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ABSTRACT

ANDREY A. SHABALIN

Detection of Low Rank Signals in Noise and Fast Correlation Mining

with Applications to Large Biological Data

(Under the direction of Andrew Nobel)

Ongoing technological advances in high-throughput measurement have given biomedical

researchers access to a wealth of genomic information. The increasing size and dimensionality

of the resulting data sets requires new modes of analysis. In this thesis we propose, analyze

and validate several new methods for the analysis of biomedical data. We seek methods that

are at once biologically relevant, computationally efficient, and statistically sound.

The thesis is composed of two parts. The first concerns the problem of reconstructing a

low-rank signal matrix observed in the presence of noise. In Chapter 1 we consider the general

reconstruction problem, with no restrictions on the low-rank signal. We establish a connection

with the singular value decomposition. This connection and recent results in random matrix

theory are used to develop a new denoising scheme that outperforms existing methods on a

wide range of simulated matrices.

Chapter 2 is devoted to a data mining tool that searches for low-rank signals equal to a sum of

raised submatrices. The method, called LAS, searches for large average submatrices, also called

biclusters, using an iterative search procedure that seeks to maximize a statistically motivated

score function. We perform extensive validation of LAS and other biclustering methods on real

datasets and assess the biological relevance of their findings

The second part of the thesis considers the joint analysis of two biological datasets. In Chap-

ter 3 we address the problem of finding associations between single nucleotide polymorphisms

(SNPs) and genes expression. The huge number of possible associations requires careful atten-

tion to issues of computational efficiency and multiple comparisons. We propose a new method,

called FastMap, that exploits the discreteness of SNPs, and uses a permutation approach to

account for multiple comparisons.
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In Chapter 4 we describe a method for combining gene expression data produced from dif-

ferent measurement platforms. The method, called XPN, estimates and removes the systematic

differences between datasets by fitting a simple block-linear model to the available data. The

method is validated on real gene expression data.

The methods described in Chapters 2-4 have been implemented and are publicly available

online.
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INTRODUCTION

Rapid technological progress in the last decades has allowed biologists to produce increas-

ingly large data sets of various types. The first and most popular type is gene expression mi-

croarrays, which became popular back in 1990’s. Other technologies have developed to measure

micro-RNA expression and copy number variation, to detect single nucleotide polymorphisms

(SNPs), and even to perform full genome sequencing. The data sets produced by such technolo-

gies can often be represented as matrices of measurements, where each column corresponds to

a sample, and each row corresponds to a measured variable. Currently, large data sets can have

from tens of thousands (for gene expression arrays) to millions of variables (for SNP arrays).

The number of samples in the data sets can range from tens to thousands, the latter when the

efforts of multiple research centers is combined (see TCGA: The Cancer Genome Atlas). In

most cased the resulting data sets are real-valued. Although next generation sequencing arrays

generate integer values (counts), they can often be treated as real-valued. The clear exception

is SNP arrays, which contain binary values for inbred homozygous populations, and ternary

values for heterozygous populations like humans.

The analysis of biological data sets aims to reveal add information to our existing knowledge

about human diseases such as cancer or cystic fibrosis. For instance, breast cancer is now

known to be not one, but a family, of diseases that differ in speed of tumor growth, response to

treatments, likelihood of metastases, and likelihood of relapse after surgical removal of a tumor.

Gene expression technology enabled biologists to discover subtypes of breast and other types

of cancer. SNP data can be used to determine how differences in genotype predispose people

to different diseases and types of diseases. Genotypic differences between individuals can be

associated with various phenotypes, including phenotypes derived from clinical variables and

gene expression. Analysis of new and existing genetic data can lead to more effective treatments
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targeting individuals genetic makeup.

Typical gene expression data set has tens of thousands of variables and hundreds of samples.

SNP arrays have millions of variables. Even preliminary analysis of such large datasets is

complicated by their size. While a simple visual inspection of gene expression data is now

common, it is not practical for SNP data. Preliminary analysis by simply looking at the table

of numbers is not possible even for moderately sized data sets, as they contain millions of

measurements. The common approach to visualizing gene expression data is the following.

The rows and columns of the data matrix are hierarchically clustered, and then reordered so

that the clusters contiguous. Next, a heatmap is produced. In heatmap each measurement is

represented by just one pixel, colored green for negative values, red for positive, with brightness

proportional to the absolute value of the measurement. SNP data sets are usually not visualized

in this way, as they have too many variables. Instead, scientists perform an analysis first, and

then visualize the results of the analysis in some way. For example, one can evaluate association

of each SNP with a response variable, like survival, and plot the association statistics for SNPs

in the region near the SNP with the largest association.

Analysis of large biological datasets must be both computationally efficient and statistically

principle. For instance, if a method is statistically motivated, but has complexity proportional

to the cube of the number of variables, it would be impractical or even unfeasible for many

data sets. Such methods may perform well when tested on data sets with 500 to 1000 variables,

but they would not scale well to modern data sets with tens to hundreds of thousands of

variables. On the other hand, some existing methods for the analysis of biological data sets

are computationally efficient, but lack statistical justification. For instance, some data mining

methods are designed to find all patterns in a given data set that satisfy a certain criterion,

regardless of how likely it is to find such patterns in a matrix of pure noise. For this reason

such methods may produce a large output with many spurious findings. Others may have

some statistical motivation, but fail to account for multiple comparisons. Some data mining

methods assess significance of their findings by calculating the probability of such exact pattern

appearing in a random data matrix. However, there is usually a great number of patterns the

method considers and assesses significance for, so the probability of finding a pattern with a

low p-value in a pure noise matrix can actually be quite high.
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Another, less widely recognized problem of some methods lies in the number of parameters

they have. The method can be hard to apply if the parameters have to be individually hand-

picked for each dataset. Moreover, if a generalization of an existing method is proposed, which

adds more parameters, one can always choose the parameters for the new method to outperform

the old method on any given test. However, this does not indicate that the new method would

be better in practice, when the choice of all the parameters would become a problem, not an

advantage.

Last but not least, methods that do not have the drawbacks listed above sometimes lack

validation on real data. For example, methods for mining biological data sets, may search for

particular features of the data in both computationally efficient and statistically sound fashion,

but not be actually useful for a biologist.

In this dissertation we propose several new statistical methods for analysis of biological

data sets, each computationally efficient, statistically principal, and validated on real data.

In Section 2 we propose a new biclustering method, called LAS. The LAS section contain a

revised version of the paper published in Annals of Applied Statistics (Shabalin, Weigman,

Perou & Nobel 2009). Next, in Section 3 we present a new method for fast eQTL analysis,

called FastMap. The FastMap section contain a revised and extended version of the paper

published in Bioinformatics (Gatti, Shabalin, Lam, Wright, Rusyn & Nobel 2009). In Section 4

we present a new method for cross platform normalization of gene expression arrays, called

XPN. The XPN section contain a revised version of the paper published in Bioinformatics

(Shabalin, Tjelmeland, Fan, Perou & Nobel 2008). The dissertation begins with Chapter 1

which presents our most recent research and most theoretical research. It studies the problem

of recovery of denoising of low-rank matrices. This research has not yet been submitted to any

journal.

Outline

In Chapter 1 we present a new method for denoising of low-rank matrices with additive Gaussian

noise. The denoising problem is usually solved by singular value decomposition of the observed

data matrix followed by shrinkage or thresholding of its singular values. Although a wide

family of reconstruction schemes is possible, we proof that under minor conditions an efficient
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reconstruction scheme must indeed be based on the singular value of the observed matrix. Even

more, it should only change the singular value of the matrix, leaving the singular vectors intact.

However, as we determine in latter in the Chapter, it is not efficient to restrict the scheme to

simple shrinkage and/or thresholding of singular values.

Next, applying random matrix theory we study the effect of noise on low rank matrices,

namely on their singular values and singular vectors. Then we construct the proposed denoising

scheme based on this knowledge.

Simulation study with a wide range of settings shows that the proposed reconstruction

scheme strongly outperforms the conventional ones regardless of the choice of shrinking and

thresholding parameters for them. The performanceof the proposed method nearly matches

the performance of the general oracle denoising scheme.

As a side result we determine the minimum strength (singular value) the signal must have

to be at least partially recoverable.

In Chapter 2 we present a new data mining method called LAS. It was inspired by the process

of visual mining of heatmap data representations. Some biologists visually inspect heatmaps of

gene expression data in search of solid red or green blocks. Such blocks represent sample-variable

interactions, sets of gene that are simultaneously active or inactive for corresponding sets of

samples. LAS approach a more general problem of finding submatrices with large positive or

negative average. Such submatrices do not have to be contiguous in any heatmap representation

of the data. To search for such submatrices, called biclusters, we first assign each submatrix

a score, which is larger for larger and brighter submatrices. The score is defined as negative

logarithm of p-value, calculated for the null model that data has only noise and Bonferroni

corrected for the number of submatrices of given size. Biclusters with larger score are found

first. Once a bicluster is found, it is removed by reducing its elements, and the search continues

for the next ones.

The task of finding a bicluster with largest score is NP-complete, so we use a heuristic algo-

rithm for the search. Our simulations have shown that LAS algorithm is most often successful

in finding raised submatrices in simulated data.

In the chapter we also perform an extensive validation of LAS biclustering. We applied LAS
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to breast and lung cancer data sets. We found at least one bicluster for each known cancer

subtype those sample set closely matches the samples of the subtype. We have also tested the

biclusters’ sample sets for association with clinical variables and gene sets for overrepresentation

of know gene categories. In all tests LAS outperforms other known biclustering methods.

The LAS problem can be seen as a special case of signal detection problem. LAS model

assumes the signal in the observed data to be a sum of matrices, each equal to a fixed number

on a submatrix and zero elsewhere. Note that the signal matrix with B biclusters has rank at

most B, so the LAS model is a particular case of low-rank signal detection model considered

in Chapter 1. However, as we show in Section 2.6.1, LAS algorithm can find submatrices that

are not detectable with SVD of the data matrix.

Although the analysis of individual datasets has proven to be useful, more information can

be discovered by joint analysis of two, or more datasets. A particular case of such analysis is

gene expression quantitative trait loci (eQTL) mapping, which searches for associations between

SNPs and genes. The number of associations to be calculated is equal to the product of the

number of SNPs (>1m) and the number of genes measured (∼40k), which can be in the order of

tens of billions. The computational burden is even greater if the researcher chooses to perform

permutation analysis to assess the significance of their findings. To address the computational

issues while keeping the analysis statistically correct, we propose a new computational method

for eQTL analysis, called FastMap. The method exploits the discrete structure of SNP data

(whether binary or ternary) to greatly improve the speed of the eQTL analysis. FastMap

performs analysis on gene by gene basis. The significance of the strongest association of a given

gene expression with the available SNPs is assessed using a permutation approach. By assessing

the significance of the strongest association over all SNPs we avoid multiple comparison issue

across SNPs. In order to address multiple comparisons across genes, FastMap assigns a q-value

(Storey & Tibshirani 2003) assessing false discovery rate to each gene.

The original FastMap program, as published in Gatti et al. (2009), was designed to work

with homozygous SNP data only. Since then, the program has been improved, it now supports

ternary SNP data, and works faster on datasets with many samples (>50).
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Collaboration of different cancer centers allows biologist to combine data in order to gain

better strength in the subsequent analysis. More and more datasets become publicly available

with time. However one can not simply join datasets from different sources. The data produced

by different research centers differs more than the data produced within one center. This

difference can arise from a variety of reasons. First, different studies may use gene expression

arrays from different manufacturers, or different versions of arrays from the same manufacturer.

Second, even measurements from various batches of samples from the same array can differ

more than the measurements within each batch. Differences across batches occur because of

differences in measuring conditions, including different batches of arrays, batches of reagents,

and different versions of processing software. Differences across platforms occur because the

probes of different arrays may target different sequences from the the same genes, which are

often located in different exons.

To remove batch and/or platform effects across gene expression datasets we propose a new

method for cross platform normalization, called XPN. It is based on a block model of the data.

XPN is distinguished from other platform normalization methods that are gene-wise linear. In

Chapter 4 we describe the method and carefully validate it on several real data. The tests

on real data show that XPN is more successful in removing platform effects while preserving

important biological information.

Software

For the LAS, FastMap, and XPN methods presented in this dissertation we provide free imple-

mentations of the methods.

The LAS program is implemented in C# programming language with an intuitive graphics

user interface (see Figure 1, left). An alternative implementation in Matlab is also available

for those who may want to add modifications to the code and for cross-platform compatibility.

The LAS software is available at https://genome.unc.edu/las/.

The FastMap method is implemented in Java. It also has an easy to navigate graphical

user interface (see Figure 1, right). The FastMap program and source code are available at

http://cebc.unc.edu/fastmap86.html.

The XPN method is implemented in Matlab and is available at https://genome.unc.edu/
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Figure 1: LAS program user interface on left and FastMap on right.

xpn.
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CHAPTER 1

Reconstruction of a Low-rank Matrix in the
Presence of Gaussian Noise

1.1 Introduction

This chapter addresses the problem of recovering a low rank matrix whose entries are observed

in the presence of additive Gaussian noise.

Problems of this sort appear in multiple fields of study including compressed sensing and

image denoising. In many of these cases the signal matrix is known to have low rank. For

example, a matrix of squared distances between points in d-dimensional Euclidean space is

know to have rank at most d + 2. A correlation matrix for a set of points in d-dimensional

Euclidean space has rank at most d. In other cases the target matrix is often assumed to have

low rank , or to have a good low-rank approximation. For example, Alter et al. (2000), Holter

et al. (2000) and Raychaudhuri et al. (2000) assumed the signal component of gene expression

matrices to have low rank.

The reconstruction problem considered here has a signal plus noise structure. Our goal is

to recover an unknown m × n matrix A of low rank that is observed in the presence of i.i.d.

Gaussian noise as matrix Y :

Y = A+
σ√
n
W, where Wij ∼ i.i.d. N(0, 1).

In what follows, we first consider the variance of the noise σ2 to be known and assume it to

be equal to one. Next, in Section 1.6.1 we propose an estimator for σ, which we use in the

proposed reconstruction scheme.

The classical approach to denoising begins with the singular value decomposition of the



observed matrix Y . Then, the largest singular values are visually inspected on a scree plot. A

sample scree plot is shown in Figure 1.1 below. The rank R of the signal is then estimated

as the number of singular values to the left of the ’elbow’ point. The scree plot on Figure 1.1

clearly indicates a rank-2 signal. The signal is then estimated as the sum of first R terms in

the singular value decomposition of Y .
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Figure 1.1: Scree plot for a 1000× 1000 rank 2 signal matrix with noise.

A more formal version of this approach is known as hard thresholding. Hard thresholding

estimates the signal matrix A by arg minB: rank(B)=R ‖Y − B‖
2
F for some data-driven choice

of rank R. Hard thresholding preserves first R singular values of the matrix Y , and sets the

rest to zero. Hard thresholding can be viewed equivalently as a minimization problem with

rank-based penalty

arg min
B

{
‖Y −B‖2F + λ2rank(B)

}
,

for some parameter λ. Here and in what follows ‖ · ‖F denote Frobenius norm of a matrix.

Another approach is to shrink, not threshold the singular values of the observed matrix. It

reduces all singular values by a constant λ and sets all singular values smaller that λ equal to

zero. Such approach is called soft thresholding and it can also be formulated as minimization

problem: arg minB ‖Y − B‖2F + 2λ‖B‖∗, where λ is a parameter and ‖ · ‖∗ is matrix nuclear

norm (sum of singular values).

Both hard and soft thresholding methods are studied in the literature and various rules for

selection of the penalization parameters are proposed, some with performance guaranties under

certain conditions. Both these approaches are based on SVD of the data and are popular in

practical applications. For instance, Wall et al. (2001), Alter et al. (2000), and Holter et al.

(2000) used SVD as a tool for mining gene expression data and Troyanskaya et al. (2001a)
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applied SVD to impute missing values. SVD is also used for image denoising. However a better

performance is achieved when SVD is applied to small blocks of pixels, not to the whole image.

Denoising methods of Wongsawat et al. and Konstantinides et al. (1997) perform SVD on

square subblocks and set to zero the singular values smaller than some threshold.

However, it is natural to ask whether SVD-based approach is optimal. In general, a re-

construction scheme is a map g : Rm×n → Rm×n. It does not have to be based on SVD of

matrix Y and does not have to be formulated as a penalized minimization problem. It even

does not have to produce matrices of low rank. Can we achieve better reconstruction if we do

not restrict ourselves to scheme that just shrink or threshold singular values? Can we achieve

a better reconstruction if we do not restrict ourselves to the method based on SVD and which

produce low-rank matrices?

In the first part of this chapter we analyze the matrix reconstruction problem and determine

several necessary properties of efficient reconstruction schemes. In Section 1.2 we prove that

under mild conditions on the prior information about the signal (lack of information about its

singular vectors) any effective denoising scheme must be based on the singular value decompo-

sition (SVD) of the observed matrix. Moreover, it need only modify the singular values, not

singular vectors. These facts alone reduce the space of efficient reconstruction schemes from

g : Rm×n → Rm×n to just g : Rm∧n → Rm∧n, where m ∧ n denotes the minimum of m and n.

In the second part of the chapter we propose a new reconstruction scheme. Rather than

adopting approaches of hard and soft thresholding, we start by determining the effect of additive

noise on the singular values and singular vectors of low-rank matrices. We do it by first making a

connection between the matrix reconstruction problem and spiked population models in random

matrix theory. In Section 1.5 we translate relevant theorems from random matrix theory to

the settings of the matrix reconstruction problem. The proposed reconstruction scheme is then

derived from these results in Section 1.6. The proposed scheme is designed to reverse the effect

of the noise on the singular values of the signal and corrects for the effect of the noise on the

signal’s singular vectors. We call the proposed method RMT for on its use of random matrix

theory.

In Section 1.7 we compare the proposed method with oracle version of the soft and hard

thresholding methods. The simulations show that RMT scheme strongly outperforms oracle
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versions of the existing methods, and closely matches the performance of a general oracle scheme

for generated matrices of various size and signal spectra.

1.2 The Matrix Reconstruction Problem

1.2.1 Statement of the Problem

The reconstruction problem considered here has a signal plus noise structure common to many

estimation problems in statistics and signal processing. Our goal is to recover an unknown

m×n matrix A of low rank that is observed in the presence of Gaussian noise. Specifically, we

consider the matrix additive model

Y = A+
σ√
n
W (1.1)

where Y denotes the observed matrix, σ > 0 is an unknown variance parameter, and W is a

Gaussian random matrix with independent N(0, 1) entries. The matrices Y , A, and W are each

of dimension m× n. The factor n−1/2 ensures that the signal and noise are comparable, and is

essential for the for the asymptotic study of matrix reconstruction in Section 1.5, but it does

not play a critical role in the characterization of orthoginally invariant schemes that follows.

At the outset we will assume that the variance σ is known and equal to one. In this case

the model (1.1) simplifies to

Y = A+
1√
n
W, Wij independent ∼ N(0, 1). (1.2)

Formally, a matrix recovery scheme is a map g : Rm×n → Rm×n from the space of m×n matrices

to itself. Given a recovery scheme g(·) and an observed matrix Y from the model (1.2), we

regard Â = g(Y ) as an estimate of A. Recall that the squared Frobenius norm of an m × n

matrix B = {bij} is given by

‖B‖2F =
m∑
i=1

n∑
j=1

b2ij .

If the vector space Rm×n is equipped with the inner product 〈A,B〉 = tr(A′B), then it is easy

to see that ‖B‖2F = 〈B,B〉. We measure the performance of an estimate Â by the squared
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Frobenius norm

Loss(A, Â) = ‖Â−A‖2F . (1.3)

Remark: Our assumption that the entries of the noise matrix W are Gaussian arises from

two conditions required in the analysis that follows. The results of Section 1.3 require that W

has an orthogonally invariant distribution (see Definition 3). On the other hand, the results of

Section 1.5 are based on theorems from random matrix theory, which require the elements of

W to be i.i.d. with zero mean, unit variance, and finite forth moment. It is known that the only

distribution satisfying both these assumptions is the Gaussian (Bartlett 1934). Nevertheless,

our simulations (not presented) show that the Gaussian noise assumption is not required to

ensure good performance of the RMT reconstruction method.

In the next section we will provide some insights to the structure of the reconstruction

problem.

1.3 Invariant Reconstruction Schemes

The additive model (1.2) and Frobenius loss (1.3) have several elementary invariance properties,

which lead naturally to the consideration of reconstruction methods with analogous forms of

invariance. Recall that a square matrix U is said to be orthogonal if UU ′ = U ′U = I, or

equivalently, if the rows (or columns) of U are orthonormal. If we multiply each side of (1.2)

from the left right by orthogonal matrices U and V ′ of appropriate dimensions, we obtain

UY V ′ = UAV ′ +
1√
n
UWV ′. (1.4)

Proposition 1. Equation (1.4) is a reconstruction problem of the form (1.2) with signal UAV ′

and observed matrix UY V ′. If Â is an estimate of A in model (1.2), then UÂV ′ is an estimate

of UAV ′ in model (1.4) with the same loss.

Proof. If A has rank r then UAV ′ also has rank r. To prove the first statement, it remains

to show that UWV ′ in (1.4) has independent N(0, 1) entries, which follows from standard

properties of the multivariate normal distribution. In order to establish the second statement,
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let U and V be the orthogonal matrices in (1.4). For any m× n matrix B,

‖UB‖2F = tr
[
(UB)′(UB)

]
= tr

[
B′B

]
= ‖B‖2F ,

and more generally ‖UBV ′‖2F = ‖B‖2F . Applying the last equality to B = Â−A yields

Loss(UAV ′, UÂV ′) = ‖U(Â−A)V ′‖2F = ‖Â−A‖2F = Loss(A, Â)

as desired.

In light of Proposition 1 it is natural to consider reconstruction schemes that are invariant

under orthogonal transformations of the observed matrix Y .

Definition 2. A reconstruction scheme g(·) is orthogonally invariant if for any m× n matrix

Y , and any orthogonal matrices U and V of appropriate size, g(UY V ′) = Ug(Y )V ′.

In general, a good reconstruction method need not be orthogonally invariant. For example,

if the target matrix A is known to be diagonal, then for each Y the estimate g(Y ) should be

diagonal as well, and in this case g(·) is not orthogonally invariant. However, as we show in

the next theorem, if we have no information about the singular vectors of A (either prior or

from the singular values of A), then it suffices to restrict our attention to orthogonally invariant

reconstruction schemes.

Definition 3. A random m× n matrix Z has an orthogonally invariant distribution if for any

orthogonal matrices U and V of appropriate size the distribution of UZV ′ is the same as the

distribution of Z.

As noted above, a matrix with independent N(0, 1) entries has an orthogonally invariant

distribution. If Z has an orthogonally invariant distibution, then its matrix of left (right)

singular vectors is uniformly distributed on the space of m×m (n× n) orthogonal matrices.

Theorem 4. Let Y = A + W , where A is a random target matrix. Assume that A and W

are independent and have orthogonally invariant distributions. Then, for every reconstruction

scheme g(·), there is an orthogonally invariant reconstruction scheme g̃(·) whose expected loss

is the same, or smaller, than that of g(·).
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Proof. Let U be an m×m random matrix that is independent of A and W , and is distributed

according to Haar measure on the compact group of m×m orthogonal matrices. Haar measure

is (uniquely) defined by the requirement that, for every m × m orthogonal matrix C, both

CU and UC have the same distribution as U (c.f. (Hofmann & Morris 2006)). Let V be an

n×n random matrix distributed according to the Haar measure on the compact group of n×n

orthogonal matrices that is independent of A, W and U. Given a reconstruction scheme g(·),

define a new reconstruction scheme

g̃(Y ) = E[U′g(UYV′)V |Y ].

It follows from the definition of U and V that g̃(·) is orthogonally invariant. The independence

of {U,V} and {A,W} ensures that conditioning on Y is equivalent to conditioning on {A,W},

which yields the equivalent representation

g̃(Y ) = E[U′g(UYV′)V |A,W ].

Therefore,

ELoss(A, g̃(Y )) = E
∥∥E[U′g(UYV′)V −A |A,W ]

∥∥2
F

≤ E‖U′g(UYV′)V −A‖2F

= E‖g(UYV′)−UAV′‖2F .

The inequality above follows from the conditional version of Jensen’s inequality applied to each

term in the sum defining the squared norm. The final equality follows from the orthogonality

of U and V. The last term in the previous display can be analyzed as follows:

E
∥∥g(UYV′)−UAV′

∥∥2
F

= E
[
E
(
‖g(UAV′ + n−1/2UWV′)−UAV′‖2F |U,V,A

)]
= E

[
E
(
‖g(UAV′ + n−1/2W )−UAV′‖2F |U,V,A

)]
= E

∥∥g(UAV′ + n−1/2W )−UAV′
∥∥2
F
.

The first equality above follows from the definition of Y . The second equality follows from
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the independence of W and U,A,V, and the orthogonal invariance of L(W ). By a similar

argument, using the orthogonal invariance of L(A), we have

E‖g(UAV′ + n−1/2W )−UAV′‖2F = E
[
E
(
‖g(UAV′ + n−1/2W )−UAV′‖2F |U,V,W

)]
= E

[
E
(
‖g(A + n−1/2W )−A‖2F |U,V,W

)]
= E‖g(A + n−1/2W )−A‖2F .

The final term above is ELoss(A, g(Y )). This completes the proof.

In what follows we will restrict our attention to orthogonally invariant reconstruction

schemes.

1.3.1 Singular Value Decomposition

A natural starting point for reconstruction of a target matrix A is the singular value decomposi-

tion (SVD) of the observed matrix Y . The SVD of Y is intimately connected with orthogonally

invariant reconstruction methods. Recall that the singular value decomposition of an m × n

matrix B is given by the factorization

B = UDV ′ =
m∧n∑
j=1

djujv
′
j .

Here U is an m×m orthogonal matrix with columns uj , V is an n× n orthogonal matrix with

columns vj , andD is anm×nmatrix with diagonal entriesDjj = dj ≥ 0 for j = 1, . . . ,m∧n, and

all other entries equal to zero. The numbers d1 ≥ d2 ≥ ... ≥ dm∧n ≥ 0 are the singular values

of B. The columns uj (and vj) are the left (and right) singular vectors of B. Although it is not

necessarily square, we will refer to D as a diagonal matrix and write D = diag(d1, . . . , dm∧n).

An immediate consequence of the SVD is that U ′BV = D, so we can diagonalize B by means

of left and right orthogonal multiplications. The next proposition follows from our ability to

diagonalize the target matrix A in the reconstruction problem.

Proposition 5. Let Y = A+ n−1/2W , where W has an orthogonally invariant distribution. If

g(·) is an orthogonally invariant reconstruction scheme, then for any fixed target matrix A, the

distribution of Loss(A, g(Y )), and in particular ELoss(A, g(Y )), depends only on the singular
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values of A.

Proof. Let UDAV
′ be the SVD of A. Then DA = U ′AV , and as the Frobenius norm is invariant

under left and right orthogonal multiplications,

Loss(A, g(Y )) = ‖ g(Y )−A ‖2F = ‖U ′ (g(Y )−A)V ‖2F

= ‖U ′g(Y )V − U ′AV ‖2F = ‖ g(U ′Y V )−DA ‖2F

= ‖ g(DA + n−1/2U ′WV )−DA ‖2F .

The result now follows from the fact that UWV ′ has the same distribution as W .

We now address the implications of our ability to diagonalize the observed matrix Y . Let

g(·) be a orthogonally invariant reconstruction method, and let UDV ′ be the singular value

decomposition of Y . It follows from the orthogonal invariance of g(·) that

g(Y ) = g(UDV ′) = Ug(D)V ′ =
m∑
i=1

n∑
j=1

cijuiv
′
j (1.5)

where cij depend only on the singular values of Y . In particular, any orthogonally invariant

g(·) reconstruction method is completely determined by how it acts on diagonal matrices. The

following theorem allows us to substantially refine the representation (1.5).

Theorem 6. Let g(·) be an orthogonally invariant reconstruction scheme. Then g(Y ) is diag-

onal whenever Y is diagonal.

Proof. Assume without loss of generality that m ≥ n. Let the observed matrix Y be diagonal,

Y = diag(d1, d2, ..., dn), and let Â = g(Y ) be the reconstructed matrix. Fix a row index

1 ≤ k ≤ m. We will show that Âkj = 0 for all j 6= k. Let DL be an m ×m matrix derived

from the identity matrix by flipping the sign of the kth diagonal element. More formally,

DL = I − 2eke
′
k, where ek is the kth standard basis vector in Rm. The matrix DL is known as

a Householder reflection.

Let DR be the top left n × n submatrix of DL. Clearly DLD
′
L = I and DRD

′
R = I, so

both DL and DR are orthogonal. Moreover, all three matrices DL, Y, and DR are diagonal, and

therefore we have the identity Y = DLY DR. It then follows from the orthogonal invariance of
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g(·) that

Â = g(Y ) = g(DLY DR) = DL g(Y )DR = DL ÂDR.

The (i, j)th element of the matrix DLÂDR is Âij(−1)δik(−1)δjk , and therefore Âkj = −Âkj if

j 6= k. As k was arbitrary, Â is diagonal.

As an immediate corollary of Theorem 6 and equation (1.5) we obtain a compact, and useful,

representation of any orthogonally invariant reconstruction scheme g(·).

Corollary 7. Let g(·) be an orthogonally invariant reconstruction scheme. If the observed

matrix Y has singular value decomposition Y =
∑
djujv

′
j then the reconstructed matrix

Â = g(Y ) =
m∧n∑
j=1

cjujv
′
j , (1.6)

where the coefficients cj depend only on the singular values of Y .

The converse of Corollary 7 is true under a mild additional condition. Let g(·) be a recon-

struction scheme such that g(Y ) = cjujv
′
j , where cj = cj(d1, . . . , dm∧n) are fixed functions of the

singular values of Y . If the functions {cj(·)} are such that ci = cj whenever di = dj , then g(·) is

orthogonally invariant. This follows from the uniqueness of the singular value decomposition.

1.4 Hard and Soft Thresholding

Let Y be an observed m × n matrix with singular value decomposition
∑m∧n

j=1 djujv
′
j . Many

reconstruction schemes act by shrinking the singular values of the observed matrix towards zero.

Shrinkage is typically accomplished by hard or soft thresholding. Hard thresholding schemes set

every singular value of Y less than a positive threshold λ equal to zero, leaving other singular

values unchanged. The family of hard thresholding schemes is defined by

gHλ (Y ) =
m∧n∑
j=1

djI(dj ≥ λ)ujv
′
j , where λ > 0.
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Soft thresholding schemes subtract a positive number ν from each singular value, setting values

less than ν equal to zero. The family of soft thresholding schemes is defined by

gSν (Y ) =
m∧n∑
j=1

(dj − ν)+ ujv
′
j , where ν > 0.

Hard and soft thresholding schemes can be defined equivalently in the respective penalized

forms

gHλ (Y ) = arg min
B

{
‖Y −B‖2F + λ2 rank(B)

}
gSν (Y ) = arg min

B

{
‖Y −B‖2F + 2ν ‖B‖∗

}
.

In the second display, ‖B‖∗ denotes the nuclear norm of B, equal to the sum of its singular

values.

In practice, hard and soft thresholding schemes require estimates of the noise variance,

as well as the selection of appropriate cutoff or shrinkage parameters. There are numerous

methods in the literature for choosing the hard threshold λ. Heuristic methods often make

use of the scree plot, which displays the singular values of Y as a function of their rank: λ

is typically chosen to be the y-coordinate of a well defined “elbow” in the plot. In recent

work, Bunea et al. (2010) propose a specific choice of λ and provide performance guaranties

for the resulting hard thresholding scheme using techniques from empirical process theory and

complexity regularization. Selection of the soft thresholding shrinkage parameter ν may also be

accomplished by a variety of methods. Negahban & Wainwright (2009) propose a specific choice

of ν and provide performance guarantees for the resulting soft thresholding scheme. Hard and

soft thresholding schemes are orthogonally invariant if the estimates of λ and ν, respectively,

depend only on the singular values of Y .

1.5 Asymptotic Approach

The families of hard and soft thresholding methods described above include many existing

reconstruction schemes. Both thresholding approaches seek low rank (sparse) estimates of the

target matrix, both can be naturally formulated as optimization problems, and under mild

conditions both yield orthogonally invariant reconstruction schemes. However, the family of
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all orthogonally invariant reconstruction schemes encompasses a much broader class of possible

reconstruction procedures, and it is natural to consider alternatives to thresholding that may

offer better performance.
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Figure 1.2: Singular values of hard and soft thresholding estimates.

Figure 1.2 illustrates the action of hard and soft thresholding on a 500 × 500 matrix with

a rank 50 signal. The blue line marks the singular values of the signal A and the green line

marks the those of the observed matrix Y . The plots show the singular values of the hard and

soft thresholding estimates incorporating the best choice of parameters λ and ν, respectively.

Clearly, neither thresholding scheme delivers an accurate estimate of the original singular values

(or the original matrix). Moreover, the figures suggest that a hybrid scheme that combines soft

and hard thresholding might offer better performance. We construct an improved reconstruction

scheme in a principled fashion, by studying the effect of noise on low-rank signal matrices. The

key tools in this analysis are several recent results from random matrix theory.

Random matrix theory is broadly concerned with the spectral properties of random ma-

trices, and is an obvious starting point for an analysis of matrix reconstruction. The matrix

reconstruction problem has several points of intersection with random matrix theory. Recently

a number of authors have studied low rank deformations of Wigner matrices (Capitaine et al.

2009, Féral & Péché 2007, Maıda 2007, Péché 2006). However, their results concern symmetric

matrices, a constraint not present in the reconstruction model, and are not directly applicable

to the reconstruction problem of interest here. (Indeed, our simulations of non-symmetric ma-

trices exhibit behavior deviating from that predicted by the results of these papers.) A signal

plus noise framework similar to matrix reconstruction is studied in Dozier & Silverstein (2007),

Nadakuditi & Silverstein (2007), but these papers focus on the singular values of the observed
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matrix (Dozier & Silverstein) or recovery of the singular values of the signal (Nadakuditi &

Silverstein), and do not consider the more general problem of reconstruction.

Our proposed denoising scheme is based on the theory of spiked population models in ran-

dom matrix theory. Using existing results on spiked population models, we establish asymptotic

connections between the singular values and vectors of the target matrix A and those of the

observed matrix Y . These asymptotic connections provide us with finite-sample estimates that

can be applied in a non-asymptotic setting to matrices of small or moderate dimensions.

1.5.1 Asymptotic Matrix Reconstruction Model

The proposed reconstruction method is based on an asymptotic version of the matrix recon-

struction problem (1.2). For n ≥ 1 let integers m = m(n) be defined in such a way that

m

n
→ c > 0 as n→∞. (1.7)

For each n let Y , A, and W be m× n matrices such that model (1.2) holds:

Y = A+
1√
n
W, (1.8)

where the entries of W are independent N(0, 1) random variables. We assume that the target

matrix A has fixed rank r ≥ 0 and fixed non-zero singular values λ1(A), . . . , λr(A) that are are

independent of n. The constant c represents the limiting aspect ratio of the observed matrices

Y . The scale factor n−1/2 ensures that the singular values of the target matrix are comparable

to those of the noise. Model (1.8) matches the asymptotic model used by Capitaine et al.

(2009), Féral & Péché (2007) in their study of fixed rank perturbations of Wigner matrices.

In what follows λj(B) will denote the j-th singular value of a matrix B, and uj(B) and

vj(B) will denote, respectively, the left and right singular values corresponding to λj(B). Our

first proposition concerns the behavior of the singular values of Y when the target matrix A is

equal to zero.

Proposition 8. Under the asymptotic reconstruction model with A = 0 the empirical distri-

bution of the singular values λ1(Y ) ≥ · · · ≥ λm∧n(Y ) converges weakly to a (non-random)
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distribution with density

fY (s) =
s−1

π(c ∧ 1)

√
(a− s2)(s2 − b), s ∈ [

√
a,
√
b], (1.9)

where a = (1−
√
c)2 and b = (1+

√
c)2. Moreover, λ1(Y )

P−→ 1+
√
c and λm∧n(Y )

P−→ 1−
√
c

as n tends to infinity.

The existence and form of the density fY (·) are a consequence of the classical Marčenko-

Pastur theorem (Marčenko & Pastur 1967, Wachter 1978). The in-probability limits of λ1(Y )

and λm∧n(Y ) follow from later work of Geman (1980) and Wachter (1978), respectively. If

c = 1, the density function fY (s) simplifies to the quarter-circle law fY (s) = π−1
√

4− s2 for

s ∈ [0, 2].

The next two results concern the limiting eigenvalues and eigenvectors of Y when A is

non-zero. Proposition 9 relates the limiting eigenvalues of Y to the (fixed) eigenvalues of A,

while Proposition 10 relates the limiting singular vectors of Y to the singular vectors of A.

Proposition 9 is based on recent work of Baik & Silverstein (2006), while Proposition 10 is

based on recent work of Paul (2007), Nadler (2008), and Lee et al. (2010). The proofs of both

results are given in Section 1.8.2.

Proposition 9. Let Y follow the asymptotic matrix reconstruction model (1.8) with target

singular values λ1(A) ≥ ... ≥ λr(A) > 0. For 1 ≤ j ≤ r, as n tends to infinity,

λj(Y )
P−→


(

1 + λ2j (A) + c+ c
λ2j (A)

)1/2

if λj(A) > 4
√
c

1 +
√
c if 0 < λj(A) ≤ 4

√
c

The remaining singular values λr+1(Y ), . . . , λm∧n(Y ) of Y are associated with the zero singu-

lar values of A: their empirical distribution converges weakly to the limiting distribution in

Proposition 8.

Proposition 10. Let Y follow the asymptotic matrix reconstruction model (1.8) with distinct

target singular values λ1(A) > λ2(A) > ... > λr(A) > 0. Fix j such that λj(A) > 4
√
c. Then as
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n tends to infinity,

〈
uj(Y ), uj(A)

〉2 P−→
(

1− c

λ4j (A)

)/(
1 +

c

λ2j (A)

)

and 〈
vj(Y ), vj(A)

〉2 P−→
(

1− c

λ4j (A)

)/(
1 +

1

λ2j (A)

)
Moreover, if k 6= j, 1 ≤ k ≤ r then 〈ui(Y ), uk(A)〉 P−→ 0 and 〈vi(Y ), vk(A)〉 P−→ 0 as n tends

to infinity.

The limits established in Proposition 9 indicate a phase transition. If the singular value

λj(A) is less than or equal to 4
√
c then, asymptotically, the singular value λj(Y ) lies within the

support of the Marčenko-Pastur distribution and is not distinguishable from the noise singular

values. On the other hand, if λj(A) exceeds 4
√
c then, asymptotically, λj(Y ) lies outside the

support of the Marčenko-Pastur distribution, and the corresponding left and right singular

vectors of Y are associated with those of A (Proposition 10).

1.6 Proposed Reconstruction Scheme

Let Y be an observed m × n matrix generated from the additive model Y = A + n−1/2σW .

Assume for the moment that the variance σ2 of the noise is known, and equal to one. Estimation

of σ is discussed in the next subsection. Let

Y =

m∧n∑
j=1

λj(Y )uj(Y )v′j(Y )

be the SVD of Y . Following the discussion in Section 1.3, we seek an estimate of A of the form

Â =
m∧n∑
j=1

cj uj(Y )v′j(Y ),

where each coefficient cj depends only on the singular values λ1(Y ), . . . , λm∧n(Y ) of Y.

Our proposed reconstruction scheme is derived from the limiting relations in Propositions

9 and 10. By way of approximation, we treat these relations as exact in the fixed dimension

setting under study, using the symbols
l
= ,

l
≤ and

l
> to denote limiting equality and inequal-

22



ity relations. Suppose that the singular values and vectors of A are known. Then we seek

coefficients {cj} minimizing

Loss(A, Â) =
∥∥m∧n∑
j=1

cj uj(Y )v′j(Y ) −
m∧n∑
j=1

λj(A)uj(A)v′j(A)
∥∥2
F
.

Phase transition phenomenon (Proposition 9) indicated that we can restrict the first sum to the

first r0 = #{j : λj(A) > 4
√
c} elements. By definition of A only first r elements of the second

sum are non-zero, so

Loss(A, Â) =
∥∥ r0∑
j=1

cj uj(Y )v′j(Y ) −
r∑
j=1

λj(A)uj(A)v′j(A)
∥∥2
F

Proposition 10 ensures that the left singular vectors ui(Y ) and uk(A) are asymptotically

orthogonal if i 6= k, i ≤ r0, k ≤ r, and therefore

Loss(A, Â)
l
=

r0∑
j=1

∥∥cj uj(Y )v′j(Y ) − λj(A)uj(A)v′j(A)
∥∥2
F
.

Fix 1 ≤ j ≤ r0. Expanding the j-th term in the above sum gives

∥∥λj(A)uj(A)v′j(A) − cj uj(Y )v′j(Y )
∥∥2
F

= c2j
∥∥uj(Y )v′j(Y )

∥∥2
F

+ λ2j (A)
∥∥uj(A)v′j(A)

∥∥2
F
− 2cjλj(A)

〈
uj(A)v′j(A), uj(Y )v′j(Y )

〉
= λ2j (A) + c2j − 2cjλj(A)

〈
uj(A), uj(Y )

〉 〈
vj(A), vj(Y )

〉
.

Differentiating the last expression with respect to cj yields the optimal value

c∗j = λj(A)
〈
uj(A), uj(Y )

〉 〈
vj(A), vj(Y )

〉
. (1.10)

In order to estimate the coefficient c∗j we consider separately singular values of Y that are

less than or greater than 1 +
√
c, where c = m/n is the aspect ratio of Y . By Proposition 9,

the relation λj(Y )
l
≤ 1 +

√
c implies λj(A) ≤ 4

√
c and so the j-th component is not recoverable.

Thus if λj(Y ) ≤ 1 +
√
c we set c∗j = 0.

On the other hand, λj(Y )
l
> 1 +

√
c implies λj(A) > 4

√
c and each of the inner products in
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(1.10) are asymptotically positive. Moreover, the displayed equations in Propositions 9 and 10

can be used to obtain estimates of each term in (1.10) based only on the (observed) singular

values of Y and its aspect ratio c. In particular,

λ̂2j (A) =
1

2

[
λ2j (Y )− (1 + c) +

√
[λ2j (Y )− (1 + c)]2 − 4c

]
estimates λ2j (A),

θ̂2j =

(
1− c

λ̂4j (A)

) / (
1 +

c

λ̂2j (A)

)
estimates 〈uj(A), uj(Y )〉2,

φ̂2j =

(
1− c

λ̂4j (A)

) / (
1 +

1

λ̂2j (A)

)
estimates 〈vj(A), vj(Y )〉2.

With these estimates in hand, the proposed reconstruction scheme is defined via the equation

GRMT
o (Y ) =

∑
λj(Y )>1+

√
c

λ̂j(A) θ̂j φ̂j uj(Y )v′j(Y ), (1.11)

where λ̂j(A), θ̂j , and φ̂j are the positive square roots of the estimates defined above.

In general, the variance σ2 of the noise is not known, but we have access to an estimate σ̂2

of σ2. In this case, we define

GRMT (Y ) = σ̂ GRMT
o

(
Y

σ̂

)
, (1.12)

where GRMT
o (·) is the estimate defined in (1.11). An estimate σ̂2 of the noise variance is

discussed in the next subsection.

The RMT method shares features with both hard and soft thresholding. The RMT method

sets to zero singular values of Y smaller than the threshold (1+
√
c), and it shrinks the remaining

singular values. However, unlike soft thresholding the amount of shrinkage depends on the

singular values, the larger singular values are shrunk less than the smaller ones. This latter

feature is similar to that of LASSO type estimators based on an Lq penalty (also known as

bridge estimators, Fu (1998)) with 0 < q < 1. It is important to note that, unlike hard and

soft thresholding schemes, the proposed RMT method has no tuning parameters. The only
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unknown, the noise variance, is estimated within the procedure.

1.6.1 Estimation of the Noise Variance

Suppose that Y = A+ σn−1/2W is derived from the asymptotic reconstruction model with σ

unknown. One may approach the estimation of σ in a fashion analogous to the estimation of A.

In particular, any orthogonally invariant estimate of σ will depend only on the singular values

of Y .

Proposition 9 shows that the empirical distribution of the (m − r) singular values S =

{λj(Y/σ) : λj(A) = 0} converges weakly to a distribution with density (1.9) supported on the

interval [|1 −
√
c|, 1 +

√
c]. Following the general approach outlined in (Györfi et al. 1996),

we estimate σ by minimizing the Kolmogorov-Smirnov distance between the empirical and the

theoretical limiting sample distributions of singular values. Let F be the CDF of the density

(1.9). For each σ > 0 let Ŝσ be the set of singular values λj(Y ) that fall in the interval

[σ|1−
√
c|, σ(1 +

√
c)], and let F̂σ be the empirical CDF of Ŝσ. Then

K(σ) = sup
s
|F (s/σ)− F̂σ(s)|

is the Kolmogorov-Smirnov distance between the empirical and theoretical singular value dis-

tribution functions, and define our estimate

σ̂(Y ) = arg min
σ>0

K(σ) (1.13)

to be the value of σ minimizing K(σ). A routine argument shows that the estimator σ̂ is scale

invariant, in the sense that σ̂(β Y ) = β σ̂(Y ) for each β > 0. By considering the jump points of

the empirical CDF, the supremum in K(σ) simplifies to

K(σ) = max
si∈Ŝσ

∣∣∣∣∣F (si/σ)− i− 1/2

|Ŝσ|

∣∣∣∣∣+
1

2|Ŝσ|
,

where {si} are the ordered elements of Ŝσ. The objective function K(σ) is discontinuous at

points where the Ŝσ changes, so we minimize it over a fine grid of points in the range where

|Ŝσ| > (m ∧ n)/2 and σ(1 +
√
c) < 2λ1(Y ). The closed form of the cumulative distribution
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function F (·) is presented is Section 1.8.1.

1.7 Simulations

We carried out a simulation study to evaluate the performance of the RMT reconstruction

scheme GRMT (·) defined in (1.12) using the variance estimate σ̂ in (1.13). The study compared

the performance of GRMT (·) to three alternatives: the best hard thresholding reconstruction

scheme, the best soft thresholding reconstruction scheme, and the best orthogonally invariant

reconstruction scheme. Each of the three competing alternatives is an oracle-type procedure

that is based on information about the target matrix A that is not available to GRMT (·).

1.7.1 Hard and Soft Thresholding Oracle Procedures

Hard and soft thresholding schemes require specification of a threshold parameter that can

depend on the observed matrix Y . Estimation of the noise variance can be incorporated into

the choice of the threshold parameter. In order to compare the performance of GRMT (·) against

every possible hard and soft thresholding scheme, we define oracle procedures

GH(Y ) = gHλ∗(Y ) where λ∗ = arg min
λ>0

∥∥A− gHλ (Y )
∥∥2
F

(1.14)

GS(Y ) = gSν∗(Y ) where ν∗ = arg min
ν>0

∥∥A− gSν (Y )
∥∥2
F

(1.15)

using knowledge of the target A. By definition, the loss ‖A−GH(Y )‖2F of GH(Y ) is less than

that of any hard thresholding scheme, and similarly the loss of GS(Y ) is less than that of any

soft thresholding procedure. In effect, the oracle procedures have access to both the unknown

target matrix A and the unknown variance σ. They are constrained only by the form of their

respective thresholding families. The oracle procedures are not realizable in practice.

1.7.2 Orthogonally Invariant Oracle Procedure

As shown in Theorem 6, every orthogonally invariant reconstruction scheme g(·) has the form

g(Y ) =
m∧n∑
j=1

cj uj(Y )vj(Y )′,
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where the coefficients cj are functions of the singular values of Y . The orthogonally invariant

oracle scheme has coefficients c∗j minimizing the loss

∥∥A− m∧n∑
j=1

cj uj(Y )vj(Y )′
∥∥2
F

over all choices cj . As is the case with the hard and soft thresholding oracle schemes, the

coefficients c∗j depend on the target matrix A, which in practice is unknown.

The (rank one) matrices {uj(Y )vj(Y )′} form an orthonormal basis of an m∧n-dimensional

subspace of the mn-dimensional space of all m×n matrices. The optimal coefficient c∗j is simply

the matrix inner product 〈A, uj(Y )vj(Y )′〉, and the orthogonally invariant oracle scheme has

the form of a projection

G∗(Y ) =

m∧n∑
j=1

〈
A, uj(Y )vj(Y )′

〉
uj(Y )vj(Y )′ (1.16)

By definition, for any orthogonally invariant reconstruction scheme g(·) and observed matrix

Y , we have ‖A−G∗(Y )‖2F ≤ ‖A− g(Y )‖2F .

1.7.3 Simulations

We compared the reconstruction schemes GH(Y ), GS(Y ) and GRMT (Y ) to G∗(Y ) on a wide

variety of target matrices generated according to the model (1.2). As shown in Proposition

5, the distribution of the loss ‖A − G(Y )‖2F depends only on the singular values of A, so we

considered only diagonal target matrices. As the variance estimate used in GRMT (·) is scale

invariant, all simulations were run with noise of unit variance. (Estimation of noise variance is

not necessary for the oracle reconstruction schemes.)

Square Matrices

Our initial simulations considered 1000 × 1000 square matrices. Target matrices A were gen-

erated using three parameters: the rank r; the largest singular value (λ1(A)); and the de-

cay profile of the remaining singular values. We considered ranks r ∈ {1, 3, 10, 32, 100} cor-

responding to successive powers of
√

10 up to (m ∧ n)/10, and maximum singular values

λ1(A) ∈ {0.9, 1, 1.1, ..., 10} 4
√
c falling below and above the critical threshold of 4

√
c = 1. We
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considered several coefficient decay profiles: (i) all coefficients equal; (ii) linear decay to zero;

(iii) linear decay to λ1(A)/2; and exponential decay as powers of 0.5, 0.7, 0.9, 0.95, or 0.99.

Independent noise matrices W were generated for each target matrix A. All reconstruction

schemes were then applied to the resulting matrix Y = A + n−1/2W . The total number of

generated target matrices was 3,680.
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Figure 1.3: Relative performance of soft thresholding and orthogonally invariant oracle methods
for 1000× 1000 matrices.
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Figure 1.4: Relative performance of hard thresholding and orthogonally invariant oracle meth-
ods for 1000× 1000 matrices.

29



10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

Orthogonally invariant oracle loss

R
M

T
 m

et
ho

d 
lo

ss

Relative performance of orthogonally invariant oracle and RMT method

Figure 1.5: Relative performance of RMT method and orthogonally invariant oracle method
for 1000× 1000 matrices.

30



Figures 1.3, 1.4, and 1.5 illustrate, respectively, the loss of the best soft thresholding, best

hard thresholding and RMT reconstruction methods (y axis) relative to the best orthogonally

invariant scheme (x axis). In each case the diagonal represents the performance of the orthogo-

nally invariant oracle: points farther from the diagonal represent worse performance. The plots

show clearly that GRMT (·) outperforms the oracle schemes GH() and GS(·), and has perfor-

mance comparable to the orthogonally invariant oracle. In particular, GRMT (·) outperforms

any hard or soft thresholding scheme, even if the latter schemes have access to the unknown

variance σ and the target matrix A.

In order to summarize the results of our simulations, for each scheme G(·) and for each

matrix Y generated from a target matrix A we calculated the relative excess loss of G() with

respect to G∗():

REL(A,G(Y )) =
Loss(A,G(Y ))

Loss(A,G∗(Y ))
− 1 (1.17)

The definition of G∗() ensures that relative excess loss is non-negative. The average RELs

of GS(·), GH(), and GRMT (·) across the 3680 simulated 1000 × 1000 matrices were 68.3%,

18.3%, and 0.61% respectively. Table 1.1 summarizes these results, and the results of analogous

simulations carried out on square matrices of different dimensions. The table clearly shows the

strong performance of RMT method for matrices with at least 50 rows or columns. Even for

m = n = 50, the average relative excess loss of the RMT method is almost twice smaller then

those of the oracle soft and hard thresholding methods.

Matrix size (square) 2000 1000 500 100 50

GS(·) 0.740 0.683 0.694 0.611 0.640
Scheme GH(·) 0.182 0.183 0.178 0.179 0.176

GRMT (·) 0.003 0.006 0.008 0.029 0.071

Table 1.1: Average relative excess losses of oracle soft thresholding, oracle hard thresholding
and the proposed RMT reconstruction method for square matrices of different dimensions.

Rectangular Matrices

We performed simulations for rectangular matrices of different dimensions m,n and different

aspect ratios c = m/n. For each choice of dimensions m,n we simulated target matrices using

the same rules as in the square case; rank r ∈ {1, 3, 10, 32, . . .} not exceeding (m ∧ n)/10,
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maximum singular values λ1(A) ∈ {0.9, 1, 1.1, ..., 10} 4
√
c, and coefficients decay profiles like

those in the square case. A summary of the results is given in Table 1.2. It shows the average

REL for matrices with 2000 rows and 10 to 2000 columns. Although random matrix theory

used to construct the RMT scheme requires both m and n to tend to infinity, the numbers in

Table 1.2 clearly show that the performance of the RMT scheme is excellent even for small n

with average REL between 0.3% and 0.54%. On the contrary, the other two schemes did not

reach average REL below 18%.

Matrix m 2000 2000 2000 2000 2000 2000
size n 2000 1000 500 100 50 10

GS(·) 0.740 0.686 0.653 0.442 0.391 0.243
Scheme GH(·) 0.182 0.188 0.198 0.263 0.292 0.379

GRMT (·) 0.003 0.004 0.004 0.004 0.004 0.005

Table 1.2: Average relative excess loss of oracle soft thresholding, oracle hard thresholding, and
RMT reconstruction schemes for matrices with different dimensions and aspect ratios.

1.7.4 Simulation Study of Spiked Population Model and Matrix Reconstruc-

tion

In Section 1.8.2 we have built a connection between matrix reconstruction model and spiked

population model. The most complicated part is connection between the non-random signal

matrix A from matrix reconstruction model with a random matrix n−1/2X1, a part of X from

spiked population model. We used this connection to translate several theorems from random

matrix theory to determine how the singular values of the unobserved matrix A translate into

the singular values of the observed matrix Y = A+ n−1/2W .

One may question whether this prediction works well and if it does, whether the prediction is

better or worse for the matrix reconstruction model compared to the spiked population model.

To address this question we have performed additional simulations.

For square matrices of size m = n = 1000 we considered rank one signal matrices with

singular value α = 1, 2, . . . , 1000. For each signal matrix A, an independent copy of the noise

matrix W was generated along with the observed matrix Y = A+W . For each α the matrix X

from the matching spiked population model was generated as X = T 1/2W , where T = diag(1 +

α2/n, 1, . . . , 1). The largest singular values are then calculated for both Y and X and compared
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to the prediction based on Theorem A and Proposition 9.

Figure 1.6 illustrated the findings for matrix reconstruction model on the left two plots and

for spiked population models on the right two. The top plots show the largest singular value

(of Y on left plot and X on right) against α as blue dots and the predicted values as a red

line. The bottom plots show the difference between the realized first singular values and the

prediction.

In clear from Figure 1.6 that the prediction for matrix reconstruction model does not just

work well, it actually works better than the original prediction for the spiked population model.

This result can be explain by the fact that the signal A is non-random in matrix reconstruction

model while X1 in the spiked population model is random. Note that even though n−1/2X1

is random, under spiked population model, its non-zero singular values converge almost surely

to non-random limits as n → ∞. In the matrix reconstruction model we remove the random-

ness of X1 by replacing it by its non-random asymptotic version A. This explains the better

performance of the prediction for matrix reconstruction model illustrated on Figure 1.6.

1.8 Appendix

1.8.1 Cumulative Distribution Function for Variance Estimation

The cumulative density function F (·) is calculated as the integral of fn−1/2W (s). For c = 1 it is

a common integral (a = 0, b = 4)

F (x) =

∫ x

√
a
f(s)ds =

1

π

∫ x

0

√
b− s2ds =

1

2π

(
x
√

4− x2 + 4 arcsin
x

2

)

For c 6= 1 the calculations are more complicated. First we change variables t = s2

F (x) =

∫ x

√
a
f(s)ds = C

∫ x

√
a
s−2
√

(b− s2)(s2 − a)ds2 = C

∫ x2

a
t−1
√

(b− t)(t− a)dt,

where C = 1/(2π(c∧ 1)). Next we perform a change of variables to make the expression in the

square root look like h2 − x2. The change of variables is y = t− [a+ b]/2.

F (x) = C

∫ x2−[a+b]/2

−[b−a]/2

√
([b− a]/2− y)(y + [b− a]/2)

y + [a+ b]/2
dy = C

∫ x2−(1+c)

−2
√
c

√
4c− y2

y + 1 + c
dy,
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in Section 1.7.4.

34



The second equality uses the fact that a+ b = 2(1 + c) and b− a = 4
√
c. The simple change of

variables y = 2
√
cz is performed next to make the numerator

√
1− z2

F (x) =

√
c

π(c ∧ 1)

∫ [x2−(1+c)]/2
√
c

−1

√
1− z2

z + (1 + c)/2
√
c
dz

Next, the following formula is applied to find the closed form of F (x) by substituting

z = [x2 − (1 + c)]/2
√
c and q = (1 + c)/2

√
c

∫ √
1− z2
z + q

dw =
√

1− z2 −
√
q2 − 1 arctan

(
qz + 1√

(q2 − 1)(1− z2)

)
+ q arcsin(z)

The final expression can be simplified using
√
q2 − 1 =

√
[(1 + c)/2

√
c]2 − 1 = |1− c|/2

√
c.

1.8.2 Limit theorems for asymptotic matrix reconstruction problem

Propositions 9 and 10 in Section 1.5 provide an asymptotic connection between the eigenvalues

and eigenvectors of the target matrix A and those of the observed matrix Y . Each proposition

is derived from recent work in random matrix theory on spiked population models. Spiked

population models were introduced by Johnstone (2001).

The Spiked Population Model

The spiked population model is formally defined as follows. Let r ≥ 1 and constants τ1 ≥ · · · ≥

τr > 1 be given, and for n ≥ 1 let integers m = m(n) be defined in such a way that

m

n
→ c > 0 as n→∞. (1.18)

For each n let

T = diag(τ1, . . . , τr, 1, . . . , 1)

be an m×m diagonal matrix (with m = m(n)), and let X be an m×n matrix with independent

Nm(0, T ) columns. Let T̂ = n−1XX ′ be the sample covariance matrix of X.

The matrix X appearing in the spiked population model may be decomposed as a sum of

matrices that parallel those in the matrix reconstruction problem. In particular, X can be
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represented as a sum

X = X1 + Z, (1.19)

where X1 has independent Nm(0, T − I) columns, Z has independent N(0, 1) entries, and X1

and Z are independent. It follows from the definition of T that

(T − I) = diag(τ1 − 1, . . . , τr − 1, 0, ..., 0),

and therefore the entries in rows r + 1, . . . ,m of X1 are equal to zero. Thus, the sample

covariance matrix T̂1 = n−1X1X
′
1 of X1 has the simple block form

T̂1 =

 T̂11 0

0 0


where T̂11 is an r × r matrix equal to the sample covariance of the first r rows of X1. It is

clear from the block structure that the first r eigenvalues of T̂1 are equal to the eigenvalues

of T̂11, and that the remaining (m − r) eigenvalues of T̂1 are equal to zero. The size of T̂11

is fixed, and therefore as n tends to infinity, its entries converge in probability to those of

diag(τ1 − 1, . . . , τr − 1), thus

∥∥ 1

n
X1X

′
1 − (T − I)

∥∥2
F

P−→ 0. (1.20)

Consequently, for each 1 ≤ j ≤ r, as n tends to infinity

λ2j (n
−1/2X1) = λj(T̂1) = λj(T̂11)

P−→ τj − 1 (1.21)

and 〈
uj(T̂11), ej

〉2 P−→ 1, (1.22)

where ej is the j-th canonical basis element in Rr. An easy argument shows that uj(n
−1/2X1) =

uj(T̂1), and it then follows from (1.22) that

〈
uj(n

−1/2X1), ej
〉2 P−→ 1, (1.23)
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where ej is the j-th canonical basis element in Rm.

Proof of Proposition 9

Proposition 9 is derived from existing results on the limiting singular values of T̂ in the spiked

population model. These results are summarized in the following theorem, which is a combi-

nation of Theorems 1.1, 1.2 and 1.3 in Baik & Silverstein (2006).

Theorem A. If T̂ is derived from the spiked population model with parameters τ1, . . . , τr > 1,

then for 1 ≤ j ≤ r,

λj(T̂ )
P−→

 τj + c
τj
τj−1 if τj > 1 +

√
c

(1 +
√
c)2 if 1 < τj ≤ 1 +

√
c

as n tends to infinity. The remaining sample eigenvalues λr+1(T̂ ), . . . , λm∧n(T̂ ) are associated

with the unit eigenvalues of T . Their empirical distribution converges weakly to the Marčenko-

Pastur distribution.

We also require the following inequality of Mirsky (1960).

Theorem B. If B and C are m× n matrices then
∑m∧n

j=1 [λj(C)− λj(B)]2 ≤ ‖C −B‖2F .

Proof of Proposition 9: Fix n ≥ 1 and let Y follow the asymptotic reconstruction model (1.8),

Y = A + n−1/2W , where the target matrix A has fixed rank r and non-zero singular values

λ1(A), . . . , λr(A). Without loss of generality, we will assume that the target matrix A =

diag(λ1(A), . . . , λr(A), 0, . . . , 0).

We begin by considering a spiked population model whose parameters match those of the

matrix reconstruction model. Let X have the same dimensions as Y and be derived from a

spiked population model with covariance matrix T having r non-unit eigenvalues

τj = λ2j (A) + 1, j = 1, . . . , r. (1.24)

As noted above, we may represent X as X = X1 + Z, where X1 has independent N(0, T − I)

columns, Z has independent N(0.1) entries and X1 is independent of Z. Recall that the limit

results (1.20)-(1.23) hold for this representation.
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The matrix reconstruction problem and spiked population model may be coupled in a natural

way. Let random orthogonal matrices U1 and V1 be defined for each sample point in such a

way that U1D1V
′
1 is the SVD of X1. By construction, the matrices U1, V1 depend only on X1,

and are therefore independent of Z. Consequently U ′1ZV1 has the same distribution as Z. If we

define W̃ = U ′1ZV1, then Ỹ = A+n−1/2W̃ has the same distribution as the observed matrix Y

in the matrix reconstruction problem.

We apply Mirsky’s theorem with B = Ỹ and C = n−1/2U ′1XV1 in order to bound the

difference between the singular values of Ỹ and those of n−1/2X:

m∧n∑
j=1

[
λj(n

−1/2X)− λj(Ỹ )
]2 ≤ ∥∥n−1/2U ′1XV1 − Ỹ ∥∥2F

=
∥∥(n−1/2U ′1X1V1 −A) + n−1/2(U ′1ZV1 − W̃ )

∥∥2
F

=
∥∥n−1/2U ′1X1V1 −A

∥∥2
F

=

m∧n∑
j=1

[
λj(n

−1/2U ′1X1V1)− λj(A)
]2

=

m∧n∑
j=1

[
λj(n

−1/2X1)− λj(A)
]2
.

The first inequality follows from Mirsky’s theorem and the fact that the singular values of

n−1/2X and n−1/2U ′1XV1 are the same, even though U1 and V1 may not be independent of X.

The next two equalities follow by expanding X and Ỹ and the fact that W̃ = U ′1ZV1. The

third equality is a consequence of the fact that both U ′1X1V1 and A are diagonal, and the final

equality follows from the equality of the singular values of X1 and U ′1X1V1. In conjunction with

(1.21) and (1.24), the last display implies that

∑
j

[
λj(n

−1/2X)− λj(Ỹ )
]2 P−→ 0.

Thus the distributional and limit results for the eigenvalues of T̂ = n−1XX ′ hold also for the

eigenvalues of Ỹ Ỹ ′, and therefore for Y Y ′ as well. The relation λj(Y ) =
√
λj(Y Y ′) completes

the proof.
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Proof of Proposition 10

Proposition 10 may be derived from existing results on the limiting singular vectors of the

sample covariance T̂ in the spiked population model. These results are summarized in Theorem

C below. The result was first established for Gaussian models and aspect ratios 0 < c < 1 by

Paul (2007). Nadler (2008) extended Paul’s results to c > 0. Recently Lee et al. (2010) further

extended the theorem to c ≥ 0 and non-Gaussian models.

Theorem C. If T̂ is derived from the spiked population model with distinct parameters τ1 >

· · · > τr > 1, then for 1 ≤ j ≤ r,

〈
uj(T̂ ), uj(T )

〉2 P−→


(

1− c
(τj−1)2

)
/
(

1 + c
τj−1

)
if τj > 1 +

√
c

0 if 1 < τj ≤ 1 +
√
c

Moreover, for τj > 1 +
√
c and k 6= j such that 1 ≤ k ≤ r we have

〈
uj(T̂ ), uk(T )

〉2 P−→ 0.

Although the last result is not explicitly stated in Paul (2007), it follows immediately from the

central limit theorem for eigenvectors (Theorem 5 in Paul).

We also require the following result, which is a special case of an inequality of Wedin (Wedin

1972, Stewart 1991).

Theorem D. Let B and C be m×n matrices and let 1 ≤ j ≤ m∧n. If the j-th singular value

of C is separated from the singular values of B and bounded away from zero, in the sense that

min
k 6=j

∣∣λj(C)− λk(B)
∣∣ > δ and λj(C) > δ

for some δ > 0, then

〈
uj(B), uj(C)

〉2
+
〈
vj(B), vj(C)

〉2 ≥ 2−
2‖B − C‖2F

δ2
.

Proof of Proposition 10: Fix n ≥ 1 and let Y follow the asymptotic reconstruction model (1.8),
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Y = A + n−1/2W , where the target matrix A has fixed rank r and non-zero singular values

λ1(A), . . . , λr(A). Without loss of generality, we will assume that the target matrix A =

diag(λ1(A), . . . , λr(A), 0, . . . , 0).

We consider a spiked population model with parameters matching those of the matrix

reconstruction problem and couple it with the matrix reconstruction model exactly as in the

proof of Proposition 9. Please refer to the proof of Proposition 9 for the definition of τj and

matrices T,X,X1, Z, U1, V1, W̃ , and Ỹ .

For the rest of the proof fix j such that λj(A) > 4
√
c. We apply Wedin’s theorem with

B = Ỹ and C = n−1/2U ′1XV1. There is δ > 0 such that both conditions of Wedin’s theorem

are satisfied for the given j with probability converging to 1 as n → ∞. The precise choice of

δ is presented at the end of this proof. It follows from Wedin’s theorem that

〈
uj(Ỹ ), uj(n

−1/2U ′1XV1)
〉2

=
〈
uj(B), uj(C)

〉2 ≥ 1−
2‖B − C‖2F

δ2

In the proof of Proposition 9 we have shown that ‖B −C‖2F = ‖n−1/2U ′1XV1 − Ỹ ‖2F
P−→ 0 as

n→∞. Thus, substituting uj(n
−1/2U ′1XV ) = U ′1uj(X) we get

〈
uj(Ỹ ), U ′1uj(X)

〉2 P−→ 1. (1.25)

Recall that we fixed j such that τj > 1 +
√
c. Fix 1 ≤ k ≤ r. Theorem C states that

〈uj(T̂ ), ek〉2 has a non-random limit in probability which we will denote as θ2jk. It follows from

connection τj = λ2j (A) + 1 that θ2jk = [1 − cλ−4j (A)]/[1 + cλ−2j (A)] if j = k and θ2jk = 0

otherwise. As uj(T̂ ) = uj(X), it follows that

〈
uj(X), ek

〉2 P−→ θ2jk.

Recall that the matrix U1 consists of the left singular vectors of X1, namely uk(X1) = U1ek.

In (1.23) we have established that 〈U1ek, ek〉2 = 〈uk(X1), ek〉2
P−→ 1, so we can replace ek with

U1ek in the equation above, to get

〈
uj(X), U1ek

〉2 P−→ θ2jk.
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Using the basic properties of inner products we move U1 to the left part of the inner product:

〈
U ′1uj(X), ek

〉2 P−→ θ2jk.

Now, using (1.25) we replace the left term in the inner product by uj(Ỹ ), so that

〈
uj(Ỹ ), ek

〉2 P−→ θ2jk.

As A = diag(λ1(A), . . . , λr(A), 0, . . . , 0) we have ek = uk(A). By construction matrix Ỹ has the

same distribution as Y , so it follows from the last display equation that

〈
uj(Y ), uk(A)

〉2 P−→ θ2jk.

This equation is exactly the statement we sought to proof.

Now, we choose δ > 0 and establish that for any j such that λj(A) > 4
√
c the conditions of

Wedin’s theorem are satisfied with probability going to 1. It follows from Proposition 9 that

for k = 1, . . . , r the k-th singular value of Y has a non-random limit in probability

λ∗k = limλk(n
−1/2X) = limλk(Ỹ ).

Let r0 be the number of eigenvalues of A such that λj(A) > 4
√
c (i.e. the inequality holds

only for j = 1, . . . , r0). It follows from the formula for λ∗k that λ∗k > 1 +
√
c for k = 1, . . . , r0.

Note also that in this case λ∗k is a strictly increasing function of λk(A). All non-zero λj(A) are

distinct by assumption, so all λ∗k are distinct for k = 1, . . . , r0. Note that λ∗r0+1 = 1 +
√
c is

smaller that λ∗r0 . Thus the limits of the first r0 singular values of Y are not only distinct, they

are bounded away from all other singular values. Define

δ =
1

3
min

k=1,...,r0
(λ∗k − λ∗k+1) > 0.

For any k = 1, . . . , r0 + 1 the following inequalities are satisfied with probability going to 1 as
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n→∞

|λk(Y )− λ∗k| < δ and |λk(n−1/2X)− λ∗k| < δ. (1.26)

In applying Wedin’s theorem to B = Ỹ and C = n−1/2U ′1XV1 we must verify that for any

j = 1, . . . , r0 its two conditions are satisfied with probability going to 1. The first condition is

λj(C) > δ. When inequalities (1.26) hold

λj(C) = λj(n
−1/2U ′1XV1) = λj(n

−1/2X) > λ∗j − δ > (λ∗j − λ∗j+1)− δ > 3δ − δ = 2δ,

so the first condition is satisfied with probability going to 1. The second condition is |λj(C)−

λk(B)| > δ for all k 6= j. It is sufficient to check the condition for k = 1, . . . , r0 + 1 as

asymptotically λj(C) > λr0+1(B). From the definition of δ and the triangle inequality we get

3δ < |λ∗j − λ∗k| ≤ |λ∗j − λj(n−1/2X)| + |λj(n−1/2X)− λk(Ỹ )| + |λk(Ỹ )− λ∗j |.

When inequalities (1.26) hold the first and the last terms on the right hand side sum are no

larger than δ, thus

3δ < δ + |λj(n−1/2X)− λk(Ỹ )| + δ.

It follows that the second condition |λj(C) − λk(B)| = |λj(n−1/2X) − λk(Ỹ )| > δ also holds

with probability going to 1.
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CHAPTER 2

Finding Large Average Submatrices in High
Dimensional Data

Summary

The search for sample-variable associations is an important problem in the exploratory analysis

of high dimensional data. Biclustering methods search for sample-variable associations in the

form of distinguished submatrices of the data matrix. (The rows and columns of a submatrix

need not be contiguous.) In this chapter we propose and evaluate a statistically motivated bi-

clustering procedure (LAS) that finds large average submatrices within a given real-valued data

matrix. The procedure operates in an iterative-residual fashion, and is driven by a Bonferroni-

based significance score that effectively trades off between submatrix size and average value.

We examine the performance and potential utility of LAS, and compare it with a number of

existing methods, through an extensive three-part validation study using two gene expression

datasets. The validation study examines quantitative properties of biclusters, biological and

clinical assessments using auxiliary information, and classification of disease subtypes using bi-

cluster membership. In addition, we carry out a simulation study to assess the effectiveness and

noise sensitivity of the LAS search procedure. These results suggest that LAS is an effective

exploratory tool for the discovery of biologically relevant structures in high dimensional data.

Software is available at https://genome.unc.edu/las/.

2.1 Introduction

Unsupervised exploratory analysis plays an important role in the study of large, high-dimensional

datasets that arise in a variety of applications, including gene expression microarrays. Broadly

https://genome.unc.edu/las/


speaking, the goal of such analysis is to find patterns or regularities in the data, without ab ini-

tio reference to external information about the available samples and variables. One important

source of regularity in experimental data are associations between sets of samples and sets of

variables. These associations correspond to distinguished submatrices of the data matrix, and

are generally referred to as biclusters, or subspace clusters. In gene expression and related anal-

yses, biclusters, in conjunction with auxiliary clinical and biological information, can provide a

first step in the process of identifying disease subtypes and gene regulatory networks.

In this chapter we propose and evaluate a statistically motivated biclustering procedure that

finds large average submatrices within a given real-valued data matrix. The procedure, which

is called LAS (for Large Average Submatrix), operates in an iterative fashion, and is based on

a simple significance score that trades off between the size of a submatrix and its average value.

A connection is established between maximization of the significance score and the minimum

description length principle.

We examine the performance and utility of LAS, and compare it with a number of ex-

isting methods, through an extensive validation study using two independent gene expression

datasets. The validation study has three parts. The first concerns quantitative properties of the

biclustering methods such as bicluster size, overlap and coordinate-wise statistics. The second

is focused biological and clinical assessments using auxiliary information about the samples

and genes under study. In the the third part of the study, the biclusters are used to perform

classification of disease subtypes based in their sample membership. In addition, we carry out

a simulation study to assess the effectiveness and noise sensitivity of the LAS search procedure.

2.1.1 Biclustering

Sample-variable associations can be defined in a variety of ways, and can take a variety of forms.

The simplest, and most common, way of identifying associations in gene expression data is to

independently cluster the rows and columns of the data matrix using a multivariate clustering

procedure [Weinstein et al. (1997), Eisen et al. (1998), Tamayo et al. (1999), Hastie et al.

(2000)]. When the rows and columns of the data matrix are reordered so that each cluster forms

a contiguous group, the result is a partition of the data matrix into nonoverlapping rectangular

cells. The search for sample variable associations then consists of identifying cells whose entries
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are, on average, bright red (large and positive) or bright green (large and negative) [Weigelt et al.

(2005)]. In some cases, one can improve the results of independent row-column clustering by

simultaneously clustering samples and variables, a procedure known as co-clustering [Hartigan

(1972), Kluger et al. (2003), Dhillon (2001), Getz et al. (2000)].

Independent row-column clustering (IRCC) has become a standard tool for the visualization

and exploratory analysis of microarray data, but it is an indirect approach to the problem

of finding sample-variable associations. By contrast, biclustering methods search directly for

sample-variable associations, or more precisely, for submatrices U of the data matrix X whose

entries meet a predefined criterion. Submatrices meeting the criterion are typically referred

to as biclusters. It is important to note that the rows and columns of a bicluster (and more

generally a submatrix) need not be contiguous. A number of criteria for defining biclusters U

have been considered in the literature, for example: the rows of U are approximately equal to

each other [Aggarwal et al. (1999)]; the columns of U are approximately equal [Friedman &

Meulman (2004)]; the elements of U are well-fit by a 2-way ANOVA model [Cheng & Church

(2000), Lazzeroni & Owen (2002), Wang et al. (2002)]; the rows of U have equal [Ben-Dor et al.

(2003)] or approximately equal [Liu et al. (2004)] rank statistics; and all elements of U are

above a given threshold [Prelic et al. (2006)].

The focus of this chapter is the simple criterion that the average of the entries of the

submatrix U is large and positive, or large and negative. Submatrices of this sort will appear

red or green in the standard heat map representation of the data matrix, and are similar to

those targeted by independent row-column clustering.

2.1.2 Features of Biclustering

While its direct focus on finding sample-variable associations makes biclustering an attractive

alternative to row-column clustering, biclustering has a number of other features, both positive

and negative, that we briefly discuss below.

Row-column clustering assigns each sample and each variable to a unique cluster. By

contrast, the submatrices produced by biclustering methods may overlap, and need not cover

the entire data matrix, features that better reflect the structure of many scientific problems.

For example, the same gene can play a role in multiple pathways, and a single sample may
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belong to multiple phenotypic or genotypic subtypes. Multiple bicluster membership for rows

and columns can directly capture this aspect of experimental data.

In row-column clustering, the group to which a sample is assigned depends on all the

available variables, and the group to which a variable is assigned depends on the all the available

samples. By contrast, biclusters are locally defined: the inclusion of samples and variables in

a bicluster depends only on their expression values inside the associated submatrix. Locality

allows biclustering methods to target relevant genes and samples while ignoring others, giving

such methods greater exploratory power and flexibility than row-column clustering. For more

on the potential advantages of biclustering, see Madeira & Oliveira (2004), Jiang et al. (2004),

Parsons et al. (2004).

Figure 2.1 illustrates the differences between the blocks arising from independent row-

column clustering and those arising from biclustering. Note that while one may display an

individual bicluster as a contiguous block of variables and samples by suitably reordering the

rows and columns of the data matrix, when considering more than two biclusters, it is not

always possible to display them simultaneously as contiguous blocks.

Figure 2.1: Illustration of bicluster overlap (left) and row-column clustering (right).

The flexibility and exploratory power of biclustering methods comes at the cost of increased

computational complexity. Most biclustering problems are NP complete, and even the most

efficient exact algorithms (those that search for every maximal submatrix satisfying a given

criterion) can be prohibitively slow, and produce a large number of biclusters, when they are

applied to large datasets. The LAS algorithm relies on a heuristic (nonexact), randomized

search to find biclusters, a feature shared by many existing methods.
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2.2 The LAS algorithm

In this chapter we present and assess a significance-based approach to biclustering of real-valued

data. Using a simple Gaussian null model for the observed data, we assign a significance score

to each submatrix U of the data matrix using a Bonferroni-corrected p-value that is based on

the size and average value of the entries of U . The Bonferroni correction accounts for multiple

comparisons that arise when searching among many submatrices for a submatrix having a large

average value. In addition, the correction acts as a penalty that controls the size of discovered

submatrices. The connections between LAS and the Minimum Description Length principle

are discussed in Section 2.2.3 below.

2.2.1 Basic Model and Score Function

Let X = {xi,j : i ∈ [m], j ∈ [n]} be the observed data matrix. (Here and in what follows,

[k] denotes the set of integers from 1 to k.) A submatrix of X is an indexed set of entries

U = {xi,j : i ∈ A, j ∈ B} associated with a specified set of rows A ⊆ [m] and columns B ⊆ [n].

In general, the rows in A and the columns in B need not be contiguous.

The LAS algorithm is motivated by an additive submatrix model under which the data

matrix X is expressed as the sum of K constant, and potentially overlapping, submatrices plus

noise. More precisely, the model states that

xi,j =
K∑
k=1

αk I(i ∈ Ak, j ∈ Bk) + εij , i ∈ [m], j ∈ [n], (2.1)

where Ak ⊆ [m] and Bk ⊆ [n] are the row and column sets of the kth submatrix, αk ∈ R is the

level of the kth submatrix, and {εij} are independent N(0, 1) random variables. Here I(·) is

an indicator function equal to one when the condition in parentheses holds. When K = 0, the

model (2.1) reduces to the simple null model

{xi,j : i ∈ [m], j ∈ [n]} are i.i.d with xi,j ∼ N (0, 1) (2.2)

under which X is an m× n Gaussian random matrix.

The null model (2.2) leads naturally to a significance based score function for submatrices.
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In particular, the score assigned to a k × l submatrix U of X with average Avg(U) = τ > 0 is

defined by

S(U) = − log

[(
m

k

)(
n

l

)
Φ
(
−τ
√
kl
)]
. (2.3)

The term in square brackets is an upper bound on the probability of the event A that there

exists a k× l submatrix with average greater than or equal to τ in an m× n Gaussian random

matrix. More precisely, by the union bound, P (A) ≤
∑
P (Avg(V ) ≥ τ), where the sum ranges

over all k × l submatrices V of X. Under the Gaussian null, each probability in the sum is

equal to Φ(−τ
√
kl), so that P (A) ≤ N Φ(−τ

√
kl), where N =

(
m
k

)(
n
l

)
is the number of k × l

submatrices of an m × n matrix. From a testing point of view, the term in brackets can be

thought of as a Bonferroni corrected p-value associated with the null model (2.2) and the test

function Avg(U).

The score function S(·) measures departures from the null (2.2) in a manner that accounts

for the dimensions and average value of a submatrix. It provides a simple, one-dimensional

yardstick with which one can compare and rank observed submatrices of different sizes and

intensities. Among submatrices of the same dimensions, it favors those with higher average.

2.2.2 Description of Algorithm

The LAS score function is based on the normal CDF, and is sensitive to departures from

normality that arise from heavy tails in the empirical distribution of the expression values.

Outliers can give rise to submatrices that, while highly significant, have very few samples or

variables. As a first step in the algorithm we consider the standard Q-Q plot of the empirical

distribution of the entries of the column-standardized data matrix against the standard normal

CDF. Both the breast cancer and lung cancer datasets considered in Section 2.4 exhibited

heavy tails. To address this, we applied the transformation f(x) = sign(x) log(1 + |x|) to each

entry of the data matrix. After transformation, the Q-Q plot indicated excellent agreement

with the normal distribution. Other alternatives to the squashing function f() can also be

considered.

The LAS algorithm initially searches for a submatrix of X maximizing the significance score

S(·). Once a candidate submatrix U∗ has been identified, a residual matrix X ′ is computed by

subtracting the average of U∗ from each of its elements in X. Formally, x′i,j = xi,j −Avg(U∗) if

48



xi,j is in U∗, and x′i,j = xi,j otherwise. The search procedure is then repeated on the residual

matrix X ′. The core of the algorithm is a randomly initialized, iterative search procedure for

finding a maximally significant submatrix of a given matrix. The pseudo code for the algorithm

is as follows:

Input: Data matrix X

Search: Find a submatrix U∗ of X that approximately maximizes the score function S(·).

Residual: Subtract the average of U∗ from each of its elements in X.

Repeat: Return to Search.

Stop: When S(U∗) falls below a threshold, or a user-defined number of submatrices are

produced.

The output of the algorithm is a collection of submatrices having significant positive av-

erages. Repeating the algorithm with X replaced by −X yields submatrices with significant

negative averages.

It is not feasible in the search procedure to check the score of each of the 2n+m possible

submatrices of X. Instead, the procedure iteratively updates the row and column sets of a

candidate submatrix in a greedy fashion until a local maximum of the score function is achieved.

For fixed k, l, the basic search procedure operates as follows:

Initialize: Select l columns of B at random.

Loop: Iterate until convergence of A, B

Let A := k rows with the largest sum over the columns in B.

Let B := l columns with the largest sum over the rows in A.

Output: Submatrix associated with final A, B.

As currently implemented, the initial values of k and l are selected at random from the sets

{1, . . . , dm/2e} and {1, . . . , dn/2e} respectively, and are held fixed until the algorithm finds a

local maximum of the score function. On subsequent iterations, the algorithm adaptively selects

the number of rows and columns in order to maximize the significance score. Each run of the
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basic search procedure yields a submatrix that is a local maximum of the score function, that is,

a submatrix that cannot be improved by changing only its column set or its row set. The basic

search procedure is repeated 1000 times, and the most significant submatrix found is returned

in the main loop of the algorithm. In experiments on real data (see Section 2.5.3), we found

that 1000 iterations of the main loop of the search procedure was sufficient to ensure stable

performance of the algorithm.

Many biclustering methods require the user to specify a number of operational parameters,

and in many cases, getting optimal performance from the method can require careful choice and

tuning of the parameters. In addition, for exact algorithms, minor alteration of the parameters

can result in substantial changes in the size and interpretability of the output. The only

operational parameters of the LAS algorithm are the number of times the basic search procedure

is run in each main loop of the algorithm, and the stopping criterion. This minimal number

of parameters is an important feature of LAS, one that makes application of the method to

scientific problems relatively straightforward.

2.2.3 Penalization and MDL

The score function employed by LAS can be written as a sum of two terms. The first,

− log Φ(−
√
klτ), is positive and can be viewed as a “reward” for finding a k × l submatrix

with average τ . The second, − log[
(
m
k

)(
n
l

)
], is negative and is a multiple comparisons penalty

based on the number of k× l submatrices in X. The penalty depends separately on k and l, and

its combinatorial form suggests a connection with the Minimum Description Length Principle

(MDL), following Rissanen, Grunwald (2004), and Barron & Yu (1998). The MDL principle is

a formalization of Occam’s Razor, in which the best model for a given set of data is the one

that leads to the shortest overall description of the data.

In Section 2.6 we describe a code for matrices based on a family of additive models, and

show that the description length of a matrix with an elevated submatrix is approximately equal

to a linear function of its LAS score. The penalty term in the LAS score function corresponds to

the length of the code required to describe the location of a k× l submatrix, while the “reward”

is related to the reduction in code length achieved by describing the residual matrix instead

of the original matrix. The connection with MDL provides support for the significance based
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approach to biclustering adopted here.

2.3 Description of Competing Methods

In this section we describe the methods to which we will compare the LAS algorithm in the

validation sections below. We considered biclustering methods that search directly for sample

variable associations, as well as biclusters derived from independent row-column clustering.

2.3.1 Biclustering Methods

Initially, we compared LAS with six existing biclustering methods: Plaid, CC, SAMBA, ISA,

OPSM, and BiMax. These methods employ a variety of objective functions and search algo-

rithms. We limited our comparisons to methods that (i) have publicly available implementations

with straightforward user interfaces, (ii) can efficiently handle large datasets arising from gene

expression and metabolomic data, and (iii) are well suited to use by biologists. The methods

are described in more detail below.

The Plaid algorithm of Lazzeroni & Owen (2002) employs an iterative procedure to ap-

proximate the data matrix X by a sum of submatrices whose entries follow a two-way ANOVA

model. At each stage, Plaid searches for a submatrix maximizing explained variation, as mea-

sured by reduction in the overall sum of squares. We set the parameters of Plaid so that at

each stage it fits a constant submatrix (with no row or column effects). With these settings,

the Plaid method is most closely related to LAS, and also derives from a block-additive model

like (2.1). We have also run Plaid with settings under which it fits biclusters by a general

ANOVA model. The two versions of Plaid exhibit similar validation results; we present only

those for which Plaid fits biclusters by a constant. Various modifications of the Plaid model

and algorithm have been proposed in the literature: Turner, Bailey & Krzanowski (2005) have

developed an improved algorithm and Segal et al. (2003), Gu & Liu (2008), and Caldas &

Kaski (2008) have considered the Plaid problem in the Bayesian framework. We have chosen

to focus on the original Plaid algorithm of Lazzeroni & Owen, as it is both the first and most

representative method of its type.

The Cheng and Church (CC) biclustering algorithm [Cheng & Church (2000)] searches for

submatrices such that the sum of squared residuals from a two-way ANOVA fit falls below a
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given threshold. These biclusters are locally maximal in the sense that addition of any more

rows or columns will increase the mean squared error beyond the threshold. Whereas Plaid

searches for a submatrix maximizing explained variation, CC searches for large submatrices

with small unexplained variation. The LAS, Plaid, and CC algorithms discover biclusters

sequentially. Once a candidate target is identified, LAS and Plaid form the associated residual

matrix before proceeding to the next stage. By contrast, CC replaces the values of the target

submatrix by Gaussian noise.

The SAMBA algorithm of Tanay et al. (2002) adopts a graph theoretic approach, in which

the data matrix is organized into a bipartite graph, with one set of nodes corresponding to

genes and the other corresponding to samples. Weights are then assigned to edges that connect

genes and samples based on the data matrix, and the subgraphs with the largest overall weights

are returned.

Ihmels et al. (2002) developed a biclustering algorithm (ISA) that searches for maximal

submatrices whose row and column averages exceed preset thresholds. Both LAS and ISA rely

on iterative search procedures that are variants of EM and Gibbs type algorithms. In both

methods, the search procedure alternately updates the columnset (given the current rowset)

and then the rowset (given the current columnset) until converging to a local optimum.

The OPSM algorithm Ben-Dor et al. (2003) searches for maximal submatrices whose rows

have the same order statistics. Like LAS, the OPSM algorithm makes use of a multiple com-

parison corrected p-value in assessing and comparing biclusters of different sizes.

Each of the algorithms above employs heuristic strategies to search for distinguished sub-

matrices. By contrast, the Bimax algorithm of Prelic et al. (2006) uses a divide-and-conquer

approach to find all inclusion-maximal biclusters whose values are above a user-defined thresh-

old. Bimax is the only exact algorithm among those considered here.

We ran all methods except Plaid and CC with their default parameter settings. LAS, CC,

and Plaid allow the user to choose the number of biclusters produced; we selected 60 biclusters

for each method. The settings of Plaid were chosen so that the submatrix fit at each stage

is a constant, without row and column effects. Once the CC method identifies a bicluster, it

removes it from the data matrix by replacing its elements by noise. When the CC method was

run with the default parameter δ = 0.5, it initially produced a single bicluster that contained
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most of the available genes and samples, leaving very little information from which additional

biclusters could be identified. To solve this problem, we reduced the δ parameter in CC from

0.5 to 0.1.

2.3.2 Running Configurations for Other Methods

All biclustering methods described in this chapter were run on the same machine: AMD64 FX2

2.8GHz, 4GB RAM, running Windows XP Professional (64 bit). The same imputed dataset as

run through LAS was loaded into the other programs. If a method was written in Java, the

’Xmx1024m’ key was added to the command line for proper memory allocation. In all cases,

we preferred to use the default running parameters as given by the software used to run the

algorithms (BicAT for BiMax, CC, ISA, OPSM, and Expander for SAMBA).

Running parameters. Plaid, as it is scripting based, a script was written to iterate over the

steps findm, accept, shuffle 60 times, to produce 60 biclusters. Cheng-Church: seed = 13,

∆ = 0.1, α = 1.2, NumberOutput = 30, ISA: seed = 13, t g = 2, t c = 2, StartingNum =

100, OPSM: PassedModels = 10, BiMax: Genemin = 10, Samplemin = 5, SAMBA: try

covering all probes, OptionFiles = valsp 3ap, OverlapPrior = 0.1, ProbesToHash = 100,

Memorymax = 500, HashKernelmin = 4, HashKernelmax = 7. The OverlapPrior value

ensures that for each new cluster generated, its elements were 90% unique to any previously

discovered bicluster.

2.3.3 Independent Row-Column Clustering (IRCC)

In addition to the methods described above, we also produced biclusters from k-means and

hierarchical clustering. We applied k-means clustering independently to the rows and columns

of the data matrix, with values of k ranging from 3 to 15. In each case, we produced 30

clusterings and selected the one with the lowest sum of within-cluster sum of squares. The

set of 85 × 117 = 9, 945 submatrices (not all column clusters were unique) obtained from the

Cartesian product of the row and column clusters is denoted by KM.

We applied hierarchical clustering independently to the rows and columns of the data matrix

using a Pearson correlation based distance and average linkage. All clusters associated with

subtrees of the dendrogram were considered, but row clusters with less that 10 rows, and column

clusters with less than 8 columns, were discarded. The resulting set of 34 × 2806 = 95, 404
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submatrices obtained from the Cartesian product of the row and column clusters is denoted by

HC.

2.4 Comparison and Validation

Existing biclustering methods differ widely in their underlying criteria, as well as the algorithms

they employ to identify biclusters that satisfy these criteria. As such, simulations based on the

additive submatrix model (1) cannot fairly be used to assess the performance of competing

methods that are based on different models and submatrix criteria. For this reason our assess-

ment of LAS relies more heavily on biological validation rather than simulations: the former

provides a direct comparison of the methods in terms of their practical utility.

We applied LAS and the biclustering methods described in the previous section to two

existing gene expression datasets: a breast cancer study from Hu et al. (2006), and a lung cancer

study from Bhattacharjee et al. (2001). The datasets can be downloaded from the University

of North Carolina Microarray Database (UMD, http://genome.unc.edu) and http://www.

broad.mit.edu/mpr/lung/ respectively. In this section we describe and implement a number

of validation measures for assessing and comparing the performance of the biclustering methods

under study. The validation results for the breast cancer study are detailed below; the results

for the lung cancer data are summarized in Section 2.4.6. The validation measures considered

here are applicable to any biclustering method and most gene expression type datasets.

2.4.1 Description of the Hu Data

This dataset is from a previously published breast cancer study of Hu et al. (2006) that was

based on 146 Agilent 1Av2 microarrays. Initial filtering and normalization followed the protocol

in Hu et al.: genes with intensity less than 30 in the red or green channel were removed; for

the remaining genes, red and green channels were combined using the log2 ratio. The initial

log-transformed dataset was row median centered, and missing values were imputed using a

k-nearest neighbor algorithm with k = 10. Among the 146 samples, there were 29 pairs of

biological replicates in which RNA was prepared from different sections of the same tumor. To

avoid giving these samples more weight in the analysis, we removed the replicates, keeping only

the primary tumor profiles. After preprocessing, the dataset contained 117 samples and 13,666

54

http://genome.unc.edu
http://www.broad.mit.edu/mpr/lung/
http://www.broad.mit.edu/mpr/lung/


genes. In what follows, the dataset will be referred to as Hu.

2.4.2 Quantitative Comparisons

LAS, Plaid, and CC were set to produce 60 biclusters. The number of biclusters produced

by other methods was determined by their default parameters, with values ranging from 15

(OPSM) to 1977 (BiMax). KM and HC produced 9,945 and 95,404 biclusters, respectively.

Table 2.1 shows the number of biclusters produced by each method.

All biclustering methods were run on the same computer. The specifications of the computer

and the parameters of each biclustering method are provided in Section 2.3.2. The running time

of LAS was 85 minutes; ISA and OPSM finished in about 30 minutes; CC, Plaid, and SAMBA

finished in less then 10 minutes. The Bimax algorithm took approximately 5 days. Hierarchical

clustering took 2 minutes, while k-means clustering (with k = 3, ..., 15 and 30 repeats) took 1

hour 40 minutes. Our primary focus in validation was output quality.
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Figure 2.2: Bicluster sizes for different methods.

In Figure 2.2 we plot the row and column dimensions of the biclusters produced by the
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different methods. The resulting scatter plot shows marked differences between the methods

under study, and provides useful insights into their utility and potential biological findings. (A

similar figure could be used, for example, to assess the effects of different parameter settings for

a single method of interest.) Both LAS and CC produce a relatively wide range of bicluster sizes,

with those of LAS ranging from 8×8 (genes × samples) to 1991×55. The other methods tested

produced biclusters with a more limited range of sizes. Biclusters produced by ISA, OPSM,

and SAMBA have a relatively small number of samples, less than 10 samples per bicluster on

average in each case. (Some of the points denoting OPSM clusters have been obscured in the

figure.) The biclusters produced by Bimax had at most 8 samples, and at most 18 genes. By

contrast, Plaid produced large biclusters, having an average of 49 samples and 5130 genes per

bicluster.

The differences between LAS and Plaid bear further discussion. We ran Plaid with settings

(constant fit, no row, and column effects) that made it most similar to LAS. With these settings,

both methods rely on similar models, and proceed in stages via residuals, but differ in their

objective functions. Plaid seeks to maximize the explained variation klτ2, or equivalently,

− log Φ(−
√
klτ). By contrast, the score function maximized by LAS includes a combinatorial

penalty term involving k and l that acts to control the size of the discovered submatrices.

In this, and other, experiments, the penalty excludes very large submatrices, and produces a

relatively wide range of bicluster sizes. (While the combinatorial penalty is small for values of

k close to m and l close to n, submatrices of this size tend to have a small average value.)

Effective number of biclusters

Distinct biclusters produced by the same method may exhibit overlap. On the one hand, the

flexibility of overlapping gene and sample sets has the potential to better capture underlying

biology. On the other hand, extreme overlap of biclusters can reduce a method’s effective

output: two moderate sized biclusters that differ only in a few rows or columns do not provide

much more information than either bicluster alone. Whatever the source of overlap, it is helpful

to keep it in mind when evaluating other features of a method, such as the number of biclusters

it produces that are deemed to be statistically significant. To this end, we measure the effective
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number of biclusters in a family U1, . . . , UK by

F (U1, . . . , UK) =
K∑
k=1

1

|Uk|
∑
x∈Uk

1

N(x)
,

where N(x) =
∑K

k=1 I{x ∈ Uk} is the number of biclusters containing matrix entry x. The

measure F (·) has the property that if, for any 1 ≤ r ≤ K, the biclusters U1, . . . , UK can be

divided into r nonoverlapping groups of identical biclusters, then F (U1, . . . , UK) = r.

Method
# of Eff. # of

Ratio
Clusters Clusters

LAS 60 48.6 0.810

Plaid 60 6.4 0.106

CC 60 60.0 1.000

ISA 72 42.3 0.588

OPSM 15 9.1 0.605

SAMBA 289 171.7 0.594

BiMax 1,977 42.9 0.022

KM 9,945 78.7 0.008

HC 95,404 800.4 0.008

Table 2.1: Output summary for different biclustering methods. From left to right: total number
of biclusters produced; effective number of biclusters; the ratio of the effective number to the
total number of biclusters.

Table 2.1 shows the effective number of biclusters produced by each method. The low overlap

of the CC algorithm is due to the fact that it replaces the values in discovered submatrices by

Gaussian noise, so that a matrix element is unlikely to belong to more than one bicluster. Bimax

is an exhaustive method with no pre-filtering of its output; it produced a large number of small,

highly overlapping biclusters. Biclusters produced by LAS had modest levels of overlap, less

than those of all other methods, except CC. The high overlap of Plaid biclusters is explained

in part by their large size.

Score-Based comparison of LAS and standard clustering

Ideally, a direct search for large average submatrices should improve on the results of indepen-

dent row-column clustering. To test this, we computed the significance score S(C) for every

cluster produced by KM and HC, and compared these to the scores obtained with LAS. The
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highest scores achieved by KM and HC biclusters were 6316 and 5228, respectively. The first

LAS biclusters had scores 12883 (positive average) and 10070 (negative average); the scores

of the first 6 LAS biclusters were higher than scores of all the biclusters produced by KM

or HC. The highest score achieved by a Plaid bicluster was 12542, which also dominated the

scores achieved by KM and HC. These results show that LAS is capable, in practice, of finding

submatrices that cannot be identified by standard clustering methods. We also note that LAS

produces only 60 biclusters, while KM and HC produce 9,945 and 95,404 biclusters, respectively.

Summary properties of row and column sets

One potential benefit of biclustering methods over independent row-column clustering is that

the sample-variable associations they identify are defined locally: they can, in principle, identify

patterns of association that are not readily apparent from the summary statistics across rows

and columns that drive k-means and hierarchical clustering. Nevertheless, local associations can

sometimes be revealed by summary measures of variance and correlation, and it is worthwhile

to consider the value of these quantities as a way of seeing (a) what drives different biclustering

methods, and (b) the extent to which the local discoveries of these methods are reflected in

more global summaries.

Correlation Std. Deviation Within
Gene Sample Gene Sample Variance

Matrix 0.00 0.01 0.89 1.00 1.00

LAS 0.34 0.10 1.40 1.00 1.96

Plaid 0.02 0.03 0.99 1.00 1.24

CC 0.09 0.05 1.02 1.00 0.49

ISA 0.22 0.31 0.99 1.00 1.99

OPSM 0.48 0.06 0.93 1.00 1.18

SAMBA 0.26 0.02 1.66 1.00 3.36

BiMax 0.09 0.26 3.42 1.00 27.75

KM 0.19 0.22 0.91 1.00 0.96

HC 0.44 0.24 0.93 1.00 0.88

Subtypes 0.13 1.00

Table 2.2: Average standard deviation and average pairwise correlation of genes and samples,
for biclusters, KM and HC clusters, and the whole data matrix. As a reference point, the last
row shows the summary statistics for samples belonging to the same disease subtype.

For each method under study, the first four columns of Table 2.2 show the average, across
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the biclusters, of the following summary statistics: (i) the average pairwise correlation of their

constituent genes, (ii) the average pairwise correlation of their constituent samples, (iii) the

average standard deviation of their constituent genes, and (iv) the average standard deviation

of their constituent samples. Average values for the entire matrix are shown in the first row

of the table. (Recall that the data matrix is column standardized, so the column standard

deviations are all equal to one.) In each case, the statistics associated with the biclustering

methods are higher than the average of these statistics over the entire matrix. As HC is based

entirely on gene and sample correlations, we expect its correlation values to be large compared

with other methods, and this is the case. The moderate values of gene correlation for KM result

from the fact that we are using a relatively small numbers of gene clusters, which tend to have

a large number of genes and therefore low average pairwise correlations. Similar remarks apply

to the low gene (and sample) correlation values associated with Plaid.

BiMax appears to be driven by all summary measures, with gene correlation playing a

relatively minor role, while ISA is not affected by gene standard deviation. LAS appears to be

driven by a mix of gene correlation and standard deviation. The average summary statistics

of LAS do not appear to be extreme, or to reflect overtly global behavior. In each column,

the average for LAS is less than and greater than those of two other methods. The remaining

biclustering methods appear to depend on two, or in some cases only one, of the measured

summary statistics. We note that the average pairwise correlation of the samples in LAS

biclusters best matches the average pairwise correlation of samples in the cancer subtypes

(described in Subsection 2.4.3 below).

Tightness of biclusters

For each method under consideration we calculated the average of the within bicluster variances.

The results are presented in the rightmost column of Table 2.2. BiMax and SAMBA, which

operate on thresholded entries, find biclusters with high average variance. LAS, Plaid, and

ISA search for biclusters with high overall or high row/column averages; they find biclusters

with variance above one. Biclusters identified by the CC algorithm have the smallest average

variance, as CC searches for biclusters with low unexplained variation. The IRCC methods find

biclusters with average variance only slightly lower that one.
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2.4.3 Biological Comparisons

The previous section compares LAS with other biclustering and IRCC methods on the basis

of quantitative measures that are not directly related to biological or clinical features of the

data. In this section we consider several biologically motivated comparisons. In particular,

we carry out a number of tests that assess the gene and sample sets of each bicluster using

auxiliary clinical information and external annotation. The next subsection considers sample-

based measures of subtype capture.

Subtype capture

Breast cancer encompasses several distinct diseases, or subtypes, which are characterized by

unique and substantially different expression signatures. Each disease subtype has associated

biological mechanisms that are connected with its pathologic phenotype and the survival profiles

of patients [cf. Golub et al. (1999), Sorlie et al. (2001), Weigelt et al. (2005), Hayes et al. (2006)].

Breast cancer subtypes were initially identified using hierarchical clustering of gene expression

data, and have subsequently been validated in several datasets [cf. Fan et al. (2006)] and across

platforms [cf. Sorlie et al. (2003)]. They are one focal point for our biological validation.

Hu et al. (2006) assigned each sample in the dataset to one of 5 disease subtypes (Basal-like,

HER2-enriched, Luminal A, Luminal B, and Normal-like) using a nearest shrunken centroid

predictor [Tibshirani et al. (2002)] and a pre-defined set of 1300 intrinsic genes. The centroids

for the predictor were derived from the hierarchical clustering of 300 samples chosen both

for data quality and the representative features of their expression profiles. In addition, each

sample in the Hu dataset was assigned via a clinical assay to one of two estrogen receptor

groups, denoted ER+ and ER-, which constitute the ER status of the tumor. The ER status

of tumors is closely related to their subtypes: in the Hu dataset, HER2-enriched and Basal-like

samples are primarily ER-negative (74% and 94% respectively), while Normal-like, Luminal A

and Luminal B are primarily ER-positive (83%, 86%, and 91% respectively) .

Here we compare the ability of biclustering methods to capture the disease subtype and ER

status of the samples. In order to assess how well the set of samples associated with a bicluster

captures a particular subtype, we measured the overlap between the two sample groups using

a p-value from a standard hypergeometric test (equivalent to a one-sided Fisher’s exact test).
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For each biclustering method, we identified the bicluster that best matched each subtype, and

recorded its associated p-value. As a point of comparison, we include the subtype match of

column clusters produced by k-means and hierarchical clustering. The results are shown in

Figure 2.3.

The figure indicates that LAS captures ER status and disease subtypes better than the other

biclustering methods, with the single exception of the Luminal A subtype, which was better

captured by CC. In addition, LAS is competitive with KM and HC, performing better or as

well as these methods on the Luminal A, Luminal B, Basal-like, and HER2-enriched subtypes.
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Figure 2.3: The minus log10 p-values of best subtype capture for different biclustering and
sample clustering methods.

Another view of subtype capture is presented in the bar-plot of Figure 2.4. For the Basal-like

disease subtype, the figure shows the number of true, missed, and false discoveries associated

with the the best sample cluster (as judged by the hypergeometric p-value) that was produced by
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each method. The Basal-like subtype contains 32 samples. The best LAS bicluster captured 27

of the 32 Basal-like samples with no false positives. Plaid had fewer missed samples, but a larger

number of false positives, due to the large size of its sample clusters. As the disease subtypes

were identified in part through the use of hierarchical clustering, the strong performance of KM

and HC is unsurprising. Other biclustering methods were not successful in capturing Basal-like

or other subtypes, due in part to the small number of samples in their biclusters.

Basal-like (32)

KM 6 26 1

HC 6 26 1

LAS 5 27

Plaid 3 29 9

CC 6 26 15

ISA 25 7

OPSM 27 5 2

SAMBA 28 4

BiMax 24 8

Figure 2.4: Bar-plot of missed, true, and false discoveries for different biclustering methods and
the Luminal A subtype. Bars represent: light - missed discoveries, dark - true discoveries,

gray - falsely discoveries.

2.4.4 Biclusters of Potential Biological Interest

In order to assess the potential biological and clinical relevance of the biclustering methods under

consideration, we applied three different tests to the gene and sample sets of each bicluster.

The first test makes use of clinical information concerning patient survival. The second tests

for over-representation of functional categories and genomic neighborhoods (cytobands) among

the gene sets of different biclusters, and the third tests for the differential expression of these

same gene categories between the sample set of a bicluster and its complement. The tests are

described in more detail below.

We chose not to include KM and HC in this analysis for several reasons. The tests conducted

here are intended to provide a rough biological assessment of the gene and sample sets of

biclusters that are produced with the primary goal of capturing gene-sample associations. In

this sense, the tests here are assessing secondary features of these methods. By contrast, gene

and sample based tests are separately assessing the primary features of KM and HC, for which
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biclusters are a byproduct of their independent gene and sample grouping.

For 105 samples out of 117 in the dataset, we have information regarding overall survival

(OS) and relapse free survival (RFS). We applied the standard logrank test [see Bewick et al.

(2004)] to determine if there are significant differences between the survival times associated

with samples in a bicluster and the survival times associated with samples in its complement.

Biclusters whose associated patients have significantly lower (or higher) survival rates are of

potential clinical interest, as their gene sets may point to biological processes that play a

deleterious (or beneficial) role in survival. A bicluster was called significant if its samples

passed the log-rank test for overall or relapse free survival at the 5% level. The number of

biclusters meeting the criterion is presented in the Survival column of Table 2.3.

We next tested the gene set of each bicluster for over-representation of biologically derived

functional categories and genomic neighborhoods. For the former, we considered KEGG cat-

egories [Kyoto Encyclopedia of Genes and Genomes, Kanehisa & Goto (2000), http://www.

genome.jp/kegg/]. For the latter we considered cytobands, which consist of disjoint groups of

genes such that the genes in a group have contiguous genomic locations. Definitions of KEGG

and cytoband categories were taken from R metadata packages on Bioconductor (Bioconductor

v 1.9, packages hgug4110b and hgu95av2).

For each bicluster gene set we computed a Bonferroni corrected hypergeometric p-value to

assess its overlap with each KEGG category, and computed a similar p-value for each cytoband.

We considered 153 KEGG categories and 348 cytobands that contained at least 10 genes (post

filtering) on our sample arrays. A gene set was deemed to have significant overlap if any of

the p-values computed in this way was less than 10−10. This threshold was selected to adjust

for the anti-conservative behavior of the hypergeometric test in the presence of even moderate

levels of gene correlation [see Barry et al. (2005) for more details]. The column Gene of Table

2.3 shows the number of biclusters having signficant overlap with at least one KEGG category

or cytoband.

The third test concerns the differential expression of KEGG and cytoband categories across

the sample set of a bicluster and its complement. From each bicluster we formed a treatment

group consisting of the samples in the bicluster and a control group consisting of the com-

plementary samples that are not in the bicluster. We tested for KEGG categories showing
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differential expression across the defined treatment and control groups using the SAFE proce-

dure of Barry et al., and counted the number of categories passing the test at the 5% level. The

permutation based approach in SAFE accounts for multiple comparisons and the (unknown)

correlation among genes. A similar testing procedure was carried out for cytobands.

If no KEGG category were differentially expressed across the treatment and control groups

corresponding to a particular bicluster, roughly 5% of the categories would exhibit significant

differential expression by chance. We considered a bicluster sample set to yield significant differ-

ential expression of KEGG categories if the number of significant categories identified by SAFE

exceeds the 5th percentile of the Bin(153, .05) distribution. An analogous determination was

made for cytobands. The number of biclusters whose sample sets yield significant differential

expression for KEGG categories or cytobands is presented in the Sample column of the Table

2.3.

# of Survival KEGG/Cytoband 2 out
All 3

BC’s 5% level Gene Sample of 3

LAS 60 10 15 24 11 1

Plaid 60 10 3 17 2 0

CC 60 8 0 12 2 0

ISA 72 2 18 23 5 0

OPSM 15 0 0 3 0 0

SAMBA 289 15 20 72 10 1

BiMax 1977 329 0 0 0 0

Table 2.3: The number of biclusters passing tests for survival, gene-set enrichment, and sample-
set differential expression of KEGG categories and cytobands. A detailed description of the
tests is given in the text.

The rightmost columns of Table 2.3 show the number of biclusters passing two or three tests.

From an exploratory point of view, these biclusters are of potential interest, and represent a

natural starting point for further experimental analysis. Accounting for the number (or effective

number) of biclusters produced by each method, specifically the large output of SAMBA and

the small output of OPSM, LAS outperformed the other methods under study, particularly in

regards to biclusters satisfying two out of the three tests.
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2.4.5 Classification

Biclustering algorithms identify distinguished sample-variable associations, and in doing so,

can capture useful information about the data. To assess how much information about disease

subtypes and ER status is captured by the set of biclusters produced by different methods, we

examined the classification of disease subtypes using patterns of bicluster membership in place

of the original expression measurements. Similar applications of biclustering for the purpose of

classification were previously investigated in Tagkopoulos et al. (2005) and unpublished work

[Grothaus (2005), Asgarian & Greiner (2006)].

Once biclusters have been produced from the data matrix, we replaced each sample by a

binary vector whose jth entry is 1 if the sample belongs to the jth bicluster, and 0 otherwise.

A simple k-nearest neighbor classification scheme based on weighted Hamming distance was

applied to the resulting binary matrix: the classification scheme used the subtype assignments

of training samples to classify unlabeled test samples. The number of rows in the derived binary

matrix is equal to the number of biclusters; in every case this is far fewer than the number of

genes in the original data.

To be more precise, let X = [x1, . . . , xn] be an m×n data matrix, and let C1, . . . , CK be the

(index sets of) the biclusters produced from X by a given biclustering method. We map each

sample (column) xi into a binary vector π(xi) = (π1(xi), ..., πK(xi))
′ that encodes its bicluster

membership:

πk(xi) =

 1 if xi belongs to the sample set of bicluster Ck

0 otherwise.

The original data matrixX is then replaced by theK×n “pattern” matrix Π = {π(x1), . . . , π(xn)}.

In the Hu data, for example, the 13,666 real variables in X are replaced by K < 300 binary

variables in Π. Subtype and ER designations for the initial data matrix X carry over to the

columns of Π.

For each of the breast cancer subtypes in the Hu data, we used 10-fold cross validation

to assess the performance of a 5-nearest neighbor classification scheme applied to the columns

of the binary pattern matrix Π. The nearest neighbor scheme used a weighted Hamming
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Figure 2.5: Classification error rates for SVM on the original data and the 5-nearest neighbor
with weighted Euclidean distance applied to the “pattern” matrix.

distance measure, in which the weight of each row is equal to the square of the t-statistic for

the correlation r between the row and the response, t2 = (n− 2)r2/(1− r2). In each case, the

weights were calculated using only the set of training samples. For each subtype, the average

number of cross-validated errors was divided by the total number of samples, in order to obtain

an overall error rate. The results are displayed in Figure 2.5. For comparison, we include

10-fold cross validation error rates of a support vector machine (SVM) classifier applied to the

original expression matrix X. As the figure shows, the error rates of LAS and Plaid are similar

to those of SVM across the phenotypes under consideration. Using the pattern information

from 60 biclusters, LAS and Plaid were able to distinguish individual subtypes with the same

degree of accuracy as SVM applied to the original data with 13,666 variables.
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2.4.6 Lung Data

We have also performed the validation analysis described above on the lung cancer date from

Bhattacharjee et al. (2001). The results are similar to those for the breast cancer data. The

principle difference was the improved performance of ISA in tests of subtype capture. While

ISA biclusters continued to have small sample sets, the disease subtypes for the lung data

contained fewer samples than those in the breast data.

2.5 Simulations

In addition to real data, we also investigated the behavior of the LAS algorithm on a variety of

artificially created datasets. Our primary goals were to assess (i) the ability of the algorithm to

discover significant submatrices under the additive model (2.1), (ii) the stability of the algorithm

with respect to the initial random number seed, and (iii) the sensitivity of the algorithm to

noise.

2.5.1 Null Model with One Embedded Submatrix

The key step of the LAS algorithm is to identify a submatrix of a given matrix that maxi-

mizes the score function. The approach taken by LAS is heuristic. As there are no efficient

algorithms for finding optimal matrices, outside of small examples, we cannot check directly if

the submatrix identified by LAS is optimal. In order to evaluate the LAS search procedure,

we generated a number of data matrices of the same size as the Hu dataset, with i.i.d. N(0,1)

entries. For k = 4, 8, 16, . . . , 4096 and l = 4, 8, 16, 32, we added a constant α = 0.1, 0.2, ..., 1

to a k × l submatrix of the initial Gaussian matrix. The basic LAS search was carried out on

each of the 11 × 4 × 10 = 440 resulting matrices, and was considered a success if the search

returned a bicluster whose score was at least as high as that of the embedded submatrix. The

LAS search failed in only three cases; in each the embedded submatrix had relatively low scores

(less than 100, while scores of other submatrices ranged up to 61,415.5). The search procedure

was successful in all cases when the number of iterations used in the procedure was increased

from 1,000 to 10,000.
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2.5.2 Null Model with Multiple Embedded Submatrices

.

We also tested the ability of LAS to discover multiple embedded

submatrices. Simulations were performed with a varying number of

embedded biclusters (up to 50), with 10 simulations for each number

of biclusters. In each simulation, we first generated a 1000 × 1000

Gaussian random matrix. Then we randomly selected size and posi-

tion of each bicluster, independently assigning rows and columns of

the matrix to the bicluster with probability .02, so that the expected

size of a bicluster is 20×20. Biclusters were generated independently,

allowing for overlap. The elements of every bicluster were increased

by 2. Then LAS was applied to the resulting matrix set to search

for the correct number of biclusters with the default 1000 iterations

per bicluster.

Number of Average

Biclusters Match

1 1.000

2 0.997

3 0.997

4 1.000

10 1.000

20 0.999

30 0.993

50 0.989

Table 2.4: Discovery of mul-

tiple biclusters.

For every embedded bicluster U , we assessed its overlap with each detected bicluster Ũ

using the minimum of specificity |U ∩ Ũ |/|U | and sensitivity |U ∩ Ũ |/|Ũ |, equivalently, |U ∩

Ũ |/max(|U |, |Ũ |), and matched U with the closest Ũ . The average overlap across embedded

biclusters and simulations for various numbers of true biclusters is presented in Table 2.4. The

numbers indicate consistent accuracy of LAS in the detection of multiple embedded biclusters.

2.5.3 Stability

In order to check the stability of LAS with respect to the randomization used in the basic

search procedure, we ran the algorithm 10 times on the Hu dataset with different random

seeds. In order to assess the stability of the performance of the algorithm, rather than its raw

output, for each of the 10 runs we calculated the validation measures from Section 2.4. The

effective number of biclusters, average size, p-values for subtype capture (as in Section 2.4.3)

are presented in Table 2.5. The number of biclusters that passed different biological tests (as

in Section 2.4.4) is presented in Tables 2.6 and 2.7.

There is little variation in the calculated measures across different runs of the algorithm.

The effective number of biclusters ranged from 48.2 to 49.0, and average size ranged from
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Average # of

N clusters Eff num ratio Samples Genes

LAS01 60 49.0 0.816 26.2 360.7

LAS02 60 48.6 0.811 26.0 358.5

LAS03 60 48.5 0.809 26.4 357.6

LAS04 60 48.3 0.805 26.7 357.4

LAS05 60 49.0 0.817 26.2 361.8

LAS06 60 48.6 0.810 26.0 360.8

LAS07 60 48.5 0.808 26.2 360.5

LAS08 60 48.2 0.804 27.1 358.7

LAS09 60 48.5 0.809 26.7 355.6

LAS10 60 48.8 0.814 25.9 363.0

Table 2.5: Summary table for 10 runs of LAS on the Hu data with different random seeds.

ER
HER2- Basal- Normal- Luminal Luminal

enriched like like A B

LAS01 9.1 10.9 18.5 8.8 8.5 4.2

LAS02 5.9 10.9 18.5 10.9 9.7 5.0

LAS03 7.4 11.3 19.9 10.1 8.5 6.3

LAS04 7.4 12.2 18.5 10.1 9.1 7.2

LAS05 7.4 10.9 16.4 10.1 10.0 4.7

LAS06 7.4 10.9 19.9 10.1 9.4 5.9

LAS07 7.4 10.9 19.9 10.1 9.4 6.9

LAS08 7.4 10.9 18.5 10.1 9.4 8.5

LAS09 8.3 11.3 18.5 8.3 9.1 4.2

LAS10 7.4 10.9 19.9 10.1 8.9 6.1

Table 2.6: Minus log10 p-values of best subtype capture for 10 runs of LAS with different
random seeds.

355 × 26 to 363 × 27. The number of biclusters with significant survival ranged from 9 to 13,

and the number of biclusters having significant overlap with at least one KEGG category or

cytoband ranged from 13 to 16. The SAFE analysis is computationally intensive, so we did not

perform it for these simulations. Although the output of LAS is not deterministic, its summary

statistics for average size and overlap are stable, and it is consistently successful in capturing

cancer subtypes.

2.5.4 Noise Sensitivity

In order to assess the effects of noise on the LAS output, we added zero mean Gaussian noise with

standard deviation σ = 0, 0.1, 0.2, . . . , 1 to the normalized Hu dataset (after tail transformation
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# of Survival KEGG/Cytoband 2 out
BC’s 5% level Gene of 2

LAS01 60 9 16 4

LAS02 60 11 16 4

LAS03 60 12 14 3

LAS04 60 13 14 4

LAS05 60 9 15 3

LAS06 60 10 13 3

LAS07 60 8 13 2

LAS08 60 13 13 3

LAS09 60 12 14 4

LAS10 60 9 14 2

Table 2.7: The number of LAS biclusters (for 10 runs of LAS with different random seeds)
passing tests for survival, and gene-set enrichment.

and column standardization). The resulting matrix was then column standardized, and LAS

was applied to produce 60 biclusters.

For each level of noise we calculated validation measures for the LAS output. The results

are presented in Tables 2.8, 2.9 and 2.10. As the level of noise increases, the average number of

genes in the LAS biclusters decreased, as did the number of biclusters with having a significant

association with Cytoband or KEGG categories. However, within the tested range of noise

levels, the average number of samples did not change noticeably, and the subtype capture

performance did not markedly decrease. The results indicate both high noise resistance of LAS

and the strength of subtype signal.

2.6 Minimum Description Length Connection

Let the data matrix X be standardized, so that its elements have zero mean and unit variance,

and let U be the selected bicluster. The code describing the data matrix must describe both

the bicluster (size, location, average of its elements) and the residual matrix.

It is not possible to code real-valued data precisely with a finite-length code, so we construct

a code describing the data with a precision of C binary digits after the decimal point.

The size of the submatrix U is described by variables k ∈ [m] and l ∈ [n], so coding these

variables requires log2(mn) bits. (We ignore rounding issues here and in what follows.) There

are a total of
(
m
k

)(
n
l

)
different k × l submatrices in a m × n matrix, so the code describing
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Average # of

N clusters Eff num ratio Samples Genes

σ = 0.0 60 48.3 0.806 26.2 357.3

σ = 0.1 60 49.2 0.819 26.6 359.1

σ = 0.2 60 49.4 0.823 26.9 342.8

σ = 0.3 60 47.7 0.795 26.0 338.0

σ = 0.4 60 49.5 0.825 26.9 319.8

σ = 0.5 60 50.3 0.838 26.7 297.2

σ = 0.6 60 50.3 0.839 26.8 274.5

σ = 0.7 60 50.9 0.849 26.5 252.9

σ = 0.8 60 51.8 0.863 25.5 227.3

σ = 0.9 60 51.7 0.862 25.1 208.5

σ = 1.0 59 51.6 0.875 25.8 183.0

Table 2.8: Summary statistics of LAS biclusters for data with added noise.

ER
HER2- Basal- Normal- Luminal Luminal

enriched like like A B

σ = 0.0 6.3 10.9 18.5 10.9 8.4 5.8

σ = 0.1 7.4 10.9 18.5 10.9 10.0 6.7

σ = 0.2 8.3 11.3 15.3 9.6 8.0 6.3

σ = 0.3 6.9 13.9 18.0 10.1 10.0 8.6

σ = 0.4 5.4 11.3 17.6 10.6 8.8 6.9

σ = 0.5 6.3 12.2 18.5 8.8 8.4 6.6

σ = 0.6 6.7 10.9 15.3 11.6 7.7 4.8

σ = 0.7 8.3 12.2 15.3 10.1 8.1 5.8

σ = 0.8 7.6 12.2 17.3 8.8 8.1 7.2

σ = 0.9 10.0 10.9 17.3 7.6 8.4 5.0

σ = 1.0 9.6 12.2 16.2 8.0 11.3 10.7

Table 2.9: Minus log10 p-values of best subtype capture for LAS on data with added noise.

the location of the submatrix requires log2[
(
m
k

)(
n
l

)
] bits. To code the submatrix average τ , we

assume that it lies within the interval [−8, 8] (we did not observe |τ | > 1.5 in our experiments).

Then the code describing the average τ of the submatrix U takes log2 16 + C = 4 + C.

Finally, we describe the residual matrix. The data set is standardized, so its total variation

(sum of squares) is nm. A k × l submatrix with average τ explains variation τ2kl, so that the

variation of the residual matrix is nm − τ2kl = nm
[
1− klτ2

nm

]
. Thus, under model (2.1) the

elements of the residual matrix are approximately distributed as N(0, 1− klτ2

nm ).

Coding of a random variable X with density f(x) requires − log2(f(X)) + C bits, or, on

average, −
∫
f(x) log2(f(x))dx+C bits. Let CN be the average code length for standard normal
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# of Survival KEGG/Cytoband 2 out
BC’s 5% level Gene of 2

σ = 0.0 60 13 16 3

σ = 0.1 60 9 15 2

σ = 0.2 60 12 14 2

σ = 0.3 60 10 14 3

σ = 0.4 60 9 13 2

σ = 0.5 60 9 14 3

σ = 0.6 60 8 13 3

σ = 0.7 60 7 13 1

σ = 0.8 60 8 12 1

σ = 0.9 60 11 9 3

σ = 1.0 59 5 9 1

Table 2.10: The number of LAS biclusters (on data with added noise) passing tests for survival,
and gene-set enrichment of KEGG categories and cytobands.

random variable, CN = −E log2(φ(Z)) + C, where z ∼ N(0, 1) and φ(z) is density of standard

normal distribution. Then for X ∼ N(0, σ2) the average code length is CN − log2(σ
2)/2. Thus,

coding of the residual matrix takes nm
[
CN − log2

[
1− klτ2

nm

]]
bits on average.

Combining the codelengths above, the length of the code describing the X using a k × l

bicluster U with average τ is

MDL(U) = log2(nm) + 4 + C + log2

[(
m

k

)(
n

l

)]
+ nm

[
CN −

1

2
log2

(
1− klτ2

nm

)]
.

In the applications we considered, the explained variation was a small fraction (typically less

than 1/1000) of the total variation. Thus, we can apply first order approximation: log2[1+x] =

x/ ln(2) + o(x). Then

MDL(U) ≈ const+ log2

[(
m

k

)(
n

l

)]
− klτ2/2 ln(2).

We pulled the constant terms and terms depending on n and m out, as they do not depend

on the selected bicluster.

Let’s now consider the LAS score function,

S(U) = − log

(
m

k

)
− log

(
n

l

)
− log

(
Φ(−
√
v2kl)

)
.
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For large x we can approximate Φ(−x) = exp[−x2/2]/x+ o(x), getting

S(U) ≈ ln(2)

[
− log2

(
m

k

)(
n

l

)
+ τ2kl/2 ln(2)− log2(τ

2kl)/2

]
.

Easy to see that except for the small factor of log2(τ
2kl)/2 the code length and score function

approximations are linearly dependent:

S(U) ≈ const− ln(2)MDL(U).

2.6.1 LAS model and low rank signal detection

Note that the matrix with B biclusters (and no noise) has rank at most B, so the LAS model

is a particular case of low-rank signal detection model considered in Chapter 1. Applying the

results from Chapter 1 to the LAS model one can determine that SVD can only detect biclusters

(of fixed average) with number of elements more that square root of the number of elements in

the whole data matrix. However, using LAS algorithm, which aims to find LAS biclusters, not

arbitrary rank one signal, we can find biclusters with number of elements logarithmically small

compared to the size of the matrix.

To be expanded.

2.7 Discussion

Biclustering methods are a potentially useful means of identifying sample-variable associations

in high-dimensional data, and offer several advantages over independent row-column clustering.

Here we have presented a statistically motivated biclustering algorithm called LAS that searches

for large average submatrices. The algorithm is driven by a simple significance-based score

function that is derived from a Bonferroni corrected p-value under a Gaussian random matrix

null model. We show that maximizing the LAS score function is closely related to minimizing

the overall description length of the data in an additive submatrix Gaussian model.

The LAS algorithm operates in a sequential-residual fashion; at each stage the search for

a submatrix with maximum score is carried out by a randomly initialized iterative search

procedure that is reminiscent of EM type algorithms. The only operational parameters of

73



LAS are the number of biclusters it produces before halting, and the number of randomized

searches carried out in identifying a bicluster. In our experiments on real data, we found

that 1000 randomized searches per bicluster were sufficient to ensure stable performance of the

algorithm.

We evaluated LAS and a number of competing biclustering methods using a variety of quan-

titative and biological validation measures. On the quantitative side, LAS produced biclusters

exhibiting a wide range of gene and sample sizes, and low to moderate overlap. The former

feature implies that LAS is capable of capturing sample-variable associations across a range of

different scales, while the latter indicates that distinct LAS biclusters tend to capture distinct

associations. Other methods varied considerably in their sizes and overlap, with a number of

methods producing biclusters having a small number of samples and genes.

Many LAS biclusters had significantly higher scores than biclusters obtained by more tra-

ditional approaches based on k-means and hierarchical clustering. This suggests that the con-

straints associated with independent row-column clustering (considering rows and columns sep-

arately, assigning each row or column to a single cluster) substantially limit the ability of these

methods to identify significant biclusters, and that more flexible methods may yield substan-

tially better results.

In regards to capturing disease subtypes, LAS was competitive with, and often better than,

KM and HC. Other methods did not perform particularly well, though we note that ISA

did a good job of capturing and classifying the smaller disease subtypes present in the lung

cancer data. In tests for survival, over-representation of functional categories, and differential

expression of functional categories, LAS outperformed the other biclustering methods. These

tests, unlike the quantitative measures of size and overlap, were based on clinical and biological

information.

The classification study in Section 2.4.5 shows that simple binary profiles of bicluster mem-

bership can contain substantive information about sample biology. In particular, nearest neigh-

bor classification of disease subtypes using membership profiles derived from LAS or Plaid

biclusters was competitive with a support vector machine classifier applied to the full set of

expression data. We note that the biclustering methods applied here are unsupervised, and

depend only on the expression matrix: none makes use of auxiliary information about samples
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or variables.

Our simulation study shows that the LAS search procedure is effective at capturing em-

bedded submatrices (or more significant ones) having moderate scores. Although the search

procedure makes use of random starting values, its performance is stable across different ran-

dom seeds. The ability of the algorithm to capture subtypes does not substantially deteriorate

when a moderate amount of noise is added to the data matrix.

While the validation of biclustering here has focused on gene expression measurements, it is

important to note that LAS and other biclustering methods are applicable to a wide variety of

high-dimensional data. In preliminary experiments on high density array CGH data produced

on the Agilent 244k Human Genome CGH platform, LAS was able to capture known regions

of duplications and deletion (data not shown). The dataset contained roughly 250 samples and

240,000 markers. We note that among the seven biclustering methods compared in the chapter

only the current implementations of LAS and Plaid were able to handle datasets of this size.

LAS biclusters capture features of the data that are of potential clinical and biological

relevance. Although some findings, such as disease subtypes, are already known, very often the

methods used to establish them involve a good deal of subjective intervention by biologists or

disciplinary scientists. LAS provides a statistically principled alternative, in which intervention

(such as selecting biclusters of potential interest) can take place after the initial discovery

process is complete.

We note that the LAS score function and search procedure can readily be extended to

higher dimensional arrays, for example, three-dimensional data matrices of the form {xi,j,k : i ∈

[m], j ∈ [n], k ∈ [p]}. Related extensions of the Plaid model have been developed by Turner,

Bailey, Krzanowski & Hemingway (2005).

As noted in Section 2.1.1, our use of the large average criterion is motivated by current

biological practice in the analysis of gene expression and related data types. The validation

experiments in the chapter establish the efficacy of the large average criterion, and the LAS

search procedure, for standard gene expression studies, and there is additional evidence to

suggest that the criterion will be effective in the analysis of CGH data. Nevertheless, we note

that the large average criterion is one of many that may be used in the exploratory analysis of

high dimensional data. Other criteria and methods can offer additional insights into a given
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data set of interest, and may provide valuable information in cases, and for questions, where

the large average criterion is not appropriate.
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CHAPTER 3

FastMap: Fast eQTL Mapping in Homozygous
Populations

Summary

Gene expression Quantitative Trait Locus (eQTL) mapping measures the association between

transcript expression and genotype in order to find genomic locations likely to regulate tran-

script expression. The availability of both gene expression and high density genotype data

has improved our ability to perform eQTL mapping in inbred mouse and other homozygous

populations. However, existing eQTL mapping software does not scale well when the number

of transcripts and markers are on the order of 105 and 105 - 106, respectively.

We propose a new method, FastMap, for fast and efficient eQTL mapping in homozygous

inbred populations with binary allele calls. FastMap exploits the discrete nature and structure

of the measured SNPs. In particular, SNPs are organized into a Hamming distance based tree

that minimizes the number of arithmetic operations required to calculate the association of a

SNP by making use of the association of its parent SNP in the tree. FastMap’s tree can be used

to perform both single marker mapping and haplotype association mapping over an m-SNP

window. These performance enhancements also permit permutation based significance testing.

The FastMap program and source code are available at the website: http://cebc.unc.

edu/fastmap86.html

3.1 Introduction

Quantitative Trait Locus (QTL) mapping is a set of techniques that locates genomic loci associ-

ated with phenotypic variation in a genetically segregating population. QTL mapping has been

http://cebc.unc.edu/fastmap86.html
http://cebc.unc.edu/fastmap86.html


highly successful in determining causative loci underlying several disease phenotypes (Cervino

et al. 2005, Wang et al. 2004, Hillebrandt et al. 2005) and can broadly be subdivided into

two classes: linkage mapping and association mapping. For standard linkage mapping in ex-

perimental crosses, likelihood or regression approaches are used to map QTL, with flanking

markers used to infer genotypes in the intervals between widely spaced markers (i.e. > 1cM)

(Haley & Knott 1992, Lander & Botstein 1989). As marker density increases, linkage statistics

may be computed at individual marker loci, with minimal loss in precision or power (Kong &

Wright 1994). In contrast, simple association mapping does not attempt to explicitly consider

the linkage disequilibrium structure between marker loci, and thus typically considers associa-

tion statistics computed only at the marker loci. In either case, the statistics computed at the

markers in experimental cross linkage designs, and in association studies, are often identical,

e.g. t-statistics to detect differences in phenotype means as a function of genotype. Here, we

consider the case of markers collected at sufficient density so that association statistics may be

calculated only at the observed markers.

Recent advances in gene expression and single nucleotide polymorphism (SNP) microarray

technology have lowered the cost of collecting gene expression and high density genotype data

on the same population. These technologies have been used to produce high density SNP

data sets with thousands of transcripts and millions of allele calls in both mice (Frazer, Eskin,

Kang, Bogue, Hinds, Beilharz, Gupta, Montgomery, Morenzoni, Nilsen et al. 2007, Szatkiewicz

et al. 2008) and humans (Frazer, Ballinger, Cox, Hinds, Stuve, Gibbs, Belmont, Boudreau,

Hardenbol, Leal et al. 2007). eQTL mapping has been successfully carried out in several inbred

mouse populations (Bystrykh et al. 2005, Chesler et al. 2005, Gatti et al. 2007, McClurg et al.

2007, Pletcher et al. 2004, Schadt et al. 2003). These studies have provided a revealing genome-

wide view of the genetic basis of transcriptional regulation in multiple tissues, and form a

necessary foundation for systems genetics (Kadarmideen et al. 2006, Mehrabian et al. 2005).

The calculation of associations between tens of thousands of transcripts and thousands to

millions of SNPs creates a computational challenge that can stretch or overwhelm existing tools.

These challenges are further compounded by multiple comparison issues arising from the large

number of available SNPs and transcripts. Various methods have been used to address these

issues. A resampling approach (Carlborg et al. 2005, Churchill & Doerge 1994, Peirce et al.
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2006) is one common way of addressing multiple comparisons among markers, and it is used

by several available QTL mapping tools (Broman et al. 2003, Manly et al. 2001, Wang et al.

2003). Multiple comparisons among transcripts has been previously addressed by thresholding

transcripts using q-values (Storey & Tibshirani 2003) obtained from transcript specific testing

of association with SNPs using likelihood ratio statistic (Chesler et al. 2005) or the mixture

over markers method (Kendziorski et al. 2006).

While parallel computation has been suggested as a potential solution to the computational

challenges associated with eQTL analysis, (Carlborg et al. 2005), however many researchers

have neither the expertise nor the resources required to administer and maintain a computing

cluster. To address the growing need for eQTL mapping in high density SNP data sets, and

the poor scalability of the existing computational tools, we developed the FastMap algorithm

and implemented it as a Java-based, desktop software package that performs eQTL analysis

using association mapping. We achieved computational efficiency through the use of a data

structure called a Subset Summation Tree, which is described in the Methods section below.

FastMap performs either single marker mapping (SMM) or haplotype association mapping

(HAM) by sliding an m-SNP window across the genome (Pletcher et al. 2004). FastMap is

currently intended for use with inbred mouse strains. Significance thresholds and p-values are

calculated for each transcript using multiple permutations of transcript expression values. In

order to address multiple comparisons across transcripts, FastMap assigns a q-value (Storey &

Tibshirani 2003) assessing FDR, to each transcript. We apply our software tool to two publicly

available data sets consisting of gene expression measurements in panels of inbred mice and

compare our results to other software tools.

3.2 The FastMap Algorithm

This section describes the calculations of test statistics (correlations) for SMM in a 1 SNP sliding

window. First we introduce the concept of a subset sum Mg(s) and a Subset Summation Tree.

Subset sums are quantities that can be efficiently calculated using the subset summation tree,

and are used in the calculation of correlations. We then show how the subset sums and Subset

Summation Tree can be adapted to the fast calculation of ANOVA test statistics for m-SNP

sliding windows (m > 1).
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In association mapping for homozygous inbred strains, the input data consists of two matri-

ces: the first contains real-valued transcript expression measurements and the second contains

SNP allele calls, coded as 0 for the major allele and 1 for minor allele. Each matrix has the

same number of samples (strains) n. Let S be the number of SNPs and let G be the number

of transcripts.

3.2.1 Test Statistic for 1-SNP–Transcript Association

Homozygous SNPs: 1 SNP window. We use the Pearson correlation as an association

statistic in the case of a 1 SNP window. For a given transcript g and SNP s the correlation

between g and s is

cor(g, s) =
cov(g, s)√

V ar(g)V ar(s)
=

1
n

∑n
i=1 gisi −

1
n2

∑n
i=1 gi

∑n
i=1 si√

V ar(g)V ar(s)
.

To simplify the formula, we assume without loss of generality that each transcript expression

vector g is centered and standardized such that

n∑
i=1

gi = 0 and
n∑
i=1

g2i = 1. (3.1)

In this case, the correlation expression reduces to

cor(g, s) =

∑n
i=1 gisi

√
n
√

1
n

∑n
i=1 s

2
i − ( 1

n

∑n
i=1 si)

2
.

The denominator can be calculated once for each SNP, because it depends only upon the

Hamming weight of s. By contrast, the numerator must be calculated for every SNP-transcript

pair (S ×G computations). Our goal is to speed up calculation of the numerator. Denote the

numerator by Mg(s):

Mg(s) = cov(g, s) =
n∑
i=1

gisi =
∑
i:si=1

gi.

As the SNPs are binary, Mg(s) is simply the sum of transcript expression values over a subset

of samples defined by the minor allele of the SNP.

To illustrate how the calculation of the Mg(s) can be simplified, consider two SNPs s and
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s′ that differ only at the ith position (thus s and s′ have Hamming distance of 1):

s = (s1, s2, ..., si−1, si = 0, si+1, ..., sn)

s′ = (s1, s2, ..., si−1, s
′
i = 1, si+1, ..., sn).

In this case, the quantity Mg(s
′) can be calculated quickly (in one arithmetic operation) from

Mg(s) as follows:

Mg(s
′) =

n∑
i=1

gis
′
i =

n∑
i=1

gisi + gi(s
′
i − si) = Mg(s) + gi(1− 0) = Mg(s) + gi. (3.2)

For any given transcript, the association statistic is the same for SNPs with the same strain

distribution pattern (SDP). Hence, we calculate the association statistic once for each unique

SDP. The McClurg mouse data used in this chapter contains 156,525 SNPs, but has only 64,157

unique SDPs.

Figure 3.1: Illustration of the Subset Summation Tree. The table shows one gene expression
vector and 6 corresponding SNP vectors for 7 strains. At each node, the covariance of the gene
expression with each SNP is calculated with one addition operation.
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3.2.2 Subset Summation Tree

Additional improvements are based on Formula 3.2. To take full advantage of this relationship

between correlations, we construct a tree, which we call a Subset Summation Tree. The vertices

of the tree correspond to unique subsets of samples. Each SDP defines a subset of samples

associated with its minor allele. The tree contains all SDPs appearing in the SNP matrix.

By construction, the edges of tree connect SDPs which differ in one position (i.e. Hamming

distance 1). The process of tree construction is described later in this section. It ensures that

the tree is at least as efficient (in terms of weight based on the Hamming distance) as the

minimum spanning tree connecting all SDPs from the SNP matrix. An illustration of a subset

summation tree is given in Figure 3.1.

Traversing the tree we can calculate the covariance Mg(s) for all SDPs in the tree with 1

arithmetic operation per SDP. One additional arithmetic operation is required to calculate the

correlation from Mg(s).

3.2.3 Test Statistic for m-SNP–Transcript Association

The use of a consecutive 3-SNP sliding window has been shown to improve the associations that

can be detected in mouse studies (Pletcher et al. 2004). FastMap is capable of employing any

m-SNP window specified by the user. Within each m-SNP window, the strains form haplotypes

that partition strains into ANOVA groups. A one way ANOVA test statistic is then used to

assess the relationship between a gene g and an m-SNP window.

Consider a 3-SNP window that contains k unique haplotype (ANOVA) groups across the

n stains. Let Ai denote the set of samples in the i-th ANOVA group, and let the transcript

expression values in the i-th ANOVA group be gi. The associated ANOVA test statistic is

calculated as

F =
(n− k)SSB

(k − 1)SSW
,

where the between group sum of squares SSB, and within group sum of squares SSW are

calculated as follows:

SSB =

n∑
i=1

ni(ḡi − ḡ)2, SSW =

k∑
i=1

ni∑
j=1

(gij − ḡi)2,
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ḡi =
1

ni

ni∑
j=1

gij , ḡ =
1

n

k∑
i=1

ni∑
j=1

gij .

The sums of squares are related by SST = SSB + SSW .

For a given transcript, the total sum of squares (SST ) remains constant across all SNPs. As

in the 1-SNP window case, the gene expression values are standardized to satisfy the conditions

in Equation(3.1). For standardized expression measurements, the SST and SSB calculations

simplify as follows:

SST =

k∑
i=1

ni∑
j=1

(gij − ḡ)2 =

k∑
i=1

ni∑
j=1

(gij − 0)2 = 1,

SSB =

k∑
i=1

ni(ḡi − ḡ)2 =

k∑
i=1

ni

(∑ni
j=1 gij

ni

)2

=
k∑
i=1

M2
g (Ai)

ni
,

where Mg(Ai) is sum of the transcript expression values for the ith ANOVA group. As before,

Mg(Ai) can be calculated efficiently using the Subset Summation Tree. The difference is that

the tree for these calculations connects subsets of samples defining the m-SNP ANOVA groups,

as opposed to SDPs defined by single SNPs. Once the SSB is calculated, the F statistic is

calculated as:

F =
(n− k)SSB

(k − 1)(1− SSB)
.

3.2.4 Construction of Subset Summation Tree

The Subset Summation Tree is used for fast calculation ofMg(Ai) - sums of transcript expression

values over subsets of samples {Ai}. Tree construction is initiated by obtaining the family of

sample subsets of interest {Ai} from the set of SNPs. The tree is grown starting from single

root element (empty subset) by sequential addition of the nearest element from {Ai} to the

tree.

All the subsets {Ai} are put in a hash table (HT) that stores the subsets that are not yet

members of the tree. The tree is grown by connecting subsets that are at the minimum distance

from the tree. Node selection and connection to the tree can be optimized by taking advantage

of two facts. First, the Hamming distances are positive integers. Thus, once we find a subset

in the HT within distance 1 of a particular tree vertex, we connect them, adding the subset to
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the tree and removing it from the HT. To find such an SDP in the HT we use the second fact:

for any subset, there are only n possible subsets that are within hamming distance 1 from it.

Thus, instead of calculating distances from a certain tree vertex to all subsets in the HT we

can check if the HT contains any of the n possible neighbor subsets. This approach reduces

the complexity of the search for close (within distance 1) neighbors of a given tree vertex from

O(nS) to O(n).

The procedure above is applicable as long as there are SDPs in the HT within distance 1

from the tree. Once there are no SDPs in the HT within distance 1 from tree vertices, the

search continues for SDPs within distance 2. The same optimizations are applicable here - once

an SDP within distance 2 is found, it should be connected to the tree and there are n(n− 1)/2

possible SDPs within distance 2 from a given tree vertex. The same technique is applied even for

the search for subsets within distance 3. When the remaining vertices are at Hamming distance

4 or greater, an exhaustive search is performed to find a node in HT that is a minimum distance

from the tree. This process is repeated until all SNPs have been inserted into the tree.

Permutation Based Significance Thresholds. For a single transcript, the associa-

tion statistic is calculated between the observed values of that transcript and all SNPs. The

transcript data is then permuted while the SNP data is held fixed. Association statistics are

calculated between the permuted transcript values and all SNPs and the maximum association

statistic is stored. The distribution of the maximum association statistics obtained from 1000

permutations of the transcript’s values is used to define significance thresholds for individual

(transcript, SNP) pairs, and to assign a percentile based p-value to the observed maximum

association of the transcript across SNPs.

Significance Across Multiple Transcripts. The procedure above assigns a p-value

to each transcript that accounts for multiple comparisons across SNPs through the use of the

maximum association statistic. In order to correct for multiple comparisons across transcripts,

we calculate q-values (Storey & Tibshirani 2003) for each transcript, using the p-values obtained

from the permutation based maximum association test.
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3.2.5 FastMap Application

FastMap is written in the Java programming language and is driven by a simple graphical user

interface (GUI, Figure 3.2a). The required input files are 1) a transcript expression file with

mean expression values for each mouse strain and 2) a SNP file containing allele calls for all

strains, with the major and minor alleles coded as 0 and 1 respectively. Once the SNP file has

been loaded, FastMap constructs a Subset Summation Tree (see Methods) for the SNP data, a

computational task that is performed only once for a given set of strains. FastMap allows the

user to perform either SMM by calculating the Pearson correlation of each transcript expression

measurement with each SNP, or HAM by sliding an m-SNP window across the genome and

calculating the ANOVA F-statistic for the phenotype vs. the distinct haplotypes observed in

the window (Pletcher et al. 2004). The association statistic at each SNP is displayed in a

zoomable panel that links to the University of California at Santa Cruz Genome Browser (Kent

et al. 2002, Pontius et al. 2007) (Figure 3.2b & c). Association plots may be exported as text

files or as images.

Figure 3.2: FastMap application GUI. Panel (a) shows FastMap with a list of probes on the
left and the QTL plot on the right. Panel (b) shows a zoomed in view of the significant QTL
on Chr 1. Panel (c) shows the same region in the UCSC Genome browser, to which FastMap
can connect.

QTL mapping with sparsely distributed markers has traditionally used Maximum Likelihood

methods and has employed the Likelihood Ratio Statistic (LRS) or the related Log of the Odds

ratio (LOD) as a measure of the association between genotype and phenotype (LRS = 2 ln(10)×
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LOD). When marker density is high, regression techniques applied only at the observed markers

will produce results which are numerically equivalent to the LRS or LOD (Kong & Wright 1994).

In fact, the LRS, Student t-statistic, Pearson correlation and the standard F-statistic, can be

shown to be equivalent when they are applied at the marker locations (see Supplementary

Materials). While previous literature has shown that regression methods produce estimates

with a higher mean square error and have less power (Kao 2000), these results apply primarily

to the case of interval mapping when the spacing between markers is wide (> 1cM). For these

reasons, FastMap employs the Pearson correlation for SMM and the F-statistic for HAM when

employing high density SNP data sets.

The significance of eQTLs for a single transcript may be determined using a permutation-

based approach (Churchill & Doerge 1994). The expression values of each transcript are per-

muted, the association statistics of each transcript with all SNPs are calculated and the maxi-

mum transcript specific association statistic is retained. This process is repeated 1,000 times,

and a significance threshold is taken as the 1−α percentile of the empirical distribution of the

maxima. Both the number of permutations and the significance thresholds may be specified by

the user. Since the various association statistics are equivalent when applied at the markers,

the significant marker locations will be the same for any choice of these statistics. Once a

QTL peak that exceeds a user selected threshold has been identified, the width of the QTL

must be defined in order to identify potential candidate genes for further study. Given a local

maximum d, a confidence region can be defined as all markers q in an interval around d such

that 2 ln(LR(q)) ≥ maxd 2 ln(LR(d))− x and this interval is referred to as an (x/2 ln 10)-LOD

support interval (Dupuis & Siegmund 1999). The choice of x = 4.6 yields a 1-LOD confidence

interval, which has been widely used in linkage analysis. A more conservative choice of x = 6.9

(a 1.5-LOD interval) is more appropriate to situations with dense markers, yielding approximate

95% coverage under dense marker scenarios. Intervals for non-LR association statistics can be

calculated from the relationships between statistics provided in the Supplementary Materials.

In practice, eQTL peak regions are limited by the effective resolution determined by breeding

and recombination history.

FastMap assigns a p-value to each transcript that indicates the significance of the maximum

association of that transcript across all the available markers. In situations where it is necessary
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or of interest to simultaneously consider multiple transcripts, additional steps must be taken

to account for the resulting multiple comparison problem. We address this by calculating the

q-value (Storey & Tibshirani 2003) of every transcript. The q-value of a transcript is related to

the false discovery rate. In particular, the q-value of a transcript is an estimate of the fraction of

false discoveries among transcripts that are equally or more significant than it is. For example,

if we create a list of transcripts consisting of a transcript with q-value equal to 10%, and all

those transcripts having smaller permutation based values, then we expect 10% or less of the

transcripts on the list to have a significant association with at least on SNP or haplotype.

Permutation based significance testing is frequently used in eQTL analysis (Doerge &

Churchill 1996, Peirce et al. 2006), and typically forms the bulk of the computational bur-

den in eQTL mapping. It is natural to ask whether a parametric approach, based on Gaussian

p-values, would be just as effective and save a significant amount of time. We note that permu-

tation based testing offers several advantages over parametric approaches. Permutation testing

deals cleanly with the problem of multiple comparisons, and induces a null distribution under

which there is no association between transcript expression and genotype, regardless of the un-

derlying distributions from which the data are drawn, and the correlations between SNPs. In

addition, the normality assumptions underlying parametric tests are often violated in practice.

3.3 Test of Real Data

3.3.1 Data

BXD Gene Expression Data. The BXD Liver data set is available from genome.unc.edu,

and is described in (Gatti et al. 2007). Briefly, it consists of microarray derived expression

measurements for 20,868 transcripts in 39 BXD recombinant inbred strains and the C57BL/6J

& DBA/2J parentals. The data was normalized using the UNC Microarray database and QTL

analysis was performed on all transcripts.

BXD Marker Data. The BXD marker data consists of 3,795 informative markers taken

from a larger set of 13,377 markers. Briefly, consecutive markers with the same strain distribu-

tion pattern were removed and only the flanking markers of such regions were included. The

data was downloaded from www.genenetwork.org/genotypes/BXD.geno; further information is
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available at www.genenetwork.org/dbdoc/BXDGeno.html.

Hypothalamus Gene Expression Data. The mouse hypothalamus data set GSE5961

was downloaded from the NCBI Gene Expression Omnibus website. This data is described

in (McClurg et al. 2007). The 58 CEL files were normalized using the gcrma package from

Bioconductor (version 1.9.9) in R (version 2.4.1). The data was subset to include only the 31

male samples, and removing the NZB data because the entire array appeared as an outlier in

hierarchical clustering of the arrays. There were 36,182 probes on the array; of these a subset of

3,672 transcripts having an expression value >200 and at least a 3-fold difference in expression

in one strain were selected. Transcripts containing a single outlier strain with expression values

>4 standard deviations from the mean were removed from the data set. There were 402 such

transcripts, leaving 3,270 transcripts for analysis in FastMap.

Hypothalamus SNP Data. The SNP data was obtained from (McClurg et al. 2007) and

originally contained 71 inbred strains. Missing genotype data were imputed using the algorithm

of (Roberts, McMillan, Wang, Parker, Rusyn & Threadgill 2007). There were 156,525 SNPs, of

which 99 were monomorphic across the 32 strains. These SNPs were removed from the analysis,

leaving 156,426 SNPs. There were 64,790 unique SDPs in this final data set.

3.3.2 Existing Methods

In this section we compare FastMap performance with two other publicly available tools:

SNPster (McClurg et al. 2006) and R/qtl (Broman et al. 2003). The setting used to run

them are detailed below.

Snpster settings: SNPster runs were performed using the tool available at snpster.gnf.org.

The following settings were selected and are listed in the order in which they appear on the

website. (i) Log transform data: No. (ii) Test statistic: F-test. (iii) Method of Calculating

Significance: parametric. (iv) Compute gFWER: No. The default settings were used for the

remaining options on the web site.

R/qtl settings: R/qtl version 1.08-56 for R 2.7 was used to perform eQTL analysis on

the BXD Liver data set. R/qtl was configured to perform Haley-Knott regression only at the

observed markers. eQTL significance was determined by performing 1000 permutations for each

transcript and selecting only those eQTLs above the 95% LOD threshold.
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Software DataSet Method Transcripts Markers Time (min)

R/qtl
BXD

LRS 100
3,795

33.73
FastMap SMM 20,868 29.95

SNPster
McClurg HAM 3,672 156,525

6609.6
FastMap 737.5

Table 3.1: FastMap eQTL mapping times.

Computer for performance testing. A Pentium 4 with a clock speed of 3.4GHz and

4GB of RAM running Microsoft Windows XP Professional(r), SP2 was used for all timing runs.

No other applications were open during the runs.

3.3.3 Performance and Speed

In order to gauge the performance improvement provided by FastMap over existing software,

we compared computation times using two microarray data sets. The first consists of 20,868

transcripts and 3,795 markers in 41 strains of mice (BXD data set; (Gatti et al. 2007)). This data

set was selected because, unlike the following larger data set, it can be loaded into the widely

used R/qtl package without exhausting computer memory. The second is a hypothalamus data

set (McClurg et al. 2006) that consists of 3,672 transcripts, 156,525 markers in 32 strains of

laboratory inbred mice. This data set was selected for its dense genotype information, which is

on the scale of the expected high density SNP data for which we designed FastMap.

The amount of time required to perform eQTL mapping in these data sets is summarized in

Table 3.1. In the BXD data set, FastMap performs SMM for the entire set of 20,868 transcripts

in about half an hour, which is the same time required for R/qtl to analyze 100 transcripts. The

hypothalamus data was previously analyzed with an association mapping tool called SNPster

(McClurg et al. 2006), which is available as a web application hosted by the Genomic Institute

of the Novartis Research Foundation (GNF). A single transcript typically requires less than 5

minutes to analyze, depending on the load on SNPster’s web server. However, obtaining results

for thousands of transcripts from submissions to an external website is impractical in most

cases. Another version of SNPster runs at GNF in parallel on a 200 node cluster, which is not

publicly available, in batches of 10 transcripts per node. It requires 18 minutes to process these

10 transcripts using 1,000,000 bootstrap resamplings for each transcript, and a − log(p-value)

threshold of 2.5, which implies ∼1.8 CPU-minutes per transcript (T. Wiltshire, pers.com.).
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If these 3,672 transcripts were analyzed serially rather than in parallel, this would require

110.2 hours. In contrast, FastMap runs on a standard desktop computer and can perform

eQTL mapping for these same 3,672 transcripts with 156K SNPs in 32 strains in 12.3 hours.

Large computing clusters, and the expertise required to administer them, are not available

to all laboratories. FastMap offers the convenience of running on a single, local computer

in a reasonable amount of time (overnight, or over a weekend for more than ten thousand

transcripts).

We evaluated the scalability of FastMap with increasing numbers of transcripts and SNPs

using the hypothalamus data set. Since we are aware of no stand-alone software that can

perform eQTL mapping with hundreds of thousands of SNPs, we compared FastMap’s perfor-

mance in these plots to a brute force approach in which all calculations are performed without

any optimizations. In the case of both SMM and HAM, computation time for FastMap scales

linearly with increasing numbers of transcripts (Figure 3.3a). FastMap also scales linearly with

increasing number of SNPs (Figure 3.3b).

Figure 3.3: FastMap scales linearly with increasing numbers of genes and SNPs. Panels (a)
& (b) show the time required to compute the association of increasing numbers of transcripts
with 156K SNPs. Panels (c) & (d) show the time required to compute the association of one
transcript with increasing numbers of SNPs. In all 4 cases, 1000 permutations per transcript
were performed.

In order to examine the scalability of our algorithm with increasing numbers of strains, we
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1 SNP window 3 SNP window
# Strains Tree Constr. SMM Tree Constr. HAP

16 1 0.05 8 2.8
32 168 2.5 320 12.9
54 3,791 2.8 27,138 16.5
71 13,672 4.6 81,186 25.5

Table 3.2: FastMap tree construction and association mapping times with increasing numbers
of strains (in seconds)

determined tree construction times for various sets of inbred strains genotyped at ∼156,525

SNPs (Table 3.2). The amount of time required to construct the tree is a function of both the

number of strains as well as their ancestral relationships. Strains that are closely related (i.e.

all derived from M.m.domesticus) will produce nodes in the tree that are close to each other. As

more distantly related strains are added (i.e. M.m.domesticus derived strains combined with

M.m.musculus derived strains), the distance between SDPs becomes larger and tree construc-

tion times increase. Most existing eQTL studies in panels of inbred strains have used less than

40 strains (Bystrykh et al. 2005, Chesler et al. 2005, McClurg et al. 2007). Tree construction

required 5.3 minutes for the 32 strains of the hypothalamus data set. In contrast, for a panel

of 71 inbred strains derived from both M.m.domesticus and non-M.m.domesticus strains, tree

construction requires ∼10 hours using a 1 SNP window and ∼24 hours using a 3 SNP window.

Tree construction is carried out only once, and the resulting calculations still require less time

than a brute force approach. Faster algorithms for tree construction that improve scalability

with increasing numbers of strains are currently under investigation.

3.3.4 Differences between FastMap and Other QTL Software

We compared the eQTL results produced by FastMap to those produced by R/qtl. R/qtl

was configured to use Haley-Knott regression (Haley & Knott 1992) and 1,000 permutations

to determine significance thresholds. While R/qtl is designed to perform linkage mapping,

we note that when linkage mapping is performed exclusively at the markers, the calculations

are identical to those performed in eQTL (see Supplementary Materials). eQTLs may be

broadly separated into two categories; eQTLs located within 1Mb of the transcript location

(cis-eQTLs), and eQTLs located further than 1 Mb from the transcript location (trans-eQTLs).
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Both FastMap and R/qtl found similar numbers of total eQTLs, cis-eQTLs and trans-eQTLs

(Figure 3.4a). Figure 3.4b shows that the eQTL locations found by each software package are

essentially identical; 98% of the eQTLs found by each method are within 5 Mb of each other, a

margin of resolution consistent with the resolution of the BXD marker set. Since permutation

based testing involves randomization, it should not be expected that 100% of the eQTLs would

match between the two methods. Furthermore, the eQTL histograms produced by each method

(Figure 3.4c & d) are similar, with differences being due to histogram binning effects (see insets).

Figure 3.4: FastMap eQTL mapping results almost equivalent to those obtained with R/qtl.
Panel (a) describes the BXD data set and shows the number of matching eQTLs between
FastMap and R/qtl at varying distances. Panel (b) shows the high degree of concordance
between FastMap and R/qtl. Panels (c) & (d) present eQTL histograms produced by FastMap
and R/qtl. They are substantially equivalent with differences on Chr 1 and 12 being due to
histogram binning effects (insets). Data is shown at 5% significance threshold.

92



eQTL mapping in the hypothalamus data set was performed to evaluate computational

performance, rather than to compare the results with SNPster. However, it is natural to ask

how the results of the two methods compare when we employ median centering in FastMap

to correct for population stratification. We correct for population stratification by median

centering transcript values within M.m.domesticus and non-M.m.domesticus derived strains.

Since SNPster does not provide a fixed threshold for significance, we selected 2,413 tran-

scripts which had SNPster p-values less than 10−4. Of these, 105 were cis-eQTLs and 2,308

were trans-eQTLs. FastMap produced eQTLs for 382 transcripts at or above a 0.05 significance

threshold, of which 29 were cis-eQTLs and 353 were trans-eQTLs. The locations of 55 eQTLS

were common between the two methods and all of these were cis-eQTLs, which have been

reported to be more reproducible than trans-eQTLs (Peirce et al. 2006).

It should be noted that FastMap and SNPster differ in several important respects. SNPster

uses a heuristic weighted F-statistic who’s null distribution is not known, it employs a re-

sampling approach that selects strains in a random manner with a non-uniform distribution.

FastMap uses the standard F-statistic and conventional permutation-based significance thresh-

olds. For these reasons, it is unclear whether the results of the two methods should be concor-

dant, and biological validation of both eQTL mapping approaches may be necessary to address

the differences.

3.3.5 Population Stratification

As noted by (McClurg et al. 2007), considerable population stratification is present when pan-

els of laboratory inbred strains are used. Common laboratory inbred strains are a mixture of

M.m.domesticus, M.m.musculus, M.m.castaneus, M.m.molossinus and M. spretus, which arose

during the creation of the laboratory inbred strains (Beck et al. 2000, Yang et al. 2007). Figure

3.5 shows a SNP similarity matrix for the 32 inbred strains in the hypothalamus dataset, where

each cell represents the proportion of SNPs that have the same allele between 2 strains (nor-

malized Hamming distance) across all 156K SNPs. The non-M.m.domesticus derived strains

cluster tightly in the lower left hand corner, indicating that they are more genotypicly similar

to each other than to the M.m.domesticus derived strains. Numerous transcripts and SNPs

exhibit systematic differences across these two strata. Consequently, each such transcript will
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Figure 3.5: SNP similarity matrix demonstrates population stratification among laboratory
inbred strains. In one row, each cell represents the proportion of SNPs (in the 156K data set)
with the same allele in the other strains. The similarity matrix has been hierarchically clustered
(distance = SNP similarity, linkage = average).

show a significant association with every such marker. In eQTL mapping, this produces numer-

ous markers that show significant associations with the expression of a single transcript, leading

to horizontal banding in the transcriptome map (Figure 3.6a,b). When such differences exist,

most permutations of the transcript will yield a lower association statistic than the observed

one, this leads to inappropriately low significance thresholds (Figure 3.6c). In order to remove

this strata effect, we median center the values of each transcript within M.m.domesticus and

non-M.m.domesticus strata. As shown in Figure 3.6d the resulting transcriptome map becomes

interpretable with cis-eQTLs along the diagonal. The few horizontal bands that remain are due

to a subset of the M.m.musculus derived strains with transcript expression levels that differ
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from the other strains; this prevents the median subtraction method from removing the strata

effect completely. We recommend removing those few transcripts that demonstrate this effect.

FastMap allows the user to select strata by genotype a priori, and subtracts strata means

or medians from the transcript values in each stratum (Pritchard et al. 2000). While there are

more sophisticated methods for addressing population stratification (Kang et al. 2008), FastMap

is not primarily designed to address this problem. While laboratory inbred strains have been

useful in mapping Mendelian traits, eQTL mapping with FastMap will have greater utility in

well segregated populations like the Collaborative Cross (Churchill et al. 2004, Roberts, Pardo-

Manuel de Villena, Wang, McMillan & Threadgill 2007), due to increased genetic diversity, as

well as the finer recombination block structure. In such well-mixed populations, mean/median

subtraction within strata or the non-uniform resampling technique used by SNPster should not

be required.
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Figure 3.6: Strata median correction dramatically improves transcriptome map. Panel (a) shows
the transcriptome map for 3,270 transcripts without correcting for the population structure for
all eQTL above a transcript-specific 5% significance threshold. The horizontal bands dominate
the plot and are due to gene expression profiles like the one in panel (b), which is marked by the
red arrow in (a). The grey colored strains are the M.m.domesticus derived strains and the red
ones are the non-domesticus derived strains. By subtracting out the strata median from each
strata, the transcriptome map (d) is greatly improved. Gene expression values are no longer
split by genotypic strata (e) and the permutation derived thresholds are appropriate (f).
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CHAPTER 4

Merging Two Gene Expression Studies via Cross
Platform Normalization

Summary

Motivation: Gene expression microarrays are currently being applied in a variety of biomedical

applications. This chapter considers the problem of how to merge data sets arising from different

gene-expression studies of a common organism and phenotype. Of particular interest is how to

merge data from different technological platforms.

Results: The chapter makes two contributions to the problem. The first is a simple cross-

study normalization method, which is based on linked gene/sample clustering of the given data

sets. The second is the introduction and description of several general validation measures

that can be used to assess and compare cross-study normalization methods. The proposed

normalization method is applied to three existing breast cancer data sets, and is compared to

several competing normalization methods using the proposed validation measures.

Availability: The Supplementary Materials and XPN Matlab code are publicly available

at website: https://genome.unc.edu/xpn

4.1 Introduction

High-throughput gene expression microarrays are currently being applied in a wide variety

of biomedical problems. There are now several widely used, commercially available, microar-

ray platforms that measure gene expression in related, but different, ways. No matter which

technology is used, the evaluation of gene expression experiments usually begins with statisti-

cal analyses that take a variety of forms, including exploratory analysis (such as clustering),

https://genome.unc.edu/xpn


classification, and assessments of differential expression.

The increasing number and availability of large scale gene expression studies of human

and other organisms provides strong motivation for cross-study analyses that combine existing

and/or new data sets. In a cross-study analysis, the data, relevant test statistics, or conclusions

of several studies are combined. The simultaneous analysis of different studies of a common

organism and phenotype has the potential to strengthen and extend the results obtained from

the individual studies. Cross-study analyses can be carried out using existing data sets, so their

results hold out the promise of comparatively inexpensive, scientific “value-added”.

On the other hand, combining data from different expression studies poses a number of

statistical difficulties. These difficulties arise from the fact that the constituent data sets have

often been produced using different gene expression platforms and different processing facili-

ties. As a consequence, measurements from different platforms cannot be directly combined.

Identifying and removing such systematic effects is the primary statistical challenge in cross-

study analysis. We note that technological differences between studies may be confounded with

biological differences arising from the choice of patient cohorts (e.g. age, gender or ethnicity).

In many cases, technological artifacts are dominant, though care should be taken to verify this,

and one can hope to remove them while leaving biological information intact.

There are several potential approaches to cross-study analysis, depending on what informa-

tion is being synthesized. At the highest level, one may wish to combine, through meta-analysis

or other techniques, the broad conclusions of different studies. Most existing work on multi-

study gene expression analysis is focused on an intermediate level, where the goal is to combine

information from primary statistics (such as t-statistics or p-values) or secondary statistics (such

as gene lists) that are derived from the individual studies (Choi et al. 2003, Garrett-Mayer et al.

2004, Ghosh et al. 2003). Other approaches to meta-analysis of gene expression data are consid-

ered by (Garrett-Mayer et al. 2007, Parmigiani et al. 2004, Shen et al. 2004, Rhodes et al. 2002,

2004). This chapter deals with the problem of cross-study normalization: how to combine two

available data sets in order to produce a single, unified data set to which standard statistical

procedures (such as clustering, classification and measures of differential expression) can be

applied.

There has been a great deal of work on the normalization of gene-expression data within a
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single study (Bolstad et al. 2003, Irizarry et al. 2003, Irizarry, Hobbs, Collin, Beazer-Barclay,

Antonellis, Scherf & Speed 2003, Yang et al. 2002). Much of that work can be applied, with little

modification, to normalizing data from multiple studies that are based the same technological

platform. The emphasis here is on the problem of combining data from different array platforms.

We will use the term cross-platform normalization when this distinction is important.

4.2 Cross Platform Normalization (XPN) method

Here we describe the basic idea behind the XPN (cross platform normalization) method. We

restrict our attention to merging two studies; the model and fitting procedure can be extended

in a natural way to handle three or more studies.

XPN takes as input the gene expression measurements from two studies, after appropriate

preprocessing and imputation. One may work with the set of common genes in the studies, or

on a selected subset of these genes. Once an appropriate set G of genes has been identified, the

available data can be represented as two matrices

Xp = {xgsp : g ∈ G, s = 1 . . . np} p = 1, 2. (4.1)

Here Xp denotes the available data from study p, and xg,s,p is the expression of gene g in sample

s of study p. Let n1 and n2 denote the number of samples in studies 1 and 2, respectively, m

denote the number of genes in G. The normalized data can be represented similarly, as two

matrices X̃p = {x̃gsp : g ∈ G, s = 1 . . . np} with the same dimensions as X1 and X2.

4.2.1 Block Linear Model

The XPN procedure is based on a simple block-linear model. In this model, the observed value

xgsp is a scaled and shifted block mean plus noise. The block mean is constant over a range of

gene and sample values, and is the same in each platform. The slope and offset of the linear

transformation, as well as the variance of the noise, depend on the gene g and the platform p.

More precisely, we assume that

xgsp = Aα∗(g),β∗
p(s),p

· bgp + cgp + σgp εgsp. (4.2)
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The functions α∗ : {1, ...,m} 7→ {1, ...,K} and β∗p : {1, ..., np} 7→ {1, ..., L}, p = 1, 2, define

linked groups of genes and samples, respectively. The numbers Aijp are block means, while bgp

and cgp represent sensitivity and offset parameters, respectively, that are specific to each gene

and platform. The noise variables εgsp are independent standard normals, so the final term in

(4.2) has variance σ2gp. The model reflects the assumption that the samples of each available

study fall roughly into one of L statistically homogenous groups, and that each group is defined

by an associated gene profile that is constant within each of K groups of similar genes. The

block means {Ai,j : i = 1, . . . ,K} represent the profile of the jth group. Figure 4.1 illustrates

the underlying block structure. Note that the basic studies may be of different sizes. A heatmap

illustrating the same idea on real data is provided in the Supplementary Materials.

Study 1 Study 2

Figure 4.1: Studies 1 and 2 after row and column clustering of their combined data, with K = 5
gene groups and L = 3 sample groups. Shading indicates linked gene-sample blocks.

4.2.2 Description of XPN

Initially, the data from the available studies are sample standardized and gene median centered,

in order to remove gross systematic differences, and then combined. Following the model (4.2),

clustering is then used to identify homogenous groups of genes and samples in the combined

data matrix. Specifically, k-means clustering is applied independently to the rows and columns
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of the combined data matrix, using k = K gene clusters and k = L sample clusters, respectively.

Application of k-means begins with a random choice of centroids for the clusters. In clustering

rows, we select K rows of the data matrix at random, and use these as the initial centroids.

Cluster assignments and centroids are then updated iteratively until convergence to a local

minimum of the sum of squared Euclidean distances. A similar procedure is used for clustering

of the columns.

The gene clusters in the combined data matrix are summarized by the assignment function

α : G → {1, . . . ,K}. Gene clusters are naturally linked across studies, as we work with the

same genes in each study. The column clusters in the combined data matrix are summarized

by assignment functions βp : {1, ..., np} 7→ {1, ..., L} for p = 1, 2. Specifically, βp(s) is the index

of the combined sample cluster containing sample s from Study p. The `’th combined cluster

splits into linked clusters {s : β1(s) = `} in Study 1 and {s : β2(s) = `} in Study 2.

From the mappings α(g) and βp(s), estimates of the model parameters Âijp, b̂gp, ĉgp and σ̂gp

are obtained using standard maximum likelihood methods. Details are given in the Appendix.

Common model parameters θ̂g = (b̂g, ĉg, σ̂
2
g) and Âij are then calculated as weighted averages

of the parameters in Study 1 and Study 2:

θ̂g =
n1θ̂g,1 + n2θ̂g,2

n1 + n2
, Âij =

nj,1Âi,j,1 + nj,2Âi,j,2
nj,1 + nj,2

,

where nj,p is the number of samples in the jth sample group of platform p. The expression

values of each platform are then modified in accordance with the estimated model parameters

to produce normalized values

x∗gsp = Âα(g),βp(s) b̂g + ĉg + σ̂g

(
xgsp − Âα(g),βp(s),p b̂gp − ĉgp

σ̂gp

)
.

The output of the XPN algorithm is based on multiple clusterings of the data. The procedure

described above is applied 30 times, with different randomly chosen initial centroids for the

row and column clusters. The output of the algorithm is the average of the normalized values

obtained over the repeated runs.

There are several reasons for averaging the results of multiple clusterings of the combined
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data matrix. To start, there is unlikely to be a single, “biologically correct” clustering of the

available genes and samples: disease subtypes and gene pathways are not always uniquely de-

fined, and they may exhibit moderate overlap. Multiple clusterings better capture the structure

present in this situation. By combining normalization results from multiple clusterings (each of

which yields a local minimum of the sum of squares cost function) the XPN algorithm performs

a simple form of model averaging. Averaging also controls (minor) instability that may arise

from use of the k-means clustering procedure, whose output is dependent on the initial choice of

cluster centroids. In this latter respect, XPN is similar in spirit to resampling based approaches

to cluster stability such as those in (Tseng 2007, Tseng & Wong 2005, Dudoit & Fridlyand

2002, Tibshirani et al. 2001).

In principle, the XPN method procedure can be used with any clustering method that

produces a pre-specified number of clusters from a given set of vectors, or with resampling based

improvements of such methods. We chose to use k-means clustering because of its simplicity and

computational efficiency. The validation study below indicates that the XPN method performs

well, and generally outperforms competing normalization methods, when it is used with basic

k-means clustering. The validation results leave open the possibility of further improvements

with alternative clustering methods, but a number of experiments with other clustering methods

have not produced better results.

In the current implementation of XPN, the number of row and column clusters, K ≥ 1 and

L ≥ 1 respectively, are fixed in advance, and will depend on the type and dimension of the

data under study. In general, L should be large enough to capture principal sample groups or

subtypes, and L should be large enough to capture large, homogenous groups of genes. In the

numerical experiments below we chose K = 5 and L = 25. (In practice, XPN is not sensitive to

the choice of K and L, see Section 4.6.1 below.) As an alternative, one may employ a method

such as the GAP statistic (Tibshirani et al. 2001), implemented as an R function kmeansGap

in library “SLmisc”, to assess the number of row and column clusters in the data. Applied to

the data set used in this chapter , the GAP statistic suggested 4-8 sample clusters and 8-9 gene

clusters.
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4.3 Other Methods

We compare XPN with several other normalization methods in the literature. The other meth-

ods have previously been applied to batch correction on single platforms, but are well adapted

to more general cross-study situations. As a baseline, we standardized each available column

(sample) (CS). Beginning with CS data, we median centered each gene in each study and then

combined studies. The resulting procedure is denoted by (MC). The MC method is currently

used in practice, and in spite of its simplicity, performs relatively well in our validation experi-

ments. We also consider the Empirical Bayes (EB) method (Johnson et al. 2007). EB is based

on the model

xgsp = ag + γgp + δgp σg εgsp, εgsp ∼ N(0, 1).

The platform specific parameters γgp and δgp are estimated using an empirical Bayes approach,

and are essentially equal to OLS estimates shrunken towards their respective cross platform

means. Other parameters are estimated by gene-wise OLS. The data is then transformed to

remove the effects of different γgp and δgp across platforms. Finally, we considered the DWD

method for batch correction (Benito et al. 2004), which is based on the Distance Weighted

Discrimination method (Marron & Todd 2004). DWD normalization finds a direction in which

the sample-vectors from the two studies are well-separated, and then translates the samples

from each study along that direction until their respective families of vectors have significant

overlap.

The Probability of Expression (POE) method (Shen et al. 2004, Parmigiani et al. 2002),

transforms each data value into a signed probability in the range [−1, 1]. While this transfor-

mation is useful for identifying meta-signatures, the resulting data is difficult to compare with

normalized values produced by other methods, and we do not include its analysis here.

We note that each of the alternative normalization methods described above is gene-wise

affine, that is, for each gene g there exist constants ag and bg, with ag > 0, such that x̃s,g =

agxs,g + bg. As a result, the correlation between xs,g and x̃s,g across samples s is 1 for every g.

By contrast, XPN seeks to simultaneously borrow strength across genes and samples via linked

row and column clusters, and as a result, XPN is not gene-wise affine.

103



4.4 Data Sets and Preprocessing

We applied XPN and the methods described above to three existing breast cancer data sets. The

first data set, from (Huang et al. 2003), has 89 samples and 8948 genes. Their experiments were

performed with Affymetrix GeneChip U95Av2 arrays. The 89 samples were obtained at the Koo

Foundation Sun Yat-Sen Cancer Centre (KF-SYSCC), Taipei. The second data set, which will

be referred to as NKI, comes from (van ’t Veer et al. 2002). It contains 97 samples and 16360

genes, and was obtained from Netherlands Cancer Institute and Rosetta Inpharmatics-Merck

custom designed 25K Agilent oligonucleotide arrays. Most of the NKI patients had stage I or

II breast cancer. The third data set, referred to as UNC, is from (Hu et al. 2006). It contains

114 samples representing 104 patients and 12065 genes, and was obtained using 22K Agilent

oligonucleotide arrays. The UNC sample set represents an ethnically and geographically diverse

cohort.

Initially, LOWESS normalization was applied to the NKI and UNC data sets; RMA was

used to obtain expression values for the Huang data set. The raw expression values in each

study were then log-2 transformed, and missing values were imputed with 1-nearest neighbor

imputation (Troyanskaya et al. 2001b). Duplicated genes in each data sets were collapsed

by median using Entrez Gene ID. There were 6092 common genes among the three platforms.

Cross-study normalization methods were applied to this set of common genes, and subsequently

to a smaller set of “intrinsic genes” (Perou et al. 2000) identified as playing an active role in

the biology of breast cancer.

The next section presents validation results for the set of common genes. The same analysis

for the set of intrinsic genes is presented in the Supplementary Materials. In our experiments,

all cross-platform normalization methods worked better on the set of intrinsic genes, and more

generally, on smaller gene sets selected using integrative correlation filtering. Prior to cross-

study normalization, the log-2 transformed expression values in each platform were column

standardized.
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4.5 Validation

Broadly speaking, cross-study normalization methods can be assessed in terms of two competing

criteria. Ideally, a normalization method should produce a single unified data set, in which

samples originating in Study 1 are not distinguishable from those originating in Study 2 on the

basis of non-biological features. A method that fails to remove systematic differences between

studies under-corrects the data. On the other hand, excessive homogenization of the studies

(over-correction) can result in a loss of biological information, and the combined data set may

be less useful than its constituents.

The validation results presented below are intended to assess the performance of the methods

under study, and their tendency towards over- and under-correction. We begin with the column-

standardized data sets X1, X2 and X3. Every method is applied to each pair Xi, Xj with

1 ≤ i < j ≤ 3 to produce normalized data X̃i,j = [X̃i, X̃j ]. Validation measures are applied

to each pair, and the average value of the measure over the three pairs is reported. For before

and after comparisons, we take as a reference the initial data [Xi, Xj ] produced by column-

standardization (denoted CS in what follows).

In order to better understand the baseline behavior and biases of the normalization methods

under consideration, we also apply them to artificial studies obtained by randomly dividing the

arrays in a given platform into two pseudo-studies, similar to the procedure in (Gentleman

et al. 2006). To be more precise, from a single column-standardized data set Xi, we produce

a pair X1
i , X

2
i of pseudo-studies by randomly assigning each sample to one of two groups.

Different normalization methods are then applied to [X1
i , X

2
i ], yielding a normalized data sets

X̃i = [X̃
1
i , X̃

2
i ]. Validation measures are applied to compare the pseudo-study and its normalized

version. Each of the three available data sets is randomly split ten times, and the average

measure (over splits and studies) is reported.

By design, the data in each pair of pseudo-studies come from a common platform and study.

Thus we anticipate that a cross-study normalization method should have relatively little effect,

beyond its attempt to correct the unavoidable differences that result from splitting the studies

in half. While these differences are not negligible, they are typically smaller than the differences

between platforms.
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4.5.1 Measures of Center and Spread

For a given array, the difference between the mean and the median of its values provides a

rough measure of its asymmetry in regards to location. After normalization, it is desirable to

see a similar distribution of asymmetry across both studies. Figure 4.2 shows the area between

the CDFs of mean minus median in the two available studies. Graphs for both standard and

split study validation are shown.
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Figure 4.2: Area between the CDFs of array mean minus array median across platforms. Lower
values indicate greater similarity of datasets after normalization.
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Figure 4.3: Area between the CDFs of σ −MAD/Φ(0.75) for arrays of different platforms.
Lower values indicate greater similarity of datasets after normalization.

A similar comparison for scale can be carried out by considering the standard deviation (σ)

and median absolute deviation from median (MAD). For the standard normal distribution

with CDF Φ, we have σ = MAD/Φ(0.75). Figure 4.3 shows the area between CDFs of σ −
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MAD/Φ(0.75) in each of the two available studies. XPN reduces both measures more than the

other methods; the split study results show little bias for all methods.

4.5.2 Average distance to nearest array in another platform

The set of arrays in given platform can be viewed as a set of points in m-dimensional Euclidean

space. After normalization it is reasonable to expect that the point “clouds” associated with

distinct platforms will have substantial overlap. (This is one of the motivations behind the

DWD normalization method.) To measure overlap in a pair of normalized studies, we measure

the Euclidean distance from each array in the first study to the nearest array in the second

study, then repeat, swapping the roles of the studies, and finally average the results. The results

are presented in Figure 4.4, with smaller values indicating greater overlap. XPN and EB reduce

the average distance more than other methods. The split study results show little bias for all

the methods.
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Figure 4.4: Average L2 distance from the samples of one study to the nearest sample from
the other study. Lower values indicate greater similarity of the study point “clouds” after
normalization.

4.5.3 Correlation with Column Standardized Data

The previous validation measures assess the similarity of two data sets after normalization. A

natural way to see how much the normalization methods affect the data is to calculate corre-

lation between the data matrices before and after normalization, where “before” is represented

by CS. This measure does not by itself support a given normalization method, but in choosing

between methods that perform similarly across other validation measures, the method that has
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less effect on the data should clearly be preferred. The average correlation of arrays before

and after normalization for the different methods under study is shown in Figure 4.5. Median

centering has the least effect on the data; the other three methods yield average correlations

close to 0.8, with XPN lying between DWD and EB. Table 4.1 shows the average correlation

of genes before and after normalization, averaged over both studies. As discussed above, all

methods but XPN perform normalization by transforming each gene in an affine fashion; thus

the gene correlation for these methods is equal to 1. Similar remarks apply to the integrative

correlation and t-statistic measures described below. The gene correlation for XPN is .99, with

a split-study value of .996.
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Figure 4.5: Average correlation of arrays with their values before normalization (CS). Larger
values indicate less modification of the data by the normalization procedure.

4.5.4 Global Integrative Correlation

Integrative correlation (Cope et al. 2007) is a means of identifying genes with concordant

expression in different studies. Let r1(g), r2(g) be the g’th row of X1 and X2, respectively. The

global integrative correlation (GIC) between X1 and X2 is the correlation between

( corr(r1(g), r1(g
′)) : g, g′ ∈ G ) ( corr(r2(g), r2(g

′)) : g, g′ ∈ G ),

here regarded as vectors with |G|2 components. High values of IC(g) indicate good concordance

between the values in Studies 1 and 2. Global integrative correlations for different normalization

methods are shown in Table 4.1. The results for CS shows that the average GIC between halves
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of the same platform (0.556) is much higher then average GIC between different studies (0.255).

XPN is the only method among those considered that affects GIC. It increases GIC by 33%

to 0.338 in cross study validation, well below the split study level (0.556). XPN increases GIC

between pseudo studies by a relatively small 7%.

Each tumor sample in the data sets under consideration has an associated, clinically based

ER status (ER+ or ER-). We next consider several validation measures based on this biological

information. The Huang data set has only 15 ER negative samples out of 89, making its split

study results unstable, and is therefore excluded from the split study analysis of the ER based

validation measures.

4.5.5 Correlation of t-statistics

For each platform, t-statistics measuring the association of gene expression values with the ER

status are calculated. Ideally, the vectors of t-statistics for different platforms should become

more concordant after platform normalization. Table 4.1 shows the Pearson correlation between

the t-statistics for ER status for different normalization methods. (Results for rank correlation

are similar.) As expected, the average correlation of t-statistics is higher in split study (0.446)

than between platforms (0.312). XPN increases the correlation of t-statistics between platforms

by 45% to 0.451. In split study validation it increased correlation by roughly 22%. Overall,

XPN has greater effect than the other methods considered. The correlation measurements

above show that, on average, XPN does not make dramatic changes in the rows of the data

matrices, and we believe that much of the split study increase in t-statistic correlation is due

to inherent differences between the randomly selected pseudo studies.

4.5.6 Cross platform prediction of ER status

If we regard ER status as a binary phenotype, we may explore misclassification rates associated

with its prediction. Ideally, combining labeled studies via cross-platform normalization should

lead to lower misclassification rates on test data sets. To test the compatibility of different

studies after normalization in regards to classification, we treated the data from one study as

a training set, and the data from the other study as a test set, and vice versa. Lower error

rates indicate better concordance. Classification was performed using two methods: nearest
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CS, MCtr, XPN Change Change
EB, DWD (%)

Avg gene Valid’n 1.000 0.990 -0.010 -1.0%
corr w/ CS Split 1.000 0.996 -0.004 -0.4%

GIC
Valid’n 0.255 0.338 0.083 33%
Split 0.556 0.597 0.041 7%

ER t-stat Valid’n 0.312 0.451 0.139 45%
correlation Split 0.446 0.543 0.096 22%

Table 4.1: The first row shows the average correlation of genes with their value before normal-
ization (CS). The second row shows global integrative correlation (GIC) between platform pairs
after normalization, with larger values indicating better concordance between platforms. The
third row shows the average correlation of ER t-statistics across platforms, with larger values
indicating better concordance.

shrunken centroids (PAM) (Tibshirani et al. 2002) and support vector machines (SVM) (Boser

et al. 1992, Cortes & Vapnik 1995). The results are presented in Figures 4.6 and 4.7. As can

be seen, all of the normalization methods greatly reduce cross platform prediction error, with

the minimum error achieved by XPN. In the split study test, none of the methods produces

significant reductions in classification error, as expected.
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Figure 4.6: Cross platform prediction error of the PAM (nearest shrunken centroids) classifier.
Smaller values indicate better concordance between platforms.

One might also be interested in the 5- or 10-fold cross validation prediction error rate on the

combined studies. However, none of the normalization methods has a significant effect on the

cross validated classification error. This appears to arise from the fact that, in cross validation,

the classification methods are trained on elements of both platforms, and the distinguishing

features of ER status are strong enough to enable the methods to perform well without prior
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Figure 4.7: Cross platform prediction error of the SVM (Support Vector Machine) classifier.
Smaller values indicate better concordance between platforms.

CS MCtr EB DWD XPN

V1
Valid’n 0.826 1 1 1 1
Split 1 1 1 1 1

V2
Valid’n 0.646 0.895 0.774 0.887 0.759
Split 0.876 0.867 0.875 0.878 0.870

Table 4.2: V1 (V2) is the fraction of genes from the intersection (union) of platform-specific gene
lists present in the list produced from the combined data X̃ at 0.1% level.

normalization.

4.5.7 Preservation of Significant Genes

Lastly, we consider gene lists produced using ER-based t-statistics at a nominal 0.1% significance

threshold. Let Li be the list of genes in Study i = 1, 2, and let L1,2 be the list produced at the

same nominal 0.1% level from the combined data X̃. Ideally, genes that are in both L1 and L2

should appear in L1,2, and most genes that appear in at least one of the single study lists will be

in the joint list. We assess these two types of overlap by measures V1 = |(L1∩L2)∩L1,2|/|L1∩L2|

and V2 = |(L1 ∪L2)∩L1,2|/|L1 ∪L2|, respectively. The results are presented in Table 4.2. The

value of V1 is 1 for all normalization methods except CS, showing the importance of platform

normalization. The V2 measure is increased by all methods, with the greatest increase achieved

by MC and DWD.
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4.6 Further discussion of XPN

4.6.1 Stability with respect to K and L parameters

To test stability of XPN with respect to the numbers K and L of row and column clusters, we

applied XPN with a range of parameters. For L = 5 we tried K = 2, 10, 20, 25, 30, 50, 100, 500,

and for K = 25 we tried L = 2, 4, 5, 6, 7, 8, 10. The results (presented in the Supplementary

Materials) indicate that XPN is generally insensitive to the choice of the K and L. However, we

do see (expected) degradation of performance in situations where K or L is below 4, in which

case the clustering is too coarse to adequately capture homogenous blocks of samples or genes.

At the other extreme, when L is large, one finds column clusters containing samples from a

single platform. For such clusters the algorithm cannot combine information across platforms,

and its results will be degraded accordingly. (In its current implementation, XPN excludes

such clusterings from the average that forms its output.) Values of K larger than 25 make the

algorithm slower and do not substantially improve its performance.

4.6.2 Stability of XPN output

The XPN algorithm averages the normalization results from B row/column clusterings. To

assess the stability of XPN, we calculated the standard deviation of each element in the nor-

malized matrix over the B = 100 runs of the basic procedure. The average standard deviation

(over all elements and platform pairs) was 0.004. By contrast, the average standard deviation of

the entries of the normalized matrices was 0.79. Thus, the variability of the normalized entries

due to random clusterings was, on average, two orders of magnitude less than the variability

between the final normalized entries.

4.7 Conclusion

The increasing number and public availability of large-scale gene expression studies provides

impetus for cross-study analyses that combine existing, and potentially new, data sets. Prop-

erly combined data sets give researchers more power for biological and statistical analysis. In

this chapter we propose a new, block model based method, called XPN, for cross-platform nor-

malization. The block model distinguishes XPN from other platform normalization methods
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such as DWD and EB, which are gene-wise linear.

We propose a set of validation measures for comparison of different normalization methods.

The validation measures can be roughly split in two groups. One group assesses the ability of

normalization methods to remove systematic differences across platforms, while the other mea-

sures how much the data is transformed by normalization procedures. Based on the proposed

validation measures, XPN successfully combined three existing breast cancer data sets without

incurring substantial overfitting. In particular, cross-platform ER prediction error rates indicate

that XPN successfully preserved biological information while removing systematic differences

between platforms.

The XPN method has three parameters: the number of row and column clusters (K and

L) and the number of basic iterations B. Our experiments indicate that the results of XPN

are robust to the choice of K and L (see Section 4.6.1). The analysis in Section 4.6.2 suggests

setting B = 30 is sufficient for stable output.

4.8 Maximum Likelihood Estimation of the Model

The XPN algorithm estimates the parameters of the model (4.2) using maximum likelihood

approach. The model has distinct sets of parameter for different gene clusters and different

platforms. Thus the problem of parameter estimation can be split into 2K smaller tasks. Fix

i ∈ {1, . . . ,K} and p ∈ {1, 2}. The log-likelihood function associated with gene group i and

platform p can be expressed as

2li,p = C +
∑

(s,g):α(g)=i

ln(σ2gp) +

∑
(s,g):α(g)=i

(xgsp −Ai,βp(s),p bgp − cgp)
2/σ2gp.

To ensure identifiability of the coefficients {Aijp} and {bgp}, we set

L∑
j=1

Aijp = 0,
L∑
j=1

A2
ijp = L and

∑
g:α(g)=i

bgp > 0.

The parameters Aijp, bgp, cgp, and σ2gp are chosen to maximize the log-likelihood. To find

them we take first derivative of the log-likelihood with respect to these parameters and set the
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result equal to zero:

dl/dcgp = 0 =
∑

s(xgsp −Ai,βp(s),pbgp − cgp)

dl/dbgp = 0 =
∑

sAi,βp(s),p(xgsp −Ai,βp(s),pbgp − cgp)

dl/dAijp = 0 =
∑

(g,s):βp(s)=j

bg(xgsp −Aijpbgp − cgp)/σ2g

dl/dσ2gp = 0 = npσ
−2
gp −

∑
s(xgsp −Ai,βp(s),pbgp − cgp)2σ−4gp .

Here and in what follows, each sum is taken over all the genes in the ith cluster. The above

equations simplify to

cgp = x̄gp − n−1bgp
∑

j Aijpnjp

bgp =
[∑

sAi,βp(s),p(xgsp − cgp)
]
/
[∑

j A
2
ijpnjp

]
Aijp =

[ ∑
(g,s):βp(s)=j

(xgsp − cgp)bgp/σ2gp

]
/
[
njp
∑

g b
2
gp/σ

2
gp

]
σ2gp = n−1p

∑
s(xgsp −Ai,βp(s),pbgp − cgp)2.

Define the sample mean and variance of the expression values of a gene in sample block j:

x̄gjp = n−1jp
∑

s:βp(s)=j

xgsp

s2gjp = n−1jp
∑

s:βp(s)=j

(xgsp − x̄gjp)2.

This allows further simplification of the equations

cgp = n−1p
∑

j(x̄gjp − bgpAijp)njp

bgp =
[∑

j Aijp(x̄gjp − cgp)njp
]
/
[∑

j A
2
ijpnjp

]
Aijp =

[∑
g bgp(x̄gjp − cgp)/σ2gp

]
/
[∑

g b
2
gp/σ

2
gp

]
σ2gp = n−1p

∑
j

[
(x̄gjp −Ai,βp(s),pbgp − cgp)2 + s2gjp

]
njp.
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There is no closed form solution for this system of equations. To obtain the estimates, the

formulas are applied iteratively until convergence of the parameters. Each iteration increases

the log-likelihood and the limit values satisfy all first order conditions.
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CONCLUSION AND FUTURE WORK

In this dissertation we propose several new statistical methods for analysis of biological

data sets, each computationally efficient, statistically principal, and validated on real data.

The results of this research are presented in four chapters, three of them published as separate

papers.

In Chapter 1 we investigate the problem of reconstruction of low rank matrix observed with

noise. We begin by demonstrating that, that under minor conditions, an optimal reconstruction

method has to be based on the singular value decomposition of the observed matrix, and acts

only on its singular values, not affecting its singular vectors. Next, we study the effect of noise on

the singular values and singular vectors of low rank matrices by building a connection between

the matrix reconstruction problem and spiked population models in random matrix theory. We

design a new matrix reconstruction method based on this knowledge, and conduct an extensive

simulation study to compare it with existing hard and soft thresholding reconstruction methods.

The simulations indicate that the proposed method greatly outperforms even oracle versions of

soft and hard thresholding methods.

For future research we plan to assess practical applications of the new matrix reconstruction

method in the context biomedical data. We also plan to extend the theoretical research to the

matrix completion problem. Matrix completion focuses on recovery of partially observed low

rank matrices in noise. It seems likely that the matrix completion problem would also have a

solution more efficient that existing methods.

In Chapter 2 we present a new biclustering method, called LAS, that searches for a particular

kind of low-rank signal in large matrices. LAS is based on a simple statistical model. We

extensively validate it on both real and simulated datasets.

Applying the results from Chapter 1 one can show that LAS can find structures much smaller
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than those detectable by singular value decomposition of the data matrix. In the future, we

plan to investigate possible applications of LAS to spectral clustering, classification, and vertical

integration of biomedical data.

In Chapter 3 we present a tool for fast eQTL analysis. The current version can only handle

homozygous SNP data with a moderate number of samples. We are currently working on the

next version of the tool, called FastMap 2.0, which is capable of handling heterozygous SNP

data and, making use of multiple summation trees, handling datasets with large number of

samples.

Finally, in Chapter 4 we present a method, called XPN, for combining gene expression data

produced on different platforms. We tested the methods on several pairs of gene expression

dataset and compared the method with existing methods. In future we plan to extend the

method to combine more that two platforms simultaneously.
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