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Abstract 

 
CASSANDRA B. JABARA: Using Deep Sequencing with a Primer ID to Resolve the 
Structure of Viral Populations and Reveal Pre-existing Drug Resistance Mutations in 

the HIV and HCV Protease Genes 
(Under the direction of Ronald Swanstrom, Stanley M. Lemon, and Corbin D. Jones) 

 

Human Immunodeficiency Virus (HIV) and Hepatitis C Virus (HCV) are among the 

most deadly chronic viral diseases affecting the human population. The rich genetic diversity 

produced within a host includes adaptive resistance alleles that may enable viral escape from 

drug selective pressures. An in-depth characterization of the intrahost population and the 

genetic path it takes to escape drug selection may reveal how to prevent the evolution of 

resistance. Resolving the fine-scale genetic structure of a viral population requires deep 

sampling of the genetic variation within a viral population. I developed a novel technique, 

Primer ID, which reproducibly (Chapter 4) captures viral diversity while correcting for PCR 

biases and error inherent in deep sequencing protocols (Chapter 2). Deep sequencing with a 

Primer ID was applied to the targeted re-sequencing of protease for two different viral 

genomes, HIV (Chapter 2-3) and HCV (Chapter 4).  The allelic distribution of genetic 

variation of HIV and HCV was skewed towards low-frequency polymorphisms, some of 

which were resistance-associated variants (Chapters 2-4). I observed that pre-existing 

resistance mutations could be directly selected during a drug treatment (Chapter 2). However, 

the path to resistance was often complex and confounded by variance in the steady-state 

frequency of resistance alleles, sampling depth, and the effective population size (Chapter 3). 



 iv 

Once a population of HIV escaped a drug, it was observed that resistance-associated variants 

were added de novo in a step-wise manner, not brought together by recombination of pre-

existing haplotypes. HCV-HIV co-infection decreased overall population diversity (Chapter 

4). This difference did not correlate with a change in the overall frequency of pre-existing 

resistance mutations, but specific resistance alleles were enriched in either mono- or co-

infected populations. Further application of deep sequencing with a Primer ID will result in a 

greater understanding of the population dynamics of both HIV and HCV and determine if the 

standing genetic variation can be used to predict if a patient will fail therapy and how a viral 

population responds to selective pressures. Together, improvements in predictive power will 

result in an enhancement of therapeutic success rate and sustained virologic response.  
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This work is dedicated to those who push technological boundaries to study the 

abysmal and enthralling intricacies of RNA viral populations evolving inside hosts 
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Chapter 1 

Introduction 

 

1.1 The Evolvability of RNA viruses 

RNA viruses are the dominant causative agent of emerging infectious diseases 

worldwide, yet only a small number of viral families can be effectively controlled through 

vaccination or antiviral drugs. Of all chronic viral diseases affecting the human population, 

Human Immunodeficiency Virus (HIV) and Hepatitis virus are the most deadly (1). HIV 

currently is infecting approximately 35 million people worldwide and is associated with 2 

million deaths each year. Hepatitis C Virus (HCV) is infecting approximately 200 million 

people, and annually there are 366,000 deaths due to cirrhosis of the liver and hepatocellular 

carcinoma. Despite 30 years of active research and drug development, HIV remains 

incurable. Similarly, around 70 percent of HCV-infected individuals have persistent 

replication (2-4), and most potent drugs against this virus are still in clinical trials (1, 5). The 

substantial worldwide morbidity and mortality caused by these two viruses necessitates a 

better understanding of how to effectively counteract and control their spread within the 

human population. The most direct means of decreasing the interhost transmission rate is to 

suppress or eradicate intrahost viral populations. 

The human host inherently contains strong barriers to pathogen infection, replication, 

and transmission. Despite highly evolved innate and adaptive immunities, the majority of 

human hosts cannot naturally clear HIV or HCV infections and often transmit these viruses 
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to new hosts. As a result, direct acting antivirals (DAA) are needed as a pharmacologic 

intervention for suppressing the viral burden and decreasing transmission risk, and DAAs are 

increasing in abundance, availability, and sophistication. However, there are significant 

pitfalls to current day drug therapies against HIV and HCV. The newly FDA licensed DAAs 

against HCV have low genetic barriers that a virus population can rapidly evolve to 

overcome, which results in viral rebound. Highly Active Antiretroviral Therapy (HAART) 

against HIV is a multifaceted selection regiment with a combination of drugs, most of which 

contain high genetic barriers. However, cessation of HAART always results in viral rebound. 

  
 
1.1.1 Protease inhibitors are a major drug class used to treat HIV and HCV infections. 

There are six antiretroviral drug classes, 24 drugs in total, licensed to treat HIV. Each 

class targets a different component of the viral life cycle, from inhibiting attachment of the 

virion to the host cell through preventing virion maturation post-budding. The recommended 

treatment for HIV infection involves dual nucleoside reverse transcriptase inhibitors (nRTI) 

in combination with a third class, commonly a protease inhibitor (6). The standard of care for 

HCV infection is immunomodulation and mutagenicity using a combination of pegylated 

interferon-α and ribavirin (PEG-INF/RBV). However, as of late April and mid May of 2011, 

two DAAs were FDA approved to treat HCV infection. Both were protease inhibitors. 

Protease inhibitors are an important drug class for counteracting both HIV and HCV 

infections. These drugs are designed to specifically inhibit the viral protease, an enzyme 

critical for the production of infectious virions. For HIV, its aspartic protease is released 

through autocatalysis of the Gag-Pro-Pol precursor polyprotein. Protease homodimers then 

cleave viral polyprotein peptide bonds through hydrolysis, with the orchestrating water 
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molecule anchored in the active site by two opposing aspartic acid residues. For an HIV 

virion to mature, proteolytic processing of three polyprotein precursors, Gag, Gag-Pro-Pol, 

and Env, is required. Without protease function, the immature HIV virion is unable to initiate 

a new infectious cycle. 

Similarly, the HCV protease NS3 is critical for HCV infection. NS3 is a serine 

protease that heterodimerizes with the viral cofactor NS4A. The NH2 terminal cleaves four 

sites downstream of the NS2-3 junction in the HCV polyprotein, NS3-4A, NS4A-4B, NS4B-

5A, and NS5A-5B (7). For proteolytic function, a catalytic triad is required in conjunction 

with a tetrahedrially coordinated metal ion (8). In addition to viral polyprotein cleavage, 

HCV’s protease also processes host signaling molecules activated by dsRNA, blocking 

signaling through the TRL3 and RIG-I pathways (reviewed in (5)). 

Both HIV and HCV proteases are extremely attractive drug targets for suppression of 

viral populations due to their critical roles in the viral life cycles. Furthermore, because of 

their enzymatic activity, they also contain structurally conserved active sites. The protease 

active site is in essence a pocket in which polyprotein cleavage occurs, therefore small 

molecule inhibitors designed to bind within the pocket will block viral polyproteins and other 

target molecules from being cleaved. However, amino acid and/or structural changes within 

the active site can decrease or prevent inhibitor binding. If drug inhibition is not complete 

then a certain degree of proteolytic processing will occur. Viral production under drug 

selection is the primary obstacle to therapeutic success, and results in the clinical presentation 

of drug resistance. 
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1.1.2 The permissive replication of RNA viruses and a high mutation rate result in the 

rapid generation of genetic variation.  

Genetic variation is the raw material upon which selection acts. The ability of these 

viral populations to escape strong selection pressures—such as small molecule inhibitors—is 

due to a rich landscape of genetic heterogeneity. This variation is primarily introduced 

through polymerase nucleotide misincorporation during genomic template copying. It is the 

exceptionally high rate at which nucleotide misincorporation occurs that results in the quick 

diversification of an RNA virus population. HIV’s error-prone Reverse Transcriptase (RT) 

introduces mutations at an estimated rate of 2.16x10-5 substitutions/site/generation during 

transcription of viral RNA (vRNA) to double-stranded DNA (dsDNA) (9, 10). HCV’s RNA-

dependent RNA polymerase (RdRp), NS5B, emulates the retroviral substitution rate, adding 

1x10-4 to 1x10-5 substitutions/site/generation (11). However, HCV does not have a double-

stranded intermediate genome, thus RdRp is exclusively used to go from positive-sense to 

negative-sense to positive-sense RNA, adding errors with each template copy. 

Recombination creates additional diversity by enabling allelic shuffling within the 

population. It has been posited that recombination in HIV occurs in up to 40% of progeny 

virions (12, 13). HIV is pseudodiploid; each HIV virion contains two single-stranded RNA 

(ssRNA) genomes non-covalently linked at the 5’ dimerization initiation sequence, but only 

one provirus is synthesized per viral particle. RT is associated with ribonuclease H (RNase 

H), an enzyme that degrades RNA from RNA-DNA heteroduplexes. During minus strand 

synthesis, RNase H frees up the growing chain, so if polymerase encounters a nick, break, or 

pause due to secondary structure in the RNA template, it can jump to the other molecule in 

the dimer, forming a recombinant. This model, originally called forced copy choice (12) but 
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then broadened to copy choice (14), is the predominant theory for recombination in HIV (15, 

16).  

Unlike HIV, HCV cannot readily form recombinants in vivo, though there are some 

rare documented cases of intersubtype and intergenotypic recombination (17-19). HCV’s 

replicase is membrane bound, which constrains RNA templates within lipid rafts and creates 

a barrier to template switching (20). Moreover, early competitive exclusion may prevent 

distinct variants arising to appreciable frequencies. If recombination occurs, chimers retain 

substantial homology to the parental templates and would be difficult to detect. Finally, 

recombination between subtypes can be readily induced in vitro, but recombinants have poor 

fitness. Sequence divergence incompatibilities would further limit the rise of recombinant 

genomes within a population (21). Thus if recombination occurs in HCV, it is rare, although 

poor sensitivity may result in underestimates of recombination (22). 

 
 

1.1.3 Viruses can rapidly evolve resistance to protease inhibitors and other direct acting 

antivirals.  

Nucleotide misincorporation by viral polymerase has an approximate random 

distribution across the viral genome, though it may be biased towards non-helical secondary 

structure (23-27) and other mutational biases (28, 29). The viral polymerase’s 

misincorporation rate (µ) is the frequency at which new mutations are introduced into a 

population. If a misincorporation event results in a nonsynonymous change, and the new 

amino acid does not reduce viral fitness to zero, the allele1 may be preserved in the viral 

                                                
1 An allele is defined as a genomic change from the consensus sequence of the intrahost untreated population. 
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population under a therapy naïve environment. New mutations will be added at a rate µ, but 

the frequency at which any given allele (q) will exist is the equilibrium achieved between the 

rate of introduction of that allele and the intensity at which selection (s) removes it, or q = µ/s 

(30).  

Because of the mutation/selection balance, a viral population will contain a number of 

low-frequency de novo mutations. Some minor variants will be unviable, however, while 

others may confer resistance. If a new allele reduces or prevents protease inhibitor binding, 

thus allowing for the genotype to replicate in the face of strong selection, it has the potential 

to be sweep under that selection, becoming a major haplotype and allowing for drug escape.  

The growth and adaptation of a viral population in the presence of drug selection is 

observed as viral rebound with drug resistance, and it can occur rapidly due to a short viral 

life cycle. The time needed for an HIV virion to attach, replicate, and produce progeny that 

infect new cells is estimated at 2 days, with a maximum of approximately 1010 virions 

produced per day within a person (31). In contrast, HCV’s replication cycle has a half life of 

2.7 hours (32), and approximately 1012 virions are produced daily (32-34). The high 

production rate of new mutations introduced into the small, ~10kb viral genomes results in 

rapid diversification of viral populations within a host. For both viruses, it has been 

theoretically estimated that at any given time within a large population, every single mutation 

can exist (35-37). 

If a drug was prescribed to an individual infected with HIV or HCV, and their 

intrahost population had variants containing resistance to the applied drug, viral escape and 

rebound may rapidly occur. Genotypic testing for drug resistance mutations is recommended 
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before starting drug therapy (6), and this technology will reveal variants ≥20% in frequency 

(38, 39).  

The clinical significance of pre-existing resistance alleles has not been clearly 

elucidated, and likely will be unique per drug and treatment regiment. Previous studies using 

allele-specific PCR have implicated that pre-existing variants may preclude increased 

susceptibility for therapy failure (40, 41). Deep sequencing studies have produced correlative 

(42), partial (43) or non-correlative (44) results on the impact of pre-existing resistance 

alleles, but none have examined the haplotypes on which they reside. Understanding if pre-

existing resistance alleles can be selected under a drug can further inform therapeutic choices 

and circumvent suboptimal selection. Aside from cost and morbidity associated with therapy 

failure, the outgrowth of drug resistance also complicates subsequent therapeutic 

intervention, as drugs within a class commonly contain overlapping drug resistance 

mutations, thus further narrowing downstream drug choices for viral suppression (6). 

When a patient fails therapy, a population of susceptible viruses bottlenecks under 

drug selective pressures, but then grows out with resistance. Virologic rebound requires 

genomic change that confers a phenotype allowing escape of drug selection and selection for 

that phenotype under a drug. In order to better understand how a viral population evolves 

resistance, several questions need to be addressed: 

 
Do new resistant variants arise during selection or do they grow out from the standing 

genetic variation? An extraordinarily high mutation rate adds variants de novo, rapidly 

diversifying the standing genetic variation. When a population rebounds with resistance, is 
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this due to de novo resistance mutations arising during the selective pressure (not a result of 

it), or the sweeping of pre-existing resistant variants in the standing genetic variation?  

 

Is the evolutionary path to resistance consistent? Escaping a selective event may only require 

a small number of discrete mutations. In vivo studies have demonstrated this process to be a 

sequential, step-wise addition of resistance and compensatory alleles (45-47), indicating that 

the path to resistance may be conserved across populations. Alternative in vivo studies, 

however, indicate that the patterns are more complex (48), therefore individual populations 

may take unique paths to resistance. 

Antagonistic epistasis has been shown to occur between beneficial alleles (49). If two 

adaptive alleles arise on different haplotypes, clonal interference predicts that their 

progression to fixation will be slower than if there was only one beneficial allele sweeping to 

fixation (50). Interference has been demonstrated in RNA populations such as vesicular 

stomatitis virus (VSV) (51), but has not been clearly demonstrated in vivo. The Red Queen 

Hypothesis, or the perpetual arms race amongst competing viral subpopulations, is perhaps 

better supported for RNA viruses in the face of drug selection due to a “leap-frog” effect of 

adaptive (or maladaptive) alleles (52, 53) versus smooth climbs to fitness peaks. Although 

many of these studies are from in vitro and in silico observations, they point to unique paths 

to adaptation. 

 

Do deterministic or stochastic processes dictate the fate of new mutations? Whether selection 

or drift determines which alleles survive a population bottleneck is directly related to the 

effective population size (Ne). For HIV, arguments for both large populations governed by 
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deterministic processes (54) and small populations driven by stochastic models (55-57) have 

been made. If stochastic forces govern a population it will take a unique path to resistance, as 

the fate of new mutations will be driven by drift (58). Similarly, pre-existing resistance 

mutations will be non-informative, as they are likely lost. If deterministic forces shape 

population response, pre-existing alleles likely are retained through a population bottleneck, 

increasing their probability of selection and expansion. 

 

Does recombination play a large role in shaping the evolution of haplotypes? If two alleles 

are associated or disassociated non-randomly, their appearance on a haplotype may be 

indicative of a non-additive change in fitness (ω). Linkage disequilibrium (D) that is 

maladaptive can be broken up by recombination (59), allowing escape from the effects of 

Muller’s ratchet and error catastrophe. For non-recombining viruses, a single allele needs to 

rise to fixation then gain a second beneficial allele from mutation for two beneficial alleles to 

arise on a single haplotype. HIV has a documented high recombination rate, but whether 

recombination or the de novo addition of new alleles during the path to resistance plays a 

larger role has not been clearly demonstrated. 

 

Does suboptimal compliance increases population diversity. A rough genotypic fitness 

landscape has been experimentally demonstrated for the RNA virus φ6 (60). Environmental 

effects further complicate Fisher’s (phenotypic) landscape. Environmental heterogeneity 

promotes population diversity by creating multiple fitness peaks. Disturbance, like selection, 

can destroy or promote diversification. Ecological succession has demonstrated maintenance 

of diversity through intermediate disturbances; organisms are not killed so frequently that 
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only a few can survive at any given time yet the environment is not so stable that superior 

competitors can quickly displace (61). Applying disturbance ecology to intrahost selection 

would predict that inconsistent, intermediate drug selection would result in the emergence of 

multiple resistance alleles. Drug concentration heterogeneity, thus increasing a range for the 

path to resistance, has been demonstrated to increase the rate at which resistance is developed 

(62). 

 

How does a co-infecting pathogen affect viral diversity? The persistent infection of more 

than one pathogen in a host is common, but the complexity of within-strain and within-host 

interactions make it difficult to predict how strains influence each other and shape disease 

outcome (63, 64). It is known that HCV-HIV co-infection increases patient morbidity and 

mortality (65) by causing a three fold acceleration in fibrosis, cirrhosis, and liver disease 

(66). The biologic effects and clinical observations of mono- versus co-infection suggest 

differences in intrahost viral diversity, but previous studies have failed to demonstrate a 

difference (67, 68), or consensus (69-72). 

 
 
1.2 Sequencing Approaches for Minor Alleles 

The structure of an intrahost viral population and the path it takes to resistance has 

large theoretical and clinical implications. To date, these questions have only been explored 

from techniques that have limited and/or biased sampling of the extant diversity. 

 

1.2.1 Common methods for genotyping resistance may obscure the origins and nature of 

resistance alleles.  
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In the clinical setting, genotypic assays that resolve drug resistance mutations use 

Sanger-based sequencing technology. A population of viral templates is sampled from an 

individual, sequenced, and then reported as a single consensus sequence. The consensus 

sequence captures the most common alleles, and high frequency allelic variants can be 

detected and quantified de novo by assessing chromatogram peaks. However, variants below 

20-25% in frequency are typically not resolved (38, 39), and accuracy is further compounded 

by laboratory-introduced biases (73). Furthermore, the association, or linkage, between 

different variable sites is lost. 

There are alternative methods to resolving variants below the resolution of Sanger 

sequencing. Allele-specific PCR, for example, uses primers specific to drug resistance 

polymorphisms on individual sites within the viral genome. Due to the sensitivity of PCR, 

this potentiates the resolution of variants present in less than 1% in of the population. 

However, targets require a priori selection of sites and variants, and akin to Sanger 

sequencing, linkage is lost (74-83). 

Thus, the detection of allelic variants has been constrained by either a de novo 

analysis of sequencing variation but at the cost of a low resolution, or by an a priori 

resolution of individual minor variants but at the cost of losing linkage and novel 

uncharacterized alleles. Furthermore, these assays are labor-intensive and do not lend 

themselves to high-throughput techniques. Although resistance thresholds that are clinically 

relevant have been poorly defined, there is evidence that low-abundance drug resistant 

variants are selected under drug therapy, resulting in virologic failure. Clearly defining the 

presence and frequency of drug resistance mutations prior to antiviral treatment that result in 

failure could prevent suboptimal therapies and incomplete viral suppression. 
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1.2.2 PCR artifacts and a high sequencing error rate bias deep sequencing resolution of 

viral populations.  

The high throughput, thus high-resolution capabilities of next generation sequencing 

platforms has a great potential to be applied within a clinical setting in resolving minor drug 

resistance mutations de novo, retain linkage across a template, and provide drug resistance 

screening at a lower cost per sample than standard genotypic assays. However, the high error 

rate inherent from the sequencing chemistry in combination with laboratory-introduced 

biases has limited the clinical application and resolution of minor variants to levels below 

that of population sequencing but above what allele-specific PCR can obtain. Therefore, the 

utility of next generation platforms for sequencing of viral populations derived from clinical 

samples is restricted. 

High throughput platforms require a large amount of starting material, typically 

500ng-1ug of DNA. Patient-derived samples contain a limited number of viral templates, 

therefore PCR is an necessary first step prior to a sequencing protocol. Significant biases are 

introduced into the viral population by PCR. Polymerase, during its many rounds of copying, 

will misincorporate nucleotides. This inflates the genetic diversity of the population. When 

incomplete templates prime a subsequent round of synthesis, chimeric genomes, or 

recombinants, are produced (84, 85). PCR-mediated recombination not only disrupts linkage 

between sites, but also creates artifactual linkage. Templates entering at different PCR cycles 

will result in some genomes amplifying more than others, resulting in a skewing of allele 

frequencies.  
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Another major limitation of viral template PCR amplification prior to a deep 

sequencing protocol is the re-sampling of amplified templates, or PCR re-sampling. PCR 

reactions typically start with an unknown number of templates. When PCR efficiencies are 

not 100%, the random dropout of sequences results in an underestimation of diversity. 

Moreover, sampling of a large, amplified population does not equate with sampling of 

individual genomes, therefore depth is a correlate of the amount of starting material, not 

degree of re-sampling (86). 

 

1.2.3 Consensus sequences constructed from amplified products derived from an 

individual template resolve PCR and sequencing error.  

Strategies that create a consensus sequence, such as Single Genome Amplification 

(SGA), will call the correct base at each position (87-90). In the SGA strategy, PCR 

amplification is preceded by endpoint dilution titration, such that a single template is present 

per reaction. During amplification, PCR biases will introduce error, but the influence of 

diversity from recombination events and differential template amplification will be masked 

by overall sample homogeneity. Although misincorporation occurs, it is randomly distributed 

across the template, therefore the majority of reads per site will be correct. With traditional 

sequencing methods, minor variants due to misincorporation will be masked, resulting in the 

correct base call per position. While this approach is effective for eliminating the PCR and 

sequencing biases, it does not lend itself to high throughput techniques and has limited utility 

when applied to a large viral population. 

High throughput sequencing can resolve PCR biases because each individual template 

from a PCR reaction has the potential to be sequenced. The task of extracting biological 



 14 

polymorphisms from PCR biases and sequencing error has been farmed out to an ever-

increasing number of software and bioinformatics tools that range in utility, algorithmic 

complexity, and degree of auxiliary analyses (91-94). However, the unifying factor that ties 

together these tools is that they are all assessing error from biological polymorphisms 

indirectly. 

Indirect, or statistical inference of biological diversity can generally resolve major 

variants. However, minor biological variants whose frequency nears the error threshold are 

greatly skewed or lost due to procedural biases. Therefore, an individual’s resistance profile 

is fundamentally limited to variants whose frequency is well above the sequencing error and 

influence of PCR biases, and PCR re-sampling continues to remain uncorrected for. In order 

to make high throughput sequencing useful in resolving minor drug resistant variants and 

determining their role in virologic outcome, PCR biases, sequencing error, and PCR re-

sampling all need to be directly overcome. Only after procedural error is removed can one 

examine a population accurately for drug resistance and adaptation to drug selective 

pressures. 

The high evolvability of HIV and HCV is due to selection of adaptive alleles within 

the standing genetic variation, and understanding this process may reveal how to prevent it. 

My work begins to explore the path to drug resistance by finely resolving the structure of 

intrahost populations as it overcomes selection. Why individuals fail therapy is likely a 

question that will need to be re-interpreted on a per-patient basis, as my work suggests a 

complex interplay between selection pressure, viral diversity, and population dynamics. 



 
 
 
 
 

Chapter 2 
 

Accurate Sampling and Deep Sequencing of the HIV-1 Protease Gene Using a Primer ID 
 

Reprinted with modification from: Jabara C.B., Jones C.D., Roach J., Anderson J.A., and 

Swanstrom R. (2011) Accurate Sampling and Deep Sequencing of the HIV-1 Protease Gene 

Using a Primer ID. Proc Natl Acad Sci USA 108:20166-71. 

 

 

2.1 Abstract 

Viruses can create complex genetic populations within a host, and deep sequencing 

technologies allow extensive sampling of these populations. Limitations of these 

technologies, however, potentially bias this sampling, particularly when a polymerase chain 

reaction (PCR) step precedes the sequencing protocol. Typically, an unknown number of 

templates are utilized in initiating the PCR amplification and this can lead to unrecognized 

sequence resampling creating apparent homogeneity; also PCR-mediated recombination can 

disrupt linkage, and differential amplification can skew allele frequency. Finally, 

misincorporation of nucleotides during PCR and errors during the sequencing protocol can 

inflate diversity. We have solved these problems by including a random sequence tag in the 

initial primer such that each template receives a unique Primer ID. After sequencing, 

repeated identification of a Primer ID reveals sequence resampling. These resampled 

sequences are then used to create an accurate consensus sequence for each template, 
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correcting for recombination, allelic skewing, and misincorporation/sequencing errors. The 

resulting population of consensus sequences directly represent the initial sampled templates. 

We applied this approach to the HIV-1 protease (pro) gene to view the distribution of 

sequence variation of a complex viral population within a host. We identified major and 

minor polymorphisms at coding and noncoding positions. In addition, we observed dynamic 

genetic changes within the population during intermittent drug exposure, including the 

emergence of multiple resistant alleles. These results provide an unprecedented view of a 

complex viral population in the absence of PCR resampling and artifactual error. 

 

2.2 Introduction 

High throughput sequencing allows the acquisition of large amounts of sequence data 

that can encompass entire genomes (95-98). With sufficient amounts of starting DNA, PCR 

is not needed prior to the library preparation step of the sequencing protocol. Sequencing 

miscalls inherent in high throughput sequencing approaches are resolved using multiple reads 

over a given base. 

Deep sequencing can also capture the genetic diversity of viral populations (72, 99-

103), including intrahost populations derived from clinical samples. This approach offers the 

opportunity to view population diversity and dynamics, and viral evolution in unprecedented 

detail. One place where the presence of minor variants is of immediate practical importance 

is in the detection of drug resistant variants. Standard bulk sequencing methods, however, 

will miss allelic variants below 20% in frequency within a population (38, 39). Alternative 

assays can detect less abundant variants that confer drug resistance, but require a priori 

selection of sites and variants (74-83, 104). Thus deep sequencing approaches offer the 
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opportunity to identify minor variants associated with resistance de novo with the goal of 

understanding their role in therapy failure. 

While screening for drug resistant variants is a practical application of the deep 

sequencing technology, this technology also addresses broader questions of sequence 

diversity and structure for a complex population like HIV-1. However, the relatively high 

sequencing error rates of these technologies artificially increase genetic diversity, which 

confounds the detection of natural genetic variation especially when sequencing a highly 

heterogeneous viral population (31, 105, 106). Moreover, the use of PCR to amplify the 

amount of material prior to starting the sequencing protocol adds the potential for several 

serious artifacts (107): first, nucleotide misincorporation by polymerase during the many 

rounds of amplification artificially increases sequence diversity; second, artifactual 

recombination during amplification occurs when premature termination products prime a 

subsequent round of synthesis which can obscure the linkage of two sequence 

polymorphisms (84, 85); third, differential amplification can skew allelic frequencies; and 

fourth, PCR amplification can create a significant mass of DNA from a small number of 

starting templates, which obscures the true sampling of the original population as these few 

starting templates/genomes get resampled in the PCR product, creating sequence resampling 

rather than the observation of independent genomes (86). Overall, these biases artificially 

decrease true diversity while introducing artifactual diversity and also skew allelic 

frequencies which can lead to incongruence between the real and observed viral populations. 

Most investigators use statistical tools to attempt to control for the types of sequencing errors 

that are associated with each sequencing platform. 
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 To make deep sequencing useful for complex populations it is necessary to overcome 

PCR resampling, which is mistaken for sampling of the original population, and PCR and 

sequencing errors, which can be mistaken for diversity. As nucleotide misincorporation is 

largely random across sites, and template switching/recombination is more likely to occur in 

the later cycles of a PCR reaction (108), strategies that create a bulk or consensus sequence 

for each sampled template will call the correct base at each position. One approach to 

sampling highly heterogeneous populations, such as the HIV-1 env gene, is through endpoint 

dilution titration of the template prior to nested PCR, such that a single template is present in 

each PCR amplification (87-90). In addition to masking the misincorporations, PCR-

mediated recombination produces recombinant templates identical to the parental sequence. 

Although highly accurate, this technique is labor-intensive, and, as population sampling is 

dependent on the number of templates sequenced, this methodology does not lend itself to 

the identification of minor variants or to understanding the structure of a complex population, 

nor is it easily adaptable to a high throughput approach. 

 We have developed a new, high throughput technique for directly resolving the 

genetic diversity of a viral population. This technique avoids the recording of PCR and 

sequencing errors that create artificial diversity, and corrects for artificial allelic skewing and 

PCR resampling, revealing the original genomes in the population. This is accomplished by 

embedding a degenerate block of nucleotides within the primer used in the first round of 

cDNA synthesis. This creates a random library of sequences within the primer population. As 

primers are individually used out of this library, each viral template is copied such that the 

complement (cDNA) now includes a unique sequence tag, or Primer ID. This Primer ID is 

carried through all of the subsequent manipulations to mark all sequences that derive from 
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each independent templating event, and PCR resampling then becomes over-coverage for 

each template to create a consensus sequence of that template. Using this approach, we were 

able to directly remove error, correct for PCR resampling, and capture the fluctuation of 

minor variants in the viral population within a host. We also resolved minor drug resistant 

variants below 1% in frequency prior to the initiation of antiretroviral therapy, and were able 

to correlate these variants with the emergence of drug resistance.  

 

2.3 Materials and methods 

vRNA extraction and cDNA synthesis. Viral RNA was extracted from three plasma 

samples taken longitudinally from an individual infected with subtype B HIV-1 who was 

participating in a protease inhibitor efficacy trial (M94-247). Two samples were collected at 

approximately 6 months before and immediately prior to the addition of the protease 

inhibitor ritonavir to a failed therapy regimen (plasma viral loads of 285,360 copies of viral 

RNA/ml and 321,100 copies of viral RNA/ml, respectively), and one sample was collected 

during ritonavir therapy (at approximately two months on therapy, 349,920 copies of viral 

RNA/ml) but during a time of apparent intermittent compliance. For each plasma sample, 

vRNA was extracted from pelleted (25,000 x g for 2 hours) viral particles using the QiaAMP 

Viral RNA Kit (Qiagen, Valencia, CA). Approximately 10,000 copies of viral RNA from 

each sample were present in the cDNA synthesis reaction as previously described (87, 109, 

110). The tagging primer used was, 5’-

GCCTTGCCAGCACGCTCAGGCCTTGCA(BARCODE)CGNNNNNNNNTCCTGGCTTT

AATTTTACTGGTACAGT-3’. The barcode represented TCA, GTA, and TAT for study 

days 58, 248, and 303, respectively. The 3’ end of the tagging primer targeted downstream of 
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the protease coding domain (HXB2 2568-2594). The oligonucleotides were purchased from 

IDT and were purified by standard desalting. 

 

Amplification of tagged sequences. The single-stranded cDNA was column purified using 

the PureLink PCR Purification Kit (Invitrogen, Carlsbad, CA), using Binding Buffer HC 

(high cut-off) and 3X wash to remove the cDNA primer. Primer removal was verified by 

electropherogram analysis using an Experion HighSense RNA microfluidic chip (Bio-Rad 

Laboratories, Hercules, CA). Samples were amplified by nested PCR, using upstream 

primers 5’-GAGAGACAGGCTAATTTTTTAGG-3’ (HXB2 2071-2093) and 5’-

ATAGACAAGGAACTGTATCC-3’ (HXB2 2224-2243); the downstream primers targeted 

the 5’ portion of the cDNA tagging primer 5-GCCTTGCCAGCACGCTCAGGC-3’ then 5’-

CCAGCACGCTCAGGCCTTGCA-3’. The PCR was done using Platinum Taq DNA 

Polymerase High Fidelity (Invitrogen, Carlsbad, CA). Each reaction contained 1x High 

Fidelity PCR Buffer, 0.2 mM dNTP mixture, 2 mM MgCl2, 0.2 µM of each primer, 1.5 units 

of Platinum Taq DNA Polymerase. For the first round, the purified cDNA template was split 

to 2x50ul for the first round PCR, and 1ul of the purified first round product was used for 

nested PCR. Samples were denatured at 94oC for 2 minutes, followed by 30 cycles of 94oC 

for 15 seconds, 55oC for 30 seconds, 68oC for 1 minute, and a final extension at 68oC for 5 

minutes. 

Samples were column purified after the first round of PCR using the MinElute PCR 

Purification Kit (Qiagen, Valencia, CA), and eluted into 30ul of buffer EB. Second round 

PCR product was gel purified using a 2% agarose gel and QIAquick gel extraction kit 

(Qiagen, Valencia, CA), with incubation of the solubilization buffer at room temperature. 
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DNA was quantified by Qubit fluorometer using dsDNA High Sense assay (Invitrogen, 

Carlsbad, CA). Product generation, quality, and primer removal for both PCR rounds was 

verified using an Experion DNA microfluidic chip (Bio-Rad Laboratories, Hercules, CA). 

 

454 pyrosequencing. Tagged samples from the three time points were combined and 

sequenced on the 454 GS FLX platform with XLR70 Titanium sequencing chemistry as per 

the manufacturer’s instructions (Roche, Nutley, NJ) but with under-loaded beads to minimize 

signal crosstalk. Sequences were processed from two independent 454 GS FLX Titanium 

runs (1/8th of a plate each). 

 

Bioinformatic pipeline for raw sequence processing. A suite of programs was written to 

filter and parse raw 454 sequencing reads. In short, first each sequence was placed in the 

correct orientation as compared to a reference pro gene sequence. This alignment was then 

used to identify insertions or deletions caused by the 454 sequencing of homopolymers. 

When there was an insertion, the extraneous base was excised from the sequence. Deletions 

retained were largely resolved in the construction of the consensus sequence (see below). 

Second, they were evaluated for the presence of the cDNA primer 5’ tail, with the encoded 

information (barcode and primer ID) exactly spaced. Third, individual samples were binned 

according to their barcodes, and then to their individual the Primer ID. Fourth, sequences 

were trimmed to the protease coding domain (pro gene). Within a barcode bin, when three 

sequences contained an identical Primer ID, a consensus sequence was called by majority 

rule. Ambiguous nucleotide designations were used when there was a tie. Sequences are 

available under GenBank accession numbers JN820319-JN824997. 
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Population analyses. A chi-squared test was used to test for significance changes in allele 

frequency between the two untreated time points. To control for multiple testing, collective 

assessment of significance was based on False Discovery Rate analysis (FDR = 0.05). Tests 

for linkage disequilibrium were computed by DnaSP v.5.10.01 (111). These tests were done 

on filtered populations devoid of sequences containing ambiguities or gaps. Tests for 

neutrality were computed by DnaSP and R (112) on filtered populations devoid of sequences 

containing ambiguities. Gaps and alleles represented by a single sequence were reverted to 

the consensus. Beta P-values were calculated against the null hypothesis that D = 0, 

assuming that D follows a beta distribution after rescaling on [0, 1] (113). 

 Synonymous and nonsynonymous diversity across and within populations was 

computed through customized bioinformatics suites. Unfiltered sequences were used in the 

analysis, and ambiguities, gaps, and alleles represented by a single sequence were removed 

from the final tabulation.  

 SNPs were graphically displayed through the Highlighter tool (www.hiv.lanl.gov). 

 

Phylogenetic resolution of sequences. The phylogeny for the population of consensus 

sequences from all three time points was resolved using two alternative methods and on 

populations devoid of sequences containing gaps or ambiguities. When only one example of 

a SNP was present across all sequences, it was converted to the consensus on the assumption 

that it was likely generated by residual method error. First, the Neighbor-Joining tree using 

the Kimura translation for pairwise distance and a bootstrap of 100 iterations was constructed 

with QuickTree v.1.1 (114). 
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Second, Maximum likelihood phylogeny was inferred using the PHYLIP package, 

version 3.69 (115), and the calculated phylogeny is available upon request. The PHYLIP 

program seqboot was used to create 100 bootstraps. Resulting bootstraps were submitted to 

the PHYLIP program dnamlk for maximum likelihood inference subject to a strict molecular 

clock. The consensus tree of all boostrap results was constructed using the PHYLIP 

program consense. 

 Both phylogenetic trees were visualized by a customized modification of Figtree 

v.1.3.1. (116) 

 

2.4 Results 

A cDNA synthesis primer containing a Primer ID can be used to track individual viral 

templates.  

A population of cDNA synthesis primers was designed to prime DNA synthesis 

downstream of the HIV-1 protease (pro) gene, with the primer containing two additional 

blocks of identifying information (Fig. 2.1A). The first block was a string of eight degenerate 

nucleotides that created 65,536 distinct sequence combinations (48), or Primer IDs. This 

region was flanked by an a priori selected three nucleotide barcode, creating a sample 

identification block so that multiple samples could be pooled together in a sequencing run 

(100). A designed sequence at the 5’ end of the cDNA primer was used for subsequent 

amplification of the cDNA sequences by nested PCR. 
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Fig. 2.1 Tagging viral RNA templates with a Primer ID before PCR amplification and 

sequencing allows for direct removal of artifactual errors and identifies resampling. (A) 

A primer was designed to bind downstream of the protease coding domain. In the 5′ tail of 

the primer, a degenerate string of eight nucleotides created a Primer ID, allowing for 65,536 

unique combinations. An a priori selected three nucleotide barcode was designed for the 

sample ID. Finally, a heterologous string of nucleotides with low affinity to the HIV-1 

genome was included in the far 5′ end for use as the priming site in the PCR amplification. 

(B) PCR biases and sequencing error are introduced during amplification and sequencing of 

viral templates. Repetitive identification of the barcode and Primer ID allow for tracking of 

each templating event from a single tagged cDNA. As errors are minor components within 

the Primer ID population, forming a consensus sequence directly removes them, and corrects 

for PCR resampling. (C) HIV-1 RNA templates isolated from plasma samples from two pre- 

and one post-intermittent ritonavir drug therapy were tagged, amplified, and deep sequenced. 

Tagged sequences containing full- length protease were used to create a population of 
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consensus sequences when at least three sequences contained an identical barcode and Primer 

ID. 

Viral RNA was extracted from three longitudinal blood plasma samples from an 

individual infected with subtype B HIV-1 who was participating in a protease inhibitor 

efficacy trial (M94-247) (117) (Fig. 2.2). Approximately 10,000 copies of viral RNA from 

each sample were used in a reverse transcription reaction for cDNA synthesis and tagging 

using the Primer ID. The cDNA product was separated from the unused cDNA primers, then 

the viral sequences were amplified by nested PCR and sequenced on the 454 GS FLX 

Titanium. Our data were distilled from total reads of 20,429, 24,658, and 27,075 for the three 

time points (T1, T2, and T3, respectively). Raw sequence reads were assessed for the cDNA 

tagging primer and a full length pro gene sequence (297 nucleotides long representing 99 

codons), and when three or more sequences within a sample contained an identical Primer 

ID, a consensus sequence was formed to represent one sequence in the population (Fig. 2.1B, 

1C, S2). 

 

 

Fig. 2.2 Longitudinal sampling of blood plasma from a single individual infected with 

HIV-1 subtype B pre- and post- a failed ritonavir monotherapy regime. Two time-points 

∼6 mo apart were sampled before ritonavir therapy (T1 and T2). One time point was sampled 
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after failed, intermittent ritonavir monotherapy (T3). The shaded areas represent times of 

therapy compliance based on self-report. 

 

With these manipulations we generated 857, 1,609, and 2,213 consensus sequences, 

respectively, for the three time points (Fig. 2.1C). The median number of reads per Primer ID 

was 6, ranging from 1 to 96 (Fig. 2.3). The distribution of identical Primer IDs did not form a 

normal distribution as would be expected if all templates were amplified equally. We saw a 

higher than expected number of single reads of Primer IDs; although we do not know the 

reason for this, such a result is consistent with different cDNA templates entering the PCR at 

different cycles. Since each template is individually tagged the different number of reads is 

an indication of allelic skewing, as noted this can be nearly 100 fold. In an analysis of a 

number of low abundant variants we saw a 20-fold range of representation through allelic 

skewing, with half of the variants up to 2-3 fold more abundant than the mean, and the other 

half up to 5-10 fold less abundant. 
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Fig. 2.3 Distribution of the number of reads per Primer ID or consensus sequence. A) 

Blue bars represent the distribution of resampling of the filtered sequence population 

immediately before consensus sequence generation. Within a single Primer ID, when three or 

more sequences were present, a consensus sequence was formed. The orange bars represent 

the distribution of the number of reads that went into each consensus sequence. The values 

shown represent the mean for the data from the three time points with the error bars 

representing the SD between the three samples. Starred bars are included to mark positions 

where a single sequence had high resampling occurrence. (B) Number of consensus 

sequences containing an ambiguity as a function of extent of resampling. All three time 

points were combined. Gray bars represent consensus sequences without an ambiguity, and 

orange bars represent consensus sequences with an ambiguity. There is a discernible pattern 

of an increased number of ambiguities going out to 22 reads/consensus sequence for those 
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consensus sequences created from an even number of reads, the result of having a tie 

between two different sequences at one position. However, this represents only a small 

fraction of the total reads (5.4%). The amino acid position with the highest ambiguity total 

was used per Primer ID subpopulation. 

 

We conservatively estimate the combined in vitro error rate of the cDNA synthesis 

step by reverse transcriptase and the first strand synthesis by the Taq polymerase to be on the 

order of 1 mutation in 10,000 bases, or approximately one mutation per 33 pro gene 

sequences, based on an RT error rate of 1 in 22,000 nucleotides (118) and a Taq polymerase 

error rate of 1.1 in 10,000 nucleotides (119) but reduced by half since only the first round of 

synthesis is relevant and a misincorporations at this step gives a mixture. Later rounds of Taq 

polymerase errors should be largely lost through the creation of the consensus sequence. 

Thus we would expect 139 sequence misincorporations to be present in the data set of 4,679 

total sequences representing T1+T2+T3, and with an excess of transitions. These would be 

expected to occur as 113 single copy single nucleotide polymorphisms (SNPs) and 13 SNPs 

that appeared twice. We observed 98 single copy SNPs in the data set with a 3 fold excess of 

transitions, and with three-fourths of them being coding changes, which is consistent with 

random mutations. We expect there to be low frequency SNPs in the viral population from 

rare but persistent variants that are fortuitously sampled, and from the intrinsic error rate of 

viral replication (the error rate during one round of viral replication would represent 

approximately one mutation per 150 pro gene sequences (105)). However, we cannot 

distinguish real polymorphisms from the inferred background error rate associated with the 

first and second rounds of in vitro DNA synthesis. Thus we have limited the analysis of 



 29 

population diversity to SNPs that appeared at least twice in the data set (i.e. linked to at least 

two separate Primer IDs), either at the same time point or at multiple time points in the 

overall data set (Table 2.1). We have not corrected the data set for the presumed 13 SNPs 

that appeared twice that are expected to be present due to error even though this represents 

33% of all of the SNPs that appeared twice (13 of 39). Overall, 80% of the SNPs (i.e. any 

sequence change from the consensus that appeared at least once) in the total data set of 

72,162 sequence reads were removed as error. Also, 60-65% of the sequence reads were 

revealed as resampling. Finally, allelic skewing of up to nearly 100 fold was corrected (Fig. 

2.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1 Frequency of nonconsensus codons per position 
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Consensus Nonsynonymous     Synonymous    
AApos

a AAc
b Cc

c Cm
d AAm

e T1f T2g T3h T3s
i T3r

j Cm
k T1l T2m T3n T3s

o T3r
p 

4 T ACT GCT A  0.06 0.05  0.09       
5 L CTT CCT P 0.12  0.05 0.14        
7 Q CAA        CAG 0.35 0.12 0.09 0.14 0.09 
8 R CGA        CGG 0.12  0.05 0.14  
9 P CCC              
10 L CTC TTC F  0.19    CTT  0.19    
11 V GTC ATC I 0.23 0.25    GTT  0.12    
14 K AAG AGG R  0.12    AAA 1.17 0.19 0.59 0.29 0.72 
15 I ATA GTA V 1.17 0.12 0.14 0.14 0.18 ATC   0.09  0.18 
16 G GGG AGG R  0.06 0.05  0.09 GGA 2.22 3.54 38.86 17.70 45.97 
17 G GGG AGG R   0.09 0.29  GGA 0.35 0.19 0.18 0.43 0.09 
18 Q CAA GAA E 0.23 0.12    CAG 18.55 21.75 6.46 12.81 3.53 
19 L CTA ACA T 0.47           
   ATA I 19.25 19.83 20.42 19.28 24.98 TTA 0.12 0.19 0.09 0.29  
   GTA V 3.38 5.66 46.00 25.61 52.76       

20 K AAG AGG R 0.12 0.12 0.05  0.09 AAA  0.31 0.86 0.29 1.27 
21 E GAA        GAG 0.12 0.06 0.05 0.14  
22 A GCT        GCC 0.47 0.44 0.27 0.58 0.18 
          GCG 0.23     

23 L CTA        CTG  0.19    
24 L TTA        CTA 0.35 5.72 1.31 2.16 0.63 
          TTG 12.49 0.81 0.59 1.01 0.27 

25 D GAT GGT G 0.12 0.12    GAC 0.23 0.93 0.05 0.14  
26 T ACA GCA A  0.12          
27 G GGA        GGG 0.12 0.06    
28 A GCA        GCG 0.12  0.09 0.14  
29 D GAT AAT N 0.12  0.05  0.09 GAC 0.23 0.19    
30 D GAT        GAC  0.06 0.09 0.14 0.09 
31 T ACA        ACG  0.12    
32 V GTA        GTG  0.25    
33 L TTA GTA V 0.47 0.06    CTA  0.25 0.14 0.29 0.09 
          TTG 0.35 0.12 0.14 0.43  

34 E GAA GGA G  0.12 0.05  0.09 GAG 0.12  0.05 0.14  
   CAA    0.09         

35 E GAA AAA K 0.12 0.06 0.09 0.14        
36 M ATG ATA I 0.82 0.81 0.27 0.43 0.27       
37 N AAT AGT S  0.19 0.05   AAC  0.06 0.05 0.14  
   GAT D 2.33 2.30 0.95 0.86 1.27       

38 L TTG        TTA 0.23 0.62 0.05  0.09 
39 P CCA        CCT 0.23     
40 G GGA        GGG 0.12 0.12    
41 K AAA AGA R  0.06 0.18 0.14 0.27 AAG 4.08 1.43 0.50 1.15 0.27 
42 W TGG CGG R 0.12 0.06          
   TAG _ 0.12  0.05  0.09       
   TGA _   0.14  0.27       

43 K AAA AGA R  0.06 0.05  0.09 AAG 0.35  0.14 0.14 0.18 
44 P CCA        CCG  0.06 0.23 0.43 0.18 
45 K AAA AGA R 0.12 0.12 0.05  0.09 AAG 0.58 0.99 0.41 1.29  
46 M ATG ATA I  0.12 0.09 0.14 0.09       
48 G GGA GAA E   0.14 0.14 0.18 GGG 0.35 0.19    
49 G GGA GAA E 0.12 0.06 0.05  0.09 GGG 0.23 0.12    
50 I ATT        ATC 0.12 0.12    
51 G GGA        GGG 0.12 0.06    
52 G GGT AGT S 0.12 0.06 0.05 0.14  GGA  0.06 0.05 0.14  
          GGC 0.12 0.31 0.09 0.14 0.09 
          GGG   0.14 0.43  

53 F TTT        TTC 0.70  0.05 0.14  
54 I ATC ACC T 0.12 0.06 0.05  0.09 ATT 0.35 0.06 0.14 0.14  
55 K AAA AGA R 0.12  0.05  0.09 AAG 0.12 0.06    
56 V GTA ATA I 0.12  0.05 0.14  GTG  0.75 0.14 0.14 0.18 
57 R AGA AAA K 0.23     AGG 0.23 0.87 0.14 0.14 0.18 
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58 Q CAG TAG _   0.05  0.09 CAA 0.93 0.50 0.23 0.29 0.27 
60 D GAT AAT N  0.12          
 

 
 

  GGT G  0.12          
61 Q CAA CGA R 0.12 0.06 0.05 0.14  CAG  0.19 0.23 0.58  
   TAA _ 0.12 0.06 0.05  0.09       

62 I ATA GTA V 0.35 0.06          
63 L CTC CCC P 0.12  0.41 0.58 0.36 CTT 11.32 5.41 1.27 2.88 0.45 
64 I ATA GTA V 1.05 0.06 0.09  0.18       
   ATG M 0.23  0.05 0.14        

65 E GAA AAA K   0.09 0.14 0.09 GAG 0.35 0.06 0.05   
66 I ATC        ATA  0.25 0.18 0.58  
          ATT 1.98 0.19    

67 C TGT        TGC 0.35 0.12 0.05 0.14  
68 G GGA        GGG 0.23 0.12 0.05 0.14  
69 H CAT TAT Y 0.23 0.06 0.09 0.14  CAC 0.82 0.31 0.14 0.29 0.09 
70 K AAA CAA Q 0.47 0.12 0.41 1.29  AAG 3.27 10.88 15.27 6.62 25.34 
71 A GCT ACT T  0.12 0.09         
72 I ATA GTA V 0.12 0.12          
73 G GGT        GGC 0.47 18.09 7.05 15.68 3.62 
74 T ACA        ACG 0.23 0.12    
75 V GTA ATA I 0.23 0.06 0.05   GTG 1.87 0.99 0.27 0.43 0.27 
   GCA A   0.09  0.18       

76 L TTA        CTA  0.12 0.09  0.18 
          TTG 0.93 0.62 0.27 0.43 0.18 

77 V GTA ATA I 0.23 0.56 0.72 2.01 0.18 GTG 0.82 0.62 0.23 0.58  
   CTA L   0.14         

78 G GGA        GGG 1.17 1.24 0.09 0.14  
79 P CCT        CCC 1.17 0.31 0.54 1.29 0.18 
81 P CCT        CCC 0.12 0.19    
          CCG 1.52 0.44    

82 V GTC ATC I  0.06 1.27 3.60  GTA 0.35 0.31 0.05   
   CTC L  0.06 1.08 3.45  GTT 1.05 0.75 0.41 1.01  
   GCC A  0.12 49.89  99.91       
   TTC F   0.14 0.43        

83 N AAC AGC S 0.12  0.05  0.09 AAT 8.17 6.40 3.62 4.75 4.16 
84 I ATA GTA V   5.15         
85 I ATT        ATA  0.12 0.05 0.14  
          ATC 0.12 0.12 0.05   

86 G GGA        GGG  0.12    
          GGT 0.12 0.06    

87 R AGA AAA K 0.12 0.06 0.05  0.09 AGG 0.58 0.37 0.05 0.14  
   GGA G  0.06 0.09 0.14 0.09       

88 N AAT        AAC 0.35 0.93    
89 L CTA ATA I  0.12    CTG 1.17 0.68 1.36 1.87 1.54 
          TTA 1.98 0.56 1.27 0.14 2.44 

90 L TTG ATG M 0.12  13.56  0.09 CTG 0.47  0.09 0.14 0.09 
   TCG S 0.12  0.05  0.09 TTA 0.47 0.19 0.14 0.43  

91 T ACT GCT A  0.06 0.05  0.09 ACC 0.12 0.06 0.09 0.14 0.09 
          ACG 0.12 0.12 0.77  1.54 

92 Q CAG        CAA 0.23 0.19 0.14   
93 I ATT CTT L 0.12 0.06    ATC 0.23  0.09 0.14 0.09 
94 G GGT GAT D 0.12 0.06    GGA 0.23     
          GGC 1.28 0.25 0.50 1.29 0.18 
          GGG 0.23 0.06 0.09 0.14  

95 C TGC        TGT 0.70 0.12 0.14  0.27 
96 T ACT        ACA 0.12  0.09 0.14 0.09 
          ACC 0.70 0.12 0.23 0.43 0.09 
          ACG  0.06 0.05 0.14  

97 L TTA        CTA 0.58  0.05 0.14  
          TTG 0.12 0.25 0.27 0.43 0.27 

98 N AAT        AAC 0.23 0.12 0.14  0.18 
99 F TTT CTT L  0.06 0.18 0.29 0.09 TTC 1.05 0.50 1.54 1.44 1.54 
   GTT V 0.23           
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aAmino acid position, protease.  
bConsensus amino acid in untreated population.  
cConsensus codon in untreated population. 
dCoding nonconsensus amino acid.  
eCoding nonconsensus codon.  
fFrequency of SNP in first untreated time point.  
gFrequency of SNP in second untreated time point.  
hFrequency of SNP in third time point, treated.  
iFrequency of SNP in third time point, treated, susceptible population (not V82A, I84V, 
L90M).  
jFrequency of SNP in third time point, treated, population containing major ritonavir resistant 
variant V82A.  
kSilent nonconsensus codon.  
lFrequency of SNP in first untreated time point.  
mFrequency of SNP in second untreated time point.  
nFrequency of SNP in third time point, treated.  
oFrequency of SNP in third time point, treated, susceptible population (not V82A, I84V, 
L90M).  
pFrequency of SNP in third time point, treated, population containing major ritonavir 
resistant variant V82A. 
 

 

Fig. 2.4 Analysis of low abundance variants for the distribution of allelic skewing. We 

used discarded sequences (i.e., unique sequences represented by a single Primer ID) and 

transient genomes defined as having a low abundance SNP in the preconsensus population 

per untreated time point. Transient sequences were defined as having at least two sequences 

at only one of the untreated time points, or one copy at one of the untreated time points and 
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then again at the third time point. These sequences were used to define a set of sequences that 

could be compared for low frequency abundance in the total data set versus the consensus 

sequences. The horizontal bars represent the measured frequency of a single copy sequences 

in the consensus population at T1 and T2. Dark points represent discarded genomes, and light 

points represent transient genomes with their position indicating their abundance in the total 

sequence population before construction of the consensus sequences. Blue points represent 

sequences present at T1, red points represent sequences present at T2. These data show that 

allelic skewing of 2-fold upward and 10-fold downward is common before the formation of 

the consensus sequence. 

 

Longitudinal sequencing of the HIV-1 protease (pro) gene in an untreated individual 

reveals dynamic changes in genetic variation.  

We analyzed the sequences of the pro gene populations to assess allelic frequency at 

the two sampled time points, separated by 6 months and prior to ritonavir (117) drug 

selection (Fig. 2.1). The combined sequence population from the two time points (T1 and T2) 

before therapy consisted of 492 unique pro gene sequences with 155 SNPs. About 4% (i.e. 

21) of these unique gene sequences were above 0.5% abundance, and these 21 unique gene 

sequences represented 67% of all sampled genomes, with the genome representing the 

overall consensus sequence comprising 21% of the total population (Fig. 2.5A, 2.5B). The 

relatively small number of unique gene sequences above 0.5% frequency in the population 

contained only 7% of the 155 detected SNPs. Thus, a large proportion of the viral 

population’s diversity was associated with a large number of pro gene sequences that were 

present at low abundance (Fig. 2.5A, 2.5C); conversely the majority of the population 
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consisted of a small number of SNPs. Similarly, Tajima’s D statistic for T1 and T2 in this 

individual were -2.47 and -2.48, respectively (Table 2.2), indicative of a population structure 

that has suppressed levels of neutral mutations. This pattern is consistent with but more 

extreme than that observed in a prior shallow intrahost survey in which a metapopulation 

model was proposed to explain the pattern of Tajima’s D statistic (55). Figure 2 shows the 

amino acid variability and synonymous nucleotide variability present in two or more 

individual genomes across the 99 codons in the pro gene for these samples.  

 

 

 

Fig. 2.5 Major and minor allelic variants in the untreated populations. (A) Frequency of 

major (colored) and minor (grayscale) unique pro gene sequences. Gray colors represent pro 

gene sequences present between 2.5 and 0.5% in frequency. Black represents the sum of all 

pro gene sequences individually present at <0.5%. (B) SNP distribution of the most abundant 
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pro gene sequences (>2.5%), with the colored dots on the right indicating the corresponding 

sequences identified in the pie chart (A). (C) The gray bar corresponds to SNP distribution of 

variants present between 2.5 and 0.5%, the same sequences indicated in panel A with the 

gray bar. The line at the bottom indicated by the black circle represents the sum of all 

variants <0.5% in frequency for the sequences shown in black in the pie chart (A). 

 

Table 2.2  Summary of nucleotide variation in sampled time points 

 

 

Synonymous Variability: There were 57 codons (with 63 variants/SNPs) that contained 

synonymous diversity that appeared in both pre-therapy time points, and 30 codons (with 31 

variants) that appeared in only one time point. Taken together, 75 of the 99 codons contained 

some level of synonymous diversity (Fig. 2.2, Table 2.1). Of the 63 variants that were present 

in both untreated time points, 92% were transitions. Of the 31 variants that appeared in only 

one of the time points, 71% were transitions, representing a significantly smaller fraction of 

transitions than among the synonymous variants that appeared at both time points (p = 0.012; 

 T1 T2 T3 T3s T3r 
Number of sequences 810 1449 1925 594 972 

Number of polymorphic 
(segregating) sites 

130 145 144 95 80 

Total Number of mutations 148 167 159 102 83 

Average number nt 
differences, k 

2.84 2.25 3.39 3.49 2.04 

Nucleotide diversity, ! 0.00955 0.00826 0.01141 0.01177 0.00687 

Theta (per sequence) 20.33 21.30 19.61 14.67 11.20 

Theta (per site) 0.068 0.072 0.066 0.049 0.038 

Tajima's D -2.46864 -2.47953 -2.28563 -2.19101 -2.26483 
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Fisher’s exact test). This suggests that synonymous transversions are selected against over 

time. 

 

Nonsynonymous Variability: There were 26 codons (28 variants) that contained coding 

variability that appeared in both pre-therapy time points, and an additional 28 codons (33 

variants) with nonsynonymous changes found in only one of the time points. Taken together, 

49 of the 99 codons contained some level of nonsynonymous diversity (Fig. 2.2, Table 2.1). 

For the 28 nonsynonymous variants detected at both time points, 22 were transitions, and 

these mostly represented conservative amino acid changes. In the case of synonymous 

mutations two-thirds of the variants were present at both time points, while in the case of 

nonsynonymous mutations less than half were present at both time points (p = 0.012; Fisher’s 

exact test). This observation suggests that at this level of sequence sampling we are able to 

see a difference in stability within the population in comparing synonymous and 

nonsynonymous substitutions. 

 

Genetic Fluctuation: We compared the stability of minor SNPs present at both T1 and T2. A 

total of 14 of the 91 SNPs (synonymous and nonsynonymous that appeared at both time 

points) had significant changes in abundance between the two time points (Chi-square Test 

with a false discovery rate of 0.05). Of the 14 SNPs with significant changes in abundance, 

11 had a decrease in the abundance, with an average decrease around 7.5 fold. There were 3 

SNPs that had a significant increase in abundance, all of which were synonymous, ranging 

from a 4 to 47-fold increase. While a majority of SNPs that changed in abundance had a 

decrease in the frequency between T1 and T2, on a population level there was not a large 
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change in diversity between the two time points (T1 p = 0.0079, T2 p = 0.0082 [Table 2.2]). 

However, the trend of increased abundance at the three sites may be driven by selection of 

cryptic epitopes in an alternative reading frame (see Discussion). 

 

Significance of Rare Variants: We observed two extremes in terms of biological relevance in 

the untreated population among variants detected as at least two independent sequences 

across the three time points. At one extreme was the detection of nonviable genomes in the 

form of a coding variant at position 25, which mutates the active site of the protease, and the 

detection of a termination codon at position 61 (Table 2.1). At the other extreme was the 

detection of the L90M and V82A variants (at time points 1 and 2, respectively) that became 

the major resistance populations after ritonavir therapy was initiated (see below, Fig. 2.6); in 

addition, V82I and V82L were detected at T2. We found two more examples of primary 

resistance mutations at low abundance, K20R at all three time points and M46I at two time 

points, but these did not grow out in the presence of ritonavir (Fig. 2.6, Table 2.1). Similarly, 

fitness compensatory mutations were also detected at low abundance (L10F, M36I, L63P, 

A71T, and V77I), all below 1%, and only L63P increased (modestly) in abundance after 

exposure to ritonavir. More generally, of the 28 substitutions most closely associated with 

protease inhibitor drug resistance (120, 121), we found 10 such variants, half of which were 

detected at both pretherapy time points (Table 2.1). 
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Fig. 2.6 Frequency of codon variation across all 99 positions in protease over three time 

points. Within a codon position, the first two bars represent untreated time points 1 and 2, 

respectively. Bars 3 and 4 are the third time point split based on the presence or absence of 

the resistance mutations to ritonavir. Bar 3 is the population of susceptible genotypes 

(defined as not V82A, I84V, or L90M), and bar 4 is the major resistant variant, V82A, 

population. Upward facing bars are nonsynonymous changes (scale in regular typeface), and 

downward facing bars are synonymous changes (scale in bolded typeface). Within a codon 

position, different shading represents different SNPs. 

 

Assessment of linkage disequilibrium within the HIV-1 pro gene population 

We measured LD for the sequences in the T1 and T2 populations. We identified very 

few examples of LD at these two time points using the Fisher’s Exact Test with a Bonferroni 

correction. Of the 103 polymorphic sites in T1, only 3 pairs were in significant LD. 

Similarly, in T2 with 118 polymorphic sites, only 4 pairs displayed significant LD. A 

positive D (i.e. linkage) was found for 6 of the 7 pairs in the untreated populations, with one 

pair associating at a lower than expected frequency. Overall, LD did not appear to play a 
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significant role in defining the pro gene population in this late stage individual, with only a 

single pair of SNPs showing linkage in both of the time points.  

 

Detection of multiple drug resistant alleles after exposure to selection by a protease 

inhibitor. 

The third plasma sample we examined from this subject was from a time point (T3) 

after the initiation of therapy with the protease inhibitor ritonavir. It is apparent from the 

cyclical pattern of viral load and self-report that this person had incomplete adherence to the 

drug regimen (Fig. 2.1). Thus we expected selective pressure from the drug to disrupt the 

viral population but not to select for the more homogeneous populations that are associated 

with virologic failure solely due to the appearance of drug resistance. The choice of this 

sample allowed us to look at the evolution of resistance and the persistence of 

polymorphisms in both the resistant and nonresistant portions of the population. Over two-

thirds of the sequences from T3 carried a resistance mutation, with approximately 50% of the 

sequences carrying the V82A allele, the most common resistance mutation associated with 

resistance to ritonavir (122).  

 There were two divergent paths for population diversity at the third time point. For 

the large V82A-containing population there was a general trend of decreased diversity (p = 

0.0059), consistent with the expected bottleneck associated with fixing a drug resistance 

mutation. In contrast, the diversity in the co-existing drug sensitive population was higher 

than the drug resistant population and comparable to the earlier time points (p = 0.0088) 

(Table 2.2). 
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 While V82A is the most common resistance mutation associated with ritonavir 

resistance, the I84V allele and L90M allele can also be selected and in combination with 

V82A can confer a higher level of resistance (46). We detected all three of these distinct drug 

resistance alleles in the T3 sequence population, collectively representing 69% of the total T3 

population: V82A (50% of the population), I84V (5%), and L90M (14%). These three 

resistance mutations appeared on different genomes, with only a single example of a 

sequence with two of these resistance mutations (V82A/L90M). In total there were 136 

unique sequences carrying the V82A mutation (all with the GCC Ala codon), 29 unique 

sequences carrying the I84V mutation (all with the GTA Val codon), and 36 unique 

sequences carrying the L90M mutation. 

 There were also small groups of pro gene sequences in T3 that appear to be the result 

of selection by ritonavir. Two other substitutions at position 82, V82I and V82L, were 

detected at a low level at T2 and also seen at T3 but now representing 1.3% and 1.1% of the 

population. V82F was also detected as 0.14% of the population at T3. Finally, the 

compensatory mutation L63P was detected at T1 and modestly expanded at T3, with half of 

the sequences in the V82A background (Table 2.1).  

 An important issue is the number of times each of the resistance mutations evolved in 

the presence of drug selection. The data are consistent with the major V82A variant (42% of 

the V82 sequences) growing out from the pre-existing variant detected at T2. For the 6 

genomic variants of V82A that each accounted for greater than 2.5% of the V82A 

population, all were on the background of the consensus except for the three different 

polymorphisms at positions 19 and 70 (Fig. 2.7B). In total, these represented approximately 

71% of the V82A population and presumably arose via recombination with the founding 
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sequence (Fig. 2.7A). The remaining 29% of the V82A-containing genomes vary in relative 

abundance from 2.3-0.1%, including over 100 unique sequences that each appeared once but 

to a large extent represent the variation seen at T1 and T2 added on to the predominant V82A 

genotypes.  

 

 

Fig. 2.7 Major and minor unique pro gene sequences in the major resistant populations 

V82A, L90M, and I84V. (A) Frequency of different unique pro gene sequences carrying the 

V82A mutation at high frequency (colored >2.5%) and low frequency (<2.5%, black and 

with the abundance pooled). (B) Highlighter plot showing the sequence changes from the 

consensus sequence for the major (>2.5%) pro gene variants carrying the V82A mutation. 
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The V82A substitution is indicated by the nucleotide change at position 245 shown in light 

blue. (C) Frequency of different unique pro gene sequences carrying the L90M mutation at 

high frequency (colored >2.5%) and low frequency (<2.5%, black and with the abundance 

pooled). (D) Highlighter plot showing the sequence changes from the consensus sequence for 

the major (>2.5%) pro gene variants carrying the L90M mutation. The L90M substitution is 

indicated by the nucleotide change at position 268 shown in green. (E) Frequency of different 

unique pro gene sequences carrying the I84V mutation at high frequency (colored >2.5%) 

and low frequency (<2.5%, black and with the abundance pooled). (F) Highlighter plot 

showing the sequence changes from the consensus sequence for the major (>2.5%) pro gene 

variants carrying the I84V mutation. The I84V substitution is indicated by the nucleotide 

change at position 250 shown in orange.  

 

The composition of the I84V and L90M populations were similar to the V82A 

population. In each case there was a predominant population defined by a 5’ polymorphism: 

the major L90M lineage (69% of the L90M sequences) was on the G16G/L19V background 

(Fig. 2.7C, Fig. 2.7D) while the major I84V lineage (35% of the I84V sequences) was on the 

consensus sequence background for the 5’ polymorphisms (G16/L19) (Fig. 2.7E, Fig. 2.7F). 

The next three most abundant I84V lineages, representing 28% of the I84V sequences, 

differed from the most abundant sequence by other 5’ polymorphisms (Fig. 2.7F). Similarly, 

the next three most abundant L90M lineages, representing 14% of the L90M sequences, 

differed from the most abundant L90M sequence by 5’ polymorphisms (Fig. 2.7D). With the 

exception of the 5’ polymorphisms and the resistance mutations, all eight of these lineages 
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were in the consensus sequence background. The remaining sequences are accounted for by 

the low level variability added onto these major lineages. 

 As noted above, the major V82A lineage was detected at T2 (as a single genome), 

and this population was likely clonally amplified to form the large proportion of the drug 

resistant population seen at T3 (Fig. 2.7). L90M was also detected on the same pro gene 

background in the therapy-naïve environment at T1, and was likely also clonally amplified to 

form the large proportion of the L90M sequences (Fig. 2.8, 2.7D). In contrast, V82I and 

V82L were detected in the pre-therapy time points on background sequences that did not 

become the predominant sequence when these mutation modestly expanded at T3, although 

these two populations have complex mixtures of the 5’ polymorphisms which may indicate 

low level persistence and recombination during the period of drug exposure. Finally, I84V 

and V82F were not detected in either pre-therapy population (Table 2.1). 
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Fig. 2.8 Phylogenetic representation of protease population derived from deep 

sequencing with a Primer ID. A Neighbor-Joining tree was constructed from sequences 

derived from all three time points and colored based on susceptibility to ritonavir. Blue 

colored taxa represent susceptible variants (defined as not V82A/I/L/F, I84V, or L90M). Red 

colored taxa represent variants containing the major ritonavir resistant variant, V82A. Pink 

colored taxa represent the minor resistant variants V82I/L/F. Green and orange colored taxa 

represent the minor resistant alleles L90M and I84V, respectively. Within a color, color 

brightness is correlated with sample time. Dark green and red arrows point to pre-RTV low- 

abundance sequences that clonally amplified to their respective clades.  
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2.5 Discussion 

Complex viral populations can form within a host (123-125). High throughput 

sequencing technologies allow for extensive sampling of these populations (81, 95-97, 99, 

126). However, these technologies are severely limited when a PCR amplification precedes 

the sequencing protocol, as each sequence read has the potential to be reported as an 

independent observation without properly controlling for PCR resampling, PCR-mediated 

recombination, allelic skewing, PCR-introduced misincorporations, and sequencing errors. 

When working with pathogenic agents in clinical samples, the number of pathogen genomes 

in the sample is limited, and the use of PCR can obscure the quality of the sampling by 

creating a large amount of DNA from a relatively small number of starting templates. This 

can create artificial homogeneity, inflate estimates of segregating genetic variation, skew the 

distribution of alleles in the population, and introduce artificial diversity.  

We have developed a novel strategy that allows each sampled template to be tagged 

with a unique ID by a primer that has a degenerate sequence tag incorporated during the 

primer oligonucleotide synthesis. This tag can then be followed through the PCR and the 

deep sequencing protocol to identify sequencing over-coverage (resampling) of the 

individual viral templates. Because the Primer ID allows for the identification of over-

coverage, this can then be used to create a consensus sequence for each template, avoiding 

both PCR-related errors and sequencing errors. In addition, the number of different Primer 

IDs reflects the number of templates that were actually sampled. This allows a realistic 

assessment of the depth of population sampling and makes it possible to apply a more 

rigorous analysis of minor variants by correcting the allelic skewing during the PCR.  
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We tested the Primer ID approach by sequencing the HIV-1 protease coding domain 

at three time points in a subject who was intermittently exposed to a protease inhibitor 

between the second and third time points. A key feature of our approach is the removal of 

fortuitous errors and accounting for resampling which results in a dramatic reshaping of the 

original data set of 72,162 reads. There are other approaches that rely on statistical modeling 

that have been developed to deal with the problem of high sequencing error rates associated 

with deep sequencing technologies (91, 92, 127). The use of the Primer ID to create 

consensus sequences resulted in the removal of 80% of the unique sequence polymorphisms 

(defined as a change in the consensus without regard to frequency of appearance) in the data 

set. Similarly, allelic skewing was dramatic among the sampled sequences, in most cases 

ranging from 2-15 fold but going up to nearly 100 fold. While the Primer ID reveals such 

skewing and helps correct it, this is clearly a poorly controlled feature of PCR amplifications 

that can dramatically affect the observed abundance of complex populations, especially the 

minor variants. Allelic skewing may still persist if the cDNA primer or the upstream PCR 

primer binds differentially among the templates, or if cDNAs enter the PCR amplification in 

later rounds and are discarded because they do not result in at least three reads to allow a 

consensus sequence to be formed. Also, residual misincorporation errors by RT and in the 

first round of PCR synthesis still limit the interpretation of mutations that occur in the range 

of 0.01 to 0.1%. This problem is not overcome with larger numbers of sequences. Given the 

low diversity in these samples we removed all substitutions that appeared once since their 

number approximated the expected number of residual sequence errors, and this resulted in a 

sensitivity of detection in the range of 0.1% for SNPs that appeared above the frequency of 

the residual sequence error rate. 
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Using the Primer ID approach we were able to describe a number of features of the 

protease sequence population, however our results are from a single individual and therefore 

cannot be generalized. First, a pooled analysis of two time points six months apart showed 

that the variants present at greater than 0.5% in abundance made up two-thirds of the total 

population but represented only 4% of unique genome sequences and contained only 7% of 

the total unique sequence polymorphisms. About 60% of the diversity was stable over both 

time points, with synonymous SNPs maintained at a significantly higher proportion in the 

two time points than nonsynonymous SNPs. Only 18% of the total diversity represented 

nonsynonymous SNPs that were present at both time points. However, our ability to assess 

persistence of these sequences is limited by the depth of sampling, although we feel we are 

approaching the practical limit of sampling with this technology as we observed nonviable 

substitutions and estimate that most of the SNPs that appeared once were the result of 

remaining method error. We found no pattern of conserved linkage among these SNPs, 

consistent with high levels of recombination across the population.  

While the overall measurement of diversity (p) was similar between the first two time 

points we noted that the biggest changes in SNP abundance between the two time points 

were in three synonymous codon positions (L24L, K70K, and G73G). These dynamic 

increases made these SNPs part of a larger group of SNPs that accounted for 51% of the total 

sequences that were otherwise identical to the consensus sequence (Q18Q, L19I, L24L, 

K70K, G73G, and Q18Q/L19I/L24L’). These SNPs also overlapped the major SNPs that 

defined subgroups of the resistant variants (L19I; L19V; G16G/L19V). We considered the 

possibility that there was a unifying feature of these SNPs. We found such a feature in that all 

of these SNPs, both coding and noncoding, result in changes in two relatively large 
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alternative open reading frames that lie at the 5’ and 3’ ends of the pro gene. Alternative 

reading frames have been suggested to generate cryptic CTL epitopes (128-130). In this 

scenario, these abundant SNPs would represent various escape mutants. Such selective 

pressures could explain the dynamic behavior of several of these SNPs between the first two 

time points.  

After intermittent exposure to the protease inhibitor ritonavir, we were able to 

identify six independent lineages of drug resistance mutations. With the intermittent exposure 

in this particular subject it was possible to see the major V82A lineage most often seen with 

ritonavir resistance, but also significant populations of I84V and L90M. We also saw minor 

populations of V82I, V82L, and V82F. This mixed population of resistant lineages likely 

represents the early stages of the evolution of resistance, a conclusion supported by the minor 

appearance of the L63P compensatory mutation and the complete absence of I54V, which is 

an often seen compensatory mutation for V82A. We saw few examples of genomes with 

multiple resistance mutations, although these would be expected after more extensive 

selection (48, 131). We and others have previously examined viral sequences that have been 

collected in large databases. Typically these sequences represent the single predominant 

sequence within an individual, and the use of these sequences allows for assessment of inter-

person diversity. In the future it will be an interesting exercise to compare the conclusions 

reached by examining viral diversity within a person compared to viral diversity between 

people; however more intra-person diversity needs to be measured at this level of detail to 

allow comparison of inter- versus intra-person diversity.  

The presence of pre-existing drug-resistant variants and their role in therapy failure is 

of great interest, and accurate, deep sampling of a viral population can add significantly to 



 49 

our understanding of this question. We were able to detect several examples of drug 

resistance mutations but only at a very low level. Our ability to reliably detect these 

mutations is limited to those that appear at a frequency of 0.1-0.2%, limited in part by the 

low overall diversity in the population. We were able to see examples of mutations that are 

typically seen only in the presence of drug selection. However, the detection was usually as 

one genome at two time points or two genomes at one time point. This was also the level of 

detection of active site mutations in the protease and of termination codons, which must 

represent either transient viral genomes or residual misincorporation errors. In two cases we 

were able to observe the resistance mutation (V82A and L90M) at pre-therapy time points 

linked to the same polymorphisms that were present on the variant that grew out during drug 

exposure. Thus while it is likely that we are detecting relevant pre-existing drug resistant 

variants, these are at the limit of detection and if they are maintained at a steady state level it 

is well under 0.5% abundance.  

Most protocols of high throughput sequencing technologies still require an initial 

quantity of DNA that necessitates an upfront PCR step for many applications. The use of a 

Primer ID will help clarify the sequencing products in any strategy that uses an initial PCR 

step with its attendant error rate, recombination, and resampling. We believe a strategy that 

allows an initial tagging of individual templates prior to PCR and subsequent sequence 

analysis will be essential for understanding the true complexity and diversity of genetically 

dynamic populations. 
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3.1 Abstract 

The intrahost population dynamics of viruses such as Human Immunodeficiency 

Virus Type 1 (HIV-1) is poorly understood. A population of HIV-1 may be large, 

heterogeneous, and spatially and temporarily variant, but it is unclear if HIV-1 has a large or 

small effective population size. The effective population size (Ne) can affect the path to 

antiviral drug resistance. If Ne is large, pre-existing resistance alleles may be present, and the 

evolutionary forces acting on them deterministic. If Ne is small, pre-existing alleles may not 

be present and the evolution of resistance could be strongly influenced by stochastic events. 

To characterize the intrahost population dynamics of HIV and to finely resolve viral 
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diversity, we used deep sequencing technology with our previously developed method, 

Primer IDs. We longitudinally sampled 10 chronically infected individuals who failed drug 

therapy. Although viral load indicates a large census population, traditional calculations to 

estimate the effective population size gave values that ranged from 620-1,129. However, we 

noted an excess of low-frequency polymorphisms, which suggests that the population is not 

in mutation-drift equilibrium, downwardly biasing estimates of Ne. The nucleotide diversity 

in the therapy naïve populations differed among subjects, and this directly correlated with the 

percentage of major haplotypes within a population but not sampling depth. Therefore, there 

may be significant differences in the selection pressures on the viral populations among 

subjects. We also measured population variation after exposure to a single drug (the protease 

inhibitor ritonavir). The diversity of the emergent, resistant population was greater than the 

pre-existing diversity, although Ne and the number of polymorphic sites tended to be 

reduced, supporting that resistance alleles on multiple haplotypes were segregating at 

intermediate frequencies within the populations after drug selection. While we did observe 

pre-existing resistance alleles in the pre-drug therapy populations, we did not observe these 

alleles on the background haplotypes that grew out during treatment, suggesting that the 

emerging resistant haplotype was not sampled prior to treatments or that the resistance 

mutants arose during the selection. However, the fact that multiple haplotypes grew out with 

resistance mutations, and these mutations were not on the dominant haplotypes in the 

population, indicates that the resistance mutations that did grow out pre-existed in the 

population. The path to higher-level resistance within each individual was unique, but 

involved common major resistance alleles. Selection coefficients for the resistance haplotype 

were at minimum 0.01-0.04. In some populations after exposure to drug, a susceptible 



 52 

subpopulation persisted despite the emergence and evolution of increasingly resistant 

haplotypes, suggesting intermediate drug exposure in these subjects. One subject with low 

levels of drug in plasma had a resistance mutation grow out that confers a lower level of 

resistance but with less of a fitness cost as would be predicted from deterministic evolution. 

In sum, the population dynamics of HIV-1 are clearly complex, maintaining a small number 

of abundant haplotypes and a large number of minor haplotypes. The consistency with which 

resistance evolved suggests that Ne is much larger than calculated, with multiple resistance 

alleles appearing under selective pressure and with the mutations that appear determined by 

the level of selective pressure. These results are consistent with deterministic evolution 

occurring within a large effective population. 

 

 

3.2 Introduction 

Human Immunodeficiency Virus Type 1 (HIV-1) can create a large, diverse 

population within a host, but the evolutionary forces that shape the population have been 

highly debated. The effective population size (Ne) is the idealized number of virions required 

to create a population experiencing the same amount of genetic drift as the census population 

(132). The Ne of HIV-1 has been used to derive the frequency of pre-existing drug resistance 

mutations (133-137) and how recombination affects the evolution of resistance (138). 

Estimates of Ne and population structure ultimately determine whether deterministic or 

stochastic forces drive the evolution of a viral population.  

The census population of HIV-1 is large and presumably diverse. The time needed for 

an HIV-1 virion to attach, replicate, and produce progeny that infect new cells is estimated at 
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2 days, with a maximum of approximately 1010 virions produced per day within a person 

(31). The viral DNA polymerase, Reverse Transcriptase (RT), is error-prone, introducing 

mutations at an estimated rate of 2.16x10-5 substitutions/site/generation during transcription 

of viral RNA (vRNA) to double-stranded DNA (dsDNA) (9, 10). Due to a high mutation 

rate, small genome size, and large census population, it has been hypothesized that every 

single mutation can exist (36, 37). If the effective population size is greater than the inverse 

of the mutation rate (~50k virions), the fate of alleles in this population is expected to be 

dominated by Darwinian forces such as purifying selection. However, much smaller 

estimates for the Ne of HIV-1 have been argued, shifting evolutionary forces to the stochastic 

effects of genetic drift (56, 57, 139, 140).  

Most analyses of Ne assume Wright-Fisher mutation-drift equilibrium. Populations of 

HIV-1, however, may not be at this equilibrium. Natural selection, population structure, 

changes in population size, and and/or unequal reproductive ratios among progeny virions 

can distort estimates of Ne. For HIV-1, assumptions of neutrality have yielded very small 

estimates of Ne (56, 57, 139-142), whereas adding selection has produced very large 

estimates of Ne (54). However, the majority of studies assuming neutrality estimated genetic 

diversity from env gene sequences, a nonsynonymous biased immune target. Furthermore, 

the sequences were derived using methods that only sample the most common alleles, likely 

leading to underestimates of census population diversity (56, 57, 139-142).  

Individuals can fail antiviral drug therapy. The role and clinical significance of pre-

existing resistance alleles in therapy failure is not fully understood. Ne has been used to 

estimate the frequency of pre-existing resistance alleles and the probability that they will 

contribute to resistance. However, as Ne estimates greatly vary and may be biased by 
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sampling, this measure is unreliable. Alternatively, studies have tried biological tools to 

correlate the presence of pre-existing resistance alleles and virologic rebound. Allele-specific 

PCR approaches suggest that pre-existing variants may prelude increased susceptibility to 

therapy failure (40, 41), but resolution is limited by a priori screening of unlinked alleles. 

Deep sequencing studies have produced correlative (42), partial (43), and non-correlative 

(44) results on the impact of pre-existing resistance alleles, but have been limited by 

sampling bias and error.  

Because of previous limitations in estimating Ne and characterizing viral diversity, we 

sought to determine the population dynamics of HIV-1 sampled longitudinally and as the 

population went through a selective event. We used deep sequencing paired with a novel 

high-resolution sequencing technique we previously developed, Primer IDs (143), to capture 

and identify individual viral genomes. For the 10 subjects sampled, both susceptible and 

resistant populations had small Ne but the viral population structure violated the assumptions 

of Wright-Fisher equilibrium. All populations had the majority of genetic diversity 

contributed by many low frequency haplotypes indicating that a high number of alleles are at 

the mutation/selection balance, diversity is quickly recovered after drug selection, 

recombination distributed the resistance allele among the low abundant diverse portion of the 

population, and/or that a large number of resistance alleles on multiple haplotypes grew out. 

We did not observe pre-existing resistant haplotypes that were directly selected under the 

drug, although this could be due to an inadequate level of sampling. The consistency with 

which resistance evolved on diverse background haplotypes suggests that Ne is much larger 

than estimated by traditional calculations. 
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3.3 Materials and methods 

Tagging, amplification, and sequencing of vRNA. Longitudinal samples from 10 

chronically infected individuals (infected with HIV-1 subtype B) who were enrolled in the 

protease inhibitor efficacy trial M94-247, were chosen for analysis based on the presence of 

high viral load and virologic failure after the addition of the protease inhibitor ritonavir as 

monotherapy (Fig. 3.1). Between 1 and 4 samples were examined per individual over the 

study time course. Approximately 10,000 vRNA templates went into a cDNA synthesis 

reaction using a primer that annealed downstream of the protease coding domain, with the 

primer containing at its 5' end a barcode, a degenerate Primer ID cassette, and a PCR primer 

binding site, as previously described (143). Tagged cDNA molecules were amplified by 

nested PCR. Amplicons were quantified using the Qubit platform (Invitrogen, Carlsbad, CA), 

pooled in equal molar amounts, then 454 adaptors were added using the Lib-L Rapid Library 

protocol (Roche, Nutley, NJ). The libraries were sequenced on the 454 GS FLX+ platform 

with XLR70 Titanium sequencing chemistry as per the manufacturer’s instructions (Roche, 

Nutley, NJ) but with under-loaded beads to minimize signal crosstalk. 

 

Bioinformatic pipeline and analysis of viral populations. A suite of programs was written 

to filter and parse raw 454 sequencing reads. In short, raw sequencing reads were first binned 

by sample based on the barcode and then binned for each cDNA molecule by the Primer ID. 

Within a sample, when 3 or more reads were present with an identical Primer ID, a consensus 

sequence was constructed. The Primer ID technique and methodology is further detailed in 

Jabara et al. (143). 
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All statistical and diversity analyses were done on filtered populations of the 

consensus sequences and devoid of sequences containing ambiguities; gaps were resolved by 

alignment to the consensus sequence of the protease coding domain. Tajima’s D test and 

sliding window analysis of π were computed by DnaSP v.5.10.01 (111). Sliding window 

analysis of π had a window length of 100 and a step size of 10 bases. Whole gene π, 

diversity, and haplotypes across and within populations were computed through customized 

bioinformatics suites. SNPs were graphically displayed through the Highlighter tool 

(www.hiv.lanl.gov). 

 

Database population analysis. Viral protease sequences from therapy-naïve subjects 

infected with subtype B HIV-1 were downloaded from the Stanford HIV-1 database and 

aligned to the same reading frame. Polymorphisms that appeared once in the data set and 

mixtures were excluded. All full-length sequences were first screened for the absence of 

Class III alleles (primary drug resistance alleles), which would indicate prior drug exposure. 

The filtered population was then parsed based on the presence or absence of non-consensus 

polymorphisms at Class II positions (compensatory mutations). Sequence alignments, 

filtering, and diversity analysis was completed using customized bioinformatics suites. 

 

3.4 Results 

Protease nucleotide diversity in therapy naïve populations is different between people 

and related to population structure.  

To resolve the genetic diversity and response to drug selection of in vivo HIV-1 

populations, 10 chronically infected subjects who failed drug therapy were chosen for 
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retrospective longitudinal sampling and deep sequencing. For each subject, viral RNA was 

isolated from serum samples representing between one and four time points taken pre- and/or 

post-drug exposure. For each sample, approximately 10,000 copies of viral RNA were used 

in the cDNA synthesis reaction, with the cDNA primer tagged with a barcode and Primer ID 

as previously described (143). Tagged cDNA was amplified by nested PCR and sequenced 

using the 454 FLX+ platform with Titanium chemistry.  

The Primer ID component of the cDNA primer was used to correct for PCR biases, 

sequencing error, and PCR re-sampling, and this allowed us to estimate a median sampling 

depth of 0.2%. A depth ≤0.1% was reached for at least two time points for nine of the 

subjects (Table 3.1, Fig. 3.1). In order to characterize the selective pressure on the viral 

population, drug concentrations of ritonavir (RTV) were measured for time points after the 

initiation of therapy. We found that drug levels varied greatly between patients and time 

points. This is potentially due to differences in metabolism and, in some cases, likely 

intermediate adherence. For either reason this would result in suboptimal drug exposure and 

intermediate or cyclical selective pressure. 
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Table 3.1. Summary of clinical metrics and sequencing resolution. 
 

PIDa Sampleb VLc RTVd RTV (ng/mL)e Readsf P-IDsg Consensush 
1008 T1 13,060 + N/A 7,553 2016 299 
1032 T1 15,380 + N/A 15,091 782 338 
 T2 68,360 + 15,117 11,049 541 233 
 T3 216,640 + 0 754 291 60 
 T4 273,960 + 1,864 13,495 744 208 
1036 T1 236,040 - N/A 52,912 1763 954 
 T2 36,840 + 5,669 47,754 1945 949 
 T3 45,780 + 5,611 8,970 1202 857 
 T4 99,000 + 4,667 11,057 643 349 
1047 T1 279,000 - N/A 2,984 831 391 
 T2 198,320 + 0 2,520 820 219 
 T3 33,040 + 66 5,594 1077 584 
 T4 202,240 + 770 3,174 1028 298 
1051 T1 501,600 - N/A 62,614 3114 1765 
 T2 233,020 + 983 43,037 2130 770 
 T3 351,880 + 6,566 12,163 1082 666 
 T4 330,480 + 5,339 5,144 1266 673 
1079 T1 199,520 - N/A 16,386 827 161 
 T2 63,920 + 5,723 967 192 44 
 T4 242,360 + 6,610 17,531 4183 601 
1113 T1 276,100 - N/A 15,492 1203 548 
 T2 133,240 + 1,773 15,020 1154 631 
 T3 227,080 + 742 15,490 1719 837 
 T4 343,720 + 5,540 23,259 2200 1112 
1118 T1 205,600 - N/A 7,207 981 136 
 T2 57,360 + 19,830 27,605 1180 696 
1127 T1 139,080 - N/A 19,820 2515 1387 
 T2 38,720 + 1,639 11,136 711 353 
 T3 55,640 + 1,160 8,211 1174 471 
 T4 181,160 + 767 5,477 624 238 
1157 T1 380,200 - N/A 10,372 1518 816 
 T2 349,200 + 3,988 8,366 1028 126 
 T4 243,440 + 1,056 1,732 747 77 

aPatient identification. 
bTime point of sample. 
cViral load (copies/mL). 
dTherapy naïve (-) or ritonavir experienced (+). 
eRTV concentration in blood plasma (ng/mL). 
fNumber of pre-consensus reads containing full length protease, Primer ID, and barcoding 
information. 
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gNumber of individual Primer IDs in population of pre-consensus reads. 
hNumber of consensus sequences constructed within a sample when 3 or more reads 
contained identical Primer IDs. 
N/A = not applicable 
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Fig. 3.1 Longitudinal sampling of blood plasma from 10 chronically infected individuals 

with HIV-1 subtype B that failed ritonavir monotherapy. Shaded areas represent times of 

RTV therapy compliance based on self-report. Black circles are viral load (copies/mL), and 

black open triangles are RTV drug concentrations (ng/mL). Arrows indicate time point 

sequenced, and shade correlates to the resolved population depth (black: ≤1%, gray: >1%). 

 

We assessed the standing genetic variation prior to the drug selection pressure with a 

sliding window analysis of nucleotide diversity (π) across protease. Figure 3.2 shows reduced 

diversity across the active site for all individuals, as expected for a region where catalytic 

activity occurs. We found the mean intra-patient diversity was different between individuals 

and correlated with the frequency of minor haplotypes in the population. For example, the 

most diverse populations, found in subjects 1036 and 1079, had minor (≤1%) haplotypes 

making up 80% of the diversity of their populations. Conversely, haplotypes ≤1% for subject 

1127 constituted only 34% of the population, resulting in lower π across protease (Fig. 3.2). 

This analysis points to a key feature of the HIV-1 population: a small number of abundant 

haplotypes, and a large number of minor haplotypes, with the proportion of these two types 

of sequences varying between subjects. We do not know what causes the inter-subject 

variation; pre-therapy diversity was not due to differences in sampling depth (Table 1), and 

all individuals had CD4+ counts ranging from 5-44 cells/mm3 with no correlation between 

CD4 count and differences in population structure.  

Subjects 1036, 1047, 1051, 1079, 1113, and 1157 were therapy naïve for all antiviral 

drugs. Subjects 1118 and 1127 were taking an additional antiretroviral drug, the nucleoside 

reverse transcriptase inhibitor (NRTI) ddC. Selection by ddC would target reverse 



 61 

transcriptase, thus proximal to the protease coding domain. Subject 1127 has the least 

amount of viral genetic diversity, possibly correlating to NRTI selection. However, π for 

subject 1118 is intermediate in comparison to the other subjects. It will be important to 

determine if an NRTI resistance mutation became fixed in either of these subjects. However, 

it seems unlikely that selective pressure by this weak NRTI would be responsible for shaping 

the population of the proximal protease coding domain. Alternative explanations for 

differences in π could be intrapopulation competition, or time since the most recent 

population bottleneck. 

 

 

 

Fig. 3.2 Sliding window illustration of the nucleotide diversity (π) of protease in pre-

therapy populations indicate spatial heterogeneity. Nucleotide diversity varies among 

subjects and the catalytic region typically harbors the least variation. Pie charts depict the 

percentage of population diversity that is made up of haplotypes ≥1.5% (blue) or <1.5% (red) 

in frequency. Gray shaded area corresponds to the active site of protease. 
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The majority of Class III drug resistance mutations pre-existed at frequencies above the 

expected PCR/sequencing error rate but below the minimum frequency needed being 

confidently sampled, likely confounding estimates of their frequency.  

Primer ID enables in-depth resolution of population diversity, including minor 

variants that confer drug resistance. However, residual technical errors remaining with this 

method can confound whether a polymorphism is biological or artifactual based on the depth 

of sequencing. The frequency of error introduced during RT and the first round of PCR is 

expected to be 1 SNP per 33 protease genomes (1:10,000), and random misincorporation will 

produce a ratio of nonsynonymous to synonymous of approximately 2:1. For the pre-therapy 

time points, we observed approximately four-fold more single SNPs than expected given our 

estimate of the residual error rate of the method. Overall, the SNPs that appeared once have a 

mean ratio of nonsynonymous to synonymous of between 1.2 and 2. The excess of single 

SNPs over the expected error, and with a modest bias toward synonymous mutations, shows 

that our observed single SNPs are above the error rate but are not convincingly beyond an 

unselected distribution of nonsynonymous to synonymous mutations to be devoid of 

technical error. 

Sampling depth will also dictate the probability a particular allele is sampled. The 8 

pre-therapy viral populations were sequenced to a depth that would identify alleles 

corresponding to 0.13% of the population and ranging from 0.6-0.06%. Based on the Poisson 

distribution, the minimum frequency a single allele had to be present in order to be 

definitively sampled (3/N) ranged from 0.17-1.86%. Furthermore, when a low frequency 

allele is sampled twice—i.e. by two unique Primer IDs—there is a greater chance that the 
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allele is biological and not technical error (the chance a randomly introduced error will 

mutate the same site with the same nucleotide is extremely low). Typically, a polymorphism 

needed to be at a frequency between 0.34-3.72% to be sampled twice (6/N).  

The observed major RTV resistance variants V82A, I84V, and L90M, were not above 

the frequency threshold where two alleles on identical haplotype background were sampled, 

although a subset of them were found on more than one haplotype (Table 3.2). V82A was 

found in three of eight individuals at a frequency ~0.2%. I84V was found in half of the 

individuals and at a maximum on 0.74%. However, all of these variants were below the 

expected frequency at which an allele could be present and sampled with certainty. Thus, the 

failure to observe these alleles in other pre-treatment populations is not evidence for absence 

of these alleles in these populations. Instead, there is a possibility that due to sampling depth 

alone these and many alleles are missed.  
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Table 3.2. Frequency of Class II or Class III protease inhibitor resistance associated 

variants in therapy naïve populations. 

 Patient IDd 
Cona Classb Mutc Codond 1036 1047 1051 1079 1113 1118 1127 1157 
L10 II F TTC 0.10 61.64 0.06  0.55    
  I 

 

ATC 2.41 9.97 2.78 37.89 0.18 1.47 99.64 12.87 
  R          
  V GTC    1.24   0.07 0.12 
  C          
K20 III M ATG 4.93 4.35 26.46 1.24  0.74 0.07  
  R AGG 0.52 0.26 1.30 0.62   0.36  
  I          
  T          
  V          
D30 III N          
V32 III I ATA    1.24     
M36 II I ATA 19.60 

 

12.28  17.39 0.73 2.94 0.94 3.92 
  L TTA        0.12 
  V GTG  0.26  1.24    0.25 
  V GTA   0.06      
M46 III I ATA 0.63  0.85 0.62 0.73 0.74 0.65  
  I ATT       0.07  
  L TTG       0.50  
G48 III V GTG 0.10        
I54 III V GTC 0.10  0.06      
  L          
  M          
  T ACC    0.62  0.74 0.14  
  A          
  S          
I62 II V GTA 20.44 6.91  24.22 0.36 7.35 0.58  
A71 II V GTT  0.26 0.06   0.74 0.07 5.27 
  I          
  T ACT   0.06 0.62 0.36  0.14  
  L          
V77 II I ATA 2.10 4.09 0.45 14.29   0.22 2.33 
V82 III A GCC 0.21  0.11    0.07  
  F          
  T          
  I ATC   0.23   0.74   
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  S          
I84 III V GTA 0.21   0.62  0.74  0.12 
N88 III S AGT 0.10 0.51 0.11    0.07  
  D GAT 0.10 0.26 0.06 0.62   0.07  
L90 III M ATG    1.86     
I93 II L CTT 0.10 0.51  1.86 1.28 44.85 0.07  
  M          
Italicized digits represent single observations. 
aConsensus amino acid of resistance associated variant. 
bDrug resistance mutation class2. Class II residues are defined as having ≥5% non-consensus 
variability across untreated individuals in the database and increase in non-consensus 
diversity with PI exposure. Class III residues are defined as having ≤5% non-consensus 
variability across untreated individuals in the database and increase in non-consensus 
diversity with PI exposure. 
cNonsynonymous change of consensus associated with resistance. 
cCodon call if variant is observed. 
dPatient identification (PID). 
 

Class III resistance mutations are typically at low frequencies in pre-therapy 

environment and then increase in frequency with protease inhibitor selection (144). For each 

pre-therapy population, at least one Class III resistance mutation was detected (Table 3.2). 

Residues 32, 46, 82, 84, and 90 were found on 52/6158 haplotypes (0.08%). There were 45 

total observations of a Class III allele, 71% of which were observed below the frequency a 

single allele would be reliably sampled. Only 18% of codons harbored resistance alleles at or 

above the frequency at which least two alleles would likely be sampled (specifically, residues 

20 and 46). 

 

Interpatient Class II/Compensatory Mutations in Therapy Naïve Viral Populations are 

associated with greater diversity in the protease.  

Class II/compensatory mutations (residues 10, 36, 63, 71, 77, 93) are variable prior to 

therapy, but increase in frequency with drug exposure (144). Because these mutations are 
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polymorphic in a therapy naïve environment and increase under drug selection, they may 

make small contributions to the fitness of emerging resistant protease. Prior work suggests 

that these alleles should be abundant within the pre-treatment population (144). Sequences 

were obtained from the Stanford database representing population/consensus sequences from 

many subjects naïve to protease inhibitors. These sequences were filtered to remove any 

haplotypes that contained major Class III resistance mutations, indicating prior drug 

exposure. The sequences were then split into two groups, those that contained variation at 

Class II positions and those that did not. By parsing sequences into these two groups, 

nonconsensus polymorphisms can be assessed separately from sequences that had the 

diversity at these positions conserved. 

Non-consensus diversity ≥ 0.1% was plotted per amino acid position (Fig. 3.2). There 

were 9 polymorphisms in 7 amino acid positions where a substitution was present at ~2x or 

greater frequency in sequences containing class II mutations versus conserved at those 

residues (non-class II) and whose lower bound in frequency for non-class II polymorphisms 

was ~0.4% (representing at least 9 independent observations). Those positions were 12IP, 

16E, 37YH, 45R, 69K, 70T, and 89M. The positions that changed the most (3.5-4x) between 

class II and non-class II sequences were 12I (1.64 vs. 0.39, 4.2x), 98M (1.87 vs. 0.48, 3.9x), 

and 16E (4.32 vs. 1.17, 3.7x). 12P, 37H, 45R, and 70T changed ~2.5x (3.4 vs. 1.26, 1.71 vs. 

0.65, 1.44 vs. 0.57, 2.48 vs. 1, respectively). 37Y had a 2.4x difference (0.94 vs. 0.39), and 

69K a 2x difference (1.66 vs. 0.83). Sequences that contained consensus diversity at the 

Class II positions contained ~2-3x greater non-consensus polymorphisms at positions 12N, 

18L, 39Q, 70R, and 92K. This pattern of linked polymorphisms may suggest compensatory 

effects among these mutations. 
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Fig. 3.3. Therapy-naïve non-consensus interpatient diversity ≥0.1% of protease in the 

Stanford database. Sequences derived from untreated subjects in the Stanford database were 

separated by the presence (gray bars) or absence (black bars) of Class II resistance associated 

alleles. The non-consensus diversity of these populations was then plotted per residue and 

polymorphism. 

 

Diversity of the viral population within a subject is less than the diversity seen between 

subjects.  
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There were 20 residues in the database sequences (which represent the 

consensus/most abundant sequence in each subject) that harbored non-consensus alleles at a 

moderate frequency (≥5%) between subjects. These residues were compared to their 

frequency in the intrahost populations, and were found to be present but at a much lower 

frequency (Fig 3.4). Furthermore, for 18 of the 20 positions this difference was significant 

(Z-test).  

 

Fig. 3.4 Intrapopulation diversity contains major variants found across individuals in a 

database population but at significantly lower frequencies. Major (≥5% ) interpatient 

non-consensus diversity in the database was compared to their frequency within individuals. 

Each colored bar represents an individual subjects, whereas black Xs indicate the weighted 

non-consensus mean frequency in the database population. 

 

Plasma drug levels for the sampled populations were highly variable and did not 

correlate with the path to resistance.  
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To estimate the strength of drug selection on the treatment-experienced population, 

plasma levels of the protease inhibitor were measured. Across the entire cohort, drug levels 

ranged from below the limit of detection up to 19,830ng/mL (Fig. 3.1, Table 3.1).  

All subjects experienced virologic failure and we interpret the relationship between 

drug exposure and resistance mutations as falling into three patterns. For subjects 1036, 

1051, 1113, and 1127 higher levels of ritonavir were detected in the plasma samples and the 

resistance mutation V82A became largely fixed in the population, the commonly seen 

mutation associated with ritonavir resistance. In contrast, subjects 1079, 118, and 1157 had 

comparable levels of ritonavir in the plasma samples but had little or no drug resistant 

variants in their viral population; we interpret this to indicate poor adherence. Finally, subject 

1047 had low levels of drug in the plasma but largely fixed the resistance mutation I84V with 

lower levels of V82A in the population; we interpret this to indicate that the I84V mutant was 

more fit than the V82A mutant yet provided sufficient resistance to this low level of drug 

exposure. The presence or absence of drug resistance mutations was not related to the pre-

therapy diversity (π) in the population. 

 

Population genetic estimates of the effective population size suggest that the effective 

population size of HIV-1 is much smaller than the census size.  

The effective population size can inform whether evolutionary forces on a population 

will be deterministic or stochastic. Ne can be calculated using θ, as θ = 4Neµ for a diploid 

population, and θ = 2Neµ for a haploid population. HIV-1 is pseudodiploid, contains 2 copies 

of each allele, and can recombine, therefore the former equation was used to calculate Ne. θ 

is a measure of the expected nucleotide diversity of a population at mutation-drift 
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equilibrium (58). Viral load is a surrogate for census population size. We estimated the 

number of segregating sites (positions in protease with a SNP), π (a measure of the number 

of polymorphic alleles and their frequency), θ (4Neµ), Tajima’s D (a measure of deviation 

from mutation-selection equilibrium) (58), and the effective population size under the 

assumption of mutation-drift equilibrium. Using the equation θ = 4Neµ, the effective 

population size was calculated to range from 620-1,129 virions (Table 3.3). These estimates 

are well within the range of previous inter-population data, but below the highest suggested 

values for Ne (56, 57, 139-142). There is a weak positive correlation between Ne and viral 

load (VL), meaning the difference between the census population size of HIV-1 (VL) and Ne 

across individuals is not uniform (Fig 3.5). This discrepancy suggests that the population 

dynamics of HIV-1–e.g. frequent population bottlenecks, high variance in offspring number, 

repeated selection—are reducing the effective number of reproductive virons dramatically. 

As a result, natural selection would not act as efficiently and a relatively small number of 

resistance alleles may have sufficient selective advantage to contribute to drug resistance. If 

HIV-1 is treated as a haploid entity, then the calculated Ne would be twice as large, but still 

small relative to the census population. 

 

Table 3.3. Measures of population size and variation in the therapy naïve population. 

 1036 1047 1051 1079 1113 1118 1127 1157 
RNA 

copies/mL 
236,040 279,000 501,600 199,520 276,100 205,600 139,080 380,200 

S 174.00 119.00 172.00 103.00 133.00 78.00 178.00 141.00 
π 0.03 0.02 0.02 0.03 0.02 0.03 0.01 0.01 
θ 0.10 0.08 0.09 0.07 0.07 0.05 0.09 0.08 
D -1.90 -2.31 -2.33 -1.82 -2.24 -1.54 -2.66 -2.37 

Ne 1129.28 876.39 1055.90 865.74 852.08 619.56 1086.81 917.36 
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Figure 3.5 A weak positive relationship between HIV-1 census population size, as 

inferred from viral load, and the effective population size (Ne). Ne was inferred assuming 

pseudo-diploidy, a mutation rate of 2.16 x 10-5, and θ estimated from the number of 

segregating sites. 

 

The Tajima’s D statistic of therapy naïve- and therapy-experienced populations does 

not change, suggesting the viral populations are not at mutation-drift equilibrium.  

Tajima’s D statistic measures the deviation between the expected distribution of allele 

frequencies at mutation-drift equilibrium and the observed distribution (113). Negative 

values of D can indicate recent selective sweeps, population bottlenecks, and population 

expansion; positive values can indicate balancing selection, migration, and population 

subdivision. We observed strongly negative Tajima’s D in almost all samples (Table 3.3). 

Due to suboptimal selection in some subjects, the therapy-experienced population was further 

divided by susceptible and resistant variants. Tajima’s D was not significantly different 
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between pre-therapy, therapy-experienced susceptible, and therapy-experienced resistant 

populations, and most had a significantly negative D value (Fig. 3.6). The one positive D 

value was from a susceptible population that contained a small number of haplotypes 

comprising the majority of the variation. Because a strong negative D indicates an excess of 

low frequency polymorphisms, and because this value did not dramatically change with drug 

exposure, this suggests to us that multiple haplotypes with resistance mutations grew out with 

selection and that these haplotypes also displayed additional low abundance variants. 

 

Fig. 3.6 Population diversity and structure across the entire cohort does not 

significantly change with drug exposure. Tajima’s D statistic was calculated for pre- and 

post-therapy samples containing at least 100 sequences. Within a therapy-experienced 

population, susceptible and resistant subpopulations were analyzed separately. 

 

 

The diversity of the emerging resistant population can be greater than the pre-existing 

diversity, indicating the outgrowth of multiple resistance alleles.  
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The significantly negative Tajima’s D statistics indicates that the majority of 

populations were not at equilibrium. Because of this, calculations of Ne based on θ will be 

likely downwardly biased because θ = 4Neµ is only true for populations at equilibrium. 

Regardless, demographic complexities of intrahost populations of HIV-1 suggest that it 

would be difficult to predict the fate of resistance alleles from the pre-therapy data. 

Alternatively, one can observe how biological diversity changes under selection. The 

rebound population could indirectly reveal estimates of Ne based on de novo outgrowth of 

resistant alleles. 

The nucleotide diversity metric π was longitudinally calculated for susceptible and 

resistant populations for the pre- and first post-therapy time points. Sequences were 

considered resistant if they contained one of the major protease inhibitor residues 

V82AIFTS, I84V, or L90M. To curtail sample size bias, π was only calculated for 

populations containing ≥40 sequences. 

Interestingly, subjects 1051, 1113, 1127, and 1157 all had emerging resistant 

populations with a much greater π than the pre-existing population (Fig. 3.7), but often with 

fewer segregating sites (S). This result counteracts the simple model of drug selection 

resulting in the outgrowth of a predominant variant as these π and S values suggest multiple  

haplotypes with a resistant allele at intermediate frequency and a slight drop in low frequency 

alleles. In these subjects, the majority of variants contained resistant alleles. Furthermore, ≥ 

~50% of the variation was made up of low frequency unique alleles <2% in frequency. 

Subject 1036 did not follow this trend because only a single major (9%) haplotype conferred 

resistance, and the absence of resistant alleles likely resulted in a lower π value for the 

emerging subpopulation in comparison to susceptible variant.  
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Fig. 3.7. Report of longitudinal π  values from biological and simulated outgrowth 

populations. For each biological population, π was calculated for the pre-therapy time point 

(open circles), resistant (red circles) or susceptible (blue circles) populations when at least 40 

sequences were present. Closed black circles represent π from 10 replicate sampling and 

outgrowth of the pre-therapy population that underwent a bottleneck of 90%. The 

bottlenecked population was allowed to grow out 1, 5, 10, 25, and 50 generations 

(approximately 1.5-150 days) with a mutation rate of 2.16x10-5. 

 

The path to higher levels of resistance is unique in each subject but involves common 

resistance alleles.  

The fate of emerging resistance alleles under selection has not been well 

characterized in vivo. To address the path to resistance, we examined the genetic diversity of 

longitudinally sampled populations under drug selection. Our data show that the pre-existing 

diversity is composed of very low frequency alleles in a large census population. Because of 

the limits of our sampling, determining whether haplotypes in these therapy naïve 

populations grew out during viral rebound populations is difficult to address. However, by 

looking at patterns of SNP variation on resistance haplotypes, we can infer which haplotypes 

likely were pre-existing and see if deterministic forces shape the evolution of resistance.  

V82A, I84V, and L90M are well-characterized, major polymorphisms that confer 

resistance to the RTV protease inhibitor. In all populations that rebounded with resistance, at 

least one of these variants was present (Fig. 3.8). V82A was the most common allele 

enabling drug escape, emerging as single dominant resistance mutation for 1036, 1118, 1051, 

and 1157. V82A was sampled as pre-therapy variants in 3/8 individuals, all of which had this 



 76 

allele emerge but on different haplotypes than was detected as pre-existing. V82TFS are 

alternative nonsynonymous substitutions at position 82 that confer a low-level of resistance. 

These were only sampled in therapy-experienced populations, and none of these alleles grew 

out. I84V was sampled in 4/8 pre-therapy populations, none of which grew out in these 

individuals. All patients had I84V sampled in at least two time points, but this variant only 

grew out in patients 1047 and 1127. It was not detected as a pre-existing variant for these two 

individuals. 
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Fig. 3.8 Intrapopulation frequency of resistance associated alleles during drug selection. 

Major RTV resistance associated mutations V82ASTF, I84V, and L90M (thick lines) and 

Class III mutations (thin lines) were plotted by frequency over time. Time is illustrated from 

left to right, T1, T2, T3, and T4, respectively, unless otherwise noted. Gray bars (right y axis) 

denote the concentration of RTV in that individual sample. 
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It is also known that continuous, strong selection of a protease inhibitor results in the 

accumulation of additional resistance mutations in a step-wise manner (45). For subjects 

1113 and 1127, V82A was linked to one other major resistance variant, L90M and I84V, 

respectively. Prior to adding either L90M or I84V, there were minor resistance mutations on 

the same haplotype of V82A such as K20R. The addition of a second major resistance allele 

further added an additional allele that was only seen when both major resistance alleles were 

present. For V82A, the gain of L90M also included L10I and A71V on the same major 

haplotypes. The addition of I84V was joined by L63P. Due to the strong level of resistance 

conferred by two major resistance alleles, these additional variants likely have compensatory 

roles.  

For some subjects it was clear that intermittent drug exposure, either due to 

compliance or metabolic issues, allowed for the persistence of susceptible variants. This may 

have also limited the accumulation of additional major resistance alleles on the dominant 

haplotypes as the fitness cost of these alleles during time of reduced drug exposure may have 

prevented them from achieving high frequency. However, the overall trend supported the 

addition of new resistance mutations on haplotypes emerging in the rebound population (e.g. 

1127, Fig. 3.9).  
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Fig. 3.9 Escape from ritonavir monotherapy is unique per patient and involves 

dramatic restructuring of haplotypes over time. The emergence and evolution of drug 

resistance is detailed for patients (A-C) 1036, (D-F) 1047, (G-I) 1051, (J-L) 1113, and (M-O) 

1127. (A, D, G, J, M) For each individual, time points sampled (arrows) are plotted by study 

day and ritonavir exposure (shaded). (B, E, H, K, N) For each time point within an 

individual, the 5 most dominant haplotypes are represented in a pie chart by frequency for the 

other 3 time points. White inset numbers are the frequencies of non-dominant haplotypes that 

also have a major resistance allele at positions 82, 84, and/or 90. Color of the pie chart slice 

correlates to a given variant within a row. (C, F, I, L, O) Polymorphisms on each haplotype 

are detailed by a highlighter plot. Dominant variants that are not class III are listed above the 

highlighter plot above the variant and colored by the highlighter tick mark. Class III variants 

L
6
3
P

M
3
6
I

K
2
0
R

V
8
2
A

I8
4
V

T4T3T2T1

1

10

100

1000

10000

100000

1000000

0 50 100 150 200 250 300 350

T1
T2 T3 T4

T1

T2

T3

T4

H
IV

-1
 R

N
A
 (

co
p
ie

s/
m

L)

Days into study

1.7%

4.5%

4.3%

1.9%

ve
rs
us

**

**

I1
0
L

*

I5
4
V

I7
2
E

M

N                O

1127

0.1

95.1

93.3

77.5



 81 

are listed below the highlighter plot. Variants not described are designed by black circles as 

either coding (filled), or silent (open). Asterisks above the highlighter plots for each time 

point mark the location and color of lines that are major ritonavir resistant variants. 

 

Because HIV-1 has a high capacity for both recombination and mutation, it is debated 

which of these mechanisms drives the step-wise addition of new resistance mutations on 

emerging haplotypes. If recombination is the driving force, the resistant recombinanat 

haplotype should be derived from parental haplotypes at a relatively high frequency as these 

haplotypes are more likely to have high levels of co-infection. (Similarly, if low frequency 

resistant haplotypes recombined, these increased resistance haplotypes would be more likely 

to be destroyed by subsequent recombination with common, but less fit haplotypes.) Under a 

stepwise new mutation model, one expects the most resistant haplotype to be derived from 

one of the common haplotypes of the previous sample.  

As previously discussed, the subject 1113 had multiple major resistance mutations 

grow out on the same haplotype. For the final time point, V82A and L90M were linked on all 

of the top 5 haplotypes (Fig. 3.9L). In addition to V82A and L90M were also class II 

mutations A71V (5/5 haplotypes), L10I (top 4 haplotypes) and class III mutations I54V (5/5). 

The top 5 haplotypes for the prior sampled population (T3) had V82A without L90M, 

suggesting that L90M was added later with drug selection. Furthermore, L90M was not on 

any haplotypes in T3 at a high enough frequency and contained the allelic combination that 

would produce the variant emerging in T4 by recombination. 

Comparing the pre-therapy population (T1) to the emerging population after drug 

exposure (T2-4), major haplotypes were absent or at extremely low levels for 4/5 individuals 
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(Fig. 3.9E, H, K, N). The haplotypes and frequency for patient 1036 (Fig. 3.9B) were largely 

preserved between the two time points, though T2 was sampled at a time of population 

contraction. Therefore, for each time point across the 5 individuals, the evolution of 

resistance involved a step-wise accumulation of mutations. These mutations were likely 

added de novo, not by recombination. Variants would have to be at a high enough frequency 

and with a complementary set of alleles that would produce recombinants identical to the 

haplotypes that emerged. In these individuals, recombination does not appear to play a 

dominant role in the emergence of resistance.  

 

 

3.5 Discussion 

HIV-1 population size and structure, as well as evolutionary forces that shape it, 

remain poorly understood and often debated (54, 56, 57, 139-142). At the crux of this debate 

are estimates of the effective population size (Ne), which can determine how strong selection 

must be for deterministic forces versus stochastic forces to shape the fate of new alleles and 

the population response to selection (58). Historically, quantifying Ne in HIV-1 has largely 

been limited to mathematical modeling, and many of these models infer in vivo diversity 

based on sequence data that only reveals major haplotypes within a population (54, 56, 57, 

139-142). In contrast, we use next generation deep sequencing technology with a Primer ID 

to directly resolve the genetic diversity of in vivo HIV-1 populations (143) and then sampled 

these populations through a drug selection pressure to characterize the path to resistance and 

the forces that shape it. 
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Although HIV-1 appears to have a large census population size, Ne is comparatively small. 

We uncovered a large number of low frequency unique haplotypes that would typically be 

missed, but found that intermediate frequency variants were often lacking. As indicated by 

strongly negative Tajima’s D, these minor variants were in excess of what would be expected 

under the Wright-Fisher mutation-drift model, indicating population not at equilibrium. 

Therefore, estimates of Ne based on θ (a measure of total population diversity) are likely 

downwardly biased, as θ = 4Neµ only at equilibrium (113). Typically, population 

bottlenecks, rapid population expansion, and selective sweeps can result in a negative D 

(113). The pre-therapy population and post therapy populations both had strongly negative D, 

which suggests that the demographic force shaping diversity is acting throughout the 

infection. Similarly, the selection for resistance alleles imposed by drug treatment did not 

strongly reduce D further. For the majority of emerging resistant populations, π was 

significantly higher than the diversity of the pre-therapy population. Since the structure of the 

population did not change, the higher π value for the emerging resistant population indicates 

that resistance emerges on novel alleles that have more SNPs between them in comparison to 

susceptible alleles in the pre-therapy population. This may be partially explained by an 

increase in frequency, but not fixation, of multiple resistance haplotypes within a population, 

despite a drop in the number of segregating sites. This pattern may suggest that there is 

appreciable clonal interference among emerging resistance haplotypes (51). 

The apparent small Ne and skewed allele frequency distributions did not prevent the 

evolution of multiple resistant viral haplotypes—all subjects ultimately failed therapy and 

Class III (major) drug resistance alleles were segregating in all subjects. However, these 

same alleles are at low frequency prior to drug selection, consistent with their deleterious 
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effects on fitness. Thus, the selective benefit of these alleles during drug treatment must also 

overcome their normally deleterious effects. The fitness cost of individual Class III 

polymorphisms in the therapy naïve environment can be calculated by assuming pre-therapy 

alleles are at mutation-selection balance and viral mutation rate (µ) 2.16x10-5. The cost (sc) 

for all Class III resistance alleles in the pre-therapy environment ranged from 0.1-3.1% 

(Table 3.4). N88SD, V82A, G48V, I54V, and M46I all had sc ~2-3%. However, it should be 

noted that V32I, M46I ATT codon, M46L, and L90M were only sampled in a single 

individual therefore the estimate of sc at best approximate for those polymorphisms.  

 

 Table 3.4. Average pre-therapy fitness values of Class III resistance mutations. 
 

Allelea Codonb sc
c St10

d 
K20M ATG 0.61 1.72 
K20R AGG 0.47 1.48 
V32I ATA 0.17 1.33 
M46I ATA 0.31 1.43 
M46I ATT 3.09 4.01 
M46L TTG 0.43 1.35 
G48V GTG 2.16 3.05 
I54V GTC 2.88 3.80 
I54T ACC 0.73 1.96 

V82A GCC 2.03 2.94 
V82I ATC 0.62 1.90 
I84V GTA 0.87 2.05 
N88S AGT 1.91 2.88 
N88D GAT 2.00 3.01 
L90M ATG 0.12 1.27 

aClass III resistance allele 
bResistance allele codon 
c% disadvantage 
dAverage total % fitness when st = 10/Ne 
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For selection to dominate the fate of an advantageous allele with selective benefit sb, 

Ne sb >> 1 (58). Thus, a minimum estimate of sb is the inverse of the effective population size 

(Ne).  Therefore, for s to be beneficial, the minimum frequency it has to reach (1/Ne) is 0.09-

0.16%. However, a more realistic and conservative estimate of this frequency (e.g. 10/Ne, so 

that Ne sb >> 1 ) is 0.9-1.6%. The total selective benefit (st) of a resistance allele during drug 

treatment is therefore sc + sb = w. The average fitness for each Class III resistance mutation 

ranged from 1.2-4.0% (Table 3.4). This is still likely an underestimate as an allele with a 1% 

advantage would require 5-6 years to sweep to fixation (58) and most resistance alleles swept 

in less than 200 days (~100 generations) (Fig. 3.8-9).  

Each patient had a unique path to failing RTV monotherapy, and the dominant 

resistant haplotypes sampled during the course of failure were not identical to pre-therapy 

haplotypes nor were they always sampled in lateral time points (Fig. 3.9). The evolution of 

RTV failure followed a step-wise accumulation of mutations on common haplotypes (Fig. 

3.9). Major variants that emerged within the population were likely formed by a de novo 

addition of alleles versus recombination events, as evidenced by an absence of major 

haplotypes in prior time points that could have been in a high enough frequency to recombine 

to form the emerging haplotype. 

Why individuals fail therapy is likely a question that will need to be re-interpreted on 

a per-patient basis. Our sub-cohort of 10 individuals all had very similar clinical factors. 

They were chronically infected with HIV-1 subtype B, had extremely low CD4 counts, high 

viral loads, and no previous protease inhibitor exposure. It is remarkable that when given the 

same exact drug, each individual failed in completely different ways. Our work suggests a 

complex interplay between selection pressure, viral diversity, and population dynamics. It 
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also suggests that the pre-therapy population may not be able to determine virologic 

outcome, or increased longitudinal sampling and depth is needed prior to drug exposure to 

better ascertain pre-existing resistance-associated variants. Our work illustrates how slight 

deviations in drug selection pressure shapes the emergence of resistance and dominant 

haplotypes. We also have evidence that the de novo addition of resistance-associated alleles 

on common haplotypes has a greater role in what dominant variants emerge versus 

recombination between haplotypes. 
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4.1 Abstract 

Interferon-sparing, all direct-acting antiviral (DAA) combination therapies are 

demonstrating increasing efficacy in treatment of chronic hepatitis C. Pre-existing resistance-

associated variants (RAVs) may influence virologic outcome. Deep sequencing technology 

has the potential to provide novel insight into the frequency of such variants, but is 

confounded by high procedural biases and error. We previously described a Primer ID 

sequencing strategy that directly detects and eliminates many potential sources of error in 

deep sequencing, allowing for accurate ultra-high resolution analysis of viral populations. 

We applied this method to detect very low frequency (≤0.1%) variants in the HCV NS3 

protease in HCV-treatment naïve individuals, and to determine whether genetic diversity and 
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the frequency of pre-existing RAVs differs between mono-infected and HCV-HIV co-

infected individuals. In a cohort of 15 HCV mono-infected and 13 HCV-HIV co-infected 

subjects well-controlled on HARRT, Primer ID sequencing revealed that all populations had 

an excess of low frequency polymorphisms. We observed significantly less genetic diversity 

and possibly qualitatively dissimilar pre-existing RAVs in co-infected vs. mono-infected 

subjects. These differences may presage variation in virologic responses and possibly altered 

patterns of resistance to DAAs in mono- versus co-infected patients. 

 

4.2 Introduction 

Hepatitis C Virus (HCV) infects approximately 200 million people, and causes ~366 

thousand deaths annually due to liver cirrhosis and hepatocellular carcinoma. The majority of 

contemporary transmissions are through blood-to-blood contact by way of intravenous drug 

use (IDU). Around 70 percent of individuals infected with HCV develop persistent infection 

(2-4), requiring antiviral drug intervention to suppress the intrahost viral population. Until 

recently, the standard of care for treatment of chronic HCV infection was a combination of 

pegylated interferon-α and ribavirin (PEG-INF/RBV) (145, 146); this therapy, poorly 

tolerated by many patients, has limited efficacy. Furthermore, only 42-46% of genotype 1 

infected patients achieve a sustained virologic response (SVR) on PEG-INF/RBV (145, 146).  

Due to the poor efficacy of PEG-INF/RBV and development of compounds that directly 

target hepatitis C viral proteins, treatment is moving away from PEG-INF/RBV to all Direct 

Acting Antiviral (DAA) approaches. All DAA therapies offer several advantages over PEG-

INF/RBV: a higher percentage of HCV infected individuals are eligible for treatment, DAAs 

are better tolerated, DAAs counteract the virus through direct targeting, and there is an 
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increased breath of options and combinations, allowing for a more personalized approach and 

re-treatment of individuals experiencing virologic breakthrough. Disadvantages of DAAs are 

that they are expensive, patients can experience virologic breakthrough (albeit commonly 

delayed), and DAAs contain low genetic barriers. 

DAA development has focused on the NS3/4A serine protease due to the multifaceted 

and critical functions it has in viral production and persistence. The NH2-terminal third of 

NS3 contains proteolytic activity; NS3 heterodimerizes with co-factor NS4A, and this 

complex cleaves four sites downstream of the NS2-3 junction in the HCV polyprotein (7), 

allowing for the release of nonstructural proteins. Furthermore, NS3/4A cleaves host 

signaling molecules activated by dsRNA, blocking the TRL3 and RIG-I pathways (reviewed 

in (5)). In addition to proteolysis, the COOH-terminal of NS3 contains NTPase activity and a 

RNA helicase domain. Both are critical for replication (147). Although these two domains 

fold separately from each other, the COOH-terminal residues are found positioned within the 

shallow active site (147-149), and have been used as guidelines for the development of small 

molecule inhibitors (150, 151).  

Due to interconnectedness of proteolytic and helicase activities, protease inhibitors 

can effectively suppress the viral population through multiple mechanisms, and viral 

diversity that decreases or prevents DAA binding likely has large negative fitness effects. 

However, because HCV can produce large, heterogeneous populations in a host, resistance 

associated variants (RAVs) are commonly present in an untreated environment. HCV’s 

replication cycle has a half life of 2.7 hrs (range 1.5-4.6 hrs) (32), and approximately 1012 

virions are produced per day (32-34). HCV’s RNA-dependent RNA polymerase (RdRp) 

NS5B adds 1x10-4 to 1x10-5 substitutions/site/generation (11), and is biased in G:U and U:G 
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mismatches (29). The quick life cycle and high production rate of new mutations introduced 

into the small, ~10kb viral genomes has led to estimates that at any given time within a large 

population, every single mutation can pre-exist (35), but the frequency at which an allele will 

exist is the balance between the rate at which it is added (mutation) and removed (selection). 

Deeply characterizing the standing genetic variation within an in vivo population can 

detect pre-existing resistance associated variants. However, their steady-state frequencies and 

whether they can be directly selected under a drug is unknown. Furthermore, intrahost viral 

diversity can be influenced by a co-infecting pathogen, potentiating differences in pre-

existing RAVs and DAA response. The HCV infected IDU cohort overlaps with individuals 

infected with the blood-borne Human Immunodeficiency Virus (HIV). HCV-HIV co-

infection is predominantly with HCV genotype 1, (152) and co-infection is common in 

countries that have a high IDU rate and disease prevalence of both pathogens. For example, 

HIV-HCV co-infection in Russia and the Ukraine has been reported at 70% (153).  

The biologic effects and clinical observations of mono- versus co-infection suggest 

dissimilarity of intrahost viral diversity. HCV-HIV co-infection increases patient morbidity 

and mortality (65) by causing a three fold acceleration in fibrosis, cirrhosis, and liver disease 

(66). HIV has direct effects on liver injury; the virus can fuse to hepatic stellate cells and 

hepatocytes by way of CCR5 and CXCR4 co-receptors, inducing apoptotic and pro-

inflammatory pathways (154, 155). Despite this, previous studies have failed to demonstrate 

a difference (67, 68), or consensus (69-72) on whether HCV-HIV co-infection influences 

viral diversity, though these observations are likely confounded by variance in sampling 

depth, cohort size, methodology, and genomic regions examined . 
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The standing genetic variation of in vivo HCV populations is poorly characterized, 

leading to biased estimates of RAVs and ignorance of their fate after selection. Because co-

infection may influence HCV diversity and differences in RAV frequency, we applied a 

novel, high-resolution deep sequencing approach to directly resolving the genetic variation of 

NS3 in 15 HCV populations mono-infected and 13 populations co-infected with HIV. Deep 

sequencing with Primer IDs directly corrected for PCR biases and error inherent in deep 

sequencing protocol (143) and captured thousands of genomes per population. 

Because Primer IDs can form secondary structure and interactions with structured 

RNA genomes may result in non-random tagging, we first compared replicate tagging and 

sequencing reactions for 4 subjects, 2 mono-infected and 2 co-infected. We found that 

throughput was enhanced by using patient-specific primers and decreased PCR cycling 

conditions. Increasing cDNA synthesis temperatures resulted in a decrease in depth but an 

increase in the number of sequences recovered per Primer ID for mono-infected but not co-

infected subjects for reasons that remain unclear. Independent re-constructions of replicate 

populations revealed a strong correlation of individual haplotype frequencies, further 

supporting random tagging. 

For the 15 mono-infected and 13 co-infected populations, average nucleotide 

diversity (π) was higher in mono-infected individuals. A sliding window analysis of π 

demonstrated variability between subjects and residues, including active site residues. Each 

population contained an excess of low frequency polymorphisms, indicating population 

disequilibrium. Pre-existing RAVs were detected in 13/13 co-infected and 13/15 mono-

infected individuals. When comparing the presence and frequency of pre-existing resistance 

mutations between mono-infected and co-infected individuals, RAVS were more frequent at 
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NS3 A.A. 36 and 168 in co-infected individuals, and at 41, 55, 107, 109, and 170 in mono-

infected subjects. Repeated resampling analyses suggested these differences sort with HIV 

co-infection. These preliminary findings indicate that DAA response between the two groups 

may be different as well, and support alternative treatment approaches based on co-infection 

status. 

It is currently unknown whether RAVs in the standing genetic variation can be 

directly selected under a DAA. If pre-existing diversity can predict drug response, not only 

would studies like this increase the probability of obtaining SVR by informing drug choice, 

but also advocate for alternative therapeutic approaches in mono-infected and co-infected 

populations. 

 

 

4.3 Materials and Methods 

vRNA extraction and cDNA synthesis. Human blood sera samples provided by the 

University of North Carolina Hospitals AIDS Clinic and UNC Liver Center for analysis were 

HCV genotype 1a positive, had a viral load ≥ 5x105 IU/mL, and CD4+ count >350 

cells/mm3. Co-infected subjects were on HAART and had undetectable HIV viral loads. 

HCV genotyping was confirmed by RT-PCR and nested-PCR with primers targeting core 

NS5B proteins.  

For each sample, vRNA was extracted using the QIAamp Viral RNA Kit (Qiagen, 

Valencia, CA). Approximately 10,000 copies of viral RNA from each sample were present in 

the cDNA synthesis reaction as previously described (87, 109, 110). The tagging primer used 

was, 5’- 
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ACCTTGCAAGCACGCTCTGGCCTTGAANNNNNNNNCT(BARCODE)GAACACCGG

GGACCTCATGGTTGTCTC -3’. The barcode represented individual a priori selected 

sample IDs. The 3’ end of the tagging primer targeted downstream of H77 amino acid 175 

(H77 3971-3945) and was customized per patient based on population sequencing. 

Oligonucleotides were purchased from IDT and were purified by standard desalting. 

 

Amplification of tagged sequences. The single-stranded cDNA was column purified using 

the PureLink PCR Purification Kit (Invitrogen, Carlsbad, CA), using Binding Buffer HC 

(high cut-off) 3X wash to remove the cDNA primer. Primer removal was verified by 

electropherogram analysis using an Experion HighSense RNA microfluidic chip (Bio-Rad 

Laboratories, Hercules, CA). Samples were amplified by nested PCR, using upstream 

primers 5’-TAYTGCTYGGRCCRGCYGA-3’ (H77 3370-3388) and 5’- 

AGTGGAGGGTGAGGTCCAGAT-3’ (H77 3505-3523). The second round upstream PCR 

primer was customized per patient based on population sequencing. The downstream primers 

targeted the 5’ portion of the cDNA tagging primer 5-ACCTTGCAAGCACGCTCTGGC-3’ 

then 5’-CAAGCACGCTCTGGCCTTGAA-3’. The PCR reaction used PrimerSTARTM HS 

kit (TaKaRa, Japan). Each reaction contained 1x PrimerSTARTM HS Buffer Premix. For the 

first round of PCR, purified cDNA was split into to two 50ul reaction system. Each reaction 

was amplified 20 cycles of 98°C for 10 seconds, 68°C for 45 seconds. After the first round 

PCR, 1ul of the combined first round PCR reactions went into second round PCR. Second 

round PCR was amplified for 20 cycles of 98°C for 10 seconds, 68°C for 45 seconds, and gel 

purified using a 2% agarose gel and MinElute gel extraction kit (Qiagen, Valencia, CA), with 

incubation of the solubilization buffer at room temperature. DNA was quantified by Qubit 
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fluorometer using dsDNA High Sense assay (Invitrogen, Carlsbad, CA). Product generation, 

quality, and primer removal was verified using a Bioanalyzer DNA microfluidic chip 

(Agilent, Santa Clara, CA). 

 

454 pyrosequencing. Amplicons were quantified by picogreen and equimolarly pooled into 

individual libraries containing a median of 4 samples each. Rapid library adaptors were 

added to the amplicon populations by a blunt end ligation reaction, and this library was 

diluted, clonally amplified onto beads using emPCR, and sequenced on the 454 GS Junior 

with Titanium sequencing chemistry (Roche, Nutley, NJ). After a sequencing run, raw reads 

were initially processed through the native amplicon pipeline using default settings (Roche, 

Nutley, NJ). 

 

Bioinformatic pipeline for raw sequence processing. A suite of programs was written to 

filter and parse raw 454 sequencing reads as previously described (143). In short, each full-

length read was evaluated for a barcode and Primer ID in the cDNA primer 5’ tail. When 

three sequences contained an identical Primer ID within a sample, a consensus sequence was 

constructed using ClustalW followed by MUSCLE (156, 157) then called by majority rule. 

Ambiguous nucleotide designations were used when there was a tie. 

 

Intrahost population analysis. All statistical and diversity analyses were completed on 

populations devoid of sequences containing ambiguities and whose gaps were resolved by 

the consensus. Tajima’s test and sliding window analysis of π were computed by DnaSP 

v.5.10.01 (111). The sliding window analysis measured π in windows of 100 nts and a step 
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size of 10 bases. Population diversity and haplotypes were computed through customized 

bioinformatics suites. 

 

RAV resampling simulation. A random draw simulation was written to conduct a label-

blind analysis of RAV presence while controlling for sampling depth. In short, intrahost 

populations were split into two groups based on co-infection status. Within a group, 

individual populations were randomly chosen and shallowly sampled to a uniform depth. The 

sampled sequences making up the synthetic population were then examined for the presence 

and frequency of RAVs. This process was repeated for both groups, and 100 times within a 

group. Finally, the difference in RAV frequency between the two groups was logged. To 

create a label-blind control, all populations were pooled together prior to random sampling 

but otherwise treated identically. 

 

4.4 Results 

Comparison of two independent cDNA tagging reactions demonstrates similar Primer 

ID re-sampling distributions.  

Primer IDs are a string of degenerate sequences embedded in the cDNA synthesis 

primer that are used to label individual viral genomes. Due to the degenerate block, some 

Primer ID combinations may form secondary structure and preferentially target the highly 

structured HCV genome, leading to tagging and re-sampling bias. A tagging bias may distort 

the final population resolution, as reads within a Primer ID population may be representative 

of the entire population. A re-sampling bias will result in a decrease of throughput, as many 

reads originate from a single Primer ID. 
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To increase the fidelity of primer-template binding, we designed the cDNA synthesis 

target site and upstream primers to match the intrahost consensus diversity. Furthermore, we 

limited the number of PCR cycles to decrease the re-sampling for all Primer IDs. Finally, 

because secondary structure may interfere with cDNA synthesis, we wanted to verify that 

higher reaction temperatures did not affect population resolution. 

Approximately 10,000 copies of vRNA from 2 mono-infected (M1, M2) and 2 co-

infected (C1, C2) subjects were independently tagged with cDNA primers targeting NS3 and 

containing a Primer ID. The amplified fragment encompassed residues 36-170 of NS3, 

critical positions that can confer DAA resistance. Amplicon populations were sequenced on 

the 454 Junior platform. The second run used standard cDNA synthesis conditions, whereas 

the first run had slightly higher temperatures. The two pyrosequencing runs yielded 116,211 

and 113,932 raw reads, respectively, with 99.8% and 99.0% of sequences above 495bps. 

There were 1,492 to 3,589 consensus sequences resolved per sample, resulting in population 

depths between 0.067% - 0.028%. Because sampling a low-abundance allele is based on the 

Poisson distribution, the depth of sampling that would sample an allele with certainty (3/n) 

was 0.2%-0.08% (Table 4.1). 
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Table 4.1. Population sequencing throughput and depth for two replicate 454 Junior 
runs 
 

 Run 1 Run 2 
Raw reads 116,211 113,932 

% above 495bp 98.81 99.05 
   
Pre-consensus reads   

M1 29,766 15,413 
M2 20,619 18,098 
C1 14,461 20,370 
C2 37,864 48,410 

   
Primer IDs   

M1 3,736 4,536 
M2 2,492 3,582 
C1 8,111 11,071 
C2 3,663 4,872 

   
Consensus sequences   

M1 2,798 2,445 
M2 2,086 2,571 
C1 1,492 2,150 
C2 2,947 3,589 

   
Maximum Primer ID re-sampling   

M1 58 22 
M2 37 26 
C1 19 27 
C2 77 71 

 
 

Slightly higher cDNA synthesis temperatures (Run 1) resulted in more sequences 

being built per Primer ID and a decreased number of consensus sequences for the mono-

infected subjects (Table 4.1). The change in temperature did not affect the distribution for co-

infected patients for reasons that remain unclear, though this observation is on a very a small 

sample size and may not have biological implications (Fig. 4.1).  
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Fig. 4.1 cDNA synthesis temperature affected Primer ID re-sampling for mono- but not 

co-infected subjects. Distribution of the number of reads per consensus sequence in mono-

infected patients M1 (A-C) and M2 (D-F), blue bars, and co-infected patients C1 (G-I) and 

C2 (J-L), red bars. For mono-infected patients M1 and M2, there were was a difference in the 

number of sequences that built each consensus. Less reads per Primer ID resulted in more 

ambiguous calls (F, H, I). 
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There was an absence of Primer ID oversampling but some evidence of resampling bias.  

Although cDNA synthesis conditions resulted in a difference in the number of 

sequences that built each Primer ID in the mono-infected populations, none of the Primer ID 

tags for any of the populations were oversampled (Table 4.2). The maximum number of 

times a Primer ID was observed was between 27, and 77, indicating that a single Primer ID 

combination did not have an increased fitness in tagging and/or amplification. 
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Table 4.2. Replicate re-sampling of Primer IDs indicate absence of a re-sampling bias 
 

 Run 1 count Run 2 count 
M1 CACCGTAT 58 TATCCGGC 22 
 TTCGTCGA 40 CTACGACT 22 
 CCCGCCCC 39 ACCGAACA 22 
 CGATTGCC 38 CCCGCCCC 20 
 ACGTGTTC 38 CCCATATA 20 
 ATCACATA 37 GAGATTCA 18 
 ACCAGTAC 36 GCGCCGCG 17 
 CCGCCACC 35 CACCCCGC 17 
     
M2 AACATCCC 37 CGGGTGAA 26 
 ATGTGCTA 36 AATGCAAT 26 
 AGATGATA 35 TGGCGAAA 22 
 TTAACATA 33 GTCGATAT 22 
 ACATGCTA 33 ATAACTAT 22 
 CATACTCA 32 GTGAGCAC 21 
 AACATGAC 32 ACATAGAA 21 
     
C1 CCCCGCCC 19 CCCGCCCC 27 
 CTCCCCAC 17 CCCCTCCC 22 
 CCGCCCAC 16 CCCCCGCC 21 
 CCCCTCCC 16 CCCCCACC 20 
 CCCCCGCC 16 CCCTCCCC 19 
 CCCTCCCC 15 CCCCACCC 18 
     
C2 CCTAGTCT 77 AATAACAA 71 
 AATACCAA 63 GCCGCGAG 60 
 GACACAGG 58 TATTGTTA 55 
 GTTGAATC 54 ACCAATAT 54 
 CCTACATG 54 TAGCGTAC 52 
 TTCATTAA 53 ATCGGAGG 52 
 ATTCAAGA 53 ATTGATAA 51 

 
 

For M1, M2, and C2, The Primer IDs resampled the most within a patient were 

largely different across replicates, indicating that tagging is random. The most prevalent 

Primer IDs from C1 were C-enriched, indicating that the degenerate region in the tagging 

primer was not optimally randomized during oligonucleotide synthesis or Cs were better at 
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tagging and/or amplifying the population. However, tagging and sequencing increased 

numbers of populations (discussed below) have not reproduced this observation. 

 

There is a strong reproducibility of the frequency of identical haplotypes resolved 

across independent tagging and sequencing runs.  

The distribution of Primer IDs support unbiased tagging and amplification of viral 

sequences. To see if the distribution of alleles and their frequencies was reproducible, the 

genetic variation for all haplotypes present ≥ 1% in the first run was compared to their 

frequency in the second run. There was a strong correlation (R2=0.81) of haplotype 

frequency across replicates (Fig. 4.2). Furthermore, this correlation likely would have been 

stronger had identical cDNA synthesis methods been used. Regardless, these data clearly 

show that the genetic variation of HCV populations can be reproducible resolved using deep 

sequencing with Primer IDs. 
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Fig. 4.2. Comparison of the frequency of haplotypes ≥  1% between Run 1 and Run 2 

demonstrates tagging and sequencing reproducibility. For each haplotype found ≥ 1% in 

Run 1, the frequency was compared to Run 2, and the two frequencies were plotted against 

each other. A strong linear correlation demonstrates that Primer ID tagging, amplification, 

and sequencing were highly reproducible. 

 

 

As the frequency of RAVs near our limit of sensitivity, their resolution is confounded by 

the sampling probability and early introduced error.  

Although haplotypes ≥1% can be sampled reproducibly, minor variants whose 

frequency nears the population depth may be missed by chance. Similarly, minor variants 

that appear as single occurrences cannot be differentiated from technical error, confounding 

whether a polymorphism is biological or artifactual. Slightly less than half of the pre-existing 

RAVs were sampled as single occurrences within a population (Table 3). However, half of 

these residues were recorded in the replicate run, supporting the polymorphism as biological, 

not error. To determine whether a RAV is biological without performing replicates, an 

alternate assay such as allele-specific PCR could be implemented in parallel. Furthermore, 

depth of sampling and/or repeated sampling will increase the probability that a low-

frequency allele will be revealed. 
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Table 4.3. Frequency of resistance associated alleles across independent tagging and 
sequencing runs. 
 

pt RAV codon Run 1 Run 2 
mono-infected    
M1 V36M ATG 0.072  
 T54A GCT  0.041 
 V55A GCC  0.082 
 R109K AAG  0.041 
 R155K AAG  0.041 
     
M2 V36M ATG 0.048 0.039 
 V55A GCC 0.048 0.156 
 Q80K AAA 98.802 98.950 
 Q80K AAG 1.103 0.933 
 Q80K AGA 0.096 0.117 
 R109K AAG  0.039 
 R155K AAG  0.039 
 V170T ACC 0.096 0.039 
     

co-infected    
C1 V36A GCG 0.134 0.047 
 V36L TTG 0.067  
 T54S TCT 0.067  
 T54S GCT  0.047 
 V55A GCC 0.067 0.047 
 Q80K AAA 99.196 99.581 
 Q80K AAG 0.670 0.279 
 R155K AAG 0.134  
 V170T ACC 0.067 0.093 
     
C2 V36M ATG 0.068 0.028 
 V36A GCG  0.111 
 F43I ATC 0.034  
 F43S TCC  0.028 
 T54A GCT 0.068 0.028 
 Q80K AAA 99.525 99.387 
 Q80K AAG 0.339 0.502 
 Q80R AGA 0.136 0.028 
 R109K AAG 0.068  
 A156V GTC  0.028 
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454 Junior run throughput and patient resolution for non-replicates 

The replicate sampling and resolution of 2 mono-infected and 2 co-infected 

individuals supported that Primer IDs could be used to accurately resolve viral diversity of 

HCV and that RAVs commonly pre-exist in the standing genetic variation. In order to better 

characterize whether a co-infecting pathogen influences diversity, and whether there was a 

difference in pre-existing RAVs, 24 additional patients, 13 mono-infected (samples 1-3,6-

15), and 11 co-infected (samples 3-13) were sequenced (Table 4.4). The diversity of NS3 for 

monoinfected patients 1-3 was resolved on the GS FLX with Titanium sequencing chemistry, 

but due to sequencing length constraints, only contained NS3 residues 36-138. The replicate 

Junior runs previously described were combined per patient, and added to the cohort (M1-

M2, C1-C2). Mean sampling depth for the entire cohort was 0.14% (0.11% median) (Table 

4.4)  
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Table 4.4 Population sampling depth for mono-infected and co-infected subjects 

 Sample Barcode Primer IDs Consensus sequences Depth 
Mono-infected      

 1 TAT 9,106 2090 0.05 
 2 TGT 2,113 703 0.14 
 3 TAG 1,030 400 0.25 
 M1 ACG 8,272 5,243 0.02 
 M2 AGC 6,074 4,657 0.02 
 6 GCAG 2,791 556 0.18 
 7 GAG 307 231 0.43 
 8 CAC 2,475 947 0.11 
 9 CGCG 911 283 0.35 
 10 GACT 4,900 2637 0.04 
 11 CGT 4,362 2622 0.04 
 12 TGTC 2,397 1079 0.09 

 13 CATA 2,453 707 0.14 
 14 AGAT 2,041 1001 0.10 
 15 ACAG 567 385 0.26 

Co-infected      
 C1 TAT 19,182 3,642 0.03 
 C2 TTC 8,535 6,536 0.02 
 3 GTA 2,418 1,053 0.09 
 4 CTG 3,966 778 0.13 
 5 ACGA 3,768 885 0.11 
 6 ATAC 2,507 1765 0.06 
 7 TCAT 965 760 0.13 
 8 GTGT 852 569 0.18 
 9 CTAT 1,132 893 0.11 
 10 GCTA 1,343 774 0.13 
 11 GATC 3,547 1829 0.05 
 12 TTC 2,564 1196 0.08 
 13 ATGC 2,562 834 0.12 

 

Sliding window analysis of nucleotide diversity (π) across NS3 amino acids 36-175 show 

a greater diversity in the mono-infected population.  

The standing genetic variation of each population revealed rich allelic diversity, 

including low frequency alleles. However, in order to assess whether the diversity is 

significantly different between the mono-infected and co-infected population, a sliding 
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window analysis of the average pairwise diversity (π) was measured. Sliding window π 

reveals localized polymorphism levels, and demonstrated that the inter-population values of 

π across individual residues of NS3 did not identify specific regions of diversity or 

conservation (Fig. 4.3A). Similarly, the mean diversity across individuals varied greatly and 

was not position dependent. The lack of regional polymorphic conservation or diversity 

indicates that there isn’t a strong selective across these positions, including active site 

residues. This is supported biologically, as NS3 does not form a highly structured pocket (8). 

In contrast, diversity is conserved across the highly structured HIV-1 protease’s active site 

(Fig. 4.3D).  

The differences in morbidity and mortality between HCV mono-infected and HCV-

HIV co-infected individuals suggested dissimilarity in viral diversity, and we found that 

average diversity across NS3 was significantly greater in the mono-infected subjects than the 

co-infected subjects (Student t’s test, p<0.0001) (Fig. 4.3BC).  
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Fig. 4.3 Sliding window analysis of nucleotide diversity (π) across NS3 amino acids 36-

175 and the HIV protease coding domain. A) Average sliding window π across NS3 in all 
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individuals (black), mono-infected (blue), and co-infected (red). B) Sliding window across 

NS3 in individual mono-infected individuals. C) Sliding window across NS3 in co-infected 

individuals. D) Sliding window across HIV-1 protease coding domain in therapy naïve 

individuals. Shaded areas indicate active site residues. 

 

Nucleotide diversity (π) and Tajima’s D were significantly different between mono-

infected and co-infected populations.  

Whole gene pairwise nucleotide diversity (π) was measured for the mono-infected 

and co-infected populations. The total π in the mono-infected subjects had a significantly 

greater diversity than the co-infected subjects (Student’s t-test, p=0.01), as expected from the 

sliding window analysis. π provides a measure of diversity, but the Tajima’s D statistic 

measures the deviation between the expected distribution of allele frequencies at mutation-

drift equilibrium and the observed distribution. Negative values of D can indicate recent 

selective sweeps, population bottlenecks, and population expansion whereas positive values 

can indicate balancing selection, migration, and population subdivision. 

For all populations, Tajima’s D was ≤ -2.0 indicating an excess of low frequency 

polymorphisms. Tajima’s D was also significantly lower in the co-infected population 

(Student’s t-test, p=0.02). The lower D values in co-infected populations suggest that co-

infection enhances the evolutionary forces skewing allelic variation in HCV populations.  For 

instance, increased number of selective sweeps could shift this equilibrium.  
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Fig. 4.4 Measures of the average and total population diversity are significantly 

different between mono-infected and co-infected subjects and indicates population 

disequilibria. For all mono-infected and co-infected populations, A) pairwise nucleotide 

diversity and B) Tajima’s D statistics are reported; asterisks indicate that this difference is 

significant.  
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Table 4.5. Frequency of NS3 RAVs in mono-infected and co-infected populations. 

 

 

 

 

Mono-infected
1 2 3 M1 M2 6 7 8 9 10 11 12 13 14 15

V36 A GCG 0.05
G
L TTG
M ATG 0.04 0.04

Q41 R CGA 0.18 0.11
F43 C

S TCC 2.12 0.04
I ATC 0.14
V

T54 A GCC 0.14 0.18 0.09
A GCT 0.02
S TCT 6.75

V55 A GCC 0.05 99.75 0.04 0.11 0.21 0.15 0.10
A GCT 0.25

Q80 K AAA 98.00 98.88 0.36 96.62 98.59 97.91 98.97 97.96 99.00 99.48
K AAG 1.44 1.01 3.06 1.41 1.86 0.99 1.76 0.80 0.52
H
R AGA 0.11 0.19
R AGG 0.08
R CGA 0.05
R CGG

V107 I ATT 0.18 0.11 0.26
I ATC 0.29 0.11 0.04 0.04 0.19 0.10

R109 K AAG 0.02 0.02 0.10
S138 T ACC
R155 G GGG 0.18 0.11

I
K AAG 0.02 0.02 0.04
L
M ATG
S
T
Q
E
N

A156 I
S TCC
T
V GTC
D GAC 0.04
G

D168 A
E GAG 0.18
E GAA
G
H
N AAC
V
I
T
Y

V170 A
T ACC 0.06 0.04 0.04 0.19 0.26
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Co-infected
C1 C2 3 4 5 6 7 8 9 10 11 12 13

V36 A GCG 0.08 0.06 0.13 0.11 0.13 0.22 0.05
G
L TTG 0.03
M ATG 0.05 0.11

Q41 R CGA 0.05
F43 C

S TCC 0.02
I ATC 0.02
V

T54 A GCC
A GCT 0.03 0.05 0.09
S TCT 0.03 0.06

V55 A GCC 0.05 0.13
A GCT

Q80 K AAA 99.42 99.45 0.13 0.06 99.65 99.40
K AAG 0.44 0.43 0.13 0.44
H
R AGA 0.08
R AGG 0.35
R CGA 0.09 0.13 0.23 0.12
R CGG 0.13

V107 I ATT 0.12
I ATC 0.08 0.11 0.26 0.13 0.11

R109 K AAG 0.03
S138 T ACC 0.09
R155 G GGG 2.09 0.13

I
K AAG 0.05 0.09 0.11 0.11 0.12
L
M ATG 0.12
S
T
Q
E
N

A156 I
S TCC 1.04
T
V GTC 0.02 0.08
D GAC
G

D168 A
E GAG
E GAA 0.13
G
H
N AAC 0.09 0.12
V
I
T
Y

V170 A
T ACC 0.08 0.19 0.11
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Some RAVs are significantly more enriched in only the mono-infected or co-infected 

population.  

An excess of low frequency polymorphisms was demonstrated for all populations, 

however this allelic structure was more pronounced in the co-infected populations. RAVs 

were observed as low frequency variants in mono-infected and co-infected subjects (Table 

4.5), but each subject was sampled to a different depth (Table 4.4) making comparisons 

between the two groups difficult.  

To help determine whether a particular RAV was different across all mono-infected 

or co-infected individuals within this cohort, a random sampling simulation was conducted. 

In short, a sub-cohort for either mono-infected or co-infected individuals was randomly 

generated, and each individual within that sub-cohort was randomly and shallowly sampled 

to a uniform depth. The sequences from the superficial sampling across individuals within 

the sub-cohort were then examined for the presence of individual RAVs. This process was 

repeated 100 times, and the distribution of individual RAVs for mono-infected populations 

were compared to the distribution of RAVs from co-infected populations. This was compared 

to a background distribution obtained from comparing the distribution of RAVs from 

randomly generated populations using identical methods to the mono-infected and co-

infected sampling but sampling all individuals together (label blind). Statistical significance 

was determined between mono-infected and co-infected individuals versus the background 

sampling using Student’s t-test. To try to control for a single individual affecting 

significance, two individuals with the highest RAV frequencies, one mono-infected and one 

co-infected, were removed and the simulation was re-run. RAVs were reported only if they 

continued to be significantly for both simulations. 
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There were 7 RAVs that were significantly different in frequency between mono-

infected and co-infected individuals when compared to label-blind sampling of the entire 

cohort. NS3 residues 41, 55, 107, 109, and 170 had a higher presence of RAVs in mono-

infected versus co-infected individuals, and NS3 residues 36 and 168 had a higher presence 

of RAVs in co-infected versus mono-infected individuals. 
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Fig. 4.5 RAVs 36, 41, 55, 107, 109, 168, and 170 have significantly different frequencies 

in either mono-infected or co-infected individuals. Plotted is the difference in RAV counts 

between either co-infected versus mono-infected (C-M) subpopulations or random versus 

random (R-R). Top graph includes all individuals, whereas bottom graph has one individual 

from each group removed that had the highest RAV frequency. Starred RAVs had 

significantly different frequencies in co-infected versus mono-infected populations in 

comparison to the background sampling and retained significance with outlier individuals 

removed. RAVs 41, 55, 107, 109, and 170 had a higher frequency in mono-infected 

individuals, and RAVs 36 and 168 were more frequently found in co-infected individuals. 

 

4.5 Discussion 

Co-infection is associated with a higher patient morbidity and mortality (65-66), and these 

clinical markers potentially translate to differences in viral diversity. Because DAAs target 

key viral enzymes, alleles that decrease or prevent drug binding may permit viral replication 

during drug selection. It is currently unclear what the steady-state frequency of RAVs are in 

therapy naïve environments, and whether this variation can be directly selected under a 

DAA. 

We applied an ultra-high resolution deep sequencing approach to examine pre-

existing viral diversity across NS3 (residues 36-170) in 15 mono-infected and 13 co-infected 

individuals. Using Primer IDs, we were able to achieve a mean sequencing depth of 0.1% 

across the cohort (Table 4.4). We found that viral diversity was higher in mono-infected over 

co-infected individuals, and this difference was preserved across the entire sequenced length 

of NS3 (Fig. 4.3-4). We also observed that there were not specific regions of conservation or 
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diversity when comparing across individuals congruent with x-ray crystallographic 

constructions of NS3 that demonstrate a lack of a clearly defined deep pocket for substrate 

binding (Fig. 4.3) (8). 

Although mono-infected individuals had a significantly higher diversity than co-

infected individuals, this did not equate to a significantly higher presence of pre-existing 

RAVs (Table 4.5). However, when comparing individual RAV positions between the 13 

mono-infected individuals that have sequencing encompassing residues 36-170 and the 12 

co-infected individuals, there were 7 positions that had a significantly higher frequency in 

either one or the other group (Fig. 4.5). RAVs 36 and 168 were more likely to be found in co-

infected individuals, whereas RAVs 41, 55, 107, 109, and 170 were more likely to be found 

in mono-infected individuals.  

A biological explanation for these differences is not obvious. In this cohort, co-

infected individuals are on HAART, and chance HIV drug interactions with HCV may exert 

a selection pressure that translates to viral diversity. Although all individuals had CD4+ 

counts >350 cells/mm3 and co-infected individuals had undetectable HIV viral loads, chronic 

inflammation due to HIV infection may cause differences in immune function (reviewed in 

(158)). It may be plausible that HIV infection is still ongoing in a compartment such as the 

liver (154, 155), but otherwise undetectable in the sera. As HIV can promote liver injury 

(154, 155), the two viral strains may be in close proximity to one another and driving 

changes in diversity. 

Before RAV differences between mono-infected and co-infected individuals can be 

assigned with confidence, larger numbers of subjects need to be accurately sequenced to 

comparable depths. If pre-existing variants can be directly selected under a drug, the 
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biological differences between mono-infected and co-infected individuals may presage 

variation in virologic responses and possibly altered patterns of resistance to DAAs. 

 

 

 

 

 



 

 

 

Chapter 5 

Concluding remarks 

 

Historically there has been an absence of high-resolution tools that could accurately 

capture the diversity of a viral population. The structure, dynamics, and evolution of viruses 

were elucidated through macroscopic snapshots and in silico modeling. In this thesis I have 

presented a new approach that allows significantly greater resolution of the complexity of a 

viral population, and started to examine basic but critical questions such as what does a 

population look like and how does a population evolve drug resistance. 

 

5.1 What we can learn from ultra-high resolution of viral populations. 

If a viral population were like a city, the 30,000 ft airplane view is the equivalent of 

Sanger-based sequencing. This single summation would allow one to distinguish the 

difference between Chicago and Manhattan, for example. Clonal sequencing would start to 

reveal major buildings and features, such as Willis Tower, Navy Pier, and other large 

landmarks. Deep sequencing with a Primer ID is like walking the streets of Chicago. A rich 

array of detail is revealed from this ground level view, and what these details can provide 

about the nature of the city beyond what can be achieved from a clonal-sequencing viewpoint 

is something that has yet to be fully realized. Similarly, not every detail will inform, and may 
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even sidetrack from understanding the larger network. Differentiating which details matter 

will be a major challenge going forward in this increasingly intricate resolution. 

RNA viruses dominate emerging infectious diseases, and HIV and hepatitis viruses 

are the most deadly chronic viral diseases. Clinical diagnostics of an infected individual can 

inform what the subtype of the infecting pathogen is and whether or what resistance alleles 

exist. At present, these platforms rely on Sanger-based sequencing technology to assess 

potential resistance-conferring positions on a population level. Next generation sequencing 

techniques may be integrated into a clinical diagnostic setting to shift not only to a detailed 

resolution of allelic variants, but also retain linkage across positions. 

As a field, we currently have a poor understanding of the steady-state frequencies of 

minor variants, and how they change before and after a selective event. The standing genetic 

variation constantly changes due to an erroneous viral polymerase. Due to transitional biases, 

we know that certain resistance alleles are more likely to be created de novo compared to 

others, but their associated fitness effects keeps them at a mutation-selection balance dictated 

by the sum of the fitness cost on the residing haplotype.  

For all populations sequenced, there was an excess of low frequency polymorphisms 

over that which would be expected from a population at equilibrium (Table 2.2, 3.3, Fig. 3.6, 

4.4). This haplotype structure was universal across HCV and HIV. For HIV populations 

exposed to a drug selection pressure, pre-existing, rebound resistant, and rebound susceptible 

populations also contained this structure (Fig. 3.6). This observation further emphasizes the 

ability of a population to quickly regain diversity after a selective event. 

We also wanted to examine if a co-infecting pathogen affects population diversity. 

From a small cohort of HCV mono-infected and HCV-HIV co-infected individuals, we 
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observed that there is higher diversity in mono-infected individuals (Fig. 4.3-4). This 

diversity did not correlate to an increase in the overall presence of RAVs in mono-infected 

individuals (Table 4.5), but there was a statistically significant difference in the pre-existence 

of handful of alleles between these two groups (Fig. 4.5). Further sequencing work is needed 

to determine whether this difference holds, and if it does, for what alleles. Furthermore, a 

biological or clinical link would also be needed. However, if our preliminary observations 

are biologically sound, these differences may be reflected in DAA response. 

Aside from ascertaining what resistant variants at what frequency are more likely to 

pre-exist, it is currently unknown whether they can be directly selected under a drug selective 

pressure. We have shown from a single HIV-infected individual that clonally amplified 

resistant alleles were identical to pre-existing variants (Fig. 2.8). Subsequent studies have 

indicated that the emerging resistant haplotype was not sampled prior to treatments or that 

the resistance mutants arose during the selection (Fig. 3.9). However, the fact that multiple 

haplotypes grew out with resistance mutations, and these mutations were not on the dominant 

haplotypes in the population, indicates that the resistance mutations that did grow out pre-

existed in the population. Further work is need to determine if there is a relationship between 

resistance in the standing genetic variation and what grows out under a selective event. 

We observed that the path to resistance can be highly variable and unique per 

individual. For a handful of HIV infected individuals longitudinally followed, dominant 

haplotypes that emerged over time were largely different than the preceding haplotypes (Fig. 

3.9). Furthermore, they could not be explained by recombination across prior haplotypes, 

implying that the path to resistance is by de novo mutations. We observed that measuring the 

selective pressure at the time of sampling was inconsistent to population composition (Fig. 
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3.1, Table 3.3, 3.9). For example, low drug levels were measured for populations containing 

multiple resistance alleles linked on a common haplotype, and high drug levels were 

observed for populations containing a large percentage of susceptible variants. This 

observation has several clinically significant implications. The incongruence between drug 

levels and population composition could be due to a lag in population response. Furthermore, 

it could illustrate intermittent adherence issues, as excessive drug levels could be due to 

dosing directly prior to sampling. Variable drug levels over time could be linked to the 

emergence of multiple resistance alleles on distinct haplotypes. 

If pre-existing resistance alleles are not consistently informative towards how a 

population will respond to a drug selective pressure, the role of minor variants in predicting 

population response may be better suited in looking at resistance decay. After removal of a 

selective agent from a population that is resistant to it, resistance alleles, once having a 

fitness advantage, will decrease in frequency if that advantage is lost. The rate at which they 

decay may be dependent on the particular alleles present and the haplotype on which they 

reside, but decay could be informative in determining whether and which drugs may achieve 

a sustained virologic response in re-treatment. 

Deep sequencing with a Primer ID resulted in the first accurate ultra-high resolution 

of a single gene within a viral population (Fig. 2.8, Table 2.1). The challenge going forward 

is determining which details revealed from this technique are clinically significant. We are 

increasingly integrating personalized therapeutics with clinical choices. Personalized 

therapeutics has not entered infectious disease diagnostics aside from assaying major drug 

resistance mutations by Sanger-based population sequencing. This is in stark contrast to 

achievements in antiviral drug development. For example, all-DAA approaches are 
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increasingly being used for the treatment of HCV, however this has been without comparable 

achievements in resistance diagnostics. As a field, we are assessing pre-existing alleles using 

a technique invented in 1974 and that misses allelic variants present at less than 25% 

abundance. Alternative, more sensitive approaches have not been adopted into the clinical 

setting mostly due to the high labor and low throughput. 

 

5.2 The idealized future of next generation sequencing. 

Future sequencing platforms may make Primer IDs unnecessary for the deep sequencing of 

viral populations, however several major technological obstacles would have to be overcome. 

First, the initial sample concentration could permit the sequencing of low copy samples. 

Second, sequencing would have to be done off of native vRNA. Third, sequencing length 

would have to encompass the entire genome. Fourth, the error profile would have to be as 

close to zero as possible. Fifth, throughput would have to be high enough to resolve minor 

variants within a population at a depth determined to contain variants that may inform 

population resolution in a cost and time effective manner. 

Not mandating a high sample concentration prior to a sequencing protocol would 

allow one to skip preceding PCR and all of the amplification biases, recombination, and re-

sampling that is introduced from this erroneous technique. Currently, 500ng of dsDNA go 

into library preparation for the 454 platform. Even if 454 had the capacity to sequence entire 

genomes, the initial input of starting material would always necessitate preceding PCR of 

clinical samples. High throughput platforms ideally would be dynamic enough to handle all 

disease states; clinical samples that contain low or undetectable viral loads could be 

sequenced through samples of viologic failure. 
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Allowing the sequencing of vRNA directly would avoid having input material that 

has to be molecularly adapted to the particular platform through cDNA synthesis and PCR, 

steps that are now needed since the addition of adaptors to the ends of the DNA sequencing 

target typically require a concentration of DNA larger than that found in clinical samples and 

also requires that the starting material is double-stranded. PacBio can sequence DNA-RNA 

heteroduplex material. Even if the platform could accurately sequence whole viral genomes 

and one could add their bell adaptors to small amounts of starting material, cDNA synthesis 

would still be required, however error between complementary bases introduced during 

cDNA synthesis could be differentiated based on sense. 

A needed improvement in sequencing technologies is increasing sequencing length, 

ideally to where the reads are long enough to encompass the entire viral genome. Internal 

genes of interest could be reached along with the preservation of linkage across multiple 

genes. The linkage of distal genes is particularly critical for resistance surveillance of viral 

populations simultaneously counteracted by antiviral drugs that have different gene targets. 

Oxford Nanopore is the only platform that will be available the near future that appears to 

have the capacity to consistently achieve whole genome viral sequencing but at a high error 

rate (discussed below). However, there are a number of other disadvantages that trump the 

long sequencing length when applied to viral populations that preclude Nanopore’s 

immediate adaptation to vRNA. 

The largest technological hurdle that needs to be overcome is decreasing the error to 

negligible values. This is particularly problematic with third-generation real-time sequencing, 

where high in/del rates dominant the error profile compared to the high 

misincorporation/misread error of the second-generation approaches. Although the 
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partitioning of generations is subjective, NextGen platforms can be divided into two different 

concepts. The earlier machines rely on a controlled exposure of nucleotides to a sequencing 

target and the report of a signal that indicates what had been incorporated, allowing for a 

base call. 454 and Illumina rely on light, whereas Ion Torrent gauges pH change. Newer 

machines rely on real-time reporting. PacBio employs a tethered polymerases and a laser to 

capture the identity of the fluorescently labeled nucleotide as it is incorporated. Nanopore’s 

pores sense the chemical composition of individual nucleotides as a strand of genomic 

material is threaded through it. Both PacBio and Nanopore have the ability to sequence a vast 

amount of genomic material in a very small amount of time due to the real-time reporting. 

However, they are both prone to very high levels of random in/del calls. For example, due to 

the non-metronome nature of polymerase nucleotide incorporation, small deviations in 

synthesis tempo cannot be easily assigned as a true deletion or pause during PacBio base 

calling. Similarly, a nucleotide captured by the laser but that does not get incorporated will 

be erroneously called as an insertion. 

When sequencing highly heterogeneous viral populations, randomly distributed in/del 

errors are much more problematic to resolve than misincorporation and homopolymeric 

errors. In/dels change the reading frame, and the identification of them likely requires 

indirect inference to what the true sequence should be. For platforms like PacBio, whose 

in/del rate approaches 15-20%, error alone in the Primer ID and barcoding region coupled 

with an extremely low throughput does not allow for the two techniques to be easily merged. 

The circular consensus sequencing of shorter input material allows a higher coverage per 

base, but at the trade-off of decreased length. Although this technique in principle should be 

able to decrease the in/del rate resolved below that of 15-20%, the current bioinformatics 



 124 

pipeline native to the machine cannot accurately create circular consensus sequences that 

would allow for subsequent Primer ID consensus formation. Even if the bioinformatics were 

corrected, the decreased length required for circular consensus sequencing in addition to the 

inherent low-throughput of PacBio does not easily translate this platform to either viral 

sequencing or targeted viral re-sequencing. Although Nanopore could theoretically sequence 

vRNA, sequencing is single-pass, thus the in/del profile would remain uncorrected much like 

PacBio unless multiple passes could be achieved on the same molecule or if a proofreading 

mechanism were incorporated into the pore. 

When sequencing a viral population, depth, thus throughput will be dictated by the 

frequency of minor variants found to have biological significance. For example, the 

frequency of a minor allele of interest in the standing genetic variation is determined by the 

mutation selection balance. Sequencing depth will be dictated by that equilibrium frequency 

and the probability of sampling it. Once dominant minor variants may still be present after 

the removal of a selection pressure, and their frequency may influence downstream 

population response. For example, if a population escapes a drug selection pressure with 

resistance, and the drug is removed, a critical frequency may be needed for rebound if the 

same selective pressure is re-applied. 

If vRNA could be directly and accurately sequenced, 3,000 individual reads would be 

needed to resolve variants present at 0.1%. The number of sequencing reactions per sample 

would have to be multiplied out by the negative or failed rate inherent in the system to 

determine the initial throughput needed. Ideally, multiple samples could be sequenced in 

parallel. If not physically partitioned, molecular labeling of vRNA would be required, 
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involving a high fidelity technique that would not introduce error such as single-stranded 

ligation. 

Primer IDs provide a direct means of correcting for PCR biases, PCR re-sampling, 

and sequencing error when preceding PCR is required prior to a sequencing protocol (143). 

There are a number of technological advances required to remove PCR prior to sequencing. 

Even if native vRNA could be sequenced from clinical samples, if the sequencing error rate 

is higher than that from early-introduced residual error from PCR, PCR may still be required 

to identify and remove it. Next-generation platforms need to either report multiple reads from 

a single molecule, or encapsulate a proofreading ability to make base calling as high fidelity 

as possible. 

 

Applying Primer IDs to clinical diagnostics. 

Critical advances of high throughput sequencing platforms are needed to make Primer IDs 

unnecessary (detailed above). If one were to integrate deep sequencing with Primer IDs for 

clinical diagnostics, several requirements would need to be met. The next generation 

platform used would have to have a low in/del error rate profile and ideally lack of a 

homopolymer miscall bias. Although many homopolymers do not interfere with resistance 

conferring positions, some do, such as HIV’s RT resistance K65R and K103N. Currently, 

only Illumina’s sequencing technology can reliably call bases across homopolymeric regions, 

which gives this platform a very low in/del rate, though sequencing length would still require 

targeted re-sequencing and the loss of linkage across distal genes. 

Two critical conditions must be met for Primer IDs to accurately be used for 

resolving viral diversity. First, they need to be under-sampled. Second, they have to 
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randomly tag. The Primer ID was intentionally designed to be 8 nucleotides in length. 48 

produced 65,536 combinations, whereas a 7mer would only produce 16,384 combinations. 

By in silico random-draw sampling simulations, a 8mer allowed for 10k templates of input 

material to be tagged with only ~5% of the population having unique templates tagged by the 

same random combination assuming 100% tagging efficiency. Under-sampling 47 would 

have resulted in too little input material to be useful. A 9mer would allow for an even greater 

number of combinations, and degenerate nucleotides much longer than this have been 

applied in eukaryotic systems for molecular tagging. 

The reason why the Primer ID is 8 nucleotides in length is to control for the 

randomness of tagging. vRNA can be highly structured. Adding a degenerate region to a 

tagging primer can also create structure within the primer. If particular Primer IDs gain a 

fitness advantage in tagging due to secondary structure effects, that combination becomes 

over-represented and results in a net loss of complexity in the Primer ID sequence library in 

addition to fewer consensus sequences representing the different starting templates.  

For Primer IDs to be used in clinical diagnostics, reproducibility is critical, and 

directly correlates to randomness of tagging. For 2 mono-infected and 2 co-infected 

individuals, the same HCV positive serum samples were tagged, amplified, and sequenced in 

replicate. We demonstrated that not a single Primer ID was oversampled, and different 

Primer IDs were dominant across the different runs  (Table 4.2). These two observations 

indicate that not a single Primer ID had a greater fitness in tagging. Slightly higher cDNA 

synthesis temperatures resulted in more reads being built per Primer ID in mono-infected, but 

not co-infected individuals (Fig. 4.1A,D,G,J). More reads per Primer ID also correlated with 

a decrease in ambiguous calls (Fig. 4.1). In comparing all haplotypes present ≥1% in 
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frequency between the first and second replicate, there was a correlation coefficient of 0.8 

(Fig. 4.2). This indicates that independent tagging, amplification, and sequencing of a given 

sample is reproducible. 

HCV RAVs can be extremely low in frequency, emulating the expected error rate. 

When RAVs were observed in one run but not the other (Table 4.3), this could be due to the 

error or sampling. To determine if a RAV is biological when it is only represented by a single 

occurrence, one could always follow-up with allele specific PCR. 

To integrate Primer IDs into clinical diagnostics, randomness and reproducibility are 

critical. Unlike eukaryotic systems, vRNA can be highly structured, and degenerate regions 

within a tagging primer can fold to create non-random interactions with the viral genome. In 

our work, we employed several techniques to encourage random interaction to a large degree 

of success. To use Primer IDs in clinical diagnostics, tagging would have to be further 

optimized, particularly for highly structured viral genomes. Although sample-specific 

primers encourage high fidelity targeting and hot cDNA synthesis reactions decrease 

structure, linearization of vRNA and tagging primers would likely be needed to truly remove 

the potential for secondary structure targeting. Only after consistent demonstrations of 

reproducibility and randomness across genes, genomes, and individuals can Primer IDs be 

used to reveal minor variants within a clinical diagnostics setting. 
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