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Abstract
CASSANDRA B. JABARA: Using Deep Sequencing with a Primer ID to Resolve the
Structure of Viral Populations and Reveal Pre-existing Drug Resistance Mutations in
the HIV and HCV Protease Genes

(Under the direction of Ronald Swanstrom, Stanley M. Lemon, and Corbin D. Jones)
Human Immunodeficiency Virus (HIV) and Hepatitis C Virus (HCV) are among the
most deadly chronic viral diseases affecting the human population. The rich genetic diversity
produced within a host includes adaptive resistance alleles that may enable viral escape from
drug selective pressures. An in-depth characterization of the intrahost population and the
genetic path it takes to escape drug selection may reveal how to prevent the evolution of
resistance. Resolving the fine-scale genetic structure of a viral population requires deep
sampling of the genetic variation within a viral population. I developed a novel technique,
Primer ID, which reproducibly (Chapter 4) captures viral diversity while correcting for PCR
biases and error inherent in deep sequencing protocols (Chapter 2). Deep sequencing with a
Primer ID was applied to the targeted re-sequencing of protease for two different viral
genomes, HIV (Chapter 2-3) and HCV (Chapter 4). The allelic distribution of genetic
variation of HIV and HCV was skewed towards low-frequency polymorphisms, some of
which were resistance-associated variants (Chapters 2-4). 1 observed that pre-existing
resistance mutations could be directly selected during a drug treatment (Chapter 2). However,

the path to resistance was often complex and confounded by variance in the steady-state

frequency of resistance alleles, sampling depth, and the effective population size (Chapter 3).
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Once a population of HIV escaped a drug, it was observed that resistance-associated variants
were added de novo in a step-wise manner, not brought together by recombination of pre-
existing haplotypes. HCV-HIV co-infection decreased overall population diversity (Chapter
4). This difference did not correlate with a change in the overall frequency of pre-existing
resistance mutations, but specific resistance alleles were enriched in either mono- or co-
infected populations. Further application of deep sequencing with a Primer ID will result in a
greater understanding of the population dynamics of both HIV and HCV and determine if the
standing genetic variation can be used to predict if a patient will fail therapy and how a viral
population responds to selective pressures. Together, improvements in predictive power will

result in an enhancement of therapeutic success rate and sustained virologic response.
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This work is dedicated to those who push technological boundaries to study the

abysmal and enthralling intricacies of RNA viral populations evolving inside hosts
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Chapter 1

Introduction

1.1 The Evolvability of RNA viruses

RNA viruses are the dominant causative agent of emerging infectious diseases
worldwide, yet only a small number of viral families can be effectively controlled through
vaccination or antiviral drugs. Of all chronic viral diseases affecting the human population,
Human Immunodeficiency Virus (HIV) and Hepatitis virus are the most deadly (1). HIV
currently is infecting approximately 35 million people worldwide and is associated with 2
million deaths each year. Hepatitis C Virus (HCV) is infecting approximately 200 million
people, and annually there are 366,000 deaths due to cirrhosis of the liver and hepatocellular
carcinoma. Despite 30 years of active research and drug development, HIV remains
incurable. Similarly, around 70 percent of HCV-infected individuals have persistent
replication (2-4), and most potent drugs against this virus are still in clinical trials (1, 5). The
substantial worldwide morbidity and mortality caused by these two viruses necessitates a
better understanding of how to effectively counteract and control their spread within the
human population. The most direct means of decreasing the interhost transmission rate is to
suppress or eradicate intrahost viral populations.

The human host inherently contains strong barriers to pathogen infection, replication,
and transmission. Despite highly evolved innate and adaptive immunities, the majority of

human hosts cannot naturally clear HIV or HCV infections and often transmit these viruses



to new hosts. As a result, direct acting antivirals (DAA) are needed as a pharmacologic
intervention for suppressing the viral burden and decreasing transmission risk, and DAAs are
increasing in abundance, availability, and sophistication. However, there are significant
pitfalls to current day drug therapies against HIV and HCV. The newly FDA licensed DAAs
against HCV have low genetic barriers that a virus population can rapidly evolve to
overcome, which results in viral rebound. Highly Active Antiretroviral Therapy (HAART)
against HIV is a multifaceted selection regiment with a combination of drugs, most of which

contain high genetic barriers. However, cessation of HAART always results in viral rebound.

1.1.1 Protease inhibitors are a major drug class used to treat HIV and HCV infections.
There are six antiretroviral drug classes, 24 drugs in total, licensed to treat HIV. Each
class targets a different component of the viral life cycle, from inhibiting attachment of the
virion to the host cell through preventing virion maturation post-budding. The recommended
treatment for HIV infection involves dual nucleoside reverse transcriptase inhibitors (nRTI)
in combination with a third class, commonly a protease inhibitor (6). The standard of care for
HCV infection is immunomodulation and mutagenicity using a combination of pegylated
interferon-a and ribavirin (PEG-INF/RBV). However, as of late April and mid May of 2011,
two DAAs were FDA approved to treat HCV infection. Both were protease inhibitors.
Protease inhibitors are an important drug class for counteracting both HIV and HCV
infections. These drugs are designed to specifically inhibit the viral protease, an enzyme
critical for the production of infectious virions. For HIV, its aspartic protease is released
through autocatalysis of the Gag-Pro-Pol precursor polyprotein. Protease homodimers then

cleave viral polyprotein peptide bonds through hydrolysis, with the orchestrating water

2



molecule anchored in the active site by two opposing aspartic acid residues. For an HIV
virion to mature, proteolytic processing of three polyprotein precursors, Gag, Gag-Pro-Pol,
and Env, is required. Without protease function, the immature HIV virion is unable to initiate
a new infectious cycle.

Similarly, the HCV protease NS3 is critical for HCV infection. NS3 is a serine
protease that heterodimerizes with the viral cofactor NS4A. The NH, terminal cleaves four
sites downstream of the NS2-3 junction in the HCV polyprotein, NS3-4A, NS4A-4B, NS4B-
5A, and NS5A-5B (7). For proteolytic function, a catalytic triad is required in conjunction
with a tetrahedrially coordinated metal ion (8). In addition to viral polyprotein cleavage,
HCV’s protease also processes host signaling molecules activated by dsRNA, blocking
signaling through the TRL3 and RIG-I pathways (reviewed in (5)).

Both HIV and HCV proteases are extremely attractive drug targets for suppression of
viral populations due to their critical roles in the viral life cycles. Furthermore, because of
their enzymatic activity, they also contain structurally conserved active sites. The protease
active site is in essence a pocket in which polyprotein cleavage occurs, therefore small
molecule inhibitors designed to bind within the pocket will block viral polyproteins and other
target molecules from being cleaved. However, amino acid and/or structural changes within
the active site can decrease or prevent inhibitor binding. If drug inhibition is not complete
then a certain degree of proteolytic processing will occur. Viral production under drug
selection is the primary obstacle to therapeutic success, and results in the clinical presentation

of drug resistance.



1.1.2 The permissive replication of RNA viruses and a high mutation rate result in the
rapid generation of genetic variation.

Genetic variation is the raw material upon which selection acts. The ability of these
viral populations to escape strong selection pressures—such as small molecule inhibitors—is
due to a rich landscape of genetic heterogeneity. This variation is primarily introduced
through polymerase nucleotide misincorporation during genomic template copying. It is the
exceptionally high rate at which nucleotide misincorporation occurs that results in the quick
diversification of an RNA virus population. HIV’s error-prone Reverse Transcriptase (RT)
introduces mutations at an estimated rate of 2.16x10™ substitutions/site/generation during
transcription of viral RNA (VRNA) to double-stranded DNA (dsDNA) (9, 10). HCV’s RNA-
dependent RNA polymerase (RdRp), NS5B, emulates the retroviral substitution rate, adding
1x10™ to 1x107 substitutions/site/generation (11). However, HCV does not have a double-
stranded intermediate genome, thus RdRp is exclusively used to go from positive-sense to
negative-sense to positive-sense RNA, adding errors with each template copy.

Recombination creates additional diversity by enabling allelic shuffling within the
population. It has been posited that recombination in HIV occurs in up to 40% of progeny
virions (12, 13). HIV is pseudodiploid; each HIV virion contains two single-stranded RNA
(ssRNA) genomes non-covalently linked at the 5° dimerization initiation sequence, but only
one provirus is synthesized per viral particle. RT is associated with ribonuclease H (RNase
H), an enzyme that degrades RNA from RNA-DNA heteroduplexes. During minus strand
synthesis, RNase H frees up the growing chain, so if polymerase encounters a nick, break, or
pause due to secondary structure in the RNA template, it can jump to the other molecule in

the dimer, forming a recombinant. This model, originally called forced copy choice (12) but
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then broadened to copy choice (14), is the predominant theory for recombination in HIV (15,
16).

Unlike HIV, HCV cannot readily form recombinants in vivo, though there are some
rare documented cases of intersubtype and intergenotypic recombination (17-19). HCV’s
replicase is membrane bound, which constrains RNA templates within lipid rafts and creates
a barrier to template switching (20). Moreover, early competitive exclusion may prevent
distinct variants arising to appreciable frequencies. If recombination occurs, chimers retain
substantial homology to the parental templates and would be difficult to detect. Finally,
recombination between subtypes can be readily induced in vitro, but recombinants have poor
fitness. Sequence divergence incompatibilities would further limit the rise of recombinant
genomes within a population (21). Thus if recombination occurs in HCV, it is rare, although

poor sensitivity may result in underestimates of recombination (22).

1.1.3 Viruses can rapidly evolve resistance to protease inhibitors and other direct acting
antivirals.

Nucleotide misincorporation by viral polymerase has an approximate random
distribution across the viral genome, though it may be biased towards non-helical secondary
structure (23-27) and other mutational biases (28, 29). The viral polymerase’s
misincorporation rate (u) is the frequency at which new mutations are introduced into a
population. If a misincorporation event results in a nonsynonymous change, and the new

amino acid does not reduce viral fitness to zero, the allele’ may be preserved in the viral

1 . . . .
An allele is defined as a genomic change from the consensus sequence of the intrahost untreated population.
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population under a therapy naive environment. New mutations will be added at a rate u, but
the frequency at which any given allele (¢) will exist is the equilibrium achieved between the
rate of introduction of that allele and the intensity at which selection (s) removes it, or g = w/s
(30).

Because of the mutation/selection balance, a viral population will contain a number of
low-frequency de novo mutations. Some minor variants will be unviable, however, while
others may confer resistance. If a new allele reduces or prevents protease inhibitor binding,
thus allowing for the genotype to replicate in the face of strong selection, it has the potential
to be sweep under that selection, becoming a major haplotype and allowing for drug escape.

The growth and adaptation of a viral population in the presence of drug selection is
observed as viral rebound with drug resistance, and it can occur rapidly due to a short viral
life cycle. The time needed for an HIV virion to attach, replicate, and produce progeny that
infect new cells is estimated at 2 days, with a maximum of approximately 10'’ virions
produced per day within a person (31). In contrast, HCV’s replication cycle has a half life of
2.7 hours (32), and approximately 10" virions are produced daily (32-34). The high
production rate of new mutations introduced into the small, ~10kb viral genomes results in
rapid diversification of viral populations within a host. For both viruses, it has been
theoretically estimated that at any given time within a large population, every single mutation
can exist (35-37).

If a drug was prescribed to an individual infected with HIV or HCV, and their
intrahost population had variants containing resistance to the applied drug, viral escape and

rebound may rapidly occur. Genotypic testing for drug resistance mutations is recommended



before starting drug therapy (6), and this technology will reveal variants =20% in frequency
(38, 39).

The clinical significance of pre-existing resistance alleles has not been clearly
elucidated, and likely will be unique per drug and treatment regiment. Previous studies using
allele-specific PCR have implicated that pre-existing variants may preclude increased
susceptibility for therapy failure (40, 41). Deep sequencing studies have produced correlative
(42), partial (43) or non-correlative (44) results on the impact of pre-existing resistance
alleles, but none have examined the haplotypes on which they reside. Understanding if pre-
existing resistance alleles can be selected under a drug can further inform therapeutic choices
and circumvent suboptimal selection. Aside from cost and morbidity associated with therapy
failure, the outgrowth of drug resistance also complicates subsequent therapeutic
intervention, as drugs within a class commonly contain overlapping drug resistance
mutations, thus further narrowing downstream drug choices for viral suppression (6).

When a patient fails therapy, a population of susceptible viruses bottlenecks under
drug selective pressures, but then grows out with resistance. Virologic rebound requires
genomic change that confers a phenotype allowing escape of drug selection and selection for
that phenotype under a drug. In order to better understand how a viral population evolves

resistance, several questions need to be addressed:

Do new resistant variants arise during selection or do they grow out from the standing
genetic variation? An extraordinarily high mutation rate adds variants de novo, rapidly

diversifying the standing genetic variation. When a population rebounds with resistance, is



this due to de novo resistance mutations arising during the selective pressure (not a result of

it), or the sweeping of pre-existing resistant variants in the standing genetic variation?

Is the evolutionary path to resistance consistent? Escaping a selective event may only require
a small number of discrete mutations. /n vivo studies have demonstrated this process to be a
sequential, step-wise addition of resistance and compensatory alleles (45-47), indicating that
the path to resistance may be conserved across populations. Alternative in vivo studies,
however, indicate that the patterns are more complex (48), therefore individual populations
may take unique paths to resistance.

Antagonistic epistasis has been shown to occur between beneficial alleles (49). If two
adaptive alleles arise on different haplotypes, clonal interference predicts that their
progression to fixation will be slower than if there was only one beneficial allele sweeping to
fixation (50). Interference has been demonstrated in RNA populations such as vesicular
stomatitis virus (VSV) (51), but has not been clearly demonstrated in vivo. The Red Queen
Hypothesis, or the perpetual arms race amongst competing viral subpopulations, is perhaps
better supported for RNA viruses in the face of drug selection due to a “leap-frog” effect of
adaptive (or maladaptive) alleles (52, 53) versus smooth climbs to fitness peaks. Although
many of these studies are from in vitro and in silico observations, they point to unique paths

to adaptation.

Do deterministic or stochastic processes dictate the fate of new mutations? Whether selection
or drift determines which alleles survive a population bottleneck is directly related to the

effective population size (N.). For HIV, arguments for both large populations governed by
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deterministic processes (54) and small populations driven by stochastic models (55-57) have
been made. If stochastic forces govern a population it will take a unique path to resistance, as
the fate of new mutations will be driven by drift (58). Similarly, pre-existing resistance
mutations will be non-informative, as they are likely lost. If deterministic forces shape
population response, pre-existing alleles likely are retained through a population bottleneck,

increasing their probability of selection and expansion.

Does recombination play a large role in shaping the evolution of haplotypes? If two alleles
are associated or disassociated non-randomly, their appearance on a haplotype may be
indicative of a non-additive change in fitness (w). Linkage disequilibrium (D) that is
maladaptive can be broken up by recombination (59), allowing escape from the effects of
Muller’s ratchet and error catastrophe. For non-recombining viruses, a single allele needs to
rise to fixation then gain a second beneficial allele from mutation for two beneficial alleles to
arise on a single haplotype. HIV has a documented high recombination rate, but whether
recombination or the de novo addition of new alleles during the path to resistance plays a

larger role has not been clearly demonstrated.

Does suboptimal compliance increases population diversity. A rough genotypic fitness
landscape has been experimentally demonstrated for the RNA virus ¢6 (60). Environmental
effects further complicate Fisher’s (phenotypic) landscape. Environmental heterogeneity
promotes population diversity by creating multiple fitness peaks. Disturbance, like selection,
can destroy or promote diversification. Ecological succession has demonstrated maintenance

of diversity through intermediate disturbances; organisms are not killed so frequently that
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only a few can survive at any given time yet the environment is not so stable that superior
competitors can quickly displace (61). Applying disturbance ecology to intrahost selection
would predict that inconsistent, intermediate drug selection would result in the emergence of
multiple resistance alleles. Drug concentration heterogeneity, thus increasing a range for the
path to resistance, has been demonstrated to increase the rate at which resistance is developed

(62).

How does a co-infecting pathogen affect viral diversity? The persistent infection of more
than one pathogen in a host is common, but the complexity of within-strain and within-host
interactions make it difficult to predict how strains influence each other and shape disease
outcome (63, 64). It is known that HCV-HIV co-infection increases patient morbidity and
mortality (65) by causing a three fold acceleration in fibrosis, cirrhosis, and liver disease
(66). The biologic effects and clinical observations of mono- versus co-infection suggest
differences in intrahost viral diversity, but previous studies have failed to demonstrate a

difference (67, 68), or consensus (69-72).

1.2 Sequencing Approaches for Minor Alleles
The structure of an intrahost viral population and the path it takes to resistance has
large theoretical and clinical implications. To date, these questions have only been explored

from techniques that have limited and/or biased sampling of the extant diversity.

1.2.1 Common methods for genotyping resistance may obscure the origins and nature of
resistance alleles.
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In the clinical setting, genotypic assays that resolve drug resistance mutations use
Sanger-based sequencing technology. A population of viral templates is sampled from an
individual, sequenced, and then reported as a single consensus sequence. The consensus
sequence captures the most common alleles, and high frequency allelic variants can be
detected and quantified de novo by assessing chromatogram peaks. However, variants below
20-25% in frequency are typically not resolved (38, 39), and accuracy is further compounded
by laboratory-introduced biases (73). Furthermore, the association, or linkage, between
different variable sites is lost.

There are alternative methods to resolving variants below the resolution of Sanger
sequencing. Allele-specific PCR, for example, uses primers specific to drug resistance
polymorphisms on individual sites within the viral genome. Due to the sensitivity of PCR,
this potentiates the resolution of variants present in less than 1% in of the population.
However, targets require a priori selection of sites and variants, and akin to Sanger
sequencing, linkage is lost (74-83).

Thus, the detection of allelic variants has been constrained by either a de novo
analysis of sequencing variation but at the cost of a low resolution, or by an a priori
resolution of individual minor variants but at the cost of losing linkage and novel
uncharacterized alleles. Furthermore, these assays are labor-intensive and do not lend
themselves to high-throughput techniques. Although resistance thresholds that are clinically
relevant have been poorly defined, there is evidence that low-abundance drug resistant
variants are selected under drug therapy, resulting in virologic failure. Clearly defining the
presence and frequency of drug resistance mutations prior to antiviral treatment that result in

failure could prevent suboptimal therapies and incomplete viral suppression.
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1.2.2 PCR artifacts and a high sequencing error rate bias deep sequencing resolution of
viral populations.

The high throughput, thus high-resolution capabilities of next generation sequencing
platforms has a great potential to be applied within a clinical setting in resolving minor drug
resistance mutations de novo, retain linkage across a template, and provide drug resistance
screening at a lower cost per sample than standard genotypic assays. However, the high error
rate inherent from the sequencing chemistry in combination with laboratory-introduced
biases has limited the clinical application and resolution of minor variants to levels below
that of population sequencing but above what allele-specific PCR can obtain. Therefore, the
utility of next generation platforms for sequencing of viral populations derived from clinical
samples is restricted.

High throughput platforms require a large amount of starting material, typically
500ng-1ug of DNA. Patient-derived samples contain a limited number of viral templates,
therefore PCR is an necessary first step prior to a sequencing protocol. Significant biases are
introduced into the viral population by PCR. Polymerase, during its many rounds of copying,
will misincorporate nucleotides. This inflates the genetic diversity of the population. When
incomplete templates prime a subsequent round of synthesis, chimeric genomes, or
recombinants, are produced (84, 85). PCR-mediated recombination not only disrupts linkage
between sites, but also creates artifactual linkage. Templates entering at different PCR cycles
will result in some genomes amplifying more than others, resulting in a skewing of allele

frequencies.
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Another major limitation of viral template PCR amplification prior to a deep
sequencing protocol is the re-sampling of amplified templates, or PCR re-sampling. PCR
reactions typically start with an unknown number of templates. When PCR efficiencies are
not 100%, the random dropout of sequences results in an underestimation of diversity.
Moreover, sampling of a large, amplified population does not equate with sampling of
individual genomes, therefore depth is a correlate of the amount of starting material, not

degree of re-sampling (86).

1.2.3 Consensus sequences constructed from amplified products derived from an
individual template resolve PCR and sequencing error.

Strategies that create a consensus sequence, such as Single Genome Amplification
(SGA), will call the correct base at each position (87-90). In the SGA strategy, PCR
amplification is preceded by endpoint dilution titration, such that a single template is present
per reaction. During amplification, PCR biases will introduce error, but the influence of
diversity from recombination events and differential template amplification will be masked
by overall sample homogeneity. Although misincorporation occurs, it is randomly distributed
across the template, therefore the majority of reads per site will be correct. With traditional
sequencing methods, minor variants due to misincorporation will be masked, resulting in the
correct base call per position. While this approach is effective for eliminating the PCR and
sequencing biases, it does not lend itself to high throughput techniques and has limited utility
when applied to a large viral population.

High throughput sequencing can resolve PCR biases because each individual template

from a PCR reaction has the potential to be sequenced. The task of extracting biological
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polymorphisms from PCR biases and sequencing error has been farmed out to an ever-
increasing number of software and bioinformatics tools that range in utility, algorithmic
complexity, and degree of auxiliary analyses (91-94). However, the unifying factor that ties
together these tools is that they are all assessing error from biological polymorphisms
indirectly.

Indirect, or statistical inference of biological diversity can generally resolve major
variants. However, minor biological variants whose frequency nears the error threshold are
greatly skewed or lost due to procedural biases. Therefore, an individual’s resistance profile
is fundamentally limited to variants whose frequency is well above the sequencing error and
influence of PCR biases, and PCR re-sampling continues to remain uncorrected for. In order
to make high throughput sequencing useful in resolving minor drug resistant variants and
determining their role in virologic outcome, PCR biases, sequencing error, and PCR re-
sampling all need to be directly overcome. Only after procedural error is removed can one
examine a population accurately for drug resistance and adaptation to drug selective
pressures.

The high evolvability of HIV and HCV is due to selection of adaptive alleles within
the standing genetic variation, and understanding this process may reveal how to prevent it.
My work begins to explore the path to drug resistance by finely resolving the structure of
intrahost populations as it overcomes selection. Why individuals fail therapy is likely a
question that will need to be re-interpreted on a per-patient basis, as my work suggests a

complex interplay between selection pressure, viral diversity, and population dynamics.
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Chapter 2

Accurate Sampling and Deep Sequencing of the HIV-1 Protease Gene Using a Primer ID

Reprinted with modification from: Jabara C.B., Jones C.D., Roach J., Anderson J.A., and
Swanstrom R. (2011) Accurate Sampling and Deep Sequencing of the HIV-1 Protease Gene

Using a Primer ID. Proc Natl Acad Sci USA 108:20166-71.

2.1 Abstract

Viruses can create complex genetic populations within a host, and deep sequencing
technologies allow extensive sampling of these populations. Limitations of these
technologies, however, potentially bias this sampling, particularly when a polymerase chain
reaction (PCR) step precedes the sequencing protocol. Typically, an unknown number of
templates are utilized in initiating the PCR amplification and this can lead to unrecognized
sequence resampling creating apparent homogeneity; also PCR-mediated recombination can
disrupt linkage, and differential amplification can skew allele frequency. Finally,
misincorporation of nucleotides during PCR and errors during the sequencing protocol can
inflate diversity. We have solved these problems by including a random sequence tag in the
initial primer such that each template receives a unique Primer ID. After sequencing,
repeated identification of a Primer ID reveals sequence resampling. These resampled

sequences are then used to create an accurate consensus sequence for each template,



correcting for recombination, allelic skewing, and misincorporation/sequencing errors. The
resulting population of consensus sequences directly represent the initial sampled templates.
We applied this approach to the HIV-1 protease (pro) gene to view the distribution of
sequence variation of a complex viral population within a host. We identified major and
minor polymorphisms at coding and noncoding positions. In addition, we observed dynamic
genetic changes within the population during intermittent drug exposure, including the
emergence of multiple resistant alleles. These results provide an unprecedented view of a

complex viral population in the absence of PCR resampling and artifactual error.

2.2 Introduction

High throughput sequencing allows the acquisition of large amounts of sequence data
that can encompass entire genomes (95-98). With sufficient amounts of starting DNA, PCR
is not needed prior to the library preparation step of the sequencing protocol. Sequencing
miscalls inherent in high throughput sequencing approaches are resolved using multiple reads
over a given base.

Deep sequencing can also capture the genetic diversity of viral populations (72, 99-
103), including intrahost populations derived from clinical samples. This approach offers the
opportunity to view population diversity and dynamics, and viral evolution in unprecedented
detail. One place where the presence of minor variants is of immediate practical importance
is in the detection of drug resistant variants. Standard bulk sequencing methods, however,
will miss allelic variants below 20% in frequency within a population (38, 39). Alternative
assays can detect less abundant variants that confer drug resistance, but require a priori

selection of sites and variants (74-83, 104). Thus deep sequencing approaches offer the
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opportunity to identify minor variants associated with resistance de novo with the goal of
understanding their role in therapy failure.

While screening for drug resistant variants is a practical application of the deep
sequencing technology, this technology also addresses broader questions of sequence
diversity and structure for a complex population like HIV-1. However, the relatively high
sequencing error rates of these technologies artificially increase genetic diversity, which
confounds the detection of natural genetic variation especially when sequencing a highly
heterogeneous viral population (31, 105, 106). Moreover, the use of PCR to amplify the
amount of material prior to starting the sequencing protocol adds the potential for several
serious artifacts (107): first, nucleotide misincorporation by polymerase during the many
rounds of amplification artificially increases sequence diversity; second, artifactual
recombination during amplification occurs when premature termination products prime a
subsequent round of synthesis which can obscure the linkage of two sequence
polymorphisms (84, 85); third, differential amplification can skew allelic frequencies; and
fourth, PCR amplification can create a significant mass of DNA from a small number of
starting templates, which obscures the true sampling of the original population as these few
starting templates/genomes get resampled in the PCR product, creating sequence resampling
rather than the observation of independent genomes (86). Overall, these biases artificially
decrease true diversity while introducing artifactual diversity and also skew allelic
frequencies which can lead to incongruence between the real and observed viral populations.
Most investigators use statistical tools to attempt to control for the types of sequencing errors

that are associated with each sequencing platform.
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To make deep sequencing useful for complex populations it is necessary to overcome
PCR resampling, which is mistaken for sampling of the original population, and PCR and
sequencing errors, which can be mistaken for diversity. As nucleotide misincorporation is
largely random across sites, and template switching/recombination is more likely to occur in
the later cycles of a PCR reaction (108), strategies that create a bulk or consensus sequence
for each sampled template will call the correct base at each position. One approach to
sampling highly heterogeneous populations, such as the HIV-1 env gene, is through endpoint
dilution titration of the template prior to nested PCR, such that a single template is present in
each PCR amplification (87-90). In addition to masking the misincorporations, PCR-
mediated recombination produces recombinant templates identical to the parental sequence.
Although highly accurate, this technique is labor-intensive, and, as population sampling is
dependent on the number of templates sequenced, this methodology does not lend itself to
the identification of minor variants or to understanding the structure of a complex population,
nor is it easily adaptable to a high throughput approach.

We have developed a new, high throughput technique for directly resolving the
genetic diversity of a viral population. This technique avoids the recording of PCR and
sequencing errors that create artificial diversity, and corrects for artificial allelic skewing and
PCR resampling, revealing the original genomes in the population. This is accomplished by
embedding a degenerate block of nucleotides within the primer used in the first round of
cDNA synthesis. This creates a random library of sequences within the primer population. As
primers are individually used out of this library, each viral template is copied such that the
complement (cDNA) now includes a unique sequence tag, or Primer ID. This Primer ID is

carried through all of the subsequent manipulations to mark all sequences that derive from
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each independent templating event, and PCR resampling then becomes over-coverage for
each template to create a consensus sequence of that template. Using this approach, we were
able to directly remove error, correct for PCR resampling, and capture the fluctuation of
minor variants in the viral population within a host. We also resolved minor drug resistant
variants below 1% in frequency prior to the initiation of antiretroviral therapy, and were able

to correlate these variants with the emergence of drug resistance.

2.3 Materials and methods

VRNA extraction and ¢cDNA synthesis. Viral RNA was extracted from three plasma
samples taken longitudinally from an individual infected with subtype B HIV-1 who was
participating in a protease inhibitor efficacy trial (M94-247). Two samples were collected at
approximately 6 months before and immediately prior to the addition of the protease
inhibitor ritonavir to a failed therapy regimen (plasma viral loads of 285,360 copies of viral
RNA/ml and 321,100 copies of viral RNA/ml, respectively), and one sample was collected
during ritonavir therapy (at approximately two months on therapy, 349,920 copies of viral
RNA/ml) but during a time of apparent intermittent compliance. For each plasma sample,
VRNA was extracted from pelleted (25,000 x g for 2 hours) viral particles using the QiaAMP
Viral RNA Kit (Qiagen, Valencia, CA). Approximately 10,000 copies of viral RNA from
each sample were present in the cDNA synthesis reaction as previously described (87, 109,
110). The tagging primer used was, 5’-
GCCTTGCCAGCACGCTCAGGCCTTGCA(BARCODE)CGNNNNNNNNTCCTGGCTTT
AATTTTACTGGTACAGT-3’. The barcode represented TCA, GTA, and TAT for study
days 58, 248, and 303, respectively. The 3’ end of the tagging primer targeted downstream of
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the protease coding domain (HXB2 2568-2594). The oligonucleotides were purchased from

IDT and were purified by standard desalting.

Amplification of tagged sequences. The single-stranded cDNA was column purified using
the PureLink PCR Purification Kit (Invitrogen, Carlsbad, CA), using Binding Buffer HC
(high cut-off) and 3X wash to remove the cDNA primer. Primer removal was verified by
electropherogram analysis using an Experion HighSense RNA microfluidic chip (Bio-Rad
Laboratories, Hercules, CA). Samples were amplified by nested PCR, using upstream
primers 5’-GAGAGACAGGCTAATTTTTTAGG-3> (HXB2 2071-2093) and 5°-
ATAGACAAGGAACTGTATCC-3’ (HXB2 2224-2243); the downstream primers targeted
the 5’ portion of the cDNA tagging primer 5-GCCTTGCCAGCACGCTCAGGC-3’ then 5°-
CCAGCACGCTCAGGCCTTGCA-3’. The PCR was done using Platinum 7ag DNA
Polymerase High Fidelity (Invitrogen, Carlsbad, CA). Each reaction contained 1x High
Fidelity PCR Buffer, 0.2 mM dNTP mixture, 2 mM MgCl,, 0.2 uM of each primer, 1.5 units
of Platinum 7ag DNA Polymerase. For the first round, the purified cDNA template was split
to 2x50ul for the first round PCR, and 1ul of the purified first round product was used for
nested PCR. Samples were denatured at 94°C for 2 minutes, followed by 30 cycles of 94°C
for 15 seconds, 55°C for 30 seconds, 68°C for 1 minute, and a final extension at 68°C for 5
minutes.

Samples were column purified after the first round of PCR using the MinElute PCR
Purification Kit (Qiagen, Valencia, CA), and eluted into 30ul of buffer EB. Second round
PCR product was gel purified using a 2% agarose gel and QIAquick gel extraction kit

(Qiagen, Valencia, CA), with incubation of the solubilization buffer at room temperature.
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DNA was quantified by Qubit fluorometer using dsDNA High Sense assay (Invitrogen,
Carlsbad, CA). Product generation, quality, and primer removal for both PCR rounds was

verified using an Experion DNA microfluidic chip (Bio-Rad Laboratories, Hercules, CA).

454 pyrosequencing. Tagged samples from the three time points were combined and
sequenced on the 454 GS FLX platform with XLR70 Titanium sequencing chemistry as per
the manufacturer’s instructions (Roche, Nutley, NJ) but with under-loaded beads to minimize
signal crosstalk. Sequences were processed from two independent 454 GS FLX Titanium

runs (1/8" of a plate each).

Bioinformatic pipeline for raw sequence processing. A suite of programs was written to
filter and parse raw 454 sequencing reads. In short, first each sequence was placed in the
correct orientation as compared to a reference pro gene sequence. This alignment was then
used to identify insertions or deletions caused by the 454 sequencing of homopolymers.
When there was an insertion, the extraneous base was excised from the sequence. Deletions
retained were largely resolved in the construction of the consensus sequence (see below).
Second, they were evaluated for the presence of the cDNA primer 5’ tail, with the encoded
information (barcode and primer ID) exactly spaced. Third, individual samples were binned
according to their barcodes, and then to their individual the Primer ID. Fourth, sequences
were trimmed to the protease coding domain (pro gene). Within a barcode bin, when three
sequences contained an identical Primer ID, a consensus sequence was called by majority
rule. Ambiguous nucleotide designations were used when there was a tie. Sequences are
available under GenBank accession numbers JN820319-JN824997.
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Population analyses. A chi-squared test was used to test for significance changes in allele
frequency between the two untreated time points. To control for multiple testing, collective
assessment of significance was based on False Discovery Rate analysis (FDR = 0.05). Tests
for linkage disequilibrium were computed by DnaSP v.5.10.01 (111). These tests were done
on filtered populations devoid of sequences containing ambiguities or gaps. Tests for
neutrality were computed by DnaSP and R (112) on filtered populations devoid of sequences
containing ambiguities. Gaps and alleles represented by a single sequence were reverted to
the consensus. Beta P-values were calculated against the null hypothesis that D = 0,
assuming that D follows a beta distribution after rescaling on [0, 1] (113).

Synonymous and nonsynonymous diversity across and within populations was
computed through customized bioinformatics suites. Unfiltered sequences were used in the
analysis, and ambiguities, gaps, and alleles represented by a single sequence were removed
from the final tabulation.

SNPs were graphically displayed through the Highlighter tool (www .hiv.lanl.gov).

Phylogenetic resolution of sequences. The phylogeny for the population of consensus
sequences from all three time points was resolved using two alternative methods and on
populations devoid of sequences containing gaps or ambiguities. When only one example of
a SNP was present across all sequences, it was converted to the consensus on the assumption
that it was likely generated by residual method error. First, the Neighbor-Joining tree using
the Kimura translation for pairwise distance and a bootstrap of 100 iterations was constructed
with QuickTree v.1.1 (114).
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Second, Maximum likelihood phylogeny was inferred using the PHYLIP package,
version 3.69 (115), and the calculated phylogeny is available upon request. The PHYLIP
program seqboot was used to create 100 bootstraps. Resulting bootstraps were submitted to
the PHYLIP program drnamlk for maximum likelihood inference subject to a strict molecular
clock. The consensus tree of all boostrap results was constructed using the PHYLIP
program consense.

Both phylogenetic trees were visualized by a customized modification of Figtree

v.1.3.1. (116)

2.4 Results
A c¢DNA synthesis primer containing a Primer ID can be used to track individual viral
templates.

A population of cDNA synthesis primers was designed to prime DNA synthesis
downstream of the HIV-1 protease (pro) gene, with the primer containing two additional
blocks of identifying information (Fig. 2.14). The first block was a string of eight degenerate
nucleotides that created 65,536 distinct sequence combinations (4%), or Primer IDs. This
region was flanked by an a priori selected three nucleotide barcode, creating a sample
identification block so that multiple samples could be pooled together in a sequencing run
(100). A designed sequence at the 5’ end of the cDNA primer was used for subsequent

amplification of the cDNA sequences by nested PCR.
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A reverse complement Primer ID Barcode PCR priming site

R E— NNN NNN'NN BAR primer 5’

pro _

Raw sequence reads Primer ID Barcode
| CATAATAC TAG Sample Tl T2 T3
|—CATAATAC TAG Ritonavir - ] .
| CATAATAC TAG
CATAATAC TAG Total 20,429 24,658 27,075
| | CATAATAC TAG reads
CATAATAC TAG Consensus 857 1,609 2,213

Consensus sequence sequences
d CATAATAC TAG

Fig. 2.1 Tagging viral RNA templates with a Primer ID before PCR amplification and
sequencing allows for direct removal of artifactual errors and identifies resampling. (A)
A primer was designed to bind downstream of the protease coding domain. In the 5’ tail of
the primer, a degenerate string of eight nucleotides created a Primer ID, allowing for 65,536
unique combinations. An a priori selected three nucleotide barcode was designed for the
sample ID. Finally, a heterologous string of nucleotides with low affinity to the HIV-1
genome was included in the far 5’ end for use as the priming site in the PCR amplification.
(B) PCR biases and sequencing error are introduced during amplification and sequencing of
viral templates. Repetitive identification of the barcode and Primer ID allow for tracking of
each templating event from a single tagged cDNA. As errors are minor components within
the Primer ID population, forming a consensus sequence directly removes them, and corrects
for PCR resampling. (C) HIV-1 RNA templates isolated from plasma samples from two pre-
and one post-intermittent ritonavir drug therapy were tagged, amplified, and deep sequenced.

Tagged sequences containing full- length protease were used to create a population of
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consensus sequences when at least three sequences contained an identical barcode and Primer
ID.

Viral RNA was extracted from three longitudinal blood plasma samples from an
individual infected with subtype B HIV-1 who was participating in a protease inhibitor
efficacy trial (M94-247) (117) (Fig. 2.2). Approximately 10,000 copies of viral RNA from
each sample were used in a reverse transcription reaction for cDNA synthesis and tagging
using the Primer ID. The cDNA product was separated from the unused cDNA primers, then
the viral sequences were amplified by nested PCR and sequenced on the 454 GS FLX
Titanium. Our data were distilled from total reads of 20,429, 24,658, and 27,075 for the three
time points (T1, T2, and T3, respectively). Raw sequence reads were assessed for the cDNA
tagging primer and a full length pro gene sequence (297 nucleotides long representing 99
codons), and when three or more sequences within a sample contained an identical Primer
ID, a consensus sequence was formed to represent one sequence in the population (Fig. 2.1B,

1C, S2).

Ritonavir monotherapy
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Days into study

Fig. 2.2 Longitudinal sampling of blood plasma from a single individual infected with

HIV-1 subtype B pre- and post- a failed ritonavir monotherapy regime. Two time-points

~6 mo apart were sampled before ritonavir therapy (T1 and T2). One time point was sampled
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after failed, intermittent ritonavir monotherapy (T3). The shaded areas represent times of

therapy compliance based on self-report.

With these manipulations we generated 857, 1,609, and 2,213 consensus sequences,
respectively, for the three time points (Fig. 2.1C). The median number of reads per Primer ID
was 6, ranging from 1 to 96 (Fig. 2.3). The distribution of identical Primer IDs did not form a
normal distribution as would be expected if all templates were amplified equally. We saw a
higher than expected number of single reads of Primer IDs; although we do not know the
reason for this, such a result is consistent with different cDNA templates entering the PCR at
different cycles. Since each template is individually tagged the different number of reads is
an indication of allelic skewing, as noted this can be nearly 100 fold. In an analysis of a
number of low abundant variants we saw a 20-fold range of representation through allelic
skewing, with half of the variants up to 2-3 fold more abundant than the mean, and the other

half up to 5-10 fold less abundant.
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Fig. 2.3 Distribution of the number of reads per Primer ID or consensus sequence. A)
Blue bars represent the distribution of resampling of the filtered sequence population
immediately before consensus sequence generation. Within a single Primer ID, when three or
more sequences were present, a consensus sequence was formed. The orange bars represent
the distribution of the number of reads that went into each consensus sequence. The values
shown represent the mean for the data from the three time points with the error bars
representing the SD between the three samples. Starred bars are included to mark positions
where a single sequence had high resampling occurrence. (B) Number of consensus
sequences containing an ambiguity as a function of extent of resampling. All three time
points were combined. Gray bars represent consensus sequences without an ambiguity, and
orange bars represent consensus sequences with an ambiguity. There is a discernible pattern

of an increased number of ambiguities going out to 22 reads/consensus sequence for those
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consensus sequences created from an even number of reads, the result of having a tie
between two different sequences at one position. However, this represents only a small
fraction of the total reads (5.4%). The amino acid position with the highest ambiguity total

was used per Primer ID subpopulation.

We conservatively estimate the combined in vitro error rate of the cDNA synthesis
step by reverse transcriptase and the first strand synthesis by the 7ag polymerase to be on the
order of 1 mutation in 10,000 bases, or approximately one mutation per 33 pro gene
sequences, based on an RT error rate of 1 in 22,000 nucleotides (118) and a Tag polymerase
error rate of 1.1 in 10,000 nucleotides (119) but reduced by half since only the first round of
synthesis is relevant and a misincorporations at this step gives a mixture. Later rounds of 7ag
polymerase errors should be largely lost through the creation of the consensus sequence.
Thus we would expect 139 sequence misincorporations to be present in the data set of 4,679
total sequences representing T1+T2+T3, and with an excess of transitions. These would be
expected to occur as 113 single copy single nucleotide polymorphisms (SNPs) and 13 SNPs
that appeared twice. We observed 98 single copy SNPs in the data set with a 3 fold excess of
transitions, and with three-fourths of them being coding changes, which is consistent with
random mutations. We expect there to be low frequency SNPs in the viral population from
rare but persistent variants that are fortuitously sampled, and from the intrinsic error rate of
viral replication (the error rate during one round of viral replication would represent
approximately one mutation per 150 pro gene sequences (105)). However, we cannot
distinguish real polymorphisms from the inferred background error rate associated with the

first and second rounds of in vitro DNA synthesis. Thus we have limited the analysis of
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population diversity to SNPs that appeared at least twice in the data set (i.e. linked to at least
two separate Primer IDs), either at the same time point or at multiple time points in the
overall data set (Table 2.1). We have not corrected the data set for the presumed 13 SNPs
that appeared twice that are expected to be present due to error even though this represents
33% of all of the SNPs that appeared twice (13 of 39). Overall, 80% of the SNPs (i.e. any
sequence change from the consensus that appeared at least once) in the total data set of
72,162 sequence reads were removed as error. Also, 60-65% of the sequence reads were
revealed as resampling. Finally, allelic skewing of up to nearly 100 fold was corrected (Fig.

2.4).

Table 2.1 Frequency of nonconsensus codons per position
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Consensus Nonsynonymous ) ~ |Synonymous
Al AAL CE | Ct AALS T2IF 129 13" T3/ T3/ |ck Tl T2™ 13" T3°  T3/F
4 T ACT|GCT A 0.06 0.05 0.09
5 L CTT|CCT P 0.12 0.05 0.14
7 Q CAA CAG 0.35 0.12 0.09 0.14 0.09
8 R CGA CGG 0.12 0.05 0.14
9 P CCC
10 L CcTCc|TTC F 0.19 CTT 0.19
11 VvV GTC|ATC I 0.23 0.25 GTT 0.12
14 K AAG|AGG R 0.12 AAA 1.17 0.19 0.59 0.29 0.72
15 I ATA|[GTA Vv 1.17 0.12 0.14 0.14 0.18 |ATC 0.09 0.18
16 G GGG|[AGG R 0.06 0.05 0.09 [GGA 2.22 3.54 38.86 17.70 45.97
17 G GGG|AGG R 0.09 0.29 GGA 0.35 0.19 0.18 0.43 0.09
18 Q CAA|(GAA E 0.23 0.12 CAG 18.55 21.75 6.46 12.81 3.53
19 L CTA|ACA T 0.47
ATA I 19.25 19.83 20.42 19.28 24.98|TTA 0.12 0.19 0.09 0.29
GTA V 3.38 5.66 46.00 25.61 52.76
20 K AAG|AGG R 0.12 0.12 0.05 0.09 [ AAA 0.31 0.86 0.29 1.27
21 E GAA GAG 0.12 0.06 0.05 0.14
22 A GCT GCC 0.47 0.44 0.27 0.58 0.18
GCG 0.23
23 L CTA CTG 0.19
24 L TTA CTA 0.35 5.72 1.31 2.16 0.63
TTG 12.49 0.81 0.59 1.01 0.27
25 D GAT|GGT G 0.12 0.12 GAC 0.23 0.93 0.05 0.14
26 T ACA|GCA A 0.12
27 G GGA GGG 0.12 0.06
28 A GCA GCG 0.12 0.09 0.14
29 D GAT|AAT N 0.12 0.05 0.09 [GAC 0.23 0.19
30 D GAT GAC 0.06 0.09 0.14 0.09
31 T ACA ACG 0.12
32 V GTA GTG 0.25
33 L TTA|GTA V 0.47 0.06 CTA 0.25 0.14 0.29 0.09
TTG 0.35 0.12 0.14 0.43
34 E GAA|GGA G 0.12 0.05 0.09 [GAG 0.12 0.05 0.14
CAA 0.09
35 E GAA|AAA K 0.12 0.06 0.09 0.14
36 M ATG|ATA I 0.82 0.81 0.27 0.43 0.27
37 N AAT|AGT S 0.19 0.05 AAC 0.06 0.05 0.14
GAT D 2.33 2.30 0.95 0.86 1.27
38 L TTG TTA 0.23 0.62 0.05 0.09
39 P CCA CCT 0.23
40 G GGA GGG 0.12 0.12
41 K AAA[AGA R 0.06 0.18 0.14 0.27 |AAG 4.08 1.43 0.50 1.15 0.27
42 W TGG|CGG R 0.12 0.06
TAG _  0.12 0.05 0.09
TGA 0.14 0.27
43 K AAA|lAGA R 0.06 0.05 0.09 [AAG 0.35 0.14 0.14 0.18
44 P CCA CCG 0.06 0.23 0.43 0.18
45 K AAA[AGA R 0.12 0.12 0.05 0.09 [AAG 0.58 0.99 0.41 1.29
46 M ATG|ATA 1 0.12 0.09 0.14 0.09
48 G GGA|lGAA E 0.14 0.14 0.18 |GGG 0.35 0.19
49 G GGA|GAA E 0.12 0.06 0.05 0.09 |GGG 0.23 0.12
50 I ATT ATC 0.12 0.12
51 G GGA GGG 0.12 0.06
52 G GGT|AGT S 0.12 0.06 0.05 0.14 GGA 0.06 0.05 0.14
GGC 0.12 0.31 0.09 0.14 0.09
GGG 0.14 0.43
53 F 11T TTC 0.70 0.05 0.14
54 I ATC|ACC T 0.12 0.06 0.05 0.09 [ATT 0.35 0.06 0.14 0.14
55 K AAA[AGA R 0.12 0.05 0.09 [AAG 0.12 0.06
56 V GTA|ATA I 0.12 0.05 0.14 GTG 0.75 0.14 0.14 0.18
57 R AGA|AAA K 0.23 AGG 0.23 0.87 0.14 0.14 0.18
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*Amino acid position, protease.

®Consensus amino acid in untreated population.

‘Consensus codon in untreated population.

Coding nonconsensus amino acid.

“Coding nonconsensus codon.

'Frequency of SNP in first untreated time point.

fFrequency of SNP in second untreated time point.

%IF requency of SNP in third time point, treated.

'Frequency of SNP in third time point, treated, susceptible population (not V82A, 184V,
L9OM).

'Frequency of SNP in third time point, treated, population containing major ritonavir resistant
variant V82A.

“Silent nonconsensus codon.

'Frequency of SNP in first untreated time point.

"Frequency of SNP in second untreated time point.

"Frequency of SNP in third time point, treated.

°Frequency of SNP in third time point, treated, susceptible population (not V82A, 184V,
L90OM).

PFrequency of SNP in third time point, treated, population containing major ritonavir
resistant variant V82A.
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Fig. 2.4 Analysis of low abundance variants for the distribution of allelic skewing. We
used discarded sequences (i.e., unique sequences represented by a single Primer ID) and
transient genomes defined as having a low abundance SNP in the preconsensus population
per untreated time point. Transient sequences were defined as having at least two sequences

at only one of the untreated time points, or one copy at one of the untreated time points and
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then again at the third time point. These sequences were used to define a set of sequences that
could be compared for low frequency abundance in the total data set versus the consensus
sequences. The horizontal bars represent the measured frequency of a single copy sequences
in the consensus population at T1 and T2. Dark points represent discarded genomes, and light
points represent transient genomes with their position indicating their abundance in the total
sequence population before construction of the consensus sequences. Blue points represent
sequences present at T1, red points represent sequences present at T2. These data show that
allelic skewing of 2-fold upward and 10-fold downward is common before the formation of

the consensus sequence.

Longitudinal sequencing of the HIV-1 protease (pro) gene in an untreated individual
reveals dynamic changes in genetic variation.

We analyzed the sequences of the pro gene populations to assess allelic frequency at
the two sampled time points, separated by 6 months and prior to ritonavir (117) drug
selection (Fig. 2.1). The combined sequence population from the two time points (T1 and T2)
before therapy consisted of 492 unique pro gene sequences with 155 SNPs. About 4% (i.e.
21) of these unique gene sequences were above 0.5% abundance, and these 21 unique gene
sequences represented 67% of all sampled genomes, with the genome representing the
overall consensus sequence comprising 21% of the total population (Fig. 2.54, 2.5B). The
relatively small number of unique gene sequences above 0.5% frequency in the population
contained only 7% of the 155 detected SNPs. Thus, a large proportion of the viral
population’s diversity was associated with a large number of pro gene sequences that were
present at low abundance (Fig. 2.54, 2.5C); conversely the majority of the population
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consisted of a small number of SNPs. Similarly, Tajima’s D statistic for T1 and T2 in this
individual were -2.47 and -2.48, respectively (Table 2.2), indicative of a population structure
that has suppressed levels of neutral mutations. This pattern is consistent with but more
extreme than that observed in a prior shallow intrahost survey in which a metapopulation
model was proposed to explain the pattern of Tajima’s D statistic (55). Figure 2 shows the
amino acid variability and synonymous nucleotide variability present in two or more

individual genomes across the 99 codons in the pro gene for these samples.
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Fig. 2.5 Major and minor allelic variants in the untreated populations. (A) Frequency of
major (colored) and minor (grayscale) unique pro gene sequences. Gray colors represent pro
gene sequences present between 2.5 and 0.5% in frequency. Black represents the sum of all

pro gene sequences individually present at <0.5%. (B) SNP distribution of the most abundant
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pro gene sequences (>2.5%), with the colored dots on the right indicating the corresponding
sequences identified in the pie chart (A). (C) The gray bar corresponds to SNP distribution of
variants present between 2.5 and 0.5%, the same sequences indicated in panel A with the
gray bar. The line at the bottom indicated by the black circle represents the sum of all

variants <0.5% in frequency for the sequences shown in black in the pie chart (A).

Table 2.2 Summary of nucleotide variation in sampled time points
T1 T2 T3 T3 T3¢
Number of sequences 810 1449 1925 594 972
Number of polymorphic 130 145 144 95 80
(segregating) sites
Total Number of mutations 148 167 159 102 83
Average number nt 2.84 2.25 3.39 3.49 2.04

differences, k
Nucleotide diversity, x  0.00955 0.00826 0.01141 0.01177 0.00687
Theta (per sequence) 20.33 21.30 19.61 14.67 11.20
Theta (per site) 0.068 0.072 0.066 0.049 0.038
Tajima's D -2.46864 -2.47953 -2.28563 -2.19101 -2.26483

Synonymous Variability: There were 57 codons (with 63 variants/SNPs) that contained
synonymous diversity that appeared in both pre-therapy time points, and 30 codons (with 31
variants) that appeared in only one time point. Taken together, 75 of the 99 codons contained
some level of synonymous diversity (Fig. 2.2, Table 2.1). Of the 63 variants that were present
in both untreated time points, 92% were transitions. Of the 31 variants that appeared in only
one of the time points, 71% were transitions, representing a significantly smaller fraction of

transitions than among the synonymous variants that appeared at both time points (p = 0.012;
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Fisher’s exact test). This suggests that synonymous transversions are selected against over

time.

Nonsynonymous Variability: There were 26 codons (28 variants) that contained coding
variability that appeared in both pre-therapy time points, and an additional 28 codons (33
variants) with nonsynonymous changes found in only one of the time points. Taken together,
49 of the 99 codons contained some level of nonsynonymous diversity (Fig. 2.2, Table 2.1).
For the 28 nonsynonymous variants detected at both time points, 22 were transitions, and
these mostly represented conservative amino acid changes. In the case of synonymous
mutations two-thirds of the variants were present at both time points, while in the case of
nonsynonymous mutations less than half were present at both time points (p = 0.012; Fisher’s
exact test). This observation suggests that at this level of sequence sampling we are able to
see a difference in stability within the population in comparing synonymous and

nonsynonymous substitutions.

Genetic Fluctuation: We compared the stability of minor SNPs present at both T1 and T2. A
total of 14 of the 91 SNPs (synonymous and nonsynonymous that appeared at both time
points) had significant changes in abundance between the two time points (Chi-square Test
with a false discovery rate of 0.05). Of the 14 SNPs with significant changes in abundance,
11 had a decrease in the abundance, with an average decrease around 7.5 fold. There were 3
SNPs that had a significant increase in abundance, all of which were synonymous, ranging
from a 4 to 47-fold increase. While a majority of SNPs that changed in abundance had a

decrease in the frequency between T1 and T2, on a population level there was not a large
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change in diversity between the two time points (T1 p = 0.0079, T2 p = 0.0082 [Table 2.2]).
However, the trend of increased abundance at the three sites may be driven by selection of

cryptic epitopes in an alternative reading frame (see Discussion).

Significance of Rare Variants: We observed two extremes in terms of biological relevance in
the untreated population among variants detected as at least two independent sequences
across the three time points. At one extreme was the detection of nonviable genomes in the
form of a coding variant at position 25, which mutates the active site of the protease, and the
detection of a termination codon at position 61 (Table 2.1). At the other extreme was the
detection of the L90OM and V82A variants (at time points 1 and 2, respectively) that became
the major resistance populations after ritonavir therapy was initiated (see below, Fig. 2.6); in
addition, V82I and V82L were detected at T2. We found two more examples of primary
resistance mutations at low abundance, K20R at all three time points and M46I at two time
points, but these did not grow out in the presence of ritonavir (Fig. 2.6, Table 2.1). Similarly,
fitness compensatory mutations were also detected at low abundance (L10F, M36I, L63P,
AT7IT, and V771), all below 1%, and only L63P increased (modestly) in abundance after
exposure to ritonavir. More generally, of the 28 substitutions most closely associated with
protease inhibitor drug resistance (120, 121), we found 10 such variants, half of which were

detected at both pretherapy time points (Table 2.1).
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Fig. 2.6 Frequency of codon variation across all 99 positions in protease over three time
points. Within a codon position, the first two bars represent untreated time points 1 and 2,
respectively. Bars 3 and 4 are the third time point split based on the presence or absence of
the resistance mutations to ritonavir. Bar 3 is the population of susceptible genotypes
(defined as not V82A, 184V, or L90M), and bar 4 is the major resistant variant, V82A,
population. Upward facing bars are nonsynonymous changes (scale in regular typeface), and
downward facing bars are synonymous changes (scale in bolded typeface). Within a codon

position, different shading represents different SNPs.

Assessment of linkage disequilibrium within the HIV-1 pro gene population

We measured LD for the sequences in the T1 and T2 populations. We identified very
few examples of LD at these two time points using the Fisher’s Exact Test with a Bonferroni
correction. Of the 103 polymorphic sites in T1, only 3 pairs were in significant LD.
Similarly, in T2 with 118 polymorphic sites, only 4 pairs displayed significant LD. A
positive D (i.e. linkage) was found for 6 of the 7 pairs in the untreated populations, with one

pair associating at a lower than expected frequency. Overall, LD did not appear to play a
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significant role in defining the pro gene population in this late stage individual, with only a

single pair of SNPs showing linkage in both of the time points.

Detection of multiple drug resistant alleles after exposure to selection by a protease
inhibitor.

The third plasma sample we examined from this subject was from a time point (T3)
after the initiation of therapy with the protease inhibitor ritonavir. It is apparent from the
cyclical pattern of viral load and self-report that this person had incomplete adherence to the
drug regimen (Fig. 2.1). Thus we expected selective pressure from the drug to disrupt the
viral population but not to select for the more homogeneous populations that are associated
with virologic failure solely due to the appearance of drug resistance. The choice of this
sample allowed us to look at the evolution of resistance and the persistence of
polymorphisms in both the resistant and nonresistant portions of the population. Over two-
thirds of the sequences from T3 carried a resistance mutation, with approximately 50% of the
sequences carrying the V82A allele, the most common resistance mutation associated with
resistance to ritonavir (122).

There were two divergent paths for population diversity at the third time point. For
the large V82A-containing population there was a general trend of decreased diversity (p =
0.0059), consistent with the expected bottleneck associated with fixing a drug resistance
mutation. In contrast, the diversity in the co-existing drug sensitive population was higher
than the drug resistant population and comparable to the earlier time points (p = 0.0088)

(Table 2.2).
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While V82A is the most common resistance mutation associated with ritonavir
resistance, the 184V allele and L90M allele can also be selected and in combination with
V82A can confer a higher level of resistance (46). We detected all three of these distinct drug
resistance alleles in the T3 sequence population, collectively representing 69% of the total T3
population: V82A (50% of the population), 184V (5%), and L9OM (14%). These three
resistance mutations appeared on different genomes, with only a single example of a
sequence with two of these resistance mutations (V82A/L90M). In total there were 136
unique sequences carrying the V82A mutation (all with the GCC Ala codon), 29 unique
sequences carrying the 184V mutation (all with the GTA Val codon), and 36 unique
sequences carrying the L90M mutation.

There were also small groups of pro gene sequences in T3 that appear to be the result
of selection by ritonavir. Two other substitutions at position 82, V82I and V82L, were
detected at a low level at T2 and also seen at T3 but now representing 1.3% and 1.1% of the
population. V82F was also detected as 0.14% of the population at T3. Finally, the
compensatory mutation L63P was detected at T1 and modestly expanded at T3, with half of
the sequences in the V82A background (Table 2.1).

An important issue is the number of times each of the resistance mutations evolved in
the presence of drug selection. The data are consistent with the major V82A variant (42% of
the V82 sequences) growing out from the pre-existing variant detected at T2. For the 6
genomic variants of V82A that each accounted for greater than 2.5% of the V82A
population, all were on the background of the consensus except for the three different
polymorphisms at positions 19 and 70 (Fig. 2.7B). In total, these represented approximately
71% of the V82A population and presumably arose via recombination with the founding
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sequence (Fig. 2.74). The remaining 29% of the V82A-containing genomes vary in relative
abundance from 2.3-0.1%, including over 100 unique sequences that each appeared once but

to a large extent represent the variation seen at T1 and T2 added on to the predominant V82A

genotypes.
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Fig. 2.7 Major and minor unique pro gene sequences in the major resistant populations
V82A, LI0M, and I84V. (A) Frequency of different unique pro gene sequences carrying the
V82A mutation at high frequency (colored >2.5%) and low frequency (<2.5%, black and
with the abundance pooled). (B) Highlighter plot showing the sequence changes from the

consensus sequence for the major (>2.5%) pro gene variants carrying the V82A mutation.

41



The V82A substitution is indicated by the nucleotide change at position 245 shown in light
blue. (C) Frequency of different unique pro gene sequences carrying the L90M mutation at
high frequency (colored >2.5%) and low frequency (<2.5%, black and with the abundance
pooled). (D) Highlighter plot showing the sequence changes from the consensus sequence for
the major (>2.5%) pro gene variants carrying the L90M mutation. The L90M substitution is
indicated by the nucleotide change at position 268 shown in green. (E) Frequency of different
unique pro gene sequences carrying the 184V mutation at high frequency (colored >2.5%)
and low frequency (<2.5%, black and with the abundance pooled). (F) Highlighter plot
showing the sequence changes from the consensus sequence for the major (>2.5%) pro gene
variants carrying the 184V mutation. The 184V substitution is indicated by the nucleotide

change at position 250 shown in orange.

The composition of the 184V and L90OM populations were similar to the V82A
population. In each case there was a predominant population defined by a 5’ polymorphism:
the major L90M lineage (69% of the L90M sequences) was on the G16G/L19V background
(Fig. 2.7C, Fig. 2.7D) while the major 184V lineage (35% of the 184V sequences) was on the
consensus sequence background for the 5’ polymorphisms (G16/L19) (Fig. 2.7E, Fig. 2.7F).
The next three most abundant 184V lineages, representing 28% of the 184V sequences,
differed from the most abundant sequence by other 5’ polymorphisms (Fig. 2.7F). Similarly,
the next three most abundant L90OM lineages, representing 14% of the L90M sequences,
differed from the most abundant L9OM sequence by 5’ polymorphisms (Fig. 2.7D). With the

exception of the 5° polymorphisms and the resistance mutations, all eight of these lineages
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were in the consensus sequence background. The remaining sequences are accounted for by
the low level variability added onto these major lineages.

As noted above, the major V82A lineage was detected at T2 (as a single genome),
and this population was likely clonally amplified to form the large proportion of the drug
resistant population seen at T3 (Fig. 2.7). L90M was also detected on the same pro gene
background in the therapy-naive environment at T1, and was likely also clonally amplified to
form the large proportion of the L9OM sequences (Fig. 2.8, 2.7D). In contrast, V82I and
V82L were detected in the pre-therapy time points on background sequences that did not
become the predominant sequence when these mutation modestly expanded at T3, although
these two populations have complex mixtures of the 5’ polymorphisms which may indicate
low level persistence and recombination during the period of drug exposure. Finally, 184V

and V82F were not detected in either pre-therapy population (Table 2.1).
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Fig. 2.8 Phylogenetic representation of protease population derived from deep
sequencing with a Primer ID. A Neighbor-Joining tree was constructed from sequences
derived from all three time points and colored based on susceptibility to ritonavir. Blue
colored taxa represent susceptible variants (defined as not V82A/I/L/F, 184V, or LO0OM). Red
colored taxa represent variants containing the major ritonavir resistant variant, V82A. Pink
colored taxa represent the minor resistant variants V82I/L/F. Green and orange colored taxa
represent the minor resistant alleles L90M and 184V, respectively. Within a color, color
brightness is correlated with sample time. Dark green and red arrows point to pre-RTV low-

abundance sequences that clonally amplified to their respective clades.
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2.5 Discussion

Complex viral populations can form within a host (123-125). High throughput
sequencing technologies allow for extensive sampling of these populations (81, 95-97, 99,
126). However, these technologies are severely limited when a PCR amplification precedes
the sequencing protocol, as each sequence read has the potential to be reported as an
independent observation without properly controlling for PCR resampling, PCR-mediated
recombination, allelic skewing, PCR-introduced misincorporations, and sequencing errors.
When working with pathogenic agents in clinical samples, the number of pathogen genomes
in the sample is limited, and the use of PCR can obscure the quality of the sampling by
creating a large amount of DNA from a relatively small number of starting templates. This
can create artificial homogeneity, inflate estimates of segregating genetic variation, skew the
distribution of alleles in the population, and introduce artificial diversity.

We have developed a novel strategy that allows each sampled template to be tagged
with a unique ID by a primer that has a degenerate sequence tag incorporated during the
primer oligonucleotide synthesis. This tag can then be followed through the PCR and the
deep sequencing protocol to identify sequencing over-coverage (resampling) of the
individual viral templates. Because the Primer ID allows for the identification of over-
coverage, this can then be used to create a consensus sequence for each template, avoiding
both PCR-related errors and sequencing errors. In addition, the number of different Primer
IDs reflects the number of templates that were actually sampled. This allows a realistic
assessment of the depth of population sampling and makes it possible to apply a more
rigorous analysis of minor variants by correcting the allelic skewing during the PCR.
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We tested the Primer ID approach by sequencing the HIV-1 protease coding domain
at three time points in a subject who was intermittently exposed to a protease inhibitor
between the second and third time points. A key feature of our approach is the removal of
fortuitous errors and accounting for resampling which results in a dramatic reshaping of the
original data set of 72,162 reads. There are other approaches that rely on statistical modeling
that have been developed to deal with the problem of high sequencing error rates associated
with deep sequencing technologies (91, 92, 127). The use of the Primer ID to create
consensus sequences resulted in the removal of 80% of the unique sequence polymorphisms
(defined as a change in the consensus without regard to frequency of appearance) in the data
set. Similarly, allelic skewing was dramatic among the sampled sequences, in most cases
ranging from 2-15 fold but going up to nearly 100 fold. While the Primer ID reveals such
skewing and helps correct it, this is clearly a poorly controlled feature of PCR amplifications
that can dramatically affect the observed abundance of complex populations, especially the
minor variants. Allelic skewing may still persist if the cDNA primer or the upstream PCR
primer binds differentially among the templates, or if cDNAs enter the PCR amplification in
later rounds and are discarded because they do not result in at least three reads to allow a
consensus sequence to be formed. Also, residual misincorporation errors by RT and in the
first round of PCR synthesis still limit the interpretation of mutations that occur in the range
of 0.01 to 0.1%. This problem is not overcome with larger numbers of sequences. Given the
low diversity in these samples we removed all substitutions that appeared once since their
number approximated the expected number of residual sequence errors, and this resulted in a
sensitivity of detection in the range of 0.1% for SNPs that appeared above the frequency of

the residual sequence error rate.
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Using the Primer ID approach we were able to describe a number of features of the
protease sequence population, however our results are from a single individual and therefore
cannot be generalized. First, a pooled analysis of two time points six months apart showed
that the variants present at greater than 0.5% in abundance made up two-thirds of the total
population but represented only 4% of unique genome sequences and contained only 7% of
the total unique sequence polymorphisms. About 60% of the diversity was stable over both
time points, with synonymous SNPs maintained at a significantly higher proportion in the
two time points than nonsynonymous SNPs. Only 18% of the total diversity represented
nonsynonymous SNPs that were present at both time points. However, our ability to assess
persistence of these sequences is limited by the depth of sampling, although we feel we are
approaching the practical limit of sampling with this technology as we observed nonviable
substitutions and estimate that most of the SNPs that appeared once were the result of
remaining method error. We found no pattern of conserved linkage among these SNPs,
consistent with high levels of recombination across the population.

While the overall measurement of diversity (p) was similar between the first two time
points we noted that the biggest changes in SNP abundance between the two time points
were in three synonymous codon positions (L24L, K70K, and G73G). These dynamic
increases made these SNPs part of a larger group of SNPs that accounted for 51% of the total
sequences that were otherwise identical to the consensus sequence (Q18Q, L19I, L24L,
K70K, G73G, and Q18Q/L19I/L24L’). These SNPs also overlapped the major SNPs that
defined subgroups of the resistant variants (L191; L19V; G16G/L19V). We considered the
possibility that there was a unifying feature of these SNPs. We found such a feature in that all

of these SNPs, both coding and noncoding, result in changes in two relatively large
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alternative open reading frames that lie at the 5’ and 3’ ends of the pro gene. Alternative
reading frames have been suggested to generate cryptic CTL epitopes (128-130). In this
scenario, these abundant SNPs would represent various escape mutants. Such selective
pressures could explain the dynamic behavior of several of these SNPs between the first two
time points.

After intermittent exposure to the protease inhibitor ritonavir, we were able to
identify six independent lineages of drug resistance mutations. With the intermittent exposure
in this particular subject it was possible to see the major V82A lineage most often seen with
ritonavir resistance, but also significant populations of 184V and L90M. We also saw minor
populations of V82I, V82L, and V82F. This mixed population of resistant lineages likely
represents the early stages of the evolution of resistance, a conclusion supported by the minor
appearance of the L63P compensatory mutation and the complete absence of 154V, which is
an often seen compensatory mutation for V82A. We saw few examples of genomes with
multiple resistance mutations, although these would be expected after more extensive
selection (48, 131). We and others have previously examined viral sequences that have been
collected in large databases. Typically these sequences represent the single predominant
sequence within an individual, and the use of these sequences allows for assessment of inter-
person diversity. In the future it will be an interesting exercise to compare the conclusions
reached by examining viral diversity within a person compared to viral diversity between
people; however more intra-person diversity needs to be measured at this level of detail to
allow comparison of inter- versus intra-person diversity.

The presence of pre-existing drug-resistant variants and their role in therapy failure is

of great interest, and accurate, deep sampling of a viral population can add significantly to
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our understanding of this question. We were able to detect several examples of drug
resistance mutations but only at a very low level. Our ability to reliably detect these
mutations is limited to those that appear at a frequency of 0.1-0.2%, limited in part by the
low overall diversity in the population. We were able to see examples of mutations that are
typically seen only in the presence of drug selection. However, the detection was usually as
one genome at two time points or two genomes at one time point. This was also the level of
detection of active site mutations in the protease and of termination codons, which must
represent either transient viral genomes or residual misincorporation errors. In two cases we
were able to observe the resistance mutation (V82A and L90M) at pre-therapy time points
linked to the same polymorphisms that were present on the variant that grew out during drug
exposure. Thus while it is likely that we are detecting relevant pre-existing drug resistant
variants, these are at the limit of detection and if they are maintained at a steady state level it
is well under 0.5% abundance.

Most protocols of high throughput sequencing technologies still require an initial
quantity of DNA that necessitates an upfront PCR step for many applications. The use of a
Primer ID will help clarify the sequencing products in any strategy that uses an initial PCR
step with its attendant error rate, recombination, and resampling. We believe a strategy that
allows an initial tagging of individual templates prior to PCR and subsequent sequence
analysis will be essential for understanding the true complexity and diversity of genetically

dynamic populations.
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Chapter 3
Deep sequencing with a Primer ID reveals the dynamic paths of HIV-1 resistance during
drug failure

b .
25¢ Ronald Swanstrom™®¢, and Corbin D. Jones™

Cassandra B. Jabara
“Department of Biology, "Lineberger Comprehensive Cancer Center, “UNC Center for AIDS
Research, ‘Department of Biochemistry and Biophysics, “Carolina Center for Genome

Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, US

3.1 Abstract

The intrahost population dynamics of viruses such as Human Immunodeficiency
Virus Type 1 (HIV-1) is poorly understood. A population of HIV-1 may be large,
heterogeneous, and spatially and temporarily variant, but it is unclear if HIV-1 has a large or
small effective population size. The effective population size (N.) can affect the path to
antiviral drug resistance. If N, is large, pre-existing resistance alleles may be present, and the
evolutionary forces acting on them deterministic. If N, is small, pre-existing alleles may not
be present and the evolution of resistance could be strongly influenced by stochastic events.

To characterize the intrahost population dynamics of HIV and to finely resolve viral



diversity, we used deep sequencing technology with our previously developed method,
Primer IDs. We longitudinally sampled 10 chronically infected individuals who failed drug
therapy. Although viral load indicates a large census population, traditional calculations to
estimate the effective population size gave values that ranged from 620-1,129. However, we
noted an excess of low-frequency polymorphisms, which suggests that the population is not
in mutation-drift equilibrium, downwardly biasing estimates of N.. The nucleotide diversity
in the therapy naive populations differed among subjects, and this directly correlated with the
percentage of major haplotypes within a population but not sampling depth. Therefore, there
may be significant differences in the selection pressures on the viral populations among
subjects. We also measured population variation after exposure to a single drug (the protease
inhibitor ritonavir). The diversity of the emergent, resistant population was greater than the
pre-existing diversity, although N. and the number of polymorphic sites tended to be
reduced, supporting that resistance alleles on multiple haplotypes were segregating at
intermediate frequencies within the populations after drug selection. While we did observe
pre-existing resistance alleles in the pre-drug therapy populations, we did not observe these
alleles on the background haplotypes that grew out during treatment, suggesting that the
emerging resistant haplotype was not sampled prior to treatments or that the resistance
mutants arose during the selection. However, the fact that multiple haplotypes grew out with
resistance mutations, and these mutations were not on the dominant haplotypes in the
population, indicates that the resistance mutations that did grow out pre-existed in the
population. The path to higher-level resistance within each individual was unique, but
involved common major resistance alleles. Selection coefficients for the resistance haplotype

were at minimum 0.01-0.04. In some populations after exposure to drug, a susceptible
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subpopulation persisted despite the emergence and evolution of increasingly resistant
haplotypes, suggesting intermediate drug exposure in these subjects. One subject with low
levels of drug in plasma had a resistance mutation grow out that confers a lower level of
resistance but with less of a fitness cost as would be predicted from deterministic evolution.
In sum, the population dynamics of HIV-1 are clearly complex, maintaining a small number
of abundant haplotypes and a large number of minor haplotypes. The consistency with which
resistance evolved suggests that N, is much larger than calculated, with multiple resistance
alleles appearing under selective pressure and with the mutations that appear determined by
the level of selective pressure. These results are consistent with deterministic evolution

occurring within a large effective population.

3.2 Introduction

Human Immunodeficiency Virus Type 1 (HIV-1) can create a large, diverse
population within a host, but the evolutionary forces that shape the population have been
highly debated. The effective population size (Ne) is the idealized number of virions required
to create a population experiencing the same amount of genetic drift as the census population
(132). The N, of HIV-1 has been used to derive the frequency of pre-existing drug resistance
mutations (133-137) and how recombination affects the evolution of resistance (138).
Estimates of N, and population structure ultimately determine whether deterministic or
stochastic forces drive the evolution of a viral population.

The census population of HIV-1 is large and presumably diverse. The time needed for

an HIV-1 virion to attach, replicate, and produce progeny that infect new cells is estimated at
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2 days, with a maximum of approximately 10'° virions produced per day within a person
(31). The viral DNA polymerase, Reverse Transcriptase (RT), is error-prone, introducing
mutations at an estimated rate of 2.16x10” substitutions/site/generation during transcription
of viral RNA (VRNA) to double-stranded DNA (dsDNA) (9, 10). Due to a high mutation
rate, small genome size, and large census population, it has been hypothesized that every
single mutation can exist (36, 37). If the effective population size is greater than the inverse
of the mutation rate (~50k virions), the fate of alleles in this population is expected to be
dominated by Darwinian forces such as purifying selection. However, much smaller
estimates for the N, of HIV-1 have been argued, shifting evolutionary forces to the stochastic
effects of genetic drift (56, 57, 139, 140).

Most analyses of N assume Wright-Fisher mutation-drift equilibrium. Populations of
HIV-1, however, may not be at this equilibrium. Natural selection, population structure,
changes in population size, and and/or unequal reproductive ratios among progeny virions
can distort estimates of Ne. For HIV-1, assumptions of neutrality have yielded very small
estimates of N. (56, 57, 139-142), whereas adding selection has produced very large
estimates of N, (54). However, the majority of studies assuming neutrality estimated genetic
diversity from env gene sequences, a nonsynonymous biased immune target. Furthermore,
the sequences were derived using methods that only sample the most common alleles, likely
leading to underestimates of census population diversity (56, 57, 139-142).

Individuals can fail antiviral drug therapy. The role and clinical significance of pre-
existing resistance alleles in therapy failure is not fully understood. N has been used to
estimate the frequency of pre-existing resistance alleles and the probability that they will
contribute to resistance. However, as N. estimates greatly vary and may be biased by
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sampling, this measure is unreliable. Alternatively, studies have tried biological tools to
correlate the presence of pre-existing resistance alleles and virologic rebound. Allele-specific
PCR approaches suggest that pre-existing variants may prelude increased susceptibility to
therapy failure (40, 41), but resolution is limited by a priori screening of unlinked alleles.
Deep sequencing studies have produced correlative (42), partial (43), and non-correlative
(44) results on the impact of pre-existing resistance alleles, but have been limited by
sampling bias and error.

Because of previous limitations in estimating N, and characterizing viral diversity, we
sought to determine the population dynamics of HIV-1 sampled longitudinally and as the
population went through a selective event. We used deep sequencing paired with a novel
high-resolution sequencing technique we previously developed, Primer IDs (143), to capture
and identify individual viral genomes. For the 10 subjects sampled, both susceptible and
resistant populations had small N, but the viral population structure violated the assumptions
of Wright-Fisher equilibrium. All populations had the majority of genetic diversity
contributed by many low frequency haplotypes indicating that a high number of alleles are at
the mutation/selection balance, diversity is quickly recovered after drug selection,
recombination distributed the resistance allele among the low abundant diverse portion of the
population, and/or that a large number of resistance alleles on multiple haplotypes grew out.
We did not observe pre-existing resistant haplotypes that were directly selected under the
drug, although this could be due to an inadequate level of sampling. The consistency with
which resistance evolved on diverse background haplotypes suggests that N, is much larger

than estimated by traditional calculations.
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3.3 Materials and methods

Tagging, amplification, and sequencing of VRNA. Longitudinal samples from 10
chronically infected individuals (infected with HIV-1 subtype B) who were enrolled in the
protease inhibitor efficacy trial M94-247, were chosen for analysis based on the presence of
high viral load and virologic failure after the addition of the protease inhibitor ritonavir as
monotherapy (Fig. 3.1). Between 1 and 4 samples were examined per individual over the
study time course. Approximately 10,000 vVRNA templates went into a cDNA synthesis
reaction using a primer that annealed downstream of the protease coding domain, with the
primer containing at its 5' end a barcode, a degenerate Primer ID cassette, and a PCR primer
binding site, as previously described (143). Tagged cDNA molecules were amplified by
nested PCR. Amplicons were quantified using the Qubit platform (Invitrogen, Carlsbad, CA),
pooled in equal molar amounts, then 454 adaptors were added using the Lib-L Rapid Library
protocol (Roche, Nutley, NJ). The libraries were sequenced on the 454 GS FLX+ platform
with XLR70 Titanium sequencing chemistry as per the manufacturer’s instructions (Roche,

Nutley, NJ) but with under-loaded beads to minimize signal crosstalk.

Bioinformatic pipeline and analysis of viral populations. A suite of programs was written
to filter and parse raw 454 sequencing reads. In short, raw sequencing reads were first binned
by sample based on the barcode and then binned for each cDNA molecule by the Primer ID.
Within a sample, when 3 or more reads were present with an identical Primer ID, a consensus
sequence was constructed. The Primer ID technique and methodology is further detailed in
Jabara et al. (143).
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All statistical and diversity analyses were done on filtered populations of the
consensus sequences and devoid of sequences containing ambiguities; gaps were resolved by
alignment to the consensus sequence of the protease coding domain. Tajima’s D test and
sliding window analysis of m were computed by DnaSP v.5.10.01 (111). Sliding window
analysis of w had a window length of 100 and a step size of 10 bases. Whole gene m,
diversity, and haplotypes across and within populations were computed through customized
bioinformatics suites. SNPs were graphically displayed through the Highlighter tool

(www.hiv.lanl.gov).

Database population analysis. Viral protease sequences from therapy-naive subjects
infected with subtype B HIV-1 were downloaded from the Stanford HIV-1 database and
aligned to the same reading frame. Polymorphisms that appeared once in the data set and
mixtures were excluded. All full-length sequences were first screened for the absence of
Class III alleles (primary drug resistance alleles), which would indicate prior drug exposure.
The filtered population was then parsed based on the presence or absence of non-consensus
polymorphisms at Class II positions (compensatory mutations). Sequence alignments,

filtering, and diversity analysis was completed using customized bioinformatics suites.

3.4 Results
Protease nucleotide diversity in therapy naive populations is different between people
and related to population structure.

To resolve the genetic diversity and response to drug selection of in vivo HIV-1

populations, 10 chronically infected subjects who failed drug therapy were chosen for

56



retrospective longitudinal sampling and deep sequencing. For each subject, viral RNA was
isolated from serum samples representing between one and four time points taken pre- and/or
post-drug exposure. For each sample, approximately 10,000 copies of viral RNA were used
in the cDNA synthesis reaction, with the cDNA primer tagged with a barcode and Primer ID
as previously described (143). Tagged cDNA was amplified by nested PCR and sequenced
using the 454 FLX+ platform with Titanium chemistry.

The Primer ID component of the cDNA primer was used to correct for PCR biases,
sequencing error, and PCR re-sampling, and this allowed us to estimate a median sampling
depth of 0.2%. A depth <0.1% was reached for at least two time points for nine of the
subjects (Table 3.1, Fig. 3.1). In order to characterize the selective pressure on the viral
population, drug concentrations of ritonavir (RTV) were measured for time points after the
initiation of therapy. We found that drug levels varied greatly between patients and time
points. This is potentially due to differences in metabolism and, in some cases, likely
intermediate adherence. For either reason this would result in suboptimal drug exposure and

intermediate or cyclical selective pressure.
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Table 3.1. Summary of clinical metrics and sequencing resolution.

PID* | Sample” | VL® |RTV?| RTV (ng/mL)* | Reads’ | P-IDs® | Consensus”
1008 | TI 13,060 | + N/A 7,553 2016 299
1032 | TI 15380 | + N/A 15,091 782 338
T2 68,360 | + 15,117 11,049 541 233
T3 [216640 | + 0 754 291 60
T4 [273960 | + 1,864 13,495 744 208
1036 | T1 |236,040 | - N/A 52912 | 1763 954
T2 36,840 | + 5,669 47,754 | 1945 949
T3 45,780 | + 5,611 8,970 1202 857
T4 99,000 | + 4,667 11,057 643 349
1047 | T1 |279,000 | - N/A 2,984 831 391
T2 | 198,320 + 0 2,520 820 219
T3 33,040 | + 66 5,594 1077 584
T4 |202240 | + 770 3,174 1028 298
1051 | T1 |501,600 | - N/A 62,614 | 3114 1765
T2 |233,020] + 983 43,037 | 2130 770
T3 [351,880 | + 6,566 12,163 | 1082 666
T4 [330480 | + 5,339 5,144 1266 673
1079 | TI 199,520 | - N/A 16,386 827 161
T2 63,920 | + 5,723 967 192 44
T4 [ 242360 | + 6,610 17,531 | 4183 601
1113 | T1 |276,100 | - N/A 15,492 | 1203 548
T2 | 133240 + 1,773 15,020 | 1154 631
T3 [227,080 | + 742 15,490 | 1719 837
T4 |343,720 | + 5,540 23,259 | 2200 1112
1118 | T1 |205,600 | - N/A 7,207 981 136
T2 57,360 | + 19,830 27,605 | 1180 696
1127 | TI 139,080 | - N/A 19,820 | 2515 1387
T2 38,720 | + 1,639 11,136 711 353
T3 55,640 | + 1,160 8,211 1174 471
T4 | 181,160 | + 767 5,477 624 238
1157 | T1 |380200| - N/A 10,372 | 1518 816
T2 [349200] + 3,988 8,366 1028 126
T4 | 243,440 | + 1,056 1,732 747 77

“Patient identification.
®Time point of sample.
“Viral load (copies/mL).
“Therapy naive (-) or ritonavir experienced (+).
‘RTV concentration in blood plasma (ng/mL).
"Number of pre-consensus reads containing full length protease, Primer ID, and barcoding
information.
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fNumber of individual Primer IDs in population of pre-consensus reads.

"Number of consensus sequences constructed within a sample when 3 or more reads
contained identical Primer IDs.

N/A = not applicable
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Fig. 3.1 Longitudinal sampling of blood plasma from 10 chronically infected individuals
with HIV-1 subtype B that failed ritonavir monotherapy. Shaded areas represent times of
RTV therapy compliance based on self-report. Black circles are viral load (copies/mL), and
black open triangles are RTV drug concentrations (ng/mL). Arrows indicate time point

sequenced, and shade correlates to the resolved population depth (black: <1%, gray: >1%).

We assessed the standing genetic variation prior to the drug selection pressure with a
sliding window analysis of nucleotide diversity (s;t) across protease. Figure 3.2 shows reduced
diversity across the active site for all individuals, as expected for a region where catalytic
activity occurs. We found the mean intra-patient diversity was different between individuals
and correlated with the frequency of minor haplotypes in the population. For example, the
most diverse populations, found in subjects 1036 and 1079, had minor (<1%) haplotypes
making up 80% of the diversity of their populations. Conversely, haplotypes <1% for subject
1127 constituted only 34% of the population, resulting in lower & across protease (Fig. 3.2).
This analysis points to a key feature of the HIV-1 population: a small number of abundant
haplotypes, and a large number of minor haplotypes, with the proportion of these two types
of sequences varying between subjects. We do not know what causes the inter-subject
variation; pre-therapy diversity was not due to differences in sampling depth (Table 1), and
all individuals had CD4+ counts ranging from 5-44 cells/mm’ with no correlation between
CD4 count and differences in population structure.

Subjects 1036, 1047, 1051, 1079, 1113, and 1157 were therapy naive for all antiviral
drugs. Subjects 1118 and 1127 were taking an additional antiretroviral drug, the nucleoside

reverse transcriptase inhibitor (NRTI) ddC. Selection by ddC would target reverse
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transcriptase, thus proximal to the protease coding domain. Subject 1127 has the least
amount of viral genetic diversity, possibly correlating to NRTI selection. However, mt for
subject 1118 is intermediate in comparison to the other subjects. It will be important to
determine if an NRTI resistance mutation became fixed in either of these subjects. However,
it seems unlikely that selective pressure by this weak NRTI would be responsible for shaping
the population of the proximal protease coding domain. Alternative explanations for
differences in m could be intrapopulation competition, or time since the most recent

population bottleneck.
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Fig. 3.2 Sliding window illustration of the nucleotide diversity () of protease in pre-
therapy populations indicate spatial heterogeneity. Nucleotide diversity varies among
subjects and the catalytic region typically harbors the least variation. Pie charts depict the
percentage of population diversity that is made up of haplotypes >1.5% (blue) or <1.5% (red)

in frequency. Gray shaded area corresponds to the active site of protease.
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The majority of Class III drug resistance mutations pre-existed at frequencies above the
expected PCR/sequencing error rate but below the minimum frequency needed being
confidently sampled, likely confounding estimates of their frequency.

Primer ID enables in-depth resolution of population diversity, including minor
variants that confer drug resistance. However, residual technical errors remaining with this
method can confound whether a polymorphism is biological or artifactual based on the depth
of sequencing. The frequency of error introduced during RT and the first round of PCR is
expected to be 1 SNP per 33 protease genomes (1:10,000), and random misincorporation will
produce a ratio of nonsynonymous to synonymous of approximately 2:1. For the pre-therapy
time points, we observed approximately four-fold more single SNPs than expected given our
estimate of the residual error rate of the method. Overall, the SNPs that appeared once have a
mean ratio of nonsynonymous to synonymous of between 1.2 and 2. The excess of single
SNPs over the expected error, and with a modest bias toward synonymous mutations, shows
that our observed single SNPs are above the error rate but are not convincingly beyond an
unselected distribution of nonsynonymous to synonymous mutations to be devoid of
technical error.

Sampling depth will also dictate the probability a particular allele is sampled. The 8
pre-therapy viral populations were sequenced to a depth that would identify alleles
corresponding to 0.13% of the population and ranging from 0.6-0.06%. Based on the Poisson
distribution, the minimum frequency a single allele had to be present in order to be
definitively sampled (3/N) ranged from 0.17-1.86%. Furthermore, when a low frequency
allele is sampled twice—i.e. by two unique Primer IDs—there is a greater chance that the
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allele is biological and not technical error (the chance a randomly introduced error will
mutate the same site with the same nucleotide is extremely low). Typically, a polymorphism
needed to be at a frequency between 0.34-3.72% to be sampled twice (6/N).

The observed major RTV resistance variants V82A, 184V, and L90M, were not above
the frequency threshold where two alleles on identical haplotype background were sampled,
although a subset of them were found on more than one haplotype (Table 3.2). V82A was
found in three of eight individuals at a frequency ~0.2%. 184V was found in half of the
individuals and at a maximum on 0.74%. However, all of these variants were below the
expected frequency at which an allele could be present and sampled with certainty. Thus, the
failure to observe these alleles in other pre-treatment populations is not evidence for absence
of these alleles in these populations. Instead, there is a possibility that due to sampling depth

alone these and many alleles are missed.
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Table 3.2. Frequency of Class II or Class III protease inhibitor resistance associated

variants in therapy naive populations.

Patient ID?
Con® | Class® | Mut® | Codon® | 1036 | 1047 [ 1051 | 1079 | 1113 | 1118 | 1127 | 1157
L10 |1I F TTC |0.10 |61.64]0.06 0.55
I ATC |241 [997 [2.78 [37.8910.18 |1.47 ]99.64 | 12.87
R
\% GTC 1.24 0.07 10.12
C
K20 | III M | ATG [4.93 [4.35 [2646|1.24 0.74 10.07
R AGG 052 026 [130 |0.62 0.36
I
T
\%
D30 | III N
V32 |11 I ATA 1.24
M36 | 11 I ATA ] 19.60 | 12.28 17391073 [2.94 [0.94 [3.92
L TTA 0.12
\% GTG 0.26 1.24 0.25
\% GTA 0.06
M46 | 11 I ATA |0.63 085 |0.62 [0.73 [0.74 |0.65
I ATT 0.07
L TTG 0.50
G48 | 111 \% GTG | 0.10
154 |11 \% GTC |0.10 0.06
L
M
T ACC 0.62 0.74 |0.14
A
S
162 |11 \% GTA |20.44 | 691 24221036 |7.35 ]0.58
A71 |11 \% GTT 0.26 |0.06 0.74 10.07 |527
I
T ACT 0.06 |0.62 1036 0.14
L
V77 |11 I ATA [2.10 [4.09 |045 |14.29 022 |2.33
V82 | 111 A GCC |0.21 0.11 0.07
F
T
I ATC 0.23 0.74
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S
184 | III \Y GTA 0.21 0.62 0.74 0.12
N88 | III S AGT 0.10 |0.51 |0.11 0.07
D GAT 0.10 |0.26 | 0.06 |0.62 0.07
L90 | III M ATG 1.86
193 | 1I L CTT 0.10 |0.51 1.86 | 1.28 |44.85] 0.07
M

Italicized digits represent single observations.

*Consensus amino acid of resistance associated variant.

PDrug resistance mutation class’. Class II residues are defined as having >5% non-consensus
variability across untreated individuals in the database and increase in non-consensus
diversity with PI exposure. Class III residues are defined as having <5% non-consensus
variability across untreated individuals in the database and increase in non-consensus
diversity with PI exposure.

‘Nonsynonymous change of consensus associated with resistance.

‘Codon call if variant is observed.

Ypatient identification (PID).

Class III resistance mutations are typically at low frequencies in pre-therapy
environment and then increase in frequency with protease inhibitor selection (144). For each
pre-therapy population, at least one Class III resistance mutation was detected (Table 3.2).
Residues 32, 46, 82, 84, and 90 were found on 52/6158 haplotypes (0.08%). There were 45
total observations of a Class III allele, 71% of which were observed below the frequency a
single allele would be reliably sampled. Only 18% of codons harbored resistance alleles at or

above the frequency at which least two alleles would likely be sampled (specifically, residues

20 and 46).

Interpatient Class II/Compensatory Mutations in Therapy Naive Viral Populations are
associated with greater diversity in the protease.
Class II/compensatory mutations (residues 10, 36, 63, 71, 77, 93) are variable prior to

therapy, but increase in frequency with drug exposure (144). Because these mutations are
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polymorphic in a therapy naive environment and increase under drug selection, they may
make small contributions to the fitness of emerging resistant protease. Prior work suggests
that these alleles should be abundant within the pre-treatment population (144). Sequences
were obtained from the Stanford database representing population/consensus sequences from
many subjects naive to protease inhibitors. These sequences were filtered to remove any
haplotypes that contained major Class III resistance mutations, indicating prior drug
exposure. The sequences were then split into two groups, those that contained variation at
Class II positions and those that did not. By parsing sequences into these two groups,
nonconsensus polymorphisms can be assessed separately from sequences that had the
diversity at these positions conserved.

Non-consensus diversity = 0.1% was plotted per amino acid position (Fig. 3.2). There
were 9 polymorphisms in 7 amino acid positions where a substitution was present at ~2x or
greater frequency in sequences containing class II mutations versus conserved at those
residues (non-class II) and whose lower bound in frequency for non-class II polymorphisms
was ~0.4% (representing at least 9 independent observations). Those positions were 12IP,
16E, 37YH, 45R, 69K, 70T, and 89M. The positions that changed the most (3.5-4x) between
class II and non-class II sequences were 121 (1.64 vs. 0.39, 4.2x), 98M (1.87 vs. 0.48, 3.9x),
and 16E (4.32 vs. 1.17, 3.7x). 12P, 37H, 45R, and 70T changed ~2.5x (3.4 vs. 1.26, 1.71 vs.
0.65, 1.44 vs. 0.57, 2.48 vs. 1, respectively). 37Y had a 2.4x difference (0.94 vs. 0.39), and
69K a 2x difference (1.66 vs. 0.83). Sequences that contained consensus diversity at the
Class II positions contained ~2-3x greater non-consensus polymorphisms at positions 12N,
18L, 39Q, 70R, and 92K. This pattern of linked polymorphisms may suggest compensatory

effects among these mutations.
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Fig. 3.3. Therapy-naive non-consensus interpatient diversity =0.1% of protease in the
Stanford database. Sequences derived from untreated subjects in the Stanford database were
separated by the presence (gray bars) or absence (black bars) of Class II resistance associated
alleles. The non-consensus diversity of these populations was then plotted per residue and

polymorphism.

Diversity of the viral population within a subject is less than the diversity seen between

subjects.
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There were 20 residues in the database sequences (which represent the
consensus/most abundant sequence in each subject) that harbored non-consensus alleles at a
moderate frequency (=5%) between subjects. These residues were compared to their
frequency in the intrahost populations, and were found to be present but at a much lower

frequency (Fig 3.4). Furthermore, for 18 of the 20 positions this difference was significant

(Z-test).
1036 1047 1051 ®=1079 ®=1113 1118 m1127 w1157
E x x
o b >
10 -k x x X_><L__
3 F%3 x >
1 — I —
o Jr1,[_
0.01 | I
I/S|V|R L |V ‘ R ‘ T ‘ VIiVv|I]|L
1012 (13|14 15 ‘ 19 ‘ 35|36 ‘ 37 ‘ 41 ‘ 57 ‘ 60 | 62 64 ‘ 70 ‘ 71 72|77 ‘ 93 ‘

Fig. 3.4 Intrapopulation diversity contains major variants found across individuals in a
database population but at significantly lower frequencies. Major (=5% ) interpatient
non-consensus diversity in the database was compared to their frequency within individuals.
Each colored bar represents an individual subjects, whereas black Xs indicate the weighted

non-consensus mean frequency in the database population.

Plasma drug levels for the sampled populations were highly variable and did not

correlate with the path to resistance.
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To estimate the strength of drug selection on the treatment-experienced population,
plasma levels of the protease inhibitor were measured. Across the entire cohort, drug levels
ranged from below the limit of detection up to 19,830ng/mL (Fig. 3.1, Table 3.1).

All subjects experienced virologic failure and we interpret the relationship between
drug exposure and resistance mutations as falling into three patterns. For subjects 1036,
1051, 1113, and 1127 higher levels of ritonavir were detected in the plasma samples and the
resistance mutation V82A became largely fixed in the population, the commonly seen
mutation associated with ritonavir resistance. In contrast, subjects 1079, 118, and 1157 had
comparable levels of ritonavir in the plasma samples but had little or no drug resistant
variants in their viral population; we interpret this to indicate poor adherence. Finally, subject
1047 had low levels of drug in the plasma but largely fixed the resistance mutation 184V with
lower levels of V82A in the population; we interpret this to indicate that the I84V mutant was
more fit than the V82A mutant yet provided sufficient resistance to this low level of drug
exposure. The presence or absence of drug resistance mutations was not related to the pre-

therapy diversity (st) in the population.

Population genetic estimates of the effective population size suggest that the effective
population size of HIV-1 is much smaller than the census size.

The effective population size can inform whether evolutionary forces on a population
will be deterministic or stochastic. N, can be calculated using 6, as 6 = 4N.u for a diploid
population, and 6 = 2N.u for a haploid population. HIV-1 is pseudodiploid, contains 2 copies
of each allele, and can recombine, therefore the former equation was used to calculate N.. 6

is a measure of the expected nucleotide diversity of a population at mutation-drift
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equilibrium (58). Viral load is a surrogate for census population size. We estimated the
number of segregating sites (positions in protease with a SNP), & (a measure of the number
of polymorphic alleles and their frequency), 0 (4Neu), Tajima’s D (a measure of deviation
from mutation-selection equilibrium) (58), and the effective population size under the
assumption of mutation-drift equilibrium. Using the equation 6 = 4N.u, the effective
population size was calculated to range from 620-1,129 virions (Table 3.3). These estimates
are well within the range of previous inter-population data, but below the highest suggested
values for N, (56, 57, 139-142). There is a weak positive correlation between N. and viral
load (VL), meaning the difference between the census population size of HIV-1 (VL) and N.
across individuals is not uniform (Fig 3.5). This discrepancy suggests that the population
dynamics of HIV-1-e.g. frequent population bottlenecks, high variance in offspring number,
repeated selection—are reducing the effective number of reproductive virons dramatically.
As a result, natural selection would not act as efficiently and a relatively small number of
resistance alleles may have sufficient selective advantage to contribute to drug resistance. If
HIV-1 is treated as a haploid entity, then the calculated N. would be twice as large, but still

small relative to the census population.

Table 3.3. Measures of population size and variation in the therapy naive population.

1036 1047 1051 1079 1113 1118 1127 1157
) RNA 236,040 279,000 501,600 199,520 276,100 205,600 139,080 380,200
copies/mL

S 174.00 119.00 172.00 103.00 133.00 78.00 178.00 141.00

T 0.03 0.02 0.02 0.03 0.02 0.03 0.01 0.01

6 0.10 0.08 0.09 0.07 0.07 0.05 0.09 0.08

D -1.90 -2.31 -2.33 -1.82 -2.24 -1.54 -2.66 -2.37
Ne 1129.28 876.39 105590 865.74 852.08 619.56 1086.81 917.36
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Figure 3.5 A weak positive relationship between HIV-1 census population size, as
inferred from viral load, and the effective population size (N¢). N, was inferred assuming
pseudo-diploidy, a mutation rate of 2.16 x 10°, and O estimated from the number of

segregating sites.

The Tajima’s D statistic of therapy naive- and therapy-experienced populations does
not change, suggesting the viral populations are not at mutation-drift equilibrium.
Tajima’s D statistic measures the deviation between the expected distribution of allele
frequencies at mutation-drift equilibrium and the observed distribution (113). Negative
values of D can indicate recent selective sweeps, population bottlenecks, and population
expansion; positive values can indicate balancing selection, migration, and population
subdivision. We observed strongly negative Tajima’s D in almost all samples (Table 3.3).
Due to suboptimal selection in some subjects, the therapy-experienced population was further

divided by susceptible and resistant variants. Tajima’s D was not significantly different
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between pre-therapy, therapy-experienced susceptible, and therapy-experienced resistant
populations, and most had a significantly negative D value (Fig. 3.6). The one positive D
value was from a susceptible population that contained a small number of haplotypes
comprising the majority of the variation. Because a strong negative D indicates an excess of
low frequency polymorphisms, and because this value did not dramatically change with drug
exposure, this suggests to us that multiple haplotypes with resistance mutations grew out with

selection and that these haplotypes also displayed additional low abundance variants.
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Fig. 3.6 Population diversity and structure across the entire cohort does not
significantly change with drug exposure. Tajima’s D statistic was calculated for pre- and
post-therapy samples containing at least 100 sequences. Within a therapy-experienced

population, susceptible and resistant subpopulations were analyzed separately.

The diversity of the emerging resistant population can be greater than the pre-existing

diversity, indicating the outgrowth of multiple resistance alleles.
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The significantly negative Tajima’s D statistics indicates that the majority of
populations were not at equilibrium. Because of this, calculations of N based on 6 will be
likely downwardly biased because 68 = 4N.u is only true for populations at equilibrium.
Regardless, demographic complexities of intrahost populations of HIV-1 suggest that it
would be difficult to predict the fate of resistance alleles from the pre-therapy data.
Alternatively, one can observe how biological diversity changes under selection. The
rebound population could indirectly reveal estimates of N, based on de novo outgrowth of
resistant alleles.

The nucleotide diversity metric © was longitudinally calculated for susceptible and
resistant populations for the pre- and first post-therapy time points. Sequences were
considered resistant if they contained one of the major protease inhibitor residues
V82AIFTS, 184V, or L9OM. To curtail sample size bias, 1 was only calculated for
populations containing =40 sequences.

Interestingly, subjects 1051, 1113, 1127, and 1157 all had emerging resistant
populations with a much greater n than the pre-existing population (Fig. 3.7), but often with
fewer segregating sites (S). This result counteracts the simple model of drug selection
resulting in the outgrowth of a predominant variant as these m and S values suggest multiple
haplotypes with a resistant allele at intermediate frequency and a slight drop in low frequency
alleles. In these subjects, the majority of variants contained resistant alleles. Furthermore, =
~50% of the variation was made up of low frequency unique alleles <2% in frequency.
Subject 1036 did not follow this trend because only a single major (9%) haplotype conferred
resistance, and the absence of resistant alleles likely resulted in a lower m value for the

emerging subpopulation in comparison to susceptible variant.
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Fig. 3.7. Report of longitudinal & values from biological and simulated outgrowth
populations. For each biological population, t was calculated for the pre-therapy time point
(open circles), resistant (red circles) or susceptible (blue circles) populations when at least 40
sequences were present. Closed black circles represent st from 10 replicate sampling and
outgrowth of the pre-therapy population that underwent a bottleneck of 90%. The
bottlenecked population was allowed to grow out 1, 5, 10, 25, and 50 generations

(approximately 1.5-150 days) with a mutation rate of 2.16x107.

The path to higher levels of resistance is unique in each subject but involves common
resistance alleles.

The fate of emerging resistance alleles under selection has not been well
characterized in vivo. To address the path to resistance, we examined the genetic diversity of
longitudinally sampled populations under drug selection. Our data show that the pre-existing
diversity is composed of very low frequency alleles in a large census population. Because of
the limits of our sampling, determining whether haplotypes in these therapy naive
populations grew out during viral rebound populations is difficult to address. However, by
looking at patterns of SNP variation on resistance haplotypes, we can infer which haplotypes
likely were pre-existing and see if deterministic forces shape the evolution of resistance.

V82A, 184V, and L90OM are well-characterized, major polymorphisms that confer
resistance to the RTV protease inhibitor. In all populations that rebounded with resistance, at
least one of these variants was present (Fig. 3.8). V82A was the most common allele
enabling drug escape, emerging as single dominant resistance mutation for 1036, 1118, 1051,

and 1157. V82A was sampled as pre-therapy variants in 3/8 individuals, all of which had this
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allele emerge but on different haplotypes than was detected as pre-existing. V82TFS are
alternative nonsynonymous substitutions at position 82 that confer a low-level of resistance.
These were only sampled in therapy-experienced populations, and none of these alleles grew
out. 184V was sampled in 4/8 pre-therapy populations, none of which grew out in these
individuals. All patients had 184V sampled in at least two time points, but this variant only
grew out in patients 1047 and 1127. It was not detected as a pre-existing variant for these two

individuals.

76



c 100
s 1036 /__
2 3
©
S 80
o
o
a
c
= 50
>
0
c
9]
E
o
19)
- 10 —
e —
o 100
§ " f1047
2
S 80
=%
o
a
>
9
c
o
>
o
(9] A_,——””’
C 10
- —_— ——<
c 100
o £1051
©
S 80
o
o
a 3
>
3 3
c
S E
E
2 3
2 1
L ——
o 100
5] £1079
2
D 80
]
a
o
=%
£ 50
>
9
c
o
>
o
2 T1 T4
fra —
—V824A 184V K20 RAGA  ——M46 I ATA
—V82s ——K20MATG ——Md46 L TTG
—v82T
VaoF L9OM ——V321ATA  ——I54V GTT
——154 LGTT

6000

r 5000

I 4000

3000

r 2000

r 1000

6000

r 5000

r 4000

3000

r 2000

r 1000

I 6000

r 5000

r 4000

3000

r 2000

r 1000

I 6000

r 5000

r 4000

3000

r 2000

r 1000

100

80

50

100

80

50

100

80

100

80

50

1113

/ C—~—

L— ——

1118

T2
T1

1127

1157

T4

o - /

Vs
—

=
5000 O
=]
Q
4000 <.
5
~
3000 3
Q
~
2000 3
=
>
1000
20000
18000 5
16000 &
14000 3
12000 <.
=
~
6000 3
s000 Q.
4000 3
3000 [
2000
1000
6000
2
5000 &
=]
]
F 4000 <,
5
—
3000 3
Q
S~
L 2000 3
=
D)
+ 1000
r 6000
=
L s000 3
=]
Q
4000 <.
5
—~
3000 3
Q
Q
L 2000 3
=
>
b 1000

Fig. 3.8 Intrapopulation frequency of resistance associated alleles during drug selection.

Major RTV resistance associated mutations V82ASTF, 184V, and L90M (thick lines) and

Class III mutations (thin lines) were plotted by frequency over time. Time is illustrated from

left to right, T1, T2, T3, and T4, respectively, unless otherwise noted. Gray bars (right y axis)

denote the concentration of RTV in that individual sample.
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It is also known that continuous, strong selection of a protease inhibitor results in the
accumulation of additional resistance mutations in a step-wise manner (45). For subjects
1113 and 1127, V82A was linked to one other major resistance variant, LOOM and 184V,
respectively. Prior to adding either L9OM or 184V, there were minor resistance mutations on
the same haplotype of V82A such as K20R. The addition of a second major resistance allele
further added an additional allele that was only seen when both major resistance alleles were
present. For V82A, the gain of L90M also included L10I and A71V on the same major
haplotypes. The addition of 184V was joined by L63P. Due to the strong level of resistance
conferred by two major resistance alleles, these additional variants likely have compensatory
roles.

For some subjects it was clear that intermittent drug exposure, either due to
compliance or metabolic issues, allowed for the persistence of susceptible variants. This may
have also limited the accumulation of additional major resistance alleles on the dominant
haplotypes as the fitness cost of these alleles during time of reduced drug exposure may have
prevented them from achieving high frequency. However, the overall trend supported the
addition of new resistance mutations on haplotypes emerging in the rebound population (e.g.

1127, Fig. 3.9).
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Fig. 3.9 Escape from ritonavir monotherapy is unique per patient and involves
dramatic restructuring of haplotypes over time. The emergence and evolution of drug
resistance is detailed for patients (A-C) 1036, (D-F) 1047, (G-I) 1051, (J-L) 1113, and (M-O)
1127. (A, D, G, J, M) For each individual, time points sampled (arrows) are plotted by study
day and ritonavir exposure (shaded). (B, E, H, K, N) For each time point within an
individual, the 5 most dominant haplotypes are represented in a pie chart by frequency for the
other 3 time points. White inset numbers are the frequencies of non-dominant haplotypes that
also have a major resistance allele at positions 82, 84, and/or 90. Color of the pie chart slice
correlates to a given variant within a row. (C, F, I, L, O) Polymorphisms on each haplotype
are detailed by a highlighter plot. Dominant variants that are not class III are listed above the

highlighter plot above the variant and colored by the highlighter tick mark. Class III variants
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are listed below the highlighter plot. Variants not described are designed by black circles as
either coding (filled), or silent (open). Asterisks above the highlighter plots for each time

point mark the location and color of lines that are major ritonavir resistant variants.

Because HIV-1 has a high capacity for both recombination and mutation, it is debated
which of these mechanisms drives the step-wise addition of new resistance mutations on
emerging haplotypes. If recombination is the driving force, the resistant recombinanat
haplotype should be derived from parental haplotypes at a relatively high frequency as these
haplotypes are more likely to have high levels of co-infection. (Similarly, if low frequency
resistant haplotypes recombined, these increased resistance haplotypes would be more likely
to be destroyed by subsequent recombination with common, but less fit haplotypes.) Under a
stepwise new mutation model, one expects the most resistant haplotype to be derived from
one of the common haplotypes of the previous sample.

As previously discussed, the subject 1113 had multiple major resistance mutations
grow out on the same haplotype. For the final time point, V82A and L90M were linked on all
of the top 5 haplotypes (Fig. 3.9L). In addition to V82A and L90M were also class II
mutations A71V (5/5 haplotypes), L10I (top 4 haplotypes) and class III mutations 154V (5/5).
The top 5 haplotypes for the prior sampled population (T3) had V82A without L90M,
suggesting that L90M was added later with drug selection. Furthermore, L90M was not on
any haplotypes in T3 at a high enough frequency and contained the allelic combination that
would produce the variant emerging in T4 by recombination.

Comparing the pre-therapy population (T1) to the emerging population after drug
exposure (T2-4), major haplotypes were absent or at extremely low levels for 4/5 individuals
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(Fig. 3.9E, H, K, N). The haplotypes and frequency for patient 1036 (Fig. 3.9B8) were largely
preserved between the two time points, though T2 was sampled at a time of population
contraction. Therefore, for each time point across the 5 individuals, the evolution of
resistance involved a step-wise accumulation of mutations. These mutations were likely
added de novo, not by recombination. Variants would have to be at a high enough frequency
and with a complementary set of alleles that would produce recombinants identical to the
haplotypes that emerged. In these individuals, recombination does not appear to play a

dominant role in the emergence of resistance.

3.5 Discussion

HIV-1 population size and structure, as well as evolutionary forces that shape it,
remain poorly understood and often debated (54, 56, 57, 139-142). At the crux of this debate
are estimates of the effective population size (N.), which can determine how strong selection
must be for deterministic forces versus stochastic forces to shape the fate of new alleles and
the population response to selection (58). Historically, quantifying N, in HIV-1 has largely
been limited to mathematical modeling, and many of these models infer in vivo diversity
based on sequence data that only reveals major haplotypes within a population (54, 56, 57,
139-142). In contrast, we use next generation deep sequencing technology with a Primer ID
to directly resolve the genetic diversity of in vivo HIV-1 populations (143) and then sampled
these populations through a drug selection pressure to characterize the path to resistance and

the forces that shape it.
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Although HIV-1 appears to have a large census population size, N, is comparatively small.
We uncovered a large number of low frequency unique haplotypes that would typically be
missed, but found that intermediate frequency variants were often lacking. As indicated by
strongly negative Tajima’s D, these minor variants were in excess of what would be expected
under the Wright-Fisher mutation-drift model, indicating population not at equilibrium.
Therefore, estimates of N, based on 0 (a measure of total population diversity) are likely
downwardly biased, as 6 = 4Neu only at equilibrium (113). Typically, population
bottlenecks, rapid population expansion, and selective sweeps can result in a negative D
(113). The pre-therapy population and post therapy populations both had strongly negative D,
which suggests that the demographic force shaping diversity is acting throughout the
infection. Similarly, the selection for resistance alleles imposed by drug treatment did not
strongly reduce D further. For the majority of emerging resistant populations, m was
significantly higher than the diversity of the pre-therapy population. Since the structure of the
population did not change, the higher mt value for the emerging resistant population indicates
that resistance emerges on novel alleles that have more SNPs between them in comparison to
susceptible alleles in the pre-therapy population. This may be partially explained by an
increase in frequency, but not fixation, of multiple resistance haplotypes within a population,
despite a drop in the number of segregating sites. This pattern may suggest that there is
appreciable clonal interference among emerging resistance haplotypes (51).

The apparent small N, and skewed allele frequency distributions did not prevent the
evolution of multiple resistant viral haplotypes—all subjects ultimately failed therapy and
Class III (major) drug resistance alleles were segregating in all subjects. However, these

same alleles are at low frequency prior to drug selection, consistent with their deleterious
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effects on fitness. Thus, the selective benefit of these alleles during drug treatment must also
overcome their normally deleterious effects. The fitness cost of individual Class III
polymorphisms in the therapy naive environment can be calculated by assuming pre-therapy
alleles are at mutation-selection balance and viral mutation rate (u) 2.16x10”. The cost (s)
for all Class III resistance alleles in the pre-therapy environment ranged from 0.1-3.1%
(Table 3.4). N88SD, V82A, G48V, 154V, and M461 all had s. ~2-3%. However, it should be
noted that V321, M461 ATT codon, M46L, and L90M were only sampled in a single

individual therefore the estimate of s, at best approximate for those polymorphisms.

Table 3.4. Average pre-therapy fitness values of Class III resistance mutations.

Allele® Codon® 58 Suo?
K20M ATG 0.61 1.72
K20R AGG 0.47 1.48
V321 ATA 0.17 1.33
M461 ATA 0.31 1.43
M461 ATT 3.09 4.01
M46L TTG 0.43 1.35
G48V  GTG 2.16 3.05
154V GTC 2.88 3.80
154T ACC 0.73 1.96
V82A  GCC 2.03 2.94
V821 ATC 0.62 1.90
184V GTA 0.87 2.05
N88S AGT 1.91 2.88
N88D  GAT 2.00 3.01
LO9OM  ATG 0.12 1.27

Class III resistance allele

PResistance allele codon

“% disadvantage

IAverage total % fitness when s, = 10/N,
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For selection to dominate the fate of an advantageous allele with selective benefit s,
Ne sp>> 1 (58). Thus, a minimum estimate of s, is the inverse of the effective population size
(Ne). Therefore, for s to be beneficial, the minimum frequency it has to reach (1/N.) is 0.09-
0.16%. However, a more realistic and conservative estimate of this frequency (e.g. 10/N, so
that N, s, >> 1) is 0.9-1.6%. The total selective benefit (s;) of a resistance allele during drug
treatment is therefore s. + s, = w. The average fitness for each Class III resistance mutation
ranged from 1.2-4.0% (Table 3.4). This is still likely an underestimate as an allele with a 1%
advantage would require 5-6 years to sweep to fixation (58) and most resistance alleles swept
in less than 200 days (~100 generations) (Fig. 3.8-9).

Each patient had a unique path to failing RTV monotherapy, and the dominant
resistant haplotypes sampled during the course of failure were not identical to pre-therapy
haplotypes nor were they always sampled in lateral time points (Fig. 3.9). The evolution of
RTV failure followed a step-wise accumulation of mutations on common haplotypes (Fig.
3.9). Major variants that emerged within the population were likely formed by a de novo
addition of alleles versus recombination events, as evidenced by an absence of major
haplotypes in prior time points that could have been in a high enough frequency to recombine
to form the emerging haplotype.

Why individuals fail therapy is likely a question that will need to be re-interpreted on
a per-patient basis. Our sub-cohort of 10 individuals all had very similar clinical factors.
They were chronically infected with HIV-1 subtype B, had extremely low CD4 counts, high
viral loads, and no previous protease inhibitor exposure. It is remarkable that when given the
same exact drug, each individual failed in completely different ways. Our work suggests a
complex interplay between selection pressure, viral diversity, and population dynamics. It
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also suggests that the pre-therapy population may not be able to determine virologic
outcome, or increased longitudinal sampling and depth is needed prior to drug exposure to
better ascertain pre-existing resistance-associated variants. Our work illustrates how slight
deviations in drug selection pressure shapes the emergence of resistance and dominant
haplotypes. We also have evidence that the de novo addition of resistance-associated alleles
on common haplotypes has a greater role in what dominant variants emerge versus

recombination between haplotypes.
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Chapter 4
Ultra-high resolution Primer ID sequencing reveals higher viral diversity and different pre-

existing protease inhibitor resistance-associated mutations in HCV mono-infected versus
HCV-HIV co-infected individuals

a,b,c,d f

Cassandra B. Jabara®™, Fengyu Hu®, Corbin D. Jones™, Ronald Swanstrom™* and
Stanley M. Lemon®*

“Department of Biology, "Lineberger Comprehensive Cancer Center, “UNC Center for AIDS
Research, dUNC Liver Center, “Division of Infectious Diseases, fCarolina Center for Genome

Sciences, 'Department of Biochemistry and Biophysics, The University of North Carolina at

Chapel Hill, Chapel Hill, NC, 27599, US

4.1 Abstract

Interferon-sparing, all direct-acting antiviral (DAA) combination therapies are
demonstrating increasing efficacy in treatment of chronic hepatitis C. Pre-existing resistance-
associated variants (RAVs) may influence virologic outcome. Deep sequencing technology
has the potential to provide novel insight into the frequency of such variants, but is
confounded by high procedural biases and error. We previously described a Primer ID
sequencing strategy that directly detects and eliminates many potential sources of error in
deep sequencing, allowing for accurate ultra-high resolution analysis of viral populations.
We applied this method to detect very low frequency (<0.1%) variants in the HCV NS3

protease in HCV-treatment naive individuals, and to determine whether genetic diversity and



the frequency of pre-existing RAVs differs between mono-infected and HCV-HIV co-
infected individuals. In a cohort of 15 HCV mono-infected and 13 HCV-HIV co-infected
subjects well-controlled on HARRT, Primer ID sequencing revealed that all populations had
an excess of low frequency polymorphisms. We observed significantly less genetic diversity
and possibly qualitatively dissimilar pre-existing RAVs in co-infected vs. mono-infected
subjects. These differences may presage variation in virologic responses and possibly altered

patterns of resistance to DAAs in mono- versus co-infected patients.

4.2 Introduction

Hepatitis C Virus (HCV) infects approximately 200 million people, and causes ~366
thousand deaths annually due to liver cirrhosis and hepatocellular carcinoma. The majority of
contemporary transmissions are through blood-to-blood contact by way of intravenous drug
use (IDU). Around 70 percent of individuals infected with HCV develop persistent infection
(2-4), requiring antiviral drug intervention to suppress the intrahost viral population. Until
recently, the standard of care for treatment of chronic HCV infection was a combination of
pegylated interferon-o and ribavirin (PEG-INF/RBV) (145, 146); this therapy, poorly
tolerated by many patients, has limited efficacy. Furthermore, only 42-46% of genotype 1
infected patients achieve a sustained virologic response (SVR) on PEG-INF/RBV (145, 146).
Due to the poor efficacy of PEG-INF/RBV and development of compounds that directly
target hepatitis C viral proteins, treatment is moving away from PEG-INF/RBV to all Direct
Acting Antiviral (DAA) approaches. All DAA therapies offer several advantages over PEG-
INF/RBV: a higher percentage of HCV infected individuals are eligible for treatment, DAAs

are better tolerated, DAAs counteract the virus through direct targeting, and there is an
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increased breath of options and combinations, allowing for a more personalized approach and
re-treatment of individuals experiencing virologic breakthrough. Disadvantages of DAAs are
that they are expensive, patients can experience virologic breakthrough (albeit commonly
delayed), and DA As contain low genetic barriers.

DAA development has focused on the NS3/4A serine protease due to the multifaceted
and critical functions it has in viral production and persistence. The NH,-terminal third of
NS3 contains proteolytic activity; NS3 heterodimerizes with co-factor NS4A, and this
complex cleaves four sites downstream of the NS2-3 junction in the HCV polyprotein (7),
allowing for the release of nonstructural proteins. Furthermore, NS3/4A cleaves host
signaling molecules activated by dsRNA, blocking the TRL3 and RIG-I pathways (reviewed
in (5)). In addition to proteolysis, the COOH-terminal of NS3 contains NTPase activity and a
RNA helicase domain. Both are critical for replication (147). Although these two domains
fold separately from each other, the COOH-terminal residues are found positioned within the
shallow active site (147-149), and have been used as guidelines for the development of small
molecule inhibitors (150, 151).

Due to interconnectedness of proteolytic and helicase activities, protease inhibitors
can effectively suppress the viral population through multiple mechanisms, and viral
diversity that decreases or prevents DAA binding likely has large negative fitness effects.
However, because HCV can produce large, heterogeneous populations in a host, resistance
associated variants (RAVs) are commonly present in an untreated environment. HCV’s
replication cycle has a half life of 2.7 hrs (range 1.5-4.6 hrs) (32), and approximately 10"
virions are produced per day (32-34). HCV’s RNA-dependent RNA polymerase (RdRp)
NS5B adds 1x10™ to 1x107 substitutions/site/generation (11), and is biased in G:U and U:G

&9



mismatches (29). The quick life cycle and high production rate of new mutations introduced
into the small, ~10kb viral genomes has led to estimates that at any given time within a large
population, every single mutation can pre-exist (35), but the frequency at which an allele will
exist is the balance between the rate at which it is added (mutation) and removed (selection).

Deeply characterizing the standing genetic variation within an in vivo population can
detect pre-existing resistance associated variants. However, their steady-state frequencies and
whether they can be directly selected under a drug is unknown. Furthermore, intrahost viral
diversity can be influenced by a co-infecting pathogen, potentiating differences in pre-
existing RAVs and DAA response. The HCV infected IDU cohort overlaps with individuals
infected with the blood-borne Human Immunodeficiency Virus (HIV). HCV-HIV co-
infection is predominantly with HCV genotype 1, (152) and co-infection is common in
countries that have a high IDU rate and disease prevalence of both pathogens. For example,
HIV-HCYV co-infection in Russia and the Ukraine has been reported at 70% (153).

The biologic effects and clinical observations of mono- versus co-infection suggest
dissimilarity of intrahost viral diversity. HCV-HIV co-infection increases patient morbidity
and mortality (65) by causing a three fold acceleration in fibrosis, cirrhosis, and liver disease
(66). HIV has direct effects on liver injury; the virus can fuse to hepatic stellate cells and
hepatocytes by way of CCRS5 and CXCR4 co-receptors, inducing apoptotic and pro-
inflammatory pathways (154, 155). Despite this, previous studies have failed to demonstrate
a difference (67, 68), or consensus (69-72) on whether HCV-HIV co-infection influences
viral diversity, though these observations are likely confounded by variance in sampling

depth, cohort size, methodology, and genomic regions examined .
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The standing genetic variation of in vivo HCV populations is poorly characterized,
leading to biased estimates of RAVs and ignorance of their fate after selection. Because co-
infection may influence HCV diversity and differences in RAV frequency, we applied a
novel, high-resolution deep sequencing approach to directly resolving the genetic variation of
NS3 in 15 HCV populations mono-infected and 13 populations co-infected with HIV. Deep
sequencing with Primer IDs directly corrected for PCR biases and error inherent in deep
sequencing protocol (143) and captured thousands of genomes per population.

Because Primer IDs can form secondary structure and interactions with structured
RNA genomes may result in non-random tagging, we first compared replicate tagging and
sequencing reactions for 4 subjects, 2 mono-infected and 2 co-infected. We found that
throughput was enhanced by using patient-specific primers and decreased PCR cycling
conditions. Increasing cDNA synthesis temperatures resulted in a decrease in depth but an
increase in the number of sequences recovered per Primer ID for mono-infected but not co-
infected subjects for reasons that remain unclear. Independent re-constructions of replicate
populations revealed a strong correlation of individual haplotype frequencies, further
supporting random tagging.

For the 15 mono-infected and 13 co-infected populations, average nucleotide
diversity (;t) was higher in mono-infected individuals. A sliding window analysis of =
demonstrated variability between subjects and residues, including active site residues. Each
population contained an excess of low frequency polymorphisms, indicating population
disequilibrium. Pre-existing RAVs were detected in 13/13 co-infected and 13/15 mono-
infected individuals. When comparing the presence and frequency of pre-existing resistance

mutations between mono-infected and co-infected individuals, RAVS were more frequent at
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NS3 A.A. 36 and 168 in co-infected individuals, and at 41, 55, 107, 109, and 170 in mono-
infected subjects. Repeated resampling analyses suggested these differences sort with HIV
co-infection. These preliminary findings indicate that DAA response between the two groups
may be different as well, and support alternative treatment approaches based on co-infection
status.

It is currently unknown whether RAVs in the standing genetic variation can be
directly selected under a DAA. If pre-existing diversity can predict drug response, not only
would studies like this increase the probability of obtaining SVR by informing drug choice,
but also advocate for alternative therapeutic approaches in mono-infected and co-infected

populations.

4.3 Materials and Methods
VRNA extraction and ¢cDNA synthesis. Human blood sera samples provided by the
University of North Carolina Hospitals AIDS Clinic and UNC Liver Center for analysis were
HCV genotype la positive, had a viral load = 5x10° IU/mL, and CD4+ count >350
cells/mm’. Co-infected subjects were on HAART and had undetectable HIV viral loads.
HCV genotyping was confirmed by RT-PCR and nested-PCR with primers targeting core
NSS5B proteins.

For each sample, VRNA was extracted using the QlAamp Viral RNA Kit (Qiagen,
Valencia, CA). Approximately 10,000 copies of viral RNA from each sample were present in
the cDNA synthesis reaction as previously described (87, 109, 110). The tagging primer used

was, 5°-
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ACCTTGCAAGCACGCTCTGGCCTTGAANNNNNNNNCT(BARCODE)GAACACCGG
GGACCTCATGGTTGTCTC -3’. The barcode represented individual a priori selected
sample IDs. The 3’ end of the tagging primer targeted downstream of H77 amino acid 175
(H77 3971-3945) and was customized per patient based on population sequencing.

Oligonucleotides were purchased from IDT and were purified by standard desalting.

Amplification of tagged sequences. The single-stranded cDNA was column purified using
the PureLink PCR Purification Kit (Invitrogen, Carlsbad, CA), using Binding Buffer HC
(high cut-off) 3X wash to remove the cDNA primer. Primer removal was verified by
electropherogram analysis using an Experion HighSense RNA microfluidic chip (Bio-Rad
Laboratories, Hercules, CA). Samples were amplified by nested PCR, using upstream
primers 5’-TAYTGCTYGGRCCRGCYGA-3’ (H77 3370-3388) and 5’-
AGTGGAGGGTGAGGTCCAGAT-3" (H77 3505-3523). The second round upstream PCR
primer was customized per patient based on population sequencing. The downstream primers
targeted the 5’ portion of the cDNA tagging primer 5-ACCTTGCAAGCACGCTCTGGC-3’
then 5°-CAAGCACGCTCTGGCCTTGAA-3’. The PCR reaction used PrimerSTAR™ HS
kit (TaKaRa, Japan). Each reaction contained 1x PrimerSTAR™ HS Buffer Premix. For the
first round of PCR, purified cDNA was split into to two 50ul reaction system. Each reaction
was amplified 20 cycles of 98°C for 10 seconds, 68°C for 45 seconds. After the first round
PCR, 1ul of the combined first round PCR reactions went into second round PCR. Second
round PCR was amplified for 20 cycles of 98°C for 10 seconds, 68°C for 45 seconds, and gel
purified using a 2% agarose gel and MinElute gel extraction kit (Qiagen, Valencia, CA), with

incubation of the solubilization buffer at room temperature. DNA was quantified by Qubit
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fluorometer using dsDNA High Sense assay (Invitrogen, Carlsbad, CA). Product generation,
quality, and primer removal was verified using a Bioanalyzer DNA microfluidic chip

(Agilent, Santa Clara, CA).

454 pyrosequencing. Amplicons were quantified by picogreen and equimolarly pooled into
individual libraries containing a median of 4 samples each. Rapid library adaptors were
added to the amplicon populations by a blunt end ligation reaction, and this library was
diluted, clonally amplified onto beads using emPCR, and sequenced on the 454 GS Junior
with Titanium sequencing chemistry (Roche, Nutley, NJ). After a sequencing run, raw reads
were initially processed through the native amplicon pipeline using default settings (Roche,

Nutley, NJ).

Bioinformatic pipeline for raw sequence processing. A suite of programs was written to
filter and parse raw 454 sequencing reads as previously described (143). In short, each full-
length read was evaluated for a barcode and Primer ID in the cDNA primer 5’ tail. When
three sequences contained an identical Primer ID within a sample, a consensus sequence was
constructed using ClustalW followed by MUSCLE (156, 157) then called by majority rule.

Ambiguous nucleotide designations were used when there was a tie.

Intrahost population analysis. All statistical and diversity analyses were completed on
populations devoid of sequences containing ambiguities and whose gaps were resolved by
the consensus. Tajima’s test and sliding window analysis of m were computed by DnaSP

v.5.10.01 (111). The sliding window analysis measured &t in windows of 100 nts and a step
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size of 10 bases. Population diversity and haplotypes were computed through customized

bioinformatics suites.

RAYV resampling simulation. A random draw simulation was written to conduct a label-
blind analysis of RAV presence while controlling for sampling depth. In short, intrahost
populations were split into two groups based on co-infection status. Within a group,
individual populations were randomly chosen and shallowly sampled to a uniform depth. The
sampled sequences making up the synthetic population were then examined for the presence
and frequency of RAVs. This process was repeated for both groups, and 100 times within a
group. Finally, the difference in RAV frequency between the two groups was logged. To
create a label-blind control, all populations were pooled together prior to random sampling

but otherwise treated identically.

4.4 Results
Comparison of two independent cDNA tagging reactions demonstrates similar Primer
ID re-sampling distributions.

Primer IDs are a string of degenerate sequences embedded in the cDNA synthesis
primer that are used to label individual viral genomes. Due to the degenerate block, some
Primer ID combinations may form secondary structure and preferentially target the highly
structured HCV genome, leading to tagging and re-sampling bias. A tagging bias may distort
the final population resolution, as reads within a Primer ID population may be representative
of the entire population. A re-sampling bias will result in a decrease of throughput, as many

reads originate from a single Primer ID.
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To increase the fidelity of primer-template binding, we designed the cDNA synthesis
target site and upstream primers to match the intrahost consensus diversity. Furthermore, we
limited the number of PCR cycles to decrease the re-sampling for all Primer IDs. Finally,
because secondary structure may interfere with cDNA synthesis, we wanted to verify that
higher reaction temperatures did not affect population resolution.

Approximately 10,000 copies of VRNA from 2 mono-infected (M1, M2) and 2 co-
infected (C1, C2) subjects were independently tagged with cDNA primers targeting NS3 and
containing a Primer ID. The amplified fragment encompassed residues 36-170 of NS3,
critical positions that can confer DAA resistance. Amplicon populations were sequenced on
the 454 Junior platform. The second run used standard cDNA synthesis conditions, whereas
the first run had slightly higher temperatures. The two pyrosequencing runs yielded 116,211
and 113,932 raw reads, respectively, with 99.8% and 99.0% of sequences above 495bps.
There were 1,492 to 3,589 consensus sequences resolved per sample, resulting in population
depths between 0.067% - 0.028%. Because sampling a low-abundance allele is based on the
Poisson distribution, the depth of sampling that would sample an allele with certainty (3/n)

was 0.2%-0.08% (Table 4.1).
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Table 4.1. Population sequencing throughput and depth for two replicate 454 Junior
runs

Run 1 Run 2
Raw reads 116,211 113,932
% above 495bp 98.81 99.05

Pre-consensus reads

M1 29,766 15,413
M2 20,619 18,098
Cl 14461 20,370
C2 37,864 48,410

Primer IDs
M1 3,736 4,536
M2 2492 3,582
Cl 8,111 11,071
C2 3,663 4,872
Consensus sequences
M1 2,798 2,445
M2 2,086 2,571
Cl 1,492 2,150
C2 2,947 3,589
Maximum Primer ID re-sampling
M1 58 22
M2 37 26
Cl 19 27
c2 77 71

Slightly higher cDNA synthesis temperatures (Run 1) resulted in more sequences
being built per Primer ID and a decreased number of consensus sequences for the mono-
infected subjects (Table 4.1). The change in temperature did not affect the distribution for co-
infected patients for reasons that remain unclear, though this observation is on a very a small

sample size and may not have biological implications (Fig. 4.1).
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Fig. 4.1 cDNA synthesis temperature affected Primer ID re-sampling for mono- but not

co-infected subjects. Distribution of the number of reads per consensus sequence in mono-

infected patients M1 (A-C) and M2 (D-F), blue bars, and co-infected patients C1 (G-I) and

C2 (J-L), red bars. For mono-infected patients M1 and M2, there were was a difference in the

number of sequences that built each consensus. Less reads per Primer ID resulted in more

ambiguous calls (F, H, I).
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There was an absence of Primer ID oversampling but some evidence of resampling bias.

Although ¢cDNA synthesis conditions resulted in a difference in the number of
sequences that built each Primer ID in the mono-infected populations, none of the Primer ID
tags for any of the populations were oversampled (Table 4.2). The maximum number of
times a Primer ID was observed was between 27, and 77, indicating that a single Primer ID

combination did not have an increased fitness in tagging and/or amplification.
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Table 4.2. Replicate re-sampling of Primer IDs indicate absence of a re-sampling bias

Run 1 count Run 2 count
M1 CACCGTAT 58 TATCCGGC 22
TTCGTCGA 40 CTACGACT 22
cccecaeeee 39 ACCGAACA 22
CGATTGCC 38 ccecaeecece 20
ACGTGTTC 38 CCCATATA 20
ATCACATA 37 GAGATTCA 18
ACCAGTAC 36 GCGCCGCG 17
CCGCCACC 35 CACCCCGC 17
M2 AACATCCC 37 CGGGTGAA 26
ATGTGCTA 36 AATGCAAT 26
AGATGATA 35 TGGCGAAA 22
TTAACATA 33 GTCGATAT 22
ACATGCTA 33 ATAACTAT 22
CATACTCA 32 GTGAGCAC 21
AACATGAC 32 ACATAGAA 21
Cl Ccccaceee 19 cccecaeecee 27
CTCCCCAC 17 ccccerece 22
CCGCCCAC 16 ccceceeaee 21
CCCCTCCC 16 CCCCCACC 20
CCCCcCcaCC 16 CCcTcccece 19
CCCTCCcCcC 15 CCCCAcCCC 18
C2 CCTAGTCT 77 AATAACAA 71
AATACCAA 63 GCCGCGAG 60
GACACAGG 58 TATTGTTA 55
GTTGAATC 54 ACCAATAT 54
CCTACATG 54 TAGCGTAC 52
TTCATTAA 53 ATCGGAGG 52
ATTCAAGA 53 ATTGATAA 51

For M1, M2, and C2, The Primer IDs resampled the most within a patient were
largely different across replicates, indicating that tagging is random. The most prevalent
Primer IDs from C1 were C-enriched, indicating that the degenerate region in the tagging

primer was not optimally randomized during oligonucleotide synthesis or Cs were better at
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tagging and/or amplifying the population. However, tagging and sequencing increased

numbers of populations (discussed below) have not reproduced this observation.

There is a strong reproducibility of the frequency of identical haplotypes resolved
across independent tagging and sequencing runs.

The distribution of Primer IDs support unbiased tagging and amplification of viral
sequences. To see if the distribution of alleles and their frequencies was reproducible, the
genetic variation for all haplotypes present = 1% in the first run was compared to their
frequency in the second run. There was a strong correlation (R*=0.81) of haplotype
frequency across replicates (Fig. 4.2). Furthermore, this correlation likely would have been
stronger had identical cDNA synthesis methods been used. Regardless, these data clearly
show that the genetic variation of HCV populations can be reproducible resolved using deep

sequencing with Primer IDs.
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Fig. 4.2. Comparison of the frequency of haplotypes = 1% between Run 1 and Run 2
demonstrates tagging and sequencing reproducibility. For each haplotype found = 1% in
Run 1, the frequency was compared to Run 2, and the two frequencies were plotted against
each other. A strong linear correlation demonstrates that Primer ID tagging, amplification,

and sequencing were highly reproducible.

As the frequency of RAVs near our limit of sensitivity, their resolution is confounded by
the sampling probability and early introduced error.

Although haplotypes =1% can be sampled reproducibly, minor variants whose
frequency nears the population depth may be missed by chance. Similarly, minor variants
that appear as single occurrences cannot be differentiated from technical error, confounding
whether a polymorphism is biological or artifactual. Slightly less than half of the pre-existing
RAVs were sampled as single occurrences within a population (Table 3). However, half of
these residues were recorded in the replicate run, supporting the polymorphism as biological,
not error. To determine whether a RAV is biological without performing replicates, an
alternate assay such as allele-specific PCR could be implemented in parallel. Furthermore,
depth of sampling and/or repeated sampling will increase the probability that a low-

frequency allele will be revealed.
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Table 4.3. Frequency of resistance associated alleles across independent tagging and
sequencing runs.

pt RAV  codon Run 1 Run 2
mono-infected
Ml VieM  ATG 0.072

T54A  GCT 0.041
V55A GCC 0.082
RIO9K  AAG 0.041
RI55K  AAG 0.041
M2 VieM  ATG 0.048 0.039
V55A GCC 0.048 0.156
Q80K  AAA 98.802 98.950
Q80K  AAG 1.103 0.933
Q80K  AGA 0.096 0.117
RIO9K  AAG 0.039
RI55K  AAG 0.039
V170T ACC 0.096 0.039

co-infected
Cl1 V36A  GCG 0.134 0.047
V36L TTG 0.067
T54S TCT 0.067

T54S GCT 0.047
V55A GCC 0.067 0.047
Q80K  AAA 99.196 99.581
Q80K  AAG 0.670 0.279
RIS5K  AAG 0.134
V170T ACC 0.067 0.093
C2 VieM  ATG 0.068 0.028
V36A  GCG 0.111
F431 ATC 0.034
F43S TCC 0.028
T54A  GCT 0.068 0.028
Q80K  AAA 99.525 99.387
Q80K  AAG 0.339 0.502
Q80R  AGA 0.136 0.028
RIO9K  AAG 0.068
Al56V  GTC 0.028
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454 Junior run throughput and patient resolution for non-replicates

The replicate sampling and resolution of 2 mono-infected and 2 co-infected
individuals supported that Primer IDs could be used to accurately resolve viral diversity of
HCV and that RAVs commonly pre-exist in the standing genetic variation. In order to better
characterize whether a co-infecting pathogen influences diversity, and whether there was a
difference in pre-existing RAVs, 24 additional patients, 13 mono-infected (samples 1-3,6-
15), and 11 co-infected (samples 3-13) were sequenced (Table 4.4). The diversity of NS3 for
monoinfected patients 1-3 was resolved on the GS FLX with Titanium sequencing chemistry,
but due to sequencing length constraints, only contained NS3 residues 36-138. The replicate
Junior runs previously described were combined per patient, and added to the cohort (M1-
M2, C1-C2). Mean sampling depth for the entire cohort was 0.14% (0.11% median) (Table

4.4)
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Table 4.4 Population sampling depth for mono-infected and co-infected subjects

Sample Barcode  Primer IDs Consensus sequences Depth
Mono-infected
1 TAT 9,106 2090 0.05
2 TGT 2,113 703 0.14
3 TAG 1,030 400 0.25
M1 ACG 8,272 5,243 0.02
M2 AGC 6,074 4,657 0.02
6 GCAG 2,791 556 0.18
7 GAG 307 231 0.43
8 CAC 2,475 947 0.11
9 CGCG 911 283 0.35
10 GACT 4,900 2637 0.04
11 CGT 4,362 2622 0.04
12 TGTC 2,397 1079 0.09
13 CATA 2,453 707 0.14
14 AGAT 2,041 1001 0.10
15 ACAG 567 385 0.26
Co-infected
Cl TAT 19,182 3,642 0.03
C2 TTC 8,535 6,536 0.02
3 GTA 2,418 1,053 0.09
4 CTG 3,966 778 0.13
5 ACGA 3,768 885 0.11
6 ATAC 2,507 1765 0.06
7 TCAT 965 760 0.13
8 GTGT 852 569 0.18
9 CTAT 1,132 893 0.11
10 GCTA 1,343 774 0.13
11 GATC 3,547 1829 0.05
12 TTC 2,564 1196 0.08
13 ATGC 2,562 834 0.12

Sliding window analysis of nucleotide diversity (;t) across NS3 amino acids 36-175 show
a greater diversity in the mono-infected population.

The standing genetic variation of each population revealed rich allelic diversity,
including low frequency alleles. However, in order to assess whether the diversity is

significantly different between the mono-infected and co-infected population, a sliding
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window analysis of the average pairwise diversity (;t) was measured. Sliding window =
reveals localized polymorphism levels, and demonstrated that the inter-population values of
nt across individual residues of NS3 did not identify specific regions of diversity or
conservation (Fig. 4.34). Similarly, the mean diversity across individuals varied greatly and
was not position dependent. The lack of regional polymorphic conservation or diversity
indicates that there isn’t a strong selective across these positions, including active site
residues. This is supported biologically, as NS3 does not form a highly structured pocket (8).
In contrast, diversity is conserved across the highly structured HIV-1 protease’s active site
(Fig. 4.3D).

The differences in morbidity and mortality between HCV mono-infected and HCV-
HIV co-infected individuals suggested dissimilarity in viral diversity, and we found that
average diversity across NS3 was significantly greater in the mono-infected subjects than the

co-infected subjects (Student t’s test, p<0.0001) (Fig. 4.3BC).
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individuals (black), mono-infected (blue), and co-infected (red). B) Sliding window across
NS3 in individual mono-infected individuals. C) Sliding window across NS3 in co-infected
individuals. D) Sliding window across HIV-1 protease coding domain in therapy naive

individuals. Shaded areas indicate active site residues.

Nucleotide diversity (t) and Tajima’s D were significantly different between mono-
infected and co-infected populations.

Whole gene pairwise nucleotide diversity (;t) was measured for the mono-infected
and co-infected populations. The total m in the mono-infected subjects had a significantly
greater diversity than the co-infected subjects (Student’s t-test, p=0.01), as expected from the
sliding window analysis. m provides a measure of diversity, but the Tajima’s D statistic
measures the deviation between the expected distribution of allele frequencies at mutation-
drift equilibrium and the observed distribution. Negative values of D can indicate recent
selective sweeps, population bottlenecks, and population expansion whereas positive values
can indicate balancing selection, migration, and population subdivision.

For all populations, Tajima’s D was < -2.0 indicating an excess of low frequency
polymorphisms. Tajima’s D was also significantly lower in the co-infected population
(Student’s t-test, p=0.02). The lower D values in co-infected populations suggest that co-
infection enhances the evolutionary forces skewing allelic variation in HCV populations. For

instance, increased number of selective sweeps could shift this equilibrium.
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Fig. 4.4 Measures of the average and total population diversity are significantly
different between mono-infected and co-infected subjects and indicates population
disequilibria. For all mono-infected and co-infected populations, A) pairwise nucleotide
diversity and B) Tajima’s D statistics are reported; asterisks indicate that this difference is

significant.
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Table 4.5. Frequency of NS3 RAVs in mono-infected and co-infected populations.

Mono-infected
1 2 3 Ml M2 6 7 8 9 10 11 12 13 14 15

V36 GCG 0.05

TTG

ATG 0.04 0.04
Q41 CGA 0.18 0.11
F43
TCC 212 0.04
ATC 0.14

T54 GCC 0.14 0.18 0.09

GCT 0.02

TCT 6.75

GCC 0.05 99.75 0.04 0.11 0.21 0.15 0.10
GCT 0.25

AAA 98.00 98.88 0.36 96.62 98.59 9791 98.97 97.96 99.00 99.48
AAG 1.44 1.01 306 141 186 099 1.76 0.80 052

V55

Q80

AGA 0.11 0.19

AGG 0.08

CGA 0.05

CGG

ATT 0.18 0.11 0.26
ATC 029 0.11 0.04 0.04 0.19 0.10

V107

R109
S138
R155

ACC
GGG

0.02  0.02 0.04

ATG

A156
TCC

GTC
GAC 0.04
D168
GAG
GAA

V170

HPp < A=< ZIQummpQU<-du—ZolO-HunirtA—QHdR—~—FARZIIARAARPPLEPRP<—~nQO~AICQO>»

ACC 0.06 0.04 0.04 0.19 0.26
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Co-infected
Cl C2

4

5

7 8 9 10 11 12

13

V36

Q41
F43

T54

V355

Q80

V107

R109
S138
R155

Al56

D168

V170

Hrp<ad=<ZooomomrpQUd<du—-—Zol0Hdunl "R~ QO0HdAR—~ =" A A A IARAARAPPLEREP ORI CQ P

GCG

TTG
ATG
CGA

TCC
ATC

GCC
GCT
TCT
GCC
GCT
AAA
AAG

AGA
AGG
CGA
CGG
ATT
ATC
AAG
ACC
GGG

AAG

ATG

TCC
GTC
GAC

GAG
GAA

AAC

ACC

0.08 0.06

0.03
0.05

0.02
0.02

0.03
0.03
0.05

0.05

99.42
0.44

99.45
0.43

0.08

0.08
0.03

0.05

0.02

0.08

0.09

0.09

0.09
2.09

0.09

1.04

0.09

0.19

0.13

0.13

0.13

0.13

0.13

0.11

0.23

0.11

0.11

0.11

0.06

0.06

111

0.13 0.22 0.05

0.11
0.05

99.65 99.40

0.13 044

0.35
0.13
0.26

0.13  0.11

0.13

0.11

0.08

0.12

0.12

0.12

0.12

0.12



Some RAVs are significantly more enriched in only the mono-infected or co-infected
population.

An excess of low frequency polymorphisms was demonstrated for all populations,
however this allelic structure was more pronounced in the co-infected populations. RAVs
were observed as low frequency variants in mono-infected and co-infected subjects (Table
4.5), but each subject was sampled to a different depth (Table 4.4) making comparisons
between the two groups difficult.

To help determine whether a particular RAV was different across all mono-infected
or co-infected individuals within this cohort, a random sampling simulation was conducted.
In short, a sub-cohort for either mono-infected or co-infected individuals was randomly
generated, and each individual within that sub-cohort was randomly and shallowly sampled
to a uniform depth. The sequences from the superficial sampling across individuals within
the sub-cohort were then examined for the presence of individual RAVs. This process was
repeated 100 times, and the distribution of individual RAVs for mono-infected populations
were compared to the distribution of RAVs from co-infected populations. This was compared
to a background distribution obtained from comparing the distribution of RAVs from
randomly generated populations using identical methods to the mono-infected and co-
infected sampling but sampling all individuals together (label blind). Statistical significance
was determined between mono-infected and co-infected individuals versus the background
sampling using Student’s t-test. To try to control for a single individual affecting
significance, two individuals with the highest RAV frequencies, one mono-infected and one
co-infected, were removed and the simulation was re-run. RAVs were reported only if they

continued to be significantly for both simulations.
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There were 7 RAVs that were significantly different in frequency between mono-
infected and co-infected individuals when compared to label-blind sampling of the entire
cohort. NS3 residues 41, 55, 107, 109, and 170 had a higher presence of RAVs in mono-
infected versus co-infected individuals, and NS3 residues 36 and 168 had a higher presence

of RAVs in co-infected versus mono-infected individuals.
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Fig. 4.5 RAVs 36, 41, 55, 107, 109, 168, and 170 have significantly different frequencies
in either mono-infected or co-infected individuals. Plotted is the difference in RAV counts
between either co-infected versus mono-infected (C-M) subpopulations or random versus
random (R-R). Top graph includes all individuals, whereas bottom graph has one individual
from each group removed that had the highest RAV frequency. Starred RAVs had
significantly different frequencies in co-infected versus mono-infected populations in
comparison to the background sampling and retained significance with outlier individuals
removed. RAVs 41, 55, 107, 109, and 170 had a higher frequency in mono-infected

individuals, and RAVs 36 and 168 were more frequently found in co-infected individuals.

4.5 Discussion

Co-infection is associated with a higher patient morbidity and mortality (65-66), and these
clinical markers potentially translate to differences in viral diversity. Because DAAs target
key viral enzymes, alleles that decrease or prevent drug binding may permit viral replication
during drug selection. It is currently unclear what the steady-state frequency of RAVs are in
therapy naive environments, and whether this variation can be directly selected under a
DAA.

We applied an ultra-high resolution deep sequencing approach to examine pre-
existing viral diversity across NS3 (residues 36-170) in 15 mono-infected and 13 co-infected
individuals. Using Primer IDs, we were able to achieve a mean sequencing depth of 0.1%
across the cohort (Table 4.4). We found that viral diversity was higher in mono-infected over
co-infected individuals, and this difference was preserved across the entire sequenced length

of NS3 (Fig. 4.3-4). We also observed that there were not specific regions of conservation or
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diversity when comparing across individuals congruent with x-ray crystallographic
constructions of NS3 that demonstrate a lack of a clearly defined deep pocket for substrate
binding (Fig. 4.3) (8).

Although mono-infected individuals had a significantly higher diversity than co-
infected individuals, this did not equate to a significantly higher presence of pre-existing
RAVs (Table 4.5). However, when comparing individual RAV positions between the 13
mono-infected individuals that have sequencing encompassing residues 36-170 and the 12
co-infected individuals, there were 7 positions that had a significantly higher frequency in
either one or the other group (Fig. 4.5). RAVs 36 and 168 were more likely to be found in co-
infected individuals, whereas RAVs 41, 55, 107, 109, and 170 were more likely to be found
in mono-infected individuals.

A biological explanation for these differences is not obvious. In this cohort, co-
infected individuals are on HAART, and chance HIV drug interactions with HCV may exert
a selection pressure that translates to viral diversity. Although all individuals had CD4+
counts >350 cells/mm’ and co-infected individuals had undetectable HIV viral loads, chronic
inflammation due to HIV infection may cause differences in immune function (reviewed in
(158)). It may be plausible that HIV infection is still ongoing in a compartment such as the
liver (154, 155), but otherwise undetectable in the sera. As HIV can promote liver injury
(154, 155), the two viral strains may be in close proximity to one another and driving
changes in diversity.

Before RAV differences between mono-infected and co-infected individuals can be
assigned with confidence, larger numbers of subjects need to be accurately sequenced to
comparable depths. If pre-existing variants can be directly selected under a drug, the
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biological differences between mono-infected and co-infected individuals may presage

variation in virologic responses and possibly altered patterns of resistance to DAAs.
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Chapter 5

Concluding remarks

Historically there has been an absence of high-resolution tools that could accurately
capture the diversity of a viral population. The structure, dynamics, and evolution of viruses
were elucidated through macroscopic snapshots and in silico modeling. In this thesis I have
presented a new approach that allows significantly greater resolution of the complexity of a
viral population, and started to examine basic but critical questions such as what does a

population look like and how does a population evolve drug resistance.

5.1 What we can learn from ultra-high resolution of viral populations.

If a viral population were like a city, the 30,000 ft airplane view is the equivalent of
Sanger-based sequencing. This single summation would allow one to distinguish the
difference between Chicago and Manhattan, for example. Clonal sequencing would start to
reveal major buildings and features, such as Willis Tower, Navy Pier, and other large
landmarks. Deep sequencing with a Primer ID is like walking the streets of Chicago. A rich
array of detail is revealed from this ground level view, and what these details can provide
about the nature of the city beyond what can be achieved from a clonal-sequencing viewpoint

is something that has yet to be fully realized. Similarly, not every detail will inform, and may



even sidetrack from understanding the larger network. Differentiating which details matter
will be a major challenge going forward in this increasingly intricate resolution.

RNA viruses dominate emerging infectious diseases, and HIV and hepatitis viruses
are the most deadly chronic viral diseases. Clinical diagnostics of an infected individual can
inform what the subtype of the infecting pathogen is and whether or what resistance alleles
exist. At present, these platforms rely on Sanger-based sequencing technology to assess
potential resistance-conferring positions on a population level. Next generation sequencing
techniques may be integrated into a clinical diagnostic setting to shift not only to a detailed
resolution of allelic variants, but also retain linkage across positions.

As a field, we currently have a poor understanding of the steady-state frequencies of
minor variants, and how they change before and after a selective event. The standing genetic
variation constantly changes due to an erroneous viral polymerase. Due to transitional biases,
we know that certain resistance alleles are more likely to be created de novo compared to
others, but their associated fitness effects keeps them at a mutation-selection balance dictated
by the sum of the fitness cost on the residing haplotype.

For all populations sequenced, there was an excess of low frequency polymorphisms
over that which would be expected from a population at equilibrium (Table 2.2, 3.3, Fig. 3.6,
4.4). This haplotype structure was universal across HCV and HIV. For HIV populations
exposed to a drug selection pressure, pre-existing, rebound resistant, and rebound susceptible
populations also contained this structure (Fig. 3.6). This observation further emphasizes the
ability of a population to quickly regain diversity after a selective event.

We also wanted to examine if a co-infecting pathogen affects population diversity.
From a small cohort of HCV mono-infected and HCV-HIV co-infected individuals, we

118



observed that there is higher diversity in mono-infected individuals (Fig. 4.3-4). This
diversity did not correlate to an increase in the overall presence of RAVs in mono-infected
individuals (Table 4.5), but there was a statistically significant difference in the pre-existence
of handful of alleles between these two groups (Fig. 4.5). Further sequencing work is needed
to determine whether this difference holds, and if it does, for what alleles. Furthermore, a
biological or clinical link would also be needed. However, if our preliminary observations
are biologically sound, these differences may be reflected in DAA response.

Aside from ascertaining what resistant variants at what frequency are more likely to
pre-exist, it is currently unknown whether they can be directly selected under a drug selective
pressure. We have shown from a single HIV-infected individual that clonally amplified
resistant alleles were identical to pre-existing variants (Fig. 2.8). Subsequent studies have
indicated that the emerging resistant haplotype was not sampled prior to treatments or that
the resistance mutants arose during the selection (Fig. 3.9). However, the fact that multiple
haplotypes grew out with resistance mutations, and these mutations were not on the dominant
haplotypes in the population, indicates that the resistance mutations that did grow out pre-
existed in the population. Further work is need to determine if there is a relationship between
resistance in the standing genetic variation and what grows out under a selective event.

We observed that the path to resistance can be highly variable and unique per
individual. For a handful of HIV infected individuals longitudinally followed, dominant
haplotypes that emerged over time were largely different than the preceding haplotypes (Fig.
3.9). Furthermore, they could not be explained by recombination across prior haplotypes,
implying that the path to resistance is by de novo mutations. We observed that measuring the

selective pressure at the time of sampling was inconsistent to population composition (Fig.
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3.1, Table 3.3, 3.9). For example, low drug levels were measured for populations containing
multiple resistance alleles linked on a common haplotype, and high drug levels were
observed for populations containing a large percentage of susceptible variants. This
observation has several clinically significant implications. The incongruence between drug
levels and population composition could be due to a lag in population response. Furthermore,
it could illustrate intermittent adherence issues, as excessive drug levels could be due to
dosing directly prior to sampling. Variable drug levels over time could be linked to the
emergence of multiple resistance alleles on distinct haplotypes.

If pre-existing resistance alleles are not consistently informative towards how a
population will respond to a drug selective pressure, the role of minor variants in predicting
population response may be better suited in looking at resistance decay. After removal of a
selective agent from a population that is resistant to it, resistance alleles, once having a
fitness advantage, will decrease in frequency if that advantage is lost. The rate at which they
decay may be dependent on the particular alleles present and the haplotype on which they
reside, but decay could be informative in determining whether and which drugs may achieve
a sustained virologic response in re-treatment.

Deep sequencing with a Primer ID resulted in the first accurate ultra-high resolution
of a single gene within a viral population (Fig. 2.8, Table 2.1). The challenge going forward
is determining which details revealed from this technique are clinically significant. We are
increasingly integrating personalized therapeutics with clinical choices. Personalized
therapeutics has not entered infectious disease diagnostics aside from assaying major drug
resistance mutations by Sanger-based population sequencing. This is in stark contrast to

achievements in antiviral drug development. For example, all-DAA approaches are
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increasingly being used for the treatment of HCV, however this has been without comparable
achievements in resistance diagnostics. As a field, we are assessing pre-existing alleles using
a technique invented in 1974 and that misses allelic variants present at less than 25%
abundance. Alternative, more sensitive approaches have not been adopted into the clinical

setting mostly due to the high labor and low throughput.

5.2 The idealized future of next generation sequencing.

Future sequencing platforms may make Primer IDs unnecessary for the deep sequencing of
viral populations, however several major technological obstacles would have to be overcome.
First, the initial sample concentration could permit the sequencing of low copy samples.
Second, sequencing would have to be done off of native VRNA. Third, sequencing length
would have to encompass the entire genome. Fourth, the error profile would have to be as
close to zero as possible. Fifth, throughput would have to be high enough to resolve minor
variants within a population at a depth determined to contain variants that may inform
population resolution in a cost and time effective manner.

Not mandating a high sample concentration prior to a sequencing protocol would
allow one to skip preceding PCR and all of the amplification biases, recombination, and re-
sampling that is introduced from this erroneous technique. Currently, 500ng of dsDNA go
into library preparation for the 454 platform. Even if 454 had the capacity to sequence entire
genomes, the initial input of starting material would always necessitate preceding PCR of
clinical samples. High throughput platforms ideally would be dynamic enough to handle all
disease states; clinical samples that contain low or undetectable viral loads could be

sequenced through samples of viologic failure.
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Allowing the sequencing of VRNA directly would avoid having input material that
has to be molecularly adapted to the particular platform through cDNA synthesis and PCR,
steps that are now needed since the addition of adaptors to the ends of the DNA sequencing
target typically require a concentration of DNA larger than that found in clinical samples and
also requires that the starting material is double-stranded. PacBio can sequence DNA-RNA
heteroduplex material. Even if the platform could accurately sequence whole viral genomes
and one could add their bell adaptors to small amounts of starting material, cDNA synthesis
would still be required, however error between complementary bases introduced during
cDNA synthesis could be differentiated based on sense.

A needed improvement in sequencing technologies is increasing sequencing length,
ideally to where the reads are long enough to encompass the entire viral genome. Internal
genes of interest could be reached along with the preservation of linkage across multiple
genes. The linkage of distal genes is particularly critical for resistance surveillance of viral
populations simultaneously counteracted by antiviral drugs that have different gene targets.
Oxford Nanopore is the only platform that will be available the near future that appears to
have the capacity to consistently achieve whole genome viral sequencing but at a high error
rate (discussed below). However, there are a number of other disadvantages that trump the
long sequencing length when applied to viral populations that preclude Nanopore’s
immediate adaptation to VRNA.

The largest technological hurdle that needs to be overcome is decreasing the error to
negligible values. This is particularly problematic with third-generation real-time sequencing,
where high in/del rates dominant the error profile compared to the high

misincorporation/misread error of the second-generation approaches. Although the
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partitioning of generations is subjective, NextGen platforms can be divided into two different
concepts. The earlier machines rely on a controlled exposure of nucleotides to a sequencing
target and the report of a signal that indicates what had been incorporated, allowing for a
base call. 454 and Illumina rely on light, whereas Ion Torrent gauges pH change. Newer
machines rely on real-time reporting. PacBio employs a tethered polymerases and a laser to
capture the identity of the fluorescently labeled nucleotide as it is incorporated. Nanopore’s
pores sense the chemical composition of individual nucleotides as a strand of genomic
material is threaded through it. Both PacBio and Nanopore have the ability to sequence a vast
amount of genomic material in a very small amount of time due to the real-time reporting.
However, they are both prone to very high levels of random in/del calls. For example, due to
the non-metronome nature of polymerase nucleotide incorporation, small deviations in
synthesis tempo cannot be easily assigned as a true deletion or pause during PacBio base
calling. Similarly, a nucleotide captured by the laser but that does not get incorporated will
be erroneously called as an insertion.

When sequencing highly heterogeneous viral populations, randomly distributed in/del
errors are much more problematic to resolve than misincorporation and homopolymeric
errors. In/dels change the reading frame, and the identification of them likely requires
indirect inference to what the true sequence should be. For platforms like PacBio, whose
in/del rate approaches 15-20%, error alone in the Primer ID and barcoding region coupled
with an extremely low throughput does not allow for the two techniques to be easily merged.
The circular consensus sequencing of shorter input material allows a higher coverage per
base, but at the trade-off of decreased length. Although this technique in principle should be
able to decrease the in/del rate resolved below that of 15-20%, the current bioinformatics
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pipeline native to the machine cannot accurately create circular consensus sequences that
would allow for subsequent Primer ID consensus formation. Even if the bioinformatics were
corrected, the decreased length required for circular consensus sequencing in addition to the
inherent low-throughput of PacBio does not easily translate this platform to either viral
sequencing or targeted viral re-sequencing. Although Nanopore could theoretically sequence
VRNA, sequencing is single-pass, thus the in/del profile would remain uncorrected much like
PacBio unless multiple passes could be achieved on the same molecule or if a proofreading
mechanism were incorporated into the pore.

When sequencing a viral population, depth, thus throughput will be dictated by the
frequency of minor variants found to have biological significance. For example, the
frequency of a minor allele of interest in the standing genetic variation is determined by the
mutation selection balance. Sequencing depth will be dictated by that equilibrium frequency
and the probability of sampling it. Once dominant minor variants may still be present after
the removal of a selection pressure, and their frequency may influence downstream
population response. For example, if a population escapes a drug selection pressure with
resistance, and the drug is removed, a critical frequency may be needed for rebound if the
same selective pressure is re-applied.

If vRNA could be directly and accurately sequenced, 3,000 individual reads would be
needed to resolve variants present at 0.1%. The number of sequencing reactions per sample
would have to be multiplied out by the negative or failed rate inherent in the system to
determine the initial throughput needed. Ideally, multiple samples could be sequenced in

parallel. If not physically partitioned, molecular labeling of VRNA would be required,
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involving a high fidelity technique that would not introduce error such as single-stranded
ligation.

Primer IDs provide a direct means of correcting for PCR biases, PCR re-sampling,
and sequencing error when preceding PCR is required prior to a sequencing protocol (143).
There are a number of technological advances required to remove PCR prior to sequencing.
Even if native VRNA could be sequenced from clinical samples, if the sequencing error rate
is higher than that from early-introduced residual error from PCR, PCR may still be required
to identify and remove it. Next-generation platforms need to either report multiple reads from
a single molecule, or encapsulate a proofreading ability to make base calling as high fidelity

as possible.

Applying Primer IDs to clinical diagnostics.
Critical advances of high throughput sequencing platforms are needed to make Primer IDs
unnecessary (detailed above). If one were to integrate deep sequencing with Primer IDs for
clinical diagnostics, several requirements would need to be met. The next generation
platform used would have to have a low in/del error rate profile and ideally lack of a
homopolymer miscall bias. Although many homopolymers do not interfere with resistance
conferring positions, some do, such as HIV’s RT resistance K65R and K103N. Currently,
only Illumina’s sequencing technology can reliably call bases across homopolymeric regions,
which gives this platform a very low in/del rate, though sequencing length would still require
targeted re-sequencing and the loss of linkage across distal genes.

Two critical conditions must be met for Primer IDs to accurately be used for
resolving viral diversity. First, they need to be under-sampled. Second, they have to
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randomly tag. The Primer ID was intentionally designed to be 8 nucleotides in length. 4°
produced 65,536 combinations, whereas a 7mer would only produce 16,384 combinations.
By in silico random-draw sampling simulations, a 8mer allowed for 10k templates of input
material to be tagged with only ~5% of the population having unique templates tagged by the
same random combination assuming 100% tagging efficiency. Under-sampling 4’ would
have resulted in too little input material to be useful. A 9mer would allow for an even greater
number of combinations, and degenerate nucleotides much longer than this have been
applied in eukaryotic systems for molecular tagging.

The reason why the Primer ID is 8 nucleotides in length is to control for the
randomness of tagging. VRNA can be highly structured. Adding a degenerate region to a
tagging primer can also create structure within the primer. If particular Primer IDs gain a
fitness advantage in tagging due to secondary structure effects, that combination becomes
over-represented and results in a net loss of complexity in the Primer ID sequence library in
addition to fewer consensus sequences representing the different starting templates.

For Primer IDs to be used in clinical diagnostics, reproducibility is critical, and
directly correlates to randomness of tagging. For 2 mono-infected and 2 co-infected
individuals, the same HCV positive serum samples were tagged, amplified, and sequenced in
replicate. We demonstrated that not a single Primer ID was oversampled, and different
Primer IDs were dominant across the different runs (Table 4.2). These two observations
indicate that not a single Primer ID had a greater fitness in tagging. Slightly higher cDNA
synthesis temperatures resulted in more reads being built per Primer ID in mono-infected, but
not co-infected individuals (Fig. 4.14,D,G,J). More reads per Primer ID also correlated with
a decrease in ambiguous calls (Fig. 4.1). In comparing all haplotypes present =1% in
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frequency between the first and second replicate, there was a correlation coefficient of 0.8
(Fig. 4.2). This indicates that independent tagging, amplification, and sequencing of a given
sample is reproducible.

HCV RAVs can be extremely low in frequency, emulating the expected error rate.
When RAVs were observed in one run but not the other (Table 4.3), this could be due to the
error or sampling. To determine if a RAV is biological when it is only represented by a single
occurrence, one could always follow-up with allele specific PCR.

To integrate Primer IDs into clinical diagnostics, randomness and reproducibility are
critical. Unlike eukaryotic systems, VRNA can be highly structured, and degenerate regions
within a tagging primer can fold to create non-random interactions with the viral genome. In
our work, we employed several techniques to encourage random interaction to a large degree
of success. To use Primer IDs in clinical diagnostics, tagging would have to be further
optimized, particularly for highly structured viral genomes. Although sample-specific
primers encourage high fidelity targeting and hot cDNA synthesis reactions decrease
structure, linearization of VRNA and tagging primers would likely be needed to truly remove
the potential for secondary structure targeting. Only after consistent demonstrations of
reproducibility and randomness across genes, genomes, and individuals can Primer IDs be

used to reveal minor variants within a clinical diagnostics setting.
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