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ABSTRACT 

Matthew S. Harkey: Associations Between the Biological, Structural, and Mechanical 
Components of Cartilage Health following Acute Loading in Healthy Participants 

(Under the direction of Brian Pietrosimone) 

Context: A systems-based approach to assess cartilage health uses an acute bout of 

joint loading to signal acute changes in cartilage structure and metabolism. Evaluating 

how multiple systems, specifically cartilage structure and metabolic outcome measures, 

are influenced by loading may be a more sensitive measurement approach to 

understand the prognosis of cartilage related diseases. Objective: The objectives of 

this study are: 1) to compare the response of cartilage ultrasonography (US) outcome 

measures and serum cartilage oligomeric matrix protein (COMP) to a walking, drop-

landing, and control condition; 2) to determine the association between lower extremity 

loading measures during walking and drop-landing and the change in cartilage US 

outcome measures and serum COMP; 3) to determine the association between 

cartilage US outcome measures and serum COMP. Participants: 43 healthy 

individuals. Interventions: A femoral cartilage US assessment and an ante-cubital 

blood draw were performed in healthy individuals before and after three independent 

sessions: walking, drop-landing, and control conditions. We assessed walking and drop-

landing biomechanics at the beginning of the respective condition. Main Outcome 

Measures: Femoral articular cartilage was assessed with US to determine the 

thickness, area, and echo-intensity. Cartilage metabolism was quantified with serum 
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COMP. Results: US provides a reliable and precise modality for detecting the in vivo 

cartilage deformation and recovery response following walking and drop-landing, but the 

majority of US measures are not associated with lower extremity loading. COMP 

increases following walking and drop-landing in healthy individuals, but these changes 

are not associated with lower extremity loading measures. While the majority of 

cartilage structure and metabolism markers were not associated within the entire cohort, 

sex may influence the association between these measures. Conclusions: Cartilage 

structure and cartilage metabolism acutely respond to joint loading. The majority of 

lower extremity loading biomechanics selected in this study did not associate with acute 

changes in cartilage structure and metabolism.
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CHAPTER I 

1.1 Introduction 

Osteoarthritis (OA) is one of the most common joint diseases worldwide, 

affecting an estimated 10% of men and 18% of women.1 OA is characterized by 

progressive degradation of cartilage, subchondral bone, and synovium that ultimately 

lead to synovial joint failure.2 Specifically, knee OA leads to impaired mobility and 

decreased quality of life and is the sixth leading cause of years lived with disability 

worldwide.3 With OA expenses estimated at approximately $81 billion per year in direct 

medical costs in the United States,4 being able to effectively prevent OA is needed to 

limit its increasing financial burden. However, despite efforts to prevent OA 

progression,5 the incidence of OA is on the rise. The lack of preventative strategies is in 

part due to the maintenance of cartilage health being controlled by a complex, 

multifactorial process that is dependent on three primary components: mechanical,6 

biological,7 and structural.8 Rather than the classical approach that seeks to 

independently treat either the mechanical, biological, or structural factors associated 

with OA,9,10 a novel systems-based view of OA states that the development of disease 

is due to a continuously shifting interaction of each component that will determine the 

development of irreversible clinical OA.11,12 Healthy cartilage homeostasis is maintained 

when each of the primary components of joint health is operating within “normal 

ranges”, but if one or more of these components moves out of their normal range, 

abnormal stresses are placed on the cartilage potentially leading to OA. Therefore,
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understanding the relative state and interaction between each measure of joint health in 

healthy cartilage will be imperative for determining the “normal ranges” of a healthy 

joint. Once these normal ranges are established we can monitor individuals at risk for 

OA development with a goal of better identifying the early stages of cartilage decline. 

 

Structural Component of Cartilage Health 

 The first component of cartilage health is structural, which relates to cartilage 

morphology, as measured by different imaging modalities.8 Alterations in cartilage 

morphology are considered the hallmark sign of the disease,2 and radiographic 

evidence of joint space narrowing is most commonly used to diagnosis of knee OA.13 

However, classic radiographs are not capable of providing insight to very early declines 

in joint health because they are unable to directly visualize cartilage and lack sensitivity 

to capture early changes in cartilage structure,14 Therefore, more cartilage specific 

imaging modalities (i.e. magnetic resonance imaging [MRI] and ultrasound) are needed 

to closely monitor joint health to determine who may be at risk for OA development.8 

While MRIs are capable of visualizing articular cartilage, MRIs are costly, time 

consuming, and not easily accessible.15 Within recent years, ultrasound has become an 

assessable, cost-effective, and easy to conduct alternative to MRI.16 Additionally, 

previous studies have demonstrated high agreement with ultrasound measured 

cartilage thickness when compared to cross-sectional cadaver measurements17 and 

MRI,18,19 indicating that ultrasound is a valid tool for quantitatively assessing knee 

cartilage structure. Ultrasound has been used extensively in populations with 

established knee OA;16 however, there is yet to be any evidence of whether ultrasound 
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is capable in detecting earlier subtle changes in cartilage health that may be indicative 

of future OA development. Additionally, while end-stage OA is characterized by 

decreased cartilage thickness, there is evidence that the earliest stages of OA result 

occur to the cartilage biology prior to overt changes in cartilage thickness.20 Therefore, 

utilizing measures of cartilage structure, while also monitoring changes in cartilage 

biology will be very important in understanding the relationship between structure and 

biology in the early changes in cartilage health.  

 

Biological Component of Cartilage Health 

The biological component of cartilage health is defined by cartilage metabolism 

and composition factors that are involved in the maintenance of normal tissue.21 The 

development of OA is often considered a slow-progressing continuum that ultimately 

leads to decreased cartilage thickness and eventually joint failure.2 However, the 

earliest signs of OA are often metabolic and compositional alterations that occur without 

overt changes in cartilage structure.20 Examples of these changes in cartilage biology 

are initial depletion of proteoglycans, disorganization of collagen fibers, and increased 

water content;22 and since these alterations occur prior to changes in cartilage size, 

most conventional imaging modalities are unable to capture these early deleterious 

changes in cartilage health. Therefore, using techniques such as assessing fluid-based 

cartilage metabolism biomarker concentration21 or compositional imaging techniques20 

are needed to assess the biological component of joint health. Whether assessing 

serum, synovial fluid, or urine, these fluids can be assessed to determine circulating 

biomarkers to provide insight into biological processes that are occurring within the 
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body.21 Depending on the biomarker being tested, tissue metabolism ranging from type 

II collagen,23 proteoglycan,24 and bone25 can be quantified to provide information of 

subtle changes in joint metabolism that may eventually lead to cartilage degradation. 

Cartilage oligomeric matrix protein (COMP) is a specific biomarker of cartilage 

degradation and is important in organization of the cartilage-collagen matrix.25 COMP is 

one of the most studied biomarkers of cartilage metabolism and is one of the most 

promising biomarker candidates for assessing early OA risk.26,27 Besides assessing 

biomarker concentrations, novel compositional imaging techniques are capable of 

providing insight into the biology of cartilage by allowing for characterization and 

quantification of the composition of cartilage.20 While ultrasound has not been utilized as 

a cartilage compositional imaging technique, the echo-intensity of ultrasound may be 

able to assess cartilage water content.28 Since early proteoglycan depletion and 

collagen disorganization results in an influx of water into the cartilage,29 echo-intensity 

of the cartilage may be a surrogate measure of cartilage composition. While assessing 

biomarkers of cartilage health and compositional imaging techniques provide evidence 

of early biological declines in cartilage health, there is evidence that coupling these tools 

with a mechanical stimulus (i.e. loading) may enhance the diagnostic specificity to 

discover even earlier alterations in cartilage health.30,31 

 

Mechanical Component of Cartilage Health 

The mechanical component of cartilage health deals with the joints ability to 

withstand and cope with forces applied to the joint during physical activity. Referred to 

as a “disease of mechanics”,9 OA is often thought of as a “wear and tear” disease that is 
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developed and progressed due to abnormal cyclic loading that occurs during walking 

gait.6 Cartilage health is not only susceptible to an abnormal increase in the magnitude 

of joint loading, but is also highly vulnerable to an increased rate of loading during gait. 

Due to the viscoelastic properties of cartilage, rapidly applied loads (i.e. impulsive 

loading) decrease the ability of cartilage to dampen loads during gait.32 These increases 

in magnitude and rate of loading (i.e. vertical ground reaction force [vGRF]) during gait 

have been observed in patients with clinically diagnosed OA,33 as well as a population 

at risk for OA development (i.e. anterior cruciate reconstructed patients).34 While the 

vGRF provides a measure of gross impact force during gait, OA often times affects 

mainly the medial tibiofemoral compartment. Quantification of the knee adduction 

moment (KAM)35 and KAM loading rate36 during gait are used as a more specific gait 

variable to estimate the magnitude and rate of medial compartment loading, 

respectively. Alterations in both the KAM and KAM loading rate are observed in patients 

with OA, and have been linked to disease progression.35,36 Understanding how these 

specific knee gait biomechanics affect both the structure and biology of the cartilage will 

be important in determining who may be at risk and which prevention interventions may 

best slow the progression of the disease.  

 

Interaction Between the Structural, Biological, and Mechanical Components of 

Cartilage Health 

 While each of component of cartilage health are extremely important in isolation, 

using an multifaceted systems model approach to examine the interaction between the 

individual components may uncover earlier declines in joint health. For example, the 



 6

medial-to-lateral cartilage thickness ratio was positively associated with KAM in healthy 

individuals, while medial-to-lateral cartilage thickness ratio and KAM was negatively 

associated in individuals with OA.37 This indicates that healthy cartilage may be 

positively conditioned to the cyclical loading of gait, while OA cartilage responds 

negatively to load. Additionally, COMP has been described as mechano-sensitive as it 

plays a role in transducing mechanical forces in the cartilage, and there is evidence that 

subjecting the cartilage to a mechanical stimulus (i.e. gait) is effective at elevating the 

sensitivity of COMP to provide an indicator of cartilage health.38 Using a stimulus-

response study design, OA subjects completed a 30 min walk (i.e. mechanical 

component) that stimulated a change in COMP concentration (i.e. biological 

component), and this change in COMP was significantly correlated with five year 

longitudinal declines in cartilage thickness (i.e. structural component).31 Similar to the 

purpose of a cardiac stress test, in which controlled exercise is used to produce a 

physiological response that is used to reveal underlying pathology that is not observed 

at rest, determining changes in both cartilage structure and biology following a 

mechanical stimulus may reveal early declines in cartilage health.  

 

1.2 Statement of Purpose 

Therefore, if we plan to effectively monitor joint health in patients at risk for 

developing OA, we need to better understand the relative state and interaction of the 

mechanical, biological, and structural components of cartilage health in individuals 

without knee injury or joint related conditions. Establishing “healthy ranges” for these 

primary components of joint health will serve as benchmarks that will hopefully be able 
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to be used in an attempt to prevent OA development in patients following acute injury. 

Thus, the following specific aims have been developed to establish the relative state 

and interaction of the mechanical, biological, and structural components of joint health 

in healthy individuals. 

 

1.3 Specific Aims 

Specific Aim 1 - Cartilage Ultrasound and Biomechanics 

The purpose of specific aim 1 was to compare the acute response and 

recovery of US measures of cartilage health (i.e. thickness, area, and echo-

intensity) between a walking, drop-landing, and control condition in healthy 

participants. Additionally, we sought to determine the associations between a 

change in US measures of cartilage health and lower extremity loading 

biomechanics during the walking and drop-landing condition.  

We hypothesized that cartilage thickness and area will decrease, while echo-

intensity will increase following the walking and drop-landing condition when compared 

to the control condition. We hypothesized that the deformation created by the drop-

landing condition will take longer to recover when compared to the walking cartilage 

deformation recovery. Additionally, we hypothesized that lower extremity loading 

biomechanics will be associated with greater changes in the US outcomes following the 

walking and drop-landing condition. 
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Specific Aim 2 - Cartilage Metabolism Biomarkers and Biomechanics 

The purpose of specific aim 2 was to compare the acute serum COMP 

response between walking, drop-landing, and control in healthy individuals. 

Secondarily, we sought to determine the association between the COMP 

response and lower extremity loading biomechanics during the walking and drop-

landing conditions.  

We hypothesized that we would see an increase in COMP concentration 

following the walking and drop-landing conditions when compared to the control 

condition, as well as a larger magnitude COMP response in the drop-landing compared 

to the walking condition. Additionally, we hypothesized that lower extremity loading 

biomechanics would be associated with a greater COMP response following the walking 

and drop-landing conditions. 

 

Specific Aim 3 - Cartilage Ultrasound and Cartilage Metabolism Biomarkers 

The purpose of specific aim 3 was to determine the association between 

baseline US measures of cartilage health (i.e. thickness, area, and echo-intensity) 

and baseline serum COMP. The second purpose of this study was to determine 

the association between the change in US measures of cartilage health and the 

serum COMP response following walking and drop-landing in healthy individuals.  

We hypothesized that there will be a significant association between baseline US 

measures of cartilage health and baseline COMP concentrations. We hypothesized that 

a greater change in US measures of cartilage health will be associated with a greater 

serum COMP response following walking and drop-landing. 
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1.4 Operational Definitions 

1. Loading Protocol – a loading protocol will be considered the walking and drop-

landing protocols. 

2. Cartilage Health – The health of the joint is dependent on the interaction between 

three main components: structural, biological, and mechanical. 

3. Structural Component of Cartilage Health – The structural component of cartilage 

health relates to cartilage morphology as measured by different imaging modalities. 

Within this study, the structural component of cartilage health is defined using 

ultrasound. 

4. Biological Component of Cartilage Health – The biological component of cartilage 

health is defined by measures of cartilage metabolism. Within this study the 

biological component of cartilage health is quantified using serum concentrations of 

COMP. 

5. Mechanical Component of Cartilage Health - The mechanical component of cartilage 

health describes the joints ability to withstand and cope with forces applied to the 

joint, most notably how the joint functions during walking. The mechanical 

component of cartilage health will be quantified by the magnitude and rate of the 

vertical ground reaction force, internal knee extension moment, internal knee 

abduction moment, and the internal knee adduction moment during walking and 

drop-landing. 

6. Cartilage Echo-intensity – The calculated grey scale of the cartilage area 

measurements. This measure is theorized to indicate cartilage composition.  
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CHAPTER II 

2.1 Pathogenesis of Osteoarthritis Development 

Epidemiology of Knee Osteoarthritis 

Knee osteoarthritis (OA) affects 29 million Americans at an annual cost of $165 

billion.39,40 OA is a leading cause of disability by deteriorating quality of life41,42 and 

leading to comorbidities such as obesity, depression, and cardiovascular disease.43,44 

The World Health Organization reports that OA is the 4th leading cause of years of life 

lost due to disability.45 Currently, osteoarthritis treatment is palliative rather than 

preventative, with joint replacements being the primary end-stage treatment for OA.46 

Joint replacements are utilized to alleviate pain, but no interventions have been 

established to prevent OA development or progression. One reason for the lack of an 

effective prevention strategy is because OA is not diagnosed until later stages of joint 

breakdown has occurred. Since the majority of OA phenotypes are idiopathic (i.e. 

uncertain cause and timing of the disease origin), this complicates early detection and 

treatment at the earliest stages of disease development. Therefore, further research is 

necessary to better identify early changes in joint health, which will hopefully allow us to 

prevent the progression of knee OA and reduce the associated disability.

  

Post-traumatic Osteoarthritis Pathogenesis 

While the majority of OA develops idiopathically, approximately 12% of OA is 

considered to occur post-traumatically (PTOA) as a result of a previous acute joint 
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injury.47 Due to the known “inciting event” that triggers PTOA development, researchers 

and clinicians are able to monitor patients’ joints following acute injury to better 

understand early PTOA pathogenesis.48 Since approximately one-third of patients 

following anterior cruciate ligament (ACL) injury and reconstruction (ACLR) develop 

knee OA within the first decade following acute injury, these patients serve as a good 

model for PTOA development.49 While the median age of individuals with idiopathic OA 

is 55 years of age,50 ACL injuries occur primarily in patients between the ages of 15 – 

2451 Thus, patients following an ACLR are ideal for the prospective study of PTOA 

development because of 1) their significant patient population (~250,000 occurring 

annually52), 2) they are already seeking medical attention prior to the development of 

OA, and 3) PTOA is a rapidly advancing form of OA that may allow for shorter follow 

times to determine progression. Therefore, utilizing ACLR patients as a model for PTOA 

development, we are able to monitor changes in cartilage health to determine very early 

risk factors that may lead to the future development of OA. 

Knee OA is described as a disease of the entire synovial joint with signs such as 

cartilage breakdown, bone remodeling and sclerosis, meniscal damage, and synovial 

hypertrophy.2 However, the breakdown of cartilage is considered a hallmark signs of OA 

development,2 and knowledge of the basic anatomy of cartilage and how the structures 

relate to the function of the tissue will be important in understanding the pathogenesis of 

OA.  
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Anatomy of Articular Cartilage 

Articular cartilage is a dynamic tissue that plays an important role in the 

protection of synovial joints. While healthy cartilage may only be ~2mm thick,53 cartilage 

is imperative for distributing load and minimizing stresses placed on the subchondral 

bone, as well as providing a low friction environment within synovial joints.29 Cartilage is 

both avascular and aneural. Due to a lack of blood supply, cartilage receives its 

nutrients from mechanical movement of synovial fluid in and out of the structure. The 

absence of a nerve supply is important because degeneration can occur to the tissue 

the occurrence of pain. Combined, this makes the tissue susceptible to early damage 

without many warning signs. Additionally, once damage has occurred to the tissue, 

cartilage has very limited healing capacity. 

Figure 1 depicts the main functional components of cartilage. Fluid is the main 

component of articular cartilage; constituting between 60-80% of the entire structure.54 

Water is a contributor to the mechanical strength of the tissue due to its interaction with 

the extracellular matrix.29 The chondrocytes are the main types of cell type constituting 

only 5-10% of articular cartilage, but are responsible for production and maintenance of 

the entire extracellular matrix.  
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The extracellular matrix is comprised mainly of collagen and proteoglycans. 

Collagen accounts for 25% of the entire structure of articular cartilage and the bulk of 

the extracellular matrix, with type II collagen being the most prevalent (95% of total 

cartilage collagen).54 Proteoglycans are negatively charged hydrophilic molecules that 

consist of aggregates of glycosaminoglycans (GAGs) bonded together by link proteins. 

The major proteoglycan in articular cartilage is aggrecan, which consists of the following 

GAGs: chondroitin sulfate and keratin sulfate.29 Collagen restricts the hydration of these 

hydrophilic molecules to 40-60% and variation from this homeostatic balance can 

change the mechanical qualities of the cartilage and lead to damage. As cartilage is 

compressed during movement the water is propelled out of the cartilage, which forces 

the like charged GAGs to come in close proximity to each other.29 The closely oriented 

GAGs repel each other and create the majority of the compressive strength seen in 

articular cartilage. 

Since healthy cartilage is imperative to sustaining the health of the entire joint, 

monitoring cartilage structure for subtle declines in cartilage health is important at 

determining patients at risk for future OA development.  

Figure 1. Anatomy of Articular Cartilage; Matzat 2013 
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2.2 Structural Component of Cartilage Health 

Problems with Current OA Management 

 The structural component of cartilage health is quantified by imaging modalities 

that provide information regarding the structural integrity of cartilage.8 Monitoring 

structural changes in cartilage is one of the primary factors used to diagnose OA, and 

the amount of structural cartilage degradation is utilized to grade the severity of the 

disease. However, radiographs (i.e. X-rays) are currently used to diagnose OA with a 

semi-quantitative grading scale (i.e. the Kellgren and Lawrence  [KL] Grade55) that is 

less than adequate for assessing early cartilage alterations.56 The first issue with 

radiographical imaging of OA is that X-rays only indicate changes in bone (i.e. 

osteophyte formation, sclerosis, reduced joint space), and indirectly imply declines in 

cartilage health (Figure 2). Joint space narrowing is determined by a decline in the 

space between the tibia and femur, and is theorized to indicate cartilage breakdown, 

however, this measurement can easily be confounded by meniscal cartilage legions and 

meniscal extrusion.57 Another issue with radiographs is that evidence of cartilage 

damage does not appear on X-rays until after significant irreversible deterioration has 

occurred at the joint.58,59 Thus, there has been much debate of whether the inability to 

discover efficacious therapies to prevent OA progression is due to the inadequacies of 

radiographical imaging outcome measures.60 Therefore, utilizing imaging modalities 

capable of assessing early changes in cartilage health will be important for determining 

patients at highest risk of OA development and allowing for early treatment to prevent 

disease progression. 
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Magnetic Resonance Imaging and Cartilage Health 

Magnetic resonance imaging (MRI) has emerged as the gold standard for non-

invasively monitoring early structural cartilage changes.61 Unlike radiography, MRI is 

capable of direct imaging of many of the joint structures involved in OA pathogenesis 

such as the cartilage, meniscus, bone marrow, tendon and ligaments.62 There are 

multiple semi-quantitative MRI assessments that provide a global OA score: the Whole 

Organ Magnetic Resonance Imaging Score (WORMS) and the Knee Osteoarthritis 

Scoring System (KOSS).63 Additionally, a more recent ACL specific OA scoring system 

(ACLOAS64) takes in to account baseline structural damage following acute injury. While 

these scoring systems are a powerful tool at providing a global view of the different 

aspects of OA, they lack a specific direct quantification of cartilage structure. 

Quantitative MRI is capable of providing objective three-dimensional 

measurements of cartilage structure.61 Figure 4 displays the basic procedures involved 

in quantifying cartilage structure. Step 1 (Figure 3A) is acquiring the MR image. Step 2 

(Figure 3B) is termed segmentation, which involves tracing the articular cartilage of 

interest through serial images of the entire knee joint (i.e. femoral, tibial, patellar). One 

Figure 2. Radiographic Signs of Osteoarthritis. Hayashi 2016 
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measure commonly used to classify cartilage structure is the volume of the cartilage. 

Another similar measurement used is the mean thickness of the cartilage, which is 

defined as the ratio of the previously mentioned cartilage volume divided by the 

underlying subchondral bone area.65  

 

Instead of utilizing entire joint volumetric measurements of cartilage, many 

researchers separate the knee into subcompartments in order to get a better spatial 

distribution of the morphological cartilage alterations.  Usually the knee is divided into 

functional compartments: medial tibiofemoral (medial femoral condyle and medial tibial 

surface), lateral tibiofemoral (lateral femoral condyle and lateral tibial surface), and the 

patellar compartments. However, these compartments are more commonly subdivided 

with the femoral condyles being separated into five different subcomponents (FC-1 

through FC-5) and the tibias separated into three compartments (T-1 through T-3) 

(Figure 4).66-68 Division of these subcompartments is determined by the position of the 

meniscus. FC-3 and T-2 are regions of the femoral and tibial cartilage that are in contact 

at the middle of the knee. FC-2 and T-1 are the regions above and below the anterior 

horn of the menisci, while FC-4 and T-3 are above and below the posterior horn of the 

menisci. Finally FC-1 and FC-5 are the anterior and posterior non-weightbearing 

sections of the femoral cartilage, respectively. However, researchers have been even 

Figure 3.Morphological MRI Processing; Gupta 2014
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more thorough, by dividing the MR images according to the Outerbridge Scoring sheet 

and dividing a single knee in to 49 separate compartments (9 patella, 18 tibia, 18 

femoral condyle, and 4 trochlea);69 providing even more complexity into the spatial 

alterations in cartilage structure.  

 

Cartilage degradation (i.e. thinning of cartilage structure) has been extensively 

studied and validated as a marker of disease progression in patients with diagnosed 

knee OA. Systematic reviews have established the concurrent and predictive validity of 

MRI,70 as well as its responsiveness and reliability in monitoring changes in cartilage 

structure.71 Additionally, members of the Osteoarthritis Research Society International 

working with the US Food and Drug Administration have recommended that MRI is now 

recommended for clinical OA trials assessing cartilage structure.72 This evidence 

indicates that a decline in cartilage volume/thickness measured with MRI provides 

insight into the progression of the disease. Yet, all of the patients utilized in these 

studies already have radiographic evidence of the disease. Therefore, monitoring the 

changes in MRI cartilage structure following ACLR may provide evidence of early 

structure changes following may provide a structural link between acute injury and 

PTOA development.  

 

Figure 4. Subcompartmentalization of Cartilage; Li 2011
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Evidence of MRI Cartilage Alterations Following ACL Injury and Reconstruction – 

A Model for Structural Post-traumatic Osteoarthritis Development 

There is mounting evidence that cartilage degradation following ACL injury and 

reconstruction is eminent with approximately one-third of patients presenting with 

radiographic OA within the first decade following injury.49 However, it remains unclear 

how early cartilage breakdown begins following injury. This section will outline the 

current evidence regarding alterations in MRI measured cartilage thickness and volume 

following injury/surgery.    

 

Within 1 Year of Injury 

 The earliest quantification of cartilage structure following ACL injury is at a mean 

of 3.4 months following injury, and provides insight in the early cartilage alterations 

following injury.67 The total cartilage volume from all subjects was significantly less than 

the their contralateral knee.  Further sub-compartment analyses indicate that these 

overall decreases were driven by a decrease in both the lateral femur and tibia cartilage 

volume, while the medial compartments were no different than the contralateral limb.  

This initial decline in the lateral joint may be contributed to the initial impact of injury; 

since the valgus/internal rotation mechanism of injury seen in the majority of ACL tears 

results in large compressive forces being placed on the posterior lateral tibia and 

femur.73 The contralateral limb was utilized as a control rather than the knee of a 

healthy control participant because of the large inter-subject variability noted between 

participants. Van Ginckel et al found that ACLR patients at 6 months following 

reconstruction presented with similar cartilage volume when compared to a healthy 
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control group.74 These studies within the first year following ACL injury indicate that 

there may be within subject declines in cartilage volume, but comparing these declines 

may be masked when comparing to a healthy control group. 

 

Between 1 and 2 years following injury 

 The first longitudinal evaluation of cartilage structure compares the volume and 

thickness at three months post injury to outcomes at one year following injury and 

highlights the spatially different cartilage responses to ACL injury.75 While a majority of 

the sub-compartments indicate a decline in both volume and thickness (femoral trochlea 

demonstrating the greatest decline), other compartments resulted in increased 

thickness of cartilage (medial femoral cartilage demonstrating greatest increase). This 

thickening of cartilage initially appears contradictory to diagnosed MRI studies, as 

cartilage decline is the end stage of OA. However, there is evidence that the earliest 

stages of OA actually result in an increase in cartilage thickness.76,77 Apparently, OA is 

not a one-way road to cartilage loss, as there appears to be spatial differences in 

cartilage adaptation with some cartilage exhibiting cartilage thinning, while some 

cartilage thickening.77 This thickening is theorized to be due to two potential 

mechanisms: cartilage matrix hypertrophy or cartilage swelling. Cartilage matrix 

hypertrophy is though to be a protective mechanism to the altered stresses being 

placed on the joint. Cartilage swelling is theorized to be due to the influx of water due to 

the injured extracellular matrix.77 Utilizing the same subjects as the previous longitudinal 

investigation of cartilage structure following ACL injury, a two-year follow up was used 

determine if these trends in cartilage thinning/thickening continued.78 There was a 
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continuing trend observed with an increase in the thickness of the central medial femur 

and thinning of the femoral trochlea. However, there was also additional thinning of the 

posterior medial femur and posterior lateral femur between year one and year two 

following injury.  Interestingly, the magnitude of cartilage morphology changes over this 

year is comparable to (or greater) than the annual change observed in patients with 

diagnosed OA, potentially demonstrating signs of rapidly progressing PTOA.   

 

Greater than 5 years Following ACL Injury 

 There are conflicting results in the structural response of the cartilage at least 

half a decade following the initial ACL injury. One study discovered that at an average of 

seven years following reconstruction there are no observed side-to-side differences in 

subcompartment cartilage thickness.79 However, another study provides longitudinal 

evidence of an overall increase in cartilage thickness over the first 5 years following 

injury (increase of 31μm/year).80 This study provided additional evidence that changes 

within cartilage thickness are variable depending on subcompartment, with the medial 

femur and tibial being the most affected compartments (Figure 5).80 Additionally, this 

was the first article to include a new measure termed the total subregional tibiofemoral 

cartilage thickness change score, which summed the absolute value of the cartilage 

thickness changes over all 16 of the subregions. This value indicated a large absolute 

change in the cartilage thickness, once again highlighting that OA might not be a one-

way road to cartilage thinning.   
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 Despite all the MRI’s ability to provide a valid and reliable tool for specifically 

visualizing cartilage, MRIs are extremely expensive, the availability of machines is very 

low, and extensive specialized training is needed to operate. Thus, limiting the ability of 

MRIs to provide routine use in the clinic to monitor cartilage health. Therefore, additional 

imaging modalities are needed to provide the same sensitivity to visualize cartilage, 

while also allowing for accessible clinical use. 

 

Musculoskeletal Ultrasound Imaging and Cartilage Health 

Musculoskeletal ultrasound has recently become very popular within research 

laboratories and clinics due to the potential for ultrasound to be a robust imaging 

modality to monitor joint changes following acute injury.81 First, ultrasound is a safe, 

radiation-free and non-invasive technique that allows for accurate measurement of 

cartilage thickness, as well as other aspects of the joint indicative of OA.16 Additionally, 

the equipment is widely available due to its cost-effectiveness compared to the other 

imaging modalities. Due to the accessibility of ultrasound, this technique has the 

Figure 5. Baseline to Year 2 (Left) and Year 2 to Year 5 (Right) thickness 
changes Eckstein 2014



 22

potential to be used as a bedside procedure for both researchers and clinicians, 

allowing for a quick and accurate measurement of joint structure that can easily occur 

during a more inclusive orthopedic assessment. Also, with the other imaging modalities, 

the patient is required to sit in an uncomfortable machine/position for an extended 

period of time to only get an image in one plane; however, the ultrasound allows for a 

multiregional evaluation in a very short period of time.   

 

Validity and Reliability of Ultrasound Measured Cartilage Thickness 

Naredo et al conducted a validity study by comparing ultrasound measured 

cartilage thickness to anatomical measured thickness.17 Following an ultrasound 

thickness measurement in a cadaver knee, the knee was dissected and the cartilage 

thickness was assessed via a cross-section view of the same location.17 There was high 

agreement between the ultrasound and cross-sectional cadaveric measurements of 

cartilage thickness for the medial and lateral condyles (ICC= 0.732 – 0.883), indicating 

that the ultrasound measurement is a valid tool for measuring anatomical cartilage 

thickness.  However, this anatomical measurement of cartilage thickness is highly 

laboratory based, so there is also a need to compare ultrasound to MRI, which is 

considered the in vivo “gold-standard” measurement of cartilage thickness. In a study 

comparing ultrasound and MRI measured cartilage thickness, there was an observed 

strong association between the two imaging modalities (ρ=0.82).82 

In addition to validity, the reliability between raters and the reliability between 

different sessions needs to be established to ensure that this can be reproduced by 

different people and at different time points. Naredo et al established excellent reliability 
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between raters (ICC=0.86-0.94); however, this study was completed on human 

cadavers, and may not represent the ability to reproduce the measure on a patient 

population.17 Bevers et al demonstrated good reproducibility of cartilage thickness in OA 

patients (κ=0.62-0.68), as well as good reproducibility for other measures of OA 

ultrasound like protrusion of medial meniscus, infrapatellar bursitis, effusion, and 

Baker’s Cyst.83 Additionally, Abraham et al demonstrated that in a clinic setting, there 

was good reliability between two different raters separated by two weeks (ICC=0.50-

0.67).84  

Ultrasound has demonstrated the ability to produce a reliable and valid 

quantification of the femoral articular cartilage thickness, and multiple systematic 

reviews have described the use of ultrasound to quantify declines in cartilage thickness 

in patients with OA.81,85,86 However, no studies have been conducted examining 

participants following ACLR, indicating that more work is needed to determine if 

ultrasound is sensitive enough to determine early changes in cartilage thickness in 

people at risk for PTOA development. Due to the importance of cartilage in attenuating 

excessive energy at the knee during gait, ultrasound may be able to provide us with 

invaluable information as we are treating patients at high risk for developing OA. As 

there is a huge push in OA care to move from palliation to prevention, a readily 

available bed-side tool that can accurately monitor the progression of the disease will be 

beneficial in determining the effectiveness of treatments aimed to slow disease 

progression.  
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Limitations of the Structural Component of Cartilage Health 

While the structural component of cartilage health plays a very important role in 

the diagnosis and progression of OA, overt structural damage is occurring following a 

long-term latent period of compositional breakdown of cartilage. Thus, coupling 

structural measurements with biological outcome measures that provide insight into the 

cartilage metabolism and composition will be important into understanding very early 

changes in cartilage breakdown. 

 

2.3 Biological Component of Cartilage Health 

The biological component of cartilage health is defined by factors that alter 

cartilage metabolism and composition that ultimately leads to cartilage degradation. In 

early stages of OA, the extracellular matrix of the cartilage begins to breakdown and the 

function of the cartilage declines with gross alterations in cartilage structure.22 Figure 6B 

depicts some of the common early changes observed in cartilage that occur prior to 

gross degradation of the structure: initial depletion of proteoglycans, disorganization of 

collagen fibers, and increased water content.22 These changes decrease the ability of 

the cartilage to withstand stress, which results in increased strain on the tissue and 

eventually the advanced degeneration (Figure 6C). The two main ways to quantify the 

biological component of cartilage health are measuring the concentration of cartilage 

metabolism biomarkers and utilizing novel compositional imaging modalities.  
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Biomarkers of Osteoarthritis 

 Biomarkers reflect dynamic alterations in joint metabolism allowing insight into 

joint remodeling and disease progression.14 Utilizing samples of either blood, urine and 

synovial fluid, a biomarker can either quantify an operator of joint damage/synthesis or 

products of joint damage/synthesis.21 OA has been described as a disease on a 

continuum that begins with a prolonged asymptomatic period that is characterized by 

molecular changes to the joint that are unable to be detected with structural imaging 

modalities (Figure 7).87 By monitoring alterations in biomarkers of cartilage metabolism, 

we may be able to identify individuals at risk for OA development.88 Knowledge of the 

individuals at most risk for OA development will allow for more targeted prevention 

programs, in hopes of normalizing cartilage metabolism prior to the development of 

radiographic OA.48  

Figure 6. Microscopic Stages of OA; Matzat 2013 
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The OA Research Society International has established a classification system 

for OA biomarkers, BIPEDS, which is intended to allow for a central language and 

structure with which to communicate knowledge and advances related to OA 

biomarkers.87 The acronym BIPEDS (Burden of Disease, Investigative, Prognostic, 

Efficacy of Intervention, Diagnostic, and Safety) is used to describe the six potential 

categories an OA biomarker may belong to, which is theorized to aid in the validation of 

future OA biomarkers (Figure 8).  

 

 

Figure 7. Continuum of OA Stages; Kwoh 2012

Figure 8. Hypothetical Development of OA 
Biomarkers; Bauer 2006
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Burden of Disease14 

 These biomarkers are used to indicate severity of the disease, which is useful in 

categorizing the different stages of the disease. They can only be used to represent the 

extent of the disease at the time of assessment, and are not able to denote whether 

there is any potential for progression of the disease.   

 

Investigative14 

 This category is for novel biomarkers that have the potential for utilization with an 

OA population, but there is not enough evidence for the biomarker to fit into a particular 

category. These will be used along with validated biomarkers to hopefully in the future 

be able to provide a greater understanding of the metabolic processes within OA. 

 

Prognostic14 

  This class will be used to indicate likelihood of progression and potentially the 

rate at which OA will develop. Also these biomarkers could also indicate who may be at 

risk for developing the disease. These will be important for the development of potential 

drug therapies because if we know who will be progressing faster we can use these 

prognostic biomarkers as an inclusion criteria so that we will know sooner whether or 

not the drug has an affect, which will save both time and money. 

 

 

 

 



 28

Efficacy of Intervention14 

 These are investigating for drug therapies and investigating whether or not the 

drug is reaching the desired target and if it is having the desired effect. Helps 

understand the pharmacodynamics and pharmacokinetics of the drug interventions.   

 

Diagnostic14 

 A diagnostic biomarker is indicative of whether or not the disease is present 

within an individual, but not necessarily the severity of OA. It also possesses the 

strength to identify people who may be at risk for OA. This is a more promising means 

of diagnosing an injury than the current radiographic gold standard because the 

biomarkers will be more sensitive than the imaging technique at initial discovery of the 

disease and tracking changes over time.  These will also be able to identify true controls 

to use during future OA studies.   

 

Safety87 

 Safety biomarkers could be used in preclinical and clinical applications to monitor 

the health of joint tissues, in an attempt to detect pathological changes and cytotoxicity. 

 

Cartilage Oligomeric Matrix Protein as a Biomarker of Osteoarthritis 

 Cartilage breakdown is one of the earliest signs of OA; therefore, utilizing a 

biomarker that is capable of detecting early alterations in cartilage metabolism will be 

pivotal in detecting early declines in cartilage health. Cartilage oligomeric matrix protein 

(COMP) is an essential structural and functional component of the cartilage extracellular 
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matrix, and by monitoring concentrations of COMP in serum, we are able to monitor 

alterations in cartilage metabolism.89 COMP has been established as one of the best 

candidates as a marker to monitor the progression of OA.90 Multiple studies have 

demonstrated that serum COMP was able to distinguish between an OA and control 

group, with the OA group presenting with significantly greater concentrations of serum 

COMP than individuals without OA.91-95 Additionally, COMP levels were also able to 

distinguish between severity of OA, with greater KL Grades presenting with greater 

concentrations of serum COMP.91 The change between serum concentration at 

baseline and one96 and three year25 follow ups have demonstrated to be a longitudinal 

predictor of joint space narrowing over 5 years. Also, using the Outerbridge Score (i.e. 

an arthroscopic cartilage grading scale), serum COMP is significantly positively 

correlated with greater cartilage damage, indicating that greater COMP concentrations 

reflects greater cartilage damage.27 Therefore, COMP appears to reflect changes in 

molecular cartilage metabolism that if left unchanged, will eventually lead to greater 

concentration and greater breakdown. Thus, monitoring concentrations of serum COMP 

following acute injury may allow for us to determine who may be at risk for future OA 

development. 

 

Osteoarthritis-Related Biomarkers Following ACL Injury and Reconstruction - A 

Model for Biological Post-traumatic Osteoarthritis Development 

 Since OA has been described as a disease on a continuum and acute injuries 

have been cited as an inciting event that begins the progression to PTOA,87,97 we can 

monitor changes in biomarker concentrations following acute injuries in hopes of gaining 
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a better understanding of the very early pathogenesis of OA. In the previous paragraph 

we eluded that serum COMP is one of the better OA biomarkers for detecting early 

changes in cartilage metabolism; however, serum COMP has yet to be investigated in 

patients following ACL injury or reconstruction. Yet, there is evidence that following ACL 

injury there is a significant increase in synovial fluid concentrations of COMP when 

compared to healthy controls, indicating that there is potentially early alteration in 

cartilage metabolism following acute injury.98 While not much research has been done 

utilizing COMP following ACL injury, there is evidence that there are alterations in 

cartilage metabolism and inflammation following both ACL injury and reconstruction.99 

Currently, synovial fluid concentrations of cartilage extracellular matrix degradation (i.e. 

type II collagen and proteoglycans) are the most consistently increased OA biomarker 

following injury and reconstruction. Additionally, following ACLR there is an increased 

early inflammatory cytokine response in the synovial fluid that may contribute to altered 

tissue turnover in the joint.99 However, more research needs to be done to link early 

increases in OA-related biomarkers following ACL injury to future development of OA 

development. 

 

Cartilage Compositional Imaging as a Measure of Cartilage Biology 

 Compositional MRI reveals biochemical and microstructural changes in cartilage 

that provide insight into cartilage composition.20 Since the composition is responsible for 

the functional strength of cartilage, alterations in cartilage composition will result in a 

declined ability of the tissue to transmit load to the underlying subchondral bone. Similar 

to biomarkers of cartilage breakdown, compositional MRI focuses on determining early 
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molecular changes in the cartilage that are potentially reversible, and may help to 

identify individuals at risk for OA development prior to overt joint damage (Figure 7).100 

T1rho MRI is one of these compositional imaging modalities that probes at the slow 

motion interactions between motion-restricted water molecules and the extracellular 

matrix.101 Since the hydration of the proteoglycans of the extracellular matrix is so 

important to the function of the cartilage, this measure of the motion of the water within 

the tissue (i.e. T1rho relaxation times) provides us with a quantification of the 

proteoglycan density of the structure. Initial in vitro studies provided early evidence that 

increases in T1rho relaxation times were correlated with depletion of proteoglycan.101 

Additionally, in vivo studies have provided evidence that patients with OA have 

significantly higher relaxation times when compared to control participants, as well as 

the ability of T1rho to distinguish between stages of cartilage degradation.102 While 

T1rho has demonstrated a good ability to detect cartilage declines in patients with 

established OA, the real utility of T1rho will be to discover early declines in cartilage 

health in patients following acute injury, prior to severe degradation. 

 

Declines in Cartilage Composition Following ACL Injury 

 One-third of patients following ACL injury and reconstruction will develop 

radiographic OA within the first decade following injury. Therefore, if we are able to 

monitor changes in cartilage health following acute injury, we may be able to better 

identify patients at risk for OA development, which will allow for more targets prevention 

strategies. At one year following ACLR, T1rho relaxation times are increased in the 

medial tibia and medial femoral condyle why compared to the uninjured contralateral 
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knees, indicating a decrease in proteoglycan density early following surgery.68 At two 

years following ACLR, the declines in cartilage health persisted as the ACLR individuals 

presented with greater T1rho relaxation times in the posterolateral tibia and medial 

femur when compared to a healthy control group.103 One of the theories behind the 

early declines in cartilage health is that the initial mechanical trauma sustained during 

the injury may alter the metabolism of the cartilage and ultimately lead to the cartilage 

breakdown.75 Bone marrow lesions are present in up to 80% ACL injured knees and are 

theorized to be due to the translational impact during the injury itself. Interestingly, the 

cartilage overlying bone marrow lesions immediately presents with increased T1rho 

relaxation times; as well as increased relaxation times at one-year following injury, 

despite resolution of the bone marrow lesion.104 Therefore, it appears that compositional 

imaging modalities are capable of detecting very early changes in cartilage health 

following acute injuries; however, due to the expense, the use of T1rho MRI may not be 

as clinically feasible as ultrasound.  

 

Use of Ultrasound as a Cartilage Compositional Imaging Modality 

 Currently, ultrasound has not been used as a cartilage compositional imaging 

modality, but has been used as a compositional imaging modality for other 

musculoskeletal tissues. Ultrasound echo-intensity has been used extensively in 

skeletal muscle to discriminate between healthy and pathologic tissues.105 Ultrasound 

echo-intensity (i.e. the greyness of the image) is dependent on the amount of returning 

sound waves that return to the ultrasound head, and this echo-intensity is used to 

discriminate between tissues.28 Muscle echo-intensity increases with age, which is 
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theorized to be due to increased fat and fibrous tissue infiltration into the tissue.106 Due 

to the different composition of fat and fibrous tissue, the echo-intensity of the muscle will 

be altered. Using this notion that a change in echo-intensity is due to a change in tissue 

composition, we believe that we will be able to detect composition changes in cartilage 

composition utilizing ultrasound echo-intensity. Early changes in cartilage composition 

will result in an influx of water due to disruption of the extracellular matrix, and this 

increase in water content will be reflected by a change in ultrasound echo-intensity. 

Therefore, we believe that utilizing cartilage ultrasound echo-intensity will allow 

accessible monitoring of cartilage composition following acute injury.  

 

2.4 Mechanical Component of Cartilage Health 

 The mechanical component of cartilage health deals with the ability of cartilage to 

withstand and cope with forces applied to the joint, most notably how the knee functions 

during walking. Many believe that OA is a disease that is both initiated and progressed 

due to one or many sources of increased load at the joint.9 Whether this increased load 

is due to acute injury,97 obesity,107 or an abnormal anatomical malalignment,108 all of 

these will ultimately increase the stress placed on the cartilage and will eventually result 

in breakdown of the tissue. It has been suggested that the mechanics that occur at the 

knee during walking conditions healthy cartilage, and small alterations in the mechanics 

of walking can drastically affect the knee health due to the repetitive cyclic loading that 

occurs with this task.109 Gait biomechanics have been described as one of the most 

important risk factors for the development and progression of knee OA,6 and altering the 

way loads are distributed across the knee during gait has been a common therapeutic 
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target when attempting to slow the progression of the disease. Determining how the 

mechanics are associated with both cartilage structure and biology will be important to 

understanding how mechanics are involved in the early pathogenesis of the disease. 

 One quantifier of mechanical loading during walking gait in the lower extremity is 

the vertical ground reaction force (vGRF), which is simply the force applied to the body 

by the ground. While the vGRF may not be specific to the knee and may affect many 

joints within the lower extremity, it is theorized that greater vGRF is indicative of greater 

mechanical loading at the knee.34 Greater vGRF in ACL transected dogs has been 

associated with greater depletion of cartilage proteoglycans, indicating that greater 

mechanical load of the knee resulted in osteoarthritic changes in the knees.110 

Additionally, patients with OA demonstrate greater bilateral vGRF during walking when 

compared to healthy control participants.111 With respect to PTOA, patients soon after 

ACLR presented with greater magnitude of vGRF during both walking and running; 

indicating that if left unchanged, this elevated impact loading during gait may be a gait 

deviation responsible for the greater risk of early cartilage breakdown.34  

In addition to the increase in magnitude of the vGRF, increases in the rate of 

loading is theorized to be just as detrimental to the cartilage.112 Animal studies suggest 

that higher loading rates are more important than the magnitude of loading as faster 

loading affects the viscoelastic properties of cartilage and decreases the ability of 

cartilage to dampen loads.32 Specifically, when testing rabbits in vivo, higher loading 

rates led to greater cartilage degradation than in animals with lower loading rates, even 

though the lower loading rates were subjected to greater magnitudes of load.113 

Additionally, in both patients with OA114 and following ACLR,34 these individuals present 
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with an elevated vGRF loading rate when compared to healthy individuals. Therefore, 

monitoring both the magnitude and loading rate of the vGRF will provide us 

characteristics of the mechanical loading during gait. In addition to the vGRF being an 

important indicator of mechanical loading itself, vGRF also influences many other kinetic 

biomechanical variables that are important to joint loading linked to OA development 

(i.e. external knee adduction moment). 

 Current literature on gait biomechanics in individuals with knee OA focus on the 

external knee adduction moment (KAM), as this is a surrogate measure of medial 

compartment knee joint compressive loading. Greater KAM has been associated with 

medial compartment knee OA,114 as well as greater OA severity115 and disease 

progression (Figure 9).35 The risk of progression of knee OA increased 6.46 times with 

every 1% increase in KAM.35 Healthy cartilage appears to be conditioned to KAM, as 

the medial to lateral femoral compartment cartilage thickness ratio is positively 

associated with an increase in KAM, indicating that increased medial compartment 

loading leads to an increase in cartilage thickness (Figure 10, blue line).116 However, in 

patients with knee OA this association between KAM and cartilage thickness is 

reversed, with an increased KAM being negatively associated with medial to lateral 

cartilage thickness (Figure 10, red line). In addition to the association with cartilage 

thickness, an increased baseline KAM predicts declines in cartilage thickness after five 

years, indicating that this increased load during gait is very important for declining future 

cartilage health.117 Similarly to the vGRF, determining the loading rate of KAM will 

provide information on the rate of medial compartment loading during gait. Using the 

semi-quantitative Whole-Organ Magnetic Resonance Imaging Score as a measure of 
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cartilage degeneration, the KAM loading rate was significantly positively correlated to 

cartilage degeneration in transfemoral amputees.118 Interestingly, in the same study, the 

peak KAM (when controlling for KAM rate) was not significantly related to cartilage 

degeneration, providing initial evidence that the rate of medial compartment loading 

may be more influential for cartilage health than magnitude of loading.  

 

 

 While the individual components of cartilage health (i.e. structural, biological, and 

mechanical) are important for the development of OA, this complex disease does not 

Figure 9: Knee adduction moment and OA Severity. 
Mundermann 2005

Figure 10: Cartilage response to the knee adduction 
moment during gait. Andriacchi 2004
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originate from a single factor. Rather, the interactions between the components drives 

the multifactorial etiology of the disease.11 Therefore, an inter-disciplinary systems-

based approach is needed to determine how the continuously shifting balance of these 

factors ultimately leads to OA development.119 Using a systems-based approach 

involves a stimulus-response model by introducing the “system” (i.e. participant) to a 

mechanical stimulus (i.e. walking/drop-landing) and determining how this affects 

multiple aspects of cartilage health (i.e. structure and biology) (Figure 11). Thus, the 

following sections discuss how previous work has used this approach to determine the 

interaction of mechanics on cartilage structure and biology. 

 

2.5 Interaction Between Mechanics and Cartilage Structure – Cartilage Deformation 

Following Acute Dynamic Loading 

 While static measures of morphology provide an approximate estimation of the 

cartilage anatomy, they may not provide the most robust functional assessment of 

cartilage.30 The cartilage is responsible for facilitating the transmission of loads to 

underlying subchondral bone, while providing a low friction surface between articulating 

Figure 11: Utilizing a system-based stimulus-response model to determine the interaction 
of components of cartilage health.
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bones.29 Alterations in how the cartilage deforms in response to load will alter these 

shock absorption capabilities, and potentially result in damage to the cartilage and 

surrounding structures. Cartilage deformation is directly linked to the biochemical 

composition of the extracellular matrix and may be a more sensitive marker of early 

declines in cartilage health than the baseline structural measures like volume and 

thickness.  As discussed previously, the earliest alterations in cartilage are the 

disorganization of the collagen network and depletion of proteoglycans. These 

alterations in the cartilage structure decreases the ability of the cartilage to withstand 

normal loads, but this occurs without a gross change in the morphological 

characteristics of the cartilage. Figure 12 displays the different levels of OA depending 

on the type of imaging modality used to assess the cartilage.30 While static cartilage 

thickness measures are more sensitive of detecting early changes in cartilage than 

radiography, the use of functional imaging procedures (i.e. stimulus-response model119) 

are more capable of detecting early changes in cartilage composition.120 

 

 To understand unhealthy cartilage loading, we first need to gather an 

understanding of how normal healthy cartilage responds to various dynamic loads. 

Eckstein et al produced one of the earliest studies investigating how different dynamic 

loads affected patellar, tibial, and femoral cartilage deformation.120 Using trained healthy 

Figure 12. Pre-clinical stages of OA. Neu 2014
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volunteers, a “dose-dependent” response to loading was observed, with more intense 

loads leading to the most cartilage deformation. The dynamic activities that created the 

most patellar deformation were running and deep knee bends, while the isometric 

squats and walking resulted in very limited deformation.120 Interestingly, there were not 

much cartilage deformation observed in the tibiofemoral joint during these loading 

protocols, but this may be due to the short transient loads applied during this study (i.e. 

200 meter run and 30 deep knee bends). Further studies investigating more sustained 

loading will be needed to understand the true physiological effects of loading on femoral 

cartilage. 

 Another early study regarding exercise and knee cartilage deformation sought to 

determine how MRI volume would respond to a 1 hour run; as well as how multiple 

biomechanical and electromyographic variables during running associated with the 

change in MRI volume.121 Overall cartilage volume was decreased by 3% following the 

run, with decreases in the femur and lateral tibia being the greatest changes; however, 

no changes were observed in the medial tibia. The only biomechanical variable that 

associated with greater cartilage deformation was time in co-contraction of the knee 

extensors and flexors. This indicating that greater co-contraction requires greater 

contraction of the agonist and resulting in a soft tissue force applied to the knee, a force 

large enough to greatly deform the cartilage at the joint. However, in this study the 

participants were highly trained, and higher straining status may be related to the 

cartilage better able to withstand the loading. 

 The previous studies provided evidence of how cartilage deforms following 

activity in highly trained individuals,120,121 but not much research had sought to 
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determine how more recreational runners would respond to load. Boocock et al utilized 

recreational runners during a loading procedure that was loading dependent (i.e. 5000 

steps) versus time-dependent (i.e. 30 minute run), as they believed this would better 

control the load being applied to the knee between participants.122 These recreational 

runners presented with greater cartilage deformation than previously observed in highly 

trained runners, even though the recreational runners ran for approximately have the 

duration of the trained runners. Providing early evidence that the composition of the 

cartilage in trained runners may be conditioned to respond to load better than observed 

in recreational runners. 

More recently, Niehoff et al123 completed a study to compare the change in 

cartilage volume following a running and drop-landing protocol; in an attempt to 

compare a high frequency/small amplitude and a small frequency/high amplitude task, 

respectively. These authors provide a biomechanical justification for the magnitude and 

duration of each of the protocols in an attempt to normalize the total kinetic energy 

between the two interventions. The running intervention resulted in a mean of 4,262 

footfalls during the 30 minute running intervention which resulted in a loading frequency 

of 1.2 Hz per leg, while the 100 drop landings in 30 minutes equated to a loading 

frequency of 0.06 Hz; or approximately 20 times lower than the running intervention. 

The kinetic energy of each touchdown in the landing was estimated at 0.73 (height of 

the box in meters) x BW, while the per strike kinetic energy at footstrike when running 

was estimated as 0.035 x BW; or approximately 21 times greater than the running 

intervention. This provides a strong justification that a similar quantity of load was 

applied during the different interventions. Figure 13 displays that both the running and 
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drop landing produced significant decreases in cartilage volume when compared to 

baseline measurements. However, the results indicate that running produced a greater 

deformation than drop landing, with the greatest observed in the lateral tibia. 

 

 The previous studies120,122-124 have provided some interesting insights into the 

healthy cartilage response to dynamic loads; however, one study has provided an 

investigation regarding the acute deformation in cartilage of ACLR patients compares to 

healthy controls.74 This is important as this may provide insights into how cartilage 

adapts early following an acute injury, prior to the development of PTOA. The ACLR 

patients were only 6 months out from surgery and completed the same 30 minutes 

running protocol as the healthy controls to determine how the cartilage of each group 

responded to loading. Interestingly, baseline MRI revealed no differences in cartilage 

volume between the ACL and healthy participants; however, there were differences 

observed in between groups using a compositional MRI technique (i.e. T2 mapping). 

This indicates that while the ACL participants presented with similar cartilage structure 

when compared to control participants, there were declines in the cartilage composition 

at baseline. Following baseline MRI, both the healthy and ACLR subjects completed a 

similar 30 minute run in an attempt to stress the articular cartilage immediately followed 

Figure 13. Comparison of Cartilage Deformation 
following a drop landing and running.  Niehoff 2011
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by four successive MRIs separated by 15 minutes. This study design allows for the 

investigation of both the acute deformation following loading, but also the temporal 

sequence of cartilage reformation following load. When compared to baseline, the 

ACLR participants presented with significant deformation of the medial femur, lateral 

femur, and lateral tibia cartilage; however, the deformation observed was no different 

that the deformation observed in the healthy individuals. Yet, the serial MRIs following 

the run demonstrated that the ACLR participants presented with slower recovery of 

cartilage volume following load. This delay in cartilage recovery following load may 

potentially be due to the differences in cartilage composition (i.e. T2 mapping) 

measured at baseline, indicating that the disruption of cartilage composition results in in 

the tensile strength of the tissue and impaired its ability to reform following load. These 

results provide evidence for measuring a wide range of outcome measures 

encompassing both cartilage biology and structure to gain a better understanding of the 

interaction of each component of cartilage health.  

 

2.6 Interaction Between Mechanics and Cartilage Biology – Change in COMP 

Concentration and Compositional Imaging Following Acute Dynamic Loading 

Similar to the response of cartilage structure to mechanical loading, determining 

how cartilage biology responds to mechanical loading may provide underlying declines 

in cartilage health that are not apparent utilizing only baseline measurements. Not only 

is COMP important for maintaining the properties and integrity of cartilage, but COMP 

has been described as mechano-sensitive as it plays a role in transducing mechanical 

forces in the cartilage.38 Thus, subjecting the cartilage to a mechanical stimulus (i.e. 



 43

walking/running/drop-landing) is effective at elevating the sensitivity of COMP to provide 

an indicator of cartilage health.38 

In a study of healthy individuals, 30 minutes of walking (i.e. average of 3507 

steps) on an outdoor track resulted in an immediate increase in serum COMP that 

returned to baseline levels within 30 minutes.125 Interestingly, there was an additional 

increase in COMP at 5.5 hours following the walking indicating a potential delayed 

response of cartilage turnover in healthy individuals. In a similar study design utilizing 

older participants both with and without OA, the authors reported a similar initial 

increase in COMP between the aged matched older adults.126 While two different 

studies, the healthy and older individuals serum was processed in the same laboratory 

with the same enzyme-linked immunoassay, and interestingly the older individuals did 

not present with the same 5.5 hour increase in COMP concentration following the 30 

minutes walking. The authors suggest that the exercise influence on cartilage turnover 

may be dependent on age, potentially indicating that the younger population is more 

metabolically active than the older individuals. 

Utilizing compositional imaging techniques, we can determine the affect of 

loading on cartilage composition. Previously, researchers investigated how axial 

compression device was used to simulate axial compression of the knee to determine 

how compression of 50% of body weight would affect T2 values during imaging.127 This 

study determined that during loading, the knee was affected differentially with T2 

decreases observed in the femoral loading occurring primarily in the medial 

compartment, while the T2 decreases were observed in both the lateral and medial 

tibia. Additionally, a 30 min jog in healthy individuals was discovered to significantly 
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decrease femoral T2 (i.e. collagen cartilage composition) preferentially near the articular 

surface of the cartilage,128 while an additional study determined similar reductions in 

T1rho following a similar jogging procedure.129 Collectively, these studies indicate that 

compositional imaging techniques are sensitive enough to detect cartilage composition 

response to mechanical load. 

In addition to the cartilage composition responses to acute loading, cartilage 

composition is associated with knee biomechanics during drop-landing130 and 

walking131. Peak KAM during a drop-landing in healthy individuals was positively 

associated with the medial/lateral T1rho relaxation time ratio, indicating that increased 

medial compartment loading (i.e. greater KAM) was associated with lesser medial 

compartment proteoglycan density.130 Similarly, when ACLR participants were 

separated into a group with low KAM and high KAM, the group with higher KAM had 

elevated T1rho relaxation times than the low KAM group.131 Thus, providing data that 

individuals that have undergone ACLR and have greater medial compartment loading 

are at increased risk for knee OA.  

Collectively, these studies indicate that mechanics and cartilage biology are 

associated. Combining the use of COMP concentration with compositional imaging may 

provide interesting evidence combining complementary measures of cartilage biology 

and determining the interaction between cartilage metabolism and cartilage 

composition.  
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2.7 Interaction Between Mechanics, Biology, and Structure – Providing the Link 

Between the Main Components of Cartilage Health 

 As mentioned throughout this document, the biological, structural, and 

mechanical components are intricately related to the risk of future OA development. The 

maintenance of healthy cartilage is dependent on each of the three main components of 

cartilage health being maintained within a normal homeostatic range (Figure 14).12 To 

best describe the complex interaction between the components of cartilage health, the 

maintenance of healthy cartilage has been compared to a slot machine (Figure 15).11 

With healthy cartilage, there is a large “homeostatic envelope” for each of the 

components to fit within, and as activity occurs the cartilage is not at risk for injury. 

However, this homeostatic range can expand or contract based on the interaction 

between the cartilage components, and whenever either of the components falls outside 

of this range, activity has the possibility of creating cartilage damage. Thus, studying 

this complex interactions within healthy cartilage will be imperative for understanding a 

healthy “homeostatic envelope”, which can then be used to determine which people 

outside of these healthy ranges that may be at risk for OA development.   

 
Figure 14: Maintenance of Healthy Cartilage. Andriacchi 2015
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 Using the previously mentioned stimulus response model research design, we 

are able to investigate this the complex interactions between each of the components of 

cartilage health. This stimulus response model for determining cartilage health has been 

equated to a cardiac stress test.31 Using a controlled exercise stimulus (i.e. mechanical 

loading) to produce a physiological response, we are able to reveal underlying 

pathology in the tissue that cannot be observed utilizing only baseline measurements. 

Earlier sections describe how an acute mechanical stimulus (i.e. walking/running/drop-

landing) affected cartilage structure or biology separately, but understanding the 

relationship between the change in cartilage structure and change in biology will be 

important for gaining a holistic view of how the system responds.119 Kersting et al 

demonstrated that in healthy individuals following a one hour run a change in total 

cartilage volume was negatively correlated with a change in COMP concentration (R=-

0.487), indicating that as more deformation occurred in the cartilage there was an 

increase in COMP.121 To further these efforts, Niehoff et al utilized both a running and 

Figure 15: Maintenance of Cartilage Health displayed as a Slot Machine. If the homeostatic envelope is wide 
enough for all components of cartilage health to fit within, the joint is not at risk when performing activity. 
However, if the homeostatic window becomes smaller or either component moves outside of a homeostatic 
range, the cartilage is at risk for degradation when activity occurs. Chu 2015
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drop-landing protocol in healthy individuals to determine how differing mechanical 

stimuli affected this relationship between a change in cartilage biology and structure.124 

Contrary to the earlier study,121 running and drop-landing both created significant 

changes in structure (i.e. cartilage deformation) and biology (i.e. COMP concentration), 

but only the drop-landing protocol created a significant correlation between change in 

cartilage volume and COMP concentration (r=0.774).124 Thus, indicating that differing 

mechanical stimuli may differentially affect this relationship between cartilage structure 

and biology. The study that demonstrates the most promise of the utility of this stimulus 

response model in regards to cartilage health has discovered that the change in COMP 

following 30 minute walk in participants with OA significantly predicted declines in 

cartilage thickness over five years.31 Interestingly, the change in cartilage thickness over 

five years was not predicted by baseline COMP concentrations, but the change in 

COMP due to the walking was what uncovered this relationship with cartilage thinning. 

Thus, a biological response (i.e. COMP change) to a mechanical stimulus (i.e. walking) 

may aid in the early detection of future structure (i.e. cartilage thickness) declines.31 

 Therefore, the combination of all of the evidence leads us to believe that we have 

developed a project that will fill critical gaps in the previous literature by determining the 

differential affects of mechanical loading protocols on altering cartilage structure and 

biology in healthy individuals. While the use of ultrasound imaging in this stimulus 

response framework may provide a novel utilization of ultrasound as a compositional 

imaging modality.  
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CHAPTER III 

3.1 Overview: Aims 1-3 

 Aim 1 investigated how ultrasonographic (US) measures of cartilage health (i.e. 

thickness, area, and echo-intensity) respond and recover to a walking, drop-landing, 

and a control condition, as well as determining the association between lower extremity 

loading measures and changes in US measures of cartilage health following walking 

and drop-landing. Aim 2 investigated how serum cartilage oligomeric matrix protein 

(COMP) responds a walking, drop-landing, and control condition, as well as determining 

the association between lower extremity loading measures and the acute COMP 

response following walking and drop-landing. Lastly, Aim 3 determined the association 

between baseline US measures of cartilage health and baseline serum COMP, as well 

as the association between the change in US measures of cartilage health and the 

acute COMP response following walking and drop-landing.  

 

3.2 Participants: Aims 1-3 

Forty three healthy individuals (22 males and 21 females) between the ages of 

18 and 35 that presented with a body mass index (BMI) <30 kg/m2 were recruited for 

this project.123 All participants reported participating in at least 30 minutes of physical 

activity at least three times per week. Participants reported no history of the following 

general orthopedic conditions: congenital or degenerative joint condition, orthopedic 
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implants, current joint pain (quantified as less than 2 on a 10cm visual analog scale), 

cartilage injury of any joint, lower extremity fracture, or upper extremity fracture within 

the last year. Additionally, participants reported no major ligamentous or cartilage injury 

of the knee or hip joints, as well as reported no cartilage injury at the ankle or 

demonstrate chronic ankle instability. Chronic ankle instability was defined as 

demonstrating: [1) previous significant ankle sprain, 2) history of ankle joint ‘giving way’, 

and 3) Foot and ankle ability measure index [FAAM] < 90, FAAM sport [FAAMs] index < 

80).] 

We conducted an a priori power analysis using data from medial femoral 

compartment thickness changes following 30 minutes of walking (pre avg= 2.23mm, 

post avg=2.09mm, pooled SD=0.42mm, effect size: d=0.33) published in a previous 

study.132 We estimated that we would need 33 participants to determine statistical 

differences, with 80% power and an α level of 0.05, if the smallest effect we found in the 

current study across the three loading conditions and five total time points was similar to 

previously published research (d=0.33).133 As larger effects are observed in COMP 

change following various activities,123,124 we decided to power the study on changes in 

cartilage thickness. Previously, large effects in COMP concentrations have been found 

in healthy participants following running (d=1.59124), as well as moderate effects 

following running (d=0.49 123) and jump-landing (d=0.53 123). Due to the time 

commitment of three separate three-hour data collection sessions, we over-sampled by 

30% to ensure that we would achieve adequate statistical power in our final analyses if 

30% of the initial sample were to drop-out of the study. 
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3.3 Experimental Procedures and Data Analysis: Aims 1-3 

Research Design 

 A femoral cartilage US assessment and an ante-cubital blood draw were 

performed in healthy individuals before and after a walking, drop-landing, and control 

conditions to determine the acute structural and metabolic cartilage response to the 

each condition. Additional US images were recorded at 15, 30, and 45 minutes following 

the cessation of each condition to determine the cartilage recovery. We assessed 

walking and drop-landing biomechanics at the beginning of each of respective condition 

to determine how lower extremity loading measures in each condition related to the 

acute structural and metabolic cartilage responses. We utilized a repeated measures 

design in which each participant completed all conditions during independent data 

collection sessions separated by at least one week at the same time of day to control for 

diurnal variation in serum COMP134 and femoral cartilage thickness.135,136 The order of 

the conditions was counterbalanced. Participants were instructed to limit their physical 

activity on the days that data collection occurred. 

 

Figure 16: Within study design for the walking, drop-landing, and control conditions. 
Ultrasounds performed at all time points. Blood draw only performed at pre and post0.  
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Screening Session 

 Prior to testing, participants were required to come to the laboratory for an initial 

session to determine their habitual walking speed and their corresponding comfortable 

step frequency, which was used to standardize the amount of time used for each 

condition. Habitual over-ground walking speed was initially determined in our motion 

capture laboratory utilizing two sets of infrared timing gates (TF100, TracTronix, 

Lenexa, KS, USA). Participants were instructed to walk at a self-selected speed 

described as “comfortably walking on the sidewalk” through the 6-meter capture 

area.137-139 After completing five familiarization trials, we recorded the time of the next 

five walking trials to determine their average habitual walking speed. Next, the speed on 

the treadmill (4Front, WOODWAY, Waukesha, WI, USA) was increased to the habitual 

walking speed of each participant and 60 seconds of walking was continued for the 

purpose of treadmill familiarization. After treadmill familiarization, study personnel 

manually counted the steps of each participant for one minute in order to determine the 

time each participant would need to reach 5000 steps.122 The calculated time for each 

participant was used for each condition. 

  

Data Collection Overview 

 On the day of each data collection session, we began by collecting a urine 

sample to test urine specific gravity via refractometry to confirm that each participant 

was not dehydrated (i.e. urine specific gravity < 1.025) prior to testing.140 Following 

hydration testing, participants were seated on a padded plinth with their back against a 
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wall in a long-sit position with their knees in full extension133 for one hour to unload the 

femoral articular cartilage, permit fluid rebound, and minimize effect of the preceding 

activity on the cartilage. Next, the US cartilage assessment occurred immediately prior 

to the blood sample collection at both time points in each session. The participants were 

then immediately transferred across the laboratory with a wheel chair to begin the 

walking or drop-landing condition activity condition or remain on the padded plinth for 

the control condition. The participants wore the same pair of their own personal athletic 

footwear for all sessions. Immediately following cessation of the condition, the 

participants were transferred back to the padded plinth with wheel chair to begin the 

posttest US assessment followed by the posttest blood sample collection. Due to the 

proximity of the walking and drop-landing conditions and the accessibility of US, 

posttest US images and blood sample collection were obtained within five minutes 

following each condition.133  

 

Ultrasonographic Assessment of the Femoral Articular Cartilage 

Ultrasonographic Image Acquisition 

US images were obtained in the dominant limb, which was defined as the self-

reported limb that the participant preferred to use for kicking a ball.132 Participants were 

positioned with their back against a wall and the dominant limb was positioned at 140° 

of knee flexion using a manual goniometer (Figure 2).133 A tape measure was secured 

to the treatment table and used to record the distance between the wall and the 

posterior calcaneus in order to standardize positioning for each participant during the 

posttest and throughout all data collection sessions. A single investigator performed all 
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femoral cartilage US imaging using a LOGIQe US system (General Electric Co., 

Fairfield, CT, USA) with a 12MHz linear probe. The probe was placed transversely in 

line with the medial and lateral femoral condyles above the superior edge of the patella 

(Figure 2) and rotated to maximize the reflection of the articular cartilage surface, as 

previously reported.17,141,142 A transparency grid was placed over the US screen to aid in 

reproducibility of the US image.133 Once the intercondylar notch was centered on the 

grid, the locations of the lateral and medial femoral condyles at the edges of the screen 

were recorded. This probe positioning was replicated during subsequent US 

assessments to ensure similar probe placement between assessments. Three images 

were recorded, with the US probe being removed and repositioned, on the knee 

between each recorded image at baseline and immediately after the walking and drop-

landing condition.  

 

Ultrasonographic Imaging Processing 

A single investigator manually segmented the US images using ImageJ software 

(National Institutes of Health, Bethesda, MD, USA). All three of the femoral cartilage US 

images from each time point were processed and averaged for the following outcome 

measures:  

 

Cartilage Thickness 

Femoral cartilage thickness was assessed at the midpoints of the medial femoral 

condyle, lateral femoral condyle, and intercondylar notch as the straight-line distance in 

millimeters (mm) between the cartilage-bone interface to the synovial space-cartilage 
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interface (Figure 18a).17,133,141,142 Strong intra-session reliability for the cartilage 

thickness assessment has previously been established within our laboratory (ICC2,k = 

0.966).133 

 

Cartilage Area and Echo-intensity 

The femoral cartilage was then segmented by individually outlining the cartilage 

of the medial and lateral femoral condyles to obtain the size (i.e. cartilage area [mm2]) 

and the greyness (i.e. cartilage echo-intensity) of the cartilage (Figure 18b). The medial 

and lateral areas were separated based on the location of the intercondylar thickness 

measure. Echo-intensity evaluates the average gray scale brightness of each pixel 

segmented on a scale from 0 (i.e. black; more water content) to 255 (i.e. white; lesser 

water content). US echo-intensity (i.e. grey-scale brightness) has primarily been used 

as a measure of “muscle quality”,28,143 with the average echo-intensity representing the 

relative water content of muscle. Since cartilage is approximately 60-80% fluid and 

acute cartilage deformation is in part due to fluid exudation,29,144 we may be able to use 

US echo-intensity to monitor acute changes in cartilage water content that occur with 

loading during activity. 

 

Additionally, a percent change score from baseline to each posttest time point 

was calculated to determine the acute cartilage response for each US measure 

following both conditions (Equation 1). A greater negative percent change of thickness 

and area indicates greater cartilage deformation. A greater negative percent change in 

echo-intensity is theorized to indicate an increase in cartilage water content. 
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Equation 1: Percent change (%Δ) = (
�������	
�������

�������
)*100 

 

 

Quantifying Cartilage Metabolism 

Blood Sample Collection 

For both the baseline and posttest time points, the participants were positioned 

supine on the padded plinth, and five milliliters of blood were collected from the 

antecubital vein in a serum separator tube vacutainer. Blood samples were placed on 

ice until centrifuged at 4°C for 15minutes at 4000rpm. Serum was pipetted equally into 

Figure 17. Femoral Cartilage Ultrasonography Setup and Participant Positioning.
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Figure 18. Femoral Cartilage Ultrasonography Outcome Measures. A) Cartilage Thickness; B) Cartilage Compartmental Area
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two cryovials and stored at -80°C until a batch analysis that occurred after all 

participants were collected.  

 

Analysis of Serum Cartilage Oligomeric Matrix Protein 

Serum was assessed for cartilage oligomeric matrix protein (COMP) using 

commercially available enzyme-linked immunosorbent assays (Human COMP PicoKine 

ELISA; Boster Biological Technology; Pleasanton, CA, USA). Blood samples were 

analyzed in triplicate. The COMP assay detection sensitivity was <10pg/mL, and the 

intra-assay variability was 2.35%. Serum samples for each participant were analyzed on 

a single plate to control for differences caused by inter-assay variation. For data 

analysis, we utilized resting concentration as well as calculating a percent change score 

to determine the COMP response from baseline to posttest for each condition (Equation 

1). 

 

Biomechanical Assessment of Lower Extremity Loading 

Participant Preparation for Biomechanical Assessment 

Identical marker setups were used for the walking and drop-landing 

biomechanical assessments. A modified retroreflective marker cluster/bony landmark 

setup was used for data collection. Marker clusters were secured bilaterally at the 

middle 1/3rd of the anterior lateral thigh, middle 1/3rd of the anterior lateral shank, middle 

of the dorsum of the foot, and over the sacrum. Additional bony landmark markers were 

affixed with double sided tape at the L4/L5, manubrium, and bilaterally over the anterior 

superior iliac spine, greater trochanter, medial/lateral femoral epicondyle, medial/lateral 
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malleoli, and acromion processes. Medial epicondyles and medal malleoli markers were 

removed during dynamic trials. A static trial was taken at the beginning of each session 

for marker identification. Marker positions were collected using a 10-camera three-

dimensional motion capture system with a sampling frequency of 120Hz with Vicon 

Nexus v1.4.1 motion capture software (Vicon Motion Systems, Centennial, CO) and 

lowpass filtered at 10Hz.139 The cameras were interfaced with three total Bertec force 

plates (40cm x 60cm, FP406010, Bertec Corporation, Columbus, OH) collecting at 

1200Hz and lowpass filtered at 75Hz.139 Two of the force plates were positioned side by 

side and used to collect drop-landing data (Figure 19a), while two of the force plates 

were staggered to allow for bilateral limb collection during a single walking trial (Figure 

19b).139 

 

Walking Biomechanical Assessment 

 The participants walked shod through the capture area at their habitual walking 

speed (Figure 19a). Five practice trials were performed to familiarize the participants 

with the walking task. Five test trials were recorded in which: 1) both limbs individually 

landed on a single force plate, 2) maintained forward eye contact and were not “aiming” 

A B

Figure 19. Walking and Drop-landing Biomechanical Assessments.
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for the force plates, 3) and maintained a consistent gait speed (±5% of the habitual 

walking speed calculated in the screening session).137,138 Immediately following the 

collection of the last test trial, the participants were returned to the wheelchair and 

transferred across the laboratory to begin the walking condition.  

 

Drop-Landing Biomechanical Assessment  

A 62cm platform was positioned behind the side-by-side force plates to allow for 

simultaneous collection of both limbs during a single drop-landing trial (Figure 3b). A 

separate step was positioned behind the 62cm platform and was utilized by the 

participants to ascend onto the platform. For each drop-landing trial, the participants 

ascended onto the platform and were instructed to drop down from the platform and 

perform a comfortable double-legged landing with each limb on a separate force plate. 

No specific instructions were provided to the participants on how to perform the double-

legged landing. After each drop-landing, participants would walk around the box and 

ascend up the step in order to prepare for the next drop-landing trial. Drop-landings 

trials 5 through 10 were recorded and analyzed for the biomechanical assessment.  

 

Analysis of Lower Extremity Loading 

Marker Identification and Processing 

 Individual trials of the biomechanics collected during the walking and drop-

landing conditions will be labeled to identify all of the retro-reflective markers within the 

Vicon Nexus motion capture software (version 1.8.5, Vicon Systems). Once labeled, the 

marker trajectory data synchronized with the ground reaction force and will be exported 



 59

from Vicon Nexus and further processed using Motion Monitor software (version 8.0, 

Innovative Sports Training).  

 The Motion Monitor software used the marker trajectories from Vicon Nexus to 

construct a three-dimensional segment-link model for each participant. The lower 

extremity and trunk segments for each participant was modeled as rigid bodies using 

the individual and cluster markers. A minimum of 3 non-collinear points was used to 

model each segment as follows: 

• Left foot: Left foot cluster, left medial malleolus, left calcaneus 

• Right foot: Right foot cluster, right medial malleolus, right calcaneus 

• Left shank: left shank cluster, left lateral malleolus, left medial malleolus, left 

lateral epicondyle, left medial epicondyle 

• Right shank: right shank cluster, right lateral malleolus, right medial malleolus, 

right lateral epicondyle, right medial epicondyle 

• Left thigh: left thigh cluster, left lateral epicondyle, left medial epicondyle, left 

greater trochanter 

• Right Thigh: right thigh cluster, right lateral epicondyle, right medial epicondyle, 

right greater trochanter 

• Pelvis: sacral cluster, right anterior superior iliac spine, left anterior superior iliac 

spine 

• Trunk: right acromion process, left acromion process, sternal notch, L4-L5 
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Joint Center Calculations and Alignment 

 Once we have defined the rigid body segments from the static calibration file, 

joint centers were defined between the rigid body segments. The ankle joint centers 

were defined as the midpoint between the lateral and medial malleolus markers. The 

knee joint centers were defined as the midpoint between the lateral and medial 

epicondyle markers. The hip center were estimated with the Bell Method using the left 

and right anterior superior iliac spine markers.145 Once joint centers were established, 

each segment’s local coordinate system was aligned to the global axis system, with the 

anterior-posterior axis of each segment aligned with the world x-axis, the medial-lateral 

axis of each segment aligned with the world y-axis, and the superior-inferior axis of 

each segment aligned with the world z-axis.   

 

Kinematic Calculations 

 Knee joint motion was defined as the motion of the shank segment relative to the 

thigh segment using a Euler angle rotation sequence of Y [(+) flexion / (-) extension] and 

X’ [(+) varus / (-) valgus].146  

 

Kinetic Calculations 

 Ground reaction force and interpolated segment kinematic data was used to 

derive net internal knee moments using inverse dynamics procedures.147 Negative 

internal sagittal plane moment was used to quantify the internal knee (EXT) extension 

moment. The internal frontal plane moment was used to quantify the internal knee varus 

(VAR) and valgus (VAL) moments. The internal knee varus and valgus moments were 

corrected so that a more positive value indicates increased moment for both variables. 
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Biomechanics Data Reduction 

All dependent variables were identified during the first 50% of the stance phase 

for the walking trials. The stance phase of walking was defined as the time between 

initial ground contact (ground reaction force > 20N) and to toe-off (ground reaction force 

<20N). For the drop-landing trials, all dependent variables were identified during the first 

100ms following initial ground contact.  

 Peak magnitude of the following lower extremity loading biomechanical variables 

was assessed during walking and drop-landing: vertical ground reaction force (vGRF), 

EXT moment, VAL moment, and VAR moment. Instantaneous loading rate of the vGRF 

(vGRF-LR), EXT, VAL, and VAR moments were calculated as the peak of first 

derivative of the force-time and moment-time curves.139 Peak vGRF (xBW) and vGRF-

LR (xBW/s) were normalized to participants’ body weight.138 Peak moments (xBW*Ht) 

and moment loading rates (xBW*Ht/s) were normalized to the product of participants’ 

height and weight.139 

 

Walking, Drop-Landing, and Control Conditions 

Walking Condition 

The participants were positioned on the treadmill and the speed was increased to 

the habitual walking speed determined during the screening session. This speed was 

maintained for the time calculated during the screening session to reach 5,000 steps. 
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Drop-Landing Condition 

The drop-landing biomechanical assessment occurred concurrently with the 

drop-landings used for the drop-landing condition. For the drop-landing condition, the 

participants continued performing drop-landings until they completed 120 total drop-

landings. We selected the amount of drop-landings from the 62cm platform in order to 

match the high magnitude loading condition utilized in a previous study utilizing a similar 

drop-landing protocol.123 The 120 drop-landing trials were evenly distributed over the 

same period of time utilized in the other conditions.  

 

Control Condition 

During the control condition, participants remained on the treatment table 

following the baseline blood sample collection in a long-sit position for the same period 

of time utilized in the other conditions. 

 

3.6 Statistical Analysis: Aims 1-3 

All statistical analyses were performed using SPSS (version 21.0; IBM 

Corporation) with an a priori α level of P < 0.05.  

 

Aim 1: Cartilage Ultrasound and Biomechanics 

 The first purpose of Aim 1 was to compare the acute response and recovery of 

US cartilage outcome measures between a walking, drop-landing, and control condition 

in healthy participants. Separate one-way repeated measures analysis of variance (RM-

ANOVA) were used to determine differences in the baseline values for each cartilage 
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US measure between the walking, drop-landing, and control condition. Separate 4 x 3 

(time x condition) RM-ANOVAs were used to compare the percent change scores 

between the conditions for acute cartilage response and recovery at each time point. 

Outliers were defined as > two standard deviations away from the mean for each US 

measure at each time point. Next, a participant was removed from an individual US 

outcome measure RM-ANOVA if more than two time points were defined as outliers 

during a single condition. After outlier removal, a Shapiro-Wilk test was used to confirm 

normal distribution for each outcome measure. If there was a significant interaction 

effect for any of the RM-ANOVAs, we utilized Bonferroni corrected (p = 0.05/12 = 0.004) 

paired samples t-tests to determine the specific differences between conditions at each 

time point for all of the US measures. 

 The second purpose of Aim was to determine the associations between the 

acute cartilage response and lower extremity loading biomechanics during the walking 

and drop-landing condition. Separate Pearson product moment correlations were used 

to determine the association between the acute change (i.e. post0 percent change 

score) for each US measure and each lower extremity loading biomechanical variable 

during the walking and drop-landing condition. For correlational analysis between each 

acute change in US measure and lower extremity loading variable, outliers greater than 

two standard deviations away from the mean for either measure were removed for that 

individual analysis. Following outlier removal, if the data were still found to be non-

normal with the Shapiro-Wilk test, a Spearman Rank-Order correlation was used to 

determine the association between the acute change in each US measure and each 

lower extremity loading biomechanical measure. Correlational analyses involving the 
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vGRF, vGRF loading rate, and EXT moment were conducted for all US measures. 

Since greater VAL moment is theorized to increase medial compartment loading, 

correlational analyses involving the VAL moment were only conducted on the medial 

and intercondylar US measures. Similarly, correlational analyses involving the VAR 

moment were only conducted on the lateral and intercondylar US measures. 

Associations were classified as negligible (0.0 – 0.30), low (0.31 – 0.50), moderate 

(0.51 – 0.70), high (0.71 – 0.90), and very high (0.90 – 1.00).148 Additionally, we 

included the 95% confidence intervals around each Pearson r and Spearman ρ to 

ensure that the intervals of each association did not cross zero.149 

 

Aim 2: Cartilage Biomarkers and Biomechanics 

 The first purpose of Aim 2 was to compare the acute serum COMP response 

between walking, drop-landing, and control in healthy individuals. A one-way repeated 

measures analysis of variance (RM-ANOVA) was used to determine if the baseline 

COMP concentration was similar between the walking, drop-landing, and control 

condition. A separate one-way RM-ANOVA was used to compare acute COMP 

response between each condition. Outliers were defined as > two standard deviations 

away from the mean of COMP response in any of the conditions. After outlier removal, a 

Shapiro-Wilk test was used to confirm normal distribution for COMP response. If there 

were significant differences in COMP response, we utilized paired samples t-tests and a 

Bonferroni correction (p = 0.05/3 = 0.017) to determine specific differences in COMP 

response between conditions. 
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 The second purpose of Aim 2 was to determine the association between the 

COMP response and lower extremity loading biomechanics during the walking and 

drop-landing conditions. Separate Pearson product moment correlations were used to 

determine the association between COMP response and each measure of lower 

extremity loading during the walking and drop-landing condition. For the correlational 

analysis between each COMP response and lower extremity loading variable, outliers > 

two standard deviations away from the mean for either measure were removed for that 

individual analysis. Following outlier removal, if the data were still found to be non-

normal with the Shapiro-Wilk test, a Spearman Rank-Order correlation was used to 

determine the association between COMP response and each lower extremity loading 

measure. Associations were classified as negligible (0.0 – 0.30), low (0.31 – 0.50), 

moderate (0.51 – 0.70), high (0.71 – 0.90), and very high (0.90 – 1.00).148 Additionally, 

we included the 95% confidence intervals around each Pearson r and Spearman ρ to 

ensure that the intervals of each association did not cross zero.149 

 

Aim 2 Post-Hoc: Comparison of Increased and Decreased COMP Responders following 

Walking and Drop-Landing 

 During our initial analysis comparing COMP response between conditions, we 

identified a heterogeneous COMP response to both the walking and drop-landing 

conditions, as some participants demonstrated an increased (i.e. posttest increased 

above baseline) or a decreased (i.e. posttest decreased below baseline) COMP 

response. 
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Our first post hoc test sought to determine if participants demonstrated a similar 

COMP response between the walking and drop-landing sessions. We created a binary 

COMP response outcome measure to indicate whether a participant’s post-activity 

COMP concentration increased or decreased compared to the baseline COMP 

concentration for walking and drop-landing. We used a chi square analysis to determine 

if the frequency of being an increased COMP responder in the walking condition was 

similar to the frequency of being an increased COMP responder in the drop-landing 

condition. This analysis will determine if being an increased COMP responder (i.e. post 

COMP > baseline COMP) in the walking condition is associated with being an increased 

COMP responder in the drop-landing condition.  

With our second post hoc test, we used a Pearson product moment correlation to 

determine whether the magnitude of COMP response following walking was associated 

with the magnitude of COMP response following drop-landing.  

Lastly, we utilized separate independent t-tests to determine if lower extremity 

loading measures were different between the increased and decreased COMP 

responders in both the walking and drop-landing conditions.  

 

Aim 3: Cartilage Ultrasound and Cartilage Biomarkers 

 The purpose of Aim 3 was to determine the association between baseline US 

measures of cartilage health (i.e. thickness, area, and echo-intensity) and baseline 

serum COMP. The second purpose of Aim 3 was to determine the association between 

the change in US measures of cartilage health and the serum COMP response 

following walking and drop-landing in healthy individuals. Separate Pearson product 
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moment correlations were used to determine the association between baseline US 

measures and baseline COMP concentration, as well as determining the association 

between the percent change in each US measure and the COMP response following 

the walking and drop-landing conditions. For each correlational analysis between 

COMP response and each US measure, outliers > two standard deviations away from 

the mean for either measure were removed for that individual analysis. Following outlier 

removal, if the data were still found to be non-normal with the Shapiro-Wilk test, a 

Spearman Rank-Order correlation was used to determine the association between 

COMP and each US outcome measure. Associations were classified as negligible (0.0 

– 0.30), low (0.31 – 0.50), moderate (0.51 – 0.70), high (0.71 – 0.90), and very high 

(0.90 – 1.00).148 Additionally, we included the 95% confidence intervals around each 

Pearson r and Spearman ρ to ensure that statistically significant associations did not 

cross zero.149 

 

Aim 3 Post-hoc Test: Sex-Specific Associations between Ultrasonographic Measures of 

Femoral Cartilage and Cartilage Oligomeric Matrix Protein 

As previous reports have indicated sex differences in cartilage volume150 and 

resting concentrations of serum COMP,151 we performed separate post hoc 

associations individually for males and females to determine the association between 

cartilage structure and metabolism for each sex individually.  
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CHAPTER 4: RESULTS 

Specific Aim 1 Results - Cartilage Ultrasound and Biomechanics 

To compare the acute response and recovery of US measures of cartilage health 

(i.e. thickness, area, and echo-intensity) between a walking, drop-landing, and control 

condition in healthy participants. Additionally, we sought to determine the associations 

between change in US measures of cartilage health and lower extremity loading 

biomechanics during the walking and drop-landing condition.  

 

Comparison of Ultrasonographic Cartilage Outcome Measure Response and 

Recovery between Conditions 

Femoral Cartilage Thickness 

Baseline medial cartilage thickness was not different between the conditions 

(F2,78=1.08, p=0.346, n=40). There was a significant time by condition interaction effect 

for medial thickness deformation (F6,234=18.60, p<0.001). When compared to the control 

condition, medial thickness deformation was significantly greater following walking at 

post0 (t39=7.48, p<0.001) and post15 (t39=3.05, p=0.004), as well as following drop-

landing at post0 (t39=12.41, p<0.001), post15 (t39=7.36, p<0.001), and post30 (t39=3.24, 

p=0.002). The magnitude of medial thickness deformation was greater in the drop-

landing condition compared to the walking condition at post0 (t39=3.81, p<0.001) and 

post15 (t39=4.49, p<0.001), but was not statistically significant at post30 (t39=2.96, 

p=0.005) and post45 (t39=2.74, p=0.009).  
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Baseline intercondylar cartilage thickness was not different between the 

conditions (F2,76=1.51, p=0.228, n=39). There was a significant time by condition 

interaction effect for the intercondylar thickness deformation (F6,234=18.60, p<0.001). 

Intercondylar thickness deformation was significantly greater at post0 following walking 

(t38=4.20, p=0.004) and jumping (t38=3.05, p<0.001) when compared to the control 

condition, but was not different at any other time points. Intercondylar thickness 

deformation following walking and drop-landing did not significantly differ at any time 

point. 

Baseline lateral thickness was significantly different between the conditions 

(F2,72=3.18, p=0.048, n=37). However, multiple comparisons t-tests indicate no 

differences in lateral thickness between conditions, and the largest baseline lateral 

thickness mean difference (walking vs. drop-landing = 0.05mm) observed between 

conditions was within the intersession MDC we have previously established (MDC = 

0.19mm).132 When compared to the control condition, the lateral thickness deformation 

was significantly greater following walking at post0 (t36=7.26, p<0.001) and post15 

(t36=4.02, p<0.001), as well as following drop-landing at post0 (t36=10.44, p<0.001) and 

post15 (t36=4.88, p<0.001). Lateral thickness deformation was not different between the 

walking and drop-landing at any time point. 

 

Femoral Cartilage Area 

Baseline medial cartilage area was statistically different between conditions 

(F2,78=11.18, p<0.001, n=40). However, the largest baseline medial cartilage area 

difference (walking vs. drop-landing = 1.01mm2) observed between conditions was 
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within the intersession medial cartilage area MDC we established (MDC = 2.69mm2, 

Table 2). There was a significant time by condition interaction effect for medial cartilage 

area (F6,234=11.91, p<0.001). When compared to the control condition, medial cartilage 

area deformation was significantly greater during the walking condition at post0 

(t39=8.87, p<0.001) and post15 (t39=4.68, p<0.001), as well as following drop-landing at 

all post time points (post0: t39=10.12, p<0.001; post15: t39=9.11, p<0.001; post30: 

t39=3.79, p=0.001; post45: t39=4.04, p<0.001). Additionally, the magnitude of medial 

area deformation was greater in the drop-landing condition compared to the walking 

condition at the post15 (t39=3.60, p=0.001) time point, but this difference was not 

statistically significant at post0 (t39=2.78, p=0.008), post30 (t39=2.91, p=0.006), post45 

(t39=2.60, p=0.013).  

Baseline lateral cartilage area was statistically different between conditions 

(F2,74=4.13, p=0.020, n=38). However, the largest baseline lateral cartilage area 

difference (walking vs. drop-landing = 1.42mm2) observed between conditions was 

within the intersession lateral cartilage area MDC we established (MDC = 2.54mm2, 

Table 2). There was a significant time by condition interaction effect for lateral cartilage 

area (F6,234=11.91, p<0.001). When compared to the control condition, lateral cartilage 

area deformation was significantly greater during the walking condition at post0 

(t37=5.53, p<0.001) and post15 (t37=3.88, p<0.001), as well as following drop-landing at 

post0 (t37=6.47, p<0.001), post15 (t37=5.532, p<0.001), and post30 (t37=3.19, p=0.003). 

Lateral cartilage deformation was not different between the walking and drop-landing 

conditions at any post time points.  
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Femoral Cartilage Echo-intensity 

Baseline medial cartilage echo-intensity was not statistically different between 

the conditions (F2,72=0.22, p=0.806, n=37). There was a statistically significant time by 

condition interaction effect for medial cartilage echo-intensity percent change 

(F6,216=2.215, p=0.043), but none of the t-tests indicated any differences between the 

conditions at any of the posttest time points.  

Baseline lateral cartilage echo-intensity was not statistically different between the 

conditions (F2,72=0.747, p=0.477, n=37). There was not a statistically significant 

interaction effect between time and condition (F6,216=1.81, p=0.098). Therefore, t-tests 

were not utilized to identify specific group differences at each time point.   

 

Association between Ultrasonographic Cartilage Outcome Measure Response and 

Lower Extremity Loading during the Walking and Drop-Landing Conditions 

Femoral Cartilage Thickness 

During walking, lesser peak EXT moment associated with greater medial 

compartment deformation (r=-0.37, p=0.022; Table 4). However, the other walking lower 

extremity loading measures were not significantly associated with medial (r range = -

0.24 – 0.19), intercondylar (r/ρ range = -0.20 – 0.16), and lateral (r/ρ range = -0.16 – 

0.09) thickness deformation. 

Drop-landing lower extremity loading measures were not significantly associated 

with medial (r/ρ range = -0.18 – 0.32; Table 4), intercondylar (r/ρ range = -0.11– 0.12), 

or lateral (r/ρ range = -0.31– 0.01) thickness deformation. 
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Femoral Cartilage Area 

Walking lower extremity loading measures were not significantly associated with 

medial (r range = -0.21 – 0.24, Table 4) and lateral (r/ρ range = -0.16– 0.26) 

compartment area deformation. 

Drop-landing lower extremity loading measures were not significantly associated 

with medial cartilage area deformation (r/ρ range = -0.19 – -0.08; Table 4). During drop-

landing, greater peak vGRF(r=-0.34, p=0.036) and vGRF loading rate (r=-0.42, 

p=0.008) were significantly associated with greater lateral compartment area 

deformation. However, the other drop-landing lower extremity loading measures were 

not significantly associated with lateral compartment area deformation (r/ρ range = -0.20 

– 0.17).  

 

Femoral Cartilage Echo-intensity 

 During walking, greater vGRF loading rate was moderately associated with a 

decrease in medial compartment echo-intensity (r=-0.51, p=0.001; Table 4). However, 

the other walking lower extremity loading measures were not significantly associated 

with a change in medial compartment echo-intensity (r range = -0.21 – 0.14). Walking 

lower extremity loading measures were not associated with a change in lateral 

compartment echo-intensity (r/ρ range = -0.25 – 0.08). 

Drop-landing lower extremity loading measures were not statistically associated 

with a change in medial compartment echo-intensity (r/ρ range = -0.22 – 0.14; Table 4). 

During drop-landing, greater peak VAR moment was significantly associated with an 

increase in lateral compartment echo-intensity (ρ=0.34, p=0.04). However, the other 
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drop-landing lower extremity loading measures were not statistically associated with a 

change in lateral compartment echo-intensity (r/ρ range = -0.27 – 0.21).  

 

Specific Aim 2 Results - Cartilage Breakdown Biomarkers and Biomechanics 

The first purpose of aim 2 was to compare the acute serum COMP response 

between walking, drop-landing, and control in healthy individuals. Secondarily, we 

sought to determine the association between the COMP response and lower extremity 

loading biomechanics during the walking and drop-landing conditions.  

 

Comparison of COMP Response between Walking, Drop-Landing, and Control 

Conditions 

Baseline COMP concentration was not different between the walking, drop-

landing, or control conditions (F2,64=1.71, p=0.189, Table 6.). There was a significant 

difference in COMP response between the conditions (F2,64=14.58, p<0.001). COMP 

response was greater in the walking (t32=-4.291, p<0.001) and drop-landing (t32=4.331, 

p<0.001) conditions when compared to the control condition. COMP response was not 

different between the walking and drop-landing condition (t32=-0.535, p=0.001). 

 

Association between COMP Response and Lower Extremity Loading during the 

Walking and Drop-landing Conditions 

Greater walking valgus moment loading rate was associated with a decreased 

COMP response (r=-0.48, p=0.005, n=33; Table 6). However, no other walking lower 

extremity loading measure was significantly associated with the COMP response 
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following walking (r/ρ range = -0.24 – 0.30). There were no significant associations 

between drop-landing lower extremity loading measures and COMP response (r/ ρ 

range = -0.30 – 0.26). 

 

Post-Hoc: Comparison of Increased and Decreased COMP Responders following 

Walking and Drop-Landing 

For this analysis, we only excluded individuals with outliers in the walking or 

drop-landing COMP response (walking, n=2); thus, 36 individuals were included in the 

following analyses. 12 and 10 participants presented with a decreased COMP 

response, while 24 and 26 participants presented with an increased COMP response 

following the walking and drop-landing conditions, respectively (Figure 26). 

Being an individual with increased COMP response in the walking condition does 

mean that you will be an individual with an increased COMP response in the drop-

landing condition (χ1 = 0.277, p = 0.599). However, the magnitude of COMP response 

following walking was moderately associated with the magnitude of COMP response 

following drop-landing (r = 0.55, p = 0.001). There were no significant differences in our 

lower extremity loading measures when comparing the increased COMP responders to 

the decreased COMP responders following the walking or drop-landing condition. 

 

Specific Aim 3 Results - Cartilage Ultrasound and Cartilage Breakdown Biomarkers 

To determine the association between baseline US measures of cartilage health 

(i.e. thickness, area, and echo-intensity) and baseline serum COMP. The second 

purpose of this study was to determine the association between the change in US 
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measures of cartilage health and the serum COMP response following walking and 

drop-landing in healthy individuals. 

 

Association between Ultrasonographic Measures of Femoral Cartilage and 

Cartilage Oligomeric Matrix Protein 

 

Within the entire cohort, there were no significant associations between baseline 

COMP and any US measure (r range= -0.23 – 0.22; Table 11).   

For the walking condition, greater medial femoral compartment area deformation 

is significantly associated with a decreased COMP response (r=0.36, p=0.036; Table 

12). However, no other US measure percent change was significantly associated with 

the acute COMP response following walking (Table 12). For the drop-landing condition, 

all associations between each US measure percent change and the acute COMP 

response were negligible and non-significant (r/ρ range = -0.15 – 0.22).  

 

Post-hoc Test: Sex-Specific Associations between Ultrasonographic Measures of 

Femoral Cartilage and Cartilage Oligomeric Matrix Protein 

In males, greater baseline COMP concentration is significantly associated with 

lesser medial cartilage echo-intensity (i.e. more water content; r = -0.52, p = 0.023; 

Table 11). In females, greater baseline COMP is significantly associated with lesser 

lateral cartilage area (r = -0.57, p = 0.014). While not all associations are statistically 

significant, the directions for all associations between cartilage structure measures and 

COMP for the males were positive (r range = 0.05 – 0.39), while all these same 
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associations for females were negative (r range = -0.39 - -0.57). Additionally, the 

directions for all associations between cartilage echo-intensity measures and COMP for 

the males were negative (r range = -0.21 - -0.52), while all these same associations for 

the females were positive (r range = 0.29 – 0.36). 

In males, increased COMP response was significantly associated with lesser 

medial cartilage area deformation (r = 0.48, p = 0.036; Table 12). In females, increased 

COMP response in females was significantly associated with lesser medial cartilage 

thickness deformation (r = 0.46, p = 0.46). However, no other significant associations 

were observed for females and no significant associations were reported in males. 
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CHAPTER 5 - MANUSCRIPT 1 

Acute Femoral Cartilage Deformation and Recovery Following Walking and Drop-

Landing and its Association with Lower Extremity Biomechanics in Healthy 

Individuals 

 

OVERVIEW 

Context: Understanding how cartilage structure responds and recovers to acute 

physical activity is needed in order for future research to determine how people at risk 

for cartilage disease differ in response to mechanical loads during physical activity. 

Additionally, determining if magnitude and rate of lower extremity loading during walking 

and drop-landing are associated with cartilage deformation may be important in better 

understanding the role of lower extremity loading on cartilage mechanics. Objective: To 

compare the acute response and recovery of ultrasonography (US) cartilage outcome 

measures (i.e. thickness, area, and echo-intensity) between a walking, drop-landing, 

and control condition in healthy participants. Additionally, we sought to determine the 

associations between the acute cartilage response and lower extremity loading 

measures during the walking and drop-landing condition. Design: Repeated measures 

crossover study. Setting: Research laboratory. Patients or Other Population: 43 

healthy individuals with no history of lower extremity injury. Interventions: A femoral 

cartilage US assessment was performed in healthy individuals before and after a 

walking, drop-landing, and control condition to determine the acute cartilage response 
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and recovery at 15, 30, and 45 minutes following each condition. Additionally, we 

assessed walking and drop-landing biomechanics at the beginning of each of respective 

condition to determine how lower extremity loading measures in each condition related 

to the acute cartilage US changes. We utilized a repeated measures design in which 

each participant completed all conditions during independent data collection sessions 

separated by at least one week. Main Outcome Measures: Femoral articular cartilage 

was assessed with US to determine the thickness, area, and echo-intensity. Percent 

change scores from pre to all post activity time points were used for analysis. Peak 

magnitude and loading rate of the vertical ground reaction force, and internal knee 

extension, valgus, and varus moments were assessed during walking and drop-landing. 

Acute cartilage response and recovery were analyzed with a 3x4 (condition x time) 

ANOVA. Associations between the change in US measures and lower extremity loading 

measures were assessed with Pearson product moment correlations or Spearman rank 

order correlations. Results: Acute deformation of the medial and lateral compartments 

was observed immediately following both the walking and drop-landing conditions when 

compared to the control condition. Following walking, the magnitude of medial and 

lateral cartilage deformation remained significant until at least 15 minutes post loading 

compared to the control condition. Following drop-landing, significant cartilage area 

deformation persisted for 45 and 15 minutes in the medial and lateral compartments, 

respectively, compared to the control condition. The femoral cartilage deformation was 

not accompanied by concurrent alterations in cartilage echo-intensity. The majority our 

US cartilage structure measures were not associated with lower extremity loading 

biomechanics during both walking and drop-landing. However, we did observe a weak 
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association between greater lateral compartment area deformation and greater vGRF 

and vGRF loading rate during drop-landing. Conclusions: US provides a reliable and 

precise modality for detecting the in vivo cartilage deformation and recovery response 

following walking and drop-landing, but the majority of US measures are not associated 

with lower extremity biomechanics. 

 

INTRODUCTION 

Osteoarthritis (OA) is one of the most common joint diseases worldwide, 

affecting an estimated 10% of men and 18% of women.1 A hallmark feature of knee OA 

is a decline in articular cartilage health.2 Cartilage injury or chronic metabolic changes 

that alter cartilage tissue structure can influence how the articular cartilage responds to 

mechanical joint loading,109 which may lead to further deleterious changes in cartilage 

health.152 Understanding how the cartilage of healthy individuals responds and recovers 

to acute physical activity is needed in order for future research to determine how 

individuals at risk for OA development may respond differently to mechanical loads 

experienced during physical activity.  

Assessing cartilage thickness and volume provides an estimate of cartilage 

structure, however, the earliest stages of cartilage health decline are due to changes in 

cartilage composition without overt declines in cartilage structure measures.22 

Quantifying acute cartilage thickness deformation following physical activity is theorized 

to provide a surrogate assessment of cartilage composition, as cartilage deformation is 

governed by the composition of the tissue.153 Thus, assessing cartilage deformation in 

response to an acute loading condition may be a more sensitive measure of cartilage 
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health when compared to assessing resting cartilage structure. Yet, only a few 

investigations have reported the magnitude of instantaneous154 (i.e. during the stance 

phase) and acute133,155 (i.e. change following a walking bout) femoral cartilage 

deformation in healthy individuals following walking. As the cartilage of individuals with 

knee OA demonstrates greater deformation following walking compared to healthy 

individuals, greater deformation following activity may indicate greater alterations in 

cartilage composition.156 Not only is the magnitude of acute deformation important, but 

also the rate of recovery of cartilage deformation following activity as it provides a 

measure of cartilage resiliency.74,144 Specifically, in individuals with altered cartilage 

composition (i.e. anterior cruciate ligament reconstructed [ACLR]) initial cartilage 

deformation following thirty minutes of running was not different when compared to the 

deformation observed in healthy control individuals, yet the time to recovery of cartilage 

thickness was slower in the ACLR individuals.74 However, the recovery of cartilage 

thickness following walking in healthy individuals is yet to be determined.  

Healthy knee cartilage structure is theorized to adapt to the specific lower 

extremity loading applied during walking.37 For example, greater medial-to-lateral 

femoral cartilage thickness ratio measured with MRI is associated with greater peak 

internal knee abduction moment (i.e. theorized to increase dynamic medial joint loading) 

during walking in healthy individuals.116 Previous investigations in acute patellar 

cartilage deformation have discovered that there is a dose-dependent relationship 

response for cartilage deformation, where more strenuous tasks result in greater 

deformation.120 However, no studies have determined if biomechanics of lower 

extremity loading are associated with the acute change in femoral cartilage that occur 
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after a bout of walking or if an activity with higher magnitude loading (i.e. drop-landing) 

results in greater deformation when compared to walking. The peak vertical ground 

reaction force (vGRF) is a commonly used biomechanical variable that estimates the 

overall lower extremity loading that has previously been associated with cartilage 

metabolism.138 Additionally, the peak internal knee abduction moment and internal knee 

adduction moment are theorized to provide information regarding the medial and lateral 

compartment dynamic loading that occurs at the knee,157 respectively, while the internal 

knee extension moment has recently emerged as a contributor to knee joint loading.158 

The peak magnitude of these lower extremity loading measures are important in 

cartilage deformation; however, due to the viscoelastic nature of cartilage, the rate of 

loading is also important in influencing the magnitude of acute cartilage deformation.112 

Therefore, determining if magnitude and rate of lower extremity loading are associated 

with cartilage deformation may be important in better understanding the role of lower 

extremity loading on cartilage mechanics. 

Magnetic resonance imaging (MRI) is the current gold standard for in vivo knee 

cartilage imaging to assess cartilage deformation.159 Ultrasonography (US) has 

emerged as a valid and reliable technique17 to assess femoral cartilage thickness that 

can detect cartilage deformation acutely following physical activity.133 We have 

developed a novel method for measuring US cross-sectional area of the medial and 

lateral compartments of the femur that may provide a more representative measure of 

cartilage deformation than the previously established US cartilage thickness 

measurement.133 Additionally, the US area measurement permits assessment of 

cartilage echo-intensity, which may represent the relative water content.28,143 Cartilage 
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is approximately 60-80% water, and the interaction of water with the cartilage matrix is 

important in cartilage resisting compression.29 Therefore, the purpose of this study was 

to compare the acute response and recovery of US cartilage outcome measures 

between walking, drop-landing, and control conditions in healthy participants. 

Additionally, we sought to determine the associations between the acute change in US 

cartilage measures and lower extremity loading measures during the walking and drop-

landing condition. We hypothesized that cartilage thickness and area would decrease 

while echo-intensity would increase following the walking and drop-landing condition 

compared to the control condition. We also hypothesized that the deformation created 

by the drop-landing condition would take longer to recover compared to the walking 

cartilage deformation recovery, and that lower extremity biomechanics indicative of 

greater knee loading would be associated with greater changes in the US outcomes 

following the walking and drop-landing condition. 

 

METHODS 

Design 

In this study, a femoral cartilage US assessment was performed in healthy 

individuals before and after walking, drop-landing, and control conditions to determine 

the acute cartilage response and recovery at 15, 30, and 45 minutes following each 

condition (Figure 20). Additionally, we assessed walking and drop-landing biomechanics 

at the beginning of each of respective conditions. We utilized a repeated measures 

design in which each participant completed all conditions during independent data 

collection sessions separated by at least one week (11.5±8.7 days between sessions) 
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at the same time of day (0.26±0.71 hours difference in time of day) to control for diurnal 

variations in femoral cartilage thickness (Figure 20).135,136 The order of the conditions 

was counterbalanced. Participants were instructed to limit their physical activity on the 

days that data collection occurred.  

On the day of each data collection session, we began by collecting a urine 

sample to test urine specific gravity via refractometry to confirm that each participant 

was not dehydrated (i.e. urine specific gravity < 1.025) prior to testing.140 Following 

hydration testing, participants were seated on a padded plinth with their back against a 

wall in a long-sit position with their knees in full extension133 for one hour to unload the 

femoral articular cartilage, permit fluid rebound, and minimize the effect of preceding 

activity on the cartilage. This was followed by the baseline US cartilage assessment. 

The participants were then immediately transferred across the laboratory using a wheel 

chair to begin setup for the biomechanical assessment during the walking/drop-landing 

condition or remained on the treatment table for the control condition. Next, the 

participants completed the activity condition (i.e. walking, drop-landing, or control). The 

participants wore the same pair of their own personal athletic footwear for all three 

sessions. Immediately following cessation of the activity condition, the participants were 

transferred back to the padded plinth and initial posttest (post0) US cartilage images 

were obtained within five minutes following the end of the condition. The participants 

remained seated on the padded plinth and additional US images were obtained at 15 

(post15), 30 (post30), and 45 (post45) minutes post each condition. 
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Participants 

We recruited a convenience sample of healthy individuals between the ages of 

18 and 35 who self-reported participating in at least 30 minutes of physical activity at 

least three times per week. We excluded individuals with a history of ligamentous or 

cartilage injury to the knee or hip, cartilage injury to the ankle, congenital or 

degenerative joint condition, orthopedic implant, lower extremity fracture, or upper 

extremity fracture. Additionally, those with current joint pain (quantified as greater than 2 

on a 10cm visual analog scale) were excluded from participation. We conducted an a 

priori power analysis using data from medial femoral compartment thickness changes 

following 30 minutes of walking (pre avg= 2.23mm, post avg=2.09mm, pooled 

SD=0.42mm, effect size: d=0.33) published in a previous study.133 We estimated that 

we would need 33 participants to determine statistical differences in medial femoral 

thickness,133 with 80% power and an α level of 0.05, if the smallest effect we found in 

the current study across the three loading conditions and five total time points was 

similar to previously published research (d=0.33).133 Due to the time commitment of 

three separate three-hour data collection sessions, we over-sampled by 30% to ensure 

that we would achieve adequate statistical power in our final analyses if 30% of the 

initial sample were to drop-out of the study. 

 

Screening Session 

Prior to testing, participants came to the laboratory for an initial session to 

determine their habitual walking speed and determine their corresponding comfortable 

step frequency, which was used to standardize the amount of time used for each of the 
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conditions. Habitual over-ground walking speed was initially determined in our motion 

capture laboratory utilizing two sets of infrared timing gates (TF100, TracTronix, 

Lenexa, KS, USA). Participants were instructed to walk at a self-selected speed 

described as “comfortably walking on the sidewalk” through the 6-meter capture 

area.137-139 After completing five familiarization trials, we recorded the time of the next 

five walking trials to determine their average habitual walking speed. Next, the speed on 

the treadmill (4Front, WOODWAY, Waukesha, WI, USA) was increased to the habitual 

walking speed of each participant and 60 seconds of walking was continued for the 

purpose of treadmill familiarization. After treadmill familiarization, study personnel 

manually counted the steps of each participant for one minute in order to determine the 

time each participant would need to reach 5000 steps (46.09±4.15 minutes).122 This 

calculated time for each participant was used for all three conditions. 

  

Ultrasonographic Assessment of the Femoral Articular Cartilage 

Ultrasonographic Image Acquisition 

US images were obtained in the dominant limb, which was defined as the self-

reported limb that the participant preferred to use for kicking a ball.133 Participants were 

positioned with their back against a wall and the knee of the dominant limb was 

positioned at 140° of flexion using a manual goniometer (Figure 21).133 A tape measure 

was secured to the padded plinth and used to record the distance between the wall and 

the posterior calcaneus in order to standardize positioning for each participant during 

the posttest and throughout all data collection sessions. A single investigator performed 

all femoral cartilage US imaging using a LOGIQe US system (General Electric Co., 
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Fairfield, CT, USA) with a 12MHz linear probe. The probe was placed transversely in 

line with the medial and lateral femoral condyles above the superior edge of the patella 

(Figure 21) and rotated to maximize the reflection of the articular cartilage surface, as 

previously reported.17,141,142 A transparency grid was placed over the US screen to aid in 

reproducibility of the US image.133 Once the intercondylar notch was centered on the 

grid, the locations of the lateral and medial femoral condyles at the edges of the screen 

were recorded. The probe positioning was replicated during subsequent US 

assessments to ensure similar probe placement between assessments. Three images 

were recorded, with the US probe being removed and repositioned on the knee 

between each recorded image at baseline, post0, post15, post30, and post45 after each 

condition.  

 

Ultrasonographic Imaging Processing 

A single, unblinded investigator manually segmented the US images using 

ImageJ software (National Institutes of Health, Bethesda, MD, USA). All three of the 

femoral cartilage US images from each time point were processed and averaged for all 

US outcome measures.  

 

Cartilage Thickness 

Femoral cartilage thickness was assessed at the midpoints of the medial femoral 

condyle, lateral femoral condyle, and intercondylar notch as the straight-line distance in 

millimeters (mm) between the cartilage-bone interface to the synovial space-cartilage 

interface (Figure 22a).17,133,141,142 Strong intra-session reliability for the cartilage 
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thickness assessment has previously been established within our laboratory (ICC2,k = 

0.966).133 

 

Cartilage Area and Echo-intensity 

The femoral cartilage was then be segmented by individually outlining the 

cartilage of the medial and lateral femoral condyles to obtain the size (i.e. cartilage area 

[mm2]) and the grey-scale value (i.e. cartilage echo-intensity) of the cartilage (Figure 

22b). The medial and lateral areas were separated based on the location of the 

intercondylar thickness measure. Echo-intensity evaluates the average gray scale 

brightness of each pixel segmented on a scale from 0 (i.e. black) to 255 (i.e. white). US 

echo-intensity has primarily been used as a measure of “muscle quality”,28,143 with the 

average echo-intensity representing the relative water content of muscle. Cartilage is 

approximately 60-80% fluid and acute cartilage deformation is in part due to fluid 

exudation.29,144 Thus, US echo-intensity may be able to monitor acute changes in 

cartilage water content that occur during physical activity. 

Additionally, a percent change score from baseline to each posttest was 

calculated to determine the acute cartilage response for each US measure following 

each condition (Equation 1). A greater negative percent change of thickness and area 

indicates greater cartilage deformation. A greater negative percent change in echo-

intensity is theorized to indicate an increase in cartilage water content. 

 

Equation 1: Percent change (%Δ) = (
�������	
�������

�������
)*100 
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Biomechanical Assessment of Lower Extremity Loading 

Participant Preparation for Biomechanical Assessment 

A modified retroreflective marker cluster/bony landmark setup was used for data 

collection for both walking and drop-jump landings.139 Marker clusters were secured 

bilaterally at the middle 1/3rd of the anterior lateral thigh, middle 1/3rd of the anterior 

lateral shank, middle of the dorsum of the foot, and over the sacrum. Additional bony 

landmark markers were affixed with double sided tape at the L4/L5, manubrium, and 

bilaterally over the anterior superior iliac spine, greater trochanter, medial/lateral femoral 

epicondyle, medial/lateral malleoli, and acromion processes. Marker positions were 

collected using a 10-camera three-dimensional motion capture system with a sampling 

frequency of 120Hz with Vicon Nexus v1.4.1 motion capture software (Vicon Motion 

Systems, Centennial, CO) and lowpass filtered at 10Hz.139 The cameras were 

interfaced with three total Bertec force plates (40cm x 60cm, FP406010, Bertec 

Corporation, Columbus, OH) collecting at 1200Hz and lowpass filtered at 75Hz.139 Two 

of the force plates were positioned side by side and used to collect drop-landing data 

(Figure 23a), while two of the force plates were staggered to allow for bilateral limb 

collection during a single walking trial (Figure 23b).139 

 

Walking Biomechanical Assessment  

The participants walked shod through the capture area at their habitual walking 

speed (Figure 23a). Five practice trials were performed to familiarize the participants 

with the walking task. Five test trials were recorded in which: 1) both limbs individually 

landed on a single force plate, 2) maintained forward eye contact and were not “aiming” 
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for the force plates, 3) and maintained a consistent gait speed (±5% of the habitual 

walking speed calculated in the screening session.137,138 Immediately following the 

collection of the last test trial, the participants were returned to the wheelchair and 

transferred across the laboratory to begin the walking condition.  

 

Drop-Landing Biomechanical Assessment  

A 62cm platform was positioned behind the side-by-side force plates to allow for 

simultaneous collection of both limbs during a single drop-landing trial (Figure 23b). A 

separate step was positioned behind the 62cm platform and was utilized by the 

participants to ascend onto the platform. For each drop-landing trial, the participants 

ascended onto the platform and were instructed to drop down from the platform and 

perform a comfortable landing with each limb on a separate force plate. No specific 

instructions were provided to the participants on how to perform the double-legged 

landing. After each drop-landing, participants would walk around the box and ascend up 

the step in order to prepare for the next drop-landing trial. The drop-landing 

biomechanics assessment was conducted on trials 5 through 10.  

 

Analysis of Lower Extremity Loading 

Individual trials from the walking and drop-landing biomechanical assessments 

were labeled to identify all of the retro-reflective markers within the Vicon Nexus motion 

capture software (version 1.8.5, Vicon Motion Systems, Oxford, UK). Once labeled, the 

marker trajectory data, synchronized with the ground reaction force, was exported from 

Vicon Nexus and further processed using The Motion Monitor software (version 8.0, 
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Innovative Sports Training, Chicago, IL, USA). A custom LabVIEW program (National 

Instruments Corp., San Antonio, TX) was used to measure our biomechanics variables 

during the early loading phase of walking and drop-landing. For the walking trials, the 

loading phase was defined as the first 50% of stance phase; defined as the interval from 

heel strike (vGRF > 20N) to toe-off (vGRF < 20N). The loading phase of drop-landing 

was defined as the first 100ms following ground contact (vGRF > 20N). Peak vGRF was 

determined during the loading phase of the walking and drop-landing conditions. Peak 

internal knee extension (EXT) moment, peak internal knee valgus (VAL) moment, and 

internal knee varus (VAR) moment moments during the loading phase were calculated 

using inverse dynamics as previously performed in our laboratory.139 Greater EXT 

moments were depicted as negative values, while more positive VAL and VAR 

moments are indicative of greater moment.160 Instantaneous loading rate of the vGRF 

(vGRF-LR), EXT, VAL, and VAR moments were calculated as the peak of first 

derivative of the force-time and moment-time curves.139 Peak vGRF (xBW) and vGRF-

LR (xBW/s) were normalized to participants’ body weight.138 Peak moments (xBW*Ht) 

and moment loading rates (xBW*Ht/s) were normalized to the product of participants’ 

height and weight.139 

 

Walking, Drop-Landing, and Control Conditions 

Walking Condition 

The participants were positioned on the treadmill and the speed was increased to 

the habitual walking speed determined during the screening session. This speed was 
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maintained for the time calculated during the screening session to reach 5,000 steps 

(46.09±4.15 minutes). 

 

Drop-Landing Condition 

The drop-landing biomechanical assessment occurred concurrently with the 

drop-landings used for the drop-landing condition. For the drop-landing condition, the 

participants continued performing drop-landings until they completed 120 total drop-

landings. We selected the amount of drop-landings from the 62cm platform in order to 

match the high magnitude loading condition utilized in a previous study utilizing a similar 

drop-landing protocol.123 The 120 drop-landing trials were evenly distributed over the 

same period of time utilized in the other conditions (46.09±4.15 minutes).  

 

Control Condition 

During the control condition, participants remained on the treatment table 

following the baseline blood sample collection in a long-sit position for the same period 

of time utilized in the other conditions (46.09±4.15 minutes). 

 

Statistical Analysis 

Intra-session and Inter-session Reliability, Precision, and Minimal Detectable Change of 

Ultrasonographic Assessed Femoral Cartilage Compartmental Area and Echo-intensity 

Prior to our primary analyses, separate intraclass correlation coefficients (ICC2,k) 

were calculated between the control condition baseline and post0 assessment of medial 

and lateral femoral cartilage compartment area and echo-intensity to establish the intra-
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session session reliability. ICCs were classified as weak (<0.5), moderate (0.5 – 0.69), 

or strong (≥0.7).161 Standard error of the measurement (SEM) was calculated between 

the control condition time points to establish the measurement’s precision (Equation 

2).162 Minimal detectable change (MDC) was calculated between the two control 

condition time points to determine the change in US variables that may be expected due 

to measurement error (Equation 3).163  

 

Equation 2162: Standard error of measurement (SEM) = SD√1 − ICC 

Equation 3163: Minimal detectable change (MDC) = 1.645 ×  ��� × √2 

 

Separate ICC2,k, SEM, and MDC were calculated for the baseline cartilage area 

and echo-intensity from the control and jumping sessions to establish each 

measurement’s inter-session reliability, precision, and minimal detectable change, 

respectively. All statistical analyses were performed using SPSS (version 21.0; IBM 

Corporation) with an a priori α level of P < 0.05. 

 

Comparison of Ultrasonographic Cartilage Outcome Measure Response and Recovery 

between Conditions 

Separate one-way repeated measures analysis of variance (RM-ANOVA) were 

used to compare the baseline values for each cartilage US measure between the 

walking, drop-landing, and control condition. Separate 4 x 3 (time x condition) RM-

ANOVAs were used to compare the percent change scores between the conditions for 

acute cartilage response and recovery at each time point. Outliers were defined as > 
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two standard deviations away from the mean for each US measure at each time point. 

Next, a participant was removed from an individual US outcome measure RM-ANOVA if 

more than two time points were defined as outliers during a single condition. After 

outlier removal, a Shapiro-Wilk test was used to confirm normal distribution for each 

outcome measure. If there was a significant interaction effect for any of the RM-

ANOVAs, we utilized Bonferroni corrected (p = 0.05/12 = 0.004) paired samples t-tests 

to determine the specific differences between conditions at each time point for all of the 

US measures. 

 

Association between Ultrasonographic Cartilage Outcome Measure Response and 

Lower Extremity Loading during Conditions 

Separate Pearson product moment correlations were used to determine the 

association between the acute change (i.e. post0 percent change score) for each US 

measure and each lower extremity loading biomechanical variable during the walking 

and drop-landing condition. For correlational analysis between each acute change in US 

measure and lower extremity loading variable, outliers greater than two standard 

deviations away from the mean for either measure were removed for that individual 

analysis. Following outlier removal, if the data were still found to be non-normal with the 

Shapiro-Wilk test, a Spearman Rank-Order correlation was used to determine the 

association between the acute change in each US measure and each lower extremity 

loading biomechanical measure. Correlational analyses involving the vGRF, vGRF 

loading rate, and EXT moment were conducted for all US measures. Since greater VAL 

moment is theorized to increase medial compartment loading, correlational analyses 
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involving the VAL moment were only conducted on the medial and intercondylar US 

measures. Similarly, correlational analyses involving the VAR moment were only 

conducted on the lateral and intercondylar US measures. Associations were classified 

as negligible (0.0 – 0.30), low (0.31 – 0.50), moderate (0.51 – 0.70), high (0.71 – 0.90), 

and very high (0.90 – 1.00).148 Additionally, we included the 95% confidence intervals 

around each Pearson r and Spearman ρ to ensure that the intervals of each association 

did not cross zero.149 

 

RESULTS 

Participants 

Forty-three total participants were included in this study (Table 1); however, due 

to participant dropout between data collection sessions, not every participant completed 

each data collection session (walking n = 42, drop-landing n = 41, and control n = 43). 

The two dropouts in the walking condition were due to unrelated injuries that occurred 

between their 2nd and 3rd sessions, and the one drop-landing dropout was due to the 

participant being unwilling to complete the drop-landing condition. Forty participants 

completed all three sessions and are included in the RM-ANOVAs. The correlational 

analyses included the maximum amount of participants for each condition and outcome 

measure. 
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Reliability, Precision, and Minimal Detectable Change of Ultrasonographic Assessed 

Femoral Cartilage Compartmental Area and Echo-intensity 

Overall, we demonstrated adequate intra- and inter-session reliability, precision, 

and small minimal detectable changes for all of our novel US measures of 

compartmental area and echo-intensity (Table 2). 

 

Comparison of Ultrasonographic Cartilage Outcome Measure Response and Recovery 

between Conditions 

Baseline as well as both the absolute and percent change scores for each 

posttest time point for the conditions are presented in Table 3.  

 

Femoral Cartilage Thickness 

Baseline medial cartilage thickness was not different between the conditions 

(F2,78=1.08, p=0.346, n=40). There was a significant time by condition interaction effect 

for medial thickness deformation (F6,234=18.60, p<0.001). When compared to the control 

condition, medial thickness deformation was significantly greater following walking at 

post0 (t39=7.48, p<0.001) and post15 (t39=3.05, p=0.004), as well as following drop-

landing at post0 (t39=12.41, p<0.001), post15 (t39=7.36, p<0.001), and post30 (t39=3.24, 

p=0.002). The magnitude of medial thickness deformation was greater in the drop-

landing condition compared to the walking condition at post0 (t39=3.81, p<0.001) and 

post15 (t39=4.49, p<0.001), but was not statistically significant at post30 (t39=2.96, 

p=0.005) and post45 (t39=2.74, p=0.009).  
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Baseline intercondylar cartilage thickness was not different between the 

conditions (F2,76=1.51, p=0.228, n=39). There was a significant time by condition 

interaction effect for the intercondylar thickness deformation (F6,228=3.37, p=0.003). 

Intercondylar thickness deformation was significantly greater at post0 following walking 

(t38=4.20, p=0.004) and jumping (t38=3.05, p<0.001) when compared to the control 

condition, but was not different at any other time points. Intercondylar thickness 

deformation following walking and drop-landing did not significantly differ at any time 

point. 

Baseline lateral thickness was significantly different between the conditions 

(F2,72=3.18, p=0.048, n=37). However, multiple comparisons t-tests indicate no 

differences in lateral thickness between conditions, and the largest baseline lateral 

thickness mean difference (walking vs. drop-landing = 0.05mm) observed between 

conditions was within the intersession MDC we have previously established (MDC = 

0.19mm).132 There was a significant time by condition interaction effect for the lateral 

thickness deformation (F6,216=15.174, p<0.001). When compared to the control 

condition, the lateral thickness deformation was significantly greater following walking at 

post0 (t36=7.26, p<0.001) and post15 (t36=4.02, p<0.001), as well as following drop-

landing at post0 (t36=10.44, p<0.001) and post15 (t36=4.88, p<0.001). Lateral thickness 

deformation was not different between the walking and drop-landing at any time point. 

 

Femoral Cartilage Area 

Baseline medial cartilage area was statistically different between conditions 

(F2,78=11.18, p<0.001, n=40). However, the largest baseline medial cartilage area 
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difference (walking vs. drop-landing = 1.01mm2) observed between conditions was 

within the intersession medial cartilage area MDC we established (MDC = 2.69mm2, 

Table 2). There was a significant time by condition interaction effect for medial cartilage 

area (F6,234=11.91, p<0.001). When compared to the control condition, medial cartilage 

area deformation was significantly greater during the walking condition at post0 

(t39=8.87, p<0.001) and post15 (t39=4.68, p<0.001), as well as following drop-landing at 

all post time points (post0: t39=10.12, p<0.001; post15: t39=9.11, p<0.001; post30: 

t39=3.79, p=0.001; post45: t39=4.04, p<0.001). Additionally, the magnitude of medial 

area deformation was greater in the drop-landing condition compared to the walking 

condition at the post15 (t39=3.60, p=0.001) time point, but this difference was not 

statistically significant at post0 (t39=2.78, p=0.008), post30 (t39=2.91, p=0.006), post45 

(t39=2.60, p=0.013).  

Baseline lateral cartilage area was statistically different between conditions 

(F2,74=4.13, p=0.020, n=38). However, the largest baseline lateral cartilage area 

difference (walking vs. drop-landing = 1.42mm2) observed between conditions was 

within the intersession lateral cartilage area MDC we established (MDC = 2.54mm2, 

Table 2). There was a significant time by condition interaction effect for lateral cartilage 

area (F6,228=5.82, p<0.001). When compared to the control condition, lateral cartilage 

area deformation was significantly greater during the walking condition at post0 

(t37=5.53, p<0.001) and post15 (t37=3.88, p<0.001), as well as following drop-landing at 

post0 (t37=6.47, p<0.001), post15 (t37=5.532, p<0.001), and post30 (t37=3.19, p=0.003). 

Lateral cartilage deformation was not different between the walking and drop-landing 

conditions at any post time points.  
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Femoral Cartilage Echo-intensity 

Baseline medial cartilage echo-intensity was not statistically different between 

the conditions (F2,72=0.22, p=0.806, n=37). There was a statistically significant time by 

condition interaction effect for medial cartilage echo-intensity percent change 

(F6,216=2.215, p=0.043), but none of the t-tests indicated any differences between the 

conditions at any of the posttest time points.  

Baseline lateral cartilage echo-intensity was not statistically different between the 

conditions (F2,72=0.747, p=0.477, n=37). There was not a statistically significant 

interaction effect between time and condition (F6,216=1.81, p=0.098). Therefore, t-tests 

were not utilized to identify specific group differences at each time point.   

 

Association between Ultrasonographic Cartilage Outcome Measure Response and 

Lower Extremity Loading during the Walking and Drop-Landing Conditions 

Descriptive statistics for the lower extremity loading variables during walking and 

drop-landing can be found in Table 1. 

 

Femoral Cartilage Thickness 

During walking, lesser peak EXT moment associated with greater medial 

compartment deformation (r=-0.37, p=0.022; Table 4). However, the other walking lower 

extremity loading measures were not significantly associated with medial (r range = -

0.24 – 0.19), intercondylar (r/ρ range = -0.20 – 0.16), or lateral (r/ρ range = -0.16 – 0.09) 

thickness deformation. 
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Drop-landing lower extremity loading measures were not significantly associated 

with medial (r/ρ range = -0.18 – 0.32; Table 4), intercondylar (r/ρ range = -0.11– 0.12), 

or lateral (r/ρ range = -0.31– 0.01) thickness deformation. 

 

Femoral Cartilage Area 

Walking lower extremity loading measures were not significantly associated with 

medial (r range = -0.21 – 0.24, Table 4) or lateral (r/ρ range = -0.16– 0.26) compartment 

area deformation. 

Drop-landing lower extremity loading measures were not significantly associated 

with medial cartilage area deformation (r/ρ range = -0.19 – -0.08; Table 4). During drop-

landing, greater peak vGRF(r=-0.34, p=0.036) and vGRF loading rate (r=-0.42, 

p=0.008) were significantly associated with greater lateral compartment area 

deformation. However, the other drop-landing lower extremity loading measures were 

not significantly associated with lateral compartment area deformation (r/ρ range = -0.20 

– 0.17).  

 

Femoral Cartilage Echo-intensity 

During walking, greater vGRF loading rate (r=-0.51, p=0.001; Table 4) was 

moderately associated with a decrease in medial compartment echo-intensity. However, 

the other walking lower extremity loading measures were not significantly associated 

with a change in medial compartment echo-intensity (r range = -0.21 – 0.14). Walking 

lower extremity loading measures were not associated with a change in lateral 

compartment echo-intensity (r/ρ range = -0.25 – 0.08). 



 100

Drop-landing lower extremity loading measures were not statistically associated 

with a change in medial compartment echo-intensity (r/ρ range = -0.22 – 0.14; Table 4). 

During drop-landing, greater peak VAR moment was significantly associated with an 

increase in lateral compartment echo-intensity (ρ=0.34, p=0.04). However, the other 

drop-landing lower extremity loading measures were not statistically associated with a 

change in lateral compartment echo-intensity (r/ρ range = -0.27 – 0.21).  

 

DISCUSSION 

This is the first study to assess both the acute cartilage deformation and recovery 

following a walking and drop-landing task. We demonstrated that our novel US 

compartmental area and echo-intensity technique is both reliable and precise within and 

between separate testing sessions. Acute deformation of the medial and lateral 

compartments was observed immediately following both the walking (i.e. low 

magnitude) and drop-landing (i.e. high magnitude) conditions when compared to the 

control (i.e. no loading) condition. Greater acute medial cartilage deformation was 

observed following drop-landing when compared to walking. The medial and lateral 

cartilage area remained deformed up to 15 minutes after the end of the walking 

condition when compared to the control condition. Additionally, significant deformation 

was observed in the medial and lateral cartilage area up to 45 and 15 minutes following 

the drop-landing condition, respectively, when compared to the control condition. These 

results indicate that the high magnitude drop-landing condition resulted in greater acute 

cartilage deformation as well as longer time to recover when compared to the walking 

condition. Even though significant deformation in the cartilage structure was observed 
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following both walking and drop-landing, this structural response was not accompanied 

by concurrent alterations in cartilage echo-intensity changes following the conditions. 

The majority our US cartilage structure measures were not associated with lower 

extremity loading measures during both walking and drop-landing; however, we did 

observe a weak association between greater lateral compartment area deformation and 

greater vGRF and vGRF loading rate during drop-landing.  

Only a few studies have quantified in vivo femoral cartilage deformation created 

by walking.133,154,155 Utilizing a combination of dual fluoroscopic imaging and magnetic 

resonance imaging (MRI), previous authors have quantified the amount of cartilage 

deformation occurring throughout the entire stance phase of gait.154 Medial femoral 

deformation ranged from 8% to 23%, while lateral femoral deformation ranged from 7% 

to 16% depending on the specific phase of the gait cycle.154 Total volumetric 

deformation (i.e. deformation of the entire compartment) was only found to be 1.2% and 

1.3% in the medial and lateral femoral compartments, respectively.155 However, we 

have previously observed an acute anterior medial thickness deformation of 6.7% after 

30 minutes of walking,133 and specific local MRI acute deformation has observed a 7.3% 

maximal deformation occurring in the anteromedial portion of the medial femoral 

condyle and a 3.3% maximal deformation in the lateral femoral condyle following 20 

minutes of walking.155 This indicates that volumetric MRI assessments of cartilage 

deformation may underestimate the magnitude of deformation. Interestingly, the medial 

cartilage deformation observed in this study (area = 7.09%, thickness = 7.11%) was 

similar to what has been found in these previous studies,133,155 even though participants 

in the current study incurred a greater number of steps compared to previous studies 



 102

(~5,000 steps; ~46 minutes). Therefore, it is possible that cartilage deformation in 

response to cyclic loading may reach a certain threshold in which further deformation 

does not occur.159 

Only one other investigation has utilized a similar drop-landing protocol as we 

used in the current study,123 and they observed non-significant cartilage volume 

deformation in the medial (i.e. 0.66%) and lateral (i.e. 1.6%) femoral condyles as 

compared to the deformation we observed in the medial (i.e. area=10.05%, 

thickness=9.30%) and lateral (i.e. area=6.95%, thickness=6.8%) femoral condyles. The 

discrepancy between cartilage deformation measurements in our study and the overall 

volumetric cartilage deformation reported following walking155 and drop-landing123 again 

highlight that volumetric measurements of the entire femoral condyle may 

underestimate the site-specific deformation that occurs locally on specific aspects of the 

femur. Therefore, the cartilage deformation observed in this study is due to our US 

cartilage assessment providing a specific estimate of the anterior femur cartilage 

deformation. Greater magnitude cartilage deformation assessed with US may also be 

due to the accessibility and quick image acquisition of US. Thus, US may allow for 

earlier imaging of the cartilage following activity conditions when compared to the time 

needed for an MRI assessment. We are able to collect bilateral US images within less 

than five minutes following the end of the activity conditions, whereas previous studies 

have reported that participant setup and image acquisition can take as much as 13 

minutes to capture a single knee.155 

This is the first study that has assessed femoral cartilage recovery following an 

acute bout of walking and drop-landing. We found that drop-landing results in greater 
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initial medial cartilage deformation, and cartilage thickness takes longer time to recover 

following drop-landing when compared to the walking condition. These results reinforce 

the results of an earlier study of patellar cartilage120 that indicate the presence of a 

dose-dependent relationship of cartilage deformation in which more intense physical 

activity results in greater cartilage deformation. While no previous research has 

investigated the recovery of cartilage deformation following an acute bout of walking or 

drop-landing, a previous study compared tibiofemoral cartilage deformation following 

running between a small cohort of healthy individuals and patients following anterior 

cruciate ligament reconstruction (ACLR).74 The overall magnitude of acute deformation 

did not differ between healthy individuals and patients following ACLR, but the cartilage 

of ACLR patients took longer to recover compared to the healthy individuals.74 Thus, 

assessing cartilage recovery following physical activity may provide a measure of 

cartilage resiliency that could be important to understanding how cartilage is recovering 

to acute loading.  

Even though we observed significant cartilage deformation following both the 

walking and drop-landing protocols, these structural changes were not accompanied 

with concurrent alterations in cartilage echo-intensity. Since cartilage deformation is in 

part due to fluid exudation,29 we hypothesized that we would detect water content 

changes using cartilage echo-intensity. Previously, T2 MRI Mapping (i.e. compositional 

imaging technique indicative of water content164) has been used to determine how 

different types of acute activity acutely alter cartilage water content.127,128,165 Using a 

static loading technique inside an MRI scanner, the amount of femoral cartilage 

thickness deformation was not associated with concurrent changes in T2 relaxation 



 104

time.127 Additionally, following a 30 minute jog, a ~7% decrease in femoral cartilage 

thickness was not accompanied by an overall change in mean T2 relaxation time.166 

However, there was a significant change in the mean T2 relaxation time of the 

superficial femoral cartilage,166 indicating that activity may non-uniformly affect cartilage 

water content depending on the depth of the cartilage. Therefore, depending on the 

activity condition, region of cartilage, and depth within the cartilage there may be a 

differential association between the structural deformation and change in cartilage water 

content. While this is the first investigation to assess acute changes in cartilage echo-

intensity following acute loading, our results may indicate that this technique may not be 

sensitive enough to detect acute changes throughout the entire thickness of cartilage. 

However, future work that assesses echo-intensity at different depths of cartilage 

thickness may allow for more specific determination of cartilage echo-intensity changes 

following acute activity.  

This study was the first to attempt to associate acute cartilage deformation with 

specific measures of lower extremity loading during a walking and drop-landing task. 

Greater drop-landing peak vGRF and vGRF loading rate are significantly associated 

with greater lateral compartment area deformation, while lesser walking EXT moment 

associated with greater medial compartment thickness deformation. However, the more 

important finding is that there were no other significant associations between the 

multiple lower extremity loading variables and cartilage structure alterations following 

walking or drop-landing. Our lower extremity loading variables focused on the early 

loading phase of walking and drop-landing, but future investigations should also 

evaluate lower extremity loading variables occurring in later phases of the gait cycle or 
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knee kinematics (i.e. joint movement), as both of these variables affect cartilage 

loading.154,167 Thus, the majority of our discrete measures of lower extremity loading 

during a single gait cycle did not associate with the cumulative cartilage deformation 

throughout the activity conditions, but future studies are needed to determine other 

biomechanical parameters that are most associated with acute cartilage deformation. 

While this is the first study to determine the acute cartilage recovery following 

walking and drop-landing, as well as determining the association between acute 

cartilage response and lower extremity loading, there are limitations that should be 

considered. Due to restraints of the US imaging technique, we are only able to provide 

an assessment of a small area of the anterior femoral cartilage, and are unable to 

differentially describe how walking and drop-landing affects the central and posterior 

regions of femoral cartilage. While this limits the scope of cartilage we are able to 

image, this does allow us to provide a more precise indication of how loading affects 

anterior femoral cartilage compared to the traditional volumetric cartilage assessments 

utilizing MRI. An unblinded reader conducted US image analysis, and future studies 

should consider utilizing blinded readers unaware of the loading condition. Our lower 

extremity biomechanics outcomes focused solely on discrete peaks in lower extremity 

loading during the early phases of loading. Knee moments have demonstrated to 

predict joint contact force;157 however, joint moments do not provide direct quantification 

of compression force that occurs at the joint surface. Future studies should consider 

lower extremity loading variables throughout the entire gait cycle, joint kinematics, or 

measures of joint contact forces that may affect in vivo cartilage mechanics. 
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In conclusion, US provides a reliable and precise modality for detecting the in 

vivo cartilage deformation and recovery response following walking and drop-landing. 

Following walking, medial and lateral cartilage deformation remains significant until at 

least 15 minutes post loading, while drop-landing induced cartilage area deformation 

persists for 45 and 15 minutes in the medial and lateral compartments, respectively. 

The femoral cartilage deformation was not accompanied with concurrent alterations in 

cartilage echo-intensity. Additionally, the majority of our lower extremity loading 

biomechanics were not significantly associated with the acute alterations in cartilage US 

measures.  
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vGRF = vertical ground reaction force, VAL = valgus, VAR = varus, EXT = extension 
BW = body weight, HT = height, s = seconds, SD = standard deviation 
 

 

Table 1. Demographics 

Mean SD 

n 43 (22 male, 21 female) 

Age (years) 21.44 3.10 

Height (meters) 1.72 0.09 

Mass (kilograms) 68.82 11.39 

Tegner 5.91 1.23 

Walking Biomechanics Descriptive Data 

Walking Speed (meters/sec) 1.24 0.18 

Walking Distance (kilometers) 3.45 0.37 

Peak vGRF (xBW) 1.13 0.08 

vGRF Loading Rate (xBW/s) 20.76 3.68 

Peak VAL Moment (xBW*Ht) 0.030 0.009 

VAL Moment Loading Rate (xBW*Ht/s) 1.165 0.613 

Peak VAR Moment (xBW*Ht) 0.0043 0.0032 

VAR Moment Loading Rate (xBW*Ht/s) 0.505 0.153 

Peak EXT Moment (xBW*Ht) -0.033 0.015 

EXT Moment Loading Rate (xBW*Ht/s) -1.791 0.654 

Drop-Landing Biomechanics Descriptive Data 

Peak vGRF (xBW) 2.92 0.78 

vGRF Loading Rate (xBW/s) 194.03 67.51 

Peak VAL Moment (xBW*Ht) 0.141 0.148 

VAL Moment Loading Rate (xBW*Ht/s) 12.695 10.959 

Peak VAR Moment (xBW*Ht) 0.021 0.017 

VAR Moment Loading Rate (xBW*Ht/s) 9.980 7.328 

Peak EXT Moment (xBW*Ht) -0.230 0.061 

EXT Moment Loading Rate (xBW*Ht/s) -16.15 3.37 
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mm = millimeters, ICC = intraclass correlation coefficient, SEM = standard error of the 
measurement, MDC = minimal detectable change 
 

Table 2. Reliability, Precision, and Minimal Detectable Change    

 
Intra-session Inter-session 

 
ICC SEM MDC ICC SEM MDC 

Medial Area (mm2) 0.993 0.68 1.58 0.978 1.16 2.69 
Medial Echo-intensity 0.934 1.41 3.29 0.949 1.29 3.01 

Lateral Area (mm2) 0.985 0.91 2.24 0.978 1.09 2.54 

Lateral Echo-intensity 0.943 1.00 2.11 0.828 1.91 4.44 
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mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd mean sd

Walking 2.22 0.39 -7.11*^ 3.00 2.07 0.38 -4.21*^ 2.89 2.13 0.39 -2.09^ 3.28 2.18 0.39 -0.07^ 3.65 2.22 0.39

Drop-landing 2.21 0.40 -10.05* 3.80 1.99 0.36 -7.57* 4.03 2.04 0.36 -4.70* 4.89 2.11 0.39 -2.57 4.10 2.15 0.38

Control 2.23 0.40 -0.95 3.81 2.21 0.4 -2.24 3.98 2.18 0.39 -1.43 4.69 2.2 0.38 -1.71 4.29 2.19 0.38

Walking 2.28 0.46 -2.46* 6.64 2.22 0.48 -2.56 5.26 2.22 0.46 -1.26 6.07 2.25 0.47 -0.52 6.36 2.26 0.48

Drop-landing 2.25 0.47 -3.96* 6.54 2.16 0.43 -2.59 6.02 2.19 0.45 -1.29 6.72 2.22 0.48 -0.12 7.20 2.24 0.45

Control 2.24 0.47 1.06 4.97 2.26 0.48 -0.36 4.81 2.23 0.46 -0.54 4.57 2.23 0.47 -0.08 5.15 2.24 0.49

Walking 2.13 0.34 -5.18* 3.74 2.03 0.35 -3.26* 3.00 2.07 0.33 -1.13 2.76 2.11 0.31 -0.31 2.81 2.13 0.34

Drop-landing 2.09 0.31 -6.8* 3.84 1.94 0.29 -4.41* 4.14 1.99 0.29 -2.37* 4.28 2.04 0.31 -1.63 4.23 2.05 0.31

Control 2.10 0.34 1.13 4.24 2.13 0.36 -0.49 4.13 2.1 0.36 -0.27 3.83 2.1 0.38 -1.88 3.26 2.07 0.35

Walking 41.97 7.51 -7.09* 4.10 39.02 7.26 -3.37*^ 3.94 40.52 7.20 -0.69 4.74 41.61 7.22 0.61 6.06 42.18 7.48

Drop-landing 42.96 7.50 -9.30* 4.49 38.97 6.95 -6.30* 3.97 40.22 6.92 -3.21* 3.14 41.55 7.09 -2.00* 4.35 42.10 7.42

Control 41.54 8.11 -0.66 3.24 41.24 8.07 -0.25 3.56 41.36 7.80 -0.13 4.22 41.41 7.77 1.34 3.99 41.99 7.83

Walking 44.38 7.15 -6.03* 3.85 41.75 7.16 -3.42* 4.63 42.84 7.08 -1.51 4.31 43.64 6.87 -0.66 5.15 44.09 7.55

Drop-landing 44.71 7.29 -6.95* 4.92 41.55 6.83 -4.23* 4.31 42.79 7.10 -2.09* 4.59 43.70 6.98 -2.03 4.59 43.78 7.26

Control 43.71 7.42 -0.62 4.20 43.39 7.42 0.15 3.95 43.7 7.26 0.37 4.03 43.81 7.35 -0.44 3.73 43.44 7.11

Walking 64.23 5.66 -1.86 3.76 62.94 4.97 -0.32 3.50 63.95 5.16 1.10 4.04 64.85 5.34 0.88 4.88 64.66 5.06

Drop-landing 63.96 5.99 -1.78 3.98 62.81 6.19 -0.10 4.21 63.86 6.14 0.43 4.47 64.18 6.10 0.70 4.88 64.36 6.21

Control 64.24 5.45 -0.79 4.15 63.69 5.56 -0.11 4.90 64.13 5.83 -0.17 5.05 64.11 6.02 -0.35 4.88 64.00 6.06

Walking 58.59 4.67 -0.66 4.47 58.11 4.13 -0.11 4.32 58.47 4.58 0.23 3.21 58.67 4.37 0.60 4.14 58.87 4.39

Drop-landing 59.13 5.09 -2.02 3.30 57.87 4.58 -0.05 4.20 59.01 4.52 0.35 4.57 59.25 4.65 0.18 4.90 59.14 4.69

Control 58.65 4.11 -0.88 3.24 58.12 4.23 0.25 4.73 58.76 4.44 -0.13 4.39 58.55 4.45 -0.51 5.63 58.33 4.98

*different than control (p≤0.004), ^different than drop-landing (p≤0.004), n = sample size, mm = millimeter, sd = standard deviation, %Δ = percent change

Table 3. Ultrasonography Outcome Measure Percent Change Scores Following Loading Conditions

Baseline Post0 Post15 Post30 %Δ Post45 %Δ

Absolute %Δ Absolute %Δ Absolute %Δ Absolute %Δ Absolute

Thickness (mm)

Medial (n=40)

Intercondylar 
(n=39)

Lateral (n=37)

Outcome Compartment Condition

Area (mm2 )

Medial (n=40)

Lateral (n=38)

Echo-intensity

Medial (n=37)

Lateral (n=37)

 

1
0

9
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vGRF vGRF LR KEM KEM LR VAL VAL LR VAR VAR LR vGRF vGRF LR KEM KEM LR VAL VAL LR VAR VAR LR

r/ρ -0.11 -0.24 0.09 -0.37* 0.19 0.15 -------- -------- 0.32 0.06 -0.01 0.15 -0.18 -0.11 -------- --------

p 0.473 0.136 0.588 0.022 0.244 0.386 -------- -------- 0.057 0.736 0.963 0.394 0.286 0.526 -------- --------

n 42 41 40 39 39 38 -------- -------- 37 38 38 34 37 38 -------- --------

r/ρ 0.07 0.12 -0.18 0.02 0.24 -0.21 -------- -------- -0.12 -0.08 0.25 -0.32 -0.19 -0.08 -------- --------

p 0.676 .462 0.274 0.914 0.142 0.209 -------- -------- 0.473 0.615 0.129 0.066 0.264 0.640 -------- --------

n 42 41 40 39 39 38 -------- -------- 38 38 38 34 37 38 -------- --------

r/ρ -0.02 -0.51* 0.04 -0.20 -0.21 0.14 -------- -------- -0.22 -0.12 -0.10 -0.10 0.08 0.14 -------- --------

p 0.920 0.001 0.819 0.227 0.217 0.401 -------- -------- 0.173 0.451 0.553 0.571 0.657 0.383 -------- --------

n 41 40 39 38 38 37 -------- -------- 39 39 39 35 38 39 -------- --------

r/ρ -0.15 -0.15 -0.03 -0.19 -------- -------- 0.09 -0.16 -0.07 -0.15 0.19 0.07 -------- -------- 0.01 -0.31

p 0.350 0.360 0.838 0.261 -------- -------- 0.583 0.327 0.690 0.361 0.242 0.696 -------- -------- 0.971 0.055

n 42 41 40 39 -------- -------- 40 40 39 39 39 35 -------- -------- 40 39

r/ρ 0.07 0.26 -0.09 0.25 -------- -------- 0.01 -0.16 -0.34* -0.42* 0.11 -0.20 -------- -------- 0.17 -0.03

p 0.674 0.097 0.565 0.132 -------- -------- 0.930 0.339 0.036 0.008 0.508 0.264 -------- -------- 0.309 0.855

n 42 41 40 39 -------- -------- 40 40 38 38 38 34 -------- -------- 40 39

r/ρ -0.09 -0.25 0.02 -0.18 -------- -------- -0.08 -0.15 -0.27 0.07 -0.27 -0.07 -------- -------- 0.34* 0.21

p 0.593 0.122 0.881 0.266 -------- -------- 0.634 0.368 0.107 0.686 0.106 0.686 -------- -------- 0.040 0.203

n 42 41 40 39 -------- -------- 40 40 37 37 37 33 -------- -------- 38 37

r/ρ -0.20 -0.10 0.17 -0.17 0.04 0.16 -0.17 0.02 0.12 0.09 0.09 -0.04 -0.06 0.05 0.01 -0.11

p 0.221 0.557 0.288 0.301 0.803 0.332 0.305 0.917 0.463 0.574 0.608 0.835 0.745 0.748 0.939 0.512

n 41 40 39 38 38 37 39 39 39 39 39 35 38 39 40 39

Table 4. Association between Ultrasonographic Cartilage Outcome Measure Response and Lower Extremity Loading during Physical Activity Conditions
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Figure 20. Study design. A femoral cartilage ultrasonographic assessment was performed at each time point.  
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Figure 21. Femoral Cartilage Ultrasonography Setup and Participant Positioning. 
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Figure 22. Femoral Cartilage Ultrasonography Outcome Measures. A) Cartilage Thickness; B) 
Cartilage Compartmental Area 
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Figure 23. Walking and Drop-Landing Biomechanical Assessment Setup. 
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CHAPTER 6 - MANUSCRIPT 2  

Acute Response of Cartilage Oligomeric Matrix Protein Concentration and its 

Association With Lower Extremity Loading during Walking and Drop-Landing 

OVERVIEW 

Context: An in depth understanding of the healthy physiologic cartilage response to 

activities of daily living and dynamic tasks is needed to better understand the complex 

relationship between cartilage health and loading that occurs during different movement 

tasks. Assessing serum cartilage oligomeric matrix protein (COMP) allows for the 

quantification of dynamic physiological processes related to cartilage metabolism. 

However, little is known regarding how biomechanical variables during different physical 

activities influence the acute COMP response following activity. Objective: To compare 

the acute serum COMP response between walking, drop-landing, and control conditions 

in healthy individuals. Secondarily, we sought to determine the association between the 

COMP response and lower extremity loading biomechanics during the walking and 

drop-landing conditions. Design: Repeated measures crossover study. Setting: 

Research laboratory. Patients or Other Populations: 40 healthy individuals without 

previous lower extremity injury. Interventions: A blood draw was performed in healthy 

individuals before and after a walking, drop-landing, and control condition to determine 

the acute serum COMP response following each condition. Additionally, we assessed 

walking and drop-landing biomechanics at the beginning of each of respective condition 

to evaluate relationships between lower extremity loading measures and the acute 
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COMP response. We utilized a repeated measures design in which each participant 

completed all conditions during independent data collection sessions separated by at 

least one week. Main Outcome Measures: Cartilage metabolism was quantified with 

the percent change of serum COMP from pre to post test in each condition. Peak 

magnitude and loading rate of the vertical ground reaction force, and internal knee 

extension, valgus, and varus moments were assessed during walking and drop-landing. 

Acute COMP response was compared between conditions with a one-way, repeated 

measures ANOVA. Associations between acute COMP response and lower extremity 

loading variables were assessed with Pearson product moment correlations or 

Spearman rank order correlations. Results: Healthy individuals presented with an 

increased COMP response to walking and drop-landing when compared to a control 

condition. Additionally, there was no difference in COMP response between the walking 

and drop-landing conditions. While greater internal knee valgus moment loading rate 

was associated with a lesser COMP response following walking, the remainder of our 

lower extremity loading biomechanics were not associated with COMP response for 

either loading condition. Conclusions: COMP increases following walking and drop-

landing in health individuals, but these changes are not associated with lower extremity 

loading measures. 

 

INTRODUCTION 

Knee osteoarthritis (OA) is the leading musculoskeletal cause of total years lived 

with disability.168 Knee OA is a disease that affects the entire joint, but declines in 

articular cartilage health are a hallmark sign of disease development.2 Alterations in 
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cartilage loading are hypothesized to result in the initial breakdown of cartilage that 

leads to the development of OA.6 A better understanding of the healthy physiologic 

cartilage response to activities of daily living (i.e. walking) and dynamic tasks (i.e. drop-

landing) is needed to understand the complex relationship between cartilage health and 

loading that occurs during different movement tasks. Assessing various biochemical 

markers in serum allows for the quantification of dynamic physiological processes 

related to cartilage metabolism.21 

Cartilage oligomeric matrix protein (COMP) is an essential structural and 

functional component of cartilage as it is involved in the organization of the cartilage 

extracellular matrix.89 Previous reports have established the prognostic capability of 

COMP,169 as elevated concentrations are observed in individuals with established OA169 

and following anterior cruciate ligament reconstruction (ACLR)170 compared to healthy 

individuals. Additionally, COMP is described as mechano-sensitive38 because it plays a 

role in the transduction of mechanical forces within the cartilage. Evidence of this 

mechano-sensitivity of COMP has been demonstrated as acute changes in COMP 

concentration in healthy individuals in response to common physical activity conditions 

(i.e. walking, running, drop-landing).123-125,160 However, there is a dearth of information 

regarding how specific biomechanical variables during different physical activities are 

differentially associated with the acute COMP response following activity. 

Knee cartilage is conditioned to the specific loading patterns that occur during 

gait.116 The vertical ground reaction force (vGRF) represents a measure of general 

lower extremity loading that is associated with resting concentrations of a collagen 

metabolism biomarker in individuals at risk for OA development (i.e. ACLR).138 
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Additionally, the internal knee valgus moment, which is theorized to provide an estimate 

of medial knee compartment loading, is related to resting levels of enzymes responsible 

for cartilage breakdown in individuals following ACLR.139 These studies,138,139 however, 

do not provide evidence of how lower extremity biomechanics may be associated with 

acute biomarker responses. A preliminary study160 in healthy individuals determined that 

an acute COMP response to walking at various speeds was associated with a 

combination of gait variables that included moments and angles at the hip, knee, and 

ankle. Due to the viscoelastic properties of cartilage,29 cartilage is vulnerable to varying 

rates of loading as well as the overall peak magnitude of loading. Earlier animal 

studies,32,112 as well as a recent gait study,118 indicate that greater cartilage degradation 

is related to greater loading rates applied to the cartilage. Therefore, determining how 

the magnitude and rate of lower extremity loading from multiple planes of motion are 

associated with an acute biochemical cartilage response will be important in 

understanding the impact of activity on cartilage metabolism. 

Therefore, the primary purpose of this study was to compare the acute serum 

COMP response between a walking, drop-landing, and control condition in healthy 

individuals. Secondarily, we sought to determine the association between the COMP 

response and lower extremity loading measures during the walking and drop-landing 

conditions. We hypothesized that we would see a greater acute COMP response 

following the walking and drop-landing conditions compared to the control condition, as 

well as a greater COMP response in the drop-landing compared to walking. Additionally, 

we hypothesized that biomechanics indicative of greater lower extremity loading would 

be associated with a greater COMP response following walking and drop-landing.  
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METHODS 

Design 

Ante-cubital blood draws were performed in healthy individuals before and after 

walking, drop-landing, and control conditions to determine the acute cartilage metabolic 

response (i.e. COMP change) to each condition (Figure 24). Additionally, we assessed 

walking and drop-landing biomechanics at the beginning of each respective condition to 

determine how lower extremity loading measures are related to the acute metabolic 

cartilage response. We utilized a repeated measures design in which each participant 

completed each condition during three independent data collection sessions separated 

by at least one week (11.7±9.0 days between sessions) at the same time of day 

(0.29±0.75 hours difference in time of day) to control for diurnal variation in serum 

COMP.134 The order of the conditions was counterbalanced. Participants were 

instructed to limit their physical activity on the days that data collection occurred.  

On the day of each data collection session, we began by collecting a urine 

sample to test urine specific gravity via refractometry to confirm that each participant 

was not dehydrated (i.e. urine specific gravity < 1.025) prior to testing.140 Following 

hydration testing, participants were seated on a padded plinth with their back against a 

wall in a long-sit position with their knees in full extension133 for one hour to unload the 

femoral articular cartilage and minimize the effect any preceding activity on the 

cartilage. Next, participants were positioned supine for the baseline blood sample 

collection. The participants were then immediately transferred across the laboratory with 

a wheel chair to begin setup for the biomechanical assessment during the walking/drop-
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landing condition or remained on the padded plinth for the control condition. Next, the 

participants completed the activity condition. The participants wore the same pair of 

their own personal athletic footwear for all three sessions. Immediately following 

cessation of the activity condition, the participants were transferred back to the padded 

plinth and posttest blood sample collection were obtained within five minutes following 

the end of the condition. 

 

Participants 

We recruited a convenient sample of healthy individuals between the ages of 18 

and 35 who self-reported participating in at least 30 minutes of physical activity at least 

three times per week. Additionally, we excluded individuals with a history of ligamentous 

or cartilage injury to the knee or hip, cartilage injury to the ankle, congenital or 

degenerative joint condition, orthopedic implant, lower extremity fracture, or upper 

extremity fracture. Additionally, those with current joint pain (quantified as greater than 2 

on a 10cm visual analog scale) were excluded from participation. This study was part of 

a larger investigation that was powered to see a change in ultrasonography assessed 

cartilage thickness in healthy individuals. We conducted an a priori power analysis using 

data from medial femoral compartment thickness changes following 30 minutes of 

walking (pre avg= 2.23mm, post avg=2.09mm, pooled SD=0.42mm, effect size: d=0.33) 

published in a previous study.132 We estimated that we would need 33 participants to 

determine statistical differences, with 80% power and an α level of 0.05, if the smallest 

effect we found in the current study across the three loading conditions and five total 

time points was similar to previously published research (d=0.33).133 As larger effects 
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are observed in COMP change following various physical activities,123,124 we decided to 

power the study on changes in cartilage thickness. Due to the time commitment of three 

separate three-hour data collection sessions, we over-sampled by 30% to ensure that 

we would achieve adequate statistical power in our final analyses if 30% of the initial 

sample were to drop-out of the study. 

 

Screening Session 

Prior to testing, participants were required to come to the laboratory for an initial 

session to determine their habitual walking speed and determine their corresponding 

comfortable step frequency, which was used to standardize the amount of time used for 

each of the activity conditions. Habitual over-ground walking speed was initially 

determined in our motion capture laboratory utilizing two sets of infrared timing gates 

(TF100, TracTronix, Lenexa, KS, USA). Participants were instructed to walk at a self-

selected speed described as “comfortably walking on the sidewalk” through the 6-meter 

capture area.137-139 After completing five familiarization trials, we recorded the time of 

the next five walking trials to determine their average habitual walking speed. Next, the 

speed on the treadmill (4Front, WOODWAY, Waukesha, WI, USA) was increased to the 

habitual walking speed of each participant and 60 seconds of walking was continued for 

the purpose of treadmill familiarization. After treadmill familiarization, study personnel 

manually counted the steps of each participant for one minute in order to determine the 

time each participant would need to reach 5000 steps (46.23±4.26 minutes).122 This 

calculated time for each participant was used for all three activity conditions. 
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Quantifying Cartilage Metabolism 

Blood Sample Collection 

For both the baseline and posttest time points, the participants were positioned 

supine on the padded plinth, and 5mL of blood were collected from the antecubital vein 

in a serum separator tube vacutainer. Blood samples were placed on ice until 

centrifuged at 4°C for 15minutes at 4000rpm. Serum was pipetted equally into two 

cryovials and stored in an -80°C freezer until batch analysis after all participants were 

collected.  

 

Analysis of Serum Cartilage Oligomeric Matrix Protein 

Serum was assessed for cartilage oligomeric matrix protein (COMP) using 

commercially available enzyme-linked immunosorbent assays (Human COMP PicoKine 

ELISA; Boster Biological Technology; Pleasanton, CA, USA). Blood samples were 

analyzed in triplicate. The COMP assay detection sensitivity was <10pg/mL, and the 

intra-assay variability was 2.35%. Samples for a single individual were analyzed on a 

single plate to in order to control for inter-assay variation within participants. For data 

analysis, a percent change score was created to determine the COMP response from 

baseline to posttest time point following each condition (Equation 1). 

 

Equation 1: COMP Response (%Δ) = (
�� !���	
�� !���

�� !���
)*100 
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Biomechanical Assessment of Lower Extremity Loading 

Participant Preparation for Biomechanical Assessment 

A modified retroreflective marker cluster/bony landmark setup was used for data 

collection. Marker clusters were secured bilaterally at the middle 1/3rd of the anterior 

lateral thigh, middle 1/3rd of the anterior lateral shank, middle of the dorsum of the foot, 

and over the sacrum. Additional bony landmark markers will be affixed with double 

sided tape at the L4/L5, manubrium, and bilaterally over the anterior superior iliac spine, 

greater trochanter, medial/lateral femoral epicondyle, medial/lateral malleoli, and 

acromion processes. Marker positions were collected using a 10-camera three-

dimensional motion capture system with a sampling frequency of 120Hz with Vicon 

Nexus v1.4.1 motion capture software (Vicon Motion Systems, Centennial, CO) and 

lowpass filtered at 10Hz.139 The cameras were interfaced with three total Bertec force 

plates (40cm x 60cm, FP406010, Bertec Corporation, Columbus, OH) collecting at 

1200Hz and lowpass filtered at 75Hz.139 Two of the force plates were positioned side by 

side and used to collect drop-landing data (Figure 25a), while two of the force plates 

were staggered to allow for bilateral limb collection during a single walking trial (Figure 

25b).139 

 

Walking Biomechanical Assessment  

The participants walked shod through the capture area at their habitual walking 

speed (Figure 25a). Five practice trials were performed to familiarize the participants 

with the walking task. Five test trials were recorded in which: 1) both limbs individually 

landed on a single force plate, 2) maintained forward eye contact and were not “aiming” 
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for the force plates, 3) and maintained a consistent gait speed (±5% of the habitual 

walking speed calculated in the screening session).137,138 Immediately following the 

collection of the last test trial, the participants were returned to the wheelchair and were 

transferred across the laboratory to begin the walking condition.  

 

Drop-Landing Biomechanical Assessment  

A 62cm platform was positioned behind the side-by-side force plates to allow for 

simultaneous collection of both limbs during a single drop-landing trial (Figure 25b). A 

separate step was positioned behind the 62cm platform and was utilized by the 

participants to ascend onto the platform. For each drop-landing trial, the participants 

ascended onto the platform and were instructed to drop down from the platform and 

perform a comfortable landing with each limb on a separate force plate. No specific 

instructions were provided to the participants on how to perform the double-legged 

landing. After each drop-landing, participants would walk around the box and ascend up 

the step in order to prepare for the next drop-landing trial. Drop-landings trials 5 through 

10 were recorded and analyzed for the biomechanical assessment.  

 

Analysis of Lower Extremity Loading 

Individual trials from the walking and drop-landing biomechanical assessments 

were labeled to identify all of the retro-reflective markers within the Vicon Nexus motion 

capture software (version 1.8.5, Vicon Motion Systems, Oxford, UK). Once labeled, the 

marker trajectory data, synchronized with the ground reaction force, was exported from 

Vicon Nexus and further processed using The Motion Monitor software (version 8.0, 
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Innovative Sports Training, Chicago, IL, USA). A custom LabVIEW program (National 

Instruments Corp., San Antonio, TX) was used to measure our biomechanics variables 

during the early loading phase of walking and drop-landing. For the walking trials, the 

loading phase was defined as the first 50% of stance phase; defined as the interval from 

heel strike (vGRF > 20N) to toe-off (vGRF < 20N). The loading phase of drop-landing 

was defined as the first 100ms following ground contact (vGRF > 20N). Peak vGRF was 

determined during the loading phase of the walking and drop-landing conditions. Peak 

internal knee extension (EXT) moment, peak internal knee valgus (VAL) moment, and 

internal knee varus (VAR) moment moments during the loading phase were calculated 

using inverse dynamics as previously performed in our laboratory.139 Greater EXT 

moments were depicted as negative values, while more positive VAL and VAR 

moments are indicative of greater moment.160 Instantaneous loading rate of the vGRF 

(vGRF-LR), EXT, VAL, and VAR moments were calculated as the peak of first 

derivative of the force-time and moment-time curves.139 Peak vGRF (xBW) and vGRF-

LR (xBW/s) were normalized to participants’ body weight.138 Peak moments (xBW*Ht) 

and moment loading rates (xBW*Ht/s) were normalized to the product of participants’ 

height and weight.139 

 

Walking, Drop-Landing, and Control Conditions 

Walking Condition 

The participants were positioned on the treadmill and the speed was increased to 

the habitual walking speed determined during the screening session. This speed was 
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maintained for the time calculated during the screening session to reach 5,000 steps 

(46.23±4.31 minutes). 

 

Drop-Landing Condition 

The drop-landing biomechanical assessment occurred concurrently with the 

drop-landings used for the drop-landing condition. For the drop-landing condition, the 

participants continued performing drop-landings until they completed 120 total drop-

landings. We selected the amount of drop-landings from the 62cm platform in order to 

match the high magnitude loading condition utilized in a previous study utilizing a similar 

drop-landing protocol.123 The 120 drop-landing trials were evenly distributed over the 

same period of time utilized in the other conditions (i.e. 46.23±4.31 minutes).  

 

Control Condition 

During the control condition, participants remained on the treatment table 

following the baseline blood sample collection in a long-sit position for the same period 

of time utilized in the other conditions (i.e. 46.23±4.31 minutes). 

 

Statistical Analysis 

Comparison of Cartilage Oligomeric Matrix Protein Response between Conditions 

A one-way repeated measures analysis of variance (RM-ANOVA) was used to 

determine if the baseline COMP concentration was similar between the walking, drop-

landing, and control conditions. A separate one-way RM-ANOVA was used to compare 

acute COMP response between each condition. Outliers were defined as > two 
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standard deviations away from the mean of COMP response in any of the conditions. 

After outlier removal, a Shapiro-Wilk test was used to confirm normal distribution for 

COMP response. If there were significant differences in COMP response, we utilized 

paired samples t-tests and a Bonferroni correction (p = 0.05/3 = 0.017) to determine 

specific differences in COMP response between conditions. 

 

Association between Cartilage Oligomeric Matrix Protein Response and Lower 

Extremity Loading during Walking and Drop-Landing Conditions 

Separate Pearson product moment correlations were used to determine the 

association between COMP response and each measure of lower extremity loading 

during the walking and drop-landing condition. For the correlational analysis between 

each COMP response and lower extremity loading variable, outliers > two standard 

deviations away from the mean for either measure were removed for that individual 

analysis. Following outlier removal, if the data were still found to be non-normal with the 

Shapiro-Wilk test, a Spearman Rank-Order correlation was used to determine the 

association between COMP response and each lower extremity loading measure. 

Associations were classified as negligible (0.0 – 0.30), low (0.31 – 0.50), moderate 

(0.51 – 0.70), high (0.71 – 0.90), and very high (0.90 – 1.00).148 Additionally, we 

included the 95% confidence intervals around each Pearson r and Spearman ρ to 

ensure that the intervals of each association did not cross zero.149 
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Post-Hoc: Comparison of Increased and Decreased COMP Responders following 

Walking and Drop-Landing  

During our initial analysis comparing COMP response between conditions, we 

identified a heterogeneous COMP response to both the walking and drop-landing 

conditions, as some participants demonstrated an increased (i.e. posttest increased 

above baseline) while other displayed a decreased (i.e. posttest decreased below 

baseline) COMP response. 

Our first post hoc test sought to determine if participants demonstrated a similar 

COMP response between the walking and drop-landing sessions. We created a binary 

COMP response outcome measure to indicate whether a participant’s post-activity 

COMP concentration increased or decreased compared to the baseline COMP 

concentration for walking and drop-landing. We used a chi square analysis to determine 

if the frequency of being an increased COMP responder in the walking condition was 

similar to the frequency of being an increased COMP responder in the drop-landing 

condition. This analysis was used to determine if being an increased COMP responder 

(i.e. post COMP > baseline COMP) in the walking condition is associated with being an 

increased COMP responder in the drop-landing condition.  

With our second post hoc test, we used a Pearson product moment correlation to 

determine whether the magnitude of COMP response following walking was associated 

with the magnitude of COMP response following drop-landing.  

Lastly, we utilized separate independent t-tests to determine if lower extremity 

loading measures were different between the increased and decreased COMP 

responders in both the walking and drop-landing conditions.  
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All statistical analyses were performed using SPSS (version 21.0; IBM 

Corporation) with an a priori α level of P < 0.05. 

 

RESULTS 

Participants 

Forty total participants were included in this study (Table 5); however, due to 

participant dropout between data collection sessions, not every participant completed 

each data collection session (walking n = 39, drop-landing n = 39, and control n = 40). 

The dropout in the walking condition was due to an unrelated injury between their 2nd 

and 3rd session, and the dropout in the drop-landing condition was due to the participant 

unwilling to complete the drop-landing protocol. Thirty-eight participants completed all 

conditions, and after outlier removal (outliers: walking n = 2; control n = 3), thirty-three 

participants were included in the ANOVA analysis. The correlational analyses included 

the maximum amount of participants for the walking and drop-landing condition and 

each lower extremity loading measure analyzed. 

 

Comparison of COMP Response between Walking, Drop-Landing, and Control 

Conditions 

Baseline COMP concentration was not different between the walking, drop-

landing, or control conditions (F2,64=1.71, p=0.189, Table 6.). There was a significant 

difference in COMP response between the conditions (F2,64=14.58, p<0.001). COMP 

response was greater in the walking (t32=-4.291, p<0.001) and drop-landing (t32=4.331, 
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p<0.001) conditions compared to the control condition. COMP response was not 

different between the walking and drop-landing conditions (t32=-0.535, p=0.596). 

 

Association between COMP Response and Lower Extremity Loading during the 

Walking and Drop-landing Conditions 

Greater walking valgus moment loading rate was associated with a lesser COMP 

response (r=-0.48, p=0.005, n=33; Table 6). However, no other walking lower extremity 

loading measure was significantly associated with the COMP response following 

walking (r/ρ range = -0.24 – 0.30). There were no significant associations between drop-

landing lower extremity loading measures and COMP response (r/ ρ range = -0.30 – 

0.26). 

 

Post-Hoc: Comparison of Increased and Decreased COMP Responders following 

Walking and Drop-Landing 

For this analysis, we only excluded individuals with outliers in the walking or 

drop-landing COMP response (walking, n=2); thus, 36 individuals were included in the 

following analyses. 12 and 10 participants presented with a decreased COMP 

response, while 24 and 26 participants presented with an increased COMP response 

following the walking and drop-landing conditions, respectively (Figure 26). 

Being an individual with increased COMP response in the walking condition does 

mean that you will be an individual with an increased COMP response in the drop-

landing condition (χ1 = 0.277, p = 0.599). However, the magnitude of COMP response 

following walking was moderately associated with the magnitude of COMP response 
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following drop-landing (r = 0.55, p = 0.001). There were no significant differences in our 

lower extremity loading measures between the increased COMP responders and 

decreased COMP responders. 

 

DISCUSSION 

Previous studies assessing the COMP response following various physical 

activities in healthy individuals have utilized small samples sizes (i.e. n≤10124,125,171 and 

n≤20121,123,160). This study represents the largest sample size utilized to determine the 

healthy COMP response following walking and drop-landing. We observed significantly 

increased COMP responses following both the walking and drop-landing condition when 

compared to the control condition. However, there was no difference in COMP response 

between the walking and drop-landing conditions. While the majority of our associations 

between COMP response and lower extremity loading biomechanics were not 

significant, we did observe that lesser valgus moment rate was associated with a 

greater COMP response. Furthermore, when separating our participants into groups 

based on an increased or decreased COMP response to walking and drop-landing, 

there were no differences between groups for any of our lower extremity loading 

variables for either condition. 

Due to the mechano-sensitivity of COMP,38 it is theorized that assessing the 

acute serum COMP response following various activities may effectively increase the 

sensitivity of COMP to be used as an indicator of acute cartilage turnover in response to 

mechanical cartilage loading.12 Our protocol of 5,000 steps at habitual walking speed 

resulted in an average +4.1% increase in COMP, which is of similar magnitude 
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observed in previous studies following walking in healthy individuals (COMP response = 

+5%160, +5.6%126). Earlier studies have observed a dose-dependent relationship 

between the magnitude of load during activity and the magnitude of COMP 

response,124,160 which is why we hypothesized that we would observe a larger 

magnitude COMP response following drop-landing compared to walking. However, the 

COMP response was similar between our walking (+4.1%) and drop-landing (+4.8%) 

conditions. Even though the magnitude and rate of loading for a single drop-landing was 

much greater than that of each step, the increased frequency in steps (i.e. 5,000) 

compared to drop-landings (i.e.120) may explain the lack of difference in the magnitude 

of COMP response. Previous studies investigating the COMP response following 

different physical activities observed similar findings with no difference in COMP 

response between running and drop-landing123 or between running and cycling.172 

Additionally, it is possible that our young and physically active patient population was 

able to withstand the greater magnitude loading of the drop-landing condition without 

experiencing an increased COMP response. Future studies should aim to investigate if 

individuals at risk for declining cartilage health (i.e. ACLR) would experience differences 

in COMP responses between a low and high magnitude loading condition. 

The majority of magnitude and rate of loading variables that we assessed during 

the early loading phase of walking and drop-landing were not significantly associated 

with an acute COMP response. Our only significant association indicates that lesser 

valgus moment rate (i.e. medial compartment loading rate) is associated with an 

increased COMP response in individuals following walking. Potentially, due to the 

viscoelastic nature of cartilage,29 acute changes in cartilage metabolism may be more 
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responsive to slower rates of loading. For our study, we included joint moments that 

were specific to loading mechanics at the knee. However, including lower extremity 

loading variables from multiple joints may provide a better understanding of the serum 

COMP response following physical activity. Additionally, we did not include any 

kinematic variables in our analysis because our focus was to determine how the 

magnitude of loading would alter the COMP response. Yet, previous work has indicated 

that knee kinematics affect the location in which loading occurs on the cartilage,167 

which may influence the specific COMP response. A recent investigation predicted 61% 

of the variance in the serum COMP response following an ambulation protocol using 

multiple kinetics and kinematics from several lower extremity joints.160 Since the serum 

COMP response provides a global measure of cartilage stress within the body, creating 

a more holistic view of the all of biomechanics occurring within the lower extremity may 

allow us to better determine how biomechanics are related to the acute cartilage 

response following different activities. 

Our initial analysis comparing the COMP response between the walking and 

drop-landing conditions provided evidence of a heterogeneous COMP response in 

which some individuals responded to walking and drop-landing with either an increased 

or decreased COMP response. We determined that individuals with an increased 

COMP response in the walking condition were not the same individuals experiencing an 

increased COMP response in the drop-landing condition. However, the overall 

magnitude of COMP response was associated between the walking and drop-landing 

conditions. These results indicate that even though the overall magnitude of COMP 

response is moderately associated between the walking and drop-landing conditions, 
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the direction of the COMP response is not necessarily the same in healthy individuals 

responding to two conditions with differing magnitude and frequency of loading. These 

findings of heterogeneous COMP responses following physical activity have been 

observed in other studies,124,126,173 but this is the first investigation that attempts to 

provide a biomechanical explanation for these heterogeneous COMP responses. 

However, there were no differences in our lower extremity loading biomechanics 

between the increased and decreased COMP responders in both the walking and drop-

landing condition. Future work is needed to best determine why individuals display 

heterogeneous COMP responses to walking and drop-landing, and why specific 

individuals respond differently to tasks of varying magnitude and frequency of loading. 

While this study provides information regarding the healthy COMP response to 

walking and drop-landing, and how this response is associated with lower extremity 

biomechanics, there are some limitations that should be addressed. We assessed the 

serum COMP response, which provides a global COMP response and we are not able 

to confirm that the alterations in COMP are specifically due to changes in cartilage 

metabolism of the knee joint tested. However, the majority of COMP is released from 

articular cartilage and we included healthy individuals without any joint pathologies that 

may increase the COMP response.174 Lack of association between our COMP response 

and knee specific kinetics may be due to our assessment of the global COMP response, 

as the COMP response is likely due to biomechanics occurring at all lower extremity 

joints. Knee moments have demonstrated to predict joint contact force;157 however, joint 

moments do not provide direct quantification of compression force that occurs at the 

joint surface. Future studies should determine how more specific measures of cartilage 
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contact forces are associated with the acute COMP response. Our biomarker 

investigation was limited to the COMP response because this is the most commonly 

assessed cartilage biomarker acutely following acute physical activity.123,124,126,160 

However, there are other biochemical markers related to cartilage metabolism, as well 

as metabolism of other joint tissues that may provide insight into other aspects of the 

acute knee joint response to physical activity.21 Even though we observed statistically 

significant increases in the COMP response following the walking and drop-landing 

conditions, the magnitude of COMP response following our drop-landing condition was 

lower than previously reported.123 The individuals included in our study were much 

younger than participants in previous studies,125,126 and potentially the conditions used 

in this study were of insufficient intensity to elicit a greater COMP response in our cohort 

of young, active individuals. Further research is needed to determine the effect of age 

on the COMP response to various conditions.  

In conclusion, healthy individuals present with an increased COMP response to 

walking and drop-landing when compared to a control condition. Additionally, there is no 

difference in COMP response between the walking and drop-landing conditions. While 

greater knee valgus moment loading rate was associated with a decreased COMP 

response following walking, the remainder of our lower extremity loading biomechanics 

were not associated with COMP response following walking and drop-landing. Lower 

extremity loading biomechanics were not different between groups that were separated 

based on an increased or decreased COMP response following walking and drop-

landing.  
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Table 5. Demographics 

Mean SD 

n 40 (20 male, 20 female) 

Age (years) 21.60 3.15 

Height (meters) 1.72 0.09 

Mass (kilograms) 68.32 11.39 

Tegner 5.87 1.24 

Walking Biomechanics Descriptive Data 

Walking Speed (meters/sec) 1.24 0.18 

Walking Distance (kilometers) 3.44 0.35 

Peak vGRF (xBW) 1.13 0.08 

vGRF Loading Rate (xBW/s) 20.50 3.34 

Peak VAL Moment (xBW*Ht) 0.029 0.007 

VAL Moment Loading Rate (xBW*Ht/s) 1.142 0.614 

Peak VAR Moment (xBW*Ht) 0.0039 0.0026 

VAR Moment Loading Rate (xBW*Ht/s) 0.490 0.126 

Peak EXT Moment (xBW*Ht) -0.033 0.016 

EXT Moment Loading Rate (xBW*Ht/s) -1.777 0.651 

Drop-Landing Biomechanics Descriptive Data 

Peak vGRF (xBW) 2.75 0.55 

vGRF Loading Rate (xBW/s) 178.22 41.55 

Peak VAL Moment (xBW*Ht) 0.115 0.107 

VAL Moment Loading Rate (xBW*Ht/s) 11.58 8.62 

Peak VAR Moment (xBW*Ht) 0.021 0.017 

VAR Moment Loading Rate (xBW*Ht/s) 9.52 6.78 

Peak EXT Moment (xBW*Ht) -0.230 0.63 

EXT Moment Loading Rate (xBW*Ht/s) -16.38 3.31 

   
vGRF = vertical ground reaction force, VAL = valgus, VAR = varus, EXT = extension 
BW = body weight, HT = height, s = seconds 
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Table 6. Baseline and COMP Response Following Activity Conditions 

Condition 
Baseline (ng/mL) 

Post 

%Δ Absolute (ng/mL) 

mean sd mean sd mean sd 

Walking 145.72 32.80 +4.10* 8.57 150.36 28.43 
Drop-landing 144.10 27.11 +4.78* 7.74 149.98 24.19 

Control 139.71 29.41 -2.92 5.51 135.2 27.1 

*significantly different than control (p<0.05), %Δ = percent change, sd = standard deviation,  

ng = nanograms, mL = milliliters 
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vGRF = vertical ground reaction force, EXT = extension, VAL = valgus, VAR = varus, sd = standard deviation, t = t-statistic, p = p-
value, COMP = cartilage oligomeric matrix protein 
 

Table 8. Differences in Lower Extremity Loading Between Increased and Decreased COMP Responders 

Outcome Measure Responder 
Walking Drop-Landing 

mean sd t p mean sd t p 

Peak vGRF 
Decreased 1.11 0.06 

-0.636 0.529 
2.92 0.89 

0.038 0.97 
Increased 1.13 0.09 2.91 0.73 

vGRF Loading Rate 
Decreased 20.36 3.33 

-0.343 0.734 
196.07 87.33 

0.099 0.922 
Increased 20.81 3.92 193.48 63.50 

Peak EXT Moment 
Decreased -0.029 0.013 

0.752 0.458 
-0.21 0.06 

1.339 0.19 
Increased -0.034 0.017 -0.25 0.08 

EXT Moment Loading Rate 
Decreased -2.29 0.93 

-1.748 0.09 
-17.80 5.81 

0.318 0.752 
Increased -1.77 0.77 -18.56 6.30 

Peak VAL Moment 
Decreased 0.029 0.008 

-0.384 0.704 
0.085 0.106 

-1.347 0.187 
Increased 0.030 0.008 0.163 0.163 

VAL Moment Loading Rate 
Decreased 1.44 0.46 

1.385 0.175 
8.69 8.12 

-1.247 0.221 
Increased 1.12 0.69 14.15 12.16 

Peak VAR Moment 
Decreased 0.0044 0.0027 

0.22 0.827 
0.020 0.018 

-0.236 0.815 
Increased 0.0042 0.0032 0.021 0.018 

VAR Moment Loading Rate 
Decreased 0.53 0.14 

0.642 0.526 
7.43 6.00 

-1.208 0.236 
Increased 0.50 0.15 10.92 7.87 
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Figure 24. Study design. Blood sample collection pre and post each activity condition. 
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Figure 25. Walking and Drop-Landing Biomechanical Assessment Setup. 
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Figure 26. Associations between Walking COMP Response and Drop-Landing COMP Response. This figure combines a scatter plot 

of the association between the magnitude of the walking COMP response and the drop-landing COMP response with a 2x2 

contingency table indicating the amount of increased and decreased COMP responders for the walking and drop-landing conditions. 

 

COMP = cartilage oligomeric matrix protein, r = Pearson association, p = p-value, n = sample size 
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CHAPTER 7 - MANUSCRIPT 3 

Associations between Femoral Cartilage Deformation and Serum Cartilage 

Oligomeric Matrix Protein Response Following Walking and Drop-Landing in 

Healthy Individuals 

 

OVERVIEW 

Context: A systems-based approach to assess cartilage health uses an acute bout of 

physical activity to create acute changes in cartilage structure and metabolism. Utilizing 

this systems-based approach is said to elevate the sensitivity of both the cartilage 

structure and metabolic outcome measures as a better prognostic indicator of cartilage 

health, but little is known how measures of cartilage structure and metabolism are 

associated. Objective: To determine the association between baseline US measures of 

cartilage health and baseline serum COMP in healthy individuals. The second purpose 

of this study was to determine the association between the change in US measures of 

cartilage structure and the serum COMP response following walking and drop-landing. 

Design: Repeated measures crossover study. Setting: Research laboratory. Patients 

or Other Populations: 40 healthy individuals with no previous history of lower extremity

 injury. Interventions: A femoral cartilage US assessment and an ante-cubital blood 

draw were performed in healthy individuals before and after walking and drop-landing 

conditions to determine the acute structural and metabolic cartilage response to each 
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condition. We utilized a repeated measures design in which each participant completed 

both conditions during independent data collection sessions separated by at least one 

week. Main Outcome Measures: Femoral articular cartilage was assessed with US to 

determine the thickness, area, and echo-intensity. Cartilage metabolism was quantified 

with serum COMP. Percent change scores from pre to post activity were calculated for 

each outcome measure. Associations between baseline and acute changes in cartilage 

metabolism and structure measures were assessed with Pearson product moment 

correlations. Results: Within the entire cohort, baseline US measures of femoral 

cartilage were not associated with baseline COMP concentration. Specifically in 

females, greater baseline cartilage thickness were associated with lower baseline 

COMP, but in males, lesser baseline cartilage thickness were associated with lower 

baseline COMP. In the entire cohort, greater medial femoral compartment deformation 

was associated with lesser COMP response following walking. Yet there were no other 

significant associations between US measures and COMP response in walking or drop-

landing. Conclusions: While the majority of cartilage structure and metabolism markers 

were not associated within the entire cohort, sex may influence the association between 

these measures. 

 

INTRODUCTION 

Knee osteoarthritis (OA) leads to significant impairments in mobility and 

decreased quality of life,175 and is the sixth leading cause of years living with disability 

worldwide.3 A decline in cartilage health is a hallmark sign of OA; therefore, being able 

to effectively monitor subtle alterations in cartilage health is needed to successfully 
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detect early OA development.46 The lack of preventative strategies is in part due to the 

maintenance of cartilage health being influenced by complex processes that affect the 

three primary components:12 joint mechanics or loading, metabolism, and structure. 

Previous, well-designed research has evaluated alterations of each of these 

components in isolation.6-8 However, utilizing a novel multi-faceted approach that seeks 

to understand the interaction between this broad range of individual cartilage 

components may provide new insight to in vivo cartilage function.11 A systems-based 

approach11,12 has been established to determine the interaction between components of 

cartilage health by assessing cartilage structure and metabolism prior to and following 

an acute bout of physical activity (i.e. joint loading). Utilizing this systems-based 

approach is said to elevate the sensitivity of both the cartilage structure159 and 

metabolic31 outcome measures as a better prognostic indicator of cartilage health, but 

little is known about the association between cartilage structure and metabolism.. 

Assessing resting cartilage volume and thickness utilizing magnetic resonance 

imaging176 (MRI) or ultrasonography17 (US) provides a reliable estimate of cartilage 

structure. A decrease in cartilage thickness is a hallmark sign of OA, but this may not 

occur until later stages of disease development.20 Earlier stages of OA development are 

characterized by alterations in the cartilage composition,20 without overt declines in 

cartilage thickness that alter the cartilage’s ability to distribute loads and minimize joint 

stress during physical activity.177 Previous investigators have quantified acute cartilage 

deformation following walking133,155 and drop-landing123 as a surrogate measure of 

cartilage composition, because cartilage deformation is theorized to be governed by 

composition of the tissue.153 Thus, assessing cartilage deformation to determine the 
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functional response of cartilage following activity has been speculated as a more 

sensitive measure of cartilage health when compared to traditional cartilage structure 

measures.120 

The cartilage thickness and cartilage composition alterations associated with the 

development of OA are often considered a result of a chronic slow-progressing 

continuum that begins with subtle alterations in cartilage metabolism.21 Cartilage 

oligomeric matrix protein (COMP) is an essential structural and functional component of 

cartilage that is often assessed in resting serum samples as an indicator of cartilage 

metabolism.89 Greater resting concentrations of serum COMP are interpreted as 

indicative of greater cartilage degradation in individuals with OA,178 as well as in 

individuals at risk for OA development.179 However, assessing the change in COMP 

concentration following activities of daily living (i.e. walking125,160) and more dynamic 

activities (i.e. running121,123,124 and drop-landing123) have been attributed to normal 

cartilage turnover that occurs as a response to mechanical cartilage loading during 

activity rather than cartilage degradation. Previous reports have theorized that activities 

with greater magnitude of loading will result in a greater cartilage deformation, which will 

lead to greater acute COMP responses.121,124,125 While this dose-dependent relationship 

in COMP response is primarily thought to be due to the overall magnitude of load on the 

cartilage, there is evidence that the frequency of loading may alter the relationship 

between COMP response and magnitude of cartilage deformation.123 Therefore, 

determining the differential COMP response to walking and drop-landing may help to 

uncover the role of magnitude and frequency of loading on the metabolic cartilage 

response to loading. 
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Determining this association between cartilage structure and metabolism will be 

important to determine if the deformation that occurs during the mechanical loading 

associated with activity is related to the metabolic cartilage response. Uncovering this 

relationship between cartilage structure and metabolism will be important for 

understanding an abnormal association between cartilage structure and metabolism in 

individuals at risk for the development of OA. Therefore, the first purpose of this study 

was to determine the association between baseline US measures of cartilage health 

(i.e. thickness, area, and echo-intensity) and baseline serum COMP. The second 

purpose of this study was to determine the association between the change in US 

measures of cartilage health and the serum COMP response following walking and 

drop-landing in healthy individuals. We hypothesized that there would be a significant 

association between baseline US measures of cartilage health and baseline COMP 

concentrations, and that a greater change in US measures of cartilage health would be 

associated with a greater serum COMP response following walking and drop-landing.  

 

METHODS 

Design 

In this study, a femoral cartilage US assessment and an ante-cubital blood draw 

were performed in healthy individuals before and after a walking and drop-landing 

condition to determine the acute structural and metabolic cartilage response to the each 

condition (Figure 27). We utilized a repeated measures design in which each participant 

completed both conditions during independent data collection sessions separated by at 

least one week (11.7±9.0 days between sessions) at the same time of day (0.28±0.74 
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hours difference in time of day) to control for diurnal variation in serum COMP134 and 

femoral cartilage thickness.135,136 The order of the walking and drop-landing conditions 

was counterbalanced. Participants were instructed to limit their physical activity on the 

days that data collection occurred.  

On the day of each data collection session, we began by collecting a urine 

sample to test urine specific gravity via refractometry to confirm that each participant 

was not dehydrated (i.e. urine specific gravity < 1.025) prior to testing.140 Following 

hydration testing, participants were seated on a padded plinth with their back against a 

wall in a long-sit position with their knees in full extension133 for one hour to unload the 

femoral articular cartilage, permit fluid rebound, and minimize effect of the preceding 

activity on the cartilage. Next, the US cartilage assessment occurred immediately prior 

to the blood sample collection at both time points in each session. The participants were 

then immediately transferred across the laboratory with a wheel chair to begin the 

activity condition. The participants wore the same pair of their own personal athletic 

footwear for both sessions. Immediately following cessation of the condition, the 

participants were transferred back to the padded plinth with a wheel chair to begin the 

posttest US assessment followed by the posttest blood sample collection. Due to the 

proximity of the walking and drop-landing conditions and the accessibility of US, 

posttest US images and blood sample collection were obtained within five minutes 

following each condition.133  
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Participants 

We recruited a convenient sample of healthy individuals between the ages of 18 

and 35 who self-reported participating in at least 30 minutes of physical activity at least 

three times per week. Additionally, we excluded individuals with a history of ligamentous 

or cartilage injury to the knee or hip, cartilage injury to the ankle, congenital or 

degenerative joint condition, orthopedic implant, lower extremity fracture, or upper 

extremity fracture. Additionally, those with current joint pain (quantified as greater than 2 

on a 10cm visual analog scale) were excluded from participation. This study was part of 

a larger investigation that was powered to see a change in ultrasonography assessed 

cartilage thickness in healthy individuals. We conducted an a priori power analysis using 

data from medial femoral compartment thickness changes following 30 minutes of 

walking (pre avg= 2.23mm, post avg=2.09mm, pooled SD=0.42mm, effect size: d=0.33) 

published in a previous study.132 We estimated that we would need 33 participants to 

determine statistical differences, with 80% power and an α level of 0.05, if the smallest 

effect we found in the current study across the three loading conditions and five total 

time points was similar to previously published research (d=0.33).133 As larger effects 

are observed in COMP change following various activities,123,124 we decided to power 

the study on changes in cartilage thickness. Due to the time commitment of three 

separate three-hour data collection sessions, we over-sampled by 30% to ensure that 

we would achieve adequate statistical power in our final analyses if 30% of the initial 

sample were to drop-out of the study. 
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Screening Session 

Prior to testing, participants were required to come to the laboratory for an initial 

session to determine their habitual walking speed and their corresponding comfortable 

step frequency, which was used to standardize the amount of time used for the walking 

and drop-landing conditions. Habitual over-ground walking speed was initially 

determined in our motion capture laboratory utilizing two sets of infrared timing gates 

(TF100, TracTronix, Lenexa, KS, USA). Participants were instructed to walk at a self-

selected speed described as “comfortably walking on the sidewalk” through the 6-meter 

capture area.137-139 After completing five familiarization trials, we recorded the time of 

the next five walking trials to determine their average habitual walking speed. Next, the 

speed on the treadmill (4Front, WOODWAY, Waukesha, WI, USA) was increased to the 

habitual walking speed of each participant and 60 seconds of walking was continued for 

the purpose of treadmill familiarization. After treadmill familiarization, study personnel 

manually counted the steps of each participant for one minute in order to determine the 

time each participant would need to reach 5000 steps (46.23±4.26 minutes).122 The 

calculated time for each participant was used for both the walking and drop-landing 

conditions. 

 

Ultrasonographic Assessment of the Femoral Articular Cartilage 

Ultrasonographic Image Acquisition 

US images were obtained in the dominant limb, which was defined as the self-

reported limb that the participant preferred to use for kicking a ball.132 Participants were 

positioned with their back against a wall and the knee of the dominant limb was 
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positioned at 140° of flexion using a manual goniometer (Figure 28).133 A tape measure 

was secured to the treatment table and used to record the distance between the wall 

and the posterior calcaneus in order to standardize positioning for each participant 

during the posttest and throughout both data collection sessions. A single investigator 

performed all femoral cartilage US imaging using a LOGIQe US system (General 

Electric Co., Fairfield, CT, USA) with a 12MHz linear probe. The probe was placed 

transversely in line with the medial and lateral femoral condyles above the superior 

edge of the patella (Figure 28) and rotated to maximize the reflection of the articular 

cartilage surface, as previously reported.17,141,142 A transparency grid was placed over 

the US screen to aid in reproducibility of the US image.133 Once the intercondylar notch 

was centered on the grid, the locations of the lateral and medial femoral condyles at the 

edges of the screen were recorded. This probe positioning was replicated during 

subsequent US assessments to ensure similar probe placement between assessments. 

Three images were recorded, with the US probe being removed and repositioned on the 

knee between each recorded image, at baseline and immediately after the walking and 

drop-landing condition.  

 

Ultrasonographic Imaging Processing 

A single unblended investigator manually segmented the US images using 

ImageJ software (National Institutes of Health, Bethesda, MD, USA). All three of the 

femoral cartilage US images from each time point were processed and averaged for the 

following outcome measures:  
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Cartilage Thickness 

Femoral cartilage thickness was assessed at the midpoints of the medial femoral 

condyle, lateral femoral condyle, and intercondylar notch as the straight-line distance in 

millimeters (mm) between the cartilage-bone interface to the synovial space-cartilage 

interface (Figure 29a).17,133,141,142 Strong intra-session reliability for the cartilage 

thickness assessment has previously been established within our laboratory (ICC2,k = 

0.966).133 

 

Cartilage Area and Echo-intensity 

The femoral cartilage was then segmented by individually outlining the cartilage 

of the medial and lateral femoral condyles to obtain the size (i.e. cartilage area [mm2]) 

and the gray-scale value (i.e. cartilage echo-intensity) of the cartilage (Figure 29b). The 

medial and lateral areas were separated based on the location of the intercondylar 

thickness measure. Echo-intensity evaluates the average gray scale brightness of each 

pixel segmented on a scale from 0 (i.e. black; more water content) to 255 (i.e. white; 

lesser water content). US echo-intensity (i.e. grey-scale brightness) has primarily been 

used as a measure of “muscle quality”,28,143 with the echo-intensity representing the 

relative water content of muscle. Since cartilage is approximately 60-80% fluid and 

acute cartilage deformation is in part due to fluid exudation,29,144 we may be able to use 

US echo-intensity to monitor acute changes in cartilage water content that occur with 

loading during activity. 
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Additionally, a percent change score from baseline to posttest was calculated to 

determine the acute cartilage response for each US measure following both conditions 

(Equation 1). A greater negative percent change of thickness and area indicates greater 

cartilage deformation. A greater negative percent change in echo-intensity is theorized 

to indicate an increase in cartilage water content. 

 

Equation 1: Percent change (%Δ) = (
�������	
�������

�������
)*100 

 

Quantifying Cartilage Metabolism 

Blood Sample Collection 

For both the baseline and posttest time points, the participants were positioned 

supine on the padded plinth, and five milliliters of blood were collected from the 

antecubital vein in a serum separator tube vacutainer. Blood samples were placed on 

ice until centrifuged at 4°C for 15minutes at 4000rpm. Serum was pipetted equally into 

two cryovials and stored at -80°C until a batch analysis that occurred after all 

participants were collected.  

 

Analysis of Serum Cartilage Oligomeric Matrix Protein 

Serum was assessed for cartilage oligomeric matrix protein (COMP) using 

commercially available enzyme-linked immunosorbent assays (Human COMP PicoKine 

ELISA; Boster Biological Technology; Pleasanton, CA, USA). Blood samples were 

analyzed in triplicate. The COMP assay detection sensitivity was <10pg/mL, and the 

intra-assay variability was 2.35%. Serum samples for each participant were analyzed on 
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a single plate to control for differences caused by inter-assay variation. For data 

analysis, we utilized resting concentration as well as calculating a percent change score 

to determine the COMP response from baseline to posttest for each condition (Equation 

1). 

 

Walking and Drop-Landing Activity Conditions 

Walking Condition 

The current study was part of a larger project that evaluated walking 

biomechanics. Therefore, following the baseline blood draw, participants were setup for 

the biomechanical assessment and performed 5 walking trials over a standard 6m 

walkway and were then transferred with a wheelchair across the laboratory to minimize 

any further non-standardized joint loading prior to beginning the treadmill walking 

condition. Participants were then positioned on the treadmill and increased their speed 

to their predetermined habitual walking speed from the screening session, and 

maintained this pace for the time calculated during the screening session to reach 5,000 

steps (46.23±4.26 minutes). 

 

Drop-Landing Condition 

For the drop-landing condition, the participants ascended a set of two steps to 

position themselves on a 62cm platform. Participants were instructed to drop down from 

the platform and perform a comfortable double-legged landing (Figure 30). After each 

landing they would walk around the platform and back up the step in order to prepare 

for the next drop-landing trial. No specific instructions were provided to the participants 
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on how to perform the double-legged landing. Participants performed 120 drop-landing 

trials that were evenly distributed over the same period of time utilized in the walking 

condition (46.23±4.26 minutes). 

 

Statistical Analysis 

Association between Ultrasonographic Measures of Femoral Cartilage and Cartilage 

Oligomeric Matrix Protein 

Separate Pearson product moment correlations were used to determine the 

association between baseline US measures and baseline COMP concentration, as well 

as determining the association between the percent change in each US measure and 

the COMP response following the walking and drop-landing conditions. For each 

correlational analysis between COMP response and each US measure, outliers > two 

standard deviations away from the mean for either measure were removed for that 

individual analysis. Following outlier removal, if the data were still found to be non-

normal with the Shapiro-Wilk test, a Spearman Rank-Order correlation was used to 

determine the association between COMP and each US outcome measure. 

Associations were classified as negligible (0.0 – 0.30), low (0.31 – 0.50), moderate 

(0.51 – 0.70), high (0.71 – 0.90), and very high (0.90 – 1.00).148 Additionally, we 

included the 95% confidence intervals around each Pearson r and Spearman ρ to 

ensure that statistically significant associations did not cross zero.149 
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Post-hoc Test: Sex-Specific Associations between Ultrasonographic Measures of 

Femoral Cartilage and Cartilage Oligomeric Matrix Protein 

As previous reports have indicated sex differences in cartilage volume150 and 

resting concentrations of serum COMP,151 we performed separate post hoc 

associations individually for males and females to determine the association between 

cartilage structure and metabolism for each sex individually. All statistical analyses were 

performed using SPSS (version 21.0; IBM Corporation) with an a priori α level of P < 

0.05. 

 

RESULTS 

Participants 

Forty total participants were included in this study (Table 9); however, due to 

participant dropout between data collection sessions, not every participant completed 

each data collection session (walking n=39; drop-landing=39). The drop-out in the 

walking condition was due to an unrelated injury between the 2nd and 3rd session, and 

the drop-out in the drop-landing condition was due to the participant unwilling to 

complete the drop-landing protocol. The correlational analyses included the maximum 

amount of participants for the COMP response and US measure being analyzed.  

 

Association between Ultrasonographic Measures of Femoral Cartilage and Cartilage 

Oligomeric Matrix Protein 

Descriptive statistics for the baseline, posttest, and percent change of COMP and 

each US measure following walking and drop-landing can be found in Table 10.  
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Within the entire cohort, there were no significant associations between baseline COMP 

and any US measure (r range= -0.23 – 0.22; Table 11).   

For the walking condition, greater medial femoral compartment area deformation 

was associated with a decreased COMP response (r=0.36, p=0.036; Table 12). 

However, no other US measure percent change was significantly associated with the 

acute COMP response following walking (Table 12). For the drop-landing condition, all 

associations between each US measure percent change and the acute COMP 

response were negligible and non-significant (r/ρ range = -0.15 – 0.22).  

 

Post-hoc Test: Sex-Specific Associations between Ultrasonographic Measures of 

Femoral Cartilage and Cartilage Oligomeric Matrix Protein 

In males, greater baseline COMP concentration was associated with lesser 

medial cartilage echo-intensity (i.e. more water content; r = -0.52, p = 0.023; Table 11). 

In females, greater baseline COMP was associated with lesser lateral cartilage area (r = 

-0.57, p = 0.014). While not all associations are statistically significant, the directions for 

all associations between cartilage structure measures and COMP for the males were 

positive (r range = 0.05 – 0.39), while all these same associations for females were 

negative (r range = -0.39 - -0.57). Additionally, the directions for all associations 

between cartilage echo-intensity measures and COMP for the males were negative (r 

range = -0.21 - -0.52), while all these same associations for the females were positive (r 

range = 0.29 – 0.36). 
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In males, increased COMP response was significantly associated with lesser 

medial cartilage area deformation (r = 0.48, p = 0.036; Table 12). In females, increased 

COMP response in females was significantly associated with lesser medial cartilage 

thickness deformation (r = 0.46, p = 0.46). However, no other significant associations 

were observed for females and no significant associations were reported in males. 

 

DISCUSSION 

This is the first study to examine associations between baseline cartilage US 

outcomes and baseline cartilage metabolism in healthy individuals, as well as 

determining the individual associations between the percent change in US measures 

and COMP response following walking and drop-landing. Within the entire cohort, we 

did not observe any significant associations between baseline COMP concentration and 

any of our US measures. However, when separating our cohort by sex, we observed 

that the directions of the associations between baseline COMP and each US measure 

were different for males compared to females. For the entire cohort, greater medial 

femoral cartilage deformation during walking was associated with a decreased COMP 

response; however, no other US measure was associated with COMP response in 

either walking or drop-landing. Separating the cohort by sex did not change the majority 

of the associations between the percent change in US measure and COMP response. 

While the overall analyses did not generally support associations between US 

measures and cartilage metabolism, the post hoc analyses potentially indicate that sex 

may influence the association between cartilage structure and metabolism. 
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While this is the first time that resting cartilage structure and COMP 

concentrations have been assessed in a healthy population. A previous cross-sectional 

investigation in individuals with OA observed that greater resting COMP concentration 

was associated with lesser medial cartilage volume.180 These authors suggested that 

greater resting COMP concentrations are indicative of greater cartilage degradation, 

and that the association with lesser cartilage volume is due to long term alterations in 

cartilage metabolism leading to decreased cartilage structure.180 When separating our 

cohort by sex, we observed a similar cross-sectional association in our female 

participants, as greater resting COMP concentrations were associated with lesser 

lateral cartilage area (r=-0.57, p=0.014). Additionally, while not all of the associations 

were statistically significant, it is interesting to note that the direction of association 

between every US structure measure and COMP concentration was positive for males 

and negative for females, while the direction of association between the US echo-

intensity measures and COMP concentration were negative for males and positive for 

females. We cannot definitively state why these differences in association directions 

occur between males and females, but previous investigations have reported that on 

average, females present with smaller cartilage volume, even after controlling for age, 

height, weight and bone volume.150 Females also have lower resting COMP 

concentrations compared to males.151 The direct result of these differences in cartilage 

structure and metabolism between males and females remains unclear. Continued 

research is needed to elucidate why cartilage imaging measures are differentially 

associated with cartilage metabolism between males and females. Future work 
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assessing cartilage imaging and cartilage metabolism should separately analyze males 

and females, as analyses combining the sexes may confound the results.  

Porcine cartilage explant studies have observed that the magnitude of COMP 

response is proportionate to the dynamic magnitude of load applied to the cartilage.181 

Previous in vivo studies have also speculated that greater acute cartilage deformation 

would lead to a greater increase in COMP concentration following various 

activities.121,124,125 However, in our entire cohort, we observed that greater deformation 

during walking was associated with a decrease in COMP concentration. A previous 

study observed that following a drop-landing condition greater cartilage deformation was 

associated with a a decrease in COMP concentration following a drop-landing condition, 

but within the same study, there was not a significant association between cartilage 

deformation and COMP response following running.123 This finding is similar to that of 

the current study, as we found a significant association between change in cartilage 

structure and metabolism following walking, but a non-significant association in drop-

landing condition. Both of these studies observed a discrepancy between the 

association between cartilage deformation and cartilage metabolism after tasks of 

differing frequency and magnitude of loading (i.e. walking/running = high frequency/low 

magnitude, drop-landing = low frequency/high magnitude).123 Thus, the association 

between cartilage deformation and COMP response may be dependent on the 

frequency of loading that occurs during a specific activity. Further work is needed to 

clarify the specific mechanisms that are driving this difference in direction of association 

in cartilage deformation and cartilage metabolism between activities of different 

frequencies. 
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While this study provides information regarding the association between cartilage 

imaging outcomes and cartilage metabolism, there are some limitations that will inform 

future research. The cartilage imaging outcomes assessed with US in this study are 

limited to the anterior femoral cartilage, but serum concentrations of COMP provide a 

global measure of cartilage metabolism. Thus, the lack of association between the 

majority of the US measures and COMP response may be due to the COMP response 

indicating a whole-body cumulative measure of acute cartilage turnover that is not 

representative of our specific alterations in US measures. An unblinded reader 

conducted US image analysis, and future studies should consider utilizing blinded 

readers unaware of the loading condition. Within our study design, we always 

conducted our US analysis prior to the blood sample collection. There is a small 

likelihood that this discrepancy in timing between the measures could affect their 

associations. However, as we were able to collect all post measurements within five 

minutes, we believe that our US and COMP measures are indicating the same time 

course following loading. 

In conclusion, baseline US measures of femoral cartilage were not associated 

with cartilage metabolism within the entire cohort. However, separating the group by sex 

indicated that US cartilage measures and cartilage metabolism are differentially 

associated between males and females. Greater medial femoral compartment 

deformation was significantly associated with decreased COMP response following 

walking. Yet there were no other significant associations between US measures and 

COMP response in walking or drop-landing.  



 162

Table 9. Demographics 
  Mean SD 

n 40 (20 male, 20 female) 
Age (years) 21.60 3.15 

Height (meters) 1.72 0.09 
Mass (kilograms) 68.32 11.39 

Tegner 5.87 1.24 
      

Walking Descriptive Data 
Walking Speed (meters/sec) 1.24 0.18 

Walking Distance (kilometers) 3.44 0.35 
 

n = samples size, SD = standard deviation 

 



 163

 

 

 

 

 

 

 

 

 

 

 

 

COMP = cartilage oligomeric matrix protein, US = ultrasonography, %Δ = percent change, sd = standard deviation 

 

Table 10. Baseline, Post, and Percent Change of COMP and US Measures 

Outcome Compartment Condition 

Baseline Post 

Absolute %Δ Absolute 
mean sd mean sd mean sd 

Thickness 
(mm) 

Medial 
Walking 2.20 0.4 -7.33 3.2 2.05 0.4 

Drop-landing 2.22 0.4 -9.94 3.8 2.00 0.4 

Intercondylar  
Walking 2.25 0.5 -2.01 6.7 2.21 0.5 

Drop-landing 2.22 0.5 -3.16 7.5 2.14 0.4 

Lateral 
Walking 2.14 0.3 -5.67 3.7 2.02 0.4 

Drop-landing 2.09 0.3 -7.21 4.2 1.94 0.3 

Area (mm2) 
Medial 

Walking 41.56 7.4 -6.97 4.1 38.69 7.2 
Drop-landing 42.55 7.0 -8.95 4.4 38.74 6.5 

Lateral 
Walking 43.97 7.4 -5.31 4.5 41.64 7.3 

Drop-landing 44.18 7.5 -5.98 5.9 41.46 7.1 

Echo-intensity 
Medial 

Walking 64.77 6.1 -1.22 4.7 63.85 5.4 
Drop-landing 64.67 5.9 -1.70 4.4 63.55 6.1 

Lateral 
Walking 58.67 4.6 -0.40 4.3 58.34 4.0 

Drop-landing 59.58 5.3 -2.12 4.8 58.22 4.8 

Cartilage Oligomeric Matrix 
Protein 

Walking 146.9 38.8 4.06 9.9 150.6 31.2 
Drop-landing 147.3 31.1 4.41 7.5 152.7 27.9 

1
6

3
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Table 11. Associations between Baseline COMP and Baseline US Measures 

      Medial   Lateral Intercondylar 
Thickness       Thickness Area Echo-Intensity   Thickness Area Echo-Intensity 

Baseline 
COMP 

C
o
m

b
in

e
d
 r 0.09 0.22 -0.23   0.08 0.13 -0.17 0.04 

95% CI -0.24, 0.40 -0.11, 0.51 -0.52, 0.10  -0.25, 0.39 -0.20, 0.44 -0.47, 0.16 -0.29, 0.36 

p 0.596 0.182 0.176   0.650 0.458 0.312 0.819 

n 37 37 37   37 37 37 37 

M
a
le

s 

r 0.26 0.27 -0.52*   0.05 0.39 -0.21 0.06 

95% CI -0.22, 0.64 -0.21, 0.65 -0.79, -0.09  -0.41, 0.49 -0.08, 0.72 -0.61, 0.27 -0.41, 0.50 

p 0.274 0.262 0.023   0.829 0.099 0.385 0.816 

n 19 19 19   19 19 19 19 

F
e
m

a
le

s r -0.44 -0.42 0.36   -0.43 -0.57* 0.29 -0.39 

95% CI -0.75, 0.03 -0.74, 0.06 -0.13, 0.71  -0.75, 0.05 -0.82, -0.14 -0.20, 0.67 -0.72, 0.09 

p 0.065 0.083 0.138   0.079 0.014 0.239 0.112 

n 18 18 18   18 18 18 18 

* = statistically significant (p<0.05), p = p-value, n = sample size, COMP = cartilage oligomeric matrix protein 

1
6

4
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Table 12. Associations between COMP Percent Change and US Measure Percent Change 

     Walking   Drop-Landing 

      Medial   Lateral 

Intercondylar 
Thickness 

  Medial   Lateral 

Intercondylar 
Thickness       Thickness Area 

Echo-
Intensity   Thickness Area 

Echo-
Intensity   Thickness Area 

Echo-
Intensity   Thickness Area 

Echo-
Intensity 

COMP 
Change 

O
ve

ra
ll 

r/ρ 0.04 0.36* -0.15   0.24 0.07 -0.04 -0.21   0.22 -0.05 0.03   -0.05 -0.15 -0.02 0.03 

95% CI 
-0.29, 
0.36 

0.03, 
0.62 

-0.46, 
0.19  

-0.10, 
0.53 

-0.26, 
0.39 

-0.37, 
0.30 

-0.51,  
0.13  

-0.11, 
0.50 

-0.36, 
0.27 

-0.29, 
0.34  

-0.36, 
0.27 

-0.45, 
0.18 

-0.34, 
0.31 

-0.29, 
 0.34 

p 0.831 0.036 0.405   0.162 0.695 0.830 0.238   0.176 0.786 0.836   0.749 0.389 0.918 0.858 

n 36 35 35   36 36 35 35   38 38 39   39 37 37 39 

M
a
le

s 

r/ρ 0.31 0.48* -0.02   -0.04 0.06 -0.19 -0.160   -0.19 0.02 0.17   -0.06 0.03 0.30 0.16 

95% CI 
-0.17, 

0.67 

0.02, 

0.77 

-0.48, 

0.45  

-0.49, 

0.42 

-0.41, 

0.50 

-0.60, 

0.30 

-0.57,  
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Figure 27. Study Design. A femoral cartilage ultrasonography assessment and blood sample collection was performed 

before and after each activity condition 

 

Rest Pre Post
Activity 

Condition

B
io

m
e

ch
a

n
ic

s

~45
Minutes

60
Minutes

 

1
6

6
 



 167

Figure 28. Femoral Cartilage Ultrasonography Setup and Participant Positioning. 
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Figure 29. Femoral Cartilage Ultrasonography Outcome Measures. A) Cartilage 

Thickness; B) Cartilage Compartmental Area 
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Figure 30. Drop-Landing Condition Setup. 
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