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ABSTRACT 

Estephan Jose Moana-Filho: Brain Micro- and Macro-Structural Characteristics 
Investigation in Fibromyalgia Using Multi-Modal Magnetic Resonance Imaging 

(Under the direction of Richard H. Gracely) 

Fibromyalgia (FM) is a chronic widespread pain condition that deeply impacts the 

lives of patients. Multiple symptoms such as fatigue, impaired cognition, and sleep 

disturbances among others are commonly described. Despite intensive research effort, 

no disease-specific mechanism uniquely explains the clinical presentation of FM. 

Nonetheless, current evidence points to a major role of the central nervous system for 

the main feature of this condition: pain and sensory augmentation. Neuroimaging 

techniques provide a window into the brain mechanisms that may play a role in FM. 

Several studies using functional magnetic resonance imaging (MRI) show abnormalities 

in pain processing in the brain of FM patients. Likewise, structural abnormalities are 

found using anatomical MRI however the findings are less consistent. The main goal of 

this dissertation was to comprehensively assess brain structural features of FM patients 

and matched controls at both micro- (cellular-level structures such as membranes, 

myelin as well as axonal density) and macro-structural (gross anatomical) levels as 

measured by diffusion-weighted and high-resolution anatomical MRI respectively. 

The results from diffusion MRI show evidence of widespread micro-structural 

white matter (WM) abnormalities in the brains of FM patients compared to controls, and 

also within relevant pain-related brain regions. These findings give support to the view 
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that alterations in the brain of patients potentially contribute to the symptoms 

experienced by them. Conversely, macro-structural brain features showed little 

difference between patients and controls regarding gray matter (GM) characteristics. 

Between-group differences were only found for increased volume in the amygdalae and 

WM adjacent to the anterior cingulate cortex and left insula for FM patients relative to 

controls. 

Taken together these findings may indicate that structural abnormalities in the 

brain of FM patients are more widespread in the micro-structural level, while regional 

differences limited to subcortical structures and WM adjacent to pain-related cortical 

areas are more typical at the macro-structural level with no measurable impact to GM 

morphological characteristics. 
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CHAPTER 1: INTRODUCTION, METHODS OVERVIEW AND SUBJECT 
SAMPLE DESCRIPTION 

Introduction 

When one ponders on the meaning of the word “pain”, some possibilities arise. It 

could refer to the conscious experience related to bodily injury or disease processes, 

which is probably one of the most common interpretations. Another possible meaning 

would be the discomfort associated with unpleasant feelings, such as the separation 

from a spouse or the mourning of a loved one. This dichotomous view on pain is 

present for millennia, dating from the times of the ancient Greek philosophers such as 

Aristotle (Perl, 2007; Cervero, 2009). In the last centuries, competing pain theories 

developed describing distinct features: i. Following a noxious stimulus in peripheral 

tissues (e.g., skin), dedicated pain receptors in the periphery detect and transmit the 

noxious input through pain specific pathways to the brain (specificity theory); ii. 

Peripheral stimulus intensity as transduced by unspecialized afferent fibers would 

dictate a non-painful (innocuous stimulus) or painful (intense stimulus) perception 

according to the level of neuronal discharge (intensity theory); or iii. Peripheral receptors, 

irrespective of sensory input modality, following an intense stimulation would trigger a 

sequence of impulses in peripheral and central neurons in particular spatial and 

temporal patterns such as to convey a pain percept (pattern theory) (Perl, 2007). In the 

last 50 years, several lines of evidence showed that neither theory alone could explain 

all pain-related mechanisms and that likely both specificity and pattern concepts must 
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be considered to some extent in different scenarios of clinical and experimental pain 

(Prescott et al., 2014). 

The complexity of the pain phenomenon is well recognized currently, where the 

view of it as a dedicated “alarm system” that serves solely a protective function for 

survival and well being is not sufficient. Pain is now considered a multi-dimensional 

experience, that includes sensory-discriminative, affective-motivational and cognitive-

evaluative components (Treede et al., 1999). This multidimensionality is embedded 

within the definition of pain provided by the International Association of Pain (IASP) 

(Merskey and Bogduk, 1994): 

“An unpleasant sensory and emotional experience associated with actual or 
potential tissue damage, or described in terms of such damage.” 

This definition includes distinct aspects related to pain: it is a subjective (i.e., 

personal and individualized) experience that encompasses both sensory and emotional 

components, and tissue damage does not necessarily have to take place. Given this 

inherent intricacy, it is not a surprise that several types of pain exist such as nociceptive, 

inflammatory or neuropathic (Cervero and Laird, 1991; Cervero, 2009). The first two 

types of pain are considered physiological and serve to protect an individual from harm. 

Neuropathic pain however, where even innocuous peripheral stimuli can evoke pain, 

can be considered a neurological disease secondary to damage or dysfunction of the 

peripheral and/or central nervous systems. 

Another important distinction related to the pain experience is between acute and 

chronic. The former usually has a known causal factor and is expected to reduce over 

time as the healing process ensues; the later is present beyond the expected tissue 

healing time (e.g., over 3 months), appears to have no useful purpose to an individual 
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and can be seen as a pathological process (Davis, 2013), with ample evidence of 

associated functional, structural and neurochemical brain changes (Tracey and 

Bushnell, 2009). The processes related to the transition from acute to chronic pain are 

not completely understood (Mifflin and Kerr, 2014), nonetheless predictors of this 

transition are under investigation (Apkarian et al., 2013). 

The aforementioned complexity of pain is well represented in puzzling clinical 

conditions considered together under the term “functional somatic syndrome”. It refers 

to related syndromes where symptoms, suffering and disability better characterize the 

clinical presentation than disease-specific structural or functional abnormalities (Barsky 

and Borus, 1999). Functional somatic syndromes (FSS) usually are not present in 

isolation but rather with one or more comorbid pain conditions (Wessely et al., 1999; 

Aaron and Buchwald, 2001), and previous diagnosis of a FSS is a strong risk factor for 

other FSSs (Warren et al., 2013). These associations of comorbid pain conditions likely 

represent underlying common pathophysiological mechanisms (Yunus, 2007), and 

studies based on mechanism-driven hypotheses might help understand each 

condition’s peculiarity beyond those shared general mechanisms (Croft et al., 2007). 

Most reports describing FSSs, if not all, include fibromyalgia. Fibromyalgia (FM) 

can be considered a prototypical FSS (Ablin et al., 2012), that is mainly characterized 

by chronic widespread body pain and associated symptoms that includes fatigue, sleep 

disturbances and cognitive dysfunction with no measurable organic cause sufficient to 

explain those symptoms (Clauw, 2009). Concerted research efforts to elucidate the 

pathophysiology of FM took place in the past decades, and several concepts proposed 

for this condition have been reformulated or abandoned based on the recent evidence 
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gathered. What follows is a brief description of the history and current accepted 

knowledge of FM. 

Fibromyalgia: an overview 

Early studies of fibromyalgia 

Initial reports of a condition with similar clinical presentation as FM can be traced 

back to the beginning of the 20th century. Sir William Gowers provided a comprehensive 

description of what was known then about this condition and proposed naming it 

“fibrositis”, as it was believed to be some form of “inflammation of the fibrous tissue of 

the muscles” (Gowers, 1904). Almost fifty years later, Graham described the 

controversy surrounding “fibrositis” within the rheumatology specialty and how it 

became a “depot for many varieties of non-articular rheumatism” (Graham, 1953). Of 

note, he mentions the lack of evidence for an inflammatory etiology for this condition 

and therefore questioning the propriety of that term (“-itis” = inflammation). 

Moldofsky and colleagues provided interesting insights in systematically 

investigating sleep disturbances using electroencephalography (EEG) in FM patients 

and in healthy controls following sleep deprivation (Moldofsky et al., 1975). They 

reported a disruption in the EEG sleep pattern in FM patients named “alpha-delta” sleep, 

and that a 3-night sleep deprivation during the non rapid eye movement (REM) stages 

elicited musculoskeletal and mood symptoms in healthy controls similar to those seen in 

FM patients. Following recovering nights with undisrupted sleep, healthy controls 

experienced remission of those symptoms (Moldofsky et al., 1975). In a later study it 

was shown that while disruption during non-REM sleep could evoke FM-like symptoms 

in healthy controls, REM sleep disruptions could not (Moldofsky and Scarisbrick, 1976). 
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Following these observations, Smythe and Moldofsky proposed criteria for the 

diagnosis of “fibrositis”, that could differentiate FM patients from patients suffering from 

other diffuse pain syndromes, malingering or neuroticism (Smythe and Moldofsky, 1977). 

Many consider this seminal work the birth of the modern concept of FM (Clauw, 2009; 

Wolfe and Hauser, 2011). A comprehensive clinical description of 50 FM patients and 

50 age-, sex- and race-matched healthy controls was offered by Yunus and 

collaborators, where they also proposed using “fibromyalgia” as opposed to “fibrositis” 

given the lack of evidence for inflammation as a etiological factor for the so-called 

primary FM (i.e., “when no known cause or associated contributory disorder is present”) 

(Yunus et al., 1981). Additional early studies have shown no specific personality profile 

for FM patients, and that pharmacological (antidepressants, non-steroidal anti-

inflammatory drugs, chlorpromazine) and non-pharmacological (strenuous physical 

exercise) treatment modalities provided significant improvements in FM symptoms 

(McCain and Scudds, 1988). 

Fibromyalgia classification and diagnostic criteria 

A major advancement for FM research took place in 1990, when the American 

College of Rheumatology (ACR) criteria for the classification of fibromyalgia was 

published (Wolfe et al., 1990). It required a history of at least 3 months of widespread 

body pain and pain on digital palpation in 11 or more out of 18 tender point sites for an 

individual to be classified as having FM. These criteria allowed standardization of 

inclusion requirements for FM subjects in research studies, which provides more 

homogenous subject samples thus improving the comparability of findings across 

studies; however, they were not considered suitable for use in clinical practice as they 
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might exclude patients that present several but not all signs and symptoms to meet the 

ACR 1990 FM classification criteria (Clauw, 2009). 

Partly to overcome this limitation and to address objections from different parties 

to the ACR 1990 FM classification criteria, new diagnostic criteria for FM were offered in 

2010 (Wolfe et al., 2010). The most significant change was removing the requirement 

for tender point examination and count. In addition, two metrics were developed: 1. 

Widespread pain index (WPI), where the investigator notes how many body areas (out 

of 19) the patient had pain in the last week; and 2. Symptom severity (SS) scale, that 

considers the severity of fatigue, waking unrefreshed and cognitive symptoms plus the 

extent of somatic symptoms in general (score range: 0-12). To satisfy the ACR 2010 FM 

diagnostic criteria a patient must meet three conditions: i. Either a WPI ≥ 7 and SS ≥ 5, 

or WPI 3-6 and SS ≥ 9; ii. Symptoms must be present at similar levels for at least 3 

months; and iii. No presence of other disorder that could explain the pain (Wolfe et al., 

2010). The authors stressed that these diagnostic criteria were not meant to replace the 

ACR 1990 criteria, but rather offer an alternative method of diagnosis. 

With the goal of developing criteria that allowed self-administration thus 

eliminating the need for an interviewer, a modification of the ACR 2010 diagnostic 

criteria was proposed (Wolfe et al., 2011). To achieve that goal, the SS scale was 

modified in a way that, instead of having a somatic symptoms list to check, patients 

respond “yes” or “no” to the presence of headaches, pain / cramps in the lower 

abdomen of depression symptoms in the last 6 months. Its score range was unchanged 

(0-12) though, as well the WPI was also virtually unchanged – except that now it is self-

administered. A new scale named FM symptom scale (FS) was proposed, which is 
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simply the sum of the WPI and the modified SS with a score range of 0-31; a score of ≥ 

13 was shown to have good sensitivity and specificity for identifying FM (Wolfe et al., 

2011). Given the self-administering feature of this modified criteria, the authors provided 

a cautionary note that this instrument does not serve as a self-diagnosis tool or 

substitutes a physician’s diagnosis. 

These recent criteria were received with mixed opinions, and several researchers 

argued about the added value they brought beyond that offered by the accepted ACR 

1990 FM classification criteria (Wolfe and Hauser, 2011; Abbi and Natelson, 2013; 

Hannonen, 2013). Nonetheless, these criteria are recognized as valuable instruments in 

designing studies that will help elucidate etiological factors, identify more homogenous 

subgroups of patients and develop targeted treatments (McBeth and Mulvey, 2012). 

A supplementary issue to the classification of FM is the recognition (or the lack 

thereof) of it as a valid clinical entity (Ablin et al., 2012). On one side are those who 

defend that FM is no more than a collection of symptoms, i.e., “aches and pain that all 

people often have” at some point in life (Ehrlich, 2003). On the opposite side are 

investigators who, although acknowledging the limitations in the available FM criteria 

and that those affected by this condition may be at “end of the bell-shaped curve”, 

understand that FM arises from altered pain processing mechanisms as shown by 

several studies (Harris and Clauw, 2006). In an article named “Fibromyalgia wars”, 

Wolfe explores the myriad of interests of different agents pro and against having FM as 

a legitimate diagnosis: patients, some specialty physicians vs. the majority of physicians, 

pharmaceutical companies, professional organizations, patients’ support groups, 

governmental agencies, and attorneys (Wolfe, 2009). When reading the available 
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literature on this topic, it becomes clear that FM is a controversial subject in the 

scientific and medical field, and that it impacts not only the affected patients but also the 

society at large. 

Etiology, pathophysiology and treatment of fibromyalgia 

Several studies have investigated the pathophysiology of FM, trying to determine 

etiological (i.e., causative) factors and pathophysiological (i.e., functional changes 

associated with a condition) mechanisms of this syndrome. Different investigational 

approaches brought some light on putative etiological factors in FM, even though some 

early studies tended to have relatively small samples that make interpretation of its 

results difficult. 

Genetic factors seem to play an important role in FM, given the familial 

aggregation found where having a relative with FM increased the odds of other relatives 

presenting it (Buskila and Neumann, 2005), with one study showing odds ratio of 8.5 

when compared to families with one member affected by rheumatoid arthritis (Ablin et 

al., 2006). Family members of FM patients are more sensitive to pain than controls, and 

they also have higher rates of comorbid conditions including irritable bowel syndrome 

(IBS), temporomandibular disorders (TMD), headaches or other regional pain 

syndromes (Clauw, 2009). Genetic polymorphisms were found in higher frequencies in 

FM patients for genes encoding the serotonin transporter (5-HTT), the serotonin 5-

HT2A receptor, cathecol-O-methyl transferase (COMT), the dopamine D4 receptor and 

the substance P receptor NK1 (Ablin et al., 2006). Recently a systematic review and 

meta-analysis of candidate genes in FM showed that polymorphism in the serotonin 2A 

receptor had significant association with FM susceptibility (overall odds ratio = 1.33), 
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while no associations were found for 5-HTT and COMT (Lee et al., 2012). Given the 

evidence for genetic factors in FM, some environmental triggers associated with FM 

have been described. Among those are physical trauma, some infections (mostly viral), 

and emotional stress (Clauw, 2009). 

Impairment of the stress responses and dysfunction of the hypothalamic-

pituitary-adrenal (HPA) axis are linked to FM, however the abnormalities found varies 

across studies (Clauw, 2009). Disturbances in the autonomic nervous system are 

described in FM including postural orthostatic tachycardia (Staud, 2008), hyperactivity 

at rest / hyporeactivity during stress (Martinez-Lavin, 2007), and abnormalities in heart 

rate variability (Staud, 2008; Lerma et al., 2011). Proinflammatory cytokines were found 

to be mildly increased in FM patients compared to controls, however the methodological 

quality of those studies was considered low thus preventing a better understanding on 

the role of cytokines in FM pathophysiology (Uceyler et al., 2011). 

Mood disorders like anxiety and depression are commonly reported in FM 

patients, but this could be attributed at least partly to sampling bias by selecting patients 

from tertiary care centers (Clauw, 2009). Sleep disturbances are part of the core 

symptoms of FM, and several recent studies provide additional support for the role of 

sleep based on questionnaires (Osorio et al., 2006; Munguia-Izquierdo and Legaz-

Arrese, 2011) and polysomnography (Shah et al., 2006) data. However, sleep 

measures determined by 24-hour actigraph use and sleep diary for 14 days failed to 

predict clinical pain levels (Anderson et al., 2012). 

Both peripheral and central sensitization have been implicated in the 

pathophysiology of FM pain, as reviewed by Staud and Rodriguez (Staud and 



 10 

Rodriguez, 2006). An interesting finding was abnormalities related to the temporal 

summation of pain or “wind-up”, which is the increased pain sensation that arises when 

identically intense stimuli are presented repeatedly; it has been shown to result from 

central mechanisms that involve the N-methyl-D-aspartate (NMDA) receptor system. 

FM patients exhibit wind-up following experimental stimuli (mechanical, thermal, 

electrical) at lower frequencies and lower stimulus intensities than controls, and after 

sensations are more intense, longer-lasting and are more painful in patients (Staud, 

2006). 

In fact, augmented sensory and pain processing in FM is well supported by 

evidence. Using sophisticated psychophysical methodology in which stimuli 

presentation was done in a random fashion, Petzke and colleagues demonstrated that 

FM patients are more sensitive to pressure and heat than healthy controls (Petzke et al., 

2003) however the increased pain sensitivity is dissociated from pain unpleasantness 

ratings (Petzke et al., 2005). Sensitivity to other stimulus modalities such as cold and 

electrical are not different between FM patients and controls, however patients do 

exhibit lower thresholds to noxious auditory tones (Clauw, 2009). One potential 

explanation for the augmented pain processing in FM is a deficiency in endogenous 

analgesics system such as the diffuse noxious inhibitory controls (DNIC) (McBeth and 

Mulvey, 2012), and this might be related to impaired serotonergic and noradrenergic 

activity but not opioidergic activity - since the latter was found to be normal or even 

increased in FM (Clauw, 2009). 

Recently other factors have been investigated for their role in FM. Obesity is 

frequently observed in FM patients (Ursini et al., 2011), and it was found to reduce their 
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quality of life (Timmerman et al., 2013). Peripheral factors as part of FM etiology have 

been investigated before but the evidence provided was considered weak (Abeles et al., 

2007), however small nerve pathology got some attention in 2013 when two studies 

reporting this were published a few months apart. In the first study published by a 

German group (Uceyler et al., 2013), they used three methods (quantitative sensory 

testing, pain-related evoked potentials, and skin punch biopsies) that converged in 

supporting impaired small nerve fiber function in FM patients. The second study used 

standard tests for clinical diagnostic criteria of small-fiber polyneuropathy (distal-leg skin 

biopsy and autonomic function testing) in FM patients and matched controls (Oaklander 

et al., 2013), and showed that over 50% of FM patients exhibited evidence of small-fiber 

polyneuropathy compared to 17.2% of controls. The fact that two different groups found 

reproducible findings is promising, even though they are not in agreement of the specific 

pathology affecting small nerve fibers (Uceyler and Sommer, 2013). 

Neuroimaging studies have provided much new information about FM 

pathophysiology, and they will be addressed separately in a later section of this chapter. 

Treatment options for FM are numerous, since the above discussed mechanisms 

may play a role for the expression of FM symptoms in each patient in different degrees 

thus an individualized treatment plan is of utmost importance (Staud, 2007). Non-

pharmacological options include physical therapy modalities (thermal, electrical 

stimulation, massage, laser, acupuncture), cognitive behavioral therapy, complementary 

and alternative therapies (body-mind techniques, dietary supplementation, physical 

manipulation), and physical exercise (Casale et al., 2008). The latter has a good level of 

evidence in reducing FM symptoms like pain and fatigue and improving the quality of life 
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(Busch et al., 2011). The pharmacotherapy for FM reported in the literature is broad, 

including several categories such as analgesics, muscle relaxants, antidepressants, 

anticonvulsants, sedative-hypnotic drugs, among others; the evidence for benefit is 

equally diverse ranging from no efficiency to those showing strong evidence of benefit 

(Clauw, 2009). Three drugs are currently approved by the U.S Food and Drug 

Administration (FDA) for treatment of FM: pregabalin (an alpha2-delta calcium channel 

ligand), duloxetine and minalcipran (both are serotonin-norepinephrine reuptake 

inhibitors) (Hsu, 2011). Despite the numerous options for treatment, prognosis of FM is 

in general somber with limited improvements over periods of up to 10 years (McBeth 

and Mulvey, 2012). A study that followed 1,555 FM patients semi-annually with 

questionnaires for up to 11 years showed no clinically meaningful symptomatic 

improvement, however 25% had at least moderate improvement of pain over time 

(Walitt et al., 2011). It has been suggested that the prognosis might depend on where a 

particular FM patient falls within the disease severity spectrum (Clauw, 2009), and this 

must be taken into account when developing a treatment plan for each individual. 

Epidemiology and health care cost of fibromyalgia 

Several investigators have assessed epidemiology of FM in the past decades. 

Wolfe and collaborators reported a prevalence of 2% in the general population, with 

3.4% and 0.5% figures for women and men respectively (Wolfe et al., 1995). McBeth 

and Mulvey in their review report an estimate of patients with symptoms fitting FM 

criteria ranging between 2-22% for clinical populations, while prevalence estimates in 

the general population fall within 1-11% (McBeth and Mulvey, 2012). A recent review of 

the worldwide epidemiology of FM described several studies in different settings and 
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countries spanning four continents (Africa, the Americas, Asia and Europe) (Queiroz, 

2013). The estimated global mean prevalence of FM was 2.7% (range = 0.4 – 9.3%), 

with a mean prevalence for women of 4.2% and for men 1.4% (female:male ratio = 3:1). 

Incidence of FM was estimated in two studies only, with one reporting an incidence of 

5.83 new cases per 1,000 persons-years for females only while the other described 

numbers of new FM cases per 1,000 person-years as 11.28 for females and 6.88 for 

males (Queiroz, 2013). 

Health care costs associated with FM are higher when compared to non-FM 

patients. Using a U.S. health insurance database to determine characteristics and 

health care costs within a 12-month period, FM patients had three-fold higher mean cost 

and four times more doctor office visits when compared to non-FM patients (Berger et 

al., 2007). More recently, a retrospective study from the Quebec provincial health plans 

reported that the annual number of visits for FM patients was 25.1 with an associate 

cost of $ 4,065, while non-FM patients had a mean of 14.8 visits and costs of $ 2,766 

(Lachaine et al., 2010). 

Brain characteristics in fibromyalgia assessed by neuroimaging techniques 

Pain research in humans has benefited from recent advancements in 

neuroimaging, since it allows probing brain functional and structural characteristics in 

vivo with minimal to no invasiveness. Numerous neuroimaging technologies have been 

used for the study of pain including magnetic resonance imaging (MRI), positron-

emission tomography, magnetoencephalography, and EEG among others (Davis, 2011). 

These techniques are being used to unravel novel information on the brain plasticity 

secondary to chronic pain states (Lee and Tracey, 2013), and may also help parse out 
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complex genetic relationships through the concept of endophenotypes, i.e., a 

measurable component (such as neuroimaging measurements) of a clinical condition 

that has a more direct link to the underlying genetics than the condition itself (Tracey, 

2011). 

Diverse neuroimaging techniques have been used to investigate brain 

characteristics of FM patients, as the numerous reviews on the subject describe 

(Williams and Gracely, 2006; Cook et al., 2007; Nebel and Gracely, 2009; Gracely and 

Ambrose, 2011; Staud, 2011; Jorge and Amaro, 2012). Here the focus will be on MRI-

based modalities, as this dissertation uses only this technique. 

MRI generates images of the body through the use of strong magnetic fields and 

radiofrequency pulses. The well studied properties of hydrogen nuclei (which are 

abundant in the human body in water molecules) when placed within a strong magnetic 

field allows investigators to manipulate several variables in order to generate brain 

images with different characteristics. In a very crude description, MRI modalities can 

generate brain images through exploring distinct magnetic properties of brain tissues, 

e.g.,: i. In high-resolution structural imaging, the gray and white matter and cerebral 

spinal fluid (CSF) can be distinguished according to their unique magnetic relaxation 

time (T1); ii. Functional MRI (fMRI) can detect the levels of blood oxygenation across the 

brain to indirectly infer neuronal activity in real time with reasonable spatial resolution; 

and iii. Diffusion weighted imaging (DWI) can assess the micro-structure of brain tissues 

by measuring the diffusion of water molecules within it. Thus the broadest division of 

MRI modalities for the study of the brain is between functional and structural. Functional 
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MRI is sensitive to changes over time of neuronal activity, while structural MRI 

measures biophysical properties of local brain tissue (Smith et al., 2004). 

Stimulus-evoked fMRI studies in FM are abundant. The first such study was 

developed by Gracely and collaborators in 2002, using blunt pressure to the thumb nail 

as stimulus (Gracely et al., 2002). They used a pressure level able to evoke pain in 16 

FM patients, and used two pressure levels in 16 controls: higher pressure level in order 

to elicit comparable subjective pain ratings or a lower pressure level that matches that 

used for the FM patients. Brain activations were similar for both groups only when 

matched for subjective pain ratings (using much greater pressure for controls), while no 

common activations were found following matched pressure level stimuli in both groups. 

These results were replicated when painful heat was used as stimulus (Cook et al., 

2004). Other notable findings using fMRI following noxious thumb pressure stimulation 

in FM patients were association of depression (Giesecke et al., 2005) and 

catastrophizing (Gracely et al., 2004) scores to brain activations that failed to be 

reproduced in subsequent studies (Jensen et al., 2010; Burgmer et al., 2011), and also 

reduced activation in rostral anterior cingulate cortex compared to controls (Jensen et 

al., 2009). Other types of stimuli and cognitive tasks have been also used in fMRI 

studies with FM patients, along with resting-state BOLD studies where the functional 

connectivity of the brain is investigated and magnetic resonance spectroscopy to 

measure neurochemical metabolites to infer brain properties related to pathology and 

pharmacological manipulation (Gracely and Ambrose, 2011). 

Structural MRI studies in FM patients are fewer. Most used voxel-based 

morphometry (VBM) to assess gray matter density / volume (Kuchinad et al., 2007; 
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Schmidt-Wilcke et al., 2007; Luerding et al., 2008; Burgmer et al., 2009; Hsu et al., 

2009; Robinson et al., 2011) or VBM with another MRI modality such as diffusion 

weighted imaging (Lutz et al., 2008) or imaging technique like positron emission 

tomography (Wood et al., 2009). Diffusion weighted imaging was used alone in an early 

study (Sundgren et al., 2007) and recently a cortical thickness analysis was done in 

conjunction with functional connectivity of stimulus-evoked BOLD measurements 

(Jensen et al., 2013) as well as a multi-modal MRI using both functional and structural 

imaging in FM patients (Ceko et al., 2013). These studies will be described in more 

details in the respective chapters on diffusion weighted (chapter 2) and high-resolution 

anatomical imaging (chapter 3). 

Rationale for investigating brain structural characteristics of fibromyalgia 

As described above, structural brain characteristics in FM patients have been 

explored mostly via VBM assessment of gray matter volume / density measurements. 

These measurements are capable of showing brain structural differences between 

chronic pain patients and controls, as shown in a recent meta-analysis (Smallwood et 

al., 2013). Neuroplasticity has long been associated with chronic pain, however it was 

unknown if brain structural changes were a cause or consequence of it (May, 2008). 

Longitudinal studies reporting pre- and post-treatment data of patients suffering from 

chronic pain secondary to osteoarthritis (Rodriguez-Raecke et al., 2009; Gwilym et al., 

2010) and low back pain (Seminowicz et al., 2011) showed that most of the brain 

structural abnormalities detected were reversible. This finding is supported by a study 

that compared older non-clinical subjects divided into 3 groups: controls, ongoing pain 

and past pain (stopped > 12 months) (Ruscheweyh et al., 2011). The ongoing pain 
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group showed gray matter decreases compared to controls, while the past pain group 

did not. Other interesting recent findings in healthy controls were that lack of habituation 

to noxious stimuli is associated with gray matter reductions (Stankewitz et al., 2013) and 

a negative association between pain ratings and gray matter density (Emerson et al., 

2014). These studies show that other variables besides patient status might explain 

gray matter morphometric differences, and those must be taken into account when 

interpreting results from clinical samples. 

Diffusion MRI can probe tissue micro-structure in a non-invasive manner, 

providing unique brain information on the microscopic scale in both health and disease 

states (Le Bihan, 2003). Two early studies reported DWI data from FM patients 

(Sundgren et al., 2007; Lutz et al., 2008). These pioneering studies, while valuable, 

were limited by the available technology, i.e., use of 1.5 Tesla MR scanners, low 

number of encoding directions, manually drawn ROIs, and focus on only 2 diffusion 

metrics (apparent diffusion coefficient and fractional anisotropy). Current MR technology 

and software packages for neuroimaging analyses allow a more extensive approach to 

DWI, for both data acquisition (higher signal-to-noise ratio from higher magnetic fields, 

greater number of diffusion-encoding directions, cardiac-gate acquisition, brain 

probabilistic atlases for region of interest selection among others) and processing 

(several available software packages for DWI data analysis) (Hasan et al., 2011; Soares 

et al., 2013). 

From the aforementioned, it seems possible that the brain structural 

characteristics in FM have been underexplored. In order to address this gap of 

knowledge, this dissertation project aimed at developing a comprehensive assessment 
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of brain micro- and macro-structural characteristics in FM patients using reference data 

from healthy, painfree control subjects. 

Objectives 

The objectives of this dissertation were: 

• To recruit a relatively large sample of FM patients and age- and sex-

matched controls and perform a detailed characterization based on 

demographic attributes, clinical measures and psychosocial instruments; 

• To determine global and regional micro-structural brain tissue 

characteristics using diffusion weighted imaging for those subjects; and 

• To do a comprehensive assessment of brain macro-structural features for 

both FM and control subjects using high-resolution anatomical imaging, 

which includes brain volume estimation, gray matter assessment, 

subcortical structures segmentation and volumetric analysis, and 

measurement of brain cortical and subcortical characteristics. 

Methods overview 

In this section, an overview of the methods used in this dissertation will be 

provided. All subjects recruited as described below participated in the studies reported 

in subsequent chapters, and their data (demographic characteristics, clinical measures, 

questionnaires scores) were used accordingly where appropriate for particular analyses 

as outlined in each chapter. 

Subjects 

Study participants consisted of 30 female FM patients and 30 age-matched 

healthy females. Participants were recruited by referrals from local rheumatologists and 
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through advertisements in the local community. A calibrated examiner assessed all 

subjects using the 1990 ACR classification criteria (Wolfe et al., 1990). Additionally, FM 

patients were also assessed using the ACR 2010 diagnostic criteria (Wolfe et al., 2010). 

Inclusion criteria for FM patients were: 1) female patients with age between 18 and 64 

years; and 2) fulfillment of the ACR 1990 FM classification criteria. Exclusion criteria for 

all subjects were: 1) significant hearing loss (determined by self-report and hearing 

screening) or the use of hearing aid; 2) medical conditions capable of worsening 

physical functional status independent of FM (e.g., morbid obesity, cardiopulmonary 

disorders, uncontrolled hypertension, uncontrolled endocrine or allergic disorders, 

disorders of vestibular system, renal disorders, seizures, psychiatric disorders requiring 

hospitalization ≤ 6 months, cancer within the last 2 years or current chemotherapy / 

radiation treatment); 3) current substance abuse; 4) pregnancy; or 5) any typical MRI 

contraindication, including claustrophobia. Patients taking opioid medications on a 

regular basis were also excluded. Participants were allowed to continue with their 

regular medication regimen; however, they were asked to avoid any analgesic 

medication 24 hours prior to the MRI session. Healthy controls reported no current 

chronic pain condition at the time of enrollment. Informed consent was obtained from all 

study participants for procedures approved by the Institutional Review Board at the 

University of North Carolina (UNC) at Chapel Hill.  

Data collected for this dissertation were part of a larger project that included 

psychophysical and behavioral testing done for all subjects in separate visits, in addition 

to a single MRI scanning session where multi-modal MRI data were collected (stimulus-
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evoked BOLD, resting-state BOLD, resting-state arterial spin labeling) in addition to the 

herein reported diffusion weighted and high-resolution T1-weighted anatomical imaging. 

Demographic characteristics and clinical measures 

Age, weight and height were collected from all subjects by self-report. We 

assessed handedness by using the scale proposed by Chapman and Chapman 

(Chapman and Chapman, 1987). It consists of 13 items that describes several specific 

activities where the participant must answer, “which hand you ordinarily use for each 

activity” (1-right, 2-either, 3-left). It yields a summed score that can range from 13 

(completely right-handed) to 39 (completely left-handed). We used the cut-off ranges 

suggested by those authors: right-handed = 13-17, left-handed = 33-39, ambilateral = 

18-32. 

FM patients reported the average pain level in the past 2 weeks using a 0-100 

numerical rating scale (NRS; anchors: 0 = No pain, 100 = Most intense pain imaginable). 

They were also asked to report the time in years since the onset of their widespread 

pain. At the day of the MRI scanning, all participants were asked to rate their current 

pain level using the 0-100 NRS, and they also rated separately their current pain 

intensity and pain unpleasantness using the 0-20 Gracely’s box scales (Gracely et al., 

1978). 

Questionnaires 

Measures of affective distress 

Depressive symptoms were measured using the Beck Depression Inventory 

(BDI) (Beck et al., 1961). The BDI is a 21-item questionnaire that measures symptoms 

and attitudes related to depression by rating their intensity between 0-3, and it has been 
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extensively validated (Beck et al., 1988). The sum of all items gives the total score, 

which ranges between 0-63. 

Level of trait anxiety was measured using the State-Trait Anxiety Inventory (STAI 

Y2) (Spielberger et al., 1983). Participants rated how they generally feel by answering 

each of the 20 items using a 4-category scale (1 = Almost Never; 2 = Sometimes; 3 = 

Often; 4 = Almost Always). The total score is the sum of all items scores, ranging from 

20 to 80. 

Measure of psychosocial stress 

The perceived stress scale (PSS) is 10-item scale that assesses the perception 

of stress (Cohen et al., 1983). Participants indicate for each item how they felt or 

thought in the previous month using a 5-category scale (Never, Almost Never, 

Sometimes, Fairly Often, Very Often). The total perceived stress score is the sum of the 

weights of all items (0-4), ranging from 0 to 40. 

Measure of coping 

The Coping Strategies Questionnaire-Revised (CSQ-R) is a revised version of 

the originally proposed CSQ (Rosenstiel and Keefe, 1983), and it is composed of 27 

items that are related to the strategies used by individuals to cope with pain. For each 

item, the participants indicate how frequent they engaged in a particular coping strategy 

using a 7-category numerical scale (anchors: 0 = Never do that; 6 = Always do that). Six 

subscales measuring different strategies used by the individual are derived: 

catastrophizing (range for the subscale items sum = 0-36), distraction (0-30), ignoring 

pain (0-30), distancing from pain (0-24), coping self-statements (0-24), and praying (0-

18). 
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Measure of somatic awareness 

Somatic awareness, or the general tendency to endorse physical symptoms, can 

be estimated through the Pennebaker Inventory of Limbic Languidness (PILL) 

(Pennebaker, 1982). This questionnaire is composed of 54 items that describes 

physical symptoms and the participant answers how often each occur in a 5-category 

scale (Never or almost never have, Less than 3 or 4 times per year, Every month or so, 

Every week or so, More than once every week). The PILL summary score was derived 

by summing the scores for each of the 54 items. 

Additional questionnaires (pain descriptors, sleep quality) 

The short-form McGill pain questionnaire (SF-MPQ) provides information on the 

dimensions of clinical pain (Melzack, 1987). The version used in the present study 

includes the 15 pain descriptors that the participant must rate the intensity in a 4-

category scale (None, Mild, Moderate, Severe). The pain descriptors can be divided in 

sensory or affective, and by summing the respective items two scores are formed 

(range for sensory score = 0-33; affective score = 0-12). 

Sleep quality was assessed by the Pittsburgh Sleep Quality Index (PSQI) 

(Buysse et al., 1989), which has 19 questions where the participant reports different 

aspects of their sleep in the last month. These 19 items are then combined in 7 

component scores (Subjective sleep quality, Sleep latency, Sleep duration, Habitual 

sleep efficiency, Sleep disturbances, Use of sleep medication, Daytime dysfunction) 

where each ranges from 0 (no difficulty) to 3 (severe difficulty). A global PSQI score can 

be derived by summing all components, ranging from 0 to 21 according to the degree of 

severity in each area as described by the components’ scores. 
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MRI scanning session 

All participants underwent a single MRI scanning session at the Biomedical 

Research Imaging Center at UNC-Chapel Hill, using its 3-Tesla Trio Siemens MR 

scanner with a 12-channel head coil. Prior to entering the scanner room participants 

filled the 0-100 NRS for current pain and the Gracely’s box scales for pain intensity and 

unpleasantness, and they were instructed on what to expect during the scanning (high 

level of noises and vibrations, avoidance of head motion during imaging acquisition, 

ability to communicate with investigators at any time if needed). Once in the scanner 

room, participants were fitted comfortably on the scanner bed with a leg support pillow. 

Their head was padded with foam pads to minimize movements and ear muffs were 

used for hearing protection. A vitamin E capsule was attached to the right temple of the 

participants’ head to avoid right-left ambiguities during imaging data processing and 

analysis. Physiological monitoring was done by fitting a peripheral pulse oximeter to the 

participant’s left index finger and a respiration belt. Communication with participants 

was established via intercom in between imaging runs. After all imaging data were 

acquired, participants were removed from the scanner and debriefed for any discomfort 

or problems during the scanning. 

Details for diffusion weighted and high-resolution anatomical imaging acquisition 

parameters will be offered in the respective chapters. 

Statistical analysis 

Results are reported in the format of mean ± SD, unless otherwise stated. Data 

distribution was checked via histograms and tested using the Kolmogorov-Smirnov test. 

Data fitting the normal distribution were tested for between-group comparisons using 
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the independent samples t-test (2-tailed). Non-normally distributed data were tested 

using the independent samples Mann-Whitney U test (2-tailed). All statistical tests were 

considered significant at p < 0.05. 

Results 

Demographic characteristics and clinical measures 

Subjects’ demographic characteristics and clinical measures details are offered 

in Table 1.1. We used the ACR 1990 FM classification criteria as the inclusion criterion 

for the patient group, and found discordance in 3 patients that met the classification but 

did not fit the ACR 2010 FM diagnostic criteria. As a result of the matching procedure, 

the participants’ age did not significantly differ between groups (FM patients mean age ± 

SD: 42.9 ± 12.2 years; controls: 44.2 ± 11.7 years; p = 0.675), with a wide range 

observed (FM patients minimal and maximum age: 23 - 63; controls: 23 - 61). Body 

mass index (BMI) was calculated for all subjects in units of kg/m2 and it was significantly 

different between groups, with FM patients and controls mean BMI at the opposite ends 

of the range for the “overweight” category (FM: 29 ± 6.8; controls: 25.6 ± 5.5; p = 0.037) 

(http://www.nhlbi.nih.gov/health/public/heart/obesity/lose_wt/risk.htm). Handedness was 

similar between groups, with the major difference being in the “right” and “ambilateral” 

categories. As noted by its proponents, the cut-off ranges are “necessarily arbitrary” 

(Chapman and Chapman, 1987). Using the individuals’ scores and assigning right-

handedness to a range of 13-25 and left-handedness to 26-39, FM patients and controls 

included 27 and 28 right-handed participants respectively which was not significantly 

different (p = 0.285). 
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The duration of widespread pain for FM patients was 11.4 years (± 9.3) on 

average, with a range of 1 to 40 years. Average pain in the last 2 weeks was a minimum 

of 25 and a maximum of 85 using the 0-100 NRS (mean ± SD: 57.1 ± 16.3). At the day 

of MRI scanning, FM patients rated their current pain (0-100 NRS: 47.8 ± 19), current 

pain unpleasantness (0-20: 8.2 ± 2.9) and intensity (0-20: 9.7 ± 3.4) significantly 

different than controls (p < 0.0001) as expected. 

Questionnaires 

Measures of affective distress, psychosocial stress, coping, and somatic 

awareness were markedly higher for FM patients compared to controls (Table 1.2). 

Depressive symptoms and trait anxiety as measured by BDI and STAI Y2, respectively, 

were significantly greater for the patient group (p < 0.0001). Psychosocial distress as 

perceived by participants was highly significantly different between groups (FM patients: 

18.8 ± 8.3; controls: 9.7 ± 6; p < 0.0001). From the coping strategies measured by the 

CSQ-R, only catastrophizing (p < 0.0001) and ignoring pain (p < 0.017) reached 

statistical significance for group differences. Somatic awareness, derived from PILL 

scores, was significantly greater for FM patients (153.8 ± 36.7) compared to controls 

(84.9 ± 20.8) (p < 0.0001). 

As expected, scores for sensory and affective pain descriptors were much 

greater for the patient group (p < 0.0001 for both). Finally, moderately reduced sleep 

quality was present for the FM patients according to the PSQI global score (10.9 ± 3.4) 

but not for controls (3.2 ± 2) (p < 0.0001). 
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Discussion 

The present subject sample was well characterized using several demographic 

characteristics and clinical measures, with results reported here consistent with 

previous literature including BMI (Ursini et al., 2011; Timmerman et al., 2013). Many of 

the psychosocial measures described have been used in neuroimaging studies of FM 

patients (Schmidt-Wilcke et al., 2007; Jensen et al., 2010; Burgmer et al., 2011; Jensen 

et al., 2013). Assessment of sleep quality in FM using the PSQI has been performed 

previously, with similar results (Osorio et al., 2006; Munguia-Izquierdo and Legaz-

Arrese, 2011). Given the use of validated classification criteria for FM, the 

characterization of our subjects using different dimensions of clinical and psychosocial 

measures and also the relatively large sample size, the results reported here and 

subsequent chapters are likely representative of the FM patient population. 
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Tables 

Table 1.1. Demographic characteristics and clinical measures. 
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Table 1.2. Questionnaires scores. 
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CHAPTER 2: ASSESSMENT OF BRAIN MICRO-STRUCTURAL 
CHARACTERISTICS OF FIBROMYALGIA PATIENTS USING DIFFUSION 

TENSOR IMAGING 

Introduction 

Augmented pain and sensory processing is considered a main feature of 

fibromyalgia (FM) presentation. At least part of its putative mechanisms likely originate 

from the central nervous system (CNS) with several lines of evidence supporting this 

view (Clauw, 2009), including central sensitization mechanisms such as the “wind-up” 

phenomenon and impaired pain modulatory systems being described in FM patients. 

Neuroplastic brain changes in chronic pain is well described (Latremoliere and Woolf, 

2009; Siddall, 2013), and it is corroborated by neuroimaging studies (Seifert and 

Maihofner, 2011). Neuroplasticity within the brain is one putative mechanism in FM and 

concurs with a role for the CNS in its pathophysiology, with functional, neurochemical, 

and structural brain abnormalities in patients when compared to controls being 

described (Gracely and Ambrose, 2011). 

Recent studies of FM using magnetic resonance imaging (MRI) modalities have 

focused on macro-structural brain characteristics, with the most common approach 

being voxel-based morphometry (VBM). Two studies investigated micro-structural 

features of the brain in FM patients using diffusion MRI (Sundgren et al., 2007; Lutz et 

al., 2008). Their results only partially overlapped with findings of white matter (WM) 

abnormalities in the right thalamus. The later study reported several other WM 
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dissimilarities between FM patients and controls, and attributed these discordant results 

between both studies to methodological differences (Lutz et al., 2008). These 

pioneering studies did not benefit from recent methodological improvements in diffusion 

MRI, including advancements in MR scanners technology, computational methods and 

availability of dedicated software packages (Hasan et al., 2011; Soares et al., 2013). 

Recently a study using multi-modal MRI including diffusion reported regional WM 

abnormalities in FM patients relative to age-matched controls (Ceko et al., 2013) 

The main goal of the present study was to determine brain micro-structural 

characteristics in FM patients, and assess potential WM abnormalities using age-

matched controls as reference. Diffusion MRI allows this in a non-invasive manner, by 

measuring water molecule diffusion within the brain tissues. It is a versatile MRI 

modality not only for research but also for clinical uses, e.g., detection of acute brain 

ischemia (Sundgren et al., 2004). Our main focus was to assess micro-structural 

features of: i. WM tracts using tract-based spatial statistics (TBSS), and ii. Whole brain 

and pain-related regions of interest (ROI). We hypothesized that FM patients would 

present both global and regional brain WM abnormalities when compared to matched 

controls, including pain-related areas of the brain. 

Methods 

Imaging acquisition parameters 

Subjects were accommodated in the MRI scanner as described in chapter 1, 

methods section. The diffusion weighted imaging (DWI) data acquisition consisted of a 

single run using an echo-planar imaging sequence (repetition time (TR) ~ 8,000 ms; 

echo time (TE) = 83 ms; field of view = 256 mm; 2 x 2 x 2 mm3 voxels; parallel imaging 
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factor = 2 (GRAPPA)) acquired along 42 non-collinear, non-coplanar directions (b = 

1,000 s/mm2). Two dummy volumes were acquired and discarded to allow the 

longitudinal magnetization to reach a steady state prior to data acquisition. Seven non-

diffusion weighted images (B0; b = 0 s/mm2) were acquired at equidistant points 

throughout the acquisition at a ratio of one B0 image for every seven diffusion weighted 

images – within the range of suggested optimum ratios for assumptions of isotropic and 

anisotropic tensors (Jones et al., 1999; Alexander and Barker, 2005). A total of 68 slices 

oriented to the axial plane (no gap) were collected to ensure whole brain coverage (from 

vertex to second cervical spinal process). The image sequence was synchronized to the 

subject’s cardiac cycle via a pulse oximeter signal with no delay (cardiac gating), 

avoiding data acquisition when the brain is susceptible to cardiac pulsatility which can 

severely corrupt diffusion weighted data (Jones and Leemans, 2011). We also acquired 

fieldmap images (TR = 800 ms; TE1 = 4.92 ms, TE2 = 7.38 ms; field of view = 256 mm; 

4 x 4 x 2 mm3 voxels; 68 slices) immediately prior to the DWI data acquisition, in order 

to correct for geometric distortions secondary to magnetic field inhomogeneities 

(Jezzard, 2012). 

Diffusion tensor imaging, tensor model and related metrics 

Diffusion is a physical process, where molecules present a constant random 

thermal motion at temperatures above absolute zero. This was described by Robert 

Brown in 1828 (Jones, 2009), thus this is also known as “Brownian motion”. Despite its 

trajectory being a “random walk” in 3D space, Einstein showed in 1905 that one 

characteristic of diffusion could be characterized if a large enough number of molecules 

are free to diffuse: the diffusion coefficient D (in units of mm2/s) is proportional to the 
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mean square displacement of all molecules, 〈∆r2〉, divided by the number of dimensions, 

n, and the diffusion time, t (Alexander et al., 2007; Jones, 2009): 

• D = 
!∆!!!
!!∆!

 

At body temperature (37 Cº) a cube of water of an approximate volume of 2.5 

mm3 present a diffusion coefficient of 3 x 10-3 mm2/s, thus following an observation time 

of 30 ms water molecules would have displaced approximately 25 µm in all directions 

on average (Jones, 2009). In the brain, however, water molecules are not free to diffuse 

as there are many barriers including cellular membranes, myelin sheaths and 

cytoskeleton macromolecules. Therefore diffusion within brain tissues is approximately 

four times smaller compared to “free” diffusion, and it is thus called apparent diffusion 

coefficient (ADC) (Jones, 2009). 

Diffusion has contrasting features in gray matter (GM) and WM. In the former 

diffusion occurs in all directions due to a convoluted tissue orientation (isotropic), while 

in the latter there is a high directionality component of tissue orientation from the 

bundling of axonal fibers, i.e., anisotropy. Thus the diffusion magnitude within the brain 

WM as measured by the ADC will depend on the direction used for measurement, 

making a single ADC measurement insufficient to fully characterize water diffusion in 

WM. Where diffusion is isotropic (GM, cerebral spinal fluid (CSF)), the probability of the 

mean displacement of water molecules can be represented by a diffusion sphere; for 

anisotropic diffusion however, when diffusion has a preferential main direction such as 

within WM, this is better described by a diffusion ellipsoid (Figure 2.1 A). 

In diffusion MRI magnetic gradients are applied in multiple directions to allow the 

characterization of diffusion within the brain parenchyma. Using a diffusion weighting 
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factor (b-value), a brain image composed of several volume elements (voxels) can be 

acquired by imposing magnetic gradients on a particular direction. Non-diffusion 

weighted images where the b-value is zero are also acquired. By measuring the water 

displacement in multiple directions from the diffusion-weighted and non-diffusion 

weighted images the diffusion can be quantified in a voxelwise manner. 

In order to adequately represent diffusion in an anisotropic medium such as WM, 

data from diffusion MRI can be modeled in a voxel-by-voxel basis using a diffusion 

tensor (Basser et al., 1994a; Basser et al., 1994b), i.e., diffusion tensor imaging (DTI). 

The diffusion tensor D is a 3 x 3 symmetric matrix, where the diagonal elements 

represent diffusivities along three orthogonal axes (Dxx, Dyy, and Dzz) and correlations 

between those are represented by the symmetric off-diagonal elements (Dxy = Dyx, Dxz = 

Dzx, and Dyz = Dzy): 

 

          D = 
 
 

 

The diffusion ellipsoid can be described by applying a mathematical procedure to 

the diffusion tensor matrix, i.e., diagonalization, so that its internal frame of reference (x’, 

y’, z’) matches the principal axes of the measurement frame (x, y, z). In such case, all 

off-diagonal elements are zero and the orientation of the ellipsoid main axes is given by 

eigenvectors (ε1, ε2, ε3), with the orientation of the tensor depicted by the principal 

eigenvector (ε1) – its direction is assumed to be parallel to the dominant fiber orientation 

within the voxel being measured. The degree of diffusion along the eigenvectors is 

given by the respective eigenvalues: λ1, λ2, λ3 (corresponding to Dxx, Dyy, and Dzz); thus 

Dxx Dxy Dxz 

Dyx Dyy Dyz 

Dzx Dzy Dzz 
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the displacement within the ellipsoid in each axis is scaled to the square root of the 

corresponding eigenvalue (according to Einstein’s formula) (Winston, 2012). The 

eigenvalues are, by definition, sorted according to their magnitude, i.e., λ1 > λ2 > λ3 

(Figure 2.1 A). 

From the eigenvalues determined from the tensor model it is possible to derive 

scalar measurements that allow simplification of the diffusion data (as opposed to have 

brain images where each voxel contains a 3 x 3 matrix). These quantitative parameters 

were originally proposed by Basser and Pierpaoli in 1996 (Basser and Pierpaoli, 1996), 

and they include: 

• Trace, which measures the magnitude of diffusion: 

o Sum of the three eigenvalues: λ1 + λ2 + λ3 

• Mean diffusivity (MD), the mean diffusion across all three axes: 

o Average of the three eigenvalues :(λ1 + λ2 + λ3) / 3 

• Fractional anisotropy (FA) is an anisotropy index, that measures the 

fraction of the tensor that can be attributed to anisotropy parallel to the 

orientation of the main fiber tract (in the formula, L = λ): 

o FA = !
!
   (!!!!")!!  (!!!!")!!  (!!!!")!

!!!!  !!!!  !!!
 

Both trace and MD have units of mm2/s, while FA is dimensionless and 

normalized so that its values range from 0 (isotropic diffusion) to 1 (anisotropic diffusion, 

i.e., constrained along one axis). 

MD is known to have remarkably similar values across GM and WM (similarly to 

the ADC) - around 7 x 10-4 mm2/s (Winston, 2012) - and show increased values in areas 

with local inflammation / edema (Alexander et al., 2007) while increased cellularity 
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(Gauvain et al., 2001) and cellular swelling (Benveniste et al., 1992) reduces MD. FA 

values for healthy WM have a peak close to 0.3 (Alexander et al., 2007), with values 

around 0.2 for cortical GM, 0.2-0.4 in deep GM and a wider range in WM (circa 0.45 in 

subcortical WM to about 0.8 in the corpus callosum) (Beaulieu, 2009). Given such 

variability for FA values across the brain it becomes clear that only similar brain regions 

can be compared using this measure, i.e., comparing the FA from area “X” to area “Y” is 

meaningless to infer underlying micro-structural differences such as axonal density or 

degree of myelination (Beaulieu, 2009). It has been reported that the parallel disposition 

of WM bundles is key for diffusion anisotropy (Alexander et al., 2007), due to the 

presence of axonal membranes. Myelination has a secondary modulatory role for FA, 

as unmyelinated fibers also present anisotropic diffusion and animal models of 

dysmyelination (failure to form normal myelin) showed an average FA reduction of only 

15% (range 0-32%) (Beaulieu, 2009). Hence several factors can impact the FA value 

measured within a voxel including axonal count and density, myelination, fiber 

organization, and crossing fibers (Winston, 2012). 

It is important to note that FA does not describe the tensor shape or distribution 

in its entirety, as different eigenvalue combinations can result in similar FA values. Thus 

studies have used the eigenvalues separately or in combination to provide a more 

specific understanding of WM micro-structure (Alexander et al., 2007; Winston, 2012): 

• Axial diffusivity (AD) is the diffusivity parallel (longitudinal) to the main 

axis of diffusion: 

o Represented by λ1 
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• Radial diffusivity (RD) is the diffusivity perpendicular (orthogonal) to the 

main axis of diffusion: 

o Average of the two eigenvalues orthogonal to λ1: (λ2 + λ3) / 2 

These two measures, as they are derived from the eigenvalues directly, also 

have units of mm2/s. AD is considered a marker for axonal damage (reduced AD ≈ 

axonal degeneration), while increases in RD reflects myelin degradation (Alexander et 

al., 2007; Winston, 2012). 

Lastly, the mode (MO) of anisotropy can specify the geometric shape of the 

ellipsoid (Ennis and Kindlmann, 2006) (in the formula, L = λ): 

• MO = !!  !  !!  !  !!

(!!!!")!!  (!!!!")!!  (!!!!")!
! 

Its values range from -1 to +1 (dimensionless), describing a tensor that is disc-

shaped (planar anisotropy) to one that is a tubular (linear anisotropy) respectively 

(Smith and Kindlmann, 2009; Winston, 2012). MO values closer to -1, indicating a disc-

shaped (oblate) tensor where λ1 ≈ λ2, is suggestive of crossing fibers while values 

closer to +1 (prolate tensor) indicates primarily a single dominant fiber (λ2 ≈ λ3) (Fig. 2.1 

B). MO is orthogonal (mathematically independent) to FA, and it can provide important 

additional information about diffusion within the brain. This importance can be 

appreciated when assessing FA measurements, as brain areas with crossing WM tracts 

(lower MO values) will present lower FA values in the absence of any WM abnormality 

(Alexander et al., 2007). 

DWI preprocessing steps 

All processing steps for diffusion weighted images were done using the Oxford 

Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB) software 
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library (FSL v. 5.0.5) (Smith et al., 2004; Jenkinson et al., 2012) 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). DWI and fieldmap images were reoriented to the 

Montreal Neurological Institute (MNI) brain template using the FSL tool “fslreorient2std”, 

and then loaded into the visualization tool “FSLview” to be visually checked for any 

obvious artifacts. Eddy current and motion artifact correction was done using the FMRIB 

Diffusion Toolbox (FDT), followed by application of the rotational component of the 

transformation for each volume to the gradient direction encoding vectors. The resulting 

eddy current and motion corrected DWI images were visually inspected. Individual brain 

masks were derived from the first B0 image using the Brain Extraction Tool (BET) (Smith, 

2002). Fieldmap images were processed using the FSL tool “fsl_prepare_fieldmap”, and 

then used to correct geometric distortions in the DWI images as implemented by FSL’s 

FUGUE, and the resulting output was visually inspected for artifacts. 

Finally, a diffusion tensor model was estimated from the undistorted DWI images 

using weighted linear least-squares regression as implemented by FDT (Behrens et al., 

2003). An image of the sum of squared error was also produced by FDT and it was 

visually checked for artifacts, as well as the calculated FA, MD, AD and MO parametric 

maps. RD images were calculated as the average of the maps for the two radial vectors 

eigenvalues (λ2, λ3) using the FSL tool “fslmaths”. 

Tract-based spatial statistics 

Tract-Based Spatial Statistics (TBSS) (Smith et al., 2006) were used to carry out 

voxelwise analysis of the FA data for FM patients and controls. TBSS processing steps 

include: 1) non-linear registration of the FA maps to a 1 x 1 x 1 mm3 standard space FA 

image as target (FMRIB58_FA: high-resolution average of 58 FA maps from healthy 
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male and female subjects aged between 20-50 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FMRIB58_FA)); 2) a mean FA image derived from all 

subjects was created, then thinned to represent the center of the major WM tracts 

common to all subjects, i.e., a mean WM skeleton image; 3) the mean FA skeleton was 

thresholded at 0.2 to include FA values with acceptable cross-subject variability, then 

each individual’s normalized FA map was projected into the skeleton resulting in a 4D 

image file containing the skeletonized FA data for all subjects. 

Non-FA images of the additional DTI metrics (AD, MD, RD, MO) were also 

processed using TBSS. Each of the non-FA images was registered into standard space 

by applying the non-linear registration calculated for FA images, then projected onto the 

original mean FA skeleton. Therefore for each non-FA DTI metric a 4D skeletonized 

image was generated, where voxels in the same spatial location contain each of those 

metrics values respectively. 

Statistical analyses 

TBSS analysis (voxelwise) 

A between-group permutation-based nonparametric t-test (Nichols and Holmes, 

2002) using age as a covariate of no interest was done, using the 4D skeletonized 

mean FA image as input for the FSL tool “randomise” with 5,000 permutations and 

using the threshold-free cluster enhancement option. This option allows the detection of 

cluster-like formation(s) of significant voxels with no arbitrary thresholding while 

controlling for family-wise error rate across space, therefore correcting for multiple 

comparisons (Smith and Nichols, 2009). This way, voxelwise statistics reported here 

were tested for significance at p-value < 0.05, corrected. 
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The WM skeleton is thin (few voxels wide) thus hard to visualize when overlaid 

onto a brain image, therefore we used the FSL tool “tbss_fill” to thicken the skeleton 

areas with significant group differences for enhanced visualization. Location of 

significant differences between groups were identified using FSLview and the built-in 

anatomical atlases (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), as well as a MRI-based 

atlas of human WM (Oishi and Crain, 2011). 

Whole brain, WM skeleton and pain-related region of interest analyses 

To perform between-group comparisons for the whole brain and WM skeleton, 

each DTI parametric map was averaged across the whole brain and across all voxels 

within the WM skeleton for each subject. 

Additionally, a region of interest (ROI) analysis was done based on a priori brain 

anatomical regions that are commonly activated following noxious stimulation (Peyron 

et al., 2000; Apkarian et al., 2005), including a subcortical structure (thalamus) as well 

as cortical areas including the primary (SI) and secondary (SII) somatosensory cortices, 

the insula, and the anterior cingulate cortex (ACC). The inferior parietal lobule (IPL) was 

also included, which is a cortical area that integrates somatosensory and visual inputs 

and was activated following noxious pressure stimulus to the thumbnail during stimulus-

evoked functional MRI in the participating FM patients and controls (unpublished data). 

A binary mask image was generated for each of those ROIs using three probabilistic 

atlases available in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases): the Harvard-Oxford 

cortical and subcortical atlases (Desikan et al., 2006) and the Jülich histological atlas 

(Eickhoff et al., 2006). From the Harvard-Oxford atlases ROI masks for right and left 

thalamus and insula were derived, while the ACC mask was built as a single region; 
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right and left SI, SII, and IPL were derived from the Jülich atlas. Since the cortical ROIs 

were constructed from probabilistic atlases moderately thresholded at p = 0.25, they 

encompassed voxels beyond the cortical mantle and included WM voxels within it, a 

method used previously for DTI measurements (Stein et al., 2012). These WM voxels 

preferentially include afferent/efferent fibers associated with the cortical region proximal 

to it (Salat et al., 2009a). We extracted the mean for each DTI metric across all voxels 

within each ROI, as well from the WM skeleton voxels within it (Figure 2.2). 

Between-group differences were assessed using analyses of covariance with 

age as a covariate of no interest. All statistical tests were done using SPSS v. 18, with 

significance thresholding of p < 0.05. 

We also assessed associations of DTI metrics measured in the whole brain and 

ROIs with subject’s clinical measures and psychosocial questionnaire scores using the 

Pearson’s correlation coefficient “r”. Correlations with p-value < 0.01 were considered 

significant. 

Results 

Subjects demographics characteristics, clinical measures and questionnaires 

A full description of the FM patients and controls is presented in chapter 1, 

results section. 

TBSS analysis (voxelwise) 

Between-group WM skeleton-based comparisons, corrected for age, identified 

several clusters where FM patients had lower FA compared to controls (Table 2.1; 

Figures 2.3 to 2.6). The largest cluster (2,305 voxels) included the right corticospinal 

tract and WM adjacent to the right SI and the primary motor cortex (M1), and several 
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clusters summing 2,729 voxels were localized within the corpus callosum, including the 

genu, body and splenium. Two clusters were localized in the anterior limbs of the 

internal capsule (IC) and anterior corona radiata, one on the left (709 voxels) and 

another on the right (431 voxels) side. The left corticospinal tract, and WM adjacent to 

the left SI and M1 were part of another cluster with 568 voxels. Other clusters were 

localized in the inferior fronto-occiptal, inferior longitudinal and superior longitudinal 

fasciculi (1,984 voxels), while 140 voxels were localized deep within WM. No significant 

cluster was found for FM having increased FA compared to controls.  

Group differences for other DTI metrics included significant increases of RD 

(10,356 voxels) and MD (10,805 voxels) for the patient group, while MO showed 

reductions for patients in a limited spatial distribution (1,526 voxels) – see description 

below. No group differences for AD were found in either direction. 

Figures 2.3 to 2.6 show the spatial distribution of significant clusters in which FM 

patients had lower FA values compared to controls (left panel), and where FM patients 

had greater RD values (right top panel) and greater MD values (right bottom panel) 

(green = WM skeleton; red = FA, blue = RD, purple = MD, yellow = overlap between FA 

and RD / MD in the right-sided panels). Figure 2.3 and 2.4 show sagittal and axial views 

respectively of significant FA differences in the corpus callosum (left panel); overlap of 

FA and RD are noticeable in the genu and body, and also anterior limbs of IC (right top 

panel) while MD mostly overlaps FA in the genu and right anterior limb of IC (right 

bottom panel). Corticospinal tracts had significant reduction of FA in patients bilaterally 

(Figure 2.5, left panel), with MD differences overlapping both sides while RD showed a 

similar pattern however slightly less distributed (right bottom and top panels, 
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respectively). WM tracts close to SI and M1 with reduced FA in patients are shown in 

Figure 2.6 left panel, with the tracts showing overlap of RD and MD differences depicted 

on the right top and bottom panels respectively. 

Significantly reduced MO in patients as compared to controls was spatially 

limited compared to the other DTI metrics’ parametric maps, with differences mostly 

over the genu, body and splenium of corpus callosum (765 voxels), and parts of the 

corona radiata (761 voxels) (data not shown). No increases of MO for patients 

compared to controls were significant. 

Whole brain, WM skeleton and pain-related region of interest analyses 

Comparing DTI metrics across the whole brain showed no group differences for 

FA (p = 0.32), however AD and MD were significantly reduced for FM patients 

compared to controls (p = 0.023 and p = 0.037 respectively) while RD approached 

significance (p = 0.051) (Figure 2.7). For measures within the WM skeleton no 

significant differences were found, although FA reduction in patients compared to 

controls was close to significance (p = 0.065). 

ROI analyses revealed an interesting pattern (Table 2.2 and 2.3). When 

comparing DTI metrics across all voxels within each ROI (non-skeletonised), no 

significant differences were found for FA (0.093 < p < 0.984) but the left and right SI in 

FM patients had significantly reduced AD (p = 0.034 and p = 0.004 respectively), RD (p 

= 0.045; p = 0.005) and MD (p = 0.041; p = 0.004) compared to controls. The right 

inferior parietal lobule also showed a similar reduction for patients but did not reach 

significance (p-value for AD = 0.052; RD = 0.066; MD = 0.06) (Table 2.2). 
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Assessing metrics for WM skeleton voxels within each ROI showed more varied 

differences (Table 2.3). For WM skeleton FA and RD, both left and right SI showed 

significant differences in patients compared to controls (reduced FA in left and right SI: 

p = 0.002 and p = 0.001 respectively; increased RD: p = 0.004 and p = 0.011) while for 

MD only left SI showed a significant increase (p = 0.016). Compared to controls, FM 

patients showed significant reductions in AD, RD and MD in the left insula (all at p < 

0.001). 

Association of DTI metrics with clinical and psychosocial measures 

When assessed in the whole brain (non-skeletonised), DTI metrics showed 

significant correlations with age in FM patients (r for FA = -0.54, AD = 0.49, RD = 0.56; 

MD = 0.54) and controls (AD = 0.65; RD = 0.68; MD = 0.67), indicating that increased 

age is associated with reduced FA and increased AD, RD, and MD. Within the WM 

skeleton, negative correlations between age and FA (r = -0.47) and between BMI and 

AD, RD, and MD were found only for patients (-0.68 < r < -0.47) (Table 2.4), thus 

increased BMI in patients is correlated with decreases in AD, RD and MD. No 

associations for DTI metrics and pain characteristics were found, and no psychosocial 

measures were significantly correlated with DTI metrics for either group at p < 0.01. 

For FM patients, non-skeletonised ROIs showed significant negative associations 

with age and FA in several ROIs except left SII, ACC and left IPL (-0.62 < r < -0.38), 

while AD, RD, and MD were positively associated with age in most ROIs except SI 

bilaterally and ACC (0.48 < r < 0.68) (Table 2.5). Controls showed no significant 

associations of age and FA, however AD, RD, and MD were positively associated with 

age in all ROIs but left and right thalamus and left insula (0.45 < r < 0.66) (Table 2.5). 
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For correlations of DTI metrics within the WM skeleton, FM patients showed 

negative associations for age and FA (-0.63 < r < -0.54) and positive associations for 

other metrics (AD, RD, MD; 0.47 < r < 0.60) in the left and right thalamus (Table 2.6). 

Controls showed only negative correlation between age and left IPL FA (r = -0.47). In 

FM patients only, significant negative correlations of BMI were found in the right 

thalamus and AD (r = -0.50); right SI and left SII and AD, RD, and MD (-0.73 < r < -

0.48); and left IPL for AD (r = -0.52) and both IPL for RD and MD (-0.60 < -0.48) (Table 

2.6). 

Discussion 

Global and regional WM abnormalities in the brain of FM patients, as compared 

to age- and sex-matched healthy controls, are suggested based on the results reported 

here. Supporting a role for the CNS in FM pathophysiology, global abnormalities were 

found by reductions of diffusion anisotropy and increased radial and mean diffusivity 

along WM tracts associated with multiple functional roles including sensory, motor, 

visual, auditory and inter-hemispheric connectivity. Regional differences of diffusion 

patterns were also revealed in pain-related brain locations, further supporting CNS 

micro-structural abnormalities as a putative mechanism in FM. 

WM skeleton abnormalities in TBSS 

WM tracts are the “information highways” in the CNS, and have been traditionally 

divided in three groups according to their connectivity (Jellison et al., 2004; Wycoco et 

al., 2013): 

1. Projection fibers connect cortical areas with subcortical (deep nuclei) 

structures, brainstem, cerebellum and spinal cord, and can be subdivided 
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in corticofugal (efferent) and corticopetal (afferent). They include 

corticospinal, corticobulbar, and corticopontine tracts, thalamic radiations 

and geniculocalcarine tracts (optic radiations). 

2. Association fibers connect cortical areas within the same hemisphere. 

These fibers can be short range such as the subcortical U fibers 

connecting adjacent gyri, or long range including cingulum, superior and 

inferior fronto-occiptal fasciculi, uncinate fasciculus, superior longitudinal 

(arcuate) fasciculus and inferior longitudinal (occipto-temporal) fasciculus. 

3. Commissural fibers provide interconnection of similar cortical areas 

between the two hemispheres, and they include the corpus callosum and 

the anterior commissure. 

All the above WM tracts are typically identifiable in DTI color maps, and other 

tracts that are occasionally seen include optic tract, fornix, tapetum, and several fibers 

within the brainstem and cerebellum. 

Mean FA reductions in patients were localized within projection (corticospinal 

tracts, WM adjacent to SI / M1), association (inferior fronto-occiptal, inferior longitudinal 

and superior longitudinal fasciculi), and commissural (along all corpus callosum (genu, 

body, splenium)) fibers. Reduction in anisotropy, signaling potential WM abnormalities, 

within WM tracts that connect brain regions subserving different functional roles is in 

agreement with typical FM clinical symptoms, such as widespread pain, fatigue, and 

impaired cognition (Clauw, 2009). Projection fibers identified here with FA reductions 

potentially include corticospinal (motor control for body), corticobulbar (motor control for 

cranial nerves), and corticopontine (arises from precentral and postcentral gyri, with 
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contributory fibers from premotor, supplementary motor, posterior parietal, prefrontal 

and temporal cortices and project to pontine nuclei) tracts, as these fiber bundles run 

together and cannot be discriminated from each other via DTI data (Jellison et al., 2004). 

As these projection fibers project to their targets they contribute to form the internal 

capsule and its subdivisions (anterior limb, genu, posterior limb) in a somatotopic 

manner (Schuenke et al., 2007; Wycoco et al., 2013). Not surprising, significant 

differences in DTI metrics (reduced FA, increased RD and MD) in FM patients relative 

to controls have been found within the internal capsule as well. Intra-hemispherical 

connections served by long association fibers might also be affected in patients, as 

reduction in FA has been found within several fasciculi (inferior fronto-occiptal, inferior 

longitudinal and superior longitudinal). Functional roles of these fasciculi include 

integration of auditory and visual cortices to the prefrontal cortex, visual emotion and 

memory, and integration of auditory and speech nuclei (Wycoco et al., 2013). Finally, 

sensorimotor impairments and auditory hypersensitivity reported in FM might be a 

consequence of disturbed inter-hemispheric connectivity through the corpus callosum, 

as evidenced by overlapping altered DTI metrics values in patients relative to controls 

within this major WM bundle. In sum, several WM tracts that transmit information to and 

from different cortical areas show signs of WM abnormalities in FM and can potentially 

explain many symptoms that characterize the clinical presentation of affected patients. 

Of the 126,241 WM skeleton voxels tested for DTI metric differences between 

patients and controls, 7% showed reduced FA, while 8.2% and 8.5% showed increased 

RD and MD respectively with several tracts presenting superimposition of these metrics. 

Anisotropy within WM is a result of micro-structural barriers to water diffusion, including 
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axonal diameter and packing density, membrane permeability, and levels of myelination 

(Jones et al., 2013). The most commonly used anisotropy index is FA (Sundgren, 2009), 

and its value can be impacted by all those factors as well as the main fiber directionality 

(-ies) within a given voxel, .i.e., more than one main fiber orientation tends to reduce the 

FA measured in that voxel. For this reason, we also measured the mode (MO) of 

anisotropy as it provides insight into fiber orientations within a voxel. Despite finding 

significant reductions of MO for patients relative to controls over the corpus callosum 

and corona radiata, they represented only 17.2% of voxels showing FA reductions 

(1.2% of WM skeleton voxels). Therefore it seems unlikely that crossing fibers can fully 

explain the FA reductions in FM patients reported here. 

From the above, it follows that presence of micro-structural WM abnormalities in 

the brains of FM patients must be considered. Animal models of dysmyelination showed 

an increase in RD but no effects on AD (Song et al., 2002), thus in those WM tracts of 

FM patients presenting reduced FA and increased RD (but no AD changes) a process 

of myelin degradation could be in place. Increases in diffusivity as shown by MD in 

similar spatial locations further support this possibility, as myelin modulates the amount 

of anisotropy – but increased MD could also be a consequence of local inflammation 

and edema (Alexander et al., 2007). 

Global and regional differences of DTI metrics in the whole brain and WM skeleton 

Whole brain analysis for FA showed no significant differences between FM 

patients and controls however reduced AD and MD was found for patients; none of 

those differences were present for WM skeleton comparisons. Assessment of diffusion 

across all voxels within pain-related ROIs (including both GM and WM) showed a 
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reduction of MD within left and right SI. Both RD and AD were also reduced within SI 

bilaterally, but not FA – highlighting the importance of evaluating all DTI metrics for a 

more detailed understanding of WM micro-structure. Reduction of MD within SI is a 

curious finding, as apparent diffusion (which is proportional to MD) is usually stable 

across subjects and even mammalian species (Basser and Jones, 2002; Winston, 

2012), and as mentioned previously MD increases are usually interpreted as a sign of 

local water increase secondary to inflammation (Alexander et al., 2007), and decreases 

of this metric have been related to increased tumor cellularity (Gauvain et al., 2001) and 

to neuronal swelling evoked by excitotoxins including glutamate (Benveniste et al., 

1992). 

An abrupt local reduction change in apparent diffusion is a marker of a brain 

ischemic event (Moseley et al., 1990) with animal models showing 30-50% decrease in 

diffusion within the affected brain area in the acute phase, which is attributed mainly to 

cytotoxic edema (Le Bihan, 2003; Fung et al., 2011). Then a gradual increase of 

diffusion to baseline levels within 1-2 weeks (pseudonormalization) takes place, 

followed by a marked increased in the chronic stage as tissue disintegration ensues 

(Alexander et al., 2007). A similar time course for DTI metrics have been reported for 

the acute (↑ FA, ↓ MD), subacute (↓ FA, ↓ MD), and chronic (↓ FA, ↑ MD) stages (Fung 

et al., 2011). In the acute phase cytotoxic edema dominates with a consequent shift of 

water from the extra- to the intracellular space, with the consequent contraction of the 

former and restricted diffusion space in the latter supporting increased anisotropy. 

During the subacute period vasogenic edema develops thus increasing extracellular 

water content while persistent cytotoxic edema keeps intracellular water levels relatively 
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unchanged, reducing anisotropy but keeping mean diffusivity low. Chronic stage 

characteristic vasogenic edema persistence, gliosis and neuronal loss results in still 

reduce FA and an increase of MD (Fung et al., 2011). 

Reductions of MD within SI brain parenchyma reported here are much less 

intense compared to those in brain ischemia (left SI = 5.1%; right = 7%) and they 

represent group averages instead of individual brain changes. With these caveats in 

mind, one could hypothesize that the mechanisms underlying decreased MD in acute 

brain ischemic event may play a role for those findings within SI. WM and GM show 

different responses to ischemic injury, with WM presenting greater reductions in FA 

(Fung et al., 2011) since even minimal eigenvalue changes during ischemia within GM 

will lead to increases in FA due to the relative isotropic diffusion found in healthy GM. 

Our findings match this situation, where parenchymal SI presents with unchanged FA 

and reduced MD while the WM skeleton shows reduced anisotropy and increased MD 

supporting diffusion pattern changes in both GM and WM of SI. As cytotoxic edema 

arises from almost any brain insult including hypoxia, toxic or metabolic perturbations 

(Liang et al., 2007), it is tempting to speculate that blood hypoperfusion to SI may lead 

to a local, chronic ischemia able to trigger cytotoxic edema - thus reducing MD – but not 

severe enough to exceed cellular compensatory mechanisms (ionic pumps within 

plasma membrane) that prevents cell death. This hypothetical mechanism needs to be 

investigated using animal models of localized hypoperfusion in the brain. An alternative 

explanation would be local accumulation of excitotoxins such as glutamate within the SI 

region. It has been shown that a high interstitial concentration of glutamate is necessary 

to evoke cytotoxicity, in order to counterbalance uptake mechanisms that continuously 
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remove this neurotransmitter (Benveniste et al., 1992). Such scenario is supported by 

evidence that FM patients present abnormalities of “windup” phenomenon (Staud, 2006), 

which involves NDMA receptor mechanisms and glutamate is one of its main ligands. 

Glutamate is involved in neurotransmission in different levels across the somatosensory 

pathways (Broman, 1994), which includes mediation of SI neuronal responses to 

noxious stimulation (Pollard, 2000). Thus it is possible that a toxic accumulation of 

glutamate within SI parenchyma secondary to sustained input from peripheral tissues 

may lead to the present findings of reduced MD in this brain region. 

The left insula of patients showed reduced AD, RD, and MD within the WM 

skeleton (but not FA) relative to controls while no significant changes were found for its 

parenchymal mean values. The insula is an important brain region involved in a 

multitude of functions including nociception and pain processing (Craig, 2009), with 

functional MRI studies showing a role for it in both sensory-discriminative and affective-

emotional pain dimensions (Apkarian et al., 2005). Our findings point to reduced 

diffusion in all directions including along the dominant fiber direction (AD). The number 

of WM skeleton voxels captured by the mask representing the insula is relatively small, 

and these results may be an artifact despite the highly significant differences between 

the two groups. This finding must be investigated further in future studies. 

Correlational analyses found negative associations for DTI metrics and age, a 

well known effect reported by other groups in healthy subjects (Hsu et al., 2010; Lebel 

et al., 2012; Zhang et al., 2014). The mean BMI for FM patients was at the far end of the 

“overweight” classification but still not obese, however it was significantly different 

compared to the mean BMI for controls. Increased BMI in patients was associated with 
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reduced mean diffusivity in right SI, left SII and IPL bilaterally. Studies using diffusion 

MRI found reduced MD values in otherwise healthy obese adults compared to non-

obese (Karlsson et al., 2013), and other recent studies also reported reductions of DTI 

metrics in obese subjects compared to non-obese (Stanek et al., 2011; Xu et al., 2013). 

Given our findings, future studies using diffusion MRI in FM patients may benefit from 

including a matching procedure for BMI for subjects across groups. 

Only three previous studies have used diffusion MRI in a sample of FM patients 

and controls. The pioneering study by Sundgren and colleagues reported a FA 

reduction in the right thalamus in patients relative to controls but no other differences 

were found in other pain-related ROIs or whole brain diffusivity (Sundgren et al., 2007). 

This result was replicated by a subsequent study, however it showed a much more 

complex pattern of differences between FM patients and controls that included both 

increase and decreases in FA in patients across ROIs (Lutz et al., 2008). Those results 

are not in agreements with the findings presented here. We used a priori defined 

anatomical ROIs instead of manually drawn ones, higher magnetic fields (3 vs. 1.5 

Tesla), and validated software packages for DTI data processing and analysis – all 

these are recent methodological advances that those studies did not benefit from, and a 

direct comparison of results must be done with caution. Recently a study using multiple 

MRI modalities including diffusion MRI found no differences for whole brain 

comparisons between younger and older FM patients and age-matched controls; ROI 

analyses based on clusters found in concurrent VBM analysis on the other hand 

detected decreased FA for older FM patients in the corpus callosum adjacent to the 

posterior cingulate cortex and marginally increased FA for younger patients in WM 
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medial to the left putamen (Ceko et al., 2013). None of these studies reported use of 

two techniques regarded as useful in minimizing data corruption that were part of the 

processing pipeline for the present study, namely cardiac-gated data acquisition and 

fieldmap-based geometric distortion correction, which may explain in part the discrepant 

findings. 

Other chronic pain conditions have been recently studied using DTI, including 

temporomandibular disorders (Moayedi et al., 2012; Wilcox et al., 2013), trigeminal 

neuralgia / neuropathy (Wilcox et al., 2013; Desouza et al., 2014) and chronic back pain 

(Mansour et al., 2013). This last study is noteworthy, as it followed recent onset back 

pain patients over time and found that a distinct pattern of WM abnormalities at baseline 

was predictive of pain persistence over one year. This study highlights the potential of 

using diffusion MRI to assess brain structural predisposition for developing chronic pain. 

In conclusion, FM patients presented abnormalities in several WM tracts 

compared to controls. The affected areas serve as connectivity pathways for several 

cortical areas serving diverse roles including sensorimotor and cognitive functions. 

Although a causal pathway cannot be inferred from this cross-sectional data, it provides 

further evidence for CNS involvement in FM pathophysiology. 
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Figures 

 

 
Figure 2.1. Diffusion tensor model and associated measures. A: Depiction of 
diffusion sphere and diffusion ellipsoid, with its respective eigenvectors and 
eigenvalues; B: Mode of anisotropy and its relation to the geometric shape of the 
tensor. 
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Figure 2.2. Regions of interest (ROI) masks used for DTI analyses. ROIs are 
shown in coronal view with their respective total and white matter skeleton only 
sizes (in voxels) (top panel). Sagittal view (bottom left) shows the thalamus 
(yellow), SI (red) and ACC (purple), while an axial view (bottom right) shows SI 
bilaterally (red). WM skeleton is represented by green lines. Voxel size = 1 mm3. 
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Figure 2.3. TBSS voxelwise results for between-group differences overlaid in 3D 
MNI brain template shown in sagittal view, highlighting the corpus callosum. 
Relative to controls, left panel shows FA reduction for patients (red); top right 
panel shows RD increase for patients (blue); bottom right panel shows MD 
increase for patients (purple). Right panels also show the FA maps (red), and 
overlap between FA and RD or MD in the respective panels is represented in 
yellow. WM skeleton is represented by green lines. A = anterior, P = posterior, S = 
superior, I = inferior, R = right. 
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Figure 2.4. TBSS voxelwise results for between-group differences overlaid in 3D 
MNI brain template shown in axial view, highlighting the corpus callosum and 
internal capsule. Relative to controls, left panel shows FA reduction for patients 
(red); top right panel shows RD increase for patients (blue); bottom right panel 
shows MD increase for patients (purple). Right panels also show the FA maps 
(red), and overlap between FA and RD or MD in the respective panels is 
represented in yellow. WM skeleton is represented by green lines. A = anterior, P 
= posterior, L = left, R = right. 
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Figure 2.5. TBSS voxelwise results for between-group differences overlaid in 3D 
MNI brain template shown in axio-coronal view, highlighting the corticospinal 
tracts. Relative to controls, left panel shows FA reduction for patients (red); top 
right panel shows RD increase for patients (blue); bottom right panel shows MD 
increase for patients (purple). Right panels also show the FA maps (red), and 
overlap between FA and RD or MD in the respective panels is represented in 
yellow. WM skeleton is represented by green lines. A = anterior, S = superior, L = 
left, R = right. 
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Figure 2.6. TBSS voxelwise results for between-group differences overlaid in 3D 
MNI brain template shown in axio-coronal view, highlighting the white matter 
adjacent to SI and M1. Relative to controls, left panel shows FA reduction for 
patients (red); top right panel shows RD increase for patients (blue); bottom right 
panel shows MD increase for patients (purple). Right panels also show the FA 
maps (red), and overlap between FA and RD or MD in the respective panels is 
represented in yellow. WM skeleton is represented by green lines. A = anterior, P 
= posterior, S = superior, L = left, R = right. 
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Figure 2.7. DTI metrics mean values for whole brain and WM skeleton voxels. Left 
panel shows whole brain FA (top) and AD, RD, and MD values (bottom). Mean 
values for WM skeleton voxels are depicted on the right panels for FA (top) and 
AD, RD, and MD (bottom). * = p < 0.05. 
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Tables 

 
Table 2.1. Locations with lower fractional anisotropy in FM patients compared to 
controls. 
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Table 2.4. Correlations for DTI metrics in the whole brain and white matter 
skeleton voxels. 
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Table 2.5. Correlations for DTI metrics for non-skeletonised pain-related regions 
of interest. 
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Table 2.6. Correlations for DTI metrics in FM patients only for white matter 
skeletonised pain-related regions of interest. 
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CHAPTER 3: ASSESSMENT OF BRAIN MACRO-STRUCTURAL 
CHARACTERISTICS IN FIBROMYALGIA USING HIGH-RESOLUTION T1-

WEIGHTED ANATOMICAL IMAGING 

Introduction 

The brain is a relatively dynamic organ that can present functional and / or 

structural modifications in response to its various demands, so-called neuroplasticity. 

One such demand is persistent or chronic pain, where frequent nociceptive input can 

drive structural changes in the brain (May, 2008; Schmidt-Wilcke, 2008). Several 

studies using neuroimaging methods have provided evidence for these changes in 

different chronic pain conditions (Seifert and Maihofner, 2011; Smallwood et al., 2013). 

Based on these findings it has been proposed that chronic pain is not only a clinical 

symptom but a disease in its own right (Tracey and Bushnell, 2009), an opinion that has 

been embraced by many investigators (Doleys, 2010; Davis, 2013) but not all (Sullivan 

et al., 2013). 

Fibromyalgia (FM) is one such chronic pain condition, for which diverse lines of 

investigation support central nervous system (CNS) alterations that potentially 

contribute to its clinical presentation (Schweinhardt et al., 2008). Studies of brain macro-

structural characteristics in FM patients are relatively numerous, with the majority 

focusing on gray matter (GM) assessment using voxel-based morphometry (VBM) (May, 

2011) and a few others reporting other measures including brain volume estimates, 

cortical thickness and subcortical structures shape and volumetric analyses. The results 
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across VBM studies show discordant findings regarding location of GM differences and 

even the direction of change. Possible explanations for this include small sample sizes 

and differences in methodology for imaging data acquisition and processing. 

Our goal was to perform a comprehensive assessment of macro-structural brain 

features in a single, well characterized large sample of FM patients and age- and sex-

matched controls. We used high-resolution anatomical MRI images to investigate 

different structural aspects of the brain, including volume estimates for different tissue 

types, GM density and volume, subcortical structures volumes, and cortical and 

subcortical characteristics. 

Methods 

Imaging acquisition parameters 

Subjects were accommodated in the MRI scanner as described in chapter 1, 

methods section. A high-resolution T1-weighted anatomical image was acquired for 

each subject using a magnetization prepared rapid gradient echo (MP-RAGE) sequence 

(repetition time (TR) = 1,820 ms; echo time (TE) = 3.74 ms; inversion time (TI) = 900 

ms; flip angle = 8º; field of view = 256 mm; 1 x1 x 1 mm3 voxels; 160 slices acquired 

axially parallel to the anterior commissure-posterior commissure line; parallel imaging 

factor = 2 (GRAPPA)). 

Imaging data processing pipelines 

Processing steps for high-resolution T1-weighted anatomical images were done 

using two freely available neuroimaging software packages: 1) the Oxford Centre for 

Functional Magnetic Resonance Imaging of the Brain (FMRIB) software library (FSL v. 

5.0.5) (Smith et al., 2004; Jenkinson et al., 2012) (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki); and 
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2) Freesurfer image analysis suite v. 5.3.0 (http://surfer.nmr.mgh.harvard.edu/). Each 

analysis was processed using the necessary tool(s) from each software package, and 

are detailed below. 

Anatomical images were reoriented to match the MNI brain template orientation 

using the FSL tool “fslreorient2std” (with exception of the input images for subcortical 

structure segmentation (FSL’s SIENAX) and cortical surface reconstruction 

(Freesurfer)). Before any further processing, all anatomical images were loaded into 

FSLview and visually checked for any obvious artifacts. 

Brain tissue volumes estimation 

Brain tissue volumes, normalized for individual head size, were estimated using 

the FSL tool SIENAX (Smith et al., 2002). SIENAX uses as input the reoriented high-

resolution T1-weighted anatomical image and process it in a series of steps: 1) brain 

and skull images are extracted using the Brain Extraction Tool (BET) (Smith, 2002); 2) 

the brain image is affine-registered to the MNI152 standard brain template (available in 

FSL; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), using the skull image to determine the 

registration scaling. This step calculates a volumetric scaling factor, that is used for 

head size normalization; 3) tissue-type segmentation with partial volume estimation is 

carried out (Zhang et al., 2001) to calculate total volume of brain tissue. In addition, gray 

matter (GM), white matter (WM), peripheral GM and ventricular cerebrospinal fluid 

(CSF) estimates of volumes were also computed. 

Output files from SIENAX were visually checked for any problems. Volume 

estimates for each subject in mm3, normalized for head size, were used for statistical 

testing. 
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Gray matter assessment via voxel-based morphometry 

We used voxel-based morphometry (VBM) to assess the relative concentration of 

gray matter at the voxel level. This was accomplished using the validated FSL-VBM 

pipeline (Douaud et al., 2007) that applies an optimized VBM protocol (Good et al., 

2001). The reoriented anatomical images had non-brain tissue extracted using BET, 

then were GM segmented prior to non-linear registration to the MNI152 standard brain 

template. The resulting images were averaged and flipped along the x-axis to create a 

left-right symmetric, study-specific GM template. Subsequently, subject’s GM images 

were non-linearly registered to this study-specific template and "modulated" to correct 

for local expansion / contraction due to the non-linear component of the spatial 

transformation. The modulated GM images were concatenated into a 4D multi-subject 

image then smoothed with an isotropic Gaussian kernel with a sigma = 3 (full width at 

half maximum (FWHM) = 6.9 mm). The modulated, smoothed 4D multi-subject GM 

image was the input image for voxelwise and ROI analyses. 

For voxelwise analysis, a between-group permutation-based nonparametric t-test 

(Nichols and Holmes, 2002) using age as a covariate of no interest was done. This test 

was implemented via the FSL tool “randomise” with 5,000 permutations and using the 

threshold-free cluster enhancement option. This option allows the detection of clusters 

of significant voxels with no arbitrary thresholding while controlling for family-wise error 

rate across space, therefore correcting for multiple comparisons (Smith and Nichols, 

2009). This way, voxelwise statistics reported here were tested for significance at p-

value < 0.05, corrected. 
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For whole brain and ROI analysis, a priori defined anatomical brain regions were 

used that are commonly activated following noxious stimulation (Peyron et al., 2000; 

Apkarian et al., 2005), including the thalamus, primary (SI) and secondary (SII) 

somatosensory cortices, the insula, and the anterior cingulate cortex (ACC) (left / right 

separately except ACC). The inferior parietal lobule (IPL) was also included, which is a 

cortical area that integrates somatosensory and visual inputs and was activated 

following noxious pressure stimulus to the thumbnail during stimulus-evoked BOLD 

fMRI in the participating FM patients and controls (unpublished data). A binary mask 

image was generated for each of those ROIs using three probabilistic atlases available 

in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), the Harvard-Oxford cortical and 

subcortical atlases (Desikan et al., 2006) and the Jülich histological atlas (Eickhoff et al., 

2006). From the Harvard-Oxford atlases we derived the ROI masks for right and left 

thalamus and insula, while the ACC mask was built as a single region; right and left SI, 

SII, and IPL were derived from the Jülich atlas. 

For each subject, the GM density was extracted for the whole brain and ROIs 

and then multiplied it by the volume of each region to calculate the GM volume in mm3. 

Subcortical structures segmentation and volumetric analysis 

Original anatomical images were processed using a FSL tool named “fsl_anat” 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/fsl_anat), a fully automated processing pipeline with 

the goal of obtaining segmentation of subcortical structures. Relevant steps for our goal 

included reorienting original anatomical images to the MNI brain template orientation, 

automatic cropping of the image, bias-field correction, linear and non-linear registration 

to the MNI standard brain template, non-brain tissue extraction, and finally subcortical 
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structure segmentation. This final step used FIRST, a FSL tool that incorporates prior 

anatomical information from manually segmented images from 336 data sets that 

includes healthy and pathological (including cases of schizophrenia and Alzheimer’s 

disease) brains with an age range of 4-87 years (Patenaude et al., 2011). From this 

data, a 3D mesh model is created for each structure and fitted to the subject’s image, 

followed by a boundary correction to convert from a mesh-based to a volumetric 

representation. Fifteen different subcortical structures were segmented: brainstem 

(includes 4th ventricle), amygdala, caudate nucleus, hippocampus, nucleus accumbens, 

putamen, globus pallidus and thalamus (left/right separately except brainstem). Quality 

assessment for the processed data was done through visual check of the output images 

from the registration and segmentation steps. 

Volume measures in mm3 for all subcortical structures for each subject were 

determined and used for statistical testing. 

Assessment of brain cortical and subcortical characteristics 

Freesurfer image analysis suite was used to perform automated cortical surface 

reconstruction and volumetric segmentation of the original anatomical images for all 

subjects. Details of the procedures performed were previously described (Dale et al., 

1999; Fischl et al., 1999a; Fischl et al., 1999b; Fischl and Dale, 2000; Fischl et al., 

2001). In short, preprocessing included motion correction, intensity normalization (bias 

field correction), non-brain tissue removal, segmentation of subcortical WM, and 

separation of cerebral hemispheres. Gray / white matter and gray / CSF boundaries 

were identified and modeled as white matter and pial surfaces, respectively. Finally, 

automated topology correction and surface deformation following intensity gradients 



 72 

took place to obtain cortical surface models (=mesh models from a non-uniform grid of 

triangles). Further processing included registration to a spherical atlas for cross-subject 

cortical geometry matching, and cortical parcellation into units based on the gyri / sulci 

structure for automated labeling (Fischl et al., 2004; Desikan et al., 2006). 

The triangles forming the mesh for the cortical surface model intersect at a vertex, 

which has an X, Y, Z index and it is assigned a value. Distance between vertices is 

approximately 1 mm. Cortical measurements included thickness (vertex by vertex 

distance between the white and pial surfaces), area (relative to the WM surface), and 

volume. Gyral WM volumetric measurement was determined by using curvature 

landmarks and WM surface information to assign to the underlying WM the same label 

as the cortical parcellation unit above it, using a distance constraint of 5 mm for label 

expansion (Salat et al., 2009a). 

For vertexwise analysis, we did between-group comparison of cortical thickness, 

area and volume using all subjects’ cortical models sampled to a common space 

surface (“fsaverage”; average of nondemented 40 brains 

(http://freesurfer.net/fswiki/Buckner40Testing)), and smoothed on the surface with a 10 

mm FWHM kernel. We used a Freesurfer tool (Qdec) to run a general linear model for 

group differences on each those measures using age as a covariate of no interest. 

ROI analyses used cortical parcellation units that were in approximately similar 

spatial locations as a priori anatomical pain-related regions (left / right separately except 

ACC): postcentral gyrus (SI+SII), insula, ACC (rostral+caudal ACC), and supramarginal 

gyrus (IPL) (Figure 3.4 and 3.5). Measures of cortical thickness (mm), area (mm2), and 
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volume (mm3) as well as gyral WM volume (mm3) for each ROI were used for statistical 

testing. 

Statistical analyses 

Unless otherwise noted, between-group differences were assessed using 

analysis of covariance with age as a covariate of no interest, with group status as 

independent variable and output measures of each of the aforementioned analysis 

pipelines as dependent variables. All statistical tests were done using SPSS v. 18, with 

significance thresholding of p < 0.05. 

We also assessed associations for each of the aforementioned dependent 

variables with subject’s clinical measures and psychosocial questionnaire scores using 

the Pearson’s correlation coefficient “r”. Correlations with p-value < 0.01 were deemed 

significant. 

Results 

Subjects demographics characteristics, clinical measures and questionnaires 

A full description of the FM patients and controls is presented in chapter 1, 

results section. 

Brain tissue volumes estimation 

We assessed volumes for total brain, GM only, WM only, peripheral GM 

(excluding subcortical (deep) GM structures such as the basal ganglia and brainstem) 

and ventricular CSF (Fig. 3.1) with age as a covariate. No statistical significant 

differences for between-group comparisons were found (Table 3.1). 

Correlations between volumes estimates and clinical variables for both groups 

were significant for age and GM (r for FM patients = -0.52; controls’ r = -0.53) and 
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peripheral GM (patients’ r = -0.54; controls’ r = -0.59) volumes, and ventricular CSF 

volume was positively associated with age for patients only (r = 0.56). This implies that 

increased age is associated with decreases in GM and peripheral GM volumes and to 

increased ventricular CSF volume. BMI had a negative association with total brain 

volume in FM patients only (r = -0.47), and the association with GM volume was close to 

significance (r = -0.46; p = 0.011) but not for WM volume (r = -0.39; p = 0.34). No 

significant correlations for volumes estimates and psychosocial variables were found at 

p = 0.01. 

Gray matter assessment via voxel-based morphometry 

GM density was estimated in a voxel-by-voxel fashion for the subjects included in 

this study (Fig 3.2, top panel). Voxelwise comparison found no significant between-

group differences at p < 0.05, corrected. The voxel with the lowest p-value (0.076) was 

located over the right cerebellar lobule V. We also estimated GM volume for the whole 

brain and for pain-related ROIs (Fig. 3.2, bottom panel). Similarly, no significant 

between-group differences were found (Table 3.2). 

Correlational analyses showed that age was negatively correlated with GM 

volume in the whole brain, left SI, left SII, and in both insula and IPL bilaterally for FM 

patients (-0.65 < r < -0.41) and for controls (except left insula and left IPL) (-0.66 < r < -

0.39). Pain duration in FM patients was negatively associated with GM volume in the left 

IPL (r = -0.51). Thus increased age is associated with reduced GM in both groups, while 

pain duration in patients is only associated with reductions of GM volume in the left IPL. 

No significant correlations were found between GM volume and psychosocial measures. 
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Subcortical structures segmentation and volumetric analyses 

Following the segmentation of subcortical structures, we estimated their volumes 

(Table 3.3). Between-group comparisons, corrected for age, showed significant 

volumetric increase in the right amygdala (p-value = 0.021) while the left amygdala 

volume difference approached significance (p = 0.064) (Fig. 3.3). 

When assessing correlations, age was negatively associated with volume of left 

and right thalamus (r = -0.48 and r = -0.44 respectively) and caudate nucleus (r = -0.52, 

r = -0.47) for FM patients. No clinical pain measures showed significant associations 

with subcortical structures volumes. Of the psychosocial measures, only PILL score 

showed a significant negative correlation with the left globus pallidus (r = -0.61; p < 

0.001) and right amygdala (r = -0.47; p = 0.008) for patients. This implies that increased 

somatic awareness is associated with reductions in volume for these structures. 

Assessment of brain cortical and subcortical characteristics 

Vextexwise analysis, corrected for age, found no significant group differences for 

cortical thickness, area or volume in neither of the cerebral hemispheres (data not 

shown). 

Likewise, no cortical measurements were significant for the ROI analyses (Table 

3.4), with an increase of left insula area for FM patients relative to controls close to 

significance (p = 0.057). For gyral WM volume measurements (Table 3.5), significant 

volume increases in the patient group were found for the ACC (p = 0.030) and the left 

insula (p = 0.019, Fig. 3.6) relative to controls. 

Negative correlations for age and cortical thickness were significant in the ACC, 

insula and supramarginal gyrus bilaterally in patients (-0.59 < r < -0.48) and controls (-
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0.60 < r < -0.37) (Table 3.6). Age and cortical volume were significantly associated for 

FM patients only in the left insula (r = -0.47), and supramarginal gyri (left = -0.61, right = 

-0.47). Of the psychosocial measures, only CSQ-R ignoring pain score for patients was 

positively correlated with left postcentral gyrus thickness (r = 0.58) implying that patients 

with greater scores for this coping strategy present with increased cortical thickness in 

brain regions associated with somatosensory processing. 

No significant associations for gyral WM volumes and demographic 

characteristics or clinical measures were found for either group. Somatic awareness, as 

measured by PILL scores, was negatively associated with bilateral supramarginal gyrus 

(left = -0.47, right = -0.48; both p < 0.01), right postcentral gyrus (r = -0.44; p = 0.015) 

and ACC (r = -0.47; p = 0.009) gyral WM volume (Fig. 3.7). Trait anxiety was negatively 

correlated with gyral WM volume in the left supramarginal gyrus (r = -0.48; p = 0.009) 

and right insula (r = -0.45; p = 0.012) (Fig. 3.7). 

Discussion 

Our findings provide an overall view of macro-structural brain features in FM 

patients. In line with findings described by previous studies, some of the measurements 

showed no significant differences compared to controls while others provide initial 

evidence of structural abnormalities that can help explain the symptomatology 

described for this condition. 

Volumes estimates for total brain, total GM, total WM, peripheral GM or 

ventricular CSF was no different between FM patients and controls, replicating findings 

from others (Burgmer et al., 2009; Ceko et al., 2013; Fallon et al., 2013). Two studies 

reported reduced total brain and GM volumes for patients compared to controls, one 
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with a relatively small sample size (Kuchinad 2007) and another that used a different 

methodology for volumes estimation (Jensen, 2013). 

VBM analysis of GM also showed no differences between groups for global GM 

density or pain-related ROIs. This is the most often used approach for brain structural 

assessment in FM, and the results reported are not always in agreement. Whole brain 

comparisons showed decrease of GM density / volume in several areas for FM patients 

as compared to controls including left thalamus, parahippocampal gyri, anterior and 

posterior cingulate cortices, insula, prefrontal cortical areas, left supplementary motor 

area and right premotor cortex (Kuchinad et al., 2007; Schmidt-Wilcke et al., 2007; 

Wood et al., 2009; Puri et al., 2010; Ceko et al., 2013). One study reported increases in 

GM for patients in the left orbitofrontal cortex, left cerebellum and striatum bilaterally 

(Schmidt-Wilcke et al., 2007) while another detected no group differences (Hsu et al., 

2009). When assessing GM differences within ROIs, FM patients showed reduced GM 

volumes in bilateral hippocampus, ACC, inferior frontal gyrus, left amygdala and left 

insula (Lutz et al., 2008; Burgmer et al., 2009; Robinson et al., 2011) – the latter 

difference was shown to be present for FM patients with depression but not for those 

without (Hsu et al., 2009). Each of these studies reported a different set of brain regions 

with altered GM volume, and the most concordant finding across most of them seems to 

be a decrease in GM in the ACC. Recently one study showed that, by splitting FM 

patients into younger and older cohorts, there is restricted directionality for the GM 

volumes differences: only increases for the younger FM cohort and only decreases for 

the older cohort were found when compared to age-matched controls respectively 

(Ceko et al., 2013). Interestingly, GM alterations have also been shown in healthy 
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controls lacking habituation to noxious stimulus (Stankewitz et al., 2013) and increased 

pain ratings are associated with decreases in GM density (Emerson et al., 2014). 

Therefore interpretation of GM density / volume differences or the lack thereof between 

patients and controls must be made with caution. 

Of the subcortical structures measured for total volume in the present study, only 

the amygdalae presented increased whole volume for FM patients compared to controls. 

A recent study using similar methodology found differences for brainstem volume but 

not for the amygdala (Fallon et al., 2013). One study reported a significant reduction of 

volume related to GM in the left amygdala (Burgmer et al., 2009) and another described 

a bilateral reduction for GM-related amygdala volume that did not survive multiple 

comparisons correction (Lutz et al., 2008). The amygdala is part of the limbic system, 

and it has been associated with emotions processing (Schulkin, 2006). While it is 

difficult to explain the discrepancies between our results and that of others, the 

emotional burden related to FM supported by our findings of psychosocial measures 

may induce neuroplastic changes in this region. 

Similarly to VBM analysis of GM volume, no significant differences were found for 

cortical thickness, area or volume for both vertexwise and ROI analyses. This is in 

contrast to the results of Jensen and colleagues, who reported reduced cortical 

thickness for FM patients in the left rostral ACC, and gyri within the frontal and temporal 

lobes (Jensen et al., 2013), while younger FM patients presented increased thickness 

(left insula, left SII, left premotor cortex, right superior temporal and right posterior 

parietal cortices) and older patients reduced thickness (right premotor /SII / M1 cortices, 

and posterior cingulate cortex and precuneus) compared to age-matched controls 
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(Ceko et al., 2013). This inconsistency relative to cortical thickness measurements 

reflects the inconsistent findings for GM volume analysis using VBM, and it is possible 

that these analyses are not sufficiently sensitive to detect potential differences in the 

cortical mantle of FM patients. 

Regional WM volumes comparisons showed increased volume for gyral WM 

adjacent to the ACC and left insula, and as mentioned before we found no differences 

for total WM volume between patients and controls. It has been suggested that WM 

volume loss can have specific patterns across brain space and over time in 

degenerative processes (Salat et al., 2009a). Our results showed increased volumes, 

while degenerative diseases affecting WM usually are related to volume reduction. One 

possible explanation is that a local inflammatory edema within these WM regions could 

cause a volumetric increase, and our findings of WM skeleton abnormalities within 

these regions may support this possibility (see chapter 2). 

Correlations of an inverse association of age and several GM volume measures 

were not surprising, as they are widely reported in the literature (Good et al., 2001). BMI 

negative association with total brain volume reinforces the need to match this parameter 

across groups in future studies. The inverse relationship of somatic awareness and 

amygdala volume for FM patients is curious, especially with our finding of increased 

volume of this structure in patients. Replication of these findings by future studies may 

help clarify this paradoxical situation. Finally, somatic awareness and trait anxiety were 

negatively associated with the WM gyral volume associated with several pain-related 

brain regions. This provides initial evidence that affective symptoms of FM impact not 

only cortical areas but also their associated WM. 
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In conclusion, brain macro-structural abnormalities in FM patients seem to be 

unrelated to global volumetric measures of GM or WM or cortical characteristics. 

Regional differences for amygdala volume and gyral WM adjacent to the ACC and left 

insula suggest that more localized changes may be involved in this condition’s 

pathophysiology. Future studies should investigate this possibility by using a priori 

defined anatomical regions, as well as functional ROIs derived from fMRI studies that 

are not restricted by anatomical boundaries. 
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Figures 

 

 
Figure 3.1. Brain segmentation for volumes estimates. GM is shown in blue, WM 
in white and ventricular CSF in red. 
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Figure 3.2. Study-specific gray matter (GM) template and regions of interest (ROI). 
The GM template was used for registration (top). Masks used to extract GM 
volume for each ROI (bottom): SI = red, SII = brown, Insula = light blue, ACC = 
green, IPL = dark blue. 
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Figure 3.3. Left and right amygdala volumes. * = p < 0.05. 
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Figure 3.4. Brain cortical parcellations and subcortical regions used for region of 
interest (ROI) analyses in 2D view. Left panel (axial view): The outer red line 
corresponds to the pial surface (GM / CSF boundary) and the internal yellow line 
corresponds to the WM / GM boundary. Right panels show same ROIs in coronal 
view. Arrows used to indicate each ROI use outer / inner colors corresponding to 
the GM and WM portions of the ROI respectively. 
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Figure 3.5. Brain cortical parcellations used for region of interest (ROI) analyses 
in 3D view. Left (top) and right (bottom) hemispheres are shown. Pial surface is 
shown in the outer panels, and the middle panel shows inflated surfaces. 
Numbers represent the ROIs: postcentral gyrus = 1, insula = 2; supramarginal 
gyrus = 3; ACC = 4. 
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Figure 3.6. Left and right insula gyral WM volumes. * = p < 0.05. 
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Figure 3.7. Correlations for gyral white matter volumes and questionnaire scores. 
* = p < 0.01. Correlations close to significance are also shown (0.01 ≤ p ≤ 0.015). 
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Tables 

Table 3.1. Brain tissue volumes estimates. 
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Table 3.2. Gray matter volume as measured by voxel-based morphometry. 
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Table 3.3. Subcortical structures volume estimates. 
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Table 3.5. Gyral white matter volume measurements. 
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Table 3.6. Correlations between cortical measures and age. 
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CHAPTER 4: OVERALL IMPLICATIONS OF PRESENT FINDINGS AND 
FUTURE DIRECTIONS 

Present findings overview 

This dissertation describes a comprehensive investigation of structural brain 

features of a well characterized sample of FM patients, using the data from age- and 

sex-matched healthy controls as a reference. Our findings support the view that FM 

pathophysiology is related to brain abnormalities, not only due to functional impairment 

as reported in the literature but also secondary to its structural features. One strength of 

this project is the use of multimodal MRI with several quality measures to assess brain 

structure at both micro- and macro-scales. 

Cerebral tissue microscopic spatial arrangement can be probed using diffusion 

MRI, a non-invasive imaging technique that integrates microscopic displacement of 

water molecules within the brain parenchyma into a single parameter at a millimetric 

(voxel) resolution: the apparent diffusion coefficient (Le Bihan, 2003). Further 

mathematical modeling can provide even more information about diffusion directionality 

according to the main fibers orientation, and these can help us infer features of white 

matter (WM) tracts such as axonal and myelination status as well as perform in vivo 

tractography to better understand brain anatomical connectivity. We presented evidence 

that FM patients have abnormalities within major WM tracts connecting cortical areas 

that serve several functional roles, supporting an association between WM 

abnormalities and the multitude of symptoms commonly reported by these patients. 
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Recent studies show the potential of diffusion MRI to predict the transition to pain 

chronicity (Mansour et al., 2013), and this imaging technique can potentially help us 

understand brain-related risk factors for FM (see below) that might contribute to the 

wide variation of the clinical presentation of these patients, the so-called “fibromyalgia 

spectrum” (Wolfe et al., 2011). 

High-resolution brain anatomical imaging provides information on the macro-

structural level of the different cerebral tissues. This has been mostly used to assess 

gray matter (GM) volume / density in FM patients using voxel-based morphometry 

(VBM) with varying results. Our analyses investigated different characteristics of GM 

(brain volume estimates, VBM, cortical characteristics of thickness, area, and volume) 

and showed no significant differences between patients and controls. Our main findings 

were an increased volume in the amygdalae and for WM volumes adjacent to the ACC 

and left insula. Based on the incongruity of results for macro-structural brain 

abnormalities in FM reported in the literature and the present findings, it is possible that 

neuroplastic changes in the brains of FM patients have a more subtle and localized 

pattern within subcortical structures and WM. 

Our findings also support a view that brain structural abnormalities in FM are 

better detected at the micro-scale as previously suggested (Lutz et al., 2008), at least 

with the available present MRI technology. Diffusion MRI is a rapidly developing 

imaging technique, not only related to technological advancements in data acquisition 

but also the mathematical modeling of diffusion and the knowledge about the biological 

correlates of the different diffusion-related metrics. Future research of brain structural 

properties in FM will greatly benefit from these developments, and likely will help further 
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our understanding of central pathophysiological mechanisms underlying this complex 

condition. 

Future directions 

Neuroimaging has contributed largely to our current understanding of FM 

(Schweinhardt et al., 2008), and will likely play an expanding role in progressing it 

further. Refinement of experimental designs, disease classification systems and 

neuroimaging tools might allow the latter to play a role in the taxonomy of functional 

somatic syndromes (Browning et al., 2011). Use of neuroimaging to assess specific 

characteristics of pain syndromes may help bridge the gap between the genetic 

background to the presenting phenotype of a patient (Tracey, 2011). Collection of multi-

modal brain data from the same individual by means of neuroimaging techniques that 

provide complementary information is becoming a standard (Soares et al., 2013), an 

approach that we used in this study to some extent. Multi-modal brain neuroimaging 

provides a global overview of brain structure and function, and for complex conditions 

as FM this may be a fruitful way to improve the understanding of its pathophysiology. 

Other investigators have also realized that and successfully implemented such an 

approach (Ceko et al., 2013). 

FM usually presents in patients with one or more comorbid conditions – the so-

called functional somatic syndromes (FSS). It has been implied that this polysyndromic 

presentation arises from mechanisms that are common to these conditions (Yunus, 

2007). However, there are also differential characteristics between these comorbid 

conditions that seems specific to each of them (White, 2010). Given this dichotomous 

situation – FSSs can be both heterogeneous and associated with each other – an 
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interesting strategy has been proposed: for mechanisms that are believe to be shared 

among different FSSs, patients presenting with two or more FSS should be included in 

the subject sample; on the other hand if the interest is to understand what differentiates 

one FSS (e.g., FM) from others, a more “clean” subject sample presenting with FM only 

should be sought (Warren et al., 2013). Although attractive, this approach may be 

difficult to implement as FM patients most commonly present with one or more comorbid 

FSS than not – thus making the investigation of mechanisms unique to FM problematic. 

In order to investigate risk factors for a condition that might be related to its 

causal pathway, a longitudinal design is necessary (Grimes and Schulz, 2002). 

However this is difficult in rare conditions or those that do not have a clear onset such 

as FM. A longitudinal study with FM-free participants followed over time to detect those 

that develop the condition would be prohibitively expensive and taxing to the 

participants. An alternative approach can be suggested based on the acknowledged 

wide variation of FM clinical symptoms (“fibromyalgianess” (Wolfe et al., 2011)). Many 

studies looking to assess some type of characteristic across the lifespan do not usually 

follow individuals for years or decades but rather recruit a large sample of subjects 

representative of the age range of interest (Salat et al., 2009a; Salat et al., 2009b; Lebel 

et al., 2012). This strategy could be adapted to FM where a large sample of patients 

could be recruited across the spectrum of clinical symptomatology, i.e., from patients 

that fits diagnostic criteria yet have little or no comorbid conditions and are functional, to 

those patients that present with a plethora of symptoms and comorbidities and are 

functionally incapacitated. This “fibromyalgia spectrum span” approach could improve 

our understanding on the mechanisms that makes the burden of FM greater for a 
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subset of patients but not for others. Future investigations of FM using neuroimaging or 

other methods may benefit from such approach, with the ultimate goal of increasing our 

understanding of this puzzling and complex condition that deeply affects the lives of its 

sufferers. 
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