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ABSTRACT 
 

Christy L. Avery: Genotype-by-smoking interaction and the risk of atherosclerosis and its 
clinical sequelae 

 (Under the direction of Dr. Kari North)

 

Although the association between cigarette smoking and atherosclerosis is well 

established, the mechanisms by which smoking initiates vascular disease remain poorly 

understood.  As heritable differences in DNA repair ability can influence the effect of 

environmental exposures such as cigarette smoke, we evaluated how 36 DNA repair variants 

from five genes (XRCC1, APEX1, hOgg1, XPD, and XRCC3) modified the association 

between ever-smoking and two atherosclerosis outcomes in Atherosclerosis Risk in 

Communities (ARIC) Study participants: intimal-medial thickness (IMT) and incident 

coronary heart disease (CHD). 

The incident CHD analysis was conducted using all cases 1987-1998 (N=1,086) and a 

random sample (N=1,065) selected from the entire ARIC cohort at baseline (cohort random 

sample, CRS).  Incidence rate ratios were estimated by piecewise constant models and 

departures from additivity were measured with interaction contrast ratios. When priors for 

genetic and environmental effects were added to the first-stage model, tagSNPs rs3213282 

(XRCC1), rs50871 (XPD), and rs3212024 (XRCC3) were associated with an increase in the 

estimated effect of ever-smoking on incident CHD while tagSNPs rs1799782 (XRCC1) and 

rs861531 (XRCC3) were associated with a decrease.  
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We also evaluated the association between DNA repair variants, cigarette smoking, 

and baseline mean IMT using linear regression models in ARIC participants selected into the 

CRS.  When priors for genetic and environmental effects were added to the first-stage linear 

regression model, tagSNPs rs3213282 (XRCC1), rs3213245 (XRCC1), rs3212024 (XRCC3), 

and rs3136814 (APEX1) were associated with increases in the estimated effect of ever-

smoking on baseline mean IMT while tagSNPs rs3136817 (APEX1) and rs1799794 (XRCC3) 

were associated with decreases. 

Few population-based studies examining the relationship between DNA repair 

variants, cigarette smoking and atherosclerosis have been published.  Our results can 

stimulate inquiries into potential mechanisms linking cigarette smoke exposure and 

atherosclerotic diseases and help bridge the gap between observed trends and CHD biology.  

Future studies in different populations will undoubtedly be required to validate our results 

and improve our understanding of the complex relationships between DNA repair variants, 

cigarette smoking, and atherothrombotic disease.  
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CHAPTER I 
 

INTRODUCTION 
 

 Although evidence linking cigarette smoking with atherosclerosis and its clinical 

sequelae is well established and consistent across age, sex, racial, and geographic strata1-8, 

the mechanisms by which smoking initiates vascular disease are poorly understood.  

Cigarette smoke contains approximately 4,800 chemicals9, of which more than 100 of the 

compounds have been identified as carcinogenic and/or mutagenic.  Studies investigating the 

role of DNA damage in atherogenesis found higher levels of aromatic DNA adducts, stable 

complexes formed between reactive chemical species and sites within the DNA molecule, in 

vascular tissues (e.g. abdominal aorta and cardiac) of smokers10, 11.  Experimental animal 

research also demonstrated that the tobacco smoke mutagens benzo(a)pyrene and 1,3-

butadiene can induce and stimulate a proliferative vascular smooth muscle cell (SMC) 

phenotype12, 13.  As differences in human toxicological responses to mutagen exposure have 

been attributed in part to heritable variation in DNA repair capacity14, the identification of 

susceptibility genes that modify the relationship between cigarette smoking and 

atherosclerosis could provide new insight into the etiology of this major disease. 

The present study, conducted under approval from the University of North Carolina at 

Chapel Hill Institutional Review Board (see Appendix A), addresses the dearth of 

population-based studies examining the relationship between DNA repair pathway variants, 

cigarette smoke exposure, and atherosclerosis and its clinical sequelae.  Identifying genes 

that modify the relationship between cigarette smoke exposure and atherosclerosis and 
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associated clinical endpoints provides new opportunities to evaluate mechanistic laboratory 

models of CHD and further our understanding of the link between observed epidemiologic 

trends and CHD biology.  No previous study has yet to perform a comprehensive analysis of 

the role of DNA repair genes with regards to CHD or subclinical atherosclerosis or 

considered their role as biologically plausible mediators of the effect of cigarette smoke.  

Here, we assess the relationship between cigarette smoking, DNA repair pathway variation, 

and two atherosclerosis endpoints (incident CHD and baseline IMT) using data from the 

ARIC Study, a community-based prospective investigation of 15,792 males and females.  

The two manuscripts prepared for fulfillment of the Epidemiology doctoral program 

requirements are as follows: 

Manuscript 1: We conducted a series of case-cohort analyses to examine how variation in 

five DNA repair genes (hOgg1, APEX1, XRCC1, XPD and XRCC3) modified the association 

between ever-smoking and incident CHD in the ARIC cohort.  All incident CHD cases 1987-

98 (n=1,086) and a random sample (n=1,065) were selected from the entire cohort 

(n=15,792). Analyses were race-stratified and adjusted for age, sex, study center, alcohol 

intake, and physical activity. Incidence rate ratios (IRR) were estimated by piecewise 

constant exponential models and departures from additivity were measured with interaction 

contrast ratios (ICR). Hierarchical modeling was used to improve estimation by incorporating 

priors into models including all tagSNPs and models extended to examine gene-by-smoking 

interaction.  This study addresses Aims 1, 2, and 3 of the dissertation (see Section II). 

Manuscript 2: We examined how variation in five DNA repair genes (hOgg1, APEX1, 

XRCC1, XPD and XRCC3) modified the association between ever-smoking and baseline 

mean IMT in the ARIC cohort.  A stratified random sample of 698 Caucasians and 367 
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African Americans was selected from all eligible participants (n=14,255). Analyses were 

race-stratified and adjusted for age, sex, study center, alcohol intake, and physical activity.  

Differences in baseline mean IMT were estimated using hierarchical linear models.  This 

study addresses dissertation Aims 4, 5, and 6 (see Section II).
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CHAPTER II 
 

SPECIFIC AIMS 
 
 

Our goal was to measure the extent to which common polymorphisms of five DNA 

repair genes (XRCC1, XRCC3, XPD, hOGG1, APEX1), in combination with cigarette smoke 

exposure, influence two CVD outcomes: incident CHD and subclinical atherosclerosis, as 

measured by IMT.  The study is ancillary to the ARIC study, an ongoing, bi-racial 

population-based longitudinal investigation of cardiovascular and pulmonary disease in 

15,792 males and females selected from four U.S. communities.  Manuscript 1 addresses 

Aims 1, 2 and 3, and Manuscript 2 addresses Aims 4, 5, and 6.

The specific aims are: 

1) To estimate the association between polymorphisms of the DNA repair genes XRCC1, 

XRCC3, APEX1, hOgg1, and XPD and incident CHD.   

a. Single-SNP analyses: Piecewise constant exponential regression modeling in 

which the association between each SNP and the rate of incident CHD is 

estimated.   

2) To estimate the extent to which polymorphisms of the DNA repair genes XRCC1, 

XRCC3, APEX1, hOgg1, and XPD modify the association between cigarette smoking 

and incident CHD.   
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a. Single-SNP analyses: Piecewise constant exponential regression modeling in 

which DNA repair SNPs are evaluated as modifiers of the cigarette smoking – 

incident CHD association.    

3) To incorporate information from multiple genes and cigarette smoke exposure as 

higher level priors into analyses investigating the relationship between DNA repair 

variants, cigarette smoking, and incident CHD.   

a. Hierarchical modeling: An extension of Aim 2 in which models are extended 

to incorporate higher-level priors. 

4) To estimate the association between polymorphisms of the DNA repair genes XRCC1, 

XRCC3, APEX1, hOgg1, and XPD and baseline mean IMT.   

a. Single-SNP analyses: Linear regression modeling in which the association 

between each SNP and baseline mean IMT is estimated.   

5) To estimate the extent to which polymorphisms of the DNA repair genes XRCC1, 

XRCC3, APEX1, hOgg1, and XPD modify the association between cigarette smoke 

exposure and baseline mean IMT.   

a. Single-SNP analyses: Linear regression modeling in which DNA repair SNPs 

are evaluated as modifiers of the tobacco exposure –baseline mean IMT 

association.    

6) To incorporate information from multiple genes and cigarette smoke exposure as 

higher level priors into analyses investigating the relationship between DNA repair 

variants, cigarette smoking, and baseline mean IMT.   

a. Hierarchical modeling: An extension of Aim 5 in which models are extended 

to incorporate higher-level priors
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CHAPTER III 
 

BACKGROUND AND SIGNIFICANCE 
 

A. Atherosclerosis 

Atherosclerosis is a disease of the vasculature characterized by plaques in the 

innermost layer of the artery (atheromas) and is the main pathophysiological process 

responsible for cardiovascular diseases (CVD) such as myocardial and cerebral infarctions 

and peripheral vascular disease15.  Atherosclerosis is an ancient disease, being detected in the 

arteries of Egyptian mummies16 and recognized as a pathologic condition for >150 years17.  

Atherosclerosis is now virtually ubiquitous among Western populations18.

The initiation of atherosclerosis begins early in life upon the inception of a diet rich in 

cholesterol and saturated fat.  Fatty streaks, aggregations of lipid-rich leukocytes within the 

innermost layer of the artery (the intima), are precursors of atherosclerotic lesions and are 

typically present in children 10-14 years of age19, 20.  While any artery may become affected, 

the aorta, coronary, carotid, iliac, and femoral arteries are the vessels most likely to develop 

atherosclerosis. 

Pathophysiology of atherosclerosis  

An intricate sequence of cellular events occurs during the initiation and evolution of 

an atherosclerotic plaque (Figure 1), which include 1) extracellular lipid accumulation, 2) 

leukocyte recruitment, 3) intracellular lipid accumulation and foam cell formation, 4) smooth 
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muscle cell migration, proliferation, and development of the arterial extracellular matrix, and 

5) plaque angiogenesis.   

Briefly, the first stage of atherogenesis, while somewhat conjectural21, is believed to 

involve the accumulation and retention of low-density lipoprotein (LDL) molecules in the 

intima, usually after initiation of a diet high in fat and cholesterol22.  Once bound and thus 

retained by proteoglycans in the intima, the lipoproteins exhibit increased susceptibility to 

chemical modification and oxidation.  The modified lipids are able to induce the expression 

of adhesion molecules, chemokines, and proinflammatory cytokines in macrophages and 

vascular wall cells, thus favoring the recruitment and retention of leukocytes.  Oxidized 

lipids also have cytotoxic effects on endothelial and smooth muscle cells23, although the 

molecular mechanisms underlying LDL-mediated cell apoptosis are not fully understood24. 

The next morphologically identifiable event in atherogenesis is leukocyte recruitment 

and accumulation within the intima.  Circulating monocytes adhere to the endothelium in 

clusters and diapedese (pass through intact capillary walls into surrounding body tissue) 

between endothelial cells and enter the intima.  Once in the intima, monocytes are converted 

to macrophages that accumulate lipids and transform into foam cells.  Foam cells, or lipid-

laden macrophages26, are apparent macroscopically as fatty streaks. 

The evolution of the atheroma into a more complex plaque involves leukocyte 

production of chemoattractants that recruit SMCs from the medial layer of the artery (tunica 

media) to the intima.  SMCs produce the main matrix macromolecules that accumulate in 

atheromas, including collagens and proteoglycans that facilitate plaque stability27 and 

transform the fatty streak into a mature fibrofatty atheroma.  Plaque microcirculation is 
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formed by  endothelial cells that promote plaque growth by circumventing diffusion 

limitation of oxygen and nutrients28.  

Figure 1.  Schematic of the natural history of an atheroma. 

 
Adapted from Libby (2002)25 

The development of an atherosclerotic plaque occurs over many years, during wh

the affected individual is typically devoid of symptoms.  Arterial vessels can enlarge 

constrict in size, referred to as geometric remodeling, in order to compensate for the 

expanding atheroma

ich 

or 

 to 

remode s.   

ion and 

a

17.  However, once the plaque burden surpasses the ability of the artery

l outward, encroachment on the arterial lumen and consequent narrowing ensue

Generally stenoses exceeding 60% of the arterial lumen can cause blood flow 

limitations and ischemia during periods of increased cardiac demand21.  While the clinical 

manifestations for lower-extremity peripheral arterial disease (PAD) include claudicat

limb ischemia29, transient ischemic attacks (TIA) and stroke are the principal clinic l 
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presentations of carotid artery ischemia associated with obstructive atherosclerosis30.  

Obstructive lesions in the coronary arteries may produce angina, chest pain caused by 

transient myocardial ischemia or myocardial infarctions. 

Athero

g 

ased 

g, type 2 diabetes, obesity, 

male sex, physical activity, alcohol intake and family history. 

Hyperl
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een 

 

h-

 mobilizes 

cholesterol from the atheroma and transports it to the liver for excretion18. 

Elevated blood pressure 

sclerosis risk factors 

Given that atherosclerosis is a generalized macrovascular disease, lesions in one 

vascular locale predict lesions in other areas.  Likewise, risk factor profiles are similar amon

populations with coronary, peripheral, and carotid atherosclerosis31.  Although upwards of 

200 risk factors for atherosclerosis are recognized32, numerous long-term population-b

prospective studies have identified the following major risk factors discussed below: 

hyperlipidemia, elevated blood pressure, age, cigarette smokin

ipidemia 

Data from animal, epidemiologic, experimental pathology, and family-based studies, 

as well as randomized clinical trials of statins (or HMG-CoA reductase inhibitors, a class o

hypolipidemic agents used to lower cholesterol levels), all support an association betw

increased serum cholesterol and atherosclerosis33.  Approximately 7% of the body’s 

cholesterol circulates in the plasma, predominantly in the form of LDL.  LDL is considered 

the major atherogenic component of total cholesterol and chronic hyperlipidemia results in

the accumulation of LDL in the intima.  In contrast, an inverse relationship between hig

density lipoprotein (HDL) and atherosclerosis has been established, as HDL
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Elevated blood pressure is believed to influence the development of atherosclerotic 

lesions in numerous ways.  Animal studies suggest that elevated blood pressure induces the 

infiltration of monocytes and macrophages into the vessel walls of the kidney and heart34-37.  

Arterial remodeling, structural changes in the vessel wall, may also be associated with the 

hypertensive process.  Arterial remodeling results in an increased lumen size and reduced 

arterial wall shear stress38.  As vessels most vulnerable to the development of atherosclerosis 

are those experiencing conditions promoting a weak net hemodynamic shear stress39, an 

increased lumen size may accelerate the atherosclerotic process. 

Age 

While atherosclerosis is typically not clinically apparent until middle age when 

lesions produce organ injury, the disease is manifested in childhood and progresses slowly 

over the following decades40.  Death rates from CHD and ischemic stroke, two diseases 

greatly influenced by atherosclerosis, rise with each decade into advanced age.  For example, 

the annual rates per 1,000 person-years for incident MIs in non-African American males are 

19.2, 28.3, and, 50.6 for ages 65-74, 75-84, and 85 and older, respectively41. 

Cigarette smoking 

Cigarette smoking causes numerous hemodynamic changes prompting the 

development of atherosclerosis, including coronary vasoconstriction and acute increases in 

blood pressure and heart rate.  Nicotine in the blood also promotes arterial endothelial injury 

and prothrombotic changes, such as increased platelet adhesiveness and aggregation42, 43, 

elevated fibrinogen44, 45, and decreased fibrinolysis46-48.  Chronic exposure to cigarette smoke 

has been shown to promote SMC proliferation.  The association between cigarette smoking 

and atherosclerosis is further reviewed in chapter III. 

 10



 

Type 2 diabetes 

Diabetes, reflecting a state of chronic hyperglycemia and resistance to the effects of 

insulin, is closely related to hypertension, obesity, and insulin resistance.  Decreased insulin 

sensitivity results in substantial protein modification including the glycation of amino acid 

residues and glycated amino acids can stimulate proliferation of the fibromuscular 

components of atherosclerotic plaques38.  Hyperglycemia also inhibits nitric oxide (NO) 

production by blocking eNOS synthase activation49.  NO has many anti-atherogenic 

properties including inhibiting platelet activation, reducing leukocyte adhesion and 

migration, and diminishing vascular smooth muscle cell proliferation and migration50-52, thus 

a reduction in NO promotes atherogenesis. 

Obesity 

Obesity and overweight influence the development of atherosclerosis through their 

effects on the systemic vasculature, endothelial function, and the vasomotor function of 

insulin.  The elevated levels of free fatty acids observed in obesity blunt insulin-mediated 

glucose uptake and NO-dependent blood flow53, in addition to inducing oxidative stress and 

proinflammatory signaling54. The increased expression of nicotinamide adenine dinucleotide 

phosphase (NADPH) oxidase associated with obesity also causes deregulated production of 

adipokines, fat cells that produce and secrete numerous hormones including adiponectin, 

PAI-1, and monocyte chemoattractant protein.  NADPH oxidase inhibition has been shown 

to reduce ROS production and improve glucose metabolism55. 

Male sex 

Males are much more prone to atherosclerosis and its ramifications than females, and 

at any given age the prevalence of CHD in males is higher than that in females56.  For 
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example, the lifetime risk for developing CHD after age 40 is 49% for males and 32% for 

females41.  MIs and other complications of atherosclerosis are uncommon in premenopausal 

females unless a predisposition to diabetes, hyperlipidemia, or severe hypertension exists18.  

Physical activity 

Exercise influences metabolic and atheromatous processes, fibrinolytic activity, blood 

lipid patterns, oxygen uptake, BMI, myocardial function, pulse rate, and blood pressure.  A 

reduced risk of CHD relates both to occupational and leisure-time physical activity, the 

relationship is dose-dependent, and the findings are consistent regardless of age, sex, and 

population studied57.  Experiments in primates (Macaca fascicularis) also support the 

concept that long-term moderate exercise delays the development of atherosclerosis, despite 

the administration of an atherogenic diet58.     

Alcohol intake 

Multiple prospective studies have reported an inverse association between low-to-

moderate alcohol consumption and CHD59-62.  Although the biologic mechanisms underlying 

the relationship between alcohol intake and the atherosclerosis endpoint CHD are not 

completely understood, experimental studies suggest that ethanol in any form increases HDL 

levels.  Increases in HDL are thought to result from the effect of alcohol on hepatic 

production and secretion of apolipoproteins and the lipolysis of triglyceride-rich particles, 

which increase the transfer of cholesterol from very low density lipoproteins, a precursor of 

LDL, to HDL.  Moderate alcohol consumption is also associated with decreased clotting 

proteins and platelet aggregability and increased fibrinolytic activity63. 

Family history 
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A familial contribution to atherosclerosis has been acknowledged for over 100 years 

when Sir William Osler recognized that angina could recur in families64.  Now, hundreds of 

articles highlight the importance of family history in the prediction of CHD.  Family history 

is considered an independent risk factor for CHD65-69 and a surrogate for coronary risk 

factors70, 71 . 

The well-established familial predisposition to atherosclerosis is related both to the 

clustering of risk factors within families, such as hyperlipidemia and hypertension, and 

inherited genetic variation.  Examples of monogenic causes of atherosclerosis include 

lipoprotein metabolism disorders such as familial hypercholesterolemia, which results in 

excessively high blood lipid levels in carriers of the variant alleles.  However, atherosclerosis 

is most likely an oligogenic (in which a small number of loci with major effects determine 

disease susceptibility) or polygenic disease, wherein numerous genes, each with a small-to-

moderate effect that may be modified by environmental exposures, influence the 

development and progression of the disease72.  

Coronary atherosclerosis 

Coronary atherosclerosis refers to atherosclerosis affecting the sub-epicardial 

vasculature supplying blood to the myocardium.  The result of advanced coronary 

atherosclerosis is myocardial ischemia, an imbalance reflecting an insufficiency of oxygen 

and a reduced availability of nutrients.  Syndromes caused by reduced cardiac muscle blood 

supply, generically designated CHD or ischemic heart disease (IHD), include myocardial 

infarction (MI), sudden cardiac death, and angina pectoris.  
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Angina pectoris is an indicator of complex atherosclerosis typified by paroxysmal and 

at times recurrent attacks of visceral chest pain.  Angina is caused by transitory (15 seconds 

to 15 minutes) myocardial ischemia that fails to induce the cellular necrosis that defines MI 

and is aggravated by increased myocardial demand and decreased myocardial perfusion18. 

Sudden cardiac death (SCD) is most commonly defined as death from cardiac causes 

within one hour after or without the onset of symptoms.  SCD often is the first clinical 

manifestation of advanced coronary athersclerosis73, with ventricular tachyarrhythmias 

accounting for the majority of these cases74.  Approximately 90% of SCD victims have at 

least two coronary arteries with ≥ 90% occlusion75. 

MI, also known as heart attack, is the major underlying manifestation of CHD18.  

Although a MI may initially present as angina pectoris, the chest discomfort is usually more 

severe and prolonged.   MIs are manifestations of atherosclerotic coronary disease 

complicated by plaque rupture and coronary thrombosis.  If a thrombus limits or occludes 

blood flow in the vessel, ischemia develops.  Failure to restore blood flow leads to 

myocardial necrosis, with acute damage followed by scarring and permanent injury to the 

heart muscle.   

MIs diagnoses are typically informed by cardiac signs and symptoms, serum 

biomarkers and ECGs (i.e. echocardiograms, EKG).  Chest, epigastric, neck, jaw, or arm pain 

are typical symptoms of acute MIs while cardiac signs include acute congestive heart failure 

or cardiogenic shock.  ECGs are a graphic procedure that may indicate acute or previous 

myocardial damage or ischemia76.  Although the first ECG is uninformative in approximately 
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50% of patients with an acute MI, the diagnostic yield increases substantially with each serial 

ECG56.   

Serum biomarkers of myocyte necrosis are also an important diagnostic tool for MI.  

Troponin, for example, enters the bloodstream four to eight hours after MI onset, and has 

nearly absolute myocardial tissue specificity.  Increased troponin is conventionally defined as 

that which exceeds the 99th percentile of troponin values measured in a reference control 

group76.  Additional biomarkers of myocardial necrosis include myoglobin and creatine 

kinase (CK), measured as either total CK or the MB fraction of CK (CK-MB).  While 

biomarkers indicate myocardial damage, myocardial necrosis and MI are not necessarily 

synonymous, as elevated biomarkers in the absence of clinical evidence of MI may reflect 

another cause of myocardial injury, such as myocarditis, cardiac trauma, congestive heart 

failure, or renal failure77. 

CHD case definitions 

Table 1. Classification of MI based on biomarker findings, ECG findings, and cardiac symptoms or 
signs. 
 

Biomarker Findings* 

 
Cardiac Symptoms or Signs Present Cardiac Symptoms or Signs Absent

ECG Findings Diagnostic Equivocal Missing Normal Diagnostic Equivocal Missing Normal
Evolving 
diagnostic Definite Definite Definite Definite Definite Definite Definite Definite 

Positive Definite Probable Probable No Definite Probable Possible No 

Nonspecific Definite Possible No No Definite Possible No No 

Normal or other 
ECG findings Definite Possible No No Definite No No No 

Definite indicates definite MI; Probable, probable MI; Possible, possible MI; and No, no MI. Classification of case is at highest level 
allowed by combinations of three characteristics.  *Adapted from Luepker et al., 200322 

CHD case definitions for epidemiology studies and clinical trials were first based 

upon World Health Organization (WHO) (1959) and American Heart Association (1964) 
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reports, as well as the WHO European Acute Myocardial Infarction Registry criteria78, 79.  

While the protocols established by these reports have been widely used, variable 

interpretations have resulted in a lack of comparability between and within studies22.  More 

recent criteria based on WHO MONICA (Multinational MONItoring of trends and 

determinants in CArdiovascular disease) analyses80 and surveillance studies such as the Lipid 

Research Clinics81 further specified the original WHO CHD definition.  

Table 2.  Case classifications for CHD. 

Event* Characterization Indication 

1.Non-fatal events A. Definite MI 1. Evolving diagnostic ECG 

  2. Diagnostic biomarkers 

 B. Probable MI 1. Positive ECG findings plus cardiac symptoms or signs plus 
missing biomarkers 

  2. Positive ECG findings plus equivocal biomarkers 

 C. Possible MI 1. Equivocal biomarkers plus nonspecific ECG findings 

  2. Equivocal biomarkers plus cardiac symptoms or signs 

  3. Missing biomarkers plus positive ECG 

 D. Unrecognized MI 1. Appearance, in a non-acute setting, of a new diagnostic Q 
wave with or without ST-T-wave depression or ST elevation 

 E. Medical procedure-related event 
1. Cardiac events after (up to 28 days) a medical procedure 
(e.g., general surgery) with criteria for definite, probable, and 
possible MI identical to those described above 

  2. May be reported separately as procedure-related cardiac 
events or combined with overall event rates. 

  
3. If the medical procedure was performed for the treatment of 
acute ischemia (e.g., angioplasty, coronary bypass surgery), an 
event should be classified as described above 

 F. Unstable angina pectoris 1. New cardiac symptoms and positive ECG findings with 
normal biomarkers 

  2. Changing symptoms pattern and positive ECG findings with 
normal biomarkers 

 G. Stable angina pectoris 1. Cardiac symptoms in a pattern that remains constant in 
presentation, frequency, character, and duration over time 

2. Fatal events  
(hospitalized patients) A. Definite fatal MI 1. Death within 28 days of hospital admission in 1A. 

  2. Postmortem findings consistent with MI within 28 days 
 B. Probable fatal MI 1. Death within 28 days of hospital admission in cases defined 

in I.B 
 

 
2. Death within 6 hours of hospital admission with cardiac 
symptoms and/or signs.  Other confirmatory data (biomarkers, 
ECG) are absent or not diagnostic. 

 C. Possible fatal coronary event 1. Death within 28 days of hospital admission in cases defined 
in I.C, I.F, and I.G 

  2. Postmortem findings show old infarct and/or ≥ 50% 
atherosclerotic narrowing of coronary arteries. 

*Adapted from Luepker et al., 200322 
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The availability of new diagnostic tests, namely improved biomarkers of myocardial 

injury, shifting disease presentation, and an increasing number of survivors prompted further 

improvements in CHD case definitions.  Thus, the current CHD consensus criteria was 

developed in 2003 by scientists representing the American Heart Association, the World 

Heart Federation Council on Epidemiology and Prevention, the European Society of 

Cardiology, the Centers for Disease Control and Prevention, the WHO, and the National 

Heart, Lung and Blood Institute.  As shown in Table 1 and Table 2, the current definition of 

CHD is based on symptoms and signs, biomarkers, ECG, and/or autopsy findings.  The 

extent and quality of the available data is then used to define definite, probable, and possible 

cases of fatal and nonfatal MI, procedure-related events, and angina pectoris22.  The specific 

criteria used by ARIC investigators for the classification of incident CHD is discussed in 

chapter IV.  

Epidemiology of CHD 

CHD poses a substantial public health burden, as it is the main cause of death in 

Western societies and has been predicted to remain so for future decades82.  Framingham 

Heart Study (FHS) investigators estimated a lifetime risk of developing CHD after age 40 of 

49% for males and 32% for females83.  Current estimates indicate that 565,000 Americans 

will experience their first MI in 2005, whereas 300,000 will experience a recurrent MI41.   

Age-adjusted CHD incidence rate estimates (95% confidence interval (CI)) per 1,000 

person-years for Caucasian male, African-American male, Caucasian female, and African 

American female ARIC participants were 12.5 (11.5 – 13.7), 10.6 (8.9 - 12.7), 4.0 (3.5 - 4.6), 

and 5.1 (4.2 – 6.2), respectively84.  Among American Indian male and female Strong Heart 

Study participants, incidence rates for CHD mortality per 1,000 person-years were 8.0 (6.1, 
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10.0) and 3.3 (2.3, 4.3) respectively, almost two-times as high as those estimated in the ARIC 

Study85.  Annual CHD incidence rates (per 1,000 person-years) over ten years of follow-up 

among males of Japanese descent residing on Oahu in 1965 (Honolulu Heart Program) were 

4.6, 6.0, 7.2, 8.8, and 10.5 for ages 45-49, 50-54, 55-59, 60-64, and 65-68, respectively86. 

As indicated by the above estimates, CHD imparts a substantial burden on the United 

States’ health care system.  Coronary atherosclerosis and acute MI were the two most 

expensive diagnoses treated in US hospitals in 2002, costing $38.4 and $27.8 billion dollars 

in healthcare costs respectively.  Overall, CHD accounts for $142.1 billion dollars annually 

in direct and indirect costs (http://www.hcup.ahrq.gov/) and this estimate will only increase 

as the U.S. population ages. 

Atherosclerosis paradigms 

While the proliferation of SMCs in the intima is a fundamental mechanism in the 

pathophysiology of atherosclerosis87, there is disagreement on the exact role SMC 

proliferation plays in the development of atherosclerosis.  One paradigm, the “response to 

injury” or “inflammation” hypothesis, posits that the joint action of growth factors, 

proteolytic agents, and extracellular matrix molecules, produced by a dysfunctional 

endothelium and inflammatory cells, induces SMC migration from the media and their 

consequent proliferation in the intima88.  Thus, initiating factors are cytokines and growth 

factors and SMC proliferation is only a reactive process88, 89.    

Another theory, the “monoclonal” hypothesis, contends that media SMCs can 

experience phenotypic modulation and that a predisposed SMC population, or even a single 

cell, is responsible for consequent SMC proliferation and intimal thickening88.  Introduced in 
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1974 by Benditt and Benditt90 upon the discovery that atherosclerotic plaques have features 

of a monoclonal lesion, a finding that has been verified by several laboratories91-93, the 

monoclonal hypothesis suggest that the initiation of atherosclerotic plaques requires a 

mutation or viral infection that transforms a single SMC into the progenitor of a proliferative 

clone, analogous to the evolution of neoplastic cells90.  Likewise, an increased mutation rate 

and extensive microsatellite instability has been reported in human atherosclerotic plaques94, 

95.  DNA extracted from atherosclerotic plaques also had a transforming ability when 

transfected into NIH3T3 cells96 and SMCs cultured from plaques retain transforming 

potential throughout many cell generations97. 

Rather than alternatives, the response to injury and monoclonal hypotheses of 

atherogenesis may be complementary.  Initial events leading to plaque formation may reflect 

the “response to injury” hypothesis, whereas clone formation and expansion, transforming an 

inflammatory process into a neoplastic process, requires a longer time.  As a corollary the 

first stage of atheroma formation may be more readily reversible than the following phase 

involving clone formation and expansion98.   

B. Cigarette smoke exposure and atherosclerosis 

One factor that ties the response to injury and monoclonal hypotheses of 

atherosclerosis together is exposure to mitotic / proliferative agents, for example compounds 

found in cigarette smoke. Cigarette smoke contains approximately 4,800 chemicals9, of 

which more than 100 have been identified as carcinogenic and/or mutagenic14, and has been 

associated with numerous clinical atherosclerotic symptoms including stable angina, acute 

coronary syndromes, sudden death, stroke, and aortic and peripheral atherosclerosis99.   

While evidence of increased risk for CHD associated with cigarette smoking is well 
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established and consistent across age, sex, racial, and geographic strata1-8, the mechanisms by 

which smoking initiates vascular disease are poorly understood.   

Cigarette smoke can be divided into two phases: a tar or particulate phase and a gas 

phase.  The tar phase is arbitrarily defined as all material that is retained by a Cambridge 

glass-fiber filter which traps 99.9% of particles larger than 0.1 micron.  All other material is 

considered the gas phase of cigarette smoke100.  The tar phase of cigarette smoke contains 

>1017 free radicals/gram, whereas the gas phase contains >1015 free radicals per puff.  Free 

radicals are species containing one or more unpaired electron.  Examples of free radicals 

include the hydrogen atom (H·), nitric oxide (NO·), and nitrogen dioxide (NO2·)101.  

Although the generation of free radicals occurs at a continuous low-level in the human body, 

an imbalance can cause DNA, protein, lipid, and carbohydrate damage102, 103.   

Free radicals contained in the tar phase are relatively stable, lasting hours to months, 

while radicals associated with the gas phase have a lifespan of seconds104.  However, a 

paradox exists.  Although individual free radicals in the gas phase of cigarette smoke have 

short lifetimes, free radical concentrations overall are sustained at high levels for > 10 

minutes, actually increasing in concentration as smoke is aged105, 106.  A possible explanation 

is that radicals in the gas phase of cigarette smoke exist in a steady state, being continuously 

formed and destroyed105-108. 

The pulmonary circulation is the first site exposed to the gas phase of cigarette 

smoke109.  In addition to the high concentrations of free radicals present at proximal exposure 

sites, the gas phase of cigarette smoke contains many stable compounds capable of inducing 

the production of free radicals in vascular fields away from the primary exposure site110.  For 
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example, α,β-unsaturated aldehydes, α,β –unsaturated ketones, and certain saturated 

aldehydes have been shown to react with thiol groups regulating two potentially inducible 

intracellular reserves of free radicals;110 NADPH oxidase, an enzyme present in the 

vasculature, and xanthine oxidase, a form of the ubiquitous enzyme xanthine 

dehydrogenase111, 112. 

Each cigarette smoked also deposits upwards of 20 mg of tar in the lungs of smokers, 

or as much as one gram/day104.  Tar contains > 5000 organic compounds, which are in 

contact with pulmonary fluids that extract the water-soluble components.  Catechol and 

hydroquinone, two major components of cigarette tar, are water soluble and can produce free 

radicals104.  Indeed, incubation of bacteriophage DNA with aqueous tar extracts produced 

single-strand DNA breaks113, 114.   

Cigarette smoke affects the initiation and progression of atherosclerosis through its 

effects on vasomotor dysfunction, inflammation, and lipid modification115, factors  that 

proceed any apparent structural and clinicopathologic disease manifestations88, 116.  Nicotine, 

possibly the most-studies component of tobacco smoke, also has deleterious effects on the 

vasculature.  Nicotine in the blood promotes arterial endothelial injury and prothrombotic 

changes, such as increased platelet adhesiveness and aggregation42, 43, elevated fibrinogen44, 

45, and decreased fibrinolysis46-48.   

Studies in both human and animals also demonstrate that active and passive cigarette 

smoke exposure is associated with a diminished vasodilatory function117-124.  Cigarette 

smoking is related to decreased NO availability122, 123, 125, a free radical responsible for 

vasodilatory endothelial functioning that also helps regulate inflammation, leukocyte 
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adhesion, platelet activation, and thrombosis126, 127.  Cigarette smoke is also associated with 

an increased level of inflammatory markers128-131 and smokers have higher serum cholesterol, 

triglyceride, and LDL levels and lower HDL levels when compared to non-smokers132. 

Chronic exposure to cigarette smoke has also been shown to promote SMC 

proliferation.  Experimental animal research showed that the tobacco smoke mutagens 

benzo(a)pyrene and 1,3-butadiene can induce and stimulate a proliferative vascular SMC 

phenotype12, 13 and studies investigating the role of DNA damage in atherogenesis found 

higher levels of aromatic DNA adducts, stable complexes formed between reactive chemical 

species and sites within the DNA molecule, in vascular tissues (e.g. abdominal aorta and 

cardiac) of smokers10, 11.   Plasma cotinine levels (as a measure of smoking behavior) were 

also predictive of bulky DNA adduct levels in humans133.  Thus, the pattern of somatic DNA 

damage in atherosclerotic lesions may reflect the mutagenicity of tobacco smoke. 

  Mutagens found in cigarette smoke or the activated metabolites of cigarette smoke 

constituents may cause genetic damage by binding to or interacting with DNA.  Interactions 

between mutagens and DNA can cause lesions or a disruption of the genetic structure 

resulting in gross chromosomal alterations such as aneuploidy, breaks, translocations, 

amplifications, or deletions.  However, the successful binding of a mutagen to DNA does not 

always result in chromosomal damage, as pathways such as DNA repair must fail before a 

mutagenic event occurs14.  The repair of DNA damage is further reviewed in section IIIC. 

Cohort studies of cigarette smoking 

A review of 11 prospective studies that examined the association between cigarette 

smoking and atherosclerotic endpoints is presented in Table 3.  Seven studies investigated 
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incident CHD, of which five used the original or a supplemented version of the WHO 

MONICA classification of MI6, 134-137.  Briefly, non-fatal CHD events classified by the WHO 

MONICA definition were those that included any report of MI accompanied by at least two 

of the following criteria: 1) history of severe prolonged chest pain; 2) ECG evidence of MI; 

and 3) cardiac enzyme changes associated with MI.  However, Price et al., and Goldberg et 

al., also classified participants as having a MI if diagnostic ECG codes were present in the 

absence of elevated enzyme levels or pain in an attempt to capture silent MIs.  Kawatchi et al 

also included events if medical records were not available, but hospitalization was required 

and confirmatory information was obtained by interview or letter, which may reflect the 

study population (nurses).  With regard to fatal events, Wannamethee and colleagues 

depended on ICD-9 coding alone, whereas Price et al, Baba et al, Goldberg et al, and 

Kawachi et al utilized ICD codes supplemented by post-mortem findings and medical 

records.   

Of the two studies of incident MI not employing the WHO criteria, ICD-9 codes 

(410-414, Table 19) alone were used in the Singapore Cardiovascular Cohort Study and 

Wilson and colleagues omitted information pertinent to outcome classification.  Of the three 

studies that examined CHD deaths, all relied solely on ICD codes obtained from death 

certificates. 

The measurement of cigarette exposure in the studies reviewed in Table 3 was 

variable and the motivations behind exposure classifications were often not described in 

detail.  The two exceptions were Neaton and colleagues, who dichotomized pack-years based 

on a plot of age-adjusted CHD death rates by the number of cigarettes smoked/day and Price 

et al, who divided pack-years of smoking into two approximately equal groups, labeling the 
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higher group as “heavy smokers” and the lower group as “moderate smokers”.  Adjustment 

strategies were also inconsistent, although age and sex were typically included in the 

multivariable models.  

Cigarette composition and construction also differs between countries, including 

tobacco type, filter and paper type, and additives, and may influence exposure yield per 

cigarette.  For example, approximately 97% of cigarettes sold in the U.S. and other 

developed countries contain a filter, with the exception of France, where acceptance of the 

filter cigarette has been delayed138.  The type of filter also varies by country.  Although 

smoke from cigarettes with charcoal filters was less ciliatoxic in vitro when compared to 

other filter types139, 140, only 1-2% of cigarettes on the U.S. market contain charcoal filters, 

compared to Japan, Venezuela, South Korea, and Hungary where over 90% of cigarettes 

have charcoal filters141, 142. Instead, cellulose acetate filters, which retain upwards of 80% of 

semivolatile phenols, are marketed in the remainder of developing countries138.   

Estimates of the association between cigarette smoking and incident CHD and related 

traits in diverse populations over three to 40 years follow-up with never smokers as referent 

ranged from 2.3 – 4.2 for current smokers, 1.1 – 2.8 for former smokers, and 0.7 – 3.9 for the 

cigarette/day or packs-year dichotomizations.  However, the estimate of 3.9 reported by Price 

et al for >25 pack-years contrast was obtained using a logistic model and thus is an over-

estimate of the incidence rate ratios reported by other investigators.  The estimated IRR for 

the relationship between ≥ 20 PY among current vs. never smokers and incident CHD in the 

Singapore Cardiovascular Cohort Study was imprecise (confidence limit ratio (CLR) = 3.3) 

compared to other estimates, as was the estimate of 2.8 for the former vs. never contrast 
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estimated in the Japan Public Health Centre study (CLR = 10.1), perhaps explaining the high 

estimates obtained by these studies.   

 Other considerations are the inconsistent adjustment strategies, especially the fact 

that numerous studies adjusted for factors affected by the exposure, such as body mass index 

(BMI), blood pressure, and lipoproteins, complicating interpretation.  Overall, the literature 

suggests a moderate relationship between cigarette smoking and CHD. 



 

Table 3. Review of 11 prospective studies examining the relationship between cigarette smoking and CHD and related traits. 

Author (year) Study Study population 
Length of 
follow-up Outcome 

Number of events 
by smoking status 

Measure 
estimated  

Estimate 
(95% CI) Covariate adjustments 

Current vs. Former         

Howard (1998)143 ARIC US males and females 
aged 45-64 years 3 years Carotid IMT 

progression  2956/3193* Mean 
difference (SE) 4.9 (2.5) Age, race, sex, baseline IMT 

Current vs. never         

Baba (2006)137 
Japan Public 
Health Centre 

(JPHC) 

Japanese males and 
females aged 40-59 

years 
12 years Incident CHD 13022/227558† IRR 3.1 (1.5, 6.4) 

females 

Age, alcohol, fruit, vegetable, and 
fish intake, hypertension, diabetes, 
treated hyperlipidemia, education, 

and public health center. 

Baba (2006)137 
Japan Public 
Health Centre 

(JPHC) 

Japanese males and 
females aged 40-59 

years 
12 years Incident CHD 114,527/53420† IRR 2.8 (2.0, 4.1) 

males 

Age, alcohol, fruit, vegetable, and 
fish intake, hypertension, diabetes, 
treated hyperlipidemia, education, 

and public health center. 

Kawachi (1997)136 Nurses’ Health 
Study 

US female nurses 30 
to 55 age range 12 years Incident CHD 377,171/593,02† IRR 4.2 (3.6, 5.0) 

Age, follow-up period, BMI, 
hypertension, cholesterol, diabetes, 
history of MI before age 60, HRT 
use, menopausal status, past use of 

OC, age at smoking initiation 

Wannamethee(1999)134 
British 

Regional Heart 
Study (BRHS) 

UK males aged 40-59 
years 15 years Incident CHD 983/6752‡ IRR 2.3 (1.9, 2.9) 

Age, BMI, SBP, cholesterol, 
physical activity, alcohol intake, 

diabetes, and family history of heart 
disease. 

Former vs. Never         

Baba (2006)137 
Japan Public 
Health Centre 

(JPHC) 

Japanese males and 
females aged 40-59 

years 
12 years Incident CHD 49204/53420† IRR 1.1 (0.7, 1.7) 

males 

Age, alcohol, fruit, vegetable, and 
fish intake, hypertension, diabetes, 
treated hyperlipidemia, education, 

and public health center. 

Baba (2006)137 
Japan Public 
Health Centre 

(JPHC) 

Japanese males and 
females aged 40-59 

years 
12 years Incident CHD 4030/227558† IRR 2.8 (0.9, 9.1) 

females 

Age, alcohol, fruit, vegetable, and 
fish intake, hypertension, diabetes, 
treated hyperlipidemia, education, 

and public health center. 

Howard (1998)143 

  

ARIC US males and females 
aged 45-64 years 3 years Carotid IMT 

progression 3193/4765* Mean 
difference (SE) 5.9 (2.3) Age, race, sex, baseline IMT 

Hrubec(1997)144 .
US males veterans 

enlisted between 1917 
and 1940 

26 years CHD death 10369/13257 IRR 1.2 (1.2, 1.2) Age and calendar time 
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Kawachi (1997)136 Nurses’ Health 
Study 

US female nurses 30 
to 55 age range 12 years Incident CHD 404359/59302† IRR 1.5(1.2, 1.8) 

Age, follow-up period, BMI, 
hypertension, cholesterol, diabetes, 
history of MI before age 60, HRT 
use, menopausal status, past use of 

OC, age at smoking initiation 

Lee (2001)145 
Singapore 

Cardiovascular 
Cohort Study 

Singapore males and 
females 8.9 years Incident CHD 2649.4/12972.0† IRR 1.3 (0.8, 2.2) Age and ethnic group 

Wannamethee(1999)134 
British 

Regional Heart 
Study (BRHS) 

UK males aged 40-59 
years 15 years Incident CHD 983/6752‡ IRR 1.5 (1.2, 2.8) 

Age, BMI, SBP, cholesterol, 
physical activity, alcohol intake, 

diabetes, and family history of heart 
disease. 

Cigarettes/day scaled at 10  

Menotti (2004) US Railroad 
study 

Males aged 40-59, US 
railroad company 

employees 
40 years CHD death 627/2376 IRR 1.2 (1.1, 1.3) Age, SBP, cholesterol 

Wilson (1991)146 Framingham 
offspring study US males and females 12 years Incident CHD 55/1659‡ IRR 

females 1.2 (1.0, 1.4) HDL, LDL, VLDL, hypertension, 
BMI, glucose, and age. 

Wilson (1991)146 Framingham 
offspring study US males and females 12 years Incident CHD 156/1507‡ IRR 

males 1.2 (1.1, 1.3) HDL, LDL, VLDL, hypertension, 
BMI, glucose, and age. 

PY > 25 vs. never smokers        

Price (1999)6 Edinburgh 
Artery Study 

Scottish males and 
females 55-74 age 

range 
5 years Incident PAD 46/782 IOR 3.9 (2.0, 7.6) Age and sex 

Price (1999)6 Edinburgh 
Artery Study 

Scottish males and 
females 55-74 age 

range 
5 years Incident CHD 82/746 IOR 1.7 (1.1, 2.6) Age and sex 

PY ≥ 20 among current smokers vs. never smokers       

Lee (2001)145 
Singapore 

Cardiovascular 
Cohort Study 

Singapore males and 
females 8.9 years Incident CHD 3016.5/12972.0† IRR 0.7 (0.4, 1.3) Age and ethnic group 

PY ≤ 25 vs. never         

Price (1999)6 Edinburgh 
Artery Study 

Scottish males and 
females 55-74 age 

range 
5 years Incident CHD 88/802 IOR 1.6 (1.0, 2.4) Age and sex 

Price (1999)6 Edinburgh 
Artery Study 

Scottish males and 
females 55-74 age 

range 
5 years Incident PAD 31/859 IOR 1.9 (0.1, 3.8) Age and sex 
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     PY < 20  among current smokers vs. never smokers  

Lee (2001)145 
Singapore 

Cardiovascular 
Cohort Study 

Singapore males and 
females 8.9 years Incident CHD 6347.9/12972.0† IRR 1.3 (0.8, 1.3) Age and ethnic group 

≥26 cigarettes/day vs. nonsmokers       

Neaton (1992)147 MRFIT US males 35-57 years 
old 12 years CHD death 1932/2874 IRR 2.9¥ Age, cholesterol, SBP, and DBP 

<26 cigarettes/day vs. nonsmokers       

Neaton (1992)147 MRFIT US males 35-57 years 
old 12 years CHD death 1521/2874 IRR 2.1¥ Age, cholesterol, SBP, and DBP 

>20 cigarettes/day vs. nonsmoker       

Goldberg (1995)135 Honolulu 
Heart Program 

Males of Japanese 
descent residing on 

Oahu in 1965, 45-65 
years of age 

20 years Incident definite 
CHD 352/2108‡ IRR 2.3 (1.6, 3.3) 

Ventricular rate, BMI, SBP, 
cholesterol, triglycerides, glucose, 

uric acid, hematocrit, FEV , 
physical activity, and alcohol 

Goldberg (1995)135 Honolulu 
Heart Program 

Males of Japanese 
descent residing on 

Oahu in 1965, 45-65 
years of age 

20 years 
Total 

atherosclerotic 
events§

602/2108‡ IRR 2.2 (1.6, 2.8) 

Ventricular rate, BMI, SBP, 
cholesterol, triglycerides, glucose, 

uric acid, hematocrit, FEV , 
physical activity, and alcohol 

20 cigarettes/day vs. nonsmoker        

Goldberg (1995)135 Honolulu 
Heart Program 

Males of Japanese 
descent residing on 

Oahu in 1965, 45-65 
years of age 

20 years Incident definite 
CHD 352/2108‡ IRR 2.1 (1.6, 3.0) 

Ventricular rate, BMI, SBP, 
cholesterol, triglycerides, glucose, 

uric acid, hematocrit, FEV , 
physical activity, and alcohol 

Goldberg (1995)135 Honolulu 
Heart Program 

Males of Japanese 
descent residing on 

Oahu in 1965, 45-65 
years of age 

20 years 
Total 

atherosclerotic 
events§

602/2108‡ IRR 2.1 (1.7, 2.7) 

Ventricular rate, BMI, SBP, 
cholesterol, triglycerides, glucose, 

uric acid, hematocrit, FEV , 
physical activity, and alcohol 

<20 cigarettes/day vs. nonsmoker        

Goldberg (1995)135 Honolulu 
Heart Program 

Males of Japanese 
descent residing on 

Oahu in 1965, 45-65 
years of age 

20 years Incident definite 
CHD 352/2108‡ IRR 1.7 (1.1, 2.6) 

Ventricular rate, BMI, SBP, 
cholesterol, triglycerides, glucose, 

uric acid, hematocrit, FEV , 
physical activity, and alcohol 

Goldberg (1995)135 Honolulu 
Heart Program 

Males of Japanese 
descent residing on 

Oahu in 1965, 45-65 
years of age 

20 years 
Total 

atherosclerotic 
events§

602/2108‡ IRR 1.7 (1.2, 2.3) 

Ventricular rate, BMI, SBP, 
cholesterol, triglycerides, glucose, 

uric acid, hematocrit, FEV , 
physical activity, and alcohol 
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Former smokers (who reported 1-9 cigarettes/day as highest amount smoked) vs. never     

Hrubec(1997)144  .
US males veterans 

enlisted between 1917 
and 1940 

26 years CHD death 1966/13257 IRR 1.1 (1.0, 1.1) Age and calendar time 

Former smokers (who reported 10-20 cigarettes/day as highest amount smoked) vs. never     

Hrubec(1997)144  .
US males veterans 

enlisted between 1917 
and 1940 

26 years CHD death 4685/13257 IRR 1.2 (1.1, 1.2) Age and calendar time 

Former smokers (who reported 21-39 cigarettes/day as highest amount smoked) vs. never     

Hrubec(1997)144  .
US males veterans 

enlisted between 1917 
and 1940 

26 years CHD death 2723/13257 IRR 1.3 (1.3, 1.4) Age and calendar time 

Former smokers (who reported >40 cigarettes/day as highest amount smoked) vs. never      

Hrubec(1997)144  .
US males veterans 

enlisted between 1917 
and 1940 

26 years CHD death 995/13257 IRR 1.4 (1.3, 1.5) Age and calendar time 

*Presented as no. exposed/no. unexposed; †Presented as total person-years at risk by smoking status; ‡Number of events and non-events overall; § Incident CHD, angina, aortic aneurysms, and 
thromboembolic stroke; ¥ CI not reported; BMI, body mass index; CHD, coronary heart disease; CI, confidence interval; DBP, diastolic blood pressure; FEV, forced expiratory volume; HDL, high-
density lipoprotein; HRT, hormone replacement therapy;  IRR, incidence rate ratio; IMT, intimal-medial thickness; LDL, low-density lipoprotein; MI, myocardial infarction; OC, oral contraceptive;  
PAD, peripheral arterial disease; PY, pack-years; SBP, systolic blood pressure; SE, standard error; VLDL, very low density lipoprotein 



 

Classification of cigarette smoke exposure 

While the relationship between cigarette smoking and CHD is well-established (Table 

3), the magnitude and shape of the dose-response relationship remains unresolved115.  Early 

attempts to characterize the dose-relationship utilized published data on Caucasian males 

aged 45 to 54 years from four studies to estimate dose-response curves: The Veterans 

Administration Study, The American Cancer Society Study, the Study of British Physicians, 

and The Pooling Project, which combined five U.S. epidemiologic studies.   Briefly, a dose 

response model was fit to the observed data and goodness-of-fit measures and smoothed 

death rates were estimated.  The smoothed death rates were then applied to the population 

distribution by amount smoked in 1965 and 1976 in an attempt to explain the effect of 

decreased smoking among males on the declining CHD mortality rate, yielding two 

“expected” CHD death rates.   

Results indicated that a wide variety of models (linear, logarithmic, and exponential) 

were consistent with the decline in CHD mortality148.  However, the differences may have 

reflected the imprecision rather than true variation149, as well as the assumption of a 

univariate dose-response relationship, the low statistical power, and the reliance upon 

grouped data, not individual data.  The use of midpoints may also have underestimated the 

effects of lighter smoking and inflate the effects of heavy smoking150. 

Framingham investigators initially utilized numerous classifications for cigarette 

smoking including the seven-level categorization of never-smoked, <10, 10, 11-19, 20, 21-

39, and ≥ 40 cigarettes/day.  However, variation in history formats resulted in a condensed 

classification of none, <20, 20, and >20 cigarettes/day, which appears in most Framingham 

publications151. 
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As demonstrated in Table 3, researchers used numerous classifications to measure 

cigarette smoking exposure, including current, former, or never smoking, pack-years, and 

cigarettes/day.  While pack-years of smoking is a composite variable intended to capture the 

duration and magnitude of cigarette smoke exposure, there is little consistency in the choice 

of cutpoints between studies.  The lack of comparability may reflect the fact that some 

researchers chose cutpoints based on means or medians of the pack-years distribution, not 

biology.  The relationship between the duration and magnitude cigarette smoking and the rate 

of CHD may not be linear, thus questioning the suitability of pack-years of smoking or 

cigarettes/day for exposure measurement. 

Pack-years and other measures of cumulative smoking exposure also do not take 

account of inter-individual variation in mode of smoking, as the type of cigarette smoked, the 

frequency and depth of inhalation, and amount of stub remaining all contribute to variation in 

exposure to cigarette smoke152.  Additional sources of variability include faulty recall of 

cigarette smoking history or terminal digit preference corresponding to packs of cigarettes 

(e.g. 20 or 30)153.  The feasibility of obtaining an optimized measure is also questionable 

considering social pressures that may cause an underreporting of true exposure. 

Previous research suggests that former smokers were exposed to fewer cigarettes/day 

and initiated smoking at an older age when compared to current smokers.  Thus, at any age of 

cessation, former smokers are believed to have less cumulative exposure to cigarettes than 

current smokers136.  However, former smokers may have quit smoking due to smoking-

related respiratory and CVD symptoms and may actually have a higher burden of disease 

than their currently smoking counterparts143.  In whole, the optimal classification for cigarette 

smoke exposure in CVD research remains unclear. 
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Short term and long term effects of smoking 

While numerous studies have demonstrated short-term benefits of smoking cessation, 

disagreement exists as to the long-term effects of smoking on CHD risk.  Studies of British 

physicians154 and American nurses136 have demonstrated that the mortality rates for vascular 

diseases in former smokers remain intermediate to vascular disease mortality rates among 

never and current smokers and the British Regional Heart Study found little risk reduction for 

ex-smokers after seven years follow-up155.   

Research in the ARIC cohort also suggests that the effect of smoking on 

atherosclerosis progression may be cumulative and long-lasting.  Howard et al., (1998) 

examined the influence of cigarette smoking and environmental tobacco smoke (ETS) 

exposure on the progression of atherosclerosis.  They demonstrated a relationship between 

increased cigarette smoke exposure and carotid atherosclerosis progression (Table 3), after 

adjustment for demographic and cardiovascular risk factors.  Notably, atherosclerosis 

progression was higher among former smokers than never smokers, but no differences were 

identified between past and current smokers after accounting for pack-years of exposure143.   

Inconsistencies between studies examining the risk reduction associated with 

smoking cessation may reflect other factors such as age of smoking cessation and/or 

initiation, CHD risk factors, and disease severity156, or even our incomplete understanding of 

vascular biology.  Considering that DNA damage induced by tobacco smoke can result in the 

formation of DNA adducts that, if not repaired, may cause uncontrolled cellular proliferation 

and that cigarette smoke is capable of promoting SMC proliferation, plausible mechanisms 

linking cigarette smoke, DNA repair capacity, and atherosclerotic disease exist.  While we 

cannot directly evaluate somatic alterations in SMCs, measures of smoking exposure and 
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inherited DNA repair polymorphisms are available, which could inform future investigators 

of the influence of genetic factors in the relationship between cigarette smoking and 

atherosclerosis-related diseases.   

C. Repair of DNA damage 

The human genome with its approximately three billion base pairs is vulnerable to an 

array of DNA-damaging agents of both endogenous and exogenous origin.  The integrity of 

DNA molecules is maintained primarily by DNA repair mechanisms, which continually 

excise and replace nucleotides thus reducing the burden of potentially mutagenic and 

cytotoxic products.  Reduced DNA repair capacity has been associated with cancers157-159, 

neurodegeneration160, and premature aging161.   

DNA damage occurs via a variety of mechanisms.  Oxidative damage, for example, 

occurs when a cell is exposed to an increased amount of reactive oxygen species (ROS)162, 

163, compounds containing partially reduced oxygen that possess high reactivity with 

biomolecules (e.g. DNA, proteins, and lipids)163-166.  Ubiquitous in aerobic life, ROS include 

both oxygen radicals and derivatives of O2 that do not contain unpaired electrons101 and are 

derived from exogenous sources and normal by-products of metabolic processes.  Examples 

of ROS include hydroxyl radicals (·OH), singlet oxygen (1O2), superoxide (O2
·-), and 

hydrogen peroxide (H2O2)167.  The effects of ROS are typically counteracted by plasma 

antioxidants that scavenge the ROS168-170 and the enzyme superoxide dismutase (SOD2), 

which reduces ROS to excretable endproducts170, 171.  ROS that escape the effects of plasma 

antioxidants and SOD2 are capable of damaging DNA.  
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Numerous oxidative base lesions are mutagenic, regardless of whether they are 

formed in situ or arise by misincorporation from the deoxynucleotide pool172.  Many 

compounds can generate ROS capable of damaging DNA including benzo(a)pyrene, 

benzene, low wavelength ionizing radiation, and UV light.  The effects of ROS are not 

limited to mutation however.  Lesions can block replication or cause DNA deletions and/or 

microsatellite instability / loss of heterozygosity (LOH).  Epigenetic effects have also been 

associated with oxidant exposure172.  

Other causes of DNA damage include methylation and hydrolysis.  DNA methylation 

results in the addition of a methyl group to DNA and is an example of epigenetics, reversible 

heritable alterations in genes that occur without modifying the DNA sequence.  While some 

lesions are harmless in that they do not result in miscodings or have cytotoxic properties, 3-

methyladenine (3-meA), promotes spontaneous mutagenesis if not repaired173.  Urinary 

excretion of 3-meA was increased after controlled exposure to cigarette smoke in smokers 

compared to non-smokers, although the DNA-reactive agents responsible for the increase 

remain unknown174.   

Base loss, or hydrolysis, is the most frequent type of damage in human cells.  

Approximately 2,000 – 10,000 abastic sites (apurinic or apyrimidinic sites resulting from the 

loss of a purine or pyrimidine residue) are generated daily in a mammalian cell under 

physiologic conditions175.  Brain tissue is the most affected, followed by the colon and 

myocardium176.  Apurinic/apyrimidinic (AP) sites are formed by the spontaneous hydrolysis 

of the N-glycosylic bond or during the DNA repair process (further discussed in section 

IIIC).  Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent 
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cigarette smoke carcinogen formed by the nitrosation of nicotine177, 178, was shown to 

increase base loss in human non-small cell lung cancer cells using the comet assay179. 

DNA damage is often manifest as “non - bulky” DNA adducts180, single-base 

modifications, such as oxidized, fragmented, or reduced bases, or lesions produced by 

methylating agents.  8-oxo-7, 8 – dihydroguanine (8-oxo-G), is the most common and 

mutagenic ROS-induced non-bulky DNA lesion181-183 and is a marker of cellular oxidative 

stress184.  The failure to repair this DNA adduct could result in a mutation during cell 

division (G – T transversion), transmitting the damage to successive cell generations185.  

Cigarette smoking has been consistently associated with a 30-50% increase in urinary 8-oxo-

G expression186-188.     

DNA damage caused by “bulky” adducts result in distortions of the helix and is 

caused by pyrimidine dimers, photo-products, or cross-links189.  BPDE, the activated form of 

the cigarette smoke carcinogen benzo(a)pyrene, is one of the many compounds capable of 

inducing bulky DNA adduct formation without further activation190 and blocks the 

transcription of essential genes if unrepaired191.  Indeed, lymphocytes from breast cancer 

patients were more sensitive to in vitro BPDE exposure than controls, suggesting suboptimal 

DNA repair capacity192.    

Oxidative stress, as well as ionizing radiation and the overlap of excision repair 

tracts193, can also produce double strand DNA breaks, potentially the most dangerous type of 

DNA damage.  Repair of a double strand DNA break is considerably more difficult than the 

repair of a DNA adduct, reflecting the lack of an undamaged DNA template194.  Research has 

demonstrated that concentrations of cigarette smoke condensate far below those contained in 
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a single cigarette can induce double strand DNA damage in cultured cells and purified 

DNA195.   

Approximately 130 human genes are involved in repairing the types of DNA damage 

reviewed above196.  While loss-of-repair variants are infrequent, studies using lymphocyte-

based assays suggest that 10-20% of the human population have a heritable reduced capacity 

to repair DNA damage induced by exposures including gamma radiation, bleomycin, and 

BPDE197-199.  Such heritable differences in DNA repair genes are most often captured by the 

SNP, the most common type of genetic variation in the human genome occurring at an 

estimated density of one in 1,000 base pairs200-203.  SNPs are typically bi-allelic, are variably 

distributed throughout the human genome, and have frequencies that differ between 

race/ethnic groups.  While a fraction of SNPs encode amino acid changes (non-synonymous 

SNPs) that potentially change protein structure and function, the majority of SNPs are 

intronic. 

The numerous compounds contained in cigarette smoke, each with a unique chemical 

structure, demonstrably cause a variety of DNA damage and necessitate distinct DNA repair 

pathways and genes189.  As inherited genetic variants at one or more loci can affect disease 

susceptibility and/or influence the effect of environmental exposures such as cigarette smoke, 

we examined three genes in the base excision repair (BER) pathway (hOgg1, APEX1, and 

XRCC1), one gene in the nucleotide excision repair (NER) pathway (XPD), and one gene in 

the double-strand break (DSB) repair pathway (XRCC3), the DNA repair pathways of most 

importance for the repair of tobacco-related DNA damage204.  The process of SNP selection 

used for this dissertation was informed by functional data, SNP type with preference for non-
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synonymous SNPs, published literature, and patterns of pair-wise linkage disequilibrium 

(LD). 

1. Base excision repair (BER) 

The BER pathway 

operates on small lesions (Figure 

2) such as oxidized or reduced 

bases, fragmented or non-bulky 

adducts produced by methylating 

agents, and (AP) sites, all of 

which may arise during 

inflammatory responses, 

spontaneously within the cell, or 

from exogenous agents.  While 

this type of damage causes minor 

changes in the helical DNA 

structure, BER is one of the most 

highly conserved DNA repair 

mechanisms205, emphasizing its 

importance in maintaining 

genomic integrity. 

Figure 2. Diagram of the short-patch BER pathway. 
 

Adapted from Goode et al., 2002184 
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Briefly, BER first involves cleavage of the damaged nucleotide by DNA 

glycosylases, generating an abastic site.  APEX1 then nicks the damaged DNA strand 
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upstream of the AP site, creating a 3’-OH terminus adjacent to the abastic sites.  BER is 

completed by the replacement of one (short-patch pathway) or multiple (long-patch pathway) 

nucleotides at the 3’-OH terminus by DNA polymerases and sealing of the incision by DNA 

ligase180, 206-208, restoring DNA to its unmodified state.   

As discussed above, tobacco smoke contains numerous carcinogens capable of 

causing DNA damage that is repaired by the BER pathway and an excess of ROS has been 

associated with cellular damage and atherogenesis in numerous studies209, 210.  For example, 

strong 8-oxo-G immunoreactivity was demonstrated in all atherosclerosis plaque cell types 

obtained from 13 human carotid endarterectomy specimens of patients with a carotid stenosis 

exceeding 70%, but not in the underlying media or non-atherosclerotic mammary arteries211.  

As BER is major repair mechanism for the type of oxidative damage caused by tobacco 

exposure and sequence variants in DNA repair genes are believed to modulate DNA repair 

capacity, a mechanistic basis exists for evaluating the role of BER variants in the relationship 

between cigarette smoking and CHD.   

hOgg1 

 hOgg1 is 

located on 3p25 and is 

one of the five DNA 

glycosylases that 

participate in the first 

steps of BER.  hOgg1 is expressed as 12 alternatively-spliced isoforms, although the 1α-form 

is the only isoform with a nuclear localization signal213, 214 (Figure 3).  

Figure 3.  Schematic of the hOgg1 protein. 
 

Adapted from Boiteus and Radicella, (2000)212.  MTS, mitochondrial targeting 
signal; NLS, nuclear localization sequence. 
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 The hOgg1 gene catalyzes the removal of 8-oxo-G from DNA207, 215, 216, an oxidized 

derivative of guanine that is one of the most mutagenic DNA lesions, as it mispairs with 

adenine during DNA replication, resulting in G to T transversions (G:C to T:A) in vivo and in 

vitro217.  hOgg1 initiates the repair of 8-oxo-G lesions by cleaving the N-glycosyl oxidized 

guanine-deoxyribose backbone bond, releasing the modified base and producing an apurinic / 

apyrimidinic site (Figure 2).  hOgg1 does not require any additional cofactors to recognize 8-

oxo-G DNA lesions or to initiate enzymatic activity180.  ROS-mediated DNA damage is 

hypothesized to cause mutations associated with the initiation or progression of human 

cancers, as such mutations may activate oncogenes or inactivate tumor suppressor genes218.  

Indeed, hOgg1 frequently shows LOH, the loss of a single parent's contribution to part of the 

cell's genome, in several human cancers215, 219.   

Numerous functional studies have investigated the role of hOgg1 in DNA repair.  

Inactivation of the E .coli hOgg1 homologue fpg has been shown to lead to a spontaneous 

mutator phenotype typified by an increase in G:C to T:A transversions217, 220.  Deletion of the 

hOgg1 gene in yeast also creates a mutator phenotype specific for G:C to T:A 

transversions221.  

Nishimura (2002) demonstrated that mice with a targeted disruption of the hOgg1 

gene had elevated rates of spontaneous mutagenesis and high levels of 8-oxo-G216 and DNA 

8-oxo-G content was shown to be higher in lung cancer patients than in controls222.  hOgg1 

expression was also investigated in 13 human carotid endarterectomy specimens obtained 

from patients with a carotid stenosis exceeding 70%.  However, western blots suggested 

similar hOgg1 protein levels when carotid endarterectomy and non-atherosclerotic vessel 

specimens were compared211.   
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In addition, the effect of peroxynitrite on hOgg1 activity was examined in a human 

cholangiocarcinoma cell line.  Peroxynitrite is a potent and versatile oxidant that can attack a 

wide range of biological targets and is formed by the reaction of the ROS superoxide with 

NO. Jaiswal et al. demonstrated that cellular hOgg1-mediated BER activity was inhibited 

during peroxynitrite exposure, suggesting that peroxynitrite not only caused oxidative DNA 

damage, but also prevented DNA repair223.  Although cigarette smoke contains large 

quantities of peroxynitrites and other ROS104, 105, these substances are short lived and rapidly 

degrade in aqueous solution104, 224.  However, chemically stable compounds present in the gas 

phase of cigarette smoke, such as α,β-unsaturated aldehyde acrolein, were shown to increase 

the production of the peroxynitrite precursor superoxide in cultured bovine pulmonary artery 

endothelial cells in a dose-dependent manner109. 

hOgg1 genetic variants 

 Previous studies have identified seven nonsynonymous hOgg1 variants (Table 4), 

although minor allele frequencies (MAF) preclude evaluating most polymorphisms in 

population-based studies.  The C/G polymorphism at position 1235 (Ser326Cys) in the 1α-

specific exon seven219 is the most studied hOgg1 variant and Cys/Cys carriers are postulated 

to have a decreased capability in repairing oxidative DNA damage compared to Ser/Ser or 

Ser/Cys carriers.  One functional study examining the Ser326Cys variant demonstrated that 

the 326Ser- containing hOgg1 had a seven-fold higher activity for repairing 8-oxo-G than 

326Cys-containing hOgg1 using a complementation assay of an E. coli mutant defective in 

the repair 8-oxo-G219.   Cys326-initiated BER was also shown to be transiently impaired, 

compared to Ser326, following pro-oxidant treatment in transgenic mouse embryonic 

fibroblast cell lines167.  However, no mean differences in DNA repair activity by Ser326Cys 
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polymorphism was detected in human cryoconserved lymphocytes225, although the study was 

limited to samples from 34 healthy donors.  The function of one other hOgg1 variants was 

also evaluated as Chevillard et al.,(1998) demonstrated that mutation of Arg229 to Gln in 

cDNA abolished the ability of the hOgg1 protein to repair 8-oxo-G226.   

Table 4.  Characterization of  seven known hOgg1 nonsynonymous SNPs. 

SNP* Protein residue MAF Functional data? 
Studied in human 

populations? 

rs11548133 Thr27Pro . . . 

rs17050550 Ser85Ala 0.04 (CEPH) . . 

rs1805373 Gln229Arg 0.00 (CEU) 
0.10 (YRI) Sunaga et al., (2002)227 . 

rs3219012 Val288Ala 0.01 (CEU) . . 

rs1801128 Thr320Ser . . . 

rs3219014 Asn322Asp 0.006 (PDR90) . . 

rs1052133 Cys326Ser 0.30 (NIHPDR) 
0.10 (AFR1) 

Sunaga et al., (2002)227 
Smart et al., (2006)167 

Janssen et al., (2001)225 
Table  5 and Table 6 

*Information obtained from dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/); AFR1, Human individual DNA from 24 individuals of self-
described African/African American heritage; CEPH, Genomic DNA samples obtained for a panel of 92 unrelated individuals chosen from 
Centre d'Etude du Polymorphisme Human (CEPH) pedigrees. The genomic DNA comprised of UTAH (93%), French (4%), and Venezuelan 
(3%) samples were purchased from Coriell Cell Repository; CEU, 30 mother-father-child trios from the CEPH collection (Utah residents with 
ancestry from northern and western Europe), representing one of the populations studied in the International HapMap project;  NIHPDR, The 
NIH Polymorphism Discovery Resource (NIHPDR) contains cell lines and DNA from 450 anonymous, unrelated individuals with equal 
numbers of females and males.  The sample has sampled non- European regions at frequencies higher than the general U.S. Population to 
enrich the genetic variability of the resource; PDR90, The NIH Polymorphism Discovery Resource (NIHPDR) 90 individual screening subset; 
YRI, 30 Yoruba mother-father-child trios in Ibadan, Nigeria, representing one of the populations studied in the International HapMap project. 

Although hOgg1 studies in human populations are often focused on cancers, Wang et 

al (2006) investigated the relationship between Ser326Cys and insulin sensitivity, as 

oxidative stress may impair insulin action228-231.  Briefly, 297 Taiwanese males and females 

(mean age 45.3 years) with fasting plasma glucose < 100 mg/dl and no reported history of 

cancer were genotyped for the Ser326 variant.  Mean levels of fasting insulin (µIU/ml, SE) 

for the Ser/Ser, Ser/Cys, and Cys/Cys participants were 4.9 (2.5), 5.5(2.8), and 6.9(4.0), 

respectively232, suggesting that insulin sensitivity is decreased in participants carrying the 

Cys/Cys genotype.  
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The observational studies reviewed in Table  5 and have not provided consistent 

evidence for an association between hOgg1 variants and cancers and related traits.  For 

example, estimates of the Ser326Cys variant and disease ranged from 0.8 – 1.3 for breast 

cancer, 0.6 – 2.1 for lung cancer, and 0.6 – 1.1 for stomach cancer.  As expected, the most 

extreme estimate, 7.6 (1.8, 31) for the Cys/Cys vs. Ser/Ser contrast and prevalent prostate 

cancer233, was also the most imprecise (confidence limit ratio (CLR) = 17).      When 

stratified by smoking status the marked imprecision of the estimates precluded evaluation.  

Furthermore, studies of the same outcome were few, largely focused on the Ser326Cys 

hOgg1 variant, typically underpowered to detect modest effects, especially modification by 

cigarette smoking, and often examined prevalent disease.  No studies evaluated additive 

interaction. 
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Table  5. Review of 19 case control studies examining the relationship between hOGG1 polymorphisms and cancers and related traits stratified by cancer and polymorphism. 

Variant Outcome Author (year) Study population

No. 
cases/control

s Genotype contrast
OR  

(95% CI) Covariate adjustments 

Ser326Cys        

 Breast cancer Cai (2006)234 Female Chinese aged 25-64 
years* 568/630 Cys/Cys vs. Ser/Ser 1.1 (0.8, 1.4) Age, education level, menopausal 

status, and age at first birth. 

  

  

  

  

  

 

  

 

  

  

   

  

   

  

 

    

    

    

  720/751 Cys/Ser vs. Ser/Ser 1.2 (0.9, 1.5) Age, education level, menopausal 
status, and age at first birth. 

Choi (2003)235 Korean and Japanese women* 224/239 Cys/Cys vs. Ser/Ser 1.3 (0.9, 1.9) Age, BMI, family history of breast 
cancer, and parity 

  355/332 Cys/Ser vs. Ser/Ser 1.0 (0.7, 1.5) Age, BMI, family history of breast 
cancer, and parity 

Vogel (2003)236 Denmark women aged 50-64 
years* 42/501 Cys/Cys vs. Ser/Ser 1.0 (0.5, 1.9) Unadjusted 

  316/501 Cys/Cys vs. Ser/Ser 0.8 (0.6, 1.1) Unadjusted 

Colon cancer Kim (2003)237 Korean males and females† 116/59 Cys/Cys vs. Ser/Ser 1.2 (0.6, 2.4) Unadjusted 

  183/90 Cys/Ser vs. Ser/Ser 1.1 (0.6, 2.0) Unadjusted 

Lung cancer Le Marchand (2002)238 Oahu, Hawaii residents aged 18-
79* 233/352 Cys/Ser vs. Ser/Ser 0.7 (0.5, 1.1) 

Age, sex, race, smoking, smoking 
years, smoking years2, 

cigarettes/day, saturated fat and 
vegetable intake. 

  188/230 Cys/Cys vs. Ser/Ser 2.1 (1.2, 3.7) 

Age, sex, race, smoking, smoking 
years, smoking years2, 

cigarettes/day, saturated fat and 
vegetable intake. 

Liang (2005)239 Chinese males and females, 30 – 
86 years of age† 227/227 Cys/Cys, Cys/Ser vs. 

Ser/Ser 0.9 (0.5, 1.6) Sex, age, and smoking 

Sugimura (1999)240 Male Japanese* 126/90 Cys/Cys vs. Ser/Ser 1.3 (0.6, 2.6) Age and smooking habit 

  200/170 Cys/Ser vs. Ser/Ser 0.6 (0.4,  1.1) Age and smooking habit 

Sunaga (2002)227 Japanese† 92/86 Cys/Cys vs. Ser/Ser 0.9 (0.5, 1.7) Sex, age, smoking 

  160/116 Cys/Ser vs. Ser/Ser 1.3 (0.8, 2.2) Sex, age, smoking 

Stomach cancer Hanaoka (2001)241 Japanese and non-Japanese 
Brazilians, aged 37-89 years* 49/100 Cys/Ser vs. Ser/Ser 

among Japanese 1.1 (0.6, 2.3) Unadjusted 

29/71 Cys/Cys vs. Ser/Ser 
among Japanese 0.7 (0.3, 1.8) Unadjusted 

200/197 Cys/Ser vs. Ser/Ser 
among non-Japanese 0.8 (0.6, 1.3) Unadjusted 

141/131 Cys/Cys vs. Ser/Ser 
among non-Japanese 0.9 (0.3, 2.5) Unadjusted 
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Takezaki (2002)242 Chinese males and females* 40/78 Cys/Cys vs. Ser/Ser 0.6 (0.3, 1.4) Unadjusted 

  81/150 Cys/Ser vs. Ser/Ser 0.8 (0.4, 1.5) Unadjusted 

 Nasopharyngeal 
carcinoma Cho (2003)243 Taiwanese males and females† 158/154 Cys/Cys vs. Ser/Ser 1.4 (0.9, 2.4) Age, sex, and ethnicity 

  211/175 Cys/Ser vs. Ser/Ser 1.8 (1.1, 2.9) Age, sex, and ethnicity 

 Orolaryngeal 
cancer Elahi (2002)244 U.S. males and females aged 25-

87 years† 113/255 Cys/Cys vs. Ser/Ser 3.6 (1.2, 10) Unadjusted 

  158/325 Cys/Ser vs. Ser/Ser 1.7 (1.1, 2.6) Unadjusted 

Xing (2001)245 Chinese males and females* 196/201 Cys/Cys vs. Cys/Ser, 
Ser/Ser 1.9 (1.3, 2.6) Sex, age, cigarette smoking 

Zhang(2004)246 University of TX patients and 
residents of greater Houston TX* 486/808 Cys/Cys vs. Ser/Ser 1.0 (0.6, 1.5) Age, sex, smoking, and alcohol 

  667/1127 Cys/Ser vs. Ser/Ser 0.9 (0.8, 1.1) Age, sex, smoking, and alcohol 

Prostate cancer Chen (2003)233 U.S. males aged 42-82† 55/188 Cys/Cys vs. Ser/Ser 7.6 (1.8, 31) Unadjusted 

  78/248 Cys/Ser vs. Ser/Ser 1.7 (1.0, 3.0) Unadjusted 

Nam (2005)247 Canadian males† 646/706 Cys/Cys vs. Ser/Ser 0.6 (0.5, 0.8) Unadjusted 

  943/1003 Cys/Cys vs. Ser/Ser 0.9 (0.8, 1.1) Unadjusted 

Xu (2002)248 U.S. males† 111/128 Cys/Cys vs. Ser/Ser 3.2 (1.2, 8.5) Unadjusted 

  159/193 Cys/Ser vs. Ser/Ser 1.1 (0.7, 1.7) Unadjusted 

Pterygium Kau (2004)249 Taiwanese males and females† 70/86 Cys/Cys vs. Cys/Ser, 
Ser/Ser 2.2 (1.1, 4.5) Age, sex, and occupation type 

Oral cleft Olshan (2005)250 California infants born 1983-
1986† 60/184 Cys/Cys vs. Ser/Ser 0.2 (0.1, 0.8) Race/ethnicity 

  113/280 Cys/Ser vs. Ser/Ser 1.4 (0.8, 2.1) Race/ethnicity 

Spina bifida Olshan (2005)250 California infants born 1983-
1986† 77/184 Cys/Cys vs. Ser/Ser 1.5 (0.7, 3.1) Race/ethnicity 

  110/280 Cys/Ser vs. Ser/Ser 0.8 (0.5, 1.3) Race/ethnicity 

11657‡  

   Prostate cancer Nam (2005)247 Canadian males† 730/653 GG vs. AA 0.9 (0.6, 1.3) Unadjusted 

  

    

  

      

  960/1056 GG vs. AA 1.1 (0.9, 1.3) Unadjusted 

Xu (2002)248 U.S. males† 140/169 CC/AA 0.1 (0, 0.8) Unadjusted 

  286/214 AG/AA 3 (2, 4.4) Unadjusted 

3402‡  
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   Prostate cancer    Xu (2002)248 U.S. males† 102/102 GG/AA 1.4 (0.7, 2.6) Unadjusted 

  

      

  154/162 AG/AA 1.1 (0.7, 1.6) Unadjusted 

3574‡  

   Prostate cancer Xu (2002)248 U.S. males† 115/138 GG/AA 1.4 (0.6, 3.3) Unadjusted 

  

      

  162/182 AG/AA 1.3 (0.8, 2.1) Unadjusted 

6170‡  

 Prostate cancer    Xu (2002)248  U.S. males† 114/138 GG/CC 2.1 (0.8, 5.2) Unadjusted 

  

      

  161/199 CG/CC 1.1 (0.7, 1.7) Unadjusted 

7143‡  

   Prostate cancer Xu (2002)248 U.S. males† 132/165 GG/AA 0.2 (0, 0.9) Unadjusted 

  

      

  182/212 AG/AA 1 (0.7, 1.6) Unadjusted 

9110‡  

 Prostate cancer    Xu (2002)248  U.S. males† 122/144 AA/GG 2.5 (0.9, 6.9) Unadjusted 

  

      

  172/204 GA/GG 1.2 (0.8, 1.8) Unadjusted 

10629‡  

 Prostate cancer  Xu (2002)248  U.S. males† 106/105 GG/CC 1.1 (0.6, 1.8) Unadjusted 

  

      

  126/138 CG/CC 0.9 (0.5, 1.4) Unadjusted 

10660‡  

   Prostate cancer Xu (2002)248 U.S. males† 123/148 AA/TT 1.9 (0.7, 4.8) Unadjusted 

  

      

  170/209 TA/TT 1.1 (0.7, 1.7) Unadjusted 

11826‡  

 Prostate cancer    Xu (2002)248  U.S. males† 122/145 TT/AA 2.2 (0.8, 5.6) Unadjusted 

    170/202 AT/AA 1.2 (0.8, 1.8) Unadjusted 
*Study of incident disease; †Study of prevalent disease; ‡Celera Genomics – Celera Human Reference SNP Database notation: http://www.celera.com/; Results were extracted with preference for 
unadjusted estimates 
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Table 6. Review of 10 case control studies examining the relationship between the Ser326Cys hOGG1 polymorphisms and cancers and related traits, 
stratified by smoking status. 

Variant      Outcome Author (year) Study population
No. cases/ 
controls Genotype contrast

OR 
 (95% CI) 

Covariate 
adjustments 

Ser326Cys        

 Colon cancer Kim (2003)237 Korean males and females † 81/141 Cys/Cys vs. Ser/Ser and Ser/Cys among 
smokers 1.5 (0.8, 2.8) Unadjusted 

    

 

  

  

  

  

    

  
  
  
 
  
  

  

    

  

  

    

  

  
  
  

44/106 Cys/Ser vs. Ser/Ser and Ser/Cys among non-
smokers 0.6 (0.3, 1.4) Unadjusted 

 Orolaryngeal 
cancer Xing (2001)245 Chinese* 73/118 Cys/Cys smokers vs. Cys/Ser and Ser/Ser 

non-smokers 4.8 (2.0, 11) Sex and age 

Elahi (2002)244 U.S. males and females 
aged 25-87 years† 21/83 Cys/Cys vs. Ser/Ser among never smokers 2.3 (0.2, 28) Age, sex, and alcohol 

  30/105 Cys/Ser vs. Ser/Ser among never smokers 1.6 (0.6, 4.1) Age, sex, and alcohol 

  92/171 Cys/Cys vs. Ser/Ser among ever smokers 4.8 (1.3, 18) Age, sex, PY and 
alcohol 

  128/219 Cys/Ser vs. Ser/Ser among ever smokers 1.6 (1.0, 2.8) Age, sex, PY and 
alcohol 

 Gastric 
cancer Hanaoka (2001)241 Japanese and non-Japanese 

Brazilians 37-89 years* 88/63 Ser/Cys, Cys/Cys vs. Ser/Ser among non-
Japanese ever-smokers 0.7 (0.3, 1.3) Unadjusted 

120/140 Ser/Cys, Cys/Cys vs. Ser/Ser among non-
Japanese never-smokers 1.0 (0.6, 1.7) Unadjusted 

Takezaki (2002)242 Chinese males and females* 41/143 Cys/Cys vs. Ser/Ser among ever-smokers 0.7 (0.4, 1.3) Unadjusted 
  26/84 Cys/Cys vs. Ser/Ser among never-smokers 0.9 (0.4, 2.1) Unadjusted 

Lung cancer
 

 Sugimura (1999)240 Male Japanese* 44/58 Cys/Cys vs. Ser/Ser, <800 cigarette-years 1.1 (0.5, 2.5) Age 
  62/100 Cys/Cys vs. Cys/Ser, <800 cigarette-years 0.7 (0.4, 1.4) Age 
  82/19 Cys/Cys vs. Ser/Ser,  ≥ 800 cigarette-years 1.7 (0.5, 5.8) Age 
  138/49 Cys/Cys vs. Cys/Ser, ≥ 800 cigarette-years 0.6 (0.3, 1.3) Age 

Liang (2005)239 Chinese males and females, 
30 – 86 years of age† 102/135 Cys/Cys and Cys/Ser vs. Ser/Ser among 

nonsmokers 0.8 (0.4, 1.6) Sex, age, and smoking 

132/100 Cys/Cys and Cys/Ser smokers vs. Ser/Ser 
among nonsmokers 0.9 (0.5, 1.6) Sex, age, and smoking 

Wikman (2000)251 German males and females† 105/105 Cys/Cys and Cys/Ser vs. Ser/Ser among 
smokers 0.7 (0.4, 1.3) Unadjusted 

Chen (2003)233 U.S. males aged 42-82† 43/178 Cys/Cys and Cys Ser vs. Ser/Ser among 
smokers 2.7 (1.3, 5.3) Unadjusted 

35/73 Cys/Cys and Cys Ser vs. Ser/Ser among 
never smokers 1.7 (0.7, 4.0) Unadjusted 

Sunaga  (2002)227 Japanese males and 
females† 94/76 Cys/Cys vs. Ser/Ser among smokers 1.1 (0.6, 2.1) Sex and age 

  62/52 Cys/Cys vs. Cys/Ser among smokers 1.2 (0.5, 2.5) Sex and age 
  28/30 Cys/Cys vs. Ser/Ser among nonsmokers 0.5 (0.1, 1.8) Sex and age 
  65/35 Cys/Cys vs. Cys/Ser among nonsmokers 2.0 (0.7, 5.2) Sex and age 

*Study of incident disease; †Study of prevalent disease; PY, pack-years of smoking;  Results were extracted with preference for unadjusted estimates 



 

APEX1 

APEX1 resides on 14q11.2 – 14q12 and processes the AP sites or single strand breaks 

(SSB) remaining after the damaged base has been excised by DNA glycosylases.    

Considered the rate-limiting step in BER252, 253, APEX1 hydrolyzes the DNA backbone 5’ of 

the abastic site, producing a 3’ hydroxyl group and a 5’-deoxyribose phosphate group (Figure 

2)254-256.  As AP sites are cytotoxic and mutagenic, a decreased AP site repair capacity could 

compromise genomic integrity.  APEX1 also removes the 3’-blocking groups remaining after 

SSBs have been processed by DNA glycosylases257.  Other functions of APEX1, which are 

not further discussed, are unrelated to BER and include transcription factor stimulation by a 

redox-dependent mechanism258, 259. 

APEX1 has been characterized in numerous functional studies.  The E. coli APEX1 

homologue xthA demonstrated hypersensitivity to hydrogen peroxide and UV light when AP 

activity was eliminated260, 261 and yeast defective in AP site repair exhibited an elevated 

spontaneous mutator phenotype262.  Depletion of APEX1 by the overexpression of antisense 

mRNA resulted in hypersensitivity to the DNA damaging agents hydrogen peroxide and 

methyl methane-sulfonate (MMS) in a human cell line263 and oxidative stress induced 

APEX1 overexpression in Chinese hamster cells264.    In addition, APEX activity is required 

for cultured human cells to remain viable265, 266 and Ramana et al., (1998) demonstrated that 

human cells exposed to sublethal doses of oxidizing agents showed an increase in both the 

amount of APEX1 as well as APEX1 activity267.  Mice engineered to lack APEX1 do not 

survive embryogenesis, although specific dietary manipulation of pregnant females with 

antioxidants rescued a fraction of the litter268-270.   
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APEX1 has also been shown to interact with XRCC1271 and APEX1 overexpression 

can compensate for XRCC1-deficient cells in the repair of single-strand DNA breaks (SSB) 

induced by oxidative DNA damage, both in vivo and in whole-cell extracts272.  APEX1 is also 

upregulated in animal models of atherosclerosis273 and hypertension274. 

APEX1 genetic variants 

 Previous studies have identified five nonsynonymous APEX1 variants (Table 7), 

although most are too rare for population-based studies.  Also, the carboxy terminus of 

APEX1 contains the endonuclease activity required for DNA repair and spans residues 61-

318256, whereas residues 1-127 comprise the redox domain256, 275 (Figure 4).  Thus, studies 

examining the role of APEX1 in BER-mediated cancers have largely focused on SNPs in the 

carboxy terminus.   

Table 7. Characterization of five known APEX1 nonsynonymous SNPs. 

SNP* Protein residue MAF (Population) Functional data? 
Studied in human 

populations? 

rs1048945 His51Gln 0.03 (CEU) 
0.00 (YRI) . Table  8 

rs2307486 Val64Ile 
0.00 (CEU) 
0.00 (YRI) 
0.06 (HCB) 

. Table  8 

rs1130409 Glu148Asp 0.49 (CEU) 
0.27 (YRI) 

Nishimura et al., (2002)216 
Hu et al., (2001)276 Table  8, Table  9 

rs1803120 Ser311Pro . . . 

rs1803118 Val317Ala . . . 

*Information obtained from dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/); CEU, 30 mother-father-child trios from the CEPH 
collection (Utah residents with ancestry from northern and western Europe), representing one of the populations studied in the 
International HapMap project; HCB, 45 unrelated Han Chinese in Beijing, China, representing one of the populations studied in the 
International HapMap project; YRI, 30 Yoruba mother-father-child trios in Ibadan, Nigeria, representing one of the populations 
studied in the International HapMap project;  

The Asp148Glu polymorphism has been associated with hypersensitivity to ionizing 

radiation in genomic DNA isolated from peripheral lymphocytes216, 276.    However, 

molecular modeling and amino acid conservation analyses among the ExoIII family (which 

consists of E. coli exonuclease III, Drosophila melanogaster Rrp1, Arabidopsis thaliana Arp, 
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The limited epidemiologic data examining the relationship between APEX1 

polymorphisms and cancers and related traits, has suggested a weak to null effect279-281 

(Table  8, Table  9), although multiple studies of the same outcome are few.  Many 

investigators focused on the Asp148Glu variant, as it resides in the carboxy terminus.  

However, variants outside the APEX1 DNA repair domain, such as residues 61-318 or 

promoter regions, could be markers for the disease causing SNP and may be informative.  

Also, credible modifiers were often analyzed as confounders, ignoring biologically plausible 

mechanisms of disease.  However, most studies were underpowered to detect main effects, 

let alone joint effects. 

mouse APEX1, and human APEX1) 

suggested that the Glu148Asp is 

unlikely to impact protein structure or 

function, given that it was not 

conserved among the ExoIII family and its position between helices.  Likewise, no direct 

impact on endonuclease or DNA binding activities was observed for Glu148Asp, although 

the authors postulated that the variant may be associated with a reduced ability to 

communicate with other BER proteins277 as even a slight change in DNA repair capacity 

could be detrimental and many functional studies are underpowered to detect subtle changes. 

 

 

Figure 4.  Schematic of the APEX1 protein. 

Adapted from Hsieh et al., (2001)278  
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Table  8. Review of seven case-control studies examining the relationship between APEX1 polymorphisms and cancers and related traits stratified by cancer and polymorphism. 
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No.  cases/ 
controls 

OR 
 (95% CI) Variant Outcome Author (year) Study population Genotype contrast Covariate adjustments 

Gln51His        

Zienolddiny (2006)282 Norwegian males and females* 287/310 His/His vs. Gln/Gln 0.9 (0.3, 2.2) Age, sex, and PY Lung cancer  
  304/324 Gln/His vs. Gln/Gln 1.1 (0.6, 2.0) Age, sex, and PY   

Ile64Val        
Esophageal squamous 
cell carcinoma Hao (2004)283 Chinese males and females† 414/479 Val/Val, Val/Ile vs. Ile/Ile 1.1 (0.7, 1.7) Age, sex, and smoking  

 Lung cancer 

     

Zienolddiny (2006)282 Norwegian males and females* 340/410 Val/Val, Val/Ile vs. Ile/Ile 0.6 (0.4, 0.8) Age, sex, and PY 

 Asp148Glu   

 Breast cancer Zhang (2006)284 U.S. females aged 20-74 years* 777/617 Glu/Asp vs. Asp/Asp 1.0 (0.8, 1.3) Age and study site 

  1156/917 Glu/Glu vs. Asp/Asp 1.0 (0.9, 1.2) Age and study site   
Esophageal squamous 
cell carcinoma Hao (2004)283 Chinese males and females† 198/244 Glu/Asp vs. Asp/Asp 1.2 (0.8, 1.7) Age, sex, and smoking  

  337/383 Glu/Glu vs. Asp/Asp 1.2 (0.9, 1.8) Age, sex, and smoking   

Unadjusted   

  

 

   

  

   

Ito (2004)280 Japanese males and females* 94/223 Glu/Glu vs. Asp/Asp 1.3 (0.8, 2.2) Lung cancer

Unadjusted   146/385 Glu/Asp vs. Asp/Asp 1.0 (0.7, 1.4)   
German males and females aged 

28-84 years* Unadjusted Popanda (2004)281 98/224 Glu/Glu vs. Asp/Asp 0.8 (0.5, 1.1)   

Unadjusted   165/351 Glu/Asp vs. Asp/Asp 0.9 (0.6, 1.2)   

Zienolddiny (2006)282 Norwegian males and females* 197/160 Glu/Glu vs. Asp/Asp 0.8 (0.5, 1.1) Age, sex, and PY   

  184/198 Glu/Asp vs. Asp/Asp 1.2 (0.8, 1.9) Age, sex, and PY 

Pancreatic cancer Jiao (2006)285 U.S. males and females† 187/156 Glu/Glu vs. Asp/Asp 0.9 (0.6, 1.3) Age, sex, race, and PY 

  288/259 Glu/Asp vs. Asp/Asp 0.8 (0.6, 1.2) Age, sex, race, and PY   
California infants born 1983-

1986†Olshan (2005)250 58/165 Glu/Glu vs. Asp/Asp 1.1 (0.6, 2.1) Oral Cleft Race/ethnicity 

  91/254 Glu/Asp vs. Asp/Asp 1.1 (0.7, 1.9) Race/ethnicity 

Spina bifida Olshan (2005)250 California infants born 1983-
1986† 72/165 Glu/Glu vs. Asp/Asp 0.5 (0.3, 1.0) Race/ethnicity 

    105/254 Glu/Asp vs. Asp/Asp 0.6 (0.4, 1.0) Race/ethnicity 
*Study of incident disease; †Study of prevalent disease;  PY, pack-years of smoking;  Results were extracted with preference for unadjusted estimates 
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Table  9. Review of four case control studies examining the relationship between APEX1 variants and cancers and related traits, stratified by smoking status. 

Variant      Outcome Author (year) Study population No. cases/controls Genotype contrast
OR  

(95% CI) Covariate adjustments 

Asp148Glu        

 Bladder 
cancer Matullo (2006)286 European males and females* 55/568 Glu/Glu vs. Asp/Asp 

among nonsmokers 1.0 (0.5, 1.9) Unadjusted 

    

  

 

  

    

    

  

  

     

100/835 Glu/Asp vs. Asp/Asp 
among  nonsmokers 1.4 (0.8, 2.4) Unadjusted 

  Terry (2006)287 U.S. males and females† 81/62 Glu/Glu vs. Asp/Asp 
among ever smokers 0.9 (0.4, 1.7) Age, sex, and race 

  157/105 Glu/Asp vs. Asp/Asp 
among ever smokers 1.2 (0.7, 2.0) Age, sex, and race 

Lung cancer Ito (2004)280 Japanese males and females* 70/132 Glu/Glu vs. Asp/Asp 
among ever smokers 1.7 (0.9, 3.2) Unadjusted 

  24/91 Glu/Glu vs. Asp/Asp 
among never smokers 0.6 (0.2, 1.4) Unadjusted 

98/232 Glu/Asp vs. Asp/Asp 
among ever smokers 0.9 (0.6, 1.4) Unadjusted 

48/153 Glu/Asp vs. Asp/Asp 
among never smokers 1.0 (0.5, 2.0) Unadjusted 

Matullo (2006)286 European males and females* 60/568 Glu/Glu vs. Asp/Asp 
among nonsmokers 0.8 (0.4, 1.5) Unadjusted 

  99/835 Glu/Asp vs. Asp/Asp 
among  nonsmokers 0.6 (0.4, 1.1) Unadjusted 

  Misra (2003)279 Male Finns 50-69 years of age* 143/142 Glu/Glu vs. Asp/Asp 
among ever smokers 0.9 (0.6, 1.5) Smoking years and cigarettes/day 

231/225 Glu/Asp vs. Asp/Asp 
among ever smokers 1.1 (0.7, 1.7) Smoking years and cigarettes/day 

*Study of incident disease; †Study of prevalent disease;  Results were extracted with preference for unadjusted estimates 



 

XRCC1 

XRCC1 is a SSB binding protein that maps to 19q13.2288 and was the first 

mammalian gene implicated in cellular sensitivity to ionizing radiation289.  While XRCC1 has 

no known catalytic activity, it recognizes and binds single-strand DNA breaks290 and is 

thought to complex with other BER components during short-patch DNA repair via its role 

as a chaperone or central scaffolding protein for DNA ligase III (responsible for sealing the 

nick)291, 292, DNA polymerase β (pol β; polymerase that fills in nucleotide sequence gaps)293, 

and PARP (poly ADP-ribose polymerase)291, 293 (Figure 5).  Research also supports a role for 

XRCC1 in the single-strand break repair (SSBR) pathway294, 295 and the maintenance of 

genetic stability in noncycling and postmitotic cell cycle stages296. 

Elevated 

frequencies (10-fold or 

higher) of spontaneous 

sister chromatid 

exchange (SCE, the 

exchange of genetic 

material between two identical sister chromatids) were observed in EM9 hamster cells that

lacked two-thirds of the normal hamster XRCC1 sequence compared to wild type cells, wh

was thought to reflect a deficiency in rejoining SSBs.  Similar SCE phenotypes were 

observed when EM9 cells were exposed to compounds capable of inducing SSB, such as 

alkylating agents and ionizing radiation

 

ich 

298.  EM9 cells were also unable to grow under 

conditions in which 20% of thymine bases are replaced with chlorouracil, a well-known 

mutagen, whereas wild-type cells remained viable299.  XRCC1 mRNA and protein levels 

Figure 5.  Schematic of the XRCC1 protein. 

 

Adapted from Lee et al., (2001)297 
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were also elevated in malignant prostate cells when compared to normal epithelial cells.  

Despite the increased XRCC1 expression, the malignant cells also exhibited a defective 

oxidative base and SSB repair phenotype, suggesting that prostate tumorgenesis may reflect 

aberrant DNA repair capacity300. 

C1 

etabolites produced under the 

hyperglycemic state are mediated by XRCC1 expression302. 

XRCC1

9 is 

an 

rg280His, Met381Val, and Arg399Gln 

variants “possibly damaged” protein function304.      

XRCC1 upregulation was also  associated with induced atherosclerotic plaques in 

male New Zealand White rabbits273 and Rossi et al., (2004) demonstrated increased XRC

expression in tissue from stable angina plaques, compared to acute coronary syndrome 

atherectomies301.  XRCC1 transcription levels were also elevated in diabetic patients when 

compared to non-diabetic patients, suggesting that the ROS m

 genetic variants 

While multiple XRCC1 polymorphisms have been identified (Table 10), the 

functional consequences are not well understood and population-based and laboratory 

research has largely focused on the Arg194, Arg280 and Arg399 variants.  The Arg194 and 

Arg280 variants reside between the binding domain of pol β and PARP while codon 39

positioned near the PARP binding domain303 (Figure 5).  Savas and colleagues (2004) 

performed protein conservation analysis on XRCC1 nonsynonymous polymorphisms in 

attempt to predict whether an amino acid substitution may impact protein function and 

predicted that the Leu7Arg, Ala72Val, Leu161Pro, A
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Table 10. Characterization of  21 known XRCC1 nonsynonymous SNPs. 

SNP* Protein residue MAF (Population) Functional data? 
Studied in human 

populations? 
rs2307177 Thr576Asn 0.02 (NIHPDR) . . 

rs2682557 Tyr576Asn . . . 

rs2307166 Trp560Arg 0.001 (NIHPDR) . . 

rs2307167 Gln559Arg 0.001 (NIHPDR) . . 

rs25474 Leu514Pro 0.00 (CEU) 
0.00 (YRI) . . 

rs2307184 Tyr485Ser 0.00 (CEU) 
0.00 (YRI) . . 

rs25487 Arg399Gln 0.42 (CEPH) 
0.10 (YRI) 

Qu et al., (2005)303 
Takanami et al., (2005)305 

Abdel-Rahman et al., (2000)306 
Cornetta et al., (2006)307 

Wang et al., (2003)308 
Savas et al., (2004)304 

Pachkowski et al., (2006)309 

Table 11, Table 12 

rs2271980 Met381Val . Savas et al., (2004)304 . 

rs25491 Ser309Pro 0.00 (CEU) 
0.00 (YRI) . . 

rs25490 Ala304Thr 0.00 (CEPH) 
0.04 (AGI ASP) . . 

rs2307188 Asn298Lys 0.004 (NIHPDR) . . 

rs25489 His280Arg 0.00 (CEU) 
0.025 (YRI) 

Qu et al., (2005)303 
Takanami et al., (2005)305 

Savas et al., (2004)304 
Pachkowski et al., (2006)309 

Table 11, Table 12 

rs1799782 Trp194Arg 0.05 (CEPH) 
0.039 (AGI ASP) 

Qu et al., (2005)303 
Takanami et al., (2005)305 

Wang et al., (2003)308 
Table 11, Table 12 

rs2307191 Leu161Pro 0.011 (HCB) 
0.00 (YRI) Savas et al., (2004)304 . 

rs2307180 Lys157Glu 0.001 (NIHPDR) . . 

rs2228487 His107Arg 0.021 (AFD EUR) 
0.00 (AFD AFR) . . 

rs25496 Ala72Val 0.02 (NIHPDR) 
0.063 (AFR1) Savas et al., (2004)304 . 

rs25495 X51Lys 0.00 (CEPH) 
0.00 (AFR1) . . 

rs2307171 Met10Val 0.001 (NIHPDR) . . 

rs2307186 Leu7Arg 0.003 (NIHPDR) Savas et al., (2004)304 . 

rs11553659 His5Arg . . . 
*Information obtained from dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/); AFD AFR, 23 samples of African American descent from 
the Coriell Cell Repository selected from the human variation panel of 50 African Americans by the SeattleSNPs Program for Genomic 
Applications; AFD EUR, 24 samples from the Coriell Cell Repository are primarily of European American descent and consist of 23 
unrelated CEPH parents selected by the SeattleSNPs Program for Genomic Applications, plus one sample from Coriell's human variation 
panel of 50 Caucasians; AFR1, Human individual DNA from 24 individuals of self-described African/African-American heritage; AGI 
ASP, Samples from Coriell Cell Repositories Apparently Normal Collection of Caucasian and African-American females; CEPH, Genomic 
DNA samples obtained for a panel of 92 unrelated individuals chosen from Centre d'Etude du Polymorphisme Human (CEPH) pedigrees 
comprised of UTAH (93%), French (4%), and Venezuelan (3%) samples purchased from Coriell Cell Repository; CEU, 30 mother-father-
child trios from the CEPH collection, one of the populations studied in the HapMap project; HCB, 45 unrelated Han Chinese in Beijing, 
China, one of the populations studied in the HapMap project; NIHPDR, The NIH Polymorphism Discovery Resource (NIHPDR) contains 
cell lines and DNA from 450 anonymous, unrelated individuals with equal numbers of females and males.  Non- Europeans were sampled at 
frequencies higher than the general U.S. population to enrich the genetic variability; YRI, 30 Yoruba mother-father-child trios in Ibadan, 
Nigeria, one of the populations studied in the HapMap project. 
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  As XRCC1 acts as a scaffold for numerous proteins, changes in the amino acid 

structure could enhance or reduce protein binding.  For example, the Arg194Trp variant is 

located in an area rich in proline, serine, arginine, and lysine residues. Thus, a mutation from 

arginine to tryptophan would exchange a positively charged arginine for a hydrophobic 

tryptophan, possibly affecting protein binding and DNA repair efficacy310.  Knock-in mouse 

models of the Arg194 and Arg280 variants are viable, but have not yet been characterized 

while the Arg399Gln mouse model is still under construction (Ladiges et al., unpublished 

data).   

One study of Arg194Trp, Arg280His, and Arg399Gln polymorphisms in normal 

human XRCC1 cDNA and EM9 hamster cells, which lack the full DNA sequence necessary 

for XRCC1 function, suggested that cDNA containing the Arg194Trp and Arg280His 

variants fully restored the phenotype, while the XRCC1 cDNA containing the Arg399Gln 

variant did not303.   However, studies of XRCC1 variants in EM9 cells are inconsistent, as one 

analysis of the 280His and 399Gln variant proteins demonstrated that only the 280His variant 

accumulated SSB after exposure to hydrogen peroxide, methanesulfonate, or camptothecin, 

chemicals chosen to mimic the genotoxicity of cigarette smoke exposure309 and another 

examining the same variants and the alkylating agent MMS found that Arg280His only 

partially restored the MMS sensitivity305. 

In studies of human lymphocytes, cells with the 399Gln polymorphism were slightly 

more sensitive to SCE induction by the tobacco-specific NNK306 and had a higher percentage 

of damaged DNA following X-ray irradiation307.  Mutation assays using bleomycin, an agent 

that mimics the effects of radiation by generating ROS, and benzo(a)pyrene-diol-epoxide 

(BPDE), a highly toxic intermediate of benzo(a)pyrene inactivation, suggested that cells 
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homozygous for the 194Arg or 399Gln variant had higher numbers of chromosomal breaks 

per cell when either agent was applied308. Duell et al., (2000) also demonstrated that the 

399Gln variant was associated with a modestly elevated frequency of SCE among healthy 

smokers311 and carriers of the 399Gln variant had an elevated SCE frequency in a study of 

male resin synthesis employees312.    

The relationship between XRCC1 variants and cancers and related traits has been 

contradictory (Table 11).  A meta-analysis of 16 published studies examining the Arg194Trp 

polymorphism in tobacco-related cancers (lung, upper aerodigestive tract, and bladder) 

estimated a summary OR (95% CI) of 0.86 (0.77, 0.95) for the 194Trp contrast and a case-

only interaction odds ratio for tobacco smoking, the 194Trp contrast, and tobacco-related 

cancers of 0.80 (0.56, 1.16) using five studies.  Studies examining the Arg280His or 

Arg399Gln variants across numerous cancers including lung, upper aerodigestive tract, 

bladder, breast, and skin neoplasms appeared too heterogeneous to warrant a summary 

measure313.   

One notable observation is the marked variation in XRCC1 MAFs observed between 

populations.  For example, while Shen et al., (2005)314 and Zhang et al., (2006)284 had sample 

sizes exceeding 2,000 U.S. females for the investigation of the Arg194Trp variant and breast 

cancer, only 0.6% of their samples consisted of Trp/Trp homozygotes.   However, the 

frequency of Trp/Trp homozygotes in studies of Korean315 and Chinese283 populations 

exceeded 10%.  As differences in allele frequencies are not uncommon between populations, 

it is entirely possible that susceptibility variants and/or disease markers differ between 

populations, which may help explain the inconsistent results.   

 56



 

 57

While 11 studies examined modification by cigarette smoking (Table 12), power was 

generally limited and adjustment strategies and exposure classifications varied.  For example, 

Hung et al., (2005)316, who had one of the largest samples for the investigation of the Arg399 

variant and lung cancer, analyzed modification by smoking by dividing pack-years of 

exposure into three equal groups.  The results, although imprecise, appeared relatively 

homogeneous across strata.  As with studies of other BER variants, ICR estimates were not 

reported. 
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Table 11. Review of 45 case control studies examining the relationship between the XRCC1 polymorphisms and cancers and related traits stratified 
by cancer and polymorphism. 

Variant Outcome Author (year) Study population
No. cases/ 
controls Genotype contrast OR (95% CI) Covariate adjustments 

Arg194Trp        

 Bladder cancer Matullo (2005)317 Italian males aged 34-76 years* 315/313 Trp/Trp, Trp/Arg vs. 
Arg/Arg 0.7 (0.5, 1.1) Age and smoking 

  Stern (2001)318 African American and Caucasian 
U.S. males and females† 222/210 Trp/Trp, Trp/Arg vs. 

Arg/Arg 0.6 (0.3, 1.0) Age, sex, and race 

 Breast cancer Chacko (2005)319 

  

  

  

Indian females† 88/100 Trp/Trp vs. Arg/Arg 2.7 (0.8, 9.2) Unadjusted 

    118/119 Trp/Arg vs. Arg/Arg 1.8 (1.0, 3.4) Unadjusted 

  Kim (2002)315 Korean females† 111/119 Trp/Trp vs. Arg/Arg 0.9 (0.5, 1.7) Unadjusted 

    182/178 Trp/Arg vs. Arg/Arg 1.1 (0.8, 1.7) Unadjusted 

  Patel (2005)320 U.S. females 50-74 years at 
enrollment* 485/485 Trp/Trp, Trp/Arg vs. 

Arg/Arg 0.7 (0.5. 1.0) Unadjusted 

  Shen (2005)321 U.S. females* 1066/1108 Trp/Trp, Trp/Arg vs. 
Arg/Arg 0.9 (0.7, 1.2) Age 

  Smith (2003)322 U.S. females* 246/266 Trp/Trp, Trp/Arg vs. 
Arg/Arg 1.6 (0.9, 2.9) Age, family history, age at 

first live birth, and BMI 

  Thyagarajan 
(2006)323 U.S. females* 432/322 Trp/Trp ,Trp/Arg vs. 

Arg/Arg 1.2 (0.8, 1.8) Unadjusted 

  Zhang (2006)284 U.S. females aged 20-74 years* 1391/1097 Trp/Trp vs. Arg/Arg 0.5 (0.2, 1.4) Age and study site 

    1573/1086 Trp/Arg vs. Arg/Arg 0.9 (0.8, 1.2) Age and study site 

 Colon adenoma Skjelbred (2006)324 Norwegian males and females* 983/399 Trp/Trp, Trp/Arg vs. 
Arg/Arg 1.1 (0.7, 1.6) Age 

  Stern (2005)325 U.S. males and females aged 50-74 
years* 598/649 Trp/Trp vs. Arg/Arg 0.7 (0.2, 1.9) Age, sex, race, clinic, and 

exam date 

    732/778 Trp/Arg vs. Arg/Arg 1.1 (0.8, 1.5) Age, sex, race, clinic, and 
exam date 

 Colon carcinoma Skjelbred (2006)324 Norwegian males and females* 156/399 Trp/Trp, Trp/Arg vs. 
Arg/Arg 1.0 (0.4, 2.3) Age 

 Esophageal squamous 
cell carcinoma Hao (2004)283 Chinese males and females† 249/269 Trp/Trp vs. Arg/Arg 1.2 (0.7, 2.0) Age, sex, and smoking 

    369/440 Trp/Arg vs. Arg/Arg 0.8 (0.6, 1.1) Age, sex, and smoking 

  Lee (2001)297 Taiwanese males and females* 58/144 Trp/Trp vs. Arg/Arg 0.5 (0.2, 1.5) Unadjusted 

    101/245 Trp/Arg vs. Arg/Arg 0.9 (0.6, 1.4) Unadjusted 

  Ratnasinghe 
(2004)326 Chinese males and females* 131/454 Trp/Trp and Trp/Arg 

vs. Arg/Arg 0.9 (0.6, 1.4) Sex, age, smoking, drinking, 
and center 

  Xing (2002)327 Chinese males and females† 269/296 Trp/Trp vs. Arg/Arg 1.9 (1.2, 3.0) Unadjusted 
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Japanese males and females aged 
29-84* 69/121 Trp/Trp vs. Arg/Arg 1.1 (0.5, 2.4) Unadjusted 

    98/158 Trp/Arg vs. Arg/Arg 1.3 (0.8, 2.2) Unadjusted 

 SCCHN Demokan (2005)336 Turkish males and females* 81/90 Trp/Trp vs. Arg/Arg 1.7 (0.3, 10) Unadjusted 

    92/96 Trp/Arg vs. Arg/Arg 2.0 (0.8, 5) Unadjusted 

  Olshan (2002)337 U.S. male and female Caucasians 98/161 Trp/Trp and Trp/Arg 
vs. Arg/Arg 1.3 (0.6, 2.9) Age and sex 

  Sturgis (1999)338 
U.S. male and female African 
Americans, Caucasians, and 

Latinos 
203/424 Trp/Trp and Trp/Arg 

vs. Arg/Arg 0.8 (0.4, 1.3) Age, sex, race, and alcohol 

Pro206Pro        

    375/487 Trp/Arg vs. Arg/Arg 0.9 (0.7, 1.2) Unadjusted 

  Yu (2004)328 Chinese males and females* 86/92 Trp/Trp vs. Arg/Arg 1.1 (0.4, 3.3) Unadjusted 

    131/148 Trp/Arg vs. Arg/Arg 0.9 (0.5, 1.4) Unadjusted 

 Gastric cancer Lee (2002)329 South Korean males and females* 115/86 Trp/Trp vs. Arg/Arg 0.8 (0.4, 1.8) Age and sex 

    174/158 Trp/Arg vs. Arg/Arg 0.6 (0.4, 1.0) Age and sex 

  Shen (2000)330 Chinese males and females* 111/89 Trp/Trp vs. Arg/Arg 0.6 (0.3, 1.2) Unadjusted 

    173/147 Trp/Arg vs. Arg/Arg 0.7 (0.5, 1.1) Unadjusted 

 Lung cancer Chen (2002)331 Chinese males and females* 59/62 Trp/Trp vs. Arg/Arg 1.6 (0.5, 5.6) PYs and GSTM1 genotype 

    92/97 Trp/Arg vs. Arg/Arg 1.6 (0.8, 3.0) PYs and GSTM1 genotype 

  Hung (2005)316 Eastern European males and 
females* 1888/1840 Trp/Trp vs. Arg/Arg 1.2 (0.5, 2.9) Country, age at diagnosis, sex, 

and PY 

    2137/2120 Trp/Arg vs. Arg/Arg 0.9 (0.7, 1.1) Country, age at diagnosis, sex, 
and PY 

  Ratnasinghe 
(2001)332 

Chinese male and female tin 
miners* 61/106 Trp/Trp vs. Arg/Arg 0.7 (0.3, 1.6) Unadjusted 

    99/189 Trp/Arg vs. Arg/Arg 0.7 (0.4, 1.2) Unadjusted 

  Zienolddiny 
(2006)282 Norwegian males and females* 316/405 Trp/Trp, Trp/Arg vs. 

Arg/Arg 0.9 (0.5, 1.5) Age, sex, and PY 

 Melanoma Han (2004)333 U.S. females aged 30-55 years* 215/863 Trp/Trp, Trp/Arg vs. 
Arg/Arg 1.2 (0.8, 1.9) Age and race 

 Nasopharyngeal 
carcinoma Cao (2006)334 Chinese males and females† 251/278 Trp/Trp vs. Arg/Arg 0.4 (0.3, 0.8) Unadjusted 

    398/452 Trp/Arg vs. Arg/Arg 0.8 (0.6, 1.0) Unadjusted 

 Pancreatic cancer Jiao (2006)285 U.S. males and females† 133/304 Trp/Trp vs. Arg/Arg 0.9 (0.2, 4.6) Age, sex, race, and PY 

    179/335 Trp/Arg vs. Arg/Arg 1.4 (0.9, 2.3) Age, sex, race, and PY 

 Renal cell carcinoma Hirata (2006)335 
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 Bladder cancer Matullo (2005)317 Italian males aged 34-76 years* 147/165 AA vs. GG 1.6 (1.0, 2.7) Age and smoking 

    226/241 AG vs. GG 1.8 (1.2, 2.7) Age and smoking 

Arg280His        

 Bladder cancer Stern (2001)318 African American and Caucasian 
U.S. males and females† 233/208 His/His and His/Arg 

vs. Arg/Arg 1.2 (0.6, 2.6) Age, sex, and race 

 Breast cancer Chacko (2005)319 Indian females† 103/91 His/His vs. Arg/Arg 1.8 (0.3, 10) Unadjusted 

    119/121 His/Arg vs. Arg/Arg 0.6 (0.3, 1.1) Unadjusted 

  Metsola (2005)339 Finnish females* 480/479 His/His and His/Arg 
vs. Arg/Arg 1.2 (0.8, 1.7) 

Age, age at menarche, age at 
first birth, number of 

pregnancies, history of breast 
disease, WHR, family history 
of breast cancer, smoking and 

alcohol 
  Zhang (2006)284 U.S. females aged 20-74 years* 1407/1125 His/His vs. Arg/Arg 1.0 (0.2, 4.3) Age and study site 

    1560/1235 His/Arg vs. Arg/Arg 1.1 (0.8, 1.1) Age and study site 

 Colon adenoma Skjelbred (2006)324 Norwegian males and females* 983/399 His/Arg vs. Arg/Arg 1.7 (1.0, 2.9) Age 

 Colon carcinoma Skjelbred (2006)324 Norwegian males and females* 157/399 His/Arg vs. Arg/Arg 1.7 (0.6, 5) Age 

 Esophageal squamous 
cell carcinoma Hao (2004)283 Chinese males and females† 348/384 His/His vs. Arg/Arg 1.5 (0.2, 9.3) Age, sex, and smoking 

    412/478 His/Arg vs. Arg/Arg 0.8 (0.6, 1.1) Age, sex, and smoking 

  Lee (2001)297 Taiwanese males and females* 105/264 His/His, His/Arg vs. 
Arg/Arg 1.4 (0.8, 2.4) Unadjusted 

 Gastric cancer Lee (2002)329 South Korean males and females* 190/172 His/His, His/Arg vs. 
Arg/Arg 1.5 (0.9, 2.4) Age and sex 

 Lung cancer Hung (2005)316 Eastern European males and 
females* 1907/1902 His/His vs. Arg/Arg 1.3 (0.4, 4.1) Country, age at diagnosis, sex, 

and PY 

    2082/2086 His/Arg vs. Arg/Arg 0.9 (0.7, 1.2) Country, age at diagnosis, sex, 
and PY 

  Ratnasinghe 
(2001)332 

Chinese male and female tin 
miners* 106/209 His/His, His/Arg vs. 

Arg/Arg 1.6 (0.9, 2.9) Unadjusted 

  Vogel (2004)340 

    

Danish males and females 50-67 
years at enrollment* 256/289 His/His, His/Arg vs. 

Arg/Arg 1.1 (0.6, 1.9) Unadjusted 

  Zienolddiny 
(2006)282 Norwegian males and females* 329/377 His/His, His/Arg vs. 

Arg/Arg 1.5 (0.9, 2.7) Age, sex, and PY 

 Nasopharyngeal 
carcinoma Cho (2003)243 Taiwanese males and females† 332/283 His/His, His/Arg vs. 

Arg/Arg 0.6 (0.4, 1.0) Age, sex, and ethnicity 

Arg399Gln  
   

 Bladder cancer Kelsey (2004)341 U.S. males and females* 168/314 Gln/Gln vs. Arg/Arg 0.8 (0.5, 1.2) Age, sex, and PY 
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Italian males aged 34-76 years* 176/167 Gln/Gln vs. Arg/Arg 0.7 (0.3, 1.8) Age and smoking 

    171/165 Gln/Arg vs. Arg/Arg 0.8 (0.5, 1.2) Age and smoking 

  Sanyal (2004)342 Swedish males and females ages 
33-96 years† 156/136 Gln/Gln vs. Arg/Arg 1.3 (0.7, 2.4) Unadjusted 

    279/223 Gln/Arg vs. Arg/Arg 1.3 (0.9, 1.9) Unadjusted 

  Shen(2003)343 Italian males aged 20-80 years* 114/116 Gln/Gln vs. Arg/Arg 0.9 (0.5, 1.7) Age 

    180/190 Gln/Arg vs. Arg/Arg 0.9 (0.6, 1.3) Age 

  Stern (2001)318 African American and Caucasian 
U.S. males and females† 117/114 Gln/Gln vs. Arg/Arg 0.7 (0.4, 1.4) Age, sex, and race 

    212/184 Gln/Arg vs. Arg/Arg 1.1 (0.7, 1.6) Age, sex, and race 

 Breast cancer Chacko (2005)319 Indian females† 73/88 Gln/Gln vs. Arg/Arg 2.7 (1.1, 6) Unadjusted 

    106/114 Gln/Arg vs. Arg/Arg 2.0 (1.2, 3.5) Unadjusted 

  Figueiredo (2004)344 White Canadian females 25-54 
years* 223/217 Gln/Gln vs. Arg/Arg 0.9 (0.6, 1.4) Unadjusted 

    347/345 Gln/Arg vs. Arg/Arg 0.9 (0.7, 1.2) Unadjusted 

  Kim (2002)315 Korean females† 72/66 Gln/Gln vs. Arg/Arg 3.8 (1.4, 10) Unadjusted 

    104/109 Gln/Arg vs. Arg/Arg 1.2 (0.7, 2.1) Unadjusted 

  Metsola (2005)339 Finnish females* 283/293 Gln/Gln vs. Arg/Arg 1.4 (0.8, 2.3) 
Age, age at menarche, age at first birth, 
number of pregnancies, history of breast 
disease, WHR, family history of breast 

cancer, smoking and alcohol 

    433/441 Gln/Arg vs. Arg/Arg 1.2 (0.9, 1.7) 
Age, age at menarche, age at first birth, 
number of pregnancies, history of breast 
disease, WHR, family history of breast 

cancer, smoking and alcohol 

  Patel (2005)320 U.S. females 50-74 years at 
enrollment* 257/250 Gln/Gln vs. Arg/Arg 1.1 (0.7, 1.6) Unadjusted 

    389/396 Gln/Arg vs. Arg/Arg 1.0 (0.7, 1.3) Unadjusted 

  Shen (2005)321 U.S. females* 528/574 Gln/Gln vs. Arg/Arg 1.0 (0.7, 1.3) Age 

    951/980 Gln/Arg vs. Arg/Arg 1.1 (0.9, 1.3) Age 

  Shu (2003)345 Chinese females aged 25-64 years* 646/684 Gln/Gln vs. Arg/Arg 1.2 (0.9, 1.7) Age 

    1003/1108 Gln/Arg vs. Arg/Arg 0.9 (0.8, 1.1) Age 

  Smith (2003)322 U.S. females* 129/144 Gln/Gln vs. Arg/Arg 1.1 (0.6, 2.0) Age, family history, age at 
first live birth, and BMI 

    219/458 Gln/Arg vs. Arg/Arg 1.4 (1.0, 1.9) Age, sex, and PY 

  Matullo (2005)317 
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    221/238 Gln/Arg vs. Arg/Arg 1.0 (0.7, 1.5) Age, family history, age at 
first live birth, and BMI 

  Thyagarajan 
(2006)323 U.S. females* 117/182 Gln/Gln vs. Arg/Arg 0.9 (0.5, 1.7) Unadjusted 

    133/175 Gln/Arg vs. Arg/Arg 1.3 (0.9, 2.0) Unadjusted 

  Zhang (2006)284 U.S. females aged 20-74 years* 1606/1414 Gln/Gln vs. Arg/Arg 0.9 (0.8, 1.1) Age and study site 

    2647/2227 Gln/Arg vs. Arg/Arg 1.1 (0.9, 1.2) Age and study site 

 Colon adenoma Skjelbred (2006)324 Norwegian males and females* 540/212 Gln/Gln vs. Arg/Arg 0.9 (0.6, 1.3) Age 

    834/335 Gln/Arg vs. Arg/Arg 0.8 (0.6, 1.1) Age 

  Stern (2005)325 U.S. males and females aged 50-74 
years* 402/459 Gln/Gln vs. Arg/Arg 0.7 (0.5, 1.0) Age, sex, race, clinic, and 

exam date 

    676/688 Gln/Arg vs. Arg/Arg 1.1 (0.9, 1.3) Age, sex, race, clinic, and 
exam date 

 Colon carcinoma Skjelbred (2006)324 Norwegian males and females* 87/212 Gln/Gln vs. Arg/Arg 0.9 (0.4, 2.0) Age 

    133/335 Gln/Arg vs. Arg/Arg 0.7 (0.4, 1.3) Age 

 Esophageal squamous 
cell carcinoma Cai (2006)346 Chinese males and females* 75/174 Gln/Gln vs. Arg/Arg 1.7 (0.9, 3.0) Age, sex, education, BMI, 

smoking, and alcohol 

    179/350 Gln/Arg vs. Arg/Arg 1.6 (1.1, 2.4) Age, sex, education, BMI, 
smoking, and alcohol 

  Hao (2004)283 Chinese males and females† 257/282 Gln/Gln vs. Arg/Arg 1.2 (0.7, 2.1) Age, sex, and smoking 

    377/446 Gln/Arg vs. Arg/Arg 0.8 (0.6, 1.0) Age, sex, and smoking 

  Lee (2001)297 Taiwanese males and females* 72/156 Gln/Gln vs. Arg/Arg 0.7 (0.3, 1.6) Unadjusted 

    97/240 Gln/Arg vs. Arg/Arg 0.6 (0.4, 1.0) Unadjusted 

  Ratnasinghe 
(2004)326 Chinese males and females* 131/454 Gln/Gln and 

Gln/Arg vs. Arg/Arg 0.7 (0.5, 1.1) Sex, age, smoking, drinking, 
and center 

  Xing (2002)327 Chinese males and females† 286/328 Gln/Gln vs. Arg/Arg 0.8 (0.5, 1.3) Unadjusted 

    398/475 Gln/Arg vs. Arg/Arg 0.8 (0.6, 1.0) Unadjusted 

  Yu (2004)328 Chinese males and females* 84/93 Gln/Gln vs. Arg/Arg 5.2 (2.4, 11) Unadjusted 

    106/147 Gln/Arg vs. Arg/Arg 1.2 (0.7, 1.9) Unadjusted 

 Gastric cancer Huang (2005)347 Polish males and females aged 21-
79 years* 160/211 Gln/Gln vs. Arg/Arg 1.0 (0.6, 1.7) Age, sex, and smoking 

    245/345 Gln/Arg vs. Arg/Arg 1.1 (0.7, 1.7) Age, sex, and smoking 

  Lee (2002)329 South Korean males and females* 119/103 Gln/Gln vs. Arg/Arg 0.9 (0.3, 2.3) Age and sex 
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    181/163 Gln/Arg vs. Arg/Arg 0.9 (0.6, 1.4) Age and sex 

  Shen (2000)330 Chinese males and females* 105/107 Gln/Gln vs. Arg/Arg 1.0 (0.4, 2.3) Unadjusted 

    178/153 Gln/Arg vs. Arg/Arg 1.5 (1.0, 2.3) Unadjusted 

 Lung cancer Chen (2002)331
 Chinese males and females* 60/59 Gln/Gln vs. Arg/Arg 1.0 (0.5, 1.8) PYs and GSTM1 genotype 

    98/92 Gln/Arg vs. Arg/Arg 0.3 (0.03, 3.2) PYs and GSTM1 genotype 

  Hung (2005)316 Eastern European males and 
females* 1098/1134 Gln/Gln vs. Arg/Arg 0.9 (0.8, 1.2) Country, age at diagnosis, sex, 

and PY 

    1795/1755 Gln/Arg vs. Arg/Arg 1.1 (0.9, 1.2) Country, age at diagnosis, sex, 
and PY 

  Ito (2004)280 Japanese males and females* 112/279 Gln/Gln vs. Arg/Arg 1.4 (0.7, 2.8) Crude 

 
    164/422 Gln/Arg vs. Arg/Arg 1.0 (0.7, 1.4) Unadjusted 

  Park (2002)348 South Korean males* 117/87 Gln/Gln vs. Arg/Arg 2.3 (0.9, 6) Unadjusted 
    175/1292 Gln/Arg vs. Arg/Arg 1.3 (0.8, 2.0) Unadjusted 

 Popanda (2004)281 German males and females aged 
28-84 years* 111/238 Gln/Gln vs. Arg/Arg 0.9 (0.5, 1.5) Unadjusted 

    175/393 Gln/Arg vs. Arg/Arg 0.9 (0.6, 1.3) Unadjusted 
  Ratnasinghe 

(2001)332 
Chinese male and female tin 

miners* 67/128 Gln/Gln vs. Arg/Arg 1.4 (0.5, 3.7) Unadjusted 

    99/197 Gln/Arg vs. Arg/Arg 1.0 (0.6, 1.6) Unadjusted 

  Vogel (2004)340 Danish males and females 50-67 
years at enrollment* 152/148 Gln/Gln vs. Arg/Arg 0.9 (0.5, 1.6) Unadjusted 

    221/229 Gln/Arg vs. Arg/Arg 0.9 (0.6, 1.3) Unadjusted 

  Zhang (2005)349 Chinese males and females* 637/620 Gln/Gln vs. Arg/Arg 1.2 (0.8, 1.6) Age, sex, smoking and PY 

    898/911 Gln/Arg vs. Arg/Arg 0.9 (0.8, 1.1) Age, sex, smoking and PY 

  Zienolddiny 
(2006)282 Norwegian males and females* 160/205 Gln/Gln vs. Arg/Arg 0.7 (0.4, 1.1) Unadjusted 

    300/337 Gln/Arg vs. Arg/Arg 1.1 (0.8, 1.5) Unadjusted 

 Melanoma Han (2004)333 U.S. females aged 30-55 years* 105/464 Gln/Gln vs. Arg/Arg 1.1 (0.7, 1.8) Age and race 

   175/696 Gln/Arg vs. Arg/Arg 1.3 (0.9, 1.8) Age and race 

 Pancreatic cancer Jiao (2006)285 U.S. males and females† 183/182 Gln/Gln vs. Arg/Arg 1.2 (0.7, 1.9) Age, sex, race, and PY 

    327/307 Gln/Arg vs. Arg/Arg 1.2 (0.9, 1.7) Age, sex, race, and PY 
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 Prostate cancer Ritchey (2005)350 Chinese males >18 years of age* 102/144 Gln/Gln vs. Arg/Arg 2.2 (1.0, 4.8) Age 

    138/231 Gln/Arg vs. Arg/Arg 0.8 (0.5, 1.3) Age 

 Renal cell carcinoma Hirata (2006)335 Japanese males and females aged 
29-84* 80/112 Gln/Gln vs. Arg/Arg 2.5 (1.1, 6.0) Unadjusted 

    96/170 Gln/Arg vs. Arg/Arg 0.8 (0.4, 1.3) Unadjusted 

 SCCHN Demokan (2005)336 Turkish males and females* 54/52 Gln/Gln vs. Arg/Arg 0.9 (0.4, 2.0) Unadjusted 

    83/85 Gln/Arg vs. Arg/Arg 0.8 (0.5, 1.5) Unadjusted 

  Olshan (2002)337 U.S. males and female Caucasians 48/79 Gln/Gln vs. Arg/Arg 0.1 (0.04, 0.6) Age and sex 

    95/144 Gln/Arg vs. Arg/Arg 0.8 (0.4, 1.1) Age and sex 

  Sturgis (1999)338 
U.S. male and female African 
Americans, Caucasians, and 

Latinos 
 Gln/Gln vs. 

Arg/Arg, Gln/Arg 1.6 (1.0, 2.6) Age, sex, race, and alcohol 

 Nasopharyngeal 
carcinoma Cao (2006)334 Chinese males and females† 273/300 Gln/Gln vs. Arg/Arg 1.2 (0.7, 2.0) Unadjusted 

    393/471 Gln/Arg vs. Arg/Arg 0.8 (0.6, 1.1) Unadjusted 

  Cho (2003)243 Taiwanese males and females† 332/283 Gln/Gln vs. Arg/Arg 1.3 (0.7, 2.4) Age, sex, and ethnicity 

     
 Gln/Arg vs. Arg/Arg 1.0 (0.7, 1.5) Age, sex, and ethnicity 

 Oral cleft Olshan (2005)250 California infants born 1983-1986† 64/170 Gln/Gln vs. Arg/Arg 0.8 (0.4, 1.8) Race/ethnicity 

    107/290 Gln/Arg vs. Arg/Arg 0.9 (0.6, 1.4) Race/ethnicity 

 Spina bifida Olshan (2005)250 California infants born 1983-1986†  
73/170 Gln/Gln vs. Arg/Arg 1.3 (0.6, 2.6) Race/ethnicity 

    108/290 Gln/Arg vs. Arg/Arg 0.8 (0.5, 1.3) Race/ethnicity 

Gln632Gln        

 Melanoma Han (2004)333 U.S. females aged 30-55 years* 110/447 GG vs. AA 0.9 (0.6, 1.4) Age and race 

    175/683 GA vs. AA 1.0 (0.7, 1.4) Age and race 

rs3213245        

 Esophageal squamous 
cell carcinoma Hao (2004)283 Chinese males and females† 311/389 CC vs. TT 1.5 (0.4, 5.0) Age, sex, and smoking 

    399/473 CT vs. TT 1.4 (1.0, 1.9) Age, sex, and smoking 
*Study of incident disease; †Study of prevalent disease; PY, pack-years of smoking; SCCHN, squamous cell carcinoma of the head and neck; WHR, waist-hip ratio;  Results were extracted with 
preference for unadjusted estimates 
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Table 12. Review of 11 case control studies examining the relationship between the XRCC1 polymorphisms and cancers and related traits, stratified 
by smoking. 

Variant Outcome Author (year) Study population 
No. cases/ 
controls Genotype contrast OR (95% CI) Covariate adjustments 

Arg194Trp        

 Bladder cancer Matullo (2005)317 Italian males aged 34-76 years* 182/110 
Trp/Trp or Trp/Arg vs. 
Arg/Arg among current 

smokers 
0.7 (0.4, 1.4) Age 

    103/104 
Trp/Trp or Trp/Arg vs. 
Arg/Arg  among former 

smokers 
0.8 (0.4, 1.9) Age 

    30/99 Trp/Trp,Trp/Arg vs. 
Arg/Arg in never smokes  0.4 (0.1, 1.9) Age 

  Matullo (2006)286 European males and females* 124/1092 Arg/Trp vs. Arg/Arg          
among nonsmokers 1.0 (0.5, 2.0) Unadjusted 

 Breast cancer Patel (2005)320 U.S. females 50-74 years at 
enrollment* 243/273 Arg/Trp vs. Arg/Arg among 

never smokers 0.8 (0.5, 1.3) Unadjusted 

    237/207 Arg/Trp vs. Arg/Arg among 
ever smokers 0.5 (0.3, 1.0) Unadjusted 

 Lung cancer Hung (2005)316 Eastern European males and 
females* 161/718 

Trp/Trp or Trp/Arg vs. 
Arg/Arg among never 

smokers 
1.5 (0.9, 2.4) Country, age and sex 

    145/357 Trp/Trp or Trp/Arg vs. 
Arg/Arg among 0<PY<15 0.9 (0.5, 1.6) Country, age and sex 

    956/694 Trp/Trp or Trp/Arg vs. 
Arg/Arg among 14<PY<38 1.0 (8, 1.4) Country, age and sex 

    878/355 Trp/Trp or Trp/Arg vs. 
Arg/Arg among PY>38 0.7 (0.5, 0.9) Country, age and sex 

  Matullo (2006)286 European males and females* 114/1092 Arg/Trp vs. Arg/Arg among 
nonsmokers 0.9 (0.5, 1.9) Unadjusted 

 SCCHN Olshan (2002)337 U.S. males and female Caucasians* 32/155 
Arg/Trp vs. Arg/Arg among 

ever-smokers 1.1 (0.5, 2.3) Unadjusted 
Pro206Pro        

 Bladder cancer Matullo (2006)286 European males and females* 68/585 G/G vs. A/A among 
nonsmokers 0.8 (0.5, 1.5) Unadjusted 

    97/850 A/G vs. A/A among  
nonsmokers 0.9 (0.5, 1.5) Unadjusted 

  Matullo (2005)317 Italian males aged 34-76 years* 87/67 GG vs. AA among current 
smokers 1.6 (0.8, 3.4) Age 

    134/88 GA vs. AA among current 
smokers 2.0 (1.1, 3.6) Age 

    49/55 GG vs. AA among former 
smokers 2.0 (0.8, 4.7) Age 

    75/89 GA vs. AA among former 
smokers 1.8 (0.9, 3.6) Age 

    11/43 GG vs. AA among never 
smokers 1.0 (0.4, 4.6) Age 
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    14/64 GA vs. AA among never 
smokers 1.0 (0.3, 3.2) Age 

 Lung cancer Matullo (2006)286 European males and females* 58/585 G/G vs. A/A among 
nonsmokers 0.8 (0.4, 1.6) Unadjusted 

    94/850 A/G vs. A/A among  
nonsmokers 1.5 (0.9, 2.6) Unadjusted 

Arg280His        

 Lung cancer Hung (2005)316 Eastern European males and 
females* 158/699 

His/His or His/Arg vs. 
Arg/Arg among never 

smokers 
1.2 (0.6, 2.2) Country, age and sex 

    141/359 His/His or His/Arg vs. 
Arg/Arg among 0<PY<15 0.9 (0.4, 1.8) Country, age and sex 

    941/683 His/His or His/Arg vs. 
Arg/Arg among 14<PY<38 1.2 (0.8, 1.7) Country, age and sex 

    842/344 His/His or His/Arg vs. 
Arg/Arg among PY>38 0.6 (0.4, 0.9) Country, age and sex 

 Misra (2003)279 Male Finns 50-69 years of age* 309/302 His/His and Arg/His vs. 
Arg/Arg in ever smokers 1.0 (0.7, 1.6) Country, age and sex 

Arg399Gln        

 Bladder cancer Kelsey (2004)341 U.S. males and females* 30/89 Gln/Gln vs. Arg/Arg among 
never smokers 0.9 (0.4, 2.4) Age and sex 

    58/151 Gln/Arg vs. Arg/Arg among 
never smokers 1.8 (0.9, 3.3) Age and sex 

    138/225 Gln/Gln vs. Arg/Arg among 
ever smokers 0.7 (0.4, 1.2) Age, sex, and PY 

    257/320 Gln/Arg vs. Arg/Arg among 
ever smokers 1.3 (0.9, 1.9) Age, sex, and PY 

  Matullo (2005)317 Italian males aged 34-76 years* 100/62 AA vs. GG among current 
smokers 0.5 (0.2, 1.2) Age 

    160/94 AG vs. GG among current 
smokers 0.8 (0.5, 1.4) Age 

    58/50 AA vs. GG among former 
smokers 0.8 (0.3, 1.9) Age 

    86/89 AG vs. GG among former 
smokers 0.7 (0.4, 1.4) Age 

    18/58 AA vs. GG among never 
smokers 1.3 (0.4, 4.6) Age 

   25/82 AG vs. GG among never 
smokers 0.8 (0.3, 2.1) Age 

  Matullo (2006)286 European males and females* 71/612 Gln/Gln vs. Arg/Arg among 
nonsmokers 1.2 (0.6, 2.4) Unadjusted 

    107/966 Gln/Arg vs. Arg/Arg among  
nonsmokers 1.0 (0.6, 1.6) Unadjusted 

  Shen(2003)343 Italian males aged 20-80 years* 71/43 Gln/Gln vs. Arg/Arg in  ≥ 26 
PY 0.4 (0.1, 1.0) Age 

    32/41 Gln/Gln vs. Arg/Arg   26 1.8 (0.6, 5.6) Age 
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>PY >0 

   
  11/32 Gln/Gln vs. Arg/Arg 

nonsmokers 3.1 (0.7, 14.8) Age 

    
 120/70 Gln/Arg vs. Arg/Arg ≥ 26  

PY 0.7 (0.4, 1.4) Age 

    47/72 Gln/Arg vs. Arg/Arg  among 
26 >PY >0 0.9 (0.4, 2.0) Age 

    13/48 Gln/Arg vs. Arg/Arg  
nonsmokers 1.1 (0.3, 3.8) Age 

 Breast cancer Patel (2005)320 U.S. females 50-74 years at 
enrollment* 130/139 Gln/Gln vs. Arg/Arg  among 

never smokers 0.6 (0.4, 1.2) Unadjusted 

    207/216 Gln/Arg vs. Arg/Arg  among 
never smokers 0.9 (0.6, 1.3) Unadjusted 

    126/108 Gln/Gln vs. Arg/Arg  among 
ever smokers 1.9 (1.0, 3.5) Unadjusted 

    180/177 Gln/Arg vs. Arg/Arg  among 
ever smokers 1.0 (0.7, 1.6) Unadjusted 

 
Esophageal 
squamous cell 
carcinoma 

Yu (2004)328 Chinese males and females* 38/53 Gln/Gln vs. Arg/Arg among 
never smokers 2.5 (1.1, 5.7) Unadjusted 

    56/82 Gln/Arg vs. Arg/Arg 
among never smokers 1.1 (0.7, 1.8) Unadjusted 

    46/40 Gln/Gln vs. Arg/Arg among 
ever smokers 8.3 (4, 18) Unadjusted 

    60/65 Gln/Arg vs. Arg/Arg 
among never smokers 1.2 (0.8, 2.0) Unadjusted 

 Lung cancer Hung (2005)316 Eastern European males and 
females* 91/388 Gln/Gln vs. Arg/Arg  among 

ever smokers 0.8 (0.5, 1.5) Country, age and sex 

    137/582 Gln/Arg vs. Arg/Arg  among 
never smokers 1.0 (0.7, 1.5) Country, age and sex 

    77/189 Gln/Gln vs. Arg/Arg  among 
0<PY<15 0.9 (0.4, 1.8) Country, age and sex 

    129/197 Gln/Arg vs. Arg/Arg  among 
0<PY<15 1.2 (0.8, 1.8) Country, age and sex 

    508/374 Gln/Gln vs. Arg/Arg  among 
14<PY<38 1.0 (0.7, 1.4) Country, age and sex 

    807/577 Gln/Arg vs. Arg/Arg  among 
14<PY<38 1.1 (0.9, 1.4) Country, age and sex 

    420/179 Gln/Gln vs. Arg/Arg  among 
PY>38 0.9 (0.6, 1.4) Country, age and sex 

    717/292 Gln/Arg vs. Arg/Arg  among 
PY>38 1.1 (0.8, 1.4) Country, age and sex 

  Ito (2004)280 Japanese males and females* 78/80 Gln/Gln vs. Arg/Arg among 
ever smokers 0.4 (0.2, 1.0) Unadjusted 

    31/105 Gln/Gln vs. Arg/Arg among 
never smokers 1.3 (0.3, 5.2) Unadjusted 

    
 117/248 Gln/Arg vs. Arg/Arg among 

ever smokers 1.1 (0.7, 1.8) Unadjusted 
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  47/174 Gln/Arg vs. Arg/Arg among 
never smokers 0.8 (0.4, 1.6) Unadjusted 

Matullo (2006)286 European males and females* 58/612 Gln/Gln vs. Arg/Arg among 
nonsmokers 0.5 (0.2, 1.2) Unadjusted 

    109/966 Gln/Arg vs. Arg/Arg among  
nonsmokers 1.4 (0.8, 2.2) Unadjusted 

  Misra (2003)279 Male Finns 50-69 years of age* 175/182 Gln/Gln vs. Arg/Arg among 
ever smokers 0.8 (0.4, 1.4) Years of smoking a 

cigarettes/day 

    291/184 Gln/Arg vs. Arg/Arg among 
ever smokers 1.1 (0.8, 135) Years of smoking a 

cigarettes/day 

  Park (2002)348 South Korean males* 43/70 Gln/Gln vs. Arg/Arg among 
<41 PY 5.9 (1.5, 23) Unadjusted 

    63/105 Gln/Arg vs. Arg/Arg among 
<41 PY 1.5 (0.8, 2.8) Unadjusted 

    22/17 Gln/Gln vs. Arg/Arg  among 
>40 PY 1.4 (0.3, 6.7) Unadjusted 

    22/17 Gln/Arg vs. Arg/Arg  among 
>40 PY 1.4 (0.5, 4.0) Unadjusted 

 SCCHN Olshan (2002)337 U.S. males and female Caucasians* 90/97 Gln/Gln, Gln/Arg vs. 
Arg/Arg in ever -smokers 1.5 (0.8, 2.7) Unadjusted 

    7/64 Gln/Gln, Gln/Arg vs. 
Arg/Arg in never -smokers 0.9 (0.2, 4.4) Unadjusted 

*Study of incident disease; †Study of prevalent disease; PY, pack-years of smoking; SCCHN, squamous cell carcinoma of the head and neck;  Results were extracted with preference for unadjusted 
 estimates 



 

2. Nucleotide excision repair (NER) 

NER operates primarily on bulky helix-distorting DNA lesions such as pyrimidine 

dimers, photo-products, larger chemical adducts, and cross-links189.  The NER pathway was 

first identified in individuals with xeroderma pigmentosum (XP), an inherited autosomal 

recessive NER defect in which patients exhibit extreme sensitivity to UV radiation and a 

substantially (1000-fold) increased risk of skin cancers351 and (>10-fold) internal tumors352.  

Other NER disorders include Cockayne’s syndrome and trichothiodystrophy, diseases that 

are not characterized by the sun sensitivity that marks XP and instead are distinguished by 

postnatal developmental delay, microcephaly, skeletal abnormalities, progressive mental 

degeneration, ataxia, and hypogonadism, as well as features suggestive of premature aging 

(e.g. brittle hair and nails and scaling skin)353-356. 

The NER pathway repairs DNA strand damage in a ‘cut-and-paste’ manner involving 

five stages (Figure 6): 1) recognition of DNA damage via a damage recognition factor, 2) 

unwinding of the DNA duplex around the damaged site by the transcription factor IIH 

(TFIIH) complex, 3) dual incisions 3’ and 5’ to the damaged site by the 16-unit excinuclease 

complex and release of the damaged strand, 4) gap repair, and 5) ligation357.   

NER is typically divided into two processes, global genomic repair (GGR) and 

transcription-coupled repair (TCR)358 that differ mainly in the means by which DNA damage 

is recognized.  In GGR, the XPC protein detects helix deformations due to bulky adducts and 

initiates repair, whereas in TCR lesions on the transcribed strand block RNA polymerase II 

and thus signal the repair process359.  Separation of the double helix is a major step in both 

processes, necessitating the presence of the transcription factor TFIIH360.  Mutations in genes 

 69



 

encoding three of the ten TFIIH 

components – XPB, XPD, and 

p8/TTD-A – are related to a 

broad spectrum of clinical 

manifestations361, 362.

As discussed above, 

cigarette smoke contains 

numerous carcinogens, including 

polycyclic aromatic 

hydrocarbons, aromatic amines, 

and N-nitroso compounds that 

can form bulky DNA adducts 

repaired by the NER pathway.  

We examined the XPD NER 

enzyme, as XPD is absolutely 

necessary for efficient NER363 

and functional studies have 

suggested that XPD variants can 

influence DNA repair capacity. 

XPD 

XPD (also known as ERCC2) resides on 19q13.2 and is an ATP-dependent 5’-3’ 

helicase, one of 10 subunits of the TFIIH complex.  As discussed above, TFIIH locally 

unwinds the DNA helix, allowing the NER machinery access to the lesion, and is essential 

Figure 6.  Schematic of Nucleotide – Excision Repair. 
 

Adapted from Goode et al., 2002184 and Hung et al., 2005313
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for both RNA polymerase II transcription initiation and NER364.  The inherited point 

mutations in XPD that cause XP, trichothiodystrophy, and Cockayne’s syndrome are located 

in the C-terminus (Figure 7) where XPD interacts with the TFIIH complex365. 

Mice that lack XPD do not survive post-implantation366, reflecting the essential 

transcription initiation function of the TFIIH complex.  However, a viable mouse mutant was 

created by mimicking a point mutation identified in a trichothiodystrophy patient displayed 

many of the characteristics of the disease, including premature aging and a reduced life 

span367, 368.  Functionally, the mutation caused a partial defect in both GGR and TCR NER 

pathways, although an elevated DNA mutation frequency was not observed369.  Research also 

suggests that XPD mRNA levels are regulated by the expression of the insulin receptor, 

suggesting that prolonged exposure to elevated glucose levels reduces insulin-dependent 

regulation of DNA repair370. 

XPD genetic variants 

Table 13.  Characterization of four known XPD nonsynonymous SNPs. 

SNP* Protein residue MAF (Population) Functional data? 
Studied in human 

populations? 

rs13181 Gln751Lys 0.26 (CEPH) 
0.17 (AFR1) 

Lunn et al., (2000)371 
Vodicka et al, (2004)372 Table 14, Table 15 

rs1799793 Asn312Asp 0.31 (CEU) 
0.065 (AFR1) Seker et al., (2001)373 Table 14, Table 15 

rs1799792 Tyr201His .  Table 14 

rs1799791 Met199Ile . . . 

*Information obtained from dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/); AFR1, Human individual DNA from 24 individuals of 
self-described AFRICAN/AFRICAN AMERICAN heritage; CEPH, Genomic DNA samples obtained for a panel of 92 unrelated 
individuals chosen from Centre d'Etude du Polymorphisme Human (CEPH) pedigrees. The genomic DNA comprised of UTAH (93%), 
French (4%), and Venezuelan (3%) samples were purchased from Coriell Cell Repository; CEU, 30 mother-father-child trios from the 
CEPH collection (Utah residents with ancestry from northern and western Europe), representing one of the populations studied in the 
International HapMap project 
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Several XPD polymorphisms 

have been reported, but few with a 

MAF > 0.01374 (Table 13).  Two 

variants of interest are Asp312Asn 

(30%MAF) and Lys751Gln (32% 

MAF), which have MAFs high 

enough to facilitate clinical and 

epidemiologic investigations.   

The 751Gln variant produces a conformational change at the domain where XPD 

interacts with its helicase activator p44375 and has been associated with a reduced DNA repair 

proficiency, as measured by a cytogenetic assay that detects X-ray induced chromatid 

aberrations371 and an elevated frequency of chromosomal aberrations in peripheral 

lymphocytes of a central European population372.  Codon 312 has been conserved in 

vertebrates, suggesting the mutation may be functional376.  BPDE DNA adduct levels also 

appeared to be elevated in 312Asn homozygotes in a study of 67 Polish coke oven workers377 

and a study of apoptic rates in lymphoblastoid cell lines demonstrated that cells lines 

homozygous for the Asn had an elevated increase in apoptosis following UV exposure, 

relative to cells carrying Asp312373. 

The relationship between XPD variants and cancers and related traits suggests a 

subtle to null effect (Table 14).  For example, while the three estimates for the Asp312Asn 

allele and bladder cancer association are relatively precise and suggest a small increase in the 

odds of cancer for carriers of the Asn allele, the four breast cancer studies generally suggest 

an inverse association.  However, the bladder cancer studies were conducted in European 

Figure 7.  Schematic of the XPD protein. 
 

Adapted from Benhamou and Sarasin (2005)363.  Roman 
numerals denote the seven DNA helicase domains. 
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eas the breast cancer studies were carried out 

ian populations, perhaps complicating interpretation.  Of the ten 

e association between lung cancer and the Lys751Gln allele, all but 

et al., (2005)314 reported an increased odds for carriers of the Gln allele, 

notwithstanding ICR estimates that ranged from 1.7 to 6.  It is also difficult to asses whether 

publication bias may have influenced the reporting of these results, as researchers may be 

more inclined to publish biologically plausible associations. 

As seen in XRCC1, there also were marked differences in MAFs between 

populations, possibly suggesting that susceptibility variants and/or disease markers differ 

between populations, which may help explain the inconsistent results.  For example, in 

studies of lung cancer and the Asp312Asn variant, 12% of study participants were Asn/Asn 

homozygotes when U.S. Caucasians were examined378, whereas only 0.6% of Chinese males 

and females were identified as such379.  The marked imprecision of the smoking-stratified 

estimates (Table 15) complicated interpretation, although results presented by Schabath et al, 

(2005) suggested a increasing odds of bladder cancer with increasing pack-years of smoking 

for the Asp312Asn variant380.
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Table 14. Review of 25 case control studies examining the relationship between the XPD polymorphisms and cancers and related traits stratified by 
cancer and polymorphism. 

Variant Outcome Author (year) Study population 
No.  cases/ 
controls Genotype contrast 

OR 
 (95% CI) Covariate adjustments 

Arg156Arg        

 Bladder cancer Garcia-Closas (2006)381 Spanish males and females aged 21 
to 80 years* 562/602 CC vs. AA 1.1 (0.8, 1.4) Sex, age, region and smoking 

    949/947 AC vs. AA 1.2 (1.0, 1.4) Sex, age, region and smoking 

 Ovarian cancer Costa (2006)382 Portuguese females† 118/187 CC, AC vs. AA 1.3 (0.7, 2.3) Unadjusted 

 Lung cancer Shen (2005)314 Chinese males and females* 53/61 CC vs. AA 1.0 (0.5, 2.0) Age, sex, and current fuel type 

    94/74 AC vs. AA 0.5 (0.2, 1.1) Age, sex, and current fuel type 

  Yin (2005)383 Chinese males and females* 72/72 CC vs. AA 0.9 (0.5, 1.8) Unadjusted 

    111/98 AC vs. AA 1.1 (0.6, 2.1) Unadjusted 

His201Tyr        

 Lung cancer Zienolddiny (2006)282 Norwegian males and females* 339/405 Tyr/Tyr, Tyr/His vs. 
His/His 1.1 (0.8, 1.6) Age, sex, and PY 

Asp312Asn        

 Bladder cancer Garcia-Closas (2006)381 Spanish males and females aged 21 
to 80 years* 655/655 Asn/Asn vs. Asp/Asp 1.2 (0.9, 1.6) Sex, age, region and smoking 

    990/1028 Asn/Asp vs. Asp/Asp 1.1 (0.9, 1.3) Sex, age, region and smoking 

  Matullo (2005)317 Italian males aged 34-76 years* 139/150 Asn/Asn vs. Asp/Asp 1.1 (0.6, 2.0) Age and smoking 

    245/158 Asn/Asp vs. Asp/Asp 1.1 (0.7, 1.6) Age and smoking 

  Schabath (2005)380 U.S. males and females* 282/298 Asn/Asn vs. Asp/Asp 1.1 (0.9, 1.4) Age, sex, race, and smoking 

    440/427 Asn/Asp vs. Asp/Asp 1.1 (0.8, 1.4) Age, sex, race, and smoking 

 Breast cancer Jorgensen (2006)384 U.S. males and females* 132/131 Asn/Asn vs. Asp/Asp 0.7 (0.4, 1.3) Unadjusted 

    238/244 Asn/Asp vs. Asp/Asp 0.8 (0.6, 1.2) Unadjusted 

  Justenhoven (2004)385 German females* 394/355 Asn/Asn vs. Asp/Asp 0.5 (0.3, 0.7) Age, smoking, family history of 
breast cancer, HRT, and parity 

    220/334 Asn/Asp vs. Asp/Asp 0.8 (0.6, 1.3) Age, smoking, family history of 
breast cancer, HRT, and parity 

  Lee (2005)386 Korean females* 478/104 Asn/Asn vs. Asp/Asp 0.8 (0.1, 3.2) BMI, estrogen exposure, 
education, and family history 

    525/442 Asn/Asp vs. Asp/Asp 1.2 (0.7, 1.8) BMI, estrogen exposure, 
education, and family history 

  Zhang (2005)387 Chinese females aged 26-60 years* 109/170 Asn/Asn vs. Asp/Asp 0.5 (0.3, 0.9) Unadjusted 
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    200/259 Asn/Asp vs. Asp/Asp 1.0 (0.7, 1.5) Unadjusted 

 
Esophageal 
squamous cell 
carcinoma 

Xing (2002)327 Chinese males and females† 433/524 Asn/Asn, Asn/Asp vs. 
Asp/Asp 1.0 (0.7, 1.5) Unadjusted 

  Ye (2006)388 Swedish males and females* 40/233 Asn/Asn vs. Asp/Asp 0.8 (0.3, 2.0) 

Age, sex, SES, BMI, smoking, 
symptomatic gastroesophageal 
reflux, alcohol, and fruit and 

vegetable intake 

    71/413 Asn/Asp vs. Asp/Asp 1.2 (0.7, 2.3) 

Age, sex, SES, BMI, smoking, 
symptomatic gastroesophageal 
reflux, alcohol, and fruit and 

vegetable intake 
 Lung cancer Butkiewicz (2001)376 Polish males† 61/46 Asn/Asn vs. Asp/Asp 1.4 (0.6, 3.2) Age and PY 

    53/65 Asn/Asp vs. Asp/Asp 0.7 (0.3, 1.5) Age and PY 

  Hu (2006)389 Chinese males and females* 970/986 Asn/Asn, Asn/Asp vs. 
Asp/Asp 1.1 (0.9, 1.5) Age, sex, PY, and family history 

of cancer 
  Liang (2003)379 Chinese males and females* 881/890 Asn/Asn vs. Asp/Asp 11 (1.5, 87) Unadjusted 
    881/1019 Asn/Asp vs. Asp/Asp 1.0 (0.8, 1.3) Unadjusted 
  Popanda (2004)281 German males and females aged 28-

84 years* 113/264 Asn/Asn vs. Asp/Asp 1.2 (0.7, 1.9) Unadjusted 
    169/388 Asn/Asp vs. Asp/Asp 1.1 (0.8, 1.6) Unadjusted 
  Shen (2005)314 Chinese males and females* 118/113 Asn/Asn, Asn/Asp vs. 

Asp/Asp 0.6 (0.2, 1.4) Age, sex, and current fuel type 

  Spitz (2001)390 U.S. males and females* 1.5 (0.8, 3.1) Unadjusted 
    0.9 (0.6, 1.4) Unadjusted 
  Zhou (2002)378 U.S. male and female Caucasians* 613/668 Asn/Asn vs. Asp/Asp 1.4 (1.1, 1.8) Unadjusted 
    942/1115 Asn/Asp vs. Asp/Asp 1.0 (0.8, 1.2) Unadjusted 
  Zienolddiny (2006)282 Norwegian males and females* 173/169 Asn/Asn vs. Asp/Asp 1.1 (0.7, 1.7) Age, sex, and PY 
    221/241 Asn/Asp vs. Asp/Asp 0.8 (0.6, 1.2) Age, sex, and PY 

 Melanoma Millikan (2006)391 Australian, Canadian, Italian, and 
U.S. males and females* 644/1299 Asn/Asn vs. Asp/Asp 1.3 (1.1, 1.7) Unadjusted 

    1014/2137 Asn/Asp vs. Asp/Asp 1.0 (0.9, 1.2) Unadjusted 
 Ovarian cancer Costa (2006)382 Portuguese females† 114/199 Asn/Asn, Asn/Asp vs. 

Asp/Asp 2.5 (1.2, 5.0) Unadjusted 

 Pancreatic 
cancer Jiao(2006)392 U.S. males and females* 176/195 Asn/Asn vs. Asp/Asp 0.8 (0.5, 1.3) Age and sex 

    303/316 Asn/Asp vs. Asp/Asp 1.0 (0.7, 1.4) Age and sex 
 SCCHN Buch (2005)393 U.S. males and females* 127/111 Asn/Asn vs. Asp/Asp 1.7 (0.9, 3.4) Unadjusted 
    187/181 Asn/Asp vs. Asp/Asp 1.5 (0.9, 2.2) Unadjusted 

  Yu (2004)394 Chinese males and females* 135/152 Asn/Asn, Asn/Asp vs. 
Asp/Asp 1.0 (0.5, 2.1) Unadjusted 

123/153 
174/239 

Asn/Asn vs. Asp/Asp 
Asn/Asp vs. Asp/Asp 
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 Oral Cleft Olshan (2005)250 California infants born 1983-1986†  Asn/Asn vs. Asp/Asp 0.7 (0.3, 1.7) Race/ethnicity 
     Asn/Asp vs. Asp/Asp 1.5 (0.9, 2.3) Race/ethnicity 
 Spina bifida Olshan (2005)250 California infants born 1983-1986†  Asn/Asn vs. Asp/Asp 0.8 (0.3, 2.2) Race/ethnicity 
     Asn/Asp vs. Asp/Asp 1.5 (0.9, 2.3) Race/ethnicity 
Lys751Gln        

 Bladder cancer Garcia-Closas (2006)381 Spanish males and females aged 21 
to 80 years* 636/638 Gln/Gln vs. Lys/Lys 1.2 (0.9, 1.6) Sex, age, region and smoking 

    990/999 Gln/Lys vs. Lys/Lys 1.1 (0.9, 1.3) Sex, age, region and smoking 
  Matullo (2005)317 Italian males aged 34-76 years* 149/148 Gln/Gln vs. Lys/Lys 1.3 (0.7, 2.2) Age and smoking 
    264/266 Gln/Lys vs. Lys/Lys 1.0 (0.7, 1.6) Age and smoking 

  Sanyal (2004)342 Swedish males and females ages 33-
96 years† 166/132 Gln/Gln vs. Lys/Lys 1.3 (0.8, 2.2) Unadjusted 

    251211 Gln/Lys vs. Lys/Lys 1.1 (0.7, 1.6) Unadjusted 
  Schabath (2005)380 U.S. males and females* 264/253 Gln/Gln vs. Lys/Lys 1.2 (0.9, 1.4) Age, sex, race, and smoking 
    280/410 Gln/Lys vs. Lys/Lys 1.0 (0.8, 1.4) Age, sex, race, and smoking 
  Shen (2003)343 Italian males aged 20-80 years* 114/116 Gln/Gln vs. Lys/Lys 1.0 (0.6, 1.8) Age 
    166/178 Gln/Lys vs. Lys/Lys 0.9 (0.6, 1.4) Age 
  Stern (2002)395 U.S. males and females* 109/111 Gln/Gln vs. Lys/Lys 0.8 (0.4, 1.4) Age, sex, and ethnicity 
    167/183 Gln/Lys vs. Lys/Lys 1.0 (0.7, 1.5) Age, sex, and ethnicity 
 Breast cancer Brewster (2006)396 U.S. females* . Gln/Gln vs. Lys/Lys 1.1 (0.6, 1.9) Unadjusted 
    . Gln/Lys vs. Lys/Lys 1.4 (1.0, 2.0) Unadjusted 

  Justenhoven (2004)385 German females* 321/351 Gln/Gln vs. Lys/Lys 1.3 (0.9, 1.9) Age, smoking, family history of 
breast cancer, HRT, and parity 

    489/556 Gln/Lys vs. Lys/Lys 1.1 (0.9, 1.4) Age, smoking, family history of 
breast cancer, HRT, and parity 

  Metsola (2005)339 Finnish females* 243/243 Gln/Gln vs. Lys/Lys 1.1 (0.7, 1.6) 
Age, age at menarche, age at first birth, 
number of pregnancies, history of breast 
disease, WHR, family history of breast 

cancer, smoking and alcohol 

   385/392 Gln/Lys vs. Lys/Lys 1.0 (0.8, 1.4) 
Age, age at menarche, age at first birth, 
number of pregnancies, history of breast 
disease, WHR, family history of breast 

cancer, smoking and alcohol 

 Zhang (2005)387 Chinese females aged 26-60 years* 108/145 Gln/Gln vs. Lys/Lys 1.0 (0.6, 1.8) Unadjusted 
   186/264 Gln/Lys vs. Lys/Lys 0.9 (0.6, 1.4) Unadjusted 

Colon adenoma Huang (2006)397 U.S. males and females aged 55-74 
years at enrollment* 395/427 Gln/Gln vs. Lys/Lys 0.9 (0.7, 1.2) Sex, race, and age 

   648/647 Gln/Lys vs. Lys/Lys 1.1 (0.9, 1.4) Sex, race, and age 
 Skjelbred (2006)324 Norwegian males and females* 519/225 Gln/Gln vs. Lys/Lys 1.6 (1.1, 2.3) Age 

    827/348 Gln/Lys vs. Lys/Lys 1.4 (1.0, 1.8) Age 
 Colon carcinoma Skjelbred (2006)324 Norwegian males and females* 80/225 Gln/Gln vs. Lys/Lys 0.8 (0.4, 1.9) Age 
    134/348 Gln/Lys vs. Lys/Lys 0.9 (0.5, 1.6) Age 

 Esophageal 
squamous cell Xing (2002)327 Chinese males and females† 433/524 Gln/Gln, Gln/Lys vs. 

Lys/Lys 1.1 (0.8, 1.6) Unadjusted 
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carcinoma 

  Ye (2006)388 Swedish males and females* 37/269 Gln/Gln vs. Lys/Lys 1.8 (07, 4.4) 

Age, sex, SES, BMI, smoking, 
symptomatic gastroesophageal 
reflux, alcohol, and fruit and 

vegetable intake 

    67/401 Gln/Lys vs. Lys/Lys 2.0 (1.1, 3.9) 

Age, sex, SES, BMI, smoking, 
symptomatic gastroesophageal 
reflux, alcohol, and fruit and 

vegetable intake 

 Gastric cancer Huang (2005)347 Polish males and females aged 21-79 
years* 153/218 Gln/Gln vs. Lys/Lys 0.8 (0.5, 1.2) Age, sex, and smoking 

    233/308 Gln/Lys vs. Lys/Lys 1.0 (0.7, 1.5) Age, sex, and smoking 
 Lung cancer Chen (2002)331

 Chinese males and females* 62/61 Gln/Gln vs. Lys/Lys 2.2 (1.0, 5.3) Unadjusted 
    58/68 Gln/Lys vs. Lys/Lys 1.8 (0.8, 4.1) Unadjusted 
  David-Beabes (2001)398 U.S. Caucasian and African-

American males and females 191/398 Gln/Gln vs. Lys/Lys 1.3 (0.8, 2.2) Age, sex, smoking, and race 

    296/616 Gln/Lys vs. Lys/Lys 1.0 (0.7, 1.4) Age, sex, smoking, and race 

  Hu (2006)389 Chinese males and females* 975/997 Gln/Gln, Gln/Lys vs. 
Lys/Lys 1.2 (0.9, 1.5) Age, sex, PY, and family history 

of cancer 
  Liang (2003)379 Chinese males and females* 853/854 Gln/Gln vs. Lys/Lys 2.4 (0.9, 6) Unadjusted 
    992/1014 Gln/Lys vs. Lys/Lys 0.9 (0.7, 1.2) Unadjusted 
  Popanda (2004)281 German males and females aged 28-

84 years* 110/252 Gln/Gln vs. Lys/Lys 1.6 (1.0, 2.6) Unadjusted 
    165/395 Gln/Lys vs. Lys/Lys 1.2 (0.8, 1.7) Unadjusted 
  Shen (2005)314 Chinese males and females* 118/108 Gln/Gln, Gln/Lys vs. 

Lys/Lys 0.4 (0.2, 0.9) Age, sex, and current fuel type 

  Spitz (2001)390 U.S. males and females* 188/198 Gln/Gln vs. Lys/Lys 1.4 (0.8, 2.2) Unadjusted 
    194/321 Gln/Lys vs. Lys/Lys 1.1 (0.8, 1.5) Unadjusted 
  Yin (2006)399 Chinese males and females* 147/145 Gln/Gln, Gln/Lys vs. 

Lys/Lys 2.8 (1.1, 6.8) Unadjusted 

  Zhou (2002)378 U.S. male and female Caucasians* 594/665 Gln/Gln vs. Lys/Lys 1.2 (0.9, 1.5) Unadjusted 
    926/1074 Gln/Lys vs. Lys/Lys 1.0 (0.9, 1.2) Unadjusted 
  Zienolddiny (2006)282 Norwegian males and females* 216/265 Gln/Gln vs. Lys/Lys 1.6 (1.1, 2.3) Age, sex, and PY 
    228/304 Gln/Lys vs. Lys/Lys 1.2 (0.8, 1.7) Age, sex, and PY 

 Melanoma Millikan (2006)391 Australian, Canadian, Italian, and 
U.S. males and females* 636/1308 Gln/Gln vs. Lys/Lys 1.3 (1.1, 1.6) Unadjusted 

    1017/2109 Gln/Lys vs. Lys/Lys 1.1 (1.0, 1.3) Unadjusted 
 Ovarian cancer Costa (2006)382 Portuguese females† 126/202 Gln/Gln, Gln/Lys vs. 

Lys/Lys 3.4 (1.6, 7) Unadjusted 

 Prostate cancer Jiao(2006)392 U.S. males and females* 154/179 Gln/Gln vs. Lys/Lys 1.1 (0.6, 1.9) Age and sex 
    308/350 Gln/Lys vs. Lys/Lys 1.1 (0.8, 1.5) Age and sex 

  
 Ritchey (2005)350 Chinese males >18 years of age* 160/247 Gln/Gln, Gln/Lys vs. 

Lys/Lys 0.8 (0.5, 1.5) Age 
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 SCCHN Buch (2005)393 U.S. males and females* 185/148 Gln/Gln vs. Lys/Lys 2.0 (1.2, 3.4) Unadjusted 
    237/229 Gln/Lys vs. Lys/Lys 2.2 (1.5, 3.1) Unadjusted 
  Yu (2004)394 Chinese males and females* 119/135 Gln/Gln vs. Lys/Lys 6.7 (1.8, 26) Unadjusted 
    124/150 Gln/Lys vs. Lys/Lys 1.2 (0.5, 2.4) Unadjusted 
 Oral Cleft Olshan (2005)250 California infants born 1983-1986† 71/126 Gln/Gln vs. Lys/Lys 1.3 (0.6, 2.6) Race/ethnicity 
    109/302 Gln/Lys vs. Lys/Lys 1.5 (1.0, 2.4) Race/ethnicity 
 Spina bifida Olshan (2005)250 California infants born 1983-1986† 63/126 Gln/Gln vs. Lys/Lys 0.3 (0.1, 1.2) Race/ethnicity 
    120/302 Gln/Lys vs. Lys/Lys 1.9 (1.2, 2.9) Race/ethnicity 
rs1618536        

 Lung cancer Hu (2006)389 Chinese males and females* 483/497 GG vs. AA 1.2 (0.9, 1.5) Age, sex, PY, and family history 
of cancer 

    669/687 GA vs. AA 1.1 (0.9, 1.4) Age, sex, PY, and family history 
of cancer 

rs1799786        

 Lung cancer Hu (2006)389 Chinese males and females* 965/986 CT/TT vs. CC 1.2 (0.9, 1.5) Age, sex, PY, and family history 
of cancer 

rs1799787        
 Lung cancer Shen (2005)314 Chinese males and females* 117/111 TT, CT vs. CC 0.4 (0.2, 0.9) Age, sex, and current fuel type 
*Study of incident disease; †Study of prevalent disease;  Results were extracted with preference for unadjusted estimates 
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by smoking. 

Variant Outcome Author (year) Study population 
No. cases/ 
controls Genotype contrast 

OR (95% 
CI) Covariate adjustments 

Asp312Asn        

 Bladder cancer Matullo (2006)286 European males and females* 64/588 Asn/Asn vs. Asp/Asp 
among nonsmokers 0.9 (0.4, 1.8) Unadjusted 

    108/924 Asn/Asp vs. Asp/Asp 
among  nonsmokers 1.0 (0.6, 1.6) Unadjusted 

  Schabath (2005)380 U.S. males and females* 128/230 
Asn/Asn, Asn/Asp vs. 
Asp/Asp among never 

smokers 
1.1 (0.7, 1.8) Unadjusted 

    95/124 Asn/Asn, Asn/Asp vs. 
Asp/Asp among 1-19 PY 1.2 (0.7, 2.1) Unadjusted 

    271/123 Asn/Asn, Asn/Asp vs. 
Asp/Asp among ≥ 20 PY 1.5 (1.0, 2.3) Unadjusted 

 Lung cancer Misra (2003)279 Male Finns 50-69 years of age* 186/165 Asn/Asn vs. Asp/Asp 
among ever smokers 0.9 (0.6, 1.6) Years of smoking a 

cigarettes/day 

    270/272 Asn/Asp vs. Asp/Asp 
among ever smokers 0.7 (0.5, 1.0) Years of smoking a 

cigarettes/day 

  Matullo (2006)286 European males and females* 64/588 Asn/Asn vs. Asp/Asp 
among nonsmokers 0.9 (0.4, 1.8) Unadjusted 

    108/924 Asn/Asp vs. Asp/Asp 
among  nonsmokers 1.0 (0.6, 1.6) Unadjusted 

  Zhou (2002)378 U.S. male and female Caucasians* 41/227 Asn/Asn vs. Asp/Asp 
among  nonsmokers 4.7 (2.3, 9.6) Unadjusted 

    88/216 Asn/Asn vs. Asp/Asp 
among 0<PY<26 1.6 (0.9, 2.8) Unadjusted 

    199/161 Asn/Asn vs. Asp/Asp 
among 25<PY<55 1.3 (0.8, 2.4) Unadjusted 

 
    285/64 Asn/Asn vs. Asp/Asp 

among PY>55 0.7 (0.4, 1.2) Unadjusted 
    53/396 Asn/Asp vs. Asp/Asp 

among  nonsmokers 1.4 (0.3, 0.8) Unadjusted 
    124/346 Asn/Asp vs. Asp/Asp 

among 0<PY<26 1 (0.2, 0.6) Unadjusted 
    340/262 Asn/Asp vs. Asp/Asp 

among 25<PY<55 1.2 (0.2, 0.9) Unadjusted 
    425/111 Asn/Asp vs. Asp/Asp 

among PY>55 0.6 (0.2, 0.4) Unadjusted 
Lys751Gln        

 Bladder cancer Matullo (2005)317 Italian males aged 34-76 years* 90/54 CC vs. AA among current 
smokers 2.2 (1.0, 5.2) Age 

    149/97 AC vs. AA among current 
smokers 1.1 (0.6, 2.0) Age 

    43/50 CC vs. AA among former 
smokers 0.9 (0.4, 2.2) Age 

    89/86 AC vs. AA among former 1.3 (0.6, 2.5) Age 
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smokers 

    16/44 CC vs. AA among never 
smokers 0.8 (0.2, 3.1) Age 

    26/83 AC vs. AA among never 
smokers 0.6 (0.2, 1.6) Age 

  Matullo (2006)286 European males and females* 66/590 Gln/Gln vs. Lys/Lys among 
nonsmokers 0.6 (0.3, 1.1) Unadjusted 

    108/901 Gln/Lys vs. Lys/Lys among  
nonsmokers 0.8 (0.5, 1.3) Unadjusted 

  Schabath (2005)380 U.S. males and females* 124/222 Gln/Gln, Gln/Lys vs. 
Lys/Lys in never smokers 1.1 (0.7, 1.6) Unadjusted 

    90/120 Gln/Gln, Gln/Lys vs. 
Lys/Lys  among 1-19 PY 1.3 (0.7, 2.3) Unadjusted 

    263/119 Gln/Gln, Gln/Lys vs. 
Lys/Lys among  ≥ 20 PY 1.2 (0.8, 1.9) Unadjusted 

  Shen(2003)343 Italian males aged 20-80 years* 80/42 Gln/Gln vs. Lys/Lys 
among ≥ 26 PY 1.0 (0.4, 2.3) Age 

   29/50 Gln/Gln vs. Lys/Lys among 
< 26 PY 1.8 (0.7, 4.7) Age 

    5/24 Gln/Gln vs. Lys/Lys 
nonsmokers 0.3 (0.1, 3.5) Age 

    108/71 Gln/Lys vs. Lys/Lys ≥ 26 
PY 0.6 (0.3, 1.1) Age 

    42/64 Gln/Lys vs. Lys/Lys <26 
PY 2.1 (0.9, 4.7) Age 

    16/43 Gln/Lys vs. Lys/Lys 
nonsmokers 1.4 (0.4, 5.2) Age 

  Stern (2002)395 U.S. males and females* 36/72 Gln/Gln, Gln/Lys vs. 
Lys/Lys in never smokers 0.4 (0.1, 1.1) Unadjusted 

    174/125 Gln/Gln, Gln/Lys vs. 
Lys/Lys in ever smokers 1.9 (0.9, 3.6) Unadjusted 

 Lung cancer Misra (2003)279 Male Finns 50-69 years of age* 165/149 Gln/Gln vs. Lys/Lys among 
ever smokers 1.0 (0.6, 1.7) Years of smoking a 

cigarettes/day 

    257/156 Gln/Lys vs. Lys/Lys among 
ever smokers 0.8 (0.6, 1.2) Years of smoking a 

cigarettes/day 

  Matullo (2006)286 European males and females* 58/590 Gln/Gln vs. Lys/Lys among 
nonsmokers 1.2 (0.6, 2.4) Unadjusted 

    95/901 Gln/Lys vs. Lys/Lys among  
nonsmokers 1.5 (0.9, 2.6) Unadjusted 

  Zhou (2002)378 U.S. male and female Caucasians* 39/228 Gln/Gln vs. Lys/Lys among  
nonsmokers 2 (1, 4.1) Unadjusted 

    90/216 Gln/Gln vs. Lys/Lys among 
0<PY<26 1.2 (0.7, 2.1) Unadjusted 

    197/161 Gln/Gln vs. Lys/Lys among 
25<PY<55 1.4 (0.9, 2.3) Unadjusted 

    268/60 Gln/Gln vs. Lys/Lys among 
PY>55 0.5 (0.3, 0.9) Unadjusted 

 
 

 



 

 

81 

    57/376 Gln/Lys vs. Lys/Lys among  
nonsmokers 1.2 (0.3, 0.7) Unadjusted 

    126/340 Gln/Lys vs. Lys/Lys among 
0<PY<26 0.9 (0.2, 0.6) Unadjusted 

    325/253 Gln/Lys vs. Lys/Lys among 
25<PY<55 1.3 (0.2, 0.9) Unadjusted 

    418/105 Gln/Lys vs. Lys/Lys among 
PY>55 0.6 (0.2, 0.4) Unadjusted 

*Study of incident disease; †Study of prevalent disease;  PY, pack-years of smoking;  Results were extracted with preference for unadjusted estimates 



 

3. Double strand break / recombination repair 

Unlike BER and NER, which excise and repair DNA damage using the intact 

complementary strand for a template, DSBs affect both DNA strands so no intact template is 

available to direct repair.  Thus, DSB lesions are particularly genotoxic as they effectively 

induce chromosomal aberrations (CA) such as deletions and inversions within a chromosome 

or rearrangements between multiple chromosomes400.  CA may also alter gene expression 

profiles401.  Causes of DSBs include ionizing ration and oxidative insults, as well as somatic 

recombination or the overlap of excision repair tracts193.  If unrepaired, DSBs can block 

replication and transcription and exposed chromosomal fragments are prone to nuclease 

attack and subsequent destruction igure 8).  Even one DSB can kill a cell if it inactivates a 

crucial gene402. 

Two DSB repair mechanisms exist to eliminate chromosome aberrations before cell 

division occurs; homologous recombination (non error-prone, HR) and non-homologous end 

joining (error prone, NHEJ)403-406.  Deficiencies in either pathway cause a chromosomal 

instability phenotype characterized by increased CA, serious physiological defects, cancer 

susceptibility, and premature aging407-409.  DSB-deficient diseases include the diseases 

Nijmegen breakage syndrome, Fanconi anemia, Bloom syndrome, Werner syndrome, and 

ataxia telangiectasia410.  In addition, the well known BRCA1 and BRCA2 breast cancer genes 

also reflect compromised DSB repair411, as homozygous loss of either causes a marked 

increased chromosomal instability. 

HR is considered ‘non error-prone’ because the undamaged homologous sequence of 

the sister chromatid is used to repair the damaged duplex by gene conversion, with or without 

an associated crossover412.  While crossovers can produce deletions, inversions (chromosome 

 (F
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rearrangement where a chromosomal segment is reversed end to end), translocations 

(abnormal chromosomal rearrangements), and LOH413, HR is usually a high-fidelity repair 

process since crossovers are usually suppressed in mitotic cells414, 415.  Cells with HR protein 

defects (e.g. RAD51, XRCC2, XRCC3, RAD51B-RAD51D, BRCA1, and BRCA2) exhibit 

chromosomal instability, producing aneuploidy (a reduction in the number of chromosomes 

due to extra or missing chromosomes), chromosome breaks, translocations, and fusions, 

possibly reflecting a shift in DSB repair from HR to NEHJ412.   

NHEJ is a homology-independent process and simply rejoins any two DSBs end-to-

end.  Thus, NHEJ often generates small sequence modifications at break sites unless the 

original sequence is precisely re-ligated.  However, consequences of NHEJ repair may be 

tolerated if the number of DSBs is small so that the originally connected DNA strands are 

rejoined with high preference400.  The low proportion of coding sequences in the mammalian 

genome (1%) results in a low probability that a DSB would occur within a functional region.  

Furthermore, mammalian cells are diploid, thus the intact allele may be able to compensate 

for LOH. 

The initial step for DSB repair is damage recognition and signaling by the NBS1, 

MRE11, and RAD50 protein complex416.  Briefly, HR proceeds by: 1) 5’ resection by 

exonuclease to expose the 3’ ends, 2) strand invasion in which the RecA-like proteins 

facilitate the identification of complementary genomic regions in sister chromosomes, 3) new 

DNA synthesis using the 3’ ends as primers and the sister chromatid as the template, and 4) 

unwinding from the template, annealing, and ligation, in essence transferring sequence 

information from the intact donor to the defective recipient, yielding two intact DNA 

copies400.  The basic NHEJ steps following recognition of the DSB are: 1) binding of the 
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KU70 and KU80 to the two DNA ends where it serves as an end-bridging and 

alignment factor, 2) recruitment and activation of additional processing enzymes by  DNA-

protein kinase (DNA-PK) as well as DNA end-processing and gap-filling when DNA ends 

are non-complementary or damaged, and 3) direct joining of the two ends by DNA ligase417, 

418. 

Research has shown that levels of cigarette smoke condensate far below those 

contained in a single cigarette can induce DSB in cultured cells and purified DNA195.  As 

deficiencies in the DSB repair system may be critical in the generation and persistence of 

CA, and increased CA may reflect a shift in DSB repair from HR to NEHJ412, this 

dissertation examined the XRCC3 enzyme, which plays a central role in HR of DSB. 
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Figure 8.  Schematic of Double – Strand – Break Repair. 

 

*Adapted from Goode et al., 2002184 and Kuschel et al., (2002)193 
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XRCC3  

XRCC3 is located on 14q32.3 and is involved in the repair of DSB by HR, as it 

induces replication fork slowing and facilitates recruitment of RAD51 to DSB sites419, 420.   In 

addition to playing a central role in HR, XRCC3 is also important for maintaining the correct 

centrosome number in mammalian cells421, 422. 

Fluorescence-based assays in Chinese hamster ovary cells demonstrated that XRCC3 

promoted the repair of DSBs by HR422 and hamster and human cell lines containing with 

mutations of XRCC3 showed 25-fold decrease in HR422, while constitutive XRCC3 

expression conferred resistance to DNA-damaging agents. XRCC3 mRNA and protein levels 

were elevated in malignant prostate cells when compared to normal epithelial cells.  Despite 

the increased XRCC3 expression, the malignant cells exhibited a defective DNA break repair 

phenotype, suggesting that prostate tumorgenesis may reflect aberrant DNA repair 

capacity300. 

XRCC3 genetic variants 

While four nonsynonymous XRCC3 SNPs have been identified in the dbSNP 

database (Table 16), only one has been examined in human populations or functional studies 

(Met241Thr).  Yoshihara et al., (2004) investigated the role of Met241Thr in human XRCC3-

/- cell lines that exhibited a phenotype characterized by a two-fold increase in sensitivity to 

DNA cross-linking agents, a reduction in sister chromatid exchange, increased CA, and 

impaired RAD51 function.  While expression of the wild-type XRCC3 cDNA rescued the 

phenotype, expression of the Met241Thr variant was unable to restore the increased 

endoreduplication (duplication of the genome without mitosis)423.  Savas and colleagues 

(2004) also performed protein conservation analysis on XRCC3 nonsynonymous 
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orphisms in an attempt to predict functional consequences of amino acid substitutions 

t “possibly damaged” protein function304.    

Table 16. Characterization of four known XRCC3 nonsynonymous SNPs. 

SNP* Protein residue MAF Functional data? 
Studied in human 

populations? 

rs28903081 His302Arg 0.005 (GscTr12003) . . 

rs28903080 Arg271Gly 0.005 (GscTr12003) . . 

rs861539 Met241Thr 0.44 (CEPH) 
0.146 (AFR1) 

Savas et al (2004)304 
Yoshihara et al., (2004)423 Table 17, Table 16 

rs3212057 His94Arg 0.032 (PDR90) . . 

*Information obtained from dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/); AFR1, Human individual DNA from 24 individuals of 
self-described AFRICAN/AFRICAN AMERICAN heritage; CEPH, Genomic DNA samples obtained for a panel of 92 unrelated 
individuals chosen from Centre d'Etude du Polymorphisme Human (CEPH) pedigrees. The genomic DNA comprised of UTAH (93%), 
French (4%), and Venezuelan (3%) samples were purchased from Coriell Cell Repository; GscTr12003, British Phenotype: 96 BRCA1 and 
BRCA2 negative breast cancer index cases; PDR90, The NIH Polymorphism Discovery Resource (NIHPDR) 90 individual screening subset 

The limited epidemiologic data examining the relationship between XRCC3 

polymorphisms and cancers and related traits, has suggested a weak to null effect (Table 17), 

although multiple studies of the same outcome are few.  For example, in the five studies of 

breast cancer, the most extreme estimates of 0.6387 and 1.4424 are also those with the largest 

CLRs.  The four studies of the Met241Thr variant and lung cancer produced estimates 

ranging from 0.6 to 1.5425, all with generally comparable precision.  The smoking stratified 

estimates were too imprecise to warrant interpretation (Table 18). 
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Table 17.   Review of 20 case control studies examining the relationship between the XRCC3 polymorphisms and cancers and related traits stratified 
by cancer and polymorphism. 

Variant Outcome Author (year) Study population 
No. cases/ 
controls Genotype contrast 

OR 
 (95% CI) Covariate adjustments 

5’UTR-4541        

 Bladder cancer Matullo (2005)317 Italian males aged 34-76 years* 218/213 CC vs. TT 0.7 (0.3, 1.3) Age and smoking 

    305/303 CT vs. TT 0.8 (0.5, 1.2) Age and smoking 

 Breast cancer Han (2004)426 U.S. females 30-55 years an enrollment* 669/919 CC vs. TT 1.0 (0.6, 1.5) 
Age, menopausal status, HRT, 
data and time of blood draw, 

and fasting status 

    952/1237 CT vs. TT 1.2 (1.0, 1.4) 
Age, menopausal status, HRT, 
data and time of blood draw, 

and fasting status 

 Lung cancer Jacobsen (2004)425 Danish males and females aged 50-65 at 
enrollment* 185/190 CC vs. TT 0.6 (0.2, 1.6) Age and smoking 

    280/257 CT vs. TT 0.8 (0.5, 1.2) Age and smoking 

IVS6-14 
17893        

 Bladder cancer Matullo (2005)317 Italian males aged 34-76 years* 192/185 GG vs. AA 0.9 (0.4, 4.8) Age and smoking 

    288/292 AG vs. AA 1.0 (0.7, 1.4) Age and smoking 

  Han (2004)426 U.S. females 30-55 years an enrollment* 534/721 GG vs. AA 1.2 (0.9, 1.6) 
Age, menopausal status, HRT, 
data and time of blood draw, 

and fasting status 

    869/1147 AG vs. AA 1.1 (0.9, 1.3) 
Age, menopausal status, HRT, 
data and time of blood draw, 

and fasting status 

 Lung cancer Jacobsen (2004)425 Danish males and females aged 50-65 at 
enrollment* 140/142 GG vs. AA 0.7 (0.4, 1.2) Age and smoking 

    227/235 AG vs. AA 0.8 (0.6, 1.2) Age and smoking 

IVS6 
C1571T        
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 Lung cancer Jacobsen (2004)425 Danish males and females aged 50-65 at 
enrollment* 216/233 CC vs. TT 4.5 (1.3, 15) Age and smoking 

    248/267 CT vs. TT 1.2 (0.7, 2.0) Age and smoking 

C18067T        

 SCCHN Shen (2002)427 U.S. males and females* 208/184 TT vs. CC 1.3 (0.8, 2.0) Unadjusted 

    309/311 CT vs. CC 0.9 (0.6, 1.2) Unadjusted 

Thr241Met        

 Bladder cancer Matullo (2005)317 Italian males aged 34-76 years* 162/169 Met/Met vs. Thr/Thr 1.5 (0.9, 2.4) Age and smoking 

    254/268 Met/Thr vs. Thr/Thr 1.4 (0.9, 2.1) Age and smoking 

  Sanyal (2004)342 Swedish males and females ages 33-96 
years† 182/137 Met/Met vs. Thr/Thr 1.3 (0.8, 2.4) Unadjusted 

    260/216 Met/Thr vs. Thr/Thr 1.0 (0.7, 1.4) Unadjusted 

  Shen(2003)343 Italian males aged 20-80 years* 114/98 Met/Met vs. Thr/Thr 0.7 (0.4, 1.4) Age 

    176/187 Met/Thr vs. Thr/Thr 0.6 (0.4, 0.9) Age 

 Breast cancer Figueiredo (2004)344 Caucasian Canadian females 25-54 years* 216/202 Met/Met vs. Thr/Thr 1.4 (0.9, 2.2) Unadjusted 

    325/346 Met/Thr vs. Thr/Thr 1.0 (0.7, 1.3) Unadjusted 

  Han (2004)426 U.S. females 30-55 years an enrollment* 523/638 Met/Met vs. Thr/Thr 1.0 (0.7, 1.3) 
Age, menopausal status, HRT, 
data and time of blood draw, 

and fasting status 

    817/1075 Met/Thr vs. Thr/Thr 0.9 (0.7, 1.1) 
Age, menopausal status, HRT, 
data and time of blood draw, 

and fasting status 

  Jacobsen (2003)428 Danish males and females aged 50-65 at 
enrollment* 222/225 Met/Met vs. Thr/Thr 0.9 (0.6, 1.4) Age and smoking 
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    366/358 Met/Thr vs. Thr/Thr 1.0 (0.7, 1.4) Age and smoking 

  Smith (2003)322 U.S. females* 147/139 Met/Met vs. Thr/Thr 1.4 (0.8, 2.4) Age, family history, age at first 
live birth, and BMI 

    201/231 Met/Thr vs. Thr/Thr 0.9 (0.6, 1.3) Age, family history, age at first 
live birth, and BMI 

  Thyagarajan(2006)323 U.S. females* 227/166 Met/Met vs. Thr/Thr 1.3 (0.8, 2.1) Unadjusted 

    352/283 Met/Thr vs. Thr/Thr 1.0 (0.7, 1.3) Unadjusted 

  Zhang (2005)387 Chinese females aged 26-60 years* 140/195 Met/Met vs. Thr/Thr 0.6 (0.3, 1.0) Unadjusted 

    187/281 Met/Thr vs. Thr/Thr 0.9 (0.6, 1.4) Unadjusted 

 Colon adenoma Skjelbred (2006)324 Norwegian males and females* 527/198 Met/Met vs. Thr/Thr 0.9 (0.6, 1.4) Age 

    836/339 Met/Thr vs. Thr/Thr 0.8 (0.6, 1.1) Age 

  Stern (2005)325 U.S. males and females aged 50-74 years* 452/472 Met/Met vs. Thr/Thr 0.8 (0.6, 1.1) Age, sex, race, clinic, and 
exam date 

    660/695 Met/Thr vs. Thr/Thr 0.9 (0.7, 1.1) Age, sex, race, clinic, and 
exam date 

Colon 
carcinoma Skjelbred (2006)324 Norwegian males and females* 84/198 Met/Met vs. Thr/Thr 1.1 (0.5, 2.6) Age 

    137/339 Met/Thr vs. Thr/Thr 1.2 (0.6, 2.1) Age 

 
 
 
 
 

Esophageal 
squamous cell 
carcinoma 

Ye (2006)388 Swedish males and females* 42/254 Met/Met vs. Thr/Thr 1.2 (0.5, 3.2) 

Age, sex, SES, BMI, smoking, 
symptomatic gastroesophageal 
reflux, alcohol, and fruit and 

vegetable intake 

    70/421 Met/Thr vs. Thr/Thr 1.1 (0.6, 2.0) 

Age, sex, SES, BMI, smoking, 
symptomatic gastroesophageal 
reflux, alcohol, and fruit and 

vegetable intake 

 Gastric cancer Huang (2005)347 Polish males and females aged 21-79 
years* 153/227 Met/Met vs. Thr/Thr 0.6 (0.4, 1.1) Age, sex, and smoking 
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    256/337 Met/Thr vs. Thr/Thr 1.0 (0.7, 1.4) Age, sex, and smoking 

  Shen (2004)429 Chinese males and females* 188/166 Met/Met, Met/Thr 
vs. Thr/Thr 1.1 (0.5, 2.1) Unadjusted 

 Lung cancer David-Beabes 
(2001)398 

U.S. Caucasian and African-American 
males and females 199/389 Met/Met vs. Thr/Thr 1.1 (0.6, 1.8) Age, sex, smoking, and race 

    298/609 Met/Thr vs. Thr/Thr 0.9 (0.7, 1.3) Age, sex, smoking, and race 

  Jacobsen (2004)425 Danish males and females aged 50-65 at 
enrollment* 132/156 Met/Met vs. Thr/Thr 1.5 (0.9, 2.5) Age and smoking 

    218/226 Met/Thr vs. Thr/Thr 1.5 (1.1, 2.3) Age and smoking 

  Popanda (2004)281 German males and females aged 28-84 
years* 115/237 Met/Met vs. Thr/Thr 1.5 (0.9, 2.4) Unadjusted 

    160/390 Met/Thr vs. Thr/Thr 1.0 (0.7, 1.4) Unadjusted 

  Zienolddiny 
(2006)282 Norwegian males and females* 130/139 Met/Met vs. Thr/Thr 0.6 (0.3, 1.2) Age, sex, and PY 

    204/226 Met/Thr vs. Thr/Thr 0.8 (0.6, 1.2) Age, sex, and PY 

 Prostate cancer Ritchey (2005)350 Chinese males >18 years of age* 142/216 Met/Met vs. Thr/Thr 2.2 (0.4, 13) Age 

    156/245 Met/Thr vs. Thr/Thr 0.8 (0.5, 1.6) Age 

 Spina bifida Olshan (2005)250 California infants born 1983-1986† 73/208 Met/Met vs. Thr/Thr 1.1 (0.5, 2.2) Race/ethnicity 

    109/296 Met/Thr vs. Thr/Thr 1.1 (0.7, 1.8) Race/ethnicity 

 Oral cleft Olshan (2005)250 California infants born 1983-1986† 76/108 Met/Met vs. Thr/Thr 0.5 (0.2, 1.3) Race/ethnicity 

    109/296 Met/Thr vs. Thr/Thr 0.8 (0.5, 1.3) Race/ethnicity 

*Study of incident disease; †Study of prevalent disease; BMI, body mass index; PY, pack-years of smoking;  Results were extracted with preference for unadjusted estimates 

 



 

Table 18. Review of four case control studies examining the relationship between the XRCC3 polymorphisms and cancers and related traits, stratified 
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by smoking status. 

Variant Outcome Author (year) Study population 
No. cases/ 
controls Genotype contrast 

OR  
(95% CI) Covariate adjustments 

5’UTR-4541        

 Bladder cancer Matullo (2005)317 Italian males aged 34-76 years* 127/68 CC vs. TT among 
current smokers 0.9 (0.2, 3.6) Age 

    175/107 CT vs. TT among 
current smokers 1.0 (0.6, 1.7) Age 

    66/76 CC vs. TT among 
former smokers 0.5 (0.1, 3.3) Age 

    101/100 CT vs. TT among  
former  smokers 1.5 (0.8, 2.8) Age 

    25/63 CC vs. TT among never 
smokers 0.5 (0.04, 5) Age 

    29/96 CT vs. TT among never 
smokers 0.3 (0.1, 0.8) Age 

IVS6-14 
17893    

     

 Bladder cancer Matullo (2005)317 Italian males aged 34-76 years* 115/68 GG vs. AA among 
current smokers 0.3 (0.1, 0.8) Age 

    169/100 GA vs. AA among 
current smokers 0.7 (0.4, 1.3) Age 

    60/62 GG vs. AA among 
former smokers 3.0 (0.8, 11) Age 

    92/101 GA vs. AA among  
former  smokers 1.2 (0.7, 2.2) Age 

    17/55 GG vs. AA among 
never smokers 2.1 (0.4, 11) Age 

    27/91 GA vs. AA among 
never smokers 1.2 (0.5, 3.1) Age 

  Matullo (2006)286 European males and females* 77/645 GG vs. AA among 
nonsmokers 1.3 (0.6, 2.3) Unadjusted 

    107/1001 AG vs. AA among  
nonsmokers 0.9 (0.5, 1.4) Unadjusted 

 Lung cancer Matullo (2006)286 European males and females* 62/645 GG vs. AA among 
nonsmokers 0.8 (0.3, 1.9) Unadjusted 

    107/1001 AG vs. AA among  
nonsmokers 1.0 (0.6, 1.7) Unadjusted 

Thr241Met        

 Bladder cancer Matullo (2005)317 Italian males aged 34-76 years* 89/57 Met/Met vs. Thr/Thr 
among current smokers 2.7 (1.2, 5.8) Age 

    142/96 Met/Thr vs. Thr/Thr 
among current smokers 2.0 (1.1, 3.5) Age 

    59/61 Met/Met vs. Thr/Thr 
among former smokers 0.5 (0.2, 1.1) Age 

    92/101 Met/Thr vs. Thr/Thr 
among  former  smokers 0.8 (0.4, 1.6) Age 

    14/51 Met/Met vs. Thr/Thr 4.3 (1.1, 16) Age 
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among never smokers 

    23/89 Met/Thr vs. Thr/Thr 
among never smokers 2.0 (0.7, 5.7) Age 

  Matullo (2006)286 European males and females* 63/550 Met/Met vs. Thr/Thr 
among nonsmokers 1.0 (0.5, 2.0) Unadjusted 

    107/927 Met/Thr vs. Thr/Thr 
among nonsmokers 1.0 (0.6, 1.6) Unadjusted 

  Shen(2003)343 Italian males aged 20-80 years* 71/41 Met/Met vs. Thr/Thr 
≥ 26 PY 0.5 (0.2, 1.1) Age 

    23/35 Met/Met vs. Thr/Thr 
0<PY< 26 1.5 (0.5, 5.0) Age 

    10/22 Met/Met vs. Thr/Thr 
nonsmokers 1.1 (0.2, 5.9) Age 

    114/69 Met/Thr vs. Thr/Thr, 
≥ 26 pack-yrs 0.5 (0.3, 0.9) Age 

    48/71 Met/Thr vs. Thr/Thr 
0<PY< 26 1.2 (0.6, 2.6) Age 

    14/47 Met/Thr vs. Thr/Thr 
nonsmokers 0.5 (0.2, 1.8) Age 

 Lung cancer Misra (2003)279 Male Finns 50-69 years of age* 189/172 Met/Met vs. Thr/Thr 
among ever smokers 1.1 (0.6, 2.1) Smoking years and 

cigarettes/day 

    284/183 Met/Thr vs. Thr/Thr, 
among ever smokers 1.0 (0.7, 1.3) Smoking years and 

cigarettes/day 

  Matullo (2006)286 European males and females* 60/550 Met/Met vs. Thr/Thr 
among nonsmokers 1.4 (0.6, 3.0) Unadjusted 

    100/927 Met/Thr vs. Thr/Thr 
among nonsmokers 0.9 (0.5, 1.5) Unadjusted 

*Study of incident disease; †Study of prevalent disease; PY, pack-years;  Results were extracted with preference for unadjusted estimates 



 

D. Public Health Significance 

Although evidence linking cigarette smoking with atherosclerosis and its clinical is well 

established and consistent across age, sex, racial, and geographic strata1-8, the mechanisms by 

which smoking initiates vascular disease remain poorly understood. Identifying genes that in 

combination with cigarette smoke exposure influence the risk of atherosclerosis and 

atherothrombotic events could provides new opportunities to evaluate mechanistic laboratory 

models of CHD and further our understanding of the link between observed epidemiologic 

trends and CHD biology.  Cigarette smoking is also a powerful model to study atherogenic 

mechanisms and their biology.  Furthermore, considering that atherosclerosis is a generalized 

macrovascular disease, these results may inform research examining lesions in other vascular 

locales.  The analysis of DNA repair variants, cigarette smoke exposure, and two 

atherosclerosis measures also improves upon previous studies that generally focused on a 

small number of polymorphisms and were too small to precisely estimate the main effects of 

genotype, let alone the degree to which they modified the relationship between cigarette 

smoke exposure and atherosclerosis/atherothrombotic events. 
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CHAPTER IV 
 

RESEARCH PLAN 
 

A. Overview 

The present study utilized data collected from the ARIC Study, a community-based 

prospective cohort study examining cardiovascular and pulmonary disease, patterns of 

medical care, and disease variation over time.  ARIC investigators enrolled 15,792 

participants from four U.S. field centers located in NC, MN, MD, and AL.  Information 

pertaining to cardiovascular disease risk factors, socioeconomic factors, and family medical 

history was obtained at the home interview whereas extensive clinical data, including serum 

samples for genotyping, was obtained during the clinic examination.  The baseline 

examination was conducted between 1987 and 1989 and the three subsequent follow-up 

visits occurred at approximately three-year intervals through 1998.    

For Manuscript 1, we conducted maximum likelihood and hierarchical analyses using 

a piecewise constant exponential model that assessed the degree to which DNA repair 

pathway variants modified the relationship between ever-smoking cigarettes and incident 

CHD.   

For Manuscript 2, we characterized how DNA repair pathway variants modified the 

relationship between ever-smoking cigarettes and mean baseline IMT.  Maximum likelihood 

models were fit using linear regression methods.  Hierarchical models were fit using linear 

mixed effects models. 

 



 

B. The ARIC Study 

Study sample description 

ARIC, the parent population for this study, is an ongoing population-based 

longitudinal investigation examining cardiovascular and pulmonary disease, patterns of 

medical care, and disease variation over time.  The ARIC cohort was selected as a probability 

sample of 15,792 Caucasian and African American males and females from four United 

States geographic locales: Washington County, Maryland; Forsyth County, North Carolina; 

suburbs of Minneapolis, Minnesota; and Jackson, Mississippi. Eligible households in North 

Carolina were identified by area probability sampling while age-eligible participants in MS, 

MN, and MD were identified from driver’s licenses, voter registration cards, and 

identification cards.  The overall recruitment response proportion at cohort intake was 60%: 

African American males (42%), African American females (49%), Caucasian males (67%), 

and Caucasian females (68%). 

Home interviews were administered to each potential cohort member, followed by an 

invitation for clinical examination.  Researchers collected information pertaining to 

cardiovascular disease risk factors, socioeconomic factors, and family medical history at the 

home interview and extensive clinical data during the clinic examination.  Incident medical 

events were identified through an annual questionnaire (telephone administered), community 

surveillance, and examinations at three-year intervals through 1999.  ARIC investigators also 

conduct on-going surveillance of hospital admissions and mortality for all residents 35 to 74 

years of age in the four communities from which the original cohort was recruited.    

Construction of the Cohort Representative Sample 
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Of the 15,792 ARIC participants initially available, 14,255 participants met the 

following eligibility criteria: a) reported race of Caucasian and from NC, MN, or MD field 

centers or African American and from the NC or MS field centers (N= 103 ineligible), b) no 

history of CHD (N=1,102 ineligible), and c) no history of transient ischemic attack or stroke 

(N=332 ineligible).  The first criterion maintained adequate sample sizes in each race-center 

category for the weighted analysis and the second and third ensured that only incident 

atherothrombotic events were examined.  The selection of the cohort representative sample 

(CRS) was performed at baseline by stratifying the eligible study population into eight 

mutually exclusive groups based on age (≤ 55 years vs. > 55 years), sex, and race.  Different 

sampling fractions were applied to each stratum in an attempt to oversample higher-risk 

participants.  The CRS consisted of 1,065 participants, 85 of which were diagnosed with 

CHD over follow-up. 

C. Outcome assessment 

1. Incident CHD 

ARIC investigators classified an event as incident CHD if a participant met at least 

one of the following four criteria: (1) definite or probable myocardial infarction distinguished 

by ECG, cardiac pain, and/or enzymes; (2) definite fatal CHD: combinations of (a) no known 

possibly lethal non-atherosclerotic or non-cardiac atherosclerotic process or event, (b) 

angina, (c) history of CHD (MI or chest pain), and/or (d) death certificate listing the ICD-9 

codes 410-414, 427.5, 429.2, and/or 799 (Table 19); (3) silent MI detected by ECG; (4) 

coronary revascularization procedure (including percutaneous transluminal coronary 
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angioplasty and coronary artery byp

1,086 validated incident CHD cases were

2. IMT 

techniques
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ass graft surgery).  Through December 1998 a total of 

 identified in the ARIC cohort.  

Baseline carotid wall thickness was measured by B-mode ultrasound using validated 

460, scanning protocols common to each study center, and standardized central 

readings461.  The far walls of the left and right common carotid, carotid bifurcation, and the 

internal carotid arteries (six sites total) were measured at designated 1-cm lengths and 

averaged across as many 1-mm-apart intima-to-media (IMT) distances as were available.   

D. Exposure assessment 

ARIC has several metrics to assess cigarette smoking history, such as smoking 

intensity (cigarettes/day), duration, age at initiation, second hand smoke exposure 

(hours/week), and smoking status such as current smokers, former smokers, ever smokers 

(defined as > 400 cigarettes in a lifetime), and never smokers.  Although validation of 

reported smoking status using biomarkers of tobacco exposure was not attempted in the 

ARIC study, each measure was ascertained at baseline and updated at cohort re-examinations 

via an interviewer-administered questionnaire that captures changes in exposure and 

inconsistencies with previously reported smoking habits. Such inconsistencies served as an 

exclusion criterion at the time of case and CRS selection.   
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Table 19. ICD-9 codes and descriptions utiliz
Category
Isc

 

 

Symptoms, signs, and ill-
de

ed by ARIC investigation for the classification of CHD deaths. 
 ICD-9 Code Condition Includes 

hemic heart disease 410 Acute myocardial 
infarction 

• Cardiac infarction 
• Coronary (artery): 

o embolism 
o occlusion 
o rupture 
o thrombosis 

• Infarction of heart, myocardium, or ventricle 
• Rupture of heart, myocardium, or ventricle 
• ST elevation and non-ST elevation myocardial infarction 
• Any condition classifiable to 414.1-414.9 specified as acute or with a stated 

duration of 8 weeks or less 

411 Other acute and subacute 
forms of IHD 

• Postmyocardial infarction syndrome 
• Intermediate coronary syndrome 

 412 Old myocardial infarction • Healed myocardial infarction 
• Past myocardial infarction diagnosed on ECG (EKG) or other special investigation, 

but currently presenting no symptoms 
 413 Angina pectoris • Angina decubitus 

• Prinzmetal angina 
• Other and unspecified angina pectoris 

 414 Other forms of chronic 
IHD 

• Coronary atherosclerosis 
• Aneurysm and dissection of heart 
• Other specified forms of chronic IHD 
• Chromic IHD, unspecified 

Other forms of heart disease 427.5 Cardiac dysrhythmias • Cardiac arrest 

429.2 Cardiovascular disease, 
unspecified 

• Atherosclerotic cardiovascular disease 
• Cardiovascular arteriosclerosis 
• Cardiovascular: 

o degeneration (with mention of arteriosclerosis) 
o disease (with mention of arteriosclerosis) 
o sclerosis (with mention of arteriosclerosis) 

fined conditions 
799 Ill-defined and unknown 

causes of morbidity and 
mortality 

• Asphyxia and hypoxemia 
• Respiratory arrest 
• Cachexia 
• Cardiorespiratory failure 



 

E. DNA repair variant genotyping 

First stage of SNP genotyping 

The first stage of SNP genotyping was performed using matrix-assisted laser 

desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF)430 in Dr. Molly 

Bray’s laboratory at the University of Texas.  MALDI-TOF first amplifies the region of 

interest using PCR techniques, followed by enzymatic digestion of unincorporated 

dideoxynucleotides and single-stranded primers.  The PCR product is then extended by a 

single base pair using a mini-sequencing reaction containing oligonucleotide primers, 

dideoxynucleotides, and a thermostable polymerase (Thermosequenase, Amersham 

Pharmacia).  Extension products are then purified, concentrated, and combined with a matrix 

chemical that absorbs the laser energy and assists in sample mass determination.  Reaction 

byproducts are analyzed by the MGS1 software application that includes a database which 

identifies each sample, the mini-sequencing primers present, and the polymorphisms being 

genotyped.  The software then determines the masses of the unextended oligos, identifies 

which mass signals are present in the sample spectrum and assigns the genotype.  In addition, 

blind replicates were included to examine genotyping repeatability. 

Second stage of SNP genotyping 

The second genotyping stage used the BeadStation system (Illumina, Inc., San Diego, 

CA) and a custom oligonucleotide pool431 and was performed in Dr. Molly Bray’s laboratory.  

Briefly, double-stranded genomic DNA was labeled with biotin to facilitate the capture of 

single stranded DNA onto streptavidin-coated sepharose beads for purification of PCR 

template.  The PCR template was created using a highly specific polymerase and ligase that 

extend and ligate allele-specific primers that bind to complementary sequences surrounding 
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the variant sites and include universal primer sequences and an “address” sequence that is 

ultimately hybridized to the genotyping array.  The PCR template was amplified via the use 

of universal primers labeled with either Cy3 or Cy5 fluorescent tags, and the amplified 

products were hybridized to a fiber optic bundle array and imaged with the BeadArray 

Reader (Illumina).  Allele detection and genotype calling were performed using the GenCall 

and GTS Reports software (Illumina).   

Overall genotyping quality control 

An initial quality check was performed by the Bray laboratory, in which Hardy 

Weinberg Equilibrium (HWE) calculations were performed for each SNP in the entire 

population.  All SNPs demonstrated low missing frequencies and good quality scores.  The 

quality of each DNA plate was assessed and a cluster file was developed with the seven best 

plates on which to “train” all other data.  The identical cluster file, with minor modifications, 

was used for all genotype calling, ensuring no batch or plate bias in the data.  

 Further quality control was carried out as detailed below.  Controls internal to the 

assay were used to assess the completion of each assay step, quality standards for allele 

specific extension, hybridization, and PCR uniformity were verified for each plate, and each 

plate contained replicate QC samples.  Each plate contained numerous blank wells confirmed 

to have average intensity signals at or near zero.  In addition, each plate was verified to have 

no contamination present from previous assays.  Agreement across replicate samples 

exceeded 0.99 for every valid QC sample in the plate.  These data were also compared to five 

randomly chosen SNPs previously genotyped in the ARIC cohort and the mismatch 

proportion ranged from 0.005 to 0.02.  Overall 165 of the ARIC participants selected for this 
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study had no genotype data, of which 144 had no DNA and 21 were excluded as genotype 

calls were missing for most loci.  Three participants did not consent to genomic studies. 

F. Statistical analysis 

1. Assessment of population substructure 

In addition to the preliminary HWE calculations provided by the Bray lab, HWE was 

examined in the CRS, by race, for each DNA repair variant.  For a biallelic locus in a 

randomly mating population, where the frequency of alleles are represented by ‘p’ and ‘q’, 

the distribution of genotypes in the referent population should be p2 + 2pq + q2.  Deviations 

from HWE are assessed using a chi-square test.  Significant deviations from HWE may be 

indicative of laboratory error432 or a violation of the factors necessary to maintain HWE in a 

population, such as population admixture.  While the power of HWE to detect population 

admixture is small, assessing HWE before analysis can generally reduce false positive 

findings of genes underlying complex traits433. 

2. Analysis of incident CHD 

We initially employed a proportional hazards model and the pseudolikelihood, which 

accounted for the stratified random sampling and case-cohort design (the Barlow method).  

However, several covariates appeared to violate the proportional hazards assumption and/or 

their modest effect sizes complicated assessments of proportionality.  Incidence rate ratios 

(IRR) were estimated with piecewise constant exponential models (piecewise by year) and 

empirical standard errors434, 435.  

3. Analysis of mean IMT  
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As only 13% of study participants had full data for all six carotid artery sites, missing 

data were imputed for participants with at least one IMT measurement using sex- and race-

specific models adjusting for age, body mass index, and arterial depth (BMDP 5V).  Baseline 

mean IMT was then defined as the weighted IMT average at the six carotid artery sites after 

adjustment for measurement drift and reader differences462.  Estimated site-specific reliability 

coefficients obtained from 36 ARIC participants scanned at three visits 7-14 days apart were 

0.77, 0.73, and 0.70 for mean wall thickness at the carotid bifurcation, internal, and common 

carotid arteries, respectively463.  A natural log transformation was applied to correct for non-

normality. 

4. Measurement of cigarette smoking 

 We measured cigarette smoke exposure using the ever-smoking metric, although 

other smoking measures were available including intensity, duration, age at initiation, second 

hand smoke exposure, and smoking status.  Although ever-smoking considers all participants 

who reported ever smoking > 400 cigarettes as a homogeneous group, 90% of Caucasian and 

African American participants classified as ever-smokers reported ≥ 10 years of cigarette 

smoking (Figure 9).  While there is sure to be some misclassification of exposure to cigarette 

smoke, the distribution of smoking duration and intensity indices suggest that the majority of 

participants reporting ever-smoking actually experienced long-term exposure.  Practical 

constraints also limited our analytic options, as power would be reduced considerably if we 

considered a three-level categorization of cigarette smoke exposure and continuous 

parameterizations would also be infeasible given our hypothesis of modification by DNA 

repair variants.   
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Figure 9.  Distribution of cigarette smoking metrics by race in 8,152 ARIC participants reporting ever-smoking. 
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5. Genotype analysis 

All analyses were race-specific.  Consistency of SNP genotypes with Hardy-

Weinberg equilibrium (HWE) was evaluated among races by chi-square analysis and 

tagSNPs were identified using a pair-wise r2 ≥ 0.80.  A general genetic model assuming no 

mode of inheritance was used when ever-smoking-tagSNP cell frequencies exceeded ten; 

otherwise an autosomal dominant model was assigned.  Missing genotype data were imputed 

by race using fastPHASE464.  Inferred genotypes were used for analyses if the posterior 

probability estimate exceeded 0.90. 

6. Assessment of confounding 

Table 20.  Covariates identified as confounders by DAG analysis and existing parameterizations. 

Covariate description Coding 
Age As age (dichotomized at 55 years) was one of the stratified random sampling 

covariates, and was included as composite variable with sex in all analyses. 
Additional adjustment strategies within age strata was examined to account 
for residual confounding. 

Sex 
As sex was one of the stratified random sampling covariates, it was included 
as composite variable with age (dichotomized at 55 years) in all analyses. 

Physical activity*
Physical activity was assessed using three ordinal variables (provided by 
ARIC investigators) that range from low (1) to high (5).  The three physical 
activity indices were derived from the Baecke survey and correspond to 
physical activity from work, leisure, and sports activities.  Possible 
parameterizations include categorical indicator coding as suggested by the 
data.  

Alcohol intake*
Alcohol use is available as a continuous variable, defined as usual ethanol 
intake in grams/week using the original ARIC format.  Non-linear alcohol 
use effects was examined, considering the J-shaped relationship between 
alcohol use and CHD.  Possible parameterizations include splines or 
categorical indicator coding as suggested by the data. 

Study center Study center (categorical variable) was included in all analyses as the 
frequency of cigarette smoking and CHD may vary by study center, as 
might allele frequencies (for the univariable gene-CHD association 
analyses).   

*Covariates included only in analyses examining cigarette smoking. 

 

 105



 

 106

As the research is observational in nature, the potential for confounding exists.  

Confounders of the relationship between cigarette smoking and incident CHD was assessed 

with a directed acyclic graph (DAG)438, informed by subject matter knowledge.  The DAG 

representing the association between cigarette smoking and atherosclerosis is presented in 

Figure 10, informed from the literature.  Based on Figure 10, a minimally sufficient 

adjustment set comprising included age, sex, physical activity, study center, and alcohol 

intake was identified.   

 

7. Assessment of modification 

Figure 10. DAG of the association between cigarette smoking and atherosclerosis. 
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A central aspect of this project is the evaluation of modification of the relationship 

between tobacco exposure and incident CHD by DNA repair polymorphisms.  Additive 

interaction for generalized linear models was assessed using interaction contrast ratios 

(ICR)439.  For IRR analysis and a dominant genetic model, ICR = IRRAB– IRRA – IRRB+ 1, 

where IRRAB represents the joint effect of cigarette smoking and the polymorphism and IRRA 

and IRRB represent the main effects of cigarette smoking and the polymorphism, 

respectively.  Departures from zero suggest additive interaction. 

8. Hierarchical regression 

 Genetic analyses typically involve estimating numerous SNP-disease associations 

using standard analytic approaches including: 1) fitting a saturated model containing all 

genetic variants; 2) fitting a saturated model and then reducing it using a preliminary-testing 

algorithm (i.e. forward, stepwise, or backward selection); or 3) fitting numerous one-variant-

at-a-time models.  Approach 1 is unfeasible if parameters are nonestimable and may provide 

biased and inefficient estimates445.  Approach 2 excludes “nonsignificant” exposures despite 

biological plausibility or strength of association446, 447 while producing biased point and 

variance estimates,448, 449 and approach 3 neglects the correlation between SNPs.  

Furthermore, false positive associations, frequently reflecting a point estimate that is inflated 

and/or unstable450 are not addressed by these methods.  

 
 Hierarchical regression methods, also known as random-coefficient or multilevel 

modeling, are a natural extension of the conventional analyses described in Aims 2 and 5, as 

we are evaluating multiple DNA repair polymorphisms, which are related spatially and 

possibly functionally.  Hierarchical regression methods can generate estimates that are more 

stable than single-SNP associations, thus improving accuracy.   
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 An improved accuracy in hierarchical regression analyses is achieved by “correcting” 

overestimates of the observed variance.  Under independence, the variance of the distribution 

of estimates (VE) is approximately equal to the sum of the variance of the distribution of true 

values (VT) and random error, represented by the mean of the variances of the individual 

estimates (VM)451, 452. 

VE ≈ VT + VM

 Thus, estimates with smaller total error may be produced by “shrinking” unstable 

estimates towards the geometric mean of the ensemble of variants.  For example, if an 

estimate is far from the geometric mean and has a large standard error, it may have been 

unduly influenced by random error and its true but unobserved effect is closer to the 

geometric mean than the value estimated in the first stage model450.  Thus, we anticipate a 

reduction in total error by “shrinking” outlying conventional estimates toward the geometric 

mean if the geometric mean is reasonably close to the mean of the true values.   

 The degree of shrinkage is proportional to the precision of the estimate (measured in 

the first-stage model) and the prespecified variance of the parameter of interest (VT), 

discussed below.  However, the addition of a second stage will have little effect on estimates 

if adequate data are available445. The resulting group of shrunk estimates should have a 

distribution with variance less than the variance of the distribution of conventional estimates, 

and will outweigh any bias introduced by the shifts450. 

 There are three assumptions inherent in hierarchical methods: 1) there is no 

systematic bias in the conventional estimates that compromise the validity of “shrinkage to 

the mean”, 2) the true values and random errors are approximately normal, and 3) the true 
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values of the effect estimate are exchangeable453.  Exchangeability implies an approximately 

equal prior for each SNP given an approximately equivalent sample size454.   

 Hierarchical regression requires two models.  In the first stage, incident CHD is 

regressed on individual variants and confounders, using the model: 

E(Y|X,W) = α + Xβ + Wγ, 

where X is a n-row matrix of DNA repair variants, W is a n-row matrix of confounders and 

y, a vector of fixed coefficients, is presumed to be randomly sampled conditional on X, W455.   

 The second stage, representing “categories of exchangeability”, is added to improve 

the accuracy in estimating β and contains variables believed to determine the magnitude of, 

or explain some variability between, the individual target parameters455.  For example, 

exchangeability could be presumed for SNPs in the same gene or genes in the same pathway 

if the effects are thought to arise from a common distribution with an unknown mean.  Of 

note, exchangeability is a weaker assumption than one presuming that all effects are the 

same454.  The second stage model is expressed as:  

β = Zπ + δ = µ + δ 

where Z is a n-by-p matrix of known prior covariates, π is a column vector of p prior 

coefficients corresponding to the effects of second-stage covariates on CHD, and δ are the 

random coefficient estimates, independent normal random variables with mean zero and 

variance τ2 that represent effects not accounted for by the ‘group’ effect of the second-stage 

parameters.  The distribution of β is referred to as the prior distribution, and integrates what 
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is known prior to observing the data.  The hyperparameters µ and τ2 are the prior mean and 

prior variance (VT) of β455.  The final mixed-effects generalized linear model is: 

 (E(Y|X, Z, W)) = α + XZπ + Xδ + Wγ

 VT can be either estimated from the study data (the empirical-Bayes (EB) approach) 

or defined by investigators using background information (the semi-Bayes (SB) approach)450, 

456.  We used both SB and EB methods.  While EB estimates all parameters from the data, 

this method can “overshrink" estimates, especially in the context of large datasets with 

numerous parameters.   

 Although SB can outperform EB, it requires accurate prior information regarding the 

parameters, which may not be available456 .  For example, in SB analyses VT values are 

chosen such that at least 95% of the true associations would be captured by the interval 

2(1.96)√VT.  A VT = 0.35 presumes, with 95% certainty, that the IRR for each SNP, after 

accounting for the second-level priors, would fall within a 10-fold range around its prior 

mean ((ln(10))/3.92)2 ≈ 0.35), assuming normality.  As the true value of VT is unknown, a 

range of estimates are often used to determine how sensitive the results are to the choice of 

VT.  Large VT values imply considerable residual effects of exposure beyond that explained 

by the second-stage covariates, while smaller VT values indicate that the effects of exposure 

are well captured by the second-stage covariates.   In addition, values of VT can vary for 

different first stage exposures.  While we may not have adequate information to accurately 

define VT for the genetic effects, we can define VT values to reflect plausible ranges for the 

effect of smoking on CHD. SAS commands PROC GLIMMIX457 and PROC MIXED were 

used to fit the generalized and general linear hierarchical models. 

, 
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Hierarchical analysis and interaction 

 Hierarchical regression methods can also be extended to incorporate effect measure 

modification by including priors for genetic and environmental effects.  While our sample 

size did not permit evaluating modification of the CHD-smoking or IMT-smoking 

relationship for all genetic effects simultaneously (i.e. including the environmental factor, all 

genetic factors, and all product terms in a single model), individual and joint effects of 

smoking and a given variant can be assessed in models including the main effects of all other 

variants and confounders458.  An example Z matrix for the interaction between cigarette 

smoke exposure and the XRCC1 variant rs1475933 is presented in Table  21. 

Table  21.   Potential Z matrix (prior) for the interaction between cigarette smoke exposure and 
the XRCC1 variant rs1475933. 
Effect Variant Type XRCC1 Cigarette smoke Cigarette smoke 

and rs1475933 
XRCC1 rs1475933 Intronic 1 0 1 
 rs1799778 Intron 1 0 0 
 rs1799782 Trp194Arg 1 0 0 
 rs25486 Intron 1 0 0 
 rs25487 Arg339Gln 1 0 0 
 rs3213245 UTR 1 0 0 
 rs3213282 Intron 1 0 0 
 rs915927 Pro206Pro 1 0 0 
 rs25489 His280Arg 1 0 0 
 rs2228487 His107Arg 1 0 0 
 rs2307187 UTR 1 0 0 
 rs2307189 Thr42Thr 1 0 0 
 rs25474 Leu514Pro 1 0 0 
 rs25496 Ala72Val 1 0 0 
Cigarette smoke . . 0 1 1 

*Matrix does not account for MAF < 0.05, HWE < 0.001, or LD between SNPs within a given gene. 
 

Construction of the hierarchical regression Z matrices 

 There are numerous Z matrices (e.g. priors) that may be informative when assessing 

the main and joint effects of DNA repair genes (Table 22).  The first apparent SNP grouping 
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would be by gene, presented in Table 23, where the SNP effects are considered exchangeable 

within a given gene.  SNPs could also be grouped by SNP type within a given gene, across 

genes (Table 24), or across DNA repair pathways.  A variant of the Z matrices presented in 

Table 22 may also be considered by assigning a score of -1 to variants hypothesized to have 

opposite effects453 (e.g. a negative coefficient), as informed by the functional literature. 

 While the analysis strategy presented in Table 22 is feasible for main effect 

estimation, the method by which the joint effects of DNA repair variants and cigarette 

smoking is assessed would necessitate a different model for each SNP considered in each 

prior matrix.   

Table 22.  Potential Z matrices for hierarchical models by estimation strategy. 

Analysis strategy Construction of the Z matrix (prior) 
Main effect estimation 

Group SNPs by gene 
• All SNPs are exchangeable within a given gene 

 
Group SNPs by DNA repair pathway 

• All SNPs are exchangeable within a given pathway 

 Analyze all SNPs simultaneously 
• All DNA repair SNPs are considered exchangeable 

Joint effect estimation 
Group SNPs by gene 

• All SNPs are exchangeable within a given gene 

 
Group SNPs by DNA repair pathway 

• All SNPs are exchangeable within a given pathway 

 Analyze all SNPs simultaneously 
• All DNA repair SNPs are considered exchangeable 
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Table 23.  Example of Z matrix (prior) for SNPs by gene. 

Gene* Variant Type XRCC1 XRCC3 XPD hOGG1 APEX1 

XRCC1 rs1475933 Intron 1 0 0 0 0 
 rs1799778 Intron 1 0 0 0 0 

 rs1799782 Trp194Arg 1 0 0 0 0 

 rs25486 Intron 1 0 0 0 0 

 rs25487 Arg339Gln 1 0 0 0 0 

 rs3213245 UTR 1 0 0 0 0 

 rs3213282 Intron 1 0 0 0 0 

 rs915927 Pro206Pro 1 0 0 0 0 

 rs25489 His280Arg 1 0 0 0 0 

 rs2228487 His107Arg 1 0 0 0 0 

 rs2307187 UTR 1 0 0 0 0 

 rs2307189 Thr42Thr 1 0 0 0 0 

 rs25474 Leu514Pro 1 0 0 0 0 

 rs25496 Ala72Val 1 0 0 0 0 

XRCC3 rs1799796 Intron 0 1 0 0 0 

 rs3212024 UTR 0 1 0 0 0 

 rs3212057 UTR 0 1 0 0 0 

 rs861531 Intron 0 1 0 0 0 

 rs861539 Met241Thr 0 1 0 0 0 

 rs1799795 Intron 0 1 0 0 0 

 rs3212038# UTR 0 1 0 0 0 

 rs1799794 UTR 0 1 0 0 0 

XPD rs1052555 Asp711Asp 0 0 1 0 0 
 rs1052559  Gln751Lys 0 0 1 0 0 

 rs50871 Intron 0 0 1 0 0 

 rs1799793 Asn312Asp 0 0 1 0 0 

 rs3916874 Intron 0 0 1 0 0 

 rs1618536 Intron 0 0 1 0 0 

hOGG1 rs1052133 Cys326Ser 0 0 0 1 0 

 rs1805373 Gln229Arg 0 0 0 1 0 

 rs3219008 Intron 0 0 0 1 0 

 rs2072668 Intron 0 0 0 1 0 
APEX1 rs1048945 His51Gln 0 0 0 0 1 
 rs3136817 Intron 0 0 0 0 1 
 rs3136820 Glu148Asp 0 0 0 0 1 
 rs3136814 UTR 0 0 0 0 1 

*Matrix does not account for MAF < 0.05, HWE < 0.001, and LD between SNPs within a given gene. 
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9. Multiple comparisons 

One consideration is multiple comparisons.  As no solid a priori evidence suggestive 

of an association between specific DNA repair variants, cigarette smoking, and incident CHD 

or subclinical disease exists, all DNA repair polymorphisms were examined.  We did account 

for testing multiple hypotheses by adjusting alpha.  Instead, this research focused upon 

estimating the main and joint effects of cigarette smoking and DNA repair polymorphisms 

rather than testing for statistical significance.   

Table 24.  Examples of Z matrices (priors) for DNA repair variants by SNP type. 

Gene* Variant Type Nonsynonym
ous Synonymous Intronic UTR 

XRCC1 rs1475933 Intron 0 0 1 0 
 rs1799778 Intron 0 0 1 0 
 rs1799782 Trp194Arg 1 0 0 0 
 rs25486 Intron 0 0 1 0 
 rs25487 Arg339Gln 1 0 0 0 
 rs3213245 UTR 0 0 0 1 
 rs3213282 Intron 0 0 1 0 
 rs915927 Pro206Pro 0 1 0 0 
 rs25489 His280Arg 1 0 0 0 
 rs2228487 His107Arg 1 0 0 0 
 rs2307187 UTR 0 0 0 1 
 rs2307189 Thr42Thr 0 1 0 0 
 rs25474 Leu514Pro 1 0 0 0 
 rs25496 Ala72Val 1 0 0 0 
XRCC3 rs1799796 Intron 0 0 1 0 
 rs3212024 UTR 0 0 0 1 
 rs3212057 UTR 0 0 0 1 
 rs861531 Intron 0 0 1 0 
 rs861539 Met241Thr 1 0 0 0 
 rs1799795 Intron 0 0 1 0 
 rs3212038# UTR 0 0 0 1 
 rs1799794 UTR 0 0 0 1 
XPD rs1052555 Asp711Asp 0 1 0 0 
 rs1052559  Gln751Lys 1 0 0 0 
 rs50871 Intron 0 0 1 0 
 rs1799793 Asn312Asp 1 0 0 0 
 rs3916874 Intron 0 0 1 0 
 rs1618536 Intron 0 0 1 0 
hOGG1 rs1052133 Cys326Ser 1 0 0 0 
 rs1805373 Gln229Arg 1 0 0 0 
 rs3219008 Intron 0 0 1 0 
 rs2072668 Intron 0 0 1 0 
APEX1 rs1048945 His51Gln 1 0 0 0 
 rs3136817 Intron 0 0 1 0 
 rs3136820 Glu148Asp 1 0 0 0 
 rs3136814 UTR 0 0 0 1 
*Matrix does not account for MAF < 0.05, HWE < 0.001, and LD between SNPs within a given gene. 
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G. Sample size and statistical power 

1. Statistical power for incident CHD 

Figure 11. Statistical power for single-SNP associations in the African American and Caucasian ARIC 
participants for a fixed sample size assuming a two-sided statistical test and α = 0.05 by MAF. 
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 Power curves, by race, to detect single-SNP associations for a range of MAFs are 

presented in Figure 11.  Among Caucasians, MAFs for the DNA repair variants (Table 25) 

ranged between 0.001 and 0.49, with 78% having a MAF ≥ 0.20 and we have at least 80% 

power to detect an OR exceeding 1.50 when the MAF is ≥ 0.15.  Within the African 

American stratum MAFs range from 0.002 to 0.43 (mean = 0.20), with 65% having a MAF ≥ 

15%.  Although underpowered for rare alleles or subtle effects, we have at least 80% to 

detect an OR exceeding 1.75 when the MAF is ≥ 15% among African Americans.  However, 

these power curves are approximations, as they do not incorporate the sampling strategy or 

the weighting by person-time and presume all participants have complete data.   

2. Statistical power for mean IMT 
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Figure 12.  Statistical power for single-SNP associations in Caucasian ARIC participants for rs1048945 
and rs3136820 assuming a fixed sample size, two-sided statistical tests, and α = 0.05, by contrast 
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rs3136820 (MAF = 0.48) rs1048945 (MAF = 0.03) 

 Power curves for tagSNPs with the highest and lowest MAF in Caucasian CRS 

members for each ever-smoking – tagSNP stratum are presented in Figure 12.  Standard 

deviation estimates for each ever-smoking stratum were estimated in ARIC Caucasian 

participants.  The software n_Query advisor 4.0 (2000) was used to complete power 

calculations.  With regards to the rs1048956 ever-smoking main effect, we have at least 80% 

power to detect a difference in baseline mean IMT exceeding 0.04 mm.  As expected, the 

statistical power to detect differences in baseline mean IMT when considering the tagSNP 

main effect or modification by ever-smoking is quite dismal and does not exceed 80% even 

when differences in baseline mean IMT as large as 0.10 are considered.  Conversely, we have 

at least 80% power to detect all main and joint effect estimates when a baseline mean IMT 

difference as low as 0.06 and tagSNP rs3136820 is considered.  However, our estimated 

power curves are approximations, as they do not incorporate the sampling strategy, 

confounders, or the hierarchical regression methods 
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tical power for hierarchical regression 

Estimating power for multilevel analyses is complicated, since a variable has effects 

ultiple levels.  Generally the critical factor determining power for multilevel analyses is 

ber of higher-level units459 (i.e., the number of participants, rather than the number of 

observations per participant).  Since a well-established power calculation method was not 

available for hierarchical regression models except in overly simplified situations, we used 

multiple regression analysis with fixed effects instead.  As our primary interest is in genotype 

effects, other covariates can be regarded as nuisance parameters.  An index of the effect size 

the analyses could detect is provided by the difference in the R2 values (the proportion of 

variance in the dependent variable which the model accounts for) between a full model that 

includes genotype and a reduced model with genotype removed.   

The software n_Query advisor 4.0 (2000) was used to complete power calculations.  

Power was explored over a range of 0.20 – 0.30 for the multiple correlation (R2).  Based on 

our calculations, power approaches 0.80 with a sample as small as 623 persons when the 

reduced model accounts for 20% of the variance in CHD (as the case among the African 

American stratum), and the DNA repair variant increases the total variance by at least 1%.  

With a sample of 900, an absolute difference as small as 0.69% (or 0.93%) can be detected 

with 80% (or 90%) power.  The power increases as the proportion of the total variance that is 

explained by a reduced model increases, assuming other conditions are held fixed.  For 

example, if the multiple correlation coefficient of 30% (or 50%) is explained by the reduced 

model, a sample size as low as 544 (or 387) is sufficient to detect an 1% increase in R2. As 

our total sample sizes for Caucasians and African Americans are 1,528 and 621, respectively, 

we expect to attain high statistical power for these analyses.  



Table 25. Hardy-Weinberg Equilibrium P - values and minor allele frequency estimates, by race, for 36 DNA repair variants. 
     Caucasians* African Americans*  

                        

Gene Cytogenic 
location  Type HWE† P-value HWE† P-value MAF‡Variant MAF‡

XRCC1 19q13.2    0.41 rs1475933 Intron 0.81 0.23 0.33 
     rs1799778 Intron 0.88 0.38 0.37 0.22 
     rs1799782 Trp194Arg 0.96 0.07 0.87 0.05 
     0.36 rs25486 Intron 0.22 0.63 0.22 
   Ar ln  rs25487 g339G 0.46 0.38 0.76 0.15 
    51 rs3213245 UTR 0. 0.40 0.70 0.41 
  r 82 I on 0.68 s32132 ntr 0.43 0.86 0.43 
    0.87 0.41 rs915927 Pro206Pro 0.17 0.40 
     1.00 0.04 0.36 rs25489 His280Arg 0.05 
    . 0 1.0 rs2228487 His107Arg 0.002 
    . 0 . rs2307187 UTR 0 
    . 0 1.0 0.rs2307189 Thr42Thr 002 
    1.0 0.001 rs25474 Leu514Pro 1.0 0.002 
    . 0 rs25496 Ala72Val . 0 
XRCC3 14q32.3   0.88 0.32 rs1799796 Intron 0.18 0.15 
    0.69 0.31 rs3212024 UTR 0.18 0.15 
    0.98 0.001 0.77 rs3212057 UTR 0.02 
    0.71 0.41 0.09 rs861531 Intron 0.30 
    0.53 0.39 0.88 rs861539 Met241Thr 0.23 
    0.53 0.05 0.58 rs1799795 Intron 0.06 
   0.20 0.32 0.49 rs3212038# UTR 0.32 
    0.44 0.20 rs1799794 UTR 0.68 0.23 
XPD 19q13.3   0.20 0.35 rs1052555 Asp711Asp 0.75 0.11 
     0.37 0.39 0.02 0.24 rs1052559 Gln751Lys
    0.70 0.47 0.69 0.09 rs50871 Intron
    0.21 0.25 0.74 rs1799793 Asn312Asp 0.35 
    0.002 0.19 0.55 rs3916874 Intron 0.26 
    0.04 0.34 rs1618536 Intron 1.00 0.37 
hOGG1 3p26.2   0.24 0.24 rs1052133 Cys326Ser 0.47 0.17 
    . 0 rs1805373 Gln229Arg 0.58 0.08 
    0.08 0.21 rs3219008 Intron 0.04 0.41 
    0.24 0.23 0.66 rs2072668 Intron 0.27 
APEX1 14q11.2-q12   0.51 0.03 0.88  rs1048945 His51Gln 0.01
    0.34 0.24 0.96 rs3136817 Intron 0.15 
    0.06 rs3136820 Glu148Asp 0.49 0.91 0.36 
    0.94 rs3136814 UTR 0.06 1.00 0.04 
*Metrics calculated in the cohort representative sam (CRS); †Hardy-Weinberg Equilibrium; ‡Minor allele frequency; #Poor quality score ple 
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CHAPTER V 
 

RESULTS 
 

ABSTRACT 

Cigarette smoke contains over 50 mutagenic compounds and is associated with 

atherosclerotic conditions. As heritable differences in DNA repair ability can influence the 

effect of environmental exposures such as cigarette smoke, we conducted a series of case-

cohort analyses to examine how variation in five DNA repair genes (hOgg1, APEX1, 

XRCC1, XPD and XRCC3) modified the association between ever-smoking and incident 

coronary heart disease (CHD) in the Atherosclerosis Risk in Communities (ARIC) cohort.  

All incident CHD cases identified from 1987-98 (n=1,086) and a random sample (n=1,065) 

were selected from eligible participants (n=14,255). Analyses were race-stratified and 

adjusted for sampling strategy, study center, alcohol intake and physical activity. Incidence 

rate ratios (IRR) were estimated by piecewise constant models.  Departures from additivity 

were measured with interaction contrast ratios (ICR). Hierarchical modeling was used to 

improve estimation by incorporating priors into models examining genotype-by-smoking 

interaction. Although tagSNP main effects were generally null, when ever-smoking and 

priors for genetic (within gene) and environmental effects were added to the first-stage 

model, tagSNPs rs3212024 [XRCC3, ICRXX vs. OO = 1.1 (-0.7, 2.8), ICRXO vs. OO = 0.6 (-0.1,

A. Manuscript 1: DNA repair genes, cigarette smoking, and coronary heart disease: 
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1.4)] and rs50871 [XPD, ICRXX vs. OO = 1.2 (0.2, 2.2), ICRXO vs. OO = 0.8 (0.3, 1.4)] were 

associated with increases in the estimated effect of ever-smoking on incident CHD, while  

tagSNPs rs1799782 [XRCC1, ICRXX,XO vs. OO = -0.7 (-1.8, 0.3)] and rs861531 [XRCC3, 

ICRXX vs. OO = -1.1 (-2.8, 0.6), ICRXO vs. OO = -1.2 (-2.8, 0.3)] were associated with decreases.  

Though imprecise, our results suggest that DNA repair pathway variants may modify the 

effect of cigarette smoking on incident CHD.  Further work examining these pathways is 

warranted. 

1. Introduction 

Coronary heart disease (CHD) poses a substantial public health burden, as it is the 

main cause of death in Western societies and has been predicted to remain so in future 

decades(1).  Although evidence of increased risk for CHD associated with cigarette smoking 

is well established and consistent across age, sex, racial, and geographic strata (2-8), the 

mechanisms by which smoking initiates and/or precipitates vascular events remain poorly 

understood.  Cigarette smoke contains approximately 4,800 chemicals (9), 67 of which are 

known to be mutagenic (10) and animal research has demonstrated that the tobacco smoke 

mutagens can induce and stimulate a proliferative vascular smooth muscle cell phenotype 

(11, 12).  Elevated levels of DNA adducts have also been found in the vascular tissues of 

smokers (13, 14).  As differences in responses to mutagen exposure have been attributed in 

part to heritable variation in DNA repair capacity (15), the identification of genes that 

influence the relationship between cigarette smoke exposure and atherosclerotic endpoints 

could provide new insights into the etiology of this major disease. 
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Although there are multiple DNA repair mechanisms, the base excision repair (BER), 

nucleotide excision repair (NER), and double-strand break (DSB) pathways are of the most 

importance for the repair of tobacco-related DNA damage(16).  The BER pathway operates 

on small lesions that arise during inflammatory responses, spontaneously within the cell, or 

from exogenous agents(17), whereas NER is responsible for bulky helix-distorting DNA 

lesions such as pyrimidine dimers, larger chemical adducts, and cross-links(18).  The DSB 

pathway repairs damage that affects both DNA strands (19). 

While BER, NER, and DSB pathways involve over 130 genes(20), we focused on 

five that have been implicated in tobacco-related cancers: 8 – hydroxy-2’ – deoxyguanosine-

glycosylase/apurinic lyase (hOGG1), apurinic/apyrimidinic endonuclease (APEX1), X-ray 

repair cross complementing, group 1 (XRCC1), xeroderma pigmentosum D (XPD), and X-ray 

repair complementing defective repair in Chinese hamster cells 3 (XRCC3).  hOgg1 catalyzes 

the removal of 7,8-dihydro-8-oxoguanine from DNA(21-23), one of the most mutagenic 

DNA lesions(24). APEX1 is considered the rate-limiting step in BER(25, 26) and processes 

abastic sites.  While XRCC1 has no known catalytic activity, it recognizes and binds single-

strand DNA breaks(27) and complexes with other BER components(28-30).  XPD is an ATP-

dependent 5’-3’ helicase (31) and XRCC3 is involved in the homologous recombination DSB 

repair pathway(32).   

Few population-based studies examining the relationship between DNA repair 

variants, cigarette smoke and athrothrombotic events have been published.  Furthermore, no 

study has yet performed a comprehensive analysis of the role of DNA repair genes with 

regards to CHD or considered them as mediators of the cigarette smoke – CHD relationship.  

We measured the extent to which DNA repair variants modified the relationship between 
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cigarette smoking and incident CHD in individuals enrolled in the biracial Atherosclerosis 

Risk in Communities (ARIC) study.
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2. Materials and methods 

a. Study population and sources of data 

ARIC, the parent population for this study, is a population-based longitudinal 

investigation of cardiovascular and pulmonary diseases in participants sampled from four 

locales: Washington County, Maryland (MD); Forsyth County, North Carolina (NC); 

Minneapolis, Minnesota (MN); and Jackson, Mississippi (MS) (33).  Participants were 

followed via annual telephone interviews, clinic examinations approximately every three 

years 1987-1999, and ongoing hospital and death certificate record abstraction.  The study 

protocol was approved by the Institutional Review Board of each center, and consent was 

obtained from each participant.   

Of the 15,792 ARIC participants, 14,255 met the following eligibility criteria: 1) self-

reported race of Caucasian from the NC, MN, or MD field centers or African American from 

the NC or MS field centers (N= 103 ineligible) and no history of 2) CHD (N=1,102 

ineligible) or 3) transient ischemic attack or stroke (N=332 ineligible).  A stratified random 

sample of eligible participants (cohort random sample, CRS) served as the reference group 

(N = 1,066, 85 of whom experienced a CHD event during follow-up).  CRS selection was 

performed at baseline by stratifying eligible participants into eight groups based on age (≤ 55 

years vs. > 55 years), sex, and race.  

An event was classified as incident CHD if it met at least one of the following study 

criteria(34): 1) definite or probable myocardial infarction, 2) definite fatal CHD, 3) silent MI 

or 4) coronary revascularization procedure.  Through December, 1998 a total of 1,086 

incident CHD cases were identified.  Cigarette smoking was ascertained at baseline using an 
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interviewer-administered questionnaire.  We measured exposure to cigarette smoke using the 

ever-smoking metric defined as > 400 cigarettes in a lifetime.   

 We did not attempt to capture all genetic variability within the XRCC1, APEX1, 

hOGG1, XPD, and XRCC3 genes.  Instead, targeted SNP selection was informed by 

functional data, minor allele frequency (MAF, > 0.05), SNP type with preference for non-

synonymous SNPs, association studies in the cancer literature, and patterns of pair-wise 

linkage disequilibrium (LD) reported in the CEPH population by the Hapmap project 

(http://www.hapmap.org/).  We used matrix-assisted laser desorption/ ionization time-of-

flight mass spectrometry(35) for the first genotyping stage and the BeadStation system 

(Illumina Inc., San Diego, CA) with a custom oligonucleotide pool for the second (36).  

Agreement across replicate samples exceeded 0.99 for every valid sample.  The data were 

also compared to five randomly chosen SNPs previously genotyped in the ARIC cohort and 

the mismatch proportion ranged from 0.005 to 0.02.   

b. Statistical Methods 

Incidence rate ratios (IRR) were estimated with piecewise constant exponential 

models (37, 38).  Pearson’s chi-square tests were used to assess whether observed genotype 

distributions were consistent with expected Hardy-Weinberg equilibrium (HWE) 

proportions.  A general genetic model assuming no mode of inheritance was used when all 

CHD-ever-smoking-tagSNP cell frequencies exceeded ten; otherwise an autosomal dominant 

model was assumed.  Pair-wise LD statistics were calculated in the CRS and tagSNPs were 

identified using an r2 ≥ 0.80.  Missing genotype data were imputed by CHD status and race 
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using fastPHASE(39).  Inferred genotypes were used for analyses if the posterior probability 

estimate exceeded 0.90. 

Confounders were identified from a directed acyclic graph(40) that considered age, 

sex, study center, physical activity, alcohol intake, serum lipoproteins concentrations, body 

composition, diabetes, and blood pressure. A minimally sufficient adjustment set comprising 

age, sex, physical activity, field center, and alcohol intake was identified.  Physical activity 

was assessed using three variables that measured leisure, sport, and work-related physical 

activity(41).  Alcohol intake was measured as usual ethanol intake (grams/week).   

Additive interaction was assessed using interaction contrast ratios (ICR)(42).  When 

considering a dominant genetic model, ICR = IRRAB– IRRA – IRRB+ 1, where IRRAB 

represents the effect of those exposed jointly to cigarette smoking and the polymorphism.  

IRRA and IRRB represent the effects of cigarette smoking and the polymorphism in the 

absence of the other, respectively.  Departures from zero suggest additive interaction. 

Hierarchical modeling 

Genetic analyses typically evaluate numerous SNP-disease associations.  Standard 

analytic approaches include: 1) fitting a saturated model containing all variants, 2) model 

building using a preliminary-testing algorithm (e.g. stepwise variable selection), or 3) fitting 

one-variant-at-a-time models.  Approach one is unfeasible if parameters are nonestimable 

and may provide biased and inefficient estimates (43).  Approach two excludes 

nonsignificant exposures despite biological plausibility or effect size (44, 45) while 

producing biased point and variance estimates(46), and approach three neglects the 
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correlation between SNPs.  Furthermore, false positive associations, frequently reflecting a 

point estimate that is inflated and/or unstable(47) are not addressed by these strategies.  

 We addressed the potential for false positive associations and biased point estimates 

in part with hierarchical regression models, since they produce estimates with smaller total 

error by “shrinking” unstable estimates towards the geometric mean of the ensemble of 

variants.  The degree of shrinkage was proportional to the precision of each estimate and a 

prespecified prior variance, which represented the range of effects remaining after the first- 

and second-level effects were estimated (48). 

 Hierarchical models required two stages.  In the first stage, incident CHD was 

regressed on individual variants and covariates (48).  tagSNP beta coefficients were then 

regressed in a second-stage linear model as a function of prior covariates (i.e. tagSNPs s are 

considered random observations around the second-stage prior covariates) and a pre-

specified prior variance.  The second stage prior covariates represented categories of 

exchangeability, added to improve the accuracy in parameter estimation and contained 

variables believed to determine the magnitude of, or explain some variability between, the 

individual tagSNP estimates(48).  Exchangeability was presumed if a group of tagSNPs were 

thought to arise from a common distribution with an unknown mean and was a weaker 

assumption than one presuming all effects are equal(49).  We evaluated three categories of 

exchangeability: all SNPs were exchangeable, SNPs within a given gene were exchangeable, 

and SNPs within a given pathway were exchangeable.      

 The pre-specified prior variance τ2 was estimated both from the study data (the 

empirical-Bayes (EB) approach) and defined by investigators using prior information (the 
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semi-Bayes (SB) approach) (47, 50).  τ2 values for SB analyses were chosen such that at least 

95% of the true associations were captured by the interval EXP(2(1.96)√ τ2).  τ2
 = 0.35 

presumed that 95% of all true IRRs lay within a 10-fold range around the prior mean.  While 

our sample size did not permit the evaluation of modification of the CHD-smoking 

relationship by all tagSNPs simultaneously, interactions between cigarette smoking and each 

variant were assessed individually in models including the main effects of all other variants 

and confounders (51).  Hierarchical models were fit using PROC GLIMMIX (SAS, Cary, 

NC)(52). 

 Baseline characteristics by race and case status are presented in Table 1.  Compared 

to eligible ARIC participants, incident CHD cases were more likely to be older, male, and 

ever-smokers, and reported slightly more alcohol intake and less physical activity.  The CRS 

had a higher proportion of males and older participants than the case group, due to sample 

design 

MAF estimates and HWE P – values are presented in Table 2.  Genetic variation for 

the 36 SNPs was captured by 20 tagSNPs among Caucasians and 22 tagSNPs among African 

Americans.  MAF estimates were generally high in Caucasians, suggesting adequate 

precision to measure both the main and joint effects of the tagSNPs.  The smaller sample size 

(total N = 622, 55% with full tagSNP data) limited the power to detect effects among African 

Americans. 

Maximum likelihood (i.e., non-hierarchical) estimates that included all tagSNPs, an 

indicator for ever-smoking status, and product term(s) for the tagSNP and ever-smoking 

3. Results 

 

 127



 

status are presented in supplemental Figures 1 (Caucasians) and 2 (African Americans).  The 

ever-smoking estimates were relatively precise among Caucasians (95% confidence limit 

ratio range = 2.1 - 3.6 (CLR, defined as the upper limit of the confidence interval divided by 

the lower limit)).  In general, elevated rates of incident CHD among ever-smokers were 

suggested (IRR range = 0.85 – 3.66, 95% of IRR estimates above 1.00).  Numerous 

estimated tagSNP IRRs were considerably imprecise (e.g. the estimated joint effect of 

rs3213282 and ever-smoking: IRRXX vs. OO = 7.45, 95% CLR = 55.4; the estimated main 

effect of rs3213245, IRRXX vs. OO = 0.22, 95% CLR = 33.3), making these findings 

unpersuasive. ericans participants were even more variable and 

difficult to interpret.

The co-occurrence of multiple elevated effect estimates and wide variation in the 

estimated precision complicated interpretation of the entire panel of results presented in 

supplemental Figures 1 and 2.   Thus, the analyses were extended by examining three 

categories of exchangeability (all tagSNPs are exchangeable, tagSNPs within each gene are 

exchangeable, and tagSNPs within each DNA repair pathway are exchangeable) and two 

prior variance specifications (τ2 = 0.162 and 0.35, corresponding to a 5- and 10- fold residual 

effect range around the prior mean, respectively).  The EB method was employed, but this 

approach appeared to over-shrink effect estimates and often unrealistically estimated τ2 = 0 

among the African American stratum (i.e. corresponding to a 95% certainty that there were 

no residual tagSNP effects after accounting for second-stage covariates). 

Main and joint estimated IRRs specifying that tagSNPs within each gene were 

exchangeable and τ2 = 0.35 are presented in Figures 1 (Caucasians) and 2 (African 

Americans).  This approach resulted in the estimation of six second-stage fixed effects for 

 Results among African Am
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analyses examining modification by DNA repair tagSNPs; five prior means that 

corresponded to each DNA repair gene (e.g. the estimated main and joint effects of 

rs1799782 were shrunk towards the estimated XRCC1 fixed effect) and a sixth representing 

the estimated effect of ever-smoking (e.g. the main effect of ever-smoking and the joint 

effect of rs1799782 and ever-smoking were shrunk to the smoking fixed effect).     

Incorporating a prior mean and variance improved the precision of unstable estimates 

(e.g. joint effect of the ever-smoking - rs3213282 XO vs. OO contrast , maximum likelihood 

approach: IRR = 3.99, 95% CLR = 9.1; hierarchical approach: IRR = 2.01, 95% CLR = 3.7) 

while producing little change in already stable estimates (e.g. estimated effect of ever-

smoking for tagSNP rs3219008, maximum likelihood approach: IRR = 2.07,  95% CLR = 

2.3; hierarchical approach: IRR = 1.97,  95% CLR = 2.3).  This pattern that was even more 

apparent within the African American stratum.  Although two other categories of 

exchangeability and τ2 = 0.162 were considered, results were generally similar although more 

precise when specifying τ2 = 0.162 (results not shown).      

As in the maximum likelihood approach, the estimated effect of ever-smoking was 

associated with an increased rate of incident CHD among Caucasians, consistent with the 

large body of published literature on this topic.  The point estimates (i.e., geometric means of 

the posterior probability distributions), ranged from 0.96 to 2.87 and 95% of them exceeded 

the null value.  The estimated tagSNPs main effects were generally close to the null.  

Exceptions included rs861531 [IRRXX vs. OO = 2.00, 95% CLR = 3.6; IRR XO vs. OO = 1.42 95% 

CLR = 6.8], rs50871 [IRRXX vs. OO = 0.92, 95% CLR = 3.5, IRRXO vs. OO = 0.68, 95% CLR = 

3.0] and rs1052555 [IRRXX vs. OO = 0.78, 95% CLR = 4.9, IRRXO vs. OO = 1.46, 95% CLR = 

3.0].   
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When evaluating additive interaction, tagSNPs rs3213282 (XRCC1), rs50871 (XPD), 

and rs3212024 (XRCC3) were associated with increases in the estimated effect of ever-

smoking on incident CHD while tagSNPs rs1799782 (XRCC1) and rs861531 (XRCC3) were 

associated with decreases (Figure 3).  Other ICR estimates were difficult to reconcile, for 

example the ICR estimates for rs1052133 which suggest a protective effect for heterozygotes 

but a causative effect for minor allele homozygotes.  The marked imprecision apparent for 

the hOgg1 variants may reflect the fact that there were only two hOGG1 tagSNPs identified 

among Caucasians, thus limited data were available to estimate a prior mean.
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Table 26.   (MS1: Table 1)  Selected characteristics of the 14,255 study participants, by race and case status. ARIC Study baseline examination 
 Caucasians African Americans

CRS (N=698) 

All eligible ARIC 
Participants 
(N=10,428) 
54 (49, 59) 56 (50, 60) 

All eligible ARIC 
Participants 

(N=3,827) 
53 (48, 58) 

Incident CHD 
cases (N=831) 

Incident CHD 
cases (N=255)  CRS (N=367) 

55 (50, 59) 56 (52, 61) 57 (51, 60) Median age at baseline (IQR) 

595 (71.6) 384 (55.0) 4,741 (45.5) Male (%) 136 (53.3) 194 (52.9) 

209 (57.1) 2,010 (52.5) 

Current smokers (%) 280 (33.7) 1,120 (29.3) 

Former smokers (%) 320 (38.5) 269 (38.6) 3,590 (34.4) 50 (19.8) 96 (26.2) 887 (23.2) 

Median pack-years of smoking (IQR) 

Median alcohol intake, grams/week (IQR) 0 (0, 45.3) 0 (0, 60.4) 0 (0, 52.8) 0 (0, 26.4) 

Leisure 2.25 (2.00, 2.75) 2.50 (2.00, 2.75) 

 Sport 2.50 (2.00, 3.00) 2.50 (2.00, 3.00) 2.00 (1.75, 2.50) 2.00 (1.50, 2.25) 

 Work 2.00 (0, 3.00) 2.50 (1.00, 3.00) 2.25 (0, 3.00) 2.50 (1.00, 3.00) 2.50 (1.00, 3.00) 

Mean person days at-risk 2,132.4 3,586.3     

1,416 (37.0) 

600 (72.2) 423 (60.7) 6,142 (58.9) 163 (63.9) Ever smokers (%) 

154 (22.1) 2,552 (24.5) 111 (43.9) 113 (30.9) 

21.7 (0, 41.0) 7.5 (0, 28.3) 6.0 (0, 29.0) 10.5 (0, 26.0) 3.4 (0, 20.3) 0.5 (0, 17) 

0 (0, 39.6) 0 (0, 13.2) 

2.00 (1.75, 2.25) 2.00 (1.50, 2.50) 2.00 (1.75, 2.25) 2.00 (1.75, 2.50) Median exercise (IQR) 

2.00 (1.75, 2.50) 2.00 (1.75, 2.50) 

 2.25 (0, 3.00) 

3,578.2 2,056.7 3,391.3 3,469.7

ARIC, Atherosclerosis Risk in Communities Study; CHD, coronary heart disease; CRS, cohort random sample; IQR, Interquartile range 

 



 

Table 27.  (MS1: Table 2)  Hardy-Weinberg Equilibrium P - values and minor allele frequency estimates for 36 
DNA repair variants in 698 Caucasian and 367 African American ARIC participants selected into the CRS. 
 Caucasians African Americans

Cytogenic 
location Gene Variant SNP 

function 
HWE*  
P-value MAF* HWE*  

P-value MAF*

Base Excision Repair (BER) 

XRCC1 19q13.2 rs1799782 Trp194Arg 0.08 1.0 0.05†

  rs25489 0.19 0.34 0.02¥

  rs25486 Intron 0.31 0.36† 0.54 0.23†

0.68 0.92 0.43†

  rs3213245 0.55 0.92 0.41†

  rs1475933 Intron 0.93 0.41‡ 0.17 0.34†

0.98 0.33 0.23‡

  rs25487 0.49 0.79 0.15†

  rs915927 Pro206Pro 1.0 0.42‡ 0.21 0.40‡

. . 0¥

  rs2307187 . . 0¥

  rs2307189 Thr42Thr . 0¥ . 0¥

. 1.0 0.002¥

  rs25496 . . 0¥

hOGG1 3p26.2 rs1052133 Cys326Ser 0.81 0.24† 0.36 0.18†

0.11 0.11 0.42†

  rs1805373 . 0.90 0.08†

  rs2072668 Intron 0.63 0.24‡ 1.0 0.28†

1.0 1.0 0.009¥

  rs3136820 Glu148Asp 0.12 1.0 0.36†

 rs3136817 0.53 0.96 
1.0 0.08 0.14†

Nucleotide Excision Repair (NER) 

XPD 19q13.3 rs1052555 Asp711Asp 0.32 1.0 
rs1799793 Asn312Asp 0.87 0.36† 0.87 
rs1618536 Intron 0.26 1.0 
rs3916874 Intron 0.38 0.0002 
rs50871 Intron 0.94 0.46† 0.87 

rs1052559 Gln751Lys 0.46 0.40‡ 0.08 

XRCC3 14q32.3 rs861531 Intron 0.57 0.21 
  0.69 1.0 
  rs1799794 UTR 0.33 0.67 
  rs3212024 0.60 0.87 
  rs861539 Thr241Met 0.69 0.69 
  0.82 0.65 
  rs3212038 UTR <0.0001 . 
  rs3212057 UTR 1.0 1.0 
*Metrics calculated in the cohort representative sample (CRS); †tagSNP; ‡non-tag SNP, not analyzed further;  §Poor quality score, not 
analyzed; ¥MAF too low, not analyzed; HWE, Hardy-Weinberg Equilibrium, MAF, minor allele frequency 

0.07†

0.04†His280Arg 

 0.44† rs3213282 Intron 

0.41†UTR 

 0.37‡ rs1799778 Intron 
0.37‡Arg339Gln 

 0¥ rs2228487 His107Arg 
0§UTR 

 0¥ rs25474 Leu514Pro 
0§Ala72Val 

 0.21† rs3219008 Intron 
0¥Gln229Arg 

0.03†rs1048945 His51Gln APEX1 14q11.2-q12 
0.48†

0.15† 0.23†Intron 
  0.03†rs3136814 UTR 

0.35† 0.11‡

 0.12† 
 0.45† 0.13† 
 0.26† 0.07† 
 0.09† 
 0.24† 
Double-Strand Break Repair (DSB) 

0.40† 0.30†

0.01† 0.02¥rs1799795 Intron 
0.19† 0.20†

0.30† 0.16†UTR 

0.39‡ 0.24†

0.31‡ 0.15‡rs1799796 Intron 
0.38§ 0§

0.001¥ 0.02¥
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Figure 13.  (MS1: Figure 1)  Main and joint estimated effects of 20 DNA repair tagSNPs and ever-smoking (IRRs and 95% confidence intervals) on the rate of incident 
CHD in 1,160 Caucasian ARIC participants specifying tagSNPs within each gene as exchangeable and a 10-fold 95% IRR residual effect range (τ2 = 0.35). 
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IRR, incidence rate ratio; ICR, interaction contrast ratio; CHD, coronary heart disease; the XO vs. OO contrast is presented atop of the XX vs. OO contrast when a general genetic model was used. 
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Figure 14.  (MS1: Figure 2)  Main and joint estimated effects of 22 DNA repair tagSNPs and ever-smoking (IRRs and 95% confidence intervals) on the rate of incident 
CHD in 345 African American ARIC participants specifying tagSNPs within each gene as exchangeable and a 10-fold 95% IRR residual effect range (τ2 = 0.35). 
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IRR, incidence rate ratio; ICR, interaction contrast ratio; CHD, coronary heart disease; the XO vs. OO contrast is presented atop of the XX vs. OO contrast when a general genetic model was used. 

 



 

Figure 15.  (MS1: Figure S1)  Main and joint estimated effects of 20 DNA repair tagSNPs and ever-smoking (IRRs and 95% confidence intervals) on the rate of 
incident CHD in 1,160 Caucasian ARIC participants including a gene-smoking product term for one SNP and the main effects of all others. 
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Figure 16.  (MS1: Figure S2)  Main and joint estimated effects of 22 DNA repair tagSNPs and ever-smoking (IRRs and 95% confidence intervals) on the rate of 
incident CHD in 345 African American ARIC participants including a gene-smoking product term for one SNP and the main effects of all others. 
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IRR, incidence rate ratio; ICR, interaction contrast ratio; CHD, coronary heart disease; the XO vs. OO contrast is presented atop of the XX vs. OO contrast when a general genetic model was used. 



 

4. Discussion 

 We examined the relationship between ever-smoking, DNA repair polymorphisms, 

and incident CHD.  We show that modification of the association between ever-smoking and 

incident CHD by DNA repair variation is a potentially informative hypothesis that warrants 

further investigation.  A priori implementation of prior probability distributions through 

hierarchical analysis adjusted implausible estimates and enhanced precision, thus facilitating 

the interpretation of the entire panel of results.  This represents a likely improvement upon 

traditional analytic methods. 

 Mutagens in cigarette smoke may cause genetic damage by binding to, or interacting 

with DNA, although mutagen exposure does not invariably result in chromosomal damage, 

as pathways including DNA repair must fail for the latter to occur (15).  If a polymorphism 

increases or decreases the ability of a protein to repair DNA damage, evaluating the variant 

in the context of cigarette smoke exposure can provide insights into the mechanisms by 

which cigarette smoke promotes atherothrombotic events.  

While functional data are limited, some are published for certain variants we 

evaluated.   Functional data for Arg339Gln (rs25487, tagged by rs25486 (r2 = 0.97)) 

suggested that cells with the 399Gln polymorphism are more sensitive to chemically induced 

DNA damage(53, 54). In contrast, we show that the variant is associated with a decrease in 

the estimated effect of ever-smoking on incident CHD in a community-based study 

population.  Several studies of smoking-related cancers also described discrepant genetic 

effects when smoking status was evaluated(55-57).  While studies demonstrated that cells 

with the 280His polymorphism (rs25489) accumulated single strand DNA breaks after 
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exposure to genotoxic chemicals(58), our results were null, as were results for the XPD 

variants Gln751Lys (rs1052559, tagged by rs1052555, r2 = 0.982) and Asn312Asp 

(rs1799793).  

Results for the XRCC1 Trp194Arg (rs1799782) and XRCC3 Thr241Met (rs861539, 

tagged by rs861531, r2 = 0.982) variants appear consistent with published literature.  

Mutation assays examining the Trp194Arg suggested that cells with the Trp allele had lower 

numbers of chromosomal breaks (54), which is consistent with our analysis showing that the 

Trp allele was associated with a decrease in the estimated effect of ever-smoking (ICR = -

0.74 (-1.79, 0.31).  When Thr241Met was examined in human XRCC3-/- cell lines that 

exhibited a phenotype of increased sensitivity to DNA cross-linking agents, expression of the 

minor allele did not fully restore the wild-type phenotype(59).  Although our data on the 

main effects of Met/Thr and Met/Met indicated an increase in the rate of incident CHD (IRR 

= 2.00 (1.05, 3.83) and 1.42 (0.55, 3.72)) (Figure 3), ICR estimates suggest that the minor 

allele is associated with a decrease in the causative effect of ever-smoking.  If replicated by 

other studies, these results can contribute to bridge the laboratory, experimental, and 

population-based inquiries.   

Reconciling population-based findings with functional data remains a challenge, 

particularly since our work focused on clinically manifest, downstream outcomes of 

processes that putatively initiate or promote the underlying morbidity, namely the extent and 

severity of atherosclerosis.  Although it represents a target outcome in the efforts to reduce 

the population burden of CVD, CHD is a complex phenotype influenced by numerous 

environmental and metabolic factors.  Such complexities make it less likely that individual 
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variants have detected effects in a decades-long process and point to the need for 

consideration of gene-gene and gene-environmental contexts.     

Although the polymorphisms we examined were carefully selected, our analysis was 

limited to 36 variants from five genes (six of which were monomorphic).  As the pathways 

we examined contain over 130 genes(20), additional work to evaluate the role of DNA repair 

genes is needed.  In addition, while the indirect candidate association approach we used is a 

powerful method, it assumes little allelic heterogeneity within loci and the common 

disease/common variant paradigm.  This strategy would be unsuccessful if the genetic 

component of atherothrombosis involves numerous rare variants at many loci(60).   

As no a priori evidence suggestive of an association between specific variants, 

cigarette smoking, and incident CHD existed, all tagSNPs were examined.  We did not 

account for testing multiple hypotheses by adjusting the alpha level criterion, as we focused 

upon describing the magnitude and precision of the estimates, rather than significance 

testing, while exercising awareness of the potential for random error in the interpretation of 

results.  We also did not account for uncertainty using a weighted analysis.  The posterior 

probability estimates for the inferred genotypes above the 0.90 criterion consistently 

exceeded 0.99: thus, a weighted analysis would have had little effect on the results.  Point 

estimates using a non-imputed data set or considering cases and CRS members together 

during imputation were comparable (results not shown).    

We assessed cigarette smoke exposure using the ever-smoking metric, although this 

measure implies that all participants who reported ever smoking > 400 cigarettes are fairly 

homogeneous as a group.  The ever-smoking metric is conservative as it does not account for 
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the magnitude or duration of cigarette smoke exposure; thus our results should be robust to 

other smoking measures.  Indeed, results were similar when using the pack-years metric 

dichotomized at 20 (results not shown).  Practical study size considerations also limited our 

ability to consider a three-level categorization of cigarette smoke exposure and a continuous 

parameterization of cigarette smoking exposure would be infeasible given the hypothesis of 

modification by DNA repair variants.   

The application of hierarchical regression methods without attention to model 

assumptions can produce estimates that are more biased than those obtained from traditional 

methods(61).  Attempts to improve accuracy could result in increased bias if, for example, 

the second-stage fixed effects are poor measures of the true means.  However, the three 

different categories of exchangeability we considered provided consistent estimates, 

suggesting that the results are fairly robust.  While the prior information was somewhat 

crude, a hierarchical model with even a simplified second stage can outperform maximum 

likelihood methods(62).  Drawbacks include the requirement that participants have full data 

on all variables, which may be problematic, especially as researchers assay larger and larger 

regions of the genome. 

Cigarette smoking is a major threat to public health and an established risk factor for 

CHD.  Although imprecise, particularly for African Americans and variants with low MAFs, 

our results can stimulate inquiries into potential mechanisms linking tobacco exposure and 

atherothrombotic disease.  Of note, no previous study has yet to perform a comprehensive 

analysis of the role of DNA repair genes with regards to CHD or considered their role as 

biologically plausible mediators of the cigarette smoke – incident CHD relationship.  Future 

studies in different populations will be required to validate our findings and improve our 
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understanding of the complex relationship between DNA repair variants, cigarette smoking, 

and CHD.
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B. Manuscript 2: DNA repair genes, cigarette smoking, and intimal medial thickness: 

The Atherosclerosis Risk in Communities (ARIC) Study  

ABSTRACT 

Although the association between cigarette smoking and atherosclerosis is well established 

and consistent across age, sex, racial, and geographic strata, the mechanisms by which 

smoking initiates vascular disease remain poorly understood.  As differences in responses to 

mutagen exposure have been attributed in part to heritable variation in DNA repair capacity, 

we examined the degree to which variation in five DNA repair genes (hOgg1, APEX1, 

XRCC1, XPD and XRCC3) modified the association between ever-smoking and baseline 

mean intima-medial thickness (IMT) in the Atherosclerosis Risk in Communities (ARIC) 

cohort.  A stratified random sample of 698 Caucasians and 367 African Americans was 

selected from eligible participants (n=14,255). Analyses were race-stratified and adjusted for 

age, sex, study center, alcohol intake and physical activity.  Baseline mean IMT differences 

were estimated using hierarchical linear methods that incorporated priors into models 

including all tagSNPs and models extended to examine gene-by-smoking interaction.  When 

ever-smoking and priors for genetic (within gene) and environmental effects were added to 

the first-stage model tagSNPs rs31366814 [joint effectXO/XX vs. OO = 0.14 (0.03, 0.24)],  

rs3213282 [joint effectXO vs. OO = 0.09 (0, 0.17); joint effectXX vs. OO = 0.08 (-0.02, 0.19)], and 

rs3213245 [joint effectXO vs. OO = 0.09 (0.02, 0.17); joint effectXX vs. OO = 0.09 (-0.02, 0.20)] 

were associated with an increase in the estimated effect of ever-smoking on baseline mean 

IMT.  Though imprecise, our results suggest that DNA repair pathway variants might modify 

the effect of cigarette smoking on subclinical atherosclerosis.  Further work examining these 

pathways is warranted. 
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1. Introduction 

Atherosclerosis is the main pathophysiological process responsible for coronary heart 

(CHD), cerebrovascular, and peripheral vascular disease(1) and is highly prevalent, as 

subclinical disease begins early in life (2).  Noninvasive imaging techniques provide valid 

and reproducible means to quantify the burden of subclinical atherosclerosis in vivo, among 

them B-mode ultrasound of the extracranial carotid arteries (3).   Although distal from the 

epicardial coronary arteries, subclinical atherosclerosis measured in the extracranial carotid 

beds is associated with prevalent and incident atherothrombotic outcomes, in both the ARIC 

cohort(4, 5) and in other study populations(6, 7).   

The proliferation of smooth muscle cells (SMC) is a fundamental mechanism in the 

pathophysiology of atherosclerosis(8), although there is disagreement on the exact role SMC 

proliferation plays.  One paradigm, the response to injury or inflammation hypothesis, posits 

that the joint action of growth factors, proteolytic agents, and extracellular matrix molecules 

induce SMC migration from the media and their consequent proliferation in the intima(9).  

Thus, SMC proliferation is only a reactive process.   

Another theory, the monoclonal hypothesis, contends that a predisposed SMC 

population is responsible for the consequent proliferation that typifies atherosclerosis(9).  

Introduced in 1974(10), the monoclonal hypothesis suggests that plaque initiation of 

atherosclerotic plaques requires a mutation or viral infection that transforms a SMC into the 

progenitor of a proliferative clone, analogous to the evolution of neoplastic cells(10).  

Similarly, increased mutation rates and extensive microsatellite instability have been reported 
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in human atherosclerotic lesions(11, 12) and SMCs cultured from plaques retain transforming 

potential throughout many cell generations(13). 

Rather than alternatives, the response to injury and monoclonal hypotheses of 

atherogenesis may be complementary.  Initial events leading to plaque formation may reflect 

the response to injury hypothesis, whereas clone formation and expansion, transforming an 

inflammatory process into a neoplastic process, requires a longer time.  As a corollary, the 

first stage of atheroma formation may be more readily reversible than the following 

phases(14).  One factor that ties the response to injury and monoclonal hypotheses of 

atherosclerosis together is exposure to mitotic / proliferative agents, for example compounds 

found in cigarette smoke.  Chronic cigarette smoke exposure has been shown to promote 

SMC proliferation, a process fundamental to atherogenesis(8) and animal research has 

demonstrated that the tobacco smoke mutagens benzo(a)pyrene and 1,3-butadiene can induce 

and stimulate a proliferative vascular SMC phenotype(15, 16).   

As differences in responses to mutagen exposure have been attributed in part to 

heritable variation in DNA repair capacity(17), the identification of DNA repair pathway 

variants that influence the relationship between cigarette smoke exposure and atherosclerosis 

could provide new insights into the etiology of this major disease.  Using data from the 

Atherosclerosis Risk in Communities Study (ARIC), we examined the extent to which five 

DNA repair genes (hOgg1, APEX1, XRCC1, XPD, and XRCC3) from three pathways (base 

excision repair (BER), nucleotide excision repair (NER), and double-strand break repair 

(DBS)) modified the relationship between cigarette smoking and mean carotid intimal-medial 

thickness (IMT), a marker of generalized atherosclerosis.  
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2. Materials and methods 

a. Study population and sources of data 

ARIC, the parent population for this study, is a population-based longitudinal study of 

cardiovascular and pulmonary diseases selected as a probability sample of 15,792 Caucasian 

and African Americans from four U.S. locales(18).  Participants were followed via annual 

telephone interviews, clinic examinations every three years from 1987-1999, and ongoing 

hospital and death certificate record abstraction.  The study protocol was approved by the 

Institutional Review Board of each center, and consent was obtained from each participant.   

Of the 15,792 ARIC participants, 14,255 met the following eligibility criteria: 1) self-

reported race of Caucasian from the NC, MN, or MD field centers or African American from 

the NC or MS field centers (N= 103 ineligible), and no history of 2) CHD (N=1,102 

ineligible), or 3) transient ischemic attack or stroke (N=332 ineligible).  A stratified random 

sample of all eligible ARIC participants (cohort random sample, CRS) was assembled (N = 

1,065) at study baseline by stratifying eligible participants into eight mutually exclusive 

groups based on age (≤ 55 years vs. > 55 years), sex, and race.  Sampling fractions varied in 

an attempt to over-sample higher-risk participants. 

Baseline carotid wall thickness was measured by B-mode ultrasound using validated 

techniques(3), scanning protocols common to each study center, and standardized central 

readings(19).  The far walls of the left and right common carotid, carotid bifurcation, and the 

internal carotid arteries (six sites total) were measured at designated 1-cm lengths and 

averaged across as many 1-mm-apart intima-to-media (IMT) distances as were available.  As 

only 13% of study participants had full data for all six sites, missing data were imputed for 
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participants with at least one IMT measurement using sex- and race-specific models 

adjusting for age, body mass index, and arterial depth (BMDP 5V).  Baseline mean IMT was 

then defined as the weighted IMT average at the six carotid artery sites after adjustment for 

measurement drift and reader differences(20).  Estimated site-specific reliability coefficients 

obtained from 36 ARIC participants scanned at three visits 7-14 days apart were 0.77, 0.73, 

and 0.70 for mean wall thickness at the carotid bifurcation, internal, and common carotid 

arteries, respectively(21).  A natural log transformation was applied to correct for non-

normality. 

 Exposure to cigarette smoke was ascertained at baseline using an interviewer-

administered questionnaire.  Ever-smoking was defined as greater than 400 cigarettes in a 

lifetime and used to classify study participants as ever- or never-smokers for these analyses.  

We did not attempt to capture all genetic variability within the XRCC1, APEX1, hOGG1, 

XPD, and XRCC3 genes.  Instead, selection of the 36 SNPs was informed by functional data, 

minor allele frequency (MAF, > 0.05), SNP type with preference for non-synonymous SNPs, 

association studies in the cancer literature, and patterns of pair-wise linkage disequilibrium 

(LD) reported in the CEPH population by the Hapmap project (http://www.hapmap.org/).  

Genotyping was performed in two stages.  We used matrix-assisted laser desorption/ 

ionization time-of-flight mass spectrometry(22) for the first stage and the BeadStation system 

(Illumina, Inc., San Diego, CA) with a custom oligonucleotide pool(23) for the second.  

Agreement across replicate samples exceeded 0.99 for every valid sample.  The data were 

also compared to five randomly chosen SNPs previously genotyped in the ARIC cohort and 

the mismatch proportion ranged from 0.005 to 0.02.   
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b. Statistical methods 

All analyses were race-specific.  Consistency of SNP genotypes with Hardy-

Weinberg equilibrium (HWE) was evaluated among races by chi-square analysis and 

tagSNPs were identified using a pair-wise r2 ≥ 0.80 (24).  A general genetic model assuming 

no mode of inheritance was used when ever-smoking-tagSNP cell frequencies exceeded ten; 

otherwise an autosomal dominant model was assigned.  Missing genotype data were imputed 

by race using fastPHASE(25).  Inferred genotypes were used for analyses if the posterior 

probability estimate exceeded 0.90. 

Confounders of the relationship between cigarette smoking and atherosclerosis were 

identified from a directed acyclic graph (26) that considered the following variables: age, 

sex, study center, physical activity, alcohol intake, serum lipoprotein concentrations, body 

composition, diabetes, and blood pressure. A minimally sufficient adjustment set 

compromising age, sex, physical activity, field center, and alcohol intake was identified.  

Physical activity was assessed using three variables that measured leisure, sport, and work-

related physical activity (27).  Alcohol intake was measured as usual ethanol intake 

(grams/week).  Both variables were collected during the baseline personal interview.  

Hierarchical modeling 

Genetic analyses typically involve evaluating numerous SNP-disease associations.  

Standard analytic approaches include: 1) fitting a saturated model containing all variants, 2) 

reducing the saturated model using a preliminary-testing algorithm, or 3) fitting numerous 

one-variant-at-a-time models.  These approaches are infeasible if parameters are 

nonestimable, ignore correlation between SNPs, and may provide biased and inefficient 
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effect estimates(28-31).  Furthermore, false positive associations, frequently reflecting point 

estimates that are inflated and/or unstable(32) are not fully addressed by these approaches.  

 Instead, hierarchical regression models may be implemented.  In hierarchical models, 

estimates with smaller total error are produced by shrinking unstable estimates towards the 

mean of the ensemble of variants.  The degree of shrinkage is proportional to the precision of 

each estimate and a prespecified prior variance that represents the range of effects remaining 

after the first- and second-level effects are estimated(32). 

 Hierarchical models require two stages.  In the first stage, mean IMT is regressed on 

all variants and covariates (32).  tagSNP beta coefficients are then regressed in a second-

stage linear model as a function of prior covariates (i.e. tagSNPs s are considered random 

observations around the second-stage prior covariates) and a pre-specified prior variance.  

The second stage prior covariates represent categories of exchangeability, which are added to 

improve the accuracy in parameter estimation and contain variables believed to determine the 

magnitude of, or explain some variability between, the individual SNP estimates (32).  

Exchangeability is presumed if a group of tagSNPs are thought to arise from a common 

distribution with an unknown mean and is a weaker assumption than one presuming all 

effects are equal (33).  We evaluated three categories of exchangeability: all SNPs were 

exchangeable, SNPs within a given gene were exchangeable, and SNPs within a given 

pathway were exchangeable.      

 The prespecified prior variance τ2 is estimated either from the study data (the 

empirical-Bayes (EB) approach) or defined by investigators using prior information (the 

semi-Bayes (SB) approach) (34, 35).  τ2 values for SB analyses are chosen such that at least 
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95% of the true associations would be captured by the interval (2(1.96)√ τ2).  τ2
 =

presumes that 95% of all true mean IMT differences lie within a 0.3 range around the prior 

mean, assuming normality.  τ2 = ∞ yields ordinary maximum-likelihood estimates (36).  

While our sample size did not permit us to evaluate modification of the estimated mean IMT-

ever-smoking relationship by all tagSNPs simultaneously, individual and joint effects of 

smoking and each variant were assessed individually in models including the main effects of 

all other variants and confounders (37).  Hierarchical models were fit using PROC MIXED 

(SAS, Cary, NC).   

 0.00574 
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3. Results 

 Baseline characteristics by race are presented in Table 1.  The CRS had a higher 

proportion of males and older ARIC participants due to the sampling strategy.  HWE P -

values and minor allele frequency (MAF) estimates for 36 DNA repair variants are presented 

in Table 2.  Genetic variation was captured by 20 tagSNPs among the Caucasian stratum and 

22 tagSNP among African Americans; only these SNPs will be considered further.  The 

smaller sample size (N = 365, 65% with full tagSNP data) limited the power to detect effects 

among the African American stratum. 

Maximum likelihood (i.e. non-hierarchical) models that included all tagSNPs, an 

indicator for ever-smoking status, and product term(s) for the tagSNP and ever-smoking 

status are presented in supplemental Figures 1 (Caucasians) and 2 (African Americans).

estimated main effects of ever-smoking status were relatively precise among Caucasians 

(95% confidence limit difference (CLD) range = 0.091 – 0.175) and suggested an increase in 

estimated baseline mean IMT among ever-smokers (range of estimated differences = 0.039 – 

0.121, 100% of differences above 0).  The estimated tagSNP main effects were considerably 

imprecise (e.g. the estimated joint effect of rs3213282 and ever-smoking: difference in 

baseline mean IMTXX vs. OO = -0.04, 95% CLD = 0.44; the estimated main effect of 

rs1052133: difference in baseline mean IMTXX vs. OO = 0.124, 95% CLD = 0.39).  While the 

later estimate suggests considerable effects of tagSNP rs1052133 on differences in baseline 

mean IMT, the marked imprecision makes the finding unpersuasive. Results in the African 

American stratum were more variable and difficult to interpret.

  The 
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The co-occurrence of multiple elevated effect estimates and wide variation in the 

estimated precision complicated interpretation of the entire panel of results presented in 

supplemental Figures 1 and 2.  Thus, the analyses were extended by examining three 

categories of exchangeability (all tagSNPs are exchangeable, tagSNPs within each gene are 

exchangeable, and tagSNPs within each DNA repair pathway are exchangeable) and two 

prior variance specifications (τ2 = 0.00574 and 0.0026, corresponding to residual effect 

ranges of 0.3 and 0.2, respectively).  The EB method was evaluated, but this approach 

appeared to over-shrink estimates, as is typical with this approach when the number of 

parameters is large relative to the sample size (35, 36, 38).

Main and joint estimated differences in baseline mean IMT obtained from 

hierarchical models specifying that tagSNPs within each gene were exchangeable and τ2 = 

0.00574 are presented in Figures 1 (Caucasians) and 2 (African Americans).  This approach 

resulted in the estimation of six second-stage fixed effects; five prior means that 

corresponded to each DNA repair gene (e.g. the estimated main and joint effects of 

rs1799782 were shrunk towards the estimated XRCC1 fixed effect) and a sixth representing 

the estimated effect of ever-smoking (e.g. the main effect of ever-smoking and the joint 

effect of rs1799782 and ever-smoking were shrunk to the ever-smoking fixed effect).  

Compared to the estimated differences in baseline mean IMT obtained from the maximum 

likelihood approach, incorporating a prior mean and variance improved the precision of 

unstable estimates (e.g. joint effect of the ever-smoking – rs3213245 XX vs. OO contrast , 

maximum likelihood approach: baseline difference in mean IMT = 0.102, 95% CLD = 0.44; 

hierarchical approach: baseline difference in mean IMT = 0.09, 95% CLD = 0.22) while 

producing little change in already stable estimates (e.g. the estimated effect of ever-smoking 
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for tagSNP rs25489, maximum likelihood approach: baseline difference in mean IMT = 0.09,  

95% CLD = 0.19; hierarchical approach: baseline difference in mean IMT = 0.09,  95% CLD 

= 0.18), a pattern even more apparent within the African American stratum.   

As in the maximum likelihood approach, the estimated main effects of ever-smoking 

status was associated with a greater baseline mean IMT among Caucasians, with estimated 

differences ranging from 0.047 - 0.12 (100% of estimated differences above 0).  The 

estimated tagSNP main effects among never-smokers were generally null.  When evaluating 

the degree to which DNA repair variants modified the relationship between baseline mean 

IMT and ever-smoking among Caucasians, tagSNPs rs3213282 (XRCC1), 

rs3213245(XRCC1), rs3212024 (XRCC3), and rs3136814 (APEX1) increased the estimated 

effect of ever-smoking on differences in baseline mean IMT while tagSNPs rs3136817 

(APEX1) and rs1799794 (XRCC3) decreased the estimated effect of ever-smoking (Figure 1).  

Although other estimates were elevated, they were difficult to reconcile.  A decrease in the 

estimated effect of ever-smoking was suggested for rs1799793 heterozygotes, but the XX vs. 

OO stratum was associated with an increase in the estimated effect of ever-smoking.   The 

rs3136814 minor allele also was associated with an increase in the estimated effect of ever-

smoking, but the marked imprecision (estimated difference in baseline mean IMT = 0.14, 

95% CLD = 0.27) makes interpretation uncertain.  The marked imprecision makes the 

findings unpersuasive. ong African Americans were highly variable and difficult 

to interpret.   

Many of the estimates suggest consistent effects among heterozygote and homozygote 

minor allele strata; thus a dominant genetic model that would increase the precision of 

unstable estimates may be a reasonable alternative.  This approach had little effect on stable 
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ates (results not shown).  However, the unstable estimates demonstrated considerable 

 a dominant model was assigned (e.g. rs3212024, codominant 

ean IMTXX vs. OO = 0.102 (-0.032, 0.236); 

dominant model, joint effect: baseline difference in mean IMTXO, XX vs. OO = 0.094 (0.017, 

0.172)).



Table 28.  (MS 2: Table 1) Selected baseline characteristics by race and case status for 14,255 ARIC participants. 
 Caucasians African Americans

 
CRS (N=698) CRS (N=367) 

(This study) 
ligible ARIC 

Participants (N=3,827) 
Median age at baseline (IQR) 54 (49, 59) 55 (50, 59) 53 (48, 58) 

(This study) 
All eligible ARIC 

Participants (N=10,428) 
All e

57 (51, 60) 

Male (%) 

2010 (52.5) 

Current smokers (%) 154 (22.1) 2,552 (24.5) 113 (30.9) 1120 (29.3) 

Former smokers (%) 269 (38.6) 3,590 (34.4) 

0.5 (0, 17) 

Median alcohol intake, grams/week (IQR) 0 (0, 60.4) 0 (0, 52.8) 

Leisure 2.00 (1.75, 2.25) 2.00 (1.75, 2.25) 2.00 (1.75, 2.50) 

 Sport 2.50 (2.00, 3.00) 2.00 (1.75, 2.50) 2.00 (1.75, 2.50) 

 2.50 (1.00, 3.00) 

All cells report a count unless otherwise indicated; ARIC, Atherosclerosis Risk in Communities Study; CRS, cohort random sample; IQR, Interquartile range 

2.00 (1.75, 2.50) 

1416 (37.0) 

887 (23.2) 

0 (0, 13.2) 

2.50 (1.00, 3.00) 

3.4 (0, 20.3) 

194 (52.9) 

209 (57.1) 

0 (0, 39.6) 

96 (26.2) 

384 (55.0) 4,741 (45.5) 

Ever smokers (%) 423 (60.7) 6,142 (58.9) 

Median pack-years of smoking (IQR) 7.5 (0, 28.25) 6.0 (0, 29.0) 

Median exercise (IQR) 2.50 (2.00, 2.75) 

Work 2.00 (0, 3.00) 2.50 (1.00, 3.00) 
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Table 29.  (MS2: Table 2)  Hardy-Weinberg Equilibrium P - values and minor allele frequency estimates for 36 
DNA repair variants in 698 Caucasian and 367 African American ARIC participants. 

Caucasians African Americans

Gene Cytogenic 
location Variant SNP 

function 
HWE 

P-value MAF HWE 
P-value MAF 

Base Excision Repair (BER) 
rs1799782 XRCC1 19q13.2 Trp194Arg 0.08 0.07† 1.0 0.05†

His280Arg 0.19 0.34 

Intron 0.31 0.36† 0.54 0.23†

Intron 0.68 0.92 

UTR 0.55 0.41† 0.92 0.41†

Intron 0.93 0.41‡ 0.17 
Intron 0.98 0.37‡ 0.33 0.23‡

Arg339Gln 0.49 0.37‡ 0.79 
Pro206Pro 1.0 0.42‡ 0.21 0.40‡

His107Arg . . 
UTR . 0§ . 0¥

Thr42Thr . . 
Leu514Pro . 0¥ 1.0 0.002¥

Ala72Val . . 
Cys326Ser 0.81 0.24† 0.36 0.18†

Intron 0.11 0.21† 0.11 
. 0.90 

 rs2072668 Intron 0.63 0.24‡ 1.0 0.28†

APEX1 1.0 1.0 
  rs3136820 Glu148Asp 0.12 1.0 
  0.53 0.96 
  rs3136814 UTR 1.0 0.08 
Nucleotide Excision Repair (NER) 

0.32 1.0 0.11‡

  0.87 0.87 0.12†

0.26 1.0 0.13†

0.38 0.0002 0.07†

0.94 0.87 0.09†

 0.46 0.08 

0.57 0.21 
0.69 1.0 
0.33 0.67 
0.60 0.87 

0.69 0.69 

0.82 0.65 
 1*10-38 . 

1.0 1.0 
†tagSNP; ‡non-tag SNP, not analyzed further;  §Poor quality score, not analyzed; ¥MAF too low, not analyzed; HWE, Hardy-Weinberg 
Equilibrium, MAF, minor allele frequency; ARIC, Atherosclerosis Risk in Communities Study;  hOGG1, 8 – hydroxy-2’ – 
deoxyguanosine-glycosylase/apurinic lyase; APEX1,  apurinic/apyrimidinic endonuclease; XRCC1, X-ray repair cross complementing, 
group 1; XPD,  xeroderma pigmentosum D; XRCC3, X-ray repair complementing defective repair in Chinese hamster cells 3; SNP, 
single nucleotide polymorphism 

0.04† 0.02¥  rs25489 
  rs25486 

0.44† 0.43†  rs3213282 
  rs3213245 

0.34†  rs1475933 
  rs1799778 

0.15†  rs25487 
  rs915927 

0¥ 0¥  rs2228487 
  rs2307187 

0¥ 0¥  rs2307189 
  rs25474 
  rs25496 0§ 0¥

hOGG1 3p26.2 rs1052133 
  rs3219008 0.42†

  rs1805373 Gln229Arg 0¥ 0.08†

 

14q11.2-q12 rs1048945 His51Gln 0.03† 0.009¥

0.48† 0.36†

rs3136817 Intron 0.23† 0.15†

0.03† 0.14†

XPD 19q13.3 rs1052555 Asp711Asp 0.35†

rs1799793 Asn312Asp 0.36†

  rs1618536 Intron 0.45†

  rs3916874 Intron 0.26†

  rs50871 Intron 0.46†

 rs1052559 Gln751Lys 0.40‡ 0.24†

Double-Strand Break Repair (DSB) 

XRCC3 14q32.3 rs861531 Intron 0.40† 0.30†

  rs1799795 Intron 0.01† 0.02¥

  rs1799794 UTR 0.19† 0.20†

  rs3212024 UTR 0.30† 0.16†

  rs861539 Thr241Met 0.39‡ 0.24†

  rs1799796 Intron 0.31‡ 0.15‡

 rs3212038 UTR 0.38§ 0§

  rs3212057 UTR 0.001¥ 0.02¥
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Figure 17.  (MS2: Figure 1) Main and joint estimated effects of 20 DNA repair tagSNPs and ever-
smoking on mean IMT in 470 Caucasian ARIC participants specifying tagSNPs within each gene as 
exchangeable and a 0.3 residual effect range (τ2 = 0.00574). 
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M ain effect of smoking M ain effect of SNP
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-0.4 -0.2 0 0.2 0.4-0.4 -0.2 0 0.2 0.4-0.4 -0.2 0 0.2 0.4

 Differences in estimated baseline mean IMT 

The XO vs. OO contrast is presented atop of the XX vs. OO contrast when a general genetic model was used; ARIC, Atherosclerosis 
Risk in Communities Study; SNP, single nucleotide polymorphism;  IMT, intimal –medial thickness; hOGG1, 8 – hydroxy-2’ – 
deoxyguanosine-glycosylase/apurinic lyase; APEX1,  apurinic/apyrimidinic endonuclease; XRCC1, X-ray repair cross complementing, 
group 1; XPD,  xeroderma pigmentosum D; XRCC3, X-ray repair complementing defective repair in Chinese hamster cells 3 
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Figure 18. (MS2: Figure 2) Main and joint estimated effects of 22 DNA repair tagSNPs and ever-
smoking on mean IMT for 194 African American ARIC participants specifying tagSNPs within each 
gene as exchangeable and a 0.3 residual effect range (τ2 = 0.00574). 
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Differences in estimated baseline mean IMT 

The XO vs. OO contrast is presented atop of the XX vs. OO contrast when a general genetic model was used; ARIC, Atherosclerosis 
Risk in Communities Study; SNP, single nucleotide polymorphism;  IMT, intimal –medial thickness; hOGG1, 8 – hydroxy-2’ – 
deoxyguanosine-glycosylase/apurinic lyase; APEX1,  apurinic/apyrimidinic endonuclease; XRCC1, X-ray repair cross complementing, 
group 1; XPD,  xeroderma pigmentosum D; XRCC3, X-ray repair complementing defective repair in Chinese hamster cells 3 
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Figure 19. (MS2: Figure S1)  Main and joint estimated effects of 20 DNA repair tagSNPs and ever-
smoking on mean IMT in 470 Caucasian ARIC participants including a gene-smoking product term for 
one SNP and the main effects of all others. 
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The XO vs. OO contrast is presented atop of the XX vs. OO contrast when a general genetic model was used; ARIC, Atherosclerosis Risk 
in Communities Study; SNP, single nucleotide polymorphism;  IMT, intimal –medial thickness; hOGG1, 8 – hydroxy-2’ – 
deoxyguanosine-glycosylase/apurinic lyase; APEX1,  apurinic/apyrimidinic endonuclease; XRCC1, X-ray repair cross complementing, 
group 1; XPD,  xeroderma pigmentosum D; XRCC3, X-ray repair complementing defective repair in Chinese hamster cells 3 
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Figure 20.  (MS2: Figure S2)  Main and joint estimated effects of 22 DNA repair tagSNPs and ever-smoking 
on mean IMT in 194 African American ARIC participants including a gene-smoking product term for one 
SNP and the main effects of all others. 
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The XO vs. OO contrast is presented atop of the XX vs. OO contrast when a general genetic model was used; ARIC, Atherosclerosis Risk 
in Communities Study; SNP, single nucleotide polymorphism;  IMT, intimal –medial thickness; hOGG1, 8 – hydroxy-2’ – 
deoxyguanosine-glycosylase/apurinic lyase; APEX1,  apurinic/apyrimidinic endonuclease; XRCC1, X-ray repair cross complementing, 
group 1; XPD,  xeroderma pigmentosum D; XRCC3, X-ray repair complementing defective repair in Chinese hamster cells 3 
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4. Discussion 

Although numerous studies have examined the association between cigarette smoking 

and subclinical measures of atherosclerosis, studies evaluate this relationship within the 

context of DNA repair variation are lacking.  We confirm the established relationship 

between cigarette smoking and carotid thickness and show that effect modification by DNA 

repair genes is a potentially informative hypothesis that warrants further investigation.  

This work extends our previous efforts that quantified the association between ever-

smoking, DNA repair variation, and incident CHD.  Here we focused on subclinical disease 

measures, as they can provide information not captured by studies of incident events.  For 

example, studies of atherothrombotic events typically focus on factors related to later disease 

stages and may overlook or underestimate effects of exposures that act earlier(39).  If the 

pattern of somatic DNA damage present in atherosclerotic lesions reflects the mutagenicity 

of tobacco smoke constituents, one might expect populations who smoke cigarettes and have 

a reduced DNA repair capacity to have increased carotid thickening.  Increased carotid 

thickening is a marker of the systemic burden of atherosclerosis, a necessary but not 

sufficient cause of CHD.  Indeed, increased IMT is associated with prevalent and incident 

atherothrombotic outcomes, in both the ARIC cohort(4, 5) and in other study populations(6, 

7).   

TagSNPs rs3213282 (XRCC1), rs1799782 (XRCC1), rs3212024 (XRCC3), and 

rs1799794 (XRCC3) demonstrated consistent direction of effects for incident CHD (CL 

Avery, unpublished) and for carotid IMT: tagSNPs rs3213282 and rs3212024 were 

associated with an increase in the estimated effect of ever-smoking whereas tagSNPs 
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rs1799782 and rs1799794 were associated with a decrease in the estimated effect of ever-

smoking.  While there is limited functional data, mutation assays examining  rs1799782 

(Trp194Arg) suggested that cells with the Trp allele had lower numbers of chromosomal 

breaks(40), which is consistent with our analysis showing that the Trp allele was associated 

with a decrease in the estimated effect of ever-smoking on IMT.  Population based studies 

examining the relationship between rs1799782 and cancers and related traits have been 

contradictory, possibly reflecting the fact that published studies were often underpowered 

and examined prevalent disease.  However, a meta-analysis of 16 published studies of 

tobacco-related cancers (lung, upper aerodigestive tract, and bladder) estimated a summary 

odds ratio (OR) (95% confidence interval (CI)) of 0.86 (0.77, 0.95) for the 194Trp contrast 

and a case-only interaction OR for tobacco smoking, the 194Trp contrast, and tobacco-

related cancers of 0.80 (0.56, 1.16) (41), both of which were consistent with our results.   

The functions of rs3213282, rs3212024 and rs1799794 have yet to be studied, 

although rs3213282 and rs1799794 were genotyped by the hapmap project and tag three and 

two intronic SNPs, respectively.  Although the association between smoking status, 

rs1799794, and incident bladder cancer was examined in 634 Italian males, the marked 

imprecision precluded comment (42).  Consistent with our results, the rs3212024 minor allele 

was associated with an increased odds of incident follicular lymphoma in 1,035 Scandinavian 

males and females and increased the effect of cigarette smoking status on the odds of 

incident follicular lymphoma (43). 

Results for tagSNPs rs50871 (XPD), rs861531 (XRCC3), rs3136814 (APEX1), 

rs3213245 (XRCC1), and rs3136817 (APEX1) were inconsistent with our incident CHD 

analyses.  For example, rs3213245 was associated with an increase in the estimated effect of 
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smoking when mean IMT was examined, but suggested a decrease in the estimated effect of 

ever-smoking when incident CHD was considered, although wide interval estimates were 

noted. While rs3136814 was associated with an increase in the estimated effect of ever-

smoking when mean IMT was examined, results were null when considering incident CHD. 

These results are difficult to explain, although they do not necessarily represent one or more 

false positive associations.  CHD and IMT are distinct manifestations of a complex disease 

process (e.g. associations observed for incident CHD might reflect exposures with roles not 

only in atherosclerosis, but also plaque instability and/or rupture).  As variation in DNA 

repair pathway genes could influence atherogenesis at both its origin and progression, the 

discrepant results might simply reflect different stages in the natural history of disease.  

The generally null estimated main effects in the presence of interaction with ever-

smoking status reported for most tagSNPs underscore the necessity of considering genetic 

effects within the context of biologically plausible environmental exposures.  For example, 

an analysis limited to examining the main effects of DNA repair variants would conclude that 

none of the variants are associated with subclinical atherosclerosis.  However, by 

incorporating ever-smoking status, an admittedly inexact measure of cigarette smoke 

exposure, we identified polymorphisms in two genes (XRCC1 and XRCC3) that were 

associated with variation in baseline mean IMT and incident CHD (CL Avery et al., 

unpublished).   

XRCC1 is a single-strand binding protein and was the first mammalian gene 

implicated in cellular sensitivity to ionizing radiation(44).  While XRCC1 has no known 

catalytic activity, it recognizes and binds single-strand DNA breaks(45) and is thought to 

complex with other BER components during short-patch DNA repair via its role as a 
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chaperone or central scaffolding protein(46).   Animal models of atherosclerosis also 

associated XRCC1 upregulation with induced atherosclerotic plaques(47) and Rossi et al., 

(2004) demonstrated increased XRCC1 expression in tissue from stable angina plaques(48).  

XRCC1 transcription levels were also elevated in diabetic patients when compared to non-

diabetic patients, suggesting that metabolites produced under the hyperglycemic state may be 

mediated by XRCC1 expression(49). 

XRCC3 is involved in the repair of double strand DNA breaks by homologous 

recombination (HR), the ‘non error-prone’ DSB repair mechanism(50, 51).   Hamster and 

human cell lines containing XRCC3 mutations showed a 25-fold decrease in HR, while 

constitutive wild-type XRCC3 expression conferred resistance to DNA-damaging agents(52).  

XRCC3 mRNA and protein levels were also elevated in malignant prostate cells when 

compared to normal epithelial cells.  Despite the increased XRCC3 expression, the malignant 

cells exhibited a defective DNA DSB repair phenotype, suggesting that prostate 

tumorgenesis may reflect aberrant DNA repair capacity(53).  Studies examining the 

relationship between XRCC3 variants and atherosclerotic disease are lacking. 

Some of our estimates were imprecise, however our analyses are conservative, 

reflecting our a priori preference for general genetic models, as this parameterization does 

not presume that the heterozygote is intermediate to the two homozygous phenotypes and has 

been shown to have correct Type I error rates while losing very little power relative to the 

true genetic model (54).  However, many of the heterozygote and homozygote minor allele 

estimates appeared consistent, and while a dominant model would have little effect on stable 

estimates, it might be a reasonable alternative for future analyses considering the rarer 

variants.  While we did not account for genotype uncertainty using a weighted analysis, the 
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posterior probability estimates for the inferred genotypes above the 0.90 criterion 

consistently exceeded 0.99, thus a weighted analysis would have little effect on the results.  

Point estimates using a non-imputed data set were comparable (results not shown).    

Specifying τ2 = 0.0026 also increased the precision of our estimates (results not 

shown), however little is known about the association between DNA repair genes, cigarette 

smoking, and atherogenesis; thus we chose to present results obtained when τ2 = 0.00574 was 

considered.  Hierarchical regression simulation studies have demonstrated that coverage 

proportions of central 95% posterior probability intervals obtained from a correct or over-

specified τ2 approached or exceeded the nominal level, whereas underspecifying τ2 resulted in 

subnominal coverage(55).  Greenland (1993) also cautioned against underspecifying τ2 when 

either the sample size or the number of parameters is not small(35).  

We measured cigarette smoke exposure using the ever-smoking metric, although 

other smoking measures were available including intensity, duration, age at initiation, second 

hand smoke exposure, and smoking status.  Although ever-smoking considers all participants 

who reported smoking > 400 cigarettes at study baseline as a homogeneous group, 90% of 

Caucasian and African American participants classified as ever-smokers reported ≥ 10 years 

of cigarette smoking.  While there is sure to be some misclassification of exposure to 

cigarette smoke, the distribution of smoking duration and intensity indices in ARIC suggest 

that the majority of participants reporting ever-smoking actually experienced long-term 

exposure.  Practical constraints also limited our analytic options, as power would be reduced 

considerably if we considered a three-level categorization of cigarette smoke exposure and 

continuous parameterizations would also be infeasible given our hypothesis of modification 

by DNA repair variants.   
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Although the variants we examined were carefully selected, our analysis was limited 

to 36 polymorphisms (six of which were monomorphic) from five genes.  As the BER, NER, 

and DSB pathways contain over 130 genes, work to further evaluate the role of DNA repair 

genes in the pathology of smoking-induced atherogenesis is clearly needed.  We also used a 

composite carotid wall thickness measure, although some studies have suggested that diffuse 

wall thickening resulting from SMC proliferation is best captured by the common carotid 

IMT metric(56).  However, earlier work by ARIC investigators demonstrated that increased 

IMT at one carotid bed correlates with an increase in IMT at other sites(57).  The combined 

IMT outcome also allowed us to include an additional 39 participants who would not be 

captured if common carotid IMT was the sole outcome measure.   

Because these data are cross-sectional, temporality in the relationship between 

cigarette smoking and carotid thickness is assumed.  However, the relationship between 

cigarette smoking and carotid thickness has been reported in animal studies and in varied 

population-based studies (reviewed in (39)).  While IMT was also measured during follow-

up visits, IMT progression in this and other populations is estimated as 0.01 mm/year in the 

average(58).  Use of repeated measures would improve the precision of the characterization 

of an individual’s IMT, but would not qualitatively add to these analyses.   

The use of hierarchical regression methods without the careful consideration of model 

assumptions can produce estimates that are more biased than those obtained from traditional 

methods(59).  Attempts to improve accuracy could increase bias if the estimated second-state 

fixed effects are a poor measure of the true mean.  However, the three categories of 

exchangeability we considered provided consistent estimates, suggesting the results are fairly 

robust to model specifications.  While the prior information was somewhat general, a 
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simplified second stage can outperform maximum likelihood methods(55).  Drawbacks of 

this method include the complete case analysis requirement (i.e. participants have full data on 

all genetic factors), which may be problematic, especially as researchers assay larger and 

larger regions of the genome. 

As no a priori evidence suggestive of an association between specific DNA repair 

variants, cigarette smoking, and IMT existed, all tagSNPs were examined.  We did not 

account for testing multiple hypotheses by adjusting alpha, as we focused upon describing 

the magnitude and precision of the estimates, rather than significance testing.  However, we 

exercised awareness of the potential for random error in the interpretation of results.   

Cigarette smoking is a major threat to public health and has established atherogenic 

effects.  While imprecise, particularly for African Americans and variants with low MAFs, 

our results suggest that additional work examining these pathways is warranted.  In addition 

to further characterizing XRCC1, hOGG1, APEX1, XPD, and XRCC3 genetic variation, 

examining other promising DNA repair pathway candidate genes and extending the study 

sample to improve statistical power and increase the flexibility for measuring cigarette smoke 

exposure would allow us to more thoroughly evaluate the role of DNA repair variation in the 

context of cigarette smoking and atherogenesis.  Future studies in varied populations will 

undoubtedly be required to validate our conclusions.  Yet, our results, based on a 

comprehensive analysis of the role of DNA repair genes in the context of cigarette smoke 

exposure and subclincal atherosclerosis measures, highlight the importance of incorporating 

gene-environment interaction when investigating the etiology of complex diseases such as 

atherosclerosis. 
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CHAPTER VI 

CONCLUCIONS 

A. Recapitulation of overall study aims, results, and degree to which the goals of the 
doctoral research have been met 

1. Overall study aims 

The goal of this project was to evaluate how DNA repair pathway variants modify the 

relationship between cigarette smoking and two CVD measures: incident CHD and 

subclinical atherosclerosis, quantified using IMT measures of the carotid arteries.  

Manuscript 1 addresses Aims 1 - 3, while and Manuscript 2 addresses Aims 4 - 6.   

AIM 1: To estimate the association between polymorphisms of the DNA repair genes 

XRCC1, XRCC3, APEX1, hOgg1, and XPD and incident CHD. 

Research question: Are DNA repair pathway variants associated with incident CHD?   

AIM 2: Do polymorphisms of the DNA repair genes XRCC1, XRCC3, APEX1, hOgg1, 

and XPD modify the association between cigarette smoking and incident CHD. 

Research question: To what extent do polymorphisms of the DNA repair genes XRCC1, 

XRCC3, APEX1, hOgg1, and XPD modify the association between cigarette smoking and 

incident CHD? 

AIM 3: To incorporate information from multiple genes and cigarette smoke exposure as 

higher level priors into analyses investigating the relationship between DNA repair variants,

 cigarette smoking, and incident CHD. 

Research question: How does the incorporation of prior probabilities influence the extent to 

 



 

which polymorphisms of the DNA repair genes XRCC1, XRCC3, APEX1, hOgg1, and XPD 

modify the association between cigarette smoking and incident CHD? 

AIM 4: To estimate the association between polymorphisms of the DNA repair genes 

XRCC1, XRCC3, APEX1, hOgg1, and XPD and subclinical atherosclerosis (quantified as 

baseline mean IMT). 

Research question: Are DNA repair pathway variants associated with subclinical 

atherosclerosis (quantified as baseline mean IMT)?   

AIM 5: To estimate the extent to which polymorphisms of the DNA repair genes 

XRCC1, XRCC3, APEX1, hOgg1, and XPD modify the association between cigarette 

smoking and subclinical atherosclerosis (quantified as baseline mean IMT). 

Research question: To what extent do polymorphisms of the DNA repair genes XRCC1, 

XRCC3, APEX1, hOgg1, and XPD modify the association between cigarette smoking and 

subclinical atherosclerosis (quantified as baseline mean IMT)? 

AIM 6: To incorporate information from multiple genes and cigarette smoke exposure as 

higher level priors into analyses investigating the relationship between DNA repair variants, 

cigarette smoking, and subclinical atherosclerosis (quantified as baseline mean IMT). 

Research question: How does the incorporation of prior probabilities influence the extent to 

which polymorphisms of the DNA repair genes XRCC1, XRCC3, APEX1, hOgg1, and XPD 

modify the association between cigarette smoking and subclinical atherosclerosis (quantified 

as baseline mean IMT)? 
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2. Results 

Results from Manuscript 1 suggested that tagSNPs rs3213282 (XRCC1), rs50871 

(XPD), and rs3212024 (XRCC3) were associated with increases in the estimated effect of 

ever-smoking on incident CHD while tagSNPs rs1799782 (XRCC1) and rs861531 (XRCC3) 

were associated with decreases.  With regards to Manuscript 2, tagSNPs rs3213282 

(XRCC1), rs3213245(XRCC1), rs3212024 (XRCC3), and rs3136814 (APEX1) increased the 

estimated effect of ever-smoking on differences in baseline mean IMT while tagSNPs 

rs3136817 (APEX1) and rs1799794 (XRCC3) decreased the estimated effect of ever-

smoking.  Although we investigated the same study questions among African Americans, the 

small sample sizes resulted in highly variable estimates that precluded comment.   

Evaluating two related, yet distinct phenotypes allowed us to consider different stages 

in the natural history of atherosclerosis.  We extended our study of incident events 

(Manuscript 1) by evaluating subclinical disease measures, as they can provide information 

not captured by studies of incident events.  For example, studies of atherothrombotic events 

typically focus on factors related to later disease stages and may overlook or underestimate 

effects of exposures that act earlier75.  If the pattern of somatic DNA damage present in 

atherosclerotic lesions reflects the mutagenicity of tobacco smoke constituents, one might 

expect populations who smoke cigarettes and have a reduced DNA repair capacity to have 

increased carotid thickening.  Increased carotid thickening is a marker of the systemic burden 

of atherosclerosis, a necessary but not sufficient cause of CHD.  Indeed, increased IMT is 

associated with prevalent and incident atherothrombotic outcomes, in both the ARIC 

cohort469, 470 and in other study populations471, 472.   
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A focus on two different stages in the natural history of atherosclerosis may explain 

why results for tagSNPs rs50871 (XPD), rs861531 (XRCC3), rs3136814 (APEX1), 

rs3213245 (XRCC1), and rs3136817 (APEX1) were inconsistent.  For example, rs3213245 

was associated with an increase in the estimated effect of smoking when mean IMT was 

examined, but suggested a decrease in the estimated effect of ever-smoking when incident 

CHD was considered, although wide confidence interval estimates were noted. While 

rs3136814 was associated with an increase in the estimated effect of ever-smoking when 

mean IMT was examined, results were null when considering incident CHD. These results 

are difficult to explain, although they do not necessarily represent one or more false positive 

associations.  CHD and IMT are distinct manifestations of a complex disease process (e.g. 

associations observed for incident CHD might reflect exposures with roles not only in 

atherosclerosis, but also plaque instability and/or rupture).  As variation in DNA repair 

pathway genes could influence atherogenesis at both its origin and progression, the 

discrepant results might simply reflect different stages in the natural history of disease.  

We also highlight the advantage of considering gene-by-environment interactions 

when evaluating complex chronic diseases like atherosclerosis.  tagSNP main effects were 

generally null for both outcomes; thus an analysis limited to examining the main effects of 

DNA repair variants would conclude that none of the variants are associated with subclinical 

atherosclerosis or incident CHD.  However, by incorporating ever-smoking status, an 

admittedly inexact measure of cigarette smoke exposure, we identified polymorphisms in two 

genes (XRCC1 and XRCC3) that were associated with variation in baseline mean IMT and 

incident CHD.   
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XRCC1 is a single-strand binding protein and was the first mammalian gene 

implicated in cellular sensitivity to ionizing radiation289.  While XRCC1 has no known 

catalytic activity, it recognizes and binds single-strand DNA breaks290 and is thought to 

complex with other BER components during short-patch DNA repair via its role as a 

chaperone or central scaffolding protein292.   Animal models of atherosclerosis also 

associated XRCC1 upregulation with induced atherosclerotic plaques211 and Rossi et al., 

(2004) demonstrated increased XRCC1 expression in tissue from stable angina plaques301.  

XRCC1 transcription levels were also elevated in diabetic patients when compared to non-

diabetic patients, suggesting that metabolites produced under the hyperglycemic state may be 

mediated by XRCC1 expression302. 

XRCC3 is involved in the repair of double strand DNA breaks by homologous 

recombination (HR), the ‘non error-prone’ DSB repair mechanism419, 420.   Hamster and 

human cell lines containing XRCC3 mutations showed a 25-fold decrease in HR, while 

constitutive wild-type XRCC3 expression conferred resistance to DNA-damaging agents422.  

XRCC3 mRNA and protein levels were also elevated in malignant prostate cells when 

compared to normal epithelial cells.  Despite the increased XRCC3 expression, the malignant 

cells exhibited a defective DNA DSB repair phenotype, suggesting that prostate 

tumorgenesis may reflect aberrant DNA repair capacity300.  Studies examining the 

relationship between XRCC3 variants and atherosclerotic disease are lacking. 
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3. Meeting the goals of doctoral research 

 A dissertation must be of appropriate scope and considerable rigor to fulfill the goals 

of doctoral research.  I appreciate that it is the committee’s responsibility to judge whether I 

have met said goals.  I have been involved in this work since 2003, when I assisted with SNP 

selection.  My role has expanded to the point that I, under Kari North’s guidance, am the lead 

investigator on the design, analysis, consultation, and writing for the two manuscripts 

presented above. My work has benefited greatly from verbal and written input provided by 

the Chair and committee members, as well as through consultations with other co-authors. At 

the dissertation interim committee meeting, all members reached consensus that the scope of 

the research was appropriate. 

I believe that the proposal defense and the preparation, submission for publication, 

and defense of this dissertation adequately address the four specific goals described in the 

Epidemiology Academic Policies Manual: originality, depth, scholarship, and writing skills.  

Originality is acheived through the application of hierarchical regression methods that are 

described in the genetic epidemiology literature, but are rarely applied.  With regards to 

depth, I have investigated two outcomes related to atherosclerosis: incident CHD and IMT.  

Thirty-six DNA repair pathway variants and numerous cigarette smoke indices were also 

considered.  I believe that the requirements of scholarship and writing skills are addressed by 

the careful consideration and thoroughness reflected in this dissertation.  Although I received 

substantive and editorial comments from all committee members, I formulated the initial 

manuscript structures including the best way to present study results, and how to frame the 

introduction, materials and methods, results, and discussion sections.  Thus, I believe that this 

dissertation demonstrates my ability to integrate the analytic, organizational, methodological, 
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and theoretical concepts inherent in the University of North Carolina’s Epidemiology 

curriculum into my current and future research endeavors. 

A priori implementation of prior probability distributions through hierarchical 

analysis adjusted implausible estimates and enhanced precision, thus facilitating the 

interpretation of the entire panel of results.  This represents a likely improvement upon 

traditional analytic methods.  The candidate genes were also carefully selected on the basis of 

their role in DNA repair pathways and results from functional studies, when available.   

While the study sample is sufficient for the estimation of the main effects of DNA 

repair variants among the Caucasian and African American strata, power to assess 

modification for genes with low MAF, especially within the African American stratum was 

B. Strengths 

Results from this study can provide important contributions to public health research.  

This research could inform investigators on potential mechanism linking cigarette smoking 

and atherosclerosis (both subclinical disease and atherogenic endpoints), as few studies have 

evaluated the role of DNA repair genes with regards to incident CHD or subclinical 

atherosclerosis.  This work also underscores the necessity of considering genetic effects 

within the context of biologically plausible environmental exposures.  For example, an 

analysis limited to examining the main effects of DNA repair variants would conclude that 

none of the variants are associated with subclinical atherosclerosis.  However, by 

incorporating ever-smoking status, we identified polymorphisms in two genes (XRCC1 and 

XRCC3) that were associated with variation in baseline mean IMT and incident CHD.  

C. Limitations 
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limited.  However, the study is adequately powered to address the main aims, and is an 

important contribution to the understanding of this major disease.   

Although the polymorphisms we examined were carefully selected, our analysis was 

limited to 36 variants from five genes (six of which were monomorphic).  As the pathways 

we examined contain over 130 genes196, additional work to evaluate the role of DNA repair 

pathway variants is needed.  In addition, while the indirect candidate association approach 

we used is a powerful method, it assumes little allelic heterogeneity within loci and the 

common disease/common variant paradigm.  This strategy would be unsuccessful if the 

genetic component of atherothrombosis involves numerous rare variants at many loci465.  

Because the IMT data are cross-sectional, temporality in the relationship between cigarette 

smoking and carotid thickness was assumed.  However, the relationship between cigarette 

smoking and carotid thickness has been reported in animal studies and in varied population-

based studies (reviewed in 466).   

The use of hierarchical regression methods without the careful consideration of model 

assumptions can produce estimates that are more biased than those obtained from traditional 

methods467.  Attempts to improve accuracy could increase bias if the estimated second-state 

fixed effects are a poor measure of the true mean.  However, the three categories of 

exchangeability we considered provided consistent estimates for both outcomes, suggesting 

the results are fairly robust to model specifications.  While the prior information was 

somewhat general, a simplified second stage can outperform maximum likelihood 

methods468.  Drawbacks of this method include the complete case analysis requirement (i.e. 

participants have full data on all genetic factors), which may be problematic, especially as 

researchers assay larger and larger regions of the genome. 
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A.  IRB certification  

 

I have also completed CITI training and obtained ARIC study approval for this work. 
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B.  Supplemental results, Manuscript 1 

Table 30. (MS 1 supplemental results) Number of imputed tagSNP genotype data points by incident CHD status in 
1,529 Caucasian ARIC participants. 
 Incident CHD (N = 831) CRS (N = 698)

Gene Variant 00 X0 

rs1799782 0 

XX % 
imputed 00 X0 XX % 

imputed 
XRCC1  21 0 2.7 17 0 0 2.6 

 rs25486 1 11 0 1.5 1 6 0 1.0 

13 

0 

52 

hOGG1 0 3.2 

36 

6.8 0 

0 

rs3136820 

 4.7 

 1 0 

21 10 

14 

rs1799794 

 rs3213282 8 25 6 5.0 25 11 7.4 

 rs3213245 0 6 0.8 2 1 0 0.4 

 rs25489 2 0 6.6 32 1 0 4.7 

rs3219008 33 0 4.3 21 0 0 

 rs1052133 19 4 2 3.2 43 5 12.4 

APEX1 rs1048945 56 0 0 46 0 6.6 

 rs3136817 5 0 0.7 3 0 0 0.5 

 0 0 0 0 5 0 0 0.9 

rs3136814 49 0 0 6.0 33 0 0 

XPD rs1052555 8 9 2 2.4 7 3 3 1.9 

 rs50871 0 0 0 0 1 0 0 0.2 
 rs1799793 1 3 1 0.6 0 0 1 0.2 

rs3916874 0 0.1 0 0 0 0 

 rs1618536 2 0 1 0.4 1 1 0 0.3 

XRCC3 rs3212024 4 1 0 0.6 1 4 0 0.7 

 rs861531 21 26 11 7.4 2 5.0 

 rs1799795 0 0 1.8 13 0 0 2.0 

 3 0 0 0.4 8 0 0 1.2 

ARIC, Atherosclerosis Risk in Communities Study; CHD, coronary heart disease; CRS, cohort random sample 
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Table 31.  (MS 1 supplemental results)  tagSNP genotype frequencies by ever-smoking status in 1,529 Caucasian 
ARIC participants. 
 Ever-smokers (N = 1,023)*

Never-smokers (N = 505)*

Gene Variant 00 X0 XX MAF 00 X0 XX MAF 

XRCC1  rs1799782 840 116 3 0.06 416 60 2 0.07 

 rs25486 402 449 115 

 rs3213282 265 105 0.46 

164 234 

305 35 0.20 

 rs1052133 

957 32 

 rs3136817 347 58 170 22 0.23 

 252 

58 

106 
 rs1799793 394 448 114 0.35 203 220 

254 41 0.28 

 rs1618536 289 513 157 0.43 

0.31 

0.40 

2 

289 0.19 316 155 19 0.20 
*Genotype frequencies based on imputed data; ARIC, Atherosclerosis Risk in Communities Study; MAF, minor allele 
frequency 

0.35 217 216 56 0.34 

506 182 0.46 142 238 

 rs3213245 309 498 157 0.42 88 0.42 

 rs25489 935 79 2 0.04 455 47 2 0.05 

hOGG1 rs3219008 601 305 153 15 0.19 

582 335 55 0.23 298 165 28 0.23 

APEX1 rs1048945 62 0 0.03 471 0 0.03 

531 0.25 283 

rs3136820 442 203 0.47 115 213 114 0.50 

 rs3136814 944 67 3 0.04 473 29 0 0.03 

XPD rs1052555 417 443 104 0.34 221 208 0.33 

 rs50871 250 443 218 0.48 128 224 0.48 
63 0.36 

 rs3916874 526 339 93 0.27 191 

144 237 105 0.46 

XRCC3 rs3212024 472 395 98 224 213 53 0.33 

 rs861531 352 459 153 177 247 59 0.38 

 rs1799795 839 120 0.06 431 54 1 0.06 

 rs1799794 635 41 
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Table 32.  (MS 1 supplemental results) Imputed tagSNP genotype data by incident CHD status in 623 African 
American ARIC participants. 
 
 Incident CHD (N = 255) CRS (N =367)

Gene Variant 00 

3 

X0 XX % 
imputed 00 X0 XX % 

imputed 
XRCC1  rs1799782 0 0 1.4 2 0 0 0.6 

 rs25486 

 rs3213282 

0.3 
0 

 rs25487 12 0 0 5.9 5 0 

0 2.2 
 rs2072668 1 0 

rs3136820 0 0.0 0 0 0 0.0 
0 

XPD rs50871 0 0 12 5.5 4 0 
0 0 

3.5 14 0 4.2 
 rs1618536 1 0 0 

0 0.5 1 0 0 0.3 
XRCC3 

rs861531 7 3 3 6.4 3 0 

23 0 0 7.4 
 rs1799794 0 0 

0 0 0 0.0 0 3 0 0.9 
1 3 1 2.3 7 10 3 6.1 

 rs3213245 0 4 1 2.2 0 1 0 

 rs1475933 12 0 0 5.7 3 1 1.2 
0 1.5 

hOGG1 rs3219008 1 0 0 0.5 0 0 0 0.0 
 rs1052133 0 0 4 1.8 0 0 0 0.0 
 rs1805373 9 0 0 4.2 7 0 

0 0.5 1 0 4 1.5 
APEX1 rs3136817 0 0 4 1.8 0 0 2 0.6 

 0 0 

 rs3136814 0 0 0 0.0 0 0 0.0 
4 2.4 

 rs1799793 0 1 5 2.7 4 1.2 
 rs3916874 8 0 0 0 

0.4 0 0 1 0.3 
 rs1052559 0 1 

rs3212024 0 1 0 0.4 0 0 0 0.0 
 1 1.2 
 rs861539 5 0 0 2.3 

1 0.4 0 0 1 0.3 
ARIC, Atherosclerosis Risk in Communities Study; CHD, coronary heart disease; CRS, cohort random sample 
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Table 33. (MS 1 supplemental results)  tagSNP genotype frequencies by ever-smoking status in 623 African 
American ARIC participants. 
 
 Ever-smokers (N = 372)* Never-smokers (N =249)*

Gene Variant 00 X0 XX MAF 00 X0 XX MAF 

XRCC1  rs1799782 292 28 0 0.04 190 28 2 0.07 

 rs25486 187 132 18 0.25 133 83 9 0.22 

 rs3213282 105 165 56 0.42 72 101 39 0.42 

 rs3213245 113 170 53 0.41 78 112 36 0.41 

 rs1475933 152 137 39 0.33 96 93 26 0.34 

 rs25487 227 87 5 0.15 161 48 3 0.13 

hOGG1 rs3219008 96 159 59 0.44 65 112 37 0.43 

 rs1052133 223 93 17 0.19 154 63 6 0.17 

 rs1805373 267 53 2 0.09 181 34 0 0.08 

 rs2072668 169 126 29 0.28 116 83 18 0.27 

APEX1 rs3136817 231 93 6 0.16 166 52 5 0.14 

 rs3136820 124 157 42 0.37 99 89 33 0.35 

 rs3136814 240 82 6 0.14 169 48 0 0.11 

XPD rs50871 268 52 5 0.10 175 44 2 0.11 
 rs1799793 266 67 3 0.11 174 46 4 0.12 
 rs3916874 301 36 5 0.07 204 16 3 0.05 

 rs1618536 256 74 4 0.12 175 42 1 0.10 

 rs1052559 186 121 23 0.25 135 76 9 0.21 

XRCC3 rs3212024 237 91 9 0.16 166 54 5 0.14 

 rs861531 165 131 22 0.28 105 91 19 0.30 

 rs861539 206 96 18 0.21 123 63 17 0.24 

 rs1799794 210 109 16 0.21 141 66 13 0.21 
*Genotype frequencies based on imputed data; ARIC, Atherosclerosis Risk in Communities Study; MAF, minor allele 
frequency 
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Table 34.  (MS 1 supplemental results) IRR point and interval estimates for the association between 20 DNA 
repair tagSNPs, ever-smoking and incident CHD in 1,160 Caucasian ARIC participants. 
 Conventional analysis  

(Gene-smoking interaction for one SNP and main effects of all others) 

 
Main effect of  
ever-smoking Main effect of SNP 

Joint effect, SNP 
and ever-smoking ICR 

XRCC1     
rs1799782  2.11 (1.44, 3.09) 1.19 (0.54, 2.63) 1.21 (0.63, 2.36) -1.08 (-2.37, 0.21) XX, XO vs OO

rs25486  1.94 (1.18, 3.21) 0.79 (0.42, 1.46) 1.61 (0.93, 2.81) -0.12 (-1.01, 0.77) 
 1.94 (1.18, 3.21) 0.47 (0.17, 1.35) 0.67 (0.28, 1.6) -0.74 (-1.78, 0.29) 
rs3213282  XO vs. OO 1.62 (0.85, 3.08) 1.97 (0.65, 6.01) 3.99 (1.32, 12.01) 1.4 (-0.84, 3.64) 
 XX vs. OO 1.62 (0.85, 3.08) 3.48 (0.53, 22.65) 7.45 (1, 55.4) 3.35 (-5.49, 12.2) 
rs3213245  2.37 (1.27, 4.42) 0.48 (0.17, 1.3) 0.83 (0.33, 2.07) -1.01 (-2.44, 0.41) 
 2.37 (1.27, 4.42) 0.22 (0.04, 1.33) 0.41 (0.07, 2.45) -1.17 (-2.7, 0.35) 

1.93 (1.33, 2.78) 0.58 (0.14, 2.32) 1.19 (0.45, 3.13) -0.32 (-1.37, 0.73) 
hOGG1     

XO vs. OO

XX vs. OO

XO vs. OO

XX vs. OO

rs25489 XX, XO vs OO

rs3219008 XX, XO vs OO 2.07 (1.36, 3.17) 1.22 (0.54, 2.79) 2.07 (0.98, 4.38) -0.22 (-1.37, 0.93) 
rs1052133  2.24 (1.44, 3.46) 1.11 (0.5, 2.46) 1.44 (0.71, 2.95) -0.9 (-1.99, 0.2) 
 2.24 (1.44, 3.46) 1.07 (0.21, 5.37) 3.76 (1.26, 11.22) 1.45 (-2.32, 5.22) 
APEX1     

XO vs. OO

XX vs. OO

rs1048945 XX, XO vs OO 1.92 (1.32, 2.79) 1.57 (0.58, 4.24) 3.33 (1.45, 7.66) 0.84 (-2.01, 3.69) 
rs3136817 XX, XO vs OO 1.6 (1.04, 2.48) 0.68 (0.38, 1.2) 1.76 (1.07, 2.9) 0.48 (-0.31, 1.28) 
rs3136820  XO vs. OO 1.58 (0.83, 3.01) 1.17 (0.59, 2.34) 2.28 (1.21, 4.31) 0.53 (-0.52, 1.58) 
 XX vs. OO 1.58 (0.83, 3.01 0.93 (0.41, 2.1) 2.29 (1.11, 4.74) 0.78 (-0.41, 1.98) 

1.95 (1.34, 2.83) 1.53 (0.52, 4.48) 2.71 (1.25, 5.87) 0.23 (-2.28, 2.74) 
XPD     
rs3136814 XX, XO vs OO

rs1052555  XO vs. OO 2.13 (1.28, 3.55) 1.52 (0.79, 2.91) 2.6 (1.36, 4.97) -0.05 (-1.3, 1.19) 
 XX vs. OO 2.13 (1.28, 3.55) 0.62 (0.21, 1.86) 1.44 (0.49, 4.21) -0.3 (-1.69, 1.09) 
rs50871  0.85 (0.45, 1.59) 0.56 (0.3, 1.06) 1.42 (0.78, 2.58) 1 (0.44, 1.56) 
 0.85 (0.45, 1.59) 0.81 (0.37, 1.76) 2.32 (1.14, 4.71) 1.66 (0.44, 2.89) 
rs1799793  XO vs. OO 2.29 (1.34, 3.92) 1.21 (0.61, 2.41) 2.29 (1.17, 4.46) -0.22 (-1.44,1) 
 2.29 (1.34, 3.92) 2.31 (0.67,8) 2.8 (1.02, 7.7) -0.81 (-3.33, 1.71) 
rs3916874  XO vs. OO 1.69 (1.06, 2.69) 0.95 (0.53, 1.7) 1.79 (1.08, 2.96) 0.15 (-0.74, 1.03) 
 1.69 (1.06, 2.69) 0.69 (0.26, 1.86) 3.71 (1.61, 8.53) 2.33 (-0.55, 5.2) 
rs1618536  1.71 (0.91, 3.18) 0.79 (0.41, 1.51) 1.73 (0.91, 3.3) 0.24 (-0.71, 1.19) 
 XX vs. OO 1.71 (0.91, 3.18) 0.94 (0.4, 2.21) 1.59 (0.69, 3.69) -0.05 (-1.33, 1.23) 
XRCC3     

XO vs. OO

XX vs. OO

XX vs. OO

XX vs. OO

XO vs. OO

rs3212024  1.35 (0.85, 2.15) 0.81 (0.42, 1.56) 2 (1.08, 3.69) 0.83 (-0.05, 1.71) XO vs. OO

 1.35 (0.85, 2.15) 0.7 (0.22, 2.22) 2.56 (0.83, 7.91) 1.51 (-0.9, 3.91) 
rs861531  XO vs. OO 3.66 (2.05, 6.53) 2.39 (1.15, 4.95) 3.22 (1.61, 6.43) -1.83 (-3.92, 0.26) 
 3.66 (2.05, 6.53) 1.75 (0.55, 5.55) 2.61 (0.89, 7.64) -1.79 (-4.18, 0.6) 

1.78 (1.22, 2.61) 0.52 (0.2, 1.35) 1.98 (0.94, 4.19) 0.68 (-0.67, 2.03) 
2.11 (1.38, 3.21) 1.25 (0.59, 2.64) 2.08 (1.07, 4.04) -0.28 (-1.35, 0.8) 

Piecewise exponential model adjusted for sampling strategy, alcohol intake, physical activity, and study center; ICR, 
interaction contrast ratio; CHD, coronary heart disease; ARIC, Atherosclerosis Risk in Communities Study 

XX vs. OO

XX vs. OO

rs1799795 XX, XO vs OO

rs1799794 XX, XO vs OO
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Table 35. (MS 1 supplemental results) IRR point and interval estimates for the association between 20 DNA 
repair tagSNPs, ever-smoking and incident CHD in 1160 Caucasian ARIC participants. 
 tagSNPs within Each Gene Considered Exchangeable 

 
Main effect of  
ever-smoking Main effect of SNP 

Joint effect, SNP 
and ever-smoking ICR 

XRCC1     
rs1799782  1.86 (1.29, 2.68) 1.11 (0.56, 2.21) 1.23 (0.66, 2.3) -0.74 (-1.79, 0.31) XX, XO vs OO

rs25486  XO vs. OO 1.8 (1.13, 2.88) 0.87 (0.5, 1.5) 1.58 (0.94, 2.63) -0.09 (-0.9, 0.71) 
 1.8 (1.13, 2.88) 0.64 (0.28, 1.47) 0.84 (0.39, 1.81) -0.6 (-1.53, 0.33) 
rs3213282  XO vs. OO 1.4 (0.79, 2.48) 1.04 (0.54, 2) 2.01 (1.04, 3.86) 0.57 (-0.34, 1.48) 
 1.4 (0.79, 2.48) 1.05 (0.47, 2.32) 1.97 (0.85, 4.6) 0.52 (-0.75, 1.79) 
rs3213245  2.02 (1.14, 3.55) 0.9 (0.48, 1.71) 1.45 (0.79, 2.65) -0.47 (-1.55, 0.6) 
 2.02 (1.14, 3.55) 0.81 (0.36, 1.83) 1.49 (0.65, 3.4) -0.34 (-1.61, 0.94) 
rs25489 XX, XO vs OO 1.77 (1.24, 2.53) 1.15 (0.52, 2.51) 1.9 (0.95, 3.79) -0.02 (-1.39, 1.35) 
hOGG1     

XX vs. OO

XX vs. OO

XO vs. OO

XX vs. OO

rs3219008 XX, XO vs OO 1.97 (1.31, 2.97) 1.34 (0.73, 2.45) 1.92 (1.06, 3.45) -0.4 (-1.42, 0.63) 
rs1052133  2.12 (1.4, 3.21) 1.13 (0.6, 2.12) 1.32 (0.74, 2.35) -0.93 (-1.92, 0.06) 
 XX vs. OO 2.12 (1.4, 3.21) 1.1 (0.39, 3.11) 2.77 (1.15, 6.65) 0.55 (-1.77, 2.87) 
APEX1     

XO vs. OO

rs1048945 XX, XO vs OO 1.73 (1.22, 2.47) 1.34 (0.61, 2.95) 2.93 (1.36, 6.33) 0.86 (-1.33, 3.05) 
rs3136817 XX, XO vs OO 1.51 (1, 2.29) 0.74 (0.44, 1.23) 1.63 (1.03, 2.57) 0.38 (-0.34, 1.09) 
rs3136820  1.57 (0.88, 2.82) 1.25 (0.69, 2.26) 2.17 (1.23, 3.85) 0.35 (-0.63, 1.33) 
 XX vs. OO 1.57 (0.88, 2.82) 1.05 (0.53, 2.05) 2.16 (1.12, 4.14) 0.54 (-0.56, 1.63) 

1.76 (1.24, 2.52) 1.28 (0.56, 2.91) 2.23 (1.1, 4.52) 0.18 (-1.58, 1.94) 
XPD     

XO vs. OO

rs3136814 XX, XO vs OO

rs1052555  1.92 (1.19, 3.1) 1.46 (0.85, 2.53) 2.32 (1.33, 4.06) -0.06 (-1.12, 1) XO vs. OO

 XX vs. OO 1.92 (1.19, 3.1) 0.78 (0.35, 1.71) 1.65 (0.73, 3.75) -0.04 (-1.3, 1.21) 
rs50871  0.96 (0.55, 1.69) 0.68 (0.4, 1.18) 1.48 (0.86, 2.53) 0.83 (0.25, 1.41) 
 XX vs. OO 0.96 (0.55, 1.69) 0.92 (0.49, 1.73) 2.08 (1.11, 3.9) 1.2 (0.19, 2.21) 
rs1799793  XO vs. OO 1.99 (1.2, 3.28) 1.13 (0.64, 1.98) 1.91 (1.07, 3.4) -0.2 (-1.2, 0.79) 
 XX vs. OO 1.99 (1.2, 3.28) 1.5 (0.65, 3.47) 2.06 (0.94, 4.5) -0.43 (-2, 1.15) 
rs3916874  1.6 (1.03, 2.47) 1.05 (0.62, 1.76) 1.78 (1.1, 2.86) 0.14 (-0.68, 0.95) 
 1.6 (1.03, 2.47) 0.97 (0.45, 2.09) 3.08 (1.45, 6.53) 1.52 (-0.62, 3.66) 
rs1618536  XO vs. OO 1.67 (0.95, 2.93) 0.87 (0.5, 1.52) 1.68 (0.95, 2.96) 0.14 (-0.73, 1) 
 XX vs. OO 1.67 (0.95, 2.93) 1.03 (0.51, 2.09) 1.57 (0.74, 3.31) -0.13 (-1.28, 1.01) 
XRCC3     

XO vs. OO

XO vs. OO

XX vs. OO

rs3212024  1.35 (0.87, 2.09) 0.89 (0.49, 1.61) 1.87 (1.05, 3.31) 0.63 (-0.15, 1.41) XO vs. OO

 XX vs. OO 1.35 (0.87, 2.09) 0.84 (0.32, 2.15) 2.27 (0.86, 6.02) 1.09 (-0.7, 2.87) 
rs861531  XO vs. OO 2.87 (1.68, 4.88) 2 (1.05, 3.83) 2.65 (1.42, 4.95) -1.22 (-2.75, 0.31) 
 2.87 (1.68, 4.88) 1.42 (0.55, 3.72) 2.18 (0.85, 5.56) -1.11 (-2.82, 0.59) 

1.66 (1.16, 2.39) 0.6 (0.27, 1.37) 1.75 (0.87, 3.5) 0.49 (-0.6, 1.58) 
rs1799794 XX, XO vs OO 1.93 (1.29, 2.89) 1.23 (0.62, 2.43) 1.84 (0.99, 3.4) -0.33 (-1.26, 0.61) 
Piecewise exponential model adjusted for sampling strategy, alcohol intake, physical activity, and study center; ICR, 
interaction contrast ratio; CHD, coronary heart disease; ARIC, Atherosclerosis Risk in Communities Study; 2 = 
0.35, corresponds to a 10-fold residual effect range around the prior mean 

XX vs. OO

rs1799795 XX, XO vs OO

 τ
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Table 36.  (MS 1 supplemental results)  IRR point and interval estimates for the association between 20 DNA repair 
tagSNPs, ever-smoking and incident CHD in 345 African American ARIC participants. 
 Conventional analysis  

(Gene-smoking interaction for one SNP and main effects of all others) 

 
Main effect of  
ever-smoking 

Main effect of 
SNP 

Joint effect, SNP 
and ever-smoking ICR 

XRCC1     
rs1799782 XX, XO vs OO 1.51 (0.66, 3.43) 3.1 (0.68, 14.21) 5.15 (0.81, 32.76) 1.54 (-7.42, 10.49) 
rs25486 1.1 (0.41, 2.99) 1.59 (0.29, 8.69) 4.19 (0.82, 21.31) 2.5 (-2.43, 7.43) 
rs3213282 XO vs. OO 0.92 (0.24, 3.49) 0.61 (0.11, 3.51) 1.09 (0.14, 8.49) 0.56 (-0.94, 2.05) 
 0.92 (0.24, 3.49) 3.06 (0.21, 44.22) 6.38 (0.51, 79.9) 3.4 (-6.72, 13.51) 
rs3213245 XO vs. OO 1.21 (0.28, 5.24) 0.65 (0.12, 3.45) 1.15 (0.19, 6.92) 0.29 (-1.47, 2.05) 
 1.21 (0.28, 5.24) 0.17 (0.01, 2.17) 0.25 (0.02, 3.67) -0.13 (-1.92, 1.66) 
rs1475933 XX, XO vs OO 1.8 (0.5, 6.55) 1.74 (0.35, 8.64) 2.43 (0.48, 12.41) -0.12 (-2.92, 2.68) 
rs25487 XX, XO vs OO 1.41 (0.55, 3.6) 0.59 (0.11, 3.01) 1.15 (0.22, 5.95) 0.16 (-1.87, 2.19) 
hOGG1     

XX, XO vs OO

XX vs. OO

XX vs. OO

rs1052133 2.37 (0.91, 6.22) 2.11 (0.48, 9.24) 1.07 (0.25, 4.59) -2.42 (-6.16, 1.33) XX, XO vs OO

rs3219008 XO vs. OO 0.93 (0.25, 3.55) 0.65 (0.15, 2.79) 2.08 (0.47, 9.16) 1.5 (-1.05, 4.05) 
 0.93 (0.25, 3.55) 5.34 (0.78, 36.77) 2.9 (0.44, 19.17) -2.38 (-10.7, 5.95) 
rs1805373 XX, XO vs OO 1.24 (0.55, 2.79) 1.36 (0.32, 5.69) 5.37 (1.57, 18.33) 3.78 (-2.48, 10.03) 
rs2072668 3.9 (1.1, 13.77) 1.81 (0.43, 7.72) 0.91 (0.2, 4.11) -3.8 (-9.54, 1.94) 
APEX1     

XX vs. OO

XX, XO vs OO

rs3136820 1.09 (0.33, 3.66) 1.37 (0.33, 5.73) 2.3 (0.55, 9.59) 0.84 (-1.31, 2.99) XO vs. OO

 XX vs. OO 1.09 (0.33, 3.66) 2.09 (0.37, 11.7) 6.34 (0.73, 54.77) 4.16 (-7.84, 16.17) 
rs3136817 1.3 (0.55, 3.11) 0.47 (0.11, 1.99) 1.21 (0.37, 3.91) 0.43 (-0.92, 1.79) 
rs3136814 1.38 (0.56, 3.42) 0.47 (0.08, 2.71) 1.02 (0.31, 3.34) 0.17 (-1.33, 1.68) 
XPD     

XX, XO vs OO

XX, XO vs OO

rs1799793 XX, XO vs OO 1.14 (0.44, 2.93) 0.4 (0.1, 1.6) 1.35 (0.35, 5.24) 0.82 (-0.84, 2.48) 
rs1618536 2.11 (0.85, 5.27) 1.69 (0.36, 8.02) 0.47 (0.14, 1.6) -2.33 (-6.01, 1.35) 
rs3916874 1.57 (0.69, 3.59) 0.84 (0.1, 7.45) 0.88 (0.2, 3.82) -0.54 (-2.86, 1.78) 
rs50871 1.68 (0.7, 4.07) 2.48 (0.62, 9.83) 2.71 (0.69, 10.67) -0.45 (-4.64, 3.74) 
rs1052559 XX, XO vs OO 1.57 (0.54, 4.57) 0.78 (0.25, 2.49) 1.16 (0.39, 3.43) -0.19 (-2.05, 1.67) 
XRCC3     

XX, XO vs OO

XX, XO vs OO

XX, XO vs OO

rs861531 1.62 (0.55, 4.72) 0.67 (0.15, 3) 0.96 (0.2, 4.66) -0.32 (-1.94, 1.29) XX, XO vs OO

rs1799794 XX, XO vs OO 1.72 (0.55, 5.38) 1.59 (0.48, 5.31) 2.13 (0.61, 7.48) -0.18 (-2.8, 2.44) 
rs3212024 XX, XO vs OO 1.63 (0.67, 3.96) 1.24 (0.4, 3.79) 1.55 (0.46, 5.2) -0.31 (-2.46, 1.83) 
rs861539 XX, XO vs OO 1.57 (0.56, 4.37) 1.97 (0.39, 10.05) 2.9 (0.62, 13.66) 0.36 (-2.67, 3.4) 
Piecewise exponential model adjusted for sampling strategy, alcohol intake, physical activity, and study center; 
ICR, interaction contrast ratio; CHD, coronary heart disease; ARIC, Atherosclerosis Risk in Communities Study 
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Table 37.  (MS 1 supplemental results) IRR point and interval estimates for the association between 20 DNA 
repair tagSNPs, ever-smoking and incident CHD in 345 African American ARIC participants. 
 tagSNPs within Each Gene Considered Exchangeable 

 
Main effect of  
ever-smoking 

Main effect of 
SNP 

Joint effect, SNP 
and ever-smoking ICR 

XRCC1     
rs1799782 XX, XO vs OO 1.23 ( 0.59,  2.57) 1.47 ( 0.56,  3.84) 1.88 ( 0.48,  7.35) 0.18 (-2.12,  2.48) 
rs25486 XX, XO vs OO 1.04 ( 0.45,   2.4) 1.29 ( 0.53,  3.13) 2.14 ( 0.77,  5.98) 0.82 (-0.97,   2.6) 
rs3213282 1.03 ( 0.37,  2.88) 0.86 ( 0.35,  2.07) 1.08 ( 0.36,  3.23) 0.2 (-0.95,  1.35) 
 1.03 ( 0.37,  2.88) 1.2 ( 0.44,  3.29) 1.62 (  0.5,  5.29) 0.39 (-1.29,  2.07) 
rs3213245 1.16 ( 0.41,  3.29) 1.23 ( 0.51,  2.93) 1.44 ( 0.49,  4.26) 0.06 ( -1.4,  1.51) 
 XX vs. OO 1.16 ( 0.41,  3.29) 0.86 ( 0.31,  2.38) 1.29 ( 0.37,  4.57) 0.28 (-1.23,  1.79) 
rs1475933 1.34 ( 0.48,  3.78) 1.31 ( 0.56,  3.05) 1.56 ( 0.58,  4.23) -0.09 (-1.58,  1.39) 
rs25487 1.17 ( 0.53,   2.6) 1.02 ( 0.42,  2.45) 1.4 ( 0.46,  4.19) 0.21 (-1.34,  1.76) 
hOGG1     

XO vs. OO

XX vs. OO

XO vs. OO

XX, XO vs OO

XX, XO vs OO

rs1052133 1.56 ( 0.71,  3.45) 1.43 ( 0.59,  3.45) 1.17 ( 0.42,  3.27) -0.82 (-2.45,   0.8) XX, XO vs OO

rs3219008 1.07 ( 0.39,  2.93) 0.82 ( 0.33,  2.06) 1.27 ( 0.46,  3.51) 0.38 (-0.88,  1.64) 
 1.07 ( 0.39,  2.93) 1.47 ( 0.54,  4.04) 1.41 ( 0.42,  4.77) -0.13 ( -1.9,  1.64) 
rs1805373 1.12 ( 0.53,  2.34) 1.34 ( 0.52,  3.49) 2.36 ( 0.86,  6.46) 0.9 (-1.36,  3.16) 
rs2072668 1.65 ( 0.63,  4.33) 1.21 ( 0.51,  2.84) 1.13 ( 0.41,  3.09) -0.73 (-2.53,  1.08) 
APEX1     

XO vs. OO

XX vs. OO

XX, XO vs OO

XX, XO vs OO

rs3136820 1.04 ( 0.39,  2.75) 0.72 ( 0.31,   1.7) 1.03 (  0.4,  2.66) 0.26 (-0.73,  1.25) XO vs. OO

 1.04 ( 0.39,  2.75) 1 ( 0.37,  2.69) 1.41 ( 0.38,  5.25) 0.37 (-1.35,  2.09) 
rs3136817 1.12 ( 0.51,  2.45) 0.84 ( 0.34,  2.04) 1.33 ( 0.53,  3.35) 0.37 (-0.82,  1.56) 
rs3136814 XX, XO vs OO 1.24 ( 0.57,  2.68) 0.79 (  0.3,  2.07) 0.96 ( 0.35,  2.64) -0.07 (-1.18,  1.05) 
XPD     

XX vs. OO

XX, XO vs OO

rs1799793 1.14 ( 0.51,  2.55) 0.89 ( 0.37,  2.13) 1.47 ( 0.52,  4.12) 0.44 (-0.95,  1.82) XX, XO vs OO

rs1618536 XX, XO vs OO 1.36 ( 0.63,  2.93) 0.85 ( 0.34,  2.13) 0.77 (  0.3,     2) -0.44 ( -1.7,  0.83) 
rs3916874 1.29 ( 0.62,  2.69) 1.2 ( 0.42,  3.43) 1.01 ( 0.33,   3.1) -0.48 (-2.04,  1.08) 
rs50871 XX, XO vs OO 1.29 (0.60  2.78) 1.49 (  0.6,  3.73) 1.58 ( 0.58,  4.27) -0.2 (-2.05,  1.64) 
rs1052559 XX, XO vs OO 1.33 ( 0.55,  3.24) 1.02 ( 0.46,  2.28) 1.16 ( 0.47,  2.86) -0.2 (-1.52,  1.13) 
XRCC3     

XX, XO vs OO

rs861531 1.39 ( 0.56,  3.46) 0.9 ( 0.37,  2.17) 0.99 ( 0.35,  2.79) -0.29 (-1.53,  0.94) XX, XO vs OO

rs1799794 1.21 ( 0.49,  2.99) 0.99 ( 0.41,  2.41) 1.23 ( 0.45,  3.35) 0.02 ( -1.2,  1.25) 
rs3212024 XX, XO vs OO 1.25 ( 0.57,  2.75) 0.91 (  0.4,  2.08) 1.13 ( 0.43,  3.02) -0.03 (-1.23,  1.18) 
rs861539 XX, XO vs OO 1.34 ( 0.56,  3.22) 1.09 ( 0.44,   2.7) 1.21 ( 0.44,  3.31) -0.22 (-1.55,   1.1) 
Piecewise exponential model adjusted for sampling strategy, alcohol intake, physical activity, and study center; 
ICR, interaction contrast ratio; CHD, coronary heart disease; ARIC, Atherosclerosis Risk in Communities Study;
τ2 = 0.35, corresponds to a 10-fold residual effect range around the prior mean 

XX, XO vs OO
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C.  Supplemental results, Manuscript 2 
 
Table 38. (MS 2 supplemental results) Point and interval estimates for the association between 20 DNA 
repair tagSNPs, ever-smoking, and baseline mean IMT in 470 Caucasian ARIC participants 
 Conventional analysis  

(Gene-smoking interaction for one SNP and main effects of all others) 

SNP 
Main effect of   
ever-smoking Main effect of SNP 

Joint effect,  
SNP and ever-smoking 

XRCC1    
rs1799782  XX, XO vs OO 0.092 ( 0.045,  0.139) 0.038 (-0.079,  0.154) 0.054 (-0.038,  0.145) 
rs25486  0.076 ( 0.009,  0.143) 0.015 (-0.067,  0.098) 0.114 ( 0.037,   0.19) 
 0.076 ( 0.009,  0.143) 0.023 ( -0.11,  0.157) 0.084 ( -0.03,  0.197) 
rs3213282  XO vs. OO 0.046 (-0.032,  0.124) -0.041 (-0.172,   0.09) 0.066 (-0.062,  0.193) 
 0.046 (-0.032,  0.124) -0.04 (-0.261,   0.18) 0.045 (-0.179,  0.269) 
rs3213245  0.039 (-0.034,  0.113) -0.029 (-0.155,  0.098) 0.091 (-0.028,  0.209) 
 XX vs. OO 0.039 (-0.034,  0.113) 0.022 (-0.197,  0.241) 0.102 (-0.116,   0.32) 

0.092 ( 0.046,  0.139) 0.088 (-0.075,   0.25) 0.075 ( -0.06,  0.209) 
hOGG1     

XO vs. OO

XX vs. OO

XX vs. OO

XO vs. OO

rs25489 XX, XO vs OO

rs3219008 XX, XO vs OO 0.085 (  0.03,  0.139) -0.047 (-0.154,  0.061) 0.034 (-0.065,  0.133) 
rs1052133  0.091 ( 0.035,  0.147) 0.076 ( -0.03,  0.182) 0.145 ( 0.047,  0.243) 
 0.091 ( 0.035,  0.147) 0.124 (-0.073,  0.321) 0.205 ( 0.063,  0.348) 
APEX1     

XO vs. OO

XX vs. OO

rs1048945 XX, XO vs OO 0.087 ( 0.041,  0.134) 0.007 (-0.129,  0.142) 0.025 (-0.103,  0.152) 
rs3136817 XX, XO vs OO 0.098 ( 0.039,  0.158) -0.005 ( -0.08,  0.069) 0.059 (-0.008,  0.125) 
rs3136820  XO vs. OO 0.079 (-0.009,  0.166) 0.035 (-0.056,  0.125) 0.12 ( 0.033,  0.207) 
 0.079 (-0.009,  0.166) 0.019 (-0.082,   0.12) 0.104 ( 0.005,  0.203) 

0.077 ( 0.031,  0.122) -0.074 (-0.228,   0.08) 0.154 ( 0.034,  0.273) 
XPD     

XX vs. OO

rs3136814 XX, XO vs OO

rs1052555  0.072 ( 0.007,  0.136) -0.034 ( -0.12,  0.051) 0.05 ( -0.03,   0.13) XO vs. OO

 0.072 ( 0.007,  0.136) -0.088 (-0.222,  0.046) 0.038 (-0.096,  0.172) 
rs50871  0.112 ( 0.024,  0.199) 0.056 (-0.029,   0.14) 0.141 ( 0.058,  0.223) 
 XX vs. OO 0.112 ( 0.024,  0.199) 0.061 (-0.041,  0.164) 0.113 ( 0.018,  0.208) 
rs1799793  XO vs. OO 0.059 (-0.007,  0.125) -0.068 (-0.158,  0.021) 0.021 (-0.064,  0.105) 
 0.059 (-0.007,  0.125) -0.01 (-0.174,  0.154) 0.161 ( 0.026,  0.296) 
rs3916874  XO vs. OO 0.068 ( 0.008,  0.129) -0.037 (-0.114,  0.039) 0.089 ( 0.018,  0.161) 
 0.068 ( 0.008,  0.129) 0.025 (-0.112,  0.162) -0.002 ( -0.12,  0.115) 
rs1618536  0.121 ( 0.039,  0.204) -0.02 (-0.106,  0.066) 0.077 (-0.007,  0.161) 
 XX vs. OO 0.121 ( 0.039,  0.204) 0.035 (-0.078,  0.148) 0.037 (-0.076,   0.15) 
XRCC3     

XX vs. OO

XO vs. OO

XX vs. OO

XX vs. OO

XO vs. OO

rs3212024  0.052 (-0.011,  0.115) -0.019 (-0.109,   0.07) 0.094 (  0.01,  0.178) XO vs. OO

 XX vs. OO 0.052 (-0.011,  0.115) -0.013 (-0.175,  0.148) 0.101 (-0.056,  0.258) 
rs861531  0.081 ( 0.009,  0.154) 0.023 (-0.068,  0.113) 0.098 ( 0.012,  0.184) 
 0.081 ( 0.009,  0.154) -0.022 (-0.177,  0.133) 0.087 (-0.053,  0.227) 
rs1799795 0.094 ( 0.046,  0.142) -0.012 (-0.127,  0.103) -0.001 (-0.104,  0.103) 

0.115 (  0.06,  0.169) 0.03 ( -0.07,  0.129) 0.054 (-0.036,  0.144) 
General linear mixed model adjusted for sampling strategy and study center; ARIC, Atherosclerosis Risk in 
Communities Study; IMT, intima-medial thickness; SNP, single nucleotide polymorphism;  hOGG1, 8 – 
hydroxy-2’ – deoxyguanosine-glycosylase/apurinic lyase; APEX1,  apurinic/apyrimidinic endonuclease; 
XRCC1, X-ray repair cross complementing, group 1; XPD,  xeroderma pigmentosum D; XRCC3, X-ray repair 
complementing defective repair in Chinese hamster cells 3 

XO vs. OO

XX vs. OO

XX, XO vs OO

rs1799794 XX, XO vs OO
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Table 39. (MS 2 supplemental results) Point and interval estimates for the association between 22 DNA 
repair tagSNPs, ever-smoking, and baseline mean IMT in  African American ARIC participants.  
 Conventional analysis  

(Gene-smoking interaction for one SNP and main effects of all others) 

 194

SNP 
Main effect of   
ever-smoking Main effect of SNP 

Joint effect,  
SNP and ever-

smoking 
XRCC1    
rs1799782 XX, XO vs OO 0.026 (-0.053,  0.104) 0.068 (-0.095,  0.231) -0.064 (-0.278,  0.151) 
rs25486 0.044 (-0.047,  0.135) 0.023 (-0.112,  0.158) -0.016 (-0.159,  0.127) 
rs3213282 -0.065 (-0.191,  0.062) -0.104 (-0.257,  0.048) -0.028 (-0.188,  0.133) 
 -0.065 (-0.191,  0.062) 0.077 (-0.135,  0.288) 0.056 (-0.144,  0.256) 
rs3213245 0.017 (-0.113,  0.147) -0.126 (-0.288,  0.036) -0.106 (-0.266,  0.054) 
 0.017 (-0.113,  0.147) -0.164 (-0.375,  0.046) -0.169 (-0.374,  0.037) 
rs1475933 0 (-0.114,  0.114) 0.091 (-0.048,  0.231) 0.114 (-0.022,  0.251) 
rs25487 0.038 (-0.047,  0.123) 0.021 ( -0.13,  0.172) -0.039 (-0.181,  0.102) 
hOGG1     

XX, XO vs OO

XO vs. OO

XX vs. OO

XO vs. OO

XX vs. OO

XX, XO vs OO

XX, XO vs OO

rs1052133 0.017 (-0.071,  0.105) 0.002 (-0.135,  0.139) 0.008 (-0.108,  0.124) XX, XO vs OO
rs3219008 0.105 (-0.008,  0.217) 0.038 (-0.085,  0.162) -0.007 ( -0.13,  0.117) 
 0.105 (-0.008,  0.217) 0.021 (-0.148,   0.19) -0.017 (-0.172,  0.138) 
rs1805373 0.002 (-0.078,  0.082) 0.028 ( -0.12,  0.177) 0.114 (-0.012,   0.24) 
rs2072668 0.01 (-0.084,  0.105) 0.065 (-0.062,  0.193) 0.084 (-0.041,  0.209) 
APEX1     

XO vs. OO

XX vs. OO

XX, XO vs OO

XX, XO vs OO

rs3136820 0.003 (-0.112,  0.117) 0.038 (-0.092,  0.168) 0.08 (-0.046,  0.206) XO vs. OO
 0.003 (-0.112,  0.117) 0.054 (-0.126,  0.233) -0.02 (-0.222,  0.181) 
rs3136817 0.03 (-0.053,  0.113) 0.031 (-0.105,  0.167) -0.011 (-0.128,  0.106) 
rs3136814 -0.006 (-0.092,   0.08) -0.096 (-0.226,  0.033) -0.025 (-0.128,  0.078) 
XPD     

XX vs. OO

XX, XO vs OO

XX, XO vs OO

rs1799793 0.002 (-0.083,  0.088) -0.01 (-0.136,  0.115) 0.036 (-0.091,  0.164) XX, XO vs OO
rs1618536 0.021 (-0.064,  0.105) 0.042 (-0.096,   0.18) 0.031 (-0.075,  0.137) 
rs3916874 0.022 (-0.056,  0.101) 0.058 (-0.185,  0.301) -0.053 (-0.197,  0.092) 
rs50871 0.025 (-0.056,  0.106) 0.059 (-0.092,   0.21) 0.008 (-0.124,   0.14) 
rs1052559 0.026 (-0.072,  0.124) 0.085 (-0.029,    0.2) 0.085 ( -0.02,   0.19) 
XRCC3     

XX, XO vs OO

XX, XO vs OO

XX, XO vs OO

XX, XO vs OO

rs861531 0.101 (-0.001,  0.202) 0.169 (  0.04,  0.298) 0.105 (-0.026,  0.237) XX, XO vs OO
rs1799794 XX, XO vs OO -0.013 (-0.107,  0.082) -0.026 (-0.142,   0.09) 0.034 ( -0.08,  0.147) 
rs3212024 XX, XO vs OO 0.036 ( -0.05,  0.122) -0.04 (-0.151,   0.07) -0.083 (-0.188,  0.022) 
rs861539 XX, XO vs OO 0.065 ( -0.03,  0.159) -0.025 (-0.155,  0.106) -0.081 (-0.207,  0.044) 
General linear mixed model adjusted for sampling strategy and study center; ARIC, Atherosclerosis Risk in 
Communities Study; IMT, intima-medial thickness; SNP, single nucleotide polymorphism;  hOGG1, 8 – 
hydroxy-2’ – deoxyguanosine-glycosylase/apurinic lyase; APEX1,  apurinic/apyrimidinic endonuclease; 
XRCC1, X-ray repair cross complementing, group 1; XPD,  xeroderma pigmentosum D; XRCC3, X-ray repair 
complementing defective repair in Chinese hamster cells 3 
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Table 40. (MS 2 supplemental results) Point and interval estimates for the association between 20 DNA 
repair tagSNPs, ever-smoking, and baseline mean IMT in 470 Caucasian ARIC participants specifying 
tagSNPs within each gene as exchangeable and a 0.3 residual effect range (τ2 = 0.00574). 
 tagSNPs within a Given Gene Considered Exchangeable 

SNP 
Main effect of   
ever-smoking Main effect of SNP 

Joint effect,  
SNP and ever-smoking 

XRCC1    
rs1799782  0.091 ( 0.044,  0.137) 0.029 (-0.069,  0.126) 0.063 (-0.023,  0.149) XX, XO vs OO

rs25486  0.078 ( 0.015,  0.141) 0.017 (-0.056,  0.091) 0.114 ( 0.043,  0.185) 
 0.078 ( 0.015,  0.141) 0.023 (-0.085,  0.131) 0.089 (-0.013,  0.191) 
rs3213282  0.055 (-0.017,  0.127) -0.018 (  -0.1,  0.065) 0.086 ( 0.004,  0.168) 
 0.055 (-0.017,  0.127) 0 (-0.102,  0.102) 0.084 (-0.023,  0.191) 
rs3213245  0.047 (-0.021,  0.116) -0.021 (-0.104,  0.061) 0.094 ( 0.015,  0.174) 
 0.047 (-0.021,  0.116) 0.011 (-0.094,  0.116) 0.089 ( -0.02,  0.199) 

0.09 ( 0.044,  0.136) 0.04 (-0.062,  0.143) 0.063 (-0.035,  0.161) 
hOGG1     

XO vs. OO

XX vs. OO

XO vs. OO

XX vs. OO

XO vs. OO

XX vs. OO

rs25489 XX, XO vs OO

rs3219008 XX, XO vs OO 0.088 ( 0.035,  0.141) -0.008 (-0.087,  0.071) 0.069 (-0.007,  0.145) 
rs1052133  0.09 ( 0.036,  0.144) 0.045 (-0.037,  0.128) 0.117 ( 0.039,  0.195) 
 0.09 ( 0.036,  0.144) 0.056 (-0.074,  0.186) 0.156 ( 0.042,  0.269) 
APEX1     

XO vs. OO

XX vs. OO

rs1048945 XX, XO vs OO 0.087 ( 0.042,  0.133) 0.008 (-0.097,  0.113) 0.046 (-0.068,   0.16) 
rs3136817 XX, XO vs OO 0.099 ( 0.042,  0.157) 0.002 (-0.064,  0.068) 0.067 ( 0.005,  0.129) 
rs3136820  0.079 ( 0.001,  0.158) 0.028 ( -0.05,  0.105) 0.112 ( 0.034,   0.19) 
 0.079 ( 0.001,  0.158) 0.013 (-0.072,  0.097) 0.102 ( 0.014,   0.19) 

0.08 ( 0.035,  0.125) -0.037 ( -0.15,  0.075) 0.135 ( 0.028,  0.243) 
XPD     

XO vs. OO

XX vs. OO

rs3136814 XX, XO vs OO

rs1052555  0.078 ( 0.017,   0.14) -0.022 (-0.094,   0.05) 0.059 (-0.011,   0.13) XO vs. OO

 0.078 ( 0.017,   0.14) -0.05 (-0.149,  0.048) 0.069 (-0.036,  0.173) 
rs50871  0.098 ( 0.019,  0.177) 0.032 (-0.041,  0.104) 0.12 ( 0.047,  0.193) 
 0.098 ( 0.019,  0.177) 0.029 (-0.053,  0.112) 0.091 ( 0.007,  0.175) 
rs1799793  0.065 ( 0.002,  0.128) -0.058 (-0.131,  0.015) 0.03 (-0.044,  0.103) 
 0.065 ( 0.002,  0.128) -0.022 (-0.132,  0.088) 0.136 ( 0.032,   0.24) 
rs3916874  0.07 ( 0.012,  0.127) -0.029 (-0.097,  0.038) 0.092 ( 0.025,  0.159) 
 0.07 ( 0.012,  0.127) 0.015 (-0.089,  0.119) 0.019 (-0.084,  0.122) 
rs1618536  0.119 ( 0.044,  0.194) -0.022 (-0.096,  0.051) 0.071 (-0.004,  0.145) 
 0.119 ( 0.044,  0.194) 0.024 (-0.068,  0.116) 0.04 (-0.059,   0.14) 
XRCC3     

XX vs. OO

XO vs. OO

XX vs. OO

XO vs. OO

XX vs. OO

XO vs. OO

XX vs. OO

XO vs. OO

XX vs. OO

rs3212024  0.056 (-0.004,  0.116) -0.016 (-0.098,  0.066) 0.095 ( 0.016,  0.174) XO vs. OO

 0.056 (-0.004,  0.116) -0.01 (-0.141,  0.121) 0.102 (-0.032,  0.236) 
rs861531  0.083 ( 0.015,   0.15) 0.02 (-0.062,  0.102) 0.099 ( 0.019,  0.179) 
 0.083 ( 0.015,   0.15) -0.01 (-0.138,  0.118) 0.092 (-0.031,  0.215) 

0.093 ( 0.046,   0.14) -0.011 (-0.114,  0.092) 0.017 ( -0.08,  0.114) 
XX, XO vs OO 0.113 ( 0.059,  0.166) 0.026 (-0.065,  0.117) 0.057 (-0.028,  0.142) 

General linear mixed model adjusted for sampling strategy and study center; ARIC, Atherosclerosis Risk in 
Communities Study; IMT, intima-medial thickness; SNP, single nucleotide polymorphism;  hOGG1, 8 – 
hydroxy-2’ – deoxyguanosine-glycosylase/apurinic lyase; APEX1,  apurinic/apyrimidinic endonuclease; 
XRCC1, X-ray repair cross complementing, group 1; XPD,  xeroderma pigmentosum D; XRCC3, X-ray repair 
complementing defective repair in Chinese hamster cells 3 

XX vs. OO

XO vs. OO

XX vs. OO

rs1799795 XX, XO vs OO

rs1799794 
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Table 41. (MS 2 supplemental results) Point and interval estimates for the association between 22 DNA 
repair tagSNPs, ever-smoking, and baseline mean IMT in 194 African American ARIC participants 
specifying tagSNPs within each gene as exchangeable and a 0.3 residual effect range (τ2 = 0.00574). 
 tagSNPs within a Given Gene Considered Exchangeable 

SNP 
Main effect of   
ever-smoking Main effect of SNP 

Joint effect,  
SNP and ever-smoking 

XRCC1    
rs1799782 XX, XO vs OO 0.016 (-0.059,  0.091) 0.024 (-0.091,   0.14) -0.042 (-0.206,  0.121) 
rs25486 
rs3213282 XO vs. OO

 XX vs. OO

rs3213245 
 
rs1475933 
rs25487 

  

XX, XO vs OO 0.031 (-0.054,  0.116) 0.009 (-0.087,  0.106) -0.017 ( -0.13,  0.096) 
-0.038 (-0.147,  0.071) -0.088 (-0.188,  0.011) -0.037 ( -0.15,  0.076) 
-0.038 (-0.147,  0.071) 0.011 (-0.105,  0.127) -0.001 (-0.131,  0.128) 

XO vs. OO 0.018 (-0.093,  0.128) -0.047 (-0.148,  0.055) -0.029 (-0.142,  0.084) 
XX vs. OO 0.018 (-0.093,  0.128) -0.03 (-0.146,  0.086) -0.046 (-0.178,  0.086) 

XX, XO vs OO -0.005 (-0.109,  0.099) 0.031 (-0.065,  0.126) 0.051 (-0.053,  0.156) 
XX, XO vs OO 0.026 (-0.054,  0.107) 0 (-0.104,  0.104) -0.038 (-0.153,  0.076) 

hOGG1   
rs1052133 XX, XO vs OO 0.011 (-0.072,  0.095) 0.009 (-0.091,  0.109) 0.017 (-0.081,  0.114) 
rs3219008 
 
rs1805373 -0.001 (-0.077,  0.075) 
rs2072668 0.053 (-0.047,  0.153) 
APEX1 

XO vs. OO 0.074 (-0.026,  0.174) 0.022 (-0.073,  0.117) -0.006 (-0.109,  0.097) 
XX vs. OO 0.074 (-0.026,  0.174) 0.02 (-0.099,  0.138) -0.015 ( -0.14,  0.111) 

XX, XO vs OO 0.022 ( -0.09,  0.133) 0.1 (-0.015,  0.215) 
XX, XO vs OO 0.002 (-0.088,  0.091) 0.032 (-0.061,  0.125) 

    
rs3136820 XO vs. OO -0.006 (-0.105,  0.093) 0.02 (-0.075,  0.116) 0.054 (-0.048,  0.156) 
 0.017 (-0.103,  0.136) -0.012 (-0.161,  0.138) 
rs3136817 
rs3136814 

 

XX vs. OO -0.006 (-0.105,  0.093) 
XX, XO vs OO 0.022 (-0.058,  0.101) 0.021 (-0.079,   0.12) -0.006 (-0.111,  0.098) 
XX, XO vs OO -0.001 (-0.082,   0.08) -0.051 (-0.151,  0.048) -0.012 ( -0.11,  0.086) 

XPD    
rs1799793 XX, XO vs OO -0.001 (-0.081,  0.079) -0.001 (-0.097,  0.095) 0.043 (-0.066,  0.152) 
rs1618536 XX, XO vs OO

rs3916874 
rs50871 XX, XO vs OO

rs1052559 0.071 (-0.023,  0.166) 
   

0.018 (-0.062,  0.097) 0.046 (-0.059,   0.15) 0.031 (-0.065,  0.126) 
XX, XO vs OO 0.016 (-0.058,  0.091) 0.032 (-0.104,  0.168) -0.041 (-0.164,  0.082) 

0.019 (-0.058,  0.096) 0.046 (-0.064,  0.156) 0.002 (-0.112,  0.116) 
XX, XO vs OO 0.012 (-0.078,  0.103) 0.064 (-0.027,  0.155) 

XRCC3  
rs861531 XX, XO vs OO 0.083 (-0.013,   0.18) 0.06 (-0.034,  0.154) 0.049 (-0.059,  0.158) 
rs1799794 
rs3212024 
rs861539 

XX, XO vs OO -0.006 (-0.092,   0.08) -0.017 (-0.114,  0.079) 0.021 (-0.085,  0.126) 
XX, XO vs OO 0.028 (-0.053,  0.109) -0.034 (-0.127,  0.059) -0.07 ( -0.17,   0.03) 
XX, XO vs OO 0.045 (-0.043,  0.133) -0.017 (-0.114,  0.079) -0.055 ( -0.16,   0.05) 

General linear mixed model adjusted for sampling strategy and study center; ARIC, Atherosclerosis Risk in 
Communities Study; IMT, intima-medial thickness; SNP, single nucleotide polymorphism;  hOGG1, 8 – 
hydroxy-2’ – deoxyguanosine-glycosylase/apurinic lyase; APEX1,  apurinic/apyrimidinic endonuclease; 
XRCC1, X-ray repair cross complementing, group 1; XPD,  xeroderma pigmentosum D; XRCC3, X-ray repair 
complementing defective repair in Chinese hamster cells 3 
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