 m Q (g 

kg
-1

) spatial evaluation.  Plot descriptions are the same as those in 

the figure 3.10 caption. .......................................................................................................... 86 

Figure 3.12.  June 2006 LAI (m
2
 m

-2
), latent heat (W m

-2
), and 2 m Q (g 

kg
-1

) spatial evaluation.  Plot descriptions are the same as those in 

the figure 3.10 caption. .......................................................................................................... 88 

Figure 3.13.  August 2006 LAI (m
2
 m

-2
), latent heat (W m

-2
), and 2 m Q 

(g kg
-1

) spatial evaluation.  Plot descriptions are the same as those in 

the figure 3.10 caption. .......................................................................................................... 88 

Figure 3.14.  October 2006 LAI (m
2
 m

-2
), latent heat (W m

-2
), and 2 m Q 

(g kg
-1

) spatial evaluation.  Plot descriptions are the same as those in 

the figure 3.10 caption. .......................................................................................................... 90 

Figure 3.15.  Monthly average difference of LAI (m
2
 m

-2
), ozone 

deposition velocity (cm s
-1

), and ozone concentration (ppmV) at the 

surface layer between the MODIS case and base case for 20 UTC 

over April, August, and October 2006. ................................................................................. 92 

Figure 3.16.  Evaluation of daily maximum 8 h average O3 (ppb) 

simulated from the base and MODIS case WRF/CMAQ over 

August 2006 again the EPA AQS sites.  The top plot displays mean 

of daily maximum 8 h average O3 from the base case (blue line), 

MODIS case (red line) and all AQS sites (black line).  The bottom 

plot is the difference spatial plot of absolute mean bias for daily 



xvi 

 

maximum 8 h average O3 between the MODIS case and the base 

case. ....................................................................................................................................... 94 

Figure 4.1.  Evaluation of daily maximum 8 hour average O3 (ppb) 

simulated from an improved WRF/CMAQ with/without MODIS 

vegetation and albedo input over August 2006 against the EPA  Air 

Quality System (AQS) sites.  The top plot displays mean of daily 

maximum 8 hour average O3 from the base model (blue line), the 

model with MODIS input (red line) and all AQS sites (black line).  

The bottom plot is the mean bias spatial plot for daily maximum 8 

hour average O3 simulated from the base model without MODIS 

input.  The base model’s vegetation is computed from vegetation 

parameters prescribed in land use category lookup tables using 

equations 2 and 3 in Ran et al. [2015a]. .............................................................................. 111 

Figure 4.2.  Canopy scaling and radiative transfer parameters plots.  The 

top row plots are the leaf canopy fraction (top left) and the absorbed 

PAR fraction to the incident PAR (top right) for the sunlit and 

shaded leaves.  The bottom row plots are the sunlit and shaded LAI 

(bottom left) with changing zenith angle and the direct and diffuse 

extinction coefficients (bottom right) as a function of zenith angle 

and LAI.  Parameters are computed based on US-Ha1 data on 13 

June 2006 at 12pm with longitude = W 72.1715, latitude = N 

42.5378, LAI = 4 (m
2 

m
-2

), zenith angle = 20°, x = 1 (spherical leaf), 

αleaf = 0.8 for PAR (leaf absorptivity), and αleaf = 0.2 for NIR, forest 

floor reflectance = 0.10........................................................................................................ 128 

Figure 4.3.  Transpiration as a function of deep soil moisture (F2 function 

by eq. 4.3), computed based on US-Ha1 data on 2 July 2006 at 

12pm with changing deep soil moisture (w2).  The box model uses 

the loam soil properties (wfc = 0.24 m
3
 m

-3
, wsat = 0.451 m

3
 m

-3
, 

wwlt=0.155 m
3
 m

-3
) from the box PX LSM for the site. ....................................................... 131 

Figure 4.4.  Diurnal median comparisons of the estimated latent heat 

(LH) from the photosynthesis approaches used by JULES [Clark et 

al., 2011], Song et al. [2009], and photosynthesis-based PX LSM 

(PX PSN) to compute three potential assimilation rates (Ac, Aj, and 

Ae) in comparison with LH from the PX LSM Jarvis approach 

[Pleim and Xiu, 1995] and the observation data at the FLUXNET 

Harvard Forest US-Ha1 site [Urbanski et al., 2007].  The broadleaf 

C3 plant simulations are conducted in the PX box model using July 

2006 US-Ha1 standardized L2 data with canopy height = 25 m, x = 

1 (spherical leaf), αleaf = 0.8 for  PAR (leaf absorptivity), αleaf = 0.2 

for NIR, forest floor reflectance = 0.10, VCMAX25_0 = 30×10
-6

 mol m
-2

 

s
-1

, kn = 0.17,  Tlow = 0.0 °C, Tup = 36 °C, leaf scattering coefficient 

0.15,  quantum yield  ε = 0.08 (mol CO2 mol
-1

 photon), and Jarvis 

Rstmin = 200 s m
-1

. ................................................................................................................. 132 



xvii 

 

Figure 4.5.  Stomatal conductance (m s
-1

, left) and ozone deposition 

velocity (m s
-1

, right) computed from the PX Jarvis and 

photosynthesis-based approach from 2 to 11 July 2006 with the 

modeling parameters described in the figure 4.4 caption. ................................................... 133 

Figure 4.6.  Missouri Ozark/US-Moz site LH diurnal median 

comparisons.  LH is simulated with the photosynthesis-based and 

Jarvis approaches using the observed LAI (left plot) and the MODIS 

LAI (right plot) from 9 July (190) - 14 November (318) 2006.  The 

observed LAI from the site 2006 biological data and processed 2006 

MODIS LAI for the deciduous broadleaf land cover type at the 12 

km CMAQ grid cell are displayed in the middle plot.  Soil moisture 

measurements at 100 cm deep are used. .............................................................................. 138 

Figure 4.7.  Missouri Ozark/US-Moz site scatter plot comparisons of 

daily total LH estimations. .................................................................................................. 139 

Figure 4.8.  Wind River Field Station/US-Wrc site LH diurnal medium 

comparisons.  LH is simulated with the photosynthesis-based and 

Jarvis approaches using the observed LAI (left plot) and the MODIS 

LAI (right plot) from 7 January (7) - 28 November (333) 2008.  The 

observed LAI of the C3 vegetation from the study by Thomas and 

Winner [2000] and processed 2006 MODIS LAI for the evergreen 

needleleaf land cover type at the 12 km CMAQ grid cell are 

displayed in the middle plot.  Soil moisture measurements at 40 cm 

deep are used. ...................................................................................................................... 143 

Figure 4.9.  Fermi Prairie/US-IB2 site LH diurnal median comparisons.  

LH is simulated with the photosynthesis-based and Jarvis 

approaches using the observed LAI (left plot) and the MODIS LAI 

(right plot) from 22 May (142) - 20 September (263) 2006.  The 

observed LAI of the C4 grassland from the site 2006 biological data 

and processed 2006 MODIS LAI for the grassland land cover type 

at the 12 km CMAQ grid cell are displayed in the middle plot.  Soil 

moisture measurements at 25 cm deep are used. ................................................................. 145 

Figure 4.10.  Fermi Prairie/US-IB2 site scatter plot comparisons of daily 

total LH estimations. ........................................................................................................... 146 

Figure 4.11.  Mead Irrigated Rotation/US-Ne2 site LH diurnal median 

comparisons.  LH is simulated with the photosynthesis-based and 

Jarvis approaches using the observed LAI (left plot) and the MODIS 

LAI (right plot) from 12 June (163) - 5 October (278) 2006.  The 

observed LAI of C3 soybean from the site 2006 biological data and 

processed 2006 MODIS LAI for the cropland land cover type at the 

12 km CMAQ grid cell are displayed in the middle plot.  Soil 

moisture is set to field capacity. .......................................................................................... 148 



xviii 

 

Figure 4.12.  Mead Irrigated Rotation/US-Ne2 site scatter plot 

comparisons of daily total LH estimations. ......................................................................... 149 

Figure 4.13.  Duke Forest Open Field/US-Dk1 site LH diurnal median 

(left plot) and selected hourly (right plot) comparisons.  Simulations 

are conducted based on LAI = 3 (m
2
 m

-2
) and other parameters listed 

in table 4.1 for the periods of 17 May (day 137) to 18 June (day 

169) and 18 to 28 September (day 261 to 271) 2013 with 

measurements.  Hourly display is for 25 to 30 May 2013 (day 145 to 

150). ..................................................................................................................................... 151 

Figure 4.14.  Duke Forest Open Field/US-Dk1 site diurnal median 

comparisons for estimated stomatal conductance (cm s
-1

, left plot), 

ozone deposition velocity (cm s
-1

, middle plot), and ozone flux (μg 

m
-2

 s
-1

, right plot). ................................................................................................................ 152 

Figure 4.15.  Duke Forest Open Field/US-Dk1 site scatter plot 

comparisons of daily total LH and ozone flux estimations. ................................................ 152 

Figure 4.16.  Duke Forest Open Field/US-Dk2 site hourly comparisons 

for estimated stomatal conductance (cm s
-1

, left plot), ozone 

deposition velocity (cm s
-1

, middle plot), and ozone flux (μg m
-2

 s
-1

, 

right plot) over the period of 25 to 30 May 2013 (day 145 to 150). ................................... 154 

 

 

  



xix 

 

LIST OF ABBREVIATIONS 

ACM2   Asymmetric Convective Model version 2 

AE6   Aerosol 6 module  

AMET   Atmospheric Model Evaluation Tool 

APAR   Absorbed photosynthetically active radiation 

AQ   Air quality 

AQS   Air Quality System 

AQMEII   Air Quality Model Evaluation International Initiative 

ASOS   Automated Surface Observing System 

AZ   Arizona 

BIAS   Mean bias 

BRDF   Bidirectional reflectance distribution function 

BWB   the Ball-Woodrow-Berry  

C3   C3 carbon fixation in photosynthesis 

C4   C4 carbon fixation in photosynthesis 

CA   California 

“CAA”  Clean Air Act 

CESM   Community Earth System Model 

CB05   Carbon Bond mechanism  

CLM   Community Land Model 

cm   Centimeter 

CO   Carbon monoxide 

CO2   Carbon dioxide 

CMAQ  Community Multiscale Air Quality 



xx 

 

DAMB  Difference of absolute mean biases 

DMAE   Difference of mean absolute errors 

E, ET   Evapotranspiration  

EPA   Environmental Protection Agency 

FLUXNET  Flux Network 

FPAR   Fraction of absorbed photosynthetically active radiation 

g   Grams 

GCM   Global climate model 

GEOV1  GEOLAND2 Version 1  

GHGs   Greenhouse gases 

GLASS  Global Land Surface Satellite 

GLOBMAP   Global mapping 

ha   Hectares 

hPA   Hectopascal 

IGBP   International Geosphere-Biosphere Programme 

ISBA   Interactions Soil Biosphere Atmosphere 

JRC-TIP   Joint Research Centre Two-stream Inversion Package 

JULES   Joint UK Land Environment Simulator 

K   Kevin 

KDAG   ASOS site at the Barstow-Daggett airport, CA, US 

KF2   Kain–Fritsch 2 

kg   Kilograms 

KPGA   ASOS site at the Page Municipal Airport, Arizona, US 

L2   Level 2 

LAADS  Level 1 and Atmosphere Archive and Distribution System 



xxi 

 

LAI   Leaf area index  

LBC   Lateral boundary conditions 

LE, LH  Latent heat 

LSM   Land surface model 

m   Meter 

MACC-II Monitoring Atmospheric Composition and Climate Interim 

Implementation  

MADIS Meteorological Assimilation Data Ingest System 

MAE Mean absolute error 

MB Mean bias 

MCD43A1  MODIS BRDF/Albedo Model Parameters product 

MCD43A2  MODIS BRDF/Albedo Quality product 

MCD43A3  MODIS Albedo product at 500m resolution 

MCIP   Meteorology-Chemistry Interface Processor 

mm   Millimetre 

MOD15A2GFS Gap-Filled, smoothed MODIS LAI/FPAR products  

MODIS  Moderate Resolution Imaging Spectroradiometer 

MOST   Monin-Obukov similarity theory 

NACP   North American Carbon Program 

NADP   National Atmospheric Deposition Program 

NAM   North American Model 

λE   Latent heat (W m
-2

) 

NASA   National Aeronautics and Space Administration 

NCAR   National Center for Atmospheric Research 

NDVI   Normalized Difference Vegetation Index 



xxii 

 

netCDF  Network Common Data Form 

NH3   Ammonia 

NH4   Ammonium 

NIR   Near infrared radiation 

NLCD   National Land Cover Database 

NMB   Normalized mean bias 

NME   Normalized mean error 

NO2   Nitrogen dioxide 

NOAA   Oceanic and Atmospheric Administration  

NOx   Nitrogen oxides 

O3   Ozone 

OBS   Observation 

PAR   Photosynthetically active (visible) radiation 

PBL   Planetary boundary layer 

PBLH   Planetary boundary layer height 

PEP   Phosphoenolpyruvate 

PFT   Plant function type 

PM2.5   Fine particulate matter 

ppb   Parts per billion 

ppmV   Parts per million by volume 

PRISM  Parameter-elevation Relationships on Independent Slopes Model  

PX   Pleim-Xiu 

PX PSN  Photosynthesis-based stomatal conductance model for the PX LSM  

RAMS   Regional Atmospheric Modeling System 

RMSE   Root-mean-squared-error 



xxiii 

 

RRTMG  WRF Rapid Radiative Transfer Model for GCMs 

SH   Sensible heat 

SFDDA   Surface four-dimensional data assimilation 

SO2   Sulfur dioxide 

StDev   Standard deviation 

SURFRAD  SURFace RADiation Budget Measurement 

SW   South west 

SZA   Solar zenith angle 

μg   Microgram 

UK   United Kingdom 

U.S.   United States 

US-Dk1   U.S. FLUXNET Duke Forest Open Field in North Carolina 

US-IB2  U.S. FLUXNET Fermi Prairie in Illinois 

US-Ha1  U.S. FLUXNET Harvard Forest in Massachusetts 

US-MOz  U.S. FLUXNET Missouri Ozark 

US-Ne1  U.S. FLUXNET Mead irrigated maize in Nebraska 

US-Ne2  U.S. FLUXNET Mead irrigated rotation in Nebraska 

US-Ton  U.S. FLUXNET Tonzi Ranch in California 

US-Wrc  U.S. FLUXNET Wind River Field Station in Washington  

UV   Ultraviolet 

U/V   Wind u (zonal velocity) and v (meridional velocity) components 

UTC   Coordinated Universal Time 

VF   Vegetation fraction 

VOCs   Volatile organic compounds 

W m
-2

   Watts per square meters 



xxiv 

 

WRF   Weather Research and Forecast 

WS   Wind speed 

Z   UTC time 

  



xxv 

 

LIST OF SYMBOLES 

A   Leaf CO2 assimilation rate (mol CO2 m
-2

 s
-1

) 

Ac   Leaf CO2 assimilation rate limited by Rubisco (mol CO2 m
-2

 s
-1

) 

Acnet   Net CO2 assimilation rate at the canopy scale (mol CO2 m
-2

 s
-1

) 

Ae Leaf CO2 assimilation rate limited by transport of photosynthetic products 

for C3 plants or phosphoenolpyruvate (PEP) carboxylase limitation for C4 

plants (mol CO2 m
-2

 s
-1

) 

 

Ai Smoothed minimum of Ac and Aj leaf CO2 assimilation rate (mol CO2 m
-2

 

s
-1

) 

 

Aj   Leaf CO2 assimilation rate limited by light (mol CO2 m
-2

 s
-1

) 

α   Constant (set to 1) in surface soil layer temperature Tg computation 

αBSA   Black-sky albedo (direct) 

αBLUE   Blue-sky albedo (actual) 

αleaf   Leaf absorptivity 

αWSA   White-sky albedo (diffuse) 

Anet   Net CO2 assimilation rate at the leaf scale (mol CO2 m
-2

 s
-1

) 

Anet_shd   Net CO2 assimilation rate at the shaded leaf scale (mol CO2 m
-2

 s
-1

) 

Anet_sun   Net CO2 assimilation rate at the sunlit leaf scale (mol CO2 m
-2

 s
-1

) 

ANIR   Absorbed NIR at the leaf (sunlit or shaded) (W m
-2

) 

APAR   Absorbed PAR at the leaf (sunlit or shaded) (W m
-2

) 

b Slope of the retention curve varying with soil texture in soil resistance 

computation 

 

β Factor of the volumetric water content of the top soil layer and at field 

capacity 

 

cc  CO2 compensation point in the absence of non-photorespiratory 

respiration (Pa) 

 



xxvi 

 

ch   Volumetric heat capacity (J m
-3

 k
-1

 ) 

ci    CO2 partial pressure inside the leaf stomata (Pa) 

cs   CO2 partial pressure at the leaf surface (Pa) 

Ct   Coefficient that is inversely proportional to heat capacity (K m
2
 J

-1
) 

Cg   Ct for the soil surface in a grid cell (K m
2
 J

-1
) 

Cv   Ct for vegetation in a grid cell and set to 1.2×10
-5 

(K m
2
 J

-1
) 

d   Damping depth of the diurnal temperature wave (m) 

d1   Top soil layer thickness which is set to 1.75 cm 

D   Diffuse radiation fraction  

D0 Molecular diffusion coefficient of water vapor in the atmosphere and is set 

to a constant 2.59 × 10-5 (m
2
 s

-1
) 

 

Ds Reduced soil vapor diffusivity soil for soil resistance computation (m
2
 s

-1
) 

e   Constant 2.71828 

Eg   Evaporation from the soil surface (kg m
-2

 s
-1

)  

ei Saturation vapor pressure (Pa) inside the leaf stomata at the vegetation 

surface temperature (Ts) 

 

ε Quantum yield in photosynthesis (mol CO2 mol
-1

 photon) 

εj Computed electron transport quantum use efficiency in photosynthesis 

(mol CO2 mol
-1

 photon) 

 

es   Vapor pressure at the leaf surface (Pa) 

Ess Evaporation from the bare soil surface (kg m
-2

 s
-1

) 

ETc Evapotranspiration from the canopy (kg m
-2

 s
-1

) 

Evs Evaporation from the vegetation surface (kg m
-2

 s
-1

) 

F1 Fractional degree (0 to 1) of stomatal closure caused by photosynthetically 

active radiation (PAR) 

 



xxvii 

 

F2 Fractional degree (0 to 1) of stomatal closure caused by Root-depth (1 m) 

volumetric soil moisture (w2) 

 

F3 Fractional degree (0 to 1) of stomatal closure caused by relative humidity 

at the leaf surface (RHs) 

 

F4 Fractional degree (0 to 1) of stomatal closure caused by air temperature in 

the canopy (Tic) 

 

fdr Dark respiration coefficient which is set as 0.015 for C3 plants and 0.025 

for C4 plants following JULES [Clark et al., 2011] 

 

fiso, fvol, fgeo MODIS BRDF/albedo anisotropy three parameters (Isotropic, RossThick, 

LiSparseR) 

 

fLW Scaling factor of the longwave radiation to the canopy 

fseas    Seasonal adjustment factor for LAI and VF 

G   Ground heat flux (W m
-2

) 

Gc   Canopy stomatal conductance (m s
-1

) 

g0 Minimum leaf stomatal conductance (mol CO2 m
-2

 s
-1

).  Set 0.01 for C3 

plants and 0.04 for C4 plants. 

 

g0iso, g1iso, g2iso  MODIS BRDF/albedo Isotropic constants 

g0vol, g1vol, g2vol  MODIS BRDF/albedo RossThick constants 

g0geo, g1geo, g2geo  MODIS BRDF/albedo LiSparseR constants 

giso, gvol, ggeo  Computed MODIS BRDF/albedo anisotropy three functions (Isotropic, 

RossThick, LiSparseR) with solar zenith angle 

 

gst Leaf stomatal conductance for CO2 (mol CO2 m
-2

 s
-1

) 

gst_shd Shaded leaf stomatal conductance for CO2 (mol CO2 m
-2

 s
-1

) 

gst_sun Sunlit leaf stomatal conductance for CO2 (mol CO2 m
-2

 s
-1

) 

gstw_sun Sunlit leaf stomatal conductance for water vapor (m s
-1

) 

Gst Canopy stomatal conductance for water vapor (m s
-1

) 

G(t)    Surface energy forcing (W m
-2

) 



xxviii 

 

H   Sensible heat flux (W m
-2

) 

Iapar Absorbed photosynthetically active radiation (APAR) by the leaf (mol 

photon m
-2

 s
-1

) 

J   Rate of electron transport in photosynthesis (mol electron m
-2

 s
-1

) 

Jmax   Maximum electron transport rate in photosynthesis (mol electron m
-2

 s
-1

) 

Kc Michaelis-Menten constant for CO2 defined by equation 9 by Clark et al. 

[2011] (Pa) 

Kdif Extinction (attenuation) coefficient for diffuse light within the canopy 

Kdir Extinction coefficient for direct beam within the canopy 

Kn Foliage nitrogen decay coefficient and defined as 0.17 [Bonan et al., 2011] 

Ko Michaelis-Menten constant for O2 defined by equation 10 by Clark et al. 

[2011] (Pa) 

LAI   Leaf area index (m
2
 m

-2
) 

LAImin   Minimum leaf area index (m
2
 m

-2
) 

LAImax   Maximum leaf area index (m
2
 m

-2
) 

LAIshd   LAI for the shaded leaves (m
2
 m

-2
) 

LAIsun   LAI for the sunlit leaves (m
2
 m

-2
) 

Ls   Estimated soil dry layer path length (m) in soil resistance computation 

LWair   Long wave radiation from air (W m-2) 

LWcanopy  Long wave radiation from the canopy (W m-2) 

LWfloor   Long wave radiation from the floor (W m-2) 

λ   Latent heat of evaporation (k J kg
-1

) 

λt   Thermal conductivity (W m
-2 

K
-1

) 

λE   Latent heat flux (W m
-2

) 

mg   Plant-type parameter which is 9 for C3 plants and 4 for C4 plants 

Mi   Estimated daily total flux at day i 



xxix 

 

NMB   Normalized mean bias 

NME   Normalized mean error 

Oa   Partial pressure of atmospheric oxygen (Pa) 

Oi   Observed daily total flux at day i 

Pa   Atmospheric pressure (Pa) 

PAR   Photosynthetically active radiation (W m
-2

) 

π   Pi constant 

Q Mixing ratio (g kg
-1

) 

qa   Water vapor mixing ratio at the lowest atmospheric layer (kg kg
-1

) 

qs(Ts_sun) Saturated mixing ratio for water vapor at the sunlit leaf temperature Ts_sun  

(kg kg
-1

)  

 

qsat(Ts) Saturated water vapor mixing ratio (kg kg
-1

) at the soil surface temperature 

(Ts) 

 

Ra Aerodynamic resistance (s m
-1

) 

Raw Equal to Ra + Rbw (s m
-1

) 

Rbw Quasi-laminar boundary layer resistance for water vapor (s m
-1

) 

Rg   Incoming solar radiation at the surface (W m
-2

) 

Rgl Limiting factor with 30 (W m-2) for forest types and 100 (W m-2) for 

other vegetation types in computing F1 

 

RHs   Relative humidity at the leaf surface 

Rnet   Net radiation for the sunlit or shaded leaf (W m
-2

) 

Rs Soil resistance (s m
-1

) 

ρa   Density of dry air (kg m
-3

) 

Rstmin, Rstmax  Minimum and maximum stomatal resistances (s m
-1

) 

t   Time step (s) 



xxx 

 

T   Temperature (K) 

T2   Deep soil layer (1 m) temperature (K) 

τ   Diurnal time scale (s) 

τdir   Transmittance of beam radiation for non-horizontal scattering leaves 

τdif   Transmittance for diffuse radiation over the entire upper hemisphere 

Tg   Surface soil layer (1 cm) temperature (K) 

Tic   Air temperature in the canopy (K) 

Tlow Lower limit of the optimal temperature range defined for PFT types in 

JULES [Clark et al., 2011] (°C) 

 

θsun   Solar zenith angle (radians) 

TRc   Transpiration from the canopy (kg m
-2

 s
-1

) 

TRc_shd   Transpiration from the shaded leaf canopy (kg m
-2

 s
-1

) 

TRc_sun   Transpiration from the sunlit leaf canopy (kg m
-2

 s
-1

) 

Ts   Canopy leaf surface temperature (°C) 

Tssl   Soil surface temperature (K) 

Tup Upper limit of the optimal temperature range defined for PFT types in 

JULES [Clark et al., 2011] (°C) 

 

u* Friction velocity (m s
-1

) 

Vcmax   Maximum rate of carboxylation of Rubisco (mol CO2 m
-2

 s
-1

) 

Vcmax25   Vcmax at 25°C (mol CO2 m
-2

 s
-1

) 

Vcmax25_0  Vcmax25 at the top of the canopy (mol CO2 m
-2

 s
-1

) 

vegF   Vegetation fraction for a grid cell 

VFmin   Minimum vegetation fraction 

VFmax   Maximum vegetation fraction 



xxxi 

 

w Parameter which controls the concavity of the curve and is set to 5 for the 

exponential shape in soil resistance computation 

 

w2   Root-depth (1 m) volumetric soil moisture (m
3
 m

-3
) 

w2avl   Available volumetric soil water content at root depth (m
3
 m

-3
) 

w2 mxav   Maximum available volumetric soil water content at root depth (m
3
 m

-3
) 

wfc   Volumetric soil water content at field capacity (m
3
 m

-3
) 

wg   Volumetric soil water content of the top soil layer (m
3
 m

-3
) 

wsat   Volumetric soil water content at saturation (m
3
 m

-3
) 

wres   Volumetric soil residual water content (m
3
 m

-3
) 

wwlt   Volumetric soil water content at the wilting point (m
3
 m

-3
) 

x Canopy leaf orientation parameter with  0 for vertical leaves and 1 for 

spherical leaf orientation (randomly oriented) 



1 

 

              

CHAPTER 1: INTRODUCTION 

1.1 Introduction 

The combined meteorology and air quality modeling system composed of the Weather 

Research and Forecast (WRF) model and Community Multiscale Air Quality (CMAQ) model is 

an important decision support tool that is used in research and regulatory decisions related to 

emission, meteorology, climate, and chemical transport around the world.  The land surface 

model (LSM) is an important component in WRF/CMAQ for simulating the exchange of heat, 

moisture, momentum, and trace atmospheric chemicals between the land surface and the 

atmosphere.  Vegetation transpiration is a crucial component in the surface energy budget and 

the water and carbon cycles of LSMs.  Vegetation is also a source and sink of many atmospheric 

chemicals such as O3 and volatile organic compounds (VOCs).   

The Pleim-Xiu (PX) LSM is commonly used in retrospective WRF/CMAQ simulations 

for research and policy making.    Different from LSMs in climate earth system models with 

complex dynamic vegetation processes, the LSM has much simpler vegetation treatment with a 

big-leaf empirical function stomatal conductance approach to model vegetation transpiration and 

pollutant deposition.  Surface characteristics including vegetation parameters and surface albedo 

are specified in LSM land use look-up tables and plant phenological dynamics are modeled using 

simple time and temperature dependent functions.   With data assimilation the LSM has 

demonstrated strong capabilities in modeling the land surface processes for meteorology and air 

quality modeling.  However, with increased needs to conduct year-long retrospective 

WRF/CMAQ simulations, the LSM clearly show limitations in capturing seasonal landscape 
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changes (e.g. phenology) and disturbances (e.g. fires, storm damages).  In addition, lacking a 

biochemically-based photosynthesis-conductance scheme could limit not only the model’s 

dynamic responses to environmental conditions such as temperature, air pollutants (e.g. O3) and 

CO2 concentration but also their applications in assessing the coupling effects of air quality and 

vegetation productivity in changing climate.    

1.2 Objective 

The objective of this research is to improve land surface processes in retrospective 

WRF/CMAQ modeling by: 

1) Incorporating satellite-derived temporal vegetation and albedo data for faithful surface 

representation and 

2) Advancing the vegetation processes with a biochemically-based photosynthesis-stomatal 

conductance approach.   

The two components of this research are synergistic because accurate vegetation 

representation is essential for estimating canopy CO2 assimilation and stomatal conductance 

using the biochemically-based photosynthesis approach.  As WRF/CMAQ is an important 

decision support tool for mitigating harmful effects of air pollution on human health and 

ecosystems, improving the tool through development of more advanced science processes and 

incorporation of satellite observations will have direct benefit to society.  

1.3 Method 

The PX LSM is routinely selected for retrospective WRF/CMAQ simulations because PX 

LSM in WRF is designed especially for air quality applications and particularly for use with 

CMAQ to have consistent LSM and planetary boundary layer (PBL) treatments for meteorology 
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and atmospheric chemistry.  The research focuses on improving the land surface representation 

and vegetation processes in the PX LSM through the following three incremental studies:   

1) Evaluate the sensitivity of WRF/CMAQ with PX LSM to MODIS LAI, FPAR, and 

albedo,   

2) Assess impacts of MODIS input on seasonality during a yearlong simulation using 

an updated WRF/CMAQ modeling system, and 

3) Develop, test, and evaluate a coupled photosynthesis-based stomatal conductance 

approach in PX LSM to advance the vegetation processes in WRF/CMAQ with 

direct connection to CO2 level and vegetation productivity. 

The science questions to be addressed by this research are: 

1) How well does current WRF/CMAQ with PX LSM represent vegetation and surface 

albedo? 

2) How does the WRF/CMAQ with PX LSM respond to the more realistic surface 

representation from MODIS input? 

3) Can the WRF/CMAQ model be modified to produce improved results when using the 

MODIS input? 

4) Can phenology from MODIS input help improve multi-seasonal WRF/CMAQ 

simulations? 

5) Can a coupled photosynthesis-stomatal conductance approach perform as well as the PX 

Jarvis stomatal conductance approach? 

6) Does the photosynthesis-based approach have advantages in modeling latent heat and 

ozone fluxes in comparison with the current approach? 
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The three incremental studies are presented in chapters 2, 3, and 4 in sequence as 

independent papers.  Research summary, future work and significance are presented in the last 

Chapter.       

1.4 Expected Results 

The research results in an advanced WRF/CMAQ model including MODIS vegetation 

and albedo input and a coupled photosynthesis and stomatal conductance approach incorporated 

into the PX LSM.  Assimilating MODIS vegetation and albedo into the modeling system can 

provide up-to-date landscape information with more accurate phenology and disturbance 

representation.   The photosynthesis-based stomatal conductance approach provides responses of 

C3 and C4 plants to environmental conditions through biochemically-based processes associated 

with CO2 assimilation.  The realistic surface representation from satellite observations and 

improved vegetation processes likely improve surface flux estimation and reduce overall 

uncertainty in WRF/CMAQ modeling for scientific and regulatory studies.    
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CHAPTER 2: SENSITIVITY OF THE WEATHER RESEARCH AND 

FORECAST/COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM TO 

MODIS LAI, FPAR, AND ALBEDO
1
 

 

Abstract 

This study aims to improve land surface processes in a retrospective meteorology and air 

quality modeling system through the use of Moderate Resolution Imaging Spectroradiometer 

(MODIS) vegetation and albedo products for more realistic vegetation and surface representation.  

MODIS leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FPAR), 

and albedo are incorporated into the Pleim-Xiu land surface model (PX LSM) used in a 

combined meteorology and air quality modeling system.  The current PX LSM intentionally 

exaggerates vegetation coverage and LAI in western drylands so that its soil moisture nudging 

scheme is more effective in simulating surface temperature and mixing ratio.  Reduced 

vegetation coverage from the PX LSM with MODIS input results in hotter and dryer daytime 

conditions with reduced ozone dry deposition velocities in much of western North America.  

Evaluations of the new system indicate greater error and bias in temperature, but reduced error 

and bias in moisture with the MODIS vegetation input.  Hotter daytime temperatures and 

reduced dry deposition result in greater ozone concentrations in the western arid regions even 

with deeper boundary layer depths.  MODIS albedo has much less impact on the meteorology 

simulations than MODIS LAI and FPAR.  The MODIS vegetation and albedo input does not 

                                                           
1 This chapter previously appeared as an article in the Journal of Geophysical Research: Atmospheres. The original 

citation is as follows: Ran, L., R. Gilliam, F. S. Binkowski, A. Xiu, J. Pleim, and L. Band (2015), “Sensitivity of the 

Weather Research and Forecast/Community Multiscale Air Quality modeling system to MODIS LAI, FPAR, and 

albedo” Journal of Geophysical Research: Atmospheres, 120, 8491–8511. 
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have much influence in the east where differences in vegetation and albedo parameters are less 

extreme.  Evaluation results showing increased temperature errors with more accurate 

representation of vegetation suggests that improvements are needed in the model surface physics, 

particularly the soil processes in the PX LSM.            

2.1 Introduction 

Degraded air quality (AQ) is a persistent environmental problem that causes serious 

health, ecological, and climate consequences (e.g. mortality, eutrophication, biodiversity loss, 

climate forcing).  To improve AQ and mitigate the deleterious effects on human health, 

ecosystems and climate, policy makers and scientists rely on comprehensive computer modeling 

systems that simulate emissions, transport, chemistry, and deposition of air pollutants to design 

emission control strategies for achieving healthy sustainable AQ [Cohan et al., 2007].   The 

combined meteorology and air quality modeling system WRF/CMAQ - composed of the 

National Center for Atmospheric Research (NCAR) Weather Research and Forecast (WRF) 

model [Skamarock et al., 2008] and the United States (US) Environmental Protection Agency 

(EPA) Community Multiscale Air Quality (CMAQ) model [Byun and Schere, 2006] is an 

important decision support tool that is used to help understand the chemical and physical 

processes involved in AQ degradation and to develop policy to mitigate harmful effects of air 

pollution on human health and the environment around the world [Isakov et al., 2007; Wang et 

al., 2010; Compton et al., 2011]. Improving spatial and temporal distributions of modeled air 

pollutant concentrations and deposition, particularly O3, PM2.5, and NH4, will help reduce the 

uncertainties involved in quantifying risk assessment to human health and the environment.  

Despite significant advances in the modeling system over the past ten years, there are still many 

uncertainties in the system [Foley et al., 2010; Appel et al. 2011].  Many factors including 
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emissions, transport, photolysis rates, photochemistry, and land surface exchange may contribute 

to errors in the current modeling system.  Our research focuses on improving land surface model 

(LSM) processes in the WRF/CMAQ, which includes both meteorological (heat, moisture, and 

momentum) and chemical (dry deposition and bi-directional exchange) surface fluxes, through 

using satellite-derived land surface data.      

The two commonly used LSMs for meso-scale WRF meteorology modeling are the Noah 

[Chen and Dudhia, 2001] and PX LSMs [Pleim and Xiu, 1995; Xiu and Pleim, 2001].  Unlike 

climate LSMs (e.g. Oleson et al., 2013; Clark et al., 2011) with complex hydrology and dynamic 

vegetation coupled with climate to model processes over decadal to century future periods, these 

two LSMs rely heavily on data initialization and assimilation for high accuracy over relative 

short periods (days to years).  Thus, both the LSMs have simple canopy treatments with a big-

leaf empirical function stomatal conductance following the approach described by Noilhan and 

Planton [1989] as well as simple soil hydrology and snow processes.  When applied 

retrospectively for long term simulations, such as for full years, accurate Noah WRF simulations 

rely on frequent (e.g. every 2-5 days) re-start of simulations with re-initialized soil conditions 

[e.g. Hogrefe et al., 2014] while the PX LSM uses continuous data assimilation for dynamic 

nudging of soil moisture [Pleim and Xiu, 2003] and temperature [Pleim and Gilliam, 2009] to 

optimize surface fluxes.  The PX LSM is mainly designed for air quality simulations using the 

WRF/CMAQ system where the WRF LSM parameters (e.g. stomatal and aerodynamic 

resistances) are consistently used in the AQ dry deposition model.   

WRF/CMAQ with the PX LSM scheme has been routinely used to retrospectively 

simulate for months to years continuously without re-initialization using the indirect soil 

moisture and temperature nudging schemes that leverages re-analysis fields [Appel et al., 2011; 
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Rogers et al., 2013; Hogrefe et al., 2014].  At the start of an extended run, the soil moisture 

fields can be very quickly and effectively spun up from simple generic initializations (e.g. from 

moisture availability factors by land use type) in about 5 days [Pleim and Gilliam, 2009].  To 

ensure good model performance when using the PX LSM, the key is to configure the WRF 

simulation with the PX LSM indirect soil moisture and temperature nudging.  For example, Miao 

et al. [2007] described a modeling study comparing the Noah and PX LSMs implemented in 

MM5 and concluded that soil moisture initialization is crucial for the PX LSM performance.  

However, since they did not use data assimilation in their study the soil moisture nudging 

scheme was not activated in the simulation with the PX LSM scheme.  The PX LSM dynamic 

continuous data assimilation has the strength to continuously and effectively adjust soil 

temperature and moisture without re-starting the simulation for reducing error growth in 

atmospheric variables such as 2 m temperature (T) and mixing ratio (Q) [Pleim and Xiu, 2003; 

Pleim and Gilliam, 2009].  However, it has the drawback that the assimilation may compensate 

and mask errors in model physics and it may cause changes in soil moisture when the 

atmospheric model’s temperature and relative humidity errors are not related to surface fluxes.  

In addition, the PX LSM treats modeling grids with land cover fractions instead of the dominant 

land cover type in each grid cell used by the WRF Noah LSM.  As a result, the PX LSM can take 

better advantage of high resolution land cover data such as the 500 meter Moderate-resolution 

Imaging Spectroradiometer (MODIS) data and the 30 meter National Land Cover Database 

(NLCD) to describe heterogeneous land surface types for model grid cells which are normally 

coarser than land cover data resolutions [Ran et al., 2010].      

Accurate description of surface characteristics is important in meteorology and AQ 

modeling for simulating the exchange of heat, moisture, momentum, and trace atmospheric 
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chemicals between the land surface and the atmosphere.  Leaf area index (LAI), vegetation 

fraction (VF), and albedo are important land surface parameters which are typically specified in 

LSM land-use category look-up tables or derived from monthly averaged satellite vegetation 

parameters [Hong et al, 2009].  LAI and VF are crucial vegetation parameters used for scaling 

leaf level fluxes to the canopy level [Bonan, 2008] and then to the grid cell level as well as for 

controlling deposition of various atmospheric gases and particles [Pleim and Ran, 2011].  

Surface albedo affects not only the surface energy budget and fluxes but also photolysis rates in 

the air quality model [Rappenglück et al., 2014].  With the availability of many global satellite 

products at temporal scales ranging from daily to annual, satellite vegetation data and surface 

products such as MODIS leaf area index (LAI) and albedo have been used to improve LSM 

performance [Liang et al., 2005; Alton, 2009; Moore et al., 2010].  For example, Moore et al. 

[2010] assimilated MODIS dynamic LAI and vegetative fractional cover products into the 

Regional Atmospheric Modeling System (RAMS) for model simulations of East Africa. Their 

results show dramatic improvement in land surface temperature simulation both spatially and 

temporally for most of the year.  Other studies [Buermann et al., 2001; Masson et al., 2003; 

Rodell et al., 2004; Baker et al., 2010; Lawrence et al., 2011; Barbu et al., 2011] have also used 

satellite derived LAI and vegetation index in LSMs for global and mesoscale atmospheric 

modeling.  However, for operational retrospective meteorology and air quality WRF/CMAQ 

simulations LAI, VF, and albedo along with other surface and soil parameters are still specified 

in the LSM tables with some simple seasonal adjustments [Pleim and Xiu, 1995, Chen and 

Dudhia, 2001, Walko et al., 2000, Xiu and Pleim, 2001].  For year-long retrospective 

WRF/CMAQ simulations, these LSMs using simple canopy treatment with table prescribed 

surface representations from out-of-date land use data [Ran et al., 2010] clearly show limitations 
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in capturing seasonal landscape changes (e.g. phenology and albedo) and disturbances (e.g. fires, 

storm damages).  Thus, assimilating satellite data derived LAI, VF, and albedo into the 

WRF/CMAQ simulations can provide more up-to-date, accurate, and detailed landscape 

information and likely improve model performance. 

The objective of this research is to reduce overall error and uncertainty in retrospective 

WRF/CMAQ simulations by improving LSM processes through using MODIS LAI, FPAR and 

surface albedo products to better describe spatial and temporal variations in vegetation and land 

surface.  The questions which the papers addresses are: (i) how well does the current 

WRF/CAMQ with PX LSM represent vegetation and albedo compared with satellite 

observations, (ii) how does MODIS vegetation and albedo input influence the performance of 

meteorology, and (iii) how does MODIS vegetation and albedo influence the performance of air 

quality?  This study focuses on WRF/CMAQ meteorology and air quality simulations for the US 

12km grid resolution modeling domain over a period from August to September 2006.  The LAI, 

VF, and albedo from the current WRF/CMAQ configuration will be first evaluated against 

observation data from MODIS products, FLUXNET, and the SURFace RADiation Budget 

Measurement (SURFRAD) network measurements in Section 2.  MODIS data and the 

methodologies used in processing and the model simulations are presented in Section 3.  

Simulated meteorology results are compared and evaluated in detail among different simulations 

with table prescribed surface data and with MODIS inputs against measurement data to 

demonstrate benefits and issues in Section 4.  Some AQ results from CMAQ simulations are also 

presented in this section.  Conclusions and future plans are presented in the last section.      
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2.2 Evaluation of Current WRF/CMAQ  

The limitations of the surface characteristics description in the current WRF/CMAQ 

system and the possible benefit in using the satellite surface data are demonstrated through 

comparing LAI, VF, and albedo from 2006 PX LSM WRF/CMAQ simulations over the 

continental US 12km domain and MODIS surface data with site observations from FLUXNET 

and SURFRAD.  2006 gap-filled and smoothed MODIS LAI and FPAR data MOD15A2GFS at 

1km resolution and every 8 days [Gao et al., 2008; Myneni et al., 2011] from the US North 

American Carbon Program (NACP) are processed and re-gridded onto the WRF/CMAQ 12km 

grid cells.  LAI FLUXNET measurements [Baldocchi, 2008], which are often very limited and 

generally only available for a few selected days each year, are obtained from three FLUXNET 

sites (US Ha1 - Harvard Forest in Massachusetts; US-Ne1 - Mead irrigated maize in Nebraska; 

and US-Ton - Tonzi Ranch in California).  LAI data are also extracted from 2006 WRF 

simulations and gridded MODIS LAI/FPAR data set for these site locations.  MODIS albedo 

product MCD43A3 at 500m resolution and every 8 day (16 days running averages) including the 

white-sky albedos and the black-sky albedos at local solar noon [Schaaf et al., 2002] are 

obtained and processed onto the 12km grid domain.  Surface radiation measurements are 

obtained from three SURFRAD sites in Illinois, Montana, and Pennsylvania.  Albedo data for the 

three SURFRAD sites are also extracted from PX LSM WRF and gridded MODIS data. 

2.2.1 Leaf Area Index 

LAI is a measure of the foliage amount in a plant canopy and it is often defined as the 

projected or one-sided area of leaves per unit area of ground (m
2
 m

-2
, often goes from 0 to 8).  

The gridded LAI used in the PX LSM WRF is an averaged LAI value for vegetated fraction of a 

model cell.  Thus, gridded MODIS cell-averaged LAI is divided by gridded MODIS FPAR, 
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which is used as a surrogate for vegetation cover fraction [Los et al., 2000; Mu et al., 2011], to 

be consistent with the WRF LAI.  LAI from FLUXNET, 2006 PX LSM WRF simulation, and 

2006 MODIS for the 12km domain are compared for the three selected FLUXNET sites and the 

whole 12km domain (figure 2.1).    For the Harvard Forest Tower site, the MODIS, FLUXNET, 

and WRF LAI values match relatively well although the WRF summer peak LAI values are too 

low and the winter LAI are too high.  In the PX LSM, LAI is calculated based on the deep soil 

temperature (T2) (average T in 1 m soil layer) and minimum and maximum LAI values (LAImin, 

LAImax) prescribed for each vegetation type as:  

,    fseas = 1.0  if T2 ≥ 290.0     (2.1) 

        (2.2) 

where fseas is a seasonal adjustment factor when762 m the 1-m soil column is cooler than 290 K.  

When T2 is ≥ 290 K, the LAI is set to the maximum value.  While this computation scheme 

captures the general seasonal variations in temperate climates, LAI values can fluctuate 

erroneously for winter days with warm spells, as is evident near the end of year at the Harvard 

site (see figure 2.1).  These issues are exacerbated by the deep soil temperature nudging scheme 

in the PX LSM that can sometimes cause T2 to fluctuate in an unrealistic manner. Such spurious 

variations should be easily resolved with a better seasonal adjustment factor using a running 

average T2 value over a period instead of the instantaneous T2 value.   

For the Nebraska maize site, it is clear that MODIS and WRF LAI are too low during the 

peak growing season.  Because PX LSM WRF and MODIS land cover datasets do not 

distinguish among different crops, average LAI is assigned for the general cropland category.  

Thus, it is difficult to estimate individual crop LAI using the average prescribed values unless 

detailed crops are included in the LSM.  For the California Tonzi Ranch site which is classified 

  0.0,0.290*015626.00.1max
2

2Tf seas 

 minmaxmin LAILAIfLAILAI seas 
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as Woody Savanna in the MODIS land cover, WRF LAI is clearly too high through most of the 

year and does not capture the peak greenness as MODIS does in the spring following the rainy 

winter months followed by the dry summer and fall.  However, the MODIS LAI values are 

higher than FLUXNET LAI possibly partially due to grid cell averaging used for MODIS data.   

 

Figure 2.1.  PX LSM WRF, MODIS, and FLUNXET LAI comparisons.  The LAI graphs on the 

left have LAI on the vertical axis and day of year with 1 for Jan. 1, 2006 on the horizontal axis. 

For the domain-wide comparison, PX LSM WRF LAI does show similar spatial 

distributions and seasonal changes as MODIS LAI, but with different magnitudes.  Broad land 

use categories with the average minimum and maximum LAI values for vegetation categories 

used in the PX LSM tend to dampen the extremes of LAI.  It is clear that WRF LAI is relatively 
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high during the cold seasons and low during the peak green summer.  WRF LAI is also too high 

in the west dryland areas and northern boreal regions during the warm seasons.  The LAI spatial 

evaluation points to an additional issue in the PX LSM simple seasonal LAI adjustments.  In 

western dryland regions, LAI is controlled primarily by moisture conditions rather than 

temperature during summer and autumn seasons.  Thus, in addition to the need to use a running 

average T2 in adjusting LAI to avoid unphysical short-term fluctuations in LAI, accounting for 

the effects of drought conditions by including deep soil moisture into the LAI seasonal 

adjustments in equation 2.1 should produce more realistic LAI in the western drylands.  Overall, 

MODIS LAI does capture seasonal and spatial variation much better than the prescribed WRF 

LAI, particularly in the north and west regions.         

2.2.2 Vegetation Fraction  

Vegetation fraction in the PX LSM is prescribed based on the minimum and maximum 

VF values (VFmin, VFmax) for each land cover class specified in the LSM landuse lookup tables 

using the same seasonal adjustment  factor as for LAI:      

       (2.3) 

The PX WRF VF and MODIS FPAR used as a surrogate for VF are compared for a typical 

summer day (08/10/2006) in figure 2.2.  In the West and North, PX WRF vegetation fraction is 

clearly over-estimated compared to MODIS VF particularly in the western dryland areas.  The 

PX LSM scheme was originally designed for the eastern US where there is much more 

vegetation cover.  The PX LSM deep soil moisture nudging scheme computes the nudging 

strengths from model parameters such as solar radiation, temperature, leaf area, vegetation 

coverage, and aerodynamic resistance [Pleim and Xiu, 2003] rather than from statistically 

derived functions [Mahfouf, 1991; Bouttier et al., 1993; Douville et al., 2000].  Thus, it is most 

 minmaxmin VFVFfVFVF seas 
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effective in vegetated areas through its influence on transpiration and surface fluxes.  The PX 

LSM exaggerates VF values for many vegetation categories to allow the soil moisture nudging 

scheme to be more effective.  Although this exaggerated VF helps reduce the model’s daytime 

biases in 2 m T, it could have erroneous consequences such as over prediction of moisture fluxes 

and air humidity as well as over estimates of trace atmospheric chemical surface fluxes related to 

the vegetation pathway.                

 

Figure 2.2.  PX WRF vegetation cover and MODIS gridded FPAR used as the surrogate of 

vegetation cover fraction for 2006-08-10. 

2.2.3 Albedo  

  Albedo is an important parameter in meteorology and air quality modeling systems such 

as the WRF/CMAQ because it affects the surface energy budget, which in turn influences heat 

and moisture fluxes and the evolution of the planetary boundary layer (PBL).  Changing the PBL 

height (PBLH) will affect air quality due to changes in dilution of air pollutant concentrations 

near the surface.  The impact of changing albedo on the actinic flux in the UV bands is 

particularly important for photochemical pollutants such as ozone and NOx.  For example, rapid 

increases in ozone concentration right after the onset of snow cover has been observed in western 

valleys with abundant NOx from the rapidly expanding unconventional oil and gas drilling 
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operations [Rappenglück et al., 2014].  Thus, correctly representing surface albedo is crucial in 

systems like WRF/CMAQ.  Albedo changes diurnally like a “U” shape with the sun zenith angle 

and seasonally with the sun inclination angle along with changing surface conditions.  MODIS 

combined Terra and Aqua BRDF/Albedo product (MCD43A3) provides two types of albedo 

around local solar noon: black-sky albedos (αBSA) (directional-hemispherical reflectance - direct) 

and white-sky albedos (αWSA) (bi-hemispherical reflectance - diffuse) for MODIS 7 bands and 

three broad bands.  The actual albedo, which is also called blue-sky albedo (αBLUE), can be 

calculated based on the equation derived by Lewis and Barnsley [1994] with an assumed 

constant white-sky albedo at low solar zenith angles (less than 70°-75°) as:  

       (2.4) 

where D is the diffuse radiation fraction.   

MODIS shortwave black sky and white sky albedo (0.3-5.0µm) is compared with PX 

WRF and SURFRAD albedo in figure 2.3.  The diurnal difference is examined by comparing 

WRF and SURFRAD albedo values for a winter (01/01/2006) and summer day (07/04/2006).  It 

is clear that WRF albedo is missing the diurnal and seasonal changes which are evident in the 

SURFRAD measurements.  However, at the Montana site, WRF snow assimilation captured the 

snow cover well with the high albedo similar to the SURFRAD values.  But for the Pennsylvania 

site, WRF albedo values are much lower than the SURFRAD data.  Spatial plots of the two days 

from WRF and MODIS data over the domain show similar patterns.  However, MODIS black 

and white sky albedo values display more variations, particularly for areas in the north and in the 

west.  Using 16-day MODIS albedo composites (with the Julian date in the file name 

representing the first day of the 16-day period) to compare with the Julian date WRF albedo 

likely causes some mismatch in the comparison, especially in the northern regions with high 

  DD WSAsunBSABLUE *1)(  
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snow albedo for the winter day.  Since snow coverage can vary significantly on a daily basis it is 

more appropriate to use daily snow analyses to define snow coverage for albedo estimation in 

WRF simulations.  Nevertheless, the MODIS albedo excluding the snow coverage areas does 

capture the heterogeneous surface better in comparison with the albedo calculation in the current 

PX LSM WRF.    

 

Figure 2.3.  PX WRF, SURFRAD, and MODIS albedo comparisons.  The albedo graphs on the 

left have albedo (%) on the vertical axis and local time zone hour of day on the horizontal axis.       

2.3 Data and Methods  

MODIS LAI, FPAR and albedo data are freely available at the Level 1 and Atmosphere 

Archive and Distribution System (LAADS) web site from the US National Aeronautics and 
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Space Administration (NASA).  Users can choose the needed data set from several MODIS LAI, 

FPAR and albedo products which are processed from different satellite platforms (Terra, Aqua or 

combined), at different resolutions, and for different applications.  This section first describes 

MODIS data selected for this research in detail and methods used to process the data for 

WRF/CMAQ.  Then, it presents the methods used to apply MODIS data in WRF, WRF/CMAQ 

configurations, and modeling scenario design for evaluation.    

2.3.1 MODIS Data  

Because MODIS products such as LAI, FPAR and albedo products are derived from 

surface reflectance measurements, uncertainties exist in these products due to aerosol, cloud, and 

snow contaminations.  For example, the MODIS Collection 4 LAI/FPAR products tend to be 

overestimated by around 12% based on the study by Yang et al. [2006b], which is similar to the 

conclusion from the evaluation by Fensholt et al. [2004] that MODIS LAI is overestimated by 

around 2 to 15% and FPAR is overestimated by 8 to 20% on average in a semi-arid area.  In 

addition, MODIS LAI could show unrealistic temporal variations during the growing and winter 

seasons because of cloud/snow contaminations [Cohen et al., 2006].  The MODIS LAI/FPAR 

algorithm contains a radiative transfer algorithm for the best quality estimates and a back-up 

empirical algorithm based on NDVI(Normalized Difference Vegetation Index)-LAI relationships 

with poor quality for high LAI (saturation) or areas with cloud, aerosol, or snow contamination 

[Myneni et al., 1997; Yang et al., 2006a].  The overestimation of the product is mostly caused by 

misclassified biomes and higher uncertainties in the back-up algorithm.  The current release of 

MODIS Collection 5 LAI/FPAR products has significant refinements to the algorithm, 

particularly for woody vegetation - broadleaf and needle leaf forests which are subdivided into 

deciduous and evergreen subclasses [Myneni et al., 2011].  Fang et al. [2013] described MODIS 
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LAI and four new global LAI products (GEOV1, GLASS, GLOBMAP, and JRC-TIP) in detail 

and compared and analyzed them at 0.01 degree resolution at a monthly time step for the 2003 to 

2010 period.  By analyzing the product’s quantitative quality indicators, they found that MODIS 

LAI has the lowest average uncertainty and relative uncertainty (0.17, 11.5%) among the five 

products.  For applying MODIS LAI/FPAR data in land surface processes, the data often need to 

be gap-filled and smoothed for improving spatial and temporal continuity and consistency.  The 

NACP gap-filled and smoothed MODIS Collection 5 LAI and FPAR data (MOD15A2GFS), 

which are also used in the WRF/CMAQ LAI and VF evaluation in the previous section, are 

selected for WRF/CMAQ simulations.   

MODIS albedo products are derived using a kernel-based semi-empirical bidirectional 

reflectance distribution function (BRDF) model to characterize isotropic, volumetric and 

geometric scattering [Wanner et al., 1995; Lucht et al., 2000; Schaaf et al., 2002, 2011].  

MODIS BRDF/albedo parameter products contain three parameters corresponding to the weights 

for isotropic kernel, volumetric kernel and geometric kernel.  MCD43A1 MODIS BRDF/albedo 

parameter product and corresponding MCD43A2 MODIS BRDF/albedo quality product are 

generated every 8 days at 500m resolution with the following 16 days of MODIS surface 

reflectance input.   While MODIS albedo products at local solar noon are used in the previous 

section albedo evaluation, MODIS BRDF/albedo parameters retrieved are more appropriate for 

WRF/CMAQ simulations with changing solar zenith angle (SZA, ).  The MODIS product 

can be used to characterize the actual albedo at a location throughout the better part of the 

diurnal cycle with some confidence based on the study by Liu et al. [2009].  Although many 

surface conditions (such as soil conditions, canopy, surface heterogeneity, and spatial scale) 

affect surface albedo; direct-beam albedo may be predominately influenced by SZA [Yang et al., 

sun
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2008].  The three MODIS BRDF/albedo parameters (fiso, fvol, fgeo) are used to compute both 

black-sky albedo and white-sky albedo using simple polynomial [Lucht et al., 2000; Schaaf et 

al., 2011] equations as: 

   (2.5) 

     (2.6) 

         (2.7) 

         (2.8) 

       (2.9) 

where isog 20 , volg 20 , and geog 20 are constant and the blue sky albedo can be computed based on 

equation 2.4.  MODIS BRDF/albedo parameters are available for MODIS seven spectral bands 

as well as for three broad bands (0.3-0.7µm, 0.7-5.0µm, and 0.3-5.0µm).  For this study, 

processed MODIS BRDF/albedo parameters for the shortwave (0.3-5.0µm) are used for 

computing black sky, white sky, and blue sky albedo.     

2006 MODIS LAI and FPAR products as well as MODIS BRDF/albedo parameter 

MCD43A1 and quality MCD43A2 products are processed, projected, and averaged over the 

WRF/CMAQ model 12km grid cells.  The generated temporal data are stored in a netCDF file 

for WRF simulations.  MODIS albedo products over snow are not reliable because it is often 

difficult to discriminate between snow and clouds which have similar visible spectral reflectance 

features [Gao et al., 2011] and also the 16-day composite product can easily miss ephemeral 

snow on the ground.  Thus, the BRDF/albedo quality product is used to filter out snow cover 

cells in averaging MODIS albedo parameters for WRF/CMAQ modeling grid cell parameters.  
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2.3.2 WRF/CMAQ Modeling  

WRF version 3.4 is used for this study and many WRF modules are modified for 

ingesting gridded MODIS LAI, FPAR, and three albedo parameter data through the WRF 

simulation namelist control.  The average MODIS LAI over a modeling grid cell is divided by 

FPAR to represent the LAI of the vegetated portion of the model grid cell and MODIS FPAR is 

used directly as VF.  Black, white, and blue sky albedos are computed based on equations 2.4-

2.6 when SZA is less or equal to 70 degrees.  When SZA is greater than 70 degrees, albedo is 

computed using 70-degree SZA because the MODIS data are less reliable at SZA above 70.  

WRF snow albedo is computed based on the daily snow analyses and weighted in the final 

albedo computation based on the fractional snow coverage.  While the computed blue sky albedo 

is used in the PX LSM for surface energy budgeting, black sky and white sky albedo values are 

passed to the WRF Rapid Radiative Transfer Model for GCMs (RRTMG) radiation model 

[Iacono et al., 2008] for the short wave (SW) and long wave (LW) radiation computation. 

The WRF modeling system is prepared and configured in the same way as described by 

Gilliam and Pleim [2010].  It is important to note that the PX LSM scheme has the regular 

nudging scheme turned on for analysis nudging (U/V wind, T, Q) above the PBL and for indirect 

soil moisture and T nudging from accurate 2 m T and Q analyses or re-analyses in the surface 

four-dimensional data assimilation input file  (SFDDA).  Other important WRF physics options 

include the Asymmetric Convective Model version 2 (ACM2), for PBL [Pleim, 2007a, 2007b], 

the Morrison double-moment cloud microphysics scheme [Morrison et al., 2009], and version 2 

of the Kain–Fritsch (KF2) cumulus parameterization [Kain, 2004].  The 12-km North American 

Model (NAM) data are used as lateral boundary conditions for the WRF simulation.  The 

Meteorology-Chemistry Interface Processor (MCIP) [Otte and Pleim, 2010] version 4.1.3 is used 

to process the WRF output for CMAQ simulations.  CMAQ version 5.0.2 and its configuration 
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used for the study is described in detail by Hogrefe et al. [2014] for the second phase of the Air 

Quality Model Evaluation International Initiative (AQMEII) study with the difference being that 

the offline version of CMAQ is used in this research.  The CMAQ model uses the Carbon Bond 

mechanism CB05 for gas-phase chemistry, aerosol 6 module (AE6), and in-line point source, 

biogenic and dust emissions.  The CMAQ model uses the same ACM2 PBL scheme as the WRF 

simulations for consistent PBL evolution, which is crucial for modeling boundary layer mixings 

of air pollutant concentrations.  The AQ simulation uses 2006 CMAQ-ready emission data which 

are generated for the AQMEII Phase 2 study and are described in detail by Pouliot et al. [2014].  

The chemical boundary conditions are based on the Monitoring Atmospheric Composition and 

Climate Interim Implementation (MACC-II) as described by Innes et al. [2013]. 

The WRF simulations are conducted over the 40-day period from August 1 to September 

9, 2006 and the CMAQ simulations are conducted for the 30 days from August 1 to August 30 

over the North America 12km domain. The 12-km domain covers the conterminous US, southern 

Canada, and northern Mexico with 299 by 459 grid cells and 34 vertical levels extending from 

the surface to the 50-hPA level.  The land use data used are processed from 2006 NLCD at 30m 

resolution for the US and MODIS land cover data at 500m resolution for the areas outside the 

US using the Spatial Allocator Raster Tools [Ran and Hanna, 2014].  For the base model albedo 

is specified by the land use category lookup table along with the maximum and minimum LAI 

and VF used in equations 2.2 and 2.3.  The following four WRF simulation scenarios and two 

CMAQ simulation scenarios are conducted for evaluation: 

Four WRF scenarios: 

1. Base case: standard WRF 

2. LAI-FPAR case: modified WRF with MODIS LAI and FPAR input 
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3. Albedo case:  modified WRF with MODIS BRDF/albedo parameter input 

4. LAI-FPAR-albedo case: modified WRF with MODIS LAI, FPAR, albedo parameter 

input    

Two CMAQ scenarios: 

1. Base case:  CMAQ with WRF Base case meteorology  

2. LAI-FPAR-albedo case:  CMAQ with WRF LAI-FPAR-albedo case meteorology 

Pair-comparison, statistical evaluation, and visualization of WRF/CMAQ simulation 

performance compared to observations are conducted using the Atmospheric Model Evaluation 

Tool (AMET) [Gilliam et al. 2005, Appel et al., 2010]. The Meteorological Assimilation Data 

Ingest System (MADIS) observation data from the US National Oceanic and Atmospheric 

Administration (NOAA) are used for meteorology comparison.  The US EPA Air Quality 

System (AQS), the National Atmospheric Deposition Program (NADP), and other air quality 

network data are used for AQ evaluation.  In addition, surface flux measurements from 

FLUXNET and precipitation analysis data from the Parameter-elevation Relationships on 

Independent Slopes Model (PRISM) [Daly et al., 2008] are also used in evaluating the simulation 

results.  Similar to many other WRF/CMAQ studies [e.g. Gilliam and Pleim, 2010; Appel et al. 

2011; Hogrefe et al., 2014], interpolation or any other types of adjustments are not applied in the 

evaluation to account for the difference between the site observations and the model estimates at 

the grid cell level.        

2.4 Results and Analysis 

Evaluations of meteorology simulations and their impacts on air quality have been the 

focus of many studies [Gego et al., 2005; Gilliam et al., 2006; Vautard et al., 2012].  Grid cell 

volume-averaged results of temperature, moisture, wind speed, and precipitation from 



24 

 

meteorology simulations are often compared with surface-based point measurements.  Statistics 

such as mean bias (BIAS), mean absolute error (MAE), root-mean-squared-error (RMSE), 

standard deviation (StDev) and index of agreement for the model-to-observation differences are 

often computed for model grids with surface measurements to evaluate model performance.  For 

this paper BIAS in space over a period will be mainly used to evaluate how the model performs 

spatially with the input of MODIS data.  Overall domain-wide evaluation statistics (BIAS, MAE, 

and StDev) for 2 m T and Q and 10-m wind speed for the four meteorology scenarios are similar 

and well within typical model performance benchmarks [e.g. Gilliam et al., 2006].  The 10-m 

wind evaluation statistics are very much the same for the four scenarios.  Thus, surface 

temperature and mixing ratio, surface fluxes of sensible and latent heat, O3 concentration and 

dry deposition velocity, and NH4 wet deposition are the foci in the following comparisons and 

evaluation. 

2.4.1 Surface T, Q and O3 

Figure 2.4 shows the 2 m T and Q statistical metrics of BIAS, MAE, and StDev from the 

base case and LAI-FPAR case versus observation range.  The statistical metrics are computed 

using all MADIS sites within the domain and their matched-grid simulated meteorology over the 

period from Aug. 10 – Sept. 9, 2006.  The first 9 days of simulation are excluded from the 

analysis because soil moisture fields need to be sufficiently spun up from the simple generic 

initializations.  The 2 m T StDev is fairly constant at around 2 K over the observed temperature 

range for both cases while the MAE is below 2 K for all but the lowest end of the observed 

temperature range.  The main differences between the 2 cases are the reduced error and cold bias 

at the high end of the observed 2 m T range for the MODIS LAI-FPAR run and the practical 

elimination of the wet bias in 2 m Q below 14 (g kg
-1

). 
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Figure 2.5 shows differences in 2 m T (top) and Q (bottom) biases between the LAI-

FPAR case and the base case for all MADIS observation sites averaged over Aug. 10 – Sept. 9, 

2006.  The absolute value of the bias is less for the LAI-FPAR case at all sites where the bias 

difference is negative and greater for all sites with positive differences.   Thus, these statistics do 

not indicate which case is hotter or wetter at each site but rather which has less absolute bias.  

However, in this analysis it is clear that the LAI-FPAR case which has much lower VF than the 

base case in the drylands of the west is generally hotter and dryer in these areas because more 

surface radiation is partitioned into SH and less into LE resulting in higher 2 m T and lower 2 m 

Q.  Thus, in the areas where the LAI-FPAR case is hotter and dryer, the warm bias is increased 

but wet bias decreased compared to the base case.  This suggests that the exaggerated VF and 

LAI in the western drylands for the base case tends to reduce an inherent tendency toward hot 

biases in the 2 m T at the expense of increased wet biases in the 2 m Q.  Thus, using more 

accurate vegetation descriptions, such as from MODIS data, gives mixed results compared to the 

base case with greater warm bias in 2 m T but reduced bias in 2 m Q. 
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Figure 2.4.  Statistical metrics (y axis) vs. observation range (x axis) for 2 m T (K) and Q (g kg
-1

) 

over the period from Aug. 10 – Sept. 9, 2006.  The top plots are for 2 m T and the bottom for 2 m 

Q.  The two plots on the left are from the base case meteorology and the plots on the right are 

from the LAI-FPAR case. 

The plots from the albedo case and LAI-FPAR-albedo case are not included in figure 2.4 

because the albedo case 2 m T and Q plots are very similar to the base case plots and the LAI-

FPAR-albedo case plots are similar to the LAI-FPAR case plots.  On the average for this summer 

period simulation, albedo has little impacts on the system performance.  This is likely 

attributable to the similarity of the MODIS albedo to the base albedo prescribed by the land use 

lookup table during the summer season (see figure 2.3).  However, during the winter and 
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especially the spring and fall transitional seasons, the MODIS albedo differs from the base 

albedo to a much greater degree.  This will be investigated further in future work.         

 

Figure 2.5.  Mean Bias Difference (LAI-FPAR Case – Base Case) spatial and histogram plots 

over the period from Aug. 10 – Sept. 9, 2006.  The top row is for 2 m T (K) and the bottom row 

is for Q(g kg
-1

). 

The differences of 2 m T and Q in the two cases are further investigated through 

comparisons against two ASOS observation sites that are typical of very dry climates in the US 

southwest over an 11-day period (figures 2.6 and 2.7).  The KDAG site is located at Barstow 

Daggett County Airport, California, which is in a sparsely vegetated dry desert landscape.  The 2 

m Q from the LAI-FPAR case is reduced in comparison with the base case and closer to the 
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measurements for most hours after Aug. 20.  For 2 m T, the LAI-FPAR case performs much 

better compared to measurements for the peak 2 m T than the base case for most of the days .  

Thus, in general, reduced VF in the LAI-FPAR case causes reduced 2 m Q and increased 2 m T.  

Note that modeled daily minimum 2 m T is too warm for both cases which results in average 

daily biases that are lower for the base case even though the LAI-FPAR shows significantly 

better daily maximum 2 m T.   

The KPGA site is located at the Page Municipal Airport, Arizona where to the east is 

sparsely vegetated desert land, to the west is the small city of Page, AZ, and to the north is Lake 

Powell that extends into Utah.  Similar to the KDAG site, the LAI-FPAR case has much lower 2 

m Q than the base case.  From August 18 to 23, the modeled 2 m Q in the LAI-FPAR case 

matches the observations quite well while the base case is much wetter.  At this site, the LAI-

FPAR case has the peak 2 m T consistently too high and the base case has the peak 2 m T 

matching the observations well.  Unlike the KDAG site, daily minimum 2 m T agrees well with 

the measurements for both cases.  Thus, the smaller daily average 2 m T bias for the base case 

reflects a more accurate simulation throughout the diurnal cycle than the LAI-FPAR case.  In 

conclusion, the LAI-FPAR case reduces the wet bias in the base case at both sites; but it reduces 

cool bias in the peak 2 m T for one site and causes warm bias in the peak 2 m T for another site. 
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Figure 2.6.  ASOS measurement site 2 m T (K) and Q (g kg
-1

) time series comparison for the 

period from Aug. 15-25, 2006. KDAG site is in black line, LAI-FPAR case is in red line, and 

base case is in blue line. Site grid cell has VF 0.669 and LAI 2.282 for the base case and VF 

0.186 and LAI 1.258 for the LAI-FPAR case. 
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Figure 2.7.  ASOS measurement site 2 m T (K) and Q (g kg
-1

) time series comparison for the 

period from Aug. 15-25, 2006. KPGA site is in black line, LAI-FPAR case is in red line, and 

base case is in blue line. Site grid cell has VF 0.580 and LAI 1.918 for the base case and VF 

0.105 and LAI 1.227 for the LAI-FPAR case. 

The temperature (particularly day time temperature) has strong influence on ozone 

formation in the atmospheric boundary layer [Rasmussen et al., 2012].  The impacts of the 

MODIS LAI-FPAR input on the near surface ozone concentration in the PX LSM WRF/CMAQ 

system is demonstrated in figure 2.8 which shows mean bias difference between the LAI-FPAR-

Albedo case and base case CMAQ simulation over the period from Aug. 10-30, 2006.  The mean 

bias difference spatial plot shows that the daily maximum 8-hour average O3 (ppb) from the 

LAI-FPAR-Albedo case is increased for most of the AQS sites in the west, particularly in the 
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southwest where 2 m T increases the most.  Many AQS sites (in grey color) in the east show very 

little change for the modeled O3 and some (in green) show improvement in the O3 estimation in 

the same areas of improved 2 m T (compare to figure 2.5).  Overall the modeled ozone in the 

CMAQ run with MODIS input meteorology has a greater high bias: 12.6 ppb in comparison with 

the high bias of 9.94 ppb in the base model due to hotter 2 m T, particularly in the SW.  Figure 

2.9 shows that most of the ozone high bias occurs when the observed ozone concentration is low 

for both model cases.  This tendency to over predict at the low end of the concentration range 

and under predict at the high end is a persistent characteristic of most air quality models [Im et 

al., 2015; Solazzo el al., 2012; Foley et al., 2010].  With the MODIS input, under prediction at 

the high end is slightly improved.  For limited area regional modeling the lateral boundary 

conditions (LBC) have strong influence on daytime ozone concentrations.   Comparisons of 16 

model applications of eight different air quality models as part of the AQMEII study, reported by 

Im et al. [2015], showed that all models have highest maximum 8-hr average ozone 

concentration biases at the low end of the observed range and nearly all greatly under estimate 

the high end of the range.  For their study all models used 3-D daily LBC from the MACC re-

analysis [Inness et al., 2013] produced by assimilating satellite observations of O3, CO and NO2 

in the coupled system IFS-MOZART [Flemming et al., 2009].  Analysis of MACC data along 

with the model results showed the same behavior of overestimating the low end and 

underestimating the high end [Im et al., 2015].      
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Figure 2.8.  Mean bias difference (CMAQ LAI-FPAR-Albedo Case – Base Case) spatial plot for 

daily maximum 8-hour average O3 (ppb) over the period from Aug. 10-30, 2006.   

 

 

Figure 2.9.  Mean bias (MB) and root mean square error (RMSE) of daily maximum 8-hour 

average O3 (ppb) over the binned observation range for CMAQ LAI-FPAR-Albedo Case (in red) 
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and Base Case (in blue) from Aug. 10-30, 2006.  Line length is for the range of MB and RMSE, 

triangle for the median, and asterisk for the mean.    

2.4.2 Surface Fluxes and PBLH 

The changed surface characteristics through the use of the MODIS input have direct 

impacts on surface fluxes and PBLH.  Modeled latent heat (LE) and sensible heat (SH) fluxes 

from the base case and the LAI-FPAR case are compared with the FLUXNET measurements at 

the Tonzi Ranch site in California.  Figure 2.10 shows that LE from the base case (in red) is 

much too high in comparison with the LAI-FAPR case (green) and the site measurements (blue).  

LE from the LAI-FPAR case matches the site observations much better for the period.  SH from 

the base case is too low and SH from the LAI-FPAR case is higher and agrees better with the 

FLUXNET measurements.  The Tonzi Ranch site, which is used in the LAI evaluation in Section 

2 (see figure 2.1), has too high LAI and VF in the base case that compensates for high 2 m T bias 

by increasing soil moisture through the PX LSM soil moisture nudging scheme.  The increased 

soil moisture causes more surface radiation energy being partitioned into LE (too high LE) and 

less energy into SH (too low SH).  In contrast, much more realistic low LAI and VF from the 

MODIS input in the LAI-FPAR run result in much better LE and SH estimates.          
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Figure 2.10.  Tonzi-CA FLUXNET measurement latent and sensible Heat (W m
-2

) comparison 

for the period from Aug. 8-13, 2006.  FLUXNET site is in blue line, base case is in red line, and 

LAI-FPAR case is in green line. 

Spatial differences between the model with MODIS input and the base model are also 

evaluated by examining differences at 20 UTC each day averaged over the period from August 

10 to September 9.  Figure 2.11 shows the differences of modeled LE, 2 m T, and PBLH between 

the LAI-FPAR and base model runs.  MODIS LAI is higher (around 6) in heavily vegetated 

areas and lower (around 1) in the dryland west.  MODIS LAI is lower in Florida as well as in the 

boreal forest areas compared to the base WRF LAI.  As expected, LE from the LAI-FPAR case 

is much lower in the west, particularly in the southwest where MODIS LAI is much lower than 

the base WRF LAI and correspondingly LE in this region is 100 to 150 (W m
-2

) lower than that 

in the base case.  Some boreal regions and Florida also have lower LE (around 50 – 100 W m
-2

) 

in the LAI-FPAR case due to the reduced LAI from MODIS input.  2 m T is around 1 to 2.5 

degrees higher in most of the west and around 0.5 degree higher in Florida and many boreal 

areas where LE is lower.  The PBLH from the LAI-FPAR case is much higher by around 300 m 

to 500 m in many western areas and is higher (about 100 m) in many boreal areas and Florida 
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where surface layer T is also higher.  However, differences of LE, 2 m T, and PBLH are not 

obvious in the heavily vegetated areas in most of the eastern US.   

 

 

Figure 2.11.  LAI for 20Z, August 10, 2006 and average differences of latent heat (W m
-2

), 2 m T 

(K), and PBLH (m) between the LAI-FPAR case and base case for 20 UTC from August 10 to 

September 09, 2006.   

The PX WRF albedo does not show diurnal changes and has much less spatial variation 

than the MODIS albedo, which is computed with varying SZA from BRDF/albedo parameters 

(figure 2.12).  The MODIS albedo is generally lower in vegetated areas, particularly coniferous 

forests in the south, boreal regions, and high mountains in the west.  Barren and desert areas in 

the west, particularly salt flats west of the Great Salt Lake in Utah and parts of Arizona and New 

Mexico, have much higher albedo (more than 30%).  The higher albedo areas have lower surface 

skin temperature (by around 1.5 degree) in the MODIS albedo case.  In contrast, the lower 
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albedo areas over coniferous forest regions have higher surface skin temperature by around 0.5 

to1.5 degrees).  Over cooler surface areas, 2 m T is proportionally lower (by around 1 degree) 

and warmer surface areas have higher 2 m T by around 0.5 to 1 degree.  The PBLH difference 

has similar patterns as the surface skin T and 2 m T differences, particularly over the salt flats in 

Utah where PBLH is about 200 m lower in the albedo case than for the base model.  It is 

important to note that the legend scales are much smaller in figure 2.12 than those in figure 2.11.  

MODIS albedo has much less impacts than MODIS LAI and FPAR on the meteorology 

simulations in general.   

 

Figure 2.12.  Albedo (fraction) for 20Z, August 10, 2006 and average differences of surface skin 

T (K), 2 m T (K) and PBLH (m) between the albedo case and the base case for 20 UTC from 

August 10 to September 09, 2006.   

The ozone dry deposition flux has a strong stomatal pathway in vegetated areas [Wesely 

et al., 1982; Padro, 1996; Fuentes et al., 1992].  In CMAQ the dry deposition model is designed 
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to use the same aerodynamic and bulk stomatal conductance computed for evapotranspiration in 

WRF with the PX LSM [Pleim et al., 2001] for consistency.  Thus, the change of surface 

vegetation characteristics with the MODIS input as well as the resulting meteorology have 

significant impacts on the surface ozone flux and further effects on ozone concentration.  The 

change of ozone deposition velocity and surface-layer concentration due to the use of the 

MODIS input is demonstrated in figure 2.13 for 20Z on August 10, 2006.  The difference in 

ozone deposition velocity between the CMAQ LAI-FPAR-albedo case and base case follows the 

same pattern as LE differences resulting from the changed LAI and vegetation cover (see figure 

2.11 and figure2. 2).  The deposition velocity is lower in the west, the boreal regions, and Florida 

due to the lower LAI and vegetation cover with the MODIS vegetation input and relatively high 

in the dense vegetation areas such as the east, Pacific Northwest, and Sierra Madres Occidental 

(western Mexico).  The surface ozone concentration differences exhibit corresponding patterns 

resulting primarily from the 2 m temperature differences and deposition velocity differences.  

With the MODIS input, the areas with the low deposition velocity and high 2 m T tend to have 

higher surface ozone concentration by up to 10 ppb even though there is a substantial increase in 

PBLH in these same areas that increases dilution.   
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Figure 2.13.  Difference of ozone deposition velocity (cm s
-1

) and ozone concentration (ppmV) at 

the surface layer between the CMAQ LAI-FPAR-albedo case and base case for 20Z, August 10, 

2006.  

2.4.3 Precipitation and NH4 Wet Deposition 

Differences in surface fluxes, temperature, mixing ratio, and PBLH also affect cloud 

formation and precipitation.  Figure 2.14 shows the August domain-wide precipitation 

differences between the base case and the PRISM precipitation (left plot) and between the LAI-

FPAR case and PRISM precipitation (right plot). The greatest difference between the two cases 

is that the large overestimation of precipitation in the Southwest (SW) plains and Colorado (CO) 

and New Mexico (NM) Mountains in the base case is greatly reduced in the LAI-FPAR case 

while the dry bias in the desert SW is increased.  In general, precipitation is less in the western 

drylands in the LAI-FPAR case compared to the base case resulting in reduced biases where the 

base model was too wet (e.g. northern mountains and parts of Texas) but larger biases where the 

base model was too dry (e.g. Northern plains and desert SW).  However, the MODIS vegetation 

input does not have much influence on the precipitation in the east where difference in LAI and 

VF are less extreme. 
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Figure 2.14. Monthly precipitation difference (mm) of the LAI-FPAR case and the base case 

from the PRISM precipitation for August 2006.  

The precipitation modeled by the two cases is also evaluated against precipitation 

measured at the NADP sites in figure 2.15.  While, a majority of the sites do not show big 

differences (grey color) between the two cases, the sites in the SW plains and CO and NM 

Mountains show big improvements with much less precipitation bias in the LAI-FPAR-Albedo 

case, which is consistent with the results displayed in figure 2.14.  Many sites in the central 

plains also show modest improvements (green colors).  Precipitation mean biases at most NADP 

sites in the east do not show much difference with the input of MODIS data.  Overall, with the 

MODIS input the average mean bias for the NADP site precipitation is reduced to -14.22 mm 

dry bias from 40.89 mm wet bias in the base model for the month of August 2006.  Despite the 

improved precipitation, the modeled wet deposition of NH4 at the NADP sites with the input of 

MODIS data (figure 2.16) did not show clear similar improvement patterns as the precipitation.  

Many NADP sites such as those near the Great Lakes show some improvement and others, such 

as a few sites in North Carolina show increased bias.  Overall, the simulation with the MODIS 

input has same mean bias (-0.02kg ha
-1

) as the base simulation for the month of August 2006.        
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Figure 2.15.  Mean bias difference of precipitation (mm) between the LAI-FPAR-Albedo case 

and the base case at the National Atmospheric Deposition Program (NADP) sites for August. 
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Figure 2.16.  Mean bias difference of NH4 wet deposition (kg ha
-1

) between the LAI-FPAR-

Albedo case and the base case at the National Atmospheric Deposition Program (NADP) sites 

for August. 

2.5 Conclusions and Future Work 

The replacement of vegetation characteristics (LAI and VF) and surface albedo, which 

are currently specified by LSM land-use category look-up tables, with MODIS satellite products 

in the PX LSM is clearly a significant advance adding more realism to the WRF-CMAQ 

modeling system.  However, comparisons between model simulations including the MODIS 

inputs and the base model show mixed results.  The largest effect of the MODIS inputs is hotter 

and dryer conditions in the dry climate regions of western North America due to substantially 

less vegetation coverage (derived from MODIS FPAR) and LAI.  Clearly, the more accurate, 

reduced vegetation has strong effects reducing LE and 2 m Q while increasing surface skin T, 2 

m T and PBLH.  The sparser vegetation described by the MODIS data substantially reduces 
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evapotranspiration and ozone dry deposition velocity.  The combined effects of reduced 

deposition and higher temperatures in the western arid regions result in greater ozone 

concentrations even though deeper PBL depths tend to increase dilution of surface air pollutants.  

Thus, including the MODIS vegetation description tends to increase over-prediction of ozone at 

the low end of the observed concentration range but decrease under-prediction at the high end of 

the concentration range.     

Evaluation of the two WRF modeling cases generally indicates greater error and bias in 2 

m T but reduced error and bias in 2 m Q for the MODIS case compared to the base case.  

However, site meteorology measurement comparisons indicate improvement of peak 2 m T for 

some areas due to improved LE estimates.  The input of MODIS vegetation and albedo data 

seems to have little effect on minimum 2 m T based on the two ASOS site comparison results.  

Thus, the increase in daily average 2 m T bias for the LAI-FPAR case that is widespread over the 

west may not always reflect degraded model performance depending on the model biases in 

minimum 2 m T.  In some cases (e.g. KDAG shown in Fig 6) the base case has lower daily 

average 2 m T bias because the minimum 2 m T is over-predicted while the maximum 2 m T is 

under-predicted.    Meanwhile, the MODIS case better matches the observed maximum 2 m T at 

this site but similarly over-predicts the minimum 2 m T resulting in a larger diurnal average bias.  

Thus, good daily average temperature performance in the base model is sometimes the result of 

compensating errors and masks separate problems in simulating processes determining daytime 

minimum and maximum temperatures. 

In comparison with the MODIS LAI and FPAR, MODIS albedo has much less impact on 

the meteorology simulations in general.  Even though overall domain-wide evaluation statistics 

(BIAS, MAE, and StDEV) for 2 m T and Q and 10-m wind speed are almost identical between 
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the simulations with and without MODIS albedo input, model-to-model 20 UTC 30-day average 

comparisons of skin T, 2 m T, and PBLH between the two simulations do show differences due 

to changed albedo.  Barrens and deserts in the west tend to have higher albedo which results in 

lower surface skin T, 2 m T, and PBLH while coniferous forest in the south, boreal regions and 

high mountains in the west tends to have lower albedo which corresponds to higher skin T, 2 m 

T, and PBLH. 

With the input of MODIS LAI and FPAR, precipitation is reduced compared to the base 

case which results in lower biases where the model tended to be too wet but increased low biases 

where the model tended to be too dry.  Overall, with the MODIS input the average mean bias for 

the NADP sites precipitation is reduced while the modeled NH4 wet deposition at the NADP 

sites with the input of MODIS data did not show clear similar improvement patterns as the 

precipitation.  Note that the LAI and VF in the PX LSM were intentionally over-estimated in the 

base model so that the soil moisture nudging scheme could be more effective in optimizing 

surface T and Q.  As a result, the base model achieved low errors in 2 m T by exaggerating LE 

both by the inflated vegetation and by the soil moisture nudging scheme which increases root 

zone soil moisture in response to hot and dry biases. 

A significant conclusion of this study is that in the current PX LSM the combination of 

the soil moisture nudging scheme and the exaggerated base vegetation coverage and LAI in the 

western arid regions compensates for an inherent tendency toward hot biases in low vegetation 

areas.  This conclusion suggests that improvements should be made in the model physics, 

particularly the LSM.  Upgrades to the PX LSM are underway, including a biochemically-based 

photosynthesis-conductance scheme following the studies for climate LSMs [Sellers et al., 1996; 

Calvet et al., 1998; Dai et al., 2004; Krinner et al., 2005; Bonan et al., 2011; Clark et al., 2011; 
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Kowalczyk et al., 2013; Oleson et al., 2013].  As WRF/CMAQ with the PX LSM has been 

applied for annual simulations, the lack of the coupled leaf photosynthesis and stomatal 

conductance could limit not only the model’s dynamic responses to environmental conditions 

such as temperature, air pollutants (e.g. O3) and CO2 concentration but also their applications in 

assessing the coupling effects of air quality and vegetation productivity in changing climate 

[Sitch et al., 2007; Lombardozzi et al., 2012].  The addition of a third soil layer to the force-

restore soil model following the advances in ISBA described by Boone et al. [1999] may allow 

the LSM to simulate deep root zone moisture better (e.g. vegetation in the dryland west).  

Furthermore, there is an ongoing effort to improve the PX LSM land use scheme with biome, 

phenology, rainfed and irrigated crop, and C3/C4 grass information for better landscape 

characterization.  Since this analysis focusses only on a short period in the summer (August-

September 2006) the advantages of satellite derived vegetation and albedo data for describing 

seasonal changes are not included.  Year-long modeling studies that cover entire annual cycles 

are ongoing and the effects of more accurate representation of seasonal changes in natural and 

cultivated vegetation and changes due to human and natural disturbances (e.g. severe drought, 

fire and storm damages, and construction activities) will be fully explored in the coming 

research.  
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CHAPTER 3: IMPROVED METEOROLOGY FROM AN UPDATED WRF/CMAQ 

MODELING SYSTEM WITH MODIS VEGETATION AND ALBEDO
2
 

 

Abstract 

Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality 

modeling system WRF/CMAQ (Weather Research and Forecast model and Community 

Multiscale Air Quality model) that employs the Pleim-Xiu land surface model (PX LSM).  

Recently, PX LSM WRF/CMAQ has been updated in vegetation, soil, and boundary layer 

processes resulting in improved 2 m temperature (T) and mixing ratio (Q), 10 m wind speed, and 

surface ozone simulations across the domain compared to the previous version for a period 

around August 2006.  Yearlong meteorology simulations with the updated system demonstrate 

that MODIS input helps reduce bias of the 2 m Q estimation during the growing season from 

April to September.  Improvements follow the green up in the southeast from April and move 

towards the west and north through August.  From October to March, MODIS input does not 

have much influence on the system because vegetation is not as active.  The greatest effects of 

MODIS input include more accurate phenology, better representation of leaf area index (LAI) for 

various forest ecosystems and agricultural areas, and realistically sparse vegetation coverage in 

the western drylands.  Despite the improved meteorology, MODIS input causes higher bias for 

the surface O3 simulation in April, August, and September in areas where MODIS LAI is much 

                                                           
2 This chapter is accepted as an article in the Journal of Geophysical Research: Atmospheres in January 2016.  The 

article is submitted as: Ran, L., J. Pleim, R. Gilliam, F. S. Binkowski, C. Hogrefe, and L. Band “Improved 

Meteorology from an Updated WRF/CMAQ Modeling System with MODIS Vegetation and Albedo”. 



54 

 

less than the base LAI. Thus, improvements may be needed in the CMAQ dry deposition model 

for low LAI areas where deposition on the soil surface becomes important. 

3.1 Introduction 

Air quality (AQ) modeling systems are generally composed of three major components 

representing emissions, meteorology, and chemical transport and transformation.  The National 

Center for Atmospheric Research (NCAR) Weather Research and Forecast (WRF) model 

[Skamarock et al., 2008] and the United States (U.S.) Environmental Protection Agency (EPA) 

Community Multiscale Air Quality (CMAQ) model [Byun and Schere, 2006] – WRF/CMAQ, is 

an important combined meteorology and air quality modeling system which has been used 

around the world for various AQ and climate studies as well as policy development [Wang et al., 

2010; Compton et al., 2011; Hogrefe et al., 2014; Xing et al., 2015].  The accuracy of the 

modeling system depends not only on the completeness of the model algorithms for key 

processes but also the accuracy of input data including emission sources, meteorology and AQ 

initial and boundary conditions, and geospatial data describing surface characteristics such as 

land cover, vegetation, and albedo.  Improving spatial and temporal distributions of modeled air 

pollutant concentrations and deposition in WRF/CMAQ is an ongoing effort [e.g., Pleim at al., 

2013; Sarwar et al., 2014] because uncertainties still exist [Foley et al., 2010; Appel et al. 

2011a] in many components of this complex modeling system including emissions, transport, 

photochemistry, and land surface exchange.  Our research aims to use spatial and temporal land 

surface data generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

vegetation and albedo products to improve the land surface model (LSM) processes, which 

simulates the exchange of heat, moisture, momentum, and trace atmospheric chemicals between 

the land surface and the atmosphere in retrospective WRF/CMAQ modeling. 
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Among the LSMs available in WRF, the Pleim-Xiu (PX) LSM [Pleim and Xiu, 1995; Xiu 

and Pleim, 2001] is often used in retrospective WRF/CMAQ simulations [Appel et al., 2011a; 

Rogers et al., 2013; Hogrefe et al., 2014] because it is mainly designed for air quality 

simulations where the WRF LSM parameters (e.g. stomatal and aerodynamic resistances) are 

consistently used in the CMAQ dry deposition model.  In addition, the same planetary boundary 

layer (PBL) model, the Asymmetric Convective Model version 2 (ACM2) [Pleim, 2007a, 

2007b], can be used in both WRF and CMAQ consistently.  The PX LSM was developed based 

on the Interactions Soil Biosphere Atmosphere (ISBA) LSM model from Meteo-France and 

originally designed for mesoscale meteorology modeling [Noilhan and Planton, 1989; Noilhan 

and Mahfouf, 1996].  Following the consideration by Noilhan and Planton [1989] to minimize 

the parameters required in describing the physics (particularly for soil processes with many 

uncertainties and heterogeneities within the mesoscale grid scale), PX LSM has relatively simple 

process schemes with a modified ISBA Jarvis-type stomatal conductance approach [Jarvis, 

1976] and two-layer soil model (top 1 cm and the 1 m whole soil column) using the force restore 

algorithm to estimate soil temperature [Bhumralkar, 1975; Blackadar, 1976] and moisture 

[Deardorff, 1977].  A simple indirect data assimilation scheme is used for retrospective 

meteorology simulations where soil moisture and temperature are continuously adjusted to 

minimize model errors in 2 m temperature (T) and mixing ratio (Q), compared to observed 

surface analyses with nudging coefficients based on model parameters such as solar radiation, 

temperature, leaf area, vegetation coverage, and aerodynamic resistance [Pleim and Xiu, 2003; 

Pleim and Gilliam, 2009], in contrast with the statistically derived data assimilation functions 

[Mahfouf, 1991; Bouttier et al., 1993; Douville et al., 2000] used in ISBA.  While the nudging 

coefficients are designed to be most effective when the coupling between the soil and the air is 
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strongest (i.e. when surface fluxes are large), there can occasionally be other model errors, such 

as erroneous modeled precipitation or cloud cover, that cause the indirect soil data assimilation 

scheme to degrade results.  Despite these issues, continuously adjusting soil moisture and 

temperature in PX LSM based on re-analysis fields effectively reduces overall errors in 

simulating surface 2 m T and Q as well as 10 m wind [Rogers et al., 2013; Carvalho et al., 

2014].   

Improvements to LSMs can be approached from two directions.  One is by including 

sufficiently realistic representations of physical processes including slow vegetation processes 

such as those in Earth system models [Bonan et al., 2011; Clark et al., 2011; Niu et al., 2011; 

Kowalczyk et al., 2013; Oleson et al., 2013].  The other is by parameter constraints or data 

assimilation based on ground or satellite observations to have more realistic surface 

representation and to optimize parameter estimation [Douville et al., 2000; Pleim and Gilliam, 

2009; Moore et al., 2010; Baker et al., 2010; Lawrence et al., 2011; Barbu et al., 2011; Dee et 

al., 2011; Ran et al., 2015].  Prentice et al. [2015] suggests that the dominant paradigm in 

current generation LSM development emphasizes too much on realistic representation of 

physical processes including unknown variability at the expense of model reliability and 

robustness.  They propose that parameter constraints for biological and hydrological processes 

with unknown variability and data assimilation techniques for model evaluation and 

enhancement should be included in the next-generation LSMs.  For retrospective WRF/CMAQ 

simulations, the proposed direction is particularly relevant because reliability and accuracy are 

key goals of the modeling system that is often used as an air quality policy decision support tool.                      

Leaf area index (LAI), vegetation fraction (VF), and surface albedo are important 

parameters controlling surface energy partitioning, latent heat (LH) and sensible heat fluxes, and 
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the deposition of various atmospheric gases and particles in WRF/CMAQ.  ,Many studies have 

demonstrated a  benefit of using satellite surface data for more accurate model parameters that 

improve model performance [Liang et al., 2005; Alton, 2009; Baker et al., 2010; Lawrence et al., 

2011; Moore et al., 2010; Barbu et al., 2011; Boussetta et al., 2015].  Despite many satellite 

surface products currently available in near real-time, retrospective WRF/CMAQ simulations for 

studies related to air quality assessment, policies, and applications [Eder et al., 2009; Kelly et al., 

2014; Hogrefe et al., 2014] still use vegetation parameters and surface albedo that are specified 

in LSM look-up tables and rely on simple deep soil temperature dependent functions to model 

plant phenological dynamics [Xiu and Pleim, 2001].  Ran et al. [2015] evaluated LAI, VF, and 

surface albedo prescribed in the current PX LSM look-up tables in comparison with the 

Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation parameters and surface 

albedo and against ground measurement data.  They show that the current PX LSM intentionally 

exaggerates LAI and VF in arid regions in order to have more effective soil moisture nudging in 

simulating 2 m T and Q. The PX LSM simple seasonal LAI and VF adjustment fails to capture 

the western dryland vegetation patterns because greenness in the west is mainly controlled by 

available moisture rather than temperature during dry and hot seasons (summer and autumn).  In 

contrast, seasonal and spatial vegetation variations are well captured in MODIS data, particularly 

in the north and west regions.  In addition, the MODIS vegetation data captures more spatial 

heterogeneity than the land use category based lookup tables, which can influence model bulk 

results. Their evaluation also shows that albedo from the current PX LSM WRF lacks diurnal 

and seasonal variation with changing solar zenith angle (SZA) and land surface properties.  

Compared with the albedo calculated in the current PX LSM WRF, MODIS albedo does well in 

describing the heterogeneous surface for areas without snow coverage.  However, the evaluation 
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of incorporating MODIS LAI, fraction of absorbed photosynthetically active radiation (FPAR) 

(used as surrogate for VF), and albedo into WRF/CMAQ simulations for more than a month 

summer period in 2006 show mixed results with overall reduced bias and error in Q but greater 

bias and error in T.  The raised T and reduced ozone dry deposition velocities in the much less 

vegetated western North America resulted in higher ozone estimation.  The mixed results from 

the WRF/CMAQ simulations with more accurate MODIS surface representation suggest that 

improvements may be needed in the surface physics of the modeling system [Ran et al., 2015].               

The most recent version of the WRF/CMAQ modeling system developed at EPA since 

the study by Ran et al. [2015] has improvements and updates in the soil, vegetation, and 

planetary boundary layer (PBL) processes [Pleim et al., 2015].  This research presented here 

furthers the work by Ran et al. [2015] through using the improved WRF/CMAQ for an annual 

simulation.  The goal of this study is to apply year-long MODIS LAI, FPAR, and albedo to the 

updated WRF/CMAQ system and demonstrate the benefit of using the annual MODIS data with 

realistic spatial and temporal surface and vegetation variations (e.g. phenology).  The questions 

which the papers addresses are: (i) how does MODIS input influence the updated WRF/CMAQ 

modeling system meteorology (T, Q, and wind speed) , (ii) does phenology from MODIS 

vegetation help improve meteorology simulations over the changing seasons, and (iii) how does 

MODIS input influence air quality simulations in the updated system (O3)?  The study focuses 

on the annual WRF simulations and a subset of CMAQ simulations over three selected periods in 

spring, summer, and fall of 2006 using a U.S. 12-km grid domain.  The improvements to the 

vegetation and soil processes in the WRF/CMAQ system since the study by Ran et al. [2015] are 

presented in section 2.  The methodologies, MODIS vegetation and albedo data, and ground 

measurements used in the model simulations and evaluation are described in section 3.  Results 
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and analyses are presented in section 4 with simulated yearlong meteorology and three season 

AQ results using the improved system comparing simulations that used table-prescribed surface 

data to simulations using MODIS inputs.  Both model runs are evaluated in detail against ground 

measurements and the simulation results from the previous research by Ran et al. [2015] to show 

value added and limitations of the revised model.  The last section presents conclusions and 

future plans.   

3.2 Vegetation and Soil Process Improvements 

The updated WRF/CMAQ contains changes to vegetation and soil processes in the PX 

LSM as well as to PBL processes in ACM2 [Pleim et al., 2015].  The improvements to the 

vegetation and PBL processes are included in the releases of WRF version 3.7 (WRF v3.7) and 

CMAQ version 5.1 (CMAQ v5.1).  The description of changes to the ACM2 PBL processes are 

outlined by Pleim et al. [2015]; but the modifications to vegetation and soil processes in PX 

LSM are described in detail here.  An essential function of LSMs is partitioning of net radiation 

absorbed at the surface into sensible heat flux (H), LH flux (λE), which is expressed as the 

product of LH of evaporation (λ) times evaporative water flux (E, also called evapotranspiration  

- ET), and ground heat flux (G).   ET includes evaporation from biotic leaf transpiration and 

abiotic water evaporation from soil pores, plant litters, open water bodies, and leaf cuticle 

surfaces [Bonan, 2008].  In heavily vegetated areas, such as forest and agriculture lands, 

transpiration is usually the dominant pathway for ET [Budyko, 1974] during the growing season.  

The importance of ET is well recognized not only in atmospheric processes related to the surface 

energy budget but also hydrologic processes related to the water cycle.  Changes to LSM 

vegetation and soil processes affect H, λE, and G estimations and in turn influence convective 

turbulence which vertically mixes heat, moisture, momentum, and air pollutants within the PBL 
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and dilutes ground level concentration [Wyngaard, 2010].  Uplifted LH by atmospheric 

turbulence may be released to the atmosphere at higher altitude during condensation to form 

clouds that may result in precipitation [Sellers et al., 1997; Pielke et al., 1998].       

3.2.1 Vegetation Processes  

The stomatal conductance is a crucial parameter in estimating not only ET from biotic 

leaf transpiration [Katul et al., 2012] but also atmospheric chemicals including CO2 and gas-

phase chemical species such as O3 and NH3 [Pleim and Ran, 2011].  The PX LSM treats the 

whole canopy as a single leaf (big-leaf model) in modeling a canopy stomatal conductance (Gc) 

to gasses following the Jarvis approach at the leaf scale [Jarvis, 1976], presented in the ISBA 

LSM [Noilhan and Planton, 1989] with modifications [Pleim and Xiu, 1995] as: 

          (3.1)  

where Rstmin as well as Rstmax in the following equation 3.2 are the minimum and maximum 

stomatal resistances for each land cover type specified in the LSM land cover lookup tables.  The 

functions F1–4 represent the fractional degree (0 to 1) of stomatal closure caused by the 

environmental factors: photosynthetically active radiation (PAR), root-depth soil moisture (w2), 

relative humidity at the leaf surface (RHs), and air temperature in the canopy (Tic).  Different 

from the original Jarvis approach, the influence of ambient CO2 concentration is not included in 

the modified approach with the assumption that the CO2 concentration is constant for relatively 

short period mesoscale meteorology simulations.   F1 measures the impact of PAR (light 

intensity) on stomatal conductance or photosynthesis and is computed in the original PX LSM 

as: 

     (3.2) 
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with 

               ,     

where Rgl is a limiting factor with 30 (W m
-2

) for forest types and 100 (W m
-2

) for other 

vegetation types and Rg is the incoming solar radiation at the surface.  In the new version of the 

PX LSM in WRF v3.7, the F1 function is changed to: 

     (3.3) 

with 

               ,   if (for forest types)   

               ,   if (for other vegetation types)  

  

where PAR is changed to be 45% of solar radiation at the ground, which is a fraction commonly 

used and close to values reported in many studies [Weiss and Norman, 1985; Yu et al., 2015].  

The function was developed based on the relationship of gross primary production with PAR 

measurements shown by Clark et al. [2011] and the relationship of stomatal conductance with 

PAR measurements displayed by Bonan [2008].  Figure 3.1 displays the change of original F1 

(F1_old) and improved F1 (F1_new) functions with Rg.  The reason for changing the F1 function 

is to slightly reduce Gc in low solar radiation regimes, particularly during the evening transition 

[Pleim et al., 2015].  Thus, a reduced Gc will result in lower LH flux and more energy can be 

partitioned into sensible heat to delay the evening transition to stable conditions.  Thus, the 

improved function can help reduce wet bias tendency of 2 m Q and maintain atmosphere mixing 

longer during the evening transition in WRF/CMAQ thereby mitigating the tendency of 
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WRF/CMAQ to overestimate emitted pollutants near surface concentrations (e.g. NOx) and 

underestimate ozone.            

 

Figure 3.1.  Original (F1_old) and improved (F1_new) F1 functions with incoming solar 

radiation Rg (W m
-2

) in the PX LSM Jarvis stomatal conductance function. F1 (scalar) represents 

the impact of Rg on stomatal conductance or photosynthesis when other factors are at optimal 

conditions. F1 is computed for broadleaf forest type with assumed Rstmin=200 (s m
-1

), 

Rstmax=5000.0 (s m
-1

), and LAI=5.5(m
2
 m

-2
). 

Vegetation heat capacity is reduced in the PX LSM to mitigate observed model warm 

bias in daily low temperature (e.g. predawn) and cold bias during warming up hours in the post-

dawn morning.  The surface temperature equation in the force-restore model used in the PX-

LSM is taken directly from the ISBA LSM [Noilhan and Planton, 1989] as, 

   (3.4)  

where Tg is the surface soil layer (1 cm) temperature and T2 is the deep soil layer (1 m) 

temperature, G(t) is the surface energy forcing and  is the diurnal time scale.  Ct is a coefficient 
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that is inversely proportional to heat capacity and can be derived from the force-restore model 

[Bhumralkar, 1975; Blackadar, 1976] as:  

  , with   (3.5) 

where c is the volumetric heat capacity, d is the damping depth of the diurnal temperature wave, 

α is set to 1, and λ is the thermal conductivity. The grid cell surface soil and vegetation heat 

capacity coefficient (Ct) in the PX LSM is computed based on area-weighted parameters for soil 

(Cg) and vegetation (Cv) as: 

         (3.6) 

where vegF is the vegetation fraction for a grid cell. Cg is a function of deep soil moisture and 

soil texture type as described by Noilhan and Mahfouf [1996].   Previous versions of the PX 

LSM set Cv to an empirical value of 8×10
-6

 K m
2
 J

-1
 based on the value used by Giard and Bazile 

[2000].  As vegetation canopy characteristics changes spatially and seasonally with different 

vegetation types, the empirical value Cv contains great uncertainty.  The value was first defined 

in the ISBA LSM as 3×10
-3

 K m
2
 J

-1
 [Noilhan and Planton, 1989] and later revised to 2×10

-5
 K 

m
2
 J

-1
 [Manzi and Planton, 1994].  In the new version of the PX LSM in WRF v3.7, Cv is 

computed from equation 3.5 using the high end of the ranges of the leaf mass density, specific 

heat, and thermal conductivity reported by Jayalakshmy and Philip [2010] resulting in a value of 

Cv = 1.2×10
-5

 K m
2
 J

-1
.                             

3.2.2 Soil Processes 

Soil resistance is a crucial parameter in controlling ET from the bare-soil surface in 

LSMs and as a result it influences soil moisture as well as the water cycle in both atmosphere 
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and the land surface [Camillo et al., 1986; Sellers et al., 1992].  Evaporation from the soil 

surface (Eg) in the PX LSM is estimated as: 

     (3.7) 

where ρa is the density of dry air, qsat(Tss) is the saturated water vapor mixing ratio at the soil 

surface temperature (Tss), qa is the water vapor mixing ratio at the lowest atmospheric layer, Ra is 

the aerodynamic resistance, Rbw is the quasi-laminar boundary layer resistance for water vapor, 

and Rs is the soil resistance.  In the release of WRF v3.7, Rs is computed based on the empirical 

so-called β factor from Lee and Pielke [1992] as: 

     (3.8) 

with 

                           for ;        for     (3.9) 

where Raw = Ra + Rbw for water vapor and β is a function of the volumetric water content of the 

top soil layer (wg) and at the field capacity (wfc).  The β based soil resistance formulation is 

commonly used in large scale LSMs such as the Community Land Model version 4.5 [Oleson et 

al., 2013] because of its simplicity.  The problem with the β based soil resistance is that the 

resistance approaches to zero too fast with increasing soil water content such that Rs = 0 for wg ≥ 

wfc (figure 3.2).  While this might be realistic at a specific homogenous site, a more gradual 

function is preferable for representation of large area grid cells which implicitly include a 

significant amount of soil moisture heterogeneity. The improved WRF uses the surface 

resistance based on the Fick’s diffusion, which is presented by Sakaguchi and Zeng [2009] as: 
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     (3.10) 

with 

     (3.11) 

     (3.12) 

where Ls is the estimated dry layer path length as a function of soil water content relative to 

saturation (wsat) [Kondo et al., 1990], d1 is the top soil layer thickness which is set to 1.75 cm, e 

is the constant 2.71828, and w is a parameter which controls the concavity of the curve and is set 

to 5 for the exponential shape.  Ds is the reduced vapor diffusivity (m
2
 s

-1
) in the soil based on 

Moldrup et al. [1999].  D0 is the molecular diffusion coefficient of water vapor in the atmosphere 

and is set to a constant 2.59 × 10
-5

 m
2
 s

-1
.  wres is the residual water content which is computed 

based on the formulation by Rawls et al. [1982].  b is the slope of the retention curve varying 

with soil texture and is estimated based on the formation described by Noilhan and Mahfouf 

[1996].  In the current release of WRF v3.7, b is specified in the LSM lookup tables according to 

Noilhan and Planton [1989].  As displayed in figure 3.2, the soil resistance (green line) 

computed based on the Fick’s diffusion formulation by Sakaguchi and Zeng [2009] tails off more 

gradually when soil is approaching to field capacity where the formulations by Kondo et al. 

[1990] and Lee and Pielke [1992] have almost no resistance. This adopted soil resistance, which 

lies between the formulations of Sellers et al. [1992] and Lee and Pielke [1992], is also adapted 

and well tested in the CMAQ bi-directional NH3 model with field measurements [Pleim et al., 

2013].   
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Figure 3.2.  Comparison of soil resistances computed based four formulations described by 

Sakaguchi and Zeng [2009], Sellers et al. [1992], Lee and Pielke [1992], and Kondo et al. [1990] 

for sandy loam soil. Soil resistances are computed with wfc=0.195 m
3
 m

-3
, wsat=0.435 m

3
 m

-3
, 

wres=0.01 m
3
 m

-3
, b=4.9, d1=1.75 cm, and Raw=50 s m

-1
. 

3.3 Data and Methods       

2006 MODIS LAI, FPAR and albedo data, obtained freely from the U.S. National 

Aeronautics and Space Administration (NASA) web site, are averaged over the WRF/CMAQ 

model 12-km grid cells and stored in a netCDF file for WRF simulations.  WRF/CMAQ 

simulations are conducted for two scenarios with/without MODIS input using improved WRF 

version 3.4 (WRF v3.4) and CMAQ version 5.0.2 (CMAQ v 5.0.2) models with the physics 

options typically configured for EPA AQ simulations [Gilliam and Pleim, 2010; Hogrefe et al., 

2014].  Detailed information on MODIS products used and WRF/CMAQ physics configurations 

is also presented in the study by Ran et al. [2015].  The meteorology and air quality simulation 

results are statistically analyzed and visualized in comparison with observations and the 
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simulations performed by Ran et al. [2015] using the Atmospheric Model Evaluation Tool 

(AMET) [Gilliam et al,. 2005; Appel et al., 2011b].  The evaluation analysis does not apply any 

interpolation or adjustments to account for the difference between the site observations and the 

model results at the grid cell level. 

3.3.1 MODIS Data  

Gap-filled and smoothed 2006 MODIS Collection 5 LAI and FPAR data 

(MOD15A2GFS) [Gao et al., 2008; Myneni et al., 2011] from the U.S. North American Carbon 

Program are used for WRF/CMAQ simulations.  The MODIS LAI and FPAR data at 1-km 

resolution and every 8 days are re-gridded onto the WRF/CMAQ 12-km grid cells at daily time 

steps with constant LAI and FPAR values for each 8 day period.  As the PX LSM uses an 

averaged LAI value for the vegetation area of a model cell, gridded MODIS cell-averaged LAI is 

divided by gridded MODIS FPAR, which is used as a surrogate for vegetation cover fraction 

[Los et al., 2000; Mu et al., 2011].  Uncertainties exist in the MODIS products because they are 

derived from snap shot reflectance measurements which contain aerosol, cloud, and snow 

contaminations [Yang et al., 2006; Fensholt et al., 2004; Cohen et al., 2006].  For example, cloud 

or snow contaminations could cause unrealistic temporal variations in MODIS LAI during the 

growing and winter seasons.  Nevertheless, MODIS LAI data shows relative good qualities in 

comparison with other LAI products as demonstrated by Fang et al. [2013].  The gap-filled and 

smoothed MODIS LAI and FPAR products are selected to be used in yearlong WRF simulations 

for spatial and temporal continuity and consistency. 

MODIS albedo products contain isotropic, volumetric and geometric scattering 

parameters which are derived using a kernel-based semi-empirical bidirectional reflectance 

distribution function (BRDF) model [Wanner et al., 1995; Lucht et al., 2000; Schaaf et al., 2002, 
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2011].  2006 MCD43A1 MODIS BRDF/albedo parameters for the shortwave (0.3-5.0µm) and 

corresponding MCD43A2 MODIS BRDF/albedo quality product at 500 m resolution and every 8 

days with the following 16 days of MODIS surface reflectance input are used in the WRF PX 

LSM at daily time steps with constant parameters for each 8 day period.  Black-sky albedo 

(directional-hemispherical reflectance - direct) and white-sky albedo (bi-hemispherical 

reflectance - diffuse) are computed in PX LSM with the three MODIS BRDF/albedo parameters 

and changing SZA using simple polynomial equations [Lucht et al., 2000; Schaaf et al., 2011].  

Then, the blue-sky albedo (actual hemispherical reflectance), is calculated based on computed 

black-sky and white-sky albedos weighted by diffuse radiation fraction [Lewis and Barnsley, 

1994].  MODIS snow cover cells identified from the BRDF/albedo quality product are filtered 

out in averaging albedo parameters for WRF/CMAQ modeling grid cells because of high 

uncertainties in MODIS albedo products over snow areas [Gao et al., 2011].   

3.3.2 WRF and CMAQ Modeling  

The updated WRF v3.4 and CMAQ v5.0.2 which also take MODIS LAI, FPAR, and 

albedo input are used for this study.  The input of gridded MODIS LAI, FPAR, and three albedo 

parameter data are specified through the WRF namelist control.  The final albedo in the PX LSM 

is weighted by the fractional snow coverage with the WRF snow albedo based on the daily snow 

analyses.  The WRF simulations use the 12-km North American Model (NAM) data for lateral 

boundary conditions.  The CMAQ simulations use the chemical boundary conditions that are 

generated from the Monitoring Atmospheric Composition and Climate Interim Implementation 

(MACC-II) as described by Innes et al. [2013] and used for the Air Quality Model Evaluation 

International Initiative (AQMEII) Phase 2 study [Hogrefe et al., 2014].  The key WRF physics 

options are the PX LSM scheme with indirect soil nudging [Pleim and Xiu, 2003; Pleim and 
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Gilliam, 2009], the WRF Rapid Radiative Transfer Model for GCMs (RRTMG) radiation model 

[Iacono et al., 2008], the Asymmetric Convective Model version 2 (ACM2), for PBL [Pleim, 

2007a, 2007b], version 2 of the Kain–Fritsch (KF2) cumulus parameterization [Kain, 2004], and 

the Morrison double-moment cloud microphysics scheme [Morrison et al., 2009].  Grid nudging 

or Four-Dimensional Data Assimilation (FDDA) [Staufer and Seaman, 1990; Stauffer et al., 

1991] was used above the PBL.  The WRF output is processed using the Meteorology-Chemistry 

Interface Processor (MCIP) [Otte and Pleim, 2010] version 4.1.3 for CMAQ.  The CMAQ 

simulations use 2006 CMAQ-ready emission data which are generated for the AQMEII Phase 2 

study [Pouliot et al., 2014].  The AQ simulations are configured with the Carbon Bond 

mechanism CB05 for gas-phase chemistry [Whitten et al., 2010], aerosol 6 module (AE6) 

[Binkowski and Roselle, 2003], and in-line point source, biogenic and dust emissions.   2006 

National Land Cover Database (NLCD) at 30 m resolution for the U.S. and MODIS land cover 

data at 500 m resolution for the areas outside the U.S. are processed into 40 land cover types for 

the PX LSM using the Spatial Allocator Raster Tools [Ran and Hanna, 2014].         

The CMAQ 12-km domain with 299 by 459 grid cells is nested within the WRF 12-km 

domain with 311 by 471 grid cells that covers the conterminous U.S., southern Canada, and 

northern Mexico.  The modeling system is configured with 35 vertical levels from the surface to 

the 50-hPA level.  The WRF simulations are conducted from 27 December 2005 to 31 December 

2006 and CMAQ AQ is simulated for three selected periods of 25 March to 30 April, 25 July to 

31 August, and 24 September to 31 October 2006.  Two WRF scenarios are conducted as 

follows: (i) Base case: standard WRF and (ii) MODIS case: modified WRF with MODIS LAI, 

FPAR, albedo parameter input.  Two CMAQ scenarios for each CMAQ period are performed as 

follows: (i) Base case: CMAQ with standard WRF meteorology and (ii) MODIS case: CMAQ 
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with WRF MODIS case meteorology.  Excluding a few days at the start of the simulations for 

spin-up, WRF output for 2006 and CMAQ output for April, August and October are used in 

evaluation and analysis.  Observation data from the Meteorological Assimilation Data Ingest 

System (MADIS) at the U.S. National Oceanic and Atmospheric Administration (NOAA) and 

the U.S. EPA Air Quality System (AQS) with other air quality network data are used for 

meteorology and air quality comparison and evaluation.      

3.4 Data and Methods       

Meteorology and AQ results are first evaluated in comparison with the simulations 

conducted in the previous study by Ran et al. [2015] against observation data to assess the 

impact of the updated WRF/CMAQ for this study.  Then, the yearlong simulated meteorology 

and the air quality results for April, August, and October are presented and analyzed to assess 

influences of realistic surface seasonality from the MODIS input.  The improved WRF/CMAQ 

with MODIS input does not have large impact on 10 m wind, ground level PM2.5, and most other 

species concentrations and depositions based on overall monthly statistical evaluations.  Thus, 

the comparison and evaluation for this paper mainly focus on 2 m T, 2 m Q, and surface O3 in 

relationship with vegetation change as albedo has much less influence on the system in 

comparison with vegetation [Ran et al, 2015].  The simulated meteorology and air quality are 

compared with surface-based point measurements following standard evaluation methods 

proposed and used by many other studies [e.g., Gego et al., 2005; Gilliam et al., 2006; Vautard 

et al., 2012; Appel et al., 2011].  Model performance is evaluated using statistical metrics such as 

mean bias (MB), difference of absolute mean biases (DAMB), mean absolute error (MAE), 

difference of mean absolute errors, (DMAE), root mean squared error (RMSE), and standard 

deviation (StDev). 
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3.4.1 Assessment of Updated WRF/CMAQ  

Table 3.1 shows domain-wide statistics metrics (MB, MAE, and StDev) for simulated 2 

m T, 2 m Q, and 10 m wind speed (WS) using the WRF in the previous study and the updated 

WRF against MADIS observations over the period from 10 August to 9 September 2006.  

Overall, the MB, MAE, and StDev for the simulated variables are similar for the base and 

MODIS scenarios using the same WRF model and they are well within typical model 

performance benchmarks [e.g. Gilliam et al., 2006].  Simulated 2 m T, 2 m Q, and 10-m WS 

from the updated WRF for both the base and MODIS cases show clear improvements with 

reduced MB, MAE, and StDev. Particularly, using the updated WRF, 2 m T and Q show much 

reduced MAE and MB and 10 m WS has almost no bias.  Most importantly, MODIS input in the 

updated WRF  does not result in much higher warm bias (0.168 K) for 2 m T in comparison with 

the base case (0.163 K), which is quite different from the previous WRF simulations with  MB 

0.607 K for the MODIS case and 0.415 K for the base case.  While domain-wide statistics may 

mask regional differences, the spatial statistics plots shown below (figure 3.6) demonstrate that 

the 2 m T improved in all parts of the country.  Similar to the previous WRF, using the MODIS 

input significantly reduces 2 m Q wet bias in the updated WRF simulation.  In addition, the 

updated WRF reduces the wet bias (0.506 g kg
-1

) in the previous base model to 0.359 (g kg
-1

) in 

the updated base.  This is consistent with the new soil resistance [Sakaguchi and Zeng, 2009] 

implemented for reducing soil ET when soil moisture is approaching and exceeding field 

capacity. 
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Table 3.1. Domain-wide statistical metrics for simulated 2 m T, 2 m Q, and 10 m WS using the 

previous WRF [Ran et al., 2015] and the updated WRF for the base and MODIS cases against 

MADIS observations over the period from 10 August to 9 September 2006. 

 

The diurnal performances of 2 m T and Q domain-wide using the updated WRF in 

comparison with the previous WRF are examined in figures 3.2 and 3.3.  The warm bias at night 

and in the late afternoon from the left column of figure 3.3 has been reduced with the updated 

WRF (the right column) for both base and MODIS runs.  The improvements in the updated WRF 

also help reduce 2 m T MAE for both the base and MODIS case simulations (not shown).  With 

the updated WRF, 2 m T for the simulation with MODIS input has almost the same diurnal 

performance as the base simulation without MODIS input (only slightly warmer between 18 to 3 

UTC).    

The updated model did not change diurnal performance of 2 m Q greatly in comparison 

with the previous WRF although BIAS and MAE for 2 m Q show slight improvements between 

17 and 1 UTC for the updated model with MODIS input (bottom row in figure 3.4).  Both the 

base cases without MODIS input using the previous and updated WRF have wet bias over almost 

all hours (top row in figure 3.4); but lower wet bias over UTC 23 to 3 are observed in the 

updated WRF base simulations.  MODIS input results in dryer conditions for both models, 

particularly between UTC 17 to 22 (early afternoon in the U.S. summer time) because of lower 

ET from less vegetation coverage in the MODIS LAI and FPAR products in comparison with the 
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base WRF PX LSM table-prescribed LAI and VF.  With the realistic vegetation coverage from 

MODIS, the estimated 2 m Q has much reduced bias suggesting that the excessive LAI and VF 

in the base model over estimate transpiration   

                    

 

Figure 3.3.  Diurnal domain-wide statistical metrics (y axis) for simulated 2 m T (K) against 

MADIS observations over the period from 10 August to 9 September 2006.  The x axis is time of 

day with UTC hours.  The left column is for the previous WRF [Ran et al., 2015] and the right 

column is for the updated WRF.  The top row is for the base case simulations without MODIS 

input and the bottom row is for the MODIS case simulations.    
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Figure 3.4.  Diurnal domain-wide statistical metrics (y axis) for simulated 2 m Q (g kg
-1

) against 

MADIS observations over the period from 10 August to 9 September 2006.  The x axis is time of 

day with UTC hours.  The left column is for the previous WRF [Ran et al., 2015] and the right 

column is for the updated WRF.  The top row is for the base case simulations without MODIS 

input and the bottom row is for the MODIS case simulations.     

The spatial patterns of the model performance are evaluated by figures 3.5 and 3.6.   The 

difference in the absolute MB for 2 m T and Q between the MODIS case and the base case using 

the previous WRF (left column) and the updated WRF (right column) for all MADIS observation 

sites averaged over 10 August to 9 September 2006 are displayed in figure 3.5.  Figure 3.5 shows 

the improvement from the base to the MODIS case using the improved model in comparison 

with the base and MODIS case simulations conducted in the previous study.  The impact of the 

improved model processes on 2 m T and Q is further examined spatially in figure 3.6 using MB, 

DAMB, and DMAE metrics to display the influence of the improved model using MODIS input 

in comparison with the previous model with the MODIS input.  The absolute statistical metrics 

such as DAMB and DMAE used in figures 3.5 and 3.6 do not indicate which case is hotter or 

wetter at each site but rather which has more (displayed in purple) or less (in green) bias and 
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absolute error.  The MB and MAE spatial plots for each case (not all displayed in the paper) are 

also evaluated for hotter/cooler, wetter/dryer, and better/worse indication.   

It is clear that MODIS input has great impacts in the western drylands (figure 3.5) due to 

the great vegetation difference from the PX LSM table-prescribed LAI and VF which were 

intentionally exaggerated in the region [Ran et al., 2015].  The much higher DAMB (greater than 

0.3) for both temperature and mixing ratio using the previous model (left column plots), which is 

the result of hotter and dryer estimations in this region from much lower VF and LAI in the 

MODIS input, has been reduced with the updated model (right column plots).  The improved 2 m 

T performance with reduction in warm bias is particularly distinct from the west to the central 

Plains.  With the updated model, the realistic surface representation from MODIS input helps 

improve 2 m T estimation for 56% of the MADIS sites in comparison with 26% of the sites from 

the previous model over the domain.  Although the number of sites with 2 m Q MB improvement 

is very much the same for both models with MODIS input (around 64%, the bottom row in 

figure 3.5), the updated model helps reduce the dry bias in the west, particularly in the northwest.  

The improved processes in the updated model (particularly the updated soil resistance which was 

evaluated independently and not displayed in this paper), alleviate an inherent tendency of the 

previous model toward hot biases in the 2 m T.  Thus, the updated model performs much better 

in estimating 2 m T in comparison with the previous model with MODIS input (figure 3.6) with 

overall domain wide warm bias and MAE reduction (around 78% of the sites with lower DAMB 

and DMAE in the top row of figure 3.6).  The dry bias in the west and wet bias in the east along 

with MAE of  2 m Q with MODIS input are also reduced using the updated model for many sites 

(64% of the sites with lower DAMB and 80% of the sites with lower DMAE in the bottom row 

of  figure 3.6).     
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Figure 3.5.  Spatial plots for the differences of the absolute mean biases (MODIS case – base 

case) for WRF simulations against MADIS observation sites over the period from 10 August to 9 

September 2006.  The left column is for the previous WRF [Ran et al., 2015] and the right 

column is for the updated WRF.  The top row is for 2 m T (K) and the bottom row is for 2 m Q 

(g kg
-1

).  
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Figure 3.6.  Spatial plots of statistical metrics for WRF simulations with MODIS input against 

MADIS observation sites over the period from 10 August to 9 September 2006.  The left column 

is for the mean bias of the MODIS case using the previous model [Ran et al., 2015], the middle 

column is for the difference of the absolute mean biases between the MODIS cases using the 

updated model and previous model, and the right column is for the difference of the mean 

absolute errors.  The top row is for 2 m T (K) and the bottom row is for 2 m Q (g kg
-1

).  

The near surface ozone flux and concentration are greatly influenced by both the 

temperature (particularly day time) in the atmospheric boundary layer [Rasmussen et al., 2012] 

and vegetation coverage because of a strong stomatal pathway of the ozone dry deposition flux  

[Wesely et al., 1982; Padro, 1996; Fuentes et al., 1992].  The improvement of 2 m T estimation 

with MODIS input using the updated model helps reduce errors in near surface ozone 

concentrations (figure 3.7).  The domain average of the estimated daily maximum 8 h average O3 

(ppb) with MODIS input from using the updated WRF/CMAQ system (red line in the top graph 

of figure 3.7) against all AQS sites (black line) is reduced by 5.9 ppb on average (around 4 to 9 

ppb reduction) from the previous model estimation (blue line) over the period from 10 to 30 

August 2006.  The DAMB spatial plot (bottom plot of figure 3.7) shows overall domain-wide 

bias reduction of the daily maximum 8-hour average O3 (ppb) using the updated system with 
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MODIS input in comparison with the previous system for many AQS sites (in green and blue).  

Though many AQS sites (in grey) in the northeast show very little change for the modeled O3, 

almost all AQS sites in the south, particularly the southwest where 2 m T and Q improve most, 

show great improvement of the O3 estimation with more than 10 ppb bias reduction for many 

sites.  In summary, with MODIS input the modeled ozone using the updated system has a 

reduced bias of 6.73 ppb and MAE of 10.4 ppb in comparison with the high bias of 12.6 ppb and 

MAE of 14.5 ppb in the previous system [Ran et al., 2015].  The MB and RMSE for daily 

maximum 8-hour average O3 modeled by the updated and previous systems with MODIS input 

are also evaluated against binned ranges of observations in figure 3.8.  It is clear that the system 

tends to over predict at the low end of the concentration range and under predict at the high end.  

This tendency is a persistent issue to many air quality modeling systems [Im et al., 2014; Solazzo 

el al., 2013; Foley et al., 2010].  Over prediction with MODIS input at the low end is reduced 

with the updated system while the under prediction at the high end (note the much smaller 

sampling sites) is worse.  Most importantly, there is clear MB and RMSE reduction at the 

concentration range around 60 to 70 ppb that is critical in policy decision related to potential 

lower O3 standard in the U.S. 
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Figure 3.7.  Evaluation of daily maximum 8 h average O3 (ppb) simulated with MODIS input 

using the updated WRF/CMAQ and the previous WRF/CMAQ [Ran et al., 2015] over the period 

from 10 to 30 August 2006 against the EPA AQS sites.  The top plot displays mean of daily 

maximum 8 h average O3 from the previous system (blue line), updated system (red line) and all 

AQS sites (black line).  The spatial plot shows the difference of absolute mean bias for daily 

maximum 8 h average O3 between the updated system and previous system. 

   



80 

 

 

Figure 3.8.  Mean bias (MB, left plot) and root-mean-square error (RMSE, right plot) of daily 

maximum 8 h average O3 (ppb) simulated with MODIS input using the updated WRF/CMAQ (in 

red) and the previous WRF/CMAQ (in blue) [Ran et al., 2015] over the period from 10 to 30 

August 2006 against the binned AQS observation ranges.  Line length is for the inner quartile 

range of MB and RMSE, triangle and circle for the median, and asterisk for the mean.  

Nudging has significant impacts on the system - as is demonstrated by Ran et al. [2015].  

In the base case, nudging helps reduce 2 m T bias with exaggerated vegetation.  With MODIS 

input, there is more warm bias in the 2 m T in the west with much less vegetation because the 

soil moisture nudging is less effective in non-vegetated areas since the indirect soil moisture 

nudging scheme works most effectively in modulating stomatal conductance through its 

relationship to deep (root zone) soil moisture.  This suggested that the model physics for 

evaporation from bare soil needed to be improved.  Therefore, the soil resistance has been 

modified in the updated model (equations 3.10-3.12).   
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Evaluations for vegetation, PBL, and soil changes from the updated model are conducted 

independently.  The soil resistance change shows the largest impact on temperature and 

humidity, especially in the western drylands where the warm bias with MODIS input is reduced 

while humidity is slightly increased.  This result seems counter-intuitive since the updated soil 

resistance is greater than the in the base model for all but the very driest conditions (see figure 

3.2).  The explanation is that the greater soil resistance reduced soil evaporation in the morning 

thereby retaining more surface moisture into the mid-day hours when 2 m T peaks resulting 

greater LH and lower 2 m T and reduced O3 bias.  While the base model typically has minimum 

surface soil moisture in mid-day the updated model often has a bit more. 

3.4.2 Annual WRF Simulations  

The updated WRF/CMAQ system with MODIS input shows clear improvements by 

reducing the wet bias of 2 m Q estimation while minimizing the change of warm bias for 2 m T 

estimation for the summer period demonstrated above (figure 3.5).  Since the results are from a 

peak growing period for vegetation and a hot and dry season for the west, the model performance 

may not be representative for other seasons.  Thus, annual WRF simulations are important for 

assessing how the realistic MODIS vegetation phenology affects the system, particularly during 

vegetation green-up and green-down periods.  Domain-wide statistical analyses (MB, MAE, and 

RMSE) are conducted for yearlong 2 m T, Q, and 10 m WS simulated using the updated model 

with and without MODIS input against the MADIS observations.  The monthly average domain-

wide statistics for 2 m T and 10 m WS are similar for the base and MODIS scenarios.  Thus, the 

yearlong simulation analysis focuses on 2 m Q, LH, and LAI which are most directly related to 

vegetation seasonal changes.  Figure 3.9 shows monthly averages of MB and MAE (left plot) 
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and daily averages of MB and RMSE (right plot) for 2 m Q simulated from the base and MODIS 

case scenarios.  The monthly average MAE and daily average RMSE are similar for the two 

scenarios.  MODIS input clearly helps reduce 2 m Q wet bias during growing season from April 

to September despites the slight wet bias during the cold seasons from November to February.  

Except for October, the base model without MODIS input tends to have wet bias, which is likely 

caused by the exaggerated vegetation coverage in the base PX LSM.  During the growing 

seasons, the simulated moisture from the system responds better to the realistic vegetation 

coverage and LAI from MODIS input.                                   

 

Figure 3.9.  2006 monthly and daily average statistical metrics for 2 m Q (g kg
-1

, y axis) domain-

wide for the base and MODIS WRF simulations against MADIS observations.  The left graph is 

for the monthly averages of the mean biases and mean absolute errors.  The right graph is for the 

daily average of the mean biases and root mean square errors.    

Monthly average spatial performance of 2 m Q from the base and MODIS scenarios is 

evaluated by examining mean bias metrics with changes in LAI and LH.  Figures 3.10 to 3.15 

show the evaluation results for five selected months – April, May, June, August, and October.  

The spatial performances of the two scenarios are very similar during the cold seasons because 
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vegetation is not active and the dominant influence is often from large scale weather.  Though 

the pattern of vegetation green-up starts showing difference from March in the south with the too 

fast green-up in the base scenario, the domain-wide March average MB of 2 m Q is very similar 

for the two scenarios (figure 3.9).  The green-up difference is clearly displayed by the April LAI 

plots in the top row of figure 3.10.  The April green-up in the base model is too fast into the 

northeast reaching Vermont and New Hampshire while MODIS vegetation shows the green-up 

only reaching Virginia.  In general, the MODIS scenario for April has much lower LAI for most 

of the southern half of the domain, except for some greened areas in the southeast.  The Pacific 

temperate rain forest in the northwest, dominated by coastal redwood, Douglas-fir, and western 

red cedar with much higher LAI [Leverenz and Hinckley, 1990] than the evergreen forest LAI 

(maximum 5 m
2
 m

-2 
and minimum 3 m

2
 m

-2
) prescribed by the base PX LSM, shows much 

higher LAI from MODIS input throughout the year.  But, the southern coniferous forests 

dominant by Longleaf and Loblolly pine (Florida and the southeast coastal plain) and the Rocky 

Mountains and the boreal coniferous forest regions in Canada tend to have lower LAI [Chen et 

al., 1997] from the MODIS scenario for all seasons.  The difference of the monthly average LH 

(bottom left plot in figures 3.10 to 3.15) as well as 2 m Q (not displayed in the paper) between 

the MODIS and base scenarios averaged over all days in the month at 20 UTC closely follows 

the differences in the monthly average LAI over the growing vegetation regions.  In general, the 

MODIS scenario as well as the base is too wet across the domain (bottom row middle plot).  The 

difference in the absolute MB between the MODIS and base scenario (bottom row right plot) 

stands out in the southeast where the MODIS scenario has slower green-up than the base but 

higher LAI in some greened areas.  With MODIS input, many sites in the southeast show the 

reduction of MB (green color) with decreased wet bias by more than 0.3 g kg
-1

 in comparison 
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with the base scenario.  Meanwhile, MODIS input causes some sites in the central Plains down 

to Mexico to become too dry by more than 0.3 g kg
-1

 2 m Q reduction (purple color).  Overall, 

with MODIS input 55% of those MADIS sites show bias reduction for April.             

In May (figure 3.11), the base simulation again shows accelerated green-up reaching into 

southern Canada compared to MODIS which shows green-up just beginning in Pennsylvania.  

The MODIS scenario has full green-up in the south with much higher LAI (more than 1.5 m
2
 m

-

2
) than the base. Thus, the LAI difference is greater in the south and the base LAI is greater in the 

north.  As the vegetation becomes more active the pattern of the LH difference closely follows 

the LAI difference between the two scenarios throughout the domain.  The higher LH of the 

MODIS scenario is apparent in the southeast and the northwest U.S. where LAI is high.  The wet 

bias pattern and the difference in absolute MB seem to follow the northward progression of the 

green-up from the MODIS scenario.  Both the base and MODIS scenarios have wet bias in much 

the southern U.S. and dry bias particularly in the Midwest and northern Plains.  In most of the 

southern and eastern U.S., reductions in absolute MB for MODIS coincide with lower LAI while 

in the northern plains and Midwest the absolute MB is increased in the MODIS case since the 

dry bias is worsened by the lower LAI in these areas.  Overall, MODIS input helps reduce bias 

for 55 % of the MADIS sites.                                
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Figure 3.10.  April 2006 LAI (m
2
 m

-2
), latent heat (W m

-2
), and 2 m Q (g kg

-1
) spatial evaluation.  

The top row is for the monthly average LAI from the MODIS case (top left) and base case (top 

middle) and for the difference of the average LAI between the two cases (top right). The bottom 

left plot is for the difference of the monthly average latent heat between the two cases for 20 

UTC.  The bottom middle plot is for the mean bias of 2 m Q from the MODIS case against 

MADIS observations.  The bottom right plot is the difference of absolute mean bias for 2 m Q 

between the two cases.   
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Figure 3.11.  May 2006 LAI (m
2
 m

-2
), latent heat (W m

-2
), and 2 m Q (g kg

-1
) spatial evaluation.  

Plot descriptions are the same as those in the figure 3.10 caption.      

In June (figure 3.12), both the MODIS and base scenarios have the full vegetation green 

up.  However, the MODIS scenario has much higher LAI for forest areas in the east and north 

and lower LAI in most of the west.  Also, in this early part of the growing season the base 

scenario overestimates the LAI in agricultural areas of the Midwest and Plains as compared to 

MODIS.  With active vegetation growth in June, the difference of LH for 20 UTC shows distinct 

patterns from the south to north over the domain following the LAI difference.  The pattern of 

the wet bias from the MODIS scenario moves northward as the growing season progresses but 

still with more dry bias in the north, particularly the northwest where both the scenarios show 

high dry bias.  The MODIS and base scenarios show similar performance for the 2 m Q 

simulation in most of the south and east coastal regions with some clear improvement in Florida 

and Pennsylvania because of MODIS input.  The bias improvement (green in the bottom row 

right plot) from using MODIS input increases along an axis from the desert southwest to the 
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northeast U.S. as the growing season progresses.  In general, the MODIS scenario shows reduced 

absolute MB in areas where MODIS LAI is less than the base, such as the central Plains and 

agricultural regions of the Midwest, but slightly greater absolute MB in areas where MODIS LAI 

is greater, such as most of the south and east.  With MODIS input, 61% of the MADIS sites 

show bias reduction in comparison with the base scenario.   

The spatial distribution of LAI and the performance of 2 m Q for July with the MODIS 

input are very similar to those displayed for August in figure 3.13.  The MODIS scenario shows 

more vegetation growth in the northern forest (north and east of the Great Lakes) and higher 

cropland LAI in the central corn-belt region (around Iowa).  The much higher LAI (by around 2 

m
2
 m

-2
) from MODIS input over the Sierra Madre Occidental in the western Mexico stands out 

from the LAI difference plot for August (July and September as well).  The MODIS input 

captures the peak green up of the forests in the Sierra Madre Occidental following the monsoon 

precipitation after the spring dry season.  The MODIS scenario shows much higher average LH 

at 20 UTC for this region during this hot summer month but much lower LH for the surrounding 

drylands in northern Mexico and the southwest U.S.  With MODIS input, the southwest becomes 

much too dry for many sites with 2 m Q MB less than -1.0 g kg
-1

.  In the east both scenarios 

show similar performance for the 2 m Q estimation.  The area of the greatest bias improvement 

with MODIS moves further west and north.  The sites with the largest bias improvement (in 

forest green) with the reductions of more than 0.3 g kg
-1

 are in the central Plains and Rocky 

Mountains from the northern Texas to the Canada border, where the base model is too wet.  

Overall, MODIS input helps reduce 2 m Q bias for 61% of the MADIS sites in August.   
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Figure 3.12.  June 2006 LAI (m
2
 m

-2
), latent heat (W m

-2
), and 2 m Q (g kg

-1
) spatial evaluation.  

Plot descriptions are the same as those in the figure 3.10 caption. 

 

Figure 3.13.  August 2006 LAI (m
2
 m

-2
), latent heat (W m

-2
), and 2 m Q (g kg

-1
) spatial 

evaluation.  Plot descriptions are the same as those in the figure 3.10 caption.     
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The green-down of the northern forests starts in September and the timing of the green-

down for both the MODIS and base scenarios is quite similar as demonstrated by the October 

LAI plots in figure 3.14.  The pattern of the LAI difference for September (not displayed in the 

paper) is similar to that displayed by figure 3.13 for August but with lesser magnitudes.  

Following the green-down of the vegetation from north to south, the effect of LAI on LH is 

diminishing in the north where vegetation becomes inactive through the fall season.  Thus, the 

LH difference no longer follows the pattern of the LAI difference in the north starting from 

September as shown in figure 3.14 for October.  With leaf fall and less active vegetation, 55% of 

the MADIS sites show bias reduction with the MODIS input for September in comparison with 

the base scenario.  In October, the LAI difference over the domain is relatively small between the 

two scenarios, except in the southwest dryland areas where the MODIS LAI is much lower and 

the Pacific temperate rain forest and the Sierra Madres Occidental where the MODIS LAI is 

much higher.  Both the MODIS and base scenarios have very similar MB spatial patterns.  Thus, 

the difference plot of the absolute MB shows that most sites, particularly in the north, show very 

small bias differences.  Both scenarios are too dry from the Mid-Atlantic region to the corn-belt 

region and the southern Plains into Mexico with 2 m Q more than 0.25 g kg
-1

 lower than 

observations for many sites.  Overall, MODIS input helps bias reduction at 44% of the MADIS 

observation sites in October and causes a dryer simulation, particularly for the southeast.  From 

November to March, the monthly spatial plots (not displayed in the paper) for the difference of 

the absolute MB are similar to the October plot in figure 3.14 but with much smaller magnitudes 

with the MODIS run slightly wetter (figure 3.9) in the west.                

 



90 

 

 

Figure 3.14.  October 2006 LAI (m
2
 m

-2
), latent heat (W m

-2
), and 2 m Q (g kg

-1
) spatial 

evaluation.  Plot descriptions are the same as those in the figure 3.10 caption.      

3.4.3 April-August-October Ozone Simulations  

The change of vegetation from MODIS input has significant impacts not only on the 

meteorology but also the surface ozone flux and ozone concentration because the dry deposition 

model in CMAQ uses the same aerodynamic and bulk stomatal conductance computed for LH 

estimation in the PX LSM WRF [Pleim et al., 2001].  The monthly average difference of the 

ozone deposition velocities and surface-layer concentrations between the MODIS and base 

scenarios at 20 UTC as well as the monthly LAI difference are demonstrated in figure 3.15 for 

April, August and October 2006.  The modeled O3 concentrations are evaluated over different 

UTC hours across the domain and it appears that O3 shows the biggest effects of MODIS input 

around 20 UTC which corresponds to 13:00 and 14:00 local time for the Pacific and Mountain 

Daylight summer time zones.  Thus, 20 UTC is used to display the monthly average difference 

for O3 as well as LH displayed in the previous annual evaluation.   With the strong stomatal 
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pathway of the ozone dry deposition [Padro, 1996], the difference in ozone deposition velocity 

(the middle row in figure 3.15) between the CMAQ MODIS and base scenarios generally 

follows the LAI difference (the top rows in figure 3.15) as well as the LH difference (figures 

3.10, 3.13, and 3.14) for each of the three months.  Consequently, the largest O3 concentration 

increases (the bottom row) appear in areas with largest decreases in LAI and O3 deposition.  The 

O3 concentration difference is consistently high for the three months in Florida where the O3 

deposition velocity difference is low due to lower LAI from MODIS input in all seasons. 

In April, the central east has much lower ozone deposition velocity (with more than 0.20 

cm s
-1

 less) from using MODIS input due to quicker green-up in the base model.  MODIS input 

causes the O3 concentration to increase by more than 3 ppb over the base run in most of these 

areas.  In August, the ozone deposition velocity is much lower for the MODIS case in the west 

where not only the LAI is much lower but also some warm bias still exists in this hot and dry 

region from using MODIS input (the top row right plot in figure 3.5).  Most of the west, outside 

of the Pacific temperate rain forest and the Sierra Madres Occidental, has much higher ozone 

concentrations by more than 5 ppb.  In October, the higher O3 concentration region from using 

MODIS input is shifted to the south where temperature is warmer.  As the ozone formation in the 

atmospheric boundary layer is also strongly influenced by the temperature [Rasmussen et al., 

2012], the ozone concentration difference is smaller in the north where temperature is relatively 

low, despite the big LAI differences, in all three months.  Table 3.2 summaries the domain-wide 

statistical metrics for the simulated daily maximum 8 h average O3 concentration (ppb) from the 

base and MODIS cases against EPA AQS site observations for the three months.  Though the 

ozone is the highest in August and the lowest in October, MODIS input causes the domain-wide 
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mean and average MB to be higher by no more than 2.7 ppb and RMSE and MAE higher by no 

more than 1.39 ppb for all three months.    

 

Figure 3.15.  Monthly average difference of LAI (m
2
 m

-2
), ozone deposition velocity (cm s

-1
), 

and ozone concentration (ppmV) at the surface layer between the MODIS case and base case for 

20 UTC over April, August, and October 2006.  
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Table 3.2.  Domain-wide statistical metrics for the simulated daily maximum 8 h average O3 

concentration (ppb) from the base and MODIS cases against EPA AQS site observations for 

April, August, and October 2006. 

 

Since ozone is most important in the warm season, the simulated daily maximum 8 h 

average O3 concentration in August is further evaluated by the daily mean graph and DAMB 

spatial plot in figure 3.16.  The domain average of the estimated daily maximum 8 h average O3 

(ppb) with MODIS input (red line in the top graph of figure 3.16) is consistently higher than that 

from the base scenario (by around 2 ppb) and compared to the AQS observations by 2.17 to 

11.15 ppb (6.89 on average).  The DAMB spatial plot (bottom plot of figure 3.16) shows the 

areas where the MODIS run absolute mean bias of the daily maximum 8-hour average O3 (ppb) 

is greater than the base run (yellow and orange dots) are mostly in California, the Southwest, 

Florida and the Gulf coast, and the upper Midwest.  Many AQS sites (in grey and green) in the 

east and northwest show very little change and some improvement for the modeled O3 using the 

MODIS input.  Despite the big improvement on the over prediction of 2 m T with MODIS input 

using the updated WRF/CMAQ modeling system (figure 3.7), the ozone estimation is still higher 

in general in comparison with the observations.  As the west is realistically much less vegetated 

with MODIS input, the dry deposition onto barren soil becomes an important pathway 

influencing the atmospheric O3 concentration.  This suggests that the CMAQ dry deposition 

model should be evaluated for possible improvements in the dry deposition onto barren 

CMAQ April O3 (ppb) August O3 (ppb) October O3 (ppb)

Scenario Mean RMSE MAE MB Mean RMSE MAE MB Mean RMSE MAE MB

Base 52.70 9.51 7.33 3.94 55.00 12.80 9.70 4.84 42.20 10.10 8.20 5.34

MODIS 55.40 10.90 8.64 6.62 57.10 13.80 10.50 6.89 44.60 11.30 9.51 7.72

MODIS-Base 2.70 1.39 1.31 2.68 2.10 1.00 0.80 2.05 2.40 1.20 1.31 2.38
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landscapes, which is common in the west where the ozone concentration generally has the 

greatest high bias. 

 

Figure 3.16.  Evaluation of daily maximum 8 h average O3 (ppb) simulated from the base and 

MODIS case WRF/CMAQ over August 2006 again the EPA AQS sites.  The top plot displays 

mean of daily maximum 8 h average O3 from the base case (blue line), MODIS case (red line) 

and all AQS sites (black line).  The bottom plot is the difference spatial plot of absolute mean 

bias for daily maximum 8 h average O3 between the MODIS case and the base case. 

3.5 Conclusions and Future Plans       

Ingesting the MODIS satellite products, particularly MODIS LAI/FPAR product, into the 

WRF/CMAQ modeling system with the PX LSM, has significant influences on the simulated 

meteorology and air quality.  The MODIS vegetation products (LAI and VF) clearly add realistic 

vegetation characteristics and phenology to the WRF/CMAQ system in comparison with the 
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vegetation characteristics currently specified by the PX LSM land-use category look-up tables.  

The previous study using the standard WRF v3.4 modified for MODIS input and CMAQ v5.0.2 

over the period from 10 August to 9 September 2006 shows mixed results with much hotter and 

dryer conditions in much of western North America where MODIS vegetation shows 

substantially less coverage [Ran et al., 2015].  Based on the results from the previous study, the 

WRF/CMAQ modeling system is updated to include recent improvements [Pleim et al., 2015] in 

the PX LSM vegetation (in WRF v3.7) and soil (not in public release) processes and in the 

ACM2 PBL processes (in WRF v3.7 and CMAQ v5.1).  The updated WRF/CMAQ modeling 

system demonstrates clear improvements in the 2 m T and Q, 10 m WS, and near surface ozone 

concentration simulations with and without MODIS input for this period around August.  The 

warm bias in the west from using MODIS input has significant reduction while the bias and 

MAE of 2 m Q get reduced as well in many areas in the south in comparison with the 

simulations using the previous system.  The improved meteorology propagates through the air 

quality system which results in much improved O3 concentration estimations.  The simulated O3 

concentration using the updated system with MODIS input shows significant error reduction 

across the domain (by 6 ppb for bias and 4 ppb for MAE on average) in comparison with the 

previous system with MODIS input. However, ozone concentrations in the updated model still 

show greater biases and errors for the MODIS case compared the base case.  Just as 

improvements to the meteorology model were instigated by the earlier study that showed 

degraded 2 m T statistics using MODIS these results for ozone may promote improvements in 

the ozone dry deposition model in CMAQ.  

The yearlong meteorology simulations and selected three-month (April, August, and 

October) air quality simulations using the updated system are conducted with and without 
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MODIS input for impact assessments.  Preliminary evaluations show that 2 m T, 10 m WS, and 

other air quality do not show big differences on a monthly average basis from using MODIS 

input although differences do exist over space and time.  Thus, the evaluations of the simulated 

meteorology and air quality focus on 2 m Q and surface ozone with the change of vegetation 

(change of albedo has much less influence in comparison with vegetation).  The more realistic 

vegetation characteristics and phenology from MODIS input [Zhang et al., 2006] improve the 

system through not only better spatial and temporal representation but also different LAI 

magnitudes from diverse natural and cultivated vegetation types which the LSM general land 

cover look-up tables cannot capture.  For instance, MODIS LAI is consistently much higher than 

the base for the Pacific temperate rain forest where dominant redwood, Douglas-fir, and western 

red cedar have much higher LAI than LAI prescribed for evergreen forest type in the base model 

LSM.  Conversely, MODIS LAI for the boreal forests in Canada and southeast coniferous forests 

(e.g. in Florida) have lower LAI than the prescribed LAI for evergreen forests.  The influence of 

the North American monsoon on the green up in the Sierra Madres Occidental forest is distinctly 

captured by MODIS input from July to September.  In addition, MODIS LAI has great 

advantage by capturing changes of LAI of cultivated lands such as crop lands because LAI in 

these areas is greatly influenced by human activities such as planting, fertilizing, irrigating, and 

harvesting which are very difficult to model correctly in the LSM on a specific year basis.  

Overall, for 2006 the base model green up is too fast but the green down is similar to the MODIS 

vegetation.  The differences of LH and 2 m Q simulated from the MODIS and base scenarios 

closely follow the difference of LAI in areas with growing vegetation.  

The area with improved 2 m Q from MODIS input follows the green up from April in the 

southeast and extends towards the west and north in May.  In June, the distinct improvement area 
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moves to the Midwest and the southwest where the landscape is dominated by agriculture.  In 

peak summer July and August, the improvement area is further expanded into the north, reaching 

Canada.  Along with the improved performance of 2 m Q for many MADIS observation sites 

from April to September, there are also many sites which show increased bias and error, such as 

the southwest U.S. near the Mexican border where it gets too dry from August through 

September with MODIS input.  From October to March, MODIS input does not have big 

influence on 2 m Q because of vegetation green down.  MODIS input increases the existing high 

bias in the base model for the simulated ozone concentration by no more than 3 ppb for domain-

wide monthly average in April, August, and October.  The areas with high ozone bias follow 

where MODIS input has much lower LAI in comparison with the base model LAI. With the 

much improved vegetation representation and improved meteorology simulations, the surface 

ozone simulations do not show any improvement but have consistently higher bias for all 

selected months, particularly in areas where MODIS LAI is lower than for the base.  This 

suggests that the CMAQ dry deposition model may need to be evaluated for possible 

improvements in low LAI areas where deposition to the soil surface is the dominant pathway. 

In conclusion, this study shows that realistic vegetation characteristics and phenology 

from MODIS input help improve the meteorology simulations during the growing seasons with 

the use of the updated PX LSM WRF/CMAQ modeling system.  Possible improvements for the 

CMAQ dry deposition model particularly for bare soil surfaces may help improve the ozone 

simulation.  As the modeling system is very sensitive to LAI and uncertainties exist in satellite 

products, quality assurance on MODIS input (processed LAI, FAR, and albedo) is important for 

the MODIS input to be used routinely in WRF/CMAQ simulations with the PX LSM for 

research applications and air quality regulatory decision-making.  Further upgrades to the 
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updated WRF/CMAQ modeling system are ongoing by incorporating a biochemically-based 

photosynthesis-conductance scheme following the studies for climate LSMs [Sellers et al, 1996; 

Calvet et al.1998; Dai et al., 2004; Bonan et al., 2011; Clark et al., 2011; Kowalczyk et al., 

2013; Oleson et al., 2013].  The realistic MODIS vegetation input is crucial for the system to 

correctly model vegetation productivity in the photosynthesis-conductance scheme.  With the 

photosynthesis-conductance scheme, the WRF/CMAQ system has the capabilities to 

dynamically respond to CO2 concentration temporally and spatially and to simulate the coupling 

effect of climate, air quality (such as O3), and vegetation in changing climate [Sitch et al., 2007; 

Lombardozzi et al., 2012].     
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CHAPTER 4: A PHOTOSYNTHESIS-BASED TWO-LEAF CANOPY STOMATAL 

CONDUCTANCE MODEL FOR WRF/CMAQ WITH MODIS INPUT 
 

Abstract 

A coupled photosynthesis-stomatal conductance model with single layer sunlit and 

shaded leaf canopy scaling is developed for the Pleim-Xiu land surface model (LSM) in the 

meteorology and air quality modeling system - WRF/CMAQ (Weather Research and Forecast 

model and Community Multiscale Air Quality model).  The photosynthesis-based stomatal 

conductance model for the PX LSM (PX PSN) is implemented and evaluated in a diagnostic box 

model which has evapotranspiration and ozone deposition components taken directly from 

WRF/CMAQ.  The PX PSN is validated for LH estimation at four selected FLUXNET sites with 

different vegetation types and landscape characteristics and at one FLUXNET site with ozone 

flux measurements in comparison with the simple Jarvis approach used in the current PX LSM.  

The model performance is influenced by many factors including model parameters, site-related 

input data, and measurement errors, in addition to physical process formulations.  Overall, the 

PX PSN performs as well as the PX Jarvis does in simulating LH with varying performance at 

different sites.  The PX PSN shows distinct advantages in simulating LH over landscapes with 

short vegetation such as grassland and cropland.  Since the PX PSN treats C3 and C4 plants 

differently for CO2 assimilation estimation, it has significant advantages in simulating LH over 

the C4 grassland in comparison with the PX Jarvis approach.  Simulations using Moderate 

Resolution Imaging Spectroradiometer (MODIS) LAI rather than LAI observations at each site 

were also performed to assess how the model would perform with the grid averaged data 
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available in the Eulerian grid model (WRF/CMAQ).   While MODIS LAI generally follows the 

seasonality of the observed LAI, it cannot capture the extreme highs and lows of the site 

measurements.  The MODIS LAI makes the model perform worse at all sites except one site 

with tall and old trees.  The PX PSN performs especially well in simulating LH and ozone 

deposition velocity and flux at the ozone flux grassland site while the PX Jarvis significantly 

overestimates.  The performance of the PX PSN over prevalent vegetation types (deciduous and 

coniferous forest, grassland, and cropland) at the selected sites demonstrates that the model is 

applicable for WRF/CMAQ simulations.   

4.1 Introduction        

The combined meteorology and air quality (AQ) modeling system composed of the 

Weather Research and Forecast (WRF) model [Skamarock et al., 2008] and Community 

Multiscale Air Quality (CMAQ) model [Byun and Schere, 2006]  is an important decision 

support tool that is used to help understand the chemical and physical processes involved in air 

quality degradation and develop policy to mitigate harmful effects of air pollution on human 

health and the environment around the world [Cohan et al., 2007; Wang et al., 2010; Compton et 

al., 2011; Hogrefe et al., 2014; Xing et al., 2015].  Despite significant advances in AQ modeling 

systems over the past decade, there are still many uncertainties in the system [Foley et al., 2010; 

Appel et al. 2011].  For example, the system tends to overestimate ozone in the southeast and 

Gulf regions of the U.S. while ozone estimations in the north agree well with observations.  The 

recent study by Ran et al. [2015b], using an improved WRF/CMAQ with and without Moderate 

Resolution Imaging Spectroradiometer (MODIS) vegetation and albedo input, shows that the 

model’s tendency to overestimate O3 in these regions persists (figure 4.1).  Many components 

from this complex modeling system including emissions, transport, photochemistry, and land 
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surface exchange may contribute to these errors.  This research focuses on improving land 

surface model (LSM) processes in the retrospective WRF/CMAQ system which includes both 

meteorological (heat, moisture, and momentum) and chemical (dry deposition and bi-directional 

exchange) surface fluxes.     

 

Figure 4.1.  Evaluation of daily maximum 8 hour average O3 (ppb) simulated from an improved 

WRF/CMAQ with/without MODIS vegetation and albedo input over August 2006 against the 

EPA  Air Quality System (AQS) sites.  The top plot displays mean of daily maximum 8 hour 

average O3 from the base model (blue line), the model with MODIS input (red line) and all AQS 

sites (black line).  The bottom plot is the mean bias spatial plot for daily maximum 8 hour 
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average O3 simulated from the base model without MODIS input.  The base model’s vegetation 

is computed from vegetation parameters prescribed in land use category lookup tables using 

equations 2 and 3 in Ran et al. [2015a].  

The Pleim-Xiu (PX) [Pleim and Xiu; 1995; Xiu and Pleim, 2001] and Noah [Chen and 

Dudhia, 2001] LSMs are two of WRF LSMs which are commonly used for meso-scale 

retrospective meteorology simulations.  The PX LSM is routinely used in air quality simulations 

[Eder et al., 2009; Kelly et al., 2014; Hogrefe et al., 2014] because it is specifically designed for 

CMAQ which has a dry deposition model using the same stomatal and aerodynamic resistances 

computed in the PX LSM WRF and has the same planetary boundary layer (PBL) model, the 

Asymmetric Convective Model version 2 (ACM2) [Pleim, 2007a and 2007b], that can be 

consistently configured in WRF.  Unlike climate LSMs [e.g. Oleson et al., 2013; Clark et al., 

2011] with complex hydrology and dynamic vegetation coupled with climate to model processes 

over decadal to century future periods, the PX and Noah LSMs have relatively simple prognostic 

soil water models (PX has 2 soil layers and Noah has 4) which rely heavily on data initialization 

and assimilation for high accuracy over relatively short periods (days to years).  Thus, both the 

LSMs have simple canopy treatments with a big-leaf empirical function stomatal conductance 

following the approach described by Noilhan and Planton [1989] as well as simple soil 

hydrology and snow processes.  Surface characteristics including vegetation parameters and 

surface albedo are specified in LSM land use look-up tables and plant phenological dynamics are 

modeled using simple time and temperature dependent functions.  Land use data used in these 

LSMs are often out of date and created from certain periods in the past.  With increasing needs to 

conduct year-long retrospective WRF/CMAQ simulations, these LSMs using simple canopy 

treatment with table prescribed surface representations from out of date land use data clearly 
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show limitations in capturing seasonal landscape changes (e.g. phenology and albedo) and 

disturbances (e.g. fires, storm damages) [Ran et al.,2015b].  In addition, lacking a biochemically-

based photosynthesis-conductance scheme could limit not only the model’s dynamic responses 

to environmental conditions such as temperature, air pollutants (e.g. O3) and CO2 concentration 

but also their applications in assessing the coupling effects of air quality and vegetation 

productivity in changing climate.    

There are ongoing efforts to improve the surface representation in WRF/CMAQ.  For 

instance, the high resolution 30-m National Land Cover Database (NLCD) as well as MODIS 

500-m land cover data [Pleim and Ran, 2011, Ran et al., 2010, Ran et al., 2012] are used in 

WRF/CMAQ simulations with the PX LSM.  Gridded 2011 NLCD/MODIS land cover data at 

the 9-arc second resolution for most of North America are available in the WRF Preprocessing 

System (WPS) for WRF/CMAQ with the PX LSM to use the 40-class NLCD/MODIS land cover 

data routinely.  In addition, there are recent improvements to the vegetation, soil, and PBL 

processes in the WRF/CMAQ with the PX LSM and ACM2 [Pleim et al., 2015].  Ran et al. 

[2015a and 2015b] incorporated MODIS vegetation and albedo products in the WRF/CMAQ 

modeling system with the PX LSM.  They conclude that realistic vegetation characteristics and 

phenology from MODIS products help improve the 2 m mixing ratio (Q) simulation during the 

growing seasons.  With EPA beginning to regulate greenhouse gases (GHGs) under the Clean 

Air Act (“CAA”), the simple vegetation treatment following the empirical function Jarvis 

stomatal conductance approach [Jarvis, 1976] without the CO2 effect by the PX LSM [Noilhan 

and Planton,1989; Pleim and Xiu, 1995] is limited over extended simulations for regulatory and 

scientific research related to climate-air quality co-benefit studies.  Therefore, incorporating the 

impacts of CO2 in WRF/CMAQ through using a photosynthesis-based stomatal conductance 
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approach in the PX LSM will be an important advance in the modeling capabilities with 

changing CO2 levels in space and time which can be captured by the EPA CO2 emission 

inventory.  This research furthers the study presented by Ran et al. [2015b] by enhancing the 

vegetation model using a photosynthesis-based stomatal physiology process model which is 

commonly used in Earth system models [Bonan et al., 2011; Clark et al., 2011; Kowalczyk et al., 

2013; Oleson et al., 2013].   

The objective of the study is to develop, implement and evaluate a coupled leaf 

photosynthesis and stomatal conductance approach in the PX LSM for meteorology and air 

quality modeling with MODIS vegetation input.  This paper focuses on the development and 

evaluation of a coupled photosynthesis and stomatal conductance approach in a diagnostic box 

model with the PX LSM and CMAQ dry deposition model components that are directly from the 

updated WRF/CMAQ system presented by Ran et al. [2015b].  The questions which the papers 

addresses are: (i) how does the PX LSM with a coupled leaf photosynthesis and stomatal 

conductance approach influence the performance of latent heat and ozone deposition and flux, 

(ii) can the photosynthesis approach PX LSM better represent diurnal variations in latent heat, 

and ozone deposition and flux than the current approach, and (iii) how does the PX LSM with a 

coupled leaf photosynthesis and stomatal conductance approach and with the input of MODIS 

leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR) 

vegetation data influence latent heat?   

A sunlit and shaded big leaf photosynthesis-based stomatal conductance approach 

developed and implemented in the diagnostic PX LSM box model is described in section 2 based 

on the 2006 flux measurements from the FLUXNET Harvard Forest US-Ha1 site.  The 

photosynthesis-based approach is further evaluated and analyzed against the measurements from 
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four selected FLUXNET sites (Missouri Ozark/US-MOz, Mead Irrigated Rotation/US-Ne2, 

Fermi Prairie/US-IB2, and Wind River Field Station/US-Wrc) which have different vegetation 

types and against the 2013 ozone and surface flux measurements by EPA at Duke Forest Open 

Field, North Carolina. MODIS vegetation input to the diagnostic box model is also evaluated to 

demonstrate the advantages and limitations in using MODIS input to the advanced PX LSM.  

MODIS LAI is evaluated against observed LAI which are available at the four selected 

FLUXNET measurement sites.  Conclusions and future work are presented in the last section.   

4.2 Photosynthesis-based Stomatal Conductance Approach         

Vegetation plays an important role not only in the surface energy budget but also water 

and carbon cycles [Jarvis and McNaughton, 1986; Katul et al., 2012].  In addition, it is the 

source and sink of atmospheric chemicals including CO2 and gas-phase chemical species such as 

O3, NH3, NO2, SO2, and a wide array of volatile organic compounds (VOCs) [Pleim and Ran, 

2011].  Plants open their stomata to obtain atmospheric CO2 for photosynthesis while at the same 

time they lose water because of the diffusion of water molecules through leaf stomata to the 

atmosphere.  A key function of LSMs is to estimate latent heat flux (λE), which is the product of 

latent heat of evaporation (λ) times evaporative water flux (E, also called evapotranspiration - 

ET).  ET contains evaporation from leaf transpiration, water evaporation from soil, litter and 

vegetation surfaces, and open water bodies [Bonan, 2008].  In the growing seasons, transpiration 

is often dominant in controlling ET from vegetated lands [Budyko, 1974].  Because stomata 

control the amount of water transpired by vegetation, stomatal conductance and its scaling from 

leaf to canopy are key processes in estimating ET.  The coupled photosynthesis-based stomatal 

conductance model with sunlit and shaded leaves for the PX LSM is developed for modeling ET 

and the carbon cycle between the atmosphere and vegetation based on approaches which are 
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applied in global climate models (GCMs) [Dai et al., 2004; Cox et al., 1998; Bonan et al., 2011; 

Clark et al., 2011; Kowalczyk et al., 2013; Oleson et al., 2013] and ecosystem productivity 

models [Campbell and Norman, 1998; Medlyn et al., 2005; Song et al., 2009; Evers et al, 2010; 

Baker et al., 2010].  

4.2.1 Stomatal Conductance  

The current PX LSM models canopy stomatal conductance (Gst) to gasses based on the 

Jarvis approach [Jarvis, 1976], which is an empirical multiplicative model by linking the 

stomatal conductance to assumed-independent environmental functions.  The PX LSM treats the 

whole canopy as a single leaf (big-leaf model) and the canopy fluxes from the big leaf are then 

calculated by summing the fluxes of individual leaves [Jarvis, 1995] using LAI.  Following the 

Jarvis approach presented in the Interactions Soil Biosphere Atmosphere (ISBA) LSM [Noilhan 

and Planton, 1989] with modifications in the PX LSM [Pleim and Xiu, 1995], Gst is computed 

as: 

      (4.1)  

where Rstmin is the minimum stomatal resistances for each land cover type specified in the LSM 

land cover lookup table.  The functions F1–4, which represent the fractional degree (0 to 1) of 

stomatal closure caused by the environmental factors: photosynthetically active radiation (PAR), 

root-depth soil moisture (w2), relative humidity at the leaf surface (RHs), and air temperature in 

the canopy (Tic), are defined by Xiu and Pleim [2001].  The influence of ambient CO2 

concentration is not included in the current PX LSM with the assumption that the CO2 

concentration is constant for the relatively short periods typically used for mesoscale 

meteorology simulations.  The advantage of this simple empirical approach is that it can be 
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easily implemented for large scale simulations with a small set of vegetation parameters such as 

LAI and Rstmin and it generally produces reasonable results for retrospective simulations with 

initial or real-time assimilated soil conditions [Noilhan and Mahfouf, 1996; Chen and Dudhia, 

2001; Xiu and Pleim, 2001].  The weakness of the simplest models is that they depend on the 

limited number of multiplicative functions which are related to environment variables that are 

often not actually independent.  Since the multiplicative big leaf model does not depend on 

measurable physiological or physical parameters, they have to be tuned against stand-level and 

canopy level eddy flux measurements.  Although the big leaf model is simple and widely used in 

many disciplines, it is often criticized for ignoring canopy gradients and differences between 

plant and soil components within the canopy [Jarvis, 1995; dePury and Farquhar, 1997; Wang 

and Leuning, 1998].    

The stomatal conductance (gst) at the leaf scale in the photosynthesis-based PX LSM is 

modeled based on the commonly used the Ball-Woodrow-Berry (BWB) model [Ball et al., 

1987], which connects gst directly to net CO2 assimilation rate (Anet) based on plant physiological 

processes.  gst is modeled in the PX LSM following the semi-empirical BWB model described by 

Collatz et al. [1991], applied in a GCM by Sellers et al. [1996], and implemented in the 

Community Land Model version 4 (CLM4.5)  [Bonan et al., 2011; Oleson et al. 2013] within the 

Community Earth System Model (CESM) as: 

    (4.2) 

where g0 is set to 0.01 mol m
-2

 s
-1

 for C3 plants and 0.04 mol m
-2

 s
-1

 for C4 plants, mg is a plant-

type parameter which is 9 for C3 plants and 4 for C4 plants, cs is the CO2 partial pressure at the 

leaf surface, es is the vapor pressure at the leaf surface, ei is the saturation vapor pressure inside 

the leaf stomata at the vegetation surface temperature (Ts), and Pa is the atmospheric pressure.  
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Soil moisture stress is considered similarly to the PX Jarvis LSM where the empirical function 

F2 (eq. 4.3) is used to scale canopy stomatal and net CO2 assimilation rate following the 

approach used by the Joint UK Land Environment Simulator (JULES) LSM model [Clark et al., 

2011].  The function F2 with a relatively smooth S shape very similar to the JULES soil stress 

factor is computed as:      

     (4.3) 

with 

               ,   

where wfc is the volumetric water content at field capacity and wwlt is the wilting point.         

4.2.2 Leaf-scale Photosynthesis  

The net photosynthetic assimilation rate - Anet of C3 and C4 plants at the leaf scale for the 

PX LSM is estimated based on the biochemical model of photosynthesis described by Farquhar 

et al. [1980] and applied in GCMs [Collatz et al., 1991, and 1992, Sellers et al., 1996, Cox et al., 

1999, Clark et al., 2011, Bonan et al. 2011, Oleson et al., 2013] and land surface exchange 

studies in modeling plant evaporation and productivity [Medlyn et al., 2005; Song et al., 2009; 

Evers et al, 2010; Baker et al., 2010].  Anet (mol CO2 m
-2

 s
-1

) is calculated based on colimitation 

among three potential assimilation rates (Ac, Aj, and Ae) limited by Rubisco (nitrogen related), 

light (photon related), and transport of photosynthetic products for C3 plants and 

phosphoenolpyruvate (PEP) carboxylase limitation for C4 plants.  The Rubisco-limited 

assimilation rate (Ac mol CO2 m
-2

 s
-1

) is a function of the maximum rate of carboxylation of 

Rubisco (Vcmax mol CO2 m
-2

 s
-1

) and is formulated following JULES [Clark et al., 2011] as: 
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              for C3 and C4 plants (4.4) 

with    (4.5) 

     for C3 and C4 plants (4.6) 

where ci (Pa) is the CO2 partial pressure inside the leaf stomata, cc (Pa) is the CO2 compensation 

point in the absence of non-photorespiratory respiration, Oa (Pa) is the partial pressure of 

atmospheric oxygen, and Kc (Pa) and Ko (Pa) are the Michaelis-Menten constants for CO2 and 

O2.  Cc, Kc, and Ko are computed based on parameters and equations used in JULES [Cox et al., 

1998; Clark et al., 2011]. Vcmax at any leaf surface temperature is estimated based on the 

maximum rate of carboxylation of the enzyme Rubisco at 25°C (Vcmax25 mol CO2 m
-2

 s
-1

).  The 

average Vcmax25 value is assumed to be related to leaf nitrogen concentration and is computed 

based on the top of the canopy Vcmax25 (Vcmax25_0) integrated for sunlit and shaded leaves based on 

the equations described by Bonan et al. [2011] as: 

                         (4.7) 

 (4.8) 

where Kn is the foliage nitrogen decay coefficient, Kdir is the direct beam attenuation coefficient 

within the canopy (described by equation 4.19), and LAIsun and LAIshd are the LAI values for 

sunlit and shaded leaves (described by equations  4.17 and 4.18).  As one of the most important 
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parameter in the photosynthesis approach, Vcmax25 shows a range of values among and within 

plant function types (PFTs) [Kattge et al., 2009] mainly due to different nitrogen use efficienies.  

The value used is often tightly related to the foliage nitrogen decay coefficient (Kn) which also 

varies among models [Bonan et al., 2011].  The PX LSM photosynthesis model follows the 

Vcmax25 values after nitrogen constraints and Kn = 0.17 based on the values analyzed by Bonan et 

al. [2011].  Bonan et al. [2011] uses Kn = 0.11 in their evaluation study; but the value is set to 0.3 

in CLM4.5 for multi-layer model considerations.  Tup and Tlow are the limits of the optimal 

temperature range defined for PFT types in JULES [Clark et al., 2011]. 

The lighted-limited assimilation rate (Aj mol CO2 m
-2

 s
-1

) is a function of the rate of 

electron transport (J mol electron m
-2

 s
-1

) and is computed as: 

              for C3 and C4 plants (4.9) 

with    (4.10) 

      (4.11) 

      (4.12) 

where J is solved using the quadratic equation 4.10, ε is the quantum yield (mol CO2 mol
-1

 

photon) and εj (mol CO2 mol
-1

 photon) is the computed electron transport quantum use efficiency 

following the studies by Medlyn et al. [2005] and applied in Song et al. [2009].  Jmax is the 

maximum electron transport rate (mol electron m
-2

 s
-1

) and the ratio 1.97 of Jmax over VCMAX is 

used by Bonan et al. [2011]. Iapar (mol photon m
-2

 s
-1

) is the absorbed photosynthetically active 

radiation (APAR) by the leaf.   Though a number of alternative functions are used to model Jmax 
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and Vcmax dependence on temperature across the literature, Medlyn et al. [2002] categorizes them 

into two basic types: the Arrhenius (such as the JULES approach) and the peaked function (such 

as the CLM4.5 approach).  They also show that the peaked function represents the temperature-

dependent Jmax better for almost all species-based experiments in their review.  For mesoscale 

simulations over relative short-time scales, compared with climate simulations, the 

photosynthesis-based PX LSM uses the Arrhenius function approach which requires fewer PFT-

specific temperature constraint parameters. 

The photosynthesis rate (Ae) limited by the transport of photosynthetic products (C3 

plants) and phosphoenolpyruvate (PEP) carboxylase limitation (C4 plants) is computed following 

JULES [Clark et al., 2011] as: 

      For C3 and C4 plants, respectively (4.13) 

The final CO2 assimilation rate (A) is computed by solving the colimitation equations described 

by Bonan et al. [2011] and the net assimilation rate is computed by subtracting leaf dark 

respiration from A as: 

    (4.14) 

    (4.15) 

    (4.16) 

where Ai is the smoothed minimum of Ac and Aj.  Ai and A are the smallest roots of the quadratic 

equations. fdr is the dark respiration coefficient which is set as 0.015 for C3 plants and 0.025 for 

C4 plants following JULES.   
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4.2.3 Leaf to Canopy Scaling  

Up-scaling CO2 assimilation rate and stomatal conductance for estimating canopy 

transpiration and productivity from the leaf to canopy is complicated by spatial heterogeneity 

within plant canopies in both the vertical and horizontal dimensions.  LAI [Chen et al, 2006], 

leaf inclination angles and leaf clumping [Pisek et al. 2013], crown gappiness [Song et al. 2009], 

leaf nitrogen and photosynthetic capacity [Leuning et al., 1995; Baldocchi and Meyers, 1998] 

vary within the canopy collectively affecting canopy transpiration, CO2 assimilation, and other 

flux processes.  The non-linearity of many key processes such as leaf photosynthesis and 

transpiration with respect to radiation further complicates the difficulty in upscaling those 

processes [Jarvis, 1995; Campbell and Norman, 1998].  In addition, physiological and physical 

processes such as leaf photosynthesis, stomatal conductance, and transpiration have non-linear 

relationships with many abiotic regulating variables (e.g. solar and terrestrial radiation, 

temperature, humidity, wind speed, and soil moisture).  Leaf stomatal conductance in a canopy 

can be quite different at different positions due to both current and past varying abiotic and biotic 

conditions (e.g. age, height) [Jarvis and McNaughton, 1986; Jarvis, 1995].  Because of this 

complication, it is still a challenge to contemporary land surface scientists in ecology, climate, 

meteorology, and biogeochemistry for modeling and validating parameterized processes that 

govern land-surface fluxes across different time and space scales [Moorcroft, 2006].  Scaling 

methods from the leaf to canopy vary with different complexity from the simplest big leaf 

models [Monteith, 1981; Jarvis, 1995; Pleim and Xiu, 1995, Chen and Dudhia, 2001] to multi-

layer models with 3-D arrays [Kobayashi et al., 2012].  A weakness of the simple big leaf model 

is that it treats sunlit and shaded leaves within the canopy equally.  This equal treatment of the 

canopy leaves often results in overestimation of flux rates (e.g. CO2) [dePury and Farquhar, 

1997; Wang and Leuning, 1998].  The sunlit and shaded leaves have distinct differences in leaf 
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surface temperature which results in different surface vapor pressure.  Thus, stomata will behave 

differently under varying micro-meteorological conditions within the canopy.  dePury and 

Farquhar [1997] and Wang and Leuning [1998] demonstrated that a single-layer sunlit/shaded 

big leaf model is simpler and has equivalent capabilities to accurately predict CO2 assimilation 

rate and latent heat in comparison with a multi-layer model.  Zhang et al. (2001) also showed 

that the sunlit/shaded big leaf approach also compares well to multi-layer models for 

representing the stomatal pathway in dry deposition models.  For the mesoscale modeling 

purpose, the photosynthesis-based PX LSM model also adopts the two-big leaf approach for 

canopy scaling.  The sunlit and shaded leaf areas are computed using the equations described by 

Campbell and Norman [1998] and applied in many studies [e.g., Song et al., 2009] as: 

                                (4.17) 

                                (4.18) 

Campbell [1986] suggested a simple equation to compute the direct beam attenuation coefficient 

as:   

  (4.19) 

where θsun is the sun zenith angle, x is the canopy leaf orientation parameter with  0 for vertical 

leaves and 1 for spherical leaf orientation (randomly oriented).  Following the work by 

Goudriaan [1977] and applied in many studies [e.g. Song et al., 2009], the transmittance of beam 

radiation for non-horizontal scattering leaves with leaf absorptivity (αleaf) can be computed as: 
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       (4.20) 

The extinction coefficient for diffuse light (Kdif) within the canopy can be estimated by first 

computing the transmittance for diffuse radiation for the entire upper hemisphere (τdif) as: 

  (4.21) 

  (4.22) 

The computed direct and diffuse extinction coefficients, the mean radiation intensity on 

the sunlit and shaded leaves from visible (or PAR) and near infrared (NIR) bands are estimated 

based on the direct and diffuse PAR and NIR radiation estimations at the top canopy using the 

methods described by Song et al. [2009]. The net radiation (Rnet) for the sunlit and shaded leaves 

is computed individually as: 

                 (4.23) 

with  (4.24) 

where APAR and ANIR are the absorbed PAR and NIR at the leaf (sunlit or shaded) (W m
-2

), 

LWfloor, LWair, and LWcanopy are the long wave radiations (W m
-2

) from the floor, air, and canopy 

computed following the methods of Song et al. [2009].  fLW is the scaling factor of the longwave 

radiation to the canopy.  The leaf temperature is computed following the method described by 

Evers et al. [2010] using the Penman-Monteith equation with Rnet computed for each leaf.   
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The canopy stomatal conductance (Gst) and net photosynthesis rate (Acnet) for the whole 

canopy with the soil moisture constraint are then computed as: 

  (4.25) 

  (4.26) 

 where gst_sun, gst_shd (m s
-1

), Anet_sun, and Anet_shd (mol m
-2

 s
-1

) are computed leaf-scale stomatal 

conductance and net CO2 assimilation rate for the sunlit and shaded leaves.  The transpiration 

from the sunlit or shaded canopy leaf (TRc_sun or TRc_shd) with the soil moisture constraint on the 

stomatal conductance is computed following the PX LSM approach [Pleim and Xiu, 1995] as: 

  (4.27) 

where ρa is the air density (kg m
-3

), qs(Ts_sun) is the saturated mixing ratio for water vapor at the 

sunlit leaf temperature Ts_sun, qa is the ambient water vapor mixing ratio above the canopy, Rbw is 

the boundary resistance for water  (m s
-1

), Ra is the air dynamic resistance (m s
-1

), and gstw_sun is 

the sunlit leaf stomatal conductance for water (m s
-1

) computed from gst (eq. 4.2) for CO2.  The 

transpiration for the shaded leaf is computed using the same equation but with parameters for the 

shaded leaf.  The transpiration (TRc) for the whole canopy is then computed as: 

  (4.28)   

The evapotranspiration (ETc) for the canopy is then computed as: 

  (4.29)   

where Ess and Evs are the evaporation from the bare soil surface and vegetation surface and they 

are estimated based on the current PX LSM approach [Pleim and Xiu, 1995; Ran et al., 2015b].  
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Both the photosynthesis-based model and current PX approach use the same estimated Ess and 

Evs in ET computation.  Thus, the comparison of LH between the two approaches purely reflects 

the differences in modeled plant transpiration.  

4.2.4 Box Model Implementation  

The photosynthesis-based approach is implemented in a diagnostic box model with the 

ET and ozone deposition velocity routines from WRF/CMAQ with PX LSM described by Ran et 

al. [2015b].  This box model is designed to use as many observational data as possible from the 

FLUXNET L2 standardized data [Baldocchi, 2008] for evaluating modeled latent heat flux (LH) 

from the photosynthesis-based approach (PX PSN) in comparison with the current Jarvis 

approach (PX Jarvis) and observed LH.  Since the box model is diagnostic and there is no energy 

budget calculation, observed sensible heat is used to compute aerodynamic surface temperature 

which is used as the leaf temperature in the PX Jarvis approach.  Observed friction velocity (u*) 

is used to compute the boundary layer resistance and aerodynamic resistance based on the 

Monin-Obukov similarity theory (MOST) [Monin and Obukhov, 1954; Oleson et al., 2013; 

Pleim and Ran, 2011].  The computed aerodynamic surface temperature is not used in the PX 

PSN which estimates the sunlit and shaded leaf surface temperatures using the net radiation for 

sunlit and shaded leaves.  Thus, the PX Jarvis approach may have some advantage in these box 

model experiments through using more observed data in estimating stomatal conductance and ET 

than are used by the PX PSN approach.  The observed air temperature, wind speed, LH, PAR, 

soil moisture, CO2 level, relative humidity, vapor pressure deficit, air pressure, precipitation, and 

LAI (if available) are read in and used in the box model for ET modeling.  To solve the equations 

for each sunlit and shaded leaf, an iterative numerical scheme, similar to CLM4.5 [Oleson et al., 

2013], is used to estimate the leaf surface CO2 partial pressure (cs Pa), gst, Anet, and ci until ci 
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converges. At the same time, the leaf temperature is also numerically iterated outside the ci 

iteration using the Penman-Monteith equation with Rnet for each leaf.  ET from the canopy is 

obtained by adding computed transpiration from the canopy (eq. 4.29) to the evaporation 

estimated from the soil and the leaf surface.   

4.2.5 Photosynthesis-based Model  

The key parameters for canopy scaling and canopy radiative transfer are evaluated in 

figure 4.2 based on the Harvard Forest US-Ha1 site data on 13 June 2006 at 12pm with changing 

parameters.  The sunlit leaf is dominant at the lower LAI while the shaded leaf increases with the 

increase of LAI (top left in figure 4.2) for the assumed spherical leaf distribution of the broadleaf 

forest site.  The sunlit leaf absorbs the majority of the incident PAR (top right in figure 4.2) at 

the top of the canopy; the absorbed fraction peaks for LAI around 4 with a slightly decreasing 

trend following the increase of LAI due to the increase of shaded leaf LAI.  The changes of the 

sunlit/shaded LAI and absorbed PAR fractions are very similar to the parameters displayed by 

Bonan et al. [2011].  With an assumed LAI at 4, most of the leaves are shaded and the sunlit leaf 

fraction is greatest at 0 zenith angle (bottom left in figure 4.2).  The shaded leaf LAI increases 

and the sunlit leaf LAI decreases with increasing zenith angle.  The direct beam extinction 

coefficient (red line in the low right plot) increases with the zenith angle exponentially 

(particularly after 80°) and is greater than 1 for zenith angles greater than 60° which is consistent 

with  Campbell and Norman [1998].  Since Kdir is multiplied by the incident direct beam PAR in 

estimating the total PAR on the sunlit leaves based on the method of Campbell and Norman 

[1998], high Kdir values give much higher estimated PAR on the sunlit leaves than the incident 

PAR at the top of the canopy during hours with high zenith angle (morning or evening) when the 

sunlit leaf is a small fraction of the canopy.  This condition sometimes causes the sunlit leaf 
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temperature to be unrealistically high when u* is exceptionally low in the early morning (very 

stable conditions with high boundary layer and aerodynamic resistances).  The very small sunlit 

leaf fraction when sun is just rising and the much higher sunlit PAR due to high Kdir sometimes 

result in unstable numerical iteration without converging.  Thus, Kdir is limited to 3 in the model.  

The diffuse beam extinction coefficient is a function of LAI (blue line in the bottom right plot) 

and it decreases exponentially with the increase of LAI.     

 

Figure 4.2.  Canopy scaling and radiative transfer parameters plots.  The top row plots are the 

leaf canopy fraction (top left) and the absorbed PAR fraction to the incident PAR (top right) for 

the sunlit and shaded leaves.  The bottom row plots are the sunlit and shaded LAI (bottom left) 
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with changing zenith angle and the direct and diffuse extinction coefficients (bottom right) as a 

function of zenith angle and LAI.  Parameters are computed based on US-Ha1 data on 13 June 

2006 at 12pm with longitude = W 72.1715, latitude = N 42.5378, LAI = 4 (m
2 

m
-2

), zenith angle 

= 20°, x = 1 (spherical leaf), αleaf = 0.8 for PAR (leaf absorptivity), and αleaf = 0.2 for NIR, forest 

floor reflectance = 0.10.   

Figure 4.3 demonstrates the influence of deep soil moisture on the canopy transpiration, 

stomatal conductance, and net assimilation rate (eq. 4.25, 4.26, 4.28).  The F2 S shape function 

indicates that transpiration as well as stomatal conductance and net assimilation rate reaches the 

potential rate where the soil moisture is greater than field capacity and is severely limited below 

the wilting point.  Since the development of the assimilation rate computation in the box PX 

LSM follows the components from JULES and methods used by Song et al. [2009], figure 4.4 

compares median diurnal LH estimates from the PX PSN with the approaches used by JULES 

[Clark et al., 2011] and Song et al. [2009] (implemented in the box model) against the results 

from the PX Jarvis and the US-Ha1 site measurements [Urbanski et al., 2007] for July 2006.  

Though all models perform well in comparison with the observations (black line), the JULES 

approach tends to overestimate LH around peak photosynthesis hours because the model does 

not have constraints on the absorbed PAR in estimating the rate of electron transport as the Song 

approach does.  The Song approach is slightly higher because some constants used in the three 

assimilation rate computations are slightly different from the JULES approach.  The PX PSN, 

which uses the JULES approach to compute Ac, Ae and the Song’s approach to compute Aj with 

all constants from JULES, results in better LH estimation during the peak transpiration hours.  

The PX Jarvis does well except in the morning hours and late evening with relatively high LH 

estimation.  All models tend to overestimate LH during the morning and late afternoon with the 
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photosynthesis approaches performing better in the morning.  LH from the PX PSN is closest to 

the observations in the morning while the photosynthesis approaches perform the best around 6 

pm.  The much improved LH estimation around 6 pm has important implications for 

meteorology and air quality modeling as WRF/CMAQ tends to overestimate LH and pollutant 

concentrations during the evening transition when the model tends to stabilize too quickly.  

Lower LH estimation may help increase sensible heat flux, preventing premature stabilization at 

the surface, and thus reducing pollutant concentrations.  The estimated canopy stomatal 

conductance and ozone deposition velocity from the PX Jarvis and PSN approaches over the 2 to 

11 July 2006 period (chosen as an example of summer conditions for a short period without any 

missing data) are displayed in figure 4.6 to demonstrate the change of ozone deposition velocity 

due to the change of stomatal conductance.  The PX Jarvis tends to have higher stomatal 

conductance during this period which results in slightly higher ozone deposition velocity.  The 

ozone deposition involves several pathways including deposition to wet/dry cuticle surfaces, to 

soil surface, and via stomata including effects of mesophyll resistance [Pleim and Ran, 2011].  

Thus, ozone deposition velocity is not simply linearly related to stomatal conductance as 

demonstrated by the comparison plots in figure 4.5.      
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Figure 4.3.  Transpiration as a function of deep soil moisture (F2 function by eq. 4.3), computed 

based on US-Ha1 data on 2 July 2006 at 12pm with changing deep soil moisture (w2).  The box 

model uses the loam soil properties (wfc = 0.24 m
3
 m

-3
, wsat = 0.451 m

3
 m

-3
, wwlt=0.155 m

3
 m

-3
) 

from the box PX LSM for the site. 
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Figure 4.4.  Diurnal median comparisons of the estimated latent heat (LH) from the 

photosynthesis approaches used by JULES [Clark et al., 2011], Song et al. [2009], and 

photosynthesis-based PX LSM (PX PSN) to compute three potential assimilation rates (Ac, Aj, 

and Ae) in comparison with LH from the PX LSM Jarvis approach [Pleim and Xiu, 1995] and the 

observation data at the FLUXNET Harvard Forest US-Ha1 site [Urbanski et al., 2007].  The 

broadleaf C3 plant simulations are conducted in the PX box model using July 2006 US-Ha1 

standardized L2 data with canopy height = 25 m, x = 1 (spherical leaf), αleaf = 0.8 for  PAR (leaf 

absorptivity), αleaf = 0.2 for NIR, forest floor reflectance = 0.10, VCMAX25_0 = 30×10
-6

 mol m
-2

 s
-1

, 

kn = 0.17,  Tlow = 0.0 °C, Tup = 36 °C, leaf scattering coefficient 0.15,  quantum yield  ε = 0.08 

(mol CO2 mol
-1

 photon), and Jarvis Rstmin = 200 s m
-1

. 
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Figure 4.5.  Stomatal conductance (m s
-1

, left) and ozone deposition velocity (m s
-1

, right) 

computed from the PX Jarvis and photosynthesis-based approach from 2 to 11 July 2006 with 

the modeling parameters described in the figure 4.4 caption. 

4.3 Model Evaluation and Analysis 

The PX PSN model is evaluated and analyzed for LH estimation at four selected 

FLUXNET sites with different vegetation types and landscape characteristics.  The evaluation is 

conducted over the period with FLUXNET LAI measurements for each site and LAI is linearly 

interpolated for the days in between LAI observations.  Additional model simulations are made 

using the 2006 gap-filled MODIS vegetation data processed for each land cover type within a 

WRF/CMAQ 12 km grid cell to show the model performance and limitations when using the 

averaged MODIS vegetation for each PFT within a grid cell for typical mesoscale applications.  

The gap-filled MODIS LAI data are processed from 2006 MODIS Collection 5 LAI and FPAR 

data (MOD15A2GFS) at 1 km resolution and every 8 days [Gao et al., 2008; Myneni et al., 

2011] from the North American Carbon Program as used in the previous studies by Ran et al. 

[2015a and 2015b].  The model is further evaluated based on the 2013 ozone flux measurements 
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at the Duke Forest Open Field - US-Dk1, made by U.S. EPA [Almand-Hunter et al., 2015], to 

assess the impact of the photosynthesis-based approach on LH, ozone deposition velocity, and 

ozone flux.  Site descriptions, key parameters adopted from CLM4.5 [Oleson et al., 2013], 

JULES [Clarks et al., 2011], and PX LSM [Xiu and Pleim, 2001; Pleim et al., 2013] based on 

site PFT, and simulation year for the four FLUXNET sites and one EPA ozone measurement site 

are presented in table 4.1.  There are two soil moisture measurements at two different depths 

available in the FLUXNET Level 2 (L2) standardized file.  At some sites the soil moisture 

measurements are at the same depth as the soil temperature measurements while at other sites 

they are at different depths and some sites, such as Harvard forest, there are no soil moisture 

measurements at all.  Depending on the seasons, the model responses to the two soil moisture 

measurements differently, as plants tend to use shallow water with more nutrients when there is 

no water stress but tap into deeper soil water when the upper layers are dry during the hot 

summer.  Interpolated soil water between the two measurements generally does not help model 

performance without weighting by root distribution.  Therefore, the model uses the soil moisture 

measurement which fits model performance best for the simulation periods at each site.      
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Table 4.1.  Site and key parameters for selected four FLUXNET sites and EPA flux ozone site. 

 

Estimated fluxes are evaluated using diurnal median comparisons between the two 

approaches against observations.  In addition, the two approaches are evaluated using scatter 

plots of daily values of estimated fluxes (e.g. latent heat and O3 flux) against observations with 

computed normalized mean bias (NMB) and normalized mean error (NME) from daily flux 

estimations.  The NMB and NME metrics for model estimations are calculated as [e.g. Yu et al., 

2006]: 

  (4.30)   

  (4.31)   

Site Name

Vegetation and Site 

Info. Key Parameters

FLUXNET Measurments:

2006 Missouri Ozark/US-Moz 

Deciduous Broadleaf C3, 

location(-92.2, 38.7441), 

Elevation 219 m, Missouri,  

Gu et al.  [2006]

Canopy height = 24 m, OBS LAI,  x =1 (spherical leaf), αleaf  PAR = 0.8, αleaf  NIR = 0.2, forest 

floor reflectance = 0.10, V CMAX25_0  = 30×10-6 mol m-2 s-1, k n  = 0.17,  T low  = 0 C, T up  = 36 C, 

leaf scattering coefficient 0.15,  quantum yield  ε  = 0.08 (mol CO2 mol-1 photon), and Jarvis 

R stmin  = 200 s m-1 (same as Harvard Forest US-Ha1 site), silt loam with w sat = 0.485,  w fc = 

0.255, w wlt = 0.178 

2008 Wind River Field Station/US-

Wrc

Evergreen Needleleaf C3, 

location(-121.9519, 45.8205), 

Elevation 371 m, Wahsington, 

Paw U et al. [2004]

Canopy height = 56 m, LAI = 8.6, x = 1 (spherical leaf), αleaf  PAR = 0.8, αleaf  NIR = 0.2, 

forest floor reflectance = 0.10, V CMAX25_0  = 55×10-6 mol m-2 s-1, k n  = 0.17,  T low  = -10 C, 

T up  = 26 C, leaf scattering coefficient 0.17,  quantum yield  ε  = 0.08 (mol CO2 mol-1 photon), 

and Jarvis R stmin  = 175 s m-1, silt loam with w sat  = 0.485,  w fc  = 0.255, w wlt  = 0.178 

2006 Fermi Prairie/US-IB2

Grasslands C4, location(-

88.241, 41.8406), elevation 

226 m, Illinois, Allison et al . 

[2005]

Canopy height = 1 m, OBS LAI, x = 0.85, αleaf  PAR = 0.8, αleaf  NIR = 0.2, forest floor 

reflectance = 0.10, V CMAX25_0  = 25×10-6 mol m-2 s-1, k n  = 0.17,  T low  = 13 C, T up  = 45 C, leaf 

scattering coefficient 0.17,  quantum yield  ε  = 0.06 (mol CO2 mol-1 photon), and Jarvis R stmin 

= 100 s m-1, silty clay loam with w sat = 0.477,  w fc = 0.322, w wlt = 0.218 

2006 Mead Irrigated Rotation/US-

Ne2

Soybean C3, location(-

96.4701, 41.1649), elevation 

362 m, Nebraska, Verma et 

al . [2005]

Canopy height varies with OBS LAI, x = 0.81, αleaf  PAR = 0.8, αleaf  NIR = 0.2, forest floor 

reflectance = 0.10, V CMAX25_0  = 90×10-6 mol m-2 s-1, k n  = 0.17,  T low  = 0 C, T up  = 36 C, leaf 

scattering coefficient 0.15,  quantum yield  ε  = 0.08 (mol CO2 mol-1 photon), and Jarvis R stmin 

= 70 s m-1, silty clay loam with w sat = 0.477,  w fc = 0.322, w wlt = 0.218 

U.S. EPA Measurments:

2013 Duke Forest Open Field/US-

Dk1

Grasslands C3, location(-

79.0934, 35.9712), elevation 

168 m, North Carolina, 

Almand-Hunter et al. [2015]

Canopy height = 1 m, LAI = 3, x = 0.85, αleaf  PAR = 0.8, αleaf  NIR = 0.2, forest floor 

reflectance = 0.10, V CMAX25_0  = 26×10-6 mol m-2 s-1, k n  = 0.17,  T low  = 0 C, T up  = 36 C, leaf 

scattering coefficient 0.15,  quantum yield  ε  = 0.12 (mol CO2 mol-1 photon), and Jarvis R stmin 

= 100 s m-1, loam with w sat = 0.451,  w fc = 0.24, w wlt = 0.155 
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where Mi and Oi are the estimated and observed daily total fluxes for day i.  The two relative 

metrics in percent are useful to evaluate errors of modeling results against observations for fluxes 

which can have quite different magnitude and variability across the different sites.      

4.3.1 FLUXNET Site Simulations  

Missouri Ozark/US-Moz site 

The simulated LH from the PX PSN approach at the Missouri Ozark/US-Moz FLUXNET 

site [Gu et al., 2006] is evaluated against the LH simulated from the PX Jarvis approach and the 

observed LH in figure 4.6.  The measured LAI is much lower than the MODIS LAI for this 

deciduous broadleaf land cover type in the CMAQ 12km grid cell in which the site is located.  

However, the seasonal change of MODIS LAI (phenology) parallels the measured LAI (middle 

plot in figure 4.6).  Using the observed LAI, the PX PSN and Jarvis approaches perform 

reasonably well in general (left plot in figure 4.6) for simulations from 9 July (day 190) - 14 

November (day 318) 2006.  However, the PX PSN tends to overestimate LH for most of the 

hours after 9am until the evening.  Using the MODIS LAI, both models overestimate LH (right 

plot in figure 4.6) due to higher LAI from MODIS and the PX PSN still has higher LH than the 

Jarvis approach following the same pattern as the simulations with observed LAI.  The scatter 

plots of estimated daily total LH estimations against the observations (figure 4.7) also 

demonstrate that the PX Jarvis approach performs slightly better than the PX PSN approach. 

Ideally the fitted regression line in the scatter plot should have a slope = 1, a y-intercept = 0, and 

R = 1.  While the R value is quite high indicating good correlation with the observations, the 

slope > 1 shows a general tendency to overestimate LH by both approaches. 

In contrast to the pattern at the Harvard Forest US-Ha1 site with the same PFT 

(deciduous broadleaf), the PX PSN tends to overestimate LH from mid-morning to evening at 
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the US-Moz site over the much longer simulation period (July to November versus one month 

for the US-Ha1 site).  Though both sites have the same vegetation PFT, the species are different.  

Red oak, red maple, mature hemlock, and white pine are dominant at the Harvard Forest US-Ha1 

site [Urbanski et al., 2007] while the Missouri Ozark/US-Moz site is in an oak-hickory forest 

which is uniquely located in an important transitional zone between hardwood and grassland in 

the central States.  Thus, the model, which classifies both sites in the same PFT and therefore the 

same Vcmax, plant absorptivity, and other parameters, is unable to differentiate varying physiology 

from different trees within the same PFT at the two sites.  In addition, soil moisture plays a key 

role in controlling the performance for the Moz site.  There are only two soil moisture 

measurements, at 10 cm and 100 cm, available in the standardized L2 dataset.  The soil moisture 

at 100 cm is almost above the field capacity for most of the year while the soil moisture at 10 cm 

varies rapidly.  For the first half year with almost constant deep soil moisture above the field 

capacity, both approaches overestimate LH significantly.  During the growing season after early 

July, the deep soil moisture shows more variation allowing the model to be more responsive to 

soil moisture conditions.  Thus, the simulation is conducted and analyzed over the period after 

early July for this site.  Through testing with soil moisture data at different depths for some of 

the selected sites, both models seem to perform best when using the soil moisture measured at 

root zone depth which is generally from 25 cm to 60 cm deep depending on the region and 

vegetation type (such as much deeper rooted trees in western drylands).  Thus, it is crucial to 

choose the right soil moisture and temperature measurement for the diagnostic simulation 

because the measurement depths are usually different in the standardized L2 files for each 

FLUXNET site.  Although both models use the same soil moisture limiting function F2, the PX 

PSN tends to overestimate LH when soil moisture is not limiting while the Jarvis approach 
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generally performs better.  It is possible that the aerodynamic surface temperature, which is 

calculated from observed sensible heat and used by the PX Jarvis computation, helps minimize 

the error in LH estimation for the tall canopy.              

 

 

Figure 4.6.  Missouri Ozark/US-Moz site LH diurnal median comparisons.  LH is simulated with 

the photosynthesis-based and Jarvis approaches using the observed LAI (left plot) and the 

MODIS LAI (right plot) from 9 July (190) - 14 November (318) 2006.  The observed LAI from 

the site 2006 biological data and processed 2006 MODIS LAI for the deciduous broadleaf land 

cover type at the 12 km CMAQ grid cell are displayed in the middle plot.  Soil moisture 

measurements at 100 cm deep are used. 
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Figure 4.7.  Missouri Ozark/US-Moz site scatter plot comparisons of daily total LH estimations.   

Wind River Field Station/US-Wrc site 

Simulation of LH at the Wind River Field Station/US-Wrc site is particularly challenging 

using the two stomatal conductance approaches [Jarvis, 1976; Farquhar, 1980; Ball et al., 1987; 

Collatz et al., 1991] in the box model.  The old growth forest site is dominated by tall Douglas-

fir (more than 60 m tall) more than 500 years old and tall western hemlock (more than 50 m tall).  

Using the observed LAI 8.6 (m
2
 m

-2
) at the site [Thomas and Winner, 2000], both approaches 

significantly overestimate LH by more than 50 W m
-2

 (left plot in figure 4.8) for simulations 

from 7 January (day 7) - 28 November (day 333) 2008.  Using 2006 MODIS LAI for the 

evergreen needleleaf land cover type reduces the over estimation of LH significantly (right plot 

in figure 4.8) because the MODIS LAI (maximum around 5.3 m 
2
 m

-2
) is much less than the 

observed LAI at the site.  The MODIS LAI and FPAR algorithm tends to be saturated at high 

LAI (Yang et al. 2006).  The PX PSN has higher estimation of LH than the PX Jarvis approach 
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in general for this site.  With MODIS LAI, the PX PSN slightly overestimates LH while the PX 

Jarvis approach slightly underestimates around the peak radiation hour.  From the late afternoon, 

both the approaches overestimate LH.  The scatter plot evaluation is not conducted for this site 

due to the poor performance from the both approaches over the long simulation period.  The 

2008 FLUXNET measurement data is used for the modeling because the 2006 measurements 

have too many gaps and most of the soil moisture data are missing.  Since FLUXNET does not 

have the biological data with measured LAI for this site, the observed LAI [Thomas and Winner, 

2000] over late 1990s and available 2006 MODIS LAI for WRF/CMAQ are used for the 

simulation with the assumption that LAI does not change too much for this PFT old growth site.  

The MODIS LAI does show seasonal variation of LAI which peaks in late spring for the 

vegetation in this area with wet cool winters and hot dry summers.  As the site is located in the 

subtle divide between the Wind River and Trout River in the north-south oriented Cascade 

Mountains, the soil moisture is limited during the hot summer [Paw U et al., 2004, Shaw et al., 

2004].   

Similar to other sites, the model seems to be very sensitive to the soil moisture data used 

for LH estimation at the Wind River site.  Soil moisture measurements are available at eight 

different depths between 0 to 2 m for this site.  The measurement at 40 cm which shows most 

reasonable variations during the hot summer is selected for modeling.  However, the soil 

moisture is mostly above the field capacity during the rest of the year which results in LH 

overestimation for the first of the half year (similar to the situation at the US-Moz site).  With 

most plant roots within 0.5 m, deep roots extending to 1 – 2 m deep, and fine roots in the top 0 – 

0.3 m deep [Shaw et al, 2004], it seems that the soil moisture measurements used for the 

modeling are too deep for the cool seasons but about right for the dry seasons.  This indicates 



141 

 

that the optimal soil moisture depth for modeling plant transpiration not only varies with 

different sites and vegetation composition but also with different seasons depending on the soil 

moisture demand by vegetation.  This may be particularly important for the US-Wrc site which 

has diverse vegetation species composition and canopy structures [Thomas and Winner, 2000].  

Furthermore, the more than 500 year old tall Douglas-fir and western hemlock that are dominant 

at the site present ecological modeling complexity regarding age, height, biomass, and 

under/over story structures.  Many studies [McDowell et al., 2002; Phillips et al., 2002; Wharton 

et al., 2009; Pangle et al., 2015] have investigated the relationship between the canopy flux and 

tree height since Ryan and Yoder [1997] first proposed the hydraulic limitation hypothesis.  With 

the increased path from soil to the canopy stoma for tall trees, it is assumed that leaf-specific 

hydraulic conductance may decrease resulting in reduced stomatal conductance.  McDowell et al. 

[2002] and Phillips et al. [2002] tested the hypothesis at the US-Wrc site with young and old 

Douglas-fir trees and their results do not support the hypothesis as there is no observed decrease 

of stomatal conductance and photosynthesis for the old-growth trees compared to the younger 

shorter trees from their summer observations. They suggest that old tall Douglas-fir trees may 

evolve to compensate for the hydraulic limitation by having more efficient sap conductance.  The 

study by Pangle et al. [2015] shows that the hydraulic limitation hypothesis is supported by all 

species they measured including western hemlock except Douglas-fir in the Pacific Northwest.  

Also, since FLUXNET measurements are based on the eddy covariance method to directly 

measure the flux density above the canopy, the direct measurement method comes with the 

assumption that the terrain is flat and with uniform vegetation and that the atmosphere is in 

steady state.  Thus, eddy covariance derived fluxes include significant uncertainties due to non-

ideal conditions in natural heterogeneous landscapes, which is particularly true for this site with 
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measurement height at 85 m above the ground over the tops of the clumped conifer canopy with 

diverse understory species.  Accuracy of turbulent fluxes from this method is around 5-15% for 

the sensible heat and 10-20% for latent heat [Mauder et al., 2006; Foken et al., 2008] with 

systemic errors from sensor configurations and turbulence data processing around 5–10% and 

random errors from natural variation in vegetation and atmospheric turbulence around 5% 

[Baldocchi, 2008].  Since only the flux from the small eddies is measured at almost all 

FLUXNET network sites, some portion of the flux from larger eddies and advection is missing 

[Finnigan et al., 2003].  Larger eddies may play an important role because of the 85 m 

measurement height at the site and drainage flows from surrounding hills [Shaw et al., 2004].  

Finally, turbulent flux computation in LSMs use empirically determined non-dimensional profile 

functions in accordance with MOST even though MOST is defined under ideal environments.  

The validity of MOST is limited to flat terrain with homogeneous landscape and land cover and 

to a steady and horizontally homogeneous flow by averaging from 10 minutes to around an hour 

[Monin and Obukhov, 1954].  Even under ideal environments, MOST has around 10–20% errors 

[Foken, 2006].  In non-ideal conditions, MOST-based model calculations will be less accurate 

and result in more uncertainties in estimating aerodynamic resistance [Wang and Dickinson, 

2012].  Since the uncertainty associated with flux measurement and computation applied to both 

models and observations at all sites, the interpretation of the model performance differences 

needs to be cautious.          
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Figure 4.8.  Wind River Field Station/US-Wrc site LH diurnal medium comparisons.  LH is 

simulated with the photosynthesis-based and Jarvis approaches using the observed LAI (left plot) 

and the MODIS LAI (right plot) from 7 January (7) - 28 November (333) 2008.  The observed 

LAI of the C3 vegetation from the study by Thomas and Winner [2000] and processed 2006 

MODIS LAI for the evergreen needleleaf land cover type at the 12 km CMAQ grid cell are 

displayed in the middle plot.  Soil moisture measurements at 40 cm deep are used. 

Fermi Prairie/US-IB2 site 

The performance of simulated LH from 22 May (day 142) - 20 September (day 263) 

2006 for the C4 tall grass prairie at the Fermi Prairie/US-IB2 site is evaluated and shown in 

Figure 4.9.  Soil moisture measurements at 25 cm deep (not in the standardized L2 data) are used 

for the modeling.  Using the observed LAI, the PX PSN performs well while the PX Jarvis 

underestimates LH by around 50 (W m
-2

) around peak radiation hours.  Both approaches tend to 

underestimate LH in early morning and evening hours.  Since the PX PSN treats C3 and C4 plants 

differently in modeling CO2 assimilation, it seems to have advantages in modeling LH through 

the coupled photosynthesis and stomatal conductance approach with the consideration of the C4 

photosynthetic carbon cycle efficiency for the adaptation to high light, dry, and hot 
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environments.  The peak MODIS LAI (around 1.75 m 
2
 m

-2
) is much lower than the observed 

LAI (around 3 m 
2
 m

-2
 , middle plot in figure 4.9).  But, the MODIS LAI peaks coincident with 

the observed LAI peak in late July and early August.  In general, the MODIS LAI cannot capture 

the peak and low LAI values compared to site observations (exception at the US-Moz site) due to 

averaging at the WRF/CMAQ 12 km modeling resolution [Ran et al., 2015a].  With MODIS 

LAI, both the approaches underestimate LH with the PX PSN by around 50 (W m
-2

) and the PX 

Jarvis by around 100 (W m
-2

) around noon (right plot in figure 4.9).  Both approaches have high 

uncertainties in the daily total LH estimations as indicated by the relatively low R value (figure 

4.10).  The PX PSN has lower NMB and higher NME for daily total LH estimations than the 

Jarvis approach for simulations with observed LAI.  For MODIS LAI simulations, the PX PSN 

performs better with lower NMB and NME.  Since this tall grassland site has rather uniform 

landscape with homogeneous vegetation and flat terrain [Allison et al., 2005], it meets the 

assumptions of the eddy covariance FLUXNET measurement and the turbulent flux computation 

by MOST relatively well in comparison with the previous two FLUXNET sites located in 

landscape transitional zones.  Thus, both measurements and flux computations are likely to be 

less error prone and the demonstrated strength of the PX PSN approach is likely to be robust.                
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Figure 4.9.  Fermi Prairie/US-IB2 site LH diurnal median comparisons.  LH is simulated with the 

photosynthesis-based and Jarvis approaches using the observed LAI (left plot) and the MODIS 

LAI (right plot) from 22 May (142) - 20 September (263) 2006.  The observed LAI of the C4 

grassland from the site 2006 biological data and processed 2006 MODIS LAI for the grassland 

land cover type at the 12 km CMAQ grid cell are displayed in the middle plot.  Soil moisture 

measurements at 25 cm deep are used. 
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Figure 4.10.  Fermi Prairie/US-IB2 site scatter plot comparisons of daily total LH estimations.   

Mead Irrigated Rotation/US-Ne2 site 

The box model is further evaluated for soybean crop at the Mead Irrigated Rotation/US-

Ne2 site [Verma et al., 2005] from 12 June (day 163) - 5 October (day 278) 2006.  Soil moisture 

is set to field capacity due to irrigation.  Distinct from the other sites with constant plant height, 

the measured seasonally varying crop height along with LAI from the site biological dataset are 

used in the simulation.  While both models perform well with the observed LAI and crop height 

(left plot in figure 4.11), in the early morning the two models tend to underestimate LH but the 

PX PSN tends to overestimate LH in the early afternoon while the PX Jarvis slightly 

underestimates.  The PX Jarvis LSM was originally developed based on soybean measurements 

in Kentucky [Pleim et al. 2001; Pleim and Xiu, 2003] thus it performs well at this site for 

soybeans.  The fact that the PX PSN performs as well as the PX Jarvis for this crop validates its 

capabilities for modeling agricultural lands.  The peak LAI for soybeans can reach 5 (m 
2
 m

-2
) 
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with canopy height around 1 m, but the peak MODIS LAI is only around 2.75 (m 
2
 m

-2
).  The 

height of the plant follows the LAI until the crop turns brown (greenness or LAI declining to 

zero) just before harvesting.  The soybeans were planted on 1 May (day 121) and harvested on 5 

October (day 278) for 2006.  According to the measurements, it took almost a month after 

planting for the plants to have measurable LAI.  Similar to other sites, the MODIS LAI peaks 

coincident with the observations but cannot capture the high and low of the observed LAI at the 

site.  With MODIS LAI, both models overestimate LH because the peak soybean LAI period is 

short and on average MODIS LAI is higher than the observations over the modeling period.  

Using the MODIS LAI, the estimated LH median from the PX PSN is close to observations 

around noon while the Jarvis approach overestimates LH by around 50 (W m
-2

) and both models 

tend to underestimate LH in the early morning hours.  The two approaches perform well in daily 

total LH estimations with lower NMB and NME from the Jarvis approach (left plot in figure 

4.12) in simulations with the observed LAI.  However, both approaches do not perform well with 

the MODIS LAI which results in much higher errors and scatter (much lower R values) despite 

lower bias (right plot in figure 4.12).  Thus, accurate LAI as well as crop height is crucial for 

simulations over crop lands.  Because crop lands are treated as one land cover category in the 

current WRF/CMAQ system the mesoscale model cannot distinguish LAI and crop height 

associated with planting, fertilizing, irrigating, and harvesting of different crops.  Although 

MODIS LAI tends to be low for the peak growing season at this soybean site, it does provide 

some information on plant LAI changes which are related to natural (e.g. temperature and 

precipitation) and human influences in comparison with the table-prescribed landscape in the 

current system.    
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Figure 4.11.  Mead Irrigated Rotation/US-Ne2 site LH diurnal median comparisons.  LH is 

simulated with the photosynthesis-based and Jarvis approaches using the observed LAI (left plot) 

and the MODIS LAI (right plot) from 12 June (163) - 5 October (278) 2006.  The observed LAI 

of C3 soybean from the site 2006 biological data and processed 2006 MODIS LAI for the 

cropland land cover type at the 12 km CMAQ grid cell are displayed in the middle plot.  Soil 

moisture is set to field capacity. 

 



149 

 

 

Figure 4.12.  Mead Irrigated Rotation/US-Ne2 site scatter plot comparisons of daily total LH 

estimations. 

4.3.2 Ozone Site Simulations  

Simulated LH, stomatal conductance, and ozone deposition and flux from the PX Jarvis 

and PSN approaches over 40 days from 17 May to 18 June and 18 to 28 September 2013 are 

evaluated against the flux measurements conducted by U.S. EPA at the Duke Forest Open 

Field/US-Dk1 site [Almand-Hunter et al., 2015].  Soil temperature and volumetric water content 

used are the average measurements over 0 - 5 cm depth, which are provided by EPA and used in 

site measurement data processing.   Figure 4.13 shows the diurnal median statistics (left plot) for 

the simulations and selected 5-day hourly estimations (right plot) of LH using the two models 

against the observations.  The PX Jarvis significantly overestimates LH by a factor of around 2 

(~ 170 W m
-2

) while the PSN overestimates LH by about 50 W m
-2

.  The hourly estimation plot 

for the selected 5 days shows a similar pattern with significant overestimation from PX Jarvis 
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while the PX PSN underestimates LH for the first two days (days 145 and 146) and 

overestimates LH for the last three days.  The stomatal conductance estimated from the PX Jarvis 

is much greater than that from the PX PSN (by about a factor of 2, left plot in figure 4.14).  

Similarly, ozone deposition velocity and computed ozone flux based on ozone concentration 

measurements are also higher from the PX Jarvis but by a smaller margin because of influences 

of other ozone deposition pathways.  The peak ozone deposition velocity from the PX PSN is 

lower than the observation peak but the peak timing follows the observations well in the early 

morning (middle plot in figure 4.14).  In contrast to LH which is often highest around noon with 

roughly symmetric trends for morning and afternoon hours, ozone deposition velocity normally 

peaks in the early morning (around 8 am for the site), similar to stomatal conductance, with 

gradual decline throughout the daylight hours. Stomatal conductance usually decreases as 

relative humidity declines with increasing temperature.  While low relative humidity reduces 

stomatal conductance, it also drives the fluxes from stomata to the ambient atmosphere due to 

increasing moisture gradient.  Thus, the two influences often cancel out for LH resulting in the 

symmetric shape of the LH diurnal profile.  Diurnal ozone flux also peaks around noon with a 

similar symmetric shape as LH because as deposition velocity declines in the afternoon the 

ozone concentration usually increases.   

The middle and right plots in figure 4.14 show that the estimated ozone diurnal 

distribution and ozone flux from the PX PSN match the observations much better than the 

estimations from the PX Jarvis.  However, estimated ozone deposition velocity and flux are high 

in both models from the afternoon to late evening with the PX PSN over-estimating to a much 

lesser degree.  The daily total LH and O3 flux estimations both show better agreement with the 

observation from the PX PSN with much lower NMB and NME (figure 4.15).  While the scatter 
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plots show good correlations for both LH and O3 fluxes (R values > 0.85), a factor of 2 over 

prediction by PX Jarvis for LH is reflected in the slope of the regression line (slope > 2).  The 

over prediction of O3 flux is by the PX Jarvis is evident from the scatter plot with all but 4 points 

above the 1-to-1 line.  The low slope of the regression line and high y-intercept for PX PSN 

indicates a tendency to over predict at the low end and under predict at the high end. 

 

Figure 4.13.  Duke Forest Open Field/US-Dk1 site LH diurnal median (left plot) and selected 

hourly (right plot) comparisons.  Simulations are conducted based on LAI = 3 (m
2
 m

-2
) and other 

parameters listed in table 4.1 for the periods of 17 May (day 137) to 18 June (day 169) and 18 to 

28 September (day 261 to 271) 2013 with measurements.  Hourly display is for 25 to 30 May 

2013 (day 145 to 150).   
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Figure 4.14.  Duke Forest Open Field/US-Dk1 site diurnal median comparisons for estimated 

stomatal conductance (cm s
-1

, left plot), ozone deposition velocity (cm s
-1

, middle plot), and 

ozone flux (μg m
-2

 s
-1

, right plot).   

 

 

Figure 4.15.  Duke Forest Open Field/US-Dk1 site scatter plot comparisons of daily total LH and 

ozone flux estimations. 
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The PX Jarvis has much higher estimation of stomatal conductance than the PX PSN for 

the displayed 5 day period from 25 to 30 May 2013 (left plot in figure 4.16). However, the PX 

PSN estimates ozone deposition velocity and flux better for the first three days while the PX 

Jarvis does better for the last two days (middle and right plots in figure 4.16).  The spikes of the 

observed ozone deposition velocity and flux are not realistic and likely caused by some issues 

with the measurement.  The big difference between the two models at this site seems to be much 

larger than the differences demonstrated by the four FLUXNET site LH evaluations discussed 

above.  The use of measured sensible heat flux by the PX Jarvis for computing the aerodynamic 

surface temperature to be used in stomatal conductance computation as the leaf surface 

temperature may be degrading the model performance at this site.  This approach seems to 

benefit the PX Jarvis at the Missouri Ozark/US-Moz and Wind River Field Station/US-Wrc sites 

which have tall tree canopies that serves as a barrier between the ground and the atmosphere.   

Since the surface energy budget is dominated by the canopy at these forest sites, the aerodynamic 

surface temperature is a good surrogate for leaf temperature.  At the Duke site, the computed 

aerodynamic surface temperature is much higher than the ambient temperature around the noon 

hours (e.g. around 6 C°) because the surface energy is more influenced by the ground rather 

since the grasses have much less mass and volume than forest.  Thus, the aerodynamic surface 

temperature is not as good of a surrogate for the leaf temperature.  The higher leaf temperature 

results in a higher mixing ratio gradient between the leaf stomata and the ambient atmosphere 

which drives greater LH flux.  In the full PX LSM with WRF/CMAQ, the difference between the 

two approaches are likely to be much smaller because there is full energy budget with sophistical 

radiation models and dynamic feedbacks which will be equally applied to both approaches at a 

time scale of less than 40 seconds.           
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Figure 4.16.  Duke Forest Open Field/US-Dk2 site hourly comparisons for estimated stomatal 

conductance (cm s
-1

, left plot), ozone deposition velocity (cm s
-1

, middle plot), and ozone flux 

(μg m
-2

 s
-1

, right plot) over the period of 25 to 30 May 2013 (day 145 to 150).   

4.4 Conclusions and Future Work 

A coupled photosynthesis and stomatal conductance approach with simple 

parameterization is developed, implemented, and evaluated in a diagnostic box model with ET 

and ozone deposition components from WRF/CMAQ with the PX LSM.  The performance of the 

diagnostic model is influenced by many factors including parametrizations based on broad PFTs, 

site-related input data, and measurement errors in addition to physical process formulations.  

Results from the box model comparisons should be interpreted with caution because off-line 

simulations cannot completely represent the performance in the full scale model with real-time 

feedbacks [Samuelsson et al., 2003; Qu and Henderson-Sellers, 1998].  The purpose for this 

study is not to develop a site-specific model which matches measurements; but rather to develop 

applicable algorithms to be applied to the multi-scale (urban, region to global) WRF/CMAQ 

simulations for realistic treatments of grid cell average surface fluxes of heat, moisture, and trace 

chemical species.  The performance of the developed model over varieties of vegetation and 

landscape types at the selected sites demonstrates that the model is applicable in large scale 
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modeling domains for the most prevalent vegetated land surface environments across the globe 

(i.e. deciduous and coniferous forest, grassland, and cropland).   

The photosynthesis-based stomatal conductance model with two-leaf scaling is 

constrained by many additional model parameters, particularly related to photosynthesis such as 

the maximum rate of carboxylation of Rubisco - Vcmax, the foliage nitrogen decay coefficient – 

Kn, maximum electron transport rate - Jmax, and quantum yield – ε.  This gives the model 

advantages in distinguishing plants with different photosynthesis mechanism (C3 and C4) and 

efficiency among PFTs (such evergreen or deciduous from boreal, temperate, or tropic regions, 

different crops).  However, those parameter values vary among and within PFTs across literature 

and different models.  It is important to choose the values which represent plant types for the 

modeling approach including scaling implemented in the full Eulerian grid model.  The model 

performs differently even at the sites with same PFT (such as US-Ha1 and US-Moz sites with 

broadleaf deciduous trees) using the same photosynthesis-related parameters due to different 

vegetation composition.  In addition, LAI and soil moisture and texture influence the 

performance of the both approaches.   

The evaluation using observed LAI and MODIS LAI at the WRF/CMAQ 12 km grid 

domain shows that accurate LAI is important for matching site measurements.  With the MODIS 

LAI input, both approaches perform worse except at the Wind River Field Station US-Wrc site 

where lower LAI from averaged MODIS LAI at WRF/CMAQ grid cells help reduce LH and 

match the observations well.  Although the MODIS LAI is generally different from the observed 

LAI; the change of MODIS LAI over the growing season does peak with the observed LAI.  

Thus, MODIS LAI captures the seasonality (or phenology) of vegetation, that is consistent with 

the results from Ran et al. [2015a and 2015b].  Note that, in the full Eulerian grid model LSM 
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performance is improved through real-time soil moisture and temperature nudging in the WRF 

PX LSM [Pleim and Xiu, 2003; Pleim and Gilliam, 2009] which continually adjusts soil 

moisture and temperature to reduce errors in LH flux thereby reducing air temperature and 

humidity errors.  This scheme compensates for model errors due to inaccurate parameters as well 

as over-simplified canopy and soil algorithms.  Thus, even though the box model simulations are 

using whatever soil moisture measurements that are available, the overestimation of LH which is 

observed at most sites is likely to be corrected in WRF simulations with the PX LSM soil 

nudging scheme and dynamic feedbacks.   

The photosynthesis-based approach is evaluated at the Harvard Forest (US-Ha1) 

FLUXNET site for July 2006 and the model performs well in comparison with the current PX 

Jarvis approach and two other CO2 assimilation methods compared to observations.  The 

advanced approach can simulate LH as well as the PX Jarvis approach in general for four 

selected FLUXNET sites (US-Moz, US-Wrc, US-IB2, and US-Ne2) though the performance 

varies at different sites.  For the US-Moz and US-Wrc sites with tall forest canopy, the PX Jarvis 

approach shows some advantage during the peak noon hours.  The photosynthesis-based 

approach shows clear improvement in modeling short vegetation (e.g. grassland and soybean), 

particularly for the C4 grassland at the Fermi Prairie US-IB2 site by distinguishing C3 and C4 

plants in modeling the CO2 assimilation rate.  Both the approaches significantly overestimate LH 

at the Wind River Field Station US-Wrc site with observed LAI because of the complex 

landscape dominated by old growth tall Douglas-fir and western hemlock.  The hydraulic 

limitation, which is one of many factors which may contribute to the overestimation, seems to 

apply to western hemlock but not to Douglas-fir [McDowell et al., 2002; Phillips et al., 2002; 

Pangle et al., 2015] at this site.  As the developed photosynthesis-bases model is a single layer 
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two-leaf model for meso-scale modeling, it shows limitation in modeling sites with complex 

canopy structures including different species at different heights.  For the complex canopy, a 

multi-layer model [Baldocchi and Meyers, 1998; Meyers et al., 1998] likely performs better.  

The advanced model performs much better than the Jarvis approach at the Duke Forest Open 

Field US-Dk1 grassland site in simulating LH and ozone flux.  The photosynthesis model shows 

the ability to simulate the diurnal shape of ozone deposition velocity which usually peaks in the 

early morning.  The Jarvis approach is known to have difficulty in simulating the diurnal shape 

[Finkelstein et al., 2000; Pleim et al., 2001] and this deficiency is clearly demonstrated at the 

site.  The simulated ozone flux from the advanced approach matches the observations much 

better than that from the Jarvis approach which overestimates ozone flux by around 50%.        

The current PX WRF/CMAQ uses 20-class NLCD land cover types for the U.S. and 20-

class MODIS IGBP classes for areas outside the U.S.  There is an ongoing effort at EPA to 

develop new land cover classes with detailed PFTs for vegetation from boreal, temperate, 

tropical, and dryland regions and with major crop categories including irrigation information.  

The new land cover types with more specific PFTs are more suitable for the photosynthesis-

based PX LSM than the current land cover types used in the system.  With realistic vegetation 

and albedo from MODIS products being ingested into WRF/CMAQ [Ran et al., 2015a and 

2015b], the system has more accurate vegetation and surface representation which helps improve 

not only spatial and temporal characteristics of vegetation and land surface but also improves the 

meteorology performance.  The next step is to implement the evaluated photosynthesis-based 

stomatal conductance model into WRF/CMAQ PX LSM with MODIS input and new land cover 

types.  Thus, the system with improved land surface representation and vegetation processes can 

be used in research and applications in coupling air quality, climate, and vegetation productivity 
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directly with CO2 concentration which changes temporally and spatially.  In addition, the effects 

of air pollutants such as O3 on ecosystem productivity can also be easily implemented in this 

advanced approach [Sitch et al., 2007; Lombardozzi et al., 2012] for EPA’s secondary standard 

assessments under the Clean Air Act to protect the environment.     
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CHAPTER 5: SYNTHESIS  

5.1 Summary  

Vegetation transpiration is a crucial component in the surface energy budget and the 

water and carbon cycles.  In air quality modeling, vegetation is also a source and sink of many 

atmospheric pollutants and precursor chemicals such as O3, oxidized and reduced nitrogen, and 

volatile organic compounds (VOCs).  The commonly used PX LSM for the combined 

meteorology and air quality modeling system, WRF/CMAQ, relies on lookup table prescribed 

parameters to describe albedo and vegetation with plant phenological dynamics modeled using 

simple time and temperature dependent functions.  A simple empirical function Jarvis approach 

is used to estimate canopy stomatal conductance in modeling vegetation transpiration and 

pollutant deposition.  This research aims to (1) improve the land surface representation in 

WRF/CMAQ using satellite vegetation and albedo and to (2) advance the vegetation processes 

with a biochemically-based photosynthesis-stomatal conductance approach.  The two 

components of this research are synergistic because accurate vegetation representation is 

essential for estimating canopy CO2 assimilation and stomatal conductance using the 

biochemically-based photosynthesis approach.   

The first step of this research is to evaluate model performance using the prescribed 

vegetation and albedo in the current system and assess sensitivities to replacement with satellite 

vegetation and albedo input.  The PX LSM intentionally exaggerates the vegetation coverage, 

particularly in the western dryland areas, in order to optimize its soil moisture nudging scheme 

for reducing errors in 2 m T and Q for meteorology simulations.  Using MODIS vegetation and 
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albedo products containing much more accurate spatial and temporal surface representation is 

clearly a significant advance adding more realism to the system.  However, evaluations 

comparing model simulations including the MODIS inputs and the base model demonstrate 

mixed results.  MODIS inputs have the largest effects in the western drylands because of 

substantially less vegetation coverage from MODIS LAI and FPAR, where the current PX LSM 

look-up table yields unrealistically high vegetation coverage.  The more accurate MODIS 

vegetation coverage results in reduced latent heat flux, 2 m Q, and ozone dry deposition velocity, 

and increased surface skin T, 2 m T, PBLH, and surface ozone concentrations.  Sensitivity 

evaluation of the WRF and CMAQ simulations with MODIS input generally indicates reduced 

error and bias in 2 m Q but greater error and bias in 2 m T and ozone with reduced bias in 2 m T 

and ozone concentrations at the high end of the observed range.  While MODIS albedo input 

results in higher albedo in western barrens and deserts causing lower surface skin T, 2 m T, and 

PBLH and lower albedo for coniferous forests in the southeast, boreal regions and high 

mountains in the west resulting in higher skin T, 2 m T, and PBLH, overall domain-wide 

evaluation statistics show that MODIS albedo has much less impact on the system in comparison 

with MODIS vegetation.  Thus, this research mainly focuses on sensitivities of model 

performance due to vegetation differences.  An important conclusion from the mixed results due 

to the use of more realistic satellite surface representation is that improvements should be made 

in the model physics, particularly the LSM which likely uses the exaggerated base vegetation 

coverage and LAI in the western drylands to compensate for an inherent model tendency toward 

hot biases in low vegetation areas. 

The second step of this research is to update the WRF/CMAQ modeling system with 

MODIS input by including recent model improvements in vegetation, soil, and PBL processes.  
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The updated system is evaluated against the simulations from the previous study over a short 

period in the summer (August-September 2006).  The system is further evaluated for the 

advantages in using satellite input to describe seasonal changes through yearlong meteorology 

simulations and selected three-month (April, August, and October) air quality simulations.  The 

updated processes in WRF/CMAQ clearly improve 2 m T and Q, 10 m WS, and near surface 

ozone concentration estimations for both MODIS and base simulations over the short summer 

period.  The system seems to respond well to the updated soil resistance which uses a soil water 

diffusion approach and has a more gradual change when soil moisture is approaching field 

capacity, with reduction in domain-wide warm biases,  particularly in sparsely vegetated western 

regions.  The ozone concentration estimations from both the MODIS and base cases show 

significant improvements due to the improved meteorology.   

Evaluations of the yearlong meteorology simulations and selected three-month air quality 

simulations using the updated system focus on 2 m Q and surface ozone with the change of 

vegetation.  MODIS input improves the system through not only better spatial and temporal 

representation but also different LAI magnitudes from diverse natural and cultivated vegetation 

types which the LSM land cover look-up tables cannot adequately distinguish.  The green-up 

from the PX LSM vegetation is too fast for 2006 but the green down is similar to the MODIS 

vegetation.  Consistently higher LAI in the Pacific temperate rain forest and lower LAI in 

Canadian boreal forests and southeast coniferous forests in MODIS LAI are distinct throughout 

the entire year.  The MODIS vegetation results in overall bias reduction for 2 m Q during the 

growing seasons from April to September with the differences in simulated latent heat and 2 m Q 

between the MODIS and base cases closely following the differences in LAI.  Areas with 

improved 2 m Q from MODIS input move from the southeast following the green up in April 



170 

 

towards the west and north following the LAI changes in the natural and cultivated lands to the 

central Plains through August.  Despite the overall improvement of meteorology simulations, 

many sites also show increased bias and error, particularly dry bias in the southwest from August 

through September with MODIS input.  The consistent dry bias condition in this region (which is 

not unique to this system) during the hot summer is likely to be associated with uncertainties in 

other parts of the system (e.g. influences of the Gulf circulation and the North American 

monsoon).  From October to March with inactive vegetation, MODIS input does not have big 

impact on the system as large scale meteorology is often dominant in the cold seasons.  The 

updated system with MODIS input increases the high bias of ozone concentrations but by no 

more than 3 ppb on average for April, August, and October.  The high ozone bias, concentrated 

in the areas where MODIS input has much lower LAI in comparison with the base model for all 

selected months, suggests that improvements may be needed in the CMAQ dry deposition model 

for low LAI areas where deposition to the bare soil is important. 

With the improved meteorology from realistic spatial and temporal MODIS vegetation 

using the improved WRF/CMAQ, the final step in this research is to advance the vegetation 

processes by incorporating a coupled photosynthesis-stomatal conductance approach into the PX 

LSM.  This research is conducted by developing a photosynthesis-based approach in a diagnostic 

box model, which includes the current PX Jarvis approach, for modeling ET and ozone dry 

deposition velocity.  The purpose for this final step research is not to develop a site-specific 

model which matches measurements, but rather to develop applicable algorithms in the 

WRF/CMAQ modeling system for grid cell average surface flux estimations of heat, moisture, 

and trace chemical species.  The photosynthesis-based approach is developed based on the 

FLUXNET measurements at the Harvard Forest US-Ha1 site following the photosynthesis 
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approaches applied in climate earth systems and ecosystem productivity models.  The model is 

evaluated using the FLUXNET measurements at four selected sites (US-Moz, US-Wrc, US-IB2, 

and US-Ne2) with different vegetation types and landscape characteristics and using the ozone 

measurements at the Duke Forest Open Field US-Dk1 operated by EPA.   

The performance of the photosynthesis-based approach and current Jarvis approach 

varies at different sites due to the influence of many factors including parametrizations based on 

broad PFTs, site-related input data, and measurement errors in addition to the underlying 

physical process formulations.  For mesoscale modeling purposes, site vegetation parameters are 

specified based on parameter values defined in climate earth system models according to site 

PFT even though photosynthesis parameters (e.g. Vcmax, Jmax) can vary within a PFT for 

different sites.  While the two approaches perform well in LH estimation at the US-Ha1 site for 

the development, the Jarvis approach shows some advantage in estimating LH at the two forest 

evaluation sites (US-Moz and US-Wrc) with some overestimation of LH around peak noon hours 

from the photosynthesis-based approach.  Both approaches do not perform well at the Wind 

River Field Station US-Wrc site because the single-layer canopy does not well represent the 

complex old growth canopy which includes very tall 500 year old Douglas fir and shorter 

western Hemlock with overall LAI around 9.  The photosynthesis-based approach demonstrates 

clear advantage in LH estimation for short vegetation (e.g. grassland and soybean), particularly 

for the C4 grassland at the Fermi Prairie US-IB2 site possibly because it distinguishes C3 and C4 

plants in modeling the CO2 assimilation rate.   

The MODIS LAI is generally lower than the observed LAI except at the US-Moz site, but 

the peak of MODIS LAI over the growing season follows the seasonality of the observed LAI.  

With MODIS LAI input, both approaches perform worse at all sites except at the Wind River 
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Field Station US-Wrc sites.  The photosynthesis-based approach performs much better than the 

Jarvis approach at the Duke Forest Open Field US-Dk1 grassland site in LH, ozone deposition 

velocity, and ozone flux estimations.  In particular, the photosynthesis-based approach 

demonstrates the ability to simulate the peak of diurnal ozone deposition velocity which is often 

in the early morning.  Using the vegetation processes applied in climate earth systems and 

ecosystem models and with the performance demonstrated in evaluation over varieties of 

vegetation and landscape types at the selected sites, the developed photosynthesis-based model 

in PX LSM is applicable for large scale WRF/CMAQ modeling domains which have vegetation 

coverage ranging from deciduous and coniferous forests to grass and crop lands across the world.     

5.2 Future Plans  

The performance of the final box model comparisons cannot completely represent the 

performance in full scale model simulations of grid cell average surface fluxes of heat, moisture, 

and trace chemical species with dynamic feedback.   The future work is to implement the 

evaluated photosynthesis-based stomatal conductance model into WRF/CMAQ PX LSM with 

MODIS input.  Currently, the PX LSM Jarvis approach in WRF/CMAQ models stomatal 

conductance for grid cell averaged vegetation characteristics in each cell.  For the 

photosynthesis-based approach, the simulation has to be conducted for each PFT type within a 

grid cell.  Since the PX LSM already uses fractional vegetation input, the change of vegetation 

modeling from the average approach to the mosaic of PFT types should be feasible.  Yearlong 

simulations over the continental U.S. should be conducted using the implemented system with 

the advanced vegetation processes and MODIS input for full model evaluation at different grid 

resolutions (e.g. 12-km, 4-km, and 1-km).  Domain-wide modeling results can be compared with 

meteorological and air quality measurements as well as results from this research.  Changes in 
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simulated surface fluxes from the advanced LSM should propagate through modeled LH and 

PBL height to affect clouds, precipitation, and winds.  Changes to these meteorology fields will 

consequently affect chemical concentrations as well. The AQ simulations will also be directly 

affected by changes in canopy conductance for dry deposition (e.g. O3) as demonstrated in the 

diagnostic box model simulations.   

In addition, more research can be conducted from the simulation results with MODIS 

albedo input from this research to investigate how albedo affects meteorology and air quality in 

shorter time periods (days to weeks).  MODIS albedo not only provides better spatial variations 

to the system but also realistic diurnal and seasonable changes in comparison with the current PX 

LSM table prescribed albedo values.  Furthermore, the yearlong WRF simulations and selected 

month CMAQ simulations can be further evaluated using site measurements with vertical 

information along with PBL height observations.  This research demonstrates LAI is an 

important parameter in LH and deposition simulation.  As uncertainties exist in MODIS LAI and 

FPAR, processed MODIS LAI and FPAR need to have further quality assurance in order for the 

data to be used in operational WRF/CMAQ simulations for the scientific and regulatory 

communities.  Finally, the impacts of air pollutants such as O3 on CO2 assimilation and stomatal 

conductance can be implemented in the photosynthesis-based model to assist EPA’s secondary 

standard assessments under the Clean Air Act for protecting the environment.         

5.3 Significance  

This research results in reduced uncertainty in the meteorology and air quality modeling 

for air pollution studies.  Replacing the current empirical Jarvis-type stomatal conductance 

scheme with the biochemically-based photosynthesis-conductance scheme will improve the 

model’s dynamic responses to environmental conditions such as temperature and CO2 
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concentration, which will enhance performance over extended simulations in changing climate. 

Furthermore, remotely-sensed dynamic vegetation data will result in more faithful representation 

of seasonal changes in natural and cultivated vegetation and changes in vegetation due to 

disturbances such as severe drought, fire damage, pest infestation, construction activities, and 

storm damage.  Integrated modeling systems across multiple media are being developed that 

involve meteorology and AQ modeling components.  For example, WRF and CMAQ are being 

linked with ecosystem, agricultural, and hydrology models so that impacts of atmospheric 

pollutants via wet and dry deposition can be consistently integrated with cropland, watershed, 

river, and estuary models for comprehensive assessments of ecosystem pollution and impairment 

of ecosystem services. Clearly, improved surface fluxes, including dry deposition, will be 

particularly beneficial for modeling atmospheric inputs to watershed and agricultural models.  

Similarly, the WRF/CMAQ system is being linked to human exposure models for human health 

impact assessment. Improved spatial and temporal distributions of modeled air pollutant 

concentrations particularly O3 that should result from this research will reduce the uncertainties 

involved in quantifying exposure.   The WRF/CMAQ system is an important decision support 

tool that is used to mitigate harmful effects of air pollution on human health and ecosystems.  

Improving the tool through development of more advanced science processes and incorporation 

of satellite observations will have direct benefit to society.    


