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Abstract
Individual-level longitudinal data on biological, behavioural, and social dimensions are becoming increasingly available. 
Typically, these data are analysed using mixed effects models, with the result summarised in terms of an average trajectory 
plus measures of the individual variations around this average. However, public health investigations would benefit from 
finer modelling of these individual variations which identify not just one average trajectory, but several typical trajecto-
ries. If evidence of heterogeneity in the development of these variables is found, the role played by temporally preceding 
(explanatory) variables as well as the potential impact of differential trajectories may have on later outcomes is often of 
interest. A wide choice of methods for uncovering typical trajectories and relating them to precursors and later outcomes 
exists. However, despite their increasing use, no practical overview of these methods targeted at epidemiological applications 
exists. Hence we provide: (a) a review of the three most commonly used methods for the identification of latent trajectories 
(growth mixture models, latent class growth analysis, and longitudinal latent class analysis); and (b) recommendations for 
the identification and interpretation of these trajectories and of their relationship with other variables. For illustration, we 
use longitudinal data on childhood body mass index and parental reports of fussy eating, collected in the Avon Longitudinal 
Study of Parents and Children.
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Abbreviations
ALSPAC	� Avon longitudinal study of parents and 

children
BMI	� Body mass index
GBTM	� Group based trajectory models
GCM	� Growth curve models
GMM	� Growth mixture models
LCA	� Latent class models
LCGM	� Latent class growth models
LLCA	� Longitudinal latent class models
MAR	� Missing at random
MEM	� Mixed effects models
ML	� Maximum likelihood
SEM	� Structural equation models

Introduction

Repeated observations of the same variable over time are 
increasingly frequent not only in purposely designed obser-
vational studies but also in large linked administrative health 
databases. In most applications, this type of data is analysed 
using mixed effects models [1, 2], leading to estimates of 
a population average trajectory, parametrised in terms of 
fixed effects, and the variation of the individual trajectories 
around this average. The latter is captured by the variances 
and covariances of subject-specific random effects. More 
recently, the focus of modelling such data has moved towards 
investigating whether there are multiple typical trajectories 
(see for example adolescent smoking [3], treatment response 
[4] and comorbidity [5]), leading to the characterisation of 
latent subgroups of individuals who share a common profile 
over time. Such groups are often referred to as “phenotypes” 
(e.g., early onset versus late onset of illness). Aiming to clas-
sify individuals into subgroups based on their longitudinal 
data has been described as being a person-centred approach, 
as opposed to the variable-centred approach typical of many 
regression analyses [6]. Often however these latent classes 
are studied in relation to explanatory variables [7–9] and/or 
later outcomes [10–12], and thus a person-centred classifi-
cation may itself become a variable in a regression model, 
thereby blurring this distinction.

There are several modelling approaches that focus on 
identifying these trajectories, with alternative strategies 
available to relate them to earlier variables or later outcomes. 
The common feature of these approaches is that they all 
assume that a latent variable, composed of several classes, 
underlies the heterogeneity in how the variables evolve over 
time. These common approaches are:

1.	 Growth mixture models
2.	 Latent class growth analysis, also known as group-based 

trajectory models

3.	 Longitudinal latent class analysis

In this paper, we provide an overview of these three 
approaches and compare them in terms of assumptions, fea-
sibility, and interpretation of the derived classes using mixed 
effects models as a reference. Another class of methods for the 
identification of latent trajectories are generalizations of cluster 
analysis (e.g., extentions of k-means clustering to longitudinal 
data [13]). As these methods do not invoke models, but rather 
rely on algorithms to classify individuals, they are not con-
sidered here. Their performance, however, has been found to 
be closely related to that of latent class growth analysis when 
trajectories vary smoothly with time [14].

To discuss the practical implications of adopting each of 
these modelling approaches above, and to illustrate how differ-
ences in resulting classes may derive, we analyse data derived 
from the Avon Longitudinal Study of Parents and Children 
(ALSPAC [15, 16]).

Latent class trajectory models

Mixed effects models

Mixed effects models when applied to longitudinal data, relate 
outcomes collected on the same individual to their observa-
tion times, allowing for the shape of this relationship to vary 
across individuals. Consider a single outcome variable, Zij , 
observed on individual i at times tij , where i = 1, 2, …, N, and 
j = 0, 1, …, J. A typical specification of a mixed effects models 
for continuous outcomes, assuming a linear relationship with 
time, and the same observation times for all individuals, tj, is

where �0i and �1i are individual-specific coefficients, which 
have fixed ( �0 and �1 ) and random ( u0i and u1i ) components, 
with �0i = �0 + u0i and �1i = �1 + u1i . The fixed coefficients 
�0 and �1 are shared by all individuals, while the error terms 
ui =

(
u0i, u1i

)
 are unobserved random variables that capture 

the individual departures from the population average tra-
jectory, 

(
�0 + �1tj

)
 . The error terms ui are usually assumed 

to be jointly normally distributed with mean zero and free 
covariance matrix Ω

u
, and the residual errors �ij to be inde-

pendently and normally distributed, conditionally on ui and 
t, with constant variance �2

�
 . The �ij capture the distance 

between the observed data for the i-th individual to the true 
individual-specific trajectory, (�0i + �1itj) (Fig. 1a). Here we 
consider tj to indicate the actual observation time, so that the 
relationship with time is properly captured. When informa-
tion is gathered in terms of waves, as in panel data, we would 
recommend translating this information into an appropriate 
time-scale.

(1)Zij = �0i + �1itj + �ij,
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When Zij is an ordered categorical variable, with (K + 1) 
categories, a mixed effects model is usually specified in 
terms of a latent continuous variable Z′

ij
 specified as

where �0i and �1i are defined as before but with the independ-
ent error �ij following a logistic distribution with mean 0 and 
variance �

2

3
 (where � is the constant representing the ratio of 

a circle’s circumference over its diameter). The observed 
categorical variable Zij is assumed to have been generated 
from this latent variable according to unobserved cut-points 
(“thresholds”) �k , k = 1, …, K, with Zij = 1 if Z′

ij
≤ �1 ; Zij = 2 

if 𝜏1 < Z
′

ij
≤ 𝜏2 ; …; Zij = (K + 1) if Z′

ij
> 𝜏K . The thresholds 

are the expected values of the latent variable Z′

ij
 at which an 

individual transitions from a value k to a value (k + 1) on the 
categorical outcome variable Zij.

Generalisations of models (1) and (2) that include non-
linear relationships with time are straightforward, likewise 
models where the coefficients for these additional non-linear 
terms include random components, as in

Estimation is generally by maximum likelihood (ML, 
or restricted maximum likelihood when the study is small 
[17]), with the estimation-maximisation algorithm used in 
the presence of missing outcome data under the missing at 
random (MAR) assumption [18].

When individuals are observed at the same times tj , as 
assumed here, there is an alternative formalization of mixed 
effects models that arises from to the confirmatory factor 
analysis framework (and, more generally, the structural 
equation modelling [SEM] literature). This framework views 
the random coefficients of a mixed effects model as latent 
factors, “manifested” by the joint distribution of the longi-
tudinal observations, Zi =

(
Zi1, Zi2, ,… , ZiJ

)
 [19]. Model (1) 

for example could also be written as

where �0i and �1i are the original individual-specific coeffi-
cients that are now viewed as latent variables. The regression 
coefficients �j (referred to as “factor loadings” in the SEM 
literature) are not estimated but are pre-determined accord-
ing to the timing of the observations. For model (1) the fac-
tor loadings would be: �1 = 0, �2 =

(
t2 − t1

)
, �3 =

(
t3 − t2

)
, 

etc. This representation of model (1) can be viewed graphi-
cally in Fig. 2a, where the factor loadings are shown above 
the arrows linking the latent individual-specific coefficients 
to the observed data. Adopting this approach has several 
advantages, in particular the option of using SEM software 
for estimation, and also extending the model for example by 

(2)Z
�

ij
= �0i + �1itj + �ij,

(3)Zij = �0i + �1itj + �2it
2

j
+ �ij.

(4)Zij = �0i + �j�1i + �ij,

allowing the error terms �ij to have time-specific variances, 
�2

�j
 , or more complex extensions as discussed below.

Growth mixture models

Growth mixture models assume that there are multiple 
mixed effects models, each representing a subgroup (i.e. 
“class”) of trajectories that share a common mean and shape 
(with, potentially, class-specific error variance structures) 
[20, 21]. Growth mixture models are therefore generalisa-
tions of mixed effects models (Fig. 1b).

Formally, they are specified as follows. Let C indicate the 
number of latent classes in the population, distributed with 
probabilities pc , c = 1,…, C, with 0 ≤ pc ≤ 1 and 

∑C

c=1
pc = 1 

[22]. As the latent classes are unknown, we model the 
observed data using as a mixed effects model specific to the 
latent class c each individual belongs to, with the joint distri-
bution of the data then being a mixture of these distributions, 
weighted by the probability of each class, pc . For example, a 
growth mixture model generalisation of model (1) is,

where �c
0i
= �c

0
+ uc

0i
 , �c

1i
= �c

1
+ uc

1i
 , uc

i
=
(
uc
0i
, uc

1i

)
 and �c

ij
 are 

defined as before, although specifically for each class c. The 
graphical representation of this model is shown in Fig. 2b. 
Assuming that all classes have the same error structure may 
be unrealistic; therefore class-specific covariances Ωc

u
 for the 

individual-level error terms are often considered.
For categorical var iables, we would specify 

Z�

ij|c = �c
0i
+ �c

1i
tj + �c

ij
 ,  with �c

ij
 following a logistic 

distribution.
Because the number of classes is unknown, the estima-

tion is carried out conditionally on a pre-specified number 
of classes. Estimation is by Maximum likelihood (ML) with 
the expectation–maximization (EM) algorithm because the 
classes are unobserved [23]. As several local maxima for 
the likelihood are expected to be found with such complex 
models, multiple starting points for the estimation routine 
are recommended, before maximization is deemed to have 
been reached [19]. Following estimation, posterior class 
probabilities can be derived and used to assign individuals 
to classes according to their largest value (“modal assign-
ment”), or to weigh individuals when calculating predicted 
class frequencies.

In order to identify the number of classes that best fits 
the data, a number of goodness-of-fit criteria are compared. 
Those commonly recommended in the literature [24] are 
the Akaike Information Criterion (AIC), the Bayesian 
Information Criterion (BIC), and its sample size-corrected 
version (c-BIC). For each of these, lower scores indicate 
(relatively) better fitting models. The parametric bootstrap 
likelihood ratio test (BLRT) has also been recommended 

(5)Zij|c = �c
0i
+ �c

1i
tj + �c

ij
, for c = 1,… ,C,
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Fig. 1   Graphical representation of alternative longitudinal models: a 
mixed effects model; b growth mixture model (GMM); c latent class 
growth analysis (LCGA); d longitudinal latent class analysis (LLCA). 

Black line: population mean trajectory; blue line: individual-specific 
trajectory; red and green lines: class-specific trajectories; red and 
green triangles: class-specific values; x: observations for individual i 

Fig. 2   Structural equation modelling representation of: a mixed effects model; b growth mixture model; c growth mixture model with predic-
tors; d growth mixture model with distal outcome
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as an additional comparative tool given its performance in 
simulations [25]. However it is disadvantaged by being com-
putationally intensive and affected by poor performance in 
small samples [19]. These goodness-of-fit criteria do not 
necessarily agree, in the sense that they may not all point to 
selecting the same model. Hence, additional considerations 
are often invoked, such as interpretability of the latent tra-
jectories, and the avoidance of too small classes (e.g. < 5% 
of the study population) that may lead to lack of reproduc-
ibility of the results.

The quality of the classification of a model, the so-called 
“entropy”, is also often reported, with values close to 1 
indicating good classification. Specifically, this is a sum-
mary measure that captures how well class membership is 
predicted given the observed outcomes. However, this inter-
pretation requires the model to be correct, and thus entropy 
values should not be overinterpreted [25].

As described, these criteria are applied sequentially on 
models with increasing numbers of classes using the same 
dataset. It has been suggested that cross-validation should 
be used instead [26]. This would involve fitting the model 
with a given number of classes on a subset of the data, fol-
lowed by using the selected model on the remaining data and 
assessing its goodness of fit. A more sophisticated version 
of this would involve k-fold cross-validation. This approach, 
however, requires larger datasets than those usually available 
in typical epidemiological studies and would still depend on 
which goodness of fit criterion is used.

Latent class growth analysis

Latent class growth analysis [27] specifies models that are 
similar to growth mixture models. However, latent class 
growth analysis models assume no individual-level ran-
dom variation within each class, and therefore individuals 
assigned to the same class share exactly the same trajectory.

Formally, latent class growth analysis specifies models 
with the same structure as model (5) but with fixed effects 
regression coefficients, albeit specific to each class. Denot-
ing a latent class growth analysis class by s, this model is 
expressed as,

where Z is a continuous variable and es
ij
 are independently 

distributed error terms. Because there is no within-cluster 
variation (i.e. there are no us

i
 and the class-specific coeffi-

cients �s
0
 and �s

1
 are the same for every member of class s), 

these error terms capture random perturbations of each 
observed data point from their class specific trajectory 
(Fig. 1c). The assumption that these errors are independently 
distributed, as implicit in most software [28, 29], may be 
unrealistic however as one would expect individual 

(6)Zij|s = �s
0
+ �s

1
tj + es

ij
, s = 1,… , S

trajectories that belong to the same class to be heterogeneous 
and the individual-specific departures from the class-specific 
trajectories to be correlated. Departures from this assump-
tion can have consequences,  as discussed in 
“Assumptions”.

Longitudinal latent class analysis

These models are a variation of latent class growth analysis 
models that ignores the longitudinal nature of the data. The 
model for an individual belonging to the longitudinal latent 
class r is specified as,

where I
t=tj

 are dummy (0/1) indicators of the times when Zij 
is observed (Fig. 1d). Hence, latent classes are identified 
without exploiting the information on the time order of the 
observations, but also without forcing any parametric rela-
tionship between the outcomes and time.

Comments

Assumptions

Mixed effects models, growth mixture models, and latent 
class growth analysis rely on parametric assumptions for 
the relationship between the observed outcomes and time. 
These models, together with longitudinal latent class analy-
sis, rely on distributional assumptions for the error terms. 
Mixed effects models and growth mixture models make 
additional assumptions regarding the within-subject corre-
lations (parametrized by Ω

u
 and Ωc

u
 , respectively). Violations 

of these assumptions have different consequences depending 
on the type of outcome and modelling approach. Misspeci-
fied distributions and correlation structures in mixed effects 
models do not impact on the consistency of the fixed effect 
estimates when the observed outcomes are continuous, but 
they may bias inferences [1]. If the outcomes are categorical, 
however, bias will affect the fixed effects estimates as well 
[1, 30]. Non-parametric specifications of the random effect 
distributions have been proposed to deal with these issues 
[31], as described below.

The impact of these misspecifications may also influ-
ence the estimated number of classes of a growth mixture 
model. If, the assumed covariance structure is too simple, 
the number of classes may be greater because more are 
needed to capture the variability in the data [32]. For this 
reason, and as demonstrated in simulations [33], when 
selecting the number of classes for growth mixture models, 
one should in principle allow for general specifications, 

(7)Zij|r = �r
0
+

J∑

j=2

�r
j
I
t=tj

+ er
ij
, r = 1,… ,R,
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e.g., with class-specific covariance matrices Ωc

u
. and time-

specific residual error variance �2

�j
 [33]. How general these 

matrices can be, will be limited by the study size and may 
not be suitable with binary outcome data when their preva-
lence is low [33].

The assumption of independence for the residual errors 
es
ij
 , conditional on class s, which is usually made when 

performing latent class growth analysis, is most likely to 
be incorrect, especially when there are several observa-
tions per individual. Violations may lead to biased esti-
mates of the class-specific regression coefficients [33] 
unless the classes are well separated, e.g. entropy > 0.8 
[32]. Such bias is more prominent when the true covari-
ance structure is complex, the study size is small (< 500), 
or the outcomes are binary [30].

Another assumption often made with longitudinal 
data is that of the outcome data being missing at random 
(MAR) [18]. This assumes that the propensity of miss-
ing an observation, possibly because of an individual 
dropping-out of the study, depends on the observed data 
only. If met, model estimation by ML (for mixed effects 
models), or ML with EM (for growth mixture models), 
based on incomplete data is not affected by selection bias 
[17, 34]. It is often the case, however, that missingness 
depends on other variables, most commonly social factors. 
In such circumstances, one could include the predictors 
of missingness in the model, as discussed in “Relating 
latent classes to earlier explanatory variables or to later 
outcomes”.

Interpretation

In interpreting the results of whichever approach, one has 
to take into consideration all of the issues described above. 
Of note is that latent class growth analysis models were 
initially proposed as a semi-parametric version of mixed 
effects models where the variation in trajectories around 
a single class is approximated by a number of fixed tra-
jectories, as opposed to assuming jointly normally dis-
tributed random effects [35]. In other words, the classes 
are used to capture the overall variation so that, when the 
data are truly from a mixture of K classes (as in growth 
mixture models), a larger number of classes will be needed 
to extract the main features of the data when adopting 
latent class growth analysis [23, 27]. Thus, interpreting 
the resulting classes as if they had a theoretical underpin-
ning would be inappropriate in most settings. In contrast, 
growth mixture models distinguish the typologies repre-
sented by the latent classes from the within-class variation. 
Again, however interpretation should be cautious because 
of their stronger parametric assumptions.

Analytical strategy

These observations highlight the need for a comprehensive 
set of model specifications to be considered and then com-
pared, ranging from single class mixed effects models to 
growth mixture models and then latent class growth analysis 
and longitudinal latent class analysis models, before con-
cluding whether there are multiple trajectory types and what 
they capture.

As a first step, we would recommend fitting the most gen-
eral mixed effects model that the data can identify in order to 
investigate the extent of between-individual heterogeneities. 
The distributions and correlations of the predicted random 
effects from such a model could then be used to aid the 
interpretation of the best fitting growth mixture and best fit-
ting latent class growth analysis (or longitudinal latent class 
analysis) models. Comparing the classes predicted from 
these different model specifications, numerically and/or 
graphically, would also help clarify whether similar typolo-
gies emerge when adopting different modelling approaches.

If, even after allowing for the fact that some of the classes 
from a latent class growth analysis model actually will aim 
to capture the distribution of individual trajectories within a 
particular “true” class, little agreement is found, one should 
investigate whether model misspecifications might explain 
the discrepancies. As discussed in “Assumptions”, these may 
lead to biased parameter estimates and/or incorrect selection 
of the number of classes. Examination of the distributions of 
the estimated time-specific residuals derived for each class 
might indicate for example that the model is not properly 
reflecting the data if they were found to be skewed. This 
would happen for example if the relationship with time were 
misspecified in one of the classes.

Relating latent classes to earlier explanatory variables 
or to later outcomes

Once classes are derived, it is possible to relate them to ear-
lier explanatory variables or later outcomes. Any inferences 
drawn on these relationships, however, should account for 
the fact that the classes are not directly observed but derived 
under certain modelling assumptions. There are two main 
approaches to achieve this.

The first approach—the “1-step approach”—consists of 
extending the original model for the latent trajectories to 
include associations with the explanatory or the later out-
come variables of interest. This is easily achieved within an 
SEM framework (Fig. 2c, d), with the joint estimation of 
the latent classes and their relationship with other variables 
(respectively the “measurement” and “structural” parts of 
the SEM model) accounting for the uncertainties of class 
assignment.
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The second commonly used approach breaks down the 
estimation into three steps (“3-step approach”). The best fit-
ting latent trajectory model is fitted (1st step) and then used 
to assign individuals to their most likely class using the pre-
dicted posterior probabilities of belonging to each class (2nd 
step). These classifications are then included as outcomes 
or predictors in the relevant new analyses, accounting for 
the uncertainty of the classification performed in step 2 (via 
the probabilities of the true class given the assigned class 
estimated in step 1) [36].

The first approach is not generally recommended when 
the aim is to relate explanatory variables to the latent classes 
because the identification of the latent classes is potentially 
affected by which variables are included in the model [37]. 
One exception to this concern is when the reason for includ-
ing the covariates in a 1-step analysis is to meet the MAR 
assumption when the longitudinal outcome data are affected 
by missingness. In this case, one would want to condition 
on these covariates to avoid the bias that would arise from 
analysing incomplete data.

More serious concerns arise when relating latent classes 
to a later outcome, because in the latter case the outcome 
has the same direction of association with the classes as the 
longitudinal variables that lead to their identification (see 
Fig. 2d; [36]).

When the entropy of the latent class model is greater than 
0.80, results from the 1- or 3-step approach have been found 
to be similar [36]. In practice, however, the 1-step approach 
may be unfeasible, especially when the longitudinal data are 
categorical, so that the 3-step approach should be adopted 
(with multiple imputation if missingness depends on covari-
ates, and with the selection of the number of classes made 
from the most frequently best solution among the imputed 
sets).

The ALSPAC study

Participants

We analysed data from the Avon Longitudinal Study of 
Parents and Children (ALSPAC), a population based, lon-
gitudinal cohort of mothers and their children born in the 
southwest of England, to illustrate the different modelling 
strategies. Details of the study are given elsewhere [15, 16]. 
Briefly, all pregnant women expected to give birth between 
the 1st April 1991 and 31st December 1992 were invited 
to enrol in the study. From all pregnancies (n = 14,676), 
14,451 mothers opted to take part, and 13,988 of their chil-
dren were alive at 1 year. Analyses are restricted to girls 
only for simplicity, after randomly selecting one child per 
set when birth was from a multiple pregnancy. Please note 

that the study website contains details of all the data that 
are available through a fully searchable data dictionary and 
variable search tool: http://www.brist​ol.ac.uk/alspa​c/resea​
rcher​s/our-data/.

Variables

Longitudinal variables

We aimed to model the repeated measures of a continuous 
and an ordinal variable:

a.	 Body mass index (BMI; in kg/m2), objectively measured 
up to six times when participants were (around) 8, 10, 
11, 12, 13, and 16 years. Height was measured to the 
nearest millimetre with the use of a Harpenden Stadiom-
eter (Holtain Ltd.). Weight was measured with a Tanita 
Body Fat Analyzer (Tanita TBF UK Ltd.) to the nearest 
50 g.

b.	 Parental reporting of fussy eating consisted of responses 
to the question “How worried are you because your child 
is choosy?” for which there were three possible answers: 
“No/did not happen”, “Not worried”, and “A bit/greatly 
worried”. These were observed up to eight times during 
the first ten years of life, specifically at around 1.3, 2.0, 
3.2, 4.6, 5.5, 6.9, 8.7, and 9.6 years. A more detailed 
description of these data can be found in Herle et al. 
[38].

Explanatory variable

Birth weight (in kg) was used as the explanatory variable of 
interest in our examples. This variable was available on 4462 
(99%) girls among those with at least one longitudinal BMI 
and on 5750 (99%) girls with at least one fussy eating meas-
urement. Mean birth weight was 3.37 kg (SD = 0.51) and 
3.36 kg (SD = 0.51) in these two subgroups. It was internally 
standardized using these means and SDs in the analyses.

Later outcome

Body fat mass index (FMI) [39] at age 18 years was the later 
outcome of interest. It was defined as the ratio of total body 
fat mass (in kg) over height (in metres) squared. Body fat 
was objectively measured using the Tanita Body Fat Ana-
lyser (Model TBF 401A) and height as described above. 
Data on FMI were available on 2443 (55%) girls with at 
least one longitudinal BMI measurement and 2464 (42%) 
girls with at least one longitudinal fussy eating measure-
ment. Mean FMI was 21.57 kg (SD = 9.56) and 21.62 kg 
(SD = 9.52), respectively.

http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.bristol.ac.uk/alspac/researchers/our-data/
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Computer code

Examples of Mplus and Stata code used for these analyses 
can be found in https​://githu​b.com/Morit​zHerl​e/Ident​ifyin​
g-typic​al-traje​ctori​es-in-longi​tudin​al-data. Some of these 
analyses can also be performed in R (with the lcmm pack-
age); the relevant code can also be found in this depository.

Ethics

The authors assert that all procedures contributing to this 
work comply with the ethical standards of the relevant 
national and institutional committees on human experimen-
tation and with the Helsinki Declaration of 1975, as revised 
in 2008. Ethical approval for the study was obtained from 
the ALSPAC Ethics and Law Committee and the Local 
Research Ethics Committees.

Data description

Figure 3a shows the observed individual BMI trajectories for 
all participants with at least one BMI observation (“spaghetti 
plot”), while Fig. 3b shows the equivalent plot (“lasagne 
plot”) for the categorical fussy eating variable, with a change 
in colour along time representing a change in category. Both 
variables show considerable and increasing variation over 
time, as well as an increasing frequency of missing data. 
Details of the completeness of the longitudinal BMI data are 
given in Supplementary Tables 1 and 2; they highlight that 
the majority of the participants included in these analyses 
had six data points and are therefore quite complete. A total 
of 4517 girls had at least one longitudinal BMI measure and 
5824 girls had at least one longitudinal parental report of 
fussy eating. In the following, we assume that MAR was sat-
isfied and included in the analyses all girls with at least one 
longitudinal observation of the relevant outcome variable.

Longitudinal phenotypes

BMI

Mixed effects models

As a first step, we fitted mixed effects models to the longitu-
dinal BMI measures, with age capturing the dependence on 
time. Given the observed trajectories, we specified models 
that included a linear and quadratic term for age and cor-
related random effects for the intercept and the two slopes 
of the linear and the quadratic age term, before considering 
simpler specifications. The resulting best fitting model had 
random intercepts, and random coefficients for the linear and 

the quadratic age term (with freely estimated covariances 
and residual variances; details in Supplementary Table 3).

Growth mixture models

Mixed effects models can be viewed as single class growth 
mixture model. Hence, their goodness of fit can be com-
pared with that obtained from growth mixture models with 
increasing numbers of classes, allowing for class-specific 
covariance structures [33]. We compared growth mixture 
models with up to six classes using the criteria described in 
“Growth mixture models”. Among the models that assumed 
the same error structure across classes, the three-class solu-
tion fitted the data best according to the AIC, BIC and c-BIC 
(red and blue line in Fig. 4, Supplementary Table 4). Relax-
ing this assumption led to improvements in these indices but 
led to substantially worse entropy (it dropped from 88.9% 
to 57.5% for the (best) 3-class solution) and to some very 
large values for elements of the estimated covariance matrix 
Ωc

u
 for one of the classes. Hence, we selected the three-class 

growth mixture model with homogeneous error structure as 
the best fitting model.

The selected model’s predicted average trajectories are 
shown in Fig. 5a, together with the trajectory predicted by 

(b)

(a)

Fig. 3   Observed trajectories in a body mass index (BMI; kg/m2), 
N = 4571 and b fussy eating, N = 5824, Avon Longitudinal Study of 
parents and children

https://github.com/MoritzHerle/Identifying-typical-trajectories-in-longitudinal-data
https://github.com/MoritzHerle/Identifying-typical-trajectories-in-longitudinal-data
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the mixed effects model (in black) for comparison. The class 
1 trajectory (GMM-1, in red) is very similar to that predicted 
by the mixed effects model. This is not surprising given that 
class 1 is the most frequent, with 88% of the participants 
assigned to it according to their predicted posterior prob-
ability. Class 3 (GMM-3; 5%, in green) has a fairly parallel 
trajectory to that of GMM-1, albeit starting from a higher 
value. Class 2 (GMM-2; 7%, in blue) starts at a lower value 
than GMM-3 but increases faster over time, leading to the 
highest predicted BMI by age 16 years.

Latent class growth analysis

Six alternative specifications of latent class growth analysis 
model were fitted to the longitudinal BMI data. The four-
class solution gave the best fit according to the goodness-
of-fit criteria (green line in Fig. 4, Supplementary Table 4). 
The predicted trajectories for the four classes do not cross 
(Fig. 5b), unlike those identified by the best fitting growth 
mixture model. The second class (LCGA-2, in blue, 37%) 
overlaps with the trajectory predicted by mixed effects 
model (MEM; in black).

As expected, the lack of intra-class variability assumed 
by the latent class growth analysis model led to a greater 
number of classes than found by the best fitting growth mix-
ture model. However, they also differed in shape. This might 
derive from biases affecting either model as a consequence 
of incorrect assumptions about the correlation structure of 
the BMI observations.

Longitudinal latent class analysis

The same modelling steps used to select the best growth 
mixture model and latent class growth analysis model were 
used when fitting longitudinal latent class analysis models. 
The best fitting model predicted identical trajectories to 

those obtained by latent class growth analysis. This is not 
surprising since the only difference between the two models 
is how time (here age) is accounted for: it is included as a 
continuous explanatory variable in the latent class growth 
analysis specification (and modelled here using a quadratic 
function) while it is an ordered categorical variable in lon-
gitudinal latent class analysis (see Supplementary Table 4).

Changing outcome scale

Each of the fitted models described above assumes that the 
residual errors are normally distributed, conditionally on 
class (in latent class growth and longitudinal latent class 
analysis) or on class and individual (for growth mixture 
models). If this assumption is inappropriate, results may 
be biased, with our conclusions regarding the number of 
latent classes potentially erroneous [40]. For this reason, we 
refitted all models on log-transformed BMI values, given its 
known skewness.

The new mixed effects model (i.e., the one-class GMM) 
showed a marked improvement in fit (in terms of AIC, BIC 
and c-BIC) relative to the mixed effects model fitted on the 
original scale (Supplementary Table 4). The best fitting 
growth mixture model fitted on the transformed data had 
four classes (with no gain in the fit indices when allowing 
class-specific covariance structures; Fig. 4). Interestingly, 
the most frequent classes of the growth mixture model fit-
ted on the original and log-transformed values (GMM-1, 
in red, in Fig. 5a, c, respectively 88% and 75% of the total) 
have very similar trajectories (after back-transformation of 
the latter). However, the solutions differed with regards to 
the remaining classes, with the classes derived from the new 
model showing a separation of the individuals who start 
with moderate values: log-transforming the data on BMI 
before fitting the growth mixture model separated a group of 

Fig. 4   Bayesian information criterion (BIC) by number of classes for 
different specifications of the growth mixture model (GMM) (with/
without homogeneous within-individual correlation matrix, Ωc) and 

of the latent class growth analysis (LCGA) model for body mass 
index (BMI) and log(BMI)
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individuals who continue to increase their BMI (GMM-3, in 
blue, 6%) from those whose increase slows down after age 
12 (GMM-2, in pink, 13%).

The best latent class growth analysis model fitted on log-
transformed BMI had five classes (Fig. 5d), with the new 
class showing a finer separation among the individuals. 
Again, the best fitting latent class growth analysis model 
has more classes than the best fitting growth mixture model, 
with the first three latent class growth analysis classes nearly 
completely overlapping with GMM-1 (hence capturing its 
distribution). However, the other classes do not follow this 
pattern (Supplementary Fig. 1).

In order to further interrogate these results, Fig. 6 com-
pares the distributions of the random intercepts, linear 
slopes, and quadratic slopes predicted by the mixed effects 
models fitted on log(BMI), with those of the equivalent 

random coefficients predicted by the growth mixture model 
with four classes and the latent class growth analysis model 
with five classes (although the latter—by definition—do not 
have any within-class heterogeneity). The skewed distribu-
tions of the random intercepts predicted by the mixed effects 
model are neatly separated into the four growth mixture 
model classes. In contrast, the class-specific intercepts given 
by the latent class growth analysis do not fully reflect the 
spread of the mixed effects model random intercepts, and do 
not capture at all its extreme values. Similar comments apply 
to the distributions of the predicted random slopes (espe-
cially the linear ones, Fig. 6). Examination of the estimated 
residuals from each of these models showed no particular 
skewness. There is therefore no direct evidence of departure 
from the models’ assumptions. Note however that all esti-
mates were obtained assuming the missing mechanism was 
MAR. If this were not the case, estimates would be affected 

(a) Growth mixture model on BMI (b) Latent class growth analysis on BMI

(c) Growth mixture model on log(BMI) (d) Latent class growth analysis on log(BMI)

Fig. 5   Best fitting trajectories of body mass index (BMI) obtained 
using a mixed effects model (MEM), a growth mixture model (left 
hand side panel) and a latent class growth analysis (right hand side 

panel) on the original BMI data (top) and log-transformed BMI (bot-
tom); Avon Longitudinal Study of Parents and Children, N = 4517
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by selection bias in directions that cannot be predicted. We 
discuss this further in “Alternative estimation approaches”.

Fussy eating

Mixed effects models

Several mixed effects models for the longitudinal categorical 
fussy eating were fitted, with age capturing the dependence 
on time and with alternative specifications of their random 
components. The model with linear and quadratic terms for 
age and random intercepts, linear and quadratic slopes fitted 
the data best. The stacked predicted probabilities of parental 
reporting of, respectively, “Did not happen”, “Not worried”, 
and “A bit/greatly worried” are shown in Fig. 7a (details 
in Supplementary Table 6). They show stable probabilities 
over time of each category of parental reported fussy eating.

Growth mixture models

A three-class growth mixture model with homogeneous 
error structure (Ωu) was selected as the best fitting model, 
with attempts at relaxing this assumption resulting in no-
convergence (Supplementary Table 7). According to this 
classification, most children (75.1%) were assigned to class 1 
(GMM-1, Fig. 7b), which is characterised by predicted prob-
abilities closely resembling those identified by the mixed 
effects model. The second most common class (GMM-2, 
16.5%, Fig. 7c) comprises parents reporting that fussy eat-
ing “did not happen” with increasing predicted probabilities. 
The smallest class (GMM-3, 8.4%, Fig. 7d) includes children 
whose parents report worrying (a bit or greatly) with high 
and increasing probabilities, while “not worrying” and “did 
not happen” are reported with fast decreasing probabilities 
over time.

Latent class growth analysis

Latent class growth analysis of fussy eating suggested six 
classes fitted the data best (Supplementary Table 7). The 
cumulative predicted probabilities of each of the three cat-
egories varied substantially across classes (Fig. 8). Class 1 
(LCGA-1; 20.9%) identifies a group of children whose par-
ents report that fussy eating “did not happen” with high and 
fairly stable probabilities, while in class 2 (LCGA-2; 6.9%) 
parents worry (a bit or greatly) about their children’s fussy 
eating with fairly stable probabilities. In class 3 (LCGA-
3; 37.5%) parents mostly do “not worry”. The other three 
classes show time-varying probabilities: LCGA-4 (5.9%) 
and LCGA-5 (19.8%) comprise parents that progressively 
increasingly and progressively decreasingly worry. LCGA-6 
(9.1%) includes parents that progressively increasingly 
report that fussy eating “did not happen”.

Fig. 6   Distribution of the random coefficients predicted by alterna-
tive models, fitted to log-transformed body mass index (BMI); Avon 
Longitudinal Study of parents and children, N = 4517. MEM mixed 
effects model, GMM growth mixture model, LCGA​ latent class 
growth analysis; GMM-n nth class of GMM with 4 classes, LCGA-
n nth class of LCGA model with 5 classes. Grey dots: observation, 
thick black line: median, thin black line: 1st and 3rd quartile
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Longitudinal latent class analysis

The best fitting longitudinal latent class analysis model also 
consisted of 6 classes (Supplementary Table 7). The shape 
of their predicted probabilities is very close to those derived 
from the best fitting latent class growth analysis. Again, the 
role of time seems to be well captured by the linear and 
quadratic terms used in the selected latent class growth 
analysis model.

Comparisons

The distributions of the random coefficients predicted 
by the mixed effects model, growth mixture model with 
three classes, and latent class growth analysis model with 
six classes are compared in Fig.  9. The distribution of 
random coefficients of the largest growth mixture model 
class (GMM-1) practically coincides with those for the 
mixed effects model, with the class-specific coefficients for 
LCGA-3 mirroring their means. In contrast, the distributions 
for GMM-2 and GMM-3 capture respectively the lower and 
upper tails of the mixed effects model distributions.There 
is a similar spread across the latent class growth analysis 
coefficients. The riverplot that links the classes predicted by 
the growth mixture with those from the latent class growth 
analysis model shows that LCGA-3 and LCGA-5 make up 
most of GMM-1 (all capturing large probabilities of being 
“not worried”), while LCGA-1 and LCGA-6 correspond 
to GMM-2 (large probabilities of “did not happen”), and 
LCGA-2 and LCGA-4 to GMM-3 (decreasing probabili-
ties of “did not happen”; Supplementary Fig. 2). Hence, 

once it is recognised that the latent class growth analysis 
captures within-class variation by creating further classes, 
we find that the two modelling approaches lead to similar 
classifications.

Associations with explanatory and outcome 
variables

The interpretation of the classes derived so far may be 
enhanced by relating them to precursors or later outcomes.

Association with birth weight

The best fitted models for log(BMI) and fussy eating were 
used to define their respective latent classes before relat-
ing them to birth weight (as in Fig. 2c). Multinomial logis-
tic regression models were fitted where the probability of 
belonging to each class depended on this explanatory vari-
able. Results are reported in terms of estimated relative risk 
ratios (RRR), i.e., ratios of the relative probability of being 
in a given class over the probability of being in the refer-
ence class, per 1 standard deviation (SD) increase in birth 
weight. We chose as reference the most frequent class from 
each growth mixture model; Class 1 for both longitudi-
nal log(BMI) and fussy eating, and the closest latent class 
growth analysis class to these reference classes. These were 
respectively class 2 for log(BMI) and class 3 for fussy eat-
ing. We report results obtained using the 3-step approach 
first, before comparing them with those from the 1-step 
approach.

Fig. 7   Stacked predicted prob-
abilities of parental reports of 
their child’s fussy eating (“Did 
not happen”, “Not worried” and 
“A bit/greatly worried”) pre-
dicted by the best fitting mixed 
effects model (MEM) and the 
best fitting growth mixture 
model (GMM) with 3 classes; 
Avon Longitudinal Study of 
parents and children, N = 5824

(a)

(c) (d)

(b)



217Identifying typical trajectories in longitudinal data: modelling strategies and…

1 3

Birth weight was associated with an increased risk 
of being in the highest BMI growth mixture model class 
(GMM-4), relative to the reference (GMM-1), with an esti-
mated 32% increase in relative risk [RRR = 1.32, 95% con-
fidence interval (CI): 1.05, 1.68] per 1 SD increase in birth 
weight (Table 1, 3-step results). The estimated RRRs across 
the latent class growth analysis classes for BMI, relative 
to LGCA-2 (which trajectory is similar to GMM-1), show 
a negative association for the first class (LCGA-1) and a 
positive association with the other classes (Table 1). Of note 
is the similarity in RRRs for LCGA-5 and GMM-4. These 
results highlight, regardless of modelling approach, a posi-
tive association between birth weight and trajectories with 
persistently higher BMI.

With regards to the fussy eating classes, the RRRs for 
GMM-2 and LCGA-1 (relative to their respective, and com-
parable, reference classes) show increased relative risks with 
higher birth weight (Table 1, 3-step results). These two 
classes are characterised by large (GMM-2) and increasing 
(LCGA-1) frequencies of parental reporting that fussy eat-
ing “did not happen”. The opposite is seen with the classes 
characterised by increasing (GMM-3, LCGA-4) or large and 
stable (LCGA-2) parental worrying about fussy eating. Their 
RRR are all less than 1 (0.92-0.96). It appears therefore that 
fussy eating may be less commonly reported in children with 
greater birth weight.

Association with fat mass index

Similar steps were followed to examine the association 
between the BMI and fussy eating classes and FMI at age 

18 years (Fig. 2d). Linear regression models were fitted on 
log-transformed FMI to address the right-skewness of its 
distribution.

The results for the BMI classes derived from the growth 
mixture and latent class growth analysis models are in agree-
ment again, and in line with expectations, with larger aver-
age FMI associated with higher BMI trajectories (Table 2, 
3-step results). Interestingly, GMM-3 and GMM-4 show 
similar differences in log-FMI, relative to GMM-1, both 
larger than those found for GMM-2 (characterized by rela-
tively higher BMI but only initially), indicating the impor-
tance of BMI in later adolescence.

The results for the fussy eating classes are less straight-
forward to interpret (Table 2, 3-step results). GMM-2, the 
growth mixture model class with decreasing reports of fussy 
eating, has greater average FMI than the reference class, 
GMM-1 (estimated difference = 0.047; 95% CI: -0.005, 
0.099), while GMM-3, the class with increasing frequencies 
of parental worrying, has a smaller average FMI (-0.061; 
-0.132, 0.011).

Among the latent class growth analyses classes, only 
LCGA-2 has similar average FMI to the reference class 
LCGA-3, despite being characterised by very different tra-
jectories, all the other LCGA classes having instead lower 
mean values. All these differences are however small and 
estimated with wide confidence intervals.

Overall, FMI at age 18 is on average higher in individu-
als that belong to classes with persistently high BMI values, 
as identified by the two modelling approaches as GMM-3 
and LCGA-5. The growth mixture model gives an additional 
insight in identifying also GMM-2 as having the highest 

Fig. 8   Stacked predicted prob-
abilities of parental reports of 
their child’s fussy eating (“Did 
not happen”, “Not worried” 
and “A bit/greatly worried”) 
predicted by the best fitting 
latent class growth analysis 
(LCGA) with 6 classes; Avon 
Longitudinal Study of parents 
and children (ALSPAC) study, 
N = 5824
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average FMI. This class has average BMI onset but the fast-
est increase over time. In contrast, no clear associations were 
found between FMI and the fussy eating classes derived 

from either modelling approach. This is likely a reflection of 
the complex consequences of fussy eating. Fussy children 
might only like a small variety of foods, some of which may 
have high caloric content [41].

Alternative estimation approaches

The results concerning the relationship between the explana-
tory/outcome variable and the latent classes were generally 
very similar when performing the 1-step or 3-step approach 
for latent class growth analysis. This was not the case 
when fitting growth mixture models. When relating birth 
weight with the growth mixture model classes, the 1-step 
approach identified different classes in comparison to the 
3-step approach. This is a consequence of the impact of birth 
weight on the identification of the classes. When relating the 
growth mixture model classes to later FMI, we encountered 
no-convergence, even when the model was simplified by 
constraining the quadratic random effect to have zero vari-
ance. The derived classes were different between the 1-step 
and 3-step approach regardless.

To account for the possible departure from MAR, we also 
fitted both models conditionally on maternal education and 
maternal age at birth of the child (Supplementary Table 8). 
Similar to what happened with birth weight, this led to dif-
ferent frequencies of the latent classes when using the 1-step 
approach with growth mixture models. It therefore seems 
advisable to avoid using a 1-step approach when fitting 
growth mixture models.

Final remarks

We have compared three different analytical approaches to 
derive latent trajectories from a variable observed longi-
tudinally. In doing so we have reviewed the assumptions 
invoked when fitting these models (summarised in Table 3), 
and highlighted the importance of carefully evaluating them, 
because misspecifications may lead to biased estimates of 
the trajectories and to an overestimation of the number of 
classes. For this reason, any interpretation of the result-
ing classes needs to take into account possible sources of 
misspecification of the models and of the impact such mis-
specifications may have. Additionally, when describing the 
classes identified by latent class growth analysis (and its 
simplification, longitudinal latent class analysis), one should 
acknowledge their derivation as non-parametric representa-
tions of variation in the individual trajectories, as opposed 
to just (possibly substantive) underlying typologies.

Our view is that each of these modelling approaches 
offers a useful representation of the heterogeneities in 
individual trajectories and that much can be learnt from 

Fig. 9   Distribution of the random coefficients predicted by alternative 
models fitted to fussy eating; Avon Longitudinal Study of parents and 
children, N = 5824. MEM mixed effects model, GMM growth mixture 
model, LCGA​ latent class growth analysis, GMM-n nth class of GMM 
with 4 classes, LCGA-n nth class of LCGA model with 6 classes. 
Grey dots: observation, thick black line: median, thin black line: 1st 
and 3rd quartile
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Table 1   Estimated relative 
risk ratios (RRRs) and 95% 
confidence intervals (CI) of 
belonging to a given body 
mass index (BMI) or fussy 
eating (FE) class (relative 
to the reference class) per 1 
SD increase in birth weight, 
estimated using either a 1-step 
or 3-step approach. The classes 
were identified using the best 
fitting growth mixture model 
(GMM) and best fitting latent 
class growth analysis (LCGA) 
model, for log(BMI) and FE; 
Avon Longitudinal Study of 
parents and children, N = 4227 
for the BMI classes and 
N = 5437 for the FE classes

BMI body mass index, FE fussy eating; ref: reference
a As in Figs. 5, 7 and 8
b Results obtained after constraining the variance of the quadratic slope to be zero

Variable Model Classa 1-step 3-step

Class % RRR​ 95% CI Class % RRR​ 95% CI

Log (BMI) GMM 1 (ref) 74.8 1 74.7 1
2 12.4 1.17 0.96 1.42 12.6 1.06 0.86 1.31
3 5.7 0.81 0.64 1.04 6.0 0.92 0.68 1.25
4 7.2 1.45 1.21 1.76 6.7 1.32 1.05 1.68

LCGA​ 1 18.2 0.74 0.67 0.81 17.9 0.77 0.70 0.84
2 (ref) 33.0 1 33.3 1
3 27.1 1.10 1.00 1.21 27.3 1.13 1.02 1.24
4 15.7 1.03 0.92 1.17 15.8 1.04 0.93 1.16
5 5.9 1.25 1.05 1.48 5.8 1.30 1.09 1.55

FE GMMb 1 (ref) 65.3 1 75.1 1
2 27.1 0.91 0.82 1.00 16.5 1.16 1.01 1.34
3 7.6 1.12 0.86 1.46 8.4 0.96 0.83 1.10

LCGA​ 1 20.7 0.99 0.89 1.10 20.9 1.04 0.93 1.16
2 7.0 0.87 0.77 0.99 6.9 0.91 0.80 1.04
3 (ref) 37.4 1 37.5 1
4 5.9 0.88 0.75 1.03 5.9 0.90 0.77 1.06
5 19.9 0.88 0.80 0.97 19.8 0.90 0.81 1.00
6 9.0 0.97 0.84 1.13 9.1 1.00 0.85 1.17

Table 2   Mean differences 
and 95% confidence intervals 
(CI) in fat mass index (FMI, 
log-transformed) across body 
mass index (BMI) and fussy 
eating (FE) classes (relative to 
the reference class) estimated 
using either a 1-step or 3-step 
approach. The classes were 
identified using the best fitting 
growth mixture model (GMM) 
and best fitting latent class 
growth analysis (LCGA) model 
respectively, for log(BMI) and 
FE, Avon Longitudinal Study 
of Parents and, N = 4227 for the 
BMI classes and N = 5437 for 
the FE classes

BMI body mass index, FE fussy eating, ref reference, Dif. estimated mean difference
a As in Figs. 5, 7 and 8, except for 1-step GMM for log(BMI) which gave parallel trajectories (as opposed to 
those of Fig. 5)
b No results because of no convergence

Model Classa 1-step 3-step

Class % Dif. 95% CI Class % Dif. 95% CI

Log (BMI) GMM 1 (ref) 13.2 0 74.7 0
2 49.8 0.164 0.109 0.219 12.6 0.089 0.065 0.113
3 28.6 0.330 0.273 0.387 6.0 0.297 0.275 0.319
4 8.4 0.515 0.462 0.568 6.7 0.298 0.272 0.324

LCGA​ 1 18.0 − 0.100 − 0.117 − 0.083 17.9 − 0.106 − 0120 − 0.092
2 (ref) 33.2 0 33.3 0
3 27.2 0.095 0.077 0.113 27.3 0.099 0.087 0.112
4 15.8 0.196 0.173 0.219 15.8 0.191 0.172 0.210
5 5.9 0.314 0.282 0.346 5.8 0.307 0.280 0.334

FE GMM 1 (ref) 75.1 0
2 b 16.5 0.023 − 0.002 0.048
3 8.4 − 0.024 − 0.053 0.005

LCGA​ 1 20.9 0.010 − 0.012 0.032 20.9 0.008 − 0.018 0.034
2 6.9 − 0.027 − 0.054 0.000 6.9 − 0.031 − 0.064 0.002
3 (ref) 37.4 0 37.5 0
4 5.9 − 0.210 − 0.055 0.013 5.9 − 0.024 − 0.069 0.021
5 19.9 − 0.018 − 0.040 0.004 19.8 − 0.018 − 0.046 0.010
6 9.0 0.009 − 0.023 0.041 9.1 − 0.003 − 0.041 0.035
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comparing results. We have found that starting the analy-
ses by first fitting a mixed effects model to the data helps 
understanding the data and that much in gained by examin-
ing the correspondence across classes obtained from dif-
ferent models, and by locating the class-specific param-
eters estimated by latent class growth analysis within the 
distributions of predicted random effects from the corre-
sponding mixed effects and latent growth models.

Comparing the strength and direction of the associa-
tions between the latent classes and both birth weight and 
fat mass index was enlightening for the understanding of 
the underlying typologies. Furthermore, assessing the sup-
port for an association between known predictors and the 
classes (or the classes and a subsequent outcome) offers 
insights into the typologies captured by the classes. How-
ever, much care should be invested in comparing results 
across models to avoid overinterpreting the results.

Generalizations of these models to more than one longi-
tudinal variable are in principle straightforward, although 
they lead to complexities in both specification and estima-
tion. Not surprisingly, even greater caution should accom-
pany the interpretation of any resulting latent trajectories 
from multivariate longitudinal data.

In summary, this overview and the applications pre-
sented stress the importance of extensive and careful mod-
elling, the advantages of comparing results across model-
ling approaches, and the need to temper the temptation of 
interpreting the classes derived by any of these models as 
confirmed phenotypes.
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