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ABSTRACT

Austin J Baird: Modeling valveless pumping mechanisms
(Under the direction of Laura Miller)

Several mechanisms of valveless pumping are studied numerically. The discussion begins with

an introduction into the two well-known driving mechanisms of flow in valveless tubes: impedance

pumping and peristalsis. Flow generated from peristalsis and impedance pumping is examined using

the immersed boundary method. Previous research has shown that impedance pumping, also known

as dynamic suction pumping, produces bidirectional flows. This change in direction is dependent

upon pumping frequency, the position of the actuation point, and several other parameters. In this

thesis, I investigate the direction and magnitude of flow as a function of the Womersley number and

the diameter to length ratio of the flexible portion of the tube. The diameter to length ratio has

a significant effect on the overall net flow rate and direction. This type of sensitivity is not seen

in peristalsis where the average net flow is determined by direction and speed of the contraction

wave. Variations in Womersley number are used to determine at what scales peristalsis and dynamic

suction pumping are effective. For the parameters considered, valveless suction pumping does not

generate significant flow for Womersley numbers less than 1.

In the second part of the thesis, the flow direction of impedance pumping as a function of tube

diameter and pumping frequency is examined in more detail. Impedance pumping, is a mechanism

that has been speculated to be the driving force behind the uni-directional flow present in the

vertebrate embryonic heart. Although the bidirectional nature of this mechanism is something that

has been described in experimental and computational studies, no well established explanation has

been offered for why changes in flow direction are seen for certain parameters choices. We will

address the bidirectional nature of this mechanism by investigating flow direction as a function of

the ratio of the tube diameter to length and the elastic properties of the tube. Direct numerical

simulations of the fully-coupled fluid-structure interaction problem will be used to determine the

magnitude and direction of fluid flow as a function of these parameters. The diameter to length
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ratio has a strong effect on the direction of flow when all other parameters are held fixed. The

resonant frequency of the tube, based upon the elastic properties of the model and the added mass

of the fluid, is also investigated. Resonance of two separate sections of the tube divided by the

compression region can govern the resulting direction of flow if the tube is driven at the resonant

frequency of one of the sections. Understanding the bi-directional nature of this popular pumping

mechanism is important in the design of micro-fluidic pumps as well as the understanding of the

structure and function of valveless hearts.

In the third part of the thesis more the surrounding structures and properties of actual tubular

hearts are used to improve my model of valveless pumping. I will focus on the tubular, valveless

heart of the chordate, Clavelina picta. These hearts operate at a Womersley number of about 0.3.

We investigate traditional impedance pumping on these small scales and show computationally and

experimentally that significant flow is not achieved. We propose a different pumping mechanism

that couples traveling waves of depolarization to the contraction of the boundary. Active contractile

waves replace passive elastic waves, but the resulting kinematics are similar to dynamic suction

pumping. This pumping mechanism can be computationally shown to drive fluid flow at the low

Womersley numbers found in Clavalina picta hearts.
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CHAPTER 1: INTRODUCTION

Several mechanisms of valveless pumping will be numerically investigated in this thesis with

a focus on flow generation at small scales. In the first section, peristalsis will be compared to

dynamic suction pumping over a range of scales relevant to tubular hearts. In the second section,

the bidirectional nature of dynamic suction pumping will be investigated with a focus on driving

the tube at the resonant frequencies. In the third section, the pumping models will be improved by

the addition of structure such as the pericardium and by triggering contraction waves using models

from electrophysiology.

Dynamic suction pumping, also known as impedance pumping has recently been preposed as the

mechanism by which he vertebrate embryonic heart drives the flow of blood [11]. This mechanism

has a long history of study as a general fluid dynamic mechanism. Numerous mathematical

and experimental tidies have built the groundwork for its use as a valveless pumping mechanism

[24; 26; 25; 2; 20; 19]. Impedance pumping essentially requires an elastic tube attached to a more

rigid structure at each end with an off-center actuation site. Although recent work suggests that

embryonic and other tubular hearts use this pumping mechanism, little work to date has explicitly

addressed scaling effects relevant to the size of the actual tubular hearts. The primary focus of this

thesis is to consider these scales and explore alternative pumping mechanisms.

1.1 Outline

To begin we will discuss previous research related to the fluid dynamics of impedance pumping

and peristalsis in general. In chapter 2, a description of the numerical method used to solve the

fully-coupled fluid-structure interaction problems considered in this thesis will be provided. In

chapter 3 we begin by investigating impedance pumping for small scale (low Womersley number)

fluid dynamics and analyze its viability as a mechanism for driving flow in ing tubular hearts. Net

flows generated by impedance pumping will be compared to those generated by peristalsis at similar

scales.
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In chapter 4, we will further explore the bi-directional nature of the impedance pumping

mechanism and determine how the flow directions depends upon geometry and elastic properties.

Specifically we will consider how the direction of net flow depends upon the diameter to length ratio

of the elastic tube and the resonant frequencies of various sections of tube.

In chapter 5, we integrate some of the neuromechanical properties of the actual heart into our

numerical model. In doing so we will create a new type of pumping mechanism. We will test this

mechanism at the low Womersley numbers found in invertebrate and embryonic vertebrate heart

tubes. We will then add a rigid boundary around the pumping region to mimic the stiff pericardium

that surrounds heart tubes in most chordates.

1.2 Impedance Pumping and Peristalsis

Valveless hearts play a crucial role in transporting fluid throughout the circulatory system. This

transport of fluid and other materials happens on a large range of scales, from the embryonic heart

on the order of microns to the salp heart on the order of millimeters or centimeters. In the early

stages of cardiac morphogenesis, vertebrates use valveless pumping to transport blood through the

developing circulatory system [4; 29]. Valveless tubular hearts are also found in many invertebrates,

such as urochordates and cephalochordates [33]. This diversity of invertebrate and vertebrate

tubular hearts leads to a large range of scales in which fluid is transported effectively. Two major

valveless pumping mechanisms, peristalsis and dynamic suction pumping, have been proposed as

methods by which blood is driven. these two mechanisms will be studied over a range variety of

Womersley numbers, Wo, and tube diameters, d. Here we define the Womersley number to be

Wo = r
√

ω
ν , or the ratio of unsteady affects to viscous affects in pulsatile flow.

Peristalsis has long been studied as a basic transport mechanism for many tubular smooth

muscle structures [36]. This pumping mechanism is known to be robust over a range of scales and is

used in many medical and biological applications. For example, peristalsis moves the contents of

the ureters and gastrointestinal tract in humans [8]. In terms of nonbiological applications, medical

drug administration devices also use peristaltic pumps to deliver fluid at consistent low flow rates.

Peristalsis is most simply defined as an active wave of contraction traveling down the length of the

tube. For many biological pumps, the compressed portion of the tube achieves almost complete
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occlusion allowing the traveling contraction to force the contents down its length. Peristalsis typically

moves the contents of the tube at an average velocity on the order of the speed of the contractile

wave [23]. Various computational studies have also focused on the dynamics of peristaltic pumping.

Fauci et al. has shown peristaltic transport to be effective at propelling solid particles through a

channel when the compression wave is near full occlusion of the channel [9]. Others have simulated

peristaltic pumping for an elastic tube filled with a viscoelastic fluid [16] and explored the parameter

space of Weissenburg numbers and occlusion ratios [6].

Another prominent pumping mechanism which has garnered a great deal of interest is the

dynamic suction pump which was first studied by Liebau [24; 26; 25]. This pumping mechanism

is most simply defined by an isolated region of active contraction that is asymmetrically located

in a section of flexible tube with stiffer ends. The flexibility of the tube allows the transport to

be augmented by passive elastic traveling waves generated from the active contraction site. These

traveling waves are reflected upon contact with the more rigid connections, see figure 1.3.1. Since

Liebau’s work, analytical models of dynamical suction pumping have been developed by Auerbach

et al. [2] and Bringley et al. [3]. Physical experiments by Hickerson et al. [13] and Bringley et al.

[3] support that this pumping mechanism can effectively transport fluid under certain conditions.

Finally, numerical simulations by Jung and others [20; 19] show that this is a viable mechanism

for certain parameters and detail the complex relationship between pumping frequency and flow

direction. The vast majority of these studies, however, have focused on Wo > 1.

One of the characteristic properties of dynamic suction pumping is the nonlinear relationship

between pumping frequency and volumetric flow rate. Other interesting properties include the

directional dependence on the pumping frequency and the generation of bidirectional waves from

the region of active contraction. Experimental studies by Forouhar et al. [11] suggest that the

zebrafish embryonic heart is a dynamic suction pump since experimental data show a nonlinear

frequency-flow relationship. Further support was due to the observation that a bidirectional wave of

contraction emanates from the pacemaker region.

One of the primary purposes of this thesis is to explore the relationship between Womersley

number and the magnitude and direction of flow, particularly for Wo < 1. The significance of this

choice stems from the fact that biological applications of tubular pumping span a range of scales

larger than what has typically been studied. For example, many invertebrates have tubular valveless
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Figure 1.3.1: Impedance pumping shown in panels A-D. Compression begins in A and the bi-
directional traveling waves are dispersed from the compression region at B. These traveling waves
are reflected at each rigid boundary in panels C and D.

hearts [21], and these organisms span the range from small sea squirts with hearts on the order of

tens to hundreds of microns (Wo < 1) to salps hearts on the order of millimeters (Wo > 1). The

vertebrate embryonic heart grows from a valveless tube on the order of tens of microns (Wo < 1)

to a large four chambered pump on the order of centimeters (Wo > 1) [35]. Diameters found in

medical applications using peristaltic pumps also range from fractions of a millimeter to tens of

centimeters. This range of Womersley numbers lends itself well to a numerical study of pumping

mechanisms using the immersed boundary method.

1.3 Introduction to Impedance Pumping Reversals

One of the least understood properties of impedance pumping are the changes in the direction of

the fluid flow. This phenomenon was first studied by Leibau [24], when he showed that a periodic

contraction at a location antisymmetric with respect to a flexible tube generated net flow. In 2001

Jung and Peskin[20] used numerical simulations to show that the frequency of pumping had a

dramatic effect upon the magnitude as well as the direction of fluid flow for a fixed tube geometry and

fixed elastic properties. They also noted that the tube resonated at certain frequencies but did not

calculate the resonant frequency. The effects of resonating the elastic section was further investigated

by Gharib et al. [15; 22] using a numerical method to solve the fluid-structure interaction problem.
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They fixed the tube geometry and calculated the resonant frequency by calculating the frequency of

free vibration of the entire tube. Their model was matched to previous experimental investigations

by Hickerson in 2006, where fluid velocity and pressure data was collected for various parameters

including: location of actuation site, frequency of pumping, and amplitude of pumping [13]. For

a fixed tube geometry and fixed elasticity of the tube, they found that the maximum flow rate

occurred at the resonant frequency of the system and mentioned that flow reversals occur as a

function of pumping frequency. Also using numerical simulations of the fluid-structure interaction

problem, Baird et al. found that the Wo and the ratio of the tube diameter to the length of the

pumping region had a strong effect upon flow direction [1]. The Wo number in their investigations

was changed by altering the viscosity of the fluid and the elastic properties and pumping frequency

remained fixed.

The direction of net flow has also been described using analytical models. Ottersen et. al.

developed a one dimensional model of an impedance pump [30]. Like the studies from Jung and

Peskin they were able to determine that flow direction was a function of pumping frequency but did

not investigate the resonant properties of the elastic tube. A similar study done by Manopoulos et al.

determined that flow direction was a function of frequency for fixed geometries and elastic properties

[5]. They computed the natural frequency for the entire flexible tube through a free vibration

experiment, exciting the tube and recording the damped vibrations. They noted that the fixed

maximum flow rate was achieved near the resonant frequency of their experiment when all other

parameters were fixed. They also found, similar to Jung and Peskin, that the flow direction was a

function of compression location along the flexible tube for fixed pumping frequencies. Bringley et

al. was not able to produce flow reversals in their analytical model, but did note that flow reversals

existed in their experimental model [3].

Impedance pumping has been proposed as the driving mechanism of valveless tubular hearts

such as the zebrafish embryonic heart [11]. It has also been used in engineering applications as a

noninvasive microfluidics pump. A feature of this pump which has been difficult to predict is the

presence of flow reversals for certain parameter choices. Some organisms rely on uni-direction flow

in their vascular systems, and flow reversals can damage or even death. In an engineered system,

changes in the direction of flow could cause catastrophic events. Medical pumps used for drug

delivery are often in operation for long periods of time to administer a specific amount of drug.
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Flow reversals due to changes in the system such as the pressure jump could result in an overdose

of medicine, or an absence of the drug. To better understand how flow direction is determined, we

will present a comprehensive numerical study investigating how the different resonant frequencies

of the two separated elastic tube regions, α1 and α2, see figure 4.1.1, determine the resulting flow

direction. We will also investigate how the non-dimensional length ratio L̂ = (elastic length)/(tube

diameter) affects the flow direction. The immersed boundary method will be used to solve the

resulting fluid-structure interaction problem.
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CHAPTER 2: NUMERICAL METHODS

To begin the discussion of some of the questions that will be addressed in this thesis, we need to first

introduce the numerical method used to solve the fluid-structure interaction problem. Since we will

be considering the effectiveness of various pumping mechanisms, it is necessary to model a flexible

tube moving in a fluid, with the resulting movement driving the flow. This type of problem calls

for a coupling of the boundary generated forces to the forcing term in the Navier Stokes equations.

We will use the immersed boundary method to solve these fully-coupled fluid-structure interaction

problems. In this section we will introduce some of the details of this method and discuss how to

model a simple tubular pump. Full details of the method, can be found in appendix A with a full

discussion of the numerical implementation in appendix B.

2.1 Scaling

Both the Reynolds number (Re) and the Womersley number (Wo) have been used to discuss scaling

effects in fluid dynamics including mechanisms of fluid transport. Jaffrin and Shapiro [17] discuss

analytical results of peristaltic pumping in terms of the Re, and Jung and Peskin [20] numerically

studied dynamic suction pumping for Re in the range of 0 to 160. For consistency, this thesis will

focus on Wo, but the two dimensionless parameters can be related (see below).

The Re appears in the non-dimensional form of the Navier-Stokes equations,

u

t
+ u · ∇u = −∇p(x, t) + µUlρ∇2u + f(x, t), (2.1)

∇ · u = 0. (2.2)
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Table 2.1: Tubular heart parameters. Here d.p.f stands for days post fertilization, HH represents
the Hambuger-Hamilton stage of chicken embryo development, and d.p.c. stands for days post
conception [12]. Peak flow rates and maximum diameters of the heart were used in the calculations.
It was assumed that the dynamic viscosity of the blood was 0.003 N s/m2, and the density of
the blood was 1025 kg/m3. Note that the calculation of the dimensionless numbers is sensitive to
the choice of the characteristic length, velocity, viscosity, and density. These calculations may be
different than those reported in the references.

Species Flow rate Diameter Frequency Wo Re
(mm/s) (mm) (Hz)

Zebrafish, 26 h.p.f. [11] 1 0.05 2.3 0.111 0.017
Zebrafish, 4.5 d.p.f. [18] 10 0.1 2 0.207 0.342
Chicken, HH15 [12] 26 0.2 2 0.414 1.777
Chicken, HH18 [12] 170 0.14 2 0.172 4.82
Mouse, 8.5 d.p.c. [7] 3 0.075 2.8 0.184 0.077
Mouse, 9.5 d.p.c. [7] 4 0.125 2.1 0.265 0.171
Mouse, 10.5 d.p.c. [7] 4 0.15 2.4 0.340 0.205
Ciona intestinalis [21] 5 2 0.55 0.9 3.3

where u is the fluid velocity at position x and time t, p is the pressure, µ is the dynamic viscosity

of the fluid, l is the characteristic length scale, U is the characteristic velocity, ρ is the density of

the fluid, and f is the body force. Once the fluid equations have been non-dimensionalized the

Reynolds number is identified to be

Re = Ulρµ. (2.3)

To study the scaling effects of pulsatile flows, it is generally more convenient to use the another

dimensionless number that takes into account the frequency of pumping. Such a number number is

the Womersley number, which characterizes the pulsatile nature of the flow [39]. The Womersley

number (Wo) is defined to be

Wo = a
√
ων, (2.4)
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where a is the radius of the tube, ω is the frequency of the pulsatile flow, and ν = µρ is known as

the kinematic viscosity. In general, unsteady effects are significant for Wo > 1 and are negligible for

Wo < 1. The Wo can be directly related to Re by choosing the characteristic velocity and length

appropriately. We can define the characteristic velocity of the system to correspond to the velocity

of the oscillating structure using the relation U = ωa. Plugging this into the formula for the Re

results in Wo ∼
√
Re. Using this definition, we can see that Wo is also proportional to the ratio of

unsteady inertial forces to viscous forces. Note that as viscosity is increased, or the radius of tube

becomes smaller, Wo becomes smaller. For example, Wo ranges from as large as 20 in the aorta to

as small as 10−2 in the capillaries.

To have a better understanding of how scaling and geometry affect fluid flow, this thesis will

investigate several orders of magnitude of Wo using direct numerical immersed boundary simulations

of peristalsis and dynamic suction pumping. We will also investigate how the ratio of tube diameter to

length affects fluid transport in both pumping mechanisms. The need to have a broad understanding

of these pumping mechanisms is important to all manor of applications involving valveless tubular

fluid transport. Specific questions to be addressed include: 1) At what scales does dynamic suction

pumping generate significant net flow? 2) What diameter to length ratio is the most effective at

moving fluid for a given set of parameters? 3) What is the direction of flow across Wo and for

various diameter to length ratios?

2.2 Immersed Boundary Method

The immersed boundary method was first developed by Peskin [31] as a means to deal with the

interaction between an elastic boundary and the fluid in which it is immersed. Since its original

development, a number of other methods have been used to handle the fully-coupled fluid structure

interaction problem in a similar way [28]. The method works well at a variety of scales found below

the turbulent regime, making it useful in many biological applications. Some of these applications

include swimming organisms in viscoelastic fluid [37], insect flight [27], and lamprey swimming [38].

The immersed boundary method handles the problem of having an elastic boundary immersed

in an incompressible viscous fluid by using two separate but interactive coordinate frames. The

incompressible fluid is discretized on a fixed Cartesian grid (Eulerian frame) and the moving elastic
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boundary is discretized on a moving curvilinear mesh (Lagrangian frame). The deformation of the

boundary generates a force which is imparted to the surrounding fluid. The fluid is then driven by

this force, and the boundary moves at the local fluid velocity.

The governing equations for the fluid are defined by the full 2D Navier-Stokes equations given by

ρ
(u

t
+ u · ∇u

)
= −∇p(x, t) + µ∇2u + f(x, t), (2.5)

∇ · u = 0, (2.6)

Equation 2.5 is the momentum equation for a fluid, and equation 2.6 defines the incompressibility

of a constant density fluid.

The forcing term f(x, t) is particular to the application and may include resistance to bending,

resistance to stretching, displacement from a tethered position, the action of virtual muscles, or

external forces [31]. One of the simplest types of force is a penalty force that is proportional to

the displacement of the immersed boundary from a target boundary or preferred position. This

target boundary could be fixed or could move with a prescribed motion. The position in Cartesian

coordinates of the immersed boundary that interacts with the fluid is given by X(s, t). Here s

describes the position of the boundary along its length. To move the boundary in a preferred

motion, target points are given Cartesian coordinates that may change in time defined by Y(s, t).

When the immersed boundary points deviate from the preferred position, a force is applied that is

proportional to the distance between the target and actual boundaries. This force can be adjusted

by changing the magnitude of ktarget so that the distance between the actual boundary and its

preferred configuration is kept within some tolerance. Another way to think about the target

boundary is to assume that springs of stiffness ktarget connect the actual boundary to the target

boundary. The force that results follows Hooke’s law, describing force generated by a linear spring,

and is defined to be:
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Ftarget(s, t) = κtarget(Y(s, t)−X(s, t)). (2.7)

In addition to the target force, forces may also be generated through the elastic properties of the

boundary. For this application, every boundary point along the tube is connected by a series of

beams and springs which resist bending and stretching, respectively. These additional forces can be

calculated as

Fbeam(s, t) = κbeam
4X(s, t)s4, (2.8)

Fspring(s, t) = κspring {(|X(s, t)s| − 1) X(s, t)/s|X(s, t)/s|} . (2.9)

Equation 2.8 is the beam equation which describes the force generated due to the resistance to

bending, and κbeam is the corresponding coefficient of stiffness. Equation 2.9 describes the force

resulting from the tube’s resistance to stretching and compression, and κspring is the corresponding

spring coefficient. A summation of all three forcing terms is then used to describe the total force

applied to the fluid due to the boundary. This force is defined to be

F(s, t) = Ftarget(s, t) + Fbeam(s, t) + Fspring(s, t). (2.10)

To spread this force to the surrounding fluid defined in the Eulerian frame, Equations 2.5 and

2.6 are coupled to the boundary equations using integral transforms with delta function kernels:

f(x, t) =

∫
F(s, t)δ(x−X(s, t))ds (2.11)
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X

t
= u(X(s, t), t) =

∫
u(x, t)δ(x−X(s, t))dx. (2.12)

To numerically approximate these integral transforms, a regularized delta function, δh, is used,

δh(x) = 1h2φ (xh)φ (yh) , (2.13)

where h = dx the numerical mesh width. Here we can define φ(r) as

φ(r) =





14(1 + cos(πr2)) |r| ≤ 2

0 otherwise

(2.14)

A more detailed discussion of this function is found in Peskin [31]. The smoothed approximation

to the force density is now defined in the Eulerian frame as f(x, t). The forces created through

deformations of the boundary are now influencing the fluid. To numerically solve the fluid equations,

equations 2.5 and 2.6 are discretized on a periodic 630 × 630 grid and solved using a fast Fourier

transform fluid solver, details of which can be found in Peskin and McQueen [32]. Once the fluid

velocity is calculated, a discretization of equation 2.12 with the regularized delta function is used to

interpolate the local fluid velocity to the Lagrangian boundary points. This effectively enforces a

no-slip condition at the boundary. Once the new position of the boundary is updated, one time-step

of the immersed boundary routine is concluded.

2.3 Modeling

To effectively investigate the two pumping mechanisms at various scales, a numerical model of

the tube must first be constructed. For comparison with previous analytical, numerical, and
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experimental work, the computational immersed boundary will resemble a closed racetrack. The

section of tube where the contraction occurs will be flexible, and the remainder of the racetrack will

be relatively rigid, see figure 2.3.1. The racetrack is constructed by connecting two half circles to

two straight portions of tube. These circles are off center with radii set so that the diameter of the

channel is equal throughout. The circular sides and the top of the racetrack will be tethered to

target points so that they are relatively rigid. The bottom straight portion of the racetrack resists

bending and stretching with no tether points so that the boundary can move freely. To describe the

curved regions of the tube, we will define the inner radius to be R2, the outer radius to be R1, and

the horizontal shift as ri, see figure 2.3.1. The half circles can then be constructed by setting the

(x, y) coordinates as

(x, y) =





(R2 cos(θ), R2 sin(θ)± ri) r = R2

(R1 cos(θ), R1 sin(θ)± ri) r = R1

(2.15)

With the ± indicating which side of the tube you are describing. Note that the horizontal shift

is the same distance as to the bottom straight tube. Also note the θ ∈ (−3π2, π2) for the right hand

portion of the tube and θ ∈ (π2,−3π2) for the left hand portion. The racetrack is immersed in a

incompressible viscous fluid with constant density ρ and viscosity µ in a periodic square domain.

With this configuration immersed in the fluid, peristalsis and dynamic suction pumping may

be implemented as the mechanisms driving flow using moving target points in the active region

of contraction as described in the next section. Relevant physical and numerical parameters are

summarized in Tables 2 and 3.
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Figure 2.3.1: Model of a closed valveless racetrack. Dotted portions identify flexible regions and
solid lines indicate rigid regions. Pumping mechanics are implemented along the flexible section
denoted by dotted lines. R2 is the inner radius, R1 is the outer radius, d is the diameter, ri is the
distance to the inner straight tube from the origin (and also the distance to the center of the offset
circular regions), ro is the distance from the origin to the outer straight portion of the tube.

Table 2.2: Spatial dimensions and numerical parameters for the heart tube simulations. These are
dimensional parameters used to simulate impedance pumping and peristalsis to investigate scaling
effects on pumping efficacy.

Parameter Value

Length of domain (m) 0.0005
Width of domain (m) 0.0005
Diameter of tube [d] (m) prescribed
Outer radius [R1] (m) 0.0001
Inner radius [R2] (m) R1 - diameter
Distance to inner straight tube [ri] (m) 0.000125
Distance to outer straight tube [ro] (m) 0.000125 + d
Length of straight tube (m) 0.00025
Frequency of pumping (1s) 2.3
Percent of contraction 0.8
Pulse Period (s) 0.43
Final simulation time (s) 4
Time step [dt] (s) 0.00003047619
Velocity output time step (s) 0.025
Spatial step [dx] (m) 8.33333333e-7
Boundary step [ds] (m) 4.16666667e-7
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Table 2.3: Mechanical variables for the heart tube simulations.
Parameter Value

Density of the fluid [ρ] (kgm3) 1025.0
Viscosity of the fluid [µ] kgsm prescribed
Bending coefficient of the boundary [κbeam] (Nm2) 3240000
Stretching stiffness of the boundary [κspring] (kgs2) 3240000
Stretching stiffness of target points [κtarget] (kgs2) 3240000
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CHAPTER 3: IMPEDANCE PUMPING VS. PERISTALSIS ACROSS RE

Flow generated from peristalsis and dynamic suction pumping is examined using numerical

simulations. Previous research has shown dynamic suction pumping to be bidirectional. This change

in direction is dependent upon pumping frequency, the position of the actuation point, and several

other parameters. This thesis investigates the direction and magnitude of flow as a function of

the Womersley number and the diameter to length ratio of the flexible portion of the tube. The

diameter to length ratio has a significant effect on the overall net flow rate and direction. This

type of sensitivity is not seen in peristalsis where the average net flow is determined by contraction

wave speed. Variations in Womersley number are used to determine at what scales peristalsis and

valveless suction pumping are effective. For the parameters considered, valveless suction pumping

does not generate significant flow for Womersley numbers less than 1.

3.1 Peristalsis

To simulate peristaltic motion, the tube is first tethered entirely to target points. All movement in

the tube is prescribed and the peristaltic wave is created using three distinct motions: the initial

contraction, the translation of the contracted region, and decompression. The contraction begins on

the left hand side of the straight tube in the lower section of the racetrack, see figure 3.1.1. The y

values for the inner and outer sections of the tube are given by the functions:

Y i
T (x, t) = ri + αg(x, t)2 sin (2π(x− g̃(t))β − π2) , (3.1)

Y o
T (x, t) = ro − αg(x, t)2 sin (2π(x− g̃(t))β − π2) . (3.2)

Here, Y i
T (x, t) and Y o

T (x, t) correspond to the y inner and y outer target points respectively, d is the

diameter of the tube, α sets the percent contraction, g(x, t) is a function between 0 and 1 that either

contracts or expands a section of tube depending upon the position and time in the simulation. g̃(t)
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is a function which translates the peristaltic wave down the length of the tube at a constant velocity.

Following figure 3.1.1 we are able to describe the movement of one peristaltic wave. At the

beginning of the simulation the tube is at rest. As time increases, g(x, t) increases to 1 and contracts

the boundary at the left end of the bottom straight portion of tube. After the prescribed percent

occlusion is achieved, the contraction site is translated via g̃(t) from left to right along the length of

the tube. Once translation is complete, g(x, t) decreases to 0 to decompress the contraction site.

This completes one pulse period.

D

A B

C

Figure 3.1.1: A) Tube is at rest. B) Contraction starts towards the left end of the flexible straight
portion of the tube. This motion is determined by g(t) C) Compressed section travels the length of
the flexible tube via the function g̃(t). D) Decompression is completed by decreasing the function
g(t). This ends one pulse cycle.

3.2 Dynamic suction pump

The dynamic suction pump includes an isolated region of active contraction which generates passive

elastic waves down the flexible portion of the tube, see figure 1.3.1. The region of active contraction

is off-center, and its position affects the direction and magnitude of the flow. Once the passive

elastic wave encounters the more rigid section of the tube, the wave is reflected and travels in the

opposite direction along the flexible boundary.

To implement this pumping mechanism, a section of moving target points are created along

the inner and outer tube walls in the region of active contraction. The target points move in a

prescribed sinusoidal motion. These target points have an (x, y) position, but only the y-position

of the target points will change in time. Denote the inner region of target points as Y i
T (x, t) and
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the outer region as Y o
T (x, t). The region of points tethered for active contraction is generally much

smaller than the overall number of points along the straight portion of the tube. The motion of the

target points is then prescribed as

Y i
T (x, t) = ri + αd2 sin (2πtβ − π2) , (3.3)

Y o
T (x, t) = ro − αd2 sin (2πtβ − π2) . (3.4)

Here α sets the percent contraction, d is the diameter of the tube, and β is dependent upon the

desired frequency of contraction. Note that α controls how much of the tube is compressed so that

if α = 1 the tube would completely contract.

3.3 Results

Immersed boundary simulations were run for a large range of Womersley numbers and tube diameter

to length ratios for the cases of both peristalsis and dynamic suction pumping. Womersley number

is the only dimensionless number computed for these simulations. Womersley, Wo, was changed

by modifying the dynamic viscosity, µ, for a set tube diameter, frequency of compression is held

constant at 2.3hz for all simulations and the density of the fluid, ρ, is that of room temperature

water. Numerical simulations spanned Wo ranging from 0.1 to 50. This range covers the small

scale biological applications, such as the vertebrate embryonic heart, to larger scale biological and

engineering applications.

3.3.1 Peristaltic Pumping

Peristaltic pumping was simulated for Wo ranging from 0.1 to 50 and with tube diameters ranging

from 10 microns to 60 microns (for diameter to length ratios ranging from 0.04 to 0.24). Average

instantaneous velocity over a cross section was calculated by taking the mean velocity in the direction

parallel to the walls over a line perpendicular to the walls in the rigid section of the racetrack.

This metric allows for direct comparisons to values reported by Jung and others [20; 19]. Net flow

velocities were calculated by averaging the instantaneous velocities during the fifth to eighth pulse
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cycles. For the Wo considered, flow rates became periodic after three pulses. Net flow velocities are

then reported for each Wo to provide a broader sense of how Wo, magnitude of transport, and flow

direction are related.

Vorticity and instantaneous average velocity Figure 3.3.1 shows the first period of peristaltic

pumping for Wo = 0.2. Notice that the fluid is initially at rest, and passive tracers denoted as black

markers are positioned in the bottom portion of the tube. The tube compresses in the second frame

and begins to translate in the third frame. In the fourth frame, the tube begins to decompress.

Instantaneous vorticity is denoted in each color plot, with lighter colors corresponding to regions of

positive vorticity and darker colors corresponding to regions of negative vorticity. Even at this small

Wo, peristaltic transport produces positive net fluid flow. The passive fluid tracers are transported

at about the speed of the peristaltic wave front.

Figure 3.3.2 shows the first period of peristaltic pumping for Wo = 10 where inertial effects

are significant. The fluid is initially at rest in the first frame, the tube contracts in the second

frame, the region of contraction begins to translate in the third frame, and the tube decompresses

in the fourth frame. The vorticity plots show regions of significant mixing in the region behind the

traveling wave of contraction. Both the continual movement of the passive fluid tracers and the

average velocity vs. time plot, figure 3.3.3, indicate that the fluid continues to move even after the

translation portion of the pumping period has finished.

Figure 3.3.3 provides a comparison of the instantaneous average velocity vs. time generated

by peristaltic pumping at both high and low Wo. Here the average velocity is computed along a

vertical cross section along the diameter of the tube for each time step. These results show that it

is an effective mechanism of driving fluid across many scales. Recall that for Wo = 0.1, unsteady

effects are negligible, and this scale is within the range of the vertebrate embryonic heart tube. For

Wo = 10, unsteady effects are significant. The differences between small and large scale peristaltic

transport are due to inertial effects, and oscillations in the average flow rate can be seen for Wo = 10.

The initial acceleration from rest of the wave front imparts energy to the fluid resulting in spikes at

the beginning of each period. For Wo = 10, the fluid continues to move after the translation of

the compress regions ends. For Wo = 0.1, the flow briefly moves in the opposite direction as the

contraction region decompresses and goes to zero before the beginning of the subsequent contraction.
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Figure 3.3.1: All images were taken from a peristalsis simulation with Wo = 0.2. The colorplot
shows the magnitude of vorticity and x and y give the distance in meters. The top left frame shows
the tube at rest with passive fluid tracers placed in the bottom section of the tube. The top right
frame shows the vorticity and position of fluid tracers 0.05s into the simulation as the tube begins
to compress. The bottom left frame is 0.2s into the simulation and shows the traveling contraction
wave. Finally, the bottom right image was taken 0.4s into the simulation.

Average velocity vs. Womersley number Figure 3.3.4 shows the average velocity for peri-

stalsis with Wo ranging from 0.1 to 50. Each data point is the velocity averaged over fifth to eigth

pulse cycles (or the last 2s). In addition to changes in Wo, the tube diameters were varied from 20

to 60 microns for tube diameter to length ratios ranging from 0.08 to 0.24. Peristalsis is shown to be

effective at many different scales and across a range of tube diameter to length ratios. Recall that

the Wo is changed by altering the viscosity only, and the average velocities are relatively constant

for Wo < 1. For Wo > 1, the average velocity increases linearly, presumably due to inertial effects

and lowered resistance to flow.
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Figure 3.3.2: All images were taken from a peristalsis simulation with Wo = 10. The colorplot
shows the magnitude of vorticity and x and y give the distance in meters. The top left frame shows
the tube at rest. The top right frame shows 0.05s into the simulation as the tube begins to compress.
The bottom left frame is 0.2s into the simulation and shows the traveling contraction wave. The
bottom right image was taken 0.4s into the simulation and shows the decompression of the tube.
Particles shown are passive fluid tracers that move with the fluid.

3.3.2 Dynamic suction pumping

Dynamic suction pumping was also simulated for Wo ranging from 0.1 to 50 and for tube diameters

ranging from 10 to 60 microns (for diameter to length ratios of 0.04 to 0.24). Average instantaneous

velocities were again calculated by taking the mean flow velocity along a cross section of the rigid

portion of the tube at each time step. Temporally averaged velocities were calculated over the fifth

to eighth pulse cycles.
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Figure 3.3.3: Instantaneous average velocity vs. time for peristaltic pumping for Wo = 0.1, 10.
At both scales fluid is effectively transported. More inertial effects can be seen in the oscillations
present at Wo = 10.

Vorticity and instantaneous average velocity Figure 3.3.5 shows the first period of dynamic

suction pumping for Wo = 0.2. Notice that the fluid is initially at rest, and passive tracers denoted

as black markers are positioned in the bottom portion of the tube. Little net fluid flow is generated

for Wo = 0.2 where inertial effects are negligible. Passive fluid tracers are displaced in both

directions during the contraction and are pulled back close to their original positions during the

expansion. It is clear that, although some motion is present for this frequency, significant positive

transport of fluid is not present. Instantaneous vorticity is denoted in each color plot, with lighter

colors corresponding to regions of positive vorticity and darker colors corresponding to regions of

negative vorticity. Passive elastic traveling waves are not created due to the high viscosity of the

fluid in which the tube is immersed.

Figure 3.3.6 shows the first period of dynamic suction pumping for Wo = 10. Although not

much net flow is generated during this initial pulse cycle, there is positive net flow after a few pulses
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Figure 3.3.4: Average velocity vs. Wo for peristaltic pumping for tube diameters of 20, 30, 40 and
60 microns. Significant average velocities are achieved for a variety of scales. For Wo > 1, average
flow velocities increase steadily due to the inertial effects of the fluid at these larger scales.

for higher Wo. In addition, vortices are generated near the region of contraction that result in more

mixing of the fluid, as seen from the positions of the passive fluid tracers. The presence of passive

elastic waves emanating from the active contraction site may also be observed.

Instantaneous average velocities vs. time computed along a cross section of tube are shown in

figure 3.3.7 for Wo = 0.1 and 10. Recall that the Wo was changed only by altering the viscosity,

and this difference in the magnitude of Wo shows the dramatic difference in effectiveness of this

pumping mechanism in the inertial and viscous regimes. Large peak flows are observed for Wo = 10.

Even though flow rates do become negative at the end of the cycle, the net flow over the entire

period is positive. In contrast, the magnitude of the flow velocity for Wo = 0.1 is significantly

smaller, and the net flow over the entire pulse cycle is close to zero. One key feature of dynamic

suction pumping is that inertial effects drive the generation of passive elastic waves which enhance

transport. For Wo = 10, the maximum fluid velocity increases with each pumping period, but
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Figure 3.3.5: All images were taken from a dynamic suction pumping simulation with Wo = 0.2.
The colorplot is based upon magnitude of vorticity, and the (x, y) axis shows distance in meters.
The top left frame shows the tube at rest at t = 0. The top right frame is 0.05s into the simulation
and shows the beginning of tube compression. The bottom left frame is 0.2s into the simulation,
and the bottom right image is taken 0.4s into the simulation. The black dots are passive fluid
tracers that move with the fluid.

becomes periodic after about 10 cycles.

Average velocity vs. Womersley number Figure 3.3.8 shows the velocity averaged over the

fifth to eighth pulse cycles as a function of Wo for dynamic suction pumping. The diameter of the

tube is varied from 20 microns to 60 microns (tube diameter to length ratios of 0.08 to 0.24). In

general, nearly zero net flow is generated for Wo < 1 for all cases studied here. Another interesting

feature is the appearance of flow reversals for intermediate Wo in the range of about 100 to 101.
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Figure 3.3.6: All images were taken from a dynamic suction pumping simulation with Wo = 10.
The colormap is based upon magnitude of vorticity, and the (x, y) shows distance in meters. Top
left picture is 0.0s into the simulation. The top right frame is 0.05s into the simulation and shows
the initial compression of the tube. The bottom left frame is 0.2s into the simulation, and the
bottom right image was taken for simulation time equal to 0.4s and shows the decompression of the
tube. The black dots are passive fluid tracers that move with the fluid.

Such flow reversals have been observed in numerical simulations and physical models [20]. The

sharp transitions in directions for intermediate Wo could have significant implications for biological

systems.

Another notable and interesting feature involving this pumping mechanism is its sensitivity to

the ratio of tube diameter to length. This ratio clearly affects both the magnitude of the flow as

well as its direction. The sensitivity to this parameter could have a very significant effect in regards

to biological applications which span a very diverse range of tube geometries. There have been

many studies examining dynamic suction pumpings’ effectiveness in regards to pumping frequency,

location of pumping, and amplitude of contraction[20]. The results indicate that the effect of the

diameter to length ratio should be investigated further.
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Figure 3.3.7: Instantaneous average velocity vs. time for dynamic suction pumping for Wo = 0.1, 10.
Note that the Wo was varied only by changing the fluid viscosity and that the flow is significant
stronger for the Wo case when inertial effects are significant.
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Figure 3.3.8: Average velocity vs. Wo for dynamic suction pumping for tube diameters of 20, 30 ,
40 and 60 microns. Each diameter has near zero flow for Wo ≤ 1. Significant net flow is generated
for Wo > 1. As tube diameter increases, average velocity increases.
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CHAPTER 4: IMPEDANCE PUMPING AND FLOW DIRECTION

Dynamic suction pumping, or impedance pumping, is a mechanism which has been speculated to

be the driving force behind the uni-directional flow present in valveless tubular hearts. Impedance

pumping has been shown to be an effective valveless pumping mechanism over a range of scales

and studies have shown that flow magnitude and direction are coupled to the pumping position

and frequency of contraction. Although the bi-directional nature of the mechanism is something

which has been observed both numerically and physically, no well established explanation has been

offered. Understanding the bi-directional nature of this pumping mechanism is important in the

design and use of valveless tubular pumps and also has implications for the biological function of

valveless hearts. In this thesis we will address the bi-directional nature of impedance pumping

by investigating flow direction as a function of tube diameter and the elastic properties which

govern the resonant frequency of the system. Direct numerical simulations of the fully-coupled

fluid-structure interaction problem will be used to determine the magnitude and direction of fluid

flow as a function of the non-dimensional ratio of elastic tube length to tube diameter. It can be

seen that this ratio can directly determine both the magnitude and direction of fluid flow. The

resonant frequency of the tube, based upon the elastic properties of the model and the added mass

of the fluid is also investigated. Resonance of two separate sections of the tube divided by the

compression region are shown to govern the resulting direction of flow.

4.1 Impedance pumping

To numerically simulate impedance pumping a region of target points was connected to a portion of

flexible tubing which began a distance α2 from the left most rigid boundary of the bottom straight

portion of the flexible tube, figure ??. These target points oscillate in a prescribed motion, creating

a force on the boundary that causes movement. The collection of target points along the inner wall
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Table 4.1: Non-dimensional spatial dimensions and numerical parameters for the impedance pumping
simulations. All spatial parameters were non-dimensionalized using the characteristic length scale:
L = 0.00025, the length of the bottom pumping region, see figure 4.1.1. The time parameters d̂t
and t̂ were non-dimensionalized using the characteristic time scale: tfinal = 4.0s.

Parameter Value

Length of domain 2.0
Width of domain 2.0

Tube length scale [Ld ] 4.0-8.0

Outer radius [R̂1] 0.4

Inner radius [R̂2] R1 - diameter
Length of straight tube [L] 1.0
Frequency of pumping [ω] 1.5-12.0 hz
Percent of contraction 0.8
Pulse Period 1f

Final simulation time [t̂] 1.0

Time step [d̂t] 7.62e-6

Spatial step [d̂x] 3.33e-3

Boundary step [d̂s] 1.67e-3

Table 4.2: Non-dimensional mechanical variables for impedance pumping simulations. The character-
istic length scale is defined to be the length of the straight pumping region L and the characteristic
velocity is defined to be: U = L

T , where T is the pumping period.

Parameter Value

Bending coefficient of the boundary [κ̂beam = κbeamρ0U2L3 ] 5.31e25
Stretching stiffness of the boundary [κ̂spring = κspringU2ρ0L] 3.24e15
Stretching stiffness of target points [κ̂target = κtargetU2ρ0L] 3.24e15
Womersley Number [Wo = r

√
ων] 5-10

of the tube is given by: Y i
T (x, t) and the collection of target points along the outer tube is given by:

Y o
T (x, t). We can then define the motion of the pumping mechanism as:

Y i
T (x, t) = γ + |αd2 sin (2πtβ − π2)| , (4.1)

Y o
T (x, t) = (γ + d)− |αd2 sin (2πtβ − π2)| . (4.2)

The absolute value allows the mechanism to only pump into center axis of the tube. γ shifts the

pumping location to the straight boundary, β controls the frequency of the pumping mechanism

and α controls the amplitude of compression. For the numerical experiments described here, α was

always set to 0.4d, which provides an 80% contraction.
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Figure 4.1.1: A digram of the computation model is shown here. The tube is a connected racetrack
with diameter d, and total pumping region length L. The lengths of the long and short sections of
the elastic tube are denoted as α1 and α2, respectively. These two lengths change depending on the
pumping location, and the total length of this region is denoted as P.
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Figure 4.2.1: A model diagram detailing the resonance experiments performed. The flexible tube
of the short and long sections were displaced using a sine function with amplitude 0.4d. The elastic
walls of the tube were then allowed to oscillate in free vibration. This numerical experiment was
done for four separate pumping locations.

4.2 Resonance experiments

The flexible portion of the tube at the bottom of the racetrack can be divided into two smaller

sections to the left and the right of the contraction region. Each of these sections will have different

resonant frequencies. Impedance pumping relies upon elastic properties of the tube to translate

the waves generated from the pumping site down its length. Travel times and amount of fluid

being displaced by the boundary are different for each section due to the length. To quantify this

effect, the resonant frequency of each section was calculated separately. Resonant behavior has been

investigated numerically in 2008 by Gharib et al. and it was shown that the resonant frequency

of the tube corresponded to the maximum flow rate computed for that experiment[22]. Results

from other experimental, analytical and numerical papers suggest that frequency is one determining

factor in flow direction and that the resonant frequency computed from the elastic properties of the

tube corresponds to the maximum bulk flow rate. In this thesis we do not compute the resonant

frequency from the material properties of the entire tube but instead calculate the frequency of

free vibration of the long and short sections independently. This approach takes into account the

nonlinear effect of the entrained fluid.

From figure 4.2.1 we displace the short and long sections of the boundary by:
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Xshort(s, t) = (0.4d) sin (πβ1(s)) (4.3)

Xlong(s, t) = (0.4d) sin (πβ2(s)) . (4.4)

Here β1(s) and β2(s) are both functions of the the Lagrangian boundary position s. For these

experiments the pumping location is moved to the five different pumping positions considered in this

thesis. We define these positions by the non-dimensional length of the short flexible section bordering

the pumping region (α2 = {0.25, 0.29, 0.33, 0.39, 0.43}). We can then calculate the movement of the

boundary using the immersed boundary. The peak displacement of each section is tracked in time.

The dominant frequency of free vibration is computed via a discrete Fourier transform.

4.3 Results

There were three variables tested in this study to investigate flow direction in impedance pumping:

diameter to length ratio of the model racetrack, pumping location, and frequency of contractions.

We began from the results in Baird et al. [1] where flow direction was seen to change for Womersley

numbers in the range of 1 ≤ Wo ≤ 10. Expanding these results we first investigated the non-

dimensional length ratio defined to be L̂ = L
d by altering the diameter of the tube. These simulations

have a fixed frequency of pumping (f = 2.5hz), pumping location P , viscosity µ and non-dimensional

spring and bending stiffness (κbeam, κspring), see table 2.The effects of pumping frequency on flow

direction were quantified by performing simulations for a fixed non-dimensional length scale L̂ while

varying the frequency of pumping 1 ≤ f(hz) ≤ 11. This range of pumping frequencies was applied

to the tube using four different pumping locations. The pumping location had the effect of changing

the non-dimensional lengths of the two different pumping regions. The lengths of these regions are

given as: α1 and α2 for the long and short sections of the flexible tube respectively. All numerical

experiments were performed for constant non-dimensional stretching and bending stiffness.

4.3.1 Non-dimensional Length Scale

We begin by looking at the flow direction as a function of the non-dimensional length scale parameter,

L̂ = L
d . Here L is the length of the elastic region and d is the tube diameter. The diameter d was
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varied to quantify how L̂ affects on flow direction in impedance pumping. Each data point was

obtained by applying a fixed pumping frequency of 2.5 Hz and calculating the average instantaneous

flow velocity along a cross section in the upper straight tube region. These velocities were then

averaged over the second half of the simulation time to get a steady state average velocity.
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Figure 4.3.1: Average dimensionless velocity as a function of the diameter to length ration, L̂, (left)
and dimensionless velocity vs. time for the peak flow cases (right). The averaged velocity shows the
same trend for Wo = 5 and Wo = 10, where Wo was changed by altering the viscosity and holding
all other parameters fixed. The magnitude of the average velocity is diminished in the lower Wo
case. On the right is the average velocity as a function of t̂ for Wo = 10. Here the characteristic
time is T = 1

f , where f = 2.5hz.

The results from figure 4.3.1 show that the flow direction of impedance pumping is a function of

the parameter L̂. As this parameter is increased, the diameter of the tube d is decreased since the

length L remains fixed, and the flow direction changes from clockwise to counter clockwise. Also of

note is the fact that the magnitude of the velocity is maximized for 7.0 ≤ L̂ ≤ 8.5. The simulations

are also run for a lower Wo and similar dynamics are seen, figure 4.3.1. The magnitude is reduced

due to the increase in the resistance to shear due to increasing the viscosity µ. The reduction in the

magnitude of flow due to lowered Wo is consistent with results seen in other studies[1]. For the

remainder of the results the geometry of the tube will be set to L̂ = 8.0, which produced maximum

flow. In the next section, the effects of the wave forms generated from the pumping region on the

direction of bulk flow will be considered.
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4.3.2 Resonance of the Boundary

To begin the study of how the resonant frequency of the short and long sections of tubing (α2 and

α1) affect the flow direction of impedance pumping, L̂ is set to 8.0 and the resonant frequency of

the first mode of the short section (defined by the non-dimensional parameter α2) is estimated by

creating an open tube immersed in fluid with all the boundary points fixed except for the short

section of tube. This section of tube was then initially displaced in the form for a section of a

sine function and allowed to oscillate in free vibration until it came to rest. The (x, y) positions of

the tube walls were recorded and the maximum displacement along the short flexible section was

analyzed using an FFT. Due to the nonlinear properties of the wall under large deformations the

frequency spectrum was large. The local maximum were computed from the FFT data and are

shown in the figures 4.3.3,4.3.2,4.3.5.

We did completed free vibration experiments for the first mode of the long flexible tube section.

We determined that more the dynamics may be encapsulated in analysis of the second mode of the

long tubing since observations showed that only half of the long flexible tubing had a large enough

compression amplitude for significant fluid transport. These experiments were carried out in the

same manner as the short section’s first mode but with the necessary changes to the prescribed

displacement of tube, see figure 4.3.2. Note that the second mode structure of the boundary can

also be seen in the pumping simulations which generated maximal flow in the counter clockwise

direction, figure4.3.7.

We now plot the average bulk flow for each pumping frequency to create a graph of average

velocity as a function of pumping frequency. The velocity is non-dimensionalized by dividing by the

characteristic velocity, defined to be: U = L
T where T is period of pumping and L is the length of

the straight pumping region in the computational model, see figure 4.1.1. Note that for each data

point T changes depending on the frequency of compressions. We then compare the average bulk

flow to the local maximum frequencies computed through the Fourier analysis of the oscillating

boundaries. We then preform this analysis for five different pumping locations, defined by the

non-dimensional length of the short flexible tube region bordering the pumping mechanism, α2. It

can be seen that, in many of the various pumping locations, the resonance of the short section of

tubing corresponds well with the maximum clockwise flow generated, or flow traveling towards this
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Figure 4.3.2: Resonance experiment for the second mode of the long section of flexible tube are
shown here. The top left image shows the tube subjected to the displacement before the simulation
begins, and the other frames follow the oscillation of the boundary as it is allowed to freely vibrate.
Due to complications in the forces generated from this prescribed displacement, it was necessary to
allow the tube to open up into the entire domain rather than connecting it to a racetrack.

section of tube. Similarly the maximum flow generated in the counterclockwise direction seems to

be attributed to the resonance of the second mode of the long section for α2 = {0.25, 0.29, 0.33},

although some pumping locations don’t follow this trend.

The problems seen in some of the results could be attributed to two things: change in the model

for resonance analysis and the lengths of the flexible tube regions. The resonant experiments were

preformed on an open ended tube not a closed racetrack which was the geometry used to preform

the average bulk flow results in the top plot of each of figures 4.3.3, 4.3.2, 4.3.5. This change in

geometry was done counteract the forces generated from the displacement of the long section of

tubing for the resonant experiments. These forces essentially stuck the tube in place and didn’t allow

for natural oscillations of the boundary, which are needed to effectively talk about the resonance of
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Figure 4.3.3: Each figure is composed of four graphs: average dimensionless velocity over the second
half of the simulation, power spectra of the short section excited at its first mode, the power spectra
of the long section excited at its second mode and the power spectra of the long section excited
at its first mode as functions of the pumping frequency f(Hz). Regions of strong clockwise and
counterclockwise flow are highlighted, and local maxima are tagged in the FFT graphs for the
free vibration experiments. The left and right graphs correspond to two different pumping regions
indicated with the dimensionless length of the short flexible section (α2). Note that α2 = 0.25
indicates the short section is 25% of the bottom straight length of tube.
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Figure 4.3.4: Each figure is composed of four graphs: average dimensionless velocity over the second
half of the simulation, power spectra of the short section excited at its first mode, the power spectra
of the long section excited at its second mode and the power spectra of the long section excited
at its first mode as functions of the pumping frequency f(Hz). The left figure shows maximum
clockwise and counterclockwise flow corresponding to the peaks found during free vibration of each
flexible section. The figure on the right follows the previous results for the counterclockwise flow,
but the short sections resonant peaks overlap with a no-flow regime.

the immersed boundary. This change could lead to an offset of the peaks computed in the Fourier

analysis of the oscillating boundaries and also could be attributed to some of the issues seen in
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the results for pumping regions: α2 = {0.39, 0.43}. The extremely different results found in figure

4.3.5 is thought to be due to the location of the pumping location. When α2 = 0.43 the pumping

location is almost completely centered which causes α2 ≈ α1. Each sections length being near equal

doesn’t follow our separation of the flexible tubing into two distinct regions: short and long. They

are now nearly the same length and, as such, cannot be prescribed the same analysis. It is seen that

a completely centered pumping region does not generate any significant flow, but it does seem that

slight perturbations to this centered location could generate flow. This type of experimentation

could be useful and would likely need a separate approach to the problem.

4.3.3 Maximal Flow

An analysis of the mechanical dynamics seen in the pumping experiments which generated maximal

flow shows revealing wave dynamics. We show the results for two separate simulations which

describe two maxima, one clockwise and one counter clockwise. The maximum clockwise flow is

shown for the pumping region α2 = 0.29 with 3.5 hz. pumping frequency. Arrows are show in figure

4.3.6 describing the traveling wave generated from the pumping region. When looking closely at the

wave dynamics it becomes clear that for the right pumping frequency the synchronization of the

passive elastic traveling wave and the compression of the pumping region allows traveling, near fully

occluded, wave form traveling in clockwise direction. These very special wave dynamics are able

to achieve some of the highest non-dimensional pumping velocity amongst all the simulations run.

This high performance is done with a fairly low pumping frequency, 3.5 hz., compared to the higher

frequencies needed to produce similar velocities in the counter clockwise direction. From figure 4.3.3

it can be seen that this pumping frequency corresponds to one of the maximal peaks found in the

Fourier analysis of the resonant data for the short flexible tubing.

In the other figure the wave form is slightly more complex due to the longer flexible tubing acting

as the wave medium. The non-linear affects of the fluid and the material properties of the boundary

more complicated picture. In figure 4.3.7 we try and detail the wave form generated from the

pumping region and speculate as to the dynamics which enact maximal flow in the counter clockwise

direction. It’s can be seen in the first three frames in figure 4.3.7 that there is a traveling wave

emitted from the pumping region which almost completely occludes the tube. After the traveling

wave propagates a small ways down the long flexible section it interacts with a prior wave which has

37



−0.06
−0.04
−0.02
0.00
0.02
0.04

û
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Figure 4.3.5: Each figure is composed of four graphs: average dimensionless velocity over the second
half of the simulation, power spectra of the short section excited at its first mode, the power spectra
of the long section excited at its second mode and the power spectra of the long section excited at
its first mode as functions of the pumping frequency f(Hz). Substantial net flow is not observed
for the lower pumping frequencies. This high frequency regime could correspond to the second
mode of the short section of flexible tube or possibly the third and fourth modes of the long section.
There is some overlap between the resonant peaks of the second mode of the long section and the
strong net flow in the clockwise direction, although this result is markedly different from the results
seen the previous figures. Extension to higher frequencies and higher modes is needed to get a full
understanding of the dynamics when α1 ≈ α2.

been reflected creating a restoring wave form which travels back towards the pumping region briefly.

The wave form of the tube resembles the second mode resonance experiments which leads to the

belief that the second mode of resonance for the long flexible tubing is determining the pumping

frequency in the maximal counter clockwise direction. This can be seen in figure 4.3.2 where the

resonant frequencies from the second mode align with the maximal counter clockwise flow, at 6.0

Hz.
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Figure 4.3.6: Vorticity plots showing four snapshots in time over one pumping cycle. The black
dots are passive tracers that move with the fluid. These frames display the synchronized traveling
wave contraction for the pumping location α2 = 0.29, with a pumping frequency of 3.5 hz. which
corresponds to the maximal clockwise flow.
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Figure 4.3.7: Vorticity plots showing four snapshots in time over one pumping cycle. The black
dots are passive tracers that move with the fluid. The location of the contraction region is set
to α2 = 0.39, and the pumping frequency for this simulation is 6.0hz. This parameter choice
corresponds to the maximum net flow generated in the counterclockwise direction. The upper right
figure shows that the active contraction creates a traveling wave which propagates down the first
half of the long flexible section. Upon encountering the rigid wall, the reflected wave interacts
with the wave generated by the contraction region causing a slight recovery wave in the clockwise
direction, completing one cycle.
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CHAPTER 5: ELECTRO-DYNAMIC SUCTION PUMPING

5.1 Introduction

Dynamic suction pumping is characterized by a bidirectional passive elastic wave and a non-linear

relationship between pumping frequency and volumetric flow rate. This pumping mechanism

has been proposed as the driving mechanism for the vertebrate embryonic heart at the tubular

stage. Peristalsis has also been preposed as the mechanism by which embryonic tubular hearts

drive the flow of blood. In this study, we consider the tubular, valveless heart of Ascidians (sea

squirts). Ascidians are invertebrate chordates, and we will be focusing on the species Clavelina

picta and Ciona intestinalis. These hearts operate at a Womersley numbers ranging from 0.1-5. We

investigate traditional dynamic suction pumping on these small scales and show computationally

and experimentally that significant flow is not achieved. We propose a different pumping mechanism

that couples traveling waves of depolarization to the contraction of the boundary and is similar

to peristalsis. Active contractile waves replace passive elastic waves, but the resulting kinematics

are similar to dynamic suction pumping. This pumping mechanism can be computationally shown

to drive fluid flow at the low Womersley numbers found in Ascidian hearts. We can then improve

upon this mechanism by adding a rigid boundary which surrounds the elastic pumping region. This

boundary is a simple model of the pericardium, a rigid, pressurized, fluid filled structure which

encloses most chordate hearts. We see that this added structure reduces back flow and aneurysms

created by traveling wave of contraction driving the motion of a viscous dominated fluid.

5.2 Neuromechanical pumping

This pumping mechanism is a means to numerically model the actual tubular valveless heart found

in Asicdians: Clavelina picta and Ciona intestinalis. In previous numerical models of these pumping

mechanisms attention has been made to parameters inherent in numerically modeling an ideal

valveless pumping mechanism, but no work had previously been done to accurately model the
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Figure 5.2.1: A figure detailing the experiments used to measure traveling action potential in the
Ciona intestinalis heart tube. The heart is dissected out of the body and the top pericardium
removed. Electrodes are then inserted at each point a-f and used to measure the traveling action
potential along the length of the heart tube.[21]

organisms heart tube. Dynamic suction pumping is characterized by a singular active contraction

region, passive traveling waves, and a non-linear frequency volumetric flow rate relationship.

Peristalsis is characterized instead by active contractions down the length of the pumping domain

and a linear frequency volumetric flow rate relationship. We wanted to combine some of the

characteristics of both these pumping mechanisms, namely: active contractions of peristalsis and

non-linear frequency volumetric flow rate relationship found in dynamic suction pumping. Traveling

actions potentials have been recorded in Ciona intestinalis hearts in previous studies by Kriebal et

al.[21], see figure 5.2.1. These traveling action potentials are known to cause muscle contractions,

and this provides support for the idea that that active contractions along the length of the heart

tube can augment the movement of blood. A complete mathematical model of the Ascidian heart

should then incorporate both the fluid dynamics, elastic properties of the tube, and the activation

of contractile muscles along its length. The goal of this chapter of the dissertation is to test the
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ability of this pumping mechanism to transport fluid at the Wo scales found in Ascidian hearts.

To begin modeling this system, we first need to describe how to best model traveling action

potentials in a heart tube. The Hodgkin-Huxley equations were the first quantitative model of

propagation of an electrical signal along excitable cells, such as cardiac muscle cells found in the

Asicdian heart tubes[14]. The essential dynamics of this model have since been captured by the

dimensionless FitzHugh-Nagumo equations[10], given by:

∂v

∂t
= D∇xv + v(v − a)(v − 1)− ω − I(t) (5.1)

∂ω

∂t
= ε(v − γω), (5.2)

where D = diffusion rate of potential, v(x, t) = membrane potential, ω(x, t) = blocking mecha-

nism, a = threshold potential, γ = resetting rate, ε strength of blocking, and the initial condition

I(t), which is a function of time and represents the applied current in the system generated from

the pacemaker. Here v repressents the fast variable (potential) and ω represents the slow variable

(sodium gating), the kinetics of which are controlled by the parameter: ε << 1. Phase portraits of

this non-linear system have been shown to capture the dynamics of cardiomyocytes.

I(t)

V(x,t) V(x,t)

Felectro (V(x,t))ds

Figure 5.2.2: This diagram shows our numerical model of the coupled dynamics problem. We
attach springs to to the top and bottoms elastic walls of the tube to and a force proportional to
the traveling action potential, Felectro(V (x, t)). We then inject a current, I(t), at a location of the
pacemaker periodically throughout the simulation. The FitzHugh-Nagumo equations are solved
along the tube walls to determine the electropotential at each position and at each time. The force
is generated by changing the stiffness of these springs, and results in contractions down the length
of the tube wall.

To couple the applied force that drives the movement of the boundary to the electropotential

given by the FitzHugh-Nagumo equations, please refer to figure 5.2.2. To begin we create a model
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Figure 5.2.3: The figure on the left shows an initial current begin initiated in the pacemaker region.
The figure on the right shows the bi-directional propagation of the action potentials down the length
of the domain. All parameters are dimensionless for this figure.

racetrack with an active pumping region along the bottom straight elastic portion of the track. We

then connect springs with variable stiffness that depend on the action electropotential to the top and

bottom of the elastic section of tube. The stiffnesses are function of the traveling electropotential

which varies in time due to the current applied to the pacemaker region. At each time step we solve

for these potentials by discretizing the FitzHugh Nagumo equations as follows:

vi = vi−1 + dtf (D(
vi − 2vi−1 + vi−2

dx2
f

)− vi−1(vi−1 − 1)(vi−1 − a)−i−1 +Ii (5.3)

i =i−1 +εdtf (vi−1 − γωi−1). (5.4)

Here we use a forward Euler time step integrator and a centered differencing scheme to represent

the spatial diffusion operator. Dynamics of this system can be seen in figure 5.2.3. The other

parameters are prescribed to capture the associated dynamics observed in the Ascidian heart

tubes.Time is scaled in order to match the dynamics of the generated action potentials to the desired

active wave of contraction and is given by:

dtf =
dtF
T

, (5.5)
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where F is a non-dimensional scaling parameter and T is the desired pumping period. The

spatial location, x, is also scaled in order to match the desired dynamics of the active wave of

contraction. Once we calculate the electropotential, at a given point in space, we can determine the

spring stiffness at time t using the equation

κe(x, t) = κm(v4(x, t)). (5.6)

In this model, κm is the scaled spring stiffness and v(x, t) is the traveling action potential. This

new spring stiffness will then be used to calculate the force generated by the springs that connect

the bottom and top of the elastic tube, generating a wave of active contraction.

Table 5.1: Non-dimensional parameter values used for solving the FitzHugh Nagumo equations and
constructing the pericardium. Parameters were tuned to match the dynamics of the Ascidian heart.

Parameter Value

Threshold potential (a) 0.1
Strength of blocking (ε) 0.1
Diffusion coefficient (D) 100
Resetting rate (γ) 0.5
Current injection (I) 0.5
freq (f) 0.1-2.1 Hz.

Pericardium width (P̂) 1.5-2.5

5.2.1 results

The goal of this section of work is to compare our neuromechanical pumping model with active

contractions to traditional dynamic suction pumping for the scales found in our recorded Ascidian

hearts: Wo ≤ 1. Immersed boundary simulations of neuromechanical pumping and dynamic suction

pumping were conducted, and the Wo was changed by carrying the viscosity of the fluid. The

actuation site used for dynamic suction pumping coincided with the placement of the pacemaker

used for neuromechanical pumping. The pacemaker is modeled as a periodic applied current I(t)

that triggers the propagation of action potentials along the heart tube. This is distinctly different
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from dynamic suction pumping and our model of peristalsis where the pumping dynamics are due

to: the elastic properties of the tube (passive), or due to the active contraction of our model muscles

that are triggered by changes in the local electropotential.

The first simulations presented are matched to the Wo of Clavalina picta (Wo = 0.3) and a

pumping frequency of 2.5Hz. To compare the performance of the pumping mechanisms, the average

velocity is taken along a cross section of the diameter of the tube in a non-contracting region. This is

then related to the volumetric flow rate by a constant scale factor. Comparing the average velocity

over the simulation time, it is clear that neuromechanical suction pumping outperforms dynamic

suction pumping, see figure 5.2.4. At Wo = 0.3, the passive elastic traveling wave characteristic of

dynamic suction pumping is damped by the shear forces encountered from the high viscosity of the

fluid. Passive tracer particles inserted into the tube also show that the flow is close to reversible.

The particles are moved away from the actuation site during contraction but are pulled back towards

the actuation site during expansion. The near-reversibility of the flow due to the lack of significant

inertial effects means that dynamic suction pumping is not very effective at low Wo. The use of

active contractions implemented as an applied force due to the action of cardiomyocytes greatly

enhances the average flow rates at the scales found in Clavalina picta, figure 5.2.4

It is also worthwhile to compare the neuromechanic pumping to prescribed peristalsis. In these

simulations, the motion of the peristaltic contraction is prescribed using target points. Due to the

number of target points passive elastic waves are prevented. An inspection of figure 5.2.6 shows that

the magnitude of flow produced by both pumping mechanisms is similar. Also of note is that the

neuromechanic pump produces significant back flow which isn’t apparent in our peristalsis model.

From figure 5.2.6, neuromechanic pumping displays a non-linear frequency volumetric flow rate

relationship. This is different than the linear relationship possessed by peristalsis.

5.3 Pericardium

We now look to add more biological structure to our model by including relatively stiff pericardium

that encloses the heart of most chordates. The motivation for adding the pericardium is do to

some differences between the experimentally observed and numerically generated resulting flows.

These differences include: the presence of significant back flow and the presence of aneurisms and
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Figure 5.2.4: This graph allows one to compare traditional dynamic suction pumping to the neu-
romechanical pump. We non-dimensionalize the velocity by dividing dividing it by the characteristic
velocity: U = T

d . T is the pumping period, or 1
f with f = 2.5Hz. It is very clear that neuromechanical

suction pump out preforms our original dynamic suction pumping for Wo = 0.2.

kinks in the pumping region. Both of these issues are not apparent in observations of the Ascidian

heart with an intact pericardium. Between this rigid enclosure and the elastic pumping heart tube

is pressurized fluid. Preliminary experimental studies suggests that this structure is essential for

driving net flow in smaller tubular hearts. Any disruption of this pericardium results in a significant

drop in net flow and the generation of aneurysms or kinks in the heart tube.

To model this rigid enclosure, we place target points along a box enclosing the elastic pumping

region. Fluid is present between the model pericardium and the elastic tube. As the elastic region

deforms, pressure builds up in the region between the pericardial walls and the elastic tube (see

figure 5.3.1). Adding this structure greatly reduces back flow at low Wo (see figure 5.3.1). The back

flow is now on the same order as the peristaltic pump, see figure 3.1.1. We also see a reduction
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Figure 5.2.5: Average dimensionless flow rate vs. frequency of pumping with fixed viscosity and tube
geometry.The frequency was done in order to investigate the non-linear frequency flow relationship of
the electro-dynamic pump. It seems to exhibit some non-linear behavior for certain frequencies. This
follows the dynamics of traditional impedance pumping and is a characteristic which differentiates
this mechanism from peristalsis.

in the size of aneurisms produced and the resulting motion more closely matches the contractions

observed in Ascidian hearts.

We run these simulations to mirror preliminary experimental results done for Ciona intestinalis by

matching the non-dimensional number Wo = 0.9. Figure 5.3.3 shows magnitude of non-dimensional

vorticity for pericardium neuromechanical pumping. The current is injected periodically in the top

left frame and then the pumping dynamics are completely determined by the elastic structure of

the tube wall and the dynamics of the FitzHugh-Nagumo equations. The traveling action potentials

create bi-directional traveling waves along on the length of the straight tube in the top right and

bottom left frames. As these waves reach the end of computational boundary their magnitude
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Figure 5.2.6: Dimensionless velocity averaged across a section of non-contracting tube as a function
of time for both neuromechanical pumping and peristaltic pumping. We non-dimensionalize the
velocity by dividing it by the characteristic velocity: U = d

T . Here T is the pumping period, or 1
f

for f = 2.5Hz. The two pumping mechanisms drive flows of similar magnitude.

decreases and the system resets itself. The neutrally buoyant particles in the fluid display the flow

induced by this pumping mechanism.

We also investigate how the width of the pericardium, Pd〉am, affects the bulk flow generated by

neuromechanical pumping. In figure 5.3.2 we can see that, in fact, flow velocity is a function of the

width of the pericardium with maximum flow occurring hen the pericardium s about 2.4 times the

width of the heart time. This corresponds to some preliminary results taken from Ciona intestinalis

that shows hat the maximum flow rate is produced when the pericardium is about 2.5 times the

diameter of the heart tube.
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Figure 5.3.1: An neuromechanicalmechanism with pericardium is compared to peristaltic pumping.
The back flow generated by the pump without the pericardium is greatly reduced and is on the
order of the back flow produced by peristalsis.
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Figure 5.3.2: This figure displays the average velocity as a function of the non-dimensional length
scale P̂ = Pd. This shows how many diameters wide the pericardium is relative to the diameter of
the tube. A clear peak is formed for a set pericardium size, showing that average flow is a function
of the width of this rigid region. All data points were obtained for Wo = 0.9.
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Figure 5.3.3: These frames show one period of neuromechanical mechanism when the elastic tube
modeling the heart is enclosed by a rigid pericardium for Wo = 0.9 which is the same scale seen
in Ciona intestinalis. The frames begin with the start of one pumping period. The top left frame
displays the tube at rest for t = 0.6 simulation time and the pumping continues in the clockwise
direction for t = 0.7, t = 0.775, t = 0.85 respectively.
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CHAPTER 6: CONCLUSION

The main purpose of this dissertation was to model various valveless pumping mechanisms and

answer the following questions: determine which pumping mechanism is used in small tubular hearts,

similar to those found in developmental vertebrate hearts, does this mechanism depend upon the

scale of the application, and what improvements can be made? We began by modeling impedance

pumping, which is defined to have an isolated region of active contractions with passive traveling

elastic waves generated from the pacemaker site. This mechanism was compared to peristalsis using

non-dimensional matching to Ascidian heart tubes to determine efficacy. Peristalsis was simulated

by using active forcing down the length of the tube to simulate muscle contractions traditionally

seen in this mechanism. Average volumetric flow rate was computed for Wo < 1 for both impedance

pumping and peristalsis and it was clear that the lack of inertia in the fluid due to the small

non-dimensional scales rendered impedance pumping completely ineffective.

A new mechanism was modeled which incorporated the non-linearity of volumetric flow rates

to frequency of pumping seen in impedance pumping and the active muscle contractions used to

compress the tube seen in peristalsis. Similar parameters were computed and comparisons were

made to peristalsis and impedance pumping. This mechanism was able to reach similar flow rates

seen in peristalsis, but with significant back flows and aneurysms apparent in the tube. To reduce

these issues we modeled a ridged outer layer around the elastic pumping region in an attempt to

model the pericardium found in Ascidian hearts. The pericardium both reduced back flow and

aneurysms in the pumping mechanism while still retaining significant flow.

6.1 Dynamic suction pumping vs. peristalsis for low Wo

Parameter sweeps for Womersley numbers ranging from 0.1 to 50 were numerically simulated

for two different valveless pumping mechanisms: peristalsis and dynamic suction pumping. The

motion of the active contraction regions for each case were prescribed in a model racetrack, and

the fluid-structure interaction problem was handled using the immersed boundary method. The
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ratio of the tube diameter to length and the Womersley number play a significant role in the net

flow rates generated by dynamic suction pumping. For Wo < 1, negligible net flow was generated

by dynamic suction pumping for the parameters considered in this this thesis. Intermediate Wo

between 100 and 101 were characterized by rapid reversals in the direction of net flow as the Wo and

the tube diameter were changed. Average flow speeds were reduced for tubes with larger diameter to

length ratios. The Wo range at which average flow was generated in the negative direction tended

to decrease as the diameter to length ratio increased. In contrast, peristaltic pumping generated

significant net flow in the positive direction for all Wo considered. Since the Wo was varied by

changing the viscosity of the fluid only, the average flow velocities were relatively constant for

Wo < 1. Due to the effects of inertia that allowed for flow between periods of active contraction for

Wo > 1, the average flow speeds increased with increasing Wo.

6.2 Discussion of impedance pumping and flow direction

Previous work analyzing impedance pumping has considered a variety of parameters that affect

the magnitude and direction of flow. Two of these parameters, pumping location and frequency of

compression, have both been seen to affect the direction of flow. These previous studies have not

directly determined why these parameters influence the net direction of flow. In this chapter of the

thesis we focused on two parameters that influence the direction of flow: the frequency of actuation

and the diameter to length ration of the elastic part of the tube. The dimensionless length scale L̂

was set to the ratio of the diameter to the length of the elastic section of tube. We changed L̂ by

altering the diameter of the tube and kept the pumping frequency and non-dimensional material

parameters, fixed. The transition from clockwise to counter clockwise flow is seen for two different

non-dimensional length scales Wo = {5, 10}, and this has not previously been reported to affect

flow direction.

We then investigated whether or not driving the tube at the resonant frequency of the short or

long sections determines the direction of net flow. Loumes et al. [22] was one of the first studies to

consider whether or not resonating the elastic tube produces maximum flow in the counterclockwise

direction. To induce maximal net flow in the counterclockwise direction we pursue this work further

by investigating the affects of not only resonating the entire tube but also considering the resonant
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behavior of the sections on either side of the actuation site. Our hypothesis was that resonating

either side of the tube would drive flow in that direction. We measure the first and second modes of

the long and short sections of the tube by initializing the boundary with a displacement that will

excite either the first or second mode and then allowing the tube to vibrate freely. The oscillations of

the tube were recoded and a Fourier analysis was preformed to extract the resonant frequencies. Peak

flows in each directions generally occur near a resonant of the short or long section. It’s important

to note that because of the non-linear effects of the surrounding fluid, the oscillations induced by

the initial displacement do not exhibit a single clearly defined resonant frequency. The frequency of

vibration is amplitude dependent, which is characteristic of nonlinear elastic systems. The resulting

power specra shows a range of frequencies with large coefficients, indicating the resonant behavior

spans a large bandwidth. In the graphs we highlighted regions around the maximal peaks for each

resonant section. These highlighted regions overlap with the maximal flow in each direction for

pumping locations which clearly create short and long flexible sections surrounding it.

The three main dimensionless parameters in our analysis, non-dimensional length scale, L̂,

pumping location, α2, and pumping frequency were significant for determining the flow direction in

impedance pumping. We were able to show that driving the flexible tube as its resonant frequency

can often determine flow direction for. In the future we would like to extend this work or the

smaller scales found in most tubular hearts, Wo < 5. Our results also show that one can tune the

impedance pump to obtain strong flows t low pumping frequencies to optimize pump efficiency. This

study could be extended by considering non-dimensional bending ( ˆκbeam )and stretching stiffnesses

( ˆκspring) separately to determine how each affects flow direction.

6.3 Electro-dynamic pumping and the role of the pericardium

To capture more of the dynamics of an actual heart tube, we added more complexity into our

pumping mechanism. We began by adding traveling action potentials that had previously been

recorded in Ciona intestinalis hearts [21]. A mathematical model of excitable cell dynamics as

developed to drive the contraction of the heart tube. Specifically, we used the FitzHugh-Nagumo

equations and chose parameters that would simulate the action potentials experimentally recorded

in Ciona. The computed traveling action potentials were used to determine the effective spring
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stiffness of simple model muscles. As an action potential arrived in a region of the heart tube, the

spring stiffness increased which drove the contraction of the tube. As he electropotential returned

to rest, the spring stiffness decreased. This resulted in the passive re-expansion of the heart tube

until the next action potential arrived.

Peristaltic pumping has been shown to be effective at transporting fluid at the small scales

seen in Ascidian hearts. It is defined as using an active traveling wave of contraction to push fluid.

If the deformations are sufficiently small, the maximum flow velocities are less than or equal to

the speed of the contraction wave. Recently, data recorded from in vivo experiments of zebrafish

hearts how flow velocities exceed those of the contraction wave. A bi-directional contraction wave

as well as a non-linear relationship between frequency and flow were also observed. These results

supported the claim that tubular hearts use valveless suction pumping. We created a pump which

captures dynamics of both peristalsis and dynamic suction pumping: bi-direction wave propagation,

a non-linear frequency-flow relationship, and flow velocities that are higher than the contraction

wave speed. This mechanism is also effective at small scales.

With this model we were able to see that for Wo = 0.3 and Wo = 0.9 electro-dynamics pumping

outperformed traditional dynamic suction pumping and was able to achieve flow magnitudes equal

to a peristaltic pump. This mechanism was able to effectively transport fluid at extremely small

Wo and incorporating some of the features of the contracting myocardial cells. Although this new

model for the contractions of the boundary created promising results, many issues still remained:

significant back flow and aneurisms along the boundary.

To mitigate these issues we turned back to the organism and noticed a rigid encasing around the

pumping region. We incorporated this new structure into our model by creating a rigid boundary

around the elastic pumping region. This boundary is connected to target points to keep it stiff.

With the addition of this boundary, fluid was transported at a similar velocity to that of peristaltic

pumping for Wo = 0.3 and Wo = 0.9. The vast majority of back flow was also eliminated. Aneurisms

along the elastic tube was were substantially reduced, although work still needs to be done to fully

duplicate the Ascidian heart tube.
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6.4 Future work

Future work is needed to accurately simulate the dynamics of pumping in actual tubular hearts.

For example, most tubular hearts contain helically wound muscle fibers which induce a distinctly

three dimensional contractile motion. Compression tends to be a wrapping constriction, and the

angle these muscles fibers contract relative to the x-axis is something which has been measured in

previous experiments [21] but has not been explored mathematically. As such this three dimensional

motion would be an ideal extension of our study. Also absent is any attempt to accurately model the

muscle dynamics beyond prescribing the motion of the contracting sections of the tube. A variety

of mathematical muscle models could be applied to drive the motion of the tube walls, yielding a

more accurate model of tubular hearts. Another interesting area of future research would to be to

explore the magnitude and direction of net fluid flow for dynamic suction pumps at intermediate

Womersley numbers (1 < Wo < 10). The diameter to length ratio of the flexible heart tube also

appears to be a critical parameter in determining the magnitude and direction of the fluid flow that

could have interesting consequences for organisms.
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APPENDIX A: IMMERSED BOUNDARY METHOD

This appendix will describe a full derivation of the Navier Stokes equations and then detail the

numerical and analytical description of the immersed boundary method. It is a means to get the

finer details of how we describe a fluid in this thesis and how we couple the fluid to the movement

of the boundary. The second appendix details coding implementation of the immersed boundary in

python using the built in FFT modules.

A.1 Conservation of Mass

The major idea of the conservation of mass is that mass in a fixed region cannot be created or

destroyed. Therefore, and change in mass can only occur with infow or outflow of particles in the

system. To derive the conservation of mass equations mathematically we begin with a fixed volume

in space V whose mass is defined to be

∫

V
ρdV (A.1)

We can then determine the rate of increase of mass inside the fixed volume by taking a time

derivative:

d

dt

∫

V
ρdV =

∫

V

∂ρ

∂t
dV (A.2)

The derivative can be taken inside the integral since we are dealing with a fixed volume. We can

then write the rate of mass flow out of the volume as:

∫

A
ρu · dA (A.3)

The dot product tells us how much two vectors are alike, or in this case, how much fluid is traveling

across the boundary A of our volume. also note that u = (u1(x, y, z, t), u2(x, y, z, t), u3(x, y, z, t)),

this indicates that our fluid velocity in each spatial direction is a function of where it is in space
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and time. We can now equate these integrals since fluid flux through the boundary is equal to the

change in density of our fixed volume.

∫

V

∂ρ

∂t
dV = −

∫

A
ρu · dA (A.4)

We now have an equation for change of mass in our fixed volume, but the integral on the right

hand side is a surface area integral whereas, the left hand side integral is a volumetric one. We will

now invoke the divergence theorem to get both integral in terms of volume.

∫

A
ρu · dA =

∫

V
∇ · (ρu)dV (A.5)

With this relation we can now right equation (4) as

∫

V

[
∂ρ

∂t
+∇ · (ρu)

]
dV = 0. (A.6)

For this equation to equal zero, then the integrand must go to zero and this gives us the

continuityequation. One of the more well known forms of this equation is written as:

1

ρ

Dρ

Dt
+∇ · u = 0. (A.7)

Note that the capital D in this equation is called the materialderivative, this operator is defined to

be

D

Dt
=

∂

∂t
+ u · ∇ (A.8)

This equation denotes time rate of change of an object moving through the fluid. Many things

59



Figure A.2.1: Each τ vector corresponds to the stress in the x-direction on each side of the particle.

can have a meaningful material derivative. Density, velocity, temperature are some examples of

objects which describe the fluid that can have meaningful material derivatives. For an incompressible

fluid the continuity equation changes. This is because an incompressible fluid doesn’t change its

density due to a change of pressure. This causes 1
ρ
Dρ
Dt = 0 leading to the more familiar form of the

continuity equations, for an incompressible fluid: ∇ · u = 0.

A.2 Conservation of Momentum

Idea: Use Newtons second law stating that the force on an object is equal to mass*acceleration of

our fluid element. To consider forces we need to figure out the stress on a fluid element. We then

know that the forces on the fluid element must equal its force times its acceleration. The stress is a

force being applied to the boundary of the fluid particle. Each side of our fluid element feels stress

in each direction, x, y, z. We will only derive the stress in the x-direction but the other directions

can be obtained similarly.

We will now sum the forces for each side.

(
τ11 +

τ11

x1

dx1

2
− τ11 +

τ11

x1

dx1

2

)
dx2dx3

+

(
τ21 +

τ21

x2

dx2

2
− τ21 +

τ21

x2

dx2

2

)
dx1dx3

+

(
τ31 +

τ31

x3

dx3

2
− τ31 +

τ31

x3

dx3

2

)
dx1dx2
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We can now cancel terms and reduce. Also notice that we are taking the stress at a point and

multiplying by the area of the face that they are on. This will give us the stress on the entire face

of the fluid particle. This gives us the equation:

(
τ11

x1
+
τ21

x2
+
τ31

x3

)
dx1dx2dx3

We can write this in more general tensor notation:

τj1
xj
dV

In this notation the repeated indices mean to sum over our range of j’s, in three dimensions

j = [1, 2, 3]. Also note that because the second index is a 1 this equation is only valid in the

x-direction. More generally still, we can write this as:

τi,j
xj
dV

Note that τi,j = τj,i and is a second degree tensor, in other words, it is a 3x3 matrix equation

containing information about the stress in all directions for each surface. Now that we have a

complete representation of the stress on the surface of our fluid element we can finally write the

equation of motion for the given fluid element.

ρ
Dui
Dt

= ρgi +
τi,j
xj

D

Dt
=
t

+ u · ∇

Note that ρgi denotes the forces found in the body of the fluid. Since we are in 3-dimensions:

i, j = (1, 2, 3). Also note that the capital D found on the left hand side of this equation is the

“material” derivative which is a operator which denotes the time rate of change of the object being

differentiated as it travels with the fluid. For this equation the derivative is denoting acceleration of

the fluid.
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A.3 Constitutive Equations

A constitutive equation is an equation relating stress and deformation in a continuum, an example

being a newtonian fluid. First we want to consider stress acting on a fluid at rest. If we assume no

movement then the only normal components of stress exist and our stress tensor is isotropic, or

invariant under coordinate rotation. This makes sense because no matter which direction our fluid

particle is facing because it’s not moving there’s no viscous forces and our only components of the

stress tensor will be normal components. We can then write our stress tensor as:

τi,j = pδi,j

δ =




1 0 0

0 1 0

0 0 1




Here p is the thermodynamic pressure which is an equation of state and non-constant. If we begin

considering a moving fluid then we have stress created by viscosity, by fluid particles interacting

with eachother. This imply’s that we now have off diagonal enteries in our stress tensor τi,j . We

can write this new stress tensor describing a moving fluid as:

τi,j = −pδi,j + σi,j

In this equation σi, j is known as the divorac stress tensor. This tensor is intimately related to

the fluid velocity gradients, ui
xj

. We can decompose this velocity gradient into its symmetric and

anit-symmetric components:

ui
xj

=
1

2

(
ui
xj

+
uj
xi

)
+

1

2

(
ui
xj
− uj
xi

)

The second term in this equation represents the antisymmetric portion of the matrix ui
xj

. This

anti-symmetric portion of the matrix only represents fluid rotation, and thus isn’t contributing to

our off diagonal entries of the stress tensor, denoting deformation. This is when we can define the

62



strain rate tensor as:

ei,j =
1

2

(
ui
xj

+
uj
xi

)

We can relate this strain rate tensor to the stress tensor as:

σi,j = Ki,j,m,nem,n

Here the rank four tensor K has 81 components and can vary based on the fluid, but for a newtonian

fluid only two terms of the 81 survive and we can write our stress tensor as:

σ = 2µei,j + λem,mδi,j

Here em,m = ∇ · u is the volumetric strain rate. We now have a representation of our divorac stress

tensor in terms of the fluid velocity and viscosity. We can plug this back into our equation for the

stress tensor for our fluid and get:

τi,j = −pδi,j + 2µei,j + λem,mδi,j

We now need to get an equation for the pressure, since pressure in this sense is thermodynamic

pressure and is non-constant and is related to the stress and strain of the fluid. We will see, however,

that the difference between averaged pressure and thermodynatic pressure are only significantly

different for large density changes. To get a representation of p we will set i = j and sum the

repeated indices.

τi,i = −3p+ (2µ+ 3λ)em,m

Now we can solve for p.

p = −1

3
τi,i +

(
2

3
µ+ λ

)
∇ · u
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This is our thermodynamic pressure, but we can get an average pressure by taking an average of

the diagonal terms of our stress tensor. This allows us to define the average pressure as: p̄ = 1
3τi,i.

Now we can explicitly write out how an average pressure and our thermodynamic pressure vary in

the fluid:

p− p̄ =

(
2

3
µ+ λ

)
∇ · u

If we consider what is refered to as the bulk viscosity κ = 2
3µ+ λ we can start to understand the

differences between thermodynamic pressure and average pressure. It turns out that this term is

measurable and is very small unless Dρ
Dt is very large, which only occurs in some select instances.

Therefore, we can set this constant to zero and assume that the thermodynamic pressure is equal to

the averaged pressure in the fluid. Setting this constant to zero and plugging in our pressure we get

a new constitutive equation.

τi,j = −
(
p+

2

3
µ∇ · u

)
δi,j + 2µei,j

We can write this out in matrix form to get a better understanding of the stress tensor.

τi,j = −
(
p+

2

3
µ

(
ui
xi

))



1 0 0

0 1 0

0 0 1




+ 2µ
1

2

(
ui
xi

)

This is our final form for the stress on a newtonian fluid and now that we have this we can

substitute this into Cauchy’s equation.

ρ
Dui
Dt

= − p

xi
+ ρgi +

xi

[
2µei,j −

2

3
µ(∇ · u)δi,j

]

This is now the general form of Navier-Stokes. µ is the viscosity and is in general a function of

the thermodynamic state and displays strong dependance on temperature. If we can assure that
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temperature differences in the fluid are small we can treat µ as a constant and simplify the equation.

ρ
Dui
Dt

= − p

xi
+ ρgi + 2µ

ei,j
xj
− 2

3
µ
xi

(∇ · u)

= − p

xi
+ ρgi + µ[∇2ui +

1

3 xi
(∇ · u)]

Finally for an incompressible fluid Dρ
Dt = 0 and we are able to obtain the more familiar form of

the equations.

ρ
Du

Dt
= −∇p+ ρg + µ∇2u

∇ · u = 0

We now want to non-dimensionalize in order to get dimensionless parameters to work with. To

do this we will make substitutions for velocity, pressure, time, and position.

x̄ =
x

L

ū =
u

U

t̄ = t
U
L

p̄ =
p

ρU2

Plugging these substitutions into our equations we are able to get a non-dimensionalized form of

the Navier Stokes equations.

ū

x̄i
+ ū

ū

x̄i
= gi

L

U2
− p̄

x̄i
+

ν

UL
ū

x̄j x̄j

Notice that we are now using tensor notation to denote our operators, for example: ∇ = xi
. If we

define non-dimensional numbers we can rewrite the equations as:

ū

x̄i
+ ū

ū

x̄i
=

1

Fr
− p̄

x̄i
+

1

Re

ū

x̄j x̄j
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Where the non-dimensional numbers are defined to be:

Fr =
U2

giL

Re =
UL
ν

Here Re represents Reynolds number: a dimensionless number that quantifies the ration of inertial

forces to viscous forces in the fluid. For large scale fluid applications this number is large since L,

our characteristic length scale, will be large, similarly, the Reynolds number will be small for very

small scale fluid transport.

A.4 Equations of Motion for an Elastic Incompressible Material

In this section we will describe the motion of an elastic material and how it interacts with our fluid

equations. This material’s motion will be described in Lagrangian coordinates to better describe its

motion. For any elastic incompressible material filling three dimensional space we want to attach a

coordinate frame (q, r, s), such that, a fixed value of this coordinate frame (q, r, s) labels a material

point. A fixed pair (q, r) designates a fiber. Now let

x = X(q, r, s, t)

be the position at time t of a material point with label (q, r, s). We now want to define the unit

tangent to the fibers with respect to this function.

τ =
X/s

|X/s|

We now will denote T (q, r, s, t) to be the fiber tension where Tdqdr would be the force from the

fibers corresponding to a patch dqdr. Note that this force points in the fiber direction, ±τ .

Due to the elastic properties of the fibers we can say that the fiber tension is related to the fiber

strain which is determined by |X/s|. We can then write our tension in the form of a generalized

Hooke’s law relating stress and strain of a material.
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T = σ(|X/s|; q, r, s, t).

We now can consider the force the fibers apply to the fluid. To begin this derivation we want to

begin by considering a collection of fiber segments: [S : (q, r) ∈ Ω, s1 ≤ s ≤ s2]. Here Ω is an

arbitrary region of the (q, r) parameter space. We now want to denote F as the force applied by

the fiber segments in S to the fluid. There is an additional force from the fibers from the tension

T . Since the total force acting on S has to be 0, since our fibers are massless, we can write the

following force balancing equation.

0 = −F +

∫

Ω
(Tτ)dqdr|s=s2s=s1 .

To get a more complete understanding of the force applied to the fluid by the fibers we can

rewrite this equation as:

F =

∫ s2

s1

∫

Ω s
(Tτ)dqdrds.

We now have an expression for the force being applied to the fluid, but the right hand side of

the equation is with respect to the Legrangian frame for the fiber points. We now want to define a

Legrangian force from the right hand side of the equation

f =
s

(Tτ)

Here f is the density of the force applied by the fibers to the surrounding fluid. We now need a

relation between the forces in cartesian coordinates and the force in Lagrangian coordinates, thus
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we require a vector field F(x, t) such that we have the following relation:

∫

V
F(x, t)dx =

∫

X−1(V,t)
f(q, r, s, t)dqdrds.

For these equations V is an arbitrary region in the fluid, or the physical space we are considering

and X−1(V, t) = [(q, r, s) : X(q, r, st) ∈ V ]. This relation can be achieved if we define F as:

F(x, t) =

∫
f(q, r, s, t)δ(x−X(q, r, s, t))dqdrds.

Now that we have a relations which ties the forces on the fluid to the forces generated by the

elastic properties of the fibers, we can write out the full set of fluid-structure interaction equations.

ρ
Du

Dt
= −∇p+ ρg + µ∇2u + F (A.9)

∇ · u = 0 (A.10)

F(x, t) =

∫
f(q, r, s, t)δ(x−X(q, r, s, t))dqdrds. (A.11)

X(q, r, s, t)

t
= u(X(q, r, s, t), t) (A.12)

=

∫
u(x, t)δ(x−X(q, r, s, t))dx. (A.13)

f =
s

(Tτ). (A.14)

T = σ(|X/s|; q, r, s, t). (A.15)

τ =
X/s

|X/s|
. (A.16)

Equations 14-16 are the equations which contain the information about the fiber properties.

Equations 12-13 are the interaction equations which describe how the Lagrangian coordinate

described fiber equations relate to the eulerian frame description of the fluid. Equations 10-11 are

the standard incompressible Navier-Stokes s derived above.

The standard fluid equations are in Eulerian form, meaning x = (x1, x2, x3). Variables described

with this frame are the fluid velocity: u(x, t) the fluid pressure: p(x, t) and the Eulerian fiber force
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density: F(x, t). This force density is the F found in the fluid equations.

The fiber equations are described with a moving attached set of variables (q, r, s, t). each triple:

(q, r, s) describes a point of the fibers, and each pair: (q, r) describes an entire fiber. This is known

as a Lagrangian description of the fluid. The unknown variables in these equations are the fiber

tension: T (q, r, s, t), the fiber force density: f(q, r, s, t), the fiber configuration: X(q, r, s, t) and the

unit tangent, τ , to the fibers which can be found from the fiber configuration. If we are given the

tension and configuration of the fibers we can derive the fiber force density by plugging equations

15 and 16 into equation 14. Note that since the movement of the fibers is unknown equations 12-13

is effectively a no slip boundary condition. It merely states that the fibers move at the local fluid

velocity, it doesn’t add any restrictions to the fluid.

A.5 Numerical Method

A.5.1 Discretized Lagrangian Fibers

Now that we have the equations of motion for the fluid-structure interaction we can begin to discuss

how to solve this numerically. First thing we want to define is that for a ∆t time step we will denote

Xn(q, r, s) = X(q, r, s, n∆t).

Or the nth time step in our scheme for a descritized time stepping method. We also have a discrete

collection of fibers: (q, r) = (k∆q, l∆r), k, l ∈ N. Each fiber has a discrete number of points:

s = m∆s, s ∈ N. We also want to define the tension and tangent vectors at half integer points given

by s = (m+ 1
2)∆s. We can now define a destritized version of the s derivative as follows:

(Dsφ)(s) =
φ(s+ ∆s

2 )− φ(s− ∆s
2 )

∆s
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This denotes a centered difference scheme which is second order in approximating the derivative.

We can now define a descritized version of the tension and tangent vectors:

Tn = σ(|DsXn|; q, r, s, n∆t)

τn =
DsXn

|DsXn|

We can now get a representation of the force that the fibers are generating. Using the equations

derived above we have a form for the force in terms of the tension of the fiber configuration and the

unit tangent. Using this definition we will place out discretize tension and tangent into the equation

to get a numerical version of the force:fn = Ds(Tnτn). Note that all of this framework is to get

discrete approximations to the fiber equations. We have descritized time and the point describing

the configuration of the fibers.

A.5.2 Discretized Fluid Equations

Now that we have the framework in place for the lagrangian fibers we can now build up the tools

we need to numerically solve our fluid equations. We want to begin by define our fluid velocity and

pressure on a lattice defined to be x = jh; j = (j1, j2, j3). for each j being an integer value. We

now want to calculate the force field generated from the elastic fibers which is influencing the fluid

motion. We do this by referring back to our interaction equations. We have a continuous formula

for our force spreading and since integration is really a limit of partial sums we can descritize the

integral and get our numerical force spreading.

F̂n(x) =
∑

q,r,s

fn(q, r, s)δh(x−Xn(q, r, s))∆q∆r∆s.
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Here the summation,
∑

q,r,s is a sum over our discrete lagrangian points: (q, r, s) = (k∆q, l∆r,m∆s).

Now that we have a forcing term we can write out the discretized navier-stokes equations:

ρ

(
un+1 − un

∆t
+

3∑

α=1

unαD±αun

)
− D̂0pn+1 = µ

3∑

α

D+
αD−αun+1 + F̂n

D̂0 · un+1 = 0.

Note here that D̂0 is the central difference approximation to the differential operator ∇. We can

define it as follows:

D̂0 = (D0
1,D0

2,D0
3).

Where for a given function of our Eulerian domain we can generate an approximation to its derivative.

(D0
αφ)(x) =

φ(x + heα)− φ(x− heα)

2h

Here eα = (e1, e2, e3) standard basis of <3. We also need to define the foreword and backward

difference operators:

(D+
αφ)(x =

φ(x + heα)− φ(x)

h

(D−αφ)(x =
φ(x)− φ(x− heα)

h

These operators approximate the derivatives xα
, found in our fluid equations. Also note that

everywhere α = 1, 2, 3. Using these foreward and backward difference routines we can obtain an

approximation to the laplacian operator.

3∑

α=1

D+
αD−α

As well as an approximation to advection term u · ∇:

3∑

α=1

uαD±α .
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Here the term contained in the sum stands for:

uαD±α =





uαD−α uA < 0

uαD+
α uA > 0

(A.17)

We can now discuss solving the discretized form of the Navier Stokes equations. For this paper

we will discuss solving using Fourier methods, although there are other ways to numerically solve

the Navier-Stokes equations. The ultimate goal is: given the forces applied to the fluid from the

immersed boundary, solve the N-S equations for (un+1, pn+1). First step is to rewrite the equations

as:

(I − µ∆t

ρ

3∑

α=1

D+
AD
−
A )un+1 +

∆t

ρ
D̂0pn+1 = vn+1 (A.18)

D̂0 · un+1 = 0 (A.19)

Here we define v to be:

vn = un − ∆t

ρ

3∑

α=1

unAD±αun +
∆t

ρ
Fn. (A.20)

After written in this form we can take the Fourier transform of these discretized equations. We

first need to compute a discrete form for our operators:

D̂−α D̂+
α =

−4

h2
sin

(
πkα
N

)
, (A.21)

D̂0 =
i

h
sin

(
2π

N
k

)
. (A.22)

Note that a hat now denotes the fourier transform. Once we have the transform of the numerical
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operators we can then take a transform of vn and solve for our pressure and velocity terms, giving

us:

ûn+1(k) =
v̂n(k)− i∆t

ρh (sin(2π
N k))p̂n+1(k)

A(k)
, (A.23)

p̂n+1(k) =
i
h(sin(2π

N k)) · v̂n(k)
∆t
ρh2

(sin(2π
N k)) · (sin(2π

N k))
. (A.24)

Now that we have a fourier transformed formulation for {ûn+1, p̂n+1} we can take an inverse

transform to to get our updated fluid velocity and pressure: {un+1, pn+1}. Once obtained we can

use this to update the location of the boundary:

Xn+1(q, r, s)−Xn(q, r, s)

∆t
=
∑

x

un+1δh(x−Xn(q, r, s))h3, (A.25)

which is a discretized version of equation 12. This formulation then allows us to update our

boundary position based upon the local fluid velocity. This will enforce a no-slip condition along

the boundary. Once we’ve obtained un+1 and Xn+1(q, r, s) we have completed one time step of

the immersed boundary method. Details of the actual code implementation will be given in the

proceeding appendix.
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APPENDIX B: PYTHON IMMERSED BOUNDARY SOLVER

In this section we will detail the code used to compute the immersed boundary. All code will be in

python and will be a good representation of the actual implementation of the algorithm. We will

not include minor details but instead include the main routine and the fluid solver. The FFT used

in this code is the built in Numpy implementation of the FFT and can be seen to be similar to the

Matlab version.

B.1 Main routine

Here is a formulation of main routine for a python FFT fluid solver:

########################################################

#

# This is a two dimensional immersed boundary method code.

# The fluid solver uses an fft, so the domain

# must be periodic. New fluid solvers will be added as it gets updated.

# Right now the boundary is moved

# via target points (springs and beams forthcoming),

#geometry of target points can be specified.

# Preformance testing and error testing has been

#completed and documented (check documentation).

# this is a first order method near the boundary

# and a second order method away from the boundary.

# to run:

# Be sure that a .txt file containing your boundary points is present,

# then simply type:

# python immersed_boundary.py

#

# movement of the boundary can be manipulated

# in the move_ib function within the code (see documentation)
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# a rubber band example, and a moving rod

# are both simple examples included in documentation.

#

# Written by: Austin Baird, UNC Chapel Hill.

#Part of a PhD thesis work on immersed boundary and pumping

# applications.

##########################################################

if __name__ == "__main__":

##########################################################

# Initialize parameters needed for computation

# dt, meshsize and other things may be changed here

##########################################################

#import fluid_constants as f

#ptime = 0

k = 0 # frame number

##########################################################

# Array initialization

##########################################################

press = np.zeros((f.M,f.N)) #pressure size NXM matrix

u = np.zeros((f.M,f.N)) #x-directed velocity

v = np.zeros((f.M,f.N)) #y_directed velocity

f1 = np.zeros((f.M,f.N)) #force in x_direction

f2 = np.zeros((f.M,f.N))

t = np.zeros(f.T) #number of time steps

mag = np.zeros((f.M,f.N)) #magnitude of velocity vector at each grid point
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#-----------------------Precomputed matrices from paper---------------------#

w1 = np.zeros((f.M,f.N))

w2 = np.zeros((f.M,f.N))

a = np.zeros((f.M,f.N))

b = np.zeros((f.M,f.N))

c = np.zeros((f.M,f.N))

d = np.zeros((f.M,f.N))

#---------------------Matricies to store fourier transforms-----------------#

uft = np.zeros((f.M,f.N))

vft = np.zeros((f.M,f.N))

pft = np.zeros((f.M,f.N))

#---------------------Cartesian coordinate matrices--------------------------#

xcoord = np.zeros((f.M,f.N)) #holds the x-value in the (i,j) position

ycoord = np.zeros((f.M,f.N)) #holds the y-value in the (i,j) position

vort = np.zeros((f.M,f.N))

#--------------------Boundary arrays and tartget arrays---------------------#

b1 = np.zeros((f.Q,1))

b2 = np.zeros((f.Q,1))

b1t = np.zeros((f.Q,1)) #target points for the immersed boundary

b2t = np.zeros((f.Q,1))

fb1 = np.zeros((f.Q,1)) #storing forces for each boundary point
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fb2 = np.zeros((f.Q,1))

##########################################################

# Creating directories to store the output files

##########################################################

os.makedirs("./velu")

os.makedirs("./velv")

os.makedirs("./pressure")

os.makedirs("./vorticity")

os.makedirs("./forcesx")

os.makedirs("./forcesy")

##########################################################

#Store cartesian values into array, for plotting

##########################################################

for i in range(f.M):

for j in range(f.N):

xcoord[i,j] = j*f.dx

ycoord[i,j] = i*f.dx

#print xcoord

##########################################################

#Precompute matrices used to calculate u_hat, p_hat

#from Peskin and McQueen

# 1996 eqns 14.52 and 14.51

##########################################################
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for i in range(f.M):

for j in range(f.N):

if i==0 and j==0 or i==0 and j==f.N/2:

a[i,j]==0

b[i,j]==0

c[i,j]==0

elif i==f.M/2 and j==0 or i == f.M/2 and j==f.N/2:

a[i,j] = 0

b[i,j] = 0

c[i,j] = 0

else:

a[i,j] = np.sin(2*np.pi*i/f.M)*np.sin(2*np.pi*i/f.M)/

((np.sin(2*np.pi*i/f.M)*np.sin(2*np.pi*i/f.M)+

np.sin(2*np.pi*j/f.N)*

np.sin(2*np.pi*j/f.N)))

b[i,j] = np.sin(2*np.pi*i/f.M)*np.sin(2*np.pi*j/f.N)/

((np.sin(2*np.pi*i/f.M)*np.sin(2*np.pi*i/f.M)+

np.sin(2*np.pi*j/f.N)*

np.sin(2*np.pi*j/f.N)))

c[i,j] = np.sin(2*np.pi*j/f.N)*np.sin(2*np.pi*j/f.N)/

((np.sin(2*np.pi*i/f.M)*np.sin(2*np.pi*i/f.M)+

np.sin(2*np.pi*j/f.N)*

np.sin(2*np.pi*j/f.N)))

for i in range(f.M):

for j in range(f.N):

d[i,j] = 1/(1+(4*f.nu*f.dt/(f.dx*f.dx))*np.sin(np.pi*i/f.M)*

np.sin(np.pi*i/f.M)+np.sin(np.pi*j/f.N)*np.sin(np.pi*j/f.N))
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#print d.shape, a.shape, b.shape, c.shape

##########################################################

#To follow the matlab code I will be setting the

#inital boundary here

###########################################################

#boudary points for a rod

for i in range(f.Q):

b1[i,0] = f.width/2

b2[i,0] = (f.width/4) + i*f.ds

#Target points are just the boundary points

for i in range(f.Q):

b1t[i,0] = f.width/2

b2t[i,0] = (f.width/4) + i*f.ds

##########################################################

# Time stepping routine (this is the main routine for IB method)

##########################################################

while f.time < f.time_final:

#zero forces

f1 = np.zeros((f.M,f.N))

f2 = np.zeros((f.M,f.N))

fb1 = np.zeros((f.Q,1))

fb2 = np.zeros((f.Q,1))
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b1t, b2t = moveIB(b1t,b2t,f.Q)

#calculate forces from the boundary being applied to the fluid:

fb1, fb2 = target_force(b1,b2,b1t,b2t,fb1,fb2,f.stiff,f.Q)

#spread the force to the fluid:

f1, f2 = forcespread(b1,b2,fb1,fb2,f1,f2,f.Q)

# Now solve for the new velocity and pressure:

u,v,press = fluidsolve(a,b,c,d,f1,f2,u,v,uft,vft,w1,w2,pft,f.time,press)

# Move boundary at the local fluid velocity

b1, b2 = move_boundary(b1,b2,f.Q,u,v)

# now we need to output the data:

#print u, v vorticity, pressure, forces:

if f.time>f.ptime:

vort = vorticity(u,v,vort)

record(u,v,vort,press,f1,f2,b1,b2,k)

f.ptime = f.graphtime + f.ptime #

f.time = f.time + f.dt #update time
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This algorithm follows the formulation of the problem introduced in the first appendix. The

FFT fluid solver is a function which is detailed here:

##########################################################

# This file takes in the forces from the boundary and updates

# pressure (press) and fluid velocity (u,v) accordingly

##########################################################

def fluidsolve(a,b,c,d,f1,f2,u,v,uft,vft,w1,w2,pft,time,press):

#import fluid_constants as f

# First thing to do is to calculate w1, w2 and take the fft of them

w1, w2 = makew(w1,w2,f1,f2,u,v)

# After calculating w1,w2 we can now begin taking the fft of our arrays

w1ft = np.fft.fft2(w1)

w2ft = np.fft.fft2(w2)

a = a + 0j

b = b + 0j

c = c + 0j

d = d + 0j

uft = uft + 0j

vft = vft + 0j

# calculate uft, vft from w’s, from Peskin paper

uft = (w1ft - (a*w1ft + b*w2ft))*d

vft = (w2ft - (b*w1ft + c*w2ft))*d
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pft = pft + 0j

for i in range(f.M):

for j in range(f.N):

if i==0 and j==0 or i==0 and j==f.N/2:

pft[i,j] = 0

elif i==f.M/2 and j==0 or i ==f.M/2 and j==f.N/2:

pft[i,j] = 0

else:

pft[i,j] = ((f.p*f.dx/f.dt)*(np.sin(2*np.pi*i/f.M)*

np.imag(w1ft[i,j])

+ np.sin(2*np.pi*(j)/f.N)*np.imag(w2ft[i,j])))/

((np.sin(2*np.pi*i/f.N)*np.sin(2*np.pi*i/f.M)) +

np.sin(2*np.pi*j/f.N)*np.sin(2*np.pi*j/f.N))

pft[i,j] = pft[i,j] - np.sqrt(np.complex(-1))*

((f.p*f.dx/f.dt)*(np.sin(2*np.pi*i/f.M)*

np.real(w1ft[i,j]) + np.sin(2*np.pi*(j)/f.N)*

np.real(w2ft[i,j])))/((np.sin(2*np.pi*i/f.N)*

np.sin(2*np.pi*i/f.M)) +

np.sin(2*np.pi*j/f.N)*np.sin(2*np.pi*j/f.N))

# We can now take the inverse transform to get u,v, and press

u = np.fft.ifft2(uft)

v = np.fft.ifft2(vft)

press = np.fft.ifft2(pft)
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u = np.real(u)

v = np.real(v)

press = np.real(press)

return u, v, press

Details of other functions are straight forward and follow from the work in the previous appendix.
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