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ABSTRACT 

 
Justin Allen Johnson: Improving Signal Identification for Fast-Scan Cyclic Voltammetry 

(Under the direction of R. Mark Wightman) 
 

 Fast-scan cyclic voltammetry (FSCV) is a powerful analytical tool for monitoring the in vivo 

concentration dynamics of electroactive neurotransmitters. Coupled with the use of microelectrodes, the 

approach allows for unsurpassed spatiotemporal resolution and is readily amendable to studies in freely 

moving animals. However, since its inception, the issue of selectivity has been of central concern. Correct 

identification and isolation of neurotransmitters signals is critical to interpretation of FSCV data, and much 

of the progress in the field has focused on methods of improving the ability to do this more robustly. Here, 

this work is expanded upon to both improve the use of existing methods (i.e. principal component 

analysis-inverse least squares regression, or PCA-ILS) and introduce new tools (i.e. multivariate curve 

resolution, or MCR-ALS, and convolution-based removal of non-faradaic currents) for this purpose. 

Chapter 1 presents the historical context of this work, highlighting the methods that have been 

successfully developed and employed for isolating catecholamine signals. In Chapter 2, the evaluation of 

the pitfalls of common methods of model training (i.e. the use of non-experimental training data) for PCA-

ILS is discussed, with focus on elucidating the source of errors that arise from this approach. To help 

avoid these pitfalls, MCR-ALS, a method that does not require independent training data, characterized 

for use with FSCV data as a possible alternative. Next, Chapters 4 and 5 focus on the introduction, and 

exploration of the possibilities afforded by, the use of convolution to predict and remove non-faradaic 

currents from FSCV data. Chapter 4 specifically focuses on optimization of this method and the removal 

of ionic interferences from background-subtracted data collected with standard waveforms. Chapter 5 

builds on this work to explore possible modifications to the experimental protocol (i.e. the use of high scan 

rates and higher waveform holding potentials) that tailor to this convolution-based procedure, which 

allows for the removal of the majority of the background current. The potential of this latter approach for 

simultaneous monitoring of information about phasic and basal levels of dopamine is then evaluated. 
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CHAPTER 1: UNRAVELING VOLTAMMETRIC NEUROTRANSMITTER MEASUREMENTS 

 

INTRODUCTION  

Neurotransmission is a multifaceted phenomenon, relying on both electrical and chemical 

impulses for information propagation and processing throughout the nervous system. In its most basic 

form, neurons act as the central units of this transmission.  Control of their transmembrane voltage 

gradients allow these specialized cells to transform extracellular chemical information, sensed at the cell 

body and dendrites, into electrical signals called action potentials. These action potentials are conducted 

through axons to synapse, where the action potential translates into controlled chemical release to 

influence downstream cells. A complete picture of neurotransmission thus requires tools to probe these 

multiple aspects on the cellular level and to understand the interplay between them. 

The study of neuronal electrical activity has a well-established history in the field of 

electrophysiology, beginning in the 1950s with the pioneering experiments of Hodgkin and Huxley. 

(Hodgkin & Huxley, 1952a, 1952b, 1952c) However, the real-time in vivo chemical analysis of 

neurotransmission, and more specifically neurotransmitters, is a less mature field and a formidable 

analytical challenge. The heterogeneous and complex nature of the neuronal environment demands high 

sensitivity, spatiotemporal resolution, and chemical selectivity to glean meaningful insight into the 

neurobiological phenomena studied. Consequently, electrochemistry, which can provide sub-second 

measurements of charge stemming from redox reactions of electroactive compounds, has found 

considerable, if not straightforward, success in this endeavor.(Bucher & Wightman, 2015) Appropriate 

choice of instrumentation, experimental design, and electrode materials (e.g. carbon-fiber 

microelectrodes) can readily deliver the nanomolar limits of detection needed for neurotransmitter 

tracking in micron-sized environments. However, the issue of selectivity has plagued in vivo 

electrochemical measurements throughout the development of the field.(Wightman et al., 1987) Indeed, 

in its first realization by Ralph Adams and colleagues in 1973, attempted cyclic voltammetric 



2 
 

measurements of a catecholamine neurotransmitter (i.e. dopamine, or DA) were prevented by 

interference by the neuroprotective antioxidant ascorbic acid, which is present in orders of magnitude 

larger concentrations within the extracellular environment.(Kissinger et al., 1973) Even with the advances 

in the field since this report, the topic of appropriate isolation, assignment, and quantitation of 

electrochemical signals remains a central concern for researchers. 

Indeed, many of these advances have been focused on enhancing the selectivity of in vivo 

electrochemical measurements. While controlled-potential amperometry has exquisite time resolution and 

sensitivity, the poor selectivity of the method has hindered its widespread adoption. All redox active 

species that can undergo electron transfer at the electrode contribute to the single measurements taken 

at a time point, and there exists no mechanism for separation of these contributions using this data alone. 

As such, cyclic voltammetry has become the preferred approach. Stratification of the analyte responses 

along the potential axis generates unique voltammetric profiles that depend on the electrochemical 

properties of the analyte at the specific electrode surface, introducing another degree of separation into 

the measurements.  However, traditional approaches to cyclic voltammetry, either in measurement or 

analysis, do not directly provide the selectivity or sensitivity desired to measure crucial neurotransmitters 

(i.e. catecholamines and indolamines), requiring further refinements to optimize the method for in vivo 

analysis. 

Here, the development of cyclic voltammetry for in vivo neurotransmitter analysis will be briefly 

discussed. Focus will be placed on the experimental innovations permitting robust and selective 

dopamine measurements, as this has been the traditional system studied in in vivo cyclic voltammetric 

experiments. The discussion will then shift to the analysis of in vivo voltammetric data, specifically the 

evolution of the methods used and their interpretation. Finally, the sources of measurement error will be 

discussed. 

 

EXPERIMENTAL APPROACHES TO DOPAMINE SIGNAL ISOLATION 

It is a primary goal of in vivo electrochemistry to be able to convert the obtained measurements 

into meaningful statements on neurotransmitter temporal dynamics and concentrations with confidence. 

To accomplish this, several criteria must be met. First, the phenomena that contribute to the measured 
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electrochemical signal must be understood, and the experiment must be designed such that it will 

generate a measurable signal from a phenomenon relating to the neurotransmitter of interest. Second, a 

subsection of the signal that carries information solely about the specific neurotransmitter of interest must 

be isolated. Finally, a means of transforming the isolated information about the neurotransmitter into 

concentration estimates must be deployed. The first two criteria can be partially met through experimental 

means (e.g. the deployment of appropriate electrochemical methodologies), while complete fulfillment of 

the second and third criteria relies on the use of robust calibration methodologies.  This discussion begins 

by tracing the development of the experimental methodologies that lead to the current state of in vivo 

voltammetry. 

 As mentioned before, it was realized early that the traditional voltammetric procedures would 

prove insufficient to gain clear insight into catecholamine dynamics due to the interferences provided by 

its metabolites and other ambient species, which are typically found in orders of magnitude higher 

concentrations than dopamine in extracellular fluid.(Wightman et al., 1988b) The first step towards 

interpreting the electrochemical data was then identifying the subset of electroactive species present in 

the extracellular environment capable of generating signals. For this, experiments carried out using 

electrochemistry with modified electrodes and perfusion methods coupled to offline liquid chromatography 

were used to identify homovanillic acid, uric acid, 3,4-dihydroxyphenylacetic acid, and ascorbic acid as 

the primary components of the electrochemical signals.(Kovach et al., 1984; Salamone et al., 1984). Of 

these, the primary species of concern are 3,4-dihydroxyphenylacetic acid (DOPAC), the oxidative 

catabolite produced by monoamine oxidase, and ascorbic acid (AA), a neuroprotective antioxidant, both 

of which have similar voltammetric peak positions as dopamine on unmodified carbon electrodes. 

The first path towards improving selectivity focused on understanding of the carbon electrode 

surface and possible modifications to improve selectivity. Gonon and colleagues reported that brief 

application of a high-frequency triangular wave (0 to 3 V vs. Ag/AgCl) resulted in the separation of a 

peak attributable to catecholamines (DA and DOPAC) from one attributable to ascorbic acid during 

subsequent differential pulse voltammetry experiments at that electrode.(F. Gonon et al., 1980; F. G. 

Gonon et al., 1981) This result was attributed to surface-oxide groups formed during pretreatment that 

served to catalyze the redox reactions of these species, resulting in negative shifts in the peak potentials. 
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Figure 1.1. Comparison of voltammetric measurements of ascorbic acid (AA), 3,4-dihydroxyphenylacetic 
acid (DOPAC), and dopamine (DA) at carbon-fiber microelectrodes. (A) Slow-scan voltammograms (100 
mV/s) for AA, DOPAC, and DA (left to right) taken at unmodified (a) and electrochemically pretreated (b) 
carbon-fiber microelectrodes. (Kovach, et al., 1984) (B) Fast-scan voltammograms (200 V/s) for AA, 
DOPAC, and DA (left to right) taken at bare carbon-fiber microelectrodes.(Baur et al., 1988)  
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Further, cyclic voltammetric characterization of these compounds using modified electrodes showed a 

change in their behavior (Figure 1.1A), namely the appearance of peaks in the voltammograms of 

DOPAC and DA, suggesting adsorptive pre-concentration at the electrode. (Kovach, et al., 1984) 

Consequently, there was a corresponding increase in sensitivity reported for use of these oxidized fibers 

towards the catecholamines.(Feng et al., 1987) However, these fibers exhibit a decrease in sensitivity in 

brain tissue with time, leading to high detection limits unsuitable for robust analysis of small dopamine 

changes. As such, later approaches focused on continued excursions to more moderate anodic potential 

limits (1.4) during the measurement, which was demonstrated to help increase and maintain sensitivity 

throughout measurements, albeit at the cost of selectivity.(Hafizi et al., 1990; Heien et al., 2003; 

Takmakov et al., 2010b) A second electrode modification for the increase in selectivity was the use of a 

perflourinated ion-exchange membrane (i.e. Nafion) at the electrode surface. (Gerhardt et al., 1984; Nagy 

et al., 1985) The negatively charged polymer membrane acts to filter out anions (e.g. ascorbic acid and 

DOPAC at physiological pH), preventing their access to the electrode surface. This allows for the relative 

isolation of the dopamine signal, coupled to a slight increase in sensitivity.(Baur, et al., 1988) 

The second breakthrough for selective electrochemical measurements was the introduction of 

fast-scan cyclic voltammetry (FSCV), in which the scan rate of the voltammetric sweep is hundreds of 

volts per second. This approach was introduced by Millar and colleagues for calibration of the amount of 

iontophoretically ejected dopamine.(Millar et al., 1981) However, its potential for direct measurement of 

naturally released dopamine was soon realized. Four  years later, the technique was shown to be capable 

of selective in vivo measurement of dopamine evoked from electrical stimulation, a finding supported by 

iontophoretic evaluation of DOPAC and dopamine.(Millar et al., 1985) Subsequent characterization of the 

technique showed that this selectivity derives from the differing electron transfer rates between dopamine 

and its interferents. At high scan rates, the slow kinetics of ascorbic acid and DOPAC oxidation push their 

voltammetric peaks to potentials more positive than that of dopamine (Figure 1.1B), allowing resolution of 

the dopamine signal.(Baur, et al., 1988) Further, the shortening of the measurement window allows for 

the reduction wave, generated from the oxidized dopamine (i.e. dopamine-o-quinone), to be observed in 

the resulting voltammogram, as this species does not have sufficient time to leave the electrode 

surface.(Bath et al., 2000; Millar, et al., 1985) Beyond selectivity, the use of high scan rates has other 
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inherent advantages. Increasing scan rates results in increasing voltammetric signal intensities, and thus 

in sensitivity.(Bard & Faulkner, 2001) The shortening of the measurement window also enables access to 

sub-second information about the dynamics of neurotransmitter changes. 

 However, there are drawbacks to these approaches towards increasing selectivity. Modified 

electrodes distort the temporal response of the sensor beyond that attributable to diffusion from the 

release site to the electrode.(Feng, et al., 1987; Kovach, et al., 1984) These artifacts stem from the 

adsorptive characteristics of the electrode and, in the case of Nafion films, the time needed to diffuse 

through the film to the electrode surface.(Bath, et al., 2000; Kile et al., 2012) Subsequent treatment of the 

obtained data is then needed to obtain a correct picture of the dopamine response, which is typically done 

with convolution. (Engstrom et al., 1988; Kawagoe & Wightman, 1994; Wightman et al., 1988a) Another 

issue that arises is the presence of new types of interferences. The most prominent one is the large 

background current observed when using rapid scan rates for voltammetric measurements, which, at 

carbon electrodes, consists of non-faradaic and faradaic components. In many ways, the union of 

microelectrodes and FSCV is mutually advantageous, as the small exposed electrode surface permits the 

background current to be minimized. However, given the concentrations of neurotransmitters found in 

vivo, this background signal still dwarfs the analytical signal by order of magnitude, necessitating digital 

background subtraction for resolution.(Howell et al., 1986) Further, the measurements then become 

dependent on the background stability, resulting in a number of issues. First, even in stable 

environments, the background signal tends to drift with time, likely due to largely unavoidable changes at 

the electrode related to surface fouling and evolution driven by the applied waveform.(Hermans et al., 

2008; Takmakov et al., 2010a; Wiedemann et al., 1990) This limits measurements to the time windows 

over which the background signal remains stable, restricting the information gained from the technique to 

that concerning phasic dopamine release as compared to long-term shifts in neurotransmitter 

concentrations. Second, FSCV measurements are open to interference by chemical species that can 

modulate the background current, either its non-faradaic or faradaic component. The non-faradaic current 

arising from charging of the electrical double layer is determined by the impedance characteristics of the 

electrochemical system. Thus, any species that alters this, such as ions that alter the effective double-

layer capacitance, result in artifacts in the background-subtracted measurements.(Jones et al., 1994; 
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Takmakov, et al., 2010a) Additionally, for moderately oxidized carbon fibers, a voltammetric wave 

attributable to the two-electron, two-proton redox reaction of a surface quinone-like species appears in 

the background current.(Dengler et al., 2015; Karweik et al., 1985; Kawagoe et al., 1993a; Runnels et al., 

1999; Takmakov, et al., 2010a) As the process is dependent on protons, this functionality is pH-sensitive. 

As dopamine terminal activity results in local pH shifts attributable to metabolic activity, this results in 

common contributions to FSCV measurements relating to this phenomena.(Venton et al., 2003) These, 

however, are preferable interferences, as their voltammetric behavior is drastically different from 

dopamine under species like DOPAC and ascorbic acid and readily dealt with through appropriate data 

analysis methods (as will be discussed below). 

 No method for increasing specificity is fool-proof. For instance, differentiation of dopamine from 

another catecholamine not discussed, norepinephrine, is not currently practically possible.(Heien, et al., 

2003; Park et al., 2009) As such, criteria for appropriate signal attribution have been laid out in the 

literature, either in traditional use of FSCV or in the establishment of alterations to these procedures, and 

have been used with success in establishing the technique as a reliable method through which to monitor 

electroactive neurotransmitters.(Kawagoe et al., 1993b; Wightman, et al., 1987) Here, these criteria will 

be briefly reiterated. First, thorough in vitro characterization of the voltammetric behavior of the species of 

interest at the specific type of electrode used in a media containing all expected extracellular fluid 

components is needed to verify that the in vivo signal exhibits similar behavior. Second, the use of 

independent methods of analysis (e.g. dialysis techniques coupled to offline analytical techniques or post-

mortem liquid chromatography) is recommended to corroborate the general electrochemical 

findings.(Buda et al., 1981; Church et al., 1987; Justice & Neill, 1986; Justice et al., 1983; Park, et al., 

2009) Third, the electrochemical measurements should match up with the known chemical composition 

and physiology of the neural structure studied. This also requires confirmation of the positioning of the 

electrode, which is most often done through electrolytic lesioning of the carbon fiber electrode post-

experiment and subsequent histological analysis.(Roberts et al., 2013) Finally, pharmacological 

manipulation with well-characterized agents should modulate the signal in a manner matching the known 

effect on the underlying neurotransmitter.  
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CALIBRATION METHODOLOGIES 

As highlighted, the selectivity imparted by experimental modifications alone often proves 

insufficient for complete isolation of the voltammetric dopamine signal. Thus, the use of robust calibration 

methodologies is needed to extract the pure dopamine signal from the data. Most commonly, the current 

at the dopamine oxidation potential is used as the indicator of the dopamine concentration, as it has 

maximal sensitivity to the dopamine concentration. Thus, the goal of calibration has largely been 

estimation of the ‘true’ value of this parameter for use in quantitation.  

Early methods focused on identifying and analyzing only voltammograms that had only 

contributions from dopamine and using traditional univariate analysis of the measured peak current. To 

reduce the subjective nature of this identification, a template method was introduced, where the 

correlation of an obtained in vivo signal was determined against a series of in vitro signals of expected 

components.(Phillips & Wightman, 2003; Rodeberg et al., 2017; Troyer et al., 2002; Venton & Wightman, 

2003) Alternatively, the in vivo signal was compared to another in vivo signal evoked by a known method 

of eliciting the specific neurotransmitter response (e.g. electrical stimulation).(Phillips et al., 2003) There 

are, however, two issues with this approach. First, selection of a correlation threshold for selecting 

measurements with sufficiently pure dopamine signals was an arbitrary user-defined value rather than a 

statistically robust parameter. Second, this introduces an inherent bias into the pool of analyzed 

data.(Rodeberg, et al., 2017) Despite these drawbacks, this approach was a hint of things to come, as it 

utilized the power of the voltammogram, namely that there are multiple current measurements that relate 

to the dopamine concentration that can be used for identification of the underlying analyte. Indeed, in an 

extension of this approach, a bivariate analysis method was used, where current measurements at 

potentials dominated by known interferents were used to predict and subtract their contributions at the 

dopamine oxidation potential.(Cheer et al., 2004; Venton, et al., 2003) 

However, full utilization of the power of the voltammogram was not realized until the introduction 

of chemometric multivariate analysis methods, which use the entire set of current measurements in the 

voltammogram. Heien and colleagues first reported the use of a technique called principal component 

analysis-inverse least squares regression (PCA-ILS), also referred to as principal component regression 

(PCR) for short, for the analysis of FSCV data.(Heien et al., 2004) This approach consists of two steps. 
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First, principal component analysis, a dimensionality reduction factor analysis technique, is used to 

produce noise-free estimates of the pure spectra of all expected components. These components are 

defined by the user by providing the model a set of training voltammograms (i.e. training set) measured at 

the electrode. The spectral estimates are provided by analyzing the training set data to determine the 

signal shapes (i.e. factors or principal components) that define the majority of the variance of the training 

set data, which are assumed to describe only the analytically relevant variance. These principal 

components are used to then estimate the noise-free spectra, which are then used to analyze the data 

using inverse least-squares regression to determine the linear combination of spectra that best fits it. 

From this, the oxidative peak current of the fitted spectra is then converted into an estimate of 

concentration using either average calibration factors for similar electrodes or ex vivo calibration. This 

final step is discussed more in the following section. 

Since its introduction, the technique has been further refined to provide tools to help in model 

construction and validation. Techniques such as PCA-ILS can realize what is referred to in the 

chemometrics literature as the first-order advantage.(Booksh & Kowalski, 1994; Olivieri, 2008) Univariate 

methods (i.e. zero-order methods) have no means of detecting the presence of interferents contributing to 

the single measurement used for calibration. However, first-order methods like PCA-ILS can detect their 

presence through a validation technique called residual analysis.(Jackson & Mudholkar, 1979; Keithley et 

al., 2009; Lavine & Workman, 2013) This procedure relies on the unattributed current left in the data after 

spectral fitting, which has the advantage of having well-defined statistical properties that can be used for 

robust detection of the presence of interferents. This is important, as the presence of considerable 

residual current indicates that the model is poorly suited for analysis of the data and that the model 

predictions likely have error. Adaptation and rigorous implementation of a residual analysis procedure for 

FSCV was introduced by Keithley and colleagues.(Keithley, et al., 2009) Further, tools for the evaluation 

of model quality (i.e. Cook’s distance plots for the detection of outliers and k vectors for visual inspection 

of estimated analyte spectra) have been introduced and implemented into a user-friendly analysis 

program, permitting the facile construction and evaluation of PCA-ILS models.(Bucher et al., 2013; 

Keithley & Wightman, 2011) These developments have helped establish PCA-ILS as the standard for 

FSCV data analysis, and its success for in vivo removal of interferents such as pH and background drift 
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has been successfully demonstrated.(Heien et al., 2005; Hermans, et al., 2008) However, the 

implementation of PCA-ILS has not been without controversy. The main point of contention has been the 

proper construction of training sets, which adds experimental complexity due to the need for additional 

data collection. This issue was first reported by Rodeberg et al. and is expanded on in Chapter 2. 

(Johnson et al., 2016a; Rodeberg et al., 2015) 

It is worth noting that other analysis methods have been explored. First, a method called partial 

least squares regression (PLS) has been reported for FSCV analysis.(Yorgason et al., 2011) The method 

is highly similar to PCA-ILS, differing solely in how the pure spectra are determined from the training set 

prior to regression.(Kramer, 1998) For this step, PCA focuses solely on the major variance present in the 

voltammograms, while PLS considers both the voltammograms and corresponding concentration values 

to attempt to define factors that best explain the variance in both. The advantage of this approach 

typically relies on the independence of errors in the concentration values and the obtained spectra, which, 

if not accounted for, can reduce the effectiveness of noise removal.(Kramer, 1998) However, 

concentration values are typically estimated from the peak oxidative current of the training set 

voltammograms, as a method for independent verification of the corresponding concentrations has not 

been established, so it is unclear how much of an advantage this approach would provide. Additionally, 

no direct comparison of PLS and PCA-ILS has been reported in the literature to evaluate this. A second 

method recently reported is the use of a penalized linear regression approach called elastic net.(Kishida 

et al., 2016) The main reasons for use of factor analysis techniques, like PLS and PCA, prior to 

regression are to avoid 1) ill-defined regression equations and 2) issues that arise when a number of the 

predictive variables (e.g. the individual current measurements in the voltammograms) are highly 

correlated.(Haaland & Thomas, 1988; Kramer, 1998) This latter condition is called multicollinearity and is 

certainly present in the current measurements in a voltammetric wave.  If these issues are not considered 

during model building, the resulting solutions can be non-unique and bias towards the disproportionate 

use of a subset of the current measurements for concentration measurement. Penalized linear regression 

techniques address this issue in an alternative manner by modifying the regression equations themselves 

with additional terms that ‘penalize’ solutions that bias towards unreasonably large weightings of a subset 

of measurements, providing boundaries to define the regression equation such that it provides unique 
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solutions.(Meloun et al., 1994) In the report by Kishida et al., this approach was used for analysis of the 

derivatives of the non-background-subtracted FSCV voltammograms, and it was claimed that the 

technique performed more reliably than PCA-ILS on the data analyzed and could be used to monitor tonic 

dopamine concentrations. However, a thorough characterization of this technique is needed to validate 

the results, as well as the development of tools like residual analysis for verification of the model results.  

 

PRESENT LIMITATIONS IN QUANTITATING FSCV MEASUREMENTS 

 To close out this discussion, the final issue of converting the isolated dopamine signal into an 

estimate of concentration will be briefly discussed, particularly the limitations placed by in vivo 

measurements and the currently employed methodologies. As noted above, the true output of the 

calibration models is an estimate of the oxidative peak current expected for dopamine in the absence of 

interferents. Estimates of concentration are produced by use of a conversion, or calibration, factor. The 

source of this calibration factor is ex vivo analysis at the specific electrode after the experiment or an 

average ex vivo calibration factor from similarly treated electrodes. The latter is typically used, because, 

as noted before, the electrode is more often lesioned to provide a marking for histological verification of 

electrode placement.  

 These approaches open up the estimates to a certain degree of quantitation error. First, it is not 

guaranteed that the calibration factor obtained ex vivo, even at the same electrode, will be the effective 

calibration factor in vivo. Indeed, comparison of the results from FSCV and microdialysis studying the 

levels of acetyl-p-aminophenol after injection revealed that both precalibration and ex vivo postcalibration 

differed significantly from the microdialysis result and from each other.(Logman et al., 2000) While part of 

this discrepancy may lie in the different sampling properties of the techniques, there has been no 

definitive establishment of the accuracy of these approaches. Several factors could drive the introduction 

of error into these calibration factors. It is known that the sensitivity of the carbon electrodes is a function 

of the composition of the surrounding solution, so mismatches between the calibration solution and the 

extracellular environment could result in errors in the calibration factor estimate.(Kume-Kick & Rice, 1998) 

Further, fouling of the electrode has been shown to result in sensitivity changes upon implantation and  
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Figure 1.2. Concentration error estimation for PCA-ILS analysis of a representative FSCV recording. (A) 
Color plot showing two dopamine transients elicited by electrical stimulation during an intracranial self-
stimulation session. (B) Chemometric concentration estimates and corresponding 95% confidence 
interval when considering calibration factor error. (C) Chemometric current concentration and 
corresponding 95% confidence interval when the calibration factor is ignored. 
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with time, while use of waveforms with extended anodic limits also drive surface evolution with 

time.(Johnson et al., 2016b; Singh et al., 2011; Takmakov, et al., 2010b) Changes driven by these factors 

over the time between a given experimental measurement and calibration, either during the rest of the 

experiment, during the removal procedure, or during equilibration with the calibration solution, would then 

introduce error into the calibration factor estimate. However, the experimental difficulty in determining the 

extent of this error has prevented any real understanding of its importance. 

 Additionally, even ignoring this error, the use of an average calibration factor introduces a 

deterministic error into the concentration estimates produced for a specific electrode based on the 

discrepancy between the actual calibration factor and this average calibration factor. This error can be 

treated more directly through theoretical considerations. The methodology for obtaining error estimates 

when using first-order methodologies like PCR has been the subject of research in the chemometrics 

literature.  Here, an attempt is made to use the formulas provided by this work to illustrate the uncertainty 

in the estimation of the true concentrations measured during in vivo FSCV. The fundamental equation 

used for the calculation of the variance in the predicted concentration values for multivariate models is: 

V(ypred) = SEN−2 ∗ σx
2 +  h ∗ SEN−2 ∗ σx

2 + 𝐱u
T𝐕𝟎(β)𝐱u (Eq. 1-1) 

where V(ypred) is the variance in the predicted y (concentration) values, h is the leverage, SEN is the 

multivariate sensitivity (defined as the inverse of the length of the vector of calibration coefficients), σx
2 is 

the variance in the x values, xu
 is the unknown cyclic voltammogram, and V0() is the zeroth-order 

approximation of the covariance matrix associated with the calibration coefficients. It can be seen that 

there are three independent additive terms in this equation, which represent three main contributions to 

the uncertainty in the concentration estimate – the uncertainty in the experimental current measurements, 

the current measurements of the training data, and the concentration estimates for the training data, 

respectively.  

 The specifics of this presented analysis and assumptions made are presented in Appendix 1.1. 

This method was used to analyze a ten-second snippet taken from an in vivo FSCV during an intracranial 

self-stimulation session, during which two distinct electrically-evoked dopamine transients can be seen 
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(Figure 1.2). PCA-ILS was first used to generate concentration estimates through use of the calibration 

factor (mean and standard deviation: 11.8 ± 2.1, n = 6), and the error (shown as a 95% confidence 

interval) was determined through the error analysis procedure described (Figure 1.2B). Additionally, an 

analysis was done where no attempt was made  to convert the signal into concentration values, but rather 

just produce chemometric estimates of the current at the dopamine oxidation potential, to show the 

degree to which the calibration uncertainty plays a role in decreasing confidence in the concentration 

estimates (Figure 1.2C). It can easily be seen that the concentration estimates have a relatively large 

uncertainty. For instance, at the peak of the first dopamine transient, the concentration estimate is 240 ± 

110 nM. For this reason, current measurements are sometimes report in lieu of concentrations, as this 

can be estimated with greater confidence. However, it is important to note a few points. First, relative 

measurements at the same electrode have lower uncertainty given sensitivity stability. Second, this error 

can theoretically be averaged out through multiple measurements.  

 

CONCLUSION 

The search for selectivity has been one of the primary driving forces behind the evolution of the 

field of in vivo electrochemistry. The advances in this arena made in the past four decades have 

facilitated the maturation of the field to the point where it can be used to robustly track neurotransmitters 

in awake, freely moving animals and produced profound insights into the roles of release of these 

neurotransmitters in encoding information. Looking forward, many exciting new technologies have begun 

successful translation for in vivo use, including new electrode materials (e.g. carbon-nanotube coated 

electrodes), experimental configurations (e.g. microelectrode arrays and coupling of FSCV to 

iontophoresis and electrophysiology), and novel electrode coatings (e.g. PEDOT). Certainly, the issue of 

selectivity will continue to be a central concern for researchers as they explore the possibilities afforded 

by these breakthroughs and expand the uses of FSCV to the study of new neural phenomena and 

systems. 
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DISSERTATION OVERVIEW 

 In this vein, the focus of this dissertation is the critical analysis, development, and refinement of 

methods for isolation of neurotransmitter signals using FSCV. The first half of the dissertation (Chapters 

2-3) deals with the use of multivariate calibration methods for FSCV data analysis. Chapter 2 addresses 

with a criticism of a widely used approach for training principal component regression models for FSCV 

data analysis. Chapter 3 presents an alternative multivariate analysis method, multivariate curve 

resolution, aimed at mitigating the demands placed on the researcher in collecting data for model 

development. The latter half of the dissertation (Chapters 4-5) focuses on a novel method for dealing with 

the background current at carbon-fiber microelectrodes to minimize its interference with analytical signals. 

Chapter 4 introduces this convolution-based method and characterizes its use with the standard FSCV 

waveform. Chapter 5 extends on this work by introducing a measurement protocol tailored to this method 

and explores the possibilities opened by largely removing the electrode background current.  
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CHAPTER 2: FAILURE OF STANDARD TRAINING SETS IN THE ANALYSIS OF FAST-SCAN CYCLIC 

VOLTAMMETRY DATA1 
 

INTRODUCTION  

 In the analysis of fast-scan cyclic voltammetry (FSCV) data, the use of standard training sets (i.e. 

sets of cyclic voltammograms obtained from electrodes, recording sessions, and/or subjects other than 

those used for experimental data collection) for conditioning principal component regression (PCR) 

calibration models has increased in popularity.(Clark et al., 2013; Flagel et al., 2011; Goertz et al., 2015; 

Hart et al., 2014; Hollon et al., 2014; Howe et al., 2013; Nasrallah et al., 2011; Parker et al., 2010; Wanat 

et al., 2013; Willuhn et al., 2012; Willuhn et al., 2014a; Willuhn et al., 2014b) However, theoreticians have 

long warned about the dangers associated with this approach, emphasizing the need for either 

consistency between the conditions for obtaining model training and experimental data, or the use of 

transfer methods when such consistency cannot be obtained.(Booksh, 2006; Feudale et al., 2002; Wang 

& Kowalski, 1992; Woody et al., 2004) Here, we aim to provide a clear theoretical explanation of PCR, 

with particular focus on using this discussion to evaluate the appropriateness of the use of standard 

training sets in analysis of FSCV data. 

   FSCV is an electroanalytical technique that allows for the real-time recording of the subsecond 

dynamics of electroactive neurotransmitters.(Bucher & Wightman, 2015) Cyclic voltammograms (CVs) 

obtained through its use can be used for analyte concentration change identification and subsequent 

quantification, both of which are critical to proper calibration. In practice, however, CVs obtained in vivo 

often have contributions from multiple analytes that require resolution before positive identification, much 

less quantification, can be made. As a multivariate calibration technique, PCR is equipped to handle this  

 

                                                      
1 This chapter previously appeared as an article in ACS Chemical Neuroscience. The original citation is 
as follows: Johnson, J.A.; Rodeberg, N.T.; Wightman, R.M. “Failure of Standard Training Sets in the 
Analysis of Fast-Scan Cyclic Voltammetry Data,” ACS Chem. Neurosci. Vol. 7, Issue 3. (March 2016): 
349-359. 
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issue, as information across the scan-potential window can be used to separate these overlapping 

signals.  As such, considerable work has gone into the development of PCR as a robust data analysis  

technique for FSCV.(Heien et al., 2004; Keithley et al., 2010; Keithley et al., 2009; Keithley & Wightman, 

2011)  

 In using PCR, proper training set construction for model conditioning is a critical 

consideration.(Rodeberg et al., 2015) The current-concentration relationships at each potential for a given 

analyte, which are essential information for accurate signal resolution, are directly estimated from the CVs 

in the training set. As these relationships are known to vary between experimental sessions, it has been 

advised that training set data be collected under conditions resembling those of the experimental data 

collection as closely as possible (e.g. in the same animal and anatomical region, with the same 

equipment, and within the recording session).(Keithley, et al., 2009; Kramer, 1998; Lavine & Workman, 

2013) However, procedural constraints have increased the use of standard training sets, which consist of 

data collected under circumstances significantly differing from those of experimental data collection. The 

questions then arise as to what degree these training sets can capture these experiment-specific 

relationships and whether their use leads to a detrimental effect on the ability of derived models to resolve 

analyte contributions.  To this end, recent work from our laboratory demonstrated undesirable practical 

consequences stemming from their use, including systematic misestimation of analyte concentration 

changes and failure of model validation procedures.(Rodeberg, et al., 2015) However, the specific origin 

of these issues within the framework of PCR was not investigated.  

 The goal of this paper is multifold. First, we seek to increase the interpretability of PCR models by 

elucidating how principal component regression accomplishes the calibration goals of analyte resolution 

and quantification, particularly in the analysis of FSCV data. While there are many excellent resources for 

understanding the technique,(Keithley, et al., 2009; Kramer, 1998; Lavine & Workman, 2013)  this 

discussion aims to avoid the heavy reliance on the language of vector calculus or linear algebra often 

found in these guides, instead substituting visual explanations where possible. Understanding of these 

calculations can be used to help guide training set construction, enabling proper PCR use. Second, this 

discussion is used to build on our previous work, focusing here on identification of the source of the 

previously demonstrated shortcomings of models built with standard training sets.(Rodeberg, et al., 2015) 
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Particularly, it is shown that the use of standard training sets indeed leads to improper assignment of the 

current-concentration relationships that define multivariate analysis, leading to poor analyte resolution. 

Ultimately, these results serve to highlight the need and practical utility of training set construction within a 

given experimental session.  

 

THEORY 

Calibration 

Calibration Basics.  The goal of analytical calibration is to determine the relationship between an 

instrumental response and the corresponding value of the sample property to be estimated (e.g. 

concentration of an analyte) under a given set of conditions for future prediction of the latter.(Booksh, 

2006) This is done in two steps: calibration method selection and model training. Selection of a method is 

driven by the expected characteristics of the data (e.g. presence of interference and dimensionality), 

assumptions made about relationship between the instrumental response and sample property (e.g. 

linearity), and practical considerations (e.g. computation intensity and ease of use). Within that method’s 

framework, estimated model parameters are determined by training the calibration model using data for 

which both the response and sample property value are known (i.e., a training set). This relationship can 

then be used to convert experimental measurements into estimations of the unknown value of the sample 

property. The accuracy of this procedure is limited by the underlying assumptions of the calibration 

method, and the validity of the relationship found in the training data to the experimental data. 

 

Univariate Linear Regression. The univariate linear regression calibration method uses a single 

instrumental response value (e.g. a current measurement) and assumes a linear relationship between it 

and the value of the sample property. In the analysis of FSCV data, the peak faradaic current, the most 

sensitive measurement, is typically used for prediction. Additionally, due to the large charging current that 

arises at the high scan rates employed in FSCV, background subtraction, where currents are reported 

relative to a ‘background’ measurement, is performed to allow for reliable detection of the relatively small 

analytical signal, limiting quantitation to relative changes in analyte concentration.(Robinson et al., 2003) 
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Here, this is specified by the use of the symbols i and [analyte], indicating the changes in current and 

analyte concentration, respectively, relative to their absolute values at the time of the ‘background’ 

measurement.  The calibration equation of classical least-squares regression for background-subtracted 

FSCV dopamine quantitation can thus be written as: 

iDA,peak =  SenDA[DA] + i0  (Eq. 2.1) 

where iDA,peak is the background-subtracted dopamine peak current, SenDA is the analytical sensitivity, 

[DA] is the dopamine concentration change, and i0 is the background-subtracted peak current in the 

absence of a relative dopamine concentration change (ideally, or possibly constrained to be, zero). Model 

training consists of estimation of the parameter values (i.e. the sensitivity and blank measurement) that 

minimize the sum of the squares of the residuals. A more useful formulation is the inverse model, Eq. 2 2: 

[DA] =  CFDAiDA,peak + [DA]0  (Eq. 2.2) 

where CFDA is the calibration factor, [DA]0 is the dopamine concentration change in the absence of a 

change in current (again, ideally, or constrained to, zero), and all other variables retaining their meaning 

from Eq. 2.1. Note that Eq. 2.2 can be converted into Eq. 2.1 (i.e. CFDA and [DA]0 are equal to Senanalyte
-1 

and -i0/Senanalyte, respectively); however, the estimated model parameters differ when regression is done 

in the two formulations.(Centner et al., 1998; Krutchkoff, 1967, 1969) 

 

Multivariate Analysis. The simplicity and interpretability of the univariate linear regression model make it a 

powerful analytical tool. However, univariate models fail to make accurate predictions for signals 

containing multiple analyte contributions. For example, Figure 2.1 is a background-subtracted color plot of 

voltammograms obtained in a rodent brain with a carbon fiber microelectrode during an electrically 

stimulated dopamine release event, in which signals corresponding to dopamine and pH changes are 

present. A univariate model would interpret the basic pH shift as a decrease in DA. This error arises from 

the failure of the model to resolve the various analyte contributions prior to quantitation.  Assuming linear 

superposition of analyte signals, a correction to this equation is: 
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Figure 2.1. Representative in vivo electrochemical recording showing dopamine and pH changes. A color 
plot representation of background-subtracted voltammograms collected after electrical stimulation of 
dopamine neurons (bottom) in the brain of a freely-moving rat is constructed by plotting time as the 
abscissa, the applied potential as the ordinate, and the current in false color. The inset voltammograms 
represent dopamine and pH shifts collected at the black and orange dotted lines, respectively. 
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iDA,peak =  SenDA[DA] + SenpHpH + i0  (Eq. 2.3) 

However, for a given peak current, an infinite number of dopamine and pH concentration pairs satisfy this 

equation, as there are more unknown than known values.  As this discussion shows, for multicomponent 

calibration, both component identification and its quantitation must be accomplished, and this requires 

use of multiple measurements to succeed. 

 The multivariate model, using the entire scan-potential window to provide more known values, 

can be stated in the classical formulation as a system of N equations, where N is the number of 

measurements taken into account in the model (850 in this paper, sampling frequency x waveform 

duration): 

i1 =  SenDA,1[DA] + SenpH,1 ∗ pH 

(Eq. 2.4) 
i2 =  SenDA,2[DA] + SenpH,2 ∗ pH 

… 

i850 =  SenDA,850[DA] + SenpH,850 ∗ pH 

The omission of an intercept term is intentional and standard in practice. Again, a more useful calibration 

equation is that of the inverse formulation: 

[DA] =  p1i1 + p2i2 + ⋯ +  p850i850 
(Eq. 2.5) 

pH =  p1i1 + p2i2 + ⋯ +  p850i850 

where p is referred to as the calibration coefficient for the Nth data point (N = 1,2…850). Again, Eqs. 2.4 

and 2.5 can be interconverted but differ in the estimated model parameters obtained from their use in 

regression. The assumption of this model is, “The value of the current measurements at each potential 

depends only, and linearly, on the concentration changes of dopamine and pH.” If the data fail to meet 

this assumption, a prediction error will occur. Statistical techniques (i.e., residual analysis) allow for 

identification of data with significant additional signal contributions, which is referred to as the first-order 

advantage.(Olivieri, 2008) However, if there is any measurement contribution not included in the model, 

increased error should be expected in model predictions.  
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Figure 2.2. The generation of principal components. (A) Dopamine (top) and pH (bottom) training set 
voltammograms shown in the traditional electrochemical format (left, as function of potential) and in the 
‘unwrapped’ format (right, as function of data point). (B) First principal component (dark black line) 
overlaid on the training set voltammograms in the ‘unwrapped’ format. (C) Eight principal components 
generated by the singular value decomposition algorithm for the training set shown in (B). 
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Principal Component Regression 

 The question now arises of how to train the model (i.e. optimize the p parameters of Eq. 2.5). The 

ideal solution would spread the burden of prediction across the scan-potential window and not be overly 

specific to the training data. Furthermore, the solution should minimize noise in the calibration data as it 

degrades the quality of the relationships in the training data, decreasing confidence in the model 

predictions.  

 Principal component analysis (PCA) addresses these issues. In PCA, each training CV is 

restated as the linear combination of a collection of scaled vectors called principal components (PCs). 

The advantage of this reformulation is that some PCs correspond to relevant deterministic variance (i.e. 

that carrying information about the analytes), while others correspond to non-deterministic noise. 

Exclusion of the latter ideally allows for the production of noise-free training set CVs, allowing for 

parameter estimation with greater confidence. This estimation is done in the inverse formulation (inverse 

least-squares regression, or ILS) with the data stated in the terms of PCs, simplifying the calculations. 

Collectively, the use of PCA and ILS is referred to as principal component regression (PCR). 

There are four major steps in the use of PCR: 

 

1) Construction and selection of the relevant subset of principal components (PCA); 

2) Scoring of standards on generated PCs (PCA); 

3) Regression of PC scores against concentrations (ILS); 

4) Application to experimental data. 

 

Principal component construction. For generation of PCs, a training set must be constructed. We illustrate 

this with the training set shown in Figure 1A that contains both dopamine and pH background-subtracted 

CVs (n = 4/analyte). The PCR model is entirely defined by the relationships found in the training set.  A 

good training set (ref 24) spans the concentration range of interest, contains mutually exclusive 

voltammograms of all expected analytes, and matches the characteristics of the experimental data (e.g. 

noise and peak positions).(Keithley, et al., 2009; Kramer, 1998) The limitations of in vivo training set 

construction make collection of single-analyte CVs preferable to allow for reliable estimation  
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Figure 2.3. The scoring process of principal component analysis. (A) CV of dopamine standard (orange) 
and the first principal component (green) shown in the ‘unwrapped’ format.  (B) As in (A) but with a pH 

standard. (C) Plot showing the value of product of the principal component and current amplitudes (wnin 
from Equation 6) from (A) for each data point. The regions beneath positive and negative values of this 
calculation are shown in green and purple, respectively, to assist with conceptualization of the score 
calculation, which is calculated from summation across the data window (see text). (D) As in (C) but using 
the PC and CV amplitudes from (B). (E) Cook’s distance plot showing the scores for each CV on the first 
two principal components for the training set presented in Figure 1. Each axis corresponds to the 
adjacent principal component, and each training CV is shown as a point on the plot whose coordinates 
are defined by its scores on the corresponding principal component. 
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of the concentrations of the standards. This approach, however, mandates that the analyte voltammetric 

responses be independent of one another and the matrix, or model performance will suffer. This limits the 

use of models built in this way to conditions where these assumptions hold. Of note, as there is a known 

dependence of the dopamine voltammetric response on pH, use of PCR models built with pure DA and 

pH voltammogram standards should be limited to pH ranges around those used for training data 

collection.(Kawagoe et al., 1993) However, given the tight regulation of the neuronal environment, 

significant excursions of pH to extreme values are relatively rare.(Chesler, 2003)  The goal of PC 

construction is to calculate a set of vectors that can describe the entirety of the training set (i.e. entirely 

reconstruct the training standards through combinations of scaled PCs). These PCs retain the dimensions 

of CVs (i.e. have a single value corresponding to each applied potential), allowing visualization using 

traditional electrochemical representation.(Keithley, et al., 2010) (To minimize confusion both the data 

and PCs are presented here ‘unwrapped’ (Figure 2.1B)). Construction is done with a linear algebra 

technique termed single value decomposition, or SVD (see Appendix 2.1 for more details). In brief, the 

first PC is calculated to span the maximum variance possible (Figure 2.1B and as ‘PC 1’ in 2.1C), without 

consideration of analyte identity or corresponding concentration change. The following PC then captures 

the most remaining variance and is constrained to being orthogonal (i.e. describe distinct information) to 

its successor. This process continues until all variance is described, resulting in a set of unique PCs equal 

to the number of the CVs in the training set (Figure 2.1C). Of note, without pre-treatment (e.g. mean-

centering and scaling), CVs with the largest currents have a disproportionately greater influence on the 

shape of the PCs.(Keithley, et al., 2010; Kramer, 1998) Thus, the quality (e.g. how representative it is of 

the average data collected, how free it is from interferents, and the noise levels in the CV) of these CVs is 

critical.  

 

Scoring of standards on PCs. After PC generation, the ‘scores’ of each of the training standards on each 

of the PCs can be calculated as the sum of the pointwise product of the principal component and 

background-subtracted current magnitudes using the following formula: 

Score =  ∑ wnin
N
n=1  (Eq. 2.6) 
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Figure 2.4. Construction of PCR model estimate for a dopamine cyclic voltammogram. The estimates are 
generated from successive addition of the PC loading vectors scaled by the corresponding score. The 
original CV is shown in the top row, while the PC model estimates, generated by consideration of 
increasing numbers of principal components, are shown in the bottom two rows. Note that the original CV 
is entirely reconstructed by consideration of all eight generated principal components. 
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where n is the data point, wn is the magnitude of the principal component loading vector at a given data 

point, and in is the background-subtracted current magnitude at that data point. This calculation is 

referred to as the projection of CV onto the PC, or, more generally, the dot product of the CV and PC 

vectors. 

 This calculation can be decomposed into its constituent steps and illustrated graphically (Figure 

2.2A-D). First, the product of the current and PC magnitudes is calculated at each point, as shown in  

Figure 2.2C and D. These products are then summed across the scan-potential window to obtain the 

score value. As the positive and negative contributions balance one another in this latter calculation, the 

areas beneath the product of the CV and PC magnitudes at each point are shaded different colors (green, 

positive; pink, negative) to assist in conceptualization of the regions contributing most to the score value.  

 When comparing CVs that differ in shape, higher score magnitudes indicate a higher degree of 

similarity in shape between the PC and CV. For instance, as seen in Figure 2.2C, both the PC and 

dopamine CV magnitudes are positive and large, leading to an area with a large positive contribution to 

the final score. For similarly shaped CVs, higher scores simply imply higher intensities within the regions 

heavily weighted by the PC. The polarity of the score is a secondary consideration. For a given PC 

polarity, regions in which the PC and CV are alike or differ in sign tend to make the score more positive or 

negative, respectively. However, if all PC magnitudes were reversed in sign (i.e. the PC polarity was 

flipped), the scores would be identical in magnitude but differ only in sign. One merely expects that similar 

CVs (e.g. the training CVs for a given analyte) are alike in sign. 

 

Selection of PC subset for model. After scoring, a set of N scores, where N is equal to the number of 

principal components, is produced for each training CV (i.e. the dimensionality of the data is reduced). 

Indeed, if all scores for a training CV on all unique PCs are taken, the original CV can be entirely 

reconstructed by the linear combination of each PC scaled by its corresponding score (Fig. 2.4). 

However, we retain only the PCs that correspond to analytically relevant features of the training set 

voltammograms (i.e. primary PCs), while those composed primarily of noise are discarded (i.e. secondary 

PCs. PCs 3-8 in Figure 2.1). Thus, through use of only the primary PCs, the original CV can be 

reconstructed with the noise described by the secondary PCs excluded (2 PC model in Fig. 2.4).  
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 The selection of primary PCs typically relies on statistical analysis of the proportion of information 

described by each PC (i.e. variance-based methods).  Of note, for FSCV data, a previous study from our 

laboratory compared two such selection methods, concluding that use of the Malinowski’s F-test was 

preferable for reliable identification and removal of PCs corresponding to noise.(Keithley, et al., 2010) 

Such variance-based tests rely on the assumption that the analytically relevant portion of the signal is 

considerably larger than that attributable to noise.  However, if the noise levels become too high, too 

many PCs, including those describing noise, are likely to be retained. Estimates place this transition for 

the Malinowski’s F-test between signal-to-noise ratios of 10-100.(Malinowski, 2004) 

 A useful tool to examine the model is the Cook’s distance plot (Figure 2.2E), which has 

coordinates corresponding to a CV’s score on a given PC (shown next to the corresponding axis). For 

simplicity, these are often two-dimensional plots where only coordinates corresponding to first two PCs 

(i.e. the two PCs that describe the most variance in the data) are shown. The utility of such plots is in the 

detection of outliers, which is discussed in detail elsewhere.(Cook, 1977; Keithley & Wightman, 2011)  

Generally, one expects to observe linear groups of data corresponding to a given analyte. These linear 

groups tend to spread more along one coordinate, indicating that the corresponding PC captures more of 

the variance in that analyte than the other PC. Additionally, these groups should be sufficiently separated 

from one another in the plot; otherwise, it is likely that some training set spectra are not sufficiently ‘pure’. 

 

Regression of PC scores against concentration.  For a two-analyte, two-PC system, the calibration 

equations in terms of PCs are stated in the inverse formulation as: 

∆[DA] = mDA,PC1ScorePC1 + mDA,PC2ScorePC2 
(Eq. 2.7) 

∆pH = mpH,PC1ScorePC1 + mpH,PC2ScorePC2 

The values of m are estimated through least-squares regression, which is equivalent to estimating the p 

parameters in Eq. 2.5. This approach, however, limits the regression solutions to the subspace defined by 

the PCs and greatly simplifies the calculations. After this stage, the model, consisting of the retained PCs 

and the values of the m parameters, is completely defined, having only knowledge of the training set data.  
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Figure 2.5. Use of the p vectors in the calculation of analyte concentrations. (A) Color plot showing 
dopamine and pH shifts from a lever press-induced electrical stimulation for an animal performing 
intracranial self-stimulation. (B) Cyclic voltammogram, showing contributions from pH and dopamine, 
collected at the white vertical line shown in (A). (C) Plots of the dopamine p vector and the CV from (B) 
(upper) and the value of the product of their amplitudes (lower) as a function of data point. Analogous to 
the scoring process show in Figure 2, the concentration is calculated from summation across the data 
window, and the regions below positive and negative values of the p and CV product are shown in green 
and purple, respectively. (D) As in (C) but with the ppH matrix. 
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Application of experimental data.  For concentration prediction, the scores of the experimental CVs on the 

retained PCs are simply calculated and used with Eq. 2 7. These scores can also be used construct the 

model estimate of the CVs for residual analysis. The difference of the current of the original CV and this 

PC-reconstructed estimate forms the residual value at each potential. Statistical methods exist for the 

evaluation of the sum of the squares of the residual values for each voltammogram (Qt) to determine 

when there is sufficient residual current that the model-produced concentration estimate is significantly 

flawed. For FSCV data, the use of a Qα residual threshold is recommended.(Jackson & Mudholkar, 1979; 

Keithley, et al., 2009) Qα is a value estimated from the secondary PCs (i.e. those excluded from the 

model and considered to be noise) that can be compared to Qt for each measurement, serving as a 

threshold of significance for the Qt values at a given confidence level. If Qt exceeds Qα, significant 

residual current remains unaccounted for in the PCR model, and the model may be an inaccurate 

description of the data. 

 It is now useful to return to the calibration equations stated in either the classical or the inverse 

forms (Eqs. 2.4 and 5, respectively), either of which can be used to evaluate the now-defined calibration 

model. In examining the classical formulation (Eq. 2.4), it can be seen that the model, for each analyte, 

provides a fixed value for the sensitivity at each potential.  The set of all these values across the scan-

potential window corresponding to analyte j is referred to as the kj vector. These vectors can be visually 

analyzed by plotting them either of our two visual conventions and thought of as the model estimates of 

the voltammetric response corresponding to single unit concentration change in analyte j.(Keithley & 

Wightman, 2011) Inspection of plots of each of a PCR model’s kj vectors allows the user to verify that the 

model predicts, for each analyte, the expected shape of the cyclic voltammogram.  

 The regression model also provides coefficients, p values, explaining the contribution of the 

current at each potential to the calculation of each analyte concentration. These p values, which may be 

negative, are the coefficients in the inverse formulation (Eq.2.5). The set of these coefficients across the 

scan-potential window corresponding to analyte j will be referred to as the pj vector. Both the origin of the 

pj vectors and its relationship to the kj vectors are given in Appendix 3.1.  With the knowledge of the pj 

vector, the analyte concentration prediction for an unknown CV (Figure 2.3B) proceeds in a manner 

analogous to the determination of scores. The pointwise product of the pj vector magnitude and the CV 
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amplitude is calculated at each potential (Figure 2.3C and D). The concentration of the analyte is then 

determined from the sum of these values. 

 Analysis of the values of the pj vector and the pointwise product allows for the determination of 

the potentials weighted heavily for concentration calculation. Plots of the pj vectors, like those of the PCs, 

have defined shapes and features (e.g. peaks and zero crossings) that are derived from features in the 

CVs of multiple analytes in the training sets. For example, the plot of the pDA vector (Figure 2.3C, green) 

has an initial strong pH-like feature followed by a feature resembling the DA oxidation peak. In the 

analysis of a CV containing pH and DA contributions, which highly resembles the plot of the pDA vector, 

these two regions also make the major contributions to the dopamine concentration calculation. The 

dopamine oxidative wave, which directly provides information about the dopamine concentration, creates 

a large positive contribution, as expected. The pH-like region additionally generates a positive 

contribution to the dopamine concentration estimation, which is accounting for the current decrease in the 

dopamine oxidative region caused by the presence of pH contributions. A similar pattern is seen in the 

analysis of the calculation of the pH concentration with the ppH vector (Figure 2.3D). Within the early data 

region, where the signal contribution of pH is most pronounced, there is a large positive contribution to 

the concentration value. However, a positive contribution is also found in the region of the dopamine 

oxidation wave. This, in an analogous manner, is augmenting the pH concentration calculation to account 

for changes in the signal due to the presence of dopamine. 

 

RESULTS AND DISCUSSION 

Theoretical Failings of Standard Training Sets. Training sets that consist of CVs collected from 

different electrodes, recording sessions, and/or subjects (i.e. ‘standard’ training sets) have been 

increasingly used in the analysis of in vivo FSCV data. This trend is particularly popular for the analysis of 

data collected with chronically implanted microelectrodes due to difficulties for training set construction at 

the site of recording. While this approach eases the procedural burden, it violates a fundamental 

assumption of calibration – that the relationships in the training set are the same as in the experimental 

data. Correction for this error requires either knowledge of the differences between the experimental and 

calibration data, which is difficult to obtain, or the use of calibration transfer methods, which would require 
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additional data collection and reintroduce the experimental complexity which is aimed to be avoided by 

the use of standard training sets.(Feudale, et al., 2002) Indeed, recent work from our lab showed that the 

use of a training set collected in a different subject with a different electrode for PCR models resulted in 

significant underestimations of concentrations.(Rodeberg, et al., 2015) Additionally, standard training sets 

(i.e. those with CVs collected from multiple subjects) resulted in high numbers of retained PCs (i.e. high 

rank) with kj vectors that no longer resembled the analyte voltammograms. Attempts to limit the rank of 

the models resulted in unreasonably high residual thresholds, removing the possibility of proper residual 

analysis and nullifying the first-order advantage.  Here, this line of inquiry is furthered with focus on the 

origins of the shortcomings of standard training sets. 

 In the case of FSCV data, the primary differences in the data collected in different recording 

sessions can be seen in the voltammetric peak characteristics (e.g. peak width, position, and relative 

intensity), the electrode selectivity, and the noise levels.(Rodeberg, et al., 2015) There are several 

sources for this variability. Regarding the electrochemical aspects of the data, there is an inherent level of 

variability between electrodes, particularly with disorganized surfaces such as those found on carbon 

fibers, while implanted reference electrodes differ in quality and are known to drift with time.(Chand, 2000; 

Moussy & Harrison, 1994; Zhang et al., 1999) Between subjects, differences in mass transport kinetics 

within the biological matrix or at the electrode surface may increase this variability further. These 

considerations affect voltammetric peak characteristics, sensitivity, and selectivity for electrochemical 

reactions.(McCreery, 2008) It is also standard practice to use extended anodic limits to electrochemically 

introduce oxide functionalities to the surface of the carbon fiber microelectrodes prior to measurements, 

which results in favorable conditions for catecholamine detection.(Heien et al., 2003) However, the level 

of control over this process is limited, leading to varied electrochemical responses. This is particularly 

pronounced in the case of pH changes.(Takmakov et al., 2010) Finally, noise levels are expected to differ 

between instruments. Thus, there are unavoidable sources of variation in the collection of FSCV data. 

 To illustrate the importance of this, we used the pDA vector to analyze the concentration prediction 

for the CV from Figure 2.3B with an artificial rightward shift introduced (Figure 2.4A), as might be 

introduced through reference electrode drift. In the case of DA and pH differentiation, the regions heavily 

weighted for the DA concentration feature sharp changes in the ‘p’ values, including a zero crossing and  
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Figure 2.6. Errors in the use of non-experimental training sets. (A) Plots of the pDA matrix and the CV 
from Figure 3B with an artificial rightward 100 mV shift (upper), and the value of the product of their 
amplitudes (lower) as a function of data point. (B) Plot of the predicted DA concentration, normalized to 
the maximum predicted value, as a function of the artificial shift magnitude introduced for the mixed CV 
from Figure 3B (black) and a DA (orange) and pH (green) standard from Figure 1A. 
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Figure 2.7. Model parameters of interest for concatenated training sets.  (A) The number of PCs retained 
by the model (left) and the residual Qα threshold (right) as a function of the total number of single-subject 
training sets  included in the final training set used for PCR model generation. The one TS model 
corresponds to one training set used in all others. (B) The residual Qα threshold for models forced to 
retain only two primary PCs. Values are shown as mean ± standard deviation. (C) Mean R2 values for 
linear fits between the analyte concentration and the score on a given principal component for DA (black) 
and pH (white) training voltammograms for PCR models constructed by concatenating differing numbers 
of training sets (number given above graph). 
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polarity switch. A relatively minor shift leads to misalignment of these features, leading to significant 

changes in the predicted DA concentration. Such errors also arise in the analysis of DA and pH training 

standards (Figure 2.4B), leading to artificially low and high DA estimations, respectively. This illustrates 

that analyte resolution critically depends on correct assignment of the current-concentration relationships 

across the scan-potential window and, in particular, directly demonstrates the sensitivity of PCR to 

variations in the applied potential. 

 

Concatenation of Training Sets from Multiple Animals. To demonstrate the incompatibility of data 

collected from different animals within a single model framework, training sets were constructed by the 

concatenation of entire training sets (TS, consisting of 10 CVs each) constructed in different animals (n = 

5). One training set was selected as the primary TS (labeled A), while the number of training sets added 

was varied between one and four. (The data and labels used for these investigations are identical to 

those reported in Rodeberg et al., 2015). The number of PCs retained (i.e primary PCs by the Malinowski 

F-test) and the Qα thresholds were calculated for the PCR models. The results (Fig. 2.7 A-B) agree with 

those described in Rodeberg et al., 2015. The number of primary PCs tended to increase with the 

inclusion of more training set CVs, while the Qα thresholds tended to decrease, suggesting overfitting of 

the data. Limitation of the number of primary PCs to the first two (Fig. 2.7B) resulted in a drastic increase 

in the Qα threshold, nullifying the first-order advantage. 

 To carry this analysis further, the assumptions that go into the regression step of PCR were 

tested.  First, we examined whether there was a linear relationship, as measured by the R2 values for the 

zero-intercept linear regression model, between the scores on all retained PCs and the concentration 

values (Eq. 2.7).  It was found that only the first two components tended to have a linear relationship with 

the concentrations for both analytes (Fig. 2.7C). A Student’s t-test of the significance of the estimated ‘m’ 

parameters revealed that 80% of the third or higher primary PCs were not significantly different from zero, 

suggesting that the use of these PCs in regression is inappropriate.(Krazanowski, 2007) 

 Next, we examined whether the proportionality constants (‘m’ values in Eq. 2.7) were shared 

between data collected from different animals. This was evaluated by an F-test comparing models in 

which the ‘m’ parameters were either global (shared between data from different subjects) or subject- 
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Figure 2.8. Results of F-test comparing models with subject-specific or global parameters for Equation 
2.7 for concatenated training sets. (A) Cumulative histogram showing the number of PCR models, built 
from concatenated training sets of 2 single-subject training sets, containing a given number of principal 
components or greater (frequency). The black portion of the bars corresponds to the number of principal 
components that were found to have subject-specific parameters preferred over global parameters (F-
test, α = 0.05) for relating scores on that principal component and the dopamine (left) or pH (right) 
concentrations. (B) As in (A) but using concatenated training sets from three subjects. (C) As in (A) but 
using concatenated training sets from four subjects. (D) As in (A) but using concatenated training sets 
from five subjects. 
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specific (see Appendix 2.2).(Glatting et al., 2007) This regression was done using scores calculated from 

PCs defined using all training set voltammograms, leading to the expectation of some degree of 

generality. However, it was found that the subject-specific constants were preferred in a large number of 

cases (Figure 2.8). When considering both the dopamine and pH parameters, preference for group-

specific parameters was found in a considerable number of the third and higher primary PCs, highlighting 

the fact that these are likely capturing variance specific to certain subjects. Additionally, in the case of the 

pH parameters (right column of Figure 2.8), there were a large number of models in which group-specific 

parameters were preferred for the first two primary PCs. Concatenation of just one additional training set 

resulted in four out of the ten models showing preference for subject-specific parameters in the first PC, 

the one that describing the largest amount of variance. All but two of models with higher number of 

training sets exhibited this preference as well. This result can likely be traced to the wide variability of the 

characteristics of the pH voltammograms between electrodes, highlighting that, even with global definition 

of the PCs, the uniqueness of data from a single animal would lead to poor estimates as compared with a 

training set derived from the experimental animal. 

 

Evaluation of ‘Library’ Approach to Generalized Training Set Generation. To investigate the use of a 

library for the model generation, the construction of randomly generated CVs, derived from separate 

animals, was revisited. In this experiment, Animal B’s experimental session was analyzed by a training 

set consisting of 10 CVs randomly selected from the other four animals (Animals A and C-D), resulting in 

2.4 x 108 possible training sets. Of these, 19,704 were studied due to computational limitations, with the 

total analysis time being 10.1 days. These data were recorded during an intracranial self-stimulation trial 

and were binned into 75 five-second snippets.(Rodeberg, et al., 2015)  As an initial measure of the 

appropriateness of the constructed model in the description of the data, the total sum of all residual 

values calculated at each analyzed time point was chosen, a measure of the amount of signal captured 

by the PCR model. Additionally, to gain insight into the models constructed, the number of primary PCs 

and the Qα thresholds were again calculated. 

 The summary of the generated models is shown in Figure 2.9A as a function of the number of 

primary PCs retained for the model. Just under half of the models (45.8%) had more than two primary  
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Figure 2.9. Summary of ‘library’ approach to generate randomized standard training sets. (A) Box plots 
showing the distribution of Qα threshold values (left) and the residual sum for all snippets (right) shown as 
a function of the number of PCs retained in the constructed PCR model. The values for the training set 
constructed within the experimental subject (Subject B) are shown as a horizontal dashed lines. (B) 
Scatterplot showing the residual sums plotted against Qα values for all 2 PC models. The dashed lines 
correspond to the medians of the distributions in each variable. The model constructed with Subject B’s 
training set is shown as a green square in the lower left quadrant. (C) Average kj vectors constructed 
from all 2 PC models (solid black line) and 2 PC models in falling in the lower half of the distributions for 
both the residual sum and Qα values (lower left quadrant of (B), dashed black line), as well as Subject B’s 
PC model (orange dashed line). 
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Figure 2.10. Average kj vectors for models built using training sets (n = 10 CVs, 5 per analyte) generated 
by a randomized ‘library’ approach from training sets collected within different subjects and using different 
carbon electrodes. (A) Average kj matrices (solid lines) for dopamine (left) and pH (right) and 95% 
confidence intervals (dashed lines) for models with two retained principal components (n = 10679 training 
sets). (B) As in (A) but for models with three retained principal components (n = 7727 training sets). (C) 
As in (A) but for models with four retained principal components (n = 1179 training sets). (D) As in (A) but 
for models with five retained principal components (n = 116 training sets). 
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components, with the remaining, with one exception, having two primary PCs. As expected, both the Qα 

threshold and the sum of the residuals decreased as a function of the number of the PCs, suggesting 

overfitting. This is supported by evaluation of the average kj vectors for the two analytes for a given 

number of PCs, which shows degradation in the quality of these model estimates with an increase in the 

number of components retained (Fig. 2.10). The inappropriateness of such high rank models in the 

analysis of Subject B’s data is further illustrated by the majority of Qα values and residual sums for 3+ PC 

models falling below those from Subject B’s model (i.e. that trained with data from the experimental 

session, shown as the dashed line in the figure). 

 Given this, we limit the remaining discussion to the subset of models that retained two primary 

PCs (n = 10679 training sets). Within the distribution defined by this subset, Subject B’s PCR model had a 

Qα threshold (the green square in Figure 2.9B) falling in the lower 16th percentile. This suggests that most 

random models tended to overestimate this threshold, which would result in invalid data sets passing 

residual analysis undetected.  Furthermore, the sum of residual values for training set B’s model falls in 

the lower 38th percentile, suggesting that the majority of these models do not capture as much information 

from the data as the proper training set.  

 Further requirements for model selection could be implemented. In this experiment, the subset of 

models considered can be refined to those having both a low total residual sum and Qα thresholds like 

Subject B’s model (defined as those falling in the lower 50th percentile on both distributions – the lower left 

quadrant of Figure 2.9B). However, even this requirement fails to select models with current-

concentration relationships like Subject B’s PCR model. This can be seen by inspection of the plots of the 

kj vectors shown in Figure 2.9C, which directly summarize these relationships. The kj vectors for Subject 

B’s PCR model (dashed orange line) differ noticeably in both absolute and relative peak amplitudes from 

the average kj vectors of this low total residual sum, low Qα threshold 2 PC subset (dashed black line). 

Instead, the latter closely resembles that obtained from all 2 PC models (solid black line).  

 Such a library approach also suffers from a number of theoretical drawbacks in its 

implementation. Here, even with knowledge of how the within-subject training set performed, criteria for 

selection of models that had similar performance were unable to be found. One could alternatively 

implement selection criteria on the CVs for model training. However, this would require the collection of 
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information about ‘pure’ analyte responses, minimizing the advantage of such an approach. 

Implementation would also require the generation of large library of spectra, as CVs could differ in a 

number of different characteristics (e.g. peak location, relative peak height, etc.) and multiple CVs are 

needed for each analyte. Finally, one of the principal advantages of using PCR is the ability to detect 

interferents through residual analysis. This process relies critically on estimation of the noise from the 

training set. Even if a combination of library analyte spectra matching the analytical characteristics of the 

data were found, these spectra will likely have unrepresentative noise within them, preventing proper 

residual analysis. 

 

CONCLUSIONS 

 The strength of PCR in analysis of FSCV data comes from its ability to separate and quantitate 

analyte contributions, with the latter critically dependent on the former. Resolution of analyte signals relies 

on knowledge of the current-concentration relationships across the scan-potential window (the k and p 

values of Eqs. 2.4 and 5), which are improperly assigned when standard training sets are used. This error 

results in incorrect signal attribution, as illustrated by the predicted dopamine concentration changes for 

the shifted CVs in Figure 2.6B. This problem is not unique to PCR, but rather all of multivariate linear 

analysis, for which Eqs. 2.4 and 5 hold. Avoidance of this issue requires the collection and use of training 

set voltammograms that contain accurate information about the experimental current-concentration 

relationships for all expected analytes, as information about each analyte is used for the resolution of one 

(which was illustrated directly by the analysis of the pj vectors in Figures 2.5C and D). The variability of 

these relationships between voltammetric data collected in different animals is such that unification within 

a single model framework results in easily detectable differences in model behavior (Figure 2.8), while 

their replication is not possible even with prior knowledge of derived model performance (Figure 2.9C). 

Thus, the only known reliable way to capture these relationships in a manner that allows for proper signal 

resolution is the collection of training set voltammograms under the experimental conditions. This can be 

most readily accomplished by including training set collection in the experimental protocol, minimizing the 

time between experimental and training data collection to avoid drift in experimental parameters (e.g. the 

state of the reference electrode), and collecting training data that satisfy the general recommendations 
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given in Keithley et al., 2009 (and repeated above).  Other approaches for training set collection risk poor 

analyte resolution, precluding accurate assessment of neurochemical dynamics. 

 

METHODS 

 Data collection is described in Rodeberg, et. al., 2015. Animal procedures were approved by the 

UNC-Chapel Hill Institutional Animal Care and Use Committee (IACUC). Data and statistical analyses 

were performed in GraphPad Prism 6 (GraphPad Software Inc., La Jolla, CA), LabView (National 

Instruments, Austin, TX), and MATLAB (Mathwork, Natick, MA) with and α value of 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

REFERENCES 

Booksh, K. S. (2006). Chemometric Methods in Process Analysis Encyclopedia of Analytical Chemistry: 
John Wiley & Sons, Ltd. 

Bucher, E. S., & Wightman, R. M. (2015). Electrochemical Analysis of Neurotransmitters. Annu Rev Anal 
Chem, 8, 239-261. 

Centner, V., Massart, D. L., & de Jong, S. (1998). Inverse calibration predicts better than classical 
calibration. Fresen J Anal Chem, 361(1), 2-9. 

Chand, S. (2000). Carbon fibers for composites. J Mater Sci, 35(6), 1303-1313. 

Chesler, M. (2003). Regulation and modulation of pH in the brain. Physiol Rev, 83(4), 1183-1221. 

Clark, J. J., Collins, A. L., Sanford, C. A., & Phillips, P. E. (2013). Dopamine encoding of Pavlovian incentive 
stimuli diminishes with extended training. J Neurosci, 33(8), 3526-3532. 

Cook, R. D. (1977). Detection of Influential Observation in Linear-Regression. Technometrics, 19(1), 15-
18. 

Feudale, R. N., Woody, N. A., Tan, H., Myles, A. J., Brown, S. D., & Ferre, J. (2002). Transfer of 
multivariate calibration models: a review. Chemometrics and Intelligent Laboratory Systems, 64, 
181-192. 

Flagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., et al. (2011). A selective role for 
dopamine in stimulus-reward learning. Nature, 469(7328), 53-57. 

Glatting, G., Kletting, P., Reske, S. N., Hohl, K., & Ring, C. (2007). Choosing the optimal fit function: 
Comparison of the Akaike information criterion and the F-test. Med Phys, 34(11), 4285-4292. 

Goertz, R. B., Wanat, M. J., Gomez, J. A., Brown, Z. J., Phillips, P. E., & Paladini, C. A. (2015). Cocaine 
increases dopaminergic neuron and motor activity via midbrain alpha1 adrenergic signaling. 
Neuropsychopharmacology, 40(5), 1151-1162. 

Hart, A. S., Rutledge, R. B., Glimcher, P. W., & Phillips, P. E. (2014). Phasic dopamine release in the rat 
nucleus accumbens symmetrically encodes a reward prediction error term. J Neurosci, 34(3), 
698-704. 

Heien, M. L. A. V., Johnson, M. A., & Wightman, R. M. (2004). Resolving neurotransmitters detected by 
fast-scan cyclic voltammetry. Anal Chem, 76(19), 5697-5704. 

Heien, M. L. A. V., Phillips, P. E. M., Stuber, G. D., Seipel, A. T., & Wightman, R. M. (2003). Overoxidation 
of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. 
Analyst, 128(12), 1413-1419. 

Hollon, N. G., Arnold, M. M., Gan, J. O., Walton, M. E., & Phillips, P. E. (2014). Dopamine-associated 
cached values are not sufficient as the basis for action selection. Proc Natl Acad Sci U S A, 
111(51), 18357-18362. 



49 
 

Howe, M. W., Tierney, P. L., Sandberg, S. G., Phillips, P. E., & Graybiel, A. M. (2013). Prolonged dopamine 
signalling in striatum signals proximity and value of distant rewards. Nature, 500(7464), 575-
579. 

Jackson, J. E., & Mudholkar, G. S. (1979). Control Procedures for Residuals Associated with Principal 
Component Analysis. Technometrics, 21(3), 341-349. 

Kawagoe, K. T., Garris, P. A., & Wightman, R. M. (1993). Ph-Dependent Processes at Nafion(R)-Coated 
Carbon-Fiber Microelectrodes. J Electroanal Chem, 359(1-2), 193-207. 

Keithley, R. B., Carelli, R. M., & Wightman, R. M. (2010). Rank estimation and the multivariate analysis of 
in vivo fast-scan cyclic voltammetric data. Anal Chem, 82(13), 5541-5551. 

Keithley, R. B., Heien, M. L., & Wightman, R. M. (2009). Multivariate concentration determination using 
principal component regression with residual analysis. Trends Analyt Chem, 28(9), 1127-1136. 

Keithley, R. B., & Wightman, R. M. (2011). Assessing principal component regression prediction of 
neurochemicals detected with fast-scan cyclic voltammetry. ACS Chem Neurosci, 2(9), 514-525. 

Kramer, R. (1998). Chemometric Techniques for Quantitative Analysis. New York, NY: Marcel Dekker, Inc. 

Krazanowski, W. (2007). Statistical Principles and Techniques in Scientific and Social Investigations. Cary, 
NC: Oxford University Press. 

Krutchkoff, R. (1967). Classical and Inverse Regression Methods of Calibration. Technometrics, 9(3), 425-
439. 

Krutchkoff, R. (1969). Classical and Inverse Regression Methods of Calibration in Extrapolation. 
Technometrics, 11(3), 605-608. 

Lavine, B. K., & Workman, J., Jr. (2013). Chemometrics. Anal Chem, 85(2), 705-714. 

Malinowski, E. R. (2004). Adaptation of the Vogt-Mizaikoff F-test to determine the number of principal 
factors responsible for a data matrix and comparison with other popular methods. J Chemometr, 
18(9), 387-392. 

McCreery, R. L. (2008). Advanced carbon electrode materials for molecular electrochemistry. Chem Rev, 
108(7), 2646-2687. 

Moussy, F., & Harrison, D. J. (1994). Prevention of the Rapid Degradation of Subcutaneously Implanted 
Ag/Agcl Reference Electrodes Using Polymer-Coatings. Anal Chem, 66(5), 674-679. 

Nasrallah, N. A., Clark, J. J., Collins, A. L., Akers, C. A., Phillips, P. E., & Bernstein, I. L. (2011). Risk 
preference following adolescent alcohol use is associated with corrupted encoding of costs but 
not rewards by mesolimbic dopamine. Proc Natl Acad Sci U S A, 108(13), 5466-5471. 

Olivieri, A. C. (2008). Analytical advantages of multivariate data processing. One, two, three, infinity? 
Anal Chem, 80(15), 5713-5720. 



50 
 

Parker, J. G., Zweifel, L. S., Clark, J. J., Evans, S. B., Phillips, P. E., & Palmiter, R. D. (2010). Absence of 
NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned 
approach during Pavlovian conditioning. Proc Natl Acad Sci U S A, 107(30), 13491-13496. 

Robinson, D. L., Venton, B. J., Heien, M. L. A. V., & Wightman, R. M. (2003). Detecting subsecond 
dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem, 49(10), 1763-1773. 

Rodeberg, N. T., Johnson, J. A., Cameron, C. M., Saddoris, M. P., Carelli, R. M., & Wightman, R. M. (2015). 
Construction of Training Sets for Valid Calibration of in Vivo Cyclic Voltammetric Data by 
Principal Component Analysis. Anal Chem, 87(22), 11484-11491. 

Takmakov, P., Zachek, M. K., Keithley, R. B., Bucher, E. S., McCarty, G. S., & Wightman, R. M. (2010). 
Characterization of Local pH Changes in Brain Using Fast-Scan Cyclic Voltammetry with Carbon 
Microelectrodes. Anal Chem, 82(23), 9892-9900. 

Wanat, M. J., Bonci, A., & Phillips, P. E. (2013). CRF acts in the midbrain to attenuate accumbens 
dopamine release to rewards but not their predictors. Nat Neurosci, 16(4), 383-385. 

Wang, Y. D., & Kowalski, B. R. (1992). Calibration Transfer and Measurement Stability of near-Infrared 
Spectrometers. Appl Spectrosc, 46(5), 764-771. 

Willuhn, I., Burgeno, L. M., Everitt, B. J., & Phillips, P. E. (2012). Hierarchical recruitment of phasic 
dopamine signaling in the striatum during the progression of cocaine use. Proc Natl Acad Sci U S 
A, 109(50), 20703-20708. 

Willuhn, I., Burgeno, L. M., Groblewski, P. A., & Phillips, P. E. (2014a). Excessive cocaine use results from 
decreased phasic dopamine signaling in the striatum. Nat Neurosci, 17(5), 704-709. 

Willuhn, I., Tose, A., Wanat, M. J., Hart, A. S., Hollon, N. G., Phillips, P. E., et al. (2014b). Phasic dopamine 
release in the nucleus accumbens in response to pro-social 50 kHz ultrasonic vocalizations in 
rats. J Neurosci, 34(32), 10616-10623. 

Woody, N. A., Feudale, R. N., Myles, A. J., & Brown, S. D. (2004). Transfer of multivariate calibrations 
between four near-infrared spectrometers using orthogonal signal correction. Anal Chem, 76(9), 
2595-2600. 

Zhang, X. J., Wang, J., Ogorevc, B., & Spichiger, U. E. (1999). Glucose nanosensor based on Prussian-blue 
modified carbon-fiber cone nanoelectrode and an integrated reference electrode. Electroanal, 
11(13), 945-949. 

 



51 
 

 
CHAPTER 3: MULTIVARIATE CURVE RESOLUTION FOR SIGNAL ISOLATION FROM FAST-SCAN 

CYCLIC VOLTAMMETRIC DATA 
 

INTRODUCTION  

 Fast-scan cyclic voltammetry (FSCV) has several advantages over other electrochemical 

techniques when used to study in vivo extracellular neurotransmitter dynamics, particularly the selectivity 

afforded by the analyte voltammetric profiles. Full realization of this selectivity, however, demands 

multivariate data analysis.(Booksh & Kowalski, 1994; Lavine & Workman, 2013; Olivieri, 2008) Principal 

component analysis-inverse least squares (PCA-ILS, also referred to as principal component regression 

or PCR), a multivariate approach relying on factor analysis, has been shown to be a reliable approach for 

analyte signal isolation from FSCV data collected on multicomponent systems, both in vitro and in 

vivo.(Heien et al., 2004; Heien et al., 2005; Kramer, 1998) Further, work on the development of PCA-ILS 

for FSCV analysis has resulted in implementation of procedures that provide model validation, giving 

confidence in model-generated estimates.(Keithley et al., 2009; Keithley & Wightman, 2011) 

   However, the main drawback of its deployment for in vivo FSCV analysis has been the necessity 

of training set construction to generate the data analysis models. Chemometrics and previous research 

suggest training sets must be generated under the experimental conditions to properly validate the model 

and have confidence in model-generated concentration estimates without further analysis.(Booksh, 2006; 

Feundale et al., 2002; Wang & Kowalski, 1992; Woody et al., 2004) This requirement adds to 

experimental complexity, and its importance has been the subject of recent debate.(Johnson et al., 

2016b; Rodeberg et al., 2015; Rodeberg et al., 2017) Thus, a method that relaxes this requirement 

should be of interest to the field. 

  Here, we explore the potential of an alternative method, self-modeling multivariate curve 

resolution by alternating least squares (MCR-ALS), to resolve overlapping FSCV signals. The technique 

shares much with PCA-ILS, namely the modeling of the data as a linear combination of appropriately 

scaled signals of the components. However, whereas training data is used with PCA to define spectral 
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shapes before fitting the data for concentration determination, MCR-ALS allows both the spectral shapes 

and concentrations to vary during the fitting procedure, using only the experimental data itself in defining 

the model. The algorithm is simply provided with an initial estimate of either the spectral shapes or the 

concentration traces, from which the data is iteratively fitted until convergence is achieved. This technique 

has been successfully used in the analysis of data derived from a number of analytical techniques, 

including mass spectrometry (Dantas et al., 2013; Pere-Trepat et al., 2005; Sinanian et al., 2016), 

spectroscopic techniques (Bortolato & Olivieri, 2014; Gargallo et al., 1996; Pere-Trepat et al., 2004), and 

slow-scan voltammetry (Diaz-Cruz et al., 1999; Esteban et al., 2000; Grabaric et al., 1997; Torres et al., 

1998). Thus, this opens the possibility of circumventing the need for explicit training set construction. 

 However, due to increased freedom in model definition, there exist important concerns that must 

be addressed before proper use of MCR-ALS, particularly for in vivo FSCV data. First, all of above 

applications relied on the generation of second-order data (e.g. data separated along two variables, 

producing data in the form of a matrix).(Olivieri, 2014) This is most often achieved through separation 

techniques such as liquid chromatography or controlled manipulation of an independent variable (e.g. 

concentration). For FSCV, second-order data (i.e. current as a function of potential and time) is typically 

collected, most often visualized by a color plot. However, separation of signals in time must then rely on 

naturally occurring processes, leaving the success of the technique dependent on how naturally resolved 

these events are. Thus, the technique is expected to have limited potential for analysis of signals whose 

time courses significantly overlap.  

 Second, as the number of expected components and spectral shapes are not defined prior to 

fitting (as in PCR-ILS), solutions provided by MCR-ALS are more susceptible to a number of ambiguities, 

resulting in mathematical solutions that may or may not have actual correspondence to meaningful 

chemical information.(Malik & Tauler, 2016; Smilde et al., 2001)  The most relevant of these are intensity 

and rotational ambiguities. Intensity ambiguity refers to the fact that MCR-ALS can only provide the 

shapes of the spectral and concentration profiles, rather than any information about their absolute scales. 

However, in the analysis of FSCV data, PCR-ILS suffers from similar ambiguities, and this problem can 

be addressed through normalization of the obtained spectral profiles and subsequent scaling by 

previously determined calibration factors. Rotational ambiguity is a more serious issue, which refers to the 
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fact that the data can be fit by an infinite number of combinations of spectral and concentration profiles. 

This problem is requires the imposition of constraints on the possible solutions derived from prior 

knowledge of characteristics of meaningful solution. Commonly employed constraints include non-

negativity of values in the spectral or concentration profiles, concentration or spectral peak unimodality, 

and hard modeling approaches using known equations that govern the experimental system.(Malik & 

Tauler, 2016; R. Tauler et al., 1993a) For instance, in the previous study of electrochemical data, 

parametric equations and closure constraints (i.e. constant total concentrations of the various forms of a 

chemical species) to model the expected peak shape were used to define the solutions, in addition to 

non-negativity and unimodality constraints.(Esteban, et al., 2000) Background-subtracted FSCV data, 

however, is more limited in the types of parameters that can be used to identify the subset of meaningful 

fits. For instance, negative values can be found in both the spectra and concentration profiles due to the 

relative nature of measurements, while the equations governing the observed voltammetric behavior are 

not well-defined enough to use as strict constraints. Thus, a characterization of the subset of reported 

constraints that may be used (i.e. equality and selectivity constraints) and other techniques (i.e. 

simultaneous analysis of multiple experimental runs) is needed to ensure these are sufficient for robust 

deployment of MCR-ALS for FSCV data analysis.(Gemperline & Cash, 2003; Manne, 1995; R. Tauler, et 

al., 1993a; R. Tauler et al., 1995a; R. Tauler et al., 1993b; R. Tauler et al., 1995b) 

    In this study, the potential of MCR-ALS for the analysis of FSCV data is explored and compared 

to the performance of PCA-ILS. First, the basic implementation of the method is described, with 

comparisons to PCA-ILS when possible. Next, the method is characterized in vitro to determine the 

conditions under which the method is successful at separating signals. This is followed by in vivo 

comparison of PCA-ILS and PCR in a group of experiments. It is shown that the method is capable of 

producing highly similar results to PCA-ILS without the need for training data when given appropriate 

constraints. Further, methods to extend the utility of the technique and for validation (i.e. residual 

analysis) are explored. 
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EXPERIMENTAL SECTION 

Instrumentation and Software. T-650 type, cylindrical carbon-fiber microelectrodes (Thornel, Amoco 

Corporation, Greenville, SC; pulled in glass capillaries and cut to 75-125 m exposed lengths) were used 

in experimentation. After pulling, the seals of electrodes were dipped in epoxy (EPON Resin 828, Miller-

Stephenson, Danbury, Connecticut) mixed with 14% w/w m-phenylenediamine (Sigma-Aldrich, St. Louis, 

MO) at 80C, briefly washed with acetone, and heated at 100C (5 hours) then 150C (at least 12 hours).  

    Data was acquired with a commercial interface (PCI-6052, 16 bit, National instruments, Austin TX) with 

a personal home computer and analyzed using locally constructed hardware and software written in 

LabVIEW (HDCV, National Instruments, Austin, TX).(Bucher et al., 2013) Unless otherwise noted, 

triangular excursions of the working electrode potential were made at a scan rate of 400 V/s and repeated 

at a frequency of 10 Hz. Measurements were conducted inside a grounded Faraday cage to minimize 

electrical noise.  

 

Electrochemical Experiments.  Flow-injection analysis experiments were performed using a syringe 

pump (Harvard Apparatus, Holliston, MA) operated at 0.8 mL/min using PEEK tubing (Sigma-Aldrich) 

connected to a pneumatically controlled six-port injection valve (Rheodyne, Rohnert Park, CA). All 

solutions were prepared in TRIS (2.0 mM Na2SO4, 1.25 mM NaH2PO4H2O, 140 mM NaCl, 3.25 KCl, 1.2 

mM CaCl22H2O, 1.2 mM MgCl26H2O, and 15 mM Trizma HCl) and adjusted to pH 7.4 with NaOH as 

necessary. 

 

In Vivo Measurements. Male Sprague-Dawley rats from Charles River (Wilmington, MA, USA) were 

housed individually on a 12/12 h light/dark cycle. Animal procedures were approved by the UNC-Chapel 

Hill Institutional Animal Care and Use Committee (IACUC). The animals were surgerized in the manner 

described previously for intracranial self-stimulation (ICSS) experiments and given a minimum of 3 days 

of recovery prior to training.(Johnson et al., 2016a) Rats were trained in ICSS using previously described 

protocols on a fixed-ratio 1 or fixed-interval 5 schedule.(Garris et al., 1999) 
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Data Analysis. Data and statistical analyses were performed in GraphPad Prism 6 (GraphPad Software 

Inc., La Jolla, CA), LabView (National Instruments, Austin, TX), and MATLAB (Mathwork, Natick, MA).  

 

THEORY 

Multivariate Curve Resolution-Alternating Least Squares. The theory of PCA-ILS and calibration has 

been previously discussed.(Johnson, et al., 2016b) Here, we address the general theory behind the use 

of MCR-ALS. As in PCR-ALS, data is modeled according to the ‘bilinear’ model.(Gemperline & Cash, 

2003; Olivieri, 2014; R. Tauler, et al., 1995b) That is, each of the measurements (i.e. individual current 

measurements and entire voltammograms) can be assumed a linear combination of the independent 

contributions of analytes and noise. This leads to the following model equation in matrix form: 

𝐃 = 𝐂𝐒T + 𝐄  (Eq. 3.1) 

where D is the (r x c) data matrix containing c spectra consisting of r individual measurements (e.g. 

current measurements in a voltammogram), C and S are (r x l) and (c x l) matrices containing the l pure 

concentration profiles and spectra, respectively, and E is the (r x c) error matrix. This equation is visually 

shown in Figure 3.1. The goal is to find the solution to this equation that fits the data and provides 

meaningful and interpretable information. 

 The next step requires definition of the model parameters and inputs, namely the number of 

expected components and the initial estimates of the either the spectra or concentrations.(de Juan & 

Tauler, 2016; R. Tauler, et al., 1995b) There exist many ways to achieve the former, and a comparison of 

a large number of them effectiveness for analysis of LC-NMR data has been reported.(Wasim & Brereton, 

2004) One class of techniques relies on factor analysis-based analysis of the experimental data, including 

analysis of singular values produced by PCA (e.g. Malinowski’s F-test and factor indicator function, or 

IND) or PCA-based methods (e.g. evolving factor analysis and target factor analysis).(Borgen et al., 1986; 

Gampp et al., 1987; Gemperline, 1984, 1986; Keithley et al., 2010; Maeder, 1987; Edmund R. 

Malinowski, 1989) Additionally, orthogonalization methods such as orthogonal projection approach 

(OPA), which selects the most dissimiliar spectra from the experimental data that have considerable 

signal intensity, may be used to generate estimates of the relevant spectral shapes.(Sanchez et al., 1996)  
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Figure 3.1. Graphical representation of the bilinear calibration model (Equation 3.1) with background-
subtracted FSCV data. Above are shown the dopamine (1) and pH (2) concentration traces. Below are 
shown the dopamine (3) and pH (4) voltammograms. 
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This method has been shown to have favorable aspects compared to the Malinowski’s F-test in analysis 

of HPLC-DAD data.(Vivo-Truyols et al., 2007) Alternatively, this can be set by the experimenter through a 

priori knowledge of the number of components or multiple fits of the data with varying number of 

components to yield meaningful solutions.(de Juan & Tauler, 2016; P. Tauler & Casassas, 1989; R. 

Tauler et al., 1991; R. Tauler, et al., 1993a; R. Tauler, et al., 1995b) For initial estimates of either the 

spectra or concentration values, many of the same methods may also be used. Otherwise, expected 

concentration or spectral profiles or even the data themselves may be used as inputs.(de Juan & Tauler, 

2016; Gemperline & Cash, 2003) For this study, we explored the factor-based methods that performed 

well in the aforementioned LC-NMR study (Malinowski’s F-test and the IND, as well as the ratio of its 

derivatives – RODIND), which have the advantage that they can be automated, and the EFA and OPA 

techniques, which can be used to generate initial estimates of the spectra. These are described briefly 

below. 

 With the model defined, Equation 3.1 is then solved using the alternating least squares approach. 

This method iterates between generating estimates of the concentration profiles or spectra, given an 

estimation of the spectra or concentration profile, respectively. In its unconstrained form, the following 

equations are used: 

𝐂𝒆𝒔𝒕 = 𝐃𝐒𝒆𝒔𝒕
+  (Eq. 3.2) 

𝐒𝒆𝒔𝒕 = 𝐂𝒆𝒔𝒕
+𝐃  (Eq. 3.3) 

where the superscript + indicates the pseudoinverse of the matrix. For instance, if an initial spectral 

estimate is provided, Equation 3.2 is used to provide an estimate of the concentration profile, which is 

then used as the input for Equation 3.3. This process continues to refine the estimates of the 

concentration and spectral profiles until a predefined threshold of convergence is achieved or a set 

number of iteration cycles is reached. If constraints are to be applied, this is done either through direct 

alteration of the obtained estimates (de Juan & Tauler, 2016), the use of penalty functions (Gemperline & 

Cash, 2003), or alternative means of regression (Bro & DeJong, 1997; Bro & Sidiropoulos, 1998). 

Additionally, the experimental data matrix is often pretreated by factor analysis itself prior to fitting, such 

as PCA, as this reduces the effect of noise on the fitting results.(R. Tauler, et al., 1993b; R. Tauler, et al., 
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1995b) If this is done, the reconstructed data set using only significant principal components (D*) is used 

in lieu of the original data matrix (D) in Equations 3.2 and 3.3. 

 

Implementation of Soft Constraints Using Penalty Functions. As mentioned before, FSCV data fails 

to meet the criteria for the application of many of the commonly used constraints that use prior knowledge 

of the properties of desired solutions or the experimental system. However, reference data may be 

incorporated to help define the fits through equality constraints (i.e. spectral or concentration values can 

be forced to equal to some reference data obtained), and the local number of components within a given 

window can also be defined through selectivity constraints.(Van Benthem et al., 2002) Further, these 

constraints need not be strictly imposed (i.e. the MCR-ALS spectra or concentration estimates need not 

be forced to equal the reference data), but rather enforced in a ‘soft’ manner, allowing deviations from the 

constraint values. This is done through the incorporation of weighted penalty functions into the model. 

Here, we use the P-ALS algorithm introduced (and described in detail) by Gemperline and Cash to realize 

this.(Gemperline & Cash, 2003) To illustrate this, for ‘soft’ equality constraints with a complete set of 

spectral reference data, the system of equations represented by Eq. 3.1 would be modified by the 

addition of the equivalent of the following: 

𝑤𝑺𝒓𝒆𝒇  = 𝑤𝐇  (Eq. 3.4) 

where Sref is the reference spectral matrix, H is diagonal matrix of ones, and w is a scalar weighting factor 

that determines the relative importance of this equation during the fitting procedure. Note that the symbol 

for the weighting factor here (w) is changed from that () used by Gemperline and Cash to avoid 

confusion with its use to represent eigenvalues, which is used below and in previous work from our 

lab.(Keithley, et al., 2010)  The power of this equation lies in its flexibility. Incomplete reference spectral 

data (e.g. one spectra for a multi-component system) can be used by appropriately adjusting the H 

matrix. Further, the weighting factor  can be used to tune the how strictly this constraint is enforced. 

Small values of  allow strong deviations from the reference spectra, while very large values force strict 

adherence of the spectral estimates to these shapes. Of note, use of the k vectors obtained from PCA 
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analysis of a training set as reference spectra with this P-ALS method and a high  (approaching infinity) 

would produce the results obtained from PCA-ILS, highlighting the similarity between the two techniques. 

 

Methods for Selection of the Number of Components. Here, the methods described above that were 

explored in this study for selection of the number of components present will be covered, with the 

exception of the Malinowski’s F-test, which has been used and explored in detail in the context of FSCV 

previously.(Keithley, et al., 2010) Again, a more extensive list of methods is described in Wasim and 

Brereton, 2004. 

 

Factor Indicator Function-Based Methods. The factor indicator function (IND) and the ratio of its 

derivatives (RODIND) rely on analysis of the residuals after principal component analysis of the data matrix 

and removal of the information described by a select number of principal components (PCs). Specifically, 

these make use of the residual standard deviation (RSD), which is calculated for a given PC (PCn) as 

follows: 

𝑅𝑆𝐷𝑛 =  √
∑ 𝑗

0𝑠
𝑗=𝑛+1 

𝑡(𝑠−𝑛)
  (Eq. 3.5) 

where j
0 is the eigenvalue of the jth PC and  s and t are equal to the smaller and larger of r and c, 

respectively. Malinowski introduced the IND to assist in determining the number of significant 

components, as its interpretation is more direct. The IND is calculated for PCn as follows: 

𝐼𝑁𝐷𝑛 =  
1

(𝑠−𝑛)2 𝑅𝑆𝐷𝑛  (Eq. 3.6) 

Whereas a graph of the RSD as a function of n should flatten at the last significant component, the IND 

should reach a minimum, although this minimum is sometimes not well-defined and requires user 

interpretation. Alternatively, the ratio of the derivatives (ROD-IND, here referring to the second-to-third 

derivative ratio, as in Wasim and Brereton) of an error function like the IND can be used, as it should 

reach maximum at the number of significant components: 
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𝑅𝑂𝐷𝐼𝑁𝐷,𝑛 =  
𝐼𝑁𝐷(𝑛)−𝐼𝑁𝐷(𝑛+1)

𝐼𝑁𝐷(𝑛+1)−𝐼𝑁𝐷(𝑛+2)
  (Eq. 3.7) 

The IND and RODIND have the advantage of having clearly defined criteria for determining of the number 

of significant components and thus can be automated; however, it is useful to analyze their plots as a 

function of PC to as there can be significant ambiguity in the assignment. 

 

Orthogonal Projection Approach. The orthogonal projection approach (OPA) does not rely on factor 

analysis, but rather the determination of the spectra present in the data that are the most dissimilar. This 

is determined in an iterative manner, comparing each spectrum to normalized reference spectra (sref), 

which is first set to be only the normalized mean spectrum of the data (�̅�). The dissimilarity (di) between 

the reference spectra and each data spectrum (si) is calculated by constructing a matrix Yi, with sref and si 

as its rows and determining the determinant of the square matrix formed by the product of Yi with its 

transpose: 

𝑑𝑖 = det (𝒀𝑖𝒀𝒊
T)  (Eq. 3.8) 

The first spectra (sref,1) with the highest dissimilarity as measured by di then replaces �̅� as the reference 

spectrum in Yi. The dissimilarities are then calculated again; however, the spectrum with the highest 

dissimilarity with sref,1 is now simply added to Yi rather than replacing the previous spectrum. This process 

continues until a plot of the dissimilarity versus time (example shown in Figure 3.2A) shows no distinct 

peak or contains only random noise, or there is redundancy in the reference shapes. 

 

Evolving Factor Analysis. The evolving factor analysis (EFA) approach relies on principal component 

analysis across the data window for the identification of the number of significant components (NC) and a 

rough estimate of their time course, relying on the change in the rank of the data matrix with analysis of 

successively larger portions of the data window. This is typically done in both the forwards and backwards 

direction along the relevant variable (e.g. time). For example, forward EFA along the time direction begins 

by using PCA to calculate the eigenvalue for the first spectrum taken (S1). Next, the following spectrum 

(S2) is added to the submatrix for analysis, and PCA is performed to calculate the eigenvalues for the  
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Figure 3.2. Evaluation of color plot with orthogonal projection approach (OPA) and evolving factor 
analysis (EFA).  (A) Color plot with 8-second dopamine and pH injections, with onset separated by 6 
seconds and dopamine appearing first. (B) Dissimilarity plots determined from (A) for the first (orange) 
and second runs (green) of OPA. The spectra shown to the right are those selected by OPA for a given 
run (i.e. the voltammograms at the time corresponding to the maximum dissimilarity value). (B) EFA plot 
of logarithm of eigenvalues shown for forward and backwards analysis. Note the colors for the first and 
second eigenvalues are swapped between the forward and backwards direction to aid in interpretation 
(i.e. the same colored lines for the forward and backwards direction indicate the appearance and 
disappearance of a given analyte). 
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submatrix defined by S0 and S1. This process continues, adding one spectrum at a time and calculating 

eigenvalues for the growing submatrix until the entire data matrix (S1 – ST) is analyzed. Backward EFA 

operates the same way, except the first submatrix is defined as the last spectrum taken (ST). Spectra are 

added to this submatrix in regressive order (ST-1, ST-2, …. , S1). For identification of the number of 

components, an EFA plot is constructed, typically using the logarithm of the eigenvalues plotted versus 

time, for both the forward and backward analysis. Analysis of this plot relies on identification of the 

appearance of a significant eigenvalue (i.e. above the values defined by the non-significant eigenvalues) 

moving along the plot in the direction the analysis was performed. In the forward direction, an increase 

(moving from time 1 to T) in the nth eigenvalue can be interpreted as the appearance of the nth analyte in 

the data window. In the backward direction, an increase (moving from time T to 1) in the nth eigenvalue 

can be interpreted as the disappearance of the (NC – n + 1)th analyte, provided the analytes appear and 

disappear in successive order. An example plot is shown in Figure 3.2B. 

 

RESULTS AND DISCUSSION 

In Vitro Evaluation of Dopamine-pH Mixtures with MCR-ALS. We first sought to assess the utility and 

limitations of MCR-ALS for the analysis of FSCV data obtained from in vitro flow-injection analysis. For 

this, the classical FSCV system of mixtures of dopamine and pH changes was analyzed, as was the case 

for prior work.(Johnson, et al., 2016b; Rodeberg, et al., 2015) Note that, in the following analysis, no 

attempt at determining ‘true’ concentration values will be made, as the quantitation is not the focus here. 

However, this conversion would be identical to the process used in FSCV once the spectral estimates are 

obtained. 

 First, it was verified that the technique could successfully be used to isolate the signals from pure 

solutions. For this, unconstrained MCR-ALS was suitable for analysis of the raw data. Various 

initialization methods were tried (current at the dopamine oxidation potential for concentration, a spectra 

from the data, and an OPA-generated estimate of the dominant spectra) as well as the use of PCA for 

data pretreatment, and nearly identical solutions were obtained (data not shown). An example fit is shown 

in Figure 3.3A to FSCV data from a flow-cell analysis of a 1.0 M dopamine bolus using this approach  
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Figure 3.3. Results of unconstrained MCR-ALS analysis of FSCV data from a flow-injection analysis of a 
bolus of dopamine. Clockwise from top left: Color plot representation of the background-subtracted data 
analyzed, with time as the abscissa, the applied potential as the ordinate, and the current in false color, 
dopamine CV during injection (orange) and MCR-ALS estimate (black), current at the dopamine oxidation 
potential as a function of time (orange) and MCR-ALS estimate (black), and color plot of the residual 
current after MCR-ALS analysis 
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(initialized with the dopamine oxidation current and untreated with PCA). These estimates are shown 

compared to a dopamine CV and the current vs. time trace, and it can be seen that the MCR-ALS 

estimates are nearly identical to these references but have lower noise levels, due to the random nature 

of the noise present. 

 Next, the potential for MCR-ALS for separating DA-pH mixtures was then evaluated. As noted 

before, the success of MCR-ALS is anticipated to be dependent on the temporal separation of the 

signals. Thus, simulated mixture data was created from independent injections of dopamine and pH (DA-

pH), such that the data could be added together with differing time delays between the appearances of 

analyte signal. First, the performance of the methods described in the Theory section for selection of the 

number of chemical components was evaluated (Table 3.1). Malinowski’s F-test has been used in FSCV 

analysis in the context of rank selection in PCA-ILS; however, attempts to use this here were complicated 

by abnormally high rank estimates provided when large portions of the data matrix were analyzed. A 

similar overestimation was reported by Vivo-Truyols et al. in the analysis of HPLC-DAD data. (Vivo-

Truyols, et al., 2007) Visual inspection of the principal components and the data reconstructed with 

principal components confirmed that these extra components consisted of random noise (data not 

shown). This may be due to the large number of voltammograms that carry no chemical information in the 

in vitro data or issues related to well-documented limitations and criticisms of the method (e.g. the small 

number of degrees of freedom used in calculation of the F-statistic and assumption of homoscedastic and 

uncorrelated noise).(Faber & Kowalski, 1997a, 1997b; Keithley, et al., 2010; E. R. Malinowski, 1999; 

Vivo-Truyols, et al., 2007) The number of predicted components could be lowered by truncation of the 

data matrix and increasing the confidence level; however, the results were inconsistent and always 

greater than 2. Thus, an alternative was sought. The RODIND was also explored; however, similar to the 

results reported by Vivo-Truyols, the performance was inaccurate even for the well-defined in vitro data 

and was not explored further. While not as readily automated, the orthogonal projection approach (OPA) 

and evolving factor analysis (EFA) approaches proved the most reliable indicator the number of 

components. Regardless of time separation, OPA and EFA correctly predicted two components. With 

regard to OPA, the most dissimilar spectra identified by in all analyses, except for the data with no 

separation, matched the pure DA and pH CVs present in the data. With no separation, only differently  
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Table 3.1. Rank estimated by Malinowski’s F-Test, orthogonal projection approach, ROD function, and 

the EFA approach for different simulated time separations of 8-second dopamine and pH boluses. 

 

Analyte Separation 

0 sec 2 sec 4 sec 6 sec 8 sec 10 sec 12 sec 

I T I T I T I T I T I T I T 

Malinowski’s F-
Test (99%) 

3 8 4 8 4 8 4 8 5 8 6 8 6 8 

OPA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

ROD 1 3 1 1 1 1 1 1 1 1 1 1 1 1 

EFA 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

*I = analysis of data window containing injections; T = analysis of entire 50-second data window 
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shaped DA-pH mixture voltammograms were selected; however, the dissimilarity plots only degraded to 

random noise after three spectra. EFA analysis was able to correctly indicate the time of appearance and 

disappearance for all cases, with the exception of the data with no temporal separation. However, in that 

case, the technique was able to pick up subtle differences in the rate of disappearance after injection to 

suggest two components. 

 These approaches are also advantageous, as they provide information about the expected 

spectra (OPA) and concentration traces (OPA and EFA, the latter more reliably than the former). Since 

OPA provides spectra from the data itself in a straightforward and computationally inexpensive manner, 

this was chosen as the initialization method for the MCR-ALS fits to the mixture data. For temporal 

separation greater than 8 seconds (complete separation of the injections), initialization with the OPA 

spectral estimates and unconstrained MCR-ALS provided excellent agreement with the results expected 

from the individual ‘pure’ runs. With smaller separations, significant distortions began to appear in the 

solutions. For example, at separations of 2-7 seconds, the determined concentration profiles had sudden 

artificial changes during the periods of signal overlap, despite having very similar spectral profiles to those 

obtained from the pure runs. At separations of 1.5 seconds or less, the obtained spectral profiles were 

DA-pH mixture voltammograms. This is likely due to the rotational ambiguity in the solutions, and, thus, 

constraints that could provide meaningful solutions were explored.  

 One approach to placing constraints of the MCR-ALS solutions is the use of reference data, 

obtained separately from the experimental data being analyzed. We sought to explore the potential of 

using library reference data with ‘soft’ penalty functions (P-ALS) for imposing loose equality constraints to 

guide solutions. The library data used for this experiment was 10 DA and 10 pH CVs obtained from 

separate experiments using separate T-650 carbon fibers. An average was determined for each of these 

analyte shapes and used as the reference spectra for the two analytes. However, first, the behavior of 

this approach was characterized on the ‘pure’ runs to understand the effects of this approach and 

specifically of the ‘weighting’ parameter w of the model. MCR-ALS fits to the ‘pure’ runs were obtained 

with various values of the weighting parameter (w = 0 to 8), and the sum of the squares of the residual for 

the fits were determined. The results of this analysis are shown in Figure 3.4. For both DA and pH data  
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Figure 3.4. Effect of the weighting parameter w on the MCR-ALS fits to isolated injections of dopamine 
and pH. (A-B) Sum of the squares of the residual (A, normalized to value for w = 0) and its derivative plot 
(B) as a function of the weighting parameter w for the dopamine (orange) and pH (green) data. (C-D) 
MCR-ALS spectral estimates for dopamine (C) and pH (D) data at different values of w. 
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(Figure 3.4A), a smooth transition can be seen between two different solutions, the unconstrained (w = 0) 

and that defined entirely by the average library CV (large w). As expected, fits with large w values had 

higher residual values, as the average CV is unrepresentative of the data.  The largest changes in the 

solutions occurred around w values of 1 for both data sets, as evidenced of the derivative plot of the sum 

of squares of the residual with w (Figure 3.4B). The use of a pH library CV for fitting also lead to 

considerably higher error, due to the large difference between the experimental and library pH CVs. This 

is expected due to the larger variability seen between pH CVs at carbon fiber electrodes as compared to 

DA CVs.(Keithley, et al., 2010; Rodeberg, et al., 2015) Thus, the use of DA library reference CVs is 

preferred to use of pH CVs. Additionally, the approach should not be used with large weighting 

parameters, as these introduce considerable error into the fits. However, ideally, these constraints can be 

initially used during the fitting procedure and lifted before the final MCR-fit is obtained. 

 This library P-ALS approach was then used to analyze the DA-pH mixture data that 

unconstrained MCR-ALS could not properly fit. During the initial fit, soft constraints (wpH and wDA = 1) 

were imposed on both analytes using the library CVs as reference data until convergence was achieved. 

Then, since the pH library is less reliable, the pH equality constraint was lifted (wpH = 0 and wDA = 1), and, 

using the previous fit as the initialization, the solution was again allowed to converge. Finally, the DA 

equality constrained was lifted (wpH and wDA = 0), and the final solution was obtained. The process was 

repeated to ensure overall convergence using this procedure. The approach proved successful in 

mitigating the issues seen with unconstrained MCR-ALS, as highlighted for the 1-second separation data 

in Figure 3.5. The unconstrained solution (Figure 3.5A) shows distortions in both the concentration and 

spectral profiles. After imposition of soft constraints on both analytes (Figure 3.5B), the spectral and 

concentration profiles significantly improve; however, the sum of squares of the residual values is over 9 

times higher for this constrained fit. Removal of the pH constraint (Figure 3.5C) leads to a better fit at the 

cost of the spectral shapes. Finally, the removal of both constraints (Figure 3.5D) leads to improved 

spectral and concentration profiles with an identical residual value as that of the original unconstrained 

solutions. 
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Figure 3.5. Successive fitting using P-ALS ‘soft’ equality constraints for analysis of simulated in vitro 
dopamine-pH mixtures (temporal separation of 1 second). (A-D) MCR-ALS spectral (left) and 
(concentration) estimates for the initial unconstrained model (A), the DA/pH ‘soft’ equality constrained 
model (B), the DA-only ‘soft’ equality constrained model (C), and the final unconstrained model after 
successive iterations of A-C (D). The dashed lines indicate the concentration estimates for the isolated 
runs for comparison. 
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Evaluation of In Vivo FSCV Data. The potential of MCR-ALS was then evaluated using in vivo FSCV 

data obtained during intracranial self-stimulation sessions (n = 25), each trial containing multiple (typically 

greater than 50) electrically evoked dopamine transients. These data mainly contain mainly contributions 

from pH and DA, but are less well defined and noisier than the in vitro data. However, within a given 

experimental run, multiple electrically evoked transients are present, opening the possibility of using 

multiple data sections for model definition. These data were originally analyzed using PCR models built 

from training data collected during the experiment, which served as a reference point for comparison of 

the MCR-ALS model performance in this study. 

 First, the advantages of using multiple transients for model definition were explored. For this, 

separate background-subtracted color plots were obtained from various points in a given experimental 

run, and these data were concatenated together to form the data matrix for MCR-ALS analysis. An 

example is shown in Figure 3.6, with three separate transient windows joined together (color plot shown 

in Figure 3.6A). The MCR-ALS spectral fits were determined (using unconstrained MCR-ALS) for 

increasing numbers of snippets, and the PCR k vectors for the analytes are shown for comparison. 

Analysis of only the first snippet provided a moderately estimate of the DA spectrum; however, the pH 

spectrum is only weakly determined and both estimates contained considerable noise (Figure 3.6B). 

Increasing the number of snippets (Figure 3.6C-D) provided increasingly good estimations of the 

underlying component spectra, with improvements in the spectral shapes (particularly for pH and the 

reductive wave of DA) and the noise contained in the estimates. 

 The most straightforward and computationally inexpensive application of MCR-ALS relies on 

determining a subset of the experimental data for use to define the model that will be used to analyze the 

entirety of the data. In our case, the spectral estimates are anticipated to remain constant throughout a 

given experimental session, and, thus, the spectral estimates will be determined and used to analyze the 

remainder of the experimental data. Selection of the training subset within the experimental data is an 

important consideration. Ideally, the training subset should contain all considerable contributions from all 

components expected throughout the experimental data. Additionally, the signals should be resolved from 

one another. To help determine this, the evolving factor analysis (EFA) method is particularly helpful, as it  
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Figure 3.6. Spectral fits for MCR-ALS analysis of increasing numbers of electrically evoked dopamine 
transients. (A) Color plot showing three separate transients joined together for analysis, with the arrows 
underneath indicating the data windows analyzed for the MCR-ALS analysis. (B-D) Spectral fits (solid 
lines) for dopamine (left) and pH (right) for analysis of one (B), two (C), and three transients. PCR k 

vectors for the two analytes are shown as dashed lines for comparison. 
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can provide a good estimate of the time courses of the analytes present in a given time window. 

Additionally, subsets of the data that contain only one analyte can be used; however, care must be taken 

to ensure that all analytes contribute significantly to the total signal. Underrepresentation of a given 

analyte can lead to poor quality estimates of its spectral and concentration profiles, as the MCR-ALS 

algorithm works to capture find the profiles that minimize the residual values of the entire training 

submatrix. If the majority of the variance in the training submatrix is determined by a single analyte, the 

profiles obtained may be determined by attempts to capture this single analyte rather than all 

components. Further, depending on the quality of the data, constraints, like the P-ALS equality approach 

explored above, may need to be used, using either using single-analyte experimental CVs or a library 

approach using data from separate experiments. Again, the latter approach should be used with low 

weightings to avoid fitting the data in an unrepresentative manner. 

 To test the performance of the technique, each set of experimental data was analyzed to select a 

training submatrix. This submatrix was then used to estimate the spectral profiles of dopamine and pH 

that were subsequently used to analyze other experimental data in a manner analogous to PCA-ILS (or, 

equivalently, P-ALS with the spectral estimates weighted with high w values). The results of this approach 

were compared to those obtained from PCA-ILS and are presented in Table 3.2. For each fit, the 

correlation coefficient between the MCR-ALS and the PCA-ILS estimates, and the signal power of the 

difference between the MCR-ALS and PCA-ILS estimates (the lack of agreement between the two 

techniques, normalized to signal power of the PCA-ILS estimates), were determined for a comparison of 

both the shapes of these estimates and their absolute differences. Overall, there was good agreement 

between PCA-ILS and MCR-ALS. In general, the estimation of pH profiles differed more between the two 

techniques than those for DA, and there was greater variability in the performance of MCR-ALS for 

determining the pH profiles. This was generally due to the difficulty in finding isolated pH spectra within 

the data to use for model training. However, no separate training data was used in this analysis, and the 

collection and inclusion of even minimal amounts of reference data collected separately from the 

experiment could be expected to improve this performance. 
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Table 3.2. Summary of correlation and lack of agreement between PCA-ILS and MCR-ALS estimates of 
spectral and concentration profiles for in vivo FSCV data collected during intracranial self-stimulation trials 
(n = 25 rats)   

 
Correlation Coefficient (R2) Lack of Agreementa

 (%) 

Average Min Max Average Min Max 

DA spectra 0.985 0.971 0.995 3.76 2.16 5.77 

pH spectra 0.984 0.963 0.996 4.35 1.21 12.1 

DA concentration 0.994 0.983 0.999 1.82 0.37 4.92 

pH concentration 0.980 0.942 0.999 4.77 0.48 15.8 

aLack of Agreement = 100%*
[∑ (𝑥𝑖,𝑀𝐶𝑅−𝐴𝐿𝑆−𝑥𝑖,𝑃𝐶𝐴−𝐼𝐿𝑆)

2𝑁
𝑖=0 ]

[∑ (𝑥𝑖,𝑃𝐶𝐴−𝐼𝐿𝑆)
2𝑁

𝑖=0 ]
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Residual Analysis. One of the primary advantages of using higher-order calibration models is the ability 

to rely on residual analysis for the detection of interferences that can generate errors in the model 

estimates. Thus, we sought to explore means of adopting the residual analysis procedure introduced by 

Jackson and Mudholkar, and currently used in FSCV with PCA-ILS analysis, as a first step towards 

establishing a means of model validation, specifically for application of a model generated from a training 

submatrix to the experimental data. During the training phase, significant interferences can typically be 

detected, through the method used to detect the number of components (e.g. EFA and/or OPA) or 

distortion of the fits.  

 Specifically, the standard residual analysis procedure relies on calculation of an experiment-

specific Qα value, a threshold for evaluating the residual values at a specific time point to determing 

model suitability (Qt > Qα leads to rejection of the data for analysis with that model) that is characteristic of 

the noise level. This relies on the use of principal component analysis, identification of the significant 

components, and analysis of the error eigenvalues (i.e. those associated with the non-significant principal 

components). In PCA-ILS analysis, this step is performed during definition of the spectral profiles through 

analysis of the training data. However, we sought to evaluate whether the use of the experimental data 

itself, when analyzed with PCA, could generate a suitable estimate. For each experimental data set, 

random sets of five-second windows (n = 6 windows/data set, 50 CVs per window, 25 data sets) were 

obtained for analysis. Each window was analyzed with PCA, and, using Malinowski’s F-test, the rank of 

the submatrix was determined. This allowed for an estimation of Qα using the eigenvalues of the non-

significant components identified in this manner. The results of this analysis are presented in Table 3.3 

and compared with values obtained from PCA analysis of the associated training set data. Overall, 

moderate agreement between the values obtained from PCA analysis of training set data and the 

experimental data was observed. Although there was a large spread of values for percent difference 

between the values obtained from the two approaches, the Qα values obtained from the different 

experimental windows were consistent, with an average relative standard deviation of 17.5%. The 

majority of cases (60%) had lower Qα values obtained from experimental data than from the training set 

data, meaning that, for this data set, the former approach would be more conservative.  
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Table 3.3. Percent difference between Qα values determined from Malinowski’s F-test analysis of 

independently collected training set (10 CVs x 1) and experimental data (50 CVs x 6) for 25 intracranial 
self-stimulation data sets and relative standard deviation of the latter.  

 Average Minimum Maximum 

Percent Difference (%) (+)10.4 (-)0.8 (+)132.9 

Relative Standard Deviation 16.6 5.5 48.3 
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Figure 3.7. Interferent identification using MCR-ALS. (A) In vivo color plot containing both DA and pH 
signals. (B) Residual spectrum (solid line) after analysis of the data with a DA-only training set with PCA-
ILS. (C) MCR-ALS spectral estimate (solid line) using a two-component model. The dashed line shows 
the PCR pH k vector. 
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 Finally, one advantage of MCR-ALS as an exploratory technique within the context of residual 

analysis should be highlighted. In PCR-ALS, the number of components is defined using a priori 

knowledge of the system, and data that fails residual analysis is typically thrown out. Further, analysis of 

the residual plots reveals the presence of interferents; however, the residual spectrum does not 

necessarily provide robust information on the shape of the spectra. With MCR-ALS, should a set of data 

fail residual analysis, a component can be added to the model, and MCR-ALS can be performed to 

attempt to gather information on the nature of the interferent. This advantage is highlighted in Figure 3.7. 

Here, a dopamine-pH mixture (Figure 3.7A) is analyzed with both PCA-ILS (using only a dopamine 

training set) and MCR-ALS with two components. The PCA-ILS residual spectrum (Figure 3.7B) does 

have general features resembling the reference pH k vector. However, due to poor model definition and 

the overlapping signals between pH and dopamine, some of the current has been assigned as arising 

from dopamine, resulting in a deviation in the residual spectrum from a ‘pure’ dopamine signal. On the 

other hand, the MCR-ALS estimate (Figure 3.7C) gives a more robust estimate of the interferent spectra, 

giving greater confidence in identification of this component. This component now can be incorporated 

into the model to generate more accurate estimates. 

 

CONCLUSIONS 

 The multivariate curve resolution-alternating least squares approach has several advantages over 

PCA-ILS in the analysis of FSCV data, including more flexibility in model definition, decreased 

experimental requirements (i.e. relaxation of the need to collect separate training data), and more robust 

handling of interferents. However, due to this increased freedom in model definition, considerably more 

caution must be employed, and the methods explored here for its deployment (OPA, EFA, and P-ALS) 

require more user input than the currently established PCA-ILS protocols. Regardless, in the conditions 

studied here, the two techniques generated highly similar spectral and concentration estimates under the 

conditions studied here, and MCR-ALS demonstrates considerable potential as a complementary or 

alternative analysis method to PCA-ILS. Indeed, with the P-ALS approach, incomplete or imperfect sets 

of reference data, which may generate poor PCA-ILS models, may be used to help define MCR-ALS 
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models that can more accurately fit the data, and, in the cases where robust reference data is available, 

the technique can generate identical estimates to that obtained through PCA-ILS. However, future 

characterization and development of the technique for FSCV, particularly in exploration of constraints that 

can provide robust models, will greatly help in understanding its potential and, importantly, its limitations. 
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CHAPTER 4: REMOVAL OF DIFFERENTIAL CAPACITIVE INTERFERENCES IN FAST-SCAN 

CYCLIC VOLTAMMETRY2 
 

INTRODUCTION  

 Electrochemistry provides a method for the real-time in vivo detection of redox-active 

neurotransmitters. Refinement of voltammetry for this purpose has enabled evaluation of their localized 

concentration dynamics in awake and behaving animals.(Bucher & Wightman, 2015; Dankoski et al., 

2014; Fox et al., 2016; Owesson-White et al., 2016; Phillips et al., 2003)  Cyclic voltammograms allow 

assignment of the signals to specific neurotransmitters, and thus permit selective tracking in the complex 

extracellular environment. However, compared to amperometric techniques, the use of voltammetry 

comes at the cost of sensitivity and time resolution.(Kawagoe & Wightman, 1994) To compensate, high 

scan rates are used (i.e. fast-scan cyclic voltammetry, or FSCV), which, while making in vivo detection 

practical, amplify other sources of current (e.g. the capacitive charging current and surface faradaic 

reactions).(Baur et al., 1988) These interferences dwarf the analytical signal and are one of the primary 

sources of noise.  

     For these reasons, FSCV data analysis typically employs digital subtraction of the background, 

using the current measured before the neurobiological phenomena of interest.(Howell et al., 1986) This 

method is effective for signal isolation given background stability. However, if neurotransmitter release is 

accompanied by factors that affect the background, the subtracted data contain artifacts. At the scan 

rates typically used (e.g. hundreds of volts per second), a significant double-layer charging current 

exists.(Bard & Faulkner, 2001) The magnitude and shape of this charging current, and the presence of  

any background faradaic current, strongly depends on the electrode material and its environment. Carbon 

fibers are the most common electrode material used for in vivo voltammetry.(Zachek et al., 2008) These  

                                                      
2 This chapter previously appeared as an article in Analytical Chemistry. The original citation is as follows: 
Johnson, J.A.; Hobbs, C.N..; Wightman, R.M. “Removal of Differential Capacitive Interferences in Fast-
Scan Cyclic Voltammetry,” Anal Chem. Just Accepted. 
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fibers are known to have a diverse array of surface functional groups, particularly oxygen-containing 

ones.(McCreery, 2008) These moieties are critical in determining the electrode responses seen in FSCV 

(i.e. capacitive behavior, electrocatalytic properties, and adsorption).(Bath et al., 2000; Heien et al., 2003; 

Takmakov et al., 2010b) Further, a subset is known to be electroactive, generating peaks in the 

background voltammograms.(Jones et al., 1994; Kawagoe et al., 1993; Runnels et al., 1999; Takmakov 

et al., 2010a) Interactions with the carbon surface, through either adsorption or involvement in surface 

reactions, may alter these responses and contribute to the background-subtracted voltammograms. 

Indeed, non-faradaic and faradaic currents have been seen in background-subtracted voltammograms 

taken during pH changes, as H+ plays a critical role in the redox reaction of surface-bound, quinone-like 

species and appears to alter the double layer.(Dengler et al., 2015; Kawagoe, et al., 1993; Runnels, et al., 

1999; Takmakov, et al., 2010a) Additionally, an array of non-electroactive species, including metal cations 

(e.g. Ca2+) and organic molecules, have been shown to adsorb to carbon microelectrodes, generating 

signals attributable to double-layer alteration.(Bath, et al., 2000; Takmakov, et al., 2010a; Yoshimi & 

Weitemier, 2014) These latter signals are largely non-specific, limiting their analytical utility. 

     A number of methods have been explored to deal with these background currents with fast-scan 

voltammetric data analysis. Early attempts by Millar and colleagues relied on the use of alternative 

waveforms (multiple triangular cycles or sine waves) aimed at exploiting the differential response of 

faradaic and non-faradaic current to repeated sweep applications or voltage shifts.(Millar et al., 1992; 

Millar & Williams, 1990; Stamford et al., 1984) Later, Fourier domain analysis was attempted, relying on 

the unique spectral signatures of the non-faradaic current for its identification and removal.(Cullison & 

Kuhr, 1996; Long & Weber, 1992) Such approaches, while useful, typically required changes in the 

measurement protocol, complicating analysis of the voltammetric signal of interest. For direct analysis of 

multi-component FSCV data principal component regression has also been employed with incorporation 

of pH and background changes into the model to study dopamine concentration changes over extended 

time windows.(Keithley et al., 2009; Keithley & Wightman, 2011; Rodeberg et al., 2015) However, this 

approach requires consistency of signal shape over time and is poorly characterized for ionic 

interferences. More recently, Atcherley et al. have shown successful measurement of basal levels of 

dopamine using fast-scan controlled adsorption voltammetry, which relies on the use of previously 
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measured CVs in conjunction with convolution for minimization of the non-faradaic current.(Atcherley et 

al., 2013) Additionally, Yoshimi and Weitemier have also reported on the use of chronoamperometry to 

separate temporally the non-faradaic currents due to pH changes from the faradaic currents of dopamine 

oxidation.(Yoshimi & Weitemier, 2014)  

     Here, we build on this prior work to explore the origin of the background current seen at carbon-

fiber microelectrodes and develop a novel method for its mitigation. First, the specific FSCV signals seen 

during local ion concentration changes (e.g. those of the major cations found in extracellular solutions and 

FSCV calibration buffers – K+, Na+, Ca2+, and Mg2+) are revisited. This information is used to build a 

model of the double layer that can qualitatively account for the observed CV shapes. Further, we 

introduce a procedure for the prediction and removal of the non-faradaic component of the background 

signal that does not require considerable changes to the measurement protocol. The method utilizes a 

similar approach as the one suggested by Yoshimi and Weitemier in which a small amplitude step is 

paired with each FSCV sweep. Here, this step is used to estimate the impulse response of the 

electrochemical cell prior to each measurement through differentiation of the step response. The impulse 

response estimate is then convoluted with the triangular sweep to generate a prediction of the non-

faradaic charging current expected for the sweep application. Subtraction of the predicted charging 

current allows for removal of this component, diminishing artifacts that arise from changes in these 

contributions. This approach permits removal of some spurious signals, as will be shown for both in vitro 

and in vivo FSCV recordings. 

 

EXPERIMENTAL SECTION 

 

Instrumentation and Software. T-650 type, cylindrical carbon-fiber microelectrodes (Thornel, Amoco 

Corporation, Greenville, SC; pulled in glass capillaries and cut to 75-125 m exposed lengths) were used 

in experimentation. After pulling, the seals of electrodes were dipped in epoxy (EPON Resin 828, Miller-

Stephenson, Danbury, Connecticut) mixed with 14% w/w m-phenylenediamine (Sigma-Aldrich, St. Louis, 

MO) at 80C, briefly washed with acetone, and heated at 100C (5 hours) then 150C (at least 12 hours).  
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     Data was acquired with a commercial interface (PCI-6052, 16 bit, National instruments, Austin 

TX) with a personal home computer and analyzed using locally constructed hardware and software 

written in LabVIEW (TarHeel CV – an earlier version used for simplicity of programmatic modification – 

and the more user-friendly HDCV, National Instruments, Austin, TX).(Bucher et al., 2013) Unless 

otherwise noted, triangular excursions of the potential were made at a scan rate of 400 V/s and repeated 

at a frequency of 10 Hz. Measurements were conducted inside a grounded Faraday cage to minimize 

electrical noise.  

 

Electrochemical Experiments.  Flow-injection analysis experiments were performed using a syringe 

pump (Harvard Apparatus, Holliston, MA) operated at 0.8 mL/min using PEEK tubing (Sigma-Aldrich) 

connected to a pneumatically controlled six-port injection valve (Rheodyne, Rohnert Park, CA). All 

solutions were prepared in either PBS (137 mM NaCl, 10 mM NaH2PO4, 2.7 mM KCl, and 2 mM 

K2H2PO4) or TRIS buffer (2.0 mM Na2SO4, 1.25 mM NaH2PO4H2O, 140 mM NaCl, 3.25 KCl, 1.2 mM 

CaCl22H2O, 1.2 mM MgCl26H2O, and 15 mM Trizma HCl), adjusted to pH 7.4 with NaOH as necessary. 

Dopamine solutions were bubbled under nitrogen to prevent oxidative degradation prior to use. 

Electrochemical conditioning of the carbon fiber was achieved through repeated voltammetric sweeps to 

+1.3 V vs. Ag/AgCl to increase the surface concentration of bound oxides.(Heien, et al., 2003) 

       For convolution-based prediction, a waveform was created with a small amplitude pulse placed 

prior (i.e. 1-3 ms) to the triangular sweep. After measurements were complete, the data was analyzed in 

locally written software in LabView. The discrete derivative of the current response to the potential pulse 

was used to generate an estimate of the system impulse response, which was convoluted with the 

waveform to yield the background current prediction that was digitally subtracted from a given 

recording.(Bracewell, 2000) For color plots generation, digital background subtraction was performed 

using these prediction-subtracted backgrounds. To estimate electrode capacitances at specific potentials, 

small amplitude triangular waves were used.  The capacitance was determined as  

𝐶 =
𝑖𝑎𝑣

𝑣
=  

(𝑖𝑎+𝑖𝑐)/2

𝑣
  (Eq. 4.1) 
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where C is the capacitance, iav is the average current amplitude at the potential, v is the scan rate, and ia 

and ic are the current amplitude on the positive and negative sweeps, respectively. 

 

In Vivo Measurements. Male Sprague-Dawley rats from Charles River (Wilmington, MA, USA) were pair-

housed on a 12/12 h light/dark cycle. Animal procedures were approved by the UNC-Chapel Hill 

Institutional Animal Care and Use Committee (IACUC). For anesthetized experiments, rats (300-550 g) 

were injected with urethane (1.5 g/kg, i.p.) and placed in a stereotaxic frame. Holes were drilled in the 

skull for the working and reference, with an additional three holes for the delivery of pin pricks to induce 

spreading depression, using coordinates (relative to bregma) from the brain atlas of Paxinos and 

Watson.(Paxinos & Watson, 1998) The carbon-fiber microelectrode was placed in the nucleus 

accumbens at coordinates relative to bregma: anterior/posterior (AP) +2.2 mm, medial/lateral (ML) +1.7 

mm, and dorsal/ventral (DV) -7.0 mm. The additional holes were located at: -0.8 AP, +0.8 ML; -0.8 AP, 

+3.2 ML; and -2.8 AP, +1.7 ML. A Ag/AgCl reference electrode was inserted in the contralateral 

hemisphere. For the recording presented, a pinprick was delivered using 27-G hypodermic needles at a 

depth of -7.5 DV approximately 2-3 mm from the recording site. 

 

RESULTS AND DISCUSSION 

Background Current and Ionic Interferences at Carbon-Fiber Microelectrodes 

Metal Cation Sensitivity and Voltammetric Signals in PBS Buffer. As shown in Figure 4.1A, the 

background voltammetric signal seen at carbon fiber microelectrodes in PBS (-0.8 to +0.8 V vs Ag/AgCl) 

deviates from that expected for application of a triangular voltage ramp to an ideal RC circuit.(Bard & 

Faulkner, 2001) Peaks are seen around 0.0 and -0.3 V vs. Ag/AgCl on the positive and negative sweeps, 

respectively, which have been attributed to the two-electron, two-proton reaction of quinone-like moieties 

on the surface and match the location of peaks seen during an acidic pH change (Figure 4.1B).(Kawagoe, 

et al., 1993) Additionally, there is a sharp asymmetry in the impedance properties of the electrode 

between more positive (> 0.0 V) and negative potentials (< 0.0 V). With electrochemical conditioning, this 

asymmetry grows, with relatively large changes seen at only at negative potentials.  
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Figure 4.1. FSCV signals in the absence of analytes and during ionic concentration changes in 
phosphate-buffered saline. (A) Total background currents for as-prepared carbon fiber microelectrodes 
(black) and after electrochemical conditioning for 3 and 6 minutes (green and orange, respectively). 
Arrows indicate the location of the peaks referenced in the text. (B) Background-subtracted CV (-0.4-1.0 
V vs Ag/AgCl, 400 V/s, 10 Hz) for acidic pH shift (-0.15 pH units from pH 7.4) (C) Adsorption curves (2.5-
100 mM, top) at each conditioning time point and representative background-subtracted CV (100 mM, 
bottom) for potassium injections. (D) Adsorption curves (0.025-1.0 mM, top) at each oxidation time point 
and representative background-subtracted CV (1.0 mM, bottom) for magnesium injections. 
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Figure 4.2. Background-subtracted FSCV signals for Na+ and Ca2+ concentration changes in phosphate-
buffered saline.  Adsorption curves (2.5-100 mM, top) for differing lengths of electrochemical conditioning 
(as prepared, black; 3-minute conditioning, green; 6-minute conditioning, orange) and representative 
background-subtracted CV (100 mM, bottom) for sodium injections (A) and calcium (B) injections.  
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 Of interest, these changes with conditioning correspond with sensitivity changes to 

electrochemically inert ionic species, whose signals should originate solely from background 

considerations. After each conditioning interval (0, 3, and 6 minutes), background-subtracted cyclic 

voltammograms for concentration changes of KCl, NaCl, MgCl2, and CaCl2 were obtained (-0.4 to 1.0 V). 

In these data, a noticeable difference is seen between the responses seen with changes in pH (Figure 

4.1B), other monovalent cations (Figure 4.1C and 4.2A, bottom), and divalent cations (Figure 4.1D and 

4.2B, bottom). The origins of the peaks seen in the pH voltammogram have been extensively studied and 

are hypothesized to be primarily due to the direct participation of the hydrogen ion in the two-electron 

redox reaction of a quinone-like surface-confined moiety.(Dengler, et al., 2015; Karweik et al., 1985; 

Runnels, et al., 1999; Takmakov, et al., 2010a) The hydrogen ion’s role in the surface faradaic reaction 

makes FSCV at carbon particularly sensitive to changes in its concentration (e.g. yielding a 4.6 C cm-2 

signal for a -0.15 pH shift, or [H+] = 16 nM, in Figure 4.1B). Other monovalent cations (i.e. K+ and Na+) 

gave background-subtracted signals similar to classical double-layer charging voltammograms at 

considerably higher concentrations (> 1 mM). Of note, an overall slope is seen in the background-

subtracted voltammograms, suggesting a resistance change linked to the large ionic strength changes at 

the concentrations studied. Finally, divalent cations give oxidation-responsive voltammetric signals that 

are prevalent at negative potentials and evoked at considerably lower concentrations (M vs mM). These 

signals, which give negative peaks in the background-subtracted voltammograms, indicate a decrease in 

capacitance, which has previously been attributed to displacement of charge in the double layer by the 

divalent cation.(Takmakov, et al., 2010a) Integration of the absolute current values across the entire 

voltammograms yield adsorption curves that are linear for non-hydrogen monovalent cations and curved 

for the divalent cations.  

   This behavior corresponds to the well-documented ion exchange capabilities of these ions. At 

cation exchange resins, monovalent cations are known to have weaker interactions than divalent cations 

(with 1-2 fold lower selectivity coefficients), leading to the former’s displacement by the latter.(Fritz & 

Gjerde, 2000; Haddad & Jackson, 1990; Walton, 1992) Here, injections of the divalent cations likely lead  

to ion exchange with the ambient monovalent cations at a surface functionality. Monovalent ion 

concentration changes, on the other hand, lead to minimal displacement of the ambient ions and require 
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much higher concentrations to produce effects. This ion exchange functionality appears to be redox-

active, giving the potential-dependence in the divalent voltammograms. Given the coincidence of 

potentials of the decay in the divalent voltammograms and the quinone-like faradaic peak, , the working 

hypothesis is that the surface-bound, quinone-like species (or one with overlapping electrochemical 

behavior) has considerably different binding affinities for cations in the oxidized and reduced state. 

Indeed, quinone-containing species have been shown to have such redox-dependent metal cation 

affinities.(Y. J. Kim et al., 2014; Lee et al., 2006) 

     To develop this further, a model was developed to simulate the expected current to a 

voltammetric sweep, given a surface-bound species that undergoes a reversible redox reaction and holds 

more charge to the surface, and thus exhibits a higher capacitance, in its reduced state (Appendix 4.1). In 

this framework, the double layer (in the absence of electroactive compounds in solution) is treated as a 

network consisting of a voltage-dependent impedance element (ZQH, representing the quinone-like redox 

reaction and having a Nerstian relation to potential) and two capacitors (all in series to Rs, the solution 

resistance). The first capacitor (CQH
*) represents the double-layer capacitance at the quinone-like surface 

sites. . This area-normalized redox-coupled capacitance is assumed to be a linear function of the 

concentration of the reduced surface species (CQH(ΓQH(E))). The second capacitor (CI) is the remaining 

double-layer capacitance (representing the rest of the surface), which is treated as voltage-independent.  

Of note, such a model can qualitatively account for the shape of the background-subtracted 

voltammograms seen with local concentration changes in cations, as well as the background 

voltammograms seen at carbon fibers .  

 

Metal Cation Sensitivity and Voltammetric Signals in TRIS Buffer. To explore this further in a medium 

more closely resembling the in vivo environment, the responses to these ionic species were also 

investigated in TRIS buffer, which contains ambient levels of all cations studied (145 mM Na+, 3.25 mM 

K+, 1.2 mM Ca2+, and 1.2 mM Mg2+). Additionally, some of the electrochemically inert 

tris(hydroxymethyl)aminomethane (TRIS) is positively charged at the pH studied here (7.4) and has 

previously been shown to interfere with pH detection, suggesting some interaction with the quinone-like 

moiety. There is then expected to be considerable occupation of the binding sites prior to changes in local 
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Figure 4.3. FSCV signals seen during ionic concentration changes in TRIS buffer. (A) Background CVs 
(left, -0.4-1.0 V vs Ag/AgCl, 400 V/s, 10 Hz) in PBS (dashed black) and after injection of TRIS buffer 
(green), as well as the background-subtracted CV (right, TRIS-PBS). (B-E) Representative background-
subtracted CVs (left) and adsorption curves (right, obtained from integration of full CV; black – PBS, 
green - TRIS) for Ca2+ (B), Mg2+ (C), Na+ (D), and K+ (E).  The PBS data is that from Figures 1 and S-1 for 
the 6-minute conditioning time points. 
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concentration of ionic species. Supporting this hypothesis, injections of TRIS buffer for an electrode in 

PBS (both at pH 7.4) show significant changes mainly in the negative region and give a divalent cation-

like background-subtracted voltammogram (Figure 4.3A). 

   Representative background-subtracted voltammograms and full voltammogram adsorption curves 

are shown in Figure 4.3B-E. As compared to those in PBS, the divalent cation responses are 

considerably attenuated, as expected, given the ambient competition for the binding sites. In comparison, 

the monovalent cations give intermediate-type signals, with behavior consistent to that seen in PBS but 

with increased complexity around the quinone-governed region, which is more pronounced for K+ than for 

Na+. However, this may be due ambient additional species available for ion exchange. 

 

Convolution-Based Prediction of Non-Faradaic Current 

   As discussed previously, there has been considerable work done towards the minimization of 

these background currents and interferences. Here, we build on these approaches to develop a novel 

method for removal of non-faradaic current from FSCV recordings while retaining much of the general 

measurement protocol. Previously, chronoamperometry was shown to allow separation of the non-

faradaic current due to pH changes from the faradaic current of dopamine oxidation, and it was 

suggested that the alternation between chronoamperometry and FSCV during recording sessions would 

prove advantageous.(Yoshimi & Weitemier, 2014) We explored the hypothesis that the step response 

measured in chronoamperometry, which probes the impedance characteristics of the electrochemical cell, 

could be used to predict directly the non-faradaic current seen for the triangular sweep application. To do 

this, the cell was considered to be a linear system, and we predicted its response for a given excitation 

waveform with its impulse response (i.e. the system response to a unit impulse).(Atcherley, et al., 2013; 

Bracewell, 2000; Manolakis & Ingle, 2011) The output (y) for an arbitrary input signal (x) is given through 

convolution with the impulse response (h): 

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡)  (Eq. 4.2) 

The current during voltage steps can be used to arrive at suitable estimates of the impulse response, as  
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Figure 4.4. Convolution-based approach for removal of ionic artifacts. (A) Waveform used for 
measurements with a small-amplitude pre-pulse placed in front of every FSCV sweep. (B) Typical step 
response measured at carbon-fiber microelectrode. (C) Typical impulse response estimate obtained from 
the discrete differentiation of the step response in (B). (D) Figure showing a measured background 
current (green) and the corresponding prediction (orange) generated using convolution of the impulse 
estimate in (C) with the FSCV waveform. (E) Residual current after subtraction of the prediction for the 
data shown in (D).  
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the derivative of the current response to the step provides an estimate of the impulse function.(Chang & 

Park, 2010; Kawagoe & Wightman, 1994) 

     This approach requires the use of a pulse immediately before every FSCV sweep to account for 

changes that may occur between sweeps (Figure 4.4A). The current response (Figure 4.4B) to the step 

provides information on the impedance before each measurement. Due to the small amplitude of the 

potential step, the current response should be largely determined by the non-faradaic characteristics of 

the electrochemical cell assuming appropriate choice of voltage range.(Bard & Faulkner, 2001) This 

information is then used offline to predict the current response to the triangular FSCV sweep. Discrete 

differentiation of each step response is used to estimate the cell’s impulse response (Figure 4.4C), and 

this is convoluted with the FSCV waveform to generate the prediction of the non-faradaic response 

(Figure 4.4D). In practice, even in the absence of electroactive species, residual current remains (Figure 

4.4E, approximately 20% of the total background current). Evidence of a faradaic surface species is seen 

(matching background peaks previously assigned to the redox reaction of quinone-like moieties), as well 

as some unexplained current at positive potentials. However, these prediction-subtracted total 

voltammograms can be used with digital background subtraction to generate background-subtracted 

voltammograms with attenuated non-faradaic interferences. 

 

Convolution-Based Removal of Ionic Signals 

In Vitro Separation of Ionic and Dopamine Voltammetric Signals. The convolution procedure is 

appropriate for linear systems and assumes the impedance is independent of potentials. Thus, this 

technique should work well for removal of currents where the main interaction is with the voltage-

independent capacitance, like for those of the monovalent cations described above. To test this 

hypothesis, the flow-injection analysis of dopamine, sodium, and their mixture in TRIS buffer was 

performed using a waveform with a voltage step from -0.5 to -0.4 V vs Ag/AgCl (Figure 4.5A-C). The 

method, while  not drastically altering the shape of the pure dopamine voltammogram (Figure 4.5A), can 

successfully remove contributions to the current at the dopamine oxidation potential from an injection of 

TRIS buffer spiked with 100 mM sodium (Figure 4.5B). This allows removal of the bulk of the sodium 

signal in the analysis of the dopamine-sodium mixture, permitting the use of the dopamine oxidation  



97 
 

 

 

Figure 4.5. Removal of artifacts arising from Na+ concentration changes in TRIS buffer. Data before (left) 

and after (right) the convolution-based treatment for an injection of a DA (A, [Na] = 1 M) and  NaCl-

spiked solution (B, [Na] = 100 mM) and their mixture (C), showing background-subtracted color plots 
(bottom) and the current-time traces at the dopamine oxidation potential (top) with cyclic voltammograms 
taken during and after the injection positioned above.  
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potential as a direct marker of dopamine concentration in a mixture of dopamine and sodium (Figure 

4.5C). Note that, due to their non-linear responses, neither the quinone-like peaks nor the divalent cation 

signals, can be removed in this way. Further, the potentials where the quinone-like moiety redox reaction 

occurs should not be used for this method, as use of this information would lead to inaccurate predictions. 

 

In Vivo Analysis of Dopamine during Spreading Depression. Spreading depression is a neurobiological 

phenomenon in which there is a mass depolarization of neurons, leading to a considerable shift in the 

ionic balance between the intracellular and extracellular spaces.(Kraig & Nicholson, 1978; Nicholson et 

al., 1978; Rogers et al., 2013) Millimolar changes in the concentrations of common extracellular ions (e.g. 

100 mM K+, 33 mM Na+, and 1.5 mM Ca2+), along with the concomitant release of neurotransmitters 

(e.g. dopamine), are expected. However, attempts to track the dopamine release using FSCV are 

confounded by the ionic shifts, which produce large capacitive artifacts in the obtained CVs (Figure 4.6A, 

-0.4 to 1.3 V), which resemble those seen for changes in the voltage-independent capacitance and local 

resistance. 

     Using the convolution-based procedure, the capacitive artifacts are removed to obtain a cleaner 

picture of the dopamine changes over time (Figure 4.6B). Examination of the CVs before and after 

correction (bottom) reveals the method successfully removes strong artifacts around the switching 

potential, as well as removing considerable current across the potential window. Note also that there 

remains a slight artifact on the negative sweep; this is attributed to differences in the impedance 

characteristics across the potential window. However, the artifact is considerably smaller than prior to 

correction. Thus, analysis of the time course of dopamine release has been considerably simplified with 

such an approach. 

 

In Vitro Flow-Injection Analysis of Dopamine. As noted earlier, adsorption of organic species can also 

lead to capacitive artifacts. Of interest, these are seen during flow-injection experiments of dopamine, 

particularly at high concentration, including in recordings of dopamine during the earlier oxidation 

experiment (Figure 4.7). Dopamine adsorption to carbon surfaces is well characterized and has been  
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Figure 4.6. In vivo analysis of supraphysiological release of neurotransmitters during a spreading 
depression event using the convolution-based method. (A) Uncorrected background-subtracted color plot 
(top) and cyclic voltammogram (bottom) at 7 s into the recording. (B) Same color plot (top) and cyclic 
voltammogram (after) use of the convolution-based method for removal of capacitive artifacts. Note that 
the step portion of the waveform is not shown in the color plots. A single pinprick (-7.5 DV, 2-3 mm away 
from the recording site) was delivered prior to this recording. 
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Figure 4.7. Background-subtracted FSCV signals for dopamine concentration changes in PBS and TRIS 
buffer.  Representative background-subtracted CVs (A, 500 nM, forward sweep only) and adsorption 
curves (B) for dopamine injections for as-prepared (solid black) and after 3 and 6 minutes of 
electrochemical conditioning (green and orange, respectively) in PBS and subsequent change to TRIS 
buffer (dashed black). 
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Figure 4.8. Convolution-based correction of flow-cell analysis of dopamine in PBS buffer. Dopamine (250 
nM) was injected every 30 seconds (red bars). (A) Uncorrected and (B) corrected background-subtracted 
color plots. (C) The current at the dopamine oxidation potential (white dashed lines) and capacitive 
interferent potential (blue dashed lines).  
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shown to underlie the sensitivity of FSCV at carbon-fiber microelectrodes towards catecholamines..(Bath, 

et al., 2000; Heien, et al., 2003) Of note, these artifacts are more prevalent in the negative region of the 

potential window, suggesting these originate from  interactions similar to the divalent cations shown 

earlier. Interestingly, it has been previously reported that the presence of calcium and magnesium 

decrease the sensitivity of FSCV towards dopamine.(Kume-Kick & Rice, 1998) Here, in their presence 

(i.e. in TRIS buffer), the absorption capacity and the intensity of the artifact are indeed decreased, 

suggesting that adsorption competition for the quinone-like moiety may underlie these effects. 

   The convolution-based technique was applied to mitigate the effects of these artifacts for an 

extended recording of multiple, closely spaced injections of dopamine boluses at a carbon-fiber electrode 

(Figure 4.8A) in PBS buffer. With a single background subtraction for this time window, distortions appear 

over time, both during the dopamine injections and during later measurement times.  However, without 

correction for these contributions, the use of the dopamine peak oxidation potential as an indicator of 

concentration would suggest that the electrode sensitivity is decreasing over time (Figure 4.8C, top), 

while there is a change in the baseline dopamine current over time. 

   These capacitive artifacts, particularly those on the positive sweep, are removed from the data 

using the convolution-based procedure (Figure 4.8B). In the corrected data, the peak current during 

dopamine injections does not show evidence of baseline drift, and the peak current shows no significant 

differences between subsequent injections (Figure 4.8C, top). This is supported by analysis of the current 

at -0.3 V vs. Ag/AgCl on the positive sweep (Figure 4.8C, bottom), where the current is largely determined 

by capacitive effects.  

   Overall, these results suggest that the increases in dopamine concentration were leading to 

capacitive changes at the electrode, which is expected at the large (by physiological standards) 

concentrations used in the experiment (250 nM).  Additionally, due to the slow desorption kinetics of 

dopamine and the short injection spacing, there was insufficient time for complete desorption of dopamine 

between injections.(Bath, et al., 2000; Venton et al., 2002) This would lead to a build-up of surface 

concentration and a steady drift in the capacitive characteristics throughout the recording window, an 

insight that would be difficult to reveal without the convolution-based approach. 
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Figure 4.9. Results of one-phase exponential decay fit to current response to 40 mV voltage step at 
carbon-fiber microelectrode. (A) Measured response (empty circles) and exponential fit (line, RC = 39.2 

s) with residual plot (below). 
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Figure 4.10. Voltage-dependent psuedocapacitance determined from small amplitude CVs. (A) Example 
of small amplitude (200 mV, 200 V/s) anodic CV used to determine pseudocapacitance, done by 
averaging the absolute values of the two current measurements at a center potential (shown by dashed 
line) and dividing by scan rate.  (B) Pseudocapacitance measurements for as-prepared carbon fiber 
microelectrodes (black) and after electrochemical conditioning for 3 and 6 minutes (green and orange, 
respectively). 
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Optimization and Validation of Convolution-Based Approach 

Optimization of Measurement Parameters. The idealized response to the application of a voltage step is a 

single-order exponential curve.(Bard & Faulkner, 2001) At carbon-fiber microelectrodes, an exponential-

like decay is observed. However, it appears to be multi-order (Figure 4.9), with an extracted single-order 

time constant about an order of magnitude larger than that expected for a cylindrical carbon electrode in 

aqueous solutions (RC = 39.2 vs. 4.5 s,).(Michael & Wightman, 1996; Wightman & Wipf, 1989) While not 

characterized further, this may be due to non-ideal impedance behavior (including the effects of the 

microstructure and internal resistance of the carbon fiber)(C.-H. Kim et al., 2003; Lambie et al., 2007) or 

stray impedance contributions from the instrumentation. Of note, cyclic voltammetric pseudocapacitance 

measurements (Figure 4.10) reveal a distribution of apparent capacitances in the range of 20-40 F cm-2, 

close to that reported for edge-plane carbon (although these measurements have clear Faradic 

contributions, likely from the quinone-like moiety), suggesting that this is not the source of the non-

ideality.(McCreery, 2008) However, despite the departure from idealized responses, the convolution-

based approach is nevertheless effective. 

     Of interest here, however, is the effect of the measurement parameters (i.e. step height and step 

width). The convolution theorem states that the time domain convolution is equivalent to pointwise 

multiplication in the frequency domain.(Manolakis & Ingle, 2011) Therefore, insight can be gained through 

analysis of the collected data in both the time and Fourier domains (Figure 4.11). 

     Concerning step height, smaller perturbations are preferred, as they probe the impedance 

characteristics of the electrochemical cell with minimal pertubation. However, the effect of noise needs to 

be considered, as the discrete derivative is a high-pass filter. This becomes important when considering 

that FSCV waveforms are typically low-pass filtered (most often with a cut-off frequency of 2 kHz). Such 

filtering distorts rapid potential changes, and higher cut-off frequencies are required (increasing noise in 

the data).(Keithley et al., 2011) As such, a trade-off exists – larger pulses improve signal-to-noise while 

perturbing the system more and requiring stronger consideration of the instrumentation used. Here, we 

consider the practical implications for the instrumentation (described in Reference 47) common for in vivo 

FSCV. Figure S-7 shows the current responses in PBS for applications of voltage steps between 20 and 

200 mV, as well as the resulting impulse response estimations in the time and frequency domains. While  
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Figure 4.11. Power spectra for a triangular voltage wave and a typical impulse response estimation over 
the entire frequency range (A, zero to half the sampling frequency, f s – here, 300 kHz) and in the lower 
frequency range (B, zero to fx/32 – here, 9.375 kHz) 
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Figure 4.12. Effect of step size on prediction for different voltage step amplitudes (20-200 mV) using a 
low-pass voltage filter (cut-off frequency of 25 kHz) and sampling frequency of 300 kHz. (A) Current 
response obtained to voltage step, normalized to step height in inset. (B) Impulse response estimations 
from (A), normalized to step height in inset. (C) Fourier transforms of impulse response estimations from 
(B). (D) Predictions generated from convolution of impulse response estimations with 400 V/s triangular 
voltage sweep, with actual response shown as dotted line. (E) Prediction-subtracted voltammograms 
(actual less prediction) from (D). (F) Average prediction (solid) ± one standard deviation (dotted) 
estimated from a five-second recording for 20 mV (blue) and 200 mV (black) voltage pulses. 
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lower S/N ratios are seen for smaller step sizes, increasing step height brings a flattening of the current 

response and distortion of the impulse response estimates (likely due to the passive components used for 

current transduction in the headstage).(Takmakov et al., 2011) When used for prediction, larger pulses 

can result in distortion around the switching potentials of the waveform, where the high frequency 

impedance dominates. However, smaller pulses are inadequate for measuring the low-frequency 

impedance, resulting in errors that increase with potential away from the step voltage region. Analysis of 

the average predictions, and their variance, given by 20 and 200 mV pulses for five-second recordings 

(Figure 4.12) reveal nearly identical average predictions but considerably higher uncertainty for more 

removed potentials with smaller pulses. Use of moderate step sizes (80-120 mV), where both these 

issues are minimized is thus recommended. 

     The pulse width is determined by the frequency range about which information is needed.(Chang 

& Park, 2010; Jurczakowski & Lasia, 2004)   Ideally, a Heaviside step function would be used to give 

information on all frequencies; however, the step must be limited. For application of a step, an ideal RC 

circuit would decay to 99.3% over a period equal to five times the RC time constant (for reference, 5*RC 

= 196 and 22.5 s for the experimental value from Figure S-4 and the theoretical value, respectively). 

Thus, to be conservative, the lower bound was placed at 25 time constants (here, 1 ms).  

 

Comparison with Principal Component Regression. The current standard for resolving overlapping signals 

in FSCV is the use of multivariate analysis, specifically principal component regression (PCR).(Johnson et 

al., 2016; Keithley, et al., 2009; Rodeberg, et al., 2015) Combined with residual analysis, PCR has proven 

a powerful tool for dealing with chemical interferents. To compare the results of the convolution-based 

method here with the established PCR paradigm, separate data was recorded for the flow-injection 

analysis of a mixture of dopamine (200 nM) and potassium chloride (120 mM) solutions in phosphate-

buffered saline. For this experiment, training sets were also built from injections of solutions of pure 

dopamine and pure potassium chloride at different concentrations. The data was then analyzed in three 

different ways. First, PCR models, constructed using either only dopamine standards (Approach 1) or 

dopamine and potassium chloride standards (Approach 2), were applied to the data. Next, the 

convolution-based method was first used to pre-treat the data, after which it was analyzed using a PCR  
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Figure 4.13. Comparison of convolution-based and PCR –only removal of ionic artifacts. The PCR 
predicted concentration traces for flow injection analysis of a mixture 500 nM dopamine and 120 mM 
potassium chloride (in PBS buffer) for the uncorrected data analyzed with a PCR model trained with only 
dopamine standards (dotted line) and dopamane/potassium chloride standards (green line), as well as 
the corrected data analyzed using PCR model containing only dopamine (orange line). 
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model consisting solely of the dopamine standards (Approach 3). 

     The current vs. time traces for the three different approaches are shown in Figure 4.13. As 

expected, analysis of the untreated data with a dopamine-only model (Approach 1) resulted in a 

considerable overestimate (about four-fold) of the dopamine concentration over time (dotted line), due to 

improper assignment of potassium signal to dopamine (as indicated by the failure of residual analysis, not 

shown). However, comparable results are obtained with the PCR-only (Approach 2, green) and 

convolution/PCR approach (Approach 3, orange), with only slight differences in the peak concentrations 

predicted and more noise seen for the latter approach.  

     While giving similar results, the true advantage of the convolution-based approach lies in the 

experimental simplicity. As noted, to build the PCR model with both analytes, multiple standards were 

needed for each, requiring additional experimental work. The use of the convolution-based approach 

required only collection of the dopamine standards and the use of the pulse during measurements. 

Further, in vivo PCR model building is considerably harder, requiring a method for eliciting the interferent 

responses. Currently, there are no established protocols for generating ionic changes for this purpose. 

 

CONCLUSIONS 

    The data presented here suggest two main types of ionic interactions with carbon fibers exposed 

to moderate oxidation, which determine the shape of the voltammetric responses seen with local ion 

concentration changes. Using this framework, we designed a measurement protocol to remove 

interference with voltammetric detection of electroactive species from the voltage-independent 

capacitance, building on previous literature approaches. This method uses a small-amplitude pulse 

coupled to a voltage sweep for probing and predicting the non-faradaic behavior of the electrode. It was 

successfully able to remove interfering signals arising from interaction with the voltage-independent 

capacitance. 
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CHAPTER 5: MEASUREMENT OF PHASIC AND BASAL DOPAMINE CHANGES USING 

CONVOLUTION-BASED REMOVAL OF BACKGROUND CURRENT 
 

INTRODUCTION  

 Fast-scan cyclic voltammetry (FSCV) is a powerful tool for the rapid in vivo measurements of 

electroactive neurotransmitters. The rapid scan rates enable high sensitivity measurements with 

subsecond time resolution, while providing a selectivity for relatively low concentration neurotransmitters 

like dopamine as compared to ambient species like ascorbic acid and 3,4-dihydroxyphenylacetic acid 

(DOPAC).(Baur et al., 1988) However, a significant drawback of this approach is the large charging 

current generated at the electrode from rapid potential changes. This current serves as the main 

interferent in FSCV measurements and mandates use of digital background subtraction to remove the 

background and resolve the analytical faradaic current.(Howell et al., 1986) This limits the utility of FSCV 

to the measurement of relative changes in neurotransmitters on the time scale over which the background 

remains relatively stable.  This issue has not prevented significant advances being made with the 

technique; however, this does limit the insight that can be gained into chemical neurotransmission to the 

phasic release of neurotransmitters. Information about absolute ambient levels of neurotransmitters, 

which may change with time and underlie important neurobiological phenomena, is lost in the 

background-subtraction step. Further, attempts to measure changes in the ambient levels are hindered by 

the fact that the background currents at the carbon-fiber microelectrodes typically used in measurement 

do not remain stable over periods longer than a few minutes.  

 Thus, to access this information with electrochemical measurement techniques, changes to the 

widely used in FSCV in vivo measurement protocols must be explored. Indeed, recent reports have 

focused on exploration of alternative means of providing more information about ambient neurotransmitter 

levels. One approach has been the use of multivariate data analysis, specifically principal component 

regression, to account for the background changes that appear in the background-subtracted data. By 

incorporation of the typical background change voltammograms into the model training set, the 
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contributions of this voltammogram are identified and removed from the data, allowing for more robust 

isolation of dopamine signals as demonstrated in vivo following cocaine administration. (Hermans et al., 

2008) However, this approach relies on consistency of the background signal over time and assumes 

linear behavior across the potential window, which is violated by non-faradaic current, particularly around 

the switching potentials of the waveform. Alternatively, experimental modifications have been explored. In 

a series of reports, Heien and colleagues have introduced fast-scan controlled adsorption voltammetry 

(FSCAV), a technique that alters the application frequency of the voltammetric waveform to alter the 

adsorption behavior of analytes at the electrode surface.(Atcherley et al., 2015a; Atcherley et al., 2013) 

This approach relies on periods of rapid voltammetric scanning (100 Hz) alternated with quiescent 

periods (10 seconds) at negative potentials to promote robust adsorptive preconcentration at the 

surface. Information during the early scanning period allows determination of the ambient concentrations 

of neurotransmitters, while the electrode is cleaned of analytes through continued scanning. The success 

of this technique has been demonstrated in both brain slices and in vivo experiments.(Atcherley et al., 

2015b; Burrell et al., 2015) However, the main drawback of the technique lies in the quiescent period, 

which drastically decreases the time resolution of the measurements and, in turn, loses information about 

the phasic neurotransmitter release. A similar approach was reported to track relative changes of tonic 

dopamine levels, which relied on a novel ‘Mexican hat’ waveform with a holding potential of 0.0 V vs. 

Ag/AgCl and a similar waveform application to FSCAV to promote background stability and minimize 

interferences.(Oh et al., 2016) This approach permitted measurements on the order of hours following 

pharmological manipulation with nomifensine (a dopamine reuptake inhibitor) and α-methyl-DL-tyrosine 

(α-MPT, a dopamine synthesis inhibitor). 

 Recently, we reported on an alternative measurement protocol that relies on the use of 

convolution to predict and remove portions of the non-faradaic component of the FSCV background 

(Chapter 4). This approach relies on a small step placed immediately before each FSCV sweep to probe 

the capacitive state of the electrochemical system, specifically its impulse response function. Convolution 

with the triangular waveform provides a prediction of the non-Faradaic component of the background, 

which can be removed from the measurement through digital subtraction of this prediction. The success 

of this approach was demonstrated for the removal of a subset of ionic interferences in vitro and in vivo. 
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Here, we seek to explore the possibility of using this approach to access information about the basal 

levels of neurotransmitters. However, as noted in that report and elsewhere, the background observed at 

carbon-fiber microelectrodes is a mixture of non-faradaic and faradaic components. Further, it appears 

the redox state of a prominent electroactive surface species (a quinone-like moiety) modulates the non-

faradaic current. Thus, to completely remove the background interference, the measurement protocol 

must be further altered to provide a means of avoiding faradaic interferences and non-idealities 

introduced by their presence. 

 Here, we describe a means of accomplishing this by modifying the holding potential of the 

waveform to 0.0 V vs Ag/AgCl. Negative holding potentials have been shown to promote adsorption of 

catecholamines, particularly on oxidized carbon fibers, and the resulting increase in analytical sensitivity 

has facilitated its widespread use.(Heien et al., 2003) However, both extensive oxidation of the carbon 

fiber and the use of negative holding potentials complicate the use of the convolution-based removal of 

interferences, due to the increase in the electroactive surface species concentration and the 

accompanying capacitive asymmetry across the potential window. Use of holding potentials higher than 

the redox potential of the surface species should mitigate these issues, albeit at the cost of sensitivity. 

However, there are other means of increasing sensitivity, namely the use of longer holding periods for 

analyte preconcentration and the use of the higher scan rates. The latter is explored here, as it 

complements the use of the convolution-based technique as will be shown.  

 

EXPERIMENTAL SECTION 

 

Instrumentation and Software. T-650 (PAN-, or polyacrylonitrile-, based) and P-55 (pitch-based) type, 

cylindrical carbon-fiber microelectrodes (Thornel, Amoco Corporation, Greenville, SC; pulled in glass 

capillaries and cut to 50-100 m exposed lengths) were used. Pulled electrodes were treated with epoxy 

to improve electrochemical characteristics. Data was acquired in grounded Faraday cages, using a 

commercial interface (PCI-6052, 16 bit, National instruments, Austin TX) with a personal home computer 

and analyzed using locally constructed hardware and software written in LabVIEW (HDCV, National 
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Instruments, Austin, TX).(Bucher et al., 2013) Analog background subtractions was implemented using 

the design described elsewhere.(Hermans, et al., 2008) 

 

Electrochemical Experiments.  Flow-injection analysis experiments were performed using a syringe 

pump (Harvard Apparatus, Holliston, MA) operated at 0.8 mL/min using PEEK tubing (Sigma-Aldrich) 

connected to a pneumatically controlled six-port injection valve (Rheodyne, Rohnert Park, CA). All 

solutions were prepared in TRIS buffer (2.0 mM Na2SO4, 1.25 mM NaH2PO4H2O, 140 mM NaCl, 3.25 

KCl, 1.2 mM CaCl22H2O, 1.2 mM MgCl26H2O, and 15 mM Trizma HCl), adjusted to pH 7.4 with NaOH 

as necessary. Dopamine solutions were bubbled under nitrogen to prevent oxidative degradation prior to 

use. The tyramine fouling experiments described follow the protocol described by Takmakov et al., with 

the exception that the negative potential limits were varied (-0.4 and 0.0 vs Ag/AgCl) during the recovery 

phase in lieu of the positive potential limits.(Takmakov et al., 2010b) Additionally, both waveforms 

(randomized order, n = 5 electrodes) were tested at a given electrode, followed by conditioning and re-

evaluation of the sensitivity before fouling. 

The convolution-based approach used here is described in Chapter 4. Briefly, a waveform with a 

small amplitude pulse placed immediately prior to the FSCV sweep is used, and the derivative of the 

current during the step (i.e. the system impulse response estimate) is convoluted with the applied 

waveform to generate a prediction of the non-Faradaic current.  

 

In Vivo Measurements. Male Sprague-Dawley rats from Charles River (Wilmington, MA, USA) were pair-

housed on a 12/12 h light/dark cycle. Animal procedures were approved by the UNC-Chapel Hill 

Institutional Animal Care and Use Committee (IACUC). For freely-moving experiments, animals were 

surgerized at least three days prior to testing. Isoflurane (1.5-4%) was used for anesthesia, and guide 

cannulas (Bioanalytical Systems, West Lafayette, IN) were implanted above the nucleus accumbens shell 

(AP +1.7 mm, ML +0.8 mm, DV -2.5 mm) and the contralateral hemisphere for lowering of the working 

and reference electrode, respectively, on testing day. Additionally, a bipolar stimulating electrode (Plastics 

One, Roanoke, VA) was implanted at the ipsilateral ventral tegmental area (-5.2 mm, ML +1.0 mm, DV -

8.4-8.8 mm) to assist in positioning the working electrode. 
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RESULTS AND DISCUSSION 

Effect of Negative Holding Potentials. As noted earlier, the use of negative holding potentials has 

become standard, due to the increased sensitivity provided by their use for catecholamines.(Heien, et al., 

2003) This was assumed to result from increased electrostatic interactions with the positively charged 

dopamine, although interactions with the reduced quinone-like moiety may also play a role. Here, the 

effects of using negative holding potentials were re-evaluated, specifically with focus on their effect on the 

background current. 

 Backgrounds collected at various holding potentials are shown in Figure 5.1A. As shown in 

previous reports, the background considerably decreases, in both magnitude and complexity, with the use 

of more positive holding potentials.(Oh, et al., 2016; Takmakov et al., 2010a) Of note, during application 

of FSCV waveforms, the majority of the time is spent applying the holding potential (typically greater than 

90%). Although this period is not typically recorded, some current is also often seen throughout this 

period. After the waveform returns to the holding potential after application of the sweep, the measured 

current decays to a steady state value, the amplitude of which increases with increasingly negative 

holding potentials (Figure 5.1B). To understand its origin, slow-scan cyclic voltammetry (80 mV/s) was 

used (Figure 5.1C). The obtained voltammogram resembles that expected for the oxygen reduction 

reaction at a microelectrode, a two-step redox process that generates hydrogen peroxide during the first 

step (i.e. at low overpotentials).(Qu et al., 2015; Sosna et al., 2007) Indeed, this reaction was suggested 

in the original report on the use of negative holding potentials and has been used recently to generate a 

microfabricated collector-generator oxygen sensor.(Dengler et al., 2015; Heien, et al., 2003) If one 

assumes that the majority of the current at the holding potential does indeed originate from this reaction, 

a simplified calculation using Faraday’s law for electrolysis (n = It/Fz, z =2 and I = 5 nA for -0.4 V) and the 

diffusion distance (x2 = 6Dt, DH202 = 1.8 m2/s) suggests that the average concentration of peroxide around 

the electrode is above 1 μM after one holding period (~92 ms).(Vanstroebiezen et al., 1993) Further, 

collection of fast-scan voltammograms (400 V/s) using differing waveform application frequencies (0.5-30 

Hz) suggests that this generated peroxide may be oxidized during the forward scan (Figure 5.1D). Using 

the 30 Hz waveform as the reference, differential CVs collected at lower frequencies have a peak that 

grows larger with increasing time at the holding potential (here, -0.4 V). 
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Figure 5.1. Effects of negative holding potentials. (A) Fast-scan voltammograms taken in TRIS buffer at 
carbon-fiber microelectrodes with different holding potentials (-0.5, -0.3, -0.1, and 0.0 V). (B) Slow scan 
voltammograms (80 mV/s, forward scan shown only) taken from +0.7 to -1.7 V. (C) Current observed at 
various negative potentials over long time scales. (D) Subtracted fast-scan voltammograms taken at 
various application frequencies (0.5 – 20 Hz), using the voltammograms taken at 30 Hz as the blank 
signal. 
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 Further, it is known that the use of high positive potentials (> 1.0 V) in waveforms can result in 

etching of the carbon fiber surface, which can be advantageous for maintaining sensitivity in the heavily 

fouling in vivo environment.(Takmakov, et al., 2010b) However, the role of the negative holding potential 

in this process has not been characterized. To study this, a tyramine electrode fouling experiment, 

originally used to understand the effect of the positive potential limit, was used. In this experiment, the 

carbon fiber microelectrode was fouled through electro-oxidation of tyramine, which forms a film at the 

surface that drastically decreases the electrode capacitance and sensitivity. The success of surface 

renewal through waveform application was then evaluated by applying the specific waveform and 

subsequently testing the sensitivity (using a -0.4 to 1.0 waveform).During the surface renewal step, a 

positive potential limit known to promote etching (1.3 V) was used, and two different negative holding 

potential (-0.4 and 0.0 V) were used. Figure 5.2A shows a schematic of this experiment. Both waveforms 

were tested at each electrode, using a randomized order and conditioning the electrode on the full 

waveform (-0.4 to 1.3 V) prior to fouling. The results are summarized in Figure 5.2B. Of note, it can be 

seen that the sensitivity is significantly lower after use of the 0.0 V holding potential during the surface 

renewal phase than either prior to fouling or after treatment. This suggests that a process occurring at 

negative potentials promotes this etching and surface renewal process, driving the surface evolution of 

the electrode. While the specifics of this process are unknown, the generation of peroxide or interactions 

between the oxidized carbon surface and cations may underlie this phenomenon.(Dikin et al., 2007; 

Stankovich et al., 2006) 

 

Convolution-Based Removal of Divalent Cation Interferences. Overall, these data suggest that some 

of the complexity and temporal evolution seen in the FSCV backgrounds at carbon fiber microelectrodes 

stem from processes occurring at negative potentials. Further, as discussed in Chapter 4, the 

voltammetric waves (seen around 0.0 V and -0.3 V on the forward and backward scans in Figure 5.1A, 

respectively) that originate from surface-bound quinone-like species introduce non-idealities and further 

increase this complexity. Thus, in the context of the use of the convolution-based non-faradaic current 

prediction approach, the use of negative holding potentials is less ideal. The use of a higher holding 

potential (0.0 V or greater) is anticipated to mitigate these issues, as both processes driven at the  
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Figure 5.2. Sensitivity testing after tyramine fouling and treatment with waveforms with differing holding 
potentials. (A) Schematic of the experimental design. The arrow indicates that the order of waveform 
treatment (either 0.0 or -0.4 holding potential waveforms) was randomized. (B) Normalized peak currents 
observed for 1.0 μM of dopamine after each step in the experiment. 
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Figure 5.3. Removal of ionic artifacts seen during flow-injection analysis of magnesium in TRIS buffer. (A-
B) Raw (left) and convolution-treated (right) background-subtracted color plots using waveforms with -0.5 
V (A) and 0.0 V (B) holding potentials. (C) Raw (left) and convolution-treated (right) background-
subtracted color plot during flow-injection analysis of a Mg2+-dopamine mixture. 
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negative potentials and the surface redox reaction are avoided. 

 In the previous use of the convolution-based procedure, waveforms with holding potentials of -0.4 

or less were used, and it was found that only a subset of ionic interference signals were able to be 

successfully removed (i.e. those with traditional double-layer charging voltammograms). Other ions 

studied (i.e. the divalent cations Mg2+
 and Ca2+) had more complex signals arising from interactions with 

the surface quinone-like species, introducing non-linearities that cannot be handled with the convolution 

method employed. The issue is highlighted in Figure 5.3A, which shows the background-subtracted signal 

from a MgCl2-doped TRIS buffer using a waveform with a holding potential of -0.5 V. Due to the 

capacitive asymmetry across the potential window (i.e. the capacitance is higher at potentials more 

negative of the redox potential of the quinone-like moiety), use of the convolution-based method 

incorrectly predicts a higher signal in the positive potential region, resulting in strong artifacts in this 

region after treatment. However, avoidance of the region of the potential window in which the quinone-like 

species undergoes its redox reaction (-0.3 to 0.0 V vs Ag/AgCl) should mitigate these issues, through 

avoiding both the higher capacitance region and the non-linearity introduced by the change in 

capacitance around the quinone-like peak. Indeed, this approach (Figure 5.3B) results in a considerably 

smaller ionic signal that can be successfully treated with the convolution-based method, allowing for 

resolution of a dopamine signal from flow-injection analysis of a Mg2+/dopamine mixture (Figure 5.3C). 

 

Prediction of the Background Current.With the use of more positive holding potentials, the background 

should be more amenable to removal with the convolution-based method. While the technique was able 

to predict a significant portion of the background when using negative holding potentials, the quinone 

peak remained, mandating the use of background subtractions for resolution of the analytical signal. 

However, as shown in Figure 5.1A (using a holding potential of 0.0 V), the backgrounds observed with at 

higher holding potentials resemble more classical double-layer charging shapes, and the voltammetric 

wave associated and non-faradaic non-idealities associated with the quinone-like species largely 

disappears. 
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 However, the use of alternative carbon fiber materials was first evaluated to determine if there 

were materials more suited for use of this technique. Traditionally, polyacrylonitrile (PAN)-based carbon 

fibers (referring to the carbon source) are used for FSCV measurements, although another class of fibers, 

pitch-based, have been explored. Of note, characterization of electrochemical properties of different types 

of fibers found that the type of carbon precursor (i.e. pitch and PAN) did not significantly affect the ability 

of the carbon fiber to detect neurotransmitters, while effects were seen from the type of waveform 

treatment (i.e. oxidation of the surface) and electrical conductivity of the fiber on the electrochemical 

kinetics.(Huffman & Venton, 2008) However, for the use of the convolution-based technique, the 

impedance characteristics of the fiber itself also become important considerations. In general, the PAN-

type fibers tend to have lower degrees of crystallinity, higher electrical resistivity, and lower densities (due 

to increased pore volume in the fiber) than the PAN-type fibers.(Liu & Kumar, 2012) Thus, differences 

between the impedance characteristics of the types of fibers are expected. To evaluate this, the 

impedance characteristics of the electrodes were evaluated as a function of scan rate, and the current (I) 

at each measured voltage (n) were fit to the following model: 

 I(n) = vCfit(n) + Zfit(n)  (Eq. 5.1) 

where v is the scan rate, Cfit is the estimated capacitance, and Zfit is the estimated impedance. Of note, 

this equation should largely apply at regions away from the switching potential (i.e. after the double-layer 

is charged). The results are shown in Figure 5.4. At both low (2.5-10 V/s, Figure 5.4A) and high (400-800 

V/s, Figure 5.4B) scan rates, the P-55 pitch-based fibers (black lines) have more constant capacitive and 

impedance characteristics across the potential window than the T-650 PAN-based fibers (orange lines). 

Further, at high scan rates, the PAN-based fibers exhibit a monotonically increasing impedance on the 

forward sweep. This is particularly concerning in the context of the convolution-based technique, as the 

low-frequency characteristics of the fibers are the most difficult to estimate with a step function. While the 

origin of this is unclear, it is hypothesized that this may have to do with the porosity of the PAN-based 

fibers. It is known that porous carbons often exhibit multiple time constants due to pore effects stemming 

from restricted diffusion in the pores and increased local pore resistivity due to local depletion 

effects.(Signorelli et al., 2009) Thus, P-55 pitch-based fibers were used in the remainder of the study. To 
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Figure 5.4. Evaluation of T-650 PAN-type and P-55 pitch-type carbon fibers. (A-B) Estimation of 
capacitance (top) and impedance (bottom) at each potential for both fiber types at low scan rates (2.5 – 
10 V/s) and high scan rates (400 – 800 V/s). (C) Peak current observed for dopamine oxidation with a -
0.4 to 1.3 V waveform at both fiber types. 
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Figure 5.5. Prediction and removal of background currents using 0.0 V holding potential. (A) Measured 
(dashed black line) and predicted (orange line) from convolution-based method. (B) Residual current after 
subtraction of the prediction. 
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evaluate the analytical potential of these fibers, the sensitivity towards dopamine was determined and 

compared to the T-650 fibers (Figure 5.4C, 400 V/s, n = 5 electrodes). It can be seen that the pitch-based 

fibers have a significantly lower sensitivity by about 60% (-0.4 to 1.3 V waveform; T-650: 10.7 ± 0.3 

nA/μM; P-55: 6.3 ± 0.3 nA/μM; P < 0.001). Of note, this lower sensitivity is in agreement with the previous 

comparison of these two fibers for another catecholamine, norepinephrine.(Huffman & Venton, 2008) 

However, with more consistent impedance characteristics, P-55 fibers, when used with the convolution-

based technique, is advantageous, as the interference generated by the background current should be 

more easily removed. 

 With the P-55 fibers, the use of the convolution-based technique was evaluated for removal of the 

background current with a higher holding potential. The results are shown in Figure 5.5. For this data, a 

100 mV step was placed 750 μs before a 400 V/s FSCV sweep in TRIS buffer at an unconditioned P-55 

fiber, and five CVs were averaged and digitally low-pass filtered (Bessel 4th order low pass filter, 2 kHz 

cut-off). As can be seen, the agreement between the measured current and the convolution-based 

prediction is high (Figure 5.5A), and, after subtraction of the prediction (Figure 5.5B), only about 2.5% of 

the signal remains unaccounted for. In particular, the fit to the forward sweep (inset) at potentials below 

+0.8 V is excellent, which should permit the use of information in this region directly (i.e. without 

background subtraction). Above this voltage, there is a peak seen, which is likely due to oxidation 

reactions that may originate from surface reactions or solution species.(Heien, et al., 2003) Note that 

convolution artifacts are often seen around the switching potentials due to slight mismatches in time 

between the prediction and actual measurements. 

However, as noted in the previous report, estimates generated from the convolution-based 

approach tend to have more noise than the raw data. This becomes a significant concern given the lower 

sensitivity of the P-55 fibers, the lower sensitivity expected for higher holding potentials, and the fact that 

ambient levels of neurotransmitters typically fall in the range of 10-100 nM. This implies that the signal 

arising from basal levels of neurotransmitters would be less than 1 nA, which is insufficient for robust 

resolution. It is known that that the sensitivity can be increased through the use of lower waveform 

application frequencies (which allow for longer periods of adsorption and analyte preconcentration prior to 
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measurement) and the use of higher scan rates.(Bath et al., 2001; Bath et al., 2000; Keithley et al., 2011) 

The latter approach was explored because it complements the convolution-based approach. Use of the 

derivative for generation of the impulse response estimate effectively serves as a high-pass filter, 

degrading the signal-to-noise of the low-frequency information. With higher scan rates, the signal is more 

strongly determined by the high frequency components and overlaps more directly with the strongest 

frequency region of the impulse response, as shown in the frequency power spectra in Figure 5.6A for 

varying scan rates. 

 The sensitivities of the P-55 fibers as a function of scan rate was evaluated (Figure 5.6B). Of 

note, the use of a higher holding potential (0.0 vs -0.4 V) decreased the sensitivity of the fibers to 

dopamine by approximately 25% at 400 V/s. With increases in scan rate, the sensitivity did indeed 

increase linearly, as is expected for adsorbed species.(Bard & Faulkner, 2001) Additionally, as expected 

from previous reports, the dopamine peak shifted to more positive potentials, which is attributable to the 

slow electron transfer kinetics of dopamine at carbon electrodes.(Baur, et al., 1988; Keithley, et al., 2011) 

However, the background current also increased in the same manner, mandating that analog background 

subtraction be used for higher scan rates due to saturation of the analog-to-digital converter. The details 

of this procedure are given elsewhere.(Hermans, et al., 2008) Briefly, the current is first measured and 

digitized, and, in subsequent runs, the current is fed to the current-to-voltage converter in the headstage 

to neutralize some of the measured current. For the convolution-based method, the current fed back into 

the headstage is also recorded and digitally added back to the measured data before convolution. 

However, even with this approach, the maximum scan rate attainable was approximately 4000 – 6000 V/s 

(depending on the impedance properties of the individual electrodes), placing a limitation on the 

achievable sensitivity gains. Regardless, the increase in analytical sensitivity proved sufficient to increase 

the signal strength such that it could be resolved against the prediction-subtracted background. An 

example is shown for resolution of 500 nM dopamine in TRIS buffer in a beaker (4000 V/s at 10 Hz, 

Figure 5.6C). The background was first measured in TRIS buffer without added dopamine to verify that 

the background could be removed successfully (black line). Subsequently, dopamine was added to the 

solution, resulting in the appearance of a signal at approximately 0.9 V (orange line), suggesting that this 

approach has potential for measurement of basal levels of dopamine. Importantly, the application 
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Figure 5.6. Use of high scan rates for detection of dopamine. (A-B) Waveforms of different scan rates 
shown in the time domain (A) and the frequency domain (B). A typical impulse response estimation is 
shown in the frequency domain for reference. (C) Peak current observed for dopamine oxidation as a 
function of scan rate. (D) Prediction-subtracted background currents taken in TRIS buffer (black) and after 
addition of 500 μM dopamine. 
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frequency did not have to be altered, allowing for the temporal resolution of the measurements to be 

maintained. Thus, this approach should allow for simultaneous access to information regarding phasic 

and basal dopamine levels, although measurement of absolute basal levels requires high in vivo 

sensitivity and selectivity on the oxidative sweep. Additionally, as interferences should be more 

amendable to convolution-based removal, it should be possible to take longer measurements than 

accessible with traditional FSCV protocols. 

In Vivo Measurement of Phasic and Basal Changes Dopamine Levels. To test the technique in vivo, 

the changes in dopamine in the nucleus accumbens following cocaine administration were monitored in a 

freely moving rat. Cocaine inhibits dopamine uptake, resulting in increased extracellular 

concentrations.(Heien et al., 2005; Hermans, et al., 2008) For this study, a stimulating electrode was 

stereotaxically placed in the ventral tegmental area during surgery.  On test day, voltammetric monitoring 

initially employed a waveform with standard voltage limits (-0.4 to +1.3 V) and a scan rate of 400 V/s 

(Figure 5.7A). The working electrode location was adjusted with stimulations at a constant stimulating 

electrode depth until a maximal dopamine signal was found. Subsequently, the waveform was switched to 

a 5000 V/s waveform with a holding potential of 0.1 V (Figure 5.7B). This holding potential was used to 

ensure the quinone peak and associated interferences would be avoided. Additionally, the waveform was 

modified to include a negative excursion of the reductive sweep to attempt to capture the reductive wave 

of dopamine, which should allow for more ready signal identification and more robust discrimination from 

interferences such as ascorbic acid and DOPAC. After the electrode stabilized, recording began, with 

administration of cocaine (30 mg/kg) intraperitoneally occurring one minute after recording had begun. 

 With this protocol, transients were readily identified, which did not appear approximately 10 

minutes after cocaine administration and continued throughout the recording period. The technique did 

allow for long-term recordings, and a representative five-minute color plot showing transient signals is 

shown in Figure 5.7C (top, recorded 45 minutes after cocaine administration). MCR-ALS analysis 

permitted isolation of the dopamine signal and determination of the concentration from these data 

(middle, ex vivo sensitivity: 55 nA/M), which was validated using residual analysis (bottom). Additionally, 

using the convolution-based procedure, information that appears to show changes in basal dopamine  
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Figure 5.7. In vivo measurement of phasic and basal dopamine changes after cocaine administration. (A) 
Electrically stimulated release of dopamine during electrode positioning. (B) Waveform (5000 V/s) used 
for measurement. (C) Convolution-treated background-subtracted color plot (top, 5 minutes) showing 
dopamine transient signals, MCR-ALS determined dopamine concentrations and isolated DA spectra 

(middle), and residual values with Qα (dotted line) for MCR-ALS model. (D) Convolution prediction- and 

background-subtracted (blank taken 45 minutes before) color plot showing signal around dopamine 
oxidation potential. (E) Ex-vivo convolution-prediction subtracted background current taken in TRIS buffer 
(forward sweep shown for clarity). 
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levels was obtained. Figure 5.7D shows a convolution-treated CV taken during the same time window as 

the data in Figure 5.7C, using the convolution-treated CV taken at the beginning of recording as a 

background (45 minutes earlier). This shows the presence of a voltammetric peak at the same oxidation 

potential as seen for the dopamine transients.  However, attempts to access information about the 

absolute levels of dopamine were hindered by the unexpected appearance of a large (> 200 nA peak 

current) background peak at the same oxidation potential. While a similar peak has been noted previously 

for pH shifts in the presence of DOPAC, ex vivo analysis revealed the presence of this peak in TRIS 

buffer alone (Figure 5.7E). (Takmakov, et al., 2010a) Further, the electrode had minimal sensitivity for the 

common interferents DOPAC and ascorbic acid (which have slower electron kinetics than dopamine and 

have peak potentials more positive than dopamine at high scan rates). This suggests that this may be 

due to another surface redox-active functional group. Based on the current measured in this experiment, 

it would be expected that this peak would be a relatively small component of the background at lower 

scan rates (estimated peak height of about 20 nA at 400 V/s), suggesting the presence of this peak may 

not be obvious under these conditions. Preliminary experiments suggest this peak is introduced during 

oxidation of the carbon fiber and can be removed through intentional reduction through application of low 

anodic potentials; however, further characterization is needed to understand how to avoid its presence in 

the data.  

 Regardless, given stability in this background signal, background subtraction can still be able to 

be used to resolve changes in basal levels in dopamine over long periods, as the underlying species does 

not appear to affect the capacitance in a manner similar to that generating the quinone-like peak at more 

negative potentials. Based on the ex vivo sensitivity value, the transients detected in Figure 5.7C have 

peak amplitudes of approximately 50-100 nM, while the basal dopamine levels have undergone an 

approximately 150 nM change over the 45-minute window studied. Of note, the values for the transient 

amplitudes are similar to that reported previously using FSCV (120 nM).(Heien, et al., 2005)  The 

measured basal level is below that seen for intravenous administration for cocaine when using principal 

component regression for signal resolution; however, this may be due to the differing routes of 

administration.(Hermans, et al., 2008; Ma et al., 1999) 
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CONCLUSIONS 

These data suggest that the use of high scan rates, holding potentials of 0.0 V vs Ag/AgCl, and 

alternative carbon fiber materials facilitate the use of the convolution for prediction and removal of the 

majority of the background current. With this background removed, information about long-term changes 

in and basal levels of neurotransmitters, as demonstrated here for dopamine, can be accessed without 

sacrificing temporal resolution, permitting simultaneous analysis of phasic dopamine changes as 

traditionally studied with FSCV. However, as highlighted in the in vivo study of dopamine following 

cocaine administration, measurement of absolute levels of dopamine requires careful control of the 

electrode state. Further study is needed to optimize the electrode pretreatment and experimental 

waveform limits to prevent its interference with these measurements. 
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APPENDIX 1.1: DESCRIPTION OF ERROR PROPAGATION ANALYSIS METHOD 

 

The variance in the predicted experimental concentration value is estimated using the following formulas. 

𝑉(𝑦𝑝𝑟𝑒𝑑) = (1 + ℎ) ∗ 𝑆𝐸𝑁−2 ∗ 𝜎𝑥
2 + 𝑥𝑢

𝑇𝑉0(𝛽)𝑥𝑢 (Eq. A1.1-1) 

ℎ = (𝑋𝑝𝑟𝑜𝑗)(𝐴𝑝𝑟𝑜𝑗𝐴𝑝𝑟𝑜𝑗)
−1

(𝑋𝑝𝑟𝑜𝑗) (Eq. A1.1-2) 

𝑋𝑝𝑟𝑜𝑗 =  𝑉𝑐𝑥𝑢 (Eq. A1.1-3) 

𝐴𝑝𝑟𝑜𝑗 =  𝑉𝑐𝐴 (Eq. A1.1-4) 

𝑆𝐸𝑁 =  
1

‖𝛽‖
 (Eq. A1.1-5) 

𝑉0(𝛽) =  𝑆𝐴
−𝐴𝑇𝑉0(𝐴)𝐴𝑆𝐴

− (Eq. A1.1-6) 

𝑆𝐴
− =  (𝐴𝑝𝑟𝑜𝑗

𝑇 𝐴𝑝𝑟𝑜𝑗)
−1

 (Eq. A1.1-7) 

where V(ypred) is the variance in the predicted y (concentration) values; h is the leverage, SEN is the 

multivariate sensitivity, σx
2 is the variance in the x values, xu

 is the unknown cyclic voltammogram, Xproj is 

the score matrix for the unknown voltammogram, Vc is the prinicipal component matrix, Aproj is the 

principal component score matrix for the training set voltammograms, and  is a vector containing the 

regression parameters. 

To use these formulas, a number of variables need to be estimated. 

An estimate of the calibration factors and the electrode-to-electrode variability was taken from Rodeberg 

et al.(Rodeberg et al., 2015) This is for the commonly used triangular waveform at a scan rate of 400 V/s 

with an application frequency of 10 Hz and a T-650 carbon fiber electrode cut to 100 m. 

The next step is to determine the error in the calibration concentration estimates. To do this, an estimate 

for the variation in the current measurements (σx
2) is first needed. For a conservative estimate, the 

following formula is used that is based on the Qα estimate used in residual analysis.(Keithley et al., 2009) 

𝜎𝑥
2 =  

𝑄𝛼

𝑁
 (Eq. A1.1-8) 
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where N is the number of data points in the voltammogram. This estimate uses the information contained 

in the discarded PCs of the model and assumes this describes solely random, homoscedastic noise 

across the potential window, which is an assumption also used in the calculation of the Qα value. Error 

must be then be propagated through the equation for determining the calibration concentration values: 

𝐶 =  
𝑖𝑝𝑘

𝐶𝐹
 (Eq. A1.1-9) 

where ipk is the peak current in the training voltammogram and CF is the calibration factor. The error in 

the concentration estimates is then calculated according to the following formula: 

𝛿𝐶 =  𝐶√(
𝛿𝑖𝑝𝑘

𝑖𝑝𝑘

)

2

+  (
𝛿𝐶𝐹

𝐶𝐹
)

2

 (Eq. A1.1-10) 

These estimates are then used to construct the diagonal of the covariance matrix. However, at a single 

electrode, the deterministic errors in the concentration estimates, which arise from the difference between 

the average calibration factor used above and the actual electrode-specific calibration factor, are 

expected to be perfectly correlated (r = 1). That is, all concentrations are expected to be under- or over-

estimated by the same degree. Thus, the off-diagonal terms, or the covariance between concentration 

errors, of the covariance matrix must also be estimated.(Farrance & Frenkel, 2012) 

𝐶𝑜𝑣𝑎𝑟(𝑦𝑖 , 𝑦𝑗) = 𝑟√𝜎𝑦𝑖
2 𝜎𝑦𝑗

2 =  √𝜎𝑦𝑖
2 𝜎𝑦𝑗

2  (Eq. A1.1-11) 

With the estimates of the variance and covariance of the errors in the calibration concentrations, the 

covariance matrix can be constructed and the error determined using the formulas given above. 
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APPENDIX 2.1: MATHEMATICAL DESCRIPTION OF PRINCIPAL COMPONENT ANALYSIS 

 

Prior to PCR, a training set matrix (A) is constructed with dimensions of (n x m), where n is the number of 

data points in a spectra and m is the number of spectra. Additionally, a concentration matrix (C), an (l x 

m) array whose elements are the concentration of the lth analyte in the mth spectra, is 

constructed.(Kramer, 1998) Note that this definition of training set matrix is the transpose of that used in 

many PCR review texts.(Booksh, 2006; Wilks, 2014) Mean-centering and variance scaling are not used to 

prevent low amplitude, high signal-to-noise ratio spectra from having high leverage and undue influence 

on the regression parameters.(Heien et al., 2004; Kramer, 1998) 

 The goal of PCR in first-order inverse analytical calibration is to fit the following (the matrix 

equivalent to Eq. 2.5): 

𝑪 =  𝑷𝑨 (Eq. A2.1-1) 

where P is a (l x n) matrix containing the regression coefficients. The least-squares solution to this 

equation is: 

𝑷 = 𝑪𝑨𝑇[𝑨𝑨𝑇]−1 (Eq. A2.1-2) 

However, for data where number of training spectra is less than the number of data points and there is a 

high degree of multicollinearity between the predictor spectral measurements, this problem is ill-posed 

(i.e. the term [AAT]-1 cannot be calculated).(Kramer, 1998; Vigneau et al., 1997) Therefore, PCR is used 

to reduce data dimensionality and multicollinearity between regression predictors such that an estimation 

of P can be functionally obtained. 

 First, singular value decomposition is performed on the training set matrix. In HDCV,(Bucher et 

al., 2013) the in-built SVD Matlab function is used, which relies on a form of the QR algorithm.(Watkins, 

1982) Singular value decomposition factors a matrix (n x m) into three different matrices: 

𝑨 = 𝑼𝜮𝑽𝑇 (Eq. A2.1-3) 

where U is a unitary matrix containing left-singular vectors of A as columns (n x n), Σ is a matrix (m x n) 

with the non-negative singular values on the diagonal, and V is a unitary matrix (m x m) containing right-

singular vectors of A as columns.(Golub & Reinsch, 1970; Hendler & Shrager, 1994) These matrices are 
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calculated by eigenvalue decomposition of the square matrix AAT. The left- and right-singular vectors are 

the eigenvectors of the square matrices AAT and ATA, respectively. The squares of the singular values 

are the eigenvalues of either.(Wilks, 2014) 

 The principal components are vectors defined by the first m columns (left-singular vectors) of U, 

which will be referred to as the loading matrix W (n x m). These are mutually orthogonal vectors related to 

the original variables by the following: 

𝑷𝑪𝒎 = ∑ 𝑤𝑖,𝑚𝑿𝒊

𝑛

𝑖=1

 (Eq. A2.1-4) 

where PCm is the mth principal component unit vector, wi,m is the loading (or weighting) of the ith variable, 

and Xi is the unit vector of ith original variable. The description of spectra in the principal component space 

is given by their scores, or projections onto the PC vectors, which is the matrix equivalent to Eq. 2.6: 

𝑻 =  𝑾𝑇𝑨 (Eq. A1-5) 

where T is the score matrix (m x m). Any given score of a spectrum on a PC is determined by the dot 

product of the PC’s loading vector (wm = [w1,m, w2,m, … , wn,m]) with the spectrum.  

 Selection of principal components relies on statistical analysis of the variance spanned by each 

PC, which is represented by the corresponding eigenvalue (obtained by the squares of the singular 

values in the Σ matrix), using Malinowski’s F-test.(Keithley et al., 2010; E. R. Malinowski, 1977; Edmund 

R. Malinowski, 1987, 1989; E.R. Malinowski, 1990; E. R. Malinowski, 2004) Once the number of principal 

components to retain (i.e. the rank of the model, or r) is determined, the loading matrix is truncated to a (n 

x r) matrix, which will be referred to as the Wr matrix. Representation of this reduced model in r-

dimensional principal subspace is given by substitution of the Wr matrix into Equation A2.1-5. The 

regression equation is then reformulated as: 

𝑪 =  𝑴𝑻  (Eq. A2.1-6) 

which is the matrix equivalent of Eq. 2.7 and has the least-squares solution of: 

𝑴 = 𝑪𝑻𝑻𝑺
𝑇[𝑻𝑻𝑺𝑻𝑻𝑺

𝑇]
−1

 (Eq. A2.1-7) 
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In contrast to Eq. A2.1-2, this solution can be computed. The use of orthogonal vectors for principal 

component definition directly addresses the multicollinearity problem, while data reduction to the r-

dimensional principal subspace insures the problem is well-posed. Use of Eq. A2.1-7 for experimental 

concentration prediction requires use of Eq. A2.1-5 for expression of experimental data (Aex) in the 

principal subspace. However, through combination of Eqs. A2.1-5-7, the calibration model can be stated 

as: 

𝑪 =  𝑪𝑻𝑺𝑻𝑻𝑺
𝑇[𝑻𝑻𝑺𝑻𝑻𝑺

𝑇]
−1

𝑾𝑹𝑨 (Eq. A2.1-8) 

Comparison to Eq. 2.1 shows that the PCR model estimation of P is: 

𝑷 =  𝑪𝑻𝑺𝑻𝑻𝑺
𝑇[𝑻𝑻𝑺𝑻𝑻𝑺

𝑇]
−1

𝑾𝑹 = 𝑴𝑾𝑹 (Eq. A2.1-9) 

which is a fixed-value matrix after SVD calculation of U and rank selection. 

Reconstruction of the matrix approximation (Aproj) of the experimental spectra is given by: 

𝑨𝒆𝒙,𝒑𝒓𝒐𝒋  =  𝑾𝑹𝑻𝒆𝒙 (Eq. A2.1-10) 

which can be used for residual calculation through subtraction from the experimental spectra (Aex – 

Aex,proj).(Keithley et al., 2009) For the construction of model estimates of the signal from concentration, 

the equation of the classical formulation can be used (corresponding to Eq. 2.1) 

𝑨 =  𝑲𝑪 (Eq. A2.1-11) 

where K is the matrix pseudoinverse of P.(Booksh, 2006) Note that the pj and kj vectors are the jth rows of 

the P matrix and jth columns of the K matrix, respectively. To obtain the kj vector of any given analyte, the 

entire P matrix, containing all pj vectors for the model, must be used in the calculation, and the same 

applies for calculation of the P matrix, which is necessary to obtain a any single pj vector, from the K 

matrix. 

 

 

 



143 
 

REFERENCES 

Booksh, K. S. (2006). Chemometric Methods in Process Analysis Encyclopedia of Analytical Chemistry: 
John Wiley & Sons, Ltd. 

Bucher, E. S., Brooks, K., Verber, M. D., Keithley, R. B., Owesson-White, C., Carroll, S., et al. (2013). 
Flexible Software Platform for Fast-Scan Cyclic Voltammetry Data Acquisition and Analysis. Anal 
Chem, 85(21), 10344-10353. 

Golub, G. H., & Reinsch, C. (1970). Singular Value Decomposition and Least Squares Solutions. Numer 
Math, 14(5), 403-&. 

Heien, M. L. A. V., Johnson, M. A., & Wightman, R. M. (2004). Resolving neurotransmitters detected by 
fast-scan cyclic voltammetry. Anal Chem, 76(19), 5697-5704. 

Hendler, R. W., & Shrager, R. I. (1994). Deconvolutions Based on Singular-Value Decomposition and the 
Pseudoinverse - a Guide for Beginners. J Biochem Bioph Meth, 28(1), 1-33. 

Keithley, R. B., Carelli, R. M., & Wightman, R. M. (2010). Rank estimation and the multivariate analysis of 
in vivo fast-scan cyclic voltammetric data. Anal Chem, 82(13), 5541-5551. 

Keithley, R. B., Heien, M. L., & Wightman, R. M. (2009). Multivariate concentration determination using 
principal component regression with residual analysis. Trends Analyt Chem, 28(9), 1127-1136. 

Kramer, R. (1998). Chemometric Techniques for Quantitative Analysis. New York, NY: Marcel Dekker, Inc. 

Malinowski, E. R. (1977). Determination of Number of Factors and Experimental Error in a Data Matrix. 
Anal Chem, 49(4), 612-617. 

Malinowski, E. R. (1987). Theory of the distribution of error eigenvalues resulting from principal 
component analysis with applications to spectroscopic data. J Chemometr, 1(1), 33-40. 

Malinowski, E. R. (1989). Statistical F-tests for abstract factor analysis and target testing. J Chemometr, 
3(1), 49-60. 

Malinowski, E. R. (1990). Erratum. J Chemometr, 4(1), 102-102. 

Malinowski, E. R. (2004). Adaptation of the Vogt-Mizaikoff F-test to determine the number of principal 
factors responsible for a data matrix and comparison with other popular methods. J Chemometr, 
18(9), 387-392. 

Vigneau, E., Devaux, M. F., Qannari, E. M., & Robert, P. (1997). Principal component regression, ridge 
regression and ridge principal component regression in spectroscopy calibration. J Chemometr, 
11(3), 239-249. 

Watkins, D. S. (1982). Understanding the Qr-Algorithm. Siam Rev, 24(4), 427-440. 

Wilks, D. (2014). International Geophysics, 100 : Statistical Methods in the Atmospheric Sciences (2nd 
Edition) (2nd ed.). Burlington, US: Academic Press. 



144 
 

APPENDIX 2.2: F-TEST FOR GLOBAL VS. SUBJECT-SPECIFIC MODEL COMPARISON 

 

The F-test compares two models by comparing the residual sum of squares between models, calculating 

the F statistic using the following equation:(Glatting et al., 2007; Krazanowski, 2007) 

F =  

(SSH0
− SSH1

)
SSH1

(DOFH0
− DOFH1

)
DOFH1

 (Eq. A2.2-1) 

where SS refers to the residual sum of squares for the model, DOF refers to the degrees of freedom 

(DOF), and the subscripts H0 and H1 indicate the values for the null and alternative models, respectively.  

The DOF for a model is the difference between the number of data points (nDP) and the number of model 

parameters (pm). For the comparison of global and group-specific parameters for the regression model, 

the model being fitted was: 

Cj = ∑ mi,jti,j

r

i=1

+ ∈ (Eq. A2.2-2) 

where Cj is the analyte concentration for a given CV in the jth training set, ti,j is the score on the ith PC for a 

given CV in the jth training set, r is the total number of PCs retained in the model, and m i,j is the 

proportionality factor between the concentration and the score on the ith PC. The null hypothesis is the 

global model, which has fewer parameters and assigns all training sets the same proportionality factors 

(m) to all training sets: 

H0: mi,1 = ⋯ = mi,j 

The alternative hypothesis is the subject-specific model, with unique m values for a training set: 

H1: mi,1 ≠ ⋯ ≠ mi,j 

The significance was evaluated by determining the associated p value for (pH1 – pH0, nDP – pH1 + 1) 

degrees of freedom (α = 0.05). 
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APPENDIX 4.1: SIMULATION OF MODEL BACKGROUND CURRENTS 

 

 As stated in Chapter 4, we considered the double layer as a parallel network with a voltage-

dependent impedance element (ZQH, corresponding to the quinone-like redox reaction),  a voltage-

dependent capacitor (CQH, the capacitance arising from species bound to the quinone-like moiety), and a 

voltage-independent capacitor (CI) 

 To model the expected current from ZQH, given a surface-bound, quinone-like species with total 

surface concentration of ΓQH* that undergoes a two-electron (n = 2), reversible reaction, we expect, from 

the derivation in Bard and Faulkner, Chapter 14.3.2) for adsorbed species(Bard & Faulkner, 2001), the 

following i-E curve for the faradaic couple to application of a voltammetric sweep: 

𝑖(𝐸) =
𝑛2𝐹2

𝑅𝑇
𝑣𝐴𝛤𝑄𝐻

∗
(

𝑏𝑂

𝑏𝑅
) exp [(

𝑛𝐹
𝑅𝑇

) (𝐸 − 𝐸𝑂))]

[1 + (
𝑏𝑂

𝑏𝑅
) exp [(

𝑛𝐹
𝑅𝑇

) (𝐸 − 𝐸𝑂))]2

 (Eq. A4-1.1) 

Since the species is surface-bound, we set the ratio (bO/bR) to be 1 for further use.  

To model the capacitive charging current, the redox-coupled, area-normalized capacitance (CQH
*, Fcm-2) 

is assumed to be linearly dependent on the surface concentration of both species (ΓQH and ΓQ, molcm-2) 

and respond immediately to their concentration: 

𝐶𝑄𝐻
∗ (𝐸) =  𝐶𝑄𝐻(𝐸) + 𝐶𝑄(𝐸) (Eq. A4-1.2) 

𝐶𝑄𝐻
∗ (𝐸) =  𝑏𝛤𝑄𝐻(𝐸) +  𝑐𝛤𝑄(𝐸) (Eq. A4-1.3) 

𝐶𝑄𝐻
∗ (𝐸) =  𝑏𝛤𝑄𝐻(𝐸) +  𝑐(𝛤𝑄𝐻

∗ − 𝛤𝑄𝐻(𝐸)) (Eq. A4-1.4) 

 

where b and c are constants (Fmol-1). To simplify this further,  Rc/b (the ratio of c to b, assumed to be a 

constant less than 1) is introduced: 
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𝐶𝑄𝐻
∗ (𝐸) =  𝑏[𝑅𝑐/𝑏𝛤𝑄𝐻

∗ +  𝛤𝑄𝐻(𝐸)(1 − 𝑅𝑐/𝑏)] (Eq. A4-1.5) 

Using the Nerst relation, this can be put in terms of the total surface concentration ΓQH*: 

𝛤𝑄𝐻(𝐸) =
𝛤𝑄𝐻

∗

1 + exp [(
𝑛𝐹
𝑅𝑇

) (𝐸 − 𝐸𝑂)]
 (Eq. A4-1.6) 

𝐶𝑄𝐻
∗ (𝐸) =  𝑏𝛤𝑄𝐻

∗ [𝑅𝑐/𝑏 + 
1 − 𝑅𝑐/𝑏

1 + exp [(
𝑛𝐹
𝑅𝑇

) (𝐸 − 𝐸𝑂)]
] (Eq. A4-1.7) 

Finally, there is the voltage-independent capacitance  (CI), giving a total electrode capacitance (Ctot) of: 

𝐶𝑇(𝐸) =  𝐶𝐼 + 𝐶𝑄𝐻
∗ (𝐸) (Eq. A4-1.8) 

With this, the i-E curve for the capacitive charging current for application of triangular sweep is expected 

to be: 

𝑖 = 𝑣 ∗ 𝐶𝑇(𝐸) ∗ [1 − exp [
−𝑡

𝑅𝑆𝐶𝑇(𝐸)
]] (Eq. 4-1.9) 

where Rs is the solution resistance.  Here, it is noted that this equation is applicable for time-independent 

capacitances; that is: 

𝑑(𝐶𝑇𝐸)

𝑡
= 𝐶𝑇(𝐸) (

𝑑𝐸

𝑑𝑡
) + 𝐸 (

𝑑𝐶𝑇(𝐸)

𝑑𝑡
) (Eq. A4-1.10) 

While some contribution from the latter term is anticipated, we expect that term to be considerably smaller 

than the former at the high scan rates (dE/dt = 400) and moderate applied potentials (-0.8-0.8 V) in the 

this work. Thus, it is ignored.  For ease of analysis, we consider the region around the faradaic couple 

and assume this to be far from the switching potentials, simplifying Equation A4-1.9 to: 

𝑖(𝐸) = 𝑣𝐶𝐼 +  𝑣𝐶𝑅
∗(𝐸) (Eq. A4-1.11) 
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𝑖(𝐸) = 𝑣𝐶𝐼 + 𝑣𝛤𝑄𝐻
∗ 𝑏 [𝑅𝑐/𝑏 + 

1 − 𝑅𝑐/𝑏

1 + exp [(
𝑛𝐹
𝑅𝑇

) (𝐸 − 𝐸𝑂)]
] (Eq. A4-1.12) 

We introduce iQH,max
* indicate the maximum redox-associated charging current (seen at very negative 

potentials where ΓQH* = ΓQH = ΓQH,max,  since rb/c is assumed to be less than 1) as well as the constant iCI: 

𝑖𝐶𝐼 = 𝑣𝐶𝐼  (Eq. A4-1.13) 

𝑖𝑄𝐻,𝑚𝑎𝑥
 ∗ = 𝑣𝑏𝛤𝑄𝐻

∗  (Eq. A4-1.14) 

𝑖(𝐸) = 𝑖𝐶𝐼 + 𝑖𝑄𝐻,𝑚𝑎𝑥
 ∗  [𝑅𝑐/𝑏 +

(1 − 𝑅𝑐/𝑏)

1 + exp [(
𝑛𝐹
𝑅𝑇

) (𝐸 − 𝐸𝑂)]
] (Eq. A4-1.15) 

For the study of ionic changes, which are expected to affect primarily the capacitance values, the 

Faradaic current serves as a useful point of comparison. The equation of the peak current expected for 

the Faradaic couple (ip,F) is also normalized the Faradaic currents:  

𝑖𝑝,𝐹 =  
1

4
(

𝑛2𝐹2

𝑅𝑇
∗ 𝑣𝐴𝛤𝑅

∗) (Eq. A4-1.16) 

𝑖(𝐸)

𝑖𝑝,𝐹

= 4
exp [(

𝑛𝐹
𝑅𝑇

) (𝐸 − 𝐸𝑂))]

[1 + exp [(
𝑛𝐹
𝑅𝑇

) (𝐸 − 𝐸𝑂))]2
 (Eq. A4-1.17) 

The total expected potential-dependent current (iT, normalized to ip,F) is then simply the summation of 

these two contributions at a given values of three constants - IC (iCI /ip,F), IQH (iQH,max
*/ip,F) , and Rc/b:  

𝑖𝑇(𝐸)

𝑖𝑝,𝐹

= 𝐼𝐶 + 𝐼𝑄𝐻  [𝑅𝑐/𝑏 +
(1 − 𝑅𝑐/𝑏)

1 + exp [(
𝑛𝐹
𝑅𝑇

) (𝐸 − 𝐸𝑂)]
] +  4 [

exp [(
𝑛𝐹
𝑅𝑇

) (𝐸 − 𝐸𝑂))]

[1 + exp [(
𝑛𝐹
𝑅𝑇

) (𝐸 − 𝐸𝑂))]2
] 

 

(Eq. A4-1.18) 

For values of IC = 1, IQH = 2, and Rb/c = 0.5, this gives the current-potential curves shown in Figure A4.1-1. 
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Figure A4-1.1. Model-simulated voltammetric currents for the components of the carbon-fiber double 

layer. 
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