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ABSTRACT 
Sharyn L. Rosenberg 
Multilevel validity:  

Assessing the validity of school-level inferences from student achievement test data 
(Under the direction of Dr. Gregory J. Cizek) 

 
 

 Psychometric theory is clear about the central role of validity and the importance of 

gathering evidence for a particular purpose. State achievement tests are generally developed 

with ample validity evidence for their intended inferences about student achievement. Such 

evidence may not be sufficient for drawing group-level inferences, a crucial point that is 

often ignored when student achievement scores are used in multilevel analyses to study 

effects at the school level. This study explores the process of gathering multilevel validity 

evidence necessary to make school-level inferences from student achievement tests. 

 Using data from approximately 28,000 students in grades 3, 5, and 8 in a northeastern 

U.S. state, this study examined the multilevel factor structure of mathematics achievement 

tests. Multilevel exploratory factor analyses were used to determine the optimal number of 

factors at both the student and the school levels of analysis. Multilevel confirmatory factor 

analyses were used to assess the extent to which the one-factor solutions on each level were 

feasible. Both standard (single level) confirmatory factor analyses and multilevel 

confirmatory factor analyses were used to compare the size and relative importance of factor 

loadings at the different levels of analysis. The statistical significance of the school-level 

factor loadings provided evidence about the extent to which the mathematics achievement 

test items were effective for discriminating between schools. 
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 For each of the three grades studied, there was only one meaningful factor identified 

(presumably mathematics achievement) at both the student and school levels of analysis. At 

each grade level, items differed in terms of both their absolute and relative size of their factor 

loadings at the student and school levels of analysis, suggesting that when school-level 

inferences are of interest, standard factor analyses provide insufficient information about test 

development and validation. The majority of items in this study were more discriminating at 

the school level than at the student level. Interpretations of these findings are discussed in the 

context of relevant research on validity and student achievement. Implications for 

educational measurement and ideas for future research are also addressed. 
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CHAPTER 1 

INTRODUCTION 

During the past decade, measurable student achievement outcomes have been brought 

to the forefront of both educational research and policy. State efforts to track student 

achievement as an indicator of school quality preceded one of the most influential federal 

education policies of all time, the No Child Left Behind Act of 2001 (NCLB, 2002). In 

addition to the unprecedented attention and stakes given to school accountability programs, 

NCLB (2002) has had a vast impact on the types of outcomes that are measured to assess 

educational interventions and other school-level processes. In the current climate, it would be 

difficult to obtain funding for research on school processes or for evaluations of school-level 

programs without intending to connect those processes or programs to student achievement, 

whether as a primary or secondary purpose. 

Contemporary debates about school effectiveness have tended to focus primarily on 

student achievement, not because behaviors, attitudes, and other student outcomes are 

deemed unimportant, but for the simple reason that test scores are so prominent now 

(Rumberger & Palardy, 2004). Similarly, the goal of increasing student achievement has 

become a primary focus of many educational programs, even those that do not directly serve 

students. For example, many studies of school-level programs (such as professional 

development workshops for principals or teachers) have goals of increasing student 

achievement for participating schools, even though students do not receive the treatment 
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directly. Consequently, the evaluations of such programs also tend to incorporate student 

achievement tests as outcome measures.  

In addition to the effect that NCLB has had on the prominence of student 

achievement, the annual administration and standardization of state achievement tests have 

resulted in a rich cache of available data for secondary purposes in educational research and 

program evaluation. State achievement tests undergo rigorous psychometric analyses during 

test development, are administered on a consistent basis, and are uniform across schools 

within a given state.  

The increased focus on student achievement and the availability of state test data have 

occurred during a time of widespread development and use of software for multilevel 

analysis in social science research. Multilevel models are used when the data structure is 

hierarchical, such as when individuals are clustered within groups (e.g., students within 

schools) or observations are clustered within persons (i.e., repeated measures design). 

Multilevel analyses can incorporate different variables at each level of the data hierarchy; an 

outcome can be modeled as a function of both individual and group predictors. Multilevel 

analyses can be used not only to account for the complex design of students nested within 

schools, but also to study the effects of a program that is administered at the school level. 

When the primary effect of interest is a school-level variable (e.g., principal or teacher 

participation in a program), the between-school variation in student achievement test scores 

can be used as a measure of school achievement. 

The increased emphasis on student outcomes, wealth of available data, and 

advancements in analytic techniques have all vastly increased the use of student test scores 

for secondary purposes in educational research and program evaluation. The use of state 
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achievement tests for these secondary purposes appears to offer many benefits. State testing 

programs invest considerable resources into the development and administration of student 

achievement tests, unlike many lesser-quality measures that may lack adequate psychometric 

properties. However, it is important to recognize that the stated purpose of most state testing 

programs is to measure the achievement of students rather than schools. Thus, it is imperative 

to investigate the validity of state achievement tests for the particular purpose of assessing 

school-level achievement.  



 

 

 

CHAPTER 2 

LITERATURE REVIEW 

According to the Standards for Educational and Psychological Testing (AERA, 

APA, & NCME, 1999; hereafter, Standards), the most important characteristic of the 

measurement process is validity. The following sections trace the importance of gathering 

validity evidence for the specific purpose of using student achievement results to make 

inferences about school-level outcomes. A discussion of validity in general is followed by an 

overview of the most common sources of validity evidence. There is also a focus on 

considerations specific to nested data (students in schools), most prominently, multilevel 

analyses. The dual goals of gathering appropriate validity evidence and accounting for 

multilevel data structures, typically independent procedures in current educational research, 

are woven together to frame the research questions in the context of multilevel validity. 

Validity 

Validity has been defined by Messick (1989) as, “an integrative, evaluative judgment 

of the degree to which empirical evidence and theoretical rationales support the adequacy 

and appropriateness of inferences and actions based on test scores or other modes of 

assessment” (p. 13). If the inferences made from test scores are not supported by adequate 

validity evidence, the intended use of the scores is threatened regardless of how high the 

reliability of the scores.  
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 Validity is a characteristic of an inference made from a test score rather than a 

characteristic of the test itself. Validity is a matter of degree; inferences are not valid or 

invalid, but rather, they are supported by validity evidence that ranges from strong to weak, 

confirming to disconfirming (Crocker & Algina, 1986). A test can have strong validity 

evidence for one purpose but little, no, or even contrary evidence for a different purpose. In 

the chapter on validity, the Standards (AERA, APA, & NCME, 1999) emphasizes the 

importance of gathering validity evidence for each intended use of a test. Such a practice is 

fundamental to responsible measurement and is essential for ensuring test fairness and 

preventing test misuse. 

The final chapter of the Standards (AERA et al., 1999) focuses on the use of tests in 

program evaluation and public policy. A primary consideration in using tests for program 

evaluation is the focus on measuring groups rather than individuals (AERA et al., 1999). 

Standard 15.1 highlights the importance of gathering validity evidence for each intended test 

purpose and includes the following comment: 

In educational testing, for example, it has become common 
practice to use the same test for multiple purposes (e.g., monitoring 
achievement of individual students, providing information to assist 
in instructional planning for individuals or groups of students, 
evaluating schools or districts). No test will serve all purposes 
equally well. Choices in test development and evaluation that 
enhance validity for one purpose may diminish validity for other 
purposes (p. 167). 

 
The measurement community acknowledges that psychometric considerations may vary 

according to the level of measurement (individual vs. group), but little guidance is provided 

on how to translate this acknowledgment into practice. The Standards (AERA et al., 1999) 

does not include any details or examples about how test validation approaches could be 

adapted from the measurement of individuals to groups, despite the insistence that it is 
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important to do so. Nor is there much information on the types of validity evidence most 

likely to vary according to the level of measurement. 

 In a recent special issue of Educational Measurement: Issues and Practice dedicated 

to assessing the adequacy of the current Standards, Linn (2006) discussed the current lack of 

guidance on psychometric issues related to aggregate test results. Although he argued that the 

shortcoming does not necessitate a revised edition of the Standards, Linn (2006) proposed 

several alternatives, including the development of, “a companion set of standards that would 

specifically address the uses of aggregate test results for evaluation or accountability 

purposes” (p. 56). Linn (2006) also noted that the lack of guidance on group-level 

measurement issues is not a new dilemma, but is a challenge that has been present for several 

decades. For example, the third edition of the Standards (AERA, APA, & NCME, 1974) 

contained a section on using tests for measuring groups in program evaluation, but the 

revision committee argued that group-level measurement issues were beyond the scope of the 

Standards and would necessitate the development of several different sets of standards (Linn, 

2006). 

 The discussions surrounding the revision of the 1974 Standards led to the 

development of a separate set of standards for program evaluation called Standards for 

Evaluations of Educational Programs, Projects, and Materials (Joint Committee on 

Standards for Educational Evaluation, 1981); the revised (current) edition was published in 

1994. The original version of the program evaluation standards included only eight pages on 

measurement, and a brief introduction to reliability and validity (Joint Committee on 

Standards for Educational Evaluation, 1981). The revised edition was also not designed to be 

a comprehensive reference in psychometrics; in fact, Standard A5.C encourages evaluators to 
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consult the Standards for Educational and Psychological Testing for direction on using tests 

in an evaluation (Joint Committee on Standards for Educational Evaluation, 1994). If 

program evaluation is considered to fall outside of the traditional boundaries of educational 

and psychological testing, it is not clear where evaluators should turn for technical expertise 

on measurement issues that are specific to program evaluation, such as drawing group-level 

inferences from individual measures.  

 The most recent edition of Educational Measurement (Brennan, 2006) includes a new 

chapter devoted to group-level measurement issues. However, in that chapter group-score 

assessments are essentially defined as tests relying on matrix sampling designs, such as 

NAEP, where group-level inferences are the only (or primary) purpose of the test (Mazzeo, 

Lazer, & Zieky, 2006). Mazzeo et al. (2006) did not refer to group-level measurement issues 

in program evaluation, nor to any instances where group-level inferences are a secondary use 

of tests that were originally developed to make inferences about individuals. In addition, 

there is no discussion of issues related to test development and validation that are specific to 

group-level measurement. The only such reference is a justification for the absence of this 

information, provided in a note that states: “Group-score assessments use item analysis for 

quality control purposes, and conduct DIF analyses. However, these are not different from 

approaches used in individual-score tests, so are not discussed here” (p. 694). The chapter on 

test validation (Kane, 2006) is similarly devoid of considerations related to the measurement 

of groups.  

 In a seminal article in psychometrics, Ebel (1961) said of validity: “It is universally 

praised, but the good works done in its name are remarkably few” (p. 640). Several decades 

later, Brennan (1998) also referred to the wide gap between validity theory and practice. 
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Although validity theory in general is hardly impoverished, guidance related to the validation 

of group-level inferences is lacking. Validity theory related to the measurement of 

individuals versus groups exists only on the broadest level possible in the form of general 

emphasis on establishing validity evidence for each intended use of a test. Clear guidance on 

how test development and validation efforts might differ based on whether the intended score 

inference pertains to individuals or groups, and advances in this regard are necessary to link 

validity theory and assessment practice. Without an understanding of how validity 

considerations may differ according to the level of measurement, it would be surprising if the 

good works done in the validation of group-level inferences were not remarkably few.  

Sources of Validity Evidence 

 According to the Standards, current potential sources of validity evidence include: 

evidence based on test content; evidence based on response process; evidence based on 

internal structure; evidence based on relations to other variables; and evidence based on test 

consequences (AERA et al., 1999). Validity evidence based on test content is gathered by 

consulting with subject matter experts to determine the extent to which the test items 

adequately sample from the specified domain of interest (AERA et al., 1999; Crocker & 

Algina, 1986). Content validity evidence is necessary to draw inferences on performance 

from the sample of test items to the entire domain (Messick, 1989). 

In state achievement tests, content validity evidence generally is gathered by 

comparing test items to state guidelines for the standard course of study in that subject area. 

The test domain typically is constructed through curriculum analysis, examination of state 

content standards, and consultation with subject matter experts. Test specifications are used 

to guide the comprehensive item writing process, where subject matter experts generate an 
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initial pool of items to represent the target domain. Through the process of field testing and 

committee review, item content validity is evaluated for accuracy, relevance, and 

representativeness (Messick, 1989). Alignment studies also may be used to assess the extent 

to which operational test items are an adequate sample of the content standards in the test 

domain (Webb, 1999). 

 Response process analyses seek to gather evidence that test-takers are actually 

engaging in the processes relevant to the construct being measured. Such evidence is often 

gathered by questioning examinees about the cognitive processes they engaged in while 

taking a test, a procedure sometimes referred to as a think-aloud protocol or cognitive 

interview (AERA et al., 1999; Willis, 2005). In multiple choice tests, cognitive interviews 

also may provide evidence that examinees are choosing the correct answers for the intended 

reasons. Depending on the type of test, response process analyses may also include rater 

judgment, monitoring of records, and analysis of examinee eye-movements or response times 

(AERA et al., 1999).  

 Internal structure analyses refer to procedures based on how individual test items 

relate to each other and therefore how they conform to the intended construct(s). If a test 

consists of subtests that purport to measure distinct constructs, then internal structural 

analyses should support the proposed test structure (AERA et al., 1999; Crocker & Algina, 

1986). The most common methods for gathering evidence based on internal structure include 

coefficients of internal consistency (e.g., coefficient alpha), nonparametric approaches to 

dimensionality, and factor analysis. 

 Validity evidence by relation to other variables includes several types of evidence. 

Convergent validity evidence is gathered when a test correlates highly with other measures of 
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the same or similar constructs. Discriminant validity evidence calls for lower correlations 

with measures of different constructs. Efforts to gather validity evidence for a mathematics 

achievement test may include demonstrating higher correlations with other measures of 

mathematics than with reading comprehension tests. Validity evidence may also be gathered 

by studying the relationship between a test and a criterion, either present (concurrent) or 

future (predictive), such as correlations between achievement test results and course grades 

(AERA et al., 1999; Crocker & Algina, 1986).  

 The newest and most controversial source of validity evidence is evidence based on 

test consequences. Proponents of consequential validity evidence argue that both intended 

and unintended consequences of test use can affect the validity of the test inferences. 

According to the Standards, “evidence about consequences may be directly relevant to 

validity when it can be traced to a source of invalidity such as construct underrepresentation 

or construct-irrelevant components” (AERA et al., 1999, p. 16). However, other 

consequences that are not a direct result of construct underrepresentation would not bear on 

the validity of the intended inferences.  

 It seems that construct underrepresentation would pose a threat to validity in general, 

beyond its impact on consequential validity. Although test consequences from sources other 

than construct underrepresentation are certainly important to the measurement process, it is 

not clear that they are appropriately subsumed under validity evidence. Despite calls for 

consequential validity evidence over the past 20 years, academics and testing professionals 

do not appear to have embraced this aspect of validity theory. In a review of tests appearing 

in the current edition of the Mental Measurements Yearbook (Spies & Plake, 2005), Cizek, 
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Rosenberg, and Koons (2008) found that less than three percent of reviews included any 

reference to consequential validity evidence.  

Factor Analysis as Validity Evidence 

 A common source of validity evidence for internal structure analysis is factor 

analysis, a statistical technique in which a correlation matrix is used to investigate how 

measured variables (items or tests) relate to each other. Factor analysis is based on the 

assumption that high correlations among variables (e.g., test items) are due to a smaller set of 

common causes, or latent factors. Factor analytic theory was first developed a little over a 

century ago in relation to intelligence testing, when Spearman (1904) hypothesized that a 

general ability factor (g) accounted for correlations in performance across multiple tests. The 

mathematical model was later refined by Thurstone (1947), who developed many of the 

principles of modern factor analysis, such as rotation and simple structure.  

The original applications of factor analysis were examples of exploratory factor 

analysis, a technique with the purpose of identifying the number and nature of the common 

factors underlying a set of variables. Confirmatory factor analysis, a technique used to test a 

priori  hypotheses about how measured variables relate to underlying factors, was 

subsequently developed and programmed by Jöreskog (1969). Both exploratory and 

confirmatory factor analysis are now widely used in educational and psychological research 

for many different purposes. 

 Although factor analysis was not originally developed for the purpose of gathering 

validity evidence, the technique has often been used for this purpose. Factor analysis is a 

method of gathering validity evidence because test items that were created to measure the 

same construct should be moderately correlated with each other and relate to the same 
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underlying factor (Crocker & Algina, 1986). Although exploratory factor analysis can be 

very helpful during test development, confirmatory factor analysis provides stronger test 

validation evidence because it directly addresses the question of whether the test appears to 

be measuring what it was intended to measure. 

In a review of the role of factor analysis in test validation, Goodwin (1999) traced one 

of the first references of the practice to the 1966 edition of the Standards. Interestingly, this 

early mention of using factor analysis as validity evidence was in the form of a caution that 

such evidence alone is insufficient and recommended that concurrent validity evidence was 

needed: “A new interest test that emphasizes the factorial approach to construct validity 

should nevertheless report relationships of the new instrument to relevant scales of some 

well-established tests” (APA, 1966, p. 23-24; as cited in Goodwin, 1999, p. 92).  

The current version of the Standards is much less judgmental in terms of the 

adequacy and importance of specific validity evidence requirements, although the Standards 

do emphasize the need to integrate several different sources of evidence (AERA et al., 1999). 

Reference to factor analysis in the Standards is made indirectly in the form of evidence 

related to the internal structure of tests: “Analyses of the internal structure of a test can 

indicate the degree to which the relationships among test items and test components conform 

to the construct on which the proposed test score interpretations are based” (AERA et al., 

1999, p. 13). In the most recent edition of Educational Measurement, Kane (2006) cautioned 

that patterns in test performance may be due to something other than the hypothesized 

constructs. Although factor analysis alone may not yield sufficient evidence to support a 

specific test use, a lack of factorial validity may seriously threaten a proposed inference. A 
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lack of factorial validity would pose a serious threat to the intended inferences, even if other 

sources of validity evidence (such as evidence based on test content) supported the test use. 

Messick (1989) asserted that test developers should avoid the temptation to focus 

validation efforts on claims that are easy to support; rather, they have the responsibility to 

investigate rival hypotheses that legitimately threaten the proposed test score interpretations. 

The unitary concept of validity (Messick, 1989) and the argument-based approach (Kane, 

1992) are not intended to be used as a means of cherry-picking the types of evidence that are 

most likely to yield confirming evidence. Camara and Lane (2006) noted that the removal of 

judgmental language in the last revision of the Standards, “appears to have moved the 

current standards to a more aspirational level” (p. 36). Unlike previous editions that deemed 

certain types of evidence as “Essential” (APA, 1954) or “Primary” (AERA et al., 1985) and 

largely placed the burden of gathering this evidence on test developers, the current Standards 

has, to some extent, shifted to test developers and/or users the responsibility to identify and 

investigate the most important threats to validity. If a test interpretation rests on the 

assumption that items are related to each other in a particular fashion, then factor analytic 

evidence seems imperative.  

Factor Analysis with Ordered-Categorical Variables 

 Traditional factor analytic techniques assume that measured variables (items or tests) 

are continuous and have an interval or ratio scale, an assumption that is clearly violated with 

dichotomous test data. If the categorical nature of the measured variables is ignored and 

traditional factor analytic techniques are applied, factor loadings will be biased and their 

standard errors will be underestimated. Both theory and software have been developed to 
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adapt linear factor analytic techniques to ordered-categorical variables (including binary 

data), a technique also known as item factor analysis (McDonald, 1999).  

 One variation of item factor analysis that is implemented in some current factor 

analytic software (e.g., LISREL, Jöreskog & Sörbom, 2006; MPLUS, Muthén & Muthén, 

2008) is the underlying variable approach, where ordered-categorical variables are posited to 

represent an unobserved continuous variable. For example, a mathematics test item is either 

correct or incorrect, but it may represent the continuous latent variable of mathematics 

ability. Factor analytic models with ordered-categorical variables also produce thresholds 

that divide the categories. The number of thresholds produced is one less than the number of 

categories, with binary items having only one threshold that represents the location on the 

underlying variable that corresponds with a 50% probability of endorsing the item (in the 

context of surveys or attitude scales) or of answering the item correctly (in the context of 

dichotomously-scored achievement tests). These models are estimated by computing 

tetrachoric or polychoric correlations and using a method of weighted least squares 

estimation. 

Cluster Sampling 

Most analytic techniques (including factor analysis) are based on the assumption that 

data were obtained from a simple random sample. In a simple random sample, all population 

members have an equal probability of inclusion in the sample and all possible samples are 

equally likely to occur (Lohr, 1999). Random number tables (or computer programs) 

generally are used to select simple random samples. In education, a simple random sample of 

students in the United States could be chosen by selecting students from across the nation 

without regard to their schools; this would likely result in a sample that included very few 
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students per school, scattered across many different locations. Such an approach is often not 

practical or cost effective in educational research. In practice, a true simple random sample is 

rare; cluster sampling is much more common, where individuals occur in related groups such 

as schools. Consequently, the cluster grouping contributes an additional source of variation to 

the sample. For example, if a multi-stage sample is drawn where a group of schools is 

chosen, followed by selection of some or all students in those schools, it is likely that 

students within the same school have more in common with each other than a true simple 

random sample of students across all possible schools. The issue surrounding the 

measurement of individuals nested in higher level groups has long been recognized in 

education and was once known as the “unit of analysis problem” (Knapp, 1977).  

 Cluster samples are less statistically efficient than simple random samples; that is, 

they usually require a much larger sample size to achieve the same level of statistical 

precision as a simple random sample (Lohr, 1999). The design effect is a ratio of the variance 

from the actual sampling plan to the variance of a simple random sample comprised of the 

same number of units (Lohr, 1999). The size of the design effect is largely dependent on the 

intraclass correlation coefficient (ICC), a measure of how similar the members of a cluster 

are (Lohr, 1999). The ICC and design effect are relatively large when cluster members are 

fairly homogeneous. In cluster sampling, the design effect is often much larger than one, 

indicating that many more sample members are required to achieve the same degree of 

statistical precision attained by a simple random sample. Consequently, when the design of a 

cluster sample is ignored during analysis and instead is treated as a simple random sample, 

parameter estimates are biased and standard errors are underestimated (Lohr, 1999).  
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There are two divergent approaches to addressing the effects of cluster samples, 

where individuals are nested in higher level groups. If the group-level variation is viewed as 

a nuisance (that is, as something that must be corrected in order to obtain accurate results for 

the overall sample), then a complex sampling approach is used. The complex sampling 

approach would be preferable if the primary purpose of the analysis was to produce estimates 

that are applicable to all students, regardless of their schools. Complex sampling programs 

such as SUDAAN (Research Triangle Institute, 1994), WesVar (Westat, 2000), or MPLUS 

(Muthén & Muthén, 2008) can be used to account for the clustered nature of the data by 

producing accurate point estimates and standard errors. The second alternative to working 

with cluster samples is multilevel modeling. This alternative is appropriate when the group-

level variation is not considered to be “noise” to be overcome but relates to questions of 

theoretical interest. The multilevel modeling approach would be preferable if the purpose of 

the analysis was to consider sources of variation at both the individual and school levels. 

There are many available computer programs for performing multilevel analyses, including 

HLM (Raudenbush, Bryk, Cheong, & Congdon, 2004), MPLUS (Muthén & Muthén, 2008), 

SAS (SAS Institute, 2005), SPSS (SPSS Inc., 2006) and MLwiN (Goldstein, 1998). 

Multilevel Considerations 

The multilevel approach is increasingly common in educational research because 

sources of variation related to the teacher, classroom, or school are often of theoretical or 

practical interest. The application of multilevel methods to education datasets is so natural, in 

fact, that many of the didactic references on multilevel analysis are based on data from 

students and schools (Hox, 2002; Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002; 

Singer, 1998). The multilevel approach enables researchers to ask new questions about 
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variables at higher levels of aggregation, such as effects related to schools. Previously, such 

questions could only be addressed by using a single school-level mean as the outcome 

variable, but this practice ignores within-school variation and leads to overestimates of 

statistical precision (Raudenbush & Bryk, 2002).  

In educational research, multilevel analysis has become a widely accepted alternative 

to traditional regression approaches, due to advances in both analytic techniques and 

software development. There are many examples of multilevel analyses both within and 

outside of education, particularly within the past few years. In multilevel modeling, an 

outcome can be modeled as a function of different predictor variables on multiple levels of 

analysis. For example, consider a two-level model, where students (level one observation 

units) are nested within schools (level two observation units). A student achievement 

outcome can be modeled as a function of student-level characteristics such as demographics 

and prior achievement (level one variables) and school-level characteristics such as school 

size, school proportion of free/reduced lunch students, and school participation in an 

intervention (level two variables).  

Although it is not as ubiquitous in research as traditional HLM, multilevel structural 

equation modeling (including multilevel factor analysis) has also been developed to 

incorporate latent variables into multiple levels of analysis (Heck, 2001; Heck & Thomas, 

2000; Muthén, 1991; Muthén, 1994; Muthén & Satorra, 1995). The theory is based on 

decomposing the total covariance matrix into separate components for between-level and 

within-level variation (Muthén, 1991). Application of multilevel structural equation 

modeling has demonstrated that relationships between measured and latent variables are not 
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necessarily the same across different levels of analysis (Heck, 2001; Heck & Thomas, 2000; 

Muthén, 1991; Muthén, 1994; Muthén & Satorra, 1995).  

There are several examples in educational research where multilevel factor analysis 

has been applied and a different factor structure was supported at each level. For example, 

Härnqvist, Gustafsson, Muthén, and Nelson (1994) analyzed verbal and numerical ability 

data at the individual and class levels for students in grades four through nine and found that 

several factors that appeared at the individual level were not supported at the class level. 

Using intelligence data from Van Peet (1992), Hox (2002) performed a multilevel factor 

analysis for students nested within families and found that although both verbal and 

numerical factors were supported at the student level, only a general intelligence factor could 

be extracted at the family level. In a multilevel factor analysis of speaking and writing, 

Kuhlemeier, van den Bergh, and Rijlaarsdam (2002) found seven speaking factors at the 

student level (corresponding to different types of speaking situations) but only a single 

general speaking factor at the school level. These examples support Muthén’s (1989) finding 

that the number of factors at the within level generally serves as an upper limit to the number 

of factors that can be extracted at the between level. 

In addition to the use of multilevel analyses, nested data structure is recognized as an 

important consideration during the study design phase. Shadish, Cook, and Campbell (2002) 

discussed the importance of designing experimental studies where the unit of assignment 

matches the unit of analysis. Researchers are cautioned not to conduct experiments where the 

effect of interest is confounded with the aggregate unit, such as assigning each teacher or 

school to a different experimental condition (Shadish, Cook, & Campbell, 2002; What Works 

Clearinghouse, 2006). Nested data structure is also an important consideration in power 
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analyses; several software programs have been development to incorporate information about 

the unit of analysis, including Optimal Design (Raudenbush & Liu, 2000) and PINT 

(Snijders & Bosker, 1993). The design effect is often used to inform requirements for sample 

size and power. 

Although the psychometric implications of the unit-of-analysis problem (Sirotnik, 

1980) have been known for over 25 years, issues in multilevel measurement have received 

much less attention in research and applied work than considerations in analysis and design. 

Sirotnik (1980) argued that issues related to the unit of analysis are almost never accounted 

for during the psychometric phase of research, even when the partitioning of effects into 

multiple levels is a primary goal of analysis. Sirotnik credited Cronbach (1976) with raising 

this issue in regard to the aptitude-by-treatment interaction: “Once the question of units [of 

analysis] is raised, all empirical test construction and item-analysis procedures need to be 

reconsidered” (Cronbach, 1976, p. 9.19-9.20; as cited in Sirotnik, 1980, p. 249). 

Psychometric considerations are important because the factor structure at different levels can 

yield conflicting results; therefore, it is crucial to coordinate test development and validation 

efforts with the appropriate analyses (Sirotnik, 1980).   

Not all multilevel models necessitate using the between level of analysis for test 

development and validation; this determination depends on the study purpose. If the primary 

effects and outcomes are conceptualized at the individual level, such as studying effects of 

gender on student achievement, then the within level is most appropriate. Multilevel factor 

analysis is still an appropriate technique when students are nested within schools, but the 

pooled within-level covariance matrix would be used for the effects of interest. If the total 

covariance matrix was used (as is the case in a traditional factor analysis), effects related to 
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both levels would be confounded. Unless the school-level variation is high, the total 

covariance matrix is likely to be more influenced by the pooled within-level covariance 

matrix, so the conclusions may not be that different (Sirotnik, 1980).  

If the main effect of interest is at a higher level of aggregation, however, then the 

between-level covariance matrix is most appropriate (Hox, 2002). For example, school 

participation in a program is a level two variable in a model with students and schools, so the 

student achievement outcome is being used to study systemic effects on school achievement. 

In this scenario, the between-level variation is most important to theoretical considerations. 

Use of the total covariance matrix would be incompatible with the study purpose, because it 

is possible for the between-level variation to be quite different from the total or pooled-

within variation. It is very possible for decisions related to test development and validation to 

differ depending on whether the total, pooled-within level, or between level covariance 

matrices were used for the analyses. 

Multilevel Factor Analysis for Test Development or Validation 

 Although issues related to multilevel psychometrics were raised over 25 years ago, it 

is still very rare for test development and validation efforts to consider multiple levels of 

analysis. There are a few recent examples in the literature where multilevel structural 

equation modeling has been used for test development or validation by examining 

psychometric properties at multiple levels of analysis. The examples span many disciplines; 

Table 2.1 provides a list of several recent examples of the use of multilevel SEM in 

psychometric analyses by the area of application and corresponding citation. 
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Table 2.1 

Recent Examples of Multilevel Structural Equation Modeling in Psychometric Analyses 

 

Area of application Citations 

 
Business  Cheung, Leung, and Au (2006); Dyer, Hanges, and Hall (2005); Hall, Hanges, 

and Dyer (in press); Van de Vijver and Watkins (2006); Zyphur, Kaplan, and 

Christian (2008) 

 
Education  Allodi (2002); Branum-Martin, Mehta, Carlson, Carlo, Fletcher, Ortiz, and 

Francis (2006); Farmer (2000); Janus and Offord (2007); Kaplan and Elliott 

(1997); Kaplan and Kreisman (2000); Kuhlemeier, van den Bergh, and 

Rijlaarsdam (2002); Mehta, Foorman, Branum-Martin, and Taylor (2005); 

Toland and De Ayala (2005); Van Horn (2003); Zimprich, Perren, and Hornung 

(2005) 

Health Care  Reise, Meijer, Ainsworth, Morales, and Hays (2006); Sexton, Helmreich, 

Neilands, Rowan, Vella, Boyden, Roberts, and Thomas (2006); Zhang and Wan 

(2005) 

Neighborhoods  Cerin, Leslie, Owen, and Bauman (2008); Cerin, Saelens, Sallis, and Frank 

(2006) 

Psychology  Li, Duncan, Duncan, Harmer, and Acock (1997); Papaioannou, Marsh, and 

Theodorakis (2004); Reise, Ventura, Nuechterlein, and Kim (2005) 

Sociology   Steele and Goldstein (2006) 
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 In the field of education, multilevel structural equation modeling has been used to 

conduct psychometric analyses on language and literacy, school readiness, school climate, 

self-esteem, student evaluations of teaching, and education indicators. Although Muthén 

(1991) conducted analyses on student and class components of mathematics achievement 

subtests, no examples with student achievement tests could be found with item-level data or 

with the purpose of investigating psychometric issues related to school-level achievement. 

Research Questions 

It is becoming increasingly common to use student achievement tests for the 

secondary purpose of measuring school achievement, particularly when the main effect of 

interest occurs at the school level. Professional standards are clear that intended, secondary 

uses of tests require additional validity evidence, but there is a lack of guidance on how to 

investigate potential differences in evidence for individual and group-level inferences. 

Multilevel factor analysis presents an opportunity to examine the internal structure of student 

achievement tests at both the student and school levels. The possibility for the factor 

structure to differ at multiple levels of analysis presents a plausible threat to the validity of 

school-level inferences. It is incumbent upon test users to investigate such threats before 

using student achievement data to make inferences about school achievement. 

This study seeks to address the following general question: Can analysis of the 

multilevel factor structure of large scale educational achievement tests provide validity 

evidence for drawing school-level inferences? State mathematics achievement test data from 

all students in grades 3, 5, and 8 in a single state were used in the study. 
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The specific research questions are as follows: 

1. What is the optimal factor structure at each level of analysis?  

2. To what extent is a one-factor solution feasible at both the within (student) and between 

(school) levels of analysis?  

3. How do factor loadings of a one-factor solution differ on the within (student) and 

between (school) levels of analysis? How do these loadings compare to an overall 

analysis where data are collapsed across levels?  

4. Are the factor loadings at the between level significantly different from zero? 

Summary 

Psychometric theory is clear about the central role of validity and the importance of 

gathering evidence for a particular purpose. State achievement tests are generally developed 

with ample validity evidence for their intended inferences about student achievement. Such 

evidence may not be sufficient for drawing group-level inferences, a crucial point that is 

often ignored when student achievement scores are used in multilevel analyses to study 

effects at the school level. This study explores the process of gathering multilevel validity 

evidence necessary to make school-level inferences from student achievement tests. 

 



 

 

 

CHAPTER 3 

METHODS 

 The study used secondary data from a statewide student achievement testing program 

in a northeastern state in the United States to assess the extent to which inferences about 

school-level achievement are supported. The dataset consisted of all students who took the 

Spring 2006 mathematics state achievement test in grades 3, 5, and 8. The study participants, 

performance measures, and data analysis procedures are described below. 

Participants 

 The total sample consisted of all 28,200 students in grades 3, 5, and 8 who 

participated in the Spring 2006 state achievement tests for mathematics. Descriptive statistics 

on the number of schools and number of students per school at each grade level are presented 

in Table 3.1.  
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Table 3.1 

Number of Students per School by Grade 

 

         Number of Students per School 

Test             Schools Minimum Maximum   Mean  SD 

 

Mathematics Grade 3   111        1        180   80.95  39.82 

Mathematics Grade 5     96        1        395   93.51  77.85 

Mathematics Grade 8    84        1        541 121.88           145.74 

 

Student demographic data are presented in Table 3.2. At each grade level, the percentage of 

males and females was approximately equal and slightly more than half of all students were 

Caucasian. 
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Table 3.2 

Percent Gender and Ethnicity by Grade 

 

         Gender           Ethnicity1 

Test               Male    Female W  AA A H AI 

 

Mathematics Grade 3 (N=8,985)     51    49  53 33 3        11 0 

Mathematics Grade 5 (N=8,977)    52    48  53 34 3        10 0 

Mathematics Grade 8 (N=10,238)   51    49  54 35 3 9 0 

___________________________________________________________________________ 

Total (N=28,200)       51    49  53 34 3        10 0 

1W-White; AA-African American; A-Asian; H-Hispanic; AI-American Indian 

 

Measures 

 The student achievement measures used were a sample of statewide, mandated tests 

designed to measure achievement in English language arts, mathematics, science, and social 

studies in grades 2-11. Only the mathematics test data were used for this study. The 

mathematics achievement tests were designed according to specifications developed by the 

state’s department of Education and were intended to align to state mathematics content 

standards in each grade. The mathematics achievement tests included selected items from the 

Stanford Achievement Test, 10th edition (SAT10) in addition to the items created by state 

educators to measure the state content standards. This merger of state-developed items with 

commercially produced (or “off the shelf”) items, known as an augmented achievement test 
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(AAT), is becoming increasingly common in state testing programs (Cizek, 2008). The 

mathematics achievement tests were intended to measure the following four mathematics 

content strands (i.e., sub-areas): numeric reasoning, algebraic reasoning, geometric 

reasoning, and quantitative reasoning. 

 The state mathematics achievement items included several item formats: multiple 

choice, short answer, and extended constructed response. The majority of each test consisted 

of four-option multiple choice items. Short answer (SA) questions were scored on a scale of 

0-2. Extended constructed response (ECR) questions were scored on a scale of 0-4. Each 

mathematics achievement test also included a small number of embedded field test items and 

a few additional SAT10 items that did not count towards a student’s actual score (and 

subsequently were not used in these analyses). The specifications of the operational 

mathematics achievement test items (including the SAT10 items) are listed in Table 3.3. 

 

Table 3.3 

Item Formats for Operational Items by Grade  

 

        Number of Items per Format1 

Test             MC (0-1)     SA (0-2)  ECR (0-4)          Total 

 

Mathematics Grade 3       45          14       0   59 

Mathematics Grade 5       48            8       3   59 

Mathematics Grade 8      28            8       3   59 

1MC-multiple choice; SA-short answer; ER-extended constructed response 
Range of possible points indicated in parentheses 
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 New items were developed according to the test specifications and were reviewed by 

the state’s Test Development Committee for accuracy, alignment to state content standards, 

and generally accepted testing practices. Any new items appearing on the spring 2006 tests 

were field-tested the previous year by embedding them in the operational tests. As part of the 

field testing procedures, all items were reviewed by content experts in addition to bias and 

sensitivity committees. The Mantel-Haenszel (MH) procedure was used to investigate 

potential differential item functioning (DIF) by race and gender.  

 Multiple choice items were scored electronically. Short answer and extended 

constructed response items were scored by trained raters who were college-educated, 

attended an intensive workshop specific to this administration of the test (including anchor 

papers and training sets), and were monitored for accuracy and consistency. Each student 

response was scored by one trained rater, and 10% of responses were checked for accuracy 

by a team leader. 

 Internal consistency reliability measured using Cronbach’s alpha was 0.95 for grade 3 

mathematics, 0.91 for grade 5 mathematics, and 0.93 for grade 8 mathematics. Correlations 

between the item types (SAT10, multiple choice, short answer, and extended constructed 

response) were all moderate to high; correlations ranged from 0.77 to 0.82 for grade 3 

mathematics, 0.64 to 0.80 for grade 5 mathematics, and 0.69 to 0.87 for grade 8 mathematics. 

Data Analysis 

 The study analyzed the factor structure of state mathematics achievement data at the 

student level, school level, and collapsed across both levels. The analysis plan included 

descriptive analyses, multilevel exploratory factor analyses, multilevel confirmatory factor 

analyses, and standard confirmatory factor analyses (collapsed across both levels). Data 
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preparation and descriptive analyses were performed in SPSS version 14.0. Factor analyses 

and multilevel factor analyses (both exploratory and confirmatory) were performed using 

MPLUS version 5.2 (Muthén & Muthén, 2008). Because the test items were unique to each 

grade level, all analyses were performed separately by grade. That is, each step of the 

analysis plan was conducted three times, once for each grade 3, 5, and 8.  

 The first step in the analysis plan was to determine the optimal factor structure at each 

level of analysis (Research Question 1). The purpose of Research Question 1 was to provide 

background on the structure of the current measures. The general purpose of this study was 

not to propose a series of complex alternative models, but rather to investigate the extent to 

which a one factor model is feasible with a focus on informing future test development 

efforts. The current scoring and analyses of the state assessment data rest on the assumption 

of a single factor regardless of whether this is the optimal solution. Many item response 

theory models typically used in state achievement testing programs assume 

unidimensionality at the student level, and performing school-level analyses effectively 

assumes unidimensionality at both levels of analysis. Prior to investigating (in subsequent 

research questions) the extent to which each measure is unidimensional, it was paramount to 

explore whether a more complex factor structure was appropriate when the data were 

partitioned into the within (student) and between (school) levels of analysis.  

This first research question was addressed using multilevel exploratory factor 

analyses. In MPLUS version 5.2 (Muthén & Muthén, 2008), multilevel exploratory factor 

analysis can be performed as a single step, eliminating the need for the user to conduct 

separate analyses of the pooled-within groups, between-groups, and collapsed covariance 

matrices as was previously required with Muthén’s (1994) four steps for multilevel 
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exploratory factor analysis. The multilevel exploratory factor analyses were conducted using 

weighted least squares means (WLSM), where parameter estimates are produced using a 

diagonal weight matrix, and standard errors and mean-adjusted chi-square statistics are 

produced using a full weight matrix (Muthén & Muthén, 2007). Although maximum 

likelihood estimation can also be used to estimate these models, Asparouhov and Muthén 

(2007) found that for two-level factor analyses with categorical variables, WLSM was 

superior to maximum likelihood in terms of convergence, robustness, and quality of 

estimation in MPLUS version 5.2 (Muthén & Muthén, 2008). 

Numerical integration was used with an EM algorithm, seven integration points per 

dimension, and a convergence criterion of 0.001. A probit link was used. Geomin, a type of 

oblique rotation, was employed to allow the factors to correlate. 

 The multilevel exploratory factor analyses yielded the following information for 

evaluating model fit: eigenvalues for within-level correlation matrices and between-level 

correlation matrices; chi-square tests; CFI; TLI; RMSEA; and SRMR for the within and 

between levels of analysis. In addition, the intraclass correlation (ICC) of each item provided 

a descriptive measure of the amount of variation at each level of analysis.  

 The eigenvalues for the within-level correlation matrices and the between-level 

correlation matrices were used to construct scree plots (Cattell, 1966) for each level of 

analysis. Scree plots provide a visual indication of how many factors may be feasible in 

exploratory factor analysis. The point at which a line drawn through the eigenvalues changed 

slope was used to provide a rough estimate of the number of factors present on the student 

level and the school level (Tabachnick & Fidell, 2001). 
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A summary of the fit indices and criteria used for evaluating the factor structure of 

the models is presented in Table 3.4. 

 

Table 3.4 

Fit Statistics Used to Evaluate the Optimal Number of Factors at Each Level of Analysis 

 
Statistic        Cutoff for Adequate Fit 

 
Chi-square (χ2)        p ≥ .05 

Tucker-Lewis Index (TLI)         ≥ .95 

Comparative Fit Index (CFI)         ≥ .95 

Root Mean Squared Error of Approximation (RMSEA)      ≤ .06 

Standardized Root Mean Squared Residual (SRMR)      ≤ .08 

 

The chi-square test is a fit index that evaluates a specified model by comparing it to a model 

that is just-identified (Kline, 1998). A statistically significant result indicates that the 

specified model does not fit the data as well as an unrestricted model; thus, p-values of 

greater than .05 are desirable. However, the chi-square test has been criticized as an 

inadequate measure of fit because it is overly sensitive to sample size (Kline, 1998). With 

large samples, it is virtually impossible to find an over-identified model that is not 

statistically significant. Small sample sizes are much more likely to yield non-significant chi-

square values, due to a lack of power for detecting model misfit. 

The Tucker-Lewis index (TLI) and comparative fit index (CFI) are incremental fit 

indices. The TLI (Tucker & Lewis, 1973) compares the fit of a specified model to both a null 
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model (where there are no factors and all dependent variables are unrelated) and an ideal 

model (where fit is exact in the population). The CFI (Bentler, 1990) is a non-centrality 

measure that also compares the fit of the proposed model to a null model. Hu and Bentler 

(1999) suggested that values of .95 or higher indicate good fit for both the TLI and CFI. 

The root mean squared error of approximation (RMSEA; Steiger & Lind, 1980) is a 

test of close fit; it is a measure of discrepancy that accounts for model complexity by 

including the degrees of freedom in the denominator. Consequently, increasing the number of 

parameters in the model will only improve the RMSEA if the decrease in the discrepancy 

function compensates for the loss of degrees of freedom. Hu and Bentler (1999) 

recommended a value of .06 or lower for the RMSEA. 

The standardized root mean squared residual (SRMR; Bentler, 1995) is based on the 

covariance residuals. The SRMR is the only fit index computed separately at the within and 

between levels of analysis. Hu and Bentler recommended values of .08 or lower for the 

SRMR. 

It should be noted that research on the criteria for fit indices has been based on 

standard (single level) structural equation modeling. It is not clear whether some of the 

guidelines may differ for multilevel structural equation modeling in general, and particularly 

for multilevel structural equation modeling with categorical variables. 

Finally, the factor structure and pattern of loadings (including size and presence of 

cross-loadings) were examined to determine whether each solution was interpretable. The 

unrestricted (just-identified) model at each level was also used to better understand the 

optimal factor structure at the other level (Muthén & Asparouhov, 2009). All of these 
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indicators were synthesized to arrive at the judgment of how many factors were optimal at 

each level of analysis. 

 Multilevel confirmatory factor analyses with one factor on each level were performed 

to address research questions 2 through 4. The analytic procedures for the multilevel 

confirmatory analyses were the same as those used in the multilevel exploratory factor 

analyses. That is, the models were estimated using weighted least squares means and a probit 

link function. Numerical integration was performed with an EM algorithm, using seven 

integration points per dimension and a convergence criterion of 0.001. To produce estimates 

for all factor loadings, the models were identified by setting the variance to one (on each 

level) rather than the first factor loading. Factor loading estimates were fully standardized. 

To determine whether judgments of item quality would differ using the unstandardized factor 

loadings, a subset of the analyses were re-run using an alternative identification method 

where the first factor loading was set to one on each level of analysis. 

The purpose of Research Question 2 was to investigate the adequacy of a one-factor 

solution, regardless of whether a more complex factor structure might provide a more 

optimal solution. It is possible that a unidimensional solution on collapsed data would not 

hold up when the data were separated into the within and between levels of analysis. Factor 

loadings on both levels were examined to determine whether any of the loadings were close 

to zero or negative. The presence of such loadings on one or more levels would indicate that 

some items were not contributing much to the total test score (in the case of loadings close to 

zero) or were even detracting from the total test score (in the case of negative loadings). The 

presence of several low or negative loadings would suggest that a one-factor solution was not 
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very feasible at a particular level of analysis. The fit statistics listed in Table 3.4 also were 

used to assess the adequacy of the solution with one factor on each level.  

 To compare factor loadings across different levels of analysis (Research Question 3), 

standard factor analyses (ignoring the clustered nature of the data) were performed in 

addition to the multilevel confirmatory factor analyses. The comparisons of the loadings 

from the single level factor analyses to the within- and between-level loadings were purely 

descriptive, as there are no significance tests available for this procedure. The following 

questions were considered as part of the descriptive analyses: Are the same items 

contributing the most to the total test score on different levels of analysis? Are the items that 

appear to be most strongly related to the overall test in a standard factor analysis still strong 

indicators on one or both levels when the data are separated into the within and between 

levels of analysis? The purpose of this research question was to determine whether 

judgments of item quality vary according to the level of analysis. 

 To compare factor loadings across the within and between levels of analyses, scaled 

chi-square difference tests were used. The scaled chi-square difference tests evaluated 

whether models where the factor loadings were constrained to be equal across levels fit 

significantly worse than models where the factor loadings were estimated freely 

(independently) at the within and between levels of analysis. Chi-square difference tests for 

normal outcomes can be performed by taking the difference between the chi-square values of 

nested models and evaluating the significance using the difference in the degrees of freedom 

(Kline, 1998). This traditional approach is not appropriate for non-normal outcomes where 

the Satorra-Bentler scaled chi-square statistic (Satorra & Bentler, 1994) is used, however, 

because the difference between two scaled chi-square values does not follow a scaled chi-
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square distribution. In order to perform the chi-square difference tests, it was necessary to use 

scaling correction factors produced in the output of the multilevel confirmatory factor 

analyses, based on formulas produced by Satorra (2000). Models were re-estimated using 

MLR, a type of maximum likelihood, and the chi-square difference tests were performed 

using loglikelihood values. The results of the scaled chi-square difference tests were 

evaluated at a significance level of p < .05. 

 The between-level factor loadings were the focus of Research Question 4. This 

research question expanded the descriptive analyses performed in Research Question 2 by 

examining the statistical significance of the loadings at the school level. Wald tests 

(Tabachnick & Fidell, 2001) were performed by dividing each parameter estimate (factor 

loading) by the standard error of the parameter estimate. Since this procedure follows a z-

distribution, a value greater than 1.96 was judged statistically significant at p < .05. Both the 

statistical significance and direction of the factor loadings were noted. The presence of 

several non-significant or negative loadings at the between level would suggest that the test 

items may not be effective for discriminating between schools, regardless of their ability to 

discriminate between students.  

Methodological Limitations 

 The data analysis procedures have some important limitations. First, the two-level 

structure of students within schools did not consider class-level variation. This is largely a 

practical limitation, as state achievement databases typically either do not capture or highly 

restrict access to teacher information. The software used in this study also imposed such a 

limitation, as MPLUS (Muthén & Muthén, 2008) and most other alternatives for performing 

multilevel factor analysis allow for only two levels of analysis in the study procedures.  
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 A second technical limitation is the assumption of homogeneity of the within-groups 

covariance matrix (Muthén, 1994). That is, using multilevel factor analysis to address the 

research questions assumes that the factor structure of test items at the student level is the 

same in every school in the state. Although a handful of multilevel validity studies in the area 

of cross-cultural research (e.g., Cheung, Leung, & Au, 2006) have performed multilevel 

measurement invariance analyses to evaluate the homogeneity of the within-groups 

covariance matrix, such a step is only possible when the number of level two units is 

relatively small, as occurs when culture is the level two unit. In analyses with large numbers 

of level two units, such as schools, it is generally not feasible to test this assumption. 

Although there is no reason to expect that this is a major problem, it must be acknowledged 

that violation of the assumption of homogeneity of the within-groups covariance matrix 

could potentially distort results of multilevel factor analyses.  

 Because the data were from a small state, the analyses were based on a relatively low 

number of level two units (ranging from 84 to 111 schools). Although the data still met the 

proposed minimum standard for multilevel factor analysis of 50-100 groups (Muthén, 1994), 

it is likely that more stable solutions could be achieved with larger numbers of schools. The 

number of level two units is particularly important for estimating the parameters on the 

school level. The ratio of the number of schools to the number of between level factor 

loadings was small, which has the potential to affect model identification, standard errors, 

and parameter estimates. If data from a larger state had been used instead, however, there 

would have been a greater chance of models not running due to computational complexity. 

Additional research using monte carlo simulations would provide guidance about the impact 

of a small number of level two units relative to the number of estimated parameters. 
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 Another potential issue related to sample size is the presence of small clusters 

(schools with few students at a particular grade level). As indicated in Table 3.1, there were a 

few schools with only one student at a particular grade. This may have been due to students 

testing off-grade or being homeschooled, among other possibilities. Muthén (2002) advised 

retaining all schools in this situation, even those with only one student. The small clusters 

still contribute to the between level estimation, even though they are not involved in the 

estimation of within level parameters. Maas and Hox (2005) studied the effects of sample 

size at each level in multilevel modeling and concluded that small cluster sizes did not lead to 

biased parameters or standard errors. The Maas and Hox (2005) study considered only equal-

sized clusters, however, where the smallest grouping was five people per cluster. Because 

there was no compelling evidence to eliminate schools with only one student, and 

considering the small level two sample size, all schools were retained in the analyses. 

However, there is no known information about the potential effects of including one person 

clusters in these types of analyses. More research is needed to determine what guidelines, if 

any, should be used in eliminating small level two units. To examine the potential impact of 

the small clusters, multilevel confirmatory factor analyses were re-run using only clusters of 

five or more, and the results were compared to those produced from the full sample. 

 A more general limitation of this study is the novelty of the methodology. Multilevel 

factor analysis for categorical variables is in its infancy in the field of quantitative methods, 

even in relation to traditional procedures for factor analysis, categorical variables, and 

multilevel models. Computational knowledge and guidance related to multilevel factor 

analysis for categorical variables is very limited, and much of the available expertise exists in 

nontraditional sources such as online message boards (e.g., www.statmodel.com) rather than 
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peer-reviewed journal articles. More informative guidelines are likely to emerge with 

continued research, but many complex issues related to model identification, sample size, 

model complexity, and model fit are currently not clear cut. This study may raise awareness 

of the importance and implications of multilevel validity, and it is this increased attention to 

new issues that often spurs advancement of methodological capabilities.   



 

 

 

CHAPTER 4 

RESULTS 

 Using data from approximately 28,000 students in grades 3, 5, and 8 in a northeastern 

U.S. state, this study examined the multilevel factor structure of mathematics achievement 

tests. Multilevel exploratory factor analyses were used to determine the optimal number of 

factors at both the student and the school levels of analysis. Multilevel confirmatory factor 

analyses were used to assess the extent to which the one-factor solutions on each level were 

feasible. Both standard (single level) confirmatory factor analyses and multilevel 

confirmatory factor analyses were used to compare the size and relative importance of factor 

loadings at the different levels of analysis. The statistical significance of the school-level 

factor loadings provided evidence about the extent to which the mathematics achievement 

test items were effective for discriminating between schools. 

Descriptive Results 

 The mathematics achievement tests contained 59 operational items at each grade level, 

consisting of multiple choice, short answer, and extended response items (see Table 3.3). The 

items were unique to each grade level; that is, for example, Item 1 for grade 3 and Item 1 for 

grade 5 were different, grade-appropriate items. Item means and standard deviations for each 

grade level are presented in Appendix A. For the results shown in Appendix A, as well as for 

all other results presented in this chapter, values have been rounded to two decimal places for 

the purpose of presentation in the tables.  
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 The intraclass correlations (ICCs) for each item were produced by the multilevel 

exploratory and confirmatory factor analyses. The ICCs provide a descriptive measure of the 

proportion of school-level variation for each item. ICCs close to zero indicate that nearly all 

variation is at the student level, whereas ICCs close to 1.00 indicate that nearly all variation 

is at the school level. The typical range for ICCs in mathematics achievement is 

approximately .20 – .30 (Hedges & Hedberg, 2007). 

 The ICCs for each item by grade level are presented in Tables 4.1 – 4.3. The ICCs 

appeared to be smallest for grades 3 and 5, with many values around 0.10 or lower, and no 

values of 0.20 or higher. In contrast, the majority of items in grade 8 had ICCs above 0.10, 

and 16 of the 59 items had ICCs above 0.20. This pattern of ICCs by grade level suggests 

that more school-level variation in mathematics achievement exists by the end of middle 

school than during the elementary school years. 
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Table 4.1 

Grade 3 Intraclass Correlations (ICCs), by Item 

 
Item ICC   Item ICC   Item  ICC 

 
1 .07   21 .09   41 .03 

2 .05   22 .04   42 .07 

3 .04   23 .07   43 .13 

4 .11   24 .09   44 .11 

5 .07   25 .14   45 .08 

6 .08   26 .18   46 .08 

7 .07   27 .11   47 .10 

8 .10   28 .11   48 .05 

9 .06   29 .11   49 .07 

10 .13   30 .12   50 .09 

11 .09   31 .13   51 .08 

12 .11   32 .13   52 .09 

13 .18   33 .05   53 .06 

14 .09   34 .10   54 .08 

15 .07   35 .11   55 .16 

16 .14   36 .04   56 .11 

17 .10   37 .04   57 .09 

18 .04   38 .08   58 .09 

19 .07   39 .15   59 .03 

20 .06   40 .10 



 42

Table 4.2 

Grade 5 Intraclass Correlations (ICCs), by Item 

 
Item ICC   Item ICC   Item  ICC 

 
1 .03   21 .07   41 .01  

2 .05   22 .05   42 .15 

3 .04   23 .04   43 .05 

4 .03   24 .14   44 .07 

5 .10   25 .03   45 .04 

6 .01   26 .05   46 .05 

7 .08   27 .04   47 .04 

8 .06   28 .11   48 .07 

9 .02   29 .11   49 .03 

10 .08   30 .09   50 .03 

11 .05   31 .07   51 .10 

12 .03   32 .03   52 .10 

13 .07   33 .14   53 .08 

14 .12   34 .09   54 .15 

15 .09   35 .10   55 .03 

16 .02   36 .10   56 .05 

17 .08   37 .06   57 .07 

18 .08   38 .05   58 .04 

19 .10   39 .02   59 .01 

20 .08   40 .05 
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Table 4.3 

Grade 8 Intraclass Correlations (ICCs), by Item 

 
Item ICC   Item ICC   Item  ICC 

 
1 .15   21 .13   41 .08 

2 .11   22 .27   42 .22 

3 .02   23 .07   43 .12 

4 .22   24 .14   44 .16 

5 .11   25 .14   45 .22 

6 .25   26 .23   46 .06 

7 .02   27 .16   47 .18 

8 .09   28 .26   48 .14 

9 .14   29 .26   49 .15 

10 .15   30 .24   50 .14 

11 .30   31 .29   51 .22 

12 .32   32 .15   52 .19 

13 .13   33 .12   53 .17 

14 .29   34 .22   54 .11 

15 .23   35 .18   55 .10 

16 .08   36 .11   56 .12 

17 .09   37 .11   57 .14 

18 .16   38 .14   58 .07 

19 .11   39 .06   59 .14 

20 .06   40 .16 
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Optimal Number of Factors at Each Level of Analysis 

 Research Question 1 concerned the optimal number of factors present at each level of 

analysis. This question was addressed using multilevel exploratory factor analyses. The 

eigenvalues, interpretability, and the fit criteria described in Table 3.4 were all used to arrive 

at the optimal number of factors for each level and grade. First, the eigenvalues at both the 

within and between levels of analysis were used to construct scree plots. Sample scree plots 

for each level of analysis at grade 3 are presented in Figures 4.1 and 4.2. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. Scree Plot of First 20 Within-level Eigenvalues for Grade 3 Data 

 

The pattern of eigenvalues was remarkably similar for each grade, with the only steep 

drop occurring after the first eigenvalue. This was true for both the student and school levels 

of analysis. The magnitude of the largest eigenvalues at the between level appeared much 

greater than the largest eigenvalues at the within level. The scree plots provide a rough 
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estimate of the number of factors present at each level of analysis, plus or minus a couple of 

factors. Based on the results from the scree plots, multilevel exploratory factor analyses were 

performed for 1-3 factors at each level of analysis. Models were also run where the factor 

structure was unrestricted (just-identified) at one level of analysis. When one level of 

analysis provides perfect fit (as occurs when the model is just-identified), this procedure 

facilitates the process of identifying a sufficient number of factors at the other level of 

analysis (Muthén & Asparouhov, 2009).  

 

 

  

  

 

 

 

 

 

 

 
Figure 4.2. Scree Plot of First 20 Between-level Eigenvalues for Grade 3 Data 

 

 Multilevel exploratory factor analyses were conducted on all combinations of models 

with one to three factors on each level, along with unrestricted models for one level at a time. 

This yielded a total of 45 multilevel exploratory factor analysis solutions (15 at each grade 

level).  
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 All 15 solutions at each grade level were considered and evaluated. Fit statistics for 

the most relevant subset of models are presented in Tables 4.4 – 4.6. Fit statistics for the full 

set of 45 models can be found in Appendix B. 

 

Table 4.4 

Two-level Exploratory Factor Analyses Fit Statistics for Grade 3 

 
Within Between  
Level  Level         SRMR          SRMR 
Factors Factors        χ2 (df)  CFI    TLI    RMSEA (within)       (between) 

 
UN  1   2,855.09* (1652) 1.00    1.00       .01     .00  .06 

1  UN   7,876.13* (1652)   .99      .98       .02     .03  .00 

1  1 14,374.00* (3304)   .98      .98       .02     .03  .06  

2  2 10,145.22* (3188)   .99      .99       .02     .03  .05 

3  3   7,099.61* (3074)   .99      .99        .01     .02  .04 

Note. CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Squared Error of 
Approximation; SRMR = Standardized Root Mean Squared Residual; UN = unrestricted. 
* p < .05  

 

 Table 4.4 provides information about the fit of the multilevel exploratory factor 

analyses for grade 3. The use of an unrestricted model at one level can provide valuable 

information about the fit of the model at the other level of analysis. Here the unrestricted 

model at the within level produced adequate fit statistics for one factor at the between level. 

With the exception of the chi-square statistic, all other fit statistics for the one factor between 

model met the criteria established previously and listed in Table 3.4. It should be noted that 

none of the 15 models for grade 3 produced a nonsignificant chi-square statistic. Given the 
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large sample size of approximately 9,000 students in grade 3, it would be unlikely to find a 

parsimonious model with a nonsignificant chi-square statistic.  

 The use of an unrestricted model at the between level also suggested that a one factor 

solution at the within level may be sufficient. With the exception of the chi-square statistic, 

all other fit statistics met the recommended criteria. Likewise, the model with one factor at 

each level also produced adequate fit statistics with the exception of the chi-square statistic. 

 Although the one factor solution at each level appeared to provide adequate fit for 

grade 3, solutions with two and three factors resulted in slightly better fit. Although the 

improvement in most fit statistics is likely statistically significant, it is expected that 

additional factors will improve fit even when they are largely noise. The patterns of factor 

loadings for each combination of factors were examined for size and interpretability. In all 

cases, solutions with multiple factors resulted in one dominant factor, with few to no large 

loadings on the other factor(s). For example, in the model with two factors at each level (see 

Appendix C), nearly all items had moderate to strong loadings (.4 – .7) on the first factor at 

the within level, and only 1 of the 59 items had a loading of .3 or greater on the second factor 

at the within level. At the between level, all items had strong loadings (.6 – 1.0) on the first 

factor, and only 3 of the 59 items had loadings of .3 or greater on the second factor. This 

pattern was evident for all models with multiple factors at one or more levels. Although the 

majority of factor loadings were statistically significant, the secondary loadings did not 

account for much explained variation. These findings suggest that the one factor solution at 

each level provided the most parsimonious model for grade 3, while models with additional 

factors were evidence of overfactoring. The solution for one factor at each level of analysis is 

presented in Appendix D. 
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 For grade 5, the results for the number of factors at the between level were mixed (see 

Table 4.5). When an unrestricted model was used at the within level, the one factor solution 

at the between level met the recommended criteria for the TLI, CFI, and RMSEA, but did not 

meet the standard for the SRMR at the between level or the chi-square statistic.  

 

Table 4.5 

Two-level Exploratory Factor Analyses Fit Statistics for Grade 5 

 
Within Between  
Level  Level         SRMR          SRMR 
Factors Factors        χ2 (df)  CFI    TLI        RMSEA (within)       (between) 

 
UN  1   2,255.57* (1652) 1.00    1.00  .01     .00  .10 

1  UN   5,551.48* (1652)   .99      .98  .02     .03  .00 

1  1   9,649.71* (3304)   .99      .99  .02     .03  .10 

2  2   7,258.78* (3188)   .99      .99  .01     .02  .09 

3  3   5,920.06* (3074)   .99      .99  .01     .02  .08 

Note. CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Squared Error of 
Approximation; SRMR = Standardized Root Mean Squared Residual; UN = unrestricted. 
* p < .05 

 

As mentioned previously, the chi-square statistic is very sensitive to sample size, and none of 

the 15 models run on the approximately 9,000 students in grade 5 produced a nonsignificant 

chi-square statistic. The SRMR at the between level, however, suggests that additional 

factors could improve model fit, as the models with three factors on the between level did 

meet the recommended guideline of .08 for the SRMR. At the within level, the models with 
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one factor did provide adequate fit, with the exception of the chi-square statistic. Models with 

additional factors provided slightly better fit. 

 When the factor loadings were examined for solutions with multiple factors at one or 

more levels, however, none of the solutions were interpretable. As with grade 3, there was 

strong evidence of one primary factor, with the additional factors having few or no moderate 

loadings. Consequently, the solution with one factor at each level was judged to be most 

parsimonious for grade 5. Factor loadings for this solution are provided in Appendix D. 

 

Table 4.6 

Two-level Exploratory Factor Analyses Fit Statistics for Grade 8 

 
Within Between  
Level  Level         SRMR          SRMR 
Factors Factors        χ2 (df)  CFI    TLI    RMSEA (within)       (between) 

 
UN  1   1,068.96 (1652) 1.00 1.00  .00     .00  .05 

1  UN   9,204.67* (1652)   .98   .97  .02     .04  .00 

1  1 16,200.54* (3304)   .97   .97  .02     .04  .05  

2  2   5,372.34* (3188) 1.00 1.00  .01     .02  .04 

3  3   4,015.77* (3074) 1.00 1.00  .01     .02  .03 

Note. CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Squared Error of 
Approximation; SRMR = Standardized Root Mean Squared Residual; UN = unrestricted. 
* p < .05 

 

 For grade 8, the unrestricted model at the within level provided evidence that a single 

factor was sufficient at the between level (see Table 4.6). This solution met the criteria for all 

fit statistics, including the chi-square statistic. The unrestricted model at the between level, 
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with one factor at the within level, resulted in adequate fit with the exception of the chi-

square statistic. It should be noted that the chi-square statistic was significant for all solutions 

where the within level was estimated, which is not surprising given the approximately 10,000 

students included in the grade 8 analyses. Although the one factor solution at each level 

generally provided adequate fit, the fit did improve slightly with additional factors. However, 

as with the solutions for grades 3 and 5, the additional factors had few to no high loadings 

and were not interpretable. Therefore, the one factor solution was preferred as most 

parsimonious. Factor loadings for this model are also provided in Appendix D. 

Feasibility of One Factor Solution at Each Level of Analysis 

The second research question investigated the extent to which one factor solutions at 

each level were feasible, regardless of how many factors were optimal. Multilevel 

confirmatory factor analyses were performed for each grade, with a single factor at the 

student level and a single factor at the school level. Given the findings of Research Question 

1, it appears that the one factor solutions were not only feasible but were the most 

interpretable and parsimonious. The fit statistics were the same as those for the one factor 

multilevel exploratory factor analyses (see Tables 4.4 – 4.6) and were previously discussed in 

regard to the first research question. Standardized factor loadings and standard errors from 

the one factor multilevel confirmatory factor analyses are presented on the left side of Tables 

4.7 – 4.9. Standardized factor loadings and standard errors from the single level confirmatory 

factor analyses (where the student and school levels are collapsed) are presented on the right 

side of the same tables for purposes of comparison. Relevant findings from the collapsed 

solutions will be discussed in regard to Research Question 3. 
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Factor loadings at the within and between levels were examined as indicators of item 

quality. A loading that was near zero or negative would indicate that an item was not 

contributing much to (or was even detracting from) the measurement of the construct at a 

given level of analysis. For grade 3, the majority of the within-level loadings were moderate, 

ranging from .26 – .73. None of the within-level loadings for grade 3 were negative or close 

to zero. The between-level loadings were uniformly strong for grade 3, ranging from .72 – 

99. Consequently, for grade 3, it appears that all items contributed to the measurement of the 

construct at both the student and school levels of analysis.
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Table 4.7 

Confirmatory Factor Analyses Solutions for Grade 3 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
1  .58* (.01)  .85* (.04)   .60* (.01) 

2  .26* (.02)  .79* (.08)   .31* (.02) 

3  .34* (.01)  .78* (.06)   .37* (.01) 

4  .65* (.01)  .94* (.02)   .69* (.01) 

5  .61* (.01)  .84* (.04)   .62* (.01) 

6  .66* (.01)  .95* (.02)   .68* (.01) 

7  .47* (.01)  .80* (.04)   .50* (.01) 

8  .61* (.01)  .91* (.03)   .64* (.01) 

9  .50* (.01)  .95* (.03)   .53* (.01) 

10  .57* (.01)  .80* (.04)   .60* (.01) 

11  .46* (.01)  .87* (.03)   .50* (.01) 

12  .63* (.01)  .93* (.02)   .67* (.01) 

13  .71* (.01)  .92* (.02)   .74* (.01) 

14  .58* (.01)  .99* (.01)   .63* (.01) 

15  .46* (.01)  .91* (.03)   .51* (.01) 

16   .72* (.01)  .95* (.02)   .75* (.01) 

17  .58* (.01)  .84* (.04)   .61* (.01) 

18  .46* (.01)  .96* (.03)   .48* (.01) 

19  .62* (.01)  .96* (.02)   .64* (.01) 

20  .63* (.01)  .95* (.02)   .65* (.01) 

Note. SE = Standard Error.  
* p < .05
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Table 4.7 (continued) 

Confirmatory Factor Analyses Solutions for Grade 3 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
21  .54* (.01)  .87* (.03)   .57* (.01) 

22  .26* (.01)  .87* (.04)   .31* (.01) 

23  .54* (.01)  .83* (.04)   .56* (.01) 

24  .53* (.01)  .94* (.02)   .57* (.01) 

25   .46* (.02)  .91* (.03)   .53* (.01) 

26  .64* (.01)  .92* (.02)   .69* (.01) 

27  .65* (.01)  .91* (.02)   .68* (.01) 

28  .59* (.01)  .90* (.03)   .63* (.01) 

29  .64* (.01)  .92* (.02)   .67* (.01) 

30  .44* (.01)  .80* (.04)   .49* (.01) 

31  .54* (.01)  .92* (.02)   .60* (.01) 

32  .59* (.01)  .96* (.01)   .64* (.01) 

33  .39* (.01)  .94* (.03)   .43* (.01) 

34  .53* (.01)  .91* (.03)   .58* (.01) 

35  .73* (.01)  .91* (.03)   .76* (.01) 

36   .32* (.02)  .73* (.09)   .35* (.02) 

37  .46* (.02)  .83* (.06)   .48* (.02) 

38  .65* (.01)  .98* (.02)   .68* (.01) 

39  .55* (.01)  .80* (.04)   .59* (.01) 

40  .56* (.01)  .91* (.03)   .60* (.01) 

Note. SE = Standard Error.  
* p < .05 
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Table 4.7 (continued) 

Confirmatory Factor Analyses Solutions for Grade 3 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
41  .43* (.01)  .91* (.04)   .45* (.01) 

42  .52* (.01)  .92* (.03)   .55* (.01) 

43  .61* (.01)  .76* (.05)   .63* (.01) 

44  .58* (.01)  .72* (.06)   .60* (.01) 

45  .61* (.01)  .98* (.02)   .65* (.01) 

46   .69* (.01)  .94* (.02)   .71* (.01) 

47  .65* (.01)  .90* (.03)   .67* (.01) 

48  .50* (.02)  .96* (.07)   .53* (.02) 

49  .61* (.01)  .98* (.02)   .64* (.01) 

50  .56* (.01)  .96* (.02)   .60* (.01) 

51  .50* (.01)  .88* (.04)   .54* (.01) 

52  .48* (.01)  .91* (.03)   .53* (.01) 

53  .34* (.02)  .93* (.05)   .39* (.02) 

54  .41* (.01)  .81* (.04)   .45* (.01) 

55  .46* (.02)  .63* (.07)   .50* (.02) 

56   .53* (.01)  .91* (.03)   .57* (.01) 

57  .48* (.01)  .87* (.03)   .52* (.01) 

58  .65* (.01)  .97* (.02)   .69* (.01) 

59  .50* (.01)  .96* (.05)   .50* (.01) 

Note. SE = Standard Error.  
* p < .05 
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Table 4.8 

Confirmatory Factor Analyses Solutions for Grade 5 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
1       .55* (.01)   .96* (.03)    .57* (.01) 

2    .49* (.01)   .98* (.03)    .52* (.01) 

3    .47* (.01)   .96* (.03)    .49* (.01) 

4    .41* (.01)   .94* (.04)    .44* (.01) 

5    .48* (.01)   .81* (.05)    .51* (.01) 

6     -.02 (.02)    -.13 (.20)     -.02 (.02) 

7    .62* (.01)   .93* (.03)    .64* (.01) 

8    .56* (.01)   .99* (.02)    .59* (.01) 

9    .36* (.01)   .86* (.07)    .38* (.01) 

10    .45* (.01)   .77* (.05)    .47* (.01) 

11    .56* (.01)   .94* (.02)    .58* (.01) 

12    .36* (.01)   .86* (.05)    .38* (.01) 

13    .62* (.01)   .93* (.02)    .64* (.01) 

14    .54* (.01)   .71* (.06)    .56* (.01) 

15    .61* (.01)   .91* (.03)    .63* (.01) 

16     .30* (.01)   .98* (.03)    .33* (.01) 

17    .63* (.01)   .97* (.02)    .65* (.01) 

18    .44* (.01)   .54* (.09)    .45* (.01) 

19    .58* (.01)   .90* (.03)    .62* (.01) 

20    .61* (.01)   .90* (.03)    .63* (.01) 

Note. SE = Standard Error.  
* p < .05
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Table 4.8 (continued) 

Confirmatory Factor Analyses Solutions for Grade 5 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
21  .59* (.01)   .88* (.03)   .61* (.01) 

22  .56* (.01)   .91* (.04)   .58* (.01) 

23  .51* (.01)   .93* (.03)   .53* (.01) 

24  .39* (.01)   .56* (.07)   .41* (.01) 

25  .46* (.01)   .96* (.03)   .48* (.01) 

26  .50* (.01)   .80* (.05)   .51* (.01) 

27  .39* (.01)   .76* (.07)   .40* (.01) 

28  .62* (.01)   .72* (.05)   .63* (.01) 

29  .55* (.01)   .94* (.02)   .58* (.01) 

30  .55* (.01)   .97* (.01)   .58* (.01) 

31  .59* (.01)   .93* (.03)   .62* (.01) 

32  .37* (.01)   .71* (.08)   .38* (.01) 

33  .46* (.01)   .24* (.11)   .43* (.01) 

34  .52* (.01)   .94* (.03)   .56* (.01) 

35  .50* (.01)   .59* (.08)   .50* (.01) 

36   .63* (.01)   .91* (.03)   .66* (.01) 

37  .51* (.01)   .89* (.04)   .54* (.01) 

38  .43* (.02)   .82* (.06)   .46* (.01) 

39  .28* (.02)   .77* (.11)   .29* (.02) 

40  .41* (.01)   .77* (.06)   .43* (.01) 

Note. SE = Standard Error.  
* p < .05 
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Table 4.8 (continued) 

Confirmatory Factor Analyses Solutions for Grade 5 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
41  .14* (.02)     .10 (.17)   .13* (.02) 

42  .43* (.01)   .53* (.08)   .44* (.01) 

43  .59* (.01)   .83* (.05)   .60* (.01) 

44  .56* (.01)   .91* (.03)   .59* (.01) 

45  .64* (.01)   .98* (.03)   .66* (.01) 

46  .57* (.01)   .94* (.03)   .59* (.01) 

47  .49* (.01)   .82* (.06)   .50* (.01) 

48  .39* (.02)   .76* (.06)   .41* (.01) 

49  .38* (.02)   .88* (.06)   .40* (.02) 

50  .52* (.02)   .94* (.09)   .54* (.02) 

51  .47* (.01)   .84* (.04)   .51* (.01) 

52  .62* (.01)   .96* (.02)   .65* (.01) 

53  .49* (.01)   .72* (.06)   .51* (.01) 

54  .53* (.01)   .82* (.04)   .56* (.01) 

55  .40* (.02)   .95* (.06)   .42* (.02) 

56   .28* (.02)   .73* (.08)   .31* (.01) 

57  .56* (.01)   .96* (.03)   .59* (.01) 

58  .52* (.01)   .95* (.03)   .55* (.01) 

59  .15* (.01)   .68* (.19)   .16* (.01) 

Note. SE = Standard Error.  
* p < .05  
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Table 4.9 

Confirmatory Factor Analyses Solutions for Grade 8 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
1  .51* (.02)   .94* (.02)   .55* (.01) 

2  .49* (.01)   .93* (.04)   .53* (.01) 

3  .21* (.01)   .47* (.10)   .20* (.01) 

4  .56* (.01)   .92* (.03)   .60* (.01) 

5  .43* (.02)   .88* (.03)   .45* (.01) 

6  .40* (.01)   .83* (.06)   .47* (.01) 

7  .05* (.01)  -.29* (.12)     .02 (.01) 

8  .34* (.01)   .69* (.08)   .39* (.02) 

9  .51* (.01)   .88* (.04)   .56* (.01) 

10  .57* (.02)   .87* (.05)   .58* (.01) 

11  .67* (.01)   .96* (.05)   .73* (.01) 

12  .70* (.02)   .95* (.08)   .72* (.01) 

13  .56* (.01)   .97* (.02)   .60* (.01) 

14  .73* (.01)   .96* (.06)   .76* (.01) 

15  .64* (.01)   .93* (.06)   .68* (.01) 

16   .45* (.01)   .97* (.02)   .48* (.01) 

17  .47* (.01)   .97* (.02)   .50* (.01) 

18  .55* (.01)   .99* (.01)   .59* (.01) 

19  .50* (.01)   .98* (.01)   .53* (.01) 

20  .43* (.01)   .88* (.04)   .44* (.01) 

Note. SE = Standard Error.  
* p < .05
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Table 4.9 (continued) 

Confirmatory Factor Analyses Solutions for Grade 8 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
21  .56* (.01)    .96* (.02)   .60* (.01) 

22  .72* (.01)    .96* (.05)   .76* (.01) 

23  .44* (.01)    .96* (.02)   .47* (.01) 

24  .50* (.01)    .98* (.01)   .55* (.01) 

25  .61* (.01)    .98* (.01)   .66* (.01) 

26  .56* (.01)    .93* (.03)   .61* (.01) 

27  .50* (.01)    .95* (.03)   .55* (.01) 

28  .61* (.01)    .98* (.03)   .68* (.01) 

29  .72* (.01)    .96* (.02)   .76* (.01) 

30  .61* (.01)    .94* (.02)   .66* (.01) 

31  .72* (.01)    .95* (.05)   .74* (.01) 

32  .54* (.01)    .90* (.03)   .56* (.01) 

33  .56* (.01)   1.00* (.01)   .59* (.01) 

34  .67* (.02)    .71* (.08)   .66* (.01) 

35  .68* (.01)    .98* (.02)   .72* (.01) 

36   .52* (.01)    .89* (.03)   .56* (.01) 

37  .48* (.01)    .96* (.02)   .53* (.01) 

38  .55* (.01)    .96* (.02)   .59* (.01) 

39  .23* (.02)    .68* (.07)   .26* (.01) 

40  .64* (.01)    .97* (.02)   .67* (.01) 

Note. SE = Standard Error.  
* p < .05 
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Table 4.9 (continued) 

Confirmatory Factor Analyses Solutions for Grade 8 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
41  .19* (.02)   .56* (.09)   .22* (.01) 

42  .71* (.01)   .99* (.02)   .75* (.01) 

43  .55* (.01)   .94* (.02)   .61* (.01) 

44  .51* (.01)   .98* (.01)   .55* (.01) 

45  .61* (.01)   .93* (.02)   .65* (.01) 

46   .39* (.01)   .78* (.07)   .39* (.01) 

47  .61* (.01)   .94* (.04)   .63* (.01) 

48  .52* (.01)   .96* (.01)   .56* (.01) 

49  .49* (.01)   .96* (.02)   .54* (.01) 

50  .46* (.01)   .89* (.03)   .50* (.01) 

51  .61* (.01)   .94* (.02)   .65* (.01) 

52  .63* (.01)   .91* (.03)   .66* (.01) 

53  .57* (.01)   .95* (.02)   .61* (.01) 

54  .54* (.01)   .99* (.02)   .57* (.01) 

55  .45* (.01)   .97* (.02)   .49* (.01) 

56   .52* (.01)   .97* (.01)   .55* (.01) 

57  .48* (.01)   .99* (.01)   .53* (.01) 

58  .38* (.01)   .91* (.05)   .41* (.01) 

59  .50* (.01)   .97* (.01)   .56* (.01) 

Note. SE = Standard Error.  
* p < .05 
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 For grade 5, there was one item at the within level (Item 6) that appeared not to be 

contributing anything to the measurement of student achievement, with a factor loading near 

zero (-.02). Items 41 and 59 contributed little at the within level, with factor loadings of .14 

and .15, respectively. The remainder of the within-level loadings were moderate, ranging 

from .28 – .63. At the between level, Items 6 and 41 appeared not to be contributing to the 

measurement of school achievement, with factor loadings of -.13 and .10, respectively. The 

factor loading for Item 33 was also fairly low at .24. The remainder of the between-level 

loadings were moderate to strong, ranging from .53 – .98.  

 For grade 8, one item at the within level (Item 7) had a factor loading of .05, implying 

that this item was not a very good indicator of student achievement. Items 3, 39, and 41 

appeared to be only weakly related to the measurement of student achievement, with loadings 

of approximately .20. The remainder of the within-level loadings were moderate, ranging 

from .34 – .73. At the between level, there was only one item (Item 7) that did not appear to 

be a strong indicator of school achievement. In fact, with a loading of -.29, this item actually 

detracted from the measurement of school achievement. All other loadings at the between 

level were moderate to high, with the majority close to .9 or above. 

Comparison of Factor Loadings at Different Levels of Analysis 

 The third research question involved comparisons of the factor loadings at the within 

and between levels of analysis, and to standard (single level) factor loadings where the 

multilevel data structure was collapsed (i.e., ignored). First, the within- and between-level 

factor loadings were compared descriptively. For all grades, the between-level factor 

loadings generally appeared to be much larger than the within-level factor loadings (see 

Tables 4.7 – 4.9). The majority of the between-level factor loadings were .7 or above, 
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whereas the majority of the within-level factor loadings were well below .7. This finding 

implies that in most cases, items appeared much more discriminating at the school level than 

at the student level. 

  There were a few notable exceptions to this pattern. In grade 5 (see Table 4.8), Item 

33 appeared to have a smaller loading at the between level (.24) than at the within level (.46). 

Items 6 and 41 had low loadings at both the within and between levels. In grade 8 (see Table 

4.9), Item 7 appeared to have a smaller loading at the between level (-.29) than at the within 

level (.05). Item 34 had high loadings at both the within and between levels (.67 and .71, 

respectively).  

In addition, the relative standing of item factor loadings was not necessarily uniform 

across levels. Items with the highest loadings at one level did not necessarily display the 

highest loadings at the other level. For example, in grade 8 (see Table 4.9), Item 33 had the 

highest between-level factor loading of 1.00; the within-level loading for this item was .56, 

which fell in the middle of the range of values for the student-level factor loadings. This 

pattern was evident across all grades. Consequently, the descriptive comparisons of factor 

loadings across the student and school levels suggested that items differed in terms of both 

their absolute and relative standings.  

 The second step in comparing the within- and between-level factor loadings was to 

conduct scaled chi-square difference tests. Models where the loadings were freely estimated 

at each level were compared to nested models where factor loadings were constrained to be 

equal across levels. The results of the scaled chi-square difference tests are presented in 

Table 4.10.  
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 For all grades, the more constrained model (where factor loadings were equal across 

levels) resulted in significantly worse fit. This finding indicates that the magnitude of the 

factor loadings was not the same for the student and school levels of analysis. 

 

Table 4.10 

Chi-square Difference Tests, by Grade 

 
Grade         χ

2
difference  df difference 

 
3   293.49*  59 

5   150.88*  59 

8   233.36*  59 

* p < .05 

 

 Finally, standard confirmatory factor analyses were performed using a single level of 

analysis for each grade. The factor loadings and standard errors are included on the right side 

of Tables 4.7 – 4.9. Although there are no statistical tests available for comparing the 

magnitude of the standard factor loadings to the multilevel factor loadings, the descriptive 

comparisons are informative. For all grades, the standard factor loadings were very similar to 

the within-level factor loadings, generally within .05. The between-level factor loadings were 

almost always higher than the standard factor loadings. For example, in grade 3 (see Table 

4.7), the collapsed loading for Item 1 was .60, which is very close to the within-level estimate 

of .58; this appears to be much lower than the between-level estimate of .85. 
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 The similarity of the standard and within-level factor loadings also applied to items 

that did not appear to be strongly related to the overall construct at one or more levels. For 

example, in grade 5 (see Table 4.8), the collapsed factor loading for Item 6 was -.02, the 

same value as the within-level estimate; the between-level estimate, also near zero, was -.13. 

The collapsed factor loading for Item 33 was .43, very similar to the within-level estimate of 

.46; the between-level estimate for this item appeared to be lower at .24. 

 The comparisons of the single level loadings to the multilevel loadings suggest that 

the process of performing traditional factor analyses (i.e., ignoring the student and school 

levels) provided reasonable approximations for the within-level loadings but yielded no 

information about the absolute or relative size of the between-level loadings. The between-

level factor loadings were generally larger, occasionally smaller, and universally different 

than the factor loadings obtained in analyses that ignored the multilevel structure by 

performing standard factor analyses on the collapsed data. 

Statistical Significance of Between-level Factor Loadings 

 The final research question concerned the statistical significance of the factor 

loadings, specifically those at the school level. Significance tests were performed by dividing 

each factor loading by its standard error; resulting values greater than 1.96 were statistically 

significant at p < .05. The statistical significance of the factor loadings is noted in Tables 4.7 

– 4.9. Nearly all factor loadings were statistically significant, across grades and levels of 

analysis. Only a small number of between-level factor loadings were nonsignificant. In 

addition to being statistically significant, the factor loadings appeared to be meaningful, as 

the majority were approximately .9 or higher. This finding indicates that all of the observed 
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variance in the school-level loadings was explained by the common factor of school 

mathematics achievement.   

 In grade 3 (see Table 4.7), all between-level factor loadings were positive and 

statistically significant. There was not a single school-level factor loading that was 

nonsignificant, and the smallest between-level loading was .63. This suggests that all items in 

grade 3 made strong contributions to the measurement of school achievement. 

In grade 5 (see Table 4.8), two school-level factor loadings were statistically 

nonsignificant (i.e., not different from zero); Item 6 had a between-level factor loading of -

.13 and Item 41 had a between-level factor loading of .10. This finding suggests that Items 6 

and 41 for grade 5 did not contribute to the measurement of school-level achievement. The 

other 57 school-level factor loadings were statistically significant. Although two items did 

not appear to contribute to the measurement of school mathematics achievement in grade 5, 

the majority of the items did appear to make strong contributions. 

In grade 8 (see Table 4.9), all between-level factor loadings were statistically 

significant, but the factor loading for Item 7 was negative. Although the magnitude of this 

factor loading was relatively small (-.29), the negative value indicates that Item 7 actually 

detracted from the measurement of school-level mathematics achievement. All other 

between-level factor loadings for grade 8 were positive and most were very strong. Overall, 

the collection of items that constituted the grade 8 test made strong contributions to the 

measurement of school achievement in mathematics. 
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Alternative Method of Model Identification 

 To investigate whether the method of model identification (setting the variance to one 

at each level of analysis) may have artificially inflated any effects across levels due to 

differences in variances, the multilevel confirmatory factor analysis was re-run for grade 3. 

The first factor loading was set to one on each level of analysis, which put all factor loadings 

on the scale of the Item 1. Results of the unstandardized factor loadings with this method of 

model identification are presented in Appendix E.  

 With this alternative approach to model identification, the discrepancies between the 

within-level factor loadings and the between-level factor loadings do appear to be somewhat 

smaller for the unstandardized solution, and the standard errors appear larger. The difference 

in the magnitude of the factor loadings across levels is difficult to interpret given the 

difference in scaling. In nearly all cases, the between-level factor loadings appear to remain 

larger than the within-level factor loadings. The interpretation of this finding is unclear, 

given that the factor loadings from this solution are not on the same scale at each level. That 

is, the within-level factor loadings are relative to the size of the within-level loading for Item 

1, and the between-level factor loadings are relative to the size of the between-level loading 

for Item 1. It also is not clear how results might vary depending on the characteristics of the 

item that is used to identify the scale. For example, Van den berg, Glas, and Boomsma 

(2007) caution against this method of model identification when the measurement model is 

of interest because the standard errors may be affected by characteristics of the item set to 

unity. Despite the potential problem caused by implicitly assuming that the variance is the 

same at each level of analysis, both the absolute and relative analyses undertaken here appear 
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more meaningful when the model is identified by setting the variance to one instead of the 

first factor loading. 

Follow-up Analyses Excluding Small Clusters 

There was a concern that the presence of small clusters (schools with few students at 

a particular grade level) could bias the parameters and standard errors. To assess the potential 

impact of very small clusters, all confirmatory factor analyses were re-run using only those 

schools with five or more students at a given grade. Descriptive statistics on the number of 

schools and number of students per school at each grade level for the follow-up analyses are 

presented in Table 4.11. The follow-up analyses excluded data from five schools at grade 3, 

nine schools at grade 5, and eight schools at grade 8. 

Results from the follow-up analyses were very similar to the original analyses; all 

factor loadings from the follow-up analyses are presented in Appendix F. The majority of the 

factor loadings were the same (to two decimal places), several factor loadings differed by 

.01, and a small number of factor loadings differed by .02. In no case did the factor loadings 

differ by more than .02, and the statistical significance of the factor loadings was unchanged. 

This finding indicates that it is unlikely that the inclusion of small clusters (with less than 

five students per school at a given grade) affected the results in this study. 
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Table 4.11 

Number of Students per School by Grade (Limited to Clusters of Five or More) 

 
         Number of Students per School 
      __________________________________________ 

Test            Schools  Minimum Maximum   Mean  SD 

 

Mathematics Grade 3   106        5        180   84.70  36.68  

Mathematics Grade 5     87        5        395  102.97 75.70  

Mathematics Grade 8    76        5        541  134.43          147.75            

 

Summary 

 Four research questions about the validity of school-level inferences were investigated 

using mathematics achievement data from all students in grades 3, 5, and 8 who participated 

in a state-wide mathematics achievement test. The first research question investigated the 

optimal number of factors at each level of analysis. For all three grades, one factor was found 

to be optimal at both the student and school levels of analysis. Although solutions with two 

or three factors resulted in slightly better fit statistics, the solutions were not interpretable or 

meaningful because the additional factors contained few or no items with moderate or high 

loadings. The solutions with one factor at each level were the most parsimonious at each 

grade. 

 The second research question addressed the feasibility of the one factor solutions at 

each level, regardless of how many factors were optimal. Given the findings of the first 

research question, the one factor solutions were judged to be both feasible and optimal. 
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Factor loadings at both the student and school levels were examined as indicators of item 

quality. Across all three grades, the majority of factor loadings were moderate at the within 

level and strong at the between level. In grade 5, three factor loadings at the within level 

were near zero or very low (.2 or below), while two factor loadings at the between level were 

near zero. In grade 8, four factor loadings at the within level were near zero or very low (.2 or 

below), while one factor loading at the between level was negative. Overall, most items 

appeared to be contributing to the measurement of student mathematics achievement and 

school mathematics achievement, and this finding was applicable to all grades. 

 The third research question involved comparisons of factor loadings across different 

levels of analysis. The within- and between-level factor loadings were compared both 

descriptively and with chi-square difference tests. Both the relative and absolute size of the 

loadings were noted across levels. Across all grades, the majority of the within-level factor 

loadings were moderate (.4 – .7), while the majority of the between-level factor loadings 

were strong (.7 or above). This finding implies that most items were more discriminating at 

the school level than at the student level. In addition, the relative standing of item factor 

loadings was not the same across levels. For all grades, the more constrained model (where 

factor loadings were equal across levels) resulted in significantly worse fit, indicating that the 

magnitude of the factor loadings was not the same for the student and school levels of 

analysis. 

 Research Question 3 also involved comparisons of factor loadings from standard 

(single level) confirmatory factor analyses to the within- and between-level factor loadings. 

For all grades, the standard factor loadings were close to the within-level factor loadings 

(nearly always within .05) but were generally not close to the between-level factor loadings. 
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The between-level factor loadings were generally larger, occasionally smaller, and often very 

different than the factor loadings obtained in standard factor analyses that ignored the 

multilevel structure. This finding indicates that the process of performing traditional factor 

analyses in this study provided reasonable approximations for the within-level factor 

loadings but yielded no information about the absolute or relative size of the between-level 

factor loadings. 

 The final research question concerned the statistical significance of the factor loadings 

at the school level. Nearly all factor loadings were statistically significant, across grades and 

levels of analysis. In grade 3, all between-level factor loadings were statistically significant 

and positive. In grade 5, two between-level factor loadings were statistically nonsignificant; 

this finding indicates that these two items did not contribute to the measurement of school 

achievement. In grade 8, all between-level factor loadings were statistically significant, but 

the factor loading for one item was negative; this finding indicates that one item detracted 

from the measurement of school achievement. Overall, nearly all items at each grade level 

appeared to have statistically significant and strong contributions to the measurement of 

school achievement. 

 Follow-up analyses (limited to schools with five or more students at a given grade) 

produced results that were nearly identical to the full sample of students and schools. This 

finding indicates that the inclusion of small clusters in this study does not appear to have had 

a significant impact on the results. 

 The next chapter discusses the interpretation of these findings in the context of 

relevant research on validity and student achievement. Implications for educational 

measurement and program evaluation and ideas for future research are also addressed.



 

 

 

CHAPTER 5 

DISCUSSION 

 It has been nearly 50 years since Ebel (1961) said of validity, “It is universally 

praised, but the good works done in its name are remarkably few” (p. 640). Validation is the 

most important aspect of the measurement process, and psychometric theory is clear about 

the need for collecting validity evidence for each intended test purpose. But despite the 

widespread use of student achievement tests for making school-level inferences, the 

psychometric literature is devoid of studies investigating the adequacy of validity evidence 

for this purpose. Recent studies of group-level psychometrics in other fields have found that 

validity evidence is not necessarily uniform across multiple levels of analysis. This study 

extends the emerging body of research on multilevel construct validation to school-level 

achievement as currently encountered in K-12 student testing programs. 

 This final chapter begins with an acknowledgement of study limitations, followed by a 

discussion of the study findings. Study implications and areas worthy of future research are 

described. In addition to the specific research findings in the study, implications of bringing 

attention to the issue of multilevel validity in general are considered. The chapter concludes 

with recommendations for future directions in multilevel psychometrics.  

Limitations 

 Before discussing the conclusions and implications of this research, it is important to 

acknowledge some limitations of the study sample, design, and analysis. First, the students 
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and state mathematics achievement tests were from a single state. It is not clear whether the 

students or the state testing program would be representative of those found in other states. 

Although the level one sample size of approximately 28,000 students is relatively large, the 

level two sample size (schools) ranged from 84 to 111—a relatively small sample for the 

analyses that were undertaken. It would be helpful to replicate the study using data from a 

much larger or more diverse state, such as Texas or California, to determine what aspects of 

the analyses or conclusions might be affected by sample size. 

 Second, although three different grades were examined, the study design included 

only one subject area, mathematics. It is not clear whether any of the results found here 

would apply to state achievement tests in other subjects. It would be helpful to replicate the 

study with data from state reading and science achievement tests to determine what aspects 

of the study results might be affected by subject area.    

 It is important to consider the limitations of study sample and design in the context of 

the study purpose. With data from only one state and subject area, this study was not 

intended to affirm or condemn the widespread practice of drawing school-level inferences 

from student level data. Instead, this exploratory study sought to illustrate how the question 

of looking at validity evidence for group-level inferences when using individual level data 

could be approached. A primary goal was to serve as a prototype for how such questions 

could be considered in future research. 

 Several analytic limitations were described previously in Chapter 3, most notably the 

limitation to two levels of analysis (student and schools), the assumption of homogeneity of 

the within-groups covariance matrix, and the novelty of methodological procedures for fitting 

multilevel factor analysis models with categorical variables. This study was constrained by 
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the methodology that is currently available, but it also serves as an opportunity to spur the 

additional research necessary for advancing the methodology in these (and other) areas. 

Methodological advances do not happen in a vacuum; there is an iterative process of asking 

new questions and improving the technology necessary to answer those questions. It is novel 

ideas in research and practice that serve as the impetus for improving methodology, and the 

methodological advances then generate additional questions. This study has the potential to 

increase the methodological capabilities in the area of multilevel validity so that future 

research is not bound by the same limitations faced here. 

Key Findings 

Overall, the present study yielded three key findings and implications.  They include: 

1) For each of the three grades studied, there was only one meaningful factor identified 

(presumably mathematics achievement) at both the student and school levels of analysis, 

providing tentative support for the current practice of drawing school-level inferences 

from student-level measures. 

2) At each grade level, items differed in terms of both their absolute and relative size of 

their factor loadings at the student and school levels of analysis, suggesting that when 

school-level inferences are of interest, standard factor analyses provide insufficient 

information about test development and validation; when both within and between levels 

are of interest, factor loadings should be estimated separately. 

3) The majority of items in this study were more discriminating at the school level than at 

the student level. Thus, if school-level inferences are of primary interest, it may be 

desirable to reconsider typical test construction practices in which items that fail to 
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discriminate at the student level (but unknowingly have adequate properties at the school 

level) are routinely removed from consideration for use on operational test forms. 

Each of these findings is described in detail and implications of these findings are presented 

in the following sections. 

Optimal Number of Factors at Each Level of Analysis 

 The first research question addressed in this research explored the optimal number of 

factors at the student and school levels using multilevel exploratory factor analysis. For all 

three grades studied, there appeared to be only one meaningful factor at both the student and 

school levels of analysis. Although solutions with additional factors resulted in slightly better 

fit, there were few to no high factor loadings on the additional factors. This finding indicates 

that there was only one primary factor at the student level (presumably student mathematics 

achievement) and one primary factor at the school level (presumably school mathematics 

achievement) that accounted for the underlying relationships between the items at each grade 

level. 

 The finding of one primary factor at each level of analysis is not surprising. The state 

mathematics achievement tests were designed to be single measures of student achievement, 

an assumption necessary for employing the unidimensional item response theory models 

used to develop, scale, and equate the tests. Given previous research on multilevel factor 

analysis, it would have been unlikely to uncover more factors at the school level than at the 

student level. Muthén (1989) found that the number of factors at the within level is an upper 

bound for the number of factors at the between level. Many studies using multilevel factor 

analysis have found the same number of factors at each level of analysis, and those that differ 
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have extracted fewer factors at the between level than the within level (Härnqvist et al, 1994; 

Hox, 2002; Kuhlemeier et al, 2002). 

 In this study, the consideration of the number of factors was not the primary focus of 

the research, but rather it was a prerequisite for performing subsequent analyses to compare 

factor loadings at different levels of analysis. If a single factor solution did not appear to fit 

the data adequately at one or more levels of analysis, then it would not be clear how to 

interpret potential differences in factor loadings across levels. A finding of different factor 

structures at the student and school level would itself indicate a threat to the validity of 

school-level inferences from student achievement data, however. 

 A more interesting question about the number of factors at each level of analysis could 

be investigated by examining several different achievement tests for the same students. For 

example, if mathematics, reading, and science data were analyzed for the same group of 

students, it is possible that there could be three separate achievement factors at the student 

level but only one general achievement factor at the school level. Such a finding would be 

consistent with Hox’s (2002) analysis of verbal and numerical ability for children within 

families, where two separate factors were found at the student level but only a single general 

ability factor could be extracted at the family level. Future research in this area could reveal 

such differences across subject areas at the student and school levels of analysis. Failure to 

differentiate among subject areas at the school level could threaten the validity of using 

student achievement data to make school-level inferences about something that is ostensibly 

subject-specific if, in fact, the data were discovered to be more supportive of general 

achievement interpretations. 
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Evaluation of Factor Loadings at Multiple Levels of Analysis 

 Research Questions 2 through 4 concerned the size of the between-level factor 

loadings and the extent to which they differed from those at the within level and those 

obtained from traditional factor analyses where the multilevel structure was ignored (i.e., 

collapsed). The comparison of factor loadings at different levels of analysis involved both 

descriptive measures and scaled chi-square difference tests. At each grade level, the 

descriptive analyses found that items differed in terms of both their absolute and relative size 

of their factor loadings at the student and school levels of analysis. This result was confirmed 

by the scaled chi-square difference tests, which found that models where factor loadings were 

constrained to be equal across levels fit significantly worse than models where factor 

loadings were freely estimated at each level.  

 This particular finding of differences in the student and school level factor loadings 

has a couple of different implications. First, when factor loadings at the within and between 

levels are both of interest, it is necessary to estimate them separately. Neither the absolute or 

relative size of factor loadings at the within level provided much information about the factor 

loadings at the between level in this study. This suggests that the different sources of 

variation affected the factor loadings of each level in different ways. Second, even when the 

size of the factor loadings at the within and between levels are not of primary interest, it does 

not seem advisable to constrain the factor loadings to be equal across levels in any multilevel 

structural equation model of school achievement, despite the use of this practice for the 

purpose of reducing model parameters. This caution to avoid setting factor loadings equal at 

different levels of analysis is echoed by Muthén (2008), due to the fact that the item 

parameters have different meanings at each level.  
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 The standard (single level) confirmatory factor analyses yielded factor loadings that 

were very similar to the within-level loadings in the multilevel confirmatory factor analysis; 

in nearly all cases, these two sets of factor loadings differed by less than .05. Conversely, the 

standard confirmatory factor analyses yielded no information about the relative or absolute 

size of the between-level loadings. Although accounting for the multilevel structure of 

students in schools is technically more accurate for both student- and school-level inferences, 

the implications of ignoring the multilevel structure appear much greater in the latter case. In 

this study, the use of standard factor analyses for test development and validation was a 

reasonable approximation for the student level results but provided very different information 

than the school level results. This indicates that when school-level inferences are of interest, 

standard factor analyses provide insufficient information about test development and 

validation. The school-level factor structure can only be obtained through multilevel 

confirmatory factor analyses; unlike the student-level factor structure, it cannot be reasonably 

approximated when the multilevel structure is ignored in traditional factor analyses that 

collapse both levels. 

At each grade level, the vast majority of items had much higher factor loadings at the 

school level than at the student level. This finding was somewhat unexpected, particularly 

given the low amount of between-level variation reflected in the intraclass correlations. 

Because the factor loadings are standardized, it may be that the small amount of variation at 

the between level is largely accounted for by each item. It is not clear whether this result is 

typical in student achievement studies given the lack of similar research in the field.  

The comparisons of factor loadings across levels were bound by the available options 

for model identification and procedures for standardization. The analyses undertaken here 
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have some parallels to studies of measurement invariance (with comparisons across levels 

instead of groups); the literature on measurement invariance generally recommends 

identifying the model by setting the first factor loading to one. The evaluation of item 

characteristics at each level of analysis draws on principles of item response theory, where 

model identification is achieved by setting the variance to one. Given the objectives of this 

study, the latter approach appeared to yield more meaningful and interpretable results; 

however, the impact of actual differences between student- and school-level variances is not 

clear. Guidelines for model identification and standardization procedures have not been 

developed in the context of multilevel validity. Future research in this area is needed, 

including the exploration of additional approaches for model identification and 

standardization in a multilevel context. For example, the model could be identified by setting 

the variance to one at the within level and setting the first factor loading to one at the 

between level.  

The only other study known to have investigated item-level characteristics at two 

levels of analysis was performed by Reise et al. (2006) in the field of health care, who 

concluded that survey items were much less discriminating at the between (health plan) level 

than the within (individual) level. However, the approach taken by Reise at al. (2006) was 

quite different from this study; a three parameter multilevel item response theory model was 

used. The c-parameters were high at the between level (often .2 – .3) and this lower 

asymptote does not have an analog in the multilevel confirmatory factor analysis model with 

categorical variables. The survey used in the Reise et al. (2006) study had a ceiling effect, 

and responses on 3-4 point scales were recoded to be dichotomous. It is not clear how the 
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attenuation issues may have affected the item parameters at each level of analysis. Future 

research in this area is needed. 

 The most common explanation for obtaining higher factor loadings at the between 

level than the within level is that the aggregation process results in less error (Snijders & 

Bosker, 1999; Stanat & Lüdtke, 2008). Although it is often the case, the between-level 

reliability is not always higher than within-level reliability (Luppescu, Gladden, & Bryk, 

2003). Unlike the within-level reliability, the between-level reliability is affected by both 

cluster size and between-cluster variability (Tate & King, 1994). In this study, the between-

level factor loadings were not universally higher than the within-level factor loadings, even 

though this occurred most of the time.  

 Although the higher factor loadings found at the between level may be in part due to 

lower measurement error from the process of aggregation,  psychometricians caution against 

assuming that school-level reliability is necessarily higher than student-level reliability. For 

example, Feldt and Brennan (1989) have noted that: 

 [T]raditional measurement error is not the sole source, or even the 
most potent source, of unreliability affecting inferences drawn from 
class means. The test results for any given year reflect not only the 
character of the instructional program but also the character of 
students enrolled at that specific moment. These individuals must be 
regarded as a sample, in a longitudinal sense, from the population 
that flows through the district schools over a period of years. (p.127) 
 

The decrease in measurement error from aggregation may be offset by sampling error that is 

not accounted for in traditional estimates of reliability. Brennan (1995) recommended using 

generalizability theory to account for sources of error from both items and samples of 

students. The application of generalizability theory to multilevel validity studies has 

implications for the interpretations of different sources of error at multiple levels of analysis. 
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 The high between-level factor loadings support the use of student achievement tests 

for making school-level inferences in this study. The majority of items appeared more 

discriminating at the school level than at the student level. Contrary to the original concern 

that several items might be less appropriate for school-level inferences than for student-level 

inferences, it appears that the opposite scenario might apply. That is, if school-level 

inferences are of primary interest, some items that failed to discriminate at the student level 

but had adequate properties at the school level might have been unnecessarily removed from 

draft test forms at an early stage of the test development process. This finding provides an 

additional reason for incorporating a multilevel factor structure into studies of school level 

achievement; not only does this approach provide more appropriate validity evidence, but it 

could facilitate the test development process if criteria for item selection are less strict at the 

school level than at the student level of analysis.  

 There were a small number of items that had nonsignificant or negative factor 

loadings at the school level. Although the corresponding factor loadings at the student level 

were higher, the differences tended to be slight. There were no instances where an item was 

highly discriminating at the student level but had a very low factor loading at the school 

level. Instead, items with school-level factor loadings that were negative or close to zero had 

corresponding student-level factor loadings that were positive but very low. For example, 

Item 41 in grade 5 had a between-level factor loading of .10 and a within-level factor loading 

of .14. Item 7 in grade 8 had a between-level factor loading of -.29; the corresponding 

within-level factor loading was .05. From a practical standpoint, these scenarios do not lead 

to different conclusions about item quality despite the fact that both student-level factor 

loadings were positive and significant and the school-level factor loadings were not. None of 
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the factor loadings for these two items would provide strong evidence for including the items 

on a test; the only difference in conclusions of item quality here might be between 

“marginal” and “unacceptable.”  

 The finding of one item with a significant negative factor loading (Item 7 in grade 8) 

suggests that the inclusion of this item detracts from the measurement of school-level 

achievement. The practical implications of including this item in a test used to draw school-

level inferences are unclear, especially given the relatively low strength of the item (-.29). It 

is unlikely that rescoring the tests with the exclusion of this item would lead to different 

conclusions, but this is certainly an area for further research. Additional or larger negative 

factor loadings at the school level certainly could have practical implications if such items 

were included when drawing school-level inferences. 

 This particular finding of a significant negative factor loading at the school level may 

also yield valuable information about instruction or curricula. Given the relatively high item 

p-value for Item 7 in grade 8 (0.69), this finding suggests that students in low achieving 

schools may have been more likely to answer the item correctly than students in high 

achieving schools. Just as differential item functioning analyses can provide insight about 

students’ strengths and weaknesses despite its primary use as identifying items that are 

potentially biased (Stanat & Lüdtke, 2008), multilevel confirmatory factor analyses have the 

potential to provide valuable information about school-level strengths and weaknesses that 

could be related to instruction or curricula. In future research, it would be interesting to 

examine the characteristics of items that show differential discrimination at the student and 

school levels. 
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Implications of Multilevel Validity Research 

 The specific research findings in this study are certainly noteworthy, but perhaps the 

most important implication of this research is its broader role in illustrating that multilevel 

validity analyses can and should be undertaken. This study can serve as a prototype not for 

the exact processes to be undertaken but for a type of general approach to gathering 

multilevel validity evidence. As both the methodological capabilities and research base in 

this field develop, it is likely that accepted standards for performing multilevel validity 

studies will evolve from the general approach taken and specific analyses performed here. 

The intent of this study was to serve as an initial attempt for sparking dialogue on research 

and practice in this area. The Standards for Educational and Psychological Testing (AERA 

et al., 1999) is clear that secondary uses of tests require that additional validity evidence be 

gathered to investigate the validity of those interpretations. What is less clear about using 

student achievement tests to draw school-level inferences is who is in the best position to 

collect such evidence. The primary purpose of state achievement test programs is to measure 

student achievement. Unless measuring school-level outcomes is an overt goal of state 

testing programs, they would not appear to be technically responsible for considering the 

school-level factor structure during test development or validation processes. 

 The Standards (AERA et al., 1999) places the impetus on the test user to collect 

additional validity evidence for secondary purposes. Although this guideline sounds 

reasonable in theory, it presents many practical challenges for collecting validity evidence 

related to school-level inferences from student achievement tests. First, access to item-level 

data (necessary to perform multilevel factor analyses) is generally restricted; only raw or 

scale scores tend to be publicly available and accessible from state departments of education. 
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Second, many educational researchers and program evaluators may lack the technical 

expertise necessary to perform such analyses, particularly now when the methodology is still 

in its infancy and clear guidelines for collecting multilevel validity evidence do not yet exist. 

If the impetus to collect multilevel validity evidence is placed solely upon educational 

researchers and program evaluators, much of the attractiveness of using state achievement 

data for secondary purposes would be diminished. 

 Given the current prominence of educational testing, it seems clear that state 

achievement tests will continue to be used to make school-level inferences, even if that is not 

the primary purpose of the tests. State testing programs may want to consider either taking 

preliminary steps to collect validity evidence for school-level inferences, or alternatively, 

explicitly stating that such claims have not been investigated and must be undertaken by 

secondary users before it is appropriate to use the tests for this purpose. According to 

Standard 1.3, “If validity for some common or likely interpretation has not been investigated, 

or if the interpretation is inconsistent with available evidence, that fact should be made clear 

and potential users should be cautioned about making unsupported interpretations” (AERA et 

al., 1999, p. 18). It is unlikely that state testing programs are currently collecting multilevel 

validity evidence or explicitly urging secondary users to do so, and it is even less likely that 

educational researchers and program evaluators are aware that such steps should be taken 

before the student tests are used for the secondary purpose of drawing school-level 

inferences. 

 Multilevel validity considerations would be most easily addressed during the test 

development process. One aspect of item analyses could be an examination of multilevel 

factor loadings. Based on the results in this study, few decisions about item quality are likely 
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to be affected, but if school-level inferences are intended, the small number of items with low 

or negative school-level loadings could be discarded. Of course, given the cost of developing 

even a single test item, such a step may not be feasible if state testing programs decide that 

school-level inferences are not an intended use of their tests, even as a secondary purpose. If 

the latter stance is taken, however, it should be accompanied by explicit warnings to 

secondary test users, as well as greater accessibility to the item-level data needed to perform 

additional analyses. 

 Regardless of the stance taken by state testing programs, the psychometric community 

should develop clearer guidance on multilevel validation. It is not enough for the Standards 

(AERA et al., 1999) to state that additional validity evidence is needed for secondary 

purposes, particularly when tests are used for the measurement of groups rather than 

individuals. As Linn (2006) suggested, there is a need for explicit guidance on psychometric 

issues specific to group-level measurement; this would certainly include multilevel validation 

efforts. Specific guidance on collecting multilevel validity evidence currently does not exist 

because it is deemed to fall outside the traditional boundaries of both psychometrics and 

program evaluation.  

 The discussion of multilevel validity thus far has focused on secondary uses of tests 

that were created originally for the primary purpose of making inferences about individuals. 

Although the responsibility for collecting such evidence may be muddled for secondary uses, 

it seems clear that test developers must consider multilevel validity when group-level 

inferences are a primary test purpose. For example, there are several educational tests 

administered to students for the primary purpose of making inferences at higher levels of 

aggregation, such as the National Assessment of Educational Progress (NAEP), Programme 
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for International Student Assessment (PISA), and Trends in International Mathematics and 

Science Study (TIMSS). Such tests are given to samples of students for the purpose of 

comparing schools, states, or countries.  

 The chapter in Educational Measurement (Brennan, 2006) on group-score 

assessments (Mazzeo et al., 2006) includes a discussion of how sampling, reliability, and 

scoring are affected by the test purpose, but consideration of multilevel validity is noticeably 

absent. Contrary to the claim that item analyses, “are not different from approaches used in 

individual-score tests, so are not discussed here” (Mazzeo et al., 2006), it seems that item 

analyses do warrant rethinking in the context of group-level inferences. In fact, a more recent 

chapter on group-level measurement in student achievement (Stanat & Lüdtke, 2008) 

included the following statement in regard to the PISA literacy tests: 

[T]he factor structure of the literacy tests at the individual student 
level and at the country level could be compared. To our 
knowledge, this analysis has not yet been performed, even though 
previous research has shown that a different factor structure may 
emerge already on the class or school level as compared to the 
individual level…. Due to methodological advances in the 
integration of structural equation and multilevel modeling, 
simultaneous analyses of factor structures and relationships among 
variables at different levels within a single model should become 
more prevalent in the future (p. 329). 
 

For tests that are designed with the primary purpose of making group-level inferences, 

multilevel validity evidence may involve an additional layer of complexity. Often these 

group-score assessments include a matrix sampling design, where each student receives only 

a small sample of items and not a complete test form. Although this design is more efficient 

for drawing group-level inferences, current methods in multilevel factor analysis require that 

students respond to all items. Collecting multilevel validity evidence may require performing 
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a pilot or field test where samples of students do receive the entire test, although advances in 

methodology may eventually make such a requirement obsolete. 

 Other fields have more readily embraced multilevel validation efforts when group-

level inferences are the primary test purpose, in particular the field of industrial and 

organizational psychology. For example, the book Multi-level Issues in Organizational 

Behavior and Processes (Yammarino & Dansereu, 2004) includes an entire section on 

construct validation, in which different approaches to reliability and validity in a multilevel 

framework are considered. The consideration of multilevel factor structure in this study is 

only one approach to investigating multilevel validity evidence. Future research in this area is 

needed to determine what aspects of multilevel validation are most relevant to educational 

achievement. 

 Increased attention to multilevel validity issues has the potential to spur more research 

and practice in innovative multilevel analyses. A new type of multilevel modeling that has 

not yet been embraced in education is known as a micro-macro situation (Croon & van 

Veldhoven, 2007). In traditional multilevel modeling (macro-micro situations), the dependent 

variable is measured at the lowest level and may be predicted by variables at that level or a 

higher level of aggregation. Conversely, in micro-macro situations, the dependent variable is 

actually measured at the highest level and may be predicted by variables at that level or at a 

lower level (Croon & van Veldhoven, 2007). In education, this would mean that a variable 

collected from a teacher or principal could be used as an outcome that is predicted or 

explained in part by student-level variables. As Croon and van Veldhoven (2007) point out, 

traditional software packages for performing HLM analyses (e.g., Raudenbush et al., 2004) 

do not allow for this type of modeling, but this novel approach offers a new way to think 
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about the measurement of group-level outcomes. The relationship between advances in 

multilevel validation and multilevel analyses is certainly an area worthy of future research. 

Future Directions in Multilevel Psychometrics 

 Once the psychometric implications of multilevel modeling are considered, it becomes 

clear that item analyses and validity evidence may not be the only aspects of testing that are 

affected. One area of further research is to explore the implications of accounting for the 

multilevel data structure during the test scoring process. Multilevel item response theory 

models were originally developed in the context of matrix sampling, when each student was 

administered a single item and the goal was to produce estimates for a school (Mislevy, 

1983). More recently, multilevel item response theory has been extended to instances where 

individual level abilities are also of interest (e.g., Kamata, 2001). Research in this area could 

consider the implications of accounting for the multilevel structure when producing student 

or school level scores. 

 Another emerging area in multilevel psychometrics is the application of multilevel 

differential item functioning (DIF). Cheong (2006) used a hierarchical generalized linear 

model to identify both school and student sources of differential item functioning in the U.S. 

Civic Education Study of the International Association for the Evaluation of Educational 

Achievement. Some items that were flagged for racial-ethnic bias on the student level no 

longer exhibited DIF when teacher-reported opportunity to learn was considered (Cheong, 

2006). Multilevel DIF enables sources of variation on several different levels to be 

considered and is a ripe area for future research in multilevel psychometrics and student 

achievement.  
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 Another potential application of multilevel psychometrics is multilevel standard 

setting. No examples of research or practice in this area could be found, but this appears to be 

an area worth considering in the context of multilevel test development. Multilevel 

applications of standard setting could take the form of using multilevel item response models 

in traditional standard setting processes, or even attempting to set standards at a higher level 

of aggregation that is of interest. The latter practice could be used to address some current 

concerns about accountability systems. In state achievement testing programs, standards are 

set in regard to student levels of performance; the standards are then aggregated to the school 

level for accountability purposes. It seems worthwhile to explore whether more meaningful 

school-level classifications could be developed directly using a multilevel framework. 

Conclusion 

 Sirotnik (1980) called attention to the importance of multilevel psychometrics nearly 

30 years ago, at a time when much of the technological advances in multilevel modeling had 

not yet occurred. Methodology in this area has developed to the point where many theoretical 

aspects of multilevel psychometrics can begin to be put into practice, but multilevel models 

have almost exclusively been applied at the analysis stage. 

 Although the current seminal references in psychometrics (i.e., AERA et al., 1999; 

Brennan, 2006) are largely silent on this issue, it appears that some psychometricians are 

beginning to take note of the importance of multilevel psychometrics. In an invited session at 

AERA/NCME on “The Big Challenges and Research Opportunities in Testing and 

Measurement” Zumbo (2008) gave a presentation entitled, “Testing and Measurement from a 

Multi-level View: Psychometrics and Validation.” He called for consideration of the 

multilevel data structure during test development and validation when constructs are 
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interpreted and used at higher levels of aggregation. Zumbo and Forer (in press) elaborated 

on the importance of multilevel measurement procedures for tests that are designed 

exclusively to measure group-level constructs, such as NAEP. Linn (2008) recently noted the 

importance of considering multilevel validity evidence when using student achievement tests 

as measures of school quality in accountability systems. It seems plausible that future 

editions of the Standards (AERA et al., 1999) and Educational Measurement (Brennan, 

2006) may begin to incorporate the notion of multilevel psychometrics as the concept gains 

favor in both theory and practice. 

 Current technological capabilities for performing multilevel psychometric analyses are 

rapidly evolving but are still very limited in comparison to traditional (single level) 

procedures. However, it is important to note that the research necessary for finding 

methodological solutions is largely driven by the awareness of existing problems. There is 

some evidence that the psychometric community is beginning to take note of the 

psychometric implications of multilevel data structures, and the seminal works in the field 

may soon be outdated in regard to multilevel test development. It is studies such as the one 

reported here that have the potential to generate both research and practice so that the good 

works done in the name of multilevel validity are no longer remarkably few. 
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 APPENDIX A 

   
 
Table A.1 

Descriptive Statistics for Grade 3 Items 

 
Item Mean (SD)   Item Mean (SD)   Item  Mean (SD) 

 
1 0.58 (0.49)   21 0.78 (0.42)   41 0.55 (0.50) 

2 0.95 (0.22)   22 0.71 (0.46)   42 0.77 (0.42) 

3 0.48 (0.50)   23 0.55 (0.50)   43 0.87 (0.34) 

4 0.61 (0.49)   24 0.80 (0.40)   44 0.86 (0.35) 

5 0.47 (0.50)   25 0.87 (0.33)   45 0.85 (0.35) 

6 0.79 (0.41)   261 1.42 (0.85)   46 0.74 (0.44) 

7 0.33 (0.47)   271 1.06 (0.92)   47 0.86 (0.35) 

8 0.48 (0.50)   281 1.46 (0.81)   48 0.97 (0.18) 

9 0.55 (0.50)   291 1.23 (0.89)   49 0.72 (0.45) 

10 0.84 (0.37)   301 1.15 (0.91)   50 0.81 (0.40) 

11 0.75 (0.43)   311 1.13 (0.81)   51 0.78 (0.42) 

121 1.17 (0.90)   321 1.49 (0.75)   52 0.60 (0.49) 

131 0.91 (0.90)   331 1.19 (0.54)   53 0.91 (0.29) 

141 1.44 (0.70)   341 1.51 (0.73)   54 0.36 (0.48) 

151 0.96 (0.83)   35 0.91 (0.29)   55 0.93 (0.25) 

161 0.72 (0.89)   36 0.94 (0.24)   56 0.67 (0.47) 

17 0.65 (0.48)   37 0.89 (0.31)   57 0.78 (0.42) 

18 0.76 (0.43)   38 0.81 (0.39)   58 0.85 (0.36) 

19 0.51 (0.50)   39 0.68 (0.47)   59 0.71 (0.45) 

20 0.68 (0.47)   40 0.79 (0.41)  

Note. SD = Standard Deviation. 
1 The range for these items was 0-2. 
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Table A.2 

Descriptive Statistics for Grade 5 Items 

 
Item Mean (SD)   Item Mean (SD)   Item  Mean (SD) 

 
1 0.53 (0.50)   21 0.47 (0.50)   41 0.24 (0.43) 

2 0.57 (0.50)   22 0.76 (0.43)   42 0.49 (0.50) 

3 0.62 (0.49)   23 0.68 (0.47)   43 0.58 (0.49) 

4 0.58 (0.49)   24 0.42 (0.49)   44 0.69 (0.46) 

5 0.65 (0.48)   25 0.42 (0.49)   45 0.81 (0.39) 

6 0.28 (0.45)   261 1.04 (0.83)   46 0.59 (0.49) 

7 0.39 (0.49)   271 1.47 (0.79)   47 0.75 (0.43) 

8 0.60 (0.49)   281 0.51 (0.76)   48 0.80 (0.40) 

9 0.58 (0.49)   291 0.80 (0.86)   49 0.84 (0.37) 

10 0.75 (0.43)   302 1.81 (1.40)   50 0.95 (0.21) 

111 0.89 (0.88)   312 1.77 (1.36)   51 0.50 (0.50) 

121 1.30 (0.77)   32 0.61 (0.49)   52 0.77 (0.42) 

131 1.39 (0.77)   33 0.62 (0.49)   53 0.49 (0.50) 

141 1.02 (0.78)   34 0.85 (0.36)   54 0.69 (0.46) 

152 2.11 (1.63)   35 0.66 (0.47)   55 0.85 (0.36) 

16 0.79 (0.41)   36 0.62 (0.49)   56 0.76 (0.43) 

17 0.62 (0.49)   37 0.75 (0.44)   57 0.49 (0.50) 

18 0.78 (0.41)   38 0.87 (0.34)   58 0.59 (0.49) 

19 0.72 (0.45)   39 0.81 (0.39)   59 0.47 (0.50) 

20 0.75 (0.44)   40 0.70 (0.46) 

Note. SD = Standard Deviation. 
1 The range for these items was 0-2. 
2 The range for these items was 0-4. 
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Table A.3 

Descriptive Statistics for Grade 8 Items 

 
Item Mean (SD)   Item Mean (SD)   Item  Mean (SD) 

 
1 0.77 (0.42)   21 0.78 (0.41)   41 0.35 (0.48) 

2 0.45 (0.50)   22 0.45 (0.50)   42 0.59 (0.49) 

3 0.43 (0.50)   23 0.65 (0.48)   43 0.84 (0.37) 

4 0.65 (0.48)   24 0.37 (0.48)   44 0.62 (0.48) 

5 0.48 (0.50)   25 0.79 (0.41)   45 0.63 (0.48) 

6 0.48 (0.50)   261 0.71 (0.90)   46 0.49 (0.50) 

7 0.69 (0.46)   271 0.56 (0.68)   47 0.48 (0.50) 

8 0.20 (0.40)   281 1.34 (0.82)   48 0.60 (0.49) 

9 0.56 (0.50)   291 1.13 (0.88)   49 0.81 (0.39) 

10 0.27 (0.45)   302 2.46 (1.38)   50 0.84 (0.36) 

111 0.88 (0.91)   312 2.47 (1.52)   51 0.70 (0.46) 

121 0.77 (0.93)   32 0.21 (0.41)   52 0.52 (0.50) 

131 1.25 (0.75)   33 0.50 (0.50)   53 0.49 (0.50) 

141 0.95 (0.90)   34 0.21 (0.41)   54 0.68 (0.47) 

152 1.25 (1.27)   35 0.41 (0.49)   55 0.67 (0.47) 

16 0.43 (0.50)   36 0.76 (0.43)   56 0.54 (0.50) 

17 0.35 (0.48)   37 0.55 (0.50)   57 0.74 (0.44) 

18 0.38 (0.49)   38 0.51 (0.50)   58 0.37 (0.48) 

19 0.58 (0.49)   39 0.64 (0.48)   59 0.48 (0.50) 

20 0.47 (0.50)   40 0.54 (0.50) 

Note. SD = Standard Deviation. 
1 The range for these items was 0-2. 
2 The range for these items was 0-4. 
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APPENDIX B 

 
Table B.1.  

Two-level Exploratory Factor Analyses Fit Statistics for Grade 3, All Models 

 
Within Between  
Level  Level         SRMR          SRMR 
Factors Factors        χ2 (df)  CFI    TLI    RMSEA (within)       (between) 

 
UN  1   2,855.09* (1652) 1.00    1.00       .01     .00  .06 

UN  2   2,169.19* (1594) 1.00    1.00       .01     .00  .05 

UN  3   1,665.30* (1537) 1.00    1.00       .00     .00  .04 

1  UN   7,876.13* (1652)   .99      .98       .02     .03  .00 

2  UN   5,495.40* (1594)   .99      .99       .02      .03  .00 

3   UN   3,798.30* (1537) 1.00      .99       .01     .02  .00 

1  1 14,374.00* (3304)   .98      .98       .02     .03  .06 

1  2 14,153.34* (3246)   .98      .98       .02     .03  .05 

1  3 13,983.62* (3189)   .98      .98       .02     .03  .04 

2  1 10,377.74* (3246)   .99      .99       .02     .03  .06 

2  2 10,145.22* (3188)   .99      .99       .02     .03  .05 

2  3   9,976.14* (3131)   .99      .99       .02     .03  .04 

3  1   7,517.76* (3189)   .99      .99       .01     .02  .06 

3  2   7,272.16* (3131)   .99      .99       .01     .02  .05 

3  3   7,099.61* (3074)   .99      .99        .01        .02  .04 

Note. CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Squared Error of 
Approximation; SRMR = Standardized Root Mean Squared Residual; UN = unrestricted. 
* p < .05 
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Table B.2.  

Two-level Exploratory Factor Analyses Fit Statistics for Grade 5, All Models 

 
Within Between  
Level  Level         SRMR          SRMR 
Factors Factors        χ2 (df)  CFI    TLI        RMSEA (within)       (between) 

 
UN  1   2,255.57* (1652) 1.00    1.00  .01     .00  .10 

UN  2   1,928.12* (1594) 1.00    1.00  .01     .00  .09 

UN  3   1,641.61* (1537) 1.00    1.00  .00     .00  .08 

1  UN   5,551.48* (1652)   .99      .98  .02     .03  .00 

2  UN   4,059.28* (1594)   .99      .99  .01     .02  .00 

3   UN   3,255.25* (1537) 1.00      .99  .01     .02  .00 

1  1   9,649.71* (3304)   .99      .99  .02     .03  .10 

1  2   9,557.64* (3246)   .99      .99        .02     .03  .09 

1  3   9.488.26* (3189)   .99      .99  .02     .03  .08 

2  1   7,385.96* (3246)   .99      .99  .01     .02  .10 

2  2   7,258.78* (3188)   .99      .99  .01     .02  .09 

2  3   7,161.18* (3131)   .99      .99  .01     .02  .08 

3  1   6181.12* (3189)   .99      .99  .01     .02  .10 

3  2   6033.84* (3131)   .99      .99  .01     .02  .09 

3  3   5,920.06* (3074)   .99      .99  .01     .02  .08 

Note. CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Squared Error of 
Approximation; SRMR = Standardized Root Mean Squared Residual; UN = unrestricted. 
* p < .05



 95

Table B.3.  

Two-level Exploratory Factor Analyses Fit Statistics for Grade 8, All Models 

 
Within Between  
Level  Level         SRMR          SRMR 
Factors Factors        χ2 (df)  CFI    TLI    RMSEA (within)       (between) 

 
UN  1   1,068.96 (1652) 1.00    1.00  .00     .00  .05 

UN  2     573.51 (1594) 1.00    1.00  .00     .00  .04 

UN  3     393.35 (1537) 1.00    1.01  .00     .00  .03 

1  UN   9,204.67* (1652)   .98      .97  .02     .04  .00 

2  UN   2,969.45* (1594) 1.00      .99  .01     .02  .00 

3   UN   2,205.78* (1537) 1.00    1.00  .01     .02  .00 

1  1 16,200.54* (3304)   .97      .97  .02     .04  .05 

1  2 16,194.27* (3246)   .97      .97  .02     .04  .04 

1  3 16,079.41* (3189)   .97      .97  .02     .04  .03 

2  1   5,481.39* (3246) 1.00    1.00  .01     .02  .05 

2  2   5,372.34* (3188) 1.00    1.00  .01     .02  .04 

2  3   5,302.24* (3131) 1.00    1.00  .01     .02  .03 

3  1   4,204.20* (3189) 1.00    1.00  .01     .02  .05 

3  2   4,081.33* (3131) 1.00    1.00  .01     .02  .04 

3  3   4,015.77* (3074) 1.00    1.00  .01     .02  .03 

Note. CFI = Comparative Fit Index; TLI = Tucker-Lewis Index; RMSEA = Root Mean Squared Error of 
Approximation; SRMR = Standardized Root Mean Squared Residual; UN = unrestricted. 
* p < .05 
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APPENDIX C 
 

Table C.1 

Two-level Exploratory Factor Analysis Solution (Two Factors at Each Level) for Grade 3 
    

      
      Within-level Loadings (SE)    Between-level Loadings (SE) 

Item  Factor 1  Factor 2   Factor 1  Factor 2   

 
1  .58* (.02)   .14* (.03)  .86* (.04)   .24* (.08) 

2  .26* (.02)     .02 (.04)  .80* (.09)   .26* (.13)  

3  .33* (.03)     .27 (.02)  .79* (.08)   .32* (.10) 

4  .65* (.02)   .11* (.03)  .95* (.02)     .09 (.07) 

5  .60* (.03)   .25* (.03)  .85* (.05)   .30* (.08) 

6  .66* (.01)   -.02 (.03)  .95* (.02)    -.05 (.06) 

7  .45* (.03)   .31* (.03)  .82* (.06)   .37* (.07) 

8  .60* (.03)   .20* (.03)  .91* (.03)   .12* (.06) 

9  .49* (.02)   .17* (.02)  .95* (.03)   .07* (.06) 

10  .57* (.02) -.09* (.03)  .80* (.07)  -.42* (.08) 

11  .45* (.01)    .05 (.03)  .86* (.04)   -.10 (.07) 

12  .63* (.01)  .07* (.02)  .94* (.03)   .19* (.06) 

13  .70* (.02)  .12* (.03)  .93* (.03)   .18* (.06) 

14  .60* (.01) -.15* (.03)  .99* (.01)   -.04 (.06) 

15  .46* (.02)  .10* (.03)  .92* (.04)   .27* (.07) 

16   .70* (.02)  .21* (.03)  .96* (.03)   .21* (.05) 

17  .57* (.02)  .16* (.03)  .84* (.04)    .08 (.08) 

18  .45* (.01)    .05 (.03)  .95* (.03)   -.13 (.08) 

19  .61* (.03)  .20* (.03)  .97* (.03)  .17* (.05) 

20  .63* (.01)    .03 (.03)  .95* (.02)    .02 (.06) 

Note. SE = Standard Error. 
* p < .05 
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Table C.1 (continued) 

Two-level Exploratory Factor Analysis Solution (Two Factors at Each Level) for Grade 3  
    

      
      Within-level Loadings (SE)    Between-level Loadings (SE) 

Item  Factor 1  Factor 2   Factor 1  Factor 2   

 
21  .54* (.01)  -.04 (.03)  .87 (.03)  -.05 (.07) 

22  .26* (.01)    .01 (.03)  .87 (.05)  -.05 (.08) 

23  .53* (.02)  .10* (.02)  .84 (.04)   .22 (.08) 

24  .53* (.01) -.06* (.03)  .93 (.02)  -.04 (.07) 

25  .46* (.02)    .01 (.03)  .90 (.03)  -.06 (.07) 

26  .64* (.01)    .00 (.01)  .92 (.02)   .04 (.05) 

27  .65* (.01)  .10* (.02)  .92 (.04)   .26 (.06) 

28  .59* (.01)    .02 (.03)  .91 (.03)   .15 (.07) 

29  .63* (.01)    .09 (.02)  .93 (.03)   .17 (.06) 

30  .44* (.02)  .10* (.02)  .79 (.04)  -.06 (.07) 

31  .55* (.01)    .01 (.02)  .92 (.02)  -.01 (.04) 

32  .58* (.01)   -.01 (.02)  .97 (.02)   .07 (.05) 

33  .39* (.01)   -.03 (.02)  .95 (.03)   .11 (.08) 

34  .54* (.01) -.07* (.02)  .91 (.03)   .01 (.04) 

35  .74* (.03) -.23* (.04)  .90 (.04)  -.26 (.07) 

36  .32* (.02) -.11* (.04)  .73 (.09)   .18 (.11) 

37  .46* (.03) -.17* (.03)  .83 (.07)  -.12 (.10) 

38  .65* (.02) -.08* (.03)  .98 (.03)  -.11 (.06) 

39  .55* (.01)   -.03 (.03)  .79 (.05)  -.07 (.07) 

40  .56* (.01)   -.02 (.03)  .91 (.03)   .07 (.07) 

Note. SE = Standard Error. 
* p < .05
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Table C.1 (continued) 

Two-level Exploratory Factor Analysis Solution (Two Factors at Each Level) for Grade 3  
    

      
      Within-level Loadings (SE)    Between-level Loadings (SE) 

Item  Factor 1  Factor 2   Factor 1  Factor 2   

 
41  .43* (.02)   .07* (.02)  .91* (.04)    .05 (.09) 

42  .53* (.02) -.10* (.03)  .92* (.04) -.19* (.07) 

43  .62* (.03) -.16* (.03)  .75* (.05)   -.10 (.08) 

44  .59* (.03) -.25* (.03)  .71* (.08) -.40* (.07) 

45  .62* (.02) -.12* (.03)  .97* (.02)   -.09 (.07) 

46  .69* (.01)    .03 (.03)  .94* (.02)    .01 (.05) 

47  .66* (.04) -.33* (.03)  .89* (.05) -.24* (.07) 

48  .50* (.05) -.33* (.05)  .96* (.07)   -.08 (.09) 

49  .62* (.01) -.05* (.02)  .98* (.02)   -.02 (.06) 

50  .56* (.01)   -.05 (.03)  .95* (.03)   -.10 (.07) 

51  .50* (.02) -.13* (.02)  .88* (.06) -.18* (.09) 

52  .47* (.02)  .18* (.03)  .91* (.04)    .10 (.08) 

53  .34* (.02) -.08* (.03)  .93* (.06) -.27* (.09) 

54  .40* (.02)  .15* (.03)  .81* (.04)    .09 (.09)   

55  .47* (.03) -.22* (.04)  .63* (.10) -.53* (.10) 

56  .53* (.01)    .02 (.02)  .91* (.03)   -.04 (.07) 

57  .48* (.02) -.13* (.03)  .86* (.05) -.23* (.07) 

58  .66* (.01) -.07* (.03)  .97* (.02)   -.01 (.05) 

59  .50* (.02) -.10* (.03)  .96* (.05) -.27* (.10) 

Note. SE = Standard Error. 
* p < .05 
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APPENDIX D 

 

Table D.1 

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 3  
    

      
  Within-level   Between-level  
Item  Loadings (SE)  Loadings (SE) 

 
1  .58* (.01)  .85* (.04) 

2  .26* (.02)  .79* (.08) 

3  .34* (.01)  .78* (.06) 

4  .65* (.01)  .94* (.02) 

5  .61* (.01)  .84* (.04) 

6  .66* (.01)  .95* (.02) 

7  .47* (.01)  .80* (.04) 

8  .61* (.01)  .91* (.03) 

9  .50* (.01)  .95* (.03) 

10  .57* (.01)  .80* (.04) 

11  .46* (.01)  .87* (.03) 

12  .63* (.01)  .93* (.02) 

13  .71* (.01)  .92* (.02) 

14  .58* (.01)  .99* (.01) 

15  .46* (.01)  .91* (.03) 

16   .72* (.01)  .95* (.02) 

17  .58* (.01)  .84* (.04) 

18  .46* (.01)  .96* (.03) 

19  .62* (.01)  .96* (.02) 

20  .63* (.01)  .95* (.02) 

Note. SE = Standard Error. 
* p < .05 
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Table D.1 (continued) 

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 3  
    

      
  Within-level   Between-level  
Item  Loadings (SE)  Loadings (SE) 

 
21  .54* (.01)  .87* (.03) 

22  .26* (.01)  .87* (.04) 

23  .54* (.01)  .83* (.04) 

24  .53* (.01)  .94* (.02) 

25   .46* (.02)  .91* (.03) 

26  .64* (.01)  .92* (.02) 

27  .65* (.01)  .91* (.02) 

28  .59* (.01)  .90* (.03) 

29  .64* (.01)  .92* (.02) 

30  .44* (.01)  .80* (.04) 

31  .54* (.01 )  .92* (.02) 

32  .59* (.01 )  .96* (.01) 

33  .39* (.01 )  .94* (.03) 

34  .53* (.01 )  .91* (.03) 

35  .73* (.01 )  .91* (.03) 

36   .32* (.02)  .73* (.09) 

37  .46* (.02 )  .83* (.06) 

38  .65* (.01 )  .98* (.02) 

39  .55* (.01 )  .80* (.04) 

40  .56* (.01 )  .91* (.03) 

Note. SE = Standard Error. 
* p < .05 
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Table D.1 (continued) 

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 3  
    

      
  Within-level   Between-level  
Item  Loadings (SE)  Loadings (SE) 

 
41  .43* (.01)  .91* (.04) 

42  .52* (.01)  .92* (.03) 

43  .61* (.01)  .76* (.05) 

44  .58* (.01)  .72* (.06) 

45  .61* (.01)  .98* (.02) 

46   .69* (.01)  .94* (.02) 

47  .65* (.01)  .90* (.03) 

48  .50* (.02)  .96* (.07) 

49  .61* (.01)  .98* (.02) 

50  .56* (.01)  .96* (.02) 

51  .50* (.01)  .88* (.04) 

52  .48* (.01)  .91* (.03) 

53  .34* (.02)  .93* (.05) 

54  .41* (.01)  .81* (.04) 

55  .46* (.02)  .63* (.07) 

56   .53* (.01)  .91* (.03) 

57  .48* (.01)  .87* (.03) 

58  .65* (.01)  .97* (.02) 

59  .50* (.01)  .96* (.05) 

Note. SE = Standard Error. 
* p < .05
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Table D.2 

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 5  
    

      
  Within-level   Between-level  
Item  Loadings (SE)  Loadings (SE) 

 
1       .55* (.01)   .96* (.03) 

2    .49* (.01)   .98* (.03) 

3    .47* (.01)   .96* (.03) 

4    .41* (.01)   .94* (.04) 

5    .48* (.01)   .81* (.05) 

6     -.02 (.02)    -.13 (.20) 

7    .62* (.01)   .93* (.03) 

8    .56* (.01)   .99* (.02) 

9    .36* (.01)   .86* (.07) 

10    .45* (.01)   .77* (.05) 

11    .56* (.01)   .94* (.02) 

12    .36* (.01)   .86* (.05) 

13    .62* (.01)   .93* (.02) 

14    .54* (.01)   .71* (.06) 

15    .61* (.01)   .91* (.03) 

16     .30* (.01)   .98* (.03) 

17    .63* (.01)   .97* (.02) 

18    .44* (.01)   .54* (.09) 

19    .58* (.01)   .90* (.03) 

20    .61* (.01)   .90* (.03) 

Note. SE = Standard Error. 
* p < .05 
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Table D.2 (continued) 

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 5  
    

      
  Within-level   Between-level  
Item  Loadings (SE)  Loadings (SE) 

 
21  .59* (.01)   .88* (.03) 

22  .56* (.01)   .91* (.04) 

23  .51* (.01)   .93* (.03) 

24  .39* (.01)   .56* (.07) 

25  .46* (.01)   .96* (.03) 

26  .50* (.01)   .80* (.05) 

27  .39* (.01)   .76* (.07) 

28  .62* (.01)   .72* (.05) 

29  .55* (.01)   .94* (.02) 

30  .55* (.01)   .97* (.01) 

31  .59* (.01)   .93* (.03) 

32  .37* (.01)   .71* (.08) 

33  .46* (.01)   .24* (.11) 

34  .52* (.01)   .94* (.03) 

35  .50* (.01)   .59* (.08) 

36   .63* (.01)   .91* (.03) 

37  .51* (.01)   .89* (.04) 

38  .43* (.02)   .82* (.06) 

39  .28* (.02)   .77* (.11) 

40  .41* (.01)   .77* (.06) 

Note. SE = Standard Error. 
* p < .05 
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Table D.2 (continued) 

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 5  
    

      
  Within-level   Between-level  
Item  Loadings (SE)  Loadings (SE) 

 
41  .14* (.02)     .10 (.17) 

42  .43* (.01)   .53* (.08) 

43  .59* (.01)   .83* (.05) 

44  .56* (.01)   .91* (.03) 

45  .64* (.01)   .98* (.03) 

46  .57* (.01)   .94* (.03) 

47  .49* (.01)   .82* (.06) 

48  .39* (.02)   .76* (.06) 

49  .38* (.02)   .88* (.06) 

50  .52* (.02)   .94* (.09) 

51  .47* (.01)   .84* (.04) 

52  .62* (.01)   .96* (.02) 

53  .49* (.01)   .72* (.06) 

54  .53* (.01)   .82* (.04) 

55  .40* (.02)   .95* (.06) 

56   .28* (.02)   .73* (.08) 

57  .56* (.01)   .96* (.03) 

58  .52* (.01)   .95* (.03) 

59  .15* (.01)   .68* (.19) 

Note. SE = Standard Error. 
* p < .05
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Table D.3 

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 8  
    

      
  Within-level   Between-level  
Item  Loadings (SE)  Loadings (SE) 

 
1  .51* (.02)   .94* (.02) 

2  .49* (.01)   .93* (.04) 

3  .21* (.01)   .47* (.10) 

4  .56* (.01)   .92* (.03) 

5  .43* (.02)   .88* (.03) 

6  .40* (.01)   .83* (.06) 

7  .05* (.01)  -.29* (.12) 

8  .34* (.01)   .69* (.08) 

9  .51* (.01)   .88* (.04) 

10  .57* (.02)   .87* (.05) 

11  .67* (.01)   .96* (.05) 

12  .70* (.02)   .95* (.08) 

13  .56* (.01)   .97* (.02) 

14  .73* (.01)   .96* (.06) 

15  .64* (.01)   .93* (.06) 

16   .45* (.01)   .97* (.02) 

17  .47* (.01)   .97* (.02) 

18  .55* (.01)   .99* (.01) 

19  .50* (.01)   .98* (.01) 

20  .43* (.01)   .88* (.04) 

Note. SE = Standard Error. 
* p < .05
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Table D.3 (continued) 

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 8  
    

      
  Within-level   Between-level  
Item  Loadings (SE)  Loadings (SE) 

 
21  .56* (.01)    .96* (.02) 

22  .72* (.01)    .96* (.05) 

23  .44* (.01)    .96* (.02) 

24  .50* (.01)    .98* (.01) 

25  .61* (.01)    .98* (.01) 

26  .56* (.01)    .93* (.03) 

27  .50* (.01)    .95* (.03) 

28  .61* (.01)    .98* (.03) 

29  .72* (.01)    .96* (.02) 

30  .61* (.01)    .94* (.02) 

31  .72* (.01)    .95* (.05) 

32  .54* (.01)    .90* (.03) 

33  .56* (.01)   1.00* (.01) 

34  .67* (.02)    .71* (.08) 

35  .68* (.01)    .98* (.02) 

36   .52* (.01)    .89* (.03) 

37  .48* (.01)    .96* (.02) 

38  .55* (.01)    .96* (.02) 

39  .23* (.02)    .68* (.07) 

40  .64* (.01)    .97* (.02) 

Note. SE = Standard Error. 
* p < .05 
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Table D.3 (continued) 

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 8  
    

      
  Within-level   Between-level  
Item  Loadings (SE)  Loadings (SE) 

 
41  .19* (.02)   .56* (.09) 

42  .71* (.01 )   .99* (.02) 

43  .55* (.01)   .94* (.02) 

44  .51* (.01)   .98* (.01) 

45  .61* (.01)   .93* (.02) 

46   .39* (.01)   .78* (.07) 

47  .61* (.01)   .94* (.04) 

48  .52* (.01)   .96* (.01) 

49  .49* (.01)   .96* (.02) 

50  .46* (.01)   .89* (.03) 

51  .61* (.01)   .94* (.02) 

52  .63* (.01)   .91* (.03) 

53  .57* (.01)   .95* (.02) 

54  .54* (.01)   .99* (.02) 

55  .45* (.01)   .97* (.02) 

56   .52* (.01)   .97* (.01) 

57  .48* (.01)   .99* (.01) 

58  .38* (.01)   .91* (.05) 

59  .50* (.01)   .97* (.01) 

Note. SE = Standard Error. 
* p < .05 
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Appendix E 

 
Table E.1 

Multilevel Confirmatory Factor Analysis (Unstandardized Solution) for Grade 3  
 

      
  Within-level   Between-level  
Item  Loadings (SE)  Loadings (SE) 

 
1  1.00 (.00)  1.00 (.00) 

2  .38* (.03)  .64* (.11) 

3  .51* (.03)  .56* (.07) 

4        1.20* (.04)              1.43* (.16) 

5        1.07* (.03)  .99* (.11) 

6        1.21* (.05)              1.22* (.02) 

7  .75* (.03)  .83* (.10) 

8        1.08* (.04)             1.29* (.03) 

9  .80* (.03)  .90* (.08) 

10  .97* (.04)             1.28* (.20) 

11  .72* (.03)             1.05* (.16) 

12        1.13* (.04)             1.43* (.17) 

13        1.39* (.05)             2.04* (.26) 

14        1.03* (.03)             1.28* (.16) 

15  .73* (.03)  .96* (.13) 

16        1.43* (.05)             1.82* (.22) 

17        1.00* (.04)             1.16* (.15) 

18  .72* (.03)  .74* (.11) 

19        1.11* (.04)             1.10* (.13) 

20        1.13* (.04)             1.05* (.11) 

Note. SE = Standard Error. 
* p < .05 
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Table E.1 (continued) 

Multilevel Confirmatory Factor Analysis (Unstandardized Solution) for Grade 3  
    

      
  Within-level   Between-level  
Item  Loadings (SE)  Loadings (SE) 

 
21  .89* (.04)             1.10* (.14) 

22  .38* (.02)  .65* (.11) 

23  .89* (.03)  .91* (.12) 

24  .87* (.04)             1.13* (.15) 

25   .73* (.03)     1.37* (.19) 

26        1.16* (.04)              1.87* (.22) 

27        1.20* (.04)              1.40* (.18) 

28        1.02* (.04)              1.29* (.17) 

29        1.15* (.04)              1.38* (.19) 

30  .69* (.03)              1.08* (.13) 

31  .91* (.03 )              1.41* (.16) 

32         1.00* (.03)              1.51* (.20) 

33  .59* (.02 )  .77* (.09) 

34  .89* (.03 )             1.22* (.19) 

35        1.52* (.07 )             1.57* (.21) 

36   .47* (.04)  .56* (.10) 

37  .72* (.04 )  .64* (.09) 

38        1.18* (.05 )             1.30* (.17) 

39  .93* (.03 )             1.32* (.16) 

40  .94* (.04 )             1.20* (.14) 

Note. SE = Standard Error. 
* p < .05 
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Table E.1 (continued) 

Multilevel Confirmatory Factor Analysis (Unstandardized Solution) for Grade 3  
    

      
  Within-level   Between-level  
Item  Loadings (SE)  Loadings (SE) 

 
41  .67* (.03)  .63* (.09) 

42  .86* (.04)             1.00* (.12) 

43        1.09* (.05)             1.27* (.20) 

44        1.00* (.04)             1.02* (.17) 

45        1.08* (.05)             1.24* (.17) 

46        1.32* (.04)             1.30* (.14) 

47        1.19* (.05)             1.31* (.17) 

48  .80* (.06)  .86* (.16) 

49        1.09* (.04)             1.12* (.14) 

50  .95* (.04)             1.20* (.13) 

51  .81* (.04)  .97* (.15) 

52  .76* (.03)             1.06* (.14) 

53  .50* (.04)  .80* (.13) 

54  .63* (.03)               .88* (.11) 

55  .73* (.05)             1.04* (.19) 

56   .87* (.03)             1.25* (.17) 

57  .76* (.03)             1.02* (.13) 

58        1.21* (.04)             1.38* (.18) 

59  .80* (.03)  .59* (.08) 

Note. SE = Standard Error. 
p < .05 
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APPENDIX F 

Table F.1 

Confirmatory Factor Analyses Solutions for Grade 3 (Limited to Clusters of Five or More) 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
1  .58* (.01)  .85* (.04)   .60* (.01) 

2  .27* (.02)  .79* (.08)   .31* (.02) 

3  .34* (.01)  .78* (.06)   .37* (.01) 

4  .65* (.01)  .94* (.02)   .69* (.01) 

5  .61* (.01)  .83* (.04)   .62* (.01) 

6  .66* (.01)  .95* (.02)   .68* (.01) 

7  .47* (.01)  .80* (.04)   .50* (.01) 

8  .61* (.01)  .91* (.03)   .64* (.01) 

9  .50* (.01)  .95* (.03)   .53* (.01) 

10  .57* (.01)  .80* (.04)   .60* (.01) 

11  .46* (.01)  .87* (.03)   .50* (.01) 

12  .63* (.01)  .93* (.02)   .67* (.01) 

13  .71* (.01)  .92* (.02)   .74* (.01) 

14  .59* (.01)  .99* (.01)   .63* (.01) 

15  .46* (.01)  .91* (.03)   .50* (.01) 

16   .72* (.01)  .95* (.02)   .75* (.01) 

17  .58* (.01)  .84* (.04)   .61* (.01) 

18  .45* (.01)  .96* (.03)   .48* (.01) 

19  .62* (.01)  .96* (.02)   .64* (.01) 

20  .63* (.01)  .95* (.02)   .65* (.01) 

Note. SE = Standard Error.  
* p < .05



 112

Table F.1 (continued) 

Confirmatory Factor Analyses Solutions for Grade 3 (Limited to Clusters of Five or More) 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
21  .54* (.01)  .87* (.03)   .57* (.01) 

22  .26* (.01)  .87* (.04)   .31* (.01) 

23  .54* (.01)  .83* (.04)   .56* (.01) 

24  .53* (.01)  .94* (.02)   .57* (.01) 

25   .46* (.02)  .91* (.03)   .53* (.01) 

26  .64* (.01)  .92* (.02)   .69* (.01) 

27  .65* (.01)  .91* (.02)   .68* (.01) 

28  .59* (.01)  .90* (.03)   .63* (.01) 

29  .64* (.01)  .92* (.02)   .67* (.01) 

30  .44* (.01)  .80* (.04)   .49* (.01) 

31  .54* (.01)  .92* (.02)   .60* (.01) 

32  .58* (.01)  .96* (.01)   .64* (.01) 

33  .39* (.01)  .95* (.03)   .43* (.01) 

34  .54* (.01)  .91* (.03)   .58* (.01) 

35  .73* (.01)  .90* (.03)   .75* (.01) 

36   .32* (.02)  .73* (.09)   .35* (.02) 

37  .46* (.02)  .83* (.06)   .48* (.02) 

38  .65* (.01)  .98* (.02)   .68* (.01) 

39  .55* (.01)  .80* (.04)   .59* (.01) 

40  .56* (.01)  .91* (.03)   .60* (.01) 

Note. SE = Standard Error.  
* p < .05 
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Table F.1 (continued) 

Confirmatory Factor Analyses Solutions for Grade 3 (Limited to Clusters of Five or More) 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
41  .43* (.01)  .91* (.04)   .45* (.01) 

42  .52* (.01)  .92* (.03)   .55* (.01) 

43  .61* (.01)  .76* (.05)   .63* (.01) 

44  .58* (.01)  .72* (.06)   .60* (.01) 

45  .61* (.01)  .98* (.02)   .65* (.01) 

46   .69* (.01)  .94* (.02)   .71* (.01) 

47  .65* (.01)  .90* (.03)   .67* (.01) 

48  .50* (.02)  .96* (.07)   .53* (.02) 

49  .61* (.01)  .98* (.02)   .64* (.01) 

50  .56* (.01)  .96* (.02)   .60* (.01) 

51  .50* (.01)  .88* (.04)   .54* (.01) 

52  .48* (.01)  .91* (.03)   .53* (.01) 

53  .34* (.02)  .93* (.05)   .39* (.02) 

54  .41* (.01)  .81* (.04)   .45* (.01) 

55  .46* (.02)  .63* (.07)   .50* (.02) 

56   .53* (.01)  .91* (.03)   .57* (.01) 

57  .48* (.01)  .87* (.03)   .52* (.01) 

58  .65* (.01)  .97* (.02)   .69* (.01) 

59  .50* (.01)  .96* (.05)   .50* (.01) 

Note. SE = Standard Error.  
* p < .05 
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Table F.2 

Confirmatory Factor Analyses Solutions for Grade 5 (Limited to Clusters of Five or More) 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
1       .55* (.01)   .95* (.04)    .57* (.01) 

2    .49* (.01)   .98* (.02)    .52* (.01) 

3    .47* (.01)   .96* (.03)    .49* (.01) 

4    .41* (.01)   .95* (.04)    .44* (.01) 

5    .48* (.01)   .81* (.05)    .51* (.01) 

6   -.02 (.02)  -.11 (.20)   -.02 (.02) 

7    .62* (.01)   .93* (.03)    .64* (.01) 

8    .56* (.01)   .99* (.02)    .59* (.01) 

9    .36* (.01)   .86* (.07)    .38* (.01) 

10    .45* (.01)   .77* (.05)    .47* (.01) 

11    .56* (.01)   .94* (.02)    .58* (.01) 

12    .36* (.01)   .86* (.06)    .38* (.01) 

13    .62* (.01)   .93* (.02)    .63* (.01) 

14    .54* (.01)   .70* (.06)    .56* (.01) 

15    .60* (.01)   .90* (.03)    .63* (.01) 

16     .30* (.01)   .98* (.03)    .33* (.01) 

17    .62* (.01)   .97* (.02)    .65* (.01) 

18    .45* (.01)   .55* (.09)    .46* (.01) 

19    .58* (.01)   .90* (.03)    .62* (.01) 

20    .61* (.01)   .89* (.04)    .63* (.01) 

Note. SE = Standard Error.  
* p < .05
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Table F.2 (continued) 

Confirmatory Factor Analyses Solutions for Grade 5 (Limited to Clusters of Five or More) 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
21  .59* (.01)   .88* (.03)   .61* (.01) 

22  .56* (.01)   .91* (.04)   .58* (.01) 

23  .51* (.01)   .93* (.04)   .53* (.01) 

24  .39* (.01)   .55* (.07)   .41* (.01) 

25  .46* (.01)   .96* (.04)   .47* (.01) 

26  .50* (.01)   .80* (.05)   .51* (.01) 

27  .38* (.01)   .75* (.07)   .40* (.01) 

28  .62* (.01)   .72* (.05)   .63* (.01) 

29  .55* (.01)   .94* (.02)   .58* (.01) 

30  .54* (.01)   .97* (.02)   .58* (.01) 

31  .59* (.01)   .93* (.03)   .62* (.01) 

32  .37* (.01)   .70* (.08)   .38* (.01) 

33  .46* (.01)   .24* (.11)   .43* (.01) 

34  .53* (.01)   .94* (.03)   .56* (.01) 

35  .50* (.01)   .58* (.08)   .50* (.01) 

36   .63* (.01)   .91* (.03)   .66* (.01) 

37  .51* (.01)   .89* (.04)   .54* (.01) 

38  .44* (.02)   .82* (.06)   .46* (.01) 

39  .28* (.02)   .76* (.11)   .29* (.02) 

40  .41* (.01)   .76* (.06)   .43* (.01) 

Note. SE = Standard Error.  
* p < .05 
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Table F.2 (continued) 

Confirmatory Factor Analyses Solutions for Grade 5 (Limited to Clusters of Five or More) 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
41  .14* (.02)   .12 (.17)   .14* (.02) 

42  .43* (.01)   .53* (.08)   .44* (.01) 

43  .59* (.01)   .84* (.05)   .60* (.01) 

44  .56* (.01)   .90* (.04)   .59* (.01) 

45  .64* (.01)   .98* (.03)   .65* (.01) 

46  .57* (.01)   .94* (.03)   .59* (.01) 

47  .49* (.01)   .82* (.06)   .50* (.01) 

48  .39* (.02)   .75* (.06)   .41* (.01) 

49  .38* (.02)   .88* (.06)   .40* (.02) 

50  .51* (.02)   .94* (.09)   .53* (.02) 

51  .48* (.01)   .84* (.04)   .51* (.01) 

52  .62* (.01)   .96* (.02)   .65* (.01) 

53  .49* (.01)   .72* (.06)   .51* (.01) 

54  .53* (.01)   .82* (.04)   .56* (.01) 

55  .39* (.02)   .95* (.06)   .42* (.02) 

56   .28* (.02)   .72* (.08)   .31* (.01) 

57  .56* (.01)   .96* (.03)   .59* (.01) 

58  .52* (.01)   .95* (.03)   .55* (.01) 

59  .15* (.01)   .68* (.19)   .16* (.01) 

Note. SE = Standard Error.  
* p < .05  
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Table F.3 

Confirmatory Factor Analyses Solutions for Grade 8 (Limited to Clusters of Five or More) 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
1  .52* (.02)   .94* (.02)   .55* (.01) 

2  .49* (.01)   .93* (.04)   .53* (.01) 

3  .21* (.01)   .47* (.10)   .20* (.01) 

4  .56* (.01)   .92* (.03)   .60* (.01) 

5  .43* (.02)   .88* (.03)   .45* (.01) 

6  .39* (.01)   .83* (.06)   .47* (.01) 

7  .05* (.01)  -.31* (.12)   .02 (.01) 

8  .35* (.01)   .70* (.08)   .39* (.02) 

9  .50* (.01)   .88* (.04)   .56* (.01) 

10  .57* (.02)   .87* (.05)   .58* (.01) 

11  .67* (.01)   .96* (.05)   .73* (.01) 

12  .69* (.02)   .95* (.08)   .72* (.01) 

13  .56* (.01)   .97* (.02)   .60* (.01) 

14  .73* (.01)   .96* (.06)   .76* (.01) 

15  .64* (.01)   .93* (.06)   .68* (.01) 

16   .45* (.01)   .97* (.02)   .48* (.01) 

17  .47* (.01)   .97* (.02)   .50* (.01) 

18  .55* (.01)   .99* (.01)   .59* (.01) 

19  .49* (.01)   .98* (.01)   .53* (.01) 

20  .42* (.01)   .87* (.04)   .44* (.01) 

Note. SE = Standard Error.  
* p < .05
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Table F.3 (continued) 

Confirmatory Factor Analyses Solutions for Grade 8 (Limited to Clusters of Five or More) 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
21  .55* (.01)    .96* (.02)   .60* (.01) 

22  .72* (.01)    .97* (.05)   .76* (.01) 

23  .44* (.01)    .96* (.02)   .47* (.01) 

24  .50* (.01)    .98* (.01)   .55* (.01) 

25  .61* (.01)    .98* (.01)   .66* (.01) 

26  .55* (.01)    .93* (.03)   .61* (.01) 

27  .50* (.01)    .95* (.03)   .55* (.01) 

28  .61* (.01)    .98* (.03)   .68* (.01) 

29  .72* (.01)    .96* (.02)   .76* (.01) 

30  .62* (.01)    .95* (.02)   .66* (.01) 

31  .73* (.01)    .95* (.05)   .74* (.01) 

32  .54* (.01)    .91* (.03)   .56* (.01) 

33  .55* (.01)   1.00* (.01)   .59* (.01) 

34  .69* (.01)    .71* (.08)   .66* (.01) 

35  .68* (.01)    .98* (.02)   .72* (.01) 

36   .52* (.01)    .90* (.03)   .56* (.01) 

37  .48* (.01)    .96* (.02)   .53* (.01) 

38  .55* (.01)    .96* (.02)   .59* (.01) 

39  .24* (.02)    .69* (.07)   .26* (.01) 

40  .64* (.01)    .96* (.02)   .67* (.01) 

Note. SE = Standard Error.  
* p < .05 
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Table F.3 (continued) 

Confirmatory Factor Analyses Solutions for Grade 8 (Limited to Clusters of Five or More) 
    

    
   Multilevel CFA     Standard CFA 
   
  Within-level   Between-level   Collapsed 
Item  Loadings (SE)  Loadings (SE)   Loadings (SE) 

 
41  .20* (.02)   .55* (.09)   .22* (.01) 

42  .71* (.01)   .99* (.02)   .75* (.01) 

43  .56* (.01)   .94* (.02)   .61* (.01) 

44  .51* (.01)   .98* (.01)   .55* (.01) 

45  .61* (.01)   .93* (.02)   .65* (.01) 

46   .39* (.01)   .79* (.07)   .39* (.01) 

47  .61* (.01)   .95* (.04)   .63* (.01) 

48  .52* (.01)   .96* (.01)   .56* (.01) 

49  .50* (.01)   .96* (.02)   .54* (.01) 

50  .47* (.01)   .89* (.03)   .50* (.01) 

51  .61* (.01)   .94* (.02)   .65* (.01) 

52  .63* (.01)   .91* (.03)   .66* (.01) 

53  .57* (.01)   .95* (.02)   .61* (.01) 

54  .53* (.01)   .99* (.02)   .57* (.01) 

55  .45* (.01)   .96* (.02)   .49* (.01) 

56   .52* (.01)   .97* (.01)   .55* (.01) 

57  .49* (.01)   .99* (.01)   .53* (.01) 

58  .39* (.01)   .90* (.06)   .41* (.01) 

59  .50* (.01)   .97* (.01)   .56* (.01) 

Note. SE = Standard Error.  
* p < .05 
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