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ABSTRACT 

Eunsuk Chang: Cohort Identification from Free-Text Clinical Notes Using SNOMED CT’s 
Semantic Relations 

(Under the direction of Javed Mostafa) 

 

In this paper, a new cohort identification framework that exploits the semantic hierarchy of 

SNOMED CT is proposed to overcome the limitations of supervised machine learning-based 

approaches. Eligibility criteria descriptions and free-text clinical notes from the 2018 National 

NLP Clinical Challenge (n2c2) were processed to map to relevant SNOMED CT concepts and to 

measure semantic similarity between the eligibility criteria and patients. The eligibility of a 

patient was determined if the patient had a similarity score higher than a threshold cut-off value, 

which was established where the best F1 score could be achieved. The performance of the 

proposed system was evaluated for three eligibility criteria. The current framework’s macro-

average F1 score across three eligibility criteria was higher than the previously reported results 

of the 2018 n2c2 (0.933 vs. 0.889). This study demonstrated that SNOMED CT alone can be 

leveraged for cohort identification tasks without referring to external textual sources for training. 
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I. INTRODUCTION 

 

1.1 Problem Statement 

 

 Selecting the appropriate subjects and sample population is a critical step to a successful 

clinical trial. Clinical trial designers need to ensure that the recruited patients satisfy the 

inclusion and exclusion criteria of the trial to eliminate confounding factors and to avoid the 

study being underpowered. However, one of the major challenges to the timely conduct of 

research is patient recruitment for clinical trials (Fletcher et al. 2012; Mitchell et al. 2014; 

Treweek et al. 2013). Because of the insufficient number of participating patients, recruitment 

difficulties often end up with many abandoned or underpowered clinical trials (Schroen et al. 

2010). Revoked or delayed clinical trials even claim patients’ lives; on one calculation, delays in 

recruitment to clinical trials of streptokinase kinase in myocardial infarction led to as many as 

10,000 unnecessary death in the U.S (Collins 1992). A patient with a poor prognosis and limited 

treatment options would have been able to, if eligible, access safe and efficient treatment in a 

late-stage trial if the patient could be identified and recruited. 

 To fill the gap between strict inclusion/exclusion criteria and difficulties in the 

recruitment of patients, efforts have been made to identify eligible patients from electronic health 

records (EHRs) (Hernandez et al. 2015; Jensen et al. 2012; Mc Cord & Hemkens 2019). EHRs 

have attracted the attention of researchers and clinicians as a potential tool to accelerate 

recruitment by examining a large number of clinical records (Thadani et al. 2009; Miotto and 
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Weng 2015), generally searching for discrete data points such as age or laboratory results. A key 

challenge, however, is that more detailed information about medical conditions is often 

embedded in the extensive occurrence of clinical narratives in EHRs in the form of unstructured 

text (Small et al. 2017; Afzal et al. 2018; Ford et al. 2016; Kossovsky et al. 1999), and some 

kinds of patient information are accessible exclusively through the unstructured parts of EHRs. 

For example, social history, family history, temporal context (e.g., a procedure has been 

undergone or planned), and treatment modality (e.g., aspirin to prevent stroke or to treat acute 

myocardial infarction) can be found in free-text clinical notes only and cannot be accessed via 

coded or structured data. Therefore, recruiting staff must carefully read patient records in order 

not to miss relevant information and potential subjects for the trial.  

 The manual workload burden for manual screening of patient records is one of the major 

obstacles to successful research. Manual screening of clinical data is not only time-consuming 

but also expensive: according to one estimate, the cost of manual screening can cost up to 

$336.48 per subject for cancer clinical trials when including patient consenting and access to 

external, related medical records (Penberthy et al. 2012). Clinical trial recruitment is additionally 

hampered by the fact that most clinical practices lack the staffing necessary for manual patient 

screening (Ni et al. 2015).  

 To reduce or avoid the workload and cost of labor-intensive manual screening, many 

automated tools to identify patient cohorts from free-text clinical records have been developed 

(Beauharnais et al. 2012; Ni et al. 2015). One problem with using unstructured patient records is 

that EHRs are not designed with the purpose of patient recruitment in mind (Bache et al. 2013), 

and information is inconspicuously embedded in free text. Clinical notes are often written in an 

ungrammatical way, and document formats and styles vary by institutions and physicians, which 
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makes the extraction of important patient data arduous. 

 Various natural language processing (NLP) techniques have been proposed to process the 

unstructured texts and improve the accuracy of patient identification from a large collection of 

clinical notes in EHRs in a fast and effective way. To date, supervised machine learning NLP 

models—defined here as models trained by learning a mapping between input variables and the 

output variables (i.e., labels) which were annotated by human experts—which learn relationships 

between words from large corpora of documents have been rigorously studied (Köpcke et al. 

2013; Ni et al. 2019; Chakrabarti et al. 2017; Xu et al. 2011). Supervised learning denotes 

various algorithms that generate a function that maps inputs to desired outcomes by looking at 

several input-output examples of the function. Supervised learning approaches are successfully 

used when labels of each data point are available. However, some important issues exist with the 

supervised learning NLP when it comes to cohort selection tasks. 

 First, the large amount of time and labor required to annotate and train a machine 

learning model is an ongoing concern for the NLP community (Spasic & Nenadic 2020). 

Traditional supervised learning requires an extensive annotation and labeling of training data. 

The large amount of human labor and cost for annotation has limited the size of training data 

available, which significantly hampers the validity of supervised machine learning models 

(Spasic and Nenadic 2020). The use of structured data (e.g., International Classification of 

Disease (ICD) and Logical Observation Identifiers, Names, and Codes (LOINC) codes) as labels 

may not be helpful for annotation efforts, as those structured data are primarily used for 

reimbursement and cannot be harmonized with clinical notes. When it comes to biomedical 

corpora, the recurring expense for hiring highly specialized biomedical professionals to annotate 

data further impedes building large validated datasets. 
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 Second, supervised learning NLP techniques offer no hard evidence about the 

generalizability of the machine learning models. As the provenance of data available for training 

is confined to only a small number of contributing institutions, the trained model is often not 

readily generalizable to other institutions.  It has repeatedly been reported that there has often 

been a significant drop in performance when a system is trained in one institution and tested in 

another (Napolitano et al. 2016; Ye et al. 2017). In addition, available labels can serve only one 

research question at a time and may not be applied to another. For example, a dataset at hand has 

labeled binary classification to data (e.g., a patient is currently smoking or not) but a researcher 

may want a multinomial analysis of outcomes (e.g., current smoker, former smoker, never 

smoker, or unknown). In this case, the dataset needs to be re-annotated from the very beginning, 

nullifying previous efforts to label such extensive data. Although computational phenotyping and 

harmonization efforts across heterogenous clinical records have been an important research topic 

for the last decade (Pacheco et al. 2018), there has been a limited accomplishment in 

harmonizing information from the unstructured free-text part of EHRs. 

 Lastly, many researchers have recently drawn attention to the errors and biases embedded 

in data and models (Geiger et al. 2021). As the contemporary effort to build large data often 

involves automatic labeling or crowdsourcing, data are increasingly susceptible to labeling errors 

(Sambasivan et al. 2021). In an analysis of 10 test sets from datasets that include ImageNet, an 

image database used to train countless computer vision algorithms, the authors found an average 

of 3.4% label errors across all of the datasets (Northcutt et al. 2021). In addition to labeling 

errors, datasets are not emancipated from bias encoded within the corpus when it comes to 

textual data (Bender et al. 2021; Kurita et al. 2019). For example, a hospital may have a 

disproportionally high prevalence of specific diagnoses, or a doctor may present unique text 
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features because of the hospital’s practices or disposition to use specific jargon or parlance 

(Sohn et al. 2018). Labeling errors and biased distribution of cases could lead researchers to 

draw incorrect conclusions about which models perform best in the real world, potentially 

undermining the framework by which the researchers benchmark machine learning systems. 

 Other than the above-mentioned problems that arise from supervised learning NLP with 

annotated datasets, another problem worth noting is that many previous NLP systems were 

intended to solve a single NLP subtask. Cohort identification NLP tools generally involve 

multiple subtasks, such as named entity recognition (Chen et al. 2015; Wu et al. 2017), negation 

identification (Peng et al. 2018; Sohn et al. 2012), and assertion detection (Minard et al. 2011; de 

Bruijn et al. 2011). When these subcomponents are integrated into one cohort identification 

system, their performance may be suboptimal because each subcomponent has proved its 

efficacy only on its own training data, which often comes from general language domains such 

as Wikipedia. Furthermore, those individual subtask NLP components are not designed to 

coordinate with others. As knowledge elicited from clinical notes goes through multiple, 

heterogeneous NLP pipelines in a cohort identification system, interactions among NLP subtasks 

could undermine the performance of the system. For example, when using a negation detection 

algorithm that looks for a preposition “without” in order to eliminate negated entities in a 

sentence (e.g., to eliminate orthopnea in “dyspnea without orthopnea”), the algorithm will fail to 

retrieve the concept “MRI without contrast” by eliminating the concept’s description-level word 

“contrast.” The negation and entity extraction subtasks need to be integrated to prevent distorting 

or losing the original meaning of the original text. 
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1.2 Significance 

 

 There are two distinguished approaches to artificial intelligence: knowledge-based and 

machine learning-based approaches. Researchers that solve reasoning problems using 

knowledge-based tools are sometimes at odds with researchers that instead use machine learning 

tools. The machine learning approach extracts information directly from historical data and 

extrapolates it to make predictions. It automatically builds a classifier by learning the 

characteristics of each category from a set of labeled examples. It is highly dependent on 

collective intelligence that is housed at the present time in the general public who are rarely 

experts in the field. In contrast, the knowledge-based approach, which is represented by 

ontologies, uses a team of experts to try to encode and construct a large number of the properties 

of the world. Although each approach has pros and cons, the following points favor the 

ontology-based approach.  

 

1.2.1 Less Effort to Create and Maintain Knowledge 

 The semantic structures of ontologies are constructed by human experts. While data is 

supervised by humans (e.g., by the annotation and labeling of data) in supervised machine 

learning, it is the internal structure of knowledge that is supervised by humans in ontology-based 

approaches. In this regard, the knowledge structure (e.g., identified relations among entities) is 

consistent and explicit in ontologies, while it is variable and subject to change (depending on 

training data) in supervised learning systems.  

 Although an ontology, too, needs extensive human efforts to construct such a large 

knowledge resource, it is generalizable and can be repeatedly leveraged to answer discrete 
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research questions in a variety of settings without the cost of retraining on a large dataset. Once 

meticulously constructed, ontology systems save clinical researchers from the labor-intensive 

and error-prone annotation process required for creating training data specific to new projects. 

The more those ontologies are used, the more likely the benefit from the generalizability feature 

of ontologies exceeds the cost of constructing and maintaining ontology-based systems.  

 When a new kind of knowledge emerges, an ontology can accommodate it instantly by 

creating a new concept for it. Ontologies, in conjunction with other artificial intelligence-driven 

data analytics tools, can find new patterns and trends in data. By categorizing identified direct 

relations to a causality relation ontology, ontologies can help with early hypothesis testing in 

pharmaceuticals. Emerging infectious diseases such as COVID-19 can be reflected in the 

knowledge structure of ontologies as soon as it concerns medical professionals. By a machine 

learning approach, in contrast, COVID-19 cannot be predicted by the systems until a sufficient 

number of cases are accumulated. To make COVID-19 predictable by the machine learning-

based system, a large number of cases and non-cases should be collected before they are labeled 

as such. Under these circumstances, rapidly changing conditions and sparse data, ontologies can 

be more readily used than machine learning  

 Cohort identification tasks are sometimes required to identify patients with rare or newly 

emerging cases. Acute discovery of pathophysiology, natural history, and epidemiology of newly 

emerging diseases is crucial for cohort identification systems to prove their utility in that the 

essence of clinical research is observing a fact in clinical settings by way of safe experimentation 

and data.  
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1.2.2 Generalizability 

 Beyond terminology standardization, ontologies can contribute to the generalizability of 

knowledge obtained from one institution to another by providing reliable and consistent semantic 

relations among biomedical entities (Wang et al. 2018). Ontologies made this possible by 

providing a formal, explicit specification of a shared conceptualization of biomedical entities 

(Gruber 1993). 

 Biomedical ontologies provide layout for knowledge-sharing among different institutions 

(Pundt and Bishr 2002). Standard biomedical terminologies and ontologies are advocated by the 

U.S. government to be used in favor of semantic interoperability of patient information among 

healthcare organizations and institutions (D’Amore et al. 2014). In addition to interoperability at 

the inter-institutional level, ontologies can help health professionals constantly deal with ever-

changing knowledge in health care at the individual level (Wongthongtham & Zadjabbari 2012).  

 Besides coded data, biomedical entities embedded in unstructured parts of EHR can be 

sharable if they are mapped to standard ontologies. Many standard ontologies offer attribute 

relations (e.g., has_indirect_procedure_site) as well as hierarchical relations (e.g., is_a relation) 

among biomedical entities. If the context and meaning of free-text clinical narratives are 

consistently expressed by semantic relations of ontology concepts, the knowledge extracted from 

one institution is readily generalizable to another, or a third party can easily merge knowledge 

from multiple institutions to conduct analysis. For purpose of illustration, assume that a 

researcher wanted to identify patients who had undergone any procedure on the pancreas from 

Hospitals A and B. He can identify Patient 1 who underwent the Whipple procedure at Hospital 

A and Patient 2 who underwent total pancreatectomy at Hospital B because the two procedures 

share the common attribute value of procedure site – pancreatic structure, even though the two 
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procedure names are not lexically related.  

 

1.2.3 Less Bias in NLP Data Models 

 An ontology-based approach exploits the formal semantic structure of the ontology to 

represent patients (e.g., such as building vectors to represent patient records) instead of learning 

patterns from training data. Cohort identification tasks can become more reliable when bias in 

data is avoided. If patients with acquired immunodeficiency syndrome (AIDS) do not present 

with progressive multifocal leukoencephalopathy (PML) in Hospital A, there is no way for 

supervised machine models to learn that PML is a complication of AIDS. Thus, the model 

cannot infer that a patient with PML in Hospital B would have already been diagnosed with 

AIDS. If we exploited an ontology, on the other hand, the model would be aware that rare 

complications like PML were associated with AIDS because it is explicitly described in the 

ontology that PML is a complication of AIDS, even though there were no such cases in the 

hospital.  

 

1.2.4 Quantifying Eligibility Using Similarity Measure 

 In addition to its ability to represent relations between entities embedded in EHRs, 

ontologies can be used to measure the similarity between an eligibility criterion and a clinical 

note. Supervised machine learning-based algorithms are limited in this task because the 

eligibility criteria in general are short in length and cannot provide enough features that 

characterize patients.  

 The asymmetry in length between eligibility criteria and clinical notes can be overcome 

by the knowledge-based approach. In ontology, each concept is logically described through the 
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relationships (e.g., is_a) to other concepts. Ontology’s ability to add relations between concepts 

and synonyms, hypernyms, and hyponyms has proven effective at mapping vector-represented 

terms and is an ideal source to measure the semantic distance (and similarity) between medical 

concepts. The semantic similarity measure provides more advantages to cohort identification 

tasks by providing a quantitative degree of eligibility of each patient (Alonso and Contreras 

2016; Mabotuwana et al. 2013). Beyond a binary classification of eligibility (e.g., predicting a 

patient is “eligible” or “not eligible”), the quantitative estimation of the degree of eligibility can 

help clinical trial recruiting staff determine how extensively they will include potential subjects. 

 

1.3 Purpose of the Study 

 

To address the aforementioned challenges of supervised learning NLP models, my 

research focuses on a knowledge-driven, ontology-based information retrieval framework for 

identifying a cohort of patients from unstructured clinical notes in EHRs.  

The primary purpose of this study is to propose a cohort identification framework that 

does not demand annotated training data for supervised learning. No subcomponent of the 

proposed framework requires datasets for training or learning. Instead, the proposed framework 

makes use of a semantic structure of ontologies. The current study will demonstrate the semantic 

structure of SNOMED CT alone can be exploited for cohort identification tasks.  

SNOMED CT is one of the most comprehensive biomedical ontology systems (Millar 

2016). It is made up of a set of concepts, descriptions, and relations that serve as a common 

reference layout for comparing and aggregating data from multiple individuals, systems, or 

institutions concerning the entire health care process. SNOMED CT is primarily used in EHRs to 
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capture, store, and access clinical data of patients, and it has recently been adopted as a tool to 

code and classify unstructured medical narratives, working alongside various NLP and machine 

learning techniques in broad fields of biomedicine owing to its broad coverage of biomedical 

entities (Chang and Mostafa 2021). 

The current study will present that the performance of a cohort identification framework 

based on the exclusive use of SNOMED CT’s hierarchical semantic structure is on a par with, if 

not superior to, the currently best available cohort identification systems, most of which use 

supervised machine learning classifiers. To the best of my knowledge, this is the first attempt to 

depend exclusively on SNOMED CT’s hierarchies for a cohort identification task.  

A cohort identification task includes multiple subtasks, including but not limited to 

concept extraction, assertion detection, time-related information extraction, laboratory test result 

extraction, inference, and meta-information extraction. Of note, the current study focuses on the 

extraction of concepts for relevant symptoms, disorders, procedures, anatomical sites, or 

medications from free-text clinical notes for cohort selection. Assertions and time-related 

information were extracted from free texts using lexical- and syntactic-level rules. Cohort 

identification tasks examined in this study do not involve the extraction of laboratory test results 

(as in “HbA1c greater than 7%”) or inference (as in “patient speaks English”), which requires 

task-specific algorithms trained from datasets. 

The rest of the paper is structured such that a brief background and related work are 

presented in Chapter II, followed by the description of the design of the proposed cohort 

identification framework in Chapter III and the presentation of experimental results of the 

proposed framework in Chapter IV.                
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II. BACKGROUND AND RELATED WORK 

 

2.1 Introduction 

 

2.1.1 Ontologies and Standard Terminologies 

 Terminology systems provide a standardized meaning of technical language (Schulz et al. 

2019). Terminology systems such as Medical Subject Heading (MeSH) and ICD-10 define 

semantic relations among pre-existing terms and intend to coerce entities to be classified into 

non-overlapping categories to enable statistical analysis of disease epidemiology. On the other 

hand, ontologies aim at the categorization of objects and description of their relationships by 

logic-based axioms and multi-hierarchical structure. They provide formal reasoning support for 

knowledge representation by identifying terms and enabling concepts to be related to each other 

(Schulz et al. 2019). Ontology-controlled vocabularies have the potential to promote multiple 

levels of integration in medical research and practice, enabling data integration, knowledge 

integration, information integration, and interdisciplinary integration (Liaw et al. 2014).  

 

2.1.2 SNOMED CT 

 SNOMED CT is a reference terminology which provides context-free, well-defined 

representations of entities of a domain. Providing a common reference point, SNOMED CT 

plays an essential role in achieving interoperability among heterogeneous healthcare systems and 

institutions by offering an accepted collection of coordinated reference ontologies/terminologies 
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and harmonized development processes (Blobel 2010). What differentiates it from aggregation 

terminologies such as ICD-10 is that SNOMED CT describes the classes of entities within a 

multi-hierarchical semantic structure, whereas aggregation terminologies enforce the principles 

of single hierarchies and disjoint classes (Schulz et al. 2017).  

 SNOMED CT has gained momentum to become a prevalent clinical terminology system 

when the U.S. federal government required in 2013 that SNOMED CT be included in EHR 

systems in order for them to be certified for Stage 2 Meaningful Use (National Library of 

Medicine 2016). SNOMED CT-coded patient data helped efficiently identify significant facts in 

the oceans of data, enabling effective meaning-based retrieval and linking the EHRs to 

authoritative clinical knowledge. SNOMED CT can be used as a code system to store clinical 

information; an interface terminology to capture and display clinical information; an index 

system to retrieve clinical information; a common terminology to communicate in a meaningful 

way; a dictionary to query, analyze and report, and link to knowledge resources; and extensible 

foundation to represent new types of clinical data (SNOMED CT International 2021).  

  

2.1.2.1 SNOMED CT content components 

  SNOMED CT is made up of a set of concepts, descriptions, and relations that serve as a 

common reference layout for comparing and aggregating data from multiple individuals, 

systems, or institutions concerning the entire health care process. The central component in 

SNOMED clinical terms is the concept, which is a clinical idea associated with a unique 

identifier. The meaning of that idea is specified by an association with a term that is known as 

the fully specified name (FSN) and the link between that identifiers; the meaning of that clinical 

idea is permanent and unchangeable. Descriptions provide terms that are human-readable and 
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allow the meaning of the concept to be seen by users. Each concept is associated with several 

descriptions, and each description has an associated human-readable term. There are several 

types of description, each with a particular value. All concepts have at least one FSN and at least 

one synonym, which are the main description types of SNOMED CT. In Figure 1, the SNOMED 

CT concept 23069007 has the FSN of “Cerebrovascular accident (disorder),” and synonyms of 

“CVA – Cerebrovascular accident” and “Stroke.” 

 

 

 

Figure 1.  Diagram of hierarchical and attribute-range relations of the target concept 230690007 

| Cerebrovascular accident (disorder) | of SNOMED CT. Purple squares delineate is_a axial 

semantic relations. Double-circled yellow ovals denote attributes. Blue square represents their 

corresponding value concepts.  
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 Each SNOMED CT concept is associated with other concepts by a set of relations that 

expresses the characteristics of a concept. Those relations are crucial to the computer 

processability of SNOMED CT data. A concept might be a subtype of another concept or may 

have a particular attribute that has a value that is provided by another concept. Subtype 

relationships are known as is_a relationships in SNOMED CT and create a hierarchy linking 

each concept to more general concepts. The taxonomic hierarchical is_a relations enable 

retrieval of specific concepts in response to more general queries. On the other hand, attribute 

relations provide additional defining information about a concept and why that concept is 

different from its supertypes. In the Figure 1 example, Cerebrovascular accident is a subtype of 

Traumatic or nontraumatic brain injury and has a finding site (attribute) which is brain 

structure. 

SNOMED CT also supports post-coordination to combine established concepts to 

represent more complex concepts. When it comes to mapping biomedical entities in free text into 

SNOMED CT codes, post-coordination makes it possible to construct logical expressions for 

complicated entities that are not defined by pre-coordinated expressions. Using logical axiom, 

post-coordination makes the expression of biomedical entities expandable with fewer pre-

existing concepts and thus requires a lower terminology maintenance burden. 

 

2.2 Literature Review of SNOMED CT Use 

 

 In this section, the recent use of SNOMED CT will be thoroughly reviewed, focusing on 

previous literature on the use of SNOMED CT for classifying or coding clinical documents and 

previous cohort identification systems to select patients from free-text clinical narratives. To 
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present the up-to-date trend in the topic, only those published after 2013 will be discussed. Parts 

of this section have been published elsewhere (Chang and Mostafa 2021) 

 

2.2.1 SNOMED CT’s Content Coverage 

 The extensive coverage for biomedical entities by SNOMED CT makes SNOMED CT-

based systems such as clinical decision support systems (CDSSs) and cohort identification 

systems comprehensively applicable to a broad spectrum of diseases and specialties. Since 

SNOMED CT is such a large terminology system, the granularity of a SNOMED CT’s concept 

coverage is highly dependent on the source of text and domain. The coverage of SNOMED 

ranged from 22.5% for video portal tags (Konstantinidis et al. 2013) to 99.9% for clinical charts 

(Oluoch et al. 2015). The content coverage of SNOMED CT usually examined along with other 

standardized terminologies. Though SNOMED CT was generally considered the most 

comprehensive terminology, this terminology was outperformed by MeSH for herbal and dietary 

supplement terms (Manohar et al. 2015), by RadLex for radiology text (Kahn 2014), by NCI 

Thesaurus for cancer description (Schulz et al. 2019), and by Omaha System for social 

determinants of health (Monsen et al. 2018). The low coverage for some areas of biomedicine 

may be caused by the enormous size of the semantic structure of SNOMED CT; if the size of the 

terminology is large, mapping biomedical entities to standardized vocabularies becomes less 

accurate because coders have more choices to map (Schulz et al. 2019). 

 

2.2.2 SNOMED CT for Classifying or Coding Clinical Documents 

The semantic capabilities of SNOMED CT to normalize data components can integrate 

data from heterogeneous sources. The semantic interoperability features of SNOMED CT-coded 
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entities—rather than words—can be represented as features of classification tasks. 

Biomedical concepts in free text can be extracted and coded by SNOMED CT concepts. 

In such cases, SNOMED CT codes and semantic relations were coupled with machine learning 

text mining algorithms like support vector machines (SVM) (Butt et al. 2013; Koopman et al. 

2015; Koopman et al. 2018; Zolnoori et al. 2019; Greenbaum et al. 2019), neural networks 

(Arbabi et al. 2019; Arguello-Casteleiro et al. 2019; Banerjee et al. 2019; Lerner et al. 2020; 

Peterson and Liu 2020), decision trees/random forest (Ma and Weng 2016; Liaqat et al. 2020; 

Petrova et al. 2015), or ensemble/boosting algorithms (Mujtaba et al. 2018; Lin et al. 2017) to 

map biomedical entities embedded in free texts into SNOMED CT concepts. In other cases, 

open-source or commercial NLP applications such as MetaMap (Plaza 2014; Barros et al. 2018; 

Shen et al. 2018) and cTAKES (Sanchez Bocanegra et al. 2017; Meystre et al. 2014; Valtchinov 

et al. 2020) were used to extract or map clinical phenotypes to SNOMED CT. Manual extraction 

and mapping of the SNOMED CT concepts were conducted in (Chan et al. 2017; Lingren et al. 

2014; Karimi et al. 2015; Lindman et al. 2019). SNOMED CT concepts extracted from those free 

texts were then fed into algorithms that classified clinical data elements based on organ system 

(Hier and Pearson 2019), cause of death (Roldán-García et al. 2016; Ternois et al. 2019), or 

additional need attributed to patients (Hitchins & Hogan 2018). 

Other terminology systems that were leveraged in combination with SNOMED CT for 

annotating or mapping biomedical phenotypes include ICDs (e.g., ICD-9, ICD-10, or ICD-10-

CM) (Koopman et al. 2015; Ternois et al. 2019), MeSH (Martínez García et al. 2015; Ruch et al. 

2008), LOINC (Zvára et al. 2017; Hostetter et al. 2015), RxNorm (Sohn and Liu 2014), and 

Medical Dictionary for Regulatory Activities (MedDRA) (Karimi et al. 2015). The Unified 

Medical Language System (UMLS) was adopted to produce mapping among multiple ontologies 
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(Pradhan et al. 2015; Soysal et al. 2018; Becker and Böckmann 2017).  

F1 scores, often accompanied by recall and precision scores, were used most frequently 

to report the performance of machine learning tools (Grundel et al. 2021; Tahmasebi et al. 2019; 

Siefridt et al. 2020; Abidi et al. 2016) because they best represent a balance between precision 

and recall. The free text was annotated with SNOMED CT codes to create a corpus or data 

library (Pearce et al. 2019). Recent attempts were made to analyze Twitter mentions of disease 

concerns (Barros et al. 2018) and to encode COVID-19-related clinical phenotypes (Jani et al. 

2020). In one study, instead of encoding free text, SNOMED CT synonyms were tokenized and 

back-incorporated into a corpus to expand word features in common English (Hagen et al. 2013). 

Another study represented lexical expressions such as ambiguity and negation cues with 

SNOMED CT concepts (Velupillai et al. 2014). 

 

2.2.3 Implementation of SNOMED CT 

SNOMED CT codes were employed by data models to provide the means of terminology 

standardization, which were then integrated into data registries/repositories (Asgari et al. 2013; 

Asklund et al. 2015; Guien et al. 2018; Lomonaco et al. 2014; Morash et al. 2018; Norton et al. 

2016; Park et al. 2016; Pandey et al. 2019; Banda et al. 2016), query/terminology services (Elkin 

et al. 2018; Lamy et al. 2015; Metke-Jimenez et al. 2018; Silva Layes et al. 2019; Song et al. 

2014; Sun et al. 2015), and knowledge-based CDSSs (Danahey et al. 2017; Greibe 2013; Müller 

et al. 2019; Maheronnaghsh et al. 2013; Hendriks et al. 2019). Applications were built to query 

structured data such as demographics, medications, and laboratory test results, as well as 

unstructured data in clinical notes using SNOMED CT (Elkin et al. 2018). Other use cases 

involved identifying cases of a specific disease (i.e., congestive heart failure, bladder cancer, 
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etc.) based on SNOMED CT codes, either from free-text clinical notes (Wang et al. 2015) or 

structured data registries (Rasmussen et al. 2018). The medical domains of registries included 

cancer (Asgari et al. 2013; Pedrera et al. 2020; Tomic et al. 2015), adverse drug effects (Banda et 

al. 2016; Knowledge Base Workgroup of the Observational Health Data Sciences and 

Informatics (OHDSI) collaborative 2017), cardiovascular diseases (Mohd Sulaiman et al. 2017; 

Pandey et al. 2019), and gene information (Lomonaco et al. 2014; Park et al. 2016). Terminology 

services and application environment adopted the Health Level 7 (HL7) standards such as the 

Fast Health Interoperability Resource (FHIR) to access the terminology and facilitate the 

exchange of semantic messages (Abhyankar et al. 2015; Ali et al. 2017).  

 

2.2.4 Retrieval of Patient Data Using SNOMED CT 

Researchers conducted retrospective observational studies to collect patient data using 

SNOMED CT codes. They identified and retrieved retrospective study subjects according to the 

inclusion criteria for each study.  

To obtain more patient information than codified SNOMED CT concepts can provide, 

attempts had been made to map biomedical entities in free-text clinical narratives into structured 

SNOMED CT expressions. Since new clinical ideas can be expressed using existing SNOMED 

CT concepts by identifying their relations, free-text phrases or sentences can be formulated by 

the SNOMED CT relations structure. Various automated approaches were developed to convert 

free-text clinical notes (Li 2018; Patrick et al. 2007), problem descriptions (Peterson and Liu 

2020), and phases (Kate 2013) into SNOMED CT codes. By extracting patient information 

embedded in unstructured parts of EHRs, automated mapping of free text inputs into SNOMED 

CT provides means to provide more granular information about the patient. 
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2.2.5 Conclusion 

 Owing to its broad coverage for biomedical entities, SNOMED CT is widely used for 

applications in various settings. The semantic capabilities of SNOMED CT can integrate data 

from heterogeneous sources. Semantic interoperability provided by SNOMED CT has facilitated 

the exchange of biomedical data.  

 

2.3 Review of Semantic Similarity Metrics  

 

2.3.1 Semantic Similarity Using Taxonomic Structure of Biomedical Ontology 

Controlled terminologies, combined with the UMLS or not, and the proliferation of 

textual resources (e.g., free-text clinical notes in EHR) in health care offered a rich resource for 

creating automated methods to measure semantic similarity between concepts (Pakhomov et al. 

2010). The taxonomic structure of biomedical ontology/vocabularies has been used to quantify 

similarity because it does not depend on the availability of large corpora as opposed to classical 

approaches that assess document similarity based on term appearance probabilities in corpora.  

Previous works in the general language domain suggest that corpus-based distributional 

measures of similarity suffer from limitations that stem from the corpora’s imbalance, 

sparseness, and textual ambiguity (Budanitsky & Hirst 2006; Lin 1998). More recent studies in 

the biomedical domain (Sánchez & Batet 2011; Zare et al. 2015) showed that ontology-based 

measures such as intrinsic information content (IC) outperformed the corpus-based approaches. 

Patient similarity investigates distances between a variety of components of patient data, 

including semantic similarity measures in free-text clinical notes, and determines methods of 
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clustering patients based on short distances between some of their characteristics. Similarity 

metrics can be utilized for systematic identification of a subset of patients to improve prediction 

of treatment outcomes, identify cohorts in clinical trials, and help clinicians manage particular 

patients by referring to similar previous cases (Lee & Das 2010; Lee et al. 2015).  

 

2.3.2 Measuring Semantic Similarity Between Two Biomedical Concepts  

The measures of semantic similarity are critical in cohort identification tasks in which 

rigorous completeness in information retrieval is required for the classification of textual data 

(Pedersen et al. 2007; Sánchez & Batet 2011). The estimation of similarity between individual 

concepts is an essential component of measuring similarity between documents.  

 Taxonomic concepts in knowledge sources and ontologies are usually organized 

hierarchically. Two main hierarchies in SNOMED CT are parent-child, which is is_a hierarchy, 

and broader-narrower relations (McInnes & Pedersen 2015; Zare et al. 2015). In such a 

hierarchical structure, concepts under the direct parent will be more similar than those which 

share a more distant parent. 

 Hadj Taieb and his colleagues (2014) suggested that when developing similarity metrics 

between two concepts, three important features need to be addressed: depth, hyponyms, and 

leaves.  The depth levels of concepts play an essential role in defining the semantic similarity 

because a child concept specifies the meaning of its parent concept while going down from the 

root concept towards a target concept. Hyponyms are significant in determining the specificity of 

a concept because a concept with a greater number of hyponyms (i.e., subtypes that are direct 

and indirect descendants) is less specific. This implies that a concept is premature to be fully 

defined at its current level if many hyponyms are subsumed by the concept deep in the hierarchy. 
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As the computation burden increases proportional to the number of hyponyms, which again 

increases exponentially down to the hierarchy, the number of leaves of a concept is a reasonable 

proxy to the number of hyponyms. 

 The semantic similarity between two taxonomic concepts can be estimated by three broad 

approaches: probabilistic, path-based, and information-theoretic approaches (Jia et al. 2019). 

Probabilistic approaches consider the frequency distribution of the concept in a set and are 

generally used for categorical data. Path-based approaches account for information about the co-

location of the terms in taxonomy and measure the distance between the links relating to them. 

Information-theoretic approaches measure the semantic similarity according to the information 

the two concepts contain. Originally, the IC in computational linguistics quantifies the amount of 

information embedded in a concept appearing in a discourse (Sánchez et al. 2011). In this 

section, the last two approaches for semantic similarity measurement will be discussed, for the 

current work is to exploit the taxonomic structure of SNOMED CT. 

 

2.3.2.1 Path-based measures 

Caviedes and Cimino (2004) developed similarity metrics based on the shortest path 

(spath) between two concepts in the semantic structure of the UMLS. They evaluated their 

metrics with parent-child relations clusters drawn from SNOMED CT, MeSH, and ICD-9-CM, 

among which were mapped by a subset of the UMLS. SNOMED CT’s correlation with expert 

scores was 0.60 and improved to be 0.79 when coupled with MeSH. 

 Pedersen et al. (2007) suggested a modification of the above method, called Path 

Measure or Path Length (Path), which is calculated as the reciprocal of the length of the shortest 

path in is_a relationship in SNOMED CT.  
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 𝑠𝑖𝑚$%&'(𝑐*, 𝑐,) =
*

/0%&'(12,13)
        (1) 

  

Leacock and Chodorow (1998) (lch) counted in the number of nodes between both 

concepts and the total depth of the taxonomy (D) in a non-linear fashion by scaling them 

logarithmically. In this way, the semantic similarity between two concepts can be larger if they 

are located deeper in the taxonomy. 

 

𝑠𝑖𝑚41'(𝑐*, 𝑐,) = 1 − 789	(/0%&')
4;<,=

                  (2) 

 

 Wu and Palmer (1994) (wup) incorporated the idea of least common subsumer (LCS), the 

most specific taxonomical ancestor that two concepts share, into their proposed metric. When the 

relative depth of both concepts in the taxonomy is taken into account, two concepts that are 

located lower in the taxonomy will have higher semantic proximity. 

 

𝑠𝑖𝑚>?0(𝑐*, 𝑐,) =
,×AB0&'(CDE(12,13)

/0%&'(12,13)F,×AB0&'(CDE(12,13))
     (3) 

 

 Nguyen and Al-Mubaid (2006) (nam) proposed a measure with common specificity and 

local granularity features by factoring in both the depth of taxonomy and LCS of the two 

concepts. The shortest path measure was modified to scale the depth of LCS with respect to the 

total depth of the taxonomy (D). 
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𝑠𝑖𝑚G%H(𝑐*, 𝑐,) = log	(2 + (𝑠𝑝𝑎𝑡ℎ(𝑐*, 𝑐,) − 1) × (𝐷 − 𝑑𝑒𝑝𝑡ℎU𝐿𝐶𝑆(𝑐*, 𝑐,)Y)    (4) 

  

Shobhana and Radhakrishnan (2016) proposed a new measure of similarity that 

recognizes multiple inheritances in ontologies. It combined super concepts with their common 

specificity features. Fuzzy rules were created to calculate similarity scores and then tailored to 

the optimal rule base by a modified genetic algorithm. The F1 measure of the proposed method 

was higher than the existing similarity measures.  

Instead of measuring the LCS, McInnes et al. (2014) have introduced the u-path principle 

derived from the dense multi-hierarchical taxonomy of SNOMED CT. The u-path measure 

quantified the strength of similarity between two concepts based on their proximity within a 

hierarchy using undirected path information. The overall result showed a higher correlation than 

other path-based measurements on two standard benchmark datasets. 

 

2.3.2.2 Information Content (IC)-based measures 

The IC of a concept is estimated by the amount of semantic content of the concept. In the 

semantic hierarchy of an ontology, the IC of a concept is correlated with the probability of a 

concept occurring on the ontology hierarchy. The IC of a concept decreases as the layer of the 

concept goes deeper, hence the IC of the concept increases. This enables the semantic similarity 

between two concepts to be measured by assessing their IC. IC may be estimated from the 

distribution statistics of concepts within a text corpus (corpus IC) or from the semantic structure 

of ontology (intrinsic IC). In this section, we will discuss the intrinsic IC that typically 

determines the semantic similarity between two concepts based on the IC of their LCS.  

 Resnik (1995) (res) proposed that the amount of information two terms share can be 
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measured by the IC of the LCS of both terms. Two terms whose LCS is located lower in the 

hierarchy are more similar than those that share an LCS located higher in the hierarchy. 

 

𝑠𝑖𝑚ZB/(𝑐*, 𝑐,) = 𝐼𝐶(𝐿𝐶𝑆(𝑐*, 𝑐,))       (5) 

 

Lin (1998) (lin) proposed an alternative approach to address Resnik’s problem that any 

pair of concepts under the same LCS will have the same similarity value. To consider the unique 

features of each concept, Lin proposed to use a ratio of the common information content of two 

terms (i.e., the IC of LCS) to the content of information separately associated with each of them 

(i.e., the aggregate of the IC of each concept). 

 

𝑠𝑖𝑚4\G(𝑐*, 𝑐,) =
,×]D(CDE(12,13))
]D(12)F]D(13)

       (6) 

 

 Jiang and Conrath (1997) (j&c) combined the edge-based approach with the node-based 

approach, expressing the edge counting scheme in terms of IC. Considering the depths of and 

density around nodes, it measures the difference between the IC of two concepts and that of LCS 

(i.e., IC(LCS(c1,c2))). 

 

 𝑠𝑖𝑚^&1 =
*

]D(12)F]D(13)`,×]D(CDE(12,13))
       (7) 

 

2.3.3 Measuring Semantic Similarity Between Two Sets of Concepts  

Using the set theory, one can evaluate the similarity between sets according to their 

overlapping and differential elements (Hubálek 1982). Researchers employed the set theory to 
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study the similarity paradigm for measuring the representations of sets (i.e., features of terms). In 

a set-based approach, set operations are applied to the predicted semantic similarities between 

sets, and terms are represented as a collection of features. Features that are distinct from each 

other set and common features of both sets are considered to define similarity coefficients. 

Classical methods such as Dice, Jaccard, and Cosine distance measures can be used to measure 

set-level similarity.  

A variety of methods for calculating a set-level similarity has been proposed, measuring 

the resemblance of two taxonomic concept sets. Girardi et al. (2016) referred to the path distance 

between concepts in a hierarchy to detect similarities in patient records using categorical values 

such as ICD-10. According to Girardi et al. (2016), The distance between two sets X and Y is 

 

𝑑a(𝑋, 𝑌) =
*

|e⋃g|
(∑ *

|g|i∈e\g ∑ 𝑑(𝑥, 𝑦)n∈g + ∑ *
|e|n∈g\e ∑ 𝑑(𝑦, 𝑥)i∈e                              (8) 

 

where d(x,y) is denoted as 

 

𝑑(𝑥, 𝑦) = 0opq(i,n)
4(i)F4(n)

                                                                                                            (9) 

 

where pmin(x,y) is the minimum number of edges between concepts x and y, and l(x) is the 

depth of a concept in the hierarchy. The distance metric between individual concepts takes into 

account the minimum path between concepts as well as their depths (level) in the hierarchy. At a 

set level, both the denominator and numerator of the distance dH(X,Y) measure how dissimilar 

the two sets are: the fewer concepts the two sets share, the greater the numerator gets while the 

denominator decreases. The proposed metric was evaluated on 800 patient records and showed 
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marked improvement in clustering patient records, in terms of the average distance between 

patients with the same diseases, over the Jaccard distance, which does not take account of 

concept depth in the hierarchy, and Haase-Li concept distance (Haase et al. 2004). 

 To the best of my knowledge, the work by Alonso and Contreras (2016) is the only study 

that tried to measure similarity between query and patient records using the UMLS as a mapping 

layer. They leveraged both path- and intrinsic IC-based similarity metrics between concepts that 

were extracted from free-text queries and patient records using MetaMap, a biomedical NLP 

tool. They first calculated the Concept Unique Identifier (CUI)-level similarity by obtaining the 

maximum similarity between CUIs in query subphrase and patient records. For each CUI in the 

query subphrase, the maximum subphrase-level similarity in terms of the CUI was defined by the 

maximum CUI-level similarity values in the query subphrases. The average of those maximum 

subphrase-level similarity values was obtained for every query phrase to yield phrase-level 

similarity, and the final similarity between the query and patient records is the sum of those 

phrase-level similarity values divided by the number of phrases in the patient record. The test 

dataset from the 2011 Text Retrieval Conference (TREC) was used for evaluation; the result 

showed the performance of the path-based similarity (F1 score = 0.430) was similar to that of 

intrinsic IC-based one (F1 score = 0.427).  

 

2.3.4 Similarity Measure within Multiple Ontologies 

 As the granularity and degree of coverage of an ontology vary by discipline, as discussed 

in section 2.2.1, attempts were made to use multiple ontologies for measuring semantic similarity 

between two concepts. Al-Mubaid and Nguyen (2009) proposed a new ontology-structure-based 

approach to map the concepts across multiple ontologies in the UMLS, which is based on the 
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cross-modified path length and common specificity between two concepts as well as local 

granularity in each ontology cluster. Going further from Al-Mubaid and Nguyen’s approach, 

Batet et al. (2013) considered the difference in size between ontologies and provided relative 

values that were normalized based on the ontological structure. Those multi-ontology-based 

approaches commonly made use of WordNet, an ontology for general terms, to improve the 

correlation with human similarity ratings.  

 

2.3.5 Similarity Metrics in Practice 

 When semantic similarity exists between biomedical terms, the thesauri of synonymous 

terms can be used for information retrieval and natural language processing. The taxonomic 

structure of SNOMED CT has been exploited to classify or cluster entities like clinical models 

(e.g., templates or archetypes) (Gøeg et al. 2015), radiology reports (Mabotuwana et al. 2013), 

research articles for systematic review (Ji et al. 2017), and clinical trials (Wei & Fu 2017).  

Other than classifying clinical documents, McInnes and Pedersen (2015) developed a 

framework for quantifying “relatedness,” which represents how closely two concepts are 

associated although they are not semantically linked (i.e., headache and aspirin are related 

though they are not closely connected by is-a relationship). Significant differences were reported 

in the correlation of semantic similarity and relatedness with human judgment. They also found 

that the correlation could be substantially enhanced when a definition-based relatedness was 

coupled with an IC similarity measure. 

Chandar et al. (2015) proposed a similarity-based approach to recommending candidate 

n-grams to new SNOMED CT concepts. They clustered n-gram SNOMED CT concept sets 

based on their distance between the feature vectors using the K-means algorithm and aligned 
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them with the SNOMED CT semantic structures. The ranked list of n-grams made it simpler and 

easier to define new concepts for SNOMED CT.  

Martínez et al. (2013) and Sánchez et al. (2014) proposed a general framework to mask 

textually sensitive health data by exploiting semantic similarity based on the taxonomic structure 

of SNOMED CT. Harispe et al. (2014) proposed a method for unifying semantic similarity 

measures based on ontology, decomposing the underlying core elements of various semantic 

similarity measures. Hsieh et al. (2013) used web-indexed pages as training corpus to retrieve 

page counts of a given term for estimating semantic similarity.  

 

2.3.6 Conclusion 

 Semantic similarity between two concepts can be measured by probabilistic, path-based, 

or information-theoretic approaches. Path-based approaches account for information about the 

co-location of the terms in taxonomy and measure the distance between the links relating to 

them. Information-theoretic approaches measure the semantic similarity based on the 

information the two concepts share. To conform to the human sense of similarity, relatedness 

measures quantify shared information contents or use context vectors of terms, not depending on 

subsumption relations of an ontology. 

 

2.4 Review of Cohort Identification Systems 

 

2.4.1 Cohort Identification Systems Submitted to 2018 National NLP Clinical Challenges 

The Track 1 Shared Task of the 2018 National NLP Clinical Challenges (n2c2) was to 

identify patients who meet eligibility criteria from narrative medical records (Stubbs et al. 2019). 
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The task required participating systems to provide decisions on each patient’s eligibility for 13 

clinical trials. Each eligibility criterion was derived from real clinical trials listed on 

ClinicalTrials.gov and had multiple subcriteria, which required intra-criterion rules or logic to 

organize and integrate information gathered from subcriteria into the final conclusion. Given the 

complexity of the logic in the criteria, various NLP subtasks, such as concept extraction, 

assertion detection, time-related information extraction, laboratory results extraction, and meta-

information extraction, were needed to be coordinated. The definition and applicable NLP 

components of 13 criteria are provided in Table 1.  

The dataset consisted of records for 288 deidentified patients. The training set consisted 

of 202 records while the remaining 86 were set aside as the test set during the challenge. Only 

the training dataset with gold-standard labels was released for the participants, and the test 

dataset was not disclosed at the time of the challenge. The organizers evaluated the submitted 

systems based on the test dataset that was held out. The gold-standard labels of the test dataset 

have been opened to the public at the time of the development of the current framework. Only 

the textual content of patient records was available. Each of the 288 patient records aggregated 

longitudinal records of 2-5 visits in chronological order, and patient-level eligibility for each of 

the 13 criteria was presented as “met” or “not met” at the end of the patient record. Each visit 

record contains patient demographics, chief complaint, present illness, medical history, family 

history, social history (e.g., smoking history and alcohol consumption), signs and symptoms, 

physical examination findings, laboratory data, radiology and/or pathology reports, prescribe 

medications, problem list, or referral letter.  
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Table 1. Definition and basic information of the 13 eligibility criteria as used in 2018 n2c2 

Shared Task 1. The columns of “NLP components” were adopted from Chen et al. (2019b)  

Criterion Name Criteria NLP components Number of 
records 

CE AD TM LR MI Met Not 
Met 

DRUG-ABUSE Drug abuse, current or past Y Y    15 273 

ALCOHOL-
ABUSE 

Current alcohol use over weekly 
recommended limits 

Y Y Y  Y 10 278 

ENGLISH Patient must speak English Y Y    265 23 

MAKES-
DECISIONS 

Patient must make their own medical decisions Y Y    277 11 

ABDOMINAL History of intra-abdominal surgery, small or 
large intestine resection, or small bowel 
obstruction 

Y Y    107 181 

MAJOR-
DIABETES 

Major diabetes-related complication, defined 
as any of the following that are a result of (or 
strongly correlated with) uncontrolled 
diabetes: 

• Amputation 
• Kidney damage 
• Skin conditions 
• Retinopathy 
• Nephropathy 
• Neuropathy 

Y Y    156 132 

ADVANCED-CAD Advanced cardiovascular disease, defined as 
having 2 or more of the following: 

• Taking 2 or more medications to 
treat cardiovascular disease (CAD) 

• History of myocardial infarction 
• Currently experiencing angina 
• Ischemia, past or present 

Y Y Y  Y 170 118 

MI-6MOS Myocardial infarction in the past 6 months Y Y Y  Y 26 262 

KETO-1YR Diagnosis of ketoacidosis in the past year Y Y Y  Y 1 287 

DIETSUPP-2MOS Taken a dietary supplement (excluding Vitamin 
D) in the past 2 months 

Y Y Y  Y 149 139 

ASP-FOR-MI Use of aspirin to prevent myocardial infarction Y Y    230 58 

HBA1C Any HbA1c value between 6.5 and 9.5% Y Y  Y  102 186 

CREATININE Serum creatinine > upper limit of normal Y Y  Y Y 106 182 

CE, concept extraction; AD, assertion detection; TM, time-related information extraction; LR, 

laboratory results extraction; MI, meta-information extraction. 
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To create the gold standard labels, seven annotators, all of whom had medical training 

(five registered nurses, one medical doctor, and one medical assistant), independently annotated 

all records. Each record was assigned to three different annotators. For each criterion, the 

annotators examined patient records for evidence that the criteria were met or not met, and they 

annotated the relevant phrases accordingly. The parts of the text that provided evidence for the 

annotators’ assertions were not disclosed to the public. The gold standard labels were determined 

by majority vote. The overall agreement between them before adjudication was 84.9%. The 

macro-averaged precision, recall, and F1 score for annotators compared to the gold standard 

were 0.957, 0.959, and 0.958, respectively (Stubbs & Uzuner 2015). 

The goal of 2018 n2c2 Shared Task Track 1 was to identify patients who meet each of the 

13 eligibility criteria from the narrative medical records, as well as to scrutinize whether NLP 

systems can make use of clinical narratives to identify patients eligible for clinical trials. The 

participants of the 2018 n2c2 exploited various NLP methods from empirical rules (Chen et al. 

2019; Spasic et al. 2019) to deep learning techniques (Chen et al. 2019; Segura-Bedmar and 

Raez 2019) to hybrid methods combining the advantages of two or more approaches (Tannier et 

al. 2019; Vydiswaran et al. 2019) (Table 2). The mean micro F1 score for all submissions was 

0.799 and the maximum score was 0.91. Among the top 10 systems, there were 4 rule-based 

systems and 6 hybrid or machine learning systems (Stubbs et al. 2019). 
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Table 2. Micro average F1 scores achieved by selected cohort identification systems on the 2018 

n2c2 dataset.  

Affiliations (Authors) Methods Micro F1 

Medical University of Graz (Oleynik et al. 2019) Rule-based, deep learning 0.9100 

University of Michigan (Vydiswaran et al. 2019) Hybrid 0.9075 

Sorbonne Université (Tannier et al. 2019) Hybrid 0.9069 

Meta Data Quest (Chen et al. 2019b) Rule-based 0.9028 

Cardiff University (Spasic et al. 2019) Rule-based 0.8814 

Universidad Carlos III de Madrid (Segura-
Bedmar & Raez 2019) 

Deep learning 0.7721 

 

A team from the Medical University of Graz (Oleynik et al. 2019) evaluated shallow and 

deep learning classifiers. To address the possible overfitting of complex models trained on small 

datasets, they used BioWordVec-pretrained embeddings (which were trained on PubMed and 

MIMIC-III) to reuse unsupervised input representation schemes trained on a large dataset, 

followed by a fine-tuning of schemes using a small annotated dataset. The rule-based approach 

used regular expressions and textual markers to detect negation and context and to extract 

laboratory findings. Support vector machines were trained on a bag-of-words representation of 

the input document using tf-idf. The logistic regressions model was trained with 100 epochs and 

a window size of 5. The Long Short-Term Memory (LSTM), which is based on a recurrent 

neural network that is typically used for time-series events, was optimized with a learning rate of 

0.02 and 25 epochs of training. Overall, rule-based (F1 score 0.91) and shallow models such as 

support vector machine (F1 score 0.80) showed higher micro F1 scores than deep learning 

strategies (F1 score 0.74). The pretrained models outperformed the self-trained models 

throughout classifiers, improving the F1 score of logistic regression from 0.8068 to 0.8113 and 

that of LSTM from 0.7504 to 0.7522. The overall micro F1 score for all thirteen criteria (0.910) 
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was at the top of the 2018 n2c2 participants. 

Another team, from Med Data Quest (Chen et al. 2019b), designed a challenge-oriented, 

rule-based NLP system, whose performance was compared with a hybrid general NLP system 

the authors previously built for general medical information extraction. Their system was 

plugged in with lexical-, syntactic, and meta-level evidence to indicate the presence of the target 

concepts, to validate the relations between the core concepts and their modification attributes, 

and to use section-level, note-level, document-level, and patient-level information such as 

patient’s gender and date of the note. The hybrid general NLP system was used for text 

processing (tokenization, sentence division, and section detection), grammar analysis (POS 

correction, concept correction, and normalization), entity and relation extraction (NER, relation 

detection, modifiers detection, and disambiguation), and knowledge reasoning (relation 

reasoning, concept reasoning, and concept arrangement). Built upon the UMLS and Unstructured 

Information Management Architecture (UIMA), the hybrid system combined bidirectional 

LSTM models and rules to assign the relationship between entities, such as treatment relations 

between diseases and drugs. The F1 score of the challenge-oriented, rule-based system was 

0.9028 and that of the hybrid general system was 0.8145.  

 Spasic et al. (2019) investigated the above-mentioned 2018 n2c2 tasks taking advantage 

of rule-based pattern matching, mostly regular expressions, to extract context-sensitive features 

from longitudinal free-text patient records. Information not directly relevant to a patient or 

eligibility criterion—negated entities, family history, allergies, and irrelevant time window—was 

filtered out. The bag-of-words representations were then passed to supervised classifiers. To 

prevent the loss of the context of individual words, context tags were attached to an individual 

token that is lexically distinguishable from other tokens. Supervised machine learning was 
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performed when a sufficient number of training data was available in each criterion. A rule-

based approach focusing on a small set of relevant features was chosen for the remaining criteria. 

A total of four machine learning algorithms—support vector machine, logistic regression, naïve 

Bayesian classifier, and gradient tree boosting—was performed on unseen test data. The system 

achieved an overall F1 score of 88.14% and outperformed three baseline systems, which were 

the rule-based, the hybrid, and the hierarchical neural network.  

 Segura-Bedmar and Raez (2019) exploited several deep learning architectures such as a 

simple convolutional neural network (CNN), deep CNN, recurrent neural network (RNN), and 

CNN-RNN hybrid architecture for 2018 n2c2 Shared Task on cohort selection for clinical trials. 

Unlike other existing deep learning systems, the authors used a fully connected feedforward 

(FFF) layer before the classification layer for all four deep learning models. The feature vector 

was fed into the FFF layer, which mapped it into a higher-order feature space that is easier to 

separate into distinct labels. Random initialization generated statistically significant better results 

than pre-trained word embeddings for various criteria when deep learning models were expanded 

with the FFF layer. With micro-F1 around 77% and macro F1 around 49%, the RNN and hybrid 

designs delivered the best overall results. The use of the FFF layer contributed to the improved 

results for all architectures except the hybrid architecture. Because of the small amount of the 

dataset, however, the performance was inferior to that of typical machine learning classifiers 

proposed by other studies. 

 

2.4.2 Cohort Identification Systems Outside 2018 National NLP Clinical Challenges 

 Outside the 2018 n2c2, Liu et al. (2013) reported an information extraction framework 

for extracting named entities and their corresponding contextual information (e.g., negation, 
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temporality, and experiencer) under cTAKES. The framework was developed under UIMA that 

has been adopted to create and implement a pipeline of modular tools for processing unstructured 

content. The knowledge-driven information extraction engine is comprised of regular 

expressions, normalization, and match rules. This is a viable approach when a task involves a 

specific subdomain or a limited number of named entities. However, they evaluated the 

performance of the implementation on only two phenotypes (peripheral arterial disease and heart 

failure) and did not prove its transferability to other domains. 

 

2.4.3 Conclusion 

 The teams participating in the 2018 n2c2 shared task achieved average F1 scores of 

around 0.9 using various classification methods including rule-based approaches and deep 

learning. Most of the best-performing cohort identification systems submitted to the 2018 n2c2 

used rule-based and hybrid approaches.  
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III. METHODOLOGY 

 

This study focused on the cohort identification from unstructured free-text narratives of 

EHRs given a free-text query. Retrieval of information that could readily be extracted from 

structured parts of EHRs will not be explored in this study. Rather, this study paid particular 

attention to processing data that could be obtained from free-text clinical notes, such as 

symptoms and signs, drugs administered, diseases diagnosed, modes of disease/injury, and 

radiology findings.  

 

3.1 Research Question 

 

In this study, SNOMED CT concepts extracted from eligibility criteria descriptions 

(query) and patient records were used to answer the following research question. 

 

 
Research Question: Can SNOMED CT’s semantic relations be exclusively used for querying 
disease names, procedures, medications, and other patient contexts from free-text clinical 
narratives for cohort identification?  
 

 

To answer the research question, the current study examined whether a cohort 

identification framework that uses SNOMED CT’s semantic hierarchy that represents relations 

between biomedical entities can achieve performance on a par with or better than currently 
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optimal systems, most of which use supervised learning classifiers (Oleynik et al. 2019; Tannier 

et al. 2019; Mikolov et al. 2013), without referring to external resources such as large-scale 

biomedical corpora.  

The proposed design of the framework is based on the following premises: 

1. SNOMED CT’s comprehensive coverage of biomedical entities makes it 

applicable to the broad spectrum of biomedical fields and reusable for diverse 

eligibility descriptions. 

2. Terms in an eligibility criterion are semantically more general than those in 

patient records and should be used to retrieve those in patient records that 

contain their descendants. If a query term is “intra-abdominal surgery,” for 

example, patient records that include cholecystectomy or small bowel 

resection should be retrieved since those are the specifics of intra-abdominal 

surgery. 

3. The more a biomedical entity is mentioned in a patient record, the more 

closely the patient record is related to that biomedical entity. 

Premise 1 ensures that the proposed framework applies to a wide range of diseases and 

specialties. Unlike previous cohort identification systems dedicated to detecting specific diseases 

such as colorectal cancer (Xu et al. 2011), cerebral aneurysm (Castro et al. 2017), and pediatric 

cancers (Ni et al. 2015), the current framework can serve diverse eligibility criteria owing to 

SNOMED CT’s comprehensive coverage for biomedical entities.  

According to Premise 2, concepts extracted from an eligibility criterion (hereafter 

referred to as “query concepts”) semantically subsume some, if not all, concepts in the eligible 

patient records (hereafter referred to as “patient record concepts”). When similarity is measured, 
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the proposed algorithm examines whether any descendants of the query concepts exist in patient 

records, and those that are not descendants of a query concept are ignored.  

Premise 3 assumes that the more frequently a concept is mentioned in a patient record, 

the more likely the patient is related to that concept. This is a plausible premise, considering that 

it is a common practice for clinicians to repeatedly record the same problems in the patient 

record for every visit until the problem is completely resolved. For example, the word diabetes 

or hyperglycemia will appear in the problem lists of every visit record of a diabetic patient, 

unless he is not fully returned to normoglycemic status. Since each patient record in the 2018 

n2c2 dataset notes multiple historical visits by the patient, it is highly likely that longstanding 

clinical problems will have been mentioned multiple times in the patient record. 

 

3.2 Framework Design  

 

3.2.1 Overview 

In this study, concepts and concept relations encoded in SNOMED CT within the UMLS 

were leveraged to prompt concept features of eligibility criteria and each patient record. Figure 2 

outlines the high-level steps of the proposed framework. In the first step, free-text clinical notes 

were preprocessed to eliminate redundant information that is not relevant to the patient, e.g., 

diseases or procedures that were negated or referred to family members. Many parts of the 

preprocessing were adopted from the work by Spasic et al. (2019) who preprocessed narrative 

medical records using regular expressions and a rule-based text mining approach. The second 

step, entity extraction, used MetaMap, an off-the-shelf biomedical NLP tool that automatically 

encodes clinical free texts into SNOMED CT concepts (Aronson 2001). In the next step, 
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contextual features such as negation (e.g., “patient denied a history of sexually transmitted 

disease”) and temporality (e.g., “currently experiencing angina”) were identified by examining 

the syntactic structure of a sentence. Biomedical entities that were associated with negation or 

context discordant with the eligibility criteria were removed if necessary. This yielded a Patient 

Record Concept Feature Set for each patient record, which contained biomedical entities 

relevant only to the patient. Finally, the semantic similarity between the Patient Record Concept 

Feature Sets and Query Concept Feature Set, which represents eligibility criteria with SNOMED 

CT concepts, was measured to estimate how closely the patient record was related to the query. 

The more similar a patient record is to the query, the more likely the patient is eligible for the 

corresponding clinical trial. 

 A Python application programming interface (API) of MetaMap was used for entity 

extraction. With those extracted entities, semantic relationships among them were identified 

using ontology relational tables stored in a local machine and were exploited to yield similarity 

between query and patient records. The biomedical entity extraction tool, ontology relational 

tables, and other NLP subtasks were integrated on Python 3.8.5. The complete Python codes for 

the current framework are available at https://github.com/eunsuk-

c/CohortIdentificationSNOMED/. 

 

3.2.2 Data Set and Sample 

A publicly available dataset was used in this study. Free-text clinical notes from the 2018 

National NLP Clinical Challenge (n2c2) Shared Task and Workshop on Cohort Selection for 

Clinical Trials (Stubbs et al. 2019) were used for the construction of the framework and 

evaluation of performance. The original corpus was from the 2014 i2b2/UTHealth shared tasks.  
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Figure 2. Architecture of the proposed NLP framework.  

 

Each visit note in the de-identified patient record starts with “Record date: YYYY-MM-

DD,” a changed, imaginary date. For each set of patient records, it is assumed that the most 

recent record is now, regardless of the year, day, or month recorded. While some discharge notes 

follow a predefined format with subheadings such as “Present Illness,” “Allergy,” and “Social 

History,” most of them are written at a clinician’s discretion without document sections.  

 Since the purpose of the current study is to exploit SNOMED CT’s semantic structure for 

knowledge acquisition from free-text clinical notes, only three highly medical and knowledge-

intensive criteria—"ABDOMINAL,” “MAJOR-DIABETES,” and “ADVANCED-CAD”—were 

used in this study. Those three criteria were ideal testbeds where cohort identification could be 

attained by querying symptoms, diseases, medications, and procedures, which are the most 

commonly used EHR data elements. In these criteria, the presence of specialized medical 
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concepts in clinical narratives is crucial to determining patients’ eligibility. Not only do those 

three criteria have a relatively balanced distribution of “met” and “not met” labels, but they also 

allow me to test broad coverage of NLP components of a cohort identification task: concept 

extraction, assertion detection, time-related information extraction, and meta-information 

extraction. To answer the research question, only those subcomponents of NLP that are required 

to query disease names, procedures, medications, and other patient contexts from free-text 

clinical narratives were tested in this study. Other NLP components of cohort identification tasks 

such as the extraction of laboratory test values (which is for “CREATININE” and “HBA1C” 

criteria) or inference from indirect evidence (which is for “ENGLISH” and “MAKES-

DECISION” criteria) were not explored in this study. 

 

3.2.3 Preprocessing 

Most NLP systems generally require several distinct steps to preprocess unstructured, 

free text into processible data. Key steps of preprocessing in this cohort identification framework 

include removing special punctuations, detecting sentence boundaries, resolving abbreviations, 

parsing documents, and removing redundant information.  

Most of the preprocessing was done using regular expressions. First, all characters were 

converted into lowercase characters. Periods within acronyms were removed (e.g., c.c. becomes 

cc) so that they could be used only to mark the end of sentences and split sentences. Contractions 

were expanded (e.g., couldn’t becomes could not) so that the negative “not” could be exposed for 

a later stage of the removal of negated expressions (Table 3a). 
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Table 3. Examples of preprocessed sentences and phrases. 

Original text Preprocessed text 

a. Expanding contractions 

The patient couldn’t tolerate the prescribed 
medications. 

the patient could not tolerate 
the prescribed medications. 

b. Converting brand names to generic names 

Cortril 5mg q.d. hydrocortisone 5 mg qd 

c. Section titles 

Allergy: the patient has no known allergy. allergy: 
the patient has no known allergy. 

Family history 
Mother was diagnosed with breast cancer at 
age 57. 

family history: 
family member was diagnosed with 
breast cancer at age 57. 

d. Replacement with family members 

His mother was diagnosed with  

breast ca. but hasn’t undergone  
treatment. 

his family member was diagnosed 
with breast cancer but has not 
undergone treatment. 

 

A separate file of the dictionary of medical abbreviations (based on (Spasic et al. 2019), 

modified by author) was used for expanding abbreviations. The expansion of abbreviations was 

done not only for approved ones (e.g., A. fib for atrial fibrillation) but for informal ones that 

were frequently used in the medical community (e.g., c.c for chief complaint), using regular 

expressions shown in Table 4. The trade names of drugs were converted into their generic names 

(e.g., Lipitor becomes atorvastatin) using Drugs@FDA Data Files (U.S. Food & Drug 

Administration 2017) (Table 3b). 
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Table 4. Regular expressions to expand abbreviations and convert them into fully-expanded 

terms. 

Regular expressions Example abbreviations Converted to  

\ss\/p\s s/p status post 

\sc\s*\/*\s*c\s cc chief complaint 
\sc\s*\/\s*o\s c/o complaining of 
\sc\s*\/\s*b\s c/ b complicated by 
\sc\s*\/\s*w\s c/w continue with 
\sf\s*\/\s*h\s f/h family history 
\sn\s*\/\s*v\s n/v nausea vomiting 
\so\s*\/\s*e\s o/e on examination 
\se\s*\/\s*o\s e / o evidence of 
\snc\s*\/\s*at\s nc/at normocephalic atraumatic 
\sd\s*\/\s*c\s d/c discontinued 
\sd\s*\/\s*o\s d/o disorder 
\sf\s*\/\s*up*\s f/u follow up 
\sh\s*\/\s*o\s h/o history of 
\sy\s*\/*\s*o\s yo year old 
\sr\s*\/\s*o\s r/o rule out 
\sw\s*\/\s*u\s w/u work up 
\sw\s*\/\s*o[ut]*\s w/out without 
\sw\s*\/*\s w/ with 

 

One challenge that remains is that the lines in the patient record documents in the dataset 

are arbitrarily separated. While lines in some notes are broken by paragraphs, those in other 

notes are done at the physician’s discretion. Some line breaks take place after an arbitrary 

number of characters, even though the sentence is not finished (Figure 3(a)). The line breakers in 

broken sentences needed to be eliminated; instead, the whole sentence (or paragraph) should be 
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pasted end to end in order to make a syntactic analysis of the sentence possible. In such cases, 

the line breakers that resided between lines shorter than 50 characters were removed. The 

hypothesis behind this is that any lines longer than 50 characters are highly likely to be 

syntactically connected with the next line. In this way, short lines that simply listed lab results 

(i.e., “Na 135 \n K 5.3 \n”) or problems (i.e., Problem List: \n history of 

CAD \n current DM with medication \n) can avoid being pasted with the lines 

below, which prevents the merging of unrelated information. 

In the 2018 n2c2 dataset, the sections of patient records (“family history,” “lab results,” 

“radiology reports,” etc.) were arbitrarily divided by providers; one may place a colon at the end 

of the section headings and start a new line, while another may prefer writing a section heading 

and its contents on one line without line breaks in between. To separate the unstructured record 

by section, header terms that were embedded at the first position on a line were identified and 

forced to be separated from that line if they contained word parts like history, exam, lab, med, 

allerg, or plan (Table 3c). Section headings on a separate line were then tagged by a colon at the 

end so that they can be easily identified at a later stage for section division. This enabled the 

stratification of information by sections (see 3.2.4). 

Documents were parsed and tokenized using spaCy, an open-source Python toolkit for 

advanced natural language processing. The document was then segmented into sentences by the 

occurrence of a period, and sentences were a unit of text processing. After document parsing, any 

entities that referred to family members (e.g., mother, daughter, etc.) were converted into the 

word phase family member (Table 3d). Those sentences that included the word phase family 

member were deleted at a later stage. 
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(a) 

 

(b) 

Figure 3. In patient record (a), line breaks occur approximately every 55-60 characters even 

though sentences are not finished. Each line is also separated by an empty line. In patient record 

(b), on the other hand, a line break exists only at the end of paragraphs, and there are no empty 

spaces between lines. The patient records shown here are imaginary examples reproduced by the 

author, adhering to the styles of the original 2018 n2c2 shared task track 1 dataset. 
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3.2.4 Note-level and Section-level Information Identification 

Subcriteria such as “currently experiencing angina” contain time constraint that requires 

the processing of meta-information of patient records. Each patient record of the 2018 n2c2 

dataset contains 2-5 physician encounters that were separated by the date heading “Record date: 

YYYY-MM-DD,” sorted by visit dates. For visit-level information identification, the date of visit 

was identified and separated using regular expressions from the date headings. The most recent 

visit note was regarded as “current.”  

 Section identification is useful to filter out some false or noisy information. For instance, 

the mention of “calcium” in the laboratory exam section is highly likely to indicate it was 

calcium content in the serum; that mentioned in the medication section is likely to belong to 

dietary supplements. If a clinical trial seeks a patient who takes calcium supplements, it will 

filter out the calcium-related concepts mentioned in the laboratory exam section of the notes. 

This will help to reduce preprocessing mistakes and mitigate the potential concept mapping 

errors.  

Rules and regular expressions were used to identify section headings tagged at section 

3.2.3 and to normalize section header terms. Identified heading texts were assigned to one of the 

following normalized section headers: “chief complaint,” “history of present illness,” “past 

medical history (includes past surgical history),” “family history,” “social history,” “review of 

systems,” “physical examination,” “allergies,” “medications,” “laboratory examinations,” 

“radiological examinations,” “problem list,” “assessment,” and “plans.”  

Each patient record was stored as values of Python’s “dictionary of dictionary”, with visit 

dates as keys and section headers as sub-keys. In this way, users can adapt sections needed for a 

specific cohort identification task. The allergies section, for example, may not be used in most 
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cohort identification tasks, while the biomedical entities contained in the problem list section 

provide the most decisive clues to the patient’s eligibility in most cases. In addition to the 

sections of interest, one can define the time frame of interest she wants to retrieve; if patients 

who have currently experienced angina are retrieved, the fraemwork can search for the records of 

the most recent date. 

 

3.2.5 Extraction of SNOMED CT Concepts  

The texts preprocessed at the previous step were passed to the next step: extraction of 

SNOMED CT concepts from free text using MetaMap. MetaMap is a publicly available program 

maintained by the National Library of Medicine, providing access to multiple biomedical 

ontologies/vocabularies brought by the UMLS and mapping biomedical text to the UMLS 

Metathesaurus (Aronson 2001).  

 The UMLS organizes concepts from various source terminologies in the Metathesaurus 

following a unique identifier structure in the concept-, term-, string-, and atom-level hierarchies. 

CUI represents a biomedical concept that encompasses all its synonym terms. Lexical Unique 

Identifier (LUI) groups the descriptions of a concept by lexical variations. String Unique 

Identifier (SUI) identifies the uniqueness of any variation in character set, upper-lower case, or 

punctuation in the human-readable description of a concept. Atom Unique Identifier (AUI) is 

assigned to each occurrence of a string in a given source terminology (Table 5). 
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Table 5. Representation structure of UMLS concept C0019163 from the 2018AB version 

(National Library of Medicine 2021). 

CUI LUI SUI AUI Source String 

C0019163 L0042725 S0515550 A2984272 SNOMED  Type B viral hepatitis 

C0019163 L2871361 S14189714 A23469643 SNOMED  Viral hepatitis type B 
(disorder) 

C0019163 L0019163 S0047904 A2882355 SNOMED  Hepatitis B 

C0019163 L0019163 S0047904 A0067497 MeSH Hepatitis B 

C0019163 L14168949 S17230772 A28394375 MeSH Hepatitis B Virus 
Infection 

 

MetaMap was originally designed for retrieving MEDLINE/PubMed citations from the 

biomedical scientific literature. As ongoing research efforts have shown that MetaMap was also 

effective at retrieving UMLS concepts from free-text clinical narratives (Kimia et al. 2015; 

Przybyła et al. 2019) as well as other tasks such as knowledge discovery (Weeber et al. 2000), it 

has now become one of the most frequently cited medical concept retrieval tools to map various 

sources of clinical narratives into the UMLS Metathesaurus. 

 MetaMap processes input text through multiple lexical/syntactic analyses as the 

following (Aronson & Lang 2010): 

• Tokenization, sentence boundary determination, and acronym/abbreviation 

identification; 

• Part-of-speech tagging; 

• Lexical lookup of input words; and 

• Final syntactic analysis consisting of a shallow parse in which phrases and their 

lexical heads. 
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MetaMap divides an input text into noun phrases and then generates variants for each 

noun phrase, with a variant essentially consisting of one or more noun phrase terms, as well as 

all spelling variants, abbreviations, acronyms, and synonyms. Using an evaluation function, it 

maps a collection of candidate CUIs containing one of the variants and computes a score for each 

candidate CUI. Then it brings together candidates that are participating in disjoint parts and 

recalculates the score using the merged candidates. The CUIs with the highest scores are chosen 

as the best match for the input text. A recent analysis of the performance of MetaMap showed its 

recall, precision, and F1 score were 0.88, 0.89, and 0.88, respectively, for extracting UMLS 

concepts from the Informatics for Integrating Biology to the Bedside (i2b2) Obesity Challenge 

data (Reátegui & Ratté 2018). 

To use MetaMap on the Python interface which is most widely used for natural language 

processing, pymetamap, a Python wrapper developed by Rios (2020) was employed. Pymetamap 

imports a list of sentences and extracts concepts using MetaMap before it returns concepts in the 

form of a list of Concept objects. Pymetamap returns the following outputs from the sentence 

“John had a huge heart attack.” 

 

Concept(index='2', mm='MM', score='13.22', preferred_name='Myocardial 
Infarction', cui='C0027051', semtypes='[dsyn]', trigger='["Heart 
attack"-tx-1-"heart attack"]', location='TX', pos_info='17:12', 
tree_codes='C14.280.647.500;C14.907.585.500') 

 

Metamap extracts CUI (Concept.cui) “C0027051,” whose preferred name 

(Concept.preferred_name) is “Myocardial Infarction,” from the trigger term 

(Concept.trigger) “Heart attack.” It also provides information about semantic types 

(Concept.semtypes) and the probability score (Concept.score) of the extracted concept 
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given the sentence it belonged to, which is in this example 13.22. For this study, the cui, 

preferred_name, and trigger instances of Concept objects were used. 

In this study, MetaMap was configured to match SNOMED CT terms only. Every 

occurrence of a SNOMED CT concept was assigned a CUI of the UMLS and then converted to 

the corresponding AUIs since the UMLS defines semantic relations between concepts by AUIs 

only. If a trigger term had an assigned CUI but no SNOMED CT AUI, its SNOMED CT fully 

specified name (FSN) was searched on the SNOMED CT Browser1 using Snowstorm API, and 

the AUI of the corresponding FSN was retrieved. If the term was not searchable on the 

SNOMED CT Browser, the CUI was abandoned and never used. Those UMLS concepts that did 

not encompass at least one SNOMED CT AUI were withdrawn.  

The use of MetaMap has two lingering problems: (i) MetaMap accepts some generic 

words and verbs (e.g., best, normal, take, reduce) as medical entities when segmenting and 

extracting medical entities, and (ii) MetaMap may suggest multiple concepts for the same term, 

as well as several semantic types for the same concept when categorizing medical items. For 

example, the concept of removal in the noun phrase “removal of bone chips” will be suggested 

as either A2979561 | Removal (procedure) | or A3241327 | Removal – action (qualifier value) 

|. To solve (i), concepts extracted at and uni-, bi-, and tri-gram levels were also considered in 

addition to noun-phrase-level extraction. For example, from the sentence “The patient underwent 

an MRA of the head,” MetaMap by default extracts the concept A9409632| MRI angiography 

of head (procedure) |. The current fraemwork was configured to extract additional concepts 

from unigram words as well, namely A15145221 | Magnetic resonance imaging (MRI) of 

vessels (procedure) | from the single word “MRA” and A3140404 | Head structure (body 

                                       
1 browser.ihtsdotools.org 
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structure) | from the single word “head.” 

In addition, the semantic types of extracted concepts were classified to allocate their 

importance. Those concepts which belonged to “therapeutic procedure,” “clinical 

history/examination observable,” “drug or medicament,” or “evaluation finding,” to name a few, 

were given higher importance whereas those under “administrative statuses” or “relative times” 

were assigned lower importance. Important concepts that carry more specific meanings in 

clinical settings, such as symptoms, signs, anatomical sites, diseases, procedures, and 

medications, were grouped and assigned “quantified importance,” with 1 being the most 

important. The quantified importance of a semantic type was assigned manually by the author 

such that the current framework can best identify the most commonly used data elements such as 

diagnoses, procedures, and medications. Even though a concept was lexically meaningful, it 

received less importance if it was subsumed by no biomedically-important semantic group. In the 

current framework, concepts whose quantified importance was less than 0.5 were eliminated. 

This prevented MetaMap from mapping clinically trivial concepts, section headings (e.g., chief 

complaint, medications), and mistakenly extracted concepts (e.g., mapping A2873197 | Proton | 

from a letter “h”) to SNOMED CT concepts. A list of upper-level concepts whose subtypes are 

eliminated from mapping is shown in Appendix A. The examples of the description of concepts, 

their corresponding semantic group, and quantified importance are shown below: 

 

Concept – quantified importance << supertype (SEMANTIC GROUP) 

Therapeutic radiology procedure – 0.8 << Therapeutic procedure (PROC) 

Penicillin – 0.8 << Chemical (MED) 

Initially – 0.0 << Event orders (GEN) 
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Eye examination interpretation – 0.2 << Interpretation of findings (DESC) 

 

For problem (ii), all extracted concepts, irrespective of their semantic tags, were 

considered for document expansion at a later stage. For example, MetaMap extracts the concepts 

A2878436 | Amputation (procedure) |, A3241080 | Amputation – action (qualifier value) |, 

and A2991260| Amputated structure (morphologic abnormality) | from the text string 

“amputation due to diabetic foot.” In this case, all three concepts are added to a patient document 

for consideration. This does not affect the similarity measure between the text and query, as 

shown in section 3.2.11, since the similarity metric considers the subtypes of a query concept 

only. 

 

3.2.6 Concept Annotation and Document Expansion with Concept Features 

In this step, all biomedical terms and words in the patient records were annotated by 

UMLS AUIs using MetaMap, and the extracted AUIs replaced the corresponding trigger terms in 

the sentence. In this way, the syntactic structure of the patient record can be preserved and the 

relations among biomedical entities extracted from the free text can be machine-processable. 

Cues for negation (i.e., without), certainty (i.e., highly likely), and temporality (i.e., past history 

of) were also preserved in sentences so that they could be exploited later to assess contextual 

information surrounding a biomedical entity.  

 Table 6 demonstrates an example of a sentence in which trigger term strings were 

substituted by UMLS AUIs. As mentioned in section 3.2.5, multiple AUIs extracted by 

MetaMap can be used in place of a trigger term, irrespective of its sort of semantic tags, for 

document expansion.  
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Table 6. Example of original text and text processed to replace biomedical entities with UMLS 

AUIs. Note that two AUIs (A29922622 and A2878587) were mapped from a single trigger term, 

“anxiety.” A3501627 | Hypertensive disorder, systemic arterial (disorder) |, A2928669 | 

Diabetes mellitus (disorder) |, A2992622 | Anxiety disorder (disorder) |, A2878587 | Anxiety 

(finding) |, A2890018 | Panic attack (finding) |, A2984272 | Type B viral hepatitis (disorder) 

|. 

Original text Text replaced by AUIs 

She has a history of hypertension and  
diabetes, anxiety and panic attacks, hepatitis 
B as well. 

she has a history of A3501627 and 
A2928669, A2992622 A2878587, and 
A2890018, A2984272 as well. 

 

3.2.7 Eliminating Irrelevant Concept Features 

 At this stage, biomedical entities (i.e., AUIs) that were irrelevant to the current 

situation of a patient were detected using regular expressions. AUIs that were located in the same 

sentence with negation cues, which are listed below, were identified by empirical rules. 

 

No, without, rule out, deny, cannot see, unlikely, negative for, is negative, hold, neither…nor,  

not appear, not known, not appreciate, not complain, not demonstrate, not exhibit, not feel, not 

reviewed, not have, does not, free of 

 

 AUIs that were not related to the rationale for current treatment were also detected if 

they were associated with the prevention or prophylaxis of diseases. Planned procedures were 

detected if the corresponding AUIs followed or were followed by the word plan or schedule. 

 Those irrelevant AUIs are stored in a separate “negation set” so that the AUIs in this 

vector can be removed at a later stage (Table 7). 
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Table 7. Example of negation set. The word denied triggered the negation of the sentence; the 

AUIs in the negated sentence were included in the negation set. 

Original text Text replaced with AUIs Negation set 

The patient denied past history 
of sexually transmitted disease. 

The patient denied past 
history of A3070494. 

{A307494} 

 

3.2.8 Building Patient Concept Feature Set 

 In this step, AUIs were extracted from the AUI-replaced text prepared above and were 

stored in the Patient Concept Feature Set. Then the AUIs that were also included in the negation 

set were discarded from the Patient Concept Feature Set. In the end, the Patient Concept Feature 

Set contained AUIs that were relevant to the current situation of the patient. The final product of 

the Patient Concept Feature Set is a Python dictionary whose keys are patient-relevant AUIs and 

values are the number of occurrences of the corresponding AUI in the patient record. One 

example of a Patient Concept Feature Set is shown below: 

 

Patient Concept Feature Set of Patient 217 = {‘A23027694’:7, ‘A2887859’:2, 

‘A10885208’:3…}2 

  

3.2.9 Building and Expanding Query Concept Feature Set 

 A Query Concept Feature Set was manually curated to represent each eligibility 

criterion with AUIs. Biomedical entities that are relevant to each criterion were examined across 

                                       
2 A23027694 | Type 2 diabetes mellitus |, A2887859 | Urticaria |, A10885208 | Degenerative disorder of 
macula | 
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training dataset, and those relevant entities in terms of SNOMED CT concepts were added to the 

Query Concept Feature Set if they aligned with medical expert knowledge. Sets of concepts 

extracted by MetaMap from each free-text eligibility criterion were refined to best represent the 

eligibility criterion using AUIs, which consisted of a Query Concept Feature Set. The Query 

Concept Feature Sets for the ADVANCED-CAD and MAJOR-DIABETES eligibility criteria 

were constructed as shown in Table 8 and Table 9, respectively. In the later step of measuring 

similarity between query and patient records, only those patient record concepts that are the 

direct descendants of query concepts will contribute to similarity measurement. 

 

Table 8. Free-text criteria and their corresponding sets of AUIs for the ADVANCED-CAD 

eligibility criterion. 

Criteria in natural 
language 

Corresponding AUIs Note 

Taking 2 or more 
medications to treat 
CAD 

 

A2872933 | Nitrate salt | 
A2884643 | Nitroglycerin | 
A3651057 | Antiplatelet agent | 
A2882344 | Heparin | 
A3483678 | HMG-CoA reductase inhibitor | 
A3609517 | Angiotensin-converting enzyme 

inhibitor agent | 
A3249419 | Angiotensin II receptor antagonist | 
A3802645 | beta-blocking agent | 
A3335705 | Calcium channel blocker | 

Satisfied only if ≥2 
medications 

History of myocardial 
infarction 

 

A7873496 | Coronary arteriosclerosis | 
A2938836 | Myocardial infarction | 
A24246836 | Coronary artery stent | 
A26575074 | EKG: myocardial infarction |  

 

Currently 
experiencing angina 

A23468083 | Angina pectoris | 
A3313085 | Ischemic chest pain | 

Only the most recent visit 
record was examined 

Ischemia, past or 
present 

A7873407 | Ischemic heart disease | A7873407 | Ischemic 
heart disease | is a 
supertype of A23468083 
| Angina pectoris | 
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Table 9. Free-text criteria and their corresponding sets of AUIs for the MAJOR-DIABETES 

eligibility criterion. 

Criteria in natural language Corresponding AUIs Note 
Major diabetes-related 
complication, defined as any of 
the following that are a result 
of (or strongly correlated with) 
uncontrolled diabetes: 

A2928669| Diabetes mellitus | 
A2882662 | Hyperglycemia | 
A3032080 | Hyperglycemic disorder | 
A3322678 | Diabetic complication | 
 

At least 1 of these AUIs 
must exist in the 
Patient Concept 
Feature Set 

Amputation  

 

A3241080 | Amputation - action | 
A2878436 | Amputation | 
A2991260 | Amputated structure | 

 

Kidney damage (nephropathy) A24807926 | Chronic kidney disease | 
A23451959 | Chronic renal failure | 
A2890220 | End stage renal disease | 
A3318512 | Diabetic renal disease | 
A3063986 | Renal impairment | 

 

Skin conditions A3471880 | Gangrenous disorder | 
A2881852 | Gangrene | 
A3769261 | Ulcer of lower extremity | 

 

Retinopathy A3064437 | Retinal disorder |  

Neuropathy A2876139 | Neuropathy | 
A3282650 | Paresthesia of foot | 
A3119481 | Diabetic hand syndrome| 
A3400640 | Disorder of the peripheral 

nervous system | 
A3162750 | Neuropathic pain | 

 

 
 
3.2.9.1 Task-specific configuration of Query Concept Feature Set: ABDOMINAL  

 In the case of the ABDOMINAL criterion, the definition of intra-abdominal surgery is 

broad and ambiguous, as it does not explicitly dictate whether it includes, for example, intra-

pelvic surgeries such as prostatectomy. To figure out the annotation intention of the 2018 n2c2 

dataset, I examined the AUIs extracted from the training dataset and compared those extracted 

from the met patient records with those from the not met. From this, it was found that procedures 

such as prostatectomy, dilation and curettage, and inguinal hernia repair were not considered 
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intra-abdominal surgery by the annotators of the 2018 n2c2. In compliance with these findings, 

the final set of query concept features was constructed as the pseudocode below: 

 

ABDOMINAL:IntraAbdominalSurgery  

equivalentTo sct:OperationOnAbdominalRegion  

and not (sct:OperativeProcedureOnMaleGenitourinaryTract  

 or sct:EndometrialScraping  

 or sct:AbdominalWallProcedure) 

  

 The definition of intraabdominal surgery for the ABDOMINAL study is equivalent to 

operation on abdominal region in SNOMED CT but not operative procedure on male 

genitourinary tract in SNOMED CT, nor endometrial scaping in SNOMED CT, nor abdominal 

wall procedure in SNOMED CT. In this way, ‘sct:Prostatectomy’ was excluded from the 

query because it was a subtype concept of ‘sct:OperativeProcedureOnMale-

GenitourinaryTract,’ even though it was an operation on the abdominal region. This 

definition of intra-abdominal surgery used for the ABDOMINAL criterion can be graphically 

presented in Figure 4. 
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Figure 4. Graphical description of the definition of “intra-abdominal surgery” in the 

ABDOMINAL criterion. Only blue-shaded concepts are considered to define the boundary of 

intra-abdominal surgery for the ABDOMINAL criterion. The subtypes of “Abdominal Wall 

Procedure,” “Operative Procedure on Male Genitourinary Tract,” and “Endometrial Scraping” 

are excluded from the definition of intra-abdominal surgery for the ABDOMINAL study. 

Accordingly, patient records that contain the concept of cholecystectomy are eligible for the 

ABDOMINAL although those that contain the concepts of prostatectomy, which is a subtype of 

“Operative Procedure on Male Genitourinary Tract,” and thyroidectomy, which is outside the 

“Operation on Abdominal Region” hierarchy, are not. 

 

3.2.9.2 Task-specific configuration of expanded Query Concept Feature Set: ADVANCED-CAD 

 Further processing of the Patient and expanded Query Concept Feature Sets needed to 

take into account the context of eligibility criteria. To satisfy the modifying adverb currently in 
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the eligibility criterion “currently experiencing angina,” direct descendants of A23468083 | 

Angina pectoris | and A3313085 | Ischemic chest pain | were extracted from the most recent 

visit note. This was enabled by referring to the “dictionary of dictionary” prepared at the stage 

described in section 3.2.4, where each patient’s visit date was recorded as a key of the dictionary 

and the corresponding patient record contents as a value.  

 

3.2.9.3 Task-specific configuration of expanded Query Concept Feature Set: MAJOR-DIABETES  

 The MAJOR-DIABETES criterion implies that a patient has to have both diabetes and 

diabetic complications to be eligible. For the purpose of illustration, assume that the framework 

identifies a subtype of “nephropathy,” such as acute nephropathy from a patient record. If the 

patient record does not mention any concept of “diabetes,” however, the patient is not eligible, 

because we cannot infer that acute nephropathy was caused by diabetes in that patient. To 

achieve this, the proposed framework proceeded to check whether the patient had diabetic 

complications after confirming that the patient had diabetes. The patient was then determined to 

be eligible if he had any diabetic complications. 

 Further inspection of training data revealed that the entities on the left column of Table 

10 did not receive credits to be included in the Query Concept Feature Set for MAJOR-

DIABETES. Therefore, the AUIs presented on the left column of Table 10 and their subtypes 

were not included in the expanded Query Concept Feature Set, even though they were the 

subtypes of the concepts presented in the right column of Table 10. Graphically, the definition of 

nephropathy is represented by blue area in Figure 5. 
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Table 10. AUIs excluded from the Expanded Query Concept Feature Set for MAJOR-

DIABETES criterion (left column) and their supertype concepts (right column). All subtypes of 

each AUIs on the left column were also automatically excluded from the expanded Query 

Concept Feature Set. 

Excluded AUI | Description | Subsumed by 

A3092358 | Acute renal impairment | 
A18073061 | Cardiorenal syndrome | 
A3665747 | Renal failure associated with renal vascular disease | 
A2953455 | Acute renal failure syndrome | 
A2972962 | Milk alkali syndrome | 
A26587941 | Renal impairment caused by Polyomavirus | 
A24246786 | Prerenal renal failure | 

<< A3063986  
| Renal impairment | 

 

A15154924 | Color blindness | 
A3367488 | Congenital anomaly of retina | 
A3307688 | Age related macular degeneration | 
A2892313 | Exudative retinopathy | 
A8387117 | Hamartoma of retina | 
A2891853 | Hemangioma of retina | 
A3030153 | Hereditary vitreoretinopathy | 
A2890283 | Hypertensive retinopathy | 
A3034481 | Injury of retina | 
A3578402 | Neoplasm of retina | 
A2939246 | Night blindness | 
A3904017 | Paraneoplastic retinopathy | 
A3238102 | Retinal abnormality - non-diabetes | 
A2892298 | Retinal defect | 
A7873926 | Retinopathy of prematurity | 
A3070798 | Sickle cell retinopathy | 
A11734429 | Toxic retinopathy | 

<< A3064437  
| Retinal disorder | 

A3318307 | Axonal neuropathy | 
A3322744 | Cranial nerve disorder | 
A3121005 | Disorder of nerve repair | 
A3034272 | Inflammatory neuropathy | 
A3318879 | Neuromyopathy | 
A3162763 | Neuropathy due to infection | 
A2976161 | Paraneoplastic neuropathy | 
A2874833 | Postinfectious neuralgia | 

<< A2876139  
| Neuropathy | 
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Figure 5. Graphical description of the definition of nephropathy in the MAJOR-DIABETES 

criterion. 

 

3.2.10 Defining is_a Relations Among Concepts 

 The UMLS integrates over 2 million names for over a million concepts from more than 

60 families of biomedical vocabularies, as well as 12 million relations among these concepts, to 

enable interoperability between computer systems.  

 To exploit semantic relations among UMLS concepts, a full version of 2016AB release 

files was imported using MetamorphoSys, a UMLS installation wizard, and Metathesaurus 

customization tool to a local machine. MySQL 8.0.22 was used to load MRCONSO and 

MRHIER relational tables up in the MySQL database. The MRCONSO table contains 

information about a concept’s CUI, AUI, LUI, SUI, and descriptions (i.e., fully specified name, 

synonym, and preferred term). The MRHIER table defines a concept’s is_a hierarchical relation 

back to the root to define all of its supertype concepts (Figure 6). A concept may have more than 
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one is_a route to the root. The supertypes of patient record concepts can be identified using the 

MRHIER table and will be employed in the next step of similarity measurement. 

  

 

Figure 6. A screenshot of the MRHIER table searched for is_a route to the root from the concept 

A2926510 | Chest pain | using a MySQL query “select cui, aui, sab, rela, ptr 

from MRHIER where aui = A2926510.” A2926510 | Chest pain | has five routes to the 

root concept A3684559 | SNOMED CT Concept |. The ancestors of the concept A2926510 | 

Chest pain | include A3684559 | SNOMED CT Concept |, A3886745 | Clinical finding |, 

A3456474 | Finding by site |, A3580852 | Neurological finding |, A23454767 | Finding of 

sensation by site |, A3456963 | Finding of body region |, A3700069 | Sensory nervous system 

finding |, A3614738 | Pain finding at anatomical site |, A3459284 | Finding of trunk 

structure |, A3614693 | Pain / sensation finding |, A23009928 | Finding of upper trunk |, 

A2885021 | Pain |, A3458749 | Finding of region of thorax |, and A3296676 | Pain of truncal 

structure |, in the order of increasing depth in the is_a hierarchy.  

 

 If a supertype of a patient record concept is in the Query Concept Feature Set, the 

semantic similarity between the query concept and the patient record concept is measured as 

described in section 3.2.11. If none of the supertypes of a patient concept is included in the 

Query Concept Feature Set, the patient concept is abandoned and semantic similarity is not 

calculated. In the Figure 6 example, if the concept A3614693 | Pain / sensation finding | is in 

the Query Concept Feature Set and the concept A2926510 | Chest pain | is in the Patient 



 

64 

Concept Feature Set, the semantic similarity between A3614693 | Pain / sensation finding | and 

A2926510 | Chest pain | can be calculated since A3614693 | Pain / sensation finding | is a 

supertype of A2926510 | Chest pain |. 

 

3.2.11 Similarity Measurement 

 In this section, a new similarity metric to measure the similarity between the Query and 

Patient Record Concept Feature Sets is proposed. As shown in section 2.3, existing metrics had 

measured the similarity between individual concepts or sets. Although concept-level or set-level 

similarity measures work well for comparing or clustering sets that are equivalent in terms of 

length and information content, they are limited in measuring similarities between query and 

patient records because patient records hold a disproportionally more specific and greater amount 

of information than queries do. Moreover, cosine similarity and other set-level similarity metrics 

can overestimate the similarity scores in favor of longer but less pertinent patient records when 

MetaMap extracts a substantial amount of unintended and irrelevant concepts from free texts. 

 To address these problems, I propose a new similarity measure as Equations (10) and 

(11). The proposed similarity measure first makes use of a new weight metric for a concept that 

appeared in a patient record with respect to an individual query concept as follows:  

 

𝑤𝑡t(𝑝) = ulog(
AB0&'(t)
AB0&'(0)

+ 1) ∙ *
w|/?x&n0B/(0)|F*

			𝑖𝑓	𝑝	𝑖𝑠	𝑠𝑢𝑏𝑠𝑢𝑚𝑒𝑑	𝑏𝑦	𝑜𝑟	𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙	𝑡𝑜	𝑞

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (10) 

 

 wtq(p) is the weight of a SNOMED CT concept p in a patient record (i.e., Patient 

Concept Feature Set) with respect to a SNOMED CT concept q in a query (i.e., Query Concept 

Feature Set). depth(x) is the minimum number of nodes in the path from a concept x, to the root 
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of the SNOMED CT taxonomy. The weight is larger than 0 only if the concept from the patient 

record is a subtype of or identical to the concept from the query. By considering the subtypes of 

a query concept only, it eliminates from consideration irrelevant concept features (i.e., concepts 

located outside the query concept’s hierarchy). If the patient concept p is not subsumed by the 

query concept q, the similarity is 0. depth(q)/depth(p) estimates how much specific p is in 

relation to q, and is less than or equal to 1 in most cases because query terms are usually more 

general (i.e., located at a lower depth in the SNOMED CT hierarchy) than the terms in patient 

records. If there were multiple is_a paths from q to p, the shortest path was selected for similarity 

computation. 

 The deeper the patient concept p is located in the taxonomy, i.e., has a more specialized 

meaning, the greater the weight gets. The weight also depends dynamically on query concept q; 

the more specific the query term is, (i.e., located deeper in the hierarchy), the greater the weight 

gets. For example, given the concept “acute peptic ulcer with hemorrhage” in a patient record, 

the query “ulcer” yields the weight score of 0.209, and the more concrete query “peptic ulcer” 

yields 0.283. 

 |subtypes(p)| is the number of all subtypes of patient record concept p. It is assumed 

that a concept with many subtype concepts is less specific than that with a smaller number of 

subtype concepts because general concepts need to be further defined at a lower level of the 

hierarchy (Hadj Taieb et al. 2014). The number of subtype concepts was counted by identifying 

the direct descendant of the concept of interest and then iteratively counting its direct 

descendants (descendants of descendants) down to the is_a hierarchy until there are no more 

descendants. Even though the concepts “hospital department” and “choroidal hemorrhage” are 

located at the same level of the SNOMED CT hierarchy, for example, “choroidal hemorrhage” is 
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more specialized than “hospital department” because “hospital department” has 100 subtypes 

while “choroidal hemorrhage” has 2 (Figure 7). By Equation (10), general concepts, which hold 

more subtypes, are penalized and get smaller weights.  

 

 

Figure 7. In the green case, the query concept is “hospital environment” and the patient record 

concept is “hospital department.” In the red case, the query concept is “blood in eye” and the 

patient record concept is “choroidal hemorrhage.” Intuitively speaking, the concept “choroidal 

hemorrhage” is concrete enough, while the concept “hospital department” is general and further 

definition—whether it is administrative departments, cardiology department, or intensive care 

unit—is needed in the lower levels of hierarchy. As shown in the figure, the concept “hospital 

department” has more subtypes than the concept “choroidal hemorrhage” does, and accordingly, 

it can be concluded that “choroidal hemorrhage” is semantically more specific than “hospital 

department” even though they are located at the same level in the SNOMED CT hierarchy. The 

calculated weights of the concepts “hospital department” and “choroidal hemorrhage” with 

respect to the query terms “hospital environment” and “blood in eye,” respectively, are 0.017 and 

0.102, respectively, by Equation (10). 
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 The final similarity score between a query and a patient record is the sum of the weight 

of every patient record concept with respect to each query concept. If a query contains 10 

concepts and a patient record contains 1000 concepts, a total of 10,000 weight scores are 

calculated, and the sum of those scores is the final similarity of the patient record to the query. 

 

 𝑠𝑖𝑚(𝑃,𝑄) = ∑ ∑ 𝑤𝑡t�(𝑝\) ∙ log	(𝑓𝑟𝑒𝑞(𝑝\) + 1)
G
^�*

H
\�*                                               (11) 

  

sim(P,Q) is the similarity score between Query Concept Feature Set Q, which contains n 

concepts, and Patient Record Concept Feature Set P, which contains m concepts, where usually 

m >> n. freq(pi) is the number of utterances of the i-th concept in the patient record. The larger 

the similarity score, the more semantically similar the query and the patient record are. Even 

though a single biomedical entity in a patient record is represented by multiple AUIs, only those 

which are the subtypes of the query concept contribute to the similarity score. Looking into the 

example of Table 6 in which two SNOMED CT concepts (A2992622 | Anxiety disorder 

(disorder) |, A2878587 | Anxiety (finding) |) were extracted from a single biomedical entity 

“anxiety” in a patient record, if the query concept is A3322705 | Mental disorder (disorder) |, 

only the concept A2992622 | Anxiety disorder (disorder) | will be considered for calculating 

similarity because it is directly subsumed by the query concept A3322705 | Mental disorder 

(disorder) | while the concept A2878587 | Anxiety (finding) | is not.  

For the purpose of illustration, assume that we have the following Query Concept Feature 

Set: 
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Q = {A2935334 | Ketoacidosis |, A7873407 | Ischemic heart disease |} 

 

and a Patient Record Concept Feature Set: 

 

P = {A2928669 | Diabetes mellitus |, A10865852 | Diabetic ketoacidosis |, A2938836 | 

Myocardial infarction |} 

 

For the calculation of similarity between the Query Concept Feature Set and the Patient 

Record Feature Set, we first compute weights of every patient record concept with respect to 

every query concept using Equation (10): 

 

• 𝑤𝑡�B&;%1\A;/\/(𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠	𝑚𝑒𝑙𝑙𝑖𝑡𝑢𝑠) = 0 (∵ “Diabetes mellitus” is not subsumed by 

“Ketoacidosis”) 

• 𝑤𝑡�B&;%1\A;/\/(𝐷𝑖𝑎𝑏𝑒𝑡𝑖𝑐	𝑘𝑒𝑡𝑜𝑎𝑐𝑖𝑑𝑜𝑠𝑖𝑠) = log� �
*�
+ 1� × *

√�
= 0.321 

• 𝑤𝑡�B&;%1\A;/\/(𝑀𝑦𝑜𝑐𝑎𝑟𝑑𝑖𝑎𝑙	𝑖𝑛𝑓𝑎𝑟𝑐𝑡𝑖𝑜𝑛) = 0	(∵ “Myocardial infarction” is not 

subsumed by “Ketoacidosis”) 

• 𝑤𝑡]/1'BH\1	'B%Z&	A\/B%/B(𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠	𝑚𝑒𝑙𝑙𝑖𝑡𝑢𝑠) = 0 (∵ “Diabetes mellitus” is not subsumed 

by “Ischemic heart disease”) 

• 𝑤𝑡]/1'BH\1	'B%Z&	A\/B%/B(𝐷𝑖𝑎𝑏𝑒𝑡𝑖𝑐	𝑘𝑒𝑡𝑜𝑎𝑐𝑖𝑑𝑜𝑠𝑖𝑠) = 0 (∵ “Diabetic ketoacidosis” is not 

subsumed by “Ischemic heart disease”) 

• 𝑤𝑡]/1'BH\1	'B%Z&	A\/B%/B(𝑀𝑦𝑜𝑐𝑎𝑟𝑑𝑖𝑎𝑙	𝑖𝑛𝑓𝑎𝑟𝑐𝑡𝑖𝑜𝑛) = log��
�
+ 1� × *

√��
= 0.066 
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According to Equation (11), the final similarity score between the Query Concept Feature 

Set and Patient Record Concept Feature Set is the sum of all participating weights. 

 

Sim(P, Q) = 0 + 0.321 + 0 + 0 + 0 + 0.666 = 0.987 

 

3.2.12 Determining Eligibility of Patient  

 If there was a defined number of items that should be met to satisfy eligibility, those 

items are also considered in the Query Concept Feature Set. In the ADVANCED-CAD example, 

“advanced cardiovascular disease” is defined as having two or more of the items listed in Table 

8. To comply with that criterion, only those patients who have two or more eligibility subcriteria 

(out of four) were predicted to be eligible.  

 Since the gold-standard labels of the eligibility of each patient record in the test data of 

the 2018 n2c2 dataset were binary (e.g., “met” or “not met”) while the current framework yields 

numeric similarity scores, a cut-off similarity value needed to be established to determine the 

number of true positive (TP), true negative (TN), FP, and FN cases. Patient records were sorted 

by descending order of similarity score calculated in section 3.2.11. A cut-off similarity score, 

above which patients were deemed eligible, was established for each eligibility criterion (see 

section 3.2.13) and those patients whose similarity scores are greater than or equal to the cut-off 

similarity were predicted to be “eligible” by the current framework and the rest “not eligible.”  
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3.2.13 Evaluation 

 There are two types of classification errors in a cohort identification task: false negative 

(FN) (i.e., the current framework misses eligible patients) and false positive (FP) (i.e., the current 

framework includes patients who are not eligible for the study). The effort to reduce FN cases 

demands the post-hoc review of included patients, while the effort to minimize FP cases prevents 

recruiters from reaching out to potentially eligible patients. Therefore, FN and FS need to be 

balanced in a cohort identification task. The F1 score, a harmonic mean of precision and recall 

(Equation 12), is a desirable metric to assess errors in cases where FS and FP are equally 

undesirable.  

 

𝐹1	𝑆𝑐𝑜𝑟𝑒 = 2 × �B1%44×$ZB1\/\;G
�B1%44F$ZB1\/\;G

                                                 (12) 

 

 F1 score is calculated from precision and recall which, in turn, are calculated on the 

predicted labels. The binary classification of patient eligibility predicted in the previous step 

resulted in the number of TP, true negatives TN, FP, and FN cases. Threshold cut-off similarity 

scores were adjusted to optimize the F1 score for each eligibility criterion. The performance of 

the current framework was evaluated in terms of the F1 score on the 2018 n2c2 test dataset, 

which is comprised of 86 patient records, and recall and precision obtained by the best possible 

F1 score were reported.   

 The 2018 n2c2 shared task has disclosed the performance of participating cohort 

identification systems in terms of recall, precision, and F1 score. Using the same data set and 

evaluation methods allows a legitimate evaluation of the current framework’s performance by 

comparing it to those submitted by participants of the 2018 n2c2 shared task track 1.  
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IV. RESULTS 

 

 4.1 Introduction 

 

 Chapter 3 described the methods used to prepare for predicting a patient’s eligibility for 

each of the three criteria. In this chapter, the performance of the proposed framework is 

compared with systems submitted to the 2018 n2c2 shared task using the same test data and 

evaluation metrics. 

 

4.2 Overall Performance 

 

 The experimental results, along with the best F1 score obtained by the participants of 

2018 n2c2 in the three selection criteria, are displayed in Table 11. The macro average F1 score 

of the current framework was 0.933, exceeding that of the best of the 2018 n2c2. The 

performance of the proposed framework was higher than the best-performing systems of the 

n2c2 throughout the three selection criteria.  
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Table 11. The current framework’s overall performance on test data set and comparison with 

n2c2 submissions.  

Criteria Current Framework Best n2c2 
submission 

Median n2c2 
submission* 

Precision Recall F1 (before 
eliminating 
patient records 
with spurious 
labeling) 

F1 (after 
eliminating 
patient records 
with spurious 
labeling) 

F1 F1 

ABDOMINAL 0.964 0.900 0.931 0.931 0.912 0.889 

ADVANCED-
CAD 

0.823 0.933 0.875 0.894 0.870 0.780 

MAJOR-
DIABETES 

0.974 0.884 0.927 0.974 0.884 0.831 

Average 0.933 0.889 0.833 

* Median among top 10 performers 

 

4.3 Cohort Identification Performance: ABDOMINAL 

 

 The current framework’s precision, recall, and F1 score for the ABDOMINAL criterion 

were 0.964, 0.900, and 0.931, respectively. The F1 score of the current framework for the 

ABDOMINAL criterion was s higher that of the best system submitted to the 2018 n2c2. The 

individual similarity score for each patient is presented in Appendix B.  

 The similarity score above which a patient record was predicted to be met was 0.001 for 

the ABDOMINAL criteria. The median number of relevant AUIs (e.g., AUIs that contributed to 

the similarity scores of each patient record) in the ground-truth met and not met patient records 

was 2 (mean = 1.900, range 0-7) and 0 (mean = 0.018, range 0-1), respectively.  

 There were one false-positive case and three false-negative cases among the 86 patient 

records in test data. In the false positive case, concepts for uterine myomectomy, A3319398 | 

Uterine myomectomy |, which is considered an intra-abdominal surgery by the current system, 
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were appropriately extracted from the clinical note. However, the annotators of the 2018 n2c2 

data labeled the case as “not met.” In the false-negative case, transurethral resection of the 

prostate (TURP) in patient record # 218 was not recognized by the system as an intra-abdominal 

surgery because the system was configured to exclude Operative procedure on male 

genitourinary tract. Cesarean section was once mentioned in patient record # 236, as in “midline 

scar in the lower abdomen is evident from her C section,” but the system translated it as “midline 

scar in the lower abdomen is evident from her C A2895486 | Transection |” and failed to 

recognize it as a cesarean section. 

 

4.4 Cohort Identification Performance: ADVANCED-CAD 

 

 The system’s precision, recall, and F1 score for the ADVANCED-CAD criterion were 

0.823, 0.933, and 0.875, respectively. The current system had a higher F1 score than the best 

system submitted to 2018 n2c2. After removing spurious patient records, the precision, recall, 

and F1 score for ADVANCED-CAD were 0.955, 0.840, and 0.894, respectively. The similarity 

scores for each patient record are presented in Appendix B.  

 The similarity score above which a patient record was predicted to be met was 1.0 for the 

ABDOMINAL criteria. The median number of relevant AUIs (e.g., AUIs that contributed to the 

similarity scores of each patient record) in the ground-truth met and not met patient records was 

22 (mean = 23.111, range 7-61) and 11 (mean = 11.390, range 2-30), respectively. More than 

two subcriteria should be satisfied in order to be eligible for the ADVANCED-CAD study, but 

each not met patient record contained a minimum of two relevant AUIs which satisfied only one 

subcriterion. Examples of those cases include patients who are taking calcium channel blockers 
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for the treatment of hypertension, but not for the treatment of coronary artery disease. 

 There were 9 false-positive cases and 3 false-negative cases wrongly predicted by the 

current system before removing spurious data points. The error analysis of the 9 false-positive 

cases showed: 

• Unspecified or ambiguous entities:  

o The system considered simple utterances of coronary artery disease to be 

myocardial infarction, although the two entities are clinically different (patient 

records # 115, 156, 205) 

• Flawed assertion detection 

o The system failed in assertion detection: it was not able to determine if diseases 

were present, conditional, suspected, or hypothetical. As a result, the system 

incorrectly identified suspicious cases as definite present problems (patient record 

# 396).  

• Failed to recognize context around concepts:  

o The system ignored the context word nonobstructive, which makes the coronary 

artery disease it modifies less severe, from the word phrase nonobstructive 

coronary artery disease. This error caused it to falsely predict that the patient had 

advanced coronary artery disease (patient record # 194). It also ignored the word 

stable, followed by the concept “angina”, which had originally meant that the 

patient is currently not experiencing angina. (patient record # 119) 

o In some cases, doctors discussed the risk factors of coronary artery disease with a 

patient who had not yet been diagnosed with coronary artery disease. The current 

system incorrectly projected that those patients had a history of myocardial 
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infarction (patient records #266, #342).  

• Discordance between the author and data annotators in the interpretation of a situation  

o A case in which a patient received coronary artery bypass graft surgery, which 

indicates severe myocardial infarction, was not labeled as “met” by the annotators 

(patient record # 277). 

 

 The errors that occurred in three false-negative cases are as below: 

• Spurious labeling error 

o In patient record # 135, both I and my system could not find any clinical evidence 

of overt myocardial infarction in the patient. Though electrocardiography showed 

some ischemic changes (the attending physician then suspected this was a rate-

related change rather than ischemia), cardiac catheterization revealed no evidence 

of coronary stenosis. The patient did not experience angina and denied chest pain 

or discomfort throughout the entire visit. The attending physician wrote in the 

patient record that “pt [patient] has already ruled out for MI [myocardial 

infarction].” The medication that the patient was taking was for treating cardiac 

valve diseases (mitral stenosis, mitral valve regurgitation, and aortic stenosis) and 

resultant heart failure, but not for coronary artery disease.   

• Failure to detect relevant entities 

o Patient # 246 took two medications, atenolol and atorvastatin, for coronary artery 

disease. MetaMap failed to detect atenolol from the text. 

o The system failed to extract the concept “non-ST elevation myocardial infarction” 

from the sentence “she has completed a cardiac stress test as recommended after 



 

76 

suffering a NSTEMI during her last hospitalization.” MetaMap extracted CUIs 

C4255010, C1536222, C1536221, and C3537184 from the word phrase “non st 

elevation myocardial infarction,” which was expanded from the trigger term 

“NSTEMI,” and none of the extracted CUIs had a valid corresponding AUIs in 

SNOMED CT terms. Further scrutiny revealed that the January 2016 version of 

SNOMED CT has the concept A3473213 | Acute non-ST segment elevation 

myocardial infarction |, which only partially matched to but not exactly matched 

to the string “NSTEM” (patient record # 350). 

 

4.5 Cohort Identification Performance: MAJOR-DIABETES 

 

 The system’s precision, recall, and F1 score for the MAJOR-DIABETES criterion were 

0.974, 0.884, and 0.927, respectively. After removing spurious patient records, the precision, 

recall, and F1 score for ADVANCED-CAD were 0.974, 0.974, and 0.974, respectively. The F1 

score of the current framework for the MAJOR-DIABETES criterion was higher than that of the 

best system submitted to the 2018 n2c2. The similarity scores for each patient record are 

presented in Appendix B.  

 The similarity score above which a patient record was predicted to be met was 2.0 for the 

ABDOMINAL criteria. The median number of relevant AUIs (e.g., AUIs that contributed to the 

similarity scores of each patient record) in the ground-truth met and not met patient records was 

16 (mean = 25.698, range 0-129) and 5 (mean = 6.279, range 2-19), respectively.  

 There were one false-positive case and 5 false-negative cases before the data with 

spurious labeling were removed. In the false-positive case, the current framework identified an 
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(age-related) macular degeneration that was not associated with diabetes. Many false negatives 

were cases where coronary artery disease was considered by the annotators of the 2018 n2c2 

dataset to be a major complication of diabetes (patient records # 115, 182, and 224). Although 

the MAJOR-DIABETES criterion defined major diabetes-related complications to be 

microvascular complications such as nephropathy, retinopathy, and neuropathy, there may have 

been an implicit agreement among the annotators of the 2018 n2c2 dataset to include 

macrovascular complications such as coronary artery disease in their definition of the major 

diabetes-related complications. As described in section 4.4, patient record # 135 had been 

mislabeled as “met” for the ADVANCED-CAD criterion, and this may have led to yet another 

misclassification of the patient record # 135 with respect to the MAJOR-DIABETES criterion by 

acknowledging that coronary artery disease was a major diabetic complication. 

 In another case, the current framework could not infer that the patient had diabetic 

retinopathy from the sentence “was recently hold he needs laser surgery (patient record # 166).” 
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V. DISCUSSION 

 

5.1 Primary Findings 

 

 This study demonstrated that a taxonomic structure of a biomedical ontology such as 

SNOMED CT can be utilized to identify eligible patients for clinical trials from free-text clinical 

narratives, especially to query medical knowledge by navigating hierarchical relations among 

entities. This is not surprising, given that SNOMED CT is commonly leveraged for storing and 

retrieving symptoms, disorders, tests, medications, and procedures in various types of clinical 

data models and data repositories.  

 The conventional use of SNOMED CT involves the retrieval of patient data using 

SNOMED CT codes input by clinicians; this use case is limited in retrieving cases from legacy 

systems or institutions where SNOMED CT codes are not used. Since SNOMED CT has not 

been adopted as a standardized terminology EHRs until 2013 in the U.S. and still not been 

available in many countries, SNOMED CT code data are not readily available for patient data 

retrieval in many cases. When SNOMED CT concepts were extracted from free-text clinical 

narratives, however, the advantage of using SNOMED CT for cohort identification tasks can 

extend to environments where the input of SNOMED CT codes is not supported.  

 The extraction of SNOMED CT concepts from the free text also allowed for more 

sophisticated queries of patients. From free-text clinical narratives, one can query diseases that a 

patient had been diagnosed with or procedures that they had undergone, but were not codified by 
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clinicians due to the complexity in SNOMED CT code structure or the lack of time to input 

codes. Procedures such as small bowel obstruction can be seemingly unrelated to the current 

situation of a diabetic patient or irrelevant to the current practitioner’s reimbursement, for 

example, and would be unlikely to be included on the patient’s problem list by a doctor and lost 

due to discontinuity in care; such care-centric comments might only be found in free-text clinical 

notes. Since those major and minor problems that are more care-centric than cost-centric can be 

identified from free-text clinical notes only, cohort identification could be more sophisticated if 

SNOMED CT codes could be mapped from free-text clinical notes for cohort identification 

tasks. 

 Another benefit of using SNOMED CT, as shown in this study, is that it can be employed 

to measure similarities between queries (eligibility criteria) and patient records. The semantic 

similarity was useful in biomedical and computer science applications to determine how similar 

the two concepts are. The current study expanded the idea of semantic similarity between two 

individual concepts to the semantic similarity between queries and patient records. A unique 

challenge in measuring semantic similarity between queries and documents such as patient 

records was the disproportionate information quantity between the two, which was overcome by 

considering the patient record concepts that were the direct subtypes of a query concept when 

calculating similarity. This method prevented the current framework from violating some first 

principles of information retrieval: adding non-query terms to a document should not make it 

more relevant. By adding the logarithms of the frequency of concepts in a patient record, the 

method allowed more relevance to patient records that mentioned the query term more, while it 

gave diminishing marginal gain of relevance when it saw the same query term in the patient 

record. 
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 Semantic similarity measurement between a query and patient records provides a 

quantitative measure of each patient’s fitness in relation to the selection criteria. Quantified 

semantic similarity offers greater flexibility in recruiting patients than a binary determination of 

eligibility does; by calculating similarity and quantitative estimate of eligibility, clinical trial 

recruiters can control how extensively they will include potential subjects. 

 The proposed method is feasible since the UMLS Metathesaurus provides the taxonomic 

paths linked by is_a relations between concepts. By employing the Metathesaurus in the Python 

interface, navigating the paths between any concepts can be done to calculate the depths and 

number of subtype concepts. Adopting Python as an integrated processing interface also made 

the coordination among the various NLP subcomponents efficient. In this framework, regular 

expressions, document parsing, MySQL query, MetaMap interface, and similarity calculating 

were combined in the Python interface, uniting the whole NLP process of the current framework. 

 Preprocessing is a crucial step to successful cohort identification from free texts. Patient 

records often hold information about persons other than the patient (e.g., mother) and entities 

that have not yet occurred to the patient (e.g., treatment plans). Although the entities that were 

unrelated to the current situation of a patient could be fairly removed by empirical rules and 

regular expressions if the entities were syntactically located adjacent to the words, section 

division could warrant more reliable exclusion of entities that are unrelated to the current 

situation of patients. Even though the first attempt to exclude the concept of myocardial 

infarction extracted from the sentence “Family history: mother died of MI at age 59” failed, for 

example, it could be excluded from the final patient feature concept set by identifying and 

removing the entire section of family history. 

 Theoretically, the proposed similarity metric prevents the cohort identification framework 
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from retrieving biomedical concepts that are irrelevant to queries by allocating zero weight to 

those concepts that are not subsumed by query concepts. This results in reduced processing time, 

which is of substantial advantage to cohort identification tasks where patient records inevitably 

contain much noisy information.  

 The performance of the proposed model is promising, yielding a higher F1 score than the 

best performer of the 2018 n2c2. The error analysis of the result shows that most errors were 

caused by the discordance between the author’s and the data annotators’ medical knowledge. For 

example, the author did not accept myocardial infarction as a major complication of diabetes 

while some n2c2 annotators inconsistently did so. Although this may cause a prima facie drop in 

the performance, it does not imply a flaw in the framework: a user may choose to include 

coronary artery disease in the definition of major complications of diabetes and, in that case, the 

performance of the framework will improve. Though knowledge engineering for the construction 

of Query Concept Feature Set is outside the current research’s focus, it warrants additional 

independent research. 

 

5.2 Additional Findings 

 

 The current research unexpectedly faced possible labeling errors in the test dataset of the 

2018 n2c2. As discussed in section 1.1, labeling and annotation errors are not infrequent in 

publicly available data, which threatens the external validity of the models. Although deep 

learning is believed to be robust to label noise in train data, labeling errors in test datasets can 

destabilize benchmarks by which we measure progress in models (Northcutt et al. 2021). As 

Northcutt et al. (2021) put it, a greater deal of labeling errors is reflected in the high-capacity 
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prediction models than in their counterparts with fewer parameters (like NasNet vs. ResNet-18, 

NasNet’s fewer-parameter version). This is different from overfitting in which the quality of 

results worsens as the models try to learn too much from data; labeling errors are the problem of 

stability of the model, in which models with larger parameters produce worse predictions than 

their lower-capacity counterparts when evaluated on the corrected labels. This may lead to 

underestimation and abandonment of a useful model which could have been performed better in 

real-world settings. 

 The suspected labeling errors in the test data of the 2018 n2c2 were caused by the 

inconsistency in medical knowledge representation (patient records # 135 for DIABETES-

MAJOR and # 277 for ADVANCED-CAD) or annotation policy (patient records # 115, 182, and 

224 for DIABETES-MAJOR). Manual annotating and labeling of large-scale textual data are so 

extensive that annotators may lose track of what they have done and will suffer from inconsistent 

annotation practice. Labeling errors will be a perennial concern for the NLP community and lead 

to poor data utilization if not resolved.  

 

5.3 Areas of Improvement 

 

 In this study, Query Concept Feature Sets were constructed manually at the medical 

expert’s discretion. The automated generation of Query Feature Sets from natural language 

description of eligibility criteria was outside the current research’s focus, though it would be 

worth additional independent research. A suggested alternative to automatic query generation is 

to build reference sets for each selected criterion. For example, “history of myocardial 

infarction” can be represented as a reference set that contains the element concepts A7873496 | 
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Coronary arteriosclerosis |, A2938836 | Myocardial infarction |, A24246836 | Coronary 

artery stent |, A26575074 | EKG: myocardial infarction |, and A6919959 | Disorder of artery 

|.  

 The workflow of cohort identification tasks presented in this study may differ from those 

in real-world settings. Query Concept Feature Sets in this study could not be formulated without 

reading through patient records in the training dataset to understand the implicit agreement on 

the more specified definition of each eligibility criterion. The 2018 n2c2 did not pronounce the 

specifics of each eligibility criterion (e.g., whether dilation and curettage is intra-abdominal 

surgery), and the designers of cohort identification systems had no choice but to induce the 

specifics of each criterion by examining the training dataset either manually or through machine 

learning algorithms. Since the eligibility criteria descriptions by themselves are limited in 

providing information about the implicit selection process, this study tried to translate the 

implied selection rationale into Query Concept Feature Sets by comparing biomedical entities 

that satisfied each eligibility criterion with those that did not. This process is not necessary in 

real-world settings; instead, recruiters will translate the eligibility criteria directly into Query 

Concept Feature Sets to define their needs. Therefore, manual construction of Query Concept 

Feature Sets does not significantly restrict the application of the current framework to cohort 

identification in real-world settings because users can control defining eligibility criteria using 

their own set of concepts under their own authority. For instance, instead of excluding 

“Endometrial scaping” from the definition of intra-abdominal surgery, a user may choose to 

exclude “Excision of pelvis” in order not to take hysterectomy as well as dilation and curettage 

into account.  
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5.4 Limitations 

 

 It should be acknowledged that the current study is focused more on testing the ability of 

SNOMED CT’s semantic structure to query common EHR phenotypes (i.e., symptoms, 

diagnoses, procedures, medications, etc.) for the identification of patients from free-text clinical 

narratives, than it is about developing a cohort identification system that is ready to be deployed 

in real-world clinical or research settings. The current framework showed that care-centric 

terminologies such as SNOMED CT can represent clinical phenotypes embedded in the 

unstructured part of EHRs for a cohort identification task. This implies that SNOMED CT can 

make detailed information about a patient more readily sharable and discoverable, and that a 

cohort identification system based on SNOMED CT’s semantic structure promises better 

accessibility to patients across multiple healthcare systems, leading to a broader patient cohort. 

 One of the limitations of the current study is that it was tested upon three highly medical 

criteria only. Those three are thought to be the best testbed for SNOMED CT in that they 

allowed it to leverage the hierarchical relations between query and patient records. It is expected 

that supervised machine learning methods, which generate classifiers by supervised learning 

from training data input, would have an advantage in inference—a process examined in the 

ENGLISH and MAKES-DECISION criteria (Table 1)—over ontologies. The proposed 

framework, in addition, did not experiment with a laboratory results extraction task—a process 

examined in the HBA1C and CREATININE criteria (Table 1)—where the rule-based approach 

may have outperformed an ontology-based system (Stubbs et al. 2019). These limitations suggest 

the extent to which SNOMED CT can be further used for cohort identification tasks—future 

work will provide a hybrid system where SNOMED CT is employed along with supervised 
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machine learning and rules to demonstrate its performance in all thirteen criteria of the n2c2. 

 Another limitation is the fact that the proposed framework has not been tested on test data 

outside 2018 n2c2. A possible scenario of non-transferability of the current framework is mostly 

caused by a failure to appropriately preprocess free-text clinical notes produced at other 

institutions. The provenance of the current dataset was a single institution (i.e., UTHealth), and 

there may be a particular style of writing shared by clinicians in that institution, which makes the 

processing of unstructured narratives non-transferable to other hospitals. The organizers of 2018 

n2c2 separated visit records by a line of asterisks (*) followed by “Record date: YYYY-MM-DD” 

to merge different visit records for research purposes. The method adopted in this study to 

separate a patient record by visit date may not be generalizable to other datasets. When the 

current framework is to be employed in a real-world setting, a distinct strategy for merging visit 

records within a single patient record needs to be established. 

 Writing styles may also vary by individual clinicians: one may prefer using unofficial 

abbreviations while others may not. While I have tried to cover all possible variations of 

clinicians’ writing styles in the current framework, taking into account as many abbreviations I 

can imagine used in clinical settings as possible and as many ways to make sections (e.g., present 

illness, past medical history, etc.) discrete in free-text notes as possible, no preprocessing 

methods will be perfectly transferable to other institutional environments. However, owing to 

standardized medical education within the U.S. as well as worldwide, the discrepancy in writing 

styles among clinicians is not expected to be substantial. For example, the abbreviation “fh” 

represents “family history” both in New York and California. Rather, in this study, I am 

proposing the basic idea of exploiting SNOMED CT’s semantic relations extracted from free-

text clinical notes for identifying patient cohorts.  
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 Although some noisy SNOMED CT concepts can arise from non-readily-transferable 

preprocessing of clinical notes when the proposed framework is tested upon other datasets, the 

performance is not expected to drop significantly, since the current framework considers the 

descendants of query concepts only. Therefore, even though the concept “Texas (state)” was 

mistakenly extracted from the trigger word “tx,” which originally meant treatment, this will not 

contribute to any errors unless the query contains any terms that refer to states.  

 While the ground-truth labels of the 2018 n2c2 dataset were binary (“met” and “not 

met”), the current framework yielded numeric similarity scores. To reconcile the binary 

classification with the numeric score, threshold scores were set at the point where the best F1 

score could be achieved. This method of transforming numeric scores to binary classifications 

and finding the optimal threshold score may not be feasible in real-world settings. An optimal 

threshold score is subject to change by clinical trials, and it only provides information about the 

extent to which a patient record is semantically similar to an eligibility description (not eligibility 

class). Since the 2018 n2c2 dataset had provided no information on how much each patient is 

eligible for each clinical trial, the performance of the current framework could not be assessed to 

its greatest detail; only a crude estimation of classification performance could be measured by 

transforming numeric similarity scores to binary predictions. If the 2018 n2c2 dataset could be 

re-annotated with numeric figures that can tell how close each patient is to each clinical trial, the 

performance of the current framework could be measured in a much more sophisticated manner, 

ideally in terms of correlation coefficients. 
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5.5 Conclusion 

 

 The current study demonstrated that the semantic structure of SNOMED CT can be used 

for cohort identification task to query clinical phenotypes embedded in the unstructured part of 

EHRs. SNOMED CT was leveraged for cohort identification from free-text clinical notes, 

without referring to training data that requires extensive annotation and labeling. A novel 

similarity metric was developed using existing technology (i.e., MetaMap) and ontology (e.g., 

SNOMED CT), which can effectively and efficiently perform cohort identification. The 

hierarchical semantic relations of SNOMED CT measured the semantic similarity between 

eligibility criteria and each patient record and quantified how well the patient fits the eligibility 

criteria. Future research is suggested to develop a hybrid system that integrates ontology and 

machine learning-based approaches to enhance other NLP components such as inference in 

cohort identification tasks. 
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APPENDIX A: AUIS WITH LOWER QUANTIFIED IMPORTANCE (<0.5), THEIR 

DESCRIPTIONS, DEPTH LEVELS, AND EXAMPLE OF SUBTYPE CONCEPTS. 

AUI Description Depth 
level Example of subtype concept 

A3241965 Activity of daily living 5 Walking 

A16369886 Interpretation of findings 3 Diagnosis 

A2873197 Proton 6 Proton (to prevent mapping of a single character 
"h") 

A3016529 Drinks 4 Drinks 

A2881738 Foods 4 Egg fries 

A3161951 Natural material 4 Tree resins 

A3738091 Substance categorized by 
physical state 3 Liquid 

A3394388 Dietary product 3 Gluten-free cake mix 

A29562204 Medicinal product 3 Product containing aluminum 

A9417638 Vision test distance 7 1/3 meter (to prevent mapping of fraction figures, 
e.g., 1/3) 

A6917682 Complaint 6 Chief Complaint 

A3709940 Social and personal history 
finding 5 Returning home 

A2873229 Problem 5 Problem 

A3709956 Social context finding 5 Financially poor 

A13356695 Finding related to biological sex 4 Male 

A3469753 Functional finding* 4 Functional finding 

A3362993 Color finding 3 Dark color 

A3900203 Adverse incident outcome 
categories 3 Adverse incident resulting in death 

A3242802 Administrative statuses 3 Report status  

A3629808 Physical examination 
procedure* 6 Physical examination procedure 

A7881343 Review of systems* 5 Review of systems 

A3300149 Therapeutic procedure* 4 Therapeutic procedure 

A3092627 Administrative procedure 3 Hospital admission 

A2882492 Homo sapiens 13 Homo sapiens (to prevent mapping of "man") 

A3161523 N+ 6 N+ (to prevent mapping of a single character "n") 
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AUI Description Depth 
level Example of subtype concept 

A3204387 Staging and scales 2 Breslow system for melanoma staging 

A3566528 Monitoring* 5 Monitoring 
A3192955 Relative times 5 Before 

A13009256 Evaluation - action* 4 Evaluation - action 

A3214246 Types 4 Jones (to prevent mapping of person name) 

A3091961 Action* 3 Action 

A10884570 Clinical specialty 3 Cardiology 

A10884570 Certainties* 4 Certainties (to prevent mapping of "certain") 

A3281759 Finding status values 3 Worsening 

A28896694 Does form intended site 3 Enteral 

A3060341 Present* 5 Present  

A3089702 Absence findings 4 Negative (to preserve negation expressions in 
sentence) 

A3132009 Finding values 3 Positive 

A3473454 General clinical stage for 
disease AND/OR neoplasm 3 Late stage 

A23454121 Mechanism of disease spread 
value 3 Hematogenous spread 

A2887024 Surgery* 4 Surgery 

A3157401 Mechanisms 3 Barotrauma mechanisms 

A3566118 Modifiers of Analytes and 
Substances 3 Beta subunit (to prevent single-handed mapping of 

"beta" in "beta blockers") 

A28878916 Pharmaceutical dose form 3 Conventional release oral syrup 

A24090101 Precondition value 3 At rest 

A27784444 Process* 3 Process 

A3137011 Grades 5 Mild 

A3110547 Classes* 4 Classes 

A3123635 Editions* 4 Editions 

A3137422 Groups 4 Group A (to prevent mapping of letter "A") 

A3152689 Levels 4 Intermediate 

A3198151 Scores* 4 Scores 

A3204385 Stages 4 Stage 1A (to prevent mapping of number-letter 
combinations) 

A3214246 Types 4 Serotype H3N2 (to prevent mapping of number-
letter combinations) 
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AUI Description Depth 
level Example of subtype concept 

A3194939 Result comments 3 Normal gait (to prevent mapping of "normal") 

A6947385 Route of administration value 3 Intravenous route (to prevent mapping of "IV") 

A3200743 Side* 5 Side 

A7873282 Sport 3 Baseball 

A28898878 State of matter 3 Liquid 

A24089189 Technique 3 Mechanical 

A3755612 Time frame 3 Daily 

A3393038 Dialysis dosage form 4 Hemodialysis solution 

A3657907 Radiopharmaceutical dosage 
form 4 Radioactive implant 

A7880590 Percentage unit 5 % positive cells (to prevent mapping of "%") 
A3087908 per forty* 5 /40 (to prevent mapping of a numeric figure "40") 
A29521976 Unit of measure 3 Months 

A3030642 History of 4 History of 

A3243208 Times relative to admission 7 On admission 

A3126026 Event orders 6 Initially 

A3134454 Frequencies 5 Continuous 

A3100796 Behavior descriptors 4 Complicated 

A3296880 Pathogenesis 7 Drug-induced 
A3192915 Relationships 4 Autologous 

A3199217 Sensibilities 4 Olfactory 

A3120607 Directions 4 Elevation - value 

A3269797 Courses* 5 Courses 

A3121378 Distributions* 4 Distributions 

A3122687 Durations* 4 Durations 

A3134454 Frequencies* 4 Frequencies 

A3171632 Occurrences* 4 Occurrencies 

A3188236 Priorities* 4 Priorities 

A3210757 Time patterns 4 
Acquired (to prevent single-handed mapping of 
"acquired" in "acquired immunodeficiency 
syndrome") 

A3174565 Ordinal number  4 Secondary 

A3214887 Uniformities 4 Irregular 

A3214887 Velocities* 4 Velocities 
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AUI Description Depth 
level Example of subtype concept 

A7873501 Descriptor 3 More 

A10885554 Dosing instruction fragment 3 During - dosing instruction fragment 
A3285870 Healthcare professional  5 Doctor 

A13021175 Person in the healthcare 
environment 4 Patient 

A6945981 Person categorized by age 4 Women 

A7881113 Racial group 4 Caucasian 

A10884564 Clinical equipment and/or 
device 4 Audiometric room 

A3299532 Study* 10 Study 

A2981767 St. Lucia  6 St. Lucia (to prevent single-handed mapping of 
"ST" in "ST segment") 

A3286724 Location within hospital 
premises 5 Intensive care unit 

A3819332 Site of care 4 Medical center 

* The concept itself gets the quantified importance of < 0.5 and its quantified importance does 

not impact on its subtype concepts. 
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APPENDIX B. SIMILARITY SCORES OF PATIENT RECORDS FOR EACH ELIGIBILITY 

CRITERIA 

1. ABDOMINAL 

Patient Record 

Ground-Truth 
Label (0: not 
met, 1: met) Similarity Score Patient Record 

Ground-Truth 
Label (0: not 
met, 1: met) Similarity Score 

108 1 0.19939875 269 1 0.30074149 
115 1 0.2033543 270 0 0 
118 1 0.32610288 274 0 0 
119 0 0 276 0 0 
120 0 0 277 0 0 
131 0 0 282 0 0 
135 0 0.40986719 285 1 0.45841977 
137 0 0 293 0 0 
140 1 0.61905311 294 0 0 
141 0 0 296 1 1.34172682 
153 0 0 305 0 0 
155 0 0 309 0 0 
156 1 0.25704762 314 1 0.22574903 
158 1 0.32230894 317 0 0 
165 1 0.09090992 320 0 0 
166 0 0 321 0 0 
167 1 0.28298893 322 1 0.18508333 
171 1 0.73453488 323 1 1.264964 
173 1 0.12819482 327 0 0 
178 0 0 328 1 0.28867268 
182 1 0.08587637 342 1 0.12220492 
190 0 0 343 0 0 
192 0 0 346 0 0 
193 0 0 347 1 0 
194 0 0 348 0 0 
201 0 0 350 0 0 
205 0 0 351 0 0 
213 0 0 352 1 0.22198719 
216 1 0.03389064 353 0 0 
217 0 0 359 1 0.03389064 
218 1 0 360 0 0 
224 0 0 361 1 0.17175274 
227 0 0 368 1 0.29212562 
229 0 0 369 1 0.28923067 
232 0 0 370 0 0 
233 0 0 373 0 0 
236 1 0 379 0 0 
239 0 0 383 0 0 
240 0 0 384 0 0 
246 0 0 386 1 0.37656796 
251 0 0 394 1 0.72672658 
265 0 0 396 0 0 
266 0 0 399 0 0 
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2. ADVANCED-CAD 

Patient Record 

Ground-Truth 
Label (0: not 
met, 1: met) Similarity Score Patient Record 

Ground-Truth 
Label (0: not 
met, 1: met) Similarity Score 

108 1 5.65501471 269 1 3.81536883 
115 0 1.62925934 270 1 4.14874033 
118 1 6.32154951 274 1 4.03950843 
119 0 3.19611291 276 1 4.33056497 
120 0 0 277 0 1.84582156 
131 1 6.64275676 282 1 2.62561885 
135 1 0 285 1 1.72846692 
137 1 7.86296857 293 1 4.59379671 
140 0 0 294 1 4.26179305 
141 1 5.76449943 296 1 1.51067821 
153 1 3.14433263 305 0 0 
155 1 4.20913292 309 0 0 
156 0 3.68413988 314 1 4.64022968 
158 1 5.69785006 317 1 2.17096375 
165 1 2.85745935 320 0 0 
166 1 5.3868063 321 0 0 
167 1 2.49303301 322 0 0 
171 1 5.03032112 323 0 0 
173 1 1.13341559 327 0 0 
178 1 4.24264911 328 0 0 
182 1 5.71238305 342 0 2.8545091 
190 1 1.70483762 343 0 0 
192 0 0 346 0 0 
193 0 0 347 0 0 
194 0 4.79062329 348 0 0 
201 1 7.82275028 350 1 0 
205 0 2.23372449 351 0 0 
213 1 1.9066364 352 1 4.32396341 
216 1 7.65696804 353 0 0 
217 1 4.15368854 359 0 0 
218 1 6.71630761 360 0 0 
224 1 5.9244181 361 0 0 
227 1 7.04029076 368 0 0 
229 1 5.14753675 369 0 0 
232 1 3.38736823 370 0 0 
233 1 2.30898206 373 0 0 
236 1 2.5104864 379 0 0 
239 1 2.23798318 383 0 0 
240 1 5.55225805 384 0 0 
246 1 0 386 0 0 
251 0 0 394 0 0 
265 1 3.12998901 396 0 2.10083378 
266 0 3.10541547 399 0 0 
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3. MAJOR-DIABETES 

Patient Record 

Ground-Truth 
Label (0: not 
met, 1: met) Similarity Score Patient Record 

Ground-Truth 
Label (0: not 
met, 1: met) Similarity Score 

108 0 0 269 1 1.61478181 
115 1 0 270 1 6.55740748 
118 0 0 274 0 0 
119 0 0 276 0 0 
120 0 0 277 0 0 
131 1 1.78313927 282 0 0.12877817 
135 1 0 285 0 0 
137 0 0 293 0 0 
140 1 3.46232907 294 0 0 
141 0 0 296 1 0.82241593 
153 1 0.20827518 305 0 0 
155 0 0 309 1 0.54298671 
156 1 0.78248673 314 1 1.09395318 
158 0 0 317 1 1.64318162 
165 1 1.07418725 320 0 0 
166 1 0 321 1 2.02892486 
167 0 0 322 1 1.85578314 
171 0 0 323 1 0.52315068 
173 1 2.30378125 327 1 0.22026415 
178 0 0 328 0 0 
182 1 0 342 0 0 
190 1 0.66446982 343 1 0.54869589 
192 1 0.60377184 346 1 0.29234639 
193 0 0 347 0 0 
194 0 0 348 0 0 
201 1 0.64932599 350 1 1.53466451 
205 1 0.70107906 351 1 3.21220359 
213 0 0 352 1 0.9239485 
216 1 0.32941007 353 1 1.15933638 
217 0 0.27476711 359 0 0 
218 0 0 360 0 0 
224 1 0 361 1 6.01957264 
227 1 2.91644345 368 1 1.00793085 
229 0 0 369 0 0 
232 1 4.59201478 370 1 0.64838881 
233 0 0 373 0 0 
236 1 0.51691065 379 0 0 
239 1 3.86202308 383 0 0 
240 0 0 384 0 0 
246 0 0 386 0 0 
251 1 0.31650687 394 1 0.38479741 
265 0 0 396 1 3.43054753 
266 0 0 399 1 1.92584209 
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