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ABSTRACT 
 

HILARY CLEGG: Identification and Characterization of Two Potential Novel 
Regulators of Apoptosis, MAGE-D2 and SUMI-1 
(Under the direction of Yanping Zhang, Ph.D.) 

 

 Apoptosis is a genetically-programmed form of cell death that is critical for 

proper development, tissue homeostasis, and immune function in vertebrate 

organisms. Disrupted regulation of this process contributes to diverse diseases 

such as cancer, neurodegenerative disorders, and autoimmune dysfunction. Our 

knowledge of apoptosis is incomplete, especially the mechanisms governing 

MOMP (mitochondrial outer membrane permeabilization)—a critical control point 

during which cytochrome c and other mitochondrial intermembrane space 

proteins are released, triggering the execution of apoptosis. Our understanding of 

this process can be enhanced by identifying proteins involved in its regulation. In 

this work, two proteins—MAGE-D2 (melanoma antigen family D2) and SUMI-1 

(survival-promoting mitochondrial protein 1, also known as CHCHD2 for coiled-

coil-helix-coiled-coil-helix-domain containing 2)—are identified as novel potential 

regulators of apoptosis. Initially, these proteins were identified in a screen for 

novel interacting partners of the pro-apoptotic protein p32/C1QBP (complement 

component 1, q subcomponent binding protein). This screen was undertaken in 

an effort to better understand the mechanisms by which p32 regulates apoptosis; 

however, in this work, the functions of MAGE-D2 and SUMI-1 are characterized 
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separately from p32. Here, we show that MAGE-D2 is localized to the nucleolus, 

nucleus, and possibly the mitochondria, and preliminary data suggest potential 

roles for MAGE-D2 in apoptosis and cell cycle control. SUMI-1 is characterized 

more extensively in this work, and the data presented here establish SUMI-1 as a 

novel mitochondria-localized regulator of mitochondrial fission-fusion dynamics 

and BAX-mediated apoptosis. The data shown here support a model in which 

SUMI-1 resides at the mitochondrial outer membrane, where it regulates 

mitochondrial fusion and protects cells from apoptosis. Upon treatment with 

apoptosis-inducing stimuli, SUMI-1 translocates from the mitochondria, inhibiting 

mitochondrial fusion while fission continues unperturbed. This imbalance results 

in mitochondrial fragmentation, promoting BAX oligomerization on the 

mitochondrial outer membrane and ultimately leading to MOMP, cytochrome c 

release, and apoptosis. This body of work provides a subcellular localization and 

functional data for two previously uncharacterized proteins and contributes to our 

understanding of the signaling pathways regulating apoptosis. These data, as 

well as discussion of the results and future directions, are described herein. 
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CHAPTER I 

 
INTRODUCTION 

 

An Overview of Apoptosis 

 Apoptosis is a tightly-regulated form of programmed cell death that is 

critical for proper embryonic development, tissue homeostasis, and immune 

response, and aberrant regulation of apoptosis contributes to diseases such as 

autoimmune disorders, neurodegenerative disease, and cancer. Unlike necrosis, 

or “accidental” cell death, which is usually triggered by acute cellular injury, 

apoptosis is genetically programmed and is characterized by distinct 

morphological changes such as membrane blebbing, chromatin condensation, 

DNA fragmentation, and cell shrinkage (Kerr et al., 1972). In vertebrates, 

apoptosis usually occurs through one of two major pathways: extrinsic, or 

receptor-mediated apoptosis, and intrinsic, or mitochondria-mediated apoptosis. 

Both pathways result in the activation of executioner cysteine proteases 

(Caspases), which cleave downstream targets to carry out the execution phase 

of apoptosis.  

 Apoptotic cell death was first described in 1842 by German scientist Carl 

Vogt (Vogt, 1842), but the process was not described in detail until 1972 when 

Kerr, Wyllie and Currie published a paper describing the phenomenon and 

assigning the term “apoptosis” based on a suggestion from a professor of Greek 

language, James Cormack. Apoptosis (Greek: apo – from/off/without, ptosis – 
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falling) translates to the "dropping off" of petals or leaves from plants or trees 

(Kerr et al., 1972). The pronunciation of this word is still debated; Kerr et al. 

suggested that the second “p” be silent to reflect the word’s Greek roots, while 

others have pointed out that, while the “p” is often silent in Greek-derived words 

that begin with a “pt” combination, a “pt” found in the middle of a word is typically 

pronounced, as in “helicopter” and “cryptic.” 

 For many multicellular organisms, apoptosis is essential during embryonic 

development. In vertebrates, many tissue and organ systems produce an 

overabundance of cells, and those cells that are not utilized must be destroyed in 

a way that does not induce an inflammatory response and is not otherwise 

detrimental to the organism. In this manner, apoptosis eliminates neurons that 

fail to establish connections (Nijhawan et al., 2000) and immune cells that fail to 

produce antigen specificity (Opferman and Korsmeyer, 2003). In adult 

organisms, apoptosis is essential for maintaining tissue homeostasis. It is 

estimated that 50-70 billion cells are produced in the human body die each day to 

replace those that are eliminated by apoptosis (Chen and Lai, 2009). During 

wound healing, apoptosis removes inflammatory cells that might otherwise lead 

to scarring or fibrosis (Greenhalgh, 1998). Apoptosis is also critical for proper 

immune response, targeting cells infected with viruses or other pathogens to 

prevent their proliferation (Roulston et al., 1999).  

Apoptosis in Disease 

 Defective regulation of apoptosis contributes to a number of human 

diseases including cancer, neurodegenerative disorders, and autoimmune 
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disorders. More than ten years ago, evasion of apoptosis was introduced as one 

of the six hallmarks of cancer that enable or promote tumor growth (Evan and 

Littlewood, 1998; Hanahan and Weinberg, 2000). The human body uses 

apoptosis as a defense against extensive DNA damage that may otherwise 

promote carcinogenesis; in other words, if a cell’s genetic material is sufficiently 

damaged, apoptosis is triggered in order to prevent the cell from progressing into 

a tumor (Kerr et al., 1994). Cells that escape this defense mechanism can 

potentially undergo additional changes and become transformed. Cancer cells 

employ a variety of strategies to disable induction of apoptosis. Most notable is 

inactivation of the tumor suppressor p53, which normally responds to DNA 

damage, abnormal proliferative signals, and other cellular stresses by triggering 

apoptosis, primarily through transactivation of apoptosis-promoting targets such 

as PUMA and BAX (Levine, 1997). Many chemotherapeutic agents, such as 

cisplatin, doxorubicin, and paclitaxel, fight tumors through induction of apoptosis, 

and identification of novel apoptosis-inducers and apoptosis-sensitizing agents is 

an area of ongoing investigation in cancer biology. 

  Defective apoptosis or impaired clearance of apoptotic cells can also 

contribute to immune dysfunction and development of autoimmune disorders 

such as systemic lupus erythematosus (SLE) (Stuart and Hughes, 2002). During 

T-cell development, T-cells with self-recognizing antigens are normally destroyed 

by apoptosis. If these T-cells evade apoptosis and continue to proliferate, 

autoimmune disorders can result. Type I (juvenile-onset) diabetes mellitus is 

thought to arise from T-cells that recognize and attack insulin-producing beta-
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cells in the pancreas. Similarly, inappropriate T-cell targeting of joints is 

presumed to occur in rheumatoid arthritis (Hayashi and Faustman, 2003), and 

the impaired apoptosis of these T-cells may result from induction of apoptosis-

inhibiting BCL-2 and MCL-1 proteins (Liu and Pope, 2003). In systemic lupus 

erythematosus, reduced apoptosis leads to lymphoproliferation and general 

autoimmunity (Hayashi and Faustman, 2003).  

 On the other hand, an excess of apoptosis can contribute to development 

of neurodegenerative disorders, the most prevalent of which is Alzheimer’s 

Disease, affecting more than 25 million people worldwide and predicted to affect 

one out of every 85 individuals by the year 2050 (Brookmeyer et al., 2007). 

Alzheimer’s Disease causes progressive neurological decline involving extensive 

neuronal loss through mechanisms that are not entirely clear but are known to 

involve accumulation of neurofibrillary tangles and β-Amyloid plaques in the 

extracellular space between neurons (Masters et al., 1985; Selkoe, 2001; 

Yankner, 1996). β-Amyloid aggregates have been shown to induce neuronal cell 

death in vivo and in cell culture (Estus et al., 1997; Hartman et al., 2005; Pike et 

al., 1991) and are thought to induce aberrant apoptosis in part through 

generation of oxidative stress and by inducing expression of Fas ligand (Ethell 

and Buhler, 2003).  In addition, the pro-apoptotic BH3-only protein BIM is 

elevated in Alzheimer’s disease, and it was shown that BIM is required for β-

Amyloid-induced neuronal cell death. β-Amyloid was shown to elevate BIM levels 

by regulating cyclin-dependent kinase 4 (CDK4) and its downstream effector B-

Myb in neuronal cell culture (Biswas et al., 2007). However, the exact 
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mechanisms that induce neuronal apoptosis in Alzheimer’s Disease are still 

unclear.  

 Parkinson’s Disease is another progressive cognitive disorder involving 

neuronal death and is the second most common neurodegenerative disease, 

affecting six million people worldwide (Dauer and Przedborski, 2003). In this 

disorder, neuronal death occurs in dopamine-producing cells in the substantia 

nigra located in the midbrain (Levy et al., 2009). Apoptosis has been postulated 

as a mechanism for the neuronal death in Parkinson’s Disease, but controversy 

surrounds the issue because one marker of apoptosis—nuclear DNA cleavage—

is not robustly present in brains of Parkinson’s Disease patients. However, a 

number of apoptotic signaling pathways have been implicated in the disorder, 

including involvement of BCL-2 family proteins, mitochondrial dysfunction, JNK 

(Jun Kinase) signaling, and activation of p53; furthermore, an apoptotic pathway 

involving BAX activation, cytochrome c release, and  activation of Caspase-9 and 

Caspase-3 has been implicated in the development of the disease (Levy et al., 

2009; Tatton et al., 2003). Understanding whether apoptosis regulates 

Parkinson’s Disease, and through what specific mechanisms and signaling 

pathways, will be essential for developing targeted therapies for this disorder. 

  

Signaling Pathways and Regulatory Mechanisms in Apoptosis 

Both the intrinsic (mitochondria-mediated) and extrinsic (receptor-

mediated) pathways converge upon a common execution pathway initiated by 

activation of executioner Caspases—Caspases-3, -7, and -9—which cleave 
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downstream targets to induce the biochemical, biophysical, and morphological 

changes that constitute apoptosis (Slee et al., 2001). Caspase-3 activates the 

endonuclease CAD by cleaving its inhibitor, ICAD, leading to chromatin 

condensation and degradation of chromosomal DNA (Sakahira et al., 1998).  The 

DNA repair enzyme poly (ADP-ribose) polymerase (PARP) is cleaved and 

inactivated in order to prevent ATP depletion (Simbulan-Rosenthal et al., 1998). 

The actin-binding protein Gelsolin is cleaved, and the resulting fragments 

subsequently cleave actin polymers, disrupting the cytoskeleton (Kothakota et 

al., 1997). The cell disintegrates into smaller, membrane-enclosed fragments 

called apoptotic bodies. In vivo, the final step of apoptosis occurs when 

phagocytic cells uptake these apoptotic bodies and recycle their contents. Cells 

undergoing apoptosis are recognized by phagocytes when phospholipids of the 

plasma membrane change orientation. Phosphatidylserine, for example, flips 

from the inner to the outer leaflet, providing a signal for disposal by 

noninflammatory phagocytes (Fadok et al., 2001; Ferraro-Peyret et al., 2002).  

Extrinsic apoptosis is initiated when extracellular pro-apoptotic ligands 

activate transmembrane death receptors embedded in the cell surface. For 

example, the Fas Ligand (FasL) activates the Fas Receptor (FasR), while Tumor 

Necrosis Factor (TNF-α) activates the Tumor Necrosis Factor Receptor 1 

(TNFR1). These death receptors are part of the TNF superfamily of receptors, 

and they contain a cysteine-rich domain exposed outside the cell and a death 

domain facing inward (Ashkenazi and Dixit, 1998; Locksley et al., 2001). Upon 

binding of ligands to receptors, the death domains of the receptors interact with 
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and activate adaptor proteins inside the cell (Grimm et al., 1996; Hsu et al., 

1995), forming the death-inducing signaling complex (DISC). This complex 

induces auto-catalytic cleavage of pro-Caspase-8, leading to activation of 

Caspase-8 followed by subsequent cleavage and activation of executioner 

Caspases (Kischkel et al., 1995).   

 This research presented here will focus on the role of proteins that 

mediate the intrinsic apoptotic pathway (Figure 1-1), which can be activated by 

diverse stimuli such as UV radiation, ionizing radiation, and other forms of DNA 

damage as well as hypoxia, cytotoxic drugs, viral infections, and oxidative stress. 

During intrinsic apoptosis, cellular stressors such as DNA damage lead to 

mitochondrial outer membrane permeabilization (MOMP), releasing cytochrome 

c and other factors from the mitochondrial intermembrane space. Upon its 

release into the cytosol, cytochrome c interacts with APAF-1 and Caspase-9 to 

form the apoptosome, leading to auto-activation and cleavage of Caspase-9 and 

subsequent activation of Caspase-3, Caspase-7, and downstream targets. This 

process can also be regulated by other proteins released from the mitochondria 

during MOMP, such as XIAP, DIABLO/SMAC, and HtrA2/OMI (Du et al., 2000; 

Duckett et al., 1996; Faccio et al., 2000; Tait and Green, 2010; Verhagen et al., 

2000).  

Mitochondrial outer membrane permeabilization (MOMP) is regulated 

primarily by the BCL-2 family of proteins—a large group of both pro-apoptosis 

and pro-survival proteins, the balance of which determines a cell’s fate (reviewed 

recently by (Chipuk et al., 2010) and (Youle and Strasser, 2008)). The anti-
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apoptotic protein BCL-2 (B-cell lymphoma 2) was the first family member to be 

identified, after expression of the BCL-2 gene was discovered to be altered in B-

cell follicular lymphomas following a chromosomal translocation between 

chromosomes 14 and 18. This translocation places the gene behind an 

immunoglobulin heavy chain promoter and enhancer, leading to excessive 

transcription of BCL-2, thereby allowing the cell to evade apoptosis (Bakhshi et 

al., 1985; Cleary et al., 1986; Tsujimoto et al., 1985; Vaux et al., 1988).  The 

finding that BCL-2’s anti-apoptotic function promotes carcinogenesis established 

a paradigm for apoptosis as a tumor suppressor mechanism, and evasion of 

apoptosis is now widely accepted as a hallmark of cancer (Hanahan and 

Weinberg, 2000). The BCL-2 family now contains at least twenty identified 

members, all of which share one or more of four BCL-2 homology domains (BH1-

4) (Youle and Strasser, 2008). The anti-apoptotic BCL-2 family members include 

BCL-2, BCL-XL, BCL-W, A1A, and MCL-1 and contain anywhere from two to four 

BH domains.  Pro-apoptotic BCL-2 proteins include BAX and BAK, each of which 

contains BH1, BH2, and BH3 domains, and which permeabilize the mitochondrial 

outer membrane (MOM) during apoptosis. Another set of pro-apoptotic BCL-2 

family members known as the “BH3-only” proteins activate apoptosis by 

antagonizing the function of anti-apoptotic members and/or by directly activating 

pro-apoptotic BAX or BAK; these include BAD, BIK, BID, HRK, BIM, BMF, 

NOXA, and PUMA, all of which share a BH3 domain but have little sequence or 

structural similarity to the other BCL-2 family members aside from this domain. 
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The BCL-2 family members’ functions and domains are summarized in Figure 1-

2.   

 The mitochondrial outer membrane is permeabilized directly by effector 

proteins BAX and/or BAK (Figure 1-3). BAX continually cycles between the 

mitochondria and cytosol, while BAK is constitutively localized to the 

mitochondria. In healthy cells, BAX is retro-translocated from the mitochondria to 

the cytoplasm by BCL-XL, but during apoptosis, the interaction between BCL-XL 

and BAX is disrupted, and BAX accumulates at the mitochondria (Edlich et al., 

2011). Upon induction of apoptosis, both BAX and BAK undergo conformational 

changes to become “activated” and oligomerize on the mitochondrial outer 

membrane (Wei et al., 2001), leading to membrane permeabilization through a 

mechanism that is not yet clear but that may occur through formation of a 

proteinaceous or lipid pore (Chipuk and Green, 2008). Rather than being evenly 

distributed around the mitochondria, active BAX accumulates in massive clusters 

at the ends of mitochondria or co-localized with mitochondrial fission and fusion 

sites (Karbowski et al., 2002), leading to the proposal that BAX may either hijack 

the fission/fusion machinery and/or take advantage of the altered mitochondrial 

membrane structure at these sites in order to permeabilize the membrane. The 

exact biochemical mechanism by which BAX and BAK permeabilize the 

membrane is currently an area of intense investigation and has been described 

as one of the “holy grails” of apoptosis research (Youle and Strasser, 2008).  

BAX and BAK become activated during apoptosis by pro-apoptotic BH3-

only BCL-2 family proteins such as BIM, BID, and PUMA (Chipuk et al., 2005; 
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Gavathiotis et al., 2010; Kim et al., 2006; Kim et al., 2009; Kuwana et al., 2005; 

Letai et al., 2002; Lovell et al., 2008; O'Connor et al., 1998; Ren et al., 2010; Wei 

et al., 2000). Conversely, the pro-apoptotic function of BAX and BAK can be 

inhibited by pro-survival BCL-2 family proteins such as BCL-xL, MCL-1, and 

BCL-2 itself (Boise et al., 1993; Chipuk et al., 2010; Kozopas et al., 1993; Oltvai 

et al., 1993). The precise mechanisms by which BCL-2 family members interact 

to mediate apoptosis are still under debate, and several models have been 

proposed that are not necessarily mutually exclusive (Chipuk et al., 2010) (Figure 

1-4).  

The direct activation model proposes that pro-apoptotic BH3-only proteins 

bind directly to BAX or BAK to induce their activation, and that the role of anti-

apoptotic proteins in healthy cells is to bind and sequester BH3-only proteins to 

prevent them from activating BAX and BAK. Several BH3-only proteins are 

capable of directly activating BAX and/or BAK in isolated mitochondria or large 

unilamellar vesicles (LUVs) meant to mimic the mitochondrial outer membrane. It 

is difficult to detect an interaction between in BAX or BAK and BH3-only proteins 

in vivo, likely because the interaction is thought to be transient. However, a 

recent study utilizing a mouse model in which the genes encoding BIM, BID, and 

PUMA were simultaneously deleted demonstrated that at least one of these 

“direct activator” proteins is necessary for activation of BAX and BAK in vivo (Ren 

et al., 2010).  

Other BH3-only proteins, such as BAD, BIK, HRK, and NOXA, cannot 

directly activate BAX or BAK and are thought to function by binding with, and 
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thereby deactivating, anti-apoptotic proteins such as BCL-2 and BCL-xL (Chen et 

al., 2005; Chipuk et al., 2008; Kuwana et al., 2005; Letai et al., 2002). These 

BH3-only proteins may act as either sensitizers or de-repressors for the effector 

proteins. The sensitization model purports that the interaction between BH3-only 

proteins and anti-apoptotic BCL-xL or BCL-2 would not induce apoptosis, but 

would sensitize cells to apoptotic stimuli. In this scenario, BAX or BAK would still 

require direct activation by BIM, BID, or PUMA, but the “sensitizer” BH3-only 

proteins would deactivate the anti-apoptotics (e.g. BCL-2), preventing inhibition 

of the direct activators. In this way, the sensitizer BH3-only proteins would lower 

the threshold for BAX and BAK activation (Chipuk et al., 2010).  

According to the derepression model, direct activator proteins (e.g. BIM or 

BID) are bound and sequestered by anti-apoptotic proteins (e.g. BCL-xL or BCL-

2). During apoptosis, a derepressor BH3-only protein such as BAD competes 

with the direct activator for binding with the anti-apoptotic protein, releasing the 

direct activator. The direct activator is then free to interact with and activate BAX 

or BAK (Chipuk et al., 2010). This model is supported by in vitro FRET 

(fluorescence resonance energy transfer) studies using LUVs; in the presence of 

these membranes, anti-apoptotic BCL-xL was bound with the direct-activator 

BID. Introduction of the derepressor BAD disrupted the BCL-xL-BID complex, 

freeing BID to directly interact with and activate BAX, leading to permeabilization 

of the LUV (Lovell et al., 2008). Furthermore, when a pharmacological 

derepressor BH3 mimetic was used to treat chronic lymphocytic leukemia (CLL), 



13 

mitochondrial outer membrane permeabilization was induced (Certo et al., 2006; 

Del Gaizo Moore et al., 2007).  

Finally, a neutralization model has been proposed in which the effector 

proteins BAX and BAK are always active but are sequestered by anti-apoptotic 

proteins such as BCL-2 or BCL-xL. For apoptosis to occur, BH3-only proteins 

compete for binding with the anti-apoptotic proteins, releasing the already-active 

BAX or BAK. According to this model, direct activator BH3-only proteins are not 

required for apoptosis; release of the effector proteins from their inhibitors is 

sufficient to activate apoptosis.  

One difficulty in reconciling these contradictory models is that many of the 

studies examining the interactions between BCL-2 family members are based on 

in vitro experiments such as those involving isolated mitochondria or artificial 

LUVs, and many have utilized extensive ectopic expression of tagged proteins. 

These types of studies do not always recapitulate what occurs in a live cell in 

vivo; other proteins and lipids present in a live cell are likely to be important, as 

are stoichiometric ratios among BCL-2 family members. Two recent studies have 

partially resolved this issue by providing evidence that a direct activator protein is 

required for BAX and BAK to induce MOMP in vivo. In one study, mice were 

generated in which the BH3 domain of BIM was replaced by BAD, NOXA, or 

PUMA (Merino et al., 2009). In another, BIM, BID, and PUMA were knocked out 

simultaneously (Ren et al., 2010). Both of these genetic approaches 

demonstrated that direct activator proteins are necessary for BAX and BAK 

activation, BAX oligomerization, MOMP, and apoptosis in vivo. It is likely that in 
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intact cells, apoptosis is regulated by a combination of these models; 

sensitization and direct activation probably both contribute. As induction of 

MOMP is often a life-or-death decision for a cell, it is logical for it to be regulated 

by a complex mechanism. For example, one subset of BH3-only proteins may be 

required for direct activation of BAX and BAK, while another subset of sensitizing 

or derepressing BH3-only proteins must interact with anti-apoptotic proteins such 

as BCL-2 and BCL-xL to release their inhibition of the effector proteins.  

Aside from BCL-2 family members, a handful of unrelated proteins have 

been found to regulate MOMP. Some of these proteins, while not considered 

BCL-2 family members, do contain a putative BH3 domain. These include MAP-1 

and RAD9 (a DNA repair protein), which can directly activate BAX and BAK 

(Chipuk et al., 2010). Other proteins that do not have any known homology to the 

BCL-2 family are also reported to regulate apoptosis either through direct 

activation of BAX or BAK, or by interaction with anti-apoptotic BCL-2 family 

members. The transcription factor Nur77 is reported to convert BCL-2 from an 

anti-apoptotic to a pro-apoptotic protein (Thompson and Winoto, 2008). The 

tumor suppressor p53, which transcriptionally upregulates pro-apoptotic proteins 

following DNA damage, also interacts directly with BAX to induce its activation. 

Furthermore, p53 is reported to be sequestered by anti-apoptotic BCL-2 proteins 

and may also have a derepressor role (Chipuk et al., 2004; Leu et al., 2004; 

Marchenko et al., 2000; Mihara et al., 2003). Other non-BCL-2 inducers of 

MOMP include nucleophosmin, ASC, and ATG5 (reviewed by (Chipuk et al., 

2010)). However, data from a triple knockout mouse model lacking BIM, BID, and 
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PUMA, in which activation of BAX and BAK did not occur, suggests that these 

non-BCL-2 proteins may not always be sufficient in vivo to induce BAX- or BAK-

mediated apoptosis (Ren et al., 2010). VDAC2 can regulate MOMP by binding to 

BAK, restraining it in an inactive monomer conformation. The following non-BCL-

2 proteins are also reported to regulate MOMP through mechanisms that are 

unclear: Histone H1.2, 14-3-3θ , Ku70, and BRCC2 (reviewed by (Chipuk et al., 

2010)). 

 Mitochondria themselves are not passive bystanders in their 

permeabilization during apoptosis. Components of the membrane are known to 

be important, as BAX and t-BID fail to interact in the absence of natural or 

artificial membranes (Lovell et al., 2008). Recently, mitochondrial dynamics have 

emerged as another means by which MOMP may be regulated (Martinou and 

Youle, 2011). In healthy cells, individual mitochondria continually fuse and divide. 

Fusion is regulated primarily by Mitofusin proteins 1 and 2 (MFN1, MFN2). 

Mitofusins located on adjacent mitochondria dimerize, anchoring mitochondria 

together to initiate the fusion process (Chen et al., 2003; Santel and Fuller, 

2001). Fission is mediated largely by dynamin-related protein 1 (DRP1), 

(Karbowski et al., 2002; Labrousse et al., 1999; Otsuga et al., 1998; Smirnova et 

al., 2001). Fission and fusion occur continuously, and if the balance between 

these two processes is altered, aberrant mitochondrial structure results. With an 

excess of fusion, mitochondria become elongated and form networks, while 

overabundant fission causes mitochondria to fragment into smaller, yet intact, 

organelles.  
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Mitochondrial fragmentation occurs during apoptosis prior to cytochrome c 

release (Brooks et al., 2007; Lee et al., 2004), and evidence has accumulated to 

support the idea that fragmentation plays an active role in MOMP. Inhibition of 

fusion-promoting proteins MFN1 or MFN2 causes mitochondria to become 

fragmented and sensitizes cells to MOMP and apoptosis (Sugioka et al., 2004), 

while overexpression of MFN1 or MFN2 reduces fragmentation and protects cells 

from apoptosis (Brooks et al., 2011). Additionally, a chemical inhibitor of fission, 

Mdivi-1, as well as fusion-inducing cysteine alkylators and N-ethyl-maleimide 

(NEM), partially inhibit fragmentation, MOMP, and apoptosis (Bowes and Gupta, 

2005; Cassidy-Stone et al., 2008). Likewise, inhibition of fission-mediating DRP1 

by RNAi or by introducing dominant-negative mutations in the GTPase domain 

partially inhibits mitochondrial fragmentation while delaying MOMP and apoptosis 

(Brooks et al., 2011; Frank et al., 2001). Furthermore, a recent study showed 

compelling evidence that DRP1 modulates apoptosis by altering mitochondrial 

dynamics, stimulating BAX oligomerization (Montessuit et al., 2010).  

 

Unknowns in Field of Apoptosis Research  

 While much has been learned about mechanisms and signaling pathways 

regulating apoptosis, especially the roles of pro- and anti-apoptotic BCL-2 family 

proteins, our understanding is incomplete in several areas. Many of the non-BCL-

2 proteins’ specific biochemical mechanisms in regulating apoptosis are 

unknown, and additional proteins that regulate apoptosis remain to be identified. 

Currently, much research is focused on the mechanisms regulating MOMP, as 
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this process is often the point of no return for deciding a cell’s fate. More 

specifically, controversy still exists regarding the competing models (direct 

activation, sensitization, derepression, and neutralization) for interactions among 

BCL-2 family members in regulating MOMP. There is also a high level of interest 

in elucidating the precise biochemical mechanisms by which BAX and BAK 

permeabilize the mitochondrial outer membrane (i.e. through formation of a 

protein or lipid pore, or an alternate mechanism). Gaining a better understanding 

of these processes will contribute to our knowledge of organismal development 

and homeostasis and may aid in the design of targeted therapeutic drugs to treat 

diseases affected by aberrant regulation of apoptosis, such as autoimmune 

disorders, neurodegenerative disease, and cancer.  

 

p32/C1QBP: a Multifunctional Protein Recently Identified as a Regulator of 

Apoptosis 

Previous work in our laboratory ((Itahana and Zhang, 2008) and 

unpublished data) uncovered a critical role for the mitochondria-localized non-

BCL-2 protein p32 in regulating apoptosis. This multifunctional protein (also 

known as GC1QR for receptor for C1q; HABP1 for hyaluronic acid binding 

protein 1; C1QBP for globular head component factor C1q binding protein) is 

thought to be localized primarily in the mitochondrial matrix (Dedio et al., 1998; 

Muta et al., 1997). p32 is reported to interact with complement component C1q 

(Ghebrehiwet et al., 1994), may play roles in RNA splicing (Petersen-Mahrt et al., 

1999) and oxidative phosphorylation (Muta et al., 1997), and was recently 
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reported to mediate apoptotic response (Chowdhury et al., 2008; Kamal and 

Datta, 2006).  

Our laboratory discovered a novel role for p32 in regulating ARF-mediated 

apoptosis through regulation of mitochondrial membrane potential prior to MOMP 

(Itahana and Zhang, 2008), and a second role for p32 downstream of MOMP 

following release of mature, cleaved p32 from the mitochondria (Itahana and 

Zhang, unpublished data). However, a precise biochemical mechanism for the 

function of p32 in these two roles was lacking. In order to learn more about the 

mechanism of p32 in regulating apoptosis, we sought to identify novel binding 

partners for p32. Thus, a large-scale co-immunoprecipitation was carried out for 

p32, and potential p32-interacting partners were identified by mass spectrometry. 

Of these, we selected two uncharacterized proteins for further study: MAGE-D2 

(melanoma antigen family D2) and SUMI-1 (survival-promoting mitochondrial 

protein 1, also known as CHCHD2 for coiled-coil-helix coiled-coil-helix domain-

containing 2). While the initial rationale for identifying novel p32-interacting 

proteins was to provide a means to better understand the mechanism of p32’s 

apoptotic functions, we opted instead to study MAGE-D2 and SUMI-1 individually 

prior to pursuing studies regarding their interaction with p32. In this body of work, 

the research performed to characterize these two proteins’ localization and 

functions will be presented. In Chapter VI, future experiments are proposed for 

examining the function of these proteins’ interactions with p32.  
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Figure 1-1. Key signaling molecules in the intrinsic apoptosis pathway. 
This illustration depicts a simplified version of key signaling events in the intrinsic 
(mitochondria-mediated) apoptosis pathway. During apoptosis, an important 
regulatory event is mitochondrial outer membrane permeabilization (MOMP). 
MOMP is regulated primarily by pro- and anti-apoptotic BCL-2 family proteins. 
Upon treatment with apoptotic stimuli such as UV radiation, pro-apoptotic 
proteins are induced, leading to activation and oligomerization of pro-apoptotic 
effector proteins BAX and/or BAK. Oligomerization of these effectors induces 
MOMP, causing release of mitochondrial intermembrane space proteins such as 
cytochrome c into the cytosol. Cytochrome c then interacts with APAF-1 and 
Caspase-9 to form the apoptosome, leading to Caspase-9 auto-cleavage and 
activation. Active Caspase-9 then cleaves and activates Caspase-3, leading to 
cleavage of CAD, PARP, and other downstream targets to induce apoptosis.  
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Figure 1-2. Functional organization and general domain structure of BCL-2 
family proteins. 
BCL-2 family members can be divided into four categories according to function, 
as shown. BH (BCL-2 homology) domains and TM (transmembrane) domains 
that are present among most members of each category are indicated. 
Illustrations are not to scale.  
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Figure 1-3. Regulation of mitochondrial outer membrane permeabilization 
(MOMP) by BAX and BAK. 
A) In healthy cells, BAX continually cycles between the cytosol and mitochondria, 
with the majority of BAX existing in a soluble, cytosolic form. BCL-xL promotes 
retro-translocation of BAX to the cytosol. During apoptosis, BCL-xL is inhibited, 
allowing BAX to accumulate at the mitochondria. Upon activation by BH3-only 
proteins, BAX undergoes a conformational change and subsequently 
oligomerizes, inducing MOMP and cytochrome c release.  
B) BAK is constitutively localized to the mitochondria. During apoptosis, BAK is 
activated by BH3-only proteins, leading to BAK oligomer formation and MOMP. 
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Figure 1-4. Competing models of apoptosis regulation by BCL-2 family 
proteins. 
The direct activation model proposes that specific BH3-only proteins can directly 
interact with and activate the effector proteins BAX and BAK. The sensitization 
model says that certain BH3-only proteins can bind to and inactivate anti-
apoptotic proteins, releasing their inhibition of BAX and BAK, thereby sensitizing 
cells to apoptosis. According to the derepressor model, anti-apoptotic proteins 
bind and sequester direct-activator BH3-only proteins, preventing their activation 
of BAX and BAK. When activated, the effector proteins BAX and BAK induce 
MOMP and cytochrome c release, leading to apoptotic cell death. 
 

  



 
 

 

 

 
CHAPTER II 

IDENTIFICATION OF MAGE-D2 AND SUMI-1 AS NOVEL INTERACTING 
PARTNERS FOR THE PRO-APOPTOTIC PROTEIN P32/C1QBP 

 

Introduction  

Recently, our lab uncovered novel roles for the multifunctional protein 

p32/C1QBP in regulating apoptosis by two distinct mechanisms. First, p32 was 

found to be required for apoptosis induced by the tumor suppressor ARF 

(Itahana and Zhang, 2008). Later, p32 was found to be a critical mediator for 

apoptosis induced by a broad range of stimuli (unpublished data). Thus, p32 

regulates apoptosis by two mechanisms: 1) It recruits ARF to the mitochondria, 

where ARF induces a change in mitochondrial membrane potential (∆Ψm), 

sensitizing cells to apoptosis (Itahana and Zhang, 2008), and 2) Once released 

into the cytoplasm, mature (cleaved) p32 activates Caspase-9 and Caspase-3 to 

induce apoptosis (unpublished data). However, the exact mechanisms by which 

p32 induces apoptosis have been elusive. One means by which a protein’s 

functional mechanisms can be elucidated is through identification of novel 

interacting proteins. Thus, in order to learn more about this novel critical regulator 

of apoptosis, we performed a screen to search for previously unknown p32 

binding partners.   
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Screen for Novel p32-Interacting Proteins 

 In order to identify potential novel interacting partners for p32, a large-

scale co-immunoprecipitation was carried out for Flag-tagged p32. First, cell lines 

were generated to express p32-Flag in a stable manner. U2OS (human 

osteosarcoma) cells were transfected with a pcDNA3-p32-Flag plasmid, and 

clones expressing the plasmid were selected for with the antibiotic G418. Clones 

stably-expressing p32-Flag were obtained, and expression of p32-Flag was 

confirmed by western blotting (Figure 2-1). Correct mitochondrial localization of 

p32-Flag was confirmed by immunofluorescence imaging, as indicated by co-

localization with the mitochondria-labeling dye MitoTracker™ Red (Figure 2-2). 

 A large-scale co-immunoprecipitation (co-IP) was then carried out with the 

p32-Flag stable cell lines, using mock-transfected U2OS cells as a negative 

control. Fifteen 100-mm plates of each cell type were lysed with 0.1% NP-40 

lysis buffer, and a co-IP was performed using gel beads pre-conjugated with Flag 

antibody in order to pull down protein complexes containing p32-Flag. These 

complexes were resolved by SDS-PAGE, and the resulting gel was stained with 

Coomassie Brilliant Blue to visualize bands representing potential p32 binding 

partners (Figure 2-3). Each band was subjected to mass spectrometry to identify 

the proteins likely to be present in the band. A list of bands identified, 

representing potential p32 interacting partners, is shown in Table 2-1.  
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Selection of MAGE-D2 and SUMI-1 for Further Study 

 After careful examination of the eight putative p32-interacting proteins 

identified, two were selected for further study: MAGE-D2, an uncharacterized 

melanoma antigen family protein, and SUMI-1, an uncharacterized protein 

predicted to localize to the mitochondria.   

MAGE-D2 was selected primarily because its close homolog, 

NRAGE/MAGE-D1 is known to regulate apoptosis (Barker and Salehi, 2002; 

Chomez et al., 2001). The MAGED genes, including MAGE-D1 and MAGE-D2, 

are clustered on chromosome Xp11, and the gene encoding MAGE-D2 is located 

at Xp11.2, a hot spot for X-linked mental retardation. Unlike the initially-

discovered MAGE family members, whose expression is detected only during 

embryonic development and in tumor cells, MAGE-D2 is ubiquitously expressed 

in adult tissues (Langnaese et al., 2001). No studies have been published 

regarding the function of MAGE-D2, but its expression has been linked to cancer 

initiation and/or progression. MAGE-D2 overexpression is associated with small-

intestinal carcinoid neoplasia (Kidd et al., 2006a) and with progression of gastric 

neoplasia, and the level of MAGE-D2 differentiates Type III/IV gastric neoplasias 

from Type I/II (Kidd et al., 2006b). MAGE-D2 upregulation is also linked to liver 

metastasis of colon cancer (Li et al., 2004). A close homolog of MAGE-D2—

NRAGE/MAGE-D1—was reported to interact with the p75 neurotrophin receptor 

to promote nerve growth factor-dependent apoptosis (Salehi et al., 2000). 

NRAGE can also interact with the apoptosis inhibitory factor XIAP (X-linked 
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inhibitor of apoptosis) and appears to accelerate degradation and inactivation of 

XIAP during apoptosis (Jordan et al., 2001).  

 SUMI-1 is a small, CHCH domain-containing protein, and no studies 

regarding its functions were published when we began our research on this 

protein. SUMI-1 was selected for further study primarily because another protein 

reported to be a mouse ortholog of SUMI-1 (NDG1; Nur77 downstream gene 1) 

was shown to regulate apoptosis after induction by the nuclear steroid orphan 

receptor Nur77 (Rajpal et al., 2003). However, upon further investigation, this 

protein was found not to be a direct ortholog of SUMI-1 as reported. In addition, 

unlike the majority of putative p32-interacting proteins identified, SUMI-1 was 

predicted to localize to the mitochondrion (Claros and Vincens, 1996), an 

organelle with strong ties to apoptotic cell death.  

 

Confirmation of Binding Between p32-SUMI-1 and p32-MAGE-D2 

 To determine whether MAGE-D2 and SUMI-1 represent genuine binding 

partners for p32, additional co-immunoprecipitation experiments were carried out. 

U2OS cells were transfected with p32-Flag, Myc-SUMI-1, and/or Myc-MAGE-D2 

and immunoprecipitated for Flag to pull down p32-Flag-containing complexes. 

Samples were resolved by SDS-PAGE and blotted for Myc or Flag, where 

indicated. Binding was confirmed between p32-Flag and SUMI-1-Myc, with no 

signal detected in cells not transfected with p32-Flag, indicating that SUMI-1-Myc 

did not interact nonspecifically with the Flag antibody. A strong interaction was 

also confirmed between p32-Flag and MAGE-D2-Myc. A small amount of signal 
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was detected in the negative control lane, which likely represents spillover from 

another lane and/or incomplete washing of beads; however, a dramatically higher 

signal was detected in cells transfected with p32-Flag, despite lower expression 

of MAGE-D2-Myc (see loading panel), indicating that MAGE-D2-Myc does 

interact nonspecifically with the Flag antibody (Figure 2-4). Thus, we detected 

binding of ectopically expressed p32 with both SUMI-1 and MAGE-D2 

 Interaction of endogenous proteins was also examined. Untreated U2OS 

cell lysates were immunoprecipitated for SUMI-1 or MAGE-D2, using two 

different antibodies for each protein. Samples were resolved by SDS-PAGE and 

blotted for SUMI-1, MAGE-D2, and p32. One SUMI-1 antibody successfully 

immunoprecipitated SUMI-1, and p32 was also detected in this lane, 

demonstrating endogenous SUMI-1-p32 binding. Both MAGE-D2 antibodies 

were capable of pulling down MAGE-D2 and also immunoprecipitated p32, albeit 

with lower affinity than that of the SUMI-1-p32 interaction (Figure 2-5).  Thus, the 

p32-SUMI-1 and p32-MAGE-D2 interactions were both confirmed in three ways: 

1) Immunoprecipitation of ectopic p32 and detection of endogenous SUMI-1 and 

MAGE-D2 by mass spectrometry, 2) IP of ectopically-expressed proteins and 

detection with Flag and Myc antibodies, and 3) IP of endogenous proteins in 

untransfected cells and detection with antibodies toward endogenous proteins.  

 

Materials and Methods 

Cell culture, transfections, and generation of stable cell lines. U2OS cells 

were obtained from ATCC and cultured in a 37°C incubator with 5% CO2 in 
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DMEM supplemented with 10% FBS, 100 U/ml penicillin, and 100 g/ml 

streptomycin. DNA transfections were carried out with Effectene® (Qiagen) 

according to the manufacturer’s instructions. Cells were transfected with 

pcDNA3-p32-Flag or pcDNA3 vector and subject to selection with G418. 

Individual clones were isolated and cultured, and expression of p32-Flag was 

examined by immunofluorescence staining and/or western blotting.  

 

Co-immunoprecipitation, SDS-PAGE, and western blotting. For co-immuno-

precipitations (co-IP), cells were lysed in 0.1% NP-40 lysis buffer, pre-cleared for 

30 minutes with CL-4 beads, and incubated in primary antibody for 4 hours to 

overnight followed by incubation in Protein A beads for 1 hour. Beads were 

washed 3x and protein complexes were eluted using 1x SDS-PAGE sample 

buffer. For the large-scale co-IP, cells were treated as above but incubated in 

beads pre-conjugated with Flag antibody (ANTI-FLAG® M2 Affinity Gel, Sigma). 

Where indicated, a portion of lysate was reserved prior to IP and used as a 

loading control. Beads were washed 3x, and 1x-SDS sample buffer was added to 

remove protein complexes from beads. IP samples and loading controls were 

resolved by SDS-PAGE with a 12.5% or 15% polyacrylamide gel and transferred 

onto a 0.2 µM nitrocellulose membrane. Membranes were blocked for a minimum 

of 30 minutes in phosphate-buffered saline buffer with 0.1% Tween-20 (PBST) 

and 5% nonfat dried milk. Membranes were incubated for 2h to overnight in 

primary antibody, incubated for 1-2 hours in secondary HRP-conjugated 

antibody, and exposed with Supersignal West Pico (Pierce).  
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DNA Plasmids. C-terminally Flag-tagged p32, N-terminally Myc-tagged SUMI-1, 

and N-terminally Myc tagged MAGE-D2 were cloned into a pcDNA3.1 vector 

(Invitrogen) and confirmed by restriction digest and DNA sequencing.  

 

Antibodies. Monoclonal mouse ANTI-FLAG® M2 antibody was purchased from 

Sigma. Rabbit anti-Myc antibody was purchased from Abcam. Rabbit anti-SUMI-

1 (94, 124) and rabbit anti-MAGE-D2 (180, 262) antibodies were used for 

endogenous co-IP.  
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Figure 2-1. Clones stably expressing p32-Flag. 
Western blot showing expression of p32-Flag fusion protein, detected with Flag 
antibody, in whole cell extracts of three U2OS clones stably transfected with p32-
Flag plasmid. Untransfected U2OS cell lysate was used as a negative control.  
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Figure 2-2. U2OS cells stably expressing p32-Flag. 
Immunofluorescence imaging shows that p32-Flag in stably-transfected U2OS 
cells is correctly localized to the mitochondria, as indicated by staining with 
MitoTracker® Red. 
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Figure 2-3. Large-scale co-immunoprecipitation of p32. 
U2OS (human osteosarcoma) cells stably transfected with empty plasmid 
(Vector) or p32-Flag were lysed with 0.1% NP-40 lysis buffer and incubated with 
Flag-conjugated beads. Immunoprecipitated complexes were resolved by SDS-
PAGE and visualized with Coomassie Blue staining. Bands that are present in 
p32-Flag IP but not the vector-only control represent putative p32-interacting 
proteins and were analyzed by mass spectrometry. Bands representing MageD2 
and SUMI-1 are indicated. Other identified bands are shown in Table 2-1.  
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Table 2-1. Potential p32-interacting proteins. 
Bands identified by mass spectrometry following a large-scale co-
immunoprecipitation of p32-Flag in stably-transfected U2OS cells.  

 
 

 

  

Protein Function 
ZFP91 (zinc finger protein 91 
homologue) 

Putative transcription factor; upregulated in 
acute myeloid leukemia (Unoki et al., 2003) 

NO66 (nucleolar protein 66) 
Ribosomal biogenesis, chromatin remodeling 
(Eilbracht et al., 2004) 

MAGE-D2 (melanoma antigen 
family D2) 

Uncharacterized; homolog MAGE-D1 regulates 
apoptosis (Chomez et al., 2001) 

YB1 (Y-box binding protein 1) 
Transcription factor; regulates cell cycle 
(Jurchott et al., 2003) 

ALY-THOC4 (THO complex 
subunit 4) 

Transcriptional co-activator; couples 
transcription to mRNA export (Bruhn et al., 
1997; Luo et al., 2001)  

Ribosomal protein S7 Translation of proteins (Annilo et al., 1995) 

SUMI-1/CHCHD2 Uncharacterized 

Ribosomal protein S17 Translation of proteins (Chen and Roufa, 1988) 
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Figure 2-4. Confirmation of p32-MAGE-D2 and p32-SUMI-1 binding.  
Western blots showing interaction between ectopically-expressed proteins. 
U2OS cells were transfected with p32-Flag and either SUMI-1-Myc or  MAGED2-
Myc where indicated. Lysates were immunoprecipitated with Flag antibody and 
resolved by SDS-PAGE. IP is shown in panel on left, and loading is shown on 
right. 
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Figure 2-5. Endogenous binding between p32-MAGED2 and p32-SUMI-1.  
Western blot showing interaction between endogenous proteins. Lysates from 
untransfected U2OS cells were immunoprecipitated with indicated antibodies 
(IgG, negative control) and resolved by SDS-PAGE. Loading is shown on left. 
Note that the SUMI-1-94 antibody is effective for immunoprecipitation, while the 
SUMI-1-124 is not. MAGE-D2 could be immunoprecipitated with both antibodies, 
and a p32 band could be observed for each MAGE-D2 IP.  
 

 

  



 
 

 
 

 
 

CHAPTER III 
 
 

LOCALIZATION AND FUNCTIONAL STUDIES OF THE UNCHARACTERIZED 
MELANOMA ANTIGEN FAMILY PROTEIN, MAGE-D2 

 

Introduction and Background 

 The initial members of the human MAGE (melanoma antigen family) 

genes to be identified are silent in normal adult tissues and expressed only in the 

male germ line and tumor cells. These proteins—the MAGE-A, MAGE-B, and 

MAGE-C subfamilies—are located in clusters on the X chromosome and are 

each encoded by a single exon. Because of their tumor-specific expression, 

these proteins have generated interest as potential targets for cancer 

immunotherapy. Now, the MAGE family has been expanded to include more than 

25 members, and some of these are expressed in normal tissues (Chomez et al., 

2001). Among these are the MAGE-D subfamily, comprised of MAGE-

D1/NRAGE, MAGE-D2, MAGE-D3, and MAGE-D4, each of which contains both 

a MAGE homology domain (MHD, or MHD I) and a MAGE homology II domain 

(MHD II). The MHD is found in all MAGE proteins, while the MHD II is shared 

only by Type II MAGE proteins, which include MAGE-D1-4, MAGE-E1, and 

MAGE-L2. The MAGE-D subfamily is also unique from the MAGE-A, -B, and -C 

families in that each member is encoded by multiple exons rather than a single 

exon (Chomez et al., 2001). The functions of MAGE family proteins are not well-
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known, although roles have been uncovered for Type II MAGE proteins in cell 

survival, cell cycle progression, and apoptosis (Barker and Salehi, 2002). 

Because there is known to be extensive functional redundancy among 

MAGE proteins, examination of other MAGE-D family members can yield clues to 

potential functions and mechanisms for MAGE-D2. Of the MAGE-D subfamily, 

only MAGE-D1 has been well-characterized. MAGE-D1 shares 41% amino acid 

identity with MAGE-D2 and has been reported to regulate apoptosis through 

several mechanisms. MAGE-D1 interacts with the p75 neurotrophin receptor 

(p75NTR), which is a member of the TNF (tumor necrosis factor) family of 

proteins, and co-expression of MAGE-D1 with p75NTR greatly enhances 

neurotrophin-receptor-mediated apoptosis (Salehi et al., 2000). Overexpression 

of MAGE-D1 alone was also found to be sufficient to induce apoptosis (Barker 

and Salehi, 2002; Salehi et al., 2000) by activating c-Jun N-terminal kinase 

(JNK), leading to phosphorylation of c-Jun, release of cytochrome c, and 

Caspase activation (Salehi et al., 2002). MAGE-D1 also interacts with several 

homeodomain family transcription factors that regulate development through 

control of cell cycle and apoptosis—Msx2, Dlx7, and Dlx5—and MAGE-D1 was 

shown to be required for Dlx5-dependent transcription (Masuda et al., 2001). 

MAGE-D1 has also been identified as a binding partner for the anti-apoptotic 

proteins XIAP and ITA, both members of the IAP (inhibitor of apoptosis) family of 

proteins (Jordan et al., 2001). IAP proteins block apoptotic cell death by binding 

to and inhibiting activated Caspases. MAGE-D1 appears to interact with XIAP to 

accelerate apoptosis induced by IL-3 withdrawal in IL-3-dependent 32D cells. 
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The exact mechanism is unclear but appears to involve formation of a transient 

complex between MAGE-D1 and XIAP that may lead to XIAP’s degradation and 

inactivation (Jordan et al., 2001). MAGE-D1-induced apoptosis and cell cycle 

arrest have both been shown to require activation of the tumor suppressor p53 

(Kendall et al., 2005; Wen et al., 2004), which is contrary to the roles of several 

anti-apoptotic Type I MAGE proteins that have been shown to inhibit p53’s 

transcriptional activity (Doyle et al., 2010; Marcar et al., 2010; Monte et al., 2006; 

Yang et al., 2007).  

 MAGE-D2 is not well-characterized but has been identified in several 

screens for genes with altered expression in cancers. The gene encoding MAGE-

D2 is located at chromosome Xp11.2, a hot-spot for x-linked mental retardation, 

and yields 3 known transcripts. The MAGE-D2 protein is encoded by 11 exons 

and contains 606 amino acids, with a predicted molecular weight of 65 kD. It 

contains two known domains, MHD I and MHD II (Figure 3-1), and an arginine-

rich region from aa 215-258. The protein is highly conserved in mammals, with 

87% amino acid identity in mice (mus musculus). In zebrafish (danio rerio) and 

the fruit fly (drosophila melanogaster), a single MAGE gene is orthologous to the 

entire human MAGE family; human MAGE-D2 retains 38% amino acid identity to 

this gene in zebrafish and 24% identity to the fruit fly ortholog (data obtained from 

HomoloGene). Like MAGE-D1, human MAGE-D2 is expressed ubiquitously in 

adult tissues, and its expression is higher in certain brain regions and in the 

interstitium of the testes (Langnaese et al., 2001). In mice, semiquantitative 

mRNA dot-blot analysis revealed the presence of MAGE-D2 transcripts in all 
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adult tissues tested; its expression increases steadily during embryonic 

development, reaching a maximum just before birth; and mouse embryonic 

tissues contain a higher level of MAGE-D2 expression than do adult tissues 

(Chomez et al., 2001). The expression of human MAGE-D2 is elevated in a 

number of cancers including those derived from the breast (fresh breast cancer 

tissue, but not breast cancer cell lines) (Hudelist et al., 2006), appendix (Modlin 

et al., 2006), stomach (Kidd et al., 2006b), and small intestine (Kidd et al., 

2006a). Its overexpression is also associated with cancer progression and 

metastasis—It is elevated 5-10 fold in Type III/IV gastrointestinal cancers but not 

in Type I/II tumors (Kidd et al., 2006b), it is associated with progression of 

appendiceal tumor malignancy (Modlin et al., 2006), and it is expressed to a 

significantly higher degree in colon cancer tumors with liver metastasis than 

those that have not metastasized (Li et al., 2004). 

 The functions of MAGE-D2 are unknown, and no studies have been 

published, to date, regarding its functions. Its elevated expression in cancers and 

association with cancer progression could implicate MAGE-D2 in a variety of 

potential roles such as cell proliferation, evasion of apoptosis, cell migration, or 

cell adhesion. It can be phosphorylated at multiple serine residues (Matsuoka et 

al., 2007; Olsen et al., 2006), and a screen for substrates of ATM and ATR in the 

DNA damage response found that MAGE-D2 is phosphorylated by ATM/ATR at 

specific serine residues (SER-146, SER-162, SER-190, SER-191, and SER-194) 

following DNA damage (Matsuoka et al., 2007), suggesting that it may be an 

effector of the ATM- and ATR-mediated DNA damage response pathway. In this 
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study, we sought to characterize the subcellular localization of MAGE-D2 and 

investigate whether it plays a role in apoptotic cell death. 

  

Generation of Antibodies for Study of Endogenous MAGE-D2 

 When we began our research on MAGE-D2, no antibodies were available 

for biochemical analyses such as western blotting, immunoprecipitation, and 

immunofluorescence staining of endogenous MAGE-D2. In order to carry out 

these studies, we generated two rabbit polyclonal antibodies toward MAGE-D2, 

each targeting a different region of the protein. Various features of the amino acid 

sequence were assessed in order to identify optimal regions of approximately 12-

16 amino acids in length to use as antigens. The most suitable antigens have low 

hydrophobicity (and are, therefore, more likely to be exposed at the protein 

surface), high complexity (e.g. beta-turn tendency), high antigenicity, and minimal 

sequence similarity to other proteins (in order to increase specificity). An 

additional cysteine must be placed on one terminus in order to conjugate the 

peptide to the immunogenic protein, KLH (keyhole limpet cyanin), which 

enhances the immune response in the host. Therefore, no internal cysteines can 

be present in the selected antigen region. Based on careful analysis of the 

MAGE-D2 sequence according to the above parameters, two peptide antigens 

were selected: MD2-180 (corresponding to amino acids 180-194; 

VKHLDGEEDGSSDQS), and MD2-262 (amino acids 262-276; 

LQSSQEPEAPPPRDV) (Figure 3-2). The peptides were sent to PRF&L for 

immunization of rabbits, and serum containing polyclonal antibodies toward the 
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antigens was shipped to our laboratory for purification. Antibodies were affinity-

purified in columns conjugated with the associated peptide antigen and tested in 

our lab by western blotting for effectiveness and specificity. Each antibody 

detected both endogenous and ectopically-expressed MAGE-D2 and was 

specific to MAGE-D2 (Figure 3-3).  

 

MAGE-D2 Localizes to the Mitochondria, Nucleus, and Nucleoli 

 To gain additional clues regarding its functions, we first explored the 

subcellular localization of MAGE-D2. Plasmids were generated for expression of 

N-terminally Myc-tagged, C-terminally Flag-tagged, and C-terminally EGFP-

tagged MAGE-D2 fusion proteins. U2OS cells were transfected with the various 

tagged proteins, and cells were fixed after 18 hours and immunofluorescence 

stained for Myc or Flag. All three proteins were found to localize primarily to the 

nucleoli and the nucleus, with the strongest staining apparent in the nucleoli 

(Figures 3-4 and 3-5). In cells transfected with MAGE-D2-Flag or EGFP-MAGE-

D2, faint staining could also be observed in the cytoplasm. Transfection with 

EGFP-MAGE-D2 appeared toxic to cells, with many transfected cells dying 

(Figure 3-5). Many of the remaining EGFP-MAGE-D2-expressing cells exhibited 

abnormal nuclear morphology (Figure 3-5, phase-contrast image and top right 

panel). It is not clear whether this change in nuclear structure represents 

apoptosis-induced nuclear fragmentation.  

 Next, using antibodies that we generated for MAGE-D2, we were able to 

examine the localization of the endogenous protein. U2OS cells were fixed and 



42 

immunofluorescence stained with MAGE-D2 (MD2-262) antibody. As observed 

with the ectopically expressed proteins, endogenous MAGE-D2 localized 

primarily to the nucleoli, followed by the nucleus (Figure 3-6). However, a small 

amount of cytoplasmic staining was also detected in a pattern reminiscent of 

mitochondria. To determine whether this indeed represented mitochondrial 

staining, we co-stained cells with MitoTracker™ dye and observed co-localization 

(Figure 3-6), suggesting that a portion of endogenous MAGE-D2 localizes to the 

mitochondria. Interestingly, the localization of endogenous MAGE-D2 appears 

quite heterogeneous, with some cells exhibiting primarily nucleolar and nuclear 

staining, while other cells have stronger staining in the mitochondria, and others 

have staining that appears diffuse throughout the nucleus and cytoplasm (Figure 

3-7). 

The ectopically expressed, tagged MAGE-D2 proteins did not appear to 

localize to the mitochondria, but it is not uncommon for protein tags to disrupt 

mitochondrial targeting. An epitope placed at the N-terminus of p32 or SUMI-1, 

for example, blocks mitochondrial import of these proteins (Figure 4-6E and data 

not shown). It is possible that the mitochondrial staining detected by the MAGE-

D2 antibody represents a nonspecific protein, but this is not likely, as the 

antibody appears highly specific to MAGE-D2—No other bands were observed 

on a whole-membrane western blot using the MD2-262 antibody (Figure 3-3, 

right panel). MAGE-D2 does not contain an obvious mitochondrial targeting 

signal; however, mitochondrial targeting is often  directed by a cryptic 

combination of N-terminal sequence features such as secondary structure, 
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enrichment of certain types of residues, number of acidic residues, 

hydrophobicity, and isoelectric point (Claros and Vincens, 1996). According to 

MitoProt II, a prediction program for mitochondrial localization that takes into 

account 47 sequence parameters affecting mitochondrial targeting, the 

probability that MAGE-D2 is exported to mitochondria is low (0.0452) (Claros and 

Vincens, 1996). It is possible, however, that the association of MAGE-D2 with 

mitochondria is based on interaction with another mitochondria-localized protein. 

This scenario seems plausible, as MAGE-D2 interacts with the mitochondrial 

protein p32. Immunogold-electron microscopy data shows that a portion of p32 

localizes to the mitochondrial outer membrane (data not shown), where it could 

interact with MAGE-D2 following translation of the protein in the cytoplasm.  

Altogether, based on detection of ectopic and endogenous MAGE-D2 with 

three different antibodies, it is clear that MAGE-D2 localizes to the nucleoli and 

nucleus, and immunofluorescence staining of endogenous MAGE-D2 also 

suggests that a subset of MAGE-D2 may localize to the mitochondria and to the 

cytoplasm.  These findings could be further examined with additional 

experiments such as subcellular fractionation. 

 

Exploring a Potential Role for MAGE-D2 in Regulating Apoptotic Cell Death 

 Because MAGE-D2 interacts with the pro-apoptotic protein p32, we 

examined whether MAGE-D2 might also regulate apoptosis. First, we 

overexpressed MAGE-D2 and examined the effect on cells with and without 

additional apoptotic stimuli.  U2OS cells were transfected with MAGE-D2-Flag 
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DNA or a control vector, and 24 hours later cells were treated with UV to induce 

apoptosis. After 18 hours, cells were examined. Ectopic expression of MAGE-D2-

Flag appeared to have little effect on cells in the absence of UV but appeared to 

sensitize cells to UV-induced cell death, as indicated by fewer of the MAGE-D2-

transfected cells surviving UV treatment (Figure 3-8). To obtain a quantitative 

measure of the effect of MAGE-D2 expression on cell death, flow cytometry 

analysis of cell death was performed. U2OS cells were treated as above except 

that 18 hours after UV treatment, cells were collected, fixed, and stained with 

propidium iodide for flow cytometry assessment of DNA content. Cells in the G1 

phase of the cell cycle have a diploid (2n) DNA content, while cells in G2 have 

duplicated their DNA in preparation for cell division and therefore contain a 

tetraploid (4n) quantity of DNA. Cells that are undergoing apoptosis contain DNA 

that has partially degraded; thus, any cells whose DNA content is less than that 

of the G1 peak (“sub-G1,” or sub-diploid) are considered to be apoptotic. MAGE-

D2 expression alone did not significantly increase the percentage of sub-G1 cells 

in the absence of apoptotic stimuli (2.2% of cells in sub-G1, compared to 1.4% 

for vector alone), but MAGE-D2 sensitized cells to UV-induced cell death (25% of 

cells in sub-G1 compared to 11% for vector alone) (Figure 3-9). These data 

suggest that, while MAGE-D2 expression alone is not sufficient to induce 

apoptosis in U2OS cells, MAGE-D2 might have an apoptosis-promoting function, 

sensitizing cells to apoptotic stimuli. Additional studies must be carried out to 

determine definitively whether MAGE-D2 regulates apoptotic cell death. 
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Summary and Discussion 

 MAGE-D2 is an uncharacterized MAGE (melanoma antigen) family protein 

that, unlike the majority of MAGE family members, is ubiquitously expressed in 

normal adult tissues. MAGE-D2 is a Type II MAGE protein, meaning that in 

addition to sharing the MAGE homology domain (MHD I) with all MAGE proteins, 

it also shares a MAGE homology domain II (MHD II) with a subset of MAGE 

proteins, including the MAGE-D subfamily. The physiological functions of MAGE 

proteins are mostly unknown, but roles have been reported in the regulation of 

cell survival, cell proliferation, ubiquitin ligase activity, and apoptosis (Barker and 

Salehi, 2002; Doyle et al., 2010). The closest homolog of MAGE-D2, MAGE-

D1/NRAGE, regulates apoptosis through several distinct mechanisms, but the 

functions of MAGE-D2 are unknown. In order to explore a potential function for 

MAGE-D2 in regulation of apoptosis, we generated several tools for its study, 

including tagged proteins for ectopic expression and antibodies for biochemical 

analyses of endogenous MAGE-D2 in cells.  

Using these tools combined with immunofluorescence imaging, we first 

examined the subcellular localization of MAGE-D2 and determined that it resides 

in the nucleus, nucleoli, and possibly mitochondria, and that its expression is 

heterogeneous among cells, with some cells harboring a greater proportion of 

MAGE-D2 in the nucleoli and the nucleus, and with other cells showing mostly 

mitochondrial staining. However, as the tagged, ectopically-expressed MAGE-D2 

proteins did not also localize to the mitochondria, additional studies are needed 

to determine whether the apparent mitochondrial localization could represent an 
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experimental artifact due to recognition of a nonspecific protein by the MAGE-D2 

antibody. One method for answering this question is through knockdown of 

MAGE-D2 with RNAi followed by immunofluorescence staining with MAGE-D2 

antibody to determine whether the mitochondrial signal disappears. If RNAi 

reduces the mitochondrial staining, we can conclude that the apparent 

mitochondrial localization is genuine. Another means to confirm the localization 

of MAGE-D2 is through subcellular fractionation, such as the differential 

detergent mechanism that was utilized in Chapter IV (Figure 4-7) to assess the 

localization of SUMI-1. 

The subcellular localization of a protein can provide clues to its function. 

Ectopic and endogenous MAGE-D2 were both observed to reside in the nucleus 

and nucleoli. The nucleus is a membrane-bound organelle containing the cell’s 

chromosomes. The primary functions that take place inside the nucleus are gene 

transcription and pre-mRNA processing. Nuclear proteins have widely varying 

roles such as regulation of gene expression, modulation of chromatin structure, 

sensing and repair of DNA damage, and cell cycle control. It is possible that 

MAGE-D2 might carry out one of these functions, such as responding to DNA 

damage and/or regulating transcription, in order to mediate apoptosis or another 

cellular process. Other MAGE proteins have been reported to regulate gene 

expression, many of them by modulating the transcriptional activity of the tumor 

suppressor p53 (Barker and Salehi, 2002). MAGE-D2 was also reported to 

interact with p53 in screen for novel p53 binding partners using a yeast p53-

dissociation assay (Papageorgio et al., 2007), although the function for this 
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interaction has not been determined. The nucleolus is a sub-nuclear body whose 

main functions are to carry out synthesis of ribosomal RNA (rRNA) and assembly 

of ribosomes—complexes consisting of proteins and RNA that translate proteins 

from mRNA sequences. Many proteins found in the nucleolus are components of 

the ribosomes themselves, and others regulate ribosomal biogenesis or rRNA 

synthesis, but a number of proteins in this compartment have no known ties to 

nucleolar functions. It has been proposed that the nucleolus might act as a 

storage area for proteins, keeping them inactive until they are required elsewhere 

in the cell (Pederson and Tsai, 2009). Immunofluorescence staining of 

endogenous MAGE-D2 suggests that it may also reside in the mitochondria. 

Inside this organelle, ATP is produced by oxidative phosphorylation, providing 

most of the energy supply for the cell. Mitochondria also play an important role in 

the intrinsic apoptotic pathway. During apoptosis, the mitochondrial outer 

membrane is permeabilized, releasing cytochrome c and other contents of the 

mitochondrial intermembrane space, leading to Caspase activation and 

execution of apoptosis (Chipuk et al., 2010). Thus, it is possible that MAGE-D2 

mediates apoptosis through its association with the mitochondria.  

We examined a role for MAGE-D2 in regulating apoptosis, and we found 

that overexpression of MAGE-D2-Flag sensitized cells to UV-induce apoptosis. 

While this preliminary result suggests that MAGE-D2 may have an apoptosis-

promoting function, it is possible that this result is an artifact of protein 

overexpression. In order to determine whether MAGE-D2 has a physiologically-

relevant role in apoptosis regulation, additional studies are required. For 



48 

example, it can be determined whether knockdown of MAGE-D2, such as with 

siRNA, affects apoptosis. One complication is that extensive redundancy is 

thought to exist among MAGE family members, so knockdown of one MAGE 

protein may be compensated for by another. It may be necessary to inhibit more 

than one MAGE protein (e.g. MAGE-D2 and MAGE-D1) to see an effect. 

Mechanistic studies can also help determine whether MAGE-D2 has a bona-fide 

role in regulating apoptosis. In addition, we have not demonstrated that 

overexpression of MAGE-D2 increases apoptosis, per se, rather than another 

form of cell death. While quantification of apoptosis by assessing the percentage 

of cells with sub-G1 content is highly precise for cells that are not actively cycling, 

such as thymocytes, this method is not flawless for analysis of cycling cells, as it 

does not discriminate between apoptotic cells, fragmented cells, and other 

debris—a clear peak representing apoptotic cells cannot be observed in cycling 

cells. Other assays must be carried out to examine other markers of apoptosis, 

such as western blotting for PARP cleavage or Caspase-3 activation.  

Interestingly, we observed several phenomena suggesting that MAGE-D2 

might regulate, or be regulated by, the cell cycle and/or cell proliferation. First, 

the subcellular localization of MAGE-D2 appears heterogeneous from cell to cell, 

and it is possible that its location may change during cell cycle progression. To 

test this, the cell cycle could be synchronized with cycloheximide, and cells could 

be fixed at different time points for immunofluorescence analysis of MAGE-D2 

localization. Second, in confluent U2OS cells, MAGE-D2 expression seems to 

disappear in patches of cells (Figure 3-10). In U2OS cells fixed for 
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immunofluorescence, confluent regions contained patches of cells expressing 

little to no endogenous MAGE-D2. It would be interesting to determine whether 

expression of MAGE-D2 is linked to cell proliferation and/or cell cycle control.  

 

Materials and Methods 

 

Cell Culture, transfection, and apoptotic treatments. U2OS cells were 

obtained from ATCC and cultured in a 37°C incubator with 5% CO2 in DMEM 

supplemented with 10% FBS, 100 U/ml penicillin, and 100 g/ml streptomycin. 

DNA transfections were carried out with Effectene® (Qiagen) according to the 

manufacturer’s instructions. Apoptosis treatments included UVC radiation 

(dosage as indicated) using a Stratalinker® UV Crosslinker (Stratagene) and 

cisplatin (10 µg/ml). 

 

SDS-PAGE and western blotting. Cells were lysed in 0.1% NP-40 lysis buffer, 

and samples were resolved by SDS-PAGE using a 12.5% or 15% polyacrylamide 

gel and transferred onto a 0.2 µM nitrocellulose membrane. Membranes were 

blocked for a minimum of 30 minutes in phosphate-buffered saline with 0.1% 

Tween-20 (PBST) and 5% nonfat dried milk. Membranes were incubated for 2 

hours to overnight in primary antibody, incubated for 1-2 hours in secondary 

HRP-conjugated antibody, and exposed with Supersignal West Pico (Pierce).  
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DNA plasmids. N-terminally Myc tagged and C-terminally Flag-tagged MAGE-

D2 were cloned into a pcDNA3.1 vector (Invitrogen). MAGE-D2 was cloned into a 

pEGFP-N1 vector (Clontech) to generate a MAGE-D2-EGFP fusion protein. All 

plasmids were confirmed by restriction digest and DNA sequencing.  

 

Generation of antibodies. Rabbit anti-MAGE-D2 antibodies were produced by 

immunizing rabbits (performed by PRF&L, Canadensis, PA) with KLH-conjugated 

peptide antigens corresponding to amino acids 180-194 (MD2-180) and 262-278 

(MD2-262) of MAGE-D2. Sera were affinity purified, and antibody specificity was 

tested by western blotting (Figure 3-2).  

 

Flow cytometry analysis. Cells were trypsinized, washed in PBS, and fixed in 

cold 70% ethanol. Cells were treated with RNAse A and stained with propidium 

iodide. Cells were analyzed using a FACSCalibur flow cytometer (BD 

Biosciences) at the UNC Flow Cytometry Core Facility, and data were analyzed 

with Dako software.  

 

Immunofluorescence imaging. Cells were fixed in 4% paraformaldehyde for 10 

minutes at room temperature and permeabilized in 0.2% Triton X-100 for 5 

minutes at 4°C. Fixed and permeabilized cells were blocked for 30 minutes in 

0.5% BSA blocking buffer in PBS, incubated in primary antibody overnight at 4°C 

with rocking, and incubated with secondary antibodies (anti-mouse or –rabbit 

rhodamine red) for 30 minutes at room temperature with rocking.  Nuclei were 
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stained with DAPI (diamidino-2-phenylindole), and mitochondria were visualized 

with MitoTracker™ Red (Invitrogen) where indicated. Cells were mounted in 

fluorescence mounting medium (Dako) and analyzed using an Olympus IX81 

inverted microscope combined with a SPOT™ digital microscope camera and 

imaging software (SPOT™ Imaging Solutions).   
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Figure 3-1.  Domain structure for MAGE-D2. 
MAGE-D2 contains two known functional domains. MHD I (MAGE homology 
domain 1), which extends from amino acids (aa) 279 to 476, is shared by all 
MAGE family proteins. MHD II (Mage homology domain II), extending from aa 
54-252, is shared by Type II MAGE proteins, including all members of the 
MAGE-D subfamily. The functions for these domains are not known. 
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Figure 3-2.  Antibody design for MAGE-D2. 
A) MAGE-D2 protein sequence showing approximate location of peptide antigens 
selected for production of MAGE-D2 rabbit polyclonal antibodies Red triangles 
indicate the approximate positions of the selected peptides relative to MAGE 
homology domains (MHD) I and II. 
B) The MAGE-D2 protein sequence with the two selected peptide antigens 
(MD2-180 and MD2-262) shown in red and underlined. 
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Figure 3-3. MAGE-D2 antibody effectiveness and specificity. 
Whole-membrane western blots showing specificity and effectiveness for 
antibodies targeting two different regions of MAGE-D2 (MD2-180, aa 180-194; 
MD2-262, aa 262-276). Endogenous MAGE-D2 and Flag-tagged MAGE-D2 are 
detected by both MAGE-D2 antibodies 
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Figure 3-4. Ectopically-expressed tagged MAGE-D2 localizes to nuclei and 
nucleoli. 
Immunofluorescence staining shows MAGE-D2 localization primarily in the cell’s nucleus 
and nucleoli. U2OS cells were transfected with indicated plasmids and fixed after 24 h 
for immunofluorescence staining with Flag or Myc antibodies. MAGE-D2 that is fused 
with an N-terminal Myc3 tag (top left panel) can be seen exclusively in the nucleoli and 
nucleus. C-terminally-tagged MAGE-D2-FLAG can be seen primarily in the nucleoli and 
nucleus, with faint staining also detectable in the cytoplasm. Corresponding phase-
contrast images are shown below.   
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Figure 3-5. Expression of EGFP-tagged MAGE-D2 is toxic to cells and 
disrupts nuclear and nucleolar morphology. 
A) Live-cell fluorescence imaging of U2OS cells transfected with N-terminally-
EGFP-tagged MAGE-D2 shows that expression of this construct is toxic to cells, 
with many transfected cells dying (observed as shrunken, white floating cells in 
phase-contrast image).  
B) Effect of EGFP-MAGE-D2 on cell morphology shown in fixed cells. U2OS cells 
were transfected with EGFP-MAGE-D2, fixed after 18 h, and visualized by 
fluorescence microscopy. Many nuclei of transfected cells appear fragmented, 
and nucleoli appear abnormal (see close-up in panels on right).  
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Figure 3-6. Endogenous MAGE-D2 localizes to the nucleoli, nuclei, and 
mitochondria. 
Untransfected U2OS cells were immunofluorescence stained for MAGE-D2 
(MD2-262 antibody). Endogenous MAGE-D2 is observed in the nucleoli and 
nucleus. MAGE-D2 staining was also observed at the mitochondria, as indicated 
by colocalization with the mitochondrial marker MitoTracker. 
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Figure 3-7. Localization of endogenous MAGE-D2 is heterogeneous. 
The localization of MAGE-D2 varies significantly from cell to cell. Untreated 
U2OS cells were immunofluorescence-stained for endogenous MAGE-D2 with 
antibody MD2-262. Some cells exhibit primarily mitochondrial staining (white 
arrow), some cells show primarily nucleolar and nuclear staining (blue arrow), 
and some cells exhibit diffuse cytoplasmic and nuclear staining (yellow arrow). 
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Figure 3-8. Overexpression of MAGE-D2 sensitizes cells to UV-induced cell 
death. 
U2OS cells were transfected with pcDNA3 vector alone or pcDNA3-MAGE-D2-
Flag3, as indicated. After 24 hours, cells were either left untreated (None) or 
treated with 6 mJ/cm2 UV for 18 hours. Apoptotic cells appear shrunken, 
rounded, and white, and eventually detach from the plate. Many of the cells 
treated with both MAGE-D2-Flag and UV (bottom right panel) have detached 
from the substrate and appear in clusters. 
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Figure 3-9. Flow cytometry analysis of effect of MAGE-D2 expression on 
UV-induced apoptosis. 
A) Flow-cytometry analysis shows that ectopic expression of MAGE-D2 
sensitizes cells to UV-induced cell death. U2OS cells were transfected with 
MAGED2-Flag DNA, treated 24 h later cells with UV (6 mJ/cm2) where indicated 
to induce apoptosis, and were fixed 18 h later in ethanol, stained with propidium 
iodide, and analyzed by flow cytometry for DNA content.  
B) Graphical representation of data from (A).  
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Figure 3-10. Endogenous MAGE-D2 expression is absent in patches of 
confluent cells.  
In confluent U2OS cells immunofluorescence-stained for endogenous MAGE-D2 
with MD2-262 antibody, patches of cells are observed with greatly-reduced 
MAGE-D2 expression. Note that the phase-contrast image on the right shows 
that the entire field is filled with cells, yet areas are observed in the 
immunofluorescence image that lack MAGE-D2 expression.  
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CHAPTER IV 
 
 

SUMI-1 IS A NOVEL REGULATOR OF MITOCHONDRIAL  
FISSION-FUSION DYNAMICS AND BAX-MEDIATED APOPTOSIS1 

 

Introduction 

A critical control point during apoptosis is mitochondrial outer membrane 

permeabilization (MOMP), during which mitochondrial contents such as 

cytochrome c are released in order to initiate apoptosis. As MOMP is often the 

“point of no return” during apoptosis, much research is currently devoted to 

understanding this process. Our knowledge of MOMP remains incomplete but 

can be enhanced by identification of novel proteins involved in its regulation. 

Here, we characterize a small protein, “SUMI-1,” that resides at the mitochondrial 

outer membrane and inhibits apoptosis. We show that early in apoptosis, SUMI-1 

translocates from the mitochondria, promoting BAX oligomerization, MOMP, and 

cytochrome c release. We also show that SUMI-1 controls mitochondrial 

fusion/fission dynamics, providing a mechanism for its regulation of apoptosis. 

Furthermore, SUMI-1 is overexpressed in many cancers, and knockdown of 

SUMI-1 sensitizes cancer cell lines to chemotherapeutic drugs, suggesting that 

SUMI-1 is a potential target for chemosensitizing therapeutics.  
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Background 

Apoptosis, or programmed cell death, is a critical process during 

vertebrate development and is abnormally regulated in a diverse array of 

diseases. Apoptosis can occur through two pathways—receptor-mediated 

(extrinsic) apoptosis, and mitochondria-mediated (intrinsic) apoptosis. The 

extrinsic pathway is activated by interaction of extracellular ligands with death 

receptors, while the intrinsic pathway is triggered by intracellular stresses such 

as DNA damage and is modulated by the cell’s mitochondria. Both pathways 

converge upon activation of cysteine proteases (Caspases), which cleave 

downstream substrates to induce the physiological and morphological changes 

associated with apoptosis such as membrane blebbing, DNA fragmentation, and 

cell shrinkage.  

The intrinsic pathway is regulated largely by pro- and anti-apoptotic BCL-2 

family proteins, which together dictate whether a cell undergoes mitochondrial 

outer membrane permeabilization (MOMP). During MOMP, which is often the 

point of no return for cells undergoing apoptosis, pro-apoptotic BCL-2 effector 

proteins BAX and/or BAK oligomerize on the mitochondrial outer membrane, 

releasing cytochrome c and other mitochondrial intermembrane space contents 

into the cytoplasm to induce apoptosis. The decision to undergo MOMP is also 

influenced by non-BCL-2 proteins and by mitochondria themselves. Mitochondrial 

fission-fusion dynamics have recently emerged as a means by which apoptosis is 

modulated. Mitochondria are dynamic, continually dividing and merging with one 

another. During apoptosis, mitochondria become fragmented prior to MOMP, due 



64 

to an increase in fission and/or a decrease in fusion. Overexpression of fusion-

promoting proteins MFN1 or MFN2 protects cells from apoptosis (Brooks et al., 

2011), while inhibition of fission-mediating DRP1 partially inhibits mitochondrial 

fragmentation while delaying MOMP and apoptosis (Brooks et al., 2011). 

Recently, it was shown that DRP1-induced mitochondrial fragmentation promotes 

apoptosis by stimulating BAX oligomerization (Montessuit et al., 2010). Despite 

advances that have been made in our understanding of MOMP, much remains 

unknown about the mechanisms leading to BAX activation and oligomerization, 

especially the roles that mitochondria and their associated proteins play in this 

process. Identification of novel proteins that regulate MOMP can significantly aid 

in our understanding of this process.  

Here, we characterize a small, mitochondria-localized protein that we call 

SUMI-1 for survival-promoting mitochondrial protein 1 (also known as CHCHD2 

for coiled-coil-helix coiled-coil helix domain-containing 2) as a novel regulator of 

mitochondrial dynamics and mitochondria-mediated apoptosis. We initially 

identified SUMI-1 as an interacting partner for the pro-apoptotic protein 

p32/C1QBP; however, this study focuses on characterizing SUMI-1’s apoptosis-

regulating function, while subsequent studies will be devoted to its interaction 

with p32. SUMI-1 was recently detected in screens for proteins regulating cellular 

metabolism and migration (Baughman et al., 2009; Seo et al., 2010), but its 

functions have not been well-characterized. Here, we report that SUMI-1 acts as 

a guardian of mitochondrial membrane integrity by inhibiting BAX-induced 

mitochondrial outer membrane permeabilization. We also show that SUMI-1 
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regulates mitochondrial fusion in order to maintain a balance between fusion and 

fission, providing a mechanism for SUMI-1’s regulation of BAX and MOMP. 

Furthermore, most of these experiments were carried out in intact cells using 

endogenous rather than overexpressed proteins, and our results are therefore 

likely to be physiologically relevant. Finally, we observed that SUMI-1 expression 

is upregulated in cancer cell lines, and data obtained from Oncomine™ 

demonstrates that SUMI-1 is indeed overexpressed in multiple cancers, 

consistent with SUMI-1’s anti-apoptotic function. This study identifies a novel 

regulator of apoptosis, sheds light on previously-unexplained mechanisms 

governing mitochondrial dynamics, MOMP, and BAX activation in regulating 

apoptotic cell death, and provides a potential therapeutic target for 

chemosensitization in cancer treatment.  

 

SUMI-1 is a Highly-Conserved CHCH-Domain-Containing Protein 

The CHCHD2 gene encoding SUMI-1 spans 4921 base pairs, contains 4 

exons, and is located on chromosome 7p11.2, a region amplified in 

glioblastomas (Arslantas et al., 2004). The protein encoded by this gene is 

expressed broadly in adult tissues (Shmueli et al., 2003) and is a relatively small 

protein, comprised of 151 amino acids. SUMI-1 is relatively well-conserved, with 

87% amino acid identify in mice, and is conserved through yeast (Table 4-1, 

Figure 4-1). SUMI-1 contains three functional domains: a putative mitochondrial 

targeting signal at the N-terminus (Claros and Vincens, 1996), a predicted 

transmembrane domain (TMBASE), and a C-terminal CHCH (coiled-coil helix-
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coiled-coil helix) domain. SUMI-1 also contains a consensus sequence for import 

into the mitochondrial intermembrane space (ITS) mediated by another CHCH-

domain-containing protein, Mia40 (Figure 4-2).  

The CHCH domain is characterized primarily by four cysteine residues 

spaced exactly 10 amino acids apart (a C-X9-C motif) (Schultz et al., 1998).  

Pairs of cysteines in this domain typically form covalent disulfide bonds, eliciting 

changes in tertiary protein structure or facilitating oligomerization and/or 

interactions with other CHCH domain-containing proteins (Arnesano et al., 2005). 

Analysis of the SUMI-1 sequence with an intramolecular disulfide connectivity 

prediction program, DiANNA 1.1, predicts that a bond may form between 

cysteines 1-3 and another bond between cysteines 2-4 in the CHCH domain to 

create a loop structure at the C-terminus (Figure 4-3) (Ferre and Clote, 2005a, 

b). 

The function of the CHCH domain is not well understood, and the few 

characterized proteins that carry this domain have diverse functions; these 

proteins include Cox12, Cox17, Cox19, Cox23, Mia40/Tim40, C2360, and 

MRP10. The yeast protein Cox12 is part of the COX (cytochrome c oxidase) 

complex, which is the final enzyme in the respiratory electron transport chain 

(LaMarche et al., 1992). Cox17, Cox19, and Cox23 play roles in assembly of the 

COX complex; specifically, they are thought to feed copper ions into the complex 

during assembly, and their CHCH domains may be important for copper ion 

binding (Arnesano et al., 2005; Barros et al., 2004; Nobrega et al., 2002). Of 

these proteins, Cox17 has been studied the most extensively, and its function in 



67 

COX assembly has recently been shown to be mediated by its interaction with 

SCO-1 (Banci et al., 2008a). Mia40/Tim40 assists in transporting proteins into the 

mitochondrial intermembrane space by forming temporary disulfide bonds with 

cysteine-containing proteins as they are imported (Chacinska et al., 2004; 

Hofmann et al., 2005; Sideris et al., 2009). C2360 is expressed only in human 

proliferative cytotrophoblasts and not in adult tissues; its function is unknown 

(Westerman et al., 2004). Finally, the yeast protein MRP10 is a component of the 

mitochondrial ribosomal 37S subunit, which mediates translation of proteins (Jin 

et al., 1997). The function of the CHCH domain has been studied most 

extensively in Cox17, where the domain was shown to change configuration 

based on oxidative-reductive status, and is thought to regulate homo-

oligomerization (Arnesano et al., 2005). The CHCH domain in SUMI-1 is well-

conserved across species: The four cysteines comprising the domain are present 

in 8 of the 9 orthologs shown in Figure 4-1.  

 

Generation of Antibodies for Study of Endogenous SUMI-1 

At the onset of our study, no antibodies were available for biochemical 

analyses of endogenous SUMI-1. Thus, we designed two rabbit polyclonal 

antibodies as described in Chapter III in order to study endogenous, untagged 

SUMI-1, avoiding potential artifacts introduced by protein tags and 

overexpression. Antigen options were limited because SUMI-1 is a small protein 

(151 amino acids) and consists of a predicted mitochondrial targeting signal at 

the N-terminus, a putative transmembrane domain in the center of the protein, 
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and CHCH domain comprised of four cysteines spaced 10 amino acids apart at 

the C-terminus. These features made the majority of the sequence unsuitable or 

undesirable because the mitochondrial targeting region could potentially be 

cleaved off the protein upon mitochondrial translocation, the transmembrane 

region is hydrophobic (meaning it is not likely to be exposed at the protein 

surface), and the closely-spaced cysteines in the CHCH domain precluded any 

antigens longer than 10 amino acids due to the need to have either zero or one 

terminally-located cysteine and no internal cysteines in the antigen sequence. 

The regions selected were SU-94 (amino acids 94-108; RPDITYQEPQGTQPA), 

located adjacent to the central transmembrane domain, and SU-124 (amino 

acids 124-133; CAQNQGDIKL), located within the CHCH domain (Figure 4-4). 

The second antigen was shorter than desired (10 amino acids) in order to ensure 

that no internal cysteines were present in the sequence. The peptides were used 

to immunize rabbits, and the resulting serum containing polyclonal antibodies 

was affinity-purified as described in Chapter III. The purified antibodies were then 

tested by western blotting and immunofluorescence for effectiveness and 

specificity. The antibody generated with the SU-94 antigen is highly specific to 

SUMI-1 and can be used for western blotting, immunofluorescence, and co-

immunoprecipitation (Figures 4-5 and 2-5).  

 

SUMI-1 Localizes to the Mitochondria 

SUMI-1 is predicted by MitoProt to localize to mitochondria, with the first 

51 amino acids serving as a putative mitochondrial targeting sequence (Claros 
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and Vincens, 1996).  To determine whether SUMI-1 indeed localizes to the 

mitochondria, we examined its subcellular localization by immunofluorescence. 

We transfected U2OS cells with plasmids expressing C-terminal Flag-tagged 

SUMI-1, fixed the cells after 24 hours, and carried out immunofluorescence 

staining for Flag. SUMI-1-Flag localized primarily to mitochondria, as indicated by 

co-staining with MitoTracker™ dye (Figure 4-6A). 

 Next, we examined the localization of endogenous SUMI-1 by 

immunofluorescence staining with SUMI-1 antibody in unstressed U2OS cells. 

Like SUMI-1-Flag, endogenous SUMI-1 was observed to localize primarily to 

mitochondria, as indicated by co-staining for the mitochondrial marker 

cytochrome c (Figure 4-6B). This localization was also observed in HeLa cells 

(Figure 4-6C) and mouse embryo fibroblasts (MEFs) (Figure 4-6D). The 

mitochondrial localization of SUMI-1 was further confirmed by a differential 

detergent subcellular fractionation method, with SUMI-1 appearing in the 

mitochondria-enriched heavy membrane fraction, consistent with our 

immunofluorescence results (Figure 4-7). To examine the submitochondrial 

localization of endogenous SUMI-1, we carried out immunogold staining in which 

gold beads were conjugated to SUMI-1 antibody and applied to formaldehyde-

fixed U2OS cells before or after paraffin embedding. Using a pre-embedding 

staining method, endogenous SUMI-1 could be observed by electron microscopy 

(EM) around the perimeter of the mitochondria, suggesting that SUMI-1 resides 

at the mitochondrial outer membrane (Figure 4-8).  Using a pre-embedding 

staining method, SUMI-1 was similarly detected at the mitochondrial outer 
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membrane and could also be observed inside the mitochondria, although the 

sub-mitochondrial localization (i.e. matrix, inner membrane, or intermembrane 

space) was not clear (Figure 4-8). Thus, SUMI-1 appears to reside both inside 

the mitochondria and at the outer mitochondrial membrane. SUMI-1 contains a 

consensus ITS (intermembrane targeting sequence) that directs Mia40-mediated 

import of proteins into the mitochondrial intermembrane space. It is possible that 

upon import, a subset of SUMI-1 is retained in the mitochondria (either in the 

intermembrane space or embedded in the inner membrane) while another subset 

becomes anchored via the transmembrane domain into the mitochondrial outer 

membrane. 

 Another study that identified SUMI-1 in a screen for novel mediators of cell 

migration also examined the subcellular localization of SUMI-1 and reported that 

SUMI-1 resides in the cytoplasm. However, the authors examined only the sub-

cellular localization of N-terminally tagged protein, and an N-terminal tag often 

disrupts mitochondrial localization in proteins containing an N-terminal MTS. We 

also examined the localization of N-terminally tagged Myc-SUMI-1 by 

immunofluorescence, and as expected, the mitochondrial localization was lost, 

with the N-terminally-tagged protein appearing primarily in the cytoplasm and 

nucleus (Figure 4-6E). 

 Thus, based on immunofluorescence imaging of C-terminally tagged and 

endogenous SUMI-1, subcellular fractionation, and immunogold-EM imaging, we 

conclude that in healthy, unstressed cells, SUMI-1 resides primarily in the 
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mitochondria, with a subset of SUMI-1 located within the mitochondria and 

another portion associated with the mitochondrial outer membrane.  

 

SUMI-1 Inhibits Apoptotic Cell Death 

We next sought to determine whether SUMI-1 plays a role in regulating 

apoptotic cell death. We first analyzed whether SUMI-1 knockdown affects 

apoptosis, using two different siRNA duplexes targeting different regions of 

SUMI-1 mRNA. We treated cells with nonspecific control siRNA (NS) or two 

different SUMI-1 siRNA species as indicated for 48 hours and subjected cells to 

various apoptosis-inducing treatments to determine whether a reduced SUMI-1 

level could affect response to the treatments. SUMI-1 knockdown alone caused 

little to no increase in cell death in the absence of apoptotic stimuli (average 95% 

of control), SUMI-1 knockdown sensitized cells to apoptosis as measured by 

quantification of cells surviving treatment with cisplatin (27% of control), UV 

radiation (64% of control), doxorubicin (54% of control), and staurosporine (69% 

of control) (Figure 4-9A). Additionally, we tested the effect of SUMI-1 knockdown 

in HeLa cells treated with UV radiation and cisplatin. Consistent with the U2OS 

data, SUMI-1 siRNA did not significantly affect apoptosis in the absence of 

apoptotic stimuli (92% of control) but sensitized HeLa cells to cell death induced 

by cisplatin (34% of control) and UV (43% of control) (Figure 4-9B). The pattern 

we observed here was similar to that observed with knockdown of known anti-

apoptotic proteins such as BCL-2, BCL-xL, and MCL-1; inhibition of these 

proteins alone does not usually cause cell death, but sensitizes cells to apoptotic 
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stimuli (Chipuk et al., 2010). To confirm whether the decrease in cell number 

resulting from these treatments was indeed due to apoptosis, we carried out 

western blotting to examine the level of cleaved poly (ADP-ribose) polymerase 

(PARP) and Caspase-3, both indicators of apoptosis (Simbulan-Rosenthal et al., 

1998). Cells treated with UV exhibited PARP and Caspase-3 cleavage, and this 

was augmented by pre-treatment with SUMI-1 siRNA (Figure 4-10). In addition, 

apoptosis-associated morphological changes (cell shrinkage, detachment, 

rounding, and membrane blebbing) were observed in cells treated with apoptotic 

agents, and these features were enhanced upon SUMI-1 knockdown (example 

shown in Figure 4-11). U2OS cells were treated with the indicated siRNA for 48 

hours followed by UV radiation (6 mJ/cm2) where indicated, and images were 

taken at 10x magnification. Membrane blebbing can be observed clearly in a 

higher-magnification (40x) image of U2OS cells treated with SUMI-1 siRNA and 

UV (Figure 4-11). Together, these data show that SUMI-1 knockdown sensitizes 

cells to apoptotic cell death, implicating SUMI-1 as a negative regulator of 

apoptosis.  

 We then tested whether overexpression of SUMI-1 could protect cells from 

apoptosis. U2OS cells were treated with adenovirus expressing either untagged 

SUMI-1 (Ad-SUMI-1) or GFP as a negative control (Ad-Ctl), and sensitivity to 

apoptosis was assessed both with and without apoptosis-inducing UV treatment. 

Overexpression of SUMI-1 had no significant effect on unstressed cells, with 

similar survival between cells treated with control adenovirus (normalized to 

100%) and those treated with SUMI-1 adenovirus (106% of control), whereas 
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SUMI-1 overexpression protected UV-treated cells from apoptosis (89% survival 

compared to 51% for control) (Figure 4-12A). SUMI-1 overexpression also 

reduced PARP cleavage during UV-induced apoptosis as determined by western 

blotting (Figure 4-12B). Together with the SUMI-1 knockdown experiments, these 

data strongly suggest that SUMI-1 is an inhibitor of apoptosis.  

 

SUMI-1 Translocates From Mitochondria Prior to Cytochrome c 

We next sought to identify the mechanism by which SUMI-1 regulates 

apoptosis. We had observed by immunofluorescence staining that endogenous 

SUMI-1 translocates from the mitochondria during apoptosis (Figure 4-13A). We 

co-stained cells for cytochrome c, which is itself released from mitochondria at an 

early stage during apoptosis. Interestingly, a subset of cells was observed in 

which SUMI-1 had translocated yet cytochrome c was still retained in the 

mitochondria (Figures 4-13B and 4-14), while no cells were observed to contain 

both released cytochrome c and mitochondrial SUMI-1. Thus, it appeared that 

SUMI-1 may translocate from the mitochondria prior to cytochrome c. To further 

test this, we examined cytochrome c and SUMI-1 localization over a time course 

in UV-treated U2OS cells and quantified the percentage of cells with released 

SUMI-1 at each time point, and the percentage of cells with released cytochrome 

c. Before administering UV irradiation, cells were pretreated with the pan-

Caspase inhibitor Q-VD-OPh (abbreviated QVD) to prevent cell death 

downstream of cytochrome c release, thereby preserving cells with released 

cytochrome c and allowing them to be visualized. Cells were treated with UV (25 
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mJ/cm2) and fixed for immunofluorescence staining at the indicated time points. 

At each time point, we observed a greater percentage of cells with SUMI-1 

release than with cytochrome c release, indicating that SUMI-1 translocates from 

the mitochondria prior to cytochrome c. Four hours post-UV, 12% of cells had 

released SUMI-1, while 7.6% had released cytochrome c; eight hours post-UV, 

40% and 23% of cells had released SUMI-1 or cytochrome c, respectively; and 

16 hours post-UV, 87% and 78% of cells had released SUMI-1 or cytochrome c, 

respectively (Figure 4-14B). These data indicate that SUMI-1 translocates from 

the mitochondria prior to cytochrome c. 

 

SUMI-1 Regulates Mitochondrial Outer Membrane Permeabilization (MOMP) 

and BAX Activation 

Our data show that SUMI-1 translocates from the mitochondria at an 

earlier time point than cytochrome c. Because cytochrome c release is a 

standard readout for MOMP (Arnoult, 2008), these data imply that SUMI-1 

translocates from the mitochondria prior to the onset of mitochondrial 

permeabilization. Therefore, we hypothesized that SUMI-1 may regulate 

MOMP—That is, SUMI-1 may protect healthy cells from apoptosis by inhibiting 

MOMP, and during apoptosis, SUMI-1 may translocate from the mitochondria, 

releasing this inhibition and allowing MOMP to proceed. In this case, inhibition of 

SUMI-1 by siRNA would be expected to promote MOMP. To evaluate this, we 

treated cells with either nonspecific or SUMI-1 siRNA for 48 hours, induced 

apoptosis with UV and performed immunofluorescence to visualize cytochrome c 
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release. Cells in which cytochrome c was released (staining appeared diffuse 

throughout the cell) were quantified. SUMI-1 knockdown significantly increased 

the kinetics with which cytochrome c was released, with a greater percentage of 

cells observed with released cytochrome c in si-SUMI-1-treated cells compared 

to si-NS-treated cells at 1 hour (3.9% and 1.2%, respectively),  2 hours (14% and 

5%, respectively), and 4 hours post-UV (35% and 7.5%, respectively) (Figure 4-

15), indicating that endogenous SUMI-1 inhibits MOMP.  

 We next examined potential mechanisms by which SUMI-1 might regulate 

MOMP. While the exact mechanisms governing MOMP are not entirely clear, 

MOMP is known to occur when BAX and/or BAK—two pro-apoptotic BCL-2 

family proteins—oligomerize on the mitochondrial outer membrane (Chipuk et al., 

2010). As BAX is one of the primary inducers of MOMP, we sought to determine 

whether SUMI-1 might regulate this protein. BAX continually cycles between the 

mitochondria and cytosol (Edlich et al., 2011). During apoptosis, BAX 

accumulates at the mitochondria, becomes activated, and forms oligomers on the 

mitochondrial outer membrane, inducing membrane permeabilization (Edlich et 

al., 2011; Wolter et al., 1997). Active BAX can be detected by 

immunofluorescence with BAX 6A7 antibody, which recognizes an N-terminal 

epitope that is hidden in the inactive protein but is exposed upon conformational 

changes during activation of BAX. Generally, positive staining with BAX 6A7 

indicates the presence of BAX that is both activated and oligomerized in clusters 

on the mitochondrial outer membrane. 
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To determine whether SUMI-1 inhibits BAX activation, we treated cells 

with SUMI-1 siRNA for 48 hours, induced apoptosis with UV, and examined BAX 

activation by immunofluorescence staining with BAX 6A7 antibody. Cells were 

pre-treated with QVD to inhibit apoptotic events downstream of cytochrome c 

release, preserving cells with activated BAX. Consistent with the experiments 

examining sensitivity to apoptosis and cytochrome c release, SUMI-1 knockdown 

alone did not induce BAX activation (Figure 4-16A, top two panels), but greatly 

increased BAX activation in UV-treated cells, as indicated by a stronger signal 

from BAX 6A7 antibody (Figure 4-16A, lower panels). We also noted that in 

U2OS and HeLa cells induced to undergo apoptosis with UV radiation, BAX 

activation was observed only in cells with released SUMI-1, with no active BAX 

observed in cells retaining mitochondrial SUMI-1 (Figure 4-16B). Thus, BAX 

activation/oligomerization correlated with SUMI-1 translocation in cells 

undergoing apoptosis. To examine BAX oligomerization by another method, 

purified mitochondria were treated with trypsin, which easily degrades BAX 

monomers but not oligomers (Lucken-Ardjomande et al., 2008). The trypsin-

treated mitochondria were lysed and resolved by SDS-PAGE and blotted for 

BAX. Any resulting signal detected by BAX antibody represents trypsin-resistant, 

oligomerized BAX (designated as TR-Bax). SUMI-1 knockdown augmented UV-

induced BAX oligomerization (Figure 4-17), consistent with the 

immunofluorescence data using BAX 6A7 antibody.  Together, these data 

suggest that SUMI-1 regulates MOMP during apoptosis by suppressing BAX 

activation.  
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SUMI-1 Does Not Regulate BCL-xL Deamidation 

 We next examined potential mechanisms by which SUMI-1 could regulate 

BAX activation. During apoptosis, activation and oligomerization of BAX are 

mediated in part by pro- and anti-apoptotic BCL-2 family members, as described 

in Chapter I. Thus, we carried out co-immunoprecipitation experiments to 

determine whether SUMI-1 interacts with any BCL-2 family proteins during 

apoptosis, including BAX itself. U2OS cells were lysed in 0.1% NP-40 lysis buffer 

and immunoprecipitated with SUMI-1 antibody or an isotype (IgG) antibody as a 

negative control. No interactions were detected between SUMI-1 and BCL-2 or 

BIM (Figure 4-18A, left panel). Other BCL-2 family proteins were also blotted for, 

including BAX and BAK, but no signal was observed in the loading controls (data 

not shown). BAX and BAK can be artificially induced to oligomerize in lysates 

containing NP-40 detergent and may not be detected at the expected size by 

SDS-PAGE and western blotting. To avoid this issue, cells can be lysed by 

alternate means such as with CHAPS lysis buffer. Thus, a co-IP looking for an 

interaction between SUMI-1 and BAX was repeated using CHAPS buffer. Here, 

Bax could be observed in the loading samples, but was not found to co-

immunoprecipitate with SUMI-1 (data not shown).  

An apparent interaction was detected between SUMI-1 and a pro-survival 

BCL-2 family protein, BCL-xL (Figure 4-18A, right panel).  To ensure that the 

binding was not due to nonspecific interaction between BCL-xL and the SUMI-1 

antibody, the experiment was repeated using cells stably-expressing SUMI-1 
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shRNA as a more stringent control, and two different SUMI-1 antibodies were 

utilized for the IP. Following incubation with each antibody, an interaction was 

observed between BCL-xL and SUMI-1. In sh-SUMI-1-expressing cells, less 

SUMI-1 was immunoprecipitated, and a corresponding decrease was observed 

in the BCL-xL band (Figure 4-18B).  

The bands that were detected by the BCL-xL antibody migrated slightly 

higher (~34  and 37 kD) than the predicted molecular weight (26 kD) for BCL-xL, 

and SUMI-1 interacted only with the 34 kD band. BCL-xL is reported to be 

modified by deamidation during apoptosis, causing a change in conformation and 

an associated upward shift in migration on SDS-PAGE (Deverman et al., 2002). 

Deamidation is a process whereby specific asparagine residues are converted, 

either enzymatically or non-enzymatically, to aspartate or iso-aspartate. In the 

case of BCL-xL, the majority of deamidated BCL-xL is converted to the iso-

aspartate form, and deamidation can occur at one or both of two asparagine 

residues: N52 and N56. Apoptosis induces deamidation of BCL-xL, and this 

modification was shown to inhibit BCL-xL’s ability to interact with pro-apoptosis 

BH3-only proteins and its ability to modulate apoptosis. Thus, we hypothesized 

that SUMI-1 might regulate the deamidation of BCL-xL (either by blocking its 

deamidation or inducing its re-amidation). To examine this, we treated U2OS 

cells with SUMI-1 or control siRNA and treated a subset of these cells with UV to 

induce apoptosis. Knockdown of SUMI-1 led to a decrease in the 34 kD BCL-xL 

band and a corresponding increase in the 37 kD band. UV radiation induced a 

similar shift in proportions of the two bands, and SUMI-1 further augmented the 
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UV-induced change (Figure 4-19). By comparing the migration of these bands 

with those observed in other publications showing BCL-xL deamidation, it 

appeared that the 34 kD band might correspond to singly-deamidated BCL-xL, 

with the 37 kD band corresponding to deamidation at both asparagine residues. 

To examine this, we generated BCL-xL point mutants to partially mimic 

deamidation at one or both sites (asparagine is replaced with aspartate: N52D 

and/or N66D), and other mutants that cannot be deamidated (asparagine is 

replaced with alanine: N52A and/or N66A). However, the deamidation mimics, 

while migrating higher than the 26 kD predicted size for BCL-xL, migrated at a 

lower apparent size than the 34 kD and 37 kD bands that were modulated by 

RNAi of SUMI-1 (data not shown).  

Because the migration of the bands we observed did not match with the 

predicted molecular weight of BCL-xL or with the migration of deamidation mimic 

BCL-xL mutants, we began to suspect that the BCL-xL antibody used for the 

initial co-IP (S-18, Santa Cruz sc-634) might have detected a nonspecific band 

rather than BCL-xL. To determine whether this band represents BCL-xL, the co-

IP was repeated using additional BCL-xL antibodies for blotting after IP, and a 

reciprocal IP was attempted using several BCL-xL antibodies for the IP and 

blotting for SUMI-1. However, no other BCL-xL antibodies could detect this 

interaction, and a reciprocal IP with BCL-xL antibody failed to pull down SUMI-1 

(data not shown). Thus, it appeared that the BCL-xL S-18 antibody 

nonspecifically recognizes a different protein that co-immunoprecipitates with 

SUMI-1.  
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SUMI-1 interacts with p32, which is the same molecular weight (34 kD) as 

the band recognized by the BCL-xL antibody to interact with SUMI-1. To 

determine whether the 34 kD band recognized by the BCL-xL antibody is p32, a 

co-IP was done in U2OS cells transfected with either p32 siRNA or with plasmids 

expressing various p32 proteins (tagged and untagged; full-length and the 

mature/cleaved form). Whole cell extracts (to represent loading) and samples 

immunoprecipitated with SUMI-1 antibody were resolved by SDS-PAGE and 

blotted with the BCL-xL S-18 antibody. Indeed, the BCL-xL antibody recognized 

tagged and untagged ectopically-expressed p32 and an endogenous band of 

identical molecular weight (Figure 4-20), indicating that this antibody is capable 

of detecting p32. The antigen used by Santa Cruz to produce the BCL-xL S-18 

antibody is an undisclosed peptide located within the first 50 amino acids of the 

BCL-xL sequence. Comparison of this N-terminal region of BCL-xL with the p32 

sequence revealed an area of homology between these proteins that is located 

within the BH4 domain of BCL-xL and near the N-terminus of mature (cleaved) 

p32. This region, which is located within the range of amino acids that Santa 

Cruz indicated were used for producing the Bcl-xL antibody, could potentially 

explain the interaction between this antibody and p32. We conclude that the 

apparent interaction detected between BCL-xL and SUMI-1 was merely an 

artifact caused by nonspecific interaction of p32 with the BCL-xL antibody.  
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SUMI-1 Regulates Mitochondrial Fission-Fusion Dynamics 

As we did not detect any confirmed interactions between BCL-2 family 

proteins and SUMI-1, we considered alternative mechanisms by which SUMI-1 

might regulate BAX. BAX-mediated MOMP is reported to be regulated by 

mitochondrial fusion-fission dynamics (reviewed recently by (Martinou and Youle, 

2011)). To determine whether SUMI-1 affects these processes, we treated cells 

with SUMI-1 siRNA and examined the resulting mitochondrial morphology by 

immunofluorescence staining with the mitochondrial marker Tim23. As shown in 

Figure 4-22A, SUMI-1 knockdown led to mitochondrial fragmentation, with cells 

exhibiting smaller, more punctate mitochondria than found in control cells.  

We next examined whether SUMI-1 overexpression could protect mitochondria 

from the fragmentation that occurs during apoptosis. Cells were treated with 

adenovirus expressing untagged SUMI-1, or empty-vector control, and apoptosis 

was induced with UV. SUMI-1 overexpression greatly reduced UV-induced 

mitochondrial fragmentation (Figure 4-22B). Together, these data suggest that 

SUMI-1 inhibits mitochondrial fragmentation. To determine whether the 

fragmentation induced by SUMI-1 loss resulted from increased fission or 

decreased fusion, we carried out a cell hybrid assay to examine the effect of 

SUMI-1 knockdown on mitochondrial fusion (Figure 4-23A). In this assay, cells 

were first treated with NS or SUMI-1 siRNA. One group of U2OS cells was 

transfected with mt-RED (mKate2 fused with a mitochondrial targeting signal), 

while another group of cells were transfected with mt-GREEN (GFP fused with a 

mitochondrial targeting signal) in order to label mitochondria red or green, 
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respectively. The two groups of cells were then seeded together in the same 

plate, and PEG was applied for 5 minutes to induce fusion of cells. This process 

creates hybrid cells in which a cell with red-labeled mitochondria is merged with a 

cell with green-labeled mitochondria, allowing the two separately-labeled 

mitochondrial groups to intermingle in an intact cell. Under conditions of normal 

mitochondrial fusion, red and green mitochondria fuse, resulting in yellow 

mitochondria (Figure 4-23B, left panel). Without fusion, red and green 

mitochondria remain distinct (Figure 4-23B, right panel). The numbers of hybrid 

cells with and without mitochondrial fusion were tallied and the results plotted. 

SUMI-1 knockdown impaired fusion in the absence of apoptotic stimuli (66% of 

hybrids exhibited fusion compared to 97% for control cells). Consistent with 

previous reports (Lee et al., 2004), we observed a decrease in fusion when cells 

were treated with UV to induce apoptosis (82% of hybrids with fusion), and 

SUMI-1 knockdown augmented UV-induced inhibition of fusion (19% of hybrids 

displayed fusion) (Figure 4-23C). These results suggest that SUMI-1 regulates 

mitochondrial dynamics by inhibiting mitochondrial fusion, providing a plausible 

mechanism for SUMI-1’s regulation of BAX-mediated MOMP and apoptosis.   

 

Discussion 

Mitochondrial outer membrane permeabilization (MOMP) is a critical 

control point during apoptosis and is often the “point of no return,” as cells usually 

proceed to die upon the resulting release of cytochrome c and other 

mitochondrial proteins. For this reason, regulation of MOMP has been an area of 
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intense research, with particular interest in the mechanisms leading to BAX and 

BAK activation and oligomerization. Elucidating these mechanisms may aid in 

our discovery of therapeutics for apoptosis-associated diseases such as immune 

disorders, neurodegenerative disease, and cancer. Identifying novel proteins 

regulating MOMP can enhance our understanding of this process. 

This study establishes SUMI-1 as a novel anti-apoptotic protein residing at 

the mitochondria, where it regulates mitochondrial dynamics, BAX activation, and 

MOMP during apoptosis. Based on the data presented here, we propose a model 

(Figure 4-23) in which SUMI-1 resides on the mitochondria of healthy cells, 

where it protects cells from unnecessary apoptosis by promoting normal 

mitochondrial fusion and inhibiting apoptotic-stimuli-induced BAX activation 

and/or oligomerization. Shortly after treatment with apoptotic stimuli, BAX 

translocates to mitochondria, while SUMI-1, presumably independently, 

translocates from the mitochondria. This exodus of SUMI-1 triggers mitochondrial 

fragmentation, promoting BAX oligomerization and allowing MOMP and 

apoptosis to proceed. These findings provide a localization and function for a 

protein that was previously not well-characterized, contributing to our knowledge 

of the physiological events that take place at the mitochondria to regulate BAX-

mediated MOMP during apoptosis.  

During apoptosis, SUMI-1 translocates from the mitochondria to the 

cytoplasm and nucleus. It is unknown what signal induces this translocation, and 

this would be an interesting area of further investigation. It is also possible that 

SUMI-1 may have an additional role in the cytoplasm and/or nucleus post-
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translocation. Non-mitochondrial SUMI-1 is not required for apoptosis, however, 

as demonstrated by two pieces of evidence. First, transfection with N-terminally-

tagged SUMI-1, which lacks mitochondrial localization (Figure 4-6E), does not 

appear to influence apoptosis (data not shown). More importantly, knockdown of 

SUMI-1 with siRNA promotes rather than inhibits apoptosis, indicating that 

cytoplasmic SUMI-1 is not required for this process. Instead, it is possible that 

non-mitochondrial SUMI-1 may carry out a pro-apoptotic, rather than anti-

apoptotic, function in the cytoplasm and/or nucleus, or it may contribute to 

biochemical or morphological changes observed during apoptosis such as 

phosphatidylserine flipping.  

 Evasion of apoptosis is one of the hallmarks of cancer, and cancers often 

exhibit reduced expression of pro-apoptotic proteins and/or enhanced expression 

of anti-apoptotic proteins (Hanahan and Weinberg, 2000, 2011). According to 

mRNA microarray expression data mined from Oncomine, SUMI-1 is 

overexpressed in a number of cancers derived from different tissues, including 

those of the breast, prostate, lung, kidney, skin, cervix, brain, mesothelium, 

head/neck, pancreas, and in myeloma, lymphoma, and two types of leukemias 

(Table 4-2) (Albino et al., 2008; Andersson et al., 2007; Gordon et al., 2005; 

Haqq et al., 2005; Landi et al., 2008; Pei et al., 2009; Pyeon et al., 2007; Sorlie et 

al., 2003; Storz et al., 2003; Tomlins et al., 2007; Yusenko et al., 2009; Zhan et 

al., 2007). Graphs of these data for three cancers are shown in Figure 4-24. 

Consistent with these reports, we observed increased expression of SUMI-1 

protein in cancer cell lines compared to non-transformed cells (Figure 4-25). This 



85 

upregulation of SUMI-1 in cancers, along with our data showing that SUMI-1 

knockdown sensitizes cancer cells to chemotherapeutic agents, suggests that 

further research may be warranted to investigate SUMI-1 as a diagnostic marker 

in cancers or as a potential chemosensitizing drug target to enhance current 

cancer therapies. 

 Interestingly, expression of SUMI-1 was reported to be significantly 

downregulated in Alzheimer’s Disease, which is characterized by increased 

apoptosis (Blalock et al., 2004). It is unknown whether this altered expression of 

SUMI-1 contributes to or is merely a consequence of the increased apoptosis 

that occurs in this neurodegenerative disorder, and it is also unknown where 

SUMI-1 might fit into apoptosis pathways that are altered in Alzheimer’s Disease. 

β-amyloid aggregates are thought to induce neuronal apoptosis in part through 

generation of oxidative stress (Ethell and Buhler, 2003). Because SUMI-1 

contains a CHCH domain, which is regulated by redox status in other proteins, it 

is conceivable that SUMI-1 might respond to this change in oxidative stress. 

Future studies may be able to determine whether SUMI-1 plays a causative role 

in Alzheimer’s or other neurodegenerative disorders.  

 

Materials and Methods 

 

Cell Culture, transfections, and apoptotic treatments. U2OS and HeLa cells 

were obtained from ATCC, and mouse embryo fibroblasts were harvested at 

E13.5. All cells were cultured in a 37°C incubator with 5% CO2 in DMEM 
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supplemented with 10% FBS, 100 U/ml penicillin, and 100 g/ml streptomycin. 

DNA transfections were carried out with Fugene-6 or Fugene-HD (Roche), and 

siRNA transfections were performed with Oligofectamine (Invitrogen), according 

to the manufacturers’ instructions. Apoptosis treatments included UVC radiation 

(dosages as indicated) using a Stratalinker® UV Crosslinker (Stratagene), 

cisplatin (10 µg/ml for U2OS and HeLa), doxorubicin (7.5 µM for U2OS), and 

staurosporine (20 µM for U2OS). Where indicated, cells were pretreated for 1 

hour with pan-Caspase inhibitor Q-VD-OPh (R&D Systems, 10 µM for U2OS and 

30 µM for HeLa cells). Subcellular fractionation was carried out as described 

previously (Itahana and Zhang, 2008).  

 

DNA plasmids, adenoviruses, and siRNA. Full-length SUMI-1 cDNA was 

purchased from Open Biosystems (Genbank accession number NM_016139.2), 

and untagged, C-terminally Flag-tagged, and N-terminally Myc-tagged SUMI-1 

were cloned into a pcDNA3.1 vector (Invitrogen). All cloned constructs were 

confirmed by DNA sequencing. Recombinant adenoviruses carrying untagged 

SUMI-1 or GFP were produced using the AdEasy™ XL Adenoviral Vector 

System (Stratagene) according to the manufacturer’s protocol. siRNA duplexes 

targeting SUMI-1 were obtained from Invitrogen (Stealth RNAi™ #HSS167117 

and HSS167119), and nonspecific control siRNA was manufactured by 

Dharmacon.  
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SDS-PAGE, co-immunoprecipitation, and western blotting. Cells were lysed 

in 0.5% NP-40 buffer for straight westerns and either 0.1% NP-40 or 1% CHAPS 

lysis buffer, where indicated, for co-immunoprecipitation (co-IP). Lysates for co-

IP were pre-cleared for 30 minutes with CL-4 beads and incubated in primary 

antibody for 4 hours to overnight followed by incubation in Protein A beads for 1 

hour. Beads were washed 3x, and protein complexes were eluted using 1x SDS-

PAGE sample buffer. Samples were resolved by SDS-PAGE on a 15% 

polyacrylamide gel and transferred onto a 0.2 µM nitrocellulose membrane. 

Membranes were blocked for a minimum of 30 minutes in phosphate-buffered 

saline blocking buffer with 0.1% Tween-20 (PBST) and 5% nonfat dried milk. 

Membranes were incubated for 2 hours to overnight in primary antibody, 

incubated for 1-2 hours in secondary HRP-conjugated antibody, and exposed 

with Supersignal West Pico or Dura (Pierce).  

 

Immunofluorescence imaging. Cells were fixed in 4% paraformaldehyde for 10 

minutes at room temperature and permeabilized in 0.2% Triton X-100 for 5 

minutes at 4°C. Fixed and permeabilized cells were blocked for 30 minutes in 

0.5% BSA blocking buffer in PBS, incubated in primary antibody overnight at 4°C 

with rocking, and incubated with Alexa Fluor® secondary antibodies (488 and 

594 donkey anti-rabbit and donkey anti-mouse) for 30 minutes at room 

temperature with rocking.  Nuclei were stained with DAPI (diamidino-2-

phenylindole), and mitochondria were visualized with MitoTracker™ Red 

(Invitrogen) or other mitochondrial markers where indicated. Cells were mounted 
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in fluorescence mounting medium (Dako) and analyzed using an Olympus IX81 

inverted microscope combined with a SPOT™ digital microscope camera and 

imaging software (SPOT™ Imaging Solutions).  

 

Antibodies. Rabbit anti-SUMI-1 antibody was produced by immunizing rabbits 

(performed by PRF&L, Canadensis, PA) with a KLH-conjugated peptide antigen 

corresponding to amino acids 94-108 of SUMI-1. Serum was affinity purified, and 

antibody specificity was tested by western blotting and immunofluorescence 

staining with SUMI-1 knockdown (Figure 4-5). The following antibodies were 

purchased commercially: actin (Chemicon), PARP (C2-10, BD Pharmingen), 

HSP70/GRP75 (H-155, Santa Cruz), cytochrome c (6H2.B4, BD Pharmingen), 

Tim23 (BD Transduction Laboratories), Active BAX (6A7, BD Biosciences), BIM 

(C34C5, Cell Signaling), BCL-2 (50E3, Cell Signaling), BAX (Cell Signaling, 

D2E11), and BCL-xL (S-18, Santa Cruz sc-634;  54H6, Cell Signaling). 

 

Immunogold electron microscopy. Experiments were carried out by the 

Microscopy Services Laboratory in the Department of Pathology and Laboratory 

Medicine at the University of North Carolina at Chapel Hill. Cells grown on Nunc 

Permanox chamberslides were fixed with 4% paraformaldehyde in 0.15 M 

sodium cacodylate, pH 7.4, for 1 hour. Using a pre-embedding immunogold/silver 

staining protocol (Yi et al., 2001), cells were incubated in primary antibody (1:50 

dilution of rabbit anti-SUMI-1), followed by secondary antibody incubation in goat 

anti-rabbit IgG 0.8nm immunogold (Aurion, Electron Microscopy Sciences).  After 
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silver enhancement, cells were processed and embedded in Polybed 812 epoxy 

resin (Polysciences, Inc., Warrington, PA).  70 nm ultrathin sections were cut, 

mounted on copper grids, and post-stained with 4% uranyl acetate and Reynolds’ 

lead citrate (Reynolds, 1963).  Sections were observed using a LEO EM-910 

transmission electron microscope operating at 80kV (LEO Electron Microscopy, 

Thornwood, NY), and images were taken using a Gatan Orius SC1000 CCD 

camera with Digital Micrograph 3.11.0 (Gatan, Inc., Pleasanton, CA).  
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Table 4-1. Conservation among SUMI-1 orthologs. 
Percentage of amino acid identity is shown for eight orthologs of the SUMI-1 
protein.   
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Figure 4-1. Sequence alignment for SUMI-1 orthologs. 
CLUSTALW protein sequence alignment of human SUMI-1 protein and SUMI-1 
orthologs in the eight species shown in Table 4-1. Darker shading indicates 
greater sequence similarity.  
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Figure 4-2. Domain structure of SUMI-1.   
A) Schematic representation of the SUMI-1 protein, with putative mitochondrial 
targeting signal (MitoProt), transmembrane domain (TMpred), CHCH (coiled-coil-
helix coiled-coil-helix) domain, and intermembrane space targeting sequence 
(ITS) shown. The transmembrane domain is highly conserved across SUMI-1 
orthologs. The CHCH domain is comprised of four evenly-spaced cysteines, with 
positions indicated. The predicted transmembrane domain is located in a highly-
conserved region of the SUMI-1 protein. 
B) The SUMI-1 mitochondrial intermembrane space targeting signal (ITS) and 
the consensus ITS for Mia40-mediated intermembrane space import. 
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Figure 4-3. Predicted intramolecular disulfide bond formation for SUMI-1. 
Analysis of the SUMI-1 amino acid sequence by DiANNA 1.1 predicts the 
formation of intramolecular disulfide bonds between cysteines 1 and 3 (C1-C3) of 
the CHCH domain, and between cysteines 2 and 4 (C2-C4), creating a loop in 
the CHCH domain as illustrated above (drawing not to scale).   
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Figure 4-4.  Antibody design for SUMI-1. 
A) Schematic of SUMI-1 protein showing approximate location of the peptide 
antigens (SU-94 and SU-124) selected for production of SUMI-1 rabbit polyclonal 
antibodies. Red triangles indicate the approximate positions of the selected 
peptides. 
B) The SUMI-1 protein sequence with the two selected peptide antigens shown 
in red and underlined. 
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Figure 4-5. SUMI-1 antibody effectiveness and specificity 

A) Whole-membrane western blot showing specificity and effectiveness for 
purified rabbit polyclonal antibody targeting SUMI-1 (SU-94).  
B) Immunofluorescence signal detected with SUMI-1 antibody is specific to 
SUMI-1. Cells were treated with either control lentivirus (sh-NS) or lentivirus 
expressing SUMI-1 shRNA (sh-SUMI-1), fixed with formaldehyde, permeabilized, 
and immunofluorescence-stained with SUMI-1 antibody. Phase-contrast images 
are shown below. Note that fluorescence signal is greatly diminished upon SUMI-
1 knockdown (top right panel). 
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Figure 4-6. Immunofluorescence imaging demonstrates mitochondrial 
localization of SUMI-1.   
A) C-terminally-tagged SUMI-1-Flag localizes to the mitochondria, as indicated 
by costaining with MitoTracker™ dye. SUMI-1-Flag was detected by 
immunofluorescence with Flag antibody. 
B) Mitochondrial localization of endogenous SUMI-1 in U2OS cells detected by 
immunofluorescence with SUMI-1 antibody, demonstrated by costaining for 
mitochondrial marker cytochrome c.  
C) Mitochondrial localization of SUMI-1 in HeLa cells detected as in (B).  
D) Mitochondrial localization of SUMI-1 in MEF (mouse embryo fibroblast) cells 
detected as in (B). 
E) Presence of an N-terminal tag disrupts mitochondrial localization of SUMI-1. 
Cells were transfected with Myc-SUMI-1 and stained with anti-Myc antibody. 
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Figure 4-7. Subcellular fractionation of SUMI-1.   
Untreated U2OS cells were fractionated using a differential detergent method. 
SUMI-1 is present in the mitochondria-enriched heavy membrane fraction, with 
three replicates shown for each fraction. Hsp70 is a marker for the mitochondrial 
fraction, and actin is a marker for the cytoplasmic fraction (Cyto, cytoplasm; Mito, 
mitochondria). 
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Figure 4-8. Immunogold-EM localization of SUMI-1.   
(Left) Pre-embedding immunogold staining of endogenous SUMI-1 visualized by 
electron microscopy. Gold beads corresponding to endogenous SUMI-1 can be 
seen around perimeter of mitochondria. One example is designated with an 
arrow. (Cyt, cytoplasm; Mito, mitochondria). (Center) Immunogold staining with 
an isotype antibody is shown as a negative control. (Right) Post-embedding 
immunogold staining shows that endogenous SUMI-1 is also present inside the 
mitochondria as well as along the outer membrane.  
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Figure 4-9. SUMI-1 knockdown promotes apoptotic cell death.   
A) SUMI-1 knockdown sensitizes U2OS cells to apoptosis induced by a variety of 
agents. Cells were treated with indicated siRNA for 48 hours and treated to 

induce apoptosis with cisplatin (CIS, 10 µg/ml for 18 h), UV (25 mJ/cm
2
 for 4 h), 

doxorubicin (DOX, 7.5 µM for 18 h), or staurosporine (STS, 20 µM for 18 h). The 
number of cells surviving each treatment is shown as a percentage of si-NS 
control and is an average of cells counted from at least 4 fields for each 
condition. Error bars indicate standard deviation. 
B) SUMI-1 knockdown sensitizes HeLa cells to apoptosis induced by cisplatin 

(CIS, 10 µg/ml for 18 h) and UV (2.5 mJ/cm
2
 for 18 h). Cells were treated and 

quantified as in (A). 
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Figure 4-10. SUMI-1 knockdown enhances cleavage of PARP and Caspase-
3. 
A) SUMI-1 knockdown enhances PARP cleavage during apoptosis. HeLa cells 
were treated with indicated siRNA for 48 h and treated where indicated with UV 

(3 mJ/cm
2
 for 18 h) to induce apoptosis. Actin is shown as a loading control.  

B) SUMI-1 knockdown increases cleavage of Caspase-3 during apoptosis. U2OS 
cells were treated with indicated siRNA for 48 h and treated where indicated with 

UV (6 mJ/cm
2
 for 18 h) to induce apoptosis. Actin is shown as a loading control.  
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Figure 4-11. SUMI-1 knockdown promotes apoptotic cell death.   
(A) SUMI-1 knockdown sensitizes U2OS cells to UV-induced cell death. Phase-
contrast images (10x) are shown of cells treated for 48 hours with nonspecific 
siRNA (si-NS) or SUMI-1 siRNA (si-SUMI-1), with or without UV treatment (25 

mJ/cm
2
 for 3 hours). Floating (dead) cells appear rounded and white. 

(B) Apoptotic membrane blebbing is evident at higher magnification (40x) in cells 
from (A) treated with SUMI-1 siRNA and UV. Cells displaying blebbing are 
indicated with arrows. 
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Figure 4-12. SUMI-1 overexpression protects against apoptotic cell death.   
A) Overexpression of untagged SUMI-1 protects U2OS cells from apoptosis. 
Cells were treated for 24 h with control adenovirus (expressing GFP) or 
adenovirus expressing untagged SUMI-1 and then treated with UV to induce 

apoptosis (25 mJ/cm
2
 for 8 hours). The number of cells surviving is shown as a 

percentage of Ad-GFP control.  
B) SUMI-1 overexpression inhibits PARP cleavage during apoptosis. HeLa cells 
were treated with indicated adenovirus for 24 hours (Ctl, Ad-GFP; SU, SUMI-1) 

and then treated with UV (25 mJ/cm
2
 for 8 hours) to induce apoptosis. Actin is 

shown as a loading control.  
 

 

 

  



103 

 

 

 

 
Figure 4-13. SUMI-1 translocates from mitochondria during apoptosis.   

A) SUMI-1 translocates from mitochondria during apoptosis. U2OS cells were pretreated 

with QVD for 1 h and treated with UV to induce apoptosis (6 mJ/cm
2 

for 24 h), where 
indicated. Endogenous SUMI-1 was detected by immunofluorescence staining.  
B) A higher-magnification immunofluorescence image of endogenous SUMI-1 (green) 

and endogenous cytochrome c (red) together in UV-treated (6 mJ/cm
2 

for 12 h) U2OS 
cells reveals that cytochrome c can be observed in mitochondria from which SUMI-1 has 
already translocated.  
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Figure 4-14. SUMI-1 translocates from mitochondria prior to cytochrome c.   
A) SUMI-1 translocates prior to cytochrome c during apoptosis. HeLa cells were 

treated with UV (6 mJ/cm
2
 for 12 h) to induce apoptosis, and 

immunofluorescence staining was done for endogenous SUMI-1 (green) and 
endogenous cytochrome c (red). Arrows in top row indicate a cell in which SUMI-
1 has translocated but cytochrome c is retained in mitochondria. Arrows in 
bottom row indicate a cell in which both SUMI-1 and cytochrome c have 
translocated from mitochondria.  
B) SUMI-1 translocates more rapidly than cytochrome c over a time course. 
U2OS cells were pretreated with Caspase inhibitor QVD (10 µM for 1 h) to 

preserve cell survival post-MOMP, treated with UV (25 mJ/cm
2
) to induce 

apoptosis, and fixed at indicated time points. Immunofluorescence staining was 
done for endogenous SUMI-1 and cytochrome c. The percentages of cells with 
translocated SUMI-1 and cytochrome c were quantified at each time point and 
shown on graph as averages from 4 fields. Error bars indicate standard deviation 
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Figure 4-15. SUMI-1 knockdown regulates mitochondrial outer membrane 
permeabilization.   
A) SUMI-1 knockdown increases the kinetics of MOMP as indicated by 
cytochrome c release. U2OS cells were treated with indicated siRNA (NS, 
nonspecific) for 48 hours, pretreated with Caspase inhibitor QVD to preserve cell 
survival post-MOMP, and treated to induce apoptosis where indicated (UV, 25 

mJ/cm
2
 for 4 hours) followed by immunofluorescence staining for endogenous 

cytochrome c. The panel on the right shows an example of a cell (demarcated 
with dotted line) with released cytochrome c, which appears diffuse throughout 
the cytoplasm and nucleus. Note that cells treated with SUMI-1 siRNA exhibit a 
greater proportion of cells with cytochrome c release. 
(B) SUMI-1 knockdown increases the kinetics of MOMP over a time course. 
U2OS cells were treated as in (A) and fixed at various time points after UV 
treatment. Following immunofluorescence staining for endogenous cytochrome c, 
the percentages of cells exhibiting released cytochrome c were quantified at 
indicated time points and shown on the graph as averages from at least 4 fields. 
Error bars indicate standard deviation.   



106 

 

 

  

 
Figure 4-16. SUMI-1 knockdown regulates BAX activation.   
A) SUMI-1 knockdown increases Bax activation during apoptosis. U2OS cells 
were treated with indicated siRNA (NS, nonspecific) for 48 h followed by 

treatment to induce apoptosis (UV, 6 mJ/cm
2
) where indicated. Cells were fixed 

after 24 h and stained for active Bax (6A7). Red staining indicates presence of 
active, oligomerized Bax that has accumulated on mitochondria.  
B) Bax activation correlates with SUMI-1 translocation in U2OS cells. Cells were 

treated with UV (6 mJ/cm
2
 for 24 h) to induce apoptosis. Immunofluorescence 

staining was done for endogenous SUMI-1 (green) and active Bax 6A7 (red). 
Active Bax is observed only in cells in which SUMI-1 has translocated from 
mitochondria. Nuclei were stained with DAPI. 
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Figure 4-17. SUMI-1 knockdown regulates BAX oligomerization. 
SUMI-1 knockdown increases trypsin-resistant, oligomerized BAX (TR-Bax). A 
trypsin-resistance assay was carried out on isolated mitochondria after treating 
cells with indicated siRNA for 48 hours followed by UV where indicated. 
Mitochondria were treated with trypsin to digest monomeric BAX, lysed, resolved 
by SDS-PAGE and assayed by immunoblotting alongside whole cell lysates.    
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Figure 4-18. SUMI-1 co-immunoprecipitates with a protein recognized by 
BCL-xL S-18 antibody.   
A) Co-immunoprecipitation (co-IP) in untreated cells using SUMI-1 antibody (SU-
94, designated as SU above) or IgG control. Complexes were resolved by SDS-
PAGE and blotted with indicated antibodies. No interaction was found between 
SUMI-1 and BCL-2 or BIM, but apparent binding was detected between SUMI-1 
and BCL-xL (right panel).  
B) Co-IP in untreated U2OS cells or U2OS cells stably-expressing sh-SUMI-1. 
Complexes were resolved by SDS-PAGE and blotted with indicated antibodies. 
IP for SUMI-1 with two different antibodies (AB 1, SU-94; AB 2, Proteintech) 
pulled down a protein migrating at 34 kD that is detected with the BCL-xL S-18 
antibody (Santa Cruz, sc-634).  Co-immunoprecipitation of this protein was 
diminished by shRNA inhibition of SUMI-1, demonstrating that the protein does 
not interact nonspecifically with the SUMI-1 antibodies.  
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Figure 4-19. SUMI-1 siRNA induces shift in proportion of 34 kD and 37 kD 
bands detected by BCL-xL S-18 antibody.  
U2OS cells were treated with SUMI-1 siRNA or nonspecific (NS) control siRNA 
and treated with UV where indicated to induce apoptosis. Lysates were resolved 
by SDS-PAGE and blotted with indicated antibodies. Note that siRNA inhibition of 
SUMI-1 induces a decrease in the 34 kD band detected by the BCL-xL S-18 
antibody, and a corresponding increase in the 37 kD band. The 34 kD and 37 kD 
bands were later identified to be p32 (Figure 4-19). Apoptosis-inducing UV 
treatment causes a similar shift, and knockdown of SUMI-1 further augments this 
shift.  
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Figure 4-20. Nonspecific band recognized by BCL-xL S-18 antibody is p32. 
U2OS cells were transfected with various agents to inhibit or overexpress p32 
and subjected to IP with SUMI-1 antibody (C-94). Loading and IP samples were 
resolved by SDS-PAGE and blotted with BCL-xL antibody (S-18, Santa Cruz sc-
634). Note that the BCL-xL S-18 antibody recognizes both endogenous p32 and 
various ectopically-expressed tagged p32 proteins. (si-p32, p32 siRNA; Ad-p32, 
adenovirus expressing untagged p32; p32-Flag (S), stable transfection of p32-
Flag; p32-Flag (T), transient transfection of p32-Flag;  Flag-p32m, Flag-tagged 
mature/cleaved p32; Myc3-p32; Myc3-tagged full-length p32; Myc3-p32m, Myc3-
tagged mature/cleaved p32). 
 
This experiment was performed by Yong Liu. 
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Figure 4-21. Region of homology between p32 and BH4 domain of BCL-xL. 
CLUSTAL 2.1 sequence alignment indicates a 20-residue region of similarity 
between p32 and BCL-xL corresponding to the N-terminal BH4 domain of BCL-
xL. This region includes a motif (VDFLS) that is identical between the proteins. 
Dots indicate similarity, and colons indicate strong similarity. (Red = small; blue = 
acidic; magenta = basic; green = hydroxyl + sulfhydryl + amine + G).  
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Figure 4-22. SUMI-1 inhibits mitochondrial fragmentation.   
A) SUMI-1 knockdown leads to mitochondrial fragmentation. U2OS cells were 
treated with indicated siRNA for 48 hours and subjected to UV (25 mJ/cm2 for 3 
h) to induce apoptosis. Immunofluorescence staining was carried out for a 
mitochondrial marker Tim23 (red) and DAPI to indicate nuclei (blue). Cells 
treated with SUMI-1 siRNA showed increased mitochondrial fragmentation 
(right).  
B) SUMI-1 overexpression protects cells from UV-induced mitochondrial 
fragmentation. U2OS cells were treated with adenovirus expressing untagged 
SUMI-1 or empty adenovirus (vector) where indicated, and 24 h later treated with 
UV (25 mJ/cm2 for 3 h) where indicated. Note that mitochondria remain 
elongated in cells overexpressing SUMI-1. 
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Figure 4-23. SUMI-1 regulates mitochondrial fusion.   
A) In a cell hybrid mitochondrial fusion assay, one plate of cells is transfected 
with mitochondrial-targeted GFP (mt-GFP) to label mitochondria green, and 
another plate is transfected with mt-mKate2 to label mitochondria red. The cells 
are then plated together and treated with PEG for five min. to create cell hybrids 
containing red and green mitochondria. If fusion ensues, regions with yellow 
mitochondria (containing both red and green fluorescent proteins) are observed. 
Without fusion, red and green mitochondria remain distinct.  
B) SUMI-1 knockdown impairs mitochondrial fusion. Cells were treated with 
indicated siRNA for 48 hours and treated as described in (A). Cells were treated 

with UV (25 mJ/m
2
) where indicated, fixed after 2.5 h, and analyzed. An example 

of a cell hybrid exhibiting mitochondrial fusion (contains yellow mitochondria) is 
shown on the left (boxes enclose areas displaying fused, yellow, mitochondria). A 
hybrid lacking fusion is shown on the right.  
C) Cells were treated as in (B), and hybrids with mitochondrial fusion (determined 
by presence of yellow color) were quantified and shown on graph as a 
percentage of total hybrids. Error bars indicate standard deviation.  
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Figure 4-24. Model for regulation of MOMP by SUMI-1.   
In unstressed cells, SUMI-1 resides at the mitochondrial membrane, where it 
keeps mitochondrial fusion-fission dynamics in balance. Upon treatment with 
apoptotic stimuli such as UV, SUMI-1 translocates from the mitochondria, while 
Bax becomes activated by BH3-only proteins and accumulates at the 
mitochondria, likely independent from SUMI-1. Following SUMI-1 translocation, 
mitochondrial fusion is inhibited while mitochondrial fission continues 
unperturbed, leading to mitochondrial fragmentation. This fragmentation 
promotes Bax oligomerization, leading to MOMP, cytochrome c release, and 
ultimately, apoptosis.  
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Figure 4-25. Increased expression of SUMI-1 in cancers.   
Data obtained from Oncomine for expression of SUMI-1 mRNA in three types of 
cancer compared to corresponding normal tissues. SUMI-1 expression is 
represented as a log2 median-centered ratio in normal tissue (light grey bars) 
and cancerous tissue (dark grey bars). Each bar represents an individual sample.  
A) Tomlins Prostate: Average fold change is 2.130, and P-value is 1.98E-4.  
B) Haqq Melanoma: Average fold change is 4.163, and P-value is 4.77E-4.  
C) Andersson Leukemia: Average fold change is 2.913, and P-value is 1.56E-5.  
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Cancer Type 
Fold 

Increase P-Value Dataset 

Breast, ductal carcinoma 1.754 4.10E-10 Sorlie 2003 

Cervical cancer 1.656 2.00E-03 Pyeon 2007 

Glioblastoma 1.579 5.57E-05 Liang 2005 

Leukemia, acute myeloid  2.032 2.16E-05 Andersson 2007 
Leukemia, childhood T-cell acute 

lymphoblastic  
2.913 1.56E-05 Andersson 2007 

Lung adenocarcinoma 1.564 3.07E-13 Landi 2008 

Lymphoma, diffuse B-cell 1.846 1.00E-02 Storz 2003 

Melanoma 4.163 4.77E-04 Haqq 2005 
Mesothelioma, pleural malignant  2.018 1.62E-06 Gordon 2005 

Myeloma, smoldering 2.018 3.23E-05 Zhan 2007 

Neuroblastoma 1.755 8.76E-04 Albino 2008 

Oral cavity carcinoma 2.827 2.05E-06 Pyeon 2007 

Oropharyngeal carcinoma 2.325 3.85E-06 Pyeon 2007 

Pancreatic carcinoma 1.520 3.48E-05 Pei 2009 

Prostate carcinoma 2.130 1.98E-04 Tomlins 2007 
Renal cell carcinoma, papillary 1.591 1.30E-04 Yusenko 2009 

Tongue carcinoma 2.231 1.12E-05 Pyeon 2007 
 

 
Table 4-2. Increased expression of SUMI-1 in cancers. 
SUMI-1 mRNA microarray expression data mined from Oncomine for cancerous 
tissues compared to corresponding normal tissues. Cancers with at least 1.5-fold 
overexpression of SUMI-1 compared to normal tissue and a P-value ≤ 0.01 are 
shown.   
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Figure 4-26. Increased expression of SUMI-1 in cancerous compared to 
non-cancerous cell lines. 
Expression of SUMI-1 was assessed in a panel of lysates from cultured human 
cell lines. Cells were lysed in 0.5% NP-40 lysis buffer, resolved by SDS-PAGE, 
and blotted with an antibody for SUMI-1 (C-94) and actin as loading control. Note 
that SUMI-1 expression is lowest in the two non-cancerous cell lines (BJ, normal 
skin fibroblast; WI38, normal embryonic lung). 
 

 

 

  



 
 

 
 

 

CHAPTER V 
 
 

REGULATION OF SUMI-1 DURING APOPTOSIS 
 

Introduction 

 We show that SUMI-1 translocates during apoptosis prior to cytochrome c 

release in order to regulate MOMP. However, the SUMI-1 protein level also 

appears to decrease during apoptosis, suggesting that in addition to 

translocation, SUMI-1 may be regulated by degradation during apoptosis. Thus, 

we carried out experiments to determine whether SUMI-1 may be regulated by 

degradation and/or another mechanism, in addition to translocation, during 

apoptosis.  

 

Apoptotic Stimuli Reduce Level of Endogenous SUMI-1 

In our previous experiments, we observed that the level of endogenous 

SUMI-1 protein decreases during apoptosis induced by UV radiation and 

cisplatin. To examine this in more detail, apoptosis was induced in U2OS cells 

using a variety of agents, and the effect on SUMI-1 level was examined. As 

shown in Figure 5-1 (left panel), the level of endogenous SUMI-1 in U2OS cells 

was decreased following administration of UV, staurosporine, doxorubicin, 

cisplatin, vinblastine, and taxol. To determine whether this effect could be 

reproduced in another cell type, we examined HeLa cells with and without 
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apoptosis induced by UV. As in U2OS cells, UV treatment decreased the level of 

endogenous SUMI-1 (Figure 5-1, right panel). 

 

SUMI-1 is Not Degraded by the Proteasome During Apoptosis 

Protein degradation is usually carried out by the proteasome—a large 

protein complex that breaks down proteins that are no longer needed by the cell 

or that must be eliminated in order to regulate processes such as cell cycle 

control or apoptosis. Proteins are targeted for proteasomal degradation by 

covalent addition of the small protein ubiquitin to specific lysine residues on the 

target protein, a process carried out by ubiquitin-conjugating enzymes (E1, E2, 

and E3 ubiquitin ligases). When multiple ubiquitin molecules have been added to 

a single residue, the resulting polyubiquitin chain directs the target protein to the 

proteasome, which cleaves the protein into peptides 7 to 8 amino acids in length. 

These short peptides can be further broken down into individual amino acids and 

recycled for use in translation of new proteins (Baumeister et al., 1998).  

We carried out experiments to determine whether SUMI-1 is degraded 

proteasomally, using the potent and specific inhibitor MG132, which blocks the 

ability of the 26S proteasome to degrade proteins (Tsubuki et al., 1996). If SUMI-

1 is normally degraded by the proteasome during apoptosis, MG132 should block 

the associated decrease in SUMI-1 protein level. To test this, we treated U2OS 

and HeLa cells with MG132 (20 uM) for 1 hour followed by UV (250 J/m2) for 4 h 

and examined the level of endogenous SUMI-1 as well as positive controls p53 

and Mdm2, which are known to be degraded by the proteasome. While MG132 
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effectively prevented degradation of p53 and Mdm2, it did not block the decrease 

in SUMI-1 level observed during UV-induced apoptosis. In fact, MG132 

augmented the UV-induced decrease in SUMI-1 level (Figure 5-2, compare lanes 

3-4, and 7-8), and treatment with MG132 alone also significantly decreased the 

SUMI-1 level (Figure 5-2, compare lanes 1-2, and lanes 5-6.). This MG132-

induced decrease in SUMI-1 level is not surprising, as MG132 and other 

proteasome inhibitors are known to induce apoptosis (Drexler, 1997), and, as 

shown in Figure 5-1, the level of endogenous SUMI-1 decreases during 

apoptosis. Based on the data presented here, it is unlikely that the apoptosis-

associated decrease in SUMI-1 is due to proteasomal degradation.  

 

SUMI-1 is Potentially Regulated by Oligomerization 

 We next examined oligomerization as a possible explanation for the 

decrease in SUMI-1 level observed during apoptosis. That is, SUMI-1 may not be 

degraded but may instead form SDS-resistant oligomers. This phenomenon 

would reduce the quantity of monomeric (17 kD) SUMI-1 observed by western 

blotting. Indeed, SUMI-1 contains a CHCH (coiled-coil-helix-coiled-coil-helix) 

domain that is known to mediate SDS-resistant homo- and hetero-

oligomerization in other proteins containing this domain. This oligomer formation 

is mediated by covalent disulfide bonds between conserved cysteines in the 

CHCH domain and has been studied most extensively in the CHCH-domain-

containing protein Cox17 (Arnesano et al., 2005), which interacts with SCO-1 to 

feed copper ions into the COX (cytochrome c oxidase) complex during COX 
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assembly (Banci et al., 2008a; Banci et al., 2008b). Another CHCH-domain 

protein, Mia40, mediates transport of mitochondrial proteins into the 

intermembrane space by forming transient disulfide-mediated hetero-oligomers 

with other cysteine-containing proteins as they are imported (Sideris et al., 2009). 

In both cases, formation of these oligomers depends on the reductive-oxidative 

(RedOx) status of the proteins’ immediate environment (Arnesano et al., 2005), 

as bond formation requires oxidation of the cysteines’ thiol groups. In a fully-

reduced environment, cysteines are not capable of forming disulfide bonds with 

one another, while in a more oxidative environment, bonds can form either 

between specific cysteines on another protein to mediate homo- or hetero-

oligomerization, or between cysteines on the same protein to induce changes in 

tertiary structure such as hairpin formations. Which of these cysteines interact, 

and which tertiary or quaternary structure results (i.e. intramolecular folding, 

homo-oligomerization, or hetero-oligomerization), depends largely on the extent 

of oxidation (Arnesano et al., 2005) but is also affected by features of the 

surrounding amino acid sequence such as distance between adjacent cysteines.  

 To determine whether SUMI-1 might oligomerize during apoptosis, we 

carried out a whole-membrane western blot with SUMI-1 antibody after treating 

U2OS cells with increasing doses of UV radiation. As we observed previously, 

the 17 kD band disappeared upon UV radiation in a dose-dependent manner. 

Interestingly, we observed a corresponding increase in a higher molecular weight 

(HMW) band (approximately 65 kD in size) detected by the SUMI-1 antibody 

(Figure 5-3A). To determine whether the HMW band could represent an SDS-
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resistant oligomer of SUMI-1, we assessed whether the band would disappear 

under harsher denaturing conditions. Often, disulfide bond-mediated oligomers 

are not reduced by standard SDS-PAGE, even in the presence of denaturing 

agents such as DTT. In order to reduce this type of oligomer, an additional 

denaturing agent must typically be applied, such as extended heating, deep-

freeze/thaw cycles, or treatment with a denaturing chemical such as urea. 

Stronger disulfide bonds require harsher denaturing agents, and the type of 

denaturing agent required to break these bonds can be used as a quantitative 

measure of the disulfide bond’s strength. In the first 2 lanes of Figure 5-3B, 

U2OS cells were either left untreated or treated with UV (10 mJ/cm2), with both 

samples heated in SDS-DTT sample buffer for the standard time (3 minutes). 

Consistent with our previous observations, UV radiation led to a decrease in the 

17 kD band and an increase in the 65 kD band (compare lanes 1 and 2). In the 

third lane, a portion of the same lysate used for lane 2 (UV-treated) was heated 

for 60 minutes instead of 3 minutes. This extended heating resulted in a partial 

decrease in the 65 kD band and a partial increase in the 17 kD band (Figure 5-

3B, compare lanes 2 and 3).  

 In addition, we attempted to determine whether overexpression of SUMI-1 

could increase the higher molecular weight bands detected by the SUMI-1 

antibody. We transfected cells with a pShuttle plasmid expressing untagged 

SUMI-1 or an empty vector as a negative control. To our surprise, we did not 

observe any increase in the 17 kD band, but only in the 65 kD band detected by 

the SUMI-1 antibody (Figure 5-4). The reason for these results is not clear, but it 
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is possible that SUMI-1 preferentially takes the oligomerized form and that there 

is a limit to the quantity of monomeric SUMI-1 that can reside in a cell, or that the 

experimental conditions (e.g. excessive oxidation of lysis buffer) induced 

oligomerization. Alternatively, it is possible that the pShuttle vector used for 

expressing SUMI-1 did not express properly, but this would not explain the 

increase in the HMW band detected by the SUMI-1 antibody following 

transfection. This same plasmid was used later to generate adenovirus 

expressing untagged SUMI-1. This adenovirus successfully expressed the 17 kD 

SUMI-1 band (Figure 4-12), but its effect on higher molecular weight bands has 

not yet been examined. The HMW band was also examined after treatment with 

SUMI-1 siRNA, which failed to decrease this band (data not shown). However, 

siRNA does not induce complete knockdown of SUMI-1, and it is possible that 

the oligomerized form is more stable or is the preferred state for SUMI-1, as 

suggested by the overexpression data. 

 Together, the experiment showing that the proteasome inhibitor MG-132 

does not prevent the decrease in the 17 kD SUMI-1 band, and the data showing 

that UV induces a dose-dependent increase in a HMW band that corresponds to 

a decrease in the 17 kD band, partially recovered by further denaturation of the 

lysate, suggest that SUMI-1 is not proteasomally degraded during apoptosis and 

may instead form SDS-resistant oligomers. However, additional experiments are 

needed to confirm this finding or to determine whether SUMI-1 might be 

regulated in a different manner.  
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Discussion 

 The level of SUMI-1 protein visualized by western blotting decreases 

during apoptosis induced by a variety of apoptotic stimuli. Here, we examined 

potential reasons for this apparent reduction in SUMI-1 level. We show that this 

decrease is not affected by the proteasome inhibitor MG132, suggesting that 

SUMI-1 is not degraded during apoptosis, at least not by the ubiquitin-

proteasome pathway. Instead, we observed that a higher molecular weight band 

(approximately 65 kD) detected by purified SUMI-1 antibody is induced by UV 

radiation, and this HMW band appears in a dose-dependent manner 

corresponding to a decrease in the 17 kD band. These data suggest that SUMI-1 

may form oligomers during apoptosis. These HMW complexes could represent 

SUMI-1 homo-oligomers; in this case, the molecular weight (approximately 65-70 

kD) appears most consistent with that of a SUMI-1 tetramer, which would be 

predicted to migrate at approximately 68 kD, although oligomers can potentially 

migrate more rapidly or slowly than expected. Alternatively, it is possible that 

SUMI-1 does not homo-oligomerize but forms disulfide-bond mediated 

complexes with one or more unknown proteins.   

 It is also possible that the HMW band detected by the SUMI-1 antibody is 

not oligomerized SUMI-1, but another protein detected nonspecifically by the 

SUMI-1 antibody. This alternative is unlikely, as it cannot explain our finding that 

further denaturation of lysate from UV-treated cells caused a partial decrease in 

the HMW band and a corresponding increase in the 17 kD band (Figure 5-3). 

Nevertheless, in an attempt to rule out the possibility that this band may 
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represent a nonspecific protein, we carried out several additional experiments, 

but results have been inconclusive. SDS-resistant oligomers are notoriously 

difficult to study—Artificial oligomers can be formed by oxidation of lysates, for 

example, and oligomerization status can be quite sensitive to conditions of cell 

culture and lysis. When repeating an experiment under seemingly identical 

conditions, proportions of oligomers and monomers can change. Sometimes 

additional bands are observed by western blotting with SUMI-1 antibody, 

migrating at approximately 40-45 kD and 110-120 kD; we have not been able to 

discern a pattern for the appearance of these bands. In an attempt to preserve 

the native status of disulfide bonds in the cell and avoid introducing artificial ones 

during cell lysis, we attempted to treat cells with N-ethylmaleimide (NEM) upon 

addition of lysis buffer. NEM is a small alkene that interacts irreversibly with 

thiols, “capping” them so that they can no longer interact with other cysteines to 

form disulfide bonds. Thus, addition of NEM during lysis should prevent formation 

of new disulfide bonds that were not already present in the intact cell. However, 

when NEM was applied to our lysis buffer prior to SDS-PAGE, we paradoxically 

observed a dramatic decrease in the 17 kD (monomer) band along with 

disappearance of the putative oligomer band and appearance of several new 

HMW band of various sizes (data not shown). We have not been able to explain 

these results. One possibility is that NEM alters the cell’s redox status by 

inactivating redox-regulating proteins such as glutathione, many of which contain 

cysteines, inducing SUMI-1 oligomerization. Another method for determining 

whether the HMW band is an oligomer is by detecting this band with two different 
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SUMI-1 antibodies targeting different regions of the protein. We attempted to 

detect the 65 kD band with another antibody that we produced, and we were 

unable to detect it. However, the antigen for this antibody is located in the center 

of the oligomerization (CHCH) domain, which is not likely to be exposed to the 

antibody when the protein is oligomerized. This issue could potentially be 

addressed by using another antibody toward SUMI-1. In summary, given our 

findings that 1) SUMI-1 is not proteasomally degraded during apoptosis, 2) a 

HMW band is detected by the SUMI-1 antibody in a dose-dependent manner 

corresponding to a decrease in the 17 kD band, and 3) Additional denaturation of 

cell lysate causes a partial decrease in the HMW band and a corresponding 

increase in the 17 kD band, the most logical explanation is that SUMI-1 

oligomerizes during apoptosis. Furthermore, the CHCH domain found in SUMI-1 

is known to mediate SDS-resistant oligomerization in other proteins. 

Nevertheless, it remains possible that SUMI-1 is not regulated by 

oligomerization. Further studies could be carried out to address this issue, such 

as detecting the same HMW band with another SUMI-1 antibody.  

 If oligomerization of SUMI-1 does not occur during apoptosis, another 

mechanism must account for the apparent decrease in the 17 kD band during 

apoptosis. One alternative is that SUMI-1 is transcriptionally regulated—

Signaling pathways induced by apoptotic stimuli may block transcription of SUMI-

1 mRNA. While we have not formally examined this idea, it is not likely that 

SUMI-1 is regulated in this manner, as the existing SUMI-1 in the cell would still 

have to be degraded in order for impaired transcription to result in reduced 
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protein so rapidly, and SUMI-1 is too stable for the degradation to occur as 

rapidly as 18 hours; while a formal half-life assay has not been performed, when 

SUMI-1 is targeted with RNAi, a significant decrease in SUMI-1 level is not 

observed until 48 hours after siRNA transfection, indicating that SUMI-1 is a 

relatively stable. Thus, impaired transcription cannot account for the decrease of 

SUMI-1 in this time frame unless degradation is also induced. It is possible that 

SUMI-1 is degraded through an unknown, non-proteasomal, mechanism during 

apoptosis, or it may be cleaved by a protease. Whole-membrane blotting with 

SUMI-1 antibody has not detected any low molecular weight cleavage products, 

although if cleavage occurred inside the antibody recognition site, the antibody 

may no longer be able to recognize the resulting SUMI-1 fragments.  

 If SUMI-1 does oligomerize during apoptosis, this phenomenon could be a 

mechanism to regulate SUMI-1’s function. Oxidation-induced oligomerization of 

SUMI-1 may trigger its translocation from the mitochondria, for example.  

Apoptosis often involves generation of free radicals, resulting in oxidation that 

could stimulate disulfide-bond formation and oligomerization. Alternatively, 

oligomerization of SUMI-1 could occur as a result of its translocation, but this is 

unlikely, as disulfide bonds do not typically occur in reducing environments such 

as the nucleus and cytoplasm (although they may remain stable in these 

locations after being formed elsewhere); such oxidation is only known to occur in 

specific compartments of the cell such as the endoplasmic reticulum and 

mitochondria. Thus, oligomerization of SUMI-1 is likely to precede its 

translocation. SUMI-1 oligomerization may also occur as a side effect of 
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apoptosis rather than as a regulatory mechanism for SUMI-1; that is, in the 

absence of oligomerization, SUMI-1 may become inactivated through 

translocation or another means. The regulation of SUMI-1 is an important area 

for future studies.  

 

Materials and Methods 

 

Cell culture, transfections, and apoptotic treatments. U2OS and HeLa cells 

were obtained from ATCC. All cells were cultured in a 37°C incubator with 5% 

CO2 in DMEM supplemented with 10% FBS, 100 U/ml penicillin, and 100 g/ml 

streptomycin. DNA transfections were carried out with Fugene-6 or Fugene-HD 

(Roche), and siRNA transfections were performed with Oligofectamine 

(Invitrogen), according to the manufacturers’ instructions. Apoptosis treatments 

included UVC radiation (dosages as indicated) using a Stratalinker® UV 

Crosslinker, and various reagents and doses as indicated. Where indicated, cells 

were pre-incubated with MG132 for 1 h before apoptotic treatments. 

 

Adenoviruses. Recombinant adenoviruses expressing untagged SUMI-1 or 

GFP were produced using the AdEasy™ XL Adenoviral Vector System 

(Stratagene) according to the manufacturer’s protocol.  

 

SDS-PAGE and western blotting. Cells were lysed in 0.5% NP-40 buffer, and 

lysates were resolved on a 15% polyacrylamide gel and transferred onto a 0.2 
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µM nitrocellulose membrane. Membranes were blocked for a minimum of 30 

minutes in phosphate-buffered saline blocking buffer with 0.1% Tween-20 

(PBST) and 5% nonfat dried milk. Membranes were incubated for 2h to overnight 

in primary antibody, incubated for 1-2 hours in secondary HRP-conjugated 

antibody, and exposed with Supersignal West Pico or Dura (Pierce).  
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Figure 5-1. Apoptotic stimuli reduce the level of endogenous SUMI-1.  
A) U2OS cells were treated with various apoptosis-inducing agents for 18 hours, 
lysed, resolved by SDS-PAGE, and blotted for actin (loading control) and SUMI-

1. UV, 6 mJ/cm
2
. Staurosporine (STS), 10 µM. Doxorubin (DOX), 10 µM. 

Cisplatin (CIS), 10 µg/ml. Vinblastine (VBL), 25 nM. Taxol (TAX), 50 nM.   

B) HeLa cells were treated with UV (6 mJ/cm
2
) for 18 hours, lysed, resolved by 

SDS-PAGE, and blotted for actin (loading control) and SUMI-1.  
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Figure 5-2. Proteasome inhibitor MG132 does not prevent apoptosis-
associated reduction in SUMI-1 level.  
Where indicated, U2OS and HeLa cells were pre-treated with the proteasome 
inhibitor MG132 (20 µM for 1 h), followed by treatment with apoptosis-inducing 

UV radiation (250 J/m
2
 for 4 h). Lysates were resolved by SDS-PAGE and blotted 

for actin (loading control), Mdm2 and p53 (positive controls for suppression of 
proteasomal degradation by MG132), and SUMI-1. Note that in both cell types, 
treatment with MG132 did not prevent decrease in SUMI-1 level but did prevent 
degradation of p53 and Mdm2.  
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Figure 5-3. High molecular weight bands are detected by SUMI-1 antibody 

when cells are treated to undergo apoptosis. 

A) In U2OS cells treated to undergo apoptosis with increasing doses of UV 
radiation, a dose-dependent decrease is observed in the 17 kD band, while a 
corresponding increase is observed for a higher molecular weight band 
(approximately 65-70 kD) that is detected by the SUMI-1 antibody. Cell lysates 
were resolved by SDS-PAGE in the presence of DTT.  

B) In U2OS cells treated to undergo apoptosis (10 mJ/cm
2
 UV), a higher 

molecular weight (HWM) band detected by the SUMI-1 antibody increased in 
size while the 17 kD band decreased. Samples in first two lanes were heated for 
the standard time period (3 minutes) at 95°C in SDS-DTT sample buffer prior to 
resolving by SDS-PAGE. Heating the lysate from lane 2 for 60 minutes led to a 
partial decrease in the HWM band and an increase in the 17 kD band. 
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Figure 5-4.  Transfection of untagged SUMI-1  increases HMW bands 
detected by SUMI-1 antibody. 
U2OS cells were transfected with pShuttle-SUMI-1 plasmid (expressing 
untagged SUMI-1) or empty pShuttle plasmid (negative control). Two replicates 
are shown. Note that the band around 65 kD increases upon transfection with 
SUMI-1. Ponceau S staining is shown to indicate even loading. 
  



 
 

 
 
 

 

CHAPTER VI 
 
 

DISCUSSION 
 

Identification of Novel Apoptosis-Regulating Proteins 

 Apoptotic cell death has been an area of intense investigation in recent 

years, likely owing to its relevance during development as well as for maintaining 

homeostasis in adult organisms, and due to its contribution in the etiology of 

diverse diseases such as developmental and autoimmune disorders, 

neurodegeneration, and cancer. Research identifying the signaling pathways and 

biological mechanisms by which apoptosis occurs, especially those mechanisms 

by which it is regulated, can help us to better understand developmental and 

homeostasis processes as well as diseases that are affected by dysregulation of 

apoptosis. Ultimately, this knowledge may aid in the development of diagnostic 

and therapeutic tools for these diseases.   

 A critical control point in apoptosis is mitochondrial outer membrane 

permeabilization (MOMP), as cells that have crossed this threshold do not 

recover in most cases. Much has been learned about MOMP in recent years, 

especially the roles of BCL-2 family proteins in regulating this process. However, 

several questions remain to be fully elucidated: What are the exact biochemical 

mechanisms governing MOMP? What are the non-BCL-2 proteins that mediate 
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MOMP? Finally, what is the role of mitochondria, including mitochondria-localized 

proteins, in regulating MOMP?  

In this body of work, we initially sought to identify novel interacting proteins 

for the pro-apoptotic protein, p32, which was previously determined in our lab to 

regulate ARF-mediated MOMP and apoptosis through a mechanism that has 

remained unclear (Itahana and Zhang, 2008). In the process, we identified two 

novel potential regulators of apoptosis, SUMI-1 and MAGE-D2. This study 

examined the functions of these two proteins individually, and future studies will 

explore the interactions between these proteins and p32. Here, MAGE-D2 was 

found to be localized to the nucleus, nucleolus, and mitochondria, and the 

preliminary data presented here suggest that MAGE-D2 may regulate cell cycle 

control and apoptosis, although further studies are necessary to establish a 

definitive function for this protein. SUMI-1 was characterized much more 

extensively in this work and was established as a novel, mitochondria-localized 

inhibitor of apoptosis that functions by regulating mitochondrial dynamics, BAX 

activation, and mitochondrial outer membrane permeabilization. Identification of 

these proteins will fill some of the gaps in our knowledge of signaling pathways 

and mechanisms regulating apoptosis—especially MOMP—and may provide a 

potential therapeutic target for diseases that are affected by aberrant regulation 

of apoptosis.  
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MAGE-D2 Localization and Function 

 MAGE-D2 is a ubiquitously expressed, uncharacterized member of the 

MAGE (melanoma antigen) family of proteins, and its increased expression is 

associated with some cancers. The functions of most MAGE proteins in normal 

tissues are unclear, but other proteins belonging to the MAGE-D subfamily have 

been identified to regulate cell cycle progression and apoptosis. In this work, we 

examined the localization and potential functions for this protein. To study 

MAGE-D2, several plasmids were generated to express both N-terminally and C-

terminally tagged MAGE-D2 fusion proteins, and two rabbit polyclonal antibodies 

were produced in order to study endogenous MAGE-D2 by western blotting, 

immunofluorescence, and co-immunoprecipitation.  

 By examining both ectopically-expressed tagged MAGE-D2 and 

endogenous MAGE-D2 by immunofluorescence, the localization of MAGE-D2 

was determined to be primarily nuclear and nucleolar, with a portion of MAGE-D2 

likely residing in or on the mitochondria as well. To determine whether MAGE-D2 

indeed localizes to the mitochondria, a subcellular fractionation and western blot 

could be carried out. Interestingly, the localization of MAGE-D2 was found to be 

heterogeneous among cells, with some cells exhibiting primarily mitochondrial 

staining and other cells displaying mostly nuclear or nucleolar staining.  

 The ability of MAGE-D2 to regulate apoptosis was examined briefly. Cells 

transfected with MAGE-D2-Flag appeared more sensitive to UV-induced 

apoptosis as assessed by examining cell number and morphology and through 
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flow cytometry analysis of DNA content. However, quantification of apoptosis by 

analysis of sub-G1 DNA content is not necessarily an accurate measurement for 

cells that are actively cycling, as it is not possible in this type of cells to 

distinguish apoptotic cells from fragmented cells or other debris. An alternative or 

additional quantitative measure should be used, such as cell counting, and 

specific markers of apoptosis should be examined, such as cleavage of PARP or 

Caspase-3. In addition, overexpression of proteins, especially tagged constructs, 

can yield data artifacts for various reasons: Relative protein levels may be 

critical, and the tagged protein may not behave in the same manner as the 

untagged protein. Stronger evidence of a protein’s function can be provided by 

inhibiting the protein through RNA interference. An experiment examining the 

effect of MAGE-D2 siRNA on apoptosis would help clarify whether MAGE-D2 is a 

bona fide regulator of apoptosis. 

If MAGE-D2 is found to regulate apoptosis, the next step in characterizing 

this protein would be to determine the mechanism by which it regulates 

apoptosis. We found MAGE-D2 to be localized in the nucleus, nucleoli, and 

possibly mitochondria, and this localization does not appear to change during 

apoptosis (data not shown). It is possible that the apoptosis-regulating function of 

MAGE-D2 could be carried out in any of these compartments, especially the 

nucleus and mitochondria, where control of apoptosis is known to take place. In 

the nucleus, MAGE-D2 could regulate protein transcription. As described in 

Chapter III, MAGE-D2’s closest homolog—MAGE-D1/NRAGE—acts as a 

transcription cofactor. MAGE-D1 interacts with several transcription factors that 
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regulate apoptosis and cell cycle control, and is required for Dlx5-dependent 

transcription (Masuda et al., 2001). MAGE-D1’s pro-apoptotic function is also 

shown to be mediated by the transcription factor p53 (Kendall et al., 2005; Wen 

et al., 2004). MAGE-D2 has also been reported to interact with p53 (Papageorgio 

et al., 2007), which becomes activated following extensive DNA damage or other 

apoptotic signals, leading to transcription of apoptosis-inducing genes such as 

NOXA and PUMA. RT-PCR studies with and without MAGE-D2 knockdown and 

overexpression could be used to determine whether MAGE-D2 affects the ability 

of p53 to induce these target genes during apoptosis. MAGE-D2 might act as a 

transcriptional cofactor for p53; that is, if MAGE-D2 promotes apoptosis, it might 

enhance the ability of p53 to induce transcription of NOXA, PUMA, or other 

apoptosis-regulating genes during apoptosis. In this case, one would expect to 

see increased mRNA transcripts of these genes by RT-PCR when MAGE-D2 is 

overexpressed, and/or decreased transcription when MAGE-D2 is inhibited with 

RNAi. Western blotting should also be carried out under these experimental 

conditions to determine whether the corresponding protein levels are also 

increased by expression of MAGE-D2. To determine whether any transcription-

regulating effect of MAGE-D2 is indeed mediated by p53, these experiments 

could be performed in both WT and p53-null mouse embryo fibroblasts (MEFs); if 

MAGE-D2 functions by modulating the activity of p53, it would not be expected to 

affect gene transcription in p53-null cells. It would also be interesting to 

determine whether MAGE-D2 affects p53-mediated transcription globally or just 

for apoptosis-regulating genes. It is also possible that, even though an interaction 
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was reported between p53 and MAGE-D2, MAGE-D2 may mediate transcription 

independently of p53, or that MAGE-D2 may interact with mitochondria-localized 

p53 during apoptosis to affect p53’s non-transcription-related functions (such as 

its interaction with BCL-2 family proteins) at the mitochondria. Alternatively, a 

luciferase assay using a p53-responsive promoter could be used to examine the 

effect of MAGE-D2 on p53’s transcriptional activity, but the RT-PCR approach 

has the advantage of assessing multiple p53 targets at once and, importantly, it 

assesses transcription of endogenous DNA promoters (complete with any 

associated proteins) and is therefore more likely to accurately recapitulate 

transcriptional regulation in vivo.  

 The putative interaction between MAGE-D2 and p53 is not well-

established, and it is possible that MAGE-D2 regulates apoptosis independently 

of p53. We found that MAGE-D2 binds with the pro-apoptotic protein p32 and the 

anti-apoptotic protein SUMI-1, and it is likely that MAGE-D2 modulates apoptosis 

through its interaction with one or both of these proteins. Potential experiments 

exploring this possibility will be discussed later in this chapter. Finally, MAGE-D2 

could influence apoptosis independently of presently-known interacting proteins. 

In this case, it might regulate apoptosis through interaction with another binding 

partner, and a large-scale co-immunoprecipitation to look for novel interacting 

partners could provide clues for its function. As there is thought to be extensive 

redundancy among MAGE proteins, it is also reasonable to examine the 

mechanisms by which other MAGE family members, especially those in the 

MAGE-D subfamily, regulate apoptosis. As mentioned above, MAGE-D1-
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mediated apoptosis is known to require the transcription factor p53, implicating 

transcriptional regulation as a potential mechanism for MAGE-D2’s function. 

However, MAGE-D1 can also activate c-Jun N-terminal kinase (JNK), leading to 

MOMP and apoptosis (Salehi et al., 2002), and MAGE-D1 interacts transiently 

with XIAP and may lead to degradation of this anti-apoptotic protein during 

apoptosis (Jordan et al., 2001). It is possible that MAGE-D2, which shares 

extensive sequence homology with MAGE-D1, may regulate apoptosis through 

one of these mechanisms.  

 MAGE-D2 may also regulate cell cycle progression. In patches of 

confluent U2OS cells, MAGE-D2 expression was decreased significantly. This 

suggests that MAGE-D2 might either regulate, or be regulated by, the cell cycle. 

Additionally, in a flow cytometry experiment, it was observed that cells 

transfected with MAGE-D2-Flag yielded a higher peak representing the G1 

phase of the cell cycle compared to mock-transfected cells, as determined 

visually, although the percentages of cells in each phase have not been 

quantified. It would be interesting to carry out additional experiments to 

determine whether MAGE-D2 affects cell cycle progression. First, the above-

mentioned flow cytometry experiment could be repeated and quantified. siRNA 

could be used to determine whether MAGE-D2 knockdown causes the opposite 

effect. That is, can inhibition of MAGE-D2 decrease the proportion of G1 phase 

cells? 

 To determine whether MAGE-D2-Flag expression induces cell cycle 

arrest, cellular proliferation could be monitored to determine whether cell division 
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slows in MAGE-D2-Flag expressing cells compared to untreated cells. 

Additionally, a BRDU-incorporation assay could be used to assess whether 

MAGE-D2-Flag-transfected cells arrest at G1 or progress into S (DNA synthesis) 

phase. When BRDU (bromodeoxyuridine) is added to cycling cells, it becomes 

incorporated into the new DNA that is produced during S phase. A decrease of 

BRDU incorporation indicates that fewer cells are entering S phase, and cell 

cycle arrest may be occurring. MAGE-D2 expression is heterogeneous from cell 

to cell in terms of both quantity and localization. That is, cells express varying 

amounts of MAGE-D2, with localization appearing primarily nuclear/nucleolar in 

some cells and primarily mitochondrial in other cells. These differences may 

correspond to cell cycle progression. To determine whether the cell cycle stage 

affects MAGE-D2 expression and/or localization, cells could be treated with 

cycloheximide to synchronize the cell cycle and then fixed at various time points 

to be examined by immunofluorescence (to assess localization) and western 

blotting (to assess protein level). To determine whether MAGE-D2 expression 

correlates with a specific cell cycle phase, markers of the various cell cycle 

phases could be examined simultaneously. These results would yield clues to the 

mechanism by which MAGE-D2 might regulate, or be regulated by, the cell cycle. 

The absence of MAGE-D2 in some confluent cells seems contradictory to the 

data showing that overexpression of MAGE-D2-FLAG might increase the 

percentage of cells in G1. Again, the tag could be affecting the function of the 

protein, or overexpression might cause non-physiological results. The 

experiments described above can help to determine whether MAGE-D2 plays a 
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role in cell cycle control, and whether it promotes or inhibits cell cycle 

progression.  

 The preliminary data presented here suggest that MAGE-D2 may have a 

pro-apoptotic function and/or a cell-cycle-inhibitory function. However, it must be 

considered that these experiments were based on ectopic protein 

overexpression, which can yield artifacts and should be complemented by 

knockdown data when possible. Ratios among proteins can be critical for normal 

functioning, and gross overexpression can cause other functions not observed 

with the endogenous protein, such as aberrant localization or sequestering of 

another protein. Therefore, knockdown data using RNAi is generally considered 

more reliable and would greatly aid in determining the true, in vivo, functions of 

MAGE-D2. Tags can also interfere with protein function, and MAGE-D2-Flag may 

not behave the same as untagged MAGE-D2 in cells. Data from MAGE-D2-Flag 

overexpression suggest a potential pro-apoptotic or proliferation-inhibitory 

function. However, expression of MAGE-D2 is elevated in a number of cancers, 

and this would be more consistent with the opposite role for MAGE-D2 (anti-

apoptosis and/or pro-proliferation). It is possible that the Flag tag interferes with 

the function of MAGE-D2. This issue could be resolved by transfecting cells with 

untagged MAGE-D2 and/or MAGE-D2 tagged at the other terminus. 

 Our studies have not addressed how MAGE-D2 itself is regulated during 

apoptosis and/or cell cycle control, or what upstream signaling pathways may 

lead to its activation. A large-scale screen for substrates of ATM/ATR found that 

MAGE-D2 is phosphorylated by these proteins at several serine residues 
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following DNA damage (Matsuoka et al., 2007). ATM (ataxia telangiectasia, 

mutated) and ATR (ATM and Rad3-related) are serine-threonine protein kinases 

that act as key regulators of the DNA damage cell cycle checkpoint. ATM 

responds to DNA double-strand breaks, while ATR primarily mediates response 

to UV radiation and stalled DNA replication. Activation of these proteins leads to 

G1 cell cycle arrest mediated by p53, allowing time for cells to repair DNA 

damage prior to dividing (Matsuoka et al., 2000; Maya et al., 2001; Shieh et al., 

2000). In the event of extensive (irreparable) DNA damage, activation of 

ATM/ATR, in conjunction with activation of other signaling pathways, can induce 

apoptosis (Norbury and Zhivotovsky, 2004). To determine whether MAGE-D2 

mediates ATM/ATR-induced response to DNA damage by regulating cell cycle 

arrest and/or apoptosis, the ability of ATM/ATR to regulate these events could be 

assessed with and without MAGE-D2 knockdown. The four serines in MAGE-D2 

that are reported to be phosphorylated by ATM/ATR could be mutated to 

determine whether the effects of these proteins depend specifically on 

phosphorylation of MAGE-D2 at these residues.  

 Overall, the data presented here suggest an interesting potential role for 

MAGE-D2 in mediating apoptosis and/or a cell cycle checkpoint, and 

examination of various aspects of MAGE-D2—reported functions of homologs as 

well as interacting proteins and modifications of MAGE-D2—provides several 

compelling directions for future research. This work provides a foundation from 

which to study the functions and mechanisms of MAGE-D2 and provides 
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valuable tools (expression plasmids and two effective and specific antibodies) 

with which to carry out these studies. 

 

Regulation of Apoptosis by SUMI-1 

 In this work, SUMI-1 is characterized as a novel regulator of BAX-

mediated apoptosis. We show that in healthy cells, SUMI-1 resides at the 

mitochondria, where it regulates mitochondrial dynamics. We present a model in 

which SUMI-1’s exodus from mitochondria during apoptosis inhibits mitochondrial 

fusion, while fission proceeds as normal, resulting in fragmented yet intact 

mitochondria. This fragmentation promotes oligomerization of BAX, leading to 

mitochondrial outer membrane permeabilization (MOMP), cytochrome c release, 

Caspase activation, and apoptosis.  Data from Oncomine show that SUMI-1 is 

upregulated in a variety of cancers, consistent with its anti-apoptotic function. 

Likewise, we show that SUMI-1 is overexpressed in cancerous human cell lines 

compared to non-transformed cells and that inhibition of SUMI-1 sensitizes cells 

to chemotherapeutic-induced apoptosis. Together, these data suggest that 

SUMI-1 may represent a potential chemosensitizing therapeutic target for cancer 

treatment.  

 While we show that SUMI-1 regulates mitochondrial dynamics and 

oligomerization of BAX, the exact biochemical mechanisms of SUMI-1’s function 

remain unknown. Mitochondrial fusion is mediated by Mitofusins 1 and 2 (MFN1 

and MFN2), and these Mitofusins on adjacent mitochondria homo-or hetero-

dimerize to anchor mitochondria together and induce fusion. SUMI-1 may interact 
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with one or both Mitofusins in order to promote their function, or it may affect 

fusion indirectly through another mechanism. BAK, in addition to oligomerizing to 

induce MOMP during apoptosis, also interacts with Mitofusins and regulates 

mitochondrial dynamics during apoptosis. During apoptosis, binding between 

BAK and MFN1 increase, and this interaction inhibits fusion, leading to 

mitochondrial fragmentation and promoting MOMP (Brooks et al., 2007). 

Preliminary data show that inhibition of SUMI-1 with RNAi increases the level of 

BAK protein. Apoptosis induced by UV also increases the level of BAK, and 

SUMI-1 knockdown augments the UV-mediated BAK increase (data not shown). 

It is possible that SUMI-1 normally keeps the level of BAK in check, maintaining 

the ability of mitochondria to fuse. During apoptosis, inhibition of SUMI-1 (such 

as by translocation from the mitochondria, a decrease in level, and/or 

oligomerization), may lead to increased BAK levels, thereby inhibiting fusion and 

sensitizing cells to BAX- and/or BAK-mediated MOMP and apoptosis. Further 

studies could be carried out to determine whether SUMI-1 indeed regulates BAK, 

and through what mechanism (e.g. protein degradation or inhibition of 

transcription) and whether SUMI-1 modulates mitochondrial dynamics and 

apoptosis through BAK or an alternative mechanism.  

It is not known how SUMI-1 itself is regulated during apoptosis. We have 

shown that SUMI-1 translocates from the mitochondria during apoptosis prior to 

cytochrome c in order to regulate MOMP. However, the stimulus triggering this 

translocation is unknown. Preliminary data described in Chapter V suggest that 

SUMI-1 might oligomerize during apoptosis. This oligomerization, mediated by 
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disulfide bond interactions between cysteines in the CHCH domain, would almost 

certainly be regulated by RedOx status. Generally, an increase in oxidation 

induces formation of disulfide bonds, although variations in oxidation might 

influence whether these bonds form intramolecularly (generating a hairpin or loop 

in the CHCH domain) or between SUMI-1 molecules to create an oligomer—It is 

not yet known whether a monomer with intramolecular disulfide bonds or a 

disulfide-bond-mediated oligomer represents the fully-oxidized state of SUMI-1. 

This could be explored by altering the RedOx status of cells and examining the 

effect on development of higher molecular weight SUMI-1 bands by western 

blotting. Given that free radical production is associated with apoptosis, and that 

SUMI-1 appears to oligomerize during apoptosis, it is likely that SUMI-1 

oligomers represent a more oxidized state than the monomers. One hypothesis 

for regulation of SUMI-1 during apoptosis is that SUMI-1 responds to changes in 

RedOx status by forming disulfide-bond-mediated oligomers, inducing its 

translocation from the mitochondria. Presumably, this RedOx stimulus would be 

oxidation induced by free radical generation. This idea could be tested by 

performing a subcellular fractionation to determine the localization of SUMI-1 

monomers and putative oligomers during apoptosis. Mutations could be 

generated in cysteines of the CHCH domain (i.e. cysteine-to-alanine mutations) 

in order to determine whether translocation of SUMI-1 during apoptosis relies on 

disulfide bond formation involving two or more of the four cysteines in this 

domain.  
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Alternatively, SUMI-1 may be regulated by another mechanism such as 

phosphorylation. Another CHCH-domain-containing protein, CHCHD3, was 

recently identified as a substrate for cAMP-dependent protein kinase A (PKA) 

(Schauble et al., 2007). CHCHD3 was characterized earlier this year as an inner 

mitochondrial membrane protein that maintains mitochondrial function and crista 

integrity (Darshi et al., 2011). Upon phosphorylation of CHCHD3 by PKA at 

Threonine 10 (Thr10), CHCHD3 translocates from the mitochondria to the 

nucleus, although the function for this PKA-induced translocation is unknown. 

According to analysis by KinasePhos (Huang et al., 2005), SUMI-1 also contains 

a predicted PKA phosphorylation site, located at Thr9.  Perhaps phosphorylation 

by PKA at this site might induce translocation of SUMI-1 during apoptosis. PKA 

can be activated by cyclic AMP (cAMP) to induce mitochondrial outer membrane 

permeabilization and apoptosis through mechanisms that are not well understood 

(Zhang et al., 2008). If SUMI-1 is phosphorylated by PKA, leading to its 

translocation during apoptosis, this would provide a link between PKA activation 

and sensitivity to mitochondrial outer membrane permeabilization during 

apoptosis. To determine whether SUMI-1 is a substrate of PKA, an in vitro kinase 

assay could be performed using combinations of SUMI-1, PKA, and radiolabeled 

ATP. Additional experiments could be carried out in intact cells by adding an 

inducer of cAMP with and without PKA knockdown and assessing the effect on 

SUMI-1 phosphorylation.  

To assess whether Thr9 is indeed the phosphorylation site, a threonine-to-

alanine mutation could be generated at residue 9 (T9A) to prevent 
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phosphorylation. As negative controls, other threonines and serines could be 

mutated to alanine to generate mutants that can still potentially be 

phosphorylated at Thr9. If the phosphorylation site is identified, phospho-specific 

antibodies could be developed to more easily detect the phosphorylation status 

of SUMI-1. 

To find out whether the translocation of SUMI-1 depends on 

phosphorylation at Thr9, a T9A mutation could be generated to prevent 

phosphorylation. If Thr9 is required for mitochondrial translocation of SUMI-1, 

apoptotic stimuli should fail to induce translocation of the T9A mutant. Mutation of 

threonine to glutamic acid can mimic phosphorylation (Wheatley et al., 2004); a 

T9E mutation could, therefore, induce SUMI-1 translocation. Together, these 

data would provide strong evidence that phosphorylation of SUMI-1 at Thr9 is the 

trigger for SUMI-1’s exodus from the mitochondria.  

Experiments to determine how SUMI-1 translocates during apoptosis will 

provide insight into mechanisms by which SUMI-1’s function can be manipulated. 

This knowledge could aid in the development of chemosensitizing drugs to inhibit 

SUMI-1, assuming that subsequent studies show that SUMI-1 is a suitable target 

for inhibition in cancer treatment. 

A significant strength of the studies presented here is that they were 

carried out in intact cells, primarily using endogenous proteins. In the few cases 

in which ectopic expression was utilized, cells were usually transfected with non-

tagged SUMI-1. The importance of these points was highlighted by a recent 

study reporting SUMI-1 as a modulator of cell migration (Seo et al., 2010). In that 
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paper, SUMI-1 was identified in a screen for novel cell-migration-regulating 

proteins, and several experiments were carried out to confirm this function. 

SUMI-1 was reported in that study to localize to the cytosol rather than the 

mitochondria, but the authors had assessed localization only by ectopic 

expression of an N-terminally-tagged SUMI-1 construct. As shown in Figure 4-6E 

of this work, an N-terminal tag blocks the mitochondrial localization of SUMI-1. 

Thus, the reported localization of SUMI-1 in the study by Seo et al. does not 

represent that of the endogenous protein. Furthermore, the authors claimed that 

co-transfection of p32 with SUMI-1 inhibited SUMI-1’s function. However, the 

authors had transfected cells with an N-terminally tagged p32 whose 

mitochondrial targeting was also disrupted, causing the tagged p32 to localize to 

the cytosol rather than mitochondria. This means that both transfected proteins 

were incorrectly localized and grossly overexpressed, which affects how the data 

can be interpreted. When localized to a different cellular compartment, the 

interaction between the proteins may be altered, and overexpression of 

cytoplasmic p32 might have sequestered the cytoplasmic SUMI-1 or affected 

SUMI-1 in some manner that does not occur when both proteins are in the 

mitochondria. For example, the nature of the interaction between p32 and SUMI-

1 might be different when SUMI-1 is embedded in the mitochondrial outer 

membrane as opposed to in its soluble form, and the disulfide bond formation—

and therefore the intra- and inter-molecular structure—will differ between the 

oxidative environment of the mitochondria and the reducing environment of the 

cytosol. 
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While the studies here were carried out in intact cells and relying mostly 

on endogenous proteins—conferring many benefits over in vitro and ectopic 

expression experiments—studies using immortalized cell lines do not always 

recapitulate what occurs in a live organism. To address this issue, SUMI-1 

knockout mice could be generated for in vivo studies. Because SUMI-1 

knockdown will probably increase apoptosis in the mouse as it does in human 

cell culture, it is likely that development will be disturbed by this deletion or that 

embryonic lethality may result. Further complicating the issue is that SUMI-1 has 

also been identified in screens for regulators of oxidative phosphorylation and 

cell migration, and both of these processes are essential during development. In 

the case of embryonic lethality, a conditional knockout mouse could be 

generated using a Cre/LoxP system to ablate SUMI-1 in specific mouse tissues. 

From these mouse knockout studies, we could determine whether SUMI-1 

functions similarly in a live organism as in cell culture. The effect of SUMI-1 

knockdown on apoptosis in vivo can be assessed using TUNEL staining of fixed 

mouse tissues, or of fixed embryo tissue in the case of embryonic lethality. 

Mouse embryo fibroblast (MEF) cells generated from these mice can also be 

used for experiments to assess the role of SUMI-1 in non-cancerous cells. An 

advantage here is that SUMI-1 expression can be completely ablated. It is 

difficult to transfect non-cancerous cell lines such as WI38 and BJ cells with 

siRNA, but SUMI-1-null MEFs should have complete abrogation of SUMI-1 

expression and would provide another means by which to study non-transformed 

cells. These cells could also help answer questions about SUMI-1 
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oligomerization, as the HMW bands detected by western blotting with SUMI-1 

antibody should be completely eliminated in SUMI-1-null MEFs, whereas with 

siRNA only partial knockdown is achieved, and if the oligomer form of SUMI-1 is 

favored, it may not disappear with siRNA treatment. 

Several data suggest that SUMI-1 may be a candidate drug target for 

chemosensitizing agents in cancer treatment: SUMI-1 is an anti-apoptotic 

protein, and evasion from apoptosis is a hallmark of cancer; elevated SUMI-1 

expression correlates with transformation of cell lines; SUMI-1 is elevated in a 

wide variety of human cancers; and inhibition of SUMI-1 sensitizes cancer cell 

lines to apoptosis induced by chemotherapeutic agents such as doxorubicin and 

cisplatin. Before SUMI-1 can be considered a valid drug target, additional studies 

are needed. First it should be determined whether SUMI-1 knockdown promotes 

shrinkage of tumors in nude or SCID (immune-compromised) mice; based on cell 

culture data, it is likely that SUMI-1 inhibition will sensitize the ectopic tumors to 

treatment with chemotherapeutic drugs. It is difficult to utilize siRNA in this type 

of experiment as the siRNA becomes quite dilute during the initial proliferation of 

tumor cells. To avoid this issue, a dominant-negative SUMI-1 (SUMI-1 c-

terminally tagged with Flag) could be used to inhibit SUMI-1; tumor cells stably-

expressing SUMI-1-Flag could be compared with mock-transfected cells. 

In summary, the data presented here establish SUMI-1 as a novel 

regulator of mitochondrial fusion/fission dynamics and BAX-mediated apoptosis, 

and because the experiments were performed in live cells using mostly 

endogenous proteins, they are likely to be physiologically relevant. Future studies 
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can help us to learn the upstream signaling pathways that regulate SUMI-1, to 

understand whether SUMI-1 functions the same way in a live organism as it does 

in cell culture, and to determine whether SUMI-1 is a suitable target for cancer 

therapeutics.  

 

Roles for Interactions Among p32, SUMI-1, and MAGE-D2 

 In this study, SUMI-1 and MAGE-D2 were both identified as binding 

partners for p32, and MAGE-D2 and SUMI-1 were also found to interact with 

each other. The initial rationale behind the search for p32-interacting proteins 

was to better understand the function of p32; we hoped to find an interaction with 

a known apoptosis-regulating protein that would provide clues regarding the 

mechanisms by which p32 regulates apoptosis. No such proteins were found 

among the eleven putative p32-interacting partners identified, but SUMI-1 and 

MAGE-D2 appeared to be promising candidates for novel regulators of 

apoptosis, and we elected to first characterize the functions of these two proteins 

on their own, independent of their interactions with p32. To understand the 

mechanisms of these three proteins in more detail, it would be helpful to 

determine the purpose for their interactions with one another.   

Several studies could be carried out to determine the nature of the 

relationship between SUMI-1 and p32. First, it should be determined whether p32 

interacts with SUMI-1 and/or MAGE-D2 to regulate apoptosis, and which protein 

is upstream and which is downstream in this pathway—that is, does p32 regulate 

SUMI-1 and MAGE-D2, or vice versa? To accomplish this, various 
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overexpression and knockdown experiments can be utilized. For example, SUMI-

1 could be overexpressed with and without p32 knockdown or overexpression, 

and the ability of SUMI-1 overexpression to inhibit apoptosis could be assessed. 

If p32 acts downstream of SUMI-1, then its inhibition or overexpression might 

affect the ability of SUMI-1 overexpression to block apoptosis. By performing 

various combinations of these experiments, it can be determined whether the 

p32-SUMI-1 or p32-MAGE-D2 interactions mediate apoptosis, as well as whether 

p32 lies upstream or downstream of these proteins in the respective pathways. It 

is also possible, however, that p32 interacts with one or both proteins in a 

cooperative manner; two of the proteins, or all three, could comprise a complex 

that regulates apoptosis together—in this case, we might find that none of the 

proteins modifies the function of another. It is also possible that SUMI-1 and p32 

do not interact to regulate apoptosis. Both proteins have reported roles in 

oxidative phosphorylation, and it is possible that they interact to mediate cellular 

metabolism, apoptosis, or both processes.   

After a purpose for the interaction is established, the mechanism for this 

regulation can be explored. Mapping experiments indicate which specific 

domains interact and can often provide leads regarding how one protein might 

regulate another. Mapping can be accomplished by generating tagged deletion 

mutants of each protein and carrying out a co-immunoprecipitation to identify 

which peptides interact. Deletion mutants for p32 are available from a previous 

lab member, and I have designed and produced six Myc-tagged deletion mutants 

each for SUMI-1 and MAGE-D2 (Figure 6-1). In addition to mapping, it can be 
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determined whether inhibition or overexpression of one protein affects the other’s 

expression level or localization. Knockdown of SUMI-1 does not appear to affect 

the level of endogenous p32 detected by western blotting with a p32 antibody 

(data not shown). However, another antibody that is marketed as a BCL-xL 

antibody (Santa Cruz, anti-BCL-x S-18, sc634) recognizes two strong bands (on 

a western blot) of approximately 34 and 37 kD in size that, surprisingly, represent 

p32 rather than BCL-xL (Figure 4-20). During apoptosis, these bands shift—the 

34 kD band disappears, while the 37 kD band becomes stronger (Figure 4-19). 

This shift in migration of p32 may represent a modification of p32 that occurs 

during apoptosis. Interestingly, knockdown of SUMI-1 promotes this shift in 

migration and even induces a partial shift in the absence of apoptotic stimuli, 

suggesting that SUMI-1 inhibits this modification of p32. During apoptosis, p32 is 

released from the mitochondria concurrent with cytochrome c (unpublished data 

from our laboratory), while SUMI-1 translocates prior to cytochrome c, suggesting 

that SUMI-1 translocates before p32 and therefore dissociates from p32 upon its 

exit from the mitochondria.  Translocation of SUMI-1 from the mitochondria 

(causing its release from p32), might promote p32 modification, allowing MOMP 

and apoptosis to proceed.    

Upon examination of the BCL-xL S-18 antibody and attempts to determine 

how it recognizes p32, it was found that p32 contains an area of homology with 

BCL-xL within the N-terminal BH4 domain (Figure 4-21). Apparently, this region 

of p32 mimics the BH4 domain of BCL-xL well enough to induce strong binding 

between the BCL-xL antibody and p32. This suggests that p32 might contain a 
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BH4-mimetic domain. Perhaps p32 can interact with or mimic other BCL-2 family 

members via this domain. A previous lab member performed a co-

immunoprecipitation experiment searching for interactions between p32 and 

several BCL-2 family members, with inconclusive results (data not shown). It is 

possible that p32 interacts with one of these proteins transiently, or more likely, 

that p32 interacts with these proteins only during apoptosis; for example, the 

potential BH4-mimetic domain could be hidden by SUMI-1 until SUMI-1 

translocates from the mitochondria during apoptosis.  It would be interesting to 

explore this hypothesis with additional co-immunoprecipitation experiments in the 

presence of apoptotic stimuli, using crosslinking to preserve weak or transient 

interactions if necessary.  

Data published by Itahana and Zhang show that p32 regulates apoptosis 

by recruiting ARF to the mitochondria, inducing a change in mitochondrial 

membrane potential and sensitizing cells to apoptotic stimuli (Itahana and Zhang, 

2008). It is possible that ARF dissociates SUMI-1 from p32, causing SUMI-1 

translocation from mitochondria. Alternatively, SUMI-1 might sequester p32, 

preventing its interaction with ARF until SUMI-1 translocates during apoptosis. It 

is unknown whether these three proteins can exist in a complex together, or 

whether SUMI-1 can influence the ability of p32 and ARF to interact together. A 

sequential co-IP could determine whether the proteins are part of the same 

complex. To determine whether SUMI-1 affects the p32-ARF interaction, a co-IP 

between p32 and ARF could be carried out with and without siRNA knockdown of 

SUMI-1.   
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Establishing a purpose and mechanism for the interactions among p32, 

MAGE-D2, and SUMI-1 will provide mechanistic insights into the functions of 

these proteins and may identify a novel signaling pathway in regulating 

apoptosis.  
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Figure 6-1. MAGE-D2 deletion mutants. 
Six Myc-tagged MAGE-D2 deletion mutants have been generated for mapping 
the interaction between MAGE-D2 and p32 or other proteins.  
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Figure 6-2. SUMI-1 deletion mutants. 
Six Myc-tagged SUMI-1 deletion mutants have been generated for mapping the 
interaction between SUMI-1 and p32 or other proteins.  
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