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Progress and Potential

The tumor microenvironment

composed of nonmalignant cells

often promotes tumor growth by

providing growth factors and

preventing the infiltration of

tumor-killing immune cells. It

could be valuable to leverage the

therapeutic potential of the

nonmalignant cells within the

tumor microenvironment for

anticancer treatment. In this work,
SUMMARY

Tumor-associated adipocytes promote tumor growth by providing energy and

causing chronic inflammation. Here, we have exploited the lipid metabolism

to engineer adipocytes that serve as a depot to deliver cancer therapeutics at

the tumor site. Rumenic acid (RA), as an anticancer fatty acid, and a doxorubicin

prodrug (pDox) with a reactive oxygen species (ROS)-cleavable linker, are

encapsulated in adipocytes to deliver therapeutics in a tumor-specific bio-

responsive manner. After intratumoral or postsurgical administration, lipolysis

releases the RA and pDox that is activated by intracellular ROS-responsive con-

version, subsequently promoting antitumor efficacy. Furthermore, downregula-

tion of PD-L1 expression is observed in tumor cells, favoring the emergence of

CD4+ and CD8+ T cell-mediated immune responses.
the adipocytes have been

engineered with the

encapsulation of an anticancer

fatty acid and a bioresponsive

doxorubicin prodrug for

chemotherapy and

simultaneously inducing an

immunogenic tumor phenotype.

These Trojan horse-like injectable

engineered adipocytes can serve

as a drug-delivery depot for

sustained drug release with

suppressed primary tumor growth

and postsurgical tumor

recurrence. This adipocyte-

mediated drug-delivery strategy

expands the scope of cell therapy

and could be extended for

treating other diseases associated

with lipid metabolism pathways.
INTRODUCTION

Cancer cells are frequently surrounded by nonmalignant cells that support tumor devel-

opment.1 Tumor-associated adipocytes (TAAs) are present within the tumor microenvi-

ronment (TME) and are recognized to promote angiogenesis by secreting adipokines

that include hormones, growth factors, and cytokines.2 Adipokines contribute in recruit-

ing immune cells that favor the generation of low-grade chronic inflammation3 and

abundance of reactive oxygen species (ROS) in the TME and tumor cells.4,5 Growth

factors, including vascular endothelial growth factor (VEGF), promote angiogenesis

and tumor growth.6 In the TME, fatty acids in lipid droplets from the adipocytes can

also provide energy to cancer cells7,8 through the fatty acid-binding protein 4

(FABP4) and tumor cell-induced lipolysis.9 Moreover, recent studies indicate that inter-

leukin-6 (IL-6) and leptin secreted by the adipocyte induce PD-L1 expression in cancer

cells via activation of the JAK/Stat3 pathway.10 A switch from white fat to brown fat

caused by tumor cells11 can also promote the direct expression of PD-L1 in adipo-

cytes.12 Therefore, targeting TAAs may be used to interrupt and eliminate a significant

source of nutrients and immune protection for tumor cells.

Here, we have leveraged adipocytes as a drug delivery depot to achieve local and sus-

tained release of chemotherapeutics within the TME (Figure 1A). A ROS-responsive

doxorubicin prodrug (pDox) is synthesized (Figure 1B) and encapsulated into adipo-

cytes together with rumenic acid (RA), an anticancer fatty acid,13–16 whichmeanwhile en-

hances the loading capacity of pDox inside the adipocytes. pDox can be delivered to

cancer cells via activation of the lipidmetabolic pathwaymediated by FABP4 (Figure 1C)

without affecting their physiologic lipid accumulation (Figure 1E). Finally, downregula-

tion of PD-L1 in tumor cells mediated by engineered adipocytes promotes the effector

function of infiltrating T cells (Figure 1D).
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RESULTS AND DISCUSSION

RA Reversed the Protumorigenic Role of TAAs

We co-cultured 3T3-L1 cell-differentiated adipocytes with different cancer cells in a 
transwell system. Normal adipocytes promoted the growth of tumor cells (Figures 
S1A–S1D). Furthermore, adipokine profiling of the co-culture supernatant showed 
high levels of resistin and VEGF, known to facilitate tumor cell growth and metas-

tasis,17 and lipocalin-2, known to drive brown fat activation in adipocytes18 as well 
as lipolysis that provides energy to tumor cells (Figures S2 and S3). To reverse the 
protumorigenic role of TAAs, we first evaluated the in vitro toxicity of the anticancer 
RA (Figure S1E), also named 9Z,11E-conjugated linoleic acid, and encapsulated it 
into adipocytes, followed by co-culturing these engineered adipocytes with tumor 
cells in transwell assays. Adipocytes loaded with RA (RA@adipocytes) significantly in-
hibited the growth of B16F10 and E0771 cells compared with nontreated cancer 
cells (Figures S1F and S1G). Furthermore, we observed that RA@adipocytes in-
hibited the expression of PD-L1 in B16F10 cells (Figure S1H), and favorably modified 
the profile of adipokine secretion (Figures S2 and S3), suggesting that this strategy 
could be exploited to improve antitumor effects mediated by effector T cells. The 
mechanism studies indicated that the downregulated phosphorylation of the PD-

L1 upstream regulators, including STAT3 and AKT,19,20 contributed to the PD-L1 
downregulation by RA@adipocytes (Figure S1I).

The antitumor effects of RA@adipocytes were evaluated by utilizing the B16F10 
melanoma mouse model. TAAs were detected within the TME (Figure S4A), and in-
tratumor injection of RA@adipocytes significantly delayed tumor growth (Figures 
1F–1I and S4B) without evident toxicity (Figure S4C). Moreover, 2 days after the sec-
ond injection of RA@adipocytes, we observed lower PD-L1 expression in tumor cells 
(Figures 1J and S4D), increased tumor-infiltrating CD4+ and CD8+ T cells (Figures 
1K, 1L, and S4E) and reduced regulatory T cells (Tregs) (Figures 1M and S4F) 
compared with control treatments. RA@adipocyte-mediated tumor suppression 
was confirmed by the TUNEL assay (Figure 1N), while immunofluorescence staining 
of infiltrated CD4+ and CD8+ T cells further supported the transition to an immuno-

genic tumor phenotype (Figure 1O). The serum concentration of several cytokines 
was also determined, indicating significant downregulation of IL-6 and interferon-
g (Figure S4G), which might also contribute to the PD-L1 downregulation.21 To 
further verify the immunomodulatory effect of RA@adipocyte to the TME, we per-
formed CD4- and CD8-depletion studies. The anticancer effect of RA@adipocyte 
was significantly reversed after CD4 and CD8 depletion (Figure S5).

We further investigated the antitumor activity of RA@adipocytes in a tumor resection 
model. RA@adipocytes encapsulated into a fibrin gel and injected into the tumor 
resection cavity significantly delayed tumor recurrence and growth (Figures S6A–
S6D) without evident toxicity (Figure S6E). In this model, we also observed 
decreased expression of PD-L1 in tumor cells (Figures S6F and S6J), increased tu-
mor-infiltrating CD4+ T cells (Figures S6G and S6K) and CD8+ T cells (Figures S6H 
and S6K), and decreased Tregs (Figures S6I and S6L). These results were further 
confirmed by immunohistochemistry and immunofluorescence staining, showing 
enhanced tumor cell apoptosis (Figure S6M) and T cell infiltration (Figure S6N).
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RA@adipocytes Loaded with Dox Prodrug Promoted Tumor Cell Death

To further improve the therapeutic index of RA@adipocytes, we synthesized a Dox 
prodrug by conjugating Dox to the oleic acid with a phenylboronic acid-based 
ROS-responsive linker (Figures S7–S13), which can be cleaved in the presence of
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Figure 1. RA Reshapes the Protumorigenic Function of Adipocytes

(A–D) Schematic of the overall strategy. (A) pDox and RA were encapsulated into adipocytes and then inoculated intratumorally or within the tumor

resection cavity. (B) Structure of the Dox prodrug (pDox) and RA. (C) Crosstalk between pDox + RA@adipocytes and tumor cells. (D) Therapeutic effect

of pDox + RA@adipocytes. Figure S17.

(E–O) To evaluate the antitumor efficacy, 107 RA@adipocytes were injected intratumorally. (E) Representative figures (images from Figure S17A) of

normally differentiated adipocytes and pDox + RA@adipocytes. Scale bar, 200 mm. (F) Representative figures (image from Figure S4B) of tumor

bioluminescence in control or RA@adipocyte-treated mice. (G) Individual tumor growth kinetics of control and RA@adipocyte-treated mice. (H)

Average tumor size in each experimental group. Data are presented as means G SEM (n = 6). Statistical significance was calculated via Student’s t-test.

p < 0.01. (I) Survival curves of the mice in each group. (J–M) PD-L1-expressing tumor cells (J), CD4+ T cells (K), CD8+ T cells (L) and Tregs (M) within the

tumor were quantified by flow cytometry. Data are presented as means G SD (n = 3). Student’s t-test was performed. *p < 0.05, **p < 0.01. (N and O)

Tumor cell death (N; scale bars, 200 mm [left panel] and 100 mm [right panel]) and immune response (O; scale bar, 200 mm) caused by RA@adipocytes

were evaluated by immunohistochemistry staining of TUNEL and immunofluorescence, respectively.
tumor-derived ROS.22 Upon oxidation in 10 mM H2O2, pDox was converted to Dox

within 48 h (Figure S14A). We hypothesized that the lipid conjugation in pDox would

enhance the uptake of pDox by cancer cells through the lipid metabolic pathway.

Binding of pDox and FABP4 was simulated (Figure 2A) and quantitatively character-

ized by the fluorescence polarization (Figures 2B and 2C). pDox had a high binding

affinity to FABP4 (KD = 23.1 nM), while there was almost no binding between Dox

and FABP4. To simulate the binding interaction, we modified the structure of the li-

noleic acid and docked it into the FABP4 binding pocket (Figure S15A).23,24 Further-

more, the ROS-responsive linker was constructed and conjugated to the lipid chain

(Figure S15B). The pDox structure was generated using the Schrödinger Maestro’s

3D-sketcher followed by an energy minimization procedure (Figure S15C) and a

full-atom, 20-ns molecular dynamics simulation (Figure S16).25 The binding affinity

of lipids to FABP4 was significantly improved with the attached linker (Figures

S15A and S15B). Dox attachment did not significantly alter the binding affinity of



Figure 2. Characterization of the Doxorubicin Prodrug Loading into the Adipocytes

(A) Simulation of doxorubicin prodrug (pDox) and FABP4 binding.

(B and C) Binding affinity of Dox (B) and pDox (C) was determined by fluorescence polarization, n = 6.

(D–G) Cytotoxicity of pDox and Dox was determined in B16F10 (D), A375 (E), E0771 (F), and MCF-7 (G) cell lines, n = 3.

(H and I) pDox and Dox were further encapsulated into adipocytes and the antitumor effects were evaluated in B16F10 (H) and E0771 (I) cell lines. Data

are presented as means G SD (n = 3). Statistical significance was calculated via one-way ANOVA analysis with a Tukey post-hoc test. **p < 0.01, ***p <

0.001.

(J) The effects of the FABP4 inhibitor were evaluated using the B16F10 cell line. Data are presented as means G SD (n = 3). Statistical significance was

calculated via one-way ANOVA analysis with a Tukey post-hoc test. *p < 0.05.

(K) The inhibitory effects of Dox and pDox on lipid accumulation were determined by oil red O staining. Data are presented as means G SD (n = 3). One-

way ANOVA with a Tukey post hoc test was performed. **p < 0.01.

(L and M) pDox encapsulation in adipocytes (Left panel: normally differentiated adipocytes. Right panel: pDox loaded adipocytes.) (L) and the

intracellular localization of pDox (M) were determined by confocal fluorescence microscopy. Scale bars, 20 mm.

(N) Uptake of pDox in cancer cells was determined by flow cytometry after co-culturing B16F10 cells and pDox@adipocytes in a transwell assay.
the ligand, with Dox staying outside of the binding site, and pDox was indeed pre-
dicted to be a strong binder to FABP4 (Figure S15C). We also analyzed the dynamics 
of lipid (Video S1), lipid plus linker (Video S2), and pDox (Video S3), verifying their 
interactions with the FABP4 binding pocket.



Next, we assessed the cytotoxicity of pDox compared with Dox toward B16F10 (Fig-

ure 2D), A375 (Figure 2E), E0771 (Figure 2F), andMCF-7 (Figure 2G) cells. The IC50 of

pDox toward B16F10, A375, and E0771 cells was about 1.5-fold higher than that of

Dox. Dox and pDox were then added to 3T3-L1 cells to obtain Dox@adipocytes and

pDox@adipocytes, respectively, which were then co-cultured with B16F10 (Fig-

ure 2H) and E0771 (Figure 2I) cells in a transwell assay. pDox@adipocytes showed

enhanced cytotoxicity compared with Dox@adipocytes, and this effect was signifi-

cantly reduced by BMS309403 that inhibits FABP4 (iFABP4) (Figure 2J). In accor-

dance with a previous report,26 Dox inhibited lipid accumulation in adipocytes (Fig-

ures 2K, S17A, and S17B). In addition, pDox could be efficiently encapsulated into

adipocytes (Figure 2L) and accumulated in the lipid droplets (Figure 2M). During

pDox absorption, iFABP4 did not affect the uptake of pDox in adipocytes. However,

it significantly inhibited the transportation of pDox from adipocytes to B16F10 cells

in the transwell assay (Figure 2N).

We further determined the antitumor effects of combining pDox and RA in B16F10

and E0771 cell lines (Figures 3A and 3B; combination index for B16F10 was 0.57).

Both pDox and Dox were effectively loaded into RA@adipocytes (designated

Dox + RA@adipocytes, pDox + RA@adipocytes) (Figure 3C) following the diffusion

process,27 while RA promoted the loading of both drugs (Figures S17C and

S17D). The stability of pDox within RA@adipocyte was evaluated, indicating that

pDox was not converted to Dox within 72 h (Figure S14B). The endosome was

also labeled, indicating that pDox was preferentially localized in the lipid droplets

(Figure S18A). We co-cultured pDox + RA@adipocytes and Dox + RA@adipocytes

with B16F10 cells and used murine dermal fibroblasts as a control to compare

drug-release profiles and lipolysis. B16F10 significantly triggered the release of

Dox (Figure 3D) and pDox (Figure 3E) from adipocytes, while murine fibroblasts

did not alter the release profile of both drugs. Furthermore, B16F10 induced lipol-

ysis in adipocytes as indicated by the release of free fatty acids in the media, while

fibroblasts did not trigger the lipid release (Figure 3F). However, more pDox tended

to be accumulated in the lipid droplets compared with Dox, which exhibited a higher

accumulation in the cell nucleus (Figure S18B). Therefore, more pDox was released

from adipocytes compared with Dox after 72 h. The hydrogel formulated by fibrin

did not affect the release profile of pDox within RA@adipocyte triggered by

B16F10 (Figure S17E). In agreement with previous studies,28,29 RA promoted lipid

accumulation in the lipid droplets in 3T3-L1 cells (Figures 3G, 3I, S17A, and S17B).

pDox + RA@adipocytes exhibited enhanced cytotoxicity to cancer cells compared

with RA@adipocytes, and this effect was eliminated by blocking FABP4 (Figure 3H).

In the same transwell system, RA encapsulation promoted pDox uptake in adipo-

cytes and B16F10 cells, while the uptake of pDox by B16F10 was inhibited by iFABP4

(Figure 3J). The transportation of lipids from adipocytes to cancer cells was further

confirmed by western blot (Figure S17F). Collectively, these data demonstrate

that pDox can be effectively loaded into adipocytes and that pDox can be trans-

ferred to the tumor cells via lipid transportation and activation of lipolysis.

pDox + RA@adipocytes Promoted Chemotherapy- and Immunotherapy-

Mediated Efficacy

To validate the therapeutic effects of pDox + RA@adipocytes in vivo, we utilized the

B16F10 mouse melanoma model. pDox exhibited enhanced antitumor efficacy

when delivered by adipocytes compared with free pDox loaded in the fibrin gel (Fig-

ures 4A, 4B, and S19A). Survival of mice receiving the pDox + RA@adipocytes was

significantly enhanced (Figures 4C, S19A, and S19B) without evident toxicity (Fig-

ure S19C). When we analyzed the tumors collected 2 days after the second



Figure 3. Combined RA and pDox Treatment for Cancer Therapy

(A and B) Antitumor effects of RA and Dox or pDox were determined in B16F10 (A) and E0771 (B) cell lines, n = 3.

(C) Comparison of the loading capacity of Dox and pDox in RA@adipocytes, n = 3.

(D–F) Release profile of Dox (D) and pDox (E) from adipocytes and concentration of free fatty acid (F) were determined in a transwell assay, n = 3.

(G) Lipid accumulation in adipocytes was evaluated by oil red O staining, n = 3.

(H) Cytotoxicity of pDox + RA@adipocytes in a transwell assay was determined by MTT assay. Data are presented as means G SD (n = 3). One-way

ANOVA with a Tukey post hoc test was performed. *p < 0.05, **p < 0.01.

(I) RA-loading capacity was determined using a confocal fluorescence microscope. Scale bars, 20 mm.

(J) pDox transportation between B16F10 cells and adipocytes mediated by FABP4 was determined by flow cytometry in a transwell assay.
treatment, mice treated with normally differentiated adipocytes exhibited slightly 
enhanced expression of PD-L1 in tumor cells (Figures 4D and S20A). We also 
observed decreased PD-L1 expression in tumor cells (Figures 4D and 

S20A),



Figure 4. Drug-Loaded Adipocytes Suppress Tumor Growth

(A) Individual tumor growth kinetics.

(B) Average tumor size in each experimental group. Data are presented as meansG SEM (n = 6–7). One-way ANOVA with a Tukey post-hoc test was used

for the analysis. *p < 0.05, **p < 0.01, ***p < 0.001.

(C) Survival curves of the mice in each group.

(D–G) PD-L1-expressing cells (D), CD4+ T cells (E), CD8+ T cells (F), and Tregs (G) were quantified within the tumor by flow cytometry. Data are presented

as means G SD (n = 4). One-way ANOVA with a Tukey post hoc test was performed. *p < 0.05, **p < 0.01, ***p < 0.001.

(H and I) Intratumor immune response (H; image from Figure S20D; scale bar, 200 mm) and tumor cell death of Dox + RA@adipocytes and pDox +

RA@adipocytes (I; image from Figure S21; scale bars, 200 mm [left panel] and 100 mm [right panel]) were evaluated by immunofluorescence staining of

T cells and immunohistochemistry TUNEL staining.
increased tumor-infiltrating CD4+ T cells (Figures 4E and S20B) and CD8+ T cells

(Figures 4F and S20B), and reduced Tregs infiltration (Figures 4G and S20C)

after pDox + RA@adipocyte treatment. These results were confirmed by immuno-

fluorescence and immunohistochemistry staining showing enhanced T cell

infiltration (Figures 4H and S20D) and tumor cell apoptosis (Figures 4I and S21).

pDox + RA@adipocytes also protectedmice from tumor recurrence in a tumor resec-

tion model (Figure S22A). Dox + RA@adipocytes and pDox + RA@adipocytes pro-

tected mice from tumor recurrence compared with control treatments (62.5% and

37.5%, respectively) (Figures S22B–S22D). Enhanced tumor cell death was achieved

in Dox + RA@adipocytes and pDox + RA@adipocytes groups (Figure S24) without

detectable toxicity (Figures S22E and S25). Of note, fibrin-loaded RA-treated groups

exhibited significantly decreased PD-L1 expression in tumor cells, whereas RA-

loaded adipocytes showed enhanced outcomes (Figures S22F and S23A). Mean-

while, the frequencies of CD4+ (Figures S22G and S23B) and CD8+ T cells (Figures

S22H and S23B) were significantly enhanced, while a significant decrease of the



 
Treg population was observed (Figures S22I and  S23C). These results were further
confirmed by immunofluorescence staining, showing enhanced T cell infiltration 
(Figure S23D), especially in Dox + RA@adipocytes and pDox + RA@adipocytes 
groups.

Recent decades have witnessed fast development of cell therapy using cells or 
cell-derived particles as drug delivery systems due to their unique transport pro-
cess and intrinsic properties that facilitate drug delivery.30 These drug delivery 
platforms, including erythrocytes,31–33 platelets,34–36 and stem cells,37,38 are 
mainly administered intravenously due to their long circulation or targeting capa-
bilities to the tumor or inflammatory sites. For solid tumors, surgical resection of 
primary tumors combined with chemotherapy, radiotherapy, or immunotherapy re-
mains the main option.39 The local drug delivery depot with high biocompatibility 
to the TME is highly desired for clinical applications. Adipocytes are widely present 
in the human body, and the procedures including isolation, purification, and differ-
entiation of preadipocytes are straightforward and robust. In addition, the lipid 
droplets accumulated in adipocytes are natural carriers for hydrophobic drugs. 
The lipolysis triggered by tumor cells can modulate the drug release profile in a 
TME-associated metabolism-responsive manner. Genetically engineered adipo-
cytes may further serve as therapeutic depots with desired adipokines and/or 
membrane proteins.

In summary, the protumorigenic role of adipocytes can be reverted through ‘‘lipid 
cargo engineering’’ with integration of anticancer lipid molecules. Antitumor ef-
fects mediated by TAAs can be achieved by localized drug delivery to tumor cells 
exploiting the FABP4-mediated lipid transportation. Furthermore, RA@adipocytes 
induced an immunogenic tumor phenotype by downregulating PD-L1 expression, 
allowing infiltration of effector T cells. This adipocyte-mediated drug delivery strat-
egy could be extended to treat a variety of diseases involving the lipid 
metabolisms.

EXPERIMENTAL PROCEDURES

Materials

All chemicals were purchased from Sigma-Aldrich and used as received unless other-
wise specified. Doxorubicin hydrochloride was purchased from Oakwood Chemical. 
BMS309403, the FABP4 inhibitor, was purchased from Cayman Chemical. RA (9Z, 
11E-CLA) (catalog no. 16413) was purchased from Sigma-Aldrich.

Cell Culture
Cell lines of 3T3-L1 (CL-173), B16F10 (CRL-6475), A375 (CRL-1619), and MCF-7 
(HTB-22), were purchased from the American Type Culture Collection. E0771 
cell line (940001) was purchased from CH3 Biosystems. Bioluminescent B16F10 
cells (B16F10-luc-GFP) were provided by Dr. Leaf Huang from University of North 
Carolina at Chapel Hill. B16F10, A375, and MCF-7 cells were cultured in DMEM 
(Gibco, Invitrogen) with 10% fetal bovine serum (FBS) (Gibco). E0771 cells were 
cultured in RPMI 1640 medium with 10% FBS and 10 mM HEPES (Thermo Fisher 
Scientific). Mouse primary dermal fibroblast was purchased from Cell Biologics 
(catalog no. C57-6067) and cultured using Fibroblast Medium Kit (catalog no. 
M2267). For culturing 3T3-L1, DMEM with 10% bovine calf serum (Thermo Fisher 
Scientific) was used as the medium. A 3T3-L1 Differentiation Kit (Sigma-Aldrich 
catalog no. DIF001) was used to differentiate 3T3-L1 preadipocytes. To achieve 
the maximum loading capacity, we used 10–20 passages of 3T3-L1 cells in this 
study.



Fluorescent Polarization

To determine the binding affinity of Dox or pDox to FABP4, we diluted all samples in

phosphate buffered saline (PBS). Serial dilutions of FABP4 were added to Dox or

pDox. Fluorescence polarization was measured using a QuantaMaster 40 UV/VIS

Steady State Spectrofluorometer (Photon Technology International). The dissocia-

tion constant (KD) was calculated for each by fitting the observed polarization to a

general equation for two-state binding as previously described.40

Loading and Release of Dox, pDox, and RA

For generating RA- and Dox-loaded or pDox-loaded adipocytes, RA (200 mM) and

Dox or pDox (500 nM) were added to the maintenance medium (DMEM/F12 [1:1]

with 10% FBS and 1.5 mg/mL insulin) and changed every 48 h. Lipid accumulation

in adipocytes was evaluated by oil red O staining and quantified by optical density

measurement at 540 nm. Preadipocytes were cultured, differentiated, and encapsu-

lated with drugs in 6-well transwell insert, and co-cultured with 5 3 105 pre-cultured

B16F10 or fibroblasts in 6-well plates to determine drug-release profiles, which was

calculated according to drug amount remained in adipocytes. The concentration of

free fatty acid in the co-cultured medium was measured using a Free Fatty Acid

Quantitation Kit (Sigma-Aldrich, catalog no. MAK044). To measure the amount of

Dox and pDox in RA-loaded adipocytes, we added 20 mL of Triton X-100 to 106 ad-

ipocytes, then added 100 mL of extraction solution (0.75 M HCl in isopropanol) and

incubated the mixture at �20�C overnight. The fluorescence of supernatant at 498

(excitation)/591 (emission) nm was measured after centrifugation at 20,000 3 g for

15 min.41 The maintenance medium containing drugs was changed three to four

times before animal studies. A high-performance liquid chromatography method

for Dox was used to determine the stability of pDox: an Agilent C18 column

(4.6 3 50 mm) eluted with water and acetonitrile (starting at 95:5 and then after

15-min gradient up to 5:95).

Crosstalk between Cancer Cells and Adipocytes

Cytotoxicity of drug and fatty acid was determined by MTT assay in 96-well plate af-

ter 48 h. The tumor cell-killing or -promoting effect of drug- or fatty acid-loaded ad-

ipocytes was determined in a transwell system where adipocytes were seeded in the

24 well plate and tumor cells grew in the transwell insert.42 After culturing for 72 h,

cell proliferation of cancer cells in the transwell insert was determined by MTT assay.

For western blot, flow cytometry, and adipokine profiling (R&D Systems catalog no.

ARY013), a 6-well transwell system was used with cancer cells cultured in the trans-

well insert and adipocytes in the bottom. Cells or medium were analyzed after co-

culturing for 72 h. To determine the role of FABP4 during the crosstalk, we added

30 mM BMS309403 to the medium to block FABP4. Antibodies used for western

blot included b-actin (catalog no. sc-47778, Santa Cruz Biotechnology), FABP4 (cat-

alog no. 701158, Thermo Fisher), and PD-L1 (catalog no. ab205921, Abcam). The

phycoerythrin channel was used to determine pDox fluorescence in adipocytes

and cancer cells.

In Vivo Tumor Studies

For a subcutaneous model, 1 3 106 luciferase-tagged B16F10 cells were injected

into the right flank of mice. When the tumor reached 50–100 mm3, mice were

randomly divided into different groups with intratumorally injected different formu-

lations on day 0 and day 3, including fibrin gels, pDox-loaded fibrin gels, Dox- and

RA-loaded fibrin gels, pDox- and RA-loaded fibrin gels, normally differentiated ad-

ipocytes, pDox-loaded adipocytes, Dox- and RA-loaded adipocytes, and pDox- and



RA-loaded adipocytes. The doses of Dox was 0.1 mg/kg (7–10 3 106 adipocytes). 
Tumor size was measured with a digital caliper and monitored by bioluminescence 
signal using an IVIS Lumina imaging system (PerkinElmer) with intraperitoneal injec-
tion of luciferin (catalog no. LUCK-100, Gold Biotechnology) at 150 mg/kg. Tumor 
volume was calculated as long diameter 3 short diameter2/2.

For a postsurgical recurrence model, 1 3 106 luciferase-expressed B16F10 cells 
were subcutaneously injected in the right flank of mice. When tumor size reached 
200–300 mm3, most tumor was resected, leaving about 1% residual tissue behind 
as previously reported.43,44 The amount of residual tumor was determined by biolu-
minescence signal of B16F10 cells before and after surgery. The wound was closed 
by an Autoclip wound-clip system. After randomly dividing the mice into different 
groups, drugs or drug-loaded adipocytes were encapsulated into fibrin gels and 
further implanted into the surgical bed. Tumor growth was monitored by detecting 
the bioluminescence and measuring tumor size after removing the clips. For both in-
tratumoral and postsurgical models, mice were euthanized when the tumor size ex-
ceeded 1.5 cm3.

To determine the expression of PD-L1 in tumor cells and the population of T cells, 
we sacrificed four mice in each group to obtain the tumors 2 days after the second 
injection of formulation for intratumoral model. The same time point was utilized 
to determine the cytokine levels in blood serum. For the tumor recurrence model, 
tumors were harvested 1 week after surgery. A single-cell suspension of tumor was 
prepared using staining buffer (catalog no. 420201, BioLegend). A total of 20,000 
events per sample were collected and analyzed using FlowJo software. Tumor 
sections were further analyzed by immunohistochemistry staining of hematoxylin 
and eosin, and immunofluorescence staining. Antibodies for detecting PD-L1-

positive cells, CD4+ T cells, CD8+ T cells, and Tregs included CD3 (catalog no. 
100203, Biolegend), CD4 (catalog no. 100515, Biolegend), CD8 (catalog no. 
100707, Biolegend), PD-L1 (catalog no. 124311, Biolegend), and FoxP3 (catalog 
no. 126403, Biolegend).

Statistics

Student’s t-test, one-way ANOVA and a Tukey post hoc test were performed for mul-

tiple comparisons. Data are presented as means G SD or means G SEM as noted in 
the figure legends. All tests were performed using the software GraphPad Prism. 
Significance is denoted in the figures as *p < 0.05, **p < 0.01, ***p < 0.001, and 
****p < 0.0001.
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