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ABSTRACT
Sharyn L. Rosenberg
Multilevel validity:
Assessing the validity of school-level inferences from student achievéestuiata
(Under the direction of Dr. Gregory J. Cizek)

Psychometric theory is clear about the central role of validity and the enperof
gathering evidence for a particular purpose. State achievementréegenarally developed
with ample validity evidence for their intended inferences about student achiev&uemt
evidence may not be sufficient for drawing group-level inferences, a cruciallpaiing
often ignored when student achievement scores are used in multilevel at@abtsely
effects at the school level. This study explores the process of gatherifigwalitalidity
evidence necessary to make school-level inferences from student achietestsent

Using data from approximately 28,000 students in grades 3, 5, and 8 in a northeastern
U.S. state, this study examined the multilevel factor structure of mailbsraahievement
tests. Multilevel exploratory factor analyses were used to detether@ptimal number of
factors at both the student and the school levels of analysis. Multilevel caofiyrfector
analyses were used to assess the extent to which the one-factor solutions orebaehnde
feasible. Both standard (single level) confirmatory factor analysksnaltilevel
confirmatory factor analyses were used to compare the size and relativeamopaf factor
loadings at the different levels of analysis. The statistical signdeaf the school-level

factor loadings provided evidence about the extent to which the mathematic® e

test items were effective for discriminating between schools.



For each of the three grades studied, there was only one meaningful factbeddent
(presumably mathematics achievement) at both the student and school levels &f. aktalys
each grade level, items differed in terms of both their absolute and relaéwa their factor
loadings at the student and school levels of analysis, suggesting that when sahool-le
inferences are of interest, standard factor analyses provide insuffrdi@mation about test
development and validation. The majority of items in this study were morendiisating at
the school level than at the student level. Interpretations of these findingsargsdd in the
context of relevant research on validity and student achievement. Implications for

educational measurement and ideas for future research are also addressed.
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CHAPTER 1
INTRODUCTION

During the past decade, measurable student achievement outcomes have been brought
to the forefront of both educational research and policy. State efforts to tdekist
achievement as an indicator of school quality preceded one of the most influeletial fe
education policies of all time, the No Child Left Behind Act of 2001 (NCLB, 2002). In
addition to the unprecedented attention and stakes given to school accountability programs
NCLB (2002) has had a vast impact on the types of outcomes that are measssed<o a
educational interventions and other school-level processes. In the currete diiwauld be
difficult to obtain funding for research on school processes or for evaluatiocisoni-gevel
programs without intending to connect those processes or programs to student achjeveme
whether as a primary or secondary purpose.

Contemporary debates about school effectiveness have tended to focus primarily on
student achievement, not because behaviors, attitudes, and other student ouecomes ar
deemed unimportant, but for the simple reason that test scores are so prominent now
(Rumberger & Palardy, 2004). Similarly, the goal of increasing stusdr¢vement has
become a primary focus of many educational programs, even those that do tigts#ree
students. For example, many studies of school-level programs (such asiprate
development workshops for principals or teachers) have goals of increasing stude

achievement for participating schools, even though students do not receive thertteat



directly. Consequently, the evaluations of such programs also tend to incorporate student
achievement tests as outcome measures.

In addition to the effect that NCLB has had on the prominence of student
achievement, the annual administration and standardization of state achietestsemve
resulted in a rich cache of available data for secondary purposes in edlicaeaech and
program evaluation. State achievement tests undergo rigorous psychomayses during
test development, are administered on a consistent basis, and are uniformchoalss s
within a given state.

The increased focus on student achievement and the availability of stal@tadsave
occurred during a time of widespread development and use of software foeweulti
analysis in social science research. Multilevel models are used wheatahstrdcture is
hierarchical, such as when individuals are clustered within groups (e.g., studlkimts w
schools) or observations are clustered within persons (i.e., repeated measgrgs de
Multilevel analyses can incorporate different variables at each level chthd&i@rarchy; an
outcome can be modeled as a function of both individual and group predictors. Multilevel
analyses can be used not only to account for the complex design of students nested withi
schools, but also to study the effects of a program that is administeredcidbklsvel.

When the primary effect of interest is a school-level variable (e.g.paimmr teacher
participation in a program), the between-school variation in student achievestestores
can be used as a measure of school achievement.

The increased emphasis on student outcomes, wealth of available data, and
advancements in analytic techniques have all vastly increased the tiseat $est scores

for secondary purposes in educational research and program evaluation. Theaiee of s



achievement tests for these secondary purposes appears to offer many. &taéditesting
programs invest considerable resources into the development and administration of student
achievement tests, unlike many lesser-quality measures that mayéapkate psychometric
properties. However, it is important to recognize that the stated purpose otat®ststing
programs is to measure the achievement of students rather than schools. Thuaperatve

to investigate the validity of state achievement tests for the partmudpose of assessing

school-level achievement.



CHAPTER 2
LITERATURE REVIEW

According to theStandards for Educational and Psychological Tes{hGRA,
APA, & NCME, 1999; hereafteStandard} the most important characteristic of the
measurement process is validity. The following sections trace the impeégathering
validity evidence for the specific purpose of using student achievement tesulike
inferences about school-level outcomes. A discussion of validity in general isdédllmypan
overview of the most common sources of validity evidence. There is also a focus on
considerations specific to nested data (students in schools), most prominentlgyelulti
analyses. The dual goals of gathering appropriate validity evidence @nhtng for
multilevel data structures, typically independent procedures in current iethatatsearch,
are woven together to frame the research questions in the context of multileligt.val

Validity

Validity has been defined by Messick (1989) as, “an integrative, evaluativagumdg
of the degree to which empirical evidence and theoretical rationales suygadetuacy
andappropriatenessf inferencesandactionsbased on test scores or other modes of
assessment” (p. 13). If the inferences made from test scores are not suppadeduate
validity evidence, the intended use of the scores is threatened regardlesshafjlntve

reliability of the scores.



Validity is a characteristic of an inference made from a test sativer than a
characteristic of the test itself. Validity is a matter of degrderences are not valid or
invalid, but rather, they are supported by validity evidence that ranges from strnoagk,
confirming to disconfirming (Crocker & Algina, 1986). A test can have stronditsali
evidence for one purpose but little, no, or even contrary evidence for a different plmpose
the chapter on validity, thetandardAERA, APA, & NCME, 1999) emphasizes the
importance of gathering validity evidence for each intended use of a test. SachiGps
fundamental to responsible measurement and is essential for ensuringrtess fand
preventing test misuse.

The final chapter of th8tandardfAERA et al., 1999) focuses on the use of tests in
program evaluation and public policy. A primary consideration in using tests foaprogr
evaluation is the focus on measuring groups rather than individuals (AERA et al., 1999).
Standard 15.1 highlights the importance of gathering validity evidence for eauteidteest
purpose and includes the following comment:

In educational testing, for example, it has become common

practice to use the same test for multiple purposes (e.g., monitoring

achievement of individual students, providing information to assist

in instructional planning for individuals or groups of students,

evaluating schools or districts). No test will serve all purposes

equally well. Choices in test development and evaluation that

enhance validity for one purpose may diminish validity for other

purposes (p. 167).
The measurement community acknowledges that psychometric consideratjoveryna
according to the level of measurement (individual vs. group), but little guidapcevided
on how to translate this acknowledgment into practice.Skhadard§AERA et al., 1999)

does not include any details or examples about how test validation approaches could be

adapted from the measurement of individuals to groups, despite the insistence that it is



important to do so. Nor is there much information on the types of validity evidence most
likely to vary according to the level of measurement.

In a recent special issueBflucational Measurement: Issues and Practledicated
to assessing the adequacy of the curg¢andardsLinn (2006) discussed the current lack of
guidance on psychometric issues related to aggregate test results. Alth@ughdukthat the
shortcoming does not necessitate a revised edition &tdmelardsLinn (2006) proposed
several alternatives, including the development of, “a companion set of skatitrwould
specifically address the uses of aggregate test results for emaloaticcountability
purposes” (p. 56). Linn (2006) also noted that the lack of guidance on group-level
measurement issues is not a new dilemma, but is a challenge that has le¥drfqgrssveral
decades. For example, the third edition ofStendarddAERA, APA, & NCME, 1974)
contained a section on using tests for measuring groups in program evaluation, but the
revision committee argued that group-level measurement issues were beyscapthef the
Standardsand would necessitate the development of several different sets of standands (L
2006).

The discussions surrounding the revision of the 1tafdardded to the
development of a separate set of standards for program evaluatiorStatedrds for
Evaluations of Educational Programs, Projects, and Matel(atént Committee on
Standards for Educational Evaluation, 1981); the revised (current) edition was published i
1994. The original version of the program evaluation standards included only eight pages on
measurement, and a brief introduction to reliability and validity (Joint Caegnin
Standards for Educational Evaluation, 1981). The revised edition was also not designed to be

a comprehensive reference in psychometrics; in fact, Standard A5.C ensavalyators to



consult theStandards for Educational and Psychological Tesforglirection on using tests

in an evaluation (Joint Committee on Standards for Educational Evaluation, 1994). If
program evaluation is considered to fall outside of the traditional boundaries of educationa
and psychological testing, it is not clear where evaluators should turn for té@xpeetise

on measurement issues that are specific to program evaluation, such as drempAg\el
inferences from individual measures.

The most recent edition &ducational MeasuremeBrennan, 2006) includes a new
chapter devoted to group-level measurement issues. However, in that chagtesapre
assessments are essentially defined as tests relying on matpbngatesigns, such as
NAEP, where group-level inferences are the only (or primary) purpose obthi{#lezzeo,
Lazer, & Zieky, 2006). Mazzeo et al. (2006) did not refer to group-level measuresiees i
in program evaluation, nor to any instances where group-level inferen@serendary use
of tests that were originally developed to make inferences about individuatidition,
there is no discussion of issues related to test development and validation thetificetsp
group-level measurement. The only such reference is a justification forsecatof this
information, provided in a note that states: “Group-score assessments useaitysis or
quality control purposes, and conduct DIF analyses. However, these are not diféenent
approaches used in individual-score tests, so are not discussed here” (p. 694). Therchapte
test validation (Kane, 2006) is similarly devoid of considerations related to tsireenent
of groups.

In a seminal article in psychometrics, Ebel (1961) said of validity: “It iseusally
praised, but the good works done in its name are remarkably few” (p. 640). Sevetabdeca

later, Brennan (1998) also referred to the wide gap between validity theory aticepra



Although validity theory in general is hardly impoverished, guidance relatix tvalidation
of group-level inferences is lacking. Validity theory related to the measunteof
individuals versus groups exists only on the broadest level possible in the form of general
emphasis on establishing validity evidence for each intended use of a testuitlaacg on
how test development and validation efforts might differ based on whether the inteaded s
inference pertains to individuals or groups, and advances in this regard are ydodssar
validity theory and assessment practice. Without an understanding of how validity
considerations may differ according to the level of measurement, it woulddvesiswy if the
good works done in the validation of group-level inferences wetreemarkably few.
Sources of Validity Evidence

According to theéStandardsgurrent potential sources of validity evidence include:
evidence based on test content; evidence based on response process; evidence based on
internal structure; evidence based on relations to other variables; and evidsad®n test
consequences (AERA et al., 1999). Validity evidence based on test content isthayhere
consulting with subject matter experts to determine the extent to whichttiertes
adequately sample from the specified domain of interest (AERA et al., 1999; C&ocke
Algina, 1986). Content validity evidence is necessary to draw inferences omyaaréar
from the sample of test items to the entire domain (Messick, 1989).

In state achievement tests, content validity evidence generallyhergdtby
comparing test items to state guidelines for the standard course of studysinbijleat area.
The test domain typically is constructed through curriculum analysis, ex@anioéttate
content standards, and consultation with subject matter experts. Testafieoi are used

to guide the comprehensive item writing process, where subject matteiseggregrate an



initial pool of items to represent the target domain. Through the processidaegghg and
committee review, item content validity is evaluated for accuracy, reteyand
representativeness (Messick, 1989). Alignment studies also may be usedsdhesegient
to which operational test items are an adequate sample of the content stanther dast
domain (Webb, 1999).

Response process analyses seek to gather evidence that test-¢aketsadly
engaging in the processes relevant to the construct being measured. Such evaftsrce is
gathered by questioning examinees about the cognitive processes they emgdgkd i
taking a test, a procedure sometimes referred to as a think-aloud protocol or cognitive
interview (AERA et al., 1999; Willis, 2005). In multiple choice tests, cognititerviews
also may provide evidence that examinees are choosing the correct answersritended
reasons. Depending on the type of test, response process analyses may alsaiaclude r
judgment, monitoring of records, and analysis of examinee eye-movemergpaise times
(AERA et al., 1999).

Internal structure analyses refer to procedures based on how individuanest it
relate to each other and therefore how they conform to the intended constiftertiE&gt
consists of subtests that purport to measure distinct constructs, then intertadadtruc
analyses should support the proposed test structure (AERA et al., 1999; Crocker & Algina,
1986). The most common methods for gathering evidence based on internal struatdee incl
coefficients of internal consistency (e.g., coefficient alpha), nonpatarapproaches to
dimensionality, and factor analysis.

Validity evidence by relation to other variables includes several typasdanee.

Convergent validity evidence is gathered when a test correlates highlgthveir measures of



the same or similar constructs. Discriminant validity evidence callsvigar correlations
with measures of different constructs. Efforts to gather validity eviden@erf@thematics
achievement test may include demonstrating higher correlations with athsuras of
mathematics than with reading comprehension tests. Validity evidencdsodeayathered
by studying the relationship between a test and a criterion, either piesecurrent) or
future (predictive), such as correlations between achievement test aesliteurse grades
(AERA et al., 1999; Crocker & Algina, 1986).

The newest and most controversial source of validity evidence is evidessrbdra
test consequences. Proponents of consequential validity evidence argue that ol inte
and unintended consequences of test use can affect the validity of the testesterenc
According to theStandards;evidence about consequences may be directly relevant to
validity when it can be traced to a source of invalidity such as construct undeemgation
or construct-irrelevant components” (AERA et al., 1999, p. 16). However, other
consequences that are not a direct result of construct underrepresentation wouldarot bear
the validity of the intended inferences.

It seems that construct underrepresentation would pose a threat to validitgial ge
beyond its impact on consequential validity. Although test consequences from sounces othe
than construct underrepresentation are certainly important to the measuresness gt is
not clear that they are appropriately subsumed under validity evidence.eDesglgitfor
consequential validity evidence over the past 20 years, academics amglgesiessionals
do not appear to have embraced this aspect of validity theory. In a revievs @fpgestaring

in the current edition of thiglental Measurements Yearbo@pies & Plake, 2005), Cizek,

10



Rosenberg, and Koons (2008) found that less than three percent of reviews included any
reference to consequential validity evidence.
Factor Analysis as Validity Evidence

A common source of validity evidence for internal structure analysistierfa
analysis, a statistical technique in which a correlation matrix is usaddstigate how
measured variables (items or tests) relate to each other. Faci@isaisabased on the
assumption that high correlations among variables (e.g., test items) aceadsmaller set of
common causes, or latent factors. Factor analytic theory was first dedveldiie over a
century ago in relation to intelligence testing, when Spearman (1904) hypothibsize
general ability factor (g) accounted for correlations in performanpaess multiple tests. The
mathematical model was later refined by Thurstone (1947), who developed mheay of t
principles of modern factor analysis, such as rotation and simple structure.

The original applications of factor analysis were examples of exploratoiyr f
analysis, a technique with the purpose of identifying the number and nature of the common
factors underlying a set of variables. Confirmatory factor analyssshaique used to test
priori hypotheses about how measured variables relate to underlying fac®rs, wa
subsequently developed and programmed by Joreskog (1969). Both exploratory and
confirmatory factor analysis are now widely used in educational and psychblegearch
for many different purposes.

Although factor analysis was not originally developed for the purpose ofrigathe
validity evidence, the technique has often been used for this purpose. Factor analysis is
method of gathering validity evidence because test items that were ¢ceatedsure the

same construct should be moderately correlated with each other and relatatoehe s

11



underlying factor (Crocker & Algina, 1986). Although exploratory factohaacan be
very helpful during test development, confirmatory factor analysis providesyst test
validation evidence because it directly addresses the question of whether dippéass to
be measuring what it was intended to measure.

In a review of the role of factor analysis in test validation, Goodwin (1999t
of the first references of the practice to the 1966 edition dbthiedardsinterestingly, this
early mention of using factor analysis as validity evidence was in the forroaotian that
such evidence alone is insufficient and recommended that concurrent validitycewazs
needed: “A new interest test that emphasizes the factorial approach to ¢oradidity
should nevertheless report relationships of the new instrument to relevant scalas of s
well-established tests” (APA, 1966, p. 23-24; as cited in Goodwin, 1999, p. 92).

The current version of thétandardss much less judgmental in terms of the
adequacy and importance of specific validity evidence requirements, althougfianidards
do emphasize the need to integrate several different sources of evideRue ¢A&., 1999).
Reference to factor analysis in tRendardss made indirectly in the form of evidence
related to the internal structure of tests: “Analyses of the internigkste of a test can
indicate the degree to which the relationships among test items and test cotsiponérm
to the construct on which the proposed test score interpretations are based” (fERA e
1999, p. 13). In the most recent editiorEofucational Measuremeriane (2006) cautioned
that patterns in test performance may be due to something other than theigpdthe
constructs. Although factor analysis alone may not yield sufficient eviderstgport a

specific test use, a lack of factorial validity may seriously threa@oposed inference. A

12



lack of factorial validity would pose a serious threat to the intended infereneesf ether
sources of validity evidence (such as evidence based on test content) supporttditiee te

Messick (1989) asserted that test developers should avoid the temptation to focus
validation efforts on claims that are easy to support; rather, they havepbesiedity to
investigate rival hypotheses that legitimately threaten the proposetdestinterpretations.
The unitary concept of validity (Messick, 1989) and the argument-based approach (Kane
1992) are not intended to be used as a means of cherry-picking the types of evatesee th
most likely to yield confirming evidence. Camara and Lane (2006) notechéhegrhoval of
judgmental language in the last revision of 8tendards;appears to have moved the
current standards to a more aspirational level” (p. 36). Unlike previous editidueémaed
certain types of evidence as “Essential’ (APA, 1954) or “Primary” (AERAl., 1985) and
largely placed the burden of gathering this evidence on test developers, theQtamdatds
has, to some extent, shifted to test developers and/or users the responsibilit{ifioadd
investigate the most important threats to validity. If a test interppategsts on the
assumption that items are related to each other in a particular fashion, tbearatytic
evidence seems imperative.

Factor Analysis with Ordered-Categorical Variables

Traditional factor analytic techniques assume that measured vafitédnes or tests)
are continuous and have an interval or ratio scale, an assumption that is cleaidylwalh
dichotomous test data. If the categorical nature of the measured variabtesésliand
traditional factor analytic techniques are applied, factor loadings willdsetiand their

standard errors will be underestimated. Both theory and software have beepet:te

13



adapt linear factor analytic techniques to ordered-categorical var{aiksling binary
data), a technique also known as item factor analysis (McDonald, 1999).

One variation of item factor analysis that is implemented in some currémt fac
analytic software (e.g., LISREL, Joreskog & Sérbom, 2006; MPLUS, Muthén & Muthén,
2008) is the underlying variable approach, where ordered-categorical vaaablgosited to
represent an unobserved continuous variable. For example, a mathematias iestiiteer
correct or incorrect, but it may represent the continuous latent variable of rasittsem
ability. Factor analytic models with ordered-categorical variablespatsduce thresholds
that divide the categories. The number of thresholds produced is one less than the number of
categories, with binary items having only one threshold that represents thenlocathe
underlying variable that corresponds with a 50% probability of endorsingeth€iit the
context of surveys or attitude scales) or of answering the item corfiecthe context of
dichotomously-scored achievement tests). These models are estimatedpbyirngm
tetrachoric or polychoric correlations and using a method of weighted leastsqua
estimation.

Cluster Sampling

Most analytic techniques (including factor analysis) are based on the assuthat
data were obtained from a simple random sample. In a simple random sangapukdtion
members have an equal probability of inclusion in the sample and all possible samples
equally likely to occur (Lohr, 1999). Random number tables (or computer programs)
generally are used to select simple random samples. In education, a ammdple isample of
students in the United States could be chosen by selecting students from acrassthe na

without regard to their schools; this would likely result in a sample that includedevery f
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students per school, scattered across many different locations. Such an appfiennst
practical or cost effective in educational research. In practice, aitnpde random sample is
rare; cluster sampling is much more common, where individuals occur irdrglatgps such
as schools. Consequently, the cluster grouping contributes an additional sourcatioihviari
the sample. For example, if a multi-stage sample is drawn where a grolnooilsss
chosen, followed by selection of some or all students in those schools, it is likely that
students within the same school have more in common with each other than a true simple
random sample of students across all possible schools. The issue surrounding the
measurement of individuals nested in higher level groups has long been recagnized i
education and was once known as the “unit of analysis problem” (Knapp, 1977).
Cluster samples are less statistically efficient than simpbbora samples; that is,
they usually require a much larger sample size to achieve the same |l¢agsti€al
precision as a simple random sample (Lohr, 1999).dElseyn effecis a ratio of the variance
from the actual sampling plan to the variance of a simple random sample emhgjrike
same number of units (Lohr, 1999). The size of the design effect is largely dependent on the
intraclass correlation coefficient (ICC), a measure of how similar #mabars of a cluster
are (Lohr, 1999). The ICC and design effect are relatively large wheeralsibers are
fairly homogeneous. In cluster sampling, the design effect is often much langentha
indicating that many more sample members are required to achieve thdegaee of
statistical precision attained by a simple random sample. Consequently hehtesign of a
cluster sample is ignored during analysis and instead is treated gdersindom sample,

parameter estimates are biased and standard errors are underestiohatel09).
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There are two divergent approaches to addressing the effects of clusteassampl
where individuals are nested in higher level groups. If the group-level variatitewed as
a nuisance (that is, as something that must be corrected in order to obtaireaesuittd for
the overall sample), then a complex sampling approach is used. The complex sampling
approach would be preferable if the primary purpose of the analysis was to proaunagesst
that are applicable to all students, regardless of their schools. Complexgampgrams
such as SUDAAN (Research Triangle Institute, 1994), WesVar (Weé@®d), or MPLUS
(Muthén & Muthén, 2008) can be used to account for the clustered nature of the data by
producing accurate point estimates and standard errors. The second altervabirkeng
with cluster samples is multilevel modeling. This alternative is apprepsiaén the group-
level variation is not considered to be “noise” to be overcome but relates to questions of
theoretical interest. The multilevel modeling approach would be preferabkepiitpose of
the analysis was to consider sources of variation at both the individual and school levels.
There are many available computer programs for performing multéenadyses, including
HLM (Raudenbush, Bryk, Cheong, & Congdon, 2004), MPLUS (Muthén & Muthén, 2008),
SAS (SAS Institute, 2005), SPSS (SPSS Inc., 2006) and MLwiN (Goldstein, 1998).

Multilevel Considerations

The multilevel approach is increasingly common in educational research éecaus
sources of variation related to the teacher, classroom, or school are oftearefital or
practical interest. The application of multilevel methods to education daitasetsatural, in
fact, that many of the didactic references on multilevel analysis are bastata from
students and schools (Hox, 2002; Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002;

Singer, 1998). The multilevel approach enables researchers to ask new qubstibns a
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variables at higher levels of aggregation, such as effects related to sch@atsugty, such
guestions could only be addressed by using a single school-level mean as the outcome
variable, but this practice ignores within-school variation and leads to overtestiofia
statistical precision (Raudenbush & Bryk, 2002).

In educational research, multilevel analysis has become a widelyted@ternative
to traditional regression approaches, due to advances in both analytic techniques and
software development. There are many examples of multilevel analybesitioh and
outside of education, particularly within the past few years. In multilevel imgdean
outcome can be modeled as a function of different predictor variables on multifpdeoteve
analysis. For example, consider a two-level model, where students (level eneatiba
units) are nested within schools (level two observation units). A student achievement
outcome can be modeled as a function of student-level characteristics suclogsagaios
and prior achievement (level one variables) and school-level charactesisticas school
size, school proportion of free/reduced lunch students, and school participation in an
intervention (level two variables).

Although it is not as ubiquitous in research as traditional HLM, multileveltstalc
equation modeling (including multilevel factor analysis) has also beelhogedeto
incorporate latent variables into multiple levels of analysis (Heck, 2001; Heck &ahom
2000; Muthén, 1991; Muthén, 1994; Muthén & Satorra, 1995). The theory is based on
decomposing the total covariance matrix into separate components for besweleamtl
within-level variation (Muthén, 1991). Application of multilevel structural equation

modeling has demonstrated that relationships between measured and latel@svaréanot
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necessarily the same across different levels of analysis (Heck, 20K&Héomas, 2000;
Muthén, 1991; Muthén, 1994; Muthén & Satorra, 1995).

There are several examples in educational research where multittoeldiaalysis
has been applied and a different factor structure was supported at each levedniue ex
Harngvist, Gustafsson, Muthén, and Nelson (1994) analyzed verbal and numerigal abilit
data at the individual and class levels for students in grades four through nine anth&und t
several factors that appeared at the individual level were not supported atsHewehs
Using intelligence data from Van Peet (1992), Hox (2002) performed a multiletal fa
analysis for students nested within families and found that although both verbal and
numerical factors were supported at the student level, only a general intaligetor could
be extracted at the family level. In a multilevel factor analysis of spgaid writing,
Kuhlemeier, van den Bergh, and Rijlaarsdam (2002) found seven speaking fadters at t
student level (corresponding to different types of speaking situations) but ongfea sin
general speaking factor at the school level. These examples support ME889sfinding
that the number of factors at the within level generally serves as an uppeo lingtrtumber
of factors that can be extracted at the between level.

In addition to the use of multilevel analyses, nested data structure is recbgsian
important consideration during the study design phase. Shadish, Cook, and Campbell (2002)
discussed the importance of designing experimental studies where the usigofnent
matches the unit of analysis. Researchers are cautioned not to conduct expariraenthe
effect of interest is confounded with the aggregate unit, such as assigningacaein ¢e
school to a different experimental condition (Shadish, Cook, & Campbell, 2002; What Works

Clearinghouse, 2006). Nested data structure is also an important consideration in power
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analyses; several software programs have been development to incorporatdioricabaut
the unit of analysis, including Optimal Design (Raudenbush & Liu, 2000) and PINT
(Snijders & Bosker, 1993). The design effect is often used to inform requiremesésiple
size and power.

Although the psychometric implications of the unit-of-analysis problem (Sirotnik,
1980) have been known for over 25 years, issues in multilevel measurement have received
much less attention in research and applied work than considerations in analysisgand des
Sirotnik (1980) argued that issues related to the unit of analysis are almoshcEuated
for during the psychometric phase of research, even when the partitioning ofietfects
multiple levels is a primary goal of analysis. Sirotnik credited Cronb&f6jiwith raising
this issue in regard to the aptitude-by-treatment interaction: “Once theajuef units [of
analysis] is raised, all empirical test construction and item-analysisqures need to be
reconsidered” (Cronbach, 1976, p. 9.19-9.20; as cited in Sirotnik, 1980, p. 249).
Psychometric considerations are important because the factor structiffierentdevels can
yield conflicting results; therefore, it is crucial to coordinate destlopment and validation
efforts with the appropriate analyses (Sirotnik, 1980).

Not all multilevel models necessitate using the between level of anflysest
development and validation; this determination depends on the study purpose. If the primary
effects and outcomes are conceptualized at the individual level, such asgstfthats of
gender on student achievement, then the within level is most appropriate. Muléitzoel
analysis is still an appropriate technique when students are nested wvhitbafss but the
pooled within-level covariance matrix would be used for the effects of intefrtést. tbtal

covariance matrix was used (as is the case in a traditional factor apadfsicts related to
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both levels would be confounded. Unless the school-level variation is high, the total
covariance matrix is likely to be more influenced by the pooled within-lex&r@ance
matrix, so the conclusions may not be that different (Sirotnik, 1980).

If the main effect of interest is at a higher level of aggregation, howéeer the
between-level covariance matrix is most appropriate (Hox, 2002). For exanmalel sc
participation in a program is a level two variable in a model with students and s&uwotbis
student achievement outcome is being used to study systemic effects on sclevehaehi.
In this scenario, the between-level variation is most important to thebestitsiderations.
Use of the total covariance matrix would be incompatible with the study purpoaasbet
is possible for the between-level variation to be quite different from theotopaloled-
within variation. It is very possible for decisions related to test developanentalidation to
differ depending on whether the total, pooled-within level, or between level caarian
matrices were used for the analyses.

Multilevel Factor Analysis for Test Development or Validation

Although issues related to multilevel psychometrics were raised over baggnq it
is still very rare for test development and validation efforts to considembeukivels of
analysis. There are a few recent examples in the literature windtikevel structural
equation modeling has been used for test development or validation by examining
psychometric properties at multiple levels of analysis. The examplesrspay disciplines;
Table 2.1 provides a list of several recent examples of the use of multilevelh'SEM

psychometric analyses by the area of application and corresponding citation.
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Table 2.1

Recent Examples of Multilevel Structural Equation Modeling in Psychometric Amalyse

Area of application

Citations

Business

Education

Health Care

Neighborhoods

Psychology

Sociology

Cheung, Leung, and Au (2006); Dyer, Hanagied Hall (2005); Hall, Hanges,
and Dyer (in press); Van de Vijver and Watkins @0@yphur, Kaplan, and

Christian (2008)

Allodi (2002); Branum-Martin, Mehta, &Gamn, Carlo, Fletcher, Ortiz, and
Francis (2006); Farmer (2000); Janus and Offor@720Kaplan and Elliott
(1997); Kaplan and Kreisman (2000); Kuhlemeier, gdan Bergh, and
Rijlaarsdam (2002); Mehta, Foorman, Branum-Mawimg Taylor (2005);
Toland and De Ayala (2005); Van Horn (2003); ZinspriPerren, and Hornung

(2005)

Reise, Meijer, Ainsworth, Morales, &f&ys (2006); Sexton, Helmreich,

Neilands, Rowan, Vella, Boyden, Roberts, and Tho{2886); Zhang and Wan

(2005)

Cerin, Leslie, Owen, and Bauman&pQ0erin, Saelens, Sallis, and Frank

(2006)

Li, Duncan, Duncan, Harmer, and Acd®9(); Papaioannou, Marsh, and

Theodorakis (2004); Reise, Ventura, Nuechterlain, l§im (2005)

Steele and Goldstein (2006)

21



In the field of education, multilevel structural equation modeling has beenaused t
conduct psychometric analyses on language and literacy, school reastthess climate,
self-esteem, student evaluations of teaching, and education indicators. Alatiggen
(1991) conducted analyses on student and class components of mathematics achievement
subtests, no examples with student achievement tests could be found with item-&ewel dat
with the purpose of investigating psychometric issues related to schooldbi®lement.

Research Questions

It is becoming increasingly common to use student achievement tests for the
secondary purpose of measuring school achievement, particularly when the e@iofeff
interest occurs at the school level. Professional standards are cleatethddtd, secondary
uses of tests require additional validity evidence, but there is a lack of guaahogv to
investigate potential differences in evidence for individual and group-leesémdes.
Multilevel factor analysis presents an opportunity to examine the interaets® of student
achievement tests at both the student and school levels. The possibility for the facto
structure to differ at multiple levels of analysis presents a plausibkg thréhe validity of
school-level inferences. It is incumbent upon test users to investigate suth llefose
using student achievement data to make inferences about school achievement.

This study seeks to address the following general question: Can analyss of t
multilevel factor structure of large scale educational achievemestpiestide validity
evidence for drawing school-level inferences? State mathematicseroleiet test data from

all students in grades 3, 5, and 8 in a single state were used in the study.
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The specific research questions are as follows:

1. What is the optimal factor structure at each level of analysis?

2. To what extent is a one-factor solution feasible at both the within (student) aneétetwe
(school) levels of analysis?

3. How do factor loadings of a one-factor solution differ on the within (student) and
between (school) levels of analysis? How do these loadings compare to an overall
analysis where data are collapsed across levels?

4. Are the factor loadings at the between level significantly different #rera?

Summary
Psychometric theory is clear about the central role of validity and the enperof
gathering evidence for a particular purpose. State achievementréegenarally developed
with ample validity evidence for their intended inferences about student achiev&uemt
evidence may not be sufficient for drawing group-level inferences, a crucialtipatng

often ignored when student achievement scores are used in multilevel arabtsely t

effects at the school level. This study explores the process of gatherifgwalitalidity

evidence necessary to make school-level inferences from student achietestsent
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CHAPTER 3
METHODS
The study used secondary data from a statewide student achievement tegtiaua pr
in a northeastern state in the United States to assess the extent to whecltasf@about
school-level achievement are supported. The dataset consisted of all students whe took t
Spring 2006 mathematics state achievement test in grades 3, 5, and 8. The stuplgmsytic
performance measures, and data analysis procedures are described below.
Participants
The total sample consisted of all 28,200 students in grades 3, 5, and 8 who
participated in the Spring 2006 state achievement tests for mathematiagptivesstatistics
on the number of schools and number of students per school at each grade level are presented

in Table 3.1.



Table 3.1

Number of Students per School by Grade

Number of Students per School

Test Schools Minimum Maximum Mean SD

Mathematics Grade 3 111 1 180 80.95 39.82
Mathematics Grade 5 96 1 395 93.51 77.85
Mathematics Grade 8 84 1 541 121.88 145.74

Student demographic data are presented in Table 3.2. At each grade level ehageraf

males and females was approximately equal and slightly more than hiaKtatlants were

Caucasian.
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Table 3.2

Percent Gender and Ethnicity by Grade

Gender Ethniclty
Test Male Female w AA A H Al
Mathematics Grade 3 (N=8,985) 51 49 53 33 3 11 0
Mathematics Grade 5 (N=8,977) 52 48 53 34 3 10 0
Mathematics Grade 8 (N=10,238) 51 49 54 35 3 9 0
Total (N=28,200) 51 49 53 34 3 10 0

"W-White; AA-African American; A-Asian; H-Hispanic; Al-Americaindian

Measures

The student achievement measures used were a sample of statewidégarasta
designed to measure achievement in English language arts, matheriancg, and social
studies in grades 2-11. Only the mathematics test data were used for thigkeud
mathematics achievement tests were designed according to spiec$ickeveloped by the
state’s department of Education and were intended to align to state matheoraecs
standards in each grade. The mathematics achievement tests included gel@s from the
Stanford Achievement Test, i @dition (SAT10) in addition to the items created by state
educators to measure the state content standards. This merger of state-déeshspeith

commercially produced (or “off the shelf”) items, known as an augmented attlapt/éest
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(AAT), is becoming increasingly common in state testing programs (Cizek,. Z0638)
mathematics achievement tests were intended to measure the folounmgathematics
content strands (i.e., sub-areas): numeric reasoning, algebraic reasonindtigeome
reasoning, and quantitative reasoning.

The state mathematics achievement items included several itenidommoidtiple
choice, short answer, and extended constructed response. The majority of eactsistc
of four-option multiple choice items. Short answer (SA) questions were scored oa afscal
0-2. Extended constructed response (ECR) questions were scored on a scale of 0-4. Each
mathematics achievement test also included a small number of embeddesbtig&his and
a few additional SAT10 items that did not count towards a student’s actual @edre (
subsequently were not used in these analyses). The specifications of thewglerati

mathematics achievement test items (including the SAT10 items}ie iln Table 3.3.

Table 3.3

Item Formats for Operational Iltems by Grade

Number of Items per Format

Test MC (0-1) SA (0-2) ECR (0-4) Total
Mathematics Grade 3 45 14 0 59
Mathematics Grade 5 48 8 3 59
Mathematics Grade 8 28 8 3 59

*MC-multiple choice; SA-short answer; ER-extendedstaicted response
Range of possible points indicated in parentheses
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New items were developed according to the test specifications andewienged by
the state’s Test Development Committee for accuracy, alignmenteastaent standards,
and generally accepted testing practices. Any new items appearing onnge26p6 tests
were field-tested the previous year by embedding them in the operagistsalAs part of the
field testing procedures, all items were reviewed by content expedsdlitioa to bias and
sensitivity committees. The Mantel-Haenszel (MH) procedure was usedetstigate
potential differential item functioning (DIF) by race and gender.

Multiple choice items were scored electronically. Short answer anddexte
constructed response items were scored by trained raters who were edliegéed,
attended an intensive workshop specific to this administration of the test (inciurdihgr
papers and training sets), and were monitored for accuracy and consistencyud&ah s
response was scored by one trained rater, and 10% of responses were checkedhfyr acc
by a team leader.

Internal consistency reliability measured using Cronbach’s alpha wak0@%ade 3
mathematics, 0.91 for grade 5 mathematics, and 0.93 for grade 8 mathematedatiQusr
between the item types (SAT10, multiple choice, short answer, and extended ¢edstruc
response) were all moderate to high; correlations ranged from 0.77 to 0.82 for grade 3
mathematics, 0.64 to 0.80 for grade 5 mathematics, and 0.69 to 0.87 for grade 8 mathematics.

Data Analysis

The study analyzed the factor structure of state mathematics achnd\dateeat the
student level, school level, and collapsed across both levels. The analysis Ip@edinc
descriptive analyses, multilevel exploratory factor analyses, sudticonfirmatory factor

analyses, and standard confirmatory factor analyses (collapsed acrosvéisih Data

28



preparation and descriptive analyses were performed in SPSS version 14.Cafagses

and multilevel factor analyses (both exploratory and confirmatory) wefeped using

MPLUS version 5.2 (Muthén & Muthén, 2008). Because the test items were unigue to each
grade level, all analyses were performed separately by graaeisThach step of the

analysis plan was conducted three times, once for each grade 3, 5, and 8.

The first step in the analysis plan was to determine the optimal factoustrateach
level of analysis (Research Question 1). The purpose of Research Questicto proagle
background on the structure of the current measures. The general purpose wdyhisast
not to propose a series of complex alternative models, but rather to investigateidéoex
which a one factor model is feasible with a focus on informing future test development
efforts. The current scoring and analyses of the state assessmenstdaietiie assumption
of a single factor regardless of whether this is the optimal solution. Manyasgonse
theory models typically used in state achievement testing prograons@s
unidimensionality at the student level, and performing school-level analysetvely
assumes unidimensionality at both levels of analysis. Prior to investigatisgh$equent
research questions) the extent to which each measure is unidimensional, itanasupdito
explore whether a more complex factor structure was appropriate when thesdata
partitioned into the within (student) and between (school) levels of analysis.

This first research question was addressed using multilevel explorattoy f
analyses. In MPLUS version 5.2 (Muthén & Muthén, 2008), multilevel exploratory factor
analysis can be performed as a single step, eliminating the need forrthe aseluct
separate analyses of the pooled-within groups, between-groups, and collapsetc®var

matrices as was previously required with Muthén’s (1994) four steps for meiltile
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exploratory factor analysis. The multilevel exploratory factor aealygere conducted using
weighted least squares means (WLSM), where parameter estineapgs@duiced using a
diagonal weight matrix, and standard errors and mean-adjusted chi-sqtistiestae
produced using a full weight matrix (Muthén & Muthén, 2007). Although maximum
likelihood estimation can also be used to estimate these models, Asparouhov and Muthén
(2007) found that for two-level factor analyses with categorical varid®leSM was

superior to maximum likelihood in terms of convergence, robustness, and quality of
estimation in MPLUS version 5.2 (Muthén & Muthén, 2008).

Numerical integration was used with an EM algorithm, seven integration points per
dimension, and a convergence criterion of 0.001. A probit link was used. Geomin, a type of
oblique rotation, was employed to allow the factors to correlate.

The multilevel exploratory factor analyses yielded the followingrmftion for
evaluating model fit: eigenvalues for within-level correlation masrened between-level
correlation matrices; chi-square tests; CFI; TLI; RMSEA; and SRatRhe within and
between levels of analysis. In addition, the intraclass correlation @C€3ch item provided
a descriptive measure of the amount of variation at each level of analysis.

The eigenvalues for the within-level correlation matrices and the eetlggel
correlation matrices were used to construct scree plots (Cattell, 1966¢Hdeeal of
analysis. Scree plots provide a visual indication of how many factors nfagdkle in
exploratory factor analysis. The point at which a line drawn through the eigesvcilanged
slope was used to provide a rough estimate of the number of factors presentadethie s

level and the school level (Tabachnick & Fidell, 2001).
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A summary of the fit indices and criteria used for evaluating the factmtste of

the models is presented in Table 3.4.

Table 3.4

Fit Statistics Used to Evaluate the Optimal Number of Factors at Each Level of Analysi

Statistic Cutoff for Adequate Fit
Chi-square®) p> .05
Tucker-Lewis Index (TLI) >.95
Comparative Fit Index (CFI) >.95
Root Mean Squared Error of Approximation (RMSEA) <.06
Standardized Root Mean Squared Residual (SRMR) <.08

The chi-square test is a fit index that evaluates a specified model by cognp&ria model
that is just-identified (Kline, 1998). A statistically significant resundticates that the
specified model does not fit the data as well as an unrestricted model; tahsep-of
greater than .05 are desirable. However, the chi-square test has beeedatascan
inadequate measure of fit because it is overly sensitive to sample size #dD8). With
large samples, it is virtually impossible to find an over-identified model thmedtis
statistically significant. Small sample sizes are much more likejield non-significant chi-
square values, due to a lack of power for detecting model misfit.

The Tucker-Lewis index (TLI) and comparative fit index (CFl) are incraaldit

indices. The TLI (Tucker & Lewis, 1973) compares the fit of a specified model to ooth a
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model (where there are no factors and all dependent variables are unesidted)ideal

model (where fit is exact in the population). The CFI (Bentler, 1990) is a noniitgntra
measure that also compares the fit of the proposed model to a null model. Hu and Bentler
(1999) suggested that values of .95 or higher indicate good fit for both the TLI and CFI.

The root mean squared error of approximation (RMSEA; Steiger & Lind, 1980) is
test of close fit; it is a measure of discrepancy that accounts for modelexom by
including the degrees of freedom in the denominator. Consequently, increasing the number of
parameters in the model will only improve the RMSEA if the decrease in ttreghsicy
function compensates for the loss of degrees of freedom. Hu and Bentler (1999)
recommended a value of .06 or lower for the RMSEA.

The standardized root mean squared residual (SRMR; Bentler, 1995) is based on the
covariance residuals. The SRMR is the only fit index computed separatedvaitiin and
between levels of analysis. Hu and Bentler recommended values of .08 or Iother fo
SRMR.

It should be noted that research on the criteria for fit indices has been based on
standard (single level) structural equation modeling. It is not cleahetsbme of the
guidelines may differ for multilevel structural equation modeling in genardlparticularly
for multilevel structural equation modeling with categorical variables.

Finally, the factor structure and pattern of loadings (including size anenoeesf
cross-loadings) were examined to determine whether each solution wastatdgrThe
unrestricted (just-identified) model at each level was also used to bettestandehe

optimal factor structure at the other level (Muthén & Asparouhov, 2009). All of these
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indicators were synthesized to arrive at the judgment of how many fact@®ptenal at
each level of analysis.

Multilevel confirmatory factor analyses with one factor on each leved performed
to address research questions 2 through 4. The analytic procedures for the multilevel
confirmatory analyses were the same as those used in the multilevel expltaetor
analyses. That is, the models were estimated using weighted least soeanesand a probit
link function. Numerical integration was performed with an EM algorithm, usswgn
integration points per dimension and a convergence criterion of 0.001. To produce sstimate
for all factor loadings, the models were identified by setting the varienone (on each
level) rather than the first factor loading. Factor loading estinvetes fully standardized.
To determine whether judgments of item quality would differ using the unsthneidfactor
loadings, a subset of the analyses were re-run using an alternativedagotifmethod
where the first factor loading was set to one on each level of analysis.

The purpose of Research Question 2 was to investigate the adequacy of a one-factor
solution, regardless of whether a more complex factor structure might proviole a m
optimal solution. It is possible that a unidimensional solution on collapsed data would not
hold up when the data were separated into the within and between levels of analisis. Fac
loadings on both levels were examined to determine whether any of the loadnegdose
to zero or negative. The presence of such loadings on one or more levels would indicate that
some items were not contributing much to the total test score (in the caseing$ozose to
zero) or were even detracting from the total test score (in the case ov@égmdings). The

presence of several low or negative loadings would suggest that a onedadtonsvas not
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very feasible at a particular level of analysis. The fit statiistsd in Table 3.4 also were
used to assess the adequacy of the solution with one factor on each level.

To compare factor loadings across different levels of analysisgR&s@uestion 3),
standard factor analyses (ignoring the clustered nature of the datg)esemrened in
addition to the multilevel confirmatory factor analyses. The comparisohg tdadings
from the single level factor analyses to the within- and between-level Icaderg purely
descriptive, as there are no significance tests available for thisdprec& he following
guestions were considered as part of the descriptive analyses: Are thigesasne
contributing the most to the total test score on different levels of analysghdiitems that
appear to be most strongly related to the overall test in a standard fatysisastill strong
indicators on one or both levels when the data are separated into the within and between
levels of analysis? The purpose of this research question was to determimerwhet
judgments of item quality vary according to the level of analysis.

To compare factor loadings across the within and between levels ofemalgaled
chi-square difference tests were used. The scaled chi-square diffestacvéduated
whether models where the factor loadings were constrained to be eqsal lagels fit
significantly worse than models where the factor loadings were ¢strfraely
(independently) at the within and between levels of analysis. Chi-squarenitiéeiests for
normal outcomes can be performed by taking the difference between gwuahe values of
nested models and evaluating the significance using the difference in the dédgreedom
(Kline, 1998). This traditional approach is not appropriate for non-normal outcomes wher
the Satorra-Bentler scaled chi-square statistic (Satorra & Beh®i@4) is used, however,

because the difference between two scaled chi-square values does not &al&adachi-
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square distribution. In order to perform the chi-square difference tests, itagassary to use
scaling correction factors produced in the output of the multilevel confirmatior fa
analyses, based on formulas produced by Satorra (2000). Models were re-ésisimaje
MLR, a type of maximum likelihood, and the chi-square difference tests wéoerped

using loglikelihood values. The results of the scaled chi-square differercevézst
evaluated at a significance level of p < .05.

The between-level factor loadings were the focus of Research Questins 4. T
research question expanded the descriptive analyses performed in Resestain@ by
examining the statistical significance of the loadings at the schodl WWeaél tests
(Tabachnick & Fidell, 2001) were performed by dividing each parameter estifaetor
loading) by the standard error of the parameter estimate. Since this peofldus a z-
distribution, a value greater than 1.96 was judged statistically significart &5. Both the
statistical significance and direction of the factor loadings were notegrébence of
several non-significant or negative loadings at the between level would suggekettest
items may not be effective for discriminating between schools, regardlgssrability to
discriminate between students.

Methodological Limitations

The data analysis procedures have some important limitations. Firstpthevel
structure of students within schools did not consider class-level variation. Tdmgakyla
practical limitation, as state achievement databases typically dah®ot capture or highly
restrict access to teacher information. The software used in this stadynplssed such a
limitation, as MPLUS (Muthén & Muthén, 2008) and most other alternatives for menipr

multilevel factor analysis allow for only two levels of analysis in the sfudgedures.
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A second technical limitation is the assumption of homogeneity of the vgtbups
covariance matrix (Muthén, 1994). That is, using multilevel factor analysis tesadithe
research questions assumes that the factor structure of test itemswadehelstel is the
same in every school in the state. Although a handful of multilevel validity standies area
of cross-cultural research (e.g., Cheung, Leung, & Au, 2006) have performddvallt
measurement invariance analyses to evaluate the homogeneity of timegnatinps
covariance matrix, such a step is only possible when the number of level two units is
relatively small, as occurs when culture is the level two unit. In analyesavge numbers
of level two units, such as schools, it is generally not feasible to test thns@s®.

Although there is no reason to expect that this is a major problem, it must be ackeowledg
that violation of the assumption of homogeneity of the within-groups covariance matrix
could potentially distort results of multilevel factor analyses.

Because the data were from a small state, the analyses were basethtwvedy low
number of level two units (ranging from 84 to 111 schools). Although the data stilhenet t
proposed minimum standard for multilevel factor analysis of 50-100 groups (Muthén, 1994)
it is likely that more stable solutions could be achieved with larger numbers of sdfuols
number of level two units is particularly important for estimating the petension the
school level. The ratio of the number of schools to the number of between level factor
loadings was small, which has the potential to affect model identification, slasrdars,
and parameter estimates. If data from a larger state had been used iosteadr,lthere
would have been a greater chance of models not running due to computational complexity.
Additional research using monte carlo simulations would provide guidance about the impac

of a small number of level two units relative to the number of estimated paramete
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Another potential issue related to sample size is the presence of smatkclus
(schools with few students at a particular grade level). As indicated in Tablee3elwere a
few schools with only one student at a particular grade. This may have been due to students
testing off-grade or being homeschooled, among other possibilities. Muthén (20@2dadvi
retaining all schools in this situation, even those with only one student. The smstE<l
still contribute to the between level estimation, even though they are not involved in the
estimation of within level parameters. Maas and Hox (2005) studied the effeataés
size at each level in multilevel modeling and concluded that small clustedsizeot lead to
biased parameters or standard errors. The Maas and Hox (2005) study consideredabnly equ
sized clusters, however, where the smallest grouping was five people per. Basause
there was no compelling evidence to eliminate schools with only one student, and
considering the small level two sample size, all schools were retainezlandlyses.
However, there is no known information about the potential effects of inclodegerson
clusters in these types of analyses. More research is needed to deteratigaidgiines, if
any, should be used in eliminating small level two units. To examine the pote et iof
the small clusters, multilevel confirmatory factor analyses wererreising only clusters of
five or more, and the results were compared to those produced from the full sample.

A more general limitation of this study is the novelty of the methodology. skt
factor analysis for categorical variables is in its infancy in thd bélguantitative methods,
even in relation to traditional procedures for factor analysis, categweaicables, and
multilevel models. Computational knowledge and guidance related to multileteal fac
analysis for categorical variables is very limited, and much of the avadapéatise exists in

nontraditional sources such as online message boards (e.g., www.statmodetlcemthaa
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peer-reviewed journal articles. More informative guidelines are likelynerge with
continued research, but many complex issues related to model identificatipie sam,
model complexity, and model fit are currently not clear cut. This study amsg awareness
of the importance and implications of multilevel validity, and it is this incceatiention to

new issues that often spurs advancement of methodological capabilities.
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CHAPTER 4
RESULTS

Using data from approximately 28,000 students in grades 3, 5, and 8 in a northeastern
U.S. state, this study examined the multilevel factor structure of matksraehievement
tests. Multilevel exploratory factor analyses were used to detether@ptimal number of
factors at both the student and the school levels of analysis. Multilevel catoiignfactor
analyses were used to assess the extent to which the one-factor solutions oretaende
feasible. Both standard (single level) confirmatory factor analysksnaltilevel
confirmatory factor analyses were used to compare the size and relativeamapaf factor
loadings at the different levels of analysis. The statistical signdeaf the school-level
factor loadings provided evidence about the extent to which the mathemateseautmt
test items were effective for discriminating between schools.

Descriptive Results

The mathematics achievement tests contained 59 operational items ataeledie\g!,
consisting of multiple choice, short answer, and extended response items (se& Jjaflhe
items were unique to each grade level; that is, for example, Iltem 1 fler gr@nd Item 1 for
grade 5 were different, grade-appropriate items. Item means and staedatobds for each
grade level are presented in Appendix A. For the results shown in Appendix A, as feell a
all other results presented in this chapter, values have been rounded to two decesdbpla

the purpose of presentation in the tables.



The intraclass correlations (ICCs) for each item were produced byuthikwe|
exploratory and confirmatory factor analyses. The ICCs provide a desenmptasure of the
proportion of school-level variation for each item. ICCs close to zero indicate Hrbt ake
variation is at the student level, whereas ICCs close to 1.00 indicate thatatlezhation
is at the school level. The typical range for ICCs in mathematics acteenes
approximately .20 — .30 (Hedges & Hedberg, 2007).

The ICCs for each item by grade level are presented in Tables 4.1 — 4.3. Bhe ICC
appeared to be smallest for grades 3 and 5, with many values around 0.10 or lower, and no
values of 0.20 or higher. In contrast, the majority of items in grade 8 had ICCs(ab0ye
and 16 of the 59 items had ICCs above 0.20. This pattern of ICCs by grade levelssuggest
that more school-level variation in mathematics achievement exists bpdh&f middle

school than during the elementary school years.
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Table 4.1

Grade 3 Intraclass Correlations (ICCs), by Item

ltem ICC Iltem ICC ltem ICC
1 .07 21 .09 41 .03
2 .05 22 .04 42 .07
3 .04 23 .07 43 13
4 A1 24 .09 44 A1
5 .07 25 .14 45 .08
6 .08 26 .18 46 .08
7 .07 27 A1 47 .10
8 .10 28 A1 48 .05
9 .06 29 A1 49 .07
10 13 30 12 50 .09
11 .09 31 .13 51 .08
12 A1 32 .13 52 .09
13 .18 33 .05 53 .06
14 .09 34 .10 54 .08
15 .07 35 A1 55 .16
16 14 36 .04 56 A1
17 .10 37 .04 57 .09
18 .04 38 .08 58 .09
19 .07 39 .15 59 .03
20 .06 40 .10
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Table 4.2

Grade 5 Intraclass Correlations (ICCs), by Item

ltem ICC Iltem ICC ltem ICC
1 .03 21 .07 41 .01
2 .05 22 .05 42 .15
3 .04 23 .04 43 .05
4 .03 24 .14 44 .07
5 .10 25 .03 45 .04
6 .01 26 .05 46 .05
7 .08 27 .04 47 .04
8 .06 28 A1 48 .07
9 .02 29 A1 49 .03
10 .08 30 .09 50 .03
11 .05 31 .07 51 .10
12 .03 32 .03 52 .10
13 .07 33 .14 53 .08
14 A2 34 .09 54 .15
15 .09 35 .10 55 .03
16 .02 36 .10 56 .05
17 .08 37 .06 57 .07
18 .08 38 .05 58 .04
19 .10 39 .02 59 .01
20 .08 40 .05
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Table 4.3

Grade 8 Intraclass Correlations (ICCs), by Item

ltem ICC Iltem ICC ltem ICC
1 15 21 .13 41 .08
2 A1 22 .27 42 .22
3 .02 23 .07 43 12
4 22 24 .14 44 .16
5 A1 25 .14 45 .22
6 .25 26 .23 46 .06
7 .02 27 .16 47 .18
8 .09 28 .26 48 14
9 14 29 .26 49 .15
10 15 30 .24 50 .14
11 .30 31 .29 51 .22
12 .32 32 .15 52 .19
13 13 33 12 53 17
14 .29 34 .22 54 A1
15 .23 35 .18 55 .10
16 .08 36 A1 56 12
17 .09 37 A1 57 .14
18 .16 38 .14 58 .07
19 A1 39 .06 59 .14
20 .06 40 .16
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Optimal Number of Factors at Each Level of Analysis
Research Question 1 concerned the optimal number of factors present avelawh le
analysis. This question was addressed using multilevel exploratory factsesndiie
eigenvalues, interpretability, and the fit criteria described in Table 3l allassed to arrive
at the optimal number of factors for each level and grade. First, the digeshaaboth the
within and between levels of analysis were used to construct scree plots. Sapwpldds

for each level of analysis at grade 3 are presented in Figures 4.1 and 4.2.
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Figure 4.1.Scree Plot of First 20 Within-level Eigenvalues for Grade 3 Data

The pattern of eigenvalues was remarkably similar for each grade, withlthsteep
drop occurring after the first eigenvalue. This was true for both the studentamad lsvels
of analysis. The magnitude of the largest eigenvalues at the betweerp[eaieal much

greater than the largest eigenvalues at the within level. The screprplatse a rough
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estimate of the number of factors present at each level of analysis, plususra couple of
factors. Based on the results from the scree plots, multilevel explofattoy analyses were
performed for 1-3 factors at each level of analysis. Models were alschene e factor
structure was unrestricted (just-identified) at one level of analysisn\e level of
analysis provides perfect fit (as occurs when the model is just-identthesiprocedure
facilitates the process of identifying a sufficient number of factotfsesother level of

analysis (Muthén & Asparouhov, 2009).
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Figure 4.2.Scree Plot of First 20 Between-level Eigenvalues for Grade 3 Data

Multilevel exploratory factor analyses were conducted on all combinationedslsn
with one to three factors on each level, along with unrestricted modelsddevel at a time.
This yielded a total of 45 multilevel exploratory factor analysis swist(15 at each grade

level).
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All 15 solutions at each grade level were considered and evaluated. Fit stadrstic
the most relevant subset of models are presented in Tables 4.4 — 4.6. Fit dtatitecéull

set of 45 models can be found in Appendix B.

Table 4.4

Two-level Exploratory Factor Analyses Fit Statistics for Grade 3

Within Between

Level Level SRMR SRMR
Factors  Factors y? (df) CFI TLI RMSEA (within) (between)
UN 1 2,855.09* (1652) 1.00 1.00 .01 .00 .06
1 UN 7,876.13* (1652) .99 .98 .02 .03 .00
1 1 14,374.00* (3304) .98 .98 .02 .03 .06
2 2 10,145.22* (3188) .99 .99 .02 .03 .05
3 3 7,099.61* (3074) .99 .99 .01 .02 .04

Note.CFI = Comparative Fit Index; TLI = Tucker-Lewisdex; RMSEA = Root Mean Squared Error of
Approximation; SRMR = Standardized Root Mean Sqdi&tesidual; UN = unrestricted.
*p<.05

Table 4.4 provides information about the fit of the multilevel exploratory factor
analyses for grade 3. The use of an unrestricted model at one level can provide valuable
information about the fit of the model at the other level of analysis. Here thetriotesl
model at the within level produced adequate fit statistics for one fadtoe between level.
With the exception of the chi-square statistic, all other fit statistidh&one factor between
model met the criteria established previously and listed in Table 3.4. lddb@uloted that

none of the 15 models for grade 3 produced a nonsignificant chi-square statistic. Given the
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large sample size of approximately 9,000 students in grade 3, it would be unlikely to find a
parsimonious model with a nonsignificant chi-square statistic.

The use of an unrestricted model at the between level also suggested thatctdoone f
solution at the within level may be sufficient. With the exception of the chi-sgtatrstic,
all other fit statistics met the recommended criteria. Likewise, thaeehwith one factor at
each level also produced adequate fit statistics with the exception titbguare statistic.

Although the one factor solution at each level appeared to provide adequate fit f
grade 3, solutions with two and three factors resulted in slightly bettattfiaugh the
improvement in most fit statistics is likely statistically sigrafit, it is expected that
additional factors will improve fit even when they are largely noise. Therpatof factor
loadings for each combination of factors were examined for size and iradipigtin all
cases, solutions with multiple factors resulted in one dominant factor, with fewaogeo |
loadings on the other factor(s). For example, in the model with two factors at ealdsée
Appendix C), nearly all items had moderate to strong loadings (.4 — .7) on thadiostdt
the within level, and only 1 of the 59 items had a loading of .3 or greater on the second factor
at the within level. At the between level, all items had strong loadings (.6 — 1.0) fustthe
factor, and only 3 of the 59 items had loadings of .3 or greater on the second factor. This
pattern was evident for all models with multiple factors at one or more |&risugh the
majority of factor loadings were statistically significant, the secgnidadings did not
account for much explained variation. These findings suggest that the one facton sdlut
each level provided the most parsimonious model for grade 3, while models with atlditiona
factors were evidence of overfactoring. The solution for one factor at eatloi@nalysis is

presented in Appendix D.
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For grade 5, the results for the number of factors at the between level wede(see
Table 4.5). When an unrestricted model was used at the within level, the one facton soluti
at the between level met the recommended criteria for the TLI, CFIl, and RMSE®&d not

meet the standard for the SRMR at the between level or the chi-squatie statis

Table 4.5

Two-level Exploratory Factor Analyses Fit Statistics for Grade 5

Within Between

Level Level SRMR SRMR
Factors  Factors y” (df) CFI TLI RMSEA (within) (between)
UN 1 2,255.57* (1652) 1.00 1.00 .01 .00 10
1 UN 5,551.48* (1652) .99 .98 .02 .03 .00
1 1 9,649.71* (3304) .99 .99 .02 .03 10
2 2 7,258.78* (3188) .99 .99 .01 .02 .09
3 3 5,920.06* (3074) .99 .99 .01 .02 .08

Note.CFI = Comparative Fit Index; TLI = Tucker-Lewisdex; RMSEA = Root Mean Squared Error of
Approximation; SRMR = Standardized Root Mean Sqdi&tesidual; UN = unrestricted.
*p<.05

As mentioned previously, the chi-square statistic is very sensitive to saaglarsil none of

the 15 models run on the approximately 9,000 students in grade 5 produced a nonsignificant
chi-square statistic. The SRMR at the between level, however, suggestikittianhal

factors could improve model fit, as the models with three factors on the betwekdidev

meet the recommended guideline of .08 for the SRMR. At the within level, the models with
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one factor did provide adequate fit, with the exception of the chi-squareastMistiels with
additional factors provided slightly better fit.

When the factor loadings were examined for solutions with multiple factorseair
more levels, however, none of the solutions were interpretable. As with grade 3, there wa
strong evidence of one primary factor, with the additional factors hawwmgrf@o moderate
loadings. Consequently, the solution with one factor at each level was judged to be most

parsimonious for grade 5. Factor loadings for this solution are provided in Apg2ndix

Table 4.6

Two-level Exploratory Factor Analyses Fit Statistics for Grade 8

Within Between

Level Level SRMR SRMR
Factors  Factors y” (df) CFI TLI  RMSEA  (within)  (between)
UN 1 1,068.96 (1652)  1.00 1.00 .00 .00 .05
1 UN  9,204.67*(1652) .98 .97 .02 .04 .00
1 1 16,200.54* (3304) .97 .97 .02 .04 .05
2 2 5,372.34* (3188) 1.00 1.00 .01 .02 .04
3 3 4,015.77* (3074)  1.00 1.00 01 .02 .03

Note.CFI = Comparative Fit Index; TLI = Tucker-Lewisdex; RMSEA = Root Mean Squared Error of
Approximation; SRMR = Standardized Root Mean Sqdi&tesidual; UN = unrestricted.
*

p <.05

For grade 8, the unrestricted model at the within level provided evidence ihglea s
factor was sufficient at the between level (see Table 4.6). This solution noeiteni@ for all

fit statistics, including the chi-square statistic. The unrestricted nabdet between level,
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with one factor at the within level, resulted in adequate fit with the exceptibe cht-
square statistic. It should be noted that the chi-square statistic wdisargrior all solutions
where the within level was estimated, which is not surprising given thexapately 10,000
students included in the grade 8 analyses. Although the one factor solution at each level
generally provided adequate fit, the fit did improve slightly with additicmabfs. However,
as with the solutions for grades 3 and 5, the additional factors had few to no high loadings
and were not interpretable. Therefore, the one factor solution was preferred as mos
parsimonious. Factor loadings for this model are also provided in Appendix D.
Feasibility of One Factor Solution at Each Level of Analysis

The second research question investigated the extent to which one factor salutions a
each level were feasible, regardless of how many factors were optinoialeté|
confirmatory factor analyses were performed for each grade, witlgla &actor at the
student level and a single factor at the school level. Given the findings of &teQegestion
1, it appears that the one factor solutions were not only feasible but were the most
interpretable and parsimonious. The fit statistics were the same asahtszdne factor
multilevel exploratory factor analyses (see Tables 4.4 — 4.6) and were phegdisaassed in
regard to the first research question. Standardized factor loadings anddstnoiarfrom
the one factor multilevel confirmatory factor analyses are presentée defttside of Tables
4.7 — 4.9. Standardized factor loadings and standard errors from the single levelatony
factor analyses (where the student and school levels are collapsed) anteplres the right
side of the same tables for purposes of comparison. Relevant findings frootiapeex

solutions will be discussed in regard to Research Question 3.

50



Factor loadings at the within and between levels were examined as irglmiatem
quality. A loading that was near zero or negative would indicate that an itemotvas
contributing much to (or was even detracting from) the measurement of theicbasa
given level of analysis. For grade 3, the majority of the within-level Iggdivere moderate,
ranging from .26 — .73. None of the within-level loadings for grade 3 were negati@se
to zero. The between-level loadings were uniformly strong for grade 3ngaingm .72 —
99. Consequently, for grade 3, it appears that all items contributed to the measwfeime

construct at both the student and school levels of analysis.
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Table 4.7

Confirmatory Factor Analyses Solutions for Grade 3

Multilevel CFA Standard CFA
Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
1 .58 (.01) .85* (.04) .60* (.01)
2 .26* (.02) .79* (.08) .31* (.02)
3 .34* (.01) .78* (.06) .37* (.01)
4 .65* (.01) .94* (.02) .69* (.01)
5 .61* (.01) .84* (.04) .62* (.01)
6 .66* (.01) .95* (.02) .68* (.01)
7 A7 (.01) .80* (.04) .50* (.01)
8 .61* (.01) .91* (.03) .64* (.01)
9 .50* (.01) .95* (.03) .53* (.01)
10 57* (.01) .80* (.04) .60* (.01)
11 46* (.01) .87% (.03) .50* (.01)
12 .63* (.01) .93 (.02) .67* (.01)
13 .71* (.01) .92* (.02) .74* (.01)
14 .58* (.01) .99* (.01) .63* (.01)
15 .46* (.01) .91* (.03) 51* (.01)
16 72* (.01) .95* (.02) .75% (.01)
17 .58* (.01) .84* (.04) .61* (.01)
18 46* (.01) .96% (.03) .48* (.01)
19 .62* (.01) .96* (.02) .64* (.01)
20 .63* (.01) .95% (.02) .65* (.01)

Note.SE = Standard Error.
*p<.05
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Table 4.7 (continued)

Confirmatory Factor Analyses Solutions for Grade 3

Multilevel CFA Standard CFA
Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
21 54* (.01) .87%(.03) 57 (.01)
22 .26* (.01) .87* (.04) .31* (.01)
23 .54* (.01) .83* (.04) .56* (.01)
24 .53* (.01) .94* (.02) 57*(.01)
25 46* (.02) .91* (.03) .53* (.01)
26 .64* (.01) .92 (.02) .69* (.01)
27 .65* (.01) .91* (.02) .68* (.01)
28 .59% (.01) .90* (.03) .63* (.01)
29 .64* (.01) .92* (.02) .67* (.01)
30 44* (.01) .80% (.04) 49* (.01)
31 .54* (.01) .92* (.02) .60* (.01)
32 .59* (.01) .96% (.01) .64* (.01)
33 .39% (.01) .94* (.03) 43* (.01)
34 .53* (.01) .91* (.03) .58* (.01)
35 .73* (.01) .91* (.03) .76* (.01)
36 .32* (.02) .73* (.09) .35% (.02)
37 46* (.02) .83* (.06) .48* (.02)
38 .65* (.01) .98* (.02) .68* (.01)
39 .55* (.01) .80% (.04) .59* (.01)
40 .56* (.01) .91* (.03) .60* (.01)

Note.SE = Standard Error.
*p<.05
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Table 4.7 (continued)

Confirmatory Factor Analyses Solutions for Grade 3

Multilevel CFA Standard CFA

Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
41 43* (.01) .91* (.04) 45* (.01)
42 .52* (.01) .92* (.03) .55* (.01)
43 .61* (.01) .76* (.05) .63* (.01)
44 .58* (.01) .72* (.06) .60* (.01)
45 .61* (.01) .98* (.02) .65* (.01)
46 .69* (.01) .94* (.02) 71* (.01)
47 .65* (.01) .90* (.03) 67 (.01)
48 .50* (.02) .96* (.07) 53* (.02)
49 .61* (.01) .98* (.02) .64* (.01)
50 .56* (.01) .96* (.02) .60* (.01)
51 .50* (.01) .88 (.04) 54* (.01)
52 48* (.01) .91* (.03) .53* (.01)
53 .34* (.02) .93* (.05) .39% (.02)
54 41* (.01) .81* (.04) 45* (.01)
55 46* (.02) .63* (.07) .50* (.02)
56 .53* (.01) .91* (.03) 57%(.01)
57 48* (.01) .87% (.03) .52* (.01)
58 .65* (.01) .97 (.02) .69* (.01)
59 .50* (.01) .96* (.05) .50* (.01)

Note.SE = Standard Error.
*p<.05
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Table 4.8

Confirmatory Factor Analyses Solutions for Grade 5

Multilevel CFA Standard CFA

Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
1 55 (.01) .96* (.03) 57%(.01)
2 49* (.01) .98* (.03) .52* (.01)
3 A47* (.01) .96* (.03) 49* (.01)
4 41* (.01) .94* (.04) 44* (.01)
5 .48* (.01) .81* (.05) 51* (.01)
6 -.02 (.02) -.13 (.20) -.02 (.02)
7 .62* (.01) .93* (.03) .64* (.01)
8 .56* (.01) .99* (.02) .59% (.01)
9 .36% (.01) .86* (.07) .38* (.01)
10 .45* (.01) .77* (.05) A7* (.01)
11 .56* (.01) .94* (.02) .58* (.01)
12 .36* (.01) .86* (.05) .38* (.01)
13 .62* (.01) .93* (.02) .64* (.01)
14 54* (.01) .71* (.06) .56* (.01)
15 .61* (.01) .91* (.03) .63* (.01)
16 .30% (.01) .98* (.03) .33* (.01)
17 .63* (.01) .97 (.02) .65* (.01)
18 A44* (.01) 54* (.09) 45* (.01)
19 .58* (.01) .90* (.03) .62* (.01)
20 .61* (.01) .90% (.03) .63* (.01)

Note.SE = Standard Error.
*p<.05

55



Table 4.8 (continued)

Confirmatory Factor Analyses Solutions for Grade 5

Multilevel CFA Standard CFA
Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
21 .59* (.01) .88* (.03) .61* (.01)
22 .56* (.01) .91* (.04) .58* (.01)
23 51* (.01) .93* (.03) .53* (.01)
24 .39% (.01) 56* (.07) 41* (.01)
25 46* (.01) .96* (.03) .48* (.01)
26 .50* (.01) .80* (.05) .51* (.01)
27 .39* (.01) .76* (.07) .40* (.01)
28 .62* (.01) .72* (.05) .63* (.01)
29 .55* (.01) .94* (.02) .58* (.01)
30 .55% (.01) .97* (.01) .58* (.01)
31 .59* (.01) .93* (.03) .62* (.01)
32 .37* (.01) .71* (.08) .38* (.01)
33 .46* (.01) 24* (\11) 43* (.01)
34 .52* (.01) .94* (.03) .56* (.01)
35 .50* (.01) .59* (.08) .50* (.01)
36 .63* (.01) .91* (.03) .66* (.01)
37 51* (.01) .89* (.04) 54* (.01)
38 43* (.02) .82* (.06) .46* (.01)
39 .28* (.02) 77 (11) 29% (.02)
40 41* (.01) .77 (.06) 43 (.01)

Note.SE = Standard Error.
*p<.05
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Table 4.8 (continued)

Confirmatory Factor Analyses Solutions for Grade 5

Multilevel CFA Standard CFA
Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
41 14* (.02) .10 (.17) 13*(.02)
42 43* (.01) .53* (.08) 44* (.01)
43 .59* (.01) .83* (.05) .60* (.01)
44 .56* (.01) .91* (.03) .59* (.01)
45 .64* (.01) .98* (.03) .66* (.01)
46 57* (.01) .94* (.03) .59* (.01)
47 49* (.01) .82* (.06) .50* (.01)
48 .39* (.02) .76* (.06) 41* (.01)
49 .38* (.02) .88* (.06) .40* (.02)
50 52* (.02) .94* (.09) 54* (.02)
51 A7* (.01) .84* (.04) 51* (.01)
52 .62* (.01) .96* (.02) .65* (.01)
53 49* (.01) .72* (.06) 51* (.01)
54 .53* (.01) .82* (.04) .56* (.01)
55 40* (.02) .95* (.06) 42* (.02)
56 .28* (.02) .73* (.08) .31* (.01)
57 .56* (.01) .96* (.03) .59* (.01)
58 .52* (.01) .95* (.03) .55*% (.01)
59 .15* (.01) .68* (.19) .16* (.01)

Note.SE = Standard Error.
*p<.05
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Table 4.9

Confirmatory Factor Analyses Solutions for Grade 8

Multilevel CFA Standard CFA
Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
1 51* (.02) .94* (.02) 55* (.01)
2 .49* (.01) .93* (.04) .53* (.01)
3 .21 (.01) 47* (.10) .20* (.01)
4 56* (.01) .92* (.03) .60* (.01)
5 A43* (.02) .88* (.03) 45* (.01)
6 .40* (.01) .83* (.06) A7* (.01)
7 .05* (.01) -.29* (.12) .02 (.01)
8 .34* (.01) .69* (.08) .39% (.02)
9 51* (.01) .88* (.04) .56* (.01)
10 57*(.02) .87* (.05) .58* (.01)
11 .67* (.01) .96* (.05) .73* (.01)
12 .70* (.02) .95* (.08) .72* (.01)
13 .56* (.01) .97* (.02) .60* (.01)
14 .73* (.01) .96* (.06) .76* (.01)
15 .64* (.01) .93* (.06) .68* (.01)
16 45* (.01) .97 (.02) .48+ (.01)
17 A7 (.01) .97* (.02) .50* (.01)
18 .55* (.01) .99* (.01) .59* (.01)
19 .50* (.01) .98* (.01) 53* (.01)
20 43* (.01) .88* (.04) 44* (.01)

Note.SE = Standard Error.
*p<.05
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Table 4.9 (continued)

Confirmatory Factor Analyses Solutions for Grade 8

Multilevel CFA Standard CFA

Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
21 .56* (.01) .96* (.02) .60% (.01)
22 .72* (.01) .96* (.05) .76* (.01)
23 44* (.01) .96* (.02) A7* (.01)
24 .50* (.01) .98* (.01) 55% (.01)
25 .61* (.01) .98* (.01) .66* (.01)
26 .56* (.01) .93* (.03) .61* (.01)
27 .50* (.01) .95* (.03) .55% (.01)
28 .61* (.01) .98* (.03) .68* (.01)
29 .72* (.01) .96* (.02) .76% (.01)
30 .61* (.01) .94* (.02) .66* (.01)
31 72* (.01) .95* (.05) 74 (.01)
32 .54* (.01) .90* (.03) .56% (.01)
33 .56* (.01) 1.00* (.01) .59* (.01)
34 67* (.02) .71* (.08) .66* (.01)
35 .68* (.01) .98* (.02) .72 (.01)
36 .52* (.01) .89* (.03) .56* (.01)
37 48* (.01) .96* (.02) .53* (.01)
38 .55* (.01) .96* (.02) .59*% (.01)
39 23*(.02) .68* (.07) .26* (.01)
40 .64* (.01) .97* (.02) .67% (.01)

Note.SE = Standard Error.
*p<.05
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Table 4.9 (continued)

Confirmatory Factor Analyses Solutions for Grade 8

Multilevel CFA Standard CFA
Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
41 .19* (.02) .56* (.09) .22* (.01)
42 .71* (.01) .99* (.02) .75* (.01)
43 .55% (.01) .94* (.02) .61* (.01)
44 .51* (.01) .98* (.01) .55% (.01)
45 .61* (.01) .93* (.02) .65* (.01)
46 .39*% (.01) .78* (.07) .39% (.01)
47 .61* (.01) .94* (.04) .63* (.01)
48 .52* (.01) .96* (.01) .56* (.01)
49 49* (.01) .96* (.02) 54* (.01)
50 .46* (.01) .89* (.03) .50% (.01)
51 .61* (.01) .94* (.02) .65* (.01)
52 .63* (.01) .91* (.03) .66* (.01)
53 57* (.01) .95* (.02) .61* (.01)
54 .54* (.01) .99* (.02) 57*(.01)
55 45* (.01) .97* (.02) .49* (.01)
56 52 (.01) .97+ (.01) .55* (.01)
57 48* (.01) .99* (.01) .53* (.01)
58 .38* (.01) .91* (.05) A41* (.01)
59 .50* (.01) .97* (.01) .56* (.01)

Note.SE = Standard Error.
*p<.05
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For grade 5, there was one item at the within level (Item 6) that appeatedbeot
contributing anything to the measurement of student achievement, with a fadinglpaar
zero (-.02). Items 41 and 59 contributed little at the within level, with factomigadif .14
and .15, respectively. The remainder of the within-level loadings were mqdaraiang
from .28 — .63. At the between level, Items 6 and 41 appeared not to be contributing to the
measurement of school achievement, with factor loadings of -.13 and .10, respectively. The
factor loading for Item 33 was also fairly low at .24. The remainder of twesba-level
loadings were moderate to strong, ranging from .53 — .98.

For grade 8, one item at the within level (Item 7) had a factor loading of .0¥jnmpl
that this item was not a very good indicator of student achievement. ltems 3, 39, and 41
appeared to be only weakly related to the measurement of student achieverhdogdings
of approximately .20. The remainder of the within-level loadings were medeaaging
from .34 — .73. At the between level, there was only one item (Item 7) that did not &ppear t
be a strong indicator of school achievement. In fact, with a loading of -.29, thiacteally
detracted from the measurement of school achievement. All other loadihgdatween
level were moderate to high, with the majority close to .9 or above.

Comparison of Factor Loadings at Different Levels of Analysis

The third research question involved comparisons of the factor loadings at time withi
and between levels of analysis, and to standard (single level) factordsadere the
multilevel data structure was collapsed (i.e., ignored). First, the wahoh between-level
factor loadings were compared descriptively. For all grades, the beleweghactor
loadings generally appeared to be much larger than the within-level lizatdongs (see

Tables 4.7 — 4.9). The majority of the between-level factor loadings were .7 or above,

61



whereas the majority of the within-level factor loadings were well below .8.fiftding
implies that in most cases, items appeared muatediscriminating at the school level than
at the student level.

There were a few notable exceptions to this pattern. In grade 5 (seel Bapleem
33 appeared to have a smaller loading at the between level (.24) than at the wetH{id 6.
Items 6 and 41 had low loadings at both the within and between levels. In grade 8 (see Table
4.9), Item 7 appeared to have a smaller loading at the between level (-.29) Heawittin
level (.05). Item 34 had high loadings at both the within and between levels (.67 and .71,
respectively).

In addition, the relative standing of item factor loadings was not necessardynunif
across levels. Items with the highest loadings at one level did not ndgetdisptay the
highest loadings at the other level. For example, in grade 8 (see Table m3B3 lkad the
highest between-level factor loading of 1.00; the within-level loading for #ris\tas .56,
which fell in the middle of the range of values for the student-level factor loadings
pattern was evident across all grades. Consequently, the descriptiveisongoaf factor
loadings across the student and school levels suggested that items differed of tewth
their absolute and relative standings.

The second step in comparing the within- and between-level factor loadiags wa
conduct scaled chi-square difference tests. Models where the loadingsesgrestimated
at each level were compared to nested models where factor loadings weiaroehstr be
equal across levels. The results of the scaled chi-square differencdgatssented in

Table 4.10.
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For all grades, the more constrained model (where factor loadings waleemss
levels) resulted in significantly worse fit. This finding indicates thatrhagnitude of the

factor loadings was not the same for the student and school levels of analysis.

Table 4.10

Chi-square Difference Tests, by Grade

Grade deifference df iference
3 293.49* 59

5 150.88* 59

8 233.36* 59
*p<.05

Finally, standard confirmatory factor analyses were performed assimggle level of
analysis for each grade. The factor loadings and standard errors are incltidedigint side
of Tables 4.7 — 4.9. Although there are no statistical tests available for cogibei
magnitude of the standard factor loadings to the multilevel factor loadingsesheptive
comparisons are informative. For all grades, the standard factor loadireygemg similar to
the within-level factor loadings, generally within .05. The between-letbf loadings were
almost always higher than the standard factor loadings. For example, in gsageTaule
4.7), the collapsed loading for Item 1 was .60, which is very close to the within-$tivehi

of .58; this appears to be much lower than the between-level estimate of .85.
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The similarity of the standard and within-level factor loadings also appligems
that did not appear to be strongly related to the overall construct at one or misreHere
example, in grade 5 (see Table 4.8), the collapsed factor loading fdo ltexs -.02, the
same value as the within-level estimate; the between-level estiatsd near zero, was -.13.
The collapsed factor loading for Item 33 was .43, very similar to the withihdetimate of
.46; the between-level estimate for this item appeared to be lower at .24.

The comparisons of the single level loadings to the multilevel loadings stigagest
the process of performing traditional factor analyses (i.e., ignoringutierdtand school
levels) provided reasonable approximations for the within-level loadings ldegiso
information about the absolute or relative size of the between-level loadingsefiveen-
level factor loadings were generally larger, occasionally smalher universally different
than the factor loadings obtained in analyses that ignored the multilevel srogtur
performing standard factor analyses on the collapsed data.

Statistical Significance of Between-level Factor Loadings

The final research question concerned the statistical significancefattbe
loadings, specifically those at the school level. Significance tests wéoenped by dividing
each factor loading by its standard error; resulting values greater than te9&atistically
significant at p < .05. The statistical significance of the factor tapdis noted in Tables 4.7
—4.9. Nearly all factor loadings were statistically significanps& grades and levels of
analysis. Only a small number of between-level factor loadings were niicsigt. In
addition to being statistically significant, the factor loadings appédarkd meaningful, as

the majority were approximately .9 or higher. This finding indicates that #ie observed
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variance in the school-level loadings was explained by the common factor of school
mathematics achievement.

In grade 3 (see Table 4.7), all between-level factor loadings were pasitive
statistically significant. There was not a single school-level fastating that was
nonsignificant, and the smallest between-level loading was .63. This suihge st items in
grade 3 made strong contributions to the measurement of school achievement.

In grade 5 (see Table 4.8), two school-level factor loadings were stéfistica
nonsignificant (i.e., not different from zero); Item 6 had a between-lagtifloading of -
.13 and Item 41 had a between-level factor loading of .10. This finding suggestsrttsab |
and 41 for grade 5 did not contribute to the measurement of school-level achievement. The
other 57 school-level factor loadings were statistically significanhodigh two items did
not appear to contribute to the measurement of school mathematics achieveneag b gr
the majority of the items did appear to make strong contributions.

In grade 8 (see Table 4.9), all between-level factor loadings werdichdliis
significant, but the factor loading for Item 7 was negative. Although the magotiis
factor loading was relatively small (-.29), the negative value indicatei¢ha? actually
detracted from the measurement of school-level mathematics achievéthetiter
between-level factor loadings for grade 8 were positive and most were neny. Dverall,
the collection of items that constituted the grade 8 test made strong contribotibas

measurement of school achievement in mathematics.
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Alternative Method of Model Identification

To investigate whether the method of model identification (setting thencarta one
at each level of analysis) may have artificially inflated anga$f across levels due to
differences in variances, the multilevel confirmatory factor aralysis re-run for grade 3.
The first factor loading was set to one on each level of analysis, which puteaidlléexiings
on the scale of the Item 1. Results of the unstandardized factor loadings witiethasl of
model identification are presented in Appendix E.

With this alternative approach to model identification, the discrepanciesdretiae
within-level factor loadings and the between-level factor loadings daappée somewhat
smaller for the unstandardized solution, and the standard errors appear largeifefdredi
in the magnitude of the factor loadings across levels is difficult to integwen the
difference in scaling. In nearly all cases, the between-level faetdings appear to remain
larger than the within-level factor loadings. The interpretation offitasng is unclear,
given that the factor loadings from this solution are not on the same scalb bvehcThat
is, the within-level factor loadings are relative to the size of the wigvatloading for Item
1, and the between-level factor loadings are relative to the size of the hééweloading
for Item 1. It also is not clear how results might vary depending on the adrastics of the
item that is used to identify the scale. For example, Van den berg, Glas, and Boomsm
(2007) caution against this method of model identification when the measurement model is
of interest because the standard errors may be affected by charestefifte item set to
unity. Despite the potential problem caused by implicitly assuming that tamemis the

same at each level of analysis, both the absolute and relative analyses underaleppear
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more meaningful when the model is identified by setting the variance to orediastine
first factor loading.
Follow-up Analyses Excluding Small Clusters

There was a concern that the presence of small clusters (schools withdents at
a particular grade level) could bias the parameters and standard Borassess the potential
impact of very small clusters, all confirmatory factor analyses veeren using only those
schools with five or more students at a given grade. Descriptiveistatistthe number of
schools and number of students per school at each grade level for the follow-up aralyses
presented in Table 4.11. The follow-up analyses excluded data from five schoottee®,gra
nine schools at grade 5, and eight schools at grade 8.

Results from the follow-up analyses were very similar to the originayseslall
factor loadings from the follow-up analyses are presented in Appendix F. Thétyratine
factor loadings were the same (to two decimal places), several lzatdongs differed by
.01, and a small number of factor loadings differed by .02. In no case did the factog$oadi
differ by more than .02, and the statistical significance of the factor IGadiag unchanged.
This finding indicates that it is unlikely that the inclusion of small clusteith (ess than

five students per school at a given grade) affected the results in this study.

67



Table 4.11

Number of Students per School by Grade (Limited to Clusters of Five or More)

Number of Students per School

Test Schools Minimum Maximum Mean SD

Mathematics Grade 3 106 5 180 84.70 36.68

Mathematics Grade 5 87 5 395 102.97 75.70

Mathematics Grade 8 76 5 541 134.43 147.75
Summary

Four research questions about the validity of school-level inferences weltegaees
using mathematics achievement data from all students in grades 3, 5, and 8 wipafettici
in a state-wide mathematics achievement test. The first researtiogumgestigated the
optimal number of factors at each level of analysis. For all three g@aue$actor was found
to be optimal at both the student and school levels of analysis. Although solutions with two
or three factors resulted in slightly better fit statistics, the soluti@ne not interpretable or
meaningful because the additional factors contained few or no items with moddragie or
loadings. The solutions with one factor at each level were the most parsimoreach at
grade.

The second research question addressed the feasibility of the one factonsaluti
each level, regardless of how many factors were optimal. Given the finditigs fost

research question, the one factor solutions were judged to be both feasible anld optima

68



Factor loadings at both the student and school levels were examined as indicéans of i
quality. Across all three grades, the majority of factor loadings wererateds the within
level and strong at the between level. In grade 5, three factor loadihgsvattin level

were near zero or very low (.2 or below), while two factor loadings at theebeti®vel were
near zero. In grade 8, four factor loadings at the within level were neanrzeery low (.2 or
below), while one factor loading at the between level was negative. Overatljtems
appeared to be contributing to the measurement of student mathematics achiemdment a
school mathematics achievement, and this finding was applicable to all grades.

The third research question involved comparisons of factor loadings acrosndliffer
levels of analysis. The within- and between-level factor loadings werpasechboth
descriptively and with chi-square difference tests. Both the relative aolitgsize of the
loadings were noted across levels. Across all grades, the majotiy within-level factor
loadings were moderate (.4 —.7), while the majority of the between-lev@ Faadings
were strong (.7 or above). This finding implies that most items were merexdisgating at
the school level than at the student level. In addition, the relative standing o&dem f
loadings was not the same across levels. For all grades, the more constraingaherde
factor loadings were equal across levels) resulted in significaotige fit, indicating that the
magnitude of the factor loadings was not the same for the student and school levels of
analysis.

Research Question 3 also involved comparisons of factor loadings from standard
(single level) confirmatory factor analyses to the within- and betiesazh factor loadings.
For all grades, the standard factor loadings were close to the withirfdetai loadings

(nearly always within .05) but were generally not close to the betweehfé&tor loadings.
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The between-level factor loadings were generally larger, occasi@madlller, and often very
different than the factor loadings obtained in standard factor analysesbra&dghe
multilevel structure. This finding indicates that the process of performadgional factor
analyses in this study provided reasonable approximations for the withindetaal f
loadings but yielded no information about the absolute or relative size of the betweken-|
factor loadings.

The final research question concerned the statistical significancefattbeloadings
at the school level. Nearly all factor loadings were statisticajlyifstant, across grades and
levels of analysis. In grade 3, all between-level factor loadings wadrgtisally significant
and positive. In grade 5, two between-level factor loadings were statyshocalsignificant;
this finding indicates that these two items did not contribute to the measuremeéraalf sc
achievement. In grade 8, all between-level factor loadings werdistdlyssignificant, but
the factor loading for one item was negative; this finding indicates thatesneletracted
from the measurement of school achievement. Overall, nearly all itemdhajrade level
appeared to have statistically significant and strong contributions to tiseireeent of
school achievement.

Follow-up analyses (limited to schools with five or more students at a giveée)gra
produced results that were nearly identical to the full sample of students and stheol
finding indicates that the inclusion of small clusters in this study does not apeaethad
a significant impact on the results.

The next chapter discusses the interpretation of these findings in the context of
relevant research on validity and student achievement. Implications fotiedata

measurement and program evaluation and ideas for future researclo adda¢ssed.
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CHAPTER 5
DISCUSSION

It has been nearly 50 years since Ebel (1961) said of validity, “It is uriyersa
praised, but the good works done in its name are remarkably few” (p. 640). Validdkien is
most important aspect of the measurement process, and psychometric thiearyabaut
the need for collecting validity evidence for each intended test purpose.dpitedbe
widespread use of student achievement tests for making school-level infetbiece
psychometric literature is devoid of studies investigating the adequacydfyvalidence
for this purpose. Recent studies of group-level psychometrics in other fields have faund tha
validity evidence is not necessarily uniform across multiple levels offigalyhis study
extends the emerging body of research on multilevel construct validation to ksredol-
achievement as currently encountered in K-12 student testing programs.

This final chapter begins with an acknowledgement of study limitations, feddy a
discussion of the study findings. Study implications and areas worthy of fat@arch are
described. In addition to the specific research findings in the study, inguisaif bringing
attention to the issue of multilevel validity in general are consideredchdpmer concludes
with recommendations for future directions in multilevel psychometrics.

Limitations
Before discussing the conclusions and implications of this researchmpastant to

acknowledge some limitations of the study sample, design, and analysishEisstidents



and state mathematics achievement tests were from a single ssat@t Itlear whether the
students or the state testing program would be representative of those found itatgker s
Although the level one sample size of approximately 28,000 students is relaigelythe
level two sample size (schools) ranged from 84 to 111—a relatively smallestonfite
analyses that were undertaken. It would be helpful to replicate the study usifrgmiata
much larger or more diverse state, such as Texas or California, to detesmain@spects of
the analyses or conclusions might be affected by sample size.

Second, although three different grades were examined, the study design included
only one subject area, mathematics. It is not clear whether any of titte feand here
would apply to state achievement tests in other subjects. It would be helpfulicateethe
study with data from state reading and science achievement testsmoinietehat aspects
of the study results might be affected by subject area.

It is important to consider the limitations of study sample and design in thetcohte
the study purpose. With data from only one state and subject area, this study was not
intended to affirm or condemn the widespread practice of drawing school-learelnoés
from student level data. Instead, this exploratory study sought to illustratdhéauestion
of looking at validity evidence for group-level inferences when using individvel ¢ata
could be approached. A primary goal was to serve as a prototype for how suatnguesti
could be considered in future research.

Several analytic limitations were described previously in Chapteo&, motably the
limitation to two levels of analysis (student and schools), the assumption ofeoeity of
the within-groups covariance matrix, and the novelty of methodological procddufitsng

multilevel factor analysis models with categorical variables. This stiadyconstrained by
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the methodology that is currently available, but it also serves as an oppawspty the
additional research necessary for advancing the methodology in these (andreter)
Methodological advances do not happen in a vacuum; there is an iterative procksgyof as
new questions and improving the technology necessary to answer those questionselt is
ideas in research and practice that serve as the impetus for improving metoaiodbpe
methodological advances then generate additional questions. This study hasritie pote
increase the methodological capabilities in the area of multilevel tyadidithat future
research is not bound by the same limitations faced here.

Key Findings
Overall, the present study yielded three key findings and implications. Tdlagien

1) For each of the three grades studied, there was only one meaningful factbeddent

(presumably mathematics achievement) at both the student and school levels &f,analys

providing tentative support for the current practice of drawing school-leve¢ides
from student-level measures.

2) At each grade level, items differed in terms of both their absolute angeaae of
their factor loadings at the student and school levels of analysis, suggestingghat w

school-level inferences are of interest, standard factor analyses providieigrsuf

information about test development and validation; when both within and between levels

are of interest, factor loadings should be estimated separately.
3) The majority of items in this study were more discriminating at theostdnel than at
the student level. Thus, if school-level inferences are of primary interesty iben

desirable to reconsider typical test construction practices in which itatfaito
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discriminate at the student level (but unknowingly have adequate propertiesctdbé
level) are routinely removed from consideration for use on operational test forms.
Each of these findings is described in detail and implications of these findengseaented
in the following sections.
Optimal Number of Factors at Each Level of Analysis

The first research question addressed in this research explored thd optithar of
factors at the student and school levels using multilevel exploratory &awtysis. For all
three grades studied, there appeared to be only one meaningful factor at both thestlide
school levels of analysis. Although solutions with additional factors resulteigimisbetter
fit, there were few to no high factor loadings on the additional factors. This findiraates
that there was only one primary factor at the student level (presumably shatbetmatics
achievement) and one primary factor at the school level (presumably schoahatatbe
achievement) that accounted for the underlying relationships between thatteach grade
level.

The finding of one primary factor at each level of analysis is not sumgpriEive state
mathematics achievement tests were designed to be single meastveleof achievement,
an assumption necessary for employing the unidimensional item respongertbdets
used to develop, scale, and equate the tests. Given previous research on muttitevel fa
analysis, it would have been unlikely to uncover more factors at the school levat tha
student level. Muthén (1989) found that the number of factors at the within level is an upper
bound for the number of factors at the between level. Many studies using multitzoe

analysis have found the same number of factors at each level of analysis, artbahdsgfer
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have extracted fewer factors at the between level than the within levabti et al, 1994,
Hox, 2002; Kuhlemeier et al, 2002).

In this study, the consideration of the number of factors was not the primasydbc
the research, but rather it was a prerequisite for performing subsequeseanalgompare
factor loadings at different levels of analysis. If a single factarti®ol did not appear to fit
the data adequately at one or more levels of analysis, then it would not be cleéar how
interpret potential differences in factor loadings across levels. A findiddfefent factor
structures at the student and school level would itself indicate a threat to thiy @éli
school-level inferences from student achievement data, however.

A more interesting question about the number of factors at each level of sucalyisi
be investigated by examining several different achievement tests &artteestudents. For
example, if mathematics, reading, and science data were analyzed fanéhgreap of
students, it is possible that there could be three separate achievenoestdaitie student
level but only one general achievement factor at the school level. Such a finding would be
consistent with Hox’s (2002) analysis of verbal and numerical ability for childit@mw
families, where two separate factors were found at the student level but ordieageneral
ability factor could be extracted at the family level. Future researtths area could reveal
such differences across subject areas at the student and school levels . &izaliye to
differentiate among subject areas at the school level could threaten thiy wdlusing
student achievement data to make school-level inferences about somethis@stensibly
subject-specific if, in fact, the data were discovered to be more supportive adlgene

achievement interpretations.
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Evaluation of Factor Loadings at Multiple Levels of Analysis

Research Questions 2 through 4 concerned the size of the between-level factor
loadings and the extent to which they differed from those at the within level and those
obtained from traditional factor analyses where the multilevel struatasagnored (i.e.,
collapsed). The comparison of factor loadings at different levels ofsasahvolved both
descriptive measures and scaled chi-square difference testshAjrade level, the
descriptive analyses found that items differed in terms of both their absolutatnersize
of their factor loadings at the student and school levels of analysis. This resgibnimmed
by the scaled chi-square difference tests, which found that models wherddadings were
constrained to be equal across levels fit significantly worse than modeis fabtr
loadings were freely estimated at each level.

This particular finding of differences in the student and school level factingsa
has a couple of different implications. First, when factor loadings at thenvaibhd between
levels are both of interest, it is necessary to estimate them sepdsiaiéher the absolute or
relative size of factor loadings at the within level provided much information abofasictioe
loadings at the between level in this study. This suggests that the differemissourc
variation affected the factor loadings of each level in different waysn8eeven when the
size of the factor loadings at the within and between levels are not of primaegintedoes
not seem advisable to constrain the factor loadings to be equal across levelsiuitdenel
structural equation model of school achievement, despite the use of this pradtee for
purpose of reducing model parameters. This caution to avoid setting factor loapiabate
different levels of analysis is echoed by Muthén (2008), due to the fadh¢higtrmn

parameters have different meanings at each level.

76



The standard (single level) confirmatory factor analyses yiebitgdrfloadings that
were very similar to the within-level loadings in the multilevel confionafactor analysis;
in nearly all cases, these two sets of factor loadings differed by less th@omdgrsely, the
standard confirmatory factor analyses yielded no information about the relaai»solute
size of the between-level loadings. Although accounting for the multilewetste of
students in schools is technically more accurate for both student- and schooiferesides,
the implications of ignoring the multilevel structure appear much greater lattbiecase. In
this study, the use of standard factor analyses for test development and validaten w
reasonable approximation for the student level results but provided very differentatiém
than the school level results. This indicates that when school-level infereacdsraerest,
standard factor analyses provide insufficient information about test development a
validation. The school-level factor structure can only be obtained throughaweiltil
confirmatory factor analyses; unlike the student-level factor structwanmot be reasonably
approximated when the multilevel structure is ignored in traditional factorsasatlyat
collapse both levels.

At each grade level, the vast majority of items had much higher factor |saatitige
school level than at the student level. This finding was somewhat unexpected,arérticul
given the low amount of between-level variation reflected in the intracteissations.
Because the factor loadings are standardized, it may be that the rmimatitaf variation at
the between level is largely accounted for by each item. It is not cletrevhleis result is
typical in student achievement studies given the lack of similar research ieldhe f

The comparisons of factor loadings across levels were bound by the availains opt

for model identification and procedures for standardization. The analyses undétadke
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have some parallels to studies of measurement invariance (with comparisosseasiss
instead of groups); the literature on measurement invariance genecalymends
identifying the model by setting the first factor loading to one. The evatuatiitem
characteristics at each level of analysis draws on principles of itponsstheory, where
model identification is achieved by setting the variance to one. Given the wigeatithis
study, the latter approach appeared to yield more meaningful and interpresaittis r
however, the impact of actual differences between student- and school-levatesirganot
clear. Guidelines for model identification and standardization procedures haweenot
developed in the context of multilevel validity. Future research in thissreseded,
including the exploration of additional approaches for model identification and
standardization in a multilevel context. For example, the model could be identifiettibg s
the variance to one at the within level and setting the first factor loading to ¢wee at t
between level.

The only other study known to have investigated item-level characteristws at t
levels of analysis was performed by Reise et al. (2006) in the field of haedthaho
concluded that survey items were much less discriminating at the betwakh fien) level
than the within (individual) level. However, the approach taken by Reise at al. (2006) was
quite different from this study; a three parameter multilevel iteporese theory model was
used. The c-parameters were high at the between level (often .2 — .3) andehis low
asymptote does not have an analog in the multilevel confirmatory factgsiamabdel with
categorical variables. The survey used in the Reise et al. (2006) study Hatyeetferct,

and responses on 3-4 point scales were recoded to be dichotomous. It is not clear how the
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attenuation issues may have affected the item parameters at eact énadl/sis. Future
research in this area is needed.

The most common explanation for obtaining higher factor loadings at the between
level than the within level is that the aggregation process results infes¢Ssmjders &
Bosker, 1999; Stanat & Ludtke, 2008). Although it is often the case, the betwekn-leve
reliability is not always higher than within-level reliability (Luigoe, Gladden, & Bryk,
2003). Unlike the within-level reliability, the between-level reliabilgyaffected by both
cluster size and between-cluster variability (Tate & King, 1994). In thady/sthe between-
level factor loadings were not universally higher than the within-levediféd@adings, even
though this occurred most of the time.

Although the higher factor loadings found at the between level may be in paot due t
lower measurement error from the process of aggregation, psychometriciams agatnst
assuming that school-level reliability is necessarily higher thanrstielee| reliability. For
example, Feldt and Brennan (1989) have noted that:

[T]raditional measurement error is not the sole source, or even the

most potent source, of unreliability affecting inferences drawn from

class means. The test results for any given year reflect not only the

character of the instructional program but also the character of

students enrolled at that specific moment. These individuals must be

regarded as a sample, in a longitudinal sense, from the population

that flows through the district schools over a period of years. (p.127)
The decrease in measurement error from aggregation may be offset bipngapk that is
not accounted for in traditional estimates of reliability. Brennan (1995) maeoisted using
generalizability theory to account for sources of error from both items anuesaof

students. The application of generalizability theory to multilevel valgtitgies has

implications for the interpretations of different sources of error at pheilevels of analysis.
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The high between-level factor loadings support the use of student achievestsent te
for making school-level inferences in this study. The majority of itemsaapgenore
discriminating at the school level than at the student level. Contrary to tireabagncern
that several items might be less appropriate for school-level inferemreftistudent-level
inferences, it appears that the opposite scenario might apply. That is, if saredol-|
inferences are of primary interest, some items that failed to disetienat the student level
but had adequate properties at the school level might have been unnecessarily reamoved fr
draft test forms at an early stage of the test development processndimg provides an
additional reason for incorporating a multilevel factor structure into stofisshool level
achievement; not only does this approach provide more appropriate validity evidente, but i
could facilitate the test development process if criteria for itemtsmlesre less strict at the
school level than at the student level of analysis.

There were a small number of items that had nonsignificant or negative factor
loadings at the school level. Although the corresponding factor loadings at the studént |
were higher, the differences tended to be slight. There were no instances mitemesas
highly discriminating at the student level but had a very low factor loading athio®!
level. Instead, items with school-level factor loadings that were negatolese to zero had
corresponding student-level factor loadings that were positive but very low. &apkx
Item 41 in grade 5 had a between-level factor loading of .10 and a within-leteelléaxling
of .14. Item 7 in grade 8 had a between-level factor loading of -.29; the corresponding
within-level factor loading was .05. From a practical standpoint, these scetamos lead
to different conclusions about item quality despite the fact that both studeinfalsoe

loadings were positive and significant and the school-level factor loadergsnet. None of
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the factor loadings for these two items would provide strong evidence for inctheintgms
on a test; the only difference in conclusions of item quality here might be between
“marginal” and “unacceptable.”

The finding of one item with a significant negative factor loading (lfeamgrade 8)
suggests that the inclusion of this item detracts from the measurement oflsgkbol
achievement. The practical implications of including this item in a test usedwosdhool-
level inferences are unclear, especially given the relatively l@mgitn of the item (-.29). It
is unlikely that rescoring the tests with the exclusion of this item woattlite different
conclusions, but this is certainly an area for further research. Additiolzaber negative
factor loadings at the school level certainly could have practical imphsaif such items
were included when drawing school-level inferences.

This particular finding of a significant negative factor loading at theadevel may
also yield valuable information about instruction or curricula. Given thevelatiigh item
p-value for Item 7 in grade 8 (0.69), this finding suggests that students in low achieving
schools may have been more likely to answer the item correctly than students in hig
achieving schools. Just as differential item functioning analyses can pnosiglet about
students’ strengths and weaknesses despite its primary use as idengfymthat are
potentially biased (Stanat & Ludtke, 2008), multilevel confirmatory factoryaealhave the
potential to provide valuable information about school-level strengths and weakhesses t
could be related to instruction or curricula. In future research, it would be imgrest
examine the characteristics of items that show differential discrilmmat the student and

school levels.
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Implications of Multilevel Validity Research

The specific research findings in this study are certainly notewdsthyerhaps the
most important implication of this research is its broader role in illusgr#tat multilevel
validity analyses can and should be undertaken. This study can serve as a pnotokype
the exact processes to be undertaken but for a type of general approach to gathering
multilevel validity evidence. As both the methodological capabilities arerels base in
this field develop, it is likely that accepted standards for performing nuakilalidity
studies will evolve from the general approach taken and specific analysasneerhere.
The intent of this study was to serve as an initial attempt for sparking ukatogresearch
and practice in this area. TB¢andards for Educational and Psychological Tes{lhERA
et al., 1999) is clear that secondary uses of tests require that addition&y esiidience be
gathered to investigate the validity of those interpretations. What idéassabout using
student achievement tests to draw school-level inferences is who is in the test posi
collect such evidence. The primary purpose of state achievement test @dgytameasure
student achievement. Unless measuring school-level outcomes is an overtstyaia of
testing programs, they would not appear to be technically responsible for condidering
school-level factor structure during test development or validation processes.

The StandardfAERA et al., 1999) places the impetus on the test user to collect
additional validity evidence for secondary purposes. Although this guideline sounds
reasonable in theory, it presents many practical challenges for cajlealidity evidence
related to school-level inferences from student achievement testsaEasss to item-level
data (necessary to perform multilevel factor analyses) is genexsihicted; only raw or

scale scores tend to be publicly available and accessible from statiendepsiof education.
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Second, many educational researchers and program evaluators may ladhicaltec
expertise necessary to perform such analyses, particularly now when hoelohagy is still
in its infancy and clear guidelines for collecting multilevel validitydevice do not yet exist.
If the impetus to collect multilevel validity evidence is placed solely uponatidnal
researchers and program evaluators, much of the attractiveness of usiaglsgatement
data for secondary purposes would be diminished.

Given the current prominence of educational testing, it seems clear that sta
achievement tests will continue to be used to make school-level inferenced,thaersinot
the primary purpose of the tests. State testing programs may want to certbieietaking
preliminary steps to collect validity evidence for school-level infezsnor alternatively,
explicitly stating that such claims have not been investigated and mustdéeaken by
secondary users before it is appropriate to use the tests for this purpose. Acoording t
Standard 1.3, “If validity for some common or likely interpretation has not been invedtiga
or if the interpretation is inconsistent with available evidence, that fact shouoiddeeclear
and potential users should be cautioned about making unsupported interpretations” (AERA et
al., 1999, p. 18). It is unlikely that state testing programs are currentlgtoaylenultilevel
validity evidence or explicitly urging secondary users to do so, and it is ewdrkédyg that
educational researchers and program evaluators are aware that such steps sékerd be t
before the student tests are used for the secondary purpose of drawing school-leve
inferences.

Multilevel validity considerations would be most easily addressed duringghe t
development process. One aspect of item analyses could be an examination@fehultil

factor loadings. Based on the results in this study, few decisions about itety apealikely
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to be affected, but if school-level inferences are intended, the small nunitegn®iwvith low
or negative school-level loadings could be discarded. Of course, given the costabidgve
even a single test item, such a step may not be feasible if state tesgragneaecide that
school-level inferences are not an intended use of their tests, even as a squapdae If
the latter stance is taken, however, it should be accompanied by explicit waming
secondary test users, as well as greater accessibility to the welhaldéa needed to perform
additional analyses.

Regardless of the stance taken by state testing programs, the psychoonatnunity
should develop clearer guidance on multilevel validation. It is not enough fStahdards
(AERA et al., 1999) to state that additional validity evidence is needed fundsay
purposes, particularly when tests are used for the measurement of grouphaather
individuals. As Linn (2006) suggested, there is a need for explicit guidance on psyafiomet
issues specific to group-level measurement; this would certainly includéenelltzalidation
efforts. Specific guidance on collecting multilevel validity evidenogently does not exist
because it is deemed to fall outside the traditional boundaries of both psychomelrics a
program evaluation.

The discussion of multilevel validity thus far has focused on secondary uses of test
that were created originally for the primary purpose of making inferexium# individuals.
Although the responsibility for collecting such evidence may be muddled for secusésty
it seems clear that test developers must consider multilevel validey gioup-level
inferences are a primary test purpose. For example, there are selmational tests
administered to students for the primary purpose of making inferences atlbighe of

aggregation, such as the National Assessment of Educational Progred3)(IRAdgramme
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for International Student Assessment (PISA), and Trends in Internati@athéMatics and
Science Study (TIMSS). Such tests are given to samples of studentsgarpgbse of
comparing schools, states, or countries.

The chapter ifcducational MeasuremefBrennan, 2006) on group-score
assessments (Mazzeo et al., 2006) includes a discussion of how sampling, ye bauoilit
scoring are affected by the test purpose, but consideration of multileetyedinoticeably
absent. Contrary to the claim that item analyses, “are not different from elpgsazsed in
individual-score tests, so are not discussed here” (Mazzeo et al., 2006), itlssetest
analyses do warrant rethinking in the context of group-level inferences. In facteaecent
chapter on group-level measurement in student achievement (Stanat & Ludtke, 2008)
included the following statement in regard to the PISA literacy tests:

[T]he factor structure of the literacy tests at the individual student

level and at the country level could be compared. To our

knowledge, this analysis has not yet been performed, even though

previous research has shown that a different factor structure may

emerge already on the class or school level as compared to the

individual level.... Due to methodological advances in the

integration of structural equation and multilevel modeling,

simultaneous analyses of factor structures and relationships among

variables at different levels within a single model should become

more prevalent in the future (p. 329).
For tests that are designed with the primary purpose of making group-levehods,
multilevel validity evidence may involve an additional layer of complexitye®these
group-score assessments include a matrix sampling design, wheréueaci eceives only
a small sample of items and not a complete test form. Although this design isfic@ete

for drawing group-level inferences, current methods in multilevel faciysis require that

students respond to all items. Collecting multilevel validity evidence mayregogiiforming
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a pilot or field test where samples of students do receive the entire tesighlddvances in
methodology may eventually make such a requirement obsolete.

Other fields have more readily embraced multilevel validation efforts woerp-
level inferences are the primary test purpose, in particular the field otriatlasd
organizational psychology. For example, the bbhkti-level Issues in Organizational
Behavior and Process€g¥ammarino & Dansereu, 2004) includes an entire section on
construct validation, in which different approaches to reliability and validity inlalevel
framework are considered. The consideration of multilevel factor struattinesistudy is
only one approach to investigating multilevel validity evidence. Future ofseathis area is
needed to determine what aspects of multilevel validation are most relevant tooedlica
achievement.

Increased attention to multilevel validity issues has the potential to sparesearch
and practice in innovative multilevel analyses. A new type of multilevel moddlaidhas
not yet been embraced in education is known as a micro-macro situation (Croon & van
Veldhoven, 2007). In traditional multilevel modeling (macro-micro situations), thendepe
variable is measured at the lowest level and may be predicted by vaaabiat level or a
higher level of aggregation. Conversely, in micro-macro situations, the dependaiiievia
actually measured at the highest level and may be predicted by variablassiewel or at a
lower level (Croon & van Veldhoven, 2007). In education, this would mean that a variable
collected from a teacher or principal could be used as an outcome that is predicted or
explained in part by student-level variables. As Croon and van Veldhoven (2007) point out,
traditional software packages for performing HLM analyses (e.g., Rhuskert al., 2004)

do not allow for this type of modeling, but this novel approach offers a new way to think
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about the measurement of group-level outcomes. The relationship between advances in
multilevel validation and multilevel analyses is certainly an areahwat future research.
Future Directions in Multilevel Psychometrics

Once the psychometric implications of multilevel modeling are considereaoitnies
clear that item analyses and validity evidence may not be the only adptestshg that are
affected. One area of further research is to explore the implicationsoairdicg for the
multilevel data structure during the test scoring process. Multilevelrésponse theory
models were originally developed in the context of matrix sampling, when eagnswas
administered a single item and the goal was to produce estimates for a(siblaoty,

1983). More recently, multilevel item response theory has been extended to instasees w
individual level abilities are also of interest (e.g., Kamata, 2001). Résieattus area could
consider the implications of accounting for the multilevel structure when pragsitident

or school level scores.

Another emerging area in multilevel psychometrics is the application tifewel
differential item functioning (DIF). Cheong (2006) used a hierarchicalrgkned linear
model to identify both school and student sources of differential item functioning in the U.S
Civic Education Study of the International Association for the Evaluation of Edoaht
Achievement. Some items that were flagged for racial-ethnic bias on tenstevel no
longer exhibited DIF when teacher-reported opportunity to learn was coms{(@reong,
2006). Multilevel DIF enables sources of variation on several different levbbs t
considered and is a ripe area for future research in multilevel psychzsveetd student

achievement.
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Another potential application of multilevel psychometrics is multile\aeidard
setting. No examples of research or practice in this area could be found, but thrs &ppe
an area worth considering in the context of multilevel test development. Mdltileve
applications of standard setting could take the form of using multilevel item respaaiels
in traditional standard setting processes, or even attempting to set stahdandghar level
of aggregation that is of interest. The latter practice could be used to addressusemnt
concerns about accountability systems. In state achievement testirgnpspgtandards are
set in regard to student levels of performance; the standards are then agdcetigteschool
level for accountability purposes. It seems worthwhile to explore whether meaningful
school-level classifications could be developed directly using a multilerakfvork.

Conclusion

Sirotnik (1980) called attention to the importance of multilevel psychometrack/ne
30 years ago, at a time when much of the technological advances in multilevahgbdell
not yet occurred. Methodology in this area has developed to the point where manyctdeoret
aspects of multilevel psychometrics can begin to be put into practice, bueralltiodels
have almost exclusively been applied at the analysis stage.

Although the current seminal references in psychometrics (i.e., AERA £999;
Brennan, 2006) are largely silent on this issue, it appears that some psyudiansedre
beginning to take note of the importance of multilevel psychometrics. In an invésdrsat
AERA/NCME on “The Big Challenges and Research Opportunities in Testthg a
Measurement” Zumbo (2008) gave a presentation entitled, “Testing and MeasiLiremea
Multi-level View: Psychometrics and Validation.” He called for consatien of the

multilevel data structure during test development and validation when constaucts a
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interpreted and used at higher levels of aggregation. Zumbo and Forer (in @essjtet

on the importance of multilevel measurement procedures for tests thatigreedes

exclusively to measure group-level constructs, such as NAEP. Linn (2008) yetset the
importance of considering multilevel validity evidence when using studer@vachent tests

as measures of school quality in accountability systems. It seems @dhaidiuture

editions of theStandardAERA et al., 1999) an&ducational MeasuremefBrennan,

2006) may begin to incorporate the notion of multilevel psychometrics as the concept gains
favor in both theory and practice.

Current technological capabilities for performing multilevel psycitamanalyses are
rapidly evolving but are still very limited in comparison to traditional (singyel)
procedures. However, it is important to note that the research necessary fy findi
methodological solutions is largely driven by the awareness of existing mabléere is
some evidence that the psychometric community is beginning to take note of the
psychometric implications of multilevel data structures, and the seminal waitkes field
may soon be outdated in regard to multilevel test development. It is studies thelnas
reported here that have the potential to generate both research and poabtttere good

works done in the name of multilevel validity are no longer remarkably few.
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APPENDIX A

Table A.1

Descriptive Statistics for Grade 3 Items

ltem Mean (SD) Item Mean (SD) Iltem Mean (SD)
1 0.58 (0.49) 21 0.78 (0.42) 41 0.55 (0.50)
2 0.95 (0.22) 22 0.71 (0.46) 42 0.77 (0.42)
3 0.48 (0.50) 23 0.55 (0.50) 43 0.87 (0.34)
4 0.61 (0.49) 24 0.80 (0.40) 44 0.86 (0.35)
5 0.47 (0.50) 25 0.87 (0.33) 45 0.85 (0.35)
6 0.79 (0.41) 26 1.42 (0.85) 46 0.74 (0.44)
7 0.33 (0.47) 27 1.06 (0.92) a7 0.86 (0.35)
8 0.48 (0.50) 28 1.46 (0.81) 48 0.97 (0.18)
9 0.55 (0.50) 29 1.23 (0.89) 49 0.72 (0.45)
10 0.84 (0.37) 30 1.15 (0.91) 50 0.81 (0.40)
11 0.75 (0.43) 31 1.13 (0.81) 51 0.78 (0.42)
122 1.17 (0.90) 3b 1.49 (0.75) 52 0.60 (0.49)
13*  0.91(0.90) 33 1.19 (0.54) 53 0.91 (0.29)
14 1.44(0.70) 34 1.51 (0.73) 54 0.36 (0.48)
158 0.96 (0.83) 35 0.91 (0.29) 55 0.93 (0.25)
16©  0.72(0.89) 36 0.94 (0.24) 56 0.67 (0.47)
17 0.65 (0.48) 37 0.89 (0.31) 57 0.78 (0.42)
18 0.76 (0.43) 38 0.81 (0.39) 58 0.85 (0.36)
19 0.51 (0.50) 39 0.68 (0.47) 59 0.71 (0.45)
20 0.68 (0.47) 40 0.79 (0.41)

Note SD = Standard Deviation.
! The range for these items was 0-2.
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Table A.2

Descriptive Statistics for Grade 5 Items

ltem Mean (SD) Item Mean (SD) Iltem Mean (SD)
1 0.53 (0.50) 21 0.47 (0.50) 41 0.24 (0.43)
2 0.57 (0.50) 22 0.76 (0.43) 42 0.49 (0.50)
3 0.62 (0.49) 23 0.68 (0.47) 43 0.58 (0.49)
4 0.58 (0.49) 24 0.42 (0.49) 44 0.69 (0.46)
5 0.65 (0.48) 25 0.42 (0.49) 45 0.81 (0.39)
6 0.28 (0.45) %6 1.04 (0.83) 46 0.59 (0.49)
7 0.39 (0.49) il 1.47 (0.79) 47 0.75 (0.43)
8 0.60 (0.49) 28 0.51 (0.76) 48 0.80 (0.40)
9 0.58 (0.49) 29 0.80 (0.86) 49 0.84 (0.37)
10 0.75 (0.43) 30  1.81(1.40) 50 0.95 (0.21)
11} 0.89(0.88) 3A 1.77 (1.36) 51 0.50 (0.50)
128 1.30(0.77) 32 0.61 (0.49) 52 0.77 (0.42)
13'  1.39(0.77) 33 0.62 (0.49) 53 0.49 (0.50)
14 1.02(0.78) 34 0.85 (0.36) 54 0.69 (0.46)
152 2.11(1.63) 35 0.66 (0.47) 55 0.85 (0.36)
16 0.79 (0.41) 36 0.62 (0.49) 56 0.76 (0.43)
17 0.62 (0.49) 37 0.75 (0.44) 57 0.49 (0.50)
18 0.78 (0.41) 38 0.87 (0.34) 58 0.59 (0.49)
19 0.72 (0.45) 39 0.81 (0.39) 59 0.47 (0.50)
20 0.75 (0.44) 40 0.70 (0.46)

Note SD = Standard Deviation.
! The range for these items was 0-2.
2The range for these items was 0-4.
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Table A.3

Descriptive Statistics for Grade 8 Items

ltem Mean (SD) Item Mean (SD) Iltem Mean (SD)
1 0.77 (0.42) 21 0.78 (0.41) 41 0.35 (0.48)
2 0.45 (0.50) 22 0.45 (0.50) 42 0.59 (0.49)
3 0.43 (0.50) 23 0.65 (0.48) 43 0.84 (0.37)
4 0.65 (0.48) 24 0.37 (0.48) 44 0.62 (0.48)
5 0.48 (0.50) 25 0.79 (0.41) 45 0.63 (0.48)
6 0.48 (0.50) %6 0.71 (0.90) 46 0.49 (0.50)
7 0.69 (0.46) pal 0.56 (0.68) 47 0.48 (0.50)
8 0.20 (0.40) 28 1.34 (0.82) 48 0.60 (0.49)
9 0.56 (0.50) 29 1.13 (0.88) 49 0.81 (0.39)
10 0.27 (0.45) 3 2.46 (1.38) 50 0.84 (0.36)
11} 0.88(0.91) 3A 2.47 (1.52) 51 0.70 (0.46)
128 0.77 (0.93) 32 0.21 (0.41) 52 0.52 (0.50)
13 1.25(0.75) 33 0.50 (0.50) 53 0.49 (0.50)
144 0.95(0.90) 34 0.21 (0.41) 54 0.68 (0.47)
1% 1.25(1.27) 35 0.41 (0.49) 55 0.67 (0.47)
16 0.43 (0.50) 36 0.76 (0.43) 56 0.54 (0.50)
17 0.35 (0.48) 37 0.55 (0.50) 57 0.74 (0.44)
18 0.38 (0.49) 38 0.51 (0.50) 58 0.37 (0.48)
19 0.58 (0.49) 39 0.64 (0.48) 59 0.48 (0.50)
20 0.47 (0.50) 40 0.54 (0.50)

Note SD = Standard Deviation.
! The range for these items was 0-2.
2The range for these items was 0-4.
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APPENDIX B

Table B.1.

Two-level Exploratory Factor Analyses Fit Statistics for Grade 3, All Models

Within Between

Level Level SRMR SRMR
Factors  Factors y” (df) CFI TLI  RMSEA  (within)  (between)
UN 1 2,855.09* (1652) 1.00 1.00 .01 .00 .06
UN 2 2,169.19* (1594) 1.00 1.00 .01 .00 .05
UN 3 1,665.30* (1537) 1.00 1.00 .00 .00 .04
1 UN  7,876.13*(1652) .99 98 .02 .03 .00
2 UN  5,495.40* (1594) .99 99 .02 .03 .00
3 UN  3,798.30* (1537) 1.00 99 .01 .02 .00
1 1 14,374.00* (3304) .98 98 .02 .03 .06
1 2 14,153.34* (3246) .98 98 .02 .03 .05
1 3 13,983.62* (3189) .98 98 .02 .03 .04
2 1 10,377.74* (3246) .99 99 .02 .03 .06
2 2 10,145.22* (3188) .99 99 .02 .03 .05
2 3 9,976.14* (3131) .99 99 .02 .03 .04
3 1 7,517.76* (3189) .99 99 .01 .02 .06
3 2 7,272.16* (3131) .99 99 .01 .02 .05
3 3 7,099.61* (3074) .99 99 01 .02 .04

Note.CFI = Comparative Fit Index; TLI = Tucker-Lewisdex; RMSEA = Root Mean Squared Error of
Approximation; SRMR = Standardized Root Mean Sadi&esidual; UN = unrestricted.
*

p <.05
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Table B.2.

Two-level Exploratory Factor Analyses Fit Statistics for Grade 5, All Models

Within Between

Level Level SRMR SRMR
Factors  Factors y” (df) CFI TLI RMSEA (within)  (between)
UN 1 2,255.57* (1652) 1.00  1.00 .01 .00 10
UN 2 1,928.12* (1594) 1.00  1.00 .01 .00 .09
UN 3 1,641.61* (1537) 1.00  1.00 .00 .00 .08
1 UN  5551.48*%(1652) .99 .98 .02 .03 .00
2 UN  4,059.28* (1594) .99 .99 .01 .02 .00
3 UN  3,255.25* (1537) 1.00 .99 .01 .02 .00
1 1 9,649.71* (3304) .99 .99 .02 .03 10
1 2 9,557.64* (3246) .99 .99 .02 .03 .09
1 3 0.488.26* (3189) .99 99 .02 .03 .08
2 1 7,385.96* (3246) .99 99 .01 .02 10
2 2 7,258.78* (3188) .99 .99 .01 .02 .09
2 3 7,161.18* (3131) .99 99 .01 .02 .08
3 1 6181.12* (3189) 99 .99 .01 .02 10
3 2 6033.84* (3131) 99 .99 .01 .02 .09
3 3 5,920.06* (3074) .99 99 01 .02 .08

Note.CFI = Comparative Fit Index; TLI = Tucker-Lewisdex; RMSEA = Root Mean Squared Error of
Approximation; SRMR = Standardized Root Mean Sqdi&tesidual; UN = unrestricted.
*

p <.05
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Table B.3.

Two-level Exploratory Factor Analyses Fit Statistics for Grade 8, All Models

Within Between

Level Level SRMR SRMR
Factors  Factors y? (df) CFI TLI RMSEA (within) (between)
UN 1 1,068.96 (1652) 1.00 1.00 .00 .00 .05
UN 2 573.51 (1594) 1.00  1.00 .00 .00 .04
UN 3 393.35 (1537) 1.00 1.01 .00 .00 .03
1 UN  9,204.67* (1652) .98 97 .02 .04 .00
2 UN 2,969.45* (1594) 1.00 .99 .01 .02 .00
3 UN 2,205.78* (1537) 1.00 1.00 .01 .02 .00
1 1 16,200.54* (3304) 97 97 .02 .04 .05
1 2 16,194.27* (3246) 97 97 .02 .04 .04
1 3 16,079.41* (3189) 97 97 .02 .04 .03
2 1 5,481.39* (3246) 1.00 1.00 .01 .02 .05
2 2 5,372.34* (3188) 1.00 1.00 .01 .02 .04
2 3 5,302.24* (3131) 1.00 1.00 .01 .02 .03
3 1 4,204.20* (3189) 1.00 1.00 .01 .02 .05
3 2 4,081.33* (3131) 1.00 1.00 .01 .02 .04
3 3 4,015.77* (3074) 1.00 1.00 .01 .02 .03

Note.CFI = Comparative Fit Index; TLI = Tucker-Lewisdex; RMSEA = Root Mean Squared Error of
Approximation; SRMR = Standardized Root Mean Sqdi&esidual; UN = unrestricted.
*

p <.05
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APPENDIX C
Table C.1

Two-level Exploratory Factor Analysis Solution (Two Factors at Each Level)rame3

Within-level Loadings (SE) Between-levelddings (SE)
Item Factor 1 Factor 2 Factor 1 Factor 2
1 58* (.02) .14* (.03) .86* (.04) 24* (.08)
2 26% (.02) .02 (.04) .80* (.09) 26% ()13
3 .33% (.03) 27 (.02) .79* (.08) .32% ()10
4 .65* (.02) .11* (.03) .95* (.02) .09 ()07
5 .60* (.03) .25* (.03) .85* (.05) .30* (.08)
6 .66* (.01) -.02 (.03) .95* (.02) -.05 ()06
7 45* (.03) 31* (.03) .82* (.06) 37*(.07)
8 .60* (.03) .20* (.03) .91* (.03) .12* (.06)
9 49* (.02) 17* (.02) .95* (.03) .07* (.06)
10 57% (.02) -.09* (.03) .80* (.07) -.42* (.08)
11 45* (.01) .05 (.03) .86* (.04) -.10 ()07
12 63* (.01) .07* (.02) .94* (.03) .19* (.06)
13 .70* (.02) .12* (.03) .93* (.03) .18* (.06)
14 .60* (.01) -.15* (.03) .99* (.01) -.04 (.06)
15 46* (.02) .10* (.03) .92* (.04) 27%(.07)
16 .70% (.02) 21* (.03) .96 (.03) 21* (P5
17 57*(.02) .16* (.03) .84* (.04) .08 (.08)
18 45* (.01) .05 (.03) .95* (.03) -13 ()08
19 61* (.03) .20* (.03) .97* (.03) .17* (.05)
20 63* (.01) .03 (.03) .95* (.02) .02 ()06

Note.SE = Standard Error.
*p<.05
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Table C.1 (continued)

Two-level Exploratory Factor Analysis Solution (Two Factors at Each Level) foreGdad

Within-level Loadings (SE) Between-levelddings (SE)
Item Factor 1 Factor 2 Factor 1 Factor 2
21 54* (.01) -.04 (.03) .87 (.03) -.05 (.07)
22 26* (.01) .01 (.03) .87 (.05) -.05 (.08)
23 53* (.02) .10* (.02) .84 (.04) .22 (.08)
24 .53* (.01) -.06* (.03) .93 (.02) -.04 (.07)
25 46* (.02) .01 (.03) .90 (.03) -.06 (.07)
26 64* (.01) .00 (.01) 92 (.02) .04 (.05)
27 .65* (.01) .10* (.02) .92 (.04) .26 (.06)
28 .59* (.01) .02 (.03) .91 (.03) 15 (.07)
29 .63* (.01) .09 (.02) .93 (.03) .17 (.06)
30 44*% (.02) .10* (.02) .79 (.04) -.06 (.07)
31 55* (.01) .01 (.02) 92 (.02) -.01 (.04)
32 .58* (.01) -.01 (.02) .97 (.02) .07 (.05)
33 :39* (.01) -.03 (.02) .95 (.03) .11 (.08)
34 54* (.01) -.07* (.02) .91 (.03) .01 (.04)
35 .74* (.03) -.23* (.04) .90 (.04) -.26 (.07)
36 .32% (.02) -.11* (.04) .73 (.09) 18 (.11)
37 46* (.03) -17* (.03) .83 (.07) -12 (.10)
38 65* (.02) -.08* (.03) .98 (.03) -.11 (.06)
39 55* (.01) -.03 (.03) .79 (.05) -.07 (.07)
40 56* (.01) -.02 (.03) .91 (.03) .07 (.07)

Note.SE = Standard Error.
*p<.05
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Table C.1 (continued)

Two-level Exploratory Factor Analysis Solution (Two Factors at Each Level) foreGdad

Within-level Loadings (SE) Between-levaddings (SE)
Item Factor 1 Factor 2 Factor 1 Factor 2
41 43* (.02) .07* (.02) .91* (.04) .05 ()09
42 53* (.02) -.10* (.03) .92* (.04) -.19* (.07)
43 .62* (.03) -.16* (.03) .75* (.05) -.10 (.08)
44 .59* (.03) -.25* (.03) .71* (.08) -.40* (.07)
45 .62* (.02) -.12* (.03) .97* (.02) -.09 (.07)
46 .69* (.01) .03 (.03) .94* (.02) .01 ()05
47 .66* (.04) -.33* (.03) .89* (.05) -.24* (.07)
48 .50* (.05) -.33* (.05) .96* (.07) -.08 (.09)
49 .62* (.01) -.05* (.02) .98* (.02) -.02 (.06)
50 56* (.01) -.05 (.03) .95* (.03) -.10 ()07
51 .50* (.02) -.13* (.02) .88* (.06) -.18* (.09)
52 A7* (.02) .18* (.03) .91* (.04) .10 (.08)
53 .34* (.02) -.08* (.03) .93* (.06) -.27* (.09)
54 .40* (.02) .15* (.03) .81* (.04) .09 (.09)
55 A47* (.03) -.22% (.04) .63* (.10) -.53* (.10)
56 53* (.01) .02 (.02) .91* (.03) -.04 ()07
57 .48* (.02) -.13* (.03) .86* (.05) -.23* (.07)
58 .66* (.01) -.07* (.03) .97* (.02) -.01 (.05)
59 .50* (.02) -.10* (.03) .96* (.05) -.27% (.10)

Note.SE = Standard Error.
*p<.05
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APPENDIX D

Table D.1

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 3

Within-level Between-level
ltem Loadings (SE) Loadings (SE)
1 .58 (.01) .85* (.04)
2 .26* (.02) .79* (.08)
3 .34* (.01) .78* (.06)
4 .65* (.01) .94* (.02)
5 .61* (.01) .84* (.04)
6 .66* (.01) .95* (.02)
7 A7 (.01) .80* (.04)
8 .61* (.01) .91* (.03)
9 .50* (.01) .95* (.03)
10 57* (.01) .80* (.04)
11 .46* (.01) .87* (.03)
12 .63* (.01) .93* (.02)
13 71* (.01) .92 (.02)
14 .58* (.01) .99% (.01)
15 46* (.01) .91* (.03)
16 .72* (.01) .95* (.02)
17 .58* (.01) .84* (.04)
18 .46* (.01) .96* (.03)
19 .62* (.01) .96% (.02)
20 .63* (.01) .95* (.02)

Note.SE = Standard Error.
*p<.05
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Table D.1 (continued)

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 3

Within-level Between-level
ltem Loadings (SE) Loadings (SE)
21 .54* (.01) .87% (.03)
22 .26* (.01) .87% (.04)
23 54* (.01) .83* (.04)
24 .53* (.01) .94* (.02)
25 46* (.02) .91* (.03)
26 .64* (.01) .92% (.02)
27 .65* (.01) .91* (.02)
28 .59* (.01) .90% (.03)
29 .64* (.01) .92 (.02)
30 44* (.01) .80* (.04)
31 54* (.01) .92% (.02)
32 .59* (.01) .96* (.01)
33 .39* (.01) .94* (.03)
34 .53* (.01) .91* (.03)
35 .73* (.01) .91* (.03)
36 .32%(.02) .73*(.09)
37 .46* (.02) .83* (.06)
38 .65* (.01) .98* (.02)
39 .55* (.01) .80* (.04)
40 .56* (.01) .91* (.03)

Note.SE = Standard Error.
*p<.05
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Table D.1 (continued)

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 3

Within-level Between-level
ltem Loadings (SE) Loadings (SE)
41 43* (.01) .91* (.04)
42 .52* (.01) .92* (.03)
43 .61* (.01) .76* (.05)
44 .58* (.01) .72 (.06)
45 .61* (.01) .98+ (.02)
46 .69* (.01) .94* (.02)
47 .65* (.01) .90% (.03)
48 .50* (.02) .96% (.07)
49 .61* (.01) .98* (.02)
50 56* (.01) .96* (.02)
51 .50* (.01) .88 (.04)
52 48* (.01) .91* (.03)
53 .34* (.02) .93* (.05)
54 41* (.01) .81* (.04)
55 46* (.02) .63* (.07)
56 .53* (.01) .91* (.03)
57 .48* (.01) .87% (.03)
58 .65* (.01) .97 (.02)
59 .50* (.01) .96* (.05)

Note.SE = Standard Error.
*p<.05
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Table D.2

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 5

Within-level Between-level
ltem Loadings (SE) Loadings (SE)
1 .55% (.01) .96* (.03)
2 49* (.01) .98* (.03)
3 A7 (.01) .96* (.03)
4 41* (.01) .94* (.04)
5 .48* (.01) .81* (.05)
6 -.02 (.02) -.13 (.20)
7 .62* (.01) .93* (.03)
8 .56* (.01) .99* (.02)
9 .36* (.01) .86* (.07)
10 .45* (.01) 77* (.05)
11 56* (.01) .94* (.02)
12 .36% (.01) .86* (.05)
13 .62* (.01) .93 (.02)
14 54* (.01) .71* (.06)
15 .61* (.01) .91* (.03)
16 .30* (.01) .98+ (.03)
17 .63* (.01) .97 (.02)
18 A44*% (.01) .54 (.09)
19 .58* (.01) .90% (.03)
20 .61* (.01) .90% (.03)

Note.SE = Standard Error.
*p<.05
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Table D.2 (continued)

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 5

Within-level Between-level
ltem Loadings (SE) Loadings (SE)
21 .59* (.01) .88* (.03)
22 .56* (.01) .91* (.04)
23 51* (.01) .93* (.03)
24 .39* (.01) 56* (.07)
25 46* (.01) .96* (.03)
26 .50* (.01) .80* (.05)
27 .39* (.01) .76* (.07)
28 .62* (.01) .72* (.05)
29 .55* (.01) .94* (.02)
30 .55* (.01) .97* (.01)
31 .59* (.01) .93* (.03)
32 .37%(.01) .71* (.08)
33 46* (.01) 24* (111)
34 52* (.01) .94* (.03)
35 .50* (.01) .59* (.08)
36 .63* (.01) .91* (.03)
37 51* (.01) .89* (.04)
38 43* (.02) .82* (.06)
39 .28* (.02) 7% (11)
40 A41* (.01) 77% (.06)

Note.SE = Standard Error.
*p<.05
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Table D.2 (continued)

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade

Within-level Between-level
ltem Loadings (SE) Loadings (SE)
41 .14* (.02) .10 (.17)
42 43* (.01) .53* (.08)
43 .59* (.01) .83* (.05)
44 56* (.01) .91* (.03)
45 .64* (.01) .98* (.03)
46 57* (.01) .94* (.03)
47 49* (.01) .82* (.06)
48 .39* (.02) .76* (.06)
49 .38* (.02) .88* (.06)
50 52* (.02) .94* (.09)
51 A7 (.01) .84* (.04)
52 .62* (.01) .96* (.02)
53 49* (.01) .72* (.06)
54 53* (.01) .82* (.04)
55 40* (.02) .95* (.06)
56 .28* (.02) .73* (.08)
57 .56* (.01) .96* (.03)
58 .52* (.01) .95* (.03)
59 .15* (.01) .68* (.19)

Note.SE = Standard Error.
*p<.05
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Table D.3

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 8

Within-level Between-level
ltem Loadings (SE) Loadings (SE)
1 .51* (.02) .94* (.02)
2 49* (.01) .93* (.04)
3 .21* (.01) A47* (.10)
4 .56* (.01) .92* (.03)
5 43*(.02) .88* (.03)
6 .40* (.01) .83* (.06)
7 .05* (.01) -.29* (.12)
8 .34* (.01) .69* (.08)
9 51 (.01) .88* (.04)
10 57* (.02) .87* (.05)
11 67* (.01) .96* (.05)
12 .70* (.02) .95* (.08)
13 .56* (.01) 97* (.02)
14 73* (.01) .96* (.06)
15 .64* (.01) .93* (.06)
16 .45* (.01) .97+ (.02)
17 A7* (.01) .97*% (.02)
18 .55* (.01) .99* (.01)
19 .50* (.01) .98* (.01)
20 43* (.01) .88* (.04)

Note.SE = Standard Error.
*p<.05
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Table D.3 (continued)

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade 8

Within-level Between-level
ltem Loadings (SE) Loadings (SE)
21 .56* (.01) .96* (.02)
22 72* (.01) .96* (.05)
23 A44* (.01) .96* (.02)
24 .50* (.01) .98* (.01)
25 .61* (.01) .98* (.01)
26 .56* (.01) .93* (.03)
27 .50* (.01) .95* (.03)
28 .61* (.01) .98* (.03)
29 72* (.01) .96* (.02)
30 .61* (.01) .94* (.02)
31 72* (.01) .95* (.05)
32 .54* (.01) .90* (.03)
33 .56* (.01) 1.00* (.01)
34 67* (.02) 71* (.08)
35 .68* (.01) .98* (.02)
36 52* (.01) .89* (.03)
37 .48* (.01) .96* (.02)
38 .55* (.01) .96* (.02)
39 .23* (.02) .68* (.07)
40 .64* (.01) .97* (.02)

Note.SE = Standard Error.
*p<.05
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Table D.3 (continued)

Two-level Exploratory Factor Analysis Solution (One Factor at Each Level) for Grade

Within-level Between-level
ltem Loadings (SE) Loadings (SE)
41 .19* (.02) .56* (.09)
42 71* (.01) .99* (.02)
43 .55* (.01) .94* (.02)
44 51* (.01) .98* (.01)
45 .61* (.01) .93* (.02)
46 .39*% (.01) .78* (.07)
47 .61* (.01) .94* (.04)
48 .52* (.01) .96* (.01)
49 49* (.01) .96* (.02)
50 46* (.01) .89* (.03)
51 .61* (.01) .94* (.02)
52 .63* (.01) .91* (.03)
53 57* (.01) .95* (.02)
54 54* (.01) .99* (.02)
55 .45* (.01) .97* (.02)
56 52* (.01) .97+ (.01)
57 .48* (.01) .99* (.01)
58 .38* (.01) .91* (.05)
59 .50* (.01) .97* (.01)

Note.SE = Standard Error.
*p<.05
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Appendix E

Table E.1

Multilevel Confirmatory Factor Analysis (Unstandardized Solution) for Grade 3

Within-level Between-level
ltem Loadings (SE) Loadings (SE)
1 1.00 (.00) 1.00 (.00)
2 .38 (.03) .64* (.11)
3 .51* (.03) .56* (.07)
4 1.20* (.04) 1.43* (.16)
5 1.07* (.03) .99% (.11)
6 1.21* (.05) 1.22* (.02)
7 .75* (.03) .83* (.10)
8 1.08* (.04) 1.29* (.03)
9 .80* (.03) .90* (.08)
10 .97* (.04) 1.28* (.20)
11 .72* (.03) 1.05* (.16)
12 1.13* (.04) 1.43* (.17)
13 1.39* (.05) 2.04* (.26)
14 1.03* (.03) 1.28* (.16)
15 .73* (.03) .96% (.13)
16 1.43* (.05) 1.82* (.22)
17 1.00* (.04) 1.16* (.15)
18 .72* (.03) 74% (11)
19 1.11* (.04) 1.10* (.13)
20 1.13* (.04) 1.05* (.11)

Note.SE = Standard Error.

*p<.05
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Table E.1 (continued)

Multilevel Confirmatory Factor Analysis (Unstandardized Solution) for Grade 3

Within-level Between-level
ltem Loadings (SE) Loadings (SE)
21 .89* (.04) 1.10* (.14)
22 .38* (.02) .65% (.11)
23 .89* (.03) 91* (.12)
24 .87* (.04) 1.13* (.15)
25 .73* (.03) 1.37* (.19)
26 1.16* (.04) 1.87* (.22)
27 1.20* (.04) 1.40* (.18)
28 1.02* (.04) 1.29* (.17)
29 1.15* (.04) 1.38* (.19)
30 .69* (.03) 1.08* (.13)
31 .91* (.03) 1.41* (.16)
32 1.00* (.03) 1.51* (.20)
33 .59* (.02) 7% (.09)
34 .89* (.03) 1.22* (.19)
35 1.52* (.07) 1.57* (.21)
36 A7* (.04) .56* (.10)
37 .72* (.04) .64* (.09)
38 1.18* (.05) 1.30% (.17)
39 .93* (.03) 1.32* (.16)
40 .94* (.04) 1.20% (.14)

Note.SE = Standard Error.

*p<.05
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Table E.1 (continued)

Multilevel Confirmatory Factor Analysis (Unstandardized Solution) for Grade 3

Within-level Between-level
ltem Loadings (SE) Loadings (SE)
41 .67* (.03) .63* (.09)
42 .86* (.04) 1.00* (.12)
43 1.09* (.05) 1.27* (.20)
44 1.00* (.04) 1.02* (.17)
45 1.08* (.05) 1.24* (.17)
46 1.32* (.04) 1.30* (.14)
47 1.19* (.05) 1.31% (.17)
48 .80* (.06) .86% (.16)
49 1.09* (.04) 1.12* (.14)
50 .95* (.04) 1.20* (.13)
51 .81* (.04) .97* (.15)
52 .76* (.03) 1.06* (.14)
53 .50* (.04) .80% (.13)
54 .63* (.03) .88* (.11)
55 .73* (.05) 1.04* (.19)
56 .87* (.03) 1.25* (.17)
57 .76* (.03) 1.02* (.13)
58 1.21* (.04) 1.38* (.18)
59 .80* (.03) .59* (.08)

Note.SE = Standard Error.
p<.05
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APPENDIX F
Table F.1

Confirmatory Factor Analyses Solutions for Grade 3 (Limited to Clusters of Fivioa)

Multilevel CFA Standard CFA
Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
1 .58* (.01) .85* (.04) .60* (.01)
2 27 (.02) .79* (.08) .31* (.02)
3 .34* (.01) .78* (.06) .37* (.01)
4 .65* (.01) .94* (.02) .69* (.01)
5 .61* (.01) .83* (.04) .62* (.01)
6 .66* (.01) .95* (.02) .68* (.01)
7 A7 (.01) .80* (.04) .50* (.01)
8 .61* (.01) .91* (.03) .64* (.01)
9 .50* (.01) .95* (.03) .53* (.01)
10 57* (.01) .80* (.04) .60* (.01)
11 46* (.01) .87% (.03) .50* (.01)
12 .63* (.01) .93* (.02) .67* (.01)
13 .71* (.01) .92* (.02) .74* (.01)
14 .59% (.01) .99* (.01) .63* (.01)
15 .46* (.01) .91* (.03) .50* (.01)
16 72* (.01) .95% (.02) .75% (.01)
17 .58* (.01) .84* (.04) .61* (.01)
18 45* (.01) .96% (.03) .48* (.01)
19 .62* (.01) .96* (.02) .64* (.01)
20 .63* (.01) .95* (.02) .65* (.01)

Note.SE = Standard Error.
*p<.05
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Table F.1 (continued)

Confirmatory Factor Analyses Solutions for Grade 3 (Limited to Clusters of Five)M

Multilevel CFA Standard CFA
Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
21 54* (.01) .87%(.03) 57 (.01)
22 .26* (.01) .87* (.04) .31* (.01)
23 .54* (.01) .83* (.04) .56* (.01)
24 .53* (.01) .94* (.02) 57*(.01)
25 46* (.02) .91* (.03) .53* (.01)
26 .64* (.01) .92 (.02) .69* (.01)
27 .65* (.01) .91* (.02) .68* (.01)
28 .59% (.01) .90* (.03) .63* (.01)
29 .64* (.01) .92* (.02) .67* (.01)
30 44* (.01) .80* (.04) 49* (.01)
31 .54* (.01) .92 (.02) .60* (.01)
32 .58* (.01) .96% (.01) .64* (.01)
33 .39* (.01) .95* (.03) 43* (.01)
34 .54* (.01) .91* (.03) .58* (.01)
35 .73* (.01) .90* (.03) .75* (.01)
36 .32* (.02) .73* (.09) .35% (.02)
37 46* (.02) .83* (.06) .48* (.02)
38 .65* (.01) .98* (.02) .68* (.01)
39 .55* (.01) .80% (.04) .59* (.01)
40 .56* (.01) .91* (.03) .60* (.01)

Note.SE = Standard Error.
*p<.05
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Table F.1 (continued)

Confirmatory Factor Analyses Solutions for Grade 3 (Limited to Clusters of Five)M

Multilevel CFA Standard CFA

Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
41 43* (.01) .91* (.04) 45* (.01)
42 .52* (.01) .92* (.03) .55* (.01)
43 .61* (.01) .76* (.05) .63* (.01)
44 .58* (.01) .72* (.06) .60* (.01)
45 .61* (.01) .98* (.02) .65* (.01)
46 .69* (.01) .94* (.02) 71* (.01)
47 .65* (.01) .90* (.03) 67 (.01)
48 .50* (.02) .96* (.07) 53* (.02)
49 .61* (.01) .98* (.02) .64* (.01)
50 .56* (.01) .96* (.02) .60* (.01)
51 .50* (.01) .88 (.04) 54* (.01)
52 48* (.01) .91* (.03) .53* (.01)
53 .34* (.02) .93* (.05) .39% (.02)
54 41* (.01) .81* (.04) 45* (.01)
55 46* (.02) .63* (.07) .50* (.02)
56 .53* (.01) .91* (.03) 57%(.01)
57 48* (.01) .87% (.03) .52* (.01)
58 .65* (.01) .97 (.02) .69* (.01)
59 .50* (.01) .96* (.05) .50* (.01)

Note.SE = Standard Error.
*p<.05
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Table F.2

Confirmatory Factor Analyses Solutions for Grade 5 (Limited to Clusters of Five)M

Multilevel CFA Standard CFA

Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
1 55 (.01) .95* (.04) 57%(.01)
2 49* (.01) .98* (.02) .52* (.01)
3 A47* (.01) .96* (.03) 49* (.01)
4 41* (.01) .95* (.04) 44* (.01)
5 .48* (.01) .81* (.05) 51* (.01)
6 -.02 (.02) -11 (.20) -.02 (.02)
7 .62* (.01) .93* (.03) .64* (.01)
8 .56* (.01) .99* (.02) .59% (.01)
9 .36% (.01) .86* (.07) .38* (.01)
10 .45% (.01) .77* (.05) A7* (.01)
11 .56* (.01) .94* (.02) .58* (.01)
12 .36* (.01) .86* (.06) .38* (.01)
13 .62* (.01) .93* (.02) .63* (.01)
14 54* (.01) .70* (.06) .56* (.01)
15 .60* (.01) .90* (.03) .63* (.01)
16 .30% (.01) .98* (.03) .33* (.01)
17 .62* (.01) .97* (.02) .65* (.01)
18 45+ (.01) .55* (.09) 46* (.01)
19 .58* (.01) .90* (.03) .62* (.01)
20 .61* (.01) .89% (.04) .63* (.01)

Note.SE = Standard Error.
*p<.05
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Table F.2 (continued)

Confirmatory Factor Analyses Solutions for Grade 5 (Limited to Clusters of Five)M

Multilevel CFA Standard CFA
Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
21 .59* (.01) .88* (.03) .61* (.01)
22 .56* (.01) .91* (.04) .58* (.01)
23 51* (.01) .93* (.04) .53* (.01)
24 .39* (.01) 55* (.07) 41* (.01)
25 46* (.01) .96* (.04) A7* (.01)
26 .50* (.01) .80* (.05) .51* (.01)
27 .38* (.01) 75* (.07) 40* (.01)
28 .62* (.01) .72* (.05) .63* (.01)
29 .55* (.01) .94* (.02) .58* (.01)
30 .54* (.01) .97* (.02) .58* (.01)
31 .59* (.01) .93* (.03) .62* (.01)
32 .37* (.01) .70* (.08) .38* (.01)
33 .46* (.01) 24* (\11) 43* (.01)
34 .53* (.01) .94* (.03) .56* (.01)
35 .50* (.01) .58* (.08) .50* (.01)
36 .63* (.01) .91* (.03) .66* (.01)
37 51* (.01) .89* (.04) 54* (.01)
38 44* (.02) .82* (.06) 46* (.01)
39 .28* (.02) 76% (.11) 29% (.02)
40 A41* (.01) .76* (.06) 43* (.01)

Note.SE = Standard Error.
*p<.05
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Table F.2 (continued)

Confirmatory Factor Analyses Solutions for Grade 5 (Limited to Clusters of Five)M

Multilevel CFA Standard CFA
Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
41 14* (.02) 12 (.17) 14* (.02)
42 43* (.01) .53* (.08) 44* (.01)
43 .59* (.01) .84* (.05) .60* (.01)
44 .56* (.01) .90* (.04) .59* (.01)
45 .64* (.01) .98* (.03) .65* (.01)
46 57* (.01) .94* (.03) .59* (.01)
47 49* (.01) .82* (.06) .50* (.01)
48 .39* (.02) .75* (.06) 41* (.01)
49 .38* (.02) .88* (.06) .40* (.02)
50 51* (.02) .94* (.09) 53* (.02)
51 .48* (.01) .84* (.04) 51* (.01)
52 .62* (.01) .96* (.02) .65* (.01)
53 49* (.01) .72* (.06) 51* (.01)
54 .53* (.01) .82* (.04) .56* (.01)
55 .39* (.02) .95* (.06) 42* (.02)
56 .28* (.02) .72* (.08) .31* (.01)
57 .56* (.01) .96* (.03) .59* (.01)
58 .52* (.01) .95* (.03) .55*% (.01)
59 .15* (.01) .68* (.19) .16* (.01)

Note.SE = Standard Error.
*p<.05
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Table F.3

Confirmatory Factor Analyses Solutions for Grade 8 (Limited to Clusters of Five)M

Multilevel CFA Standard CFA
Within-level Between-level Collapsed

ltem Loadings (SE) Loadings (SE) Loadings (SE)
1 .52* (.02) .94* (.02) .55* (.01)
2 .49* (.01) .93* (.04) .53* (.01)
3 .21 (.01) 47* (.10) .20* (.01)
4 56* (.01) .92* (.03) .60* (.01)
5 A43* (.02) .88* (.03) 45* (.01)
6 .39*% (.01) .83* (.06) A7* (.01)
7 .05* (.01) -.31*% (.12) .02 (.01)

8 .35 (.01) .70* (.08) .39% (.02)
9 .50* (.01) .88* (.04) .56* (.01)
10 57*(.02) .87* (.05) .58* (.01)
11 .67* (.01) .96* (.05) .73* (.01)
12 .69* (.02) .95* (.08) .72* (.01)
13 .56* (.01) .97* (.02) .60* (.01)
14 .73* (.01) .96* (.06) .76* (.01)
15 .64* (.01) .93* (.06) .68* (.01)
16 45* (.01) .97 (.02) .48+ (.01)
17 A7* (.01) .97* (.02) .50* (.01)
18 .55* (.01) .99* (.01) .59* (.01)
19 49* (.01) .98* (.01) 53* (.01)
20 42* (.01) .87* (.04) 44* (.01)

Note.SE = Standard Error.
*p<.05
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Table F.3 (continued)

Confirmatory Factor Analyses Solutions for Grade 8 (Limited to Clusters of Five)M

Multilevel CFA Standard CFA

Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
21 .55* (.01) .96* (.02) .60% (.01)
22 .72* (.01) .97* (.05) .76* (.01)
23 44* (.01) .96* (.02) A7* (.01)
24 .50* (.01) .98* (.01) 55% (.01)
25 .61* (.01) .98* (.01) .66* (.01)
26 .55* (.01) .93* (.03) .61* (.01)
27 .50* (.01) .95* (.03) .55% (.01)
28 .61* (.01) .98* (.03) .68* (.01)
29 .72* (.01) .96* (.02) .76% (.01)
30 .62* (.01) .95* (.02) .66* (.01)
31 73* (.01) .95* (.05) 74 (.01)
32 .54* (.01) .91* (.03) .56% (.01)
33 .55% (.01) 1.00* (.01) .59* (.01)
34 .69* (.01) .71* (.08) .66* (.01)
35 .68* (.01) .98* (.02) .72 (.01)
36 .52* (.01) .90* (.03) .56* (.01)
37 48* (.01) .96* (.02) .53* (.01)
38 .55* (.01) .96* (.02) .59*% (.01)
39 24* (.02) .69* (.07) .26% (.01)
40 .64* (.01) .96* (.02) .67% (.01)

Note.SE = Standard Error.
*p<.05
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Table F.3 (continued)

Confirmatory Factor Analyses Solutions for Grade 8 (Limited to Clusters of Five)M

Multilevel CFA Standard CFA
Within-level Between-level Collapsed
ltem Loadings (SE) Loadings (SE) Loadings (SE)
41 .20* (.02) .55* (.09) .22* (.01)
42 .71* (.01) .99* (.02) .75* (.01)
43 .56* (.01) .94* (.02) .61* (.01)
44 51* (.01) .98* (.01) .55% (.01)
45 .61* (.01) .93* (.02) .65* (.01)
46 .39* (.01) 79 (.07) .39% (.01)
47 .61* (.01) .95* (.04) .63* (.01)
48 .52* (.01) .96* (.01) .56* (.01)
49 .50* (.01) .96* (.02) 54* (.01)
50 A47* (.01) .89* (.03) .50% (.01)
51 .61* (.01) .94* (.02) .65* (.01)
52 .63* (.01) .91* (.03) .66* (.01)
53 57* (.01) .95* (.02) .61* (.01)
54 .53* (.01) .99* (.02) 57*(.01)
55 45* (.01) .96* (.02) .49* (.01)
56 52 (.01) .97+ (.01) .55* (.01)
57 49* (.01) .99* (.01) .53* (.01)
58 .39* (.01) .90* (.06) A41* (.01)
59 .50* (.01) .97* (.01) .56* (.01)

Note.SE = Standard Error.
*p<.05
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