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Abstract

RYAN KALISZEWSKI: Structure of Quiver Polynomials and Schur Positivity
(Under the direction of Richárd Rimányi)

Given a directed graph (quiver) and an association of a natural number to each vertex,

one can construct a representation of a Lie group on a vector space. If the underlying,

undirected graph of the quiver is a Dynkin graph of A-, D-, or E-type then the action has

finitely many orbits. The equivariant fundamental classes of the orbit closures are the key

objects of study in this paper. These fundamental classes are polynomials in universal

Chern classes of a classifying space so they are referred to as “quiver polynomials.”

It has been shown by A. Buch [B08] that these polynomials can be expressed in terms

of Schur-type functions. Buch further conjectures that in this expression the coefficients

are non-negative.

Our goal is to study the coefficients and structure of these quiver polynomials using

an iterated residue description due to R. Rimányi [RR]. We introduce the Jacobi-Trudi

transform, which creates an equivalence realtion on rational functions, to show that

Buch’s conjecture holds for a quiver polynomial if and only if there is a representative

in the equivalence class that is Schur positive. Also we define a notion of strong Schur

positivity and demonstrate the connection between this and Schur positivity, proving

Schur positivity for some special cases of quiver polynomials.
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Introduction

Consider two complex vector bundles, F1, F2 over a complex projective variety X,

with bundle map ϕ : F1 → F2. Suppose that the bundle map satisfies some transversality

conditions (that will be discussed later). Call the set Ωr = Ωr(F•) = {x ∈ X|rank(ϕx) ≤

r} to be a degeneracy locus of the bundles F•. The set Ωr represents a cohomology class

[Ωr] ∈ H∗(X) and these classes will be the principal objects of study in this paper.

For us the concept of a degeneracy locus must be abstracted to other vector bundles.

In the above example, the process for calculating [Ωr] in terms of the characteristic

class of F1 and F2 is the well-known Giambelli-Thom-Porteous formula. However, once

these degeneracy loci are more abstract a method to compute these characteristic classes

will have to be introduced. One of the methods of describing the characteristic class

associated to a degeneracy locus is the iterated residue method of Rimányi, [RR], and is

presented in Chapter 2.

0.1. History

The study of degeneracy loci is a natural extention of Bézout’s Theorem. Bézout’s

Theorem states that the number of common zeroes of m polynomials of m variables is the

product of the degrees. Of course one must consider the polynomials over an algebraically

closed field, take the solutions to lie in projective space, and count multiplicities to achieve

a correct statement.

More generally one considers homogeneous polynomials, f1, . . . , fm of degree d1, . . . , dm

in N+1 variables, N ≥ m. If one tries to describe the locus of zeroes V = V (f1, . . . , fm) ⊂

PN and all of the polynomials are general enough then V is an irreducible subvariety of



codimension m. Here, Bézout’s theorem says that the degree of V, the number of inter-

section points with a general linear subspace of complimentary dimension is
∏
di.

In the ninteenth century there was further abstraction. Let A be an l × m matrix

of homogeneous polynomials in N + 1 variables. Describe the set Vr to be the locus of

points in PN where the rank of A is at most r ≤ min(l,m). This will be cut out by the

minors of size r+ 1. If r = 0 this is just the zeroes of all of the entries, which is answered

by Bézout’s theorem.

Now consider two complex vector bundles over a complex projective variety, with

a bundle map between. If one chooses a point on the variety, a neighborhood of the

point, and fixes a basis for the bundles then the map can be represented as a matrix

whose entries are regular functions–homogeneous polynomials. And if one studies where

the rank of this map is at most r, this is equivalent to the ninteenth century problem.

Presently, it is known how to express the cohomology class associated to the locus of

points by using the Giambelli-Thom-Porteous formula.

However, what if there are more than two vector bundles with many maps between?

First off, degeneracy loci begin to encode more information than just rank of the maps

so one must be careful in defining the loci. In the case that the underlying shape of the

bundles (replace a bundle with a vertex and a map with an arrow) is a quiver of ADE-type

several recent papers have found a way to express the cohomology class associated to the

loci. Studying this cohomology class, or quiver polynomial, may lead to further insight

about the structure of the degeneracy locus itself and may hint at geometric phenomena.

Quiver polynomials of Dynkin type generalize several important polynomials in alge-

braic combinatorics. For example, the Giambelli-Thom-Porteous formulae [P], the double

Schur and Schubert polynomials of Schubert calculus [F99], and the quantum [FGP] and

universal Schubert polynomials [F99].

There has been a lot of focus in the past twelve years to find various formulae and

algorithms to calculate quiver polynomials, such as [B02, B08, BFR, BF, BKTY, BR,

BSY, FR02, FGP, KS06, KMS]. By now there are effective methods to find any particular
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quiver polynomial. The three papers that approach the problem for quivers of Dynkin

type A,D,E are [FR02], [KS06], and [B08].

The structure of quiver polynomials. The goal is to understand the structure of these

quiver polynomials. The following two phenomena have been discovered/conjectured:

• Stability. In [FR07] the authors study an analogous problem: Thom polynomials

of singularities. They found that the equivariant fundamental classes display an

unexpected stability property, which enables one to organize infinitely many

such classes into a generating sequence. This phenomenon is developed under

the name of Iterated Residue generating sequences in [BSz], [FR12], [K2]. This

stability seems to hold for quiver polynomials.

• Positivity. In [B08] Buch proved that quiver polynomials are linear combina-

tions of certain products of Schur polynomials. He conjectured that all of the

coefficients in such an expression are all non-negative. These coefficients provide

a wide generalization of several combinatorial constants in an similar way to

Littlewood-Richardson coefficients. The usual techniques of proving positivity

in equivariant cohomology (geometric intersection numbers, Gröbner degener-

ations, interpolation theory, counting arguments) so far failed to prove Buch’s

conjecture.

0.2. Quiver Polynomials

Let Q = (Q0, Q1) be an oriented graph, or quiver, with vertex set Q0 = {1, . . . , n}

and finite edge set Q1. An arrow a ∈ Q1 has head h(a) ∈ Q0 and tail t(a) ∈ Q0. Fix a

dimension vector (e1, . . . , en) ∈ Nn and associate to each vertex a vector space Ei = Cei .

The group G = ×ni=1GL(Ei) acts on the vector space V = ⊕a∈Q1Hom(Et(a), Eh(a)) by

(gi)i∈Q0 · (φa)a∈Q1 =
(
gh(a) ◦ φa ◦ g−1

t(a)

)
a∈Q1

,

i.e. change of basis.
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Consider an orbit of the G-action of V . If the underlying quiver is of ADE-type, that

is its unoriented, underlying graph is a Dynkin diagram of type An, Dn, E6, E7, or E8

then by Gabriel’s theorem for any dimension vector there are only finitely many G-orbits

in V , [BGP]. From now on we will restrict our attention to these quivers of ADE-type.

An orbit closure, S, is the closure of a G-orbit in V . Following the lectures of W.

Fulton, [F], since the orbit closure is G-invariant it represents a class [S] ∈ H∗G(V ), the

G-equivariant cohomology of V .

The group G doesn’t act freely on V , but one can find a contractable space EG on

which G does act freely with quotient BG = EG/G. Then replace V with V × EG and

let the action of G on V × EG be the diagonal action. The G-equivariant cohomology

of V is defined to be the cohomology of BGV = V ×G EG = (V × EG)/G. Since V is

equivariantly contractable to a point, H∗G(V ) = H∗G(pt) = H∗(BG), the cohomology of

the classifying space.

It is known that

H∗(BG) = Z[cj(γi) : i = 1, . . . , n; j = 1, . . . , ei]

where cj(γi) denotes the universal Chern classes of the canonical bundle EG→ BG. Since

H∗(BG) is a polynomial ring the class [S] is called the quiver polynomial corresponding

to S.

0.3. Degeneracy Loci

Let X be a complex projective variety and

F = ⊕ni=1Fi

X

{ϕj,k}(j,k)∈I

π

be a collection of vector bundles for 1 ≤ i ≤ n, with rank(Fi) = ei. Suppose

that {ϕj,k}(j,k)∈I are a finite collection of bundle maps with I some indexing set and
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ϕj,k : Fj → Fk. Further assume that the underlying quiver, Q = (Q0, Q1) (by replacing

bundle Fi with vertex i and maps with arrows), is a Dynkin quiver of ADE-type.

Construct the bundle ξ = ⊕(j,k)∈IHom(Fj, Fk) over X, where each fiber is isomorphic

to V = ⊕(j,k)∈IHom(Ej, Ek), using the notation of section 2. Then the bundle maps

{ϕj,k}(j,k)∈I define a section of ξ, ϕ : X → ξ.

Suppose S ⊂ V is an orbit closure. Define a subset of ξS ⊂ ξ as follows. Let x ∈ X

and consider a trivialization of ξ at x. The point (v, x) ∈ ξS if v ∈ S. This definition

makes sense because S is invariant under change of basis, so the definition is independent

of the choice of trivialization.

Definition 0.3.1. Continuing with the notation above, the degeneracy locus of

X corresponding to S is ΩS = ϕ−1(ξS).

One can describe a degeneracy locus as “the points of X where the bundle maps are

in S.”

Consider the classifying map

F

X

EG

BG

ρ

f̂

f

ρ′

.

Note that BG = ⊕ni=1Gr(Ei) and EG = ⊕ni=1γi, the canonical bundle. Construct the

bundle BGV = ⊕(j,k)∈IHom(γj, γk) over BG. The fibers in BGV are isomorphic to V .

Consider the following diagram

ξ

X

BGV

BG

πϕ

ĝ

g
π′

.

Since the fibers of BGV → BG are isomorphic to V , one can construct BGS ⊂ BGV

in a similar way as the construction of ξS.

Proposition 0.3.2. If h : A→ B, with h t C ⊂ B then f ∗[C] = [f−1(C)].
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Remark. If C is not smooth then we have to be a bit more clear about what h t C

means. In this instance we mean that C is a stratified space

∅ = C−1 ⊂ C0 ⊂ . . . ⊂ Cn = C

where Ci is the singular part of Ci+1, and Ci�Ci+1 is smooth. Then h t C means

h t Ci�Ci+1 for each i < n. In this instance proposition 0.3.2 still holds.

Theorem 0.3.3. If ϕ t ξS then the class [ΩS] ∈ H∗(X) is the quiver polynomial

corresponding to S evaluated at the characteristic classes of the vector bundle, F . That

is, replacing the cj(γi) with the jth Chern class of the ith vector bundle over X.

Proof. Let σ : BG→ BGV be the zero-section of the bundle.

From the previous section we defined the quiver polynomial as the class [S] ∈ H∗G(BG)

by considering S as a subset of V . View S as a G-stable subvariety of the bundle V → pt

and consider the following construction:

V

pt

V × EG

EG = pt× EG

BGV = V ×G EG

BG = pt×G EG .

By definition H∗G(V ) = H∗(BG), but since bundles are retractable H∗(BG) '

H∗(BGV ). Also by definition [S] ∈ H∗(BG) = H∗G(V ) is exactly [BGS] ∈ H∗(BGV ).

Then σ∗ is an isomorphism of H∗(BGV ) to H∗(BG), with [S] = σ∗[BGS].

Now ĝ−1(BGS) = ξS and ĝ t BGS. Therefore

ĝ∗[BGS] = [g−1(BGS)] = [ξS].

By assumption, ϕ t ξS so

ϕ∗[ξS] = [ϕ−1(ξS)].

Recall that ϕ−1(ξS) = ΩS, the degeneracy locus. This means that

ϕ∗ ◦ ĝ∗[BGS] = [ΩS].
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But by the commutativity of the diagram,

ϕ∗ ◦ ĝ∗[BGS] = g∗ ◦ σ∗[BGS] = g∗[S].

By rewriting, we have

[ΩS] = g∗[S],

which is that statement of the theorem. 2

Summary The cohomology class associated to the degeneracy locus is a universal poly-

nomial evaluated at the Chern classes of the bundles. This univeral polynomial is only

determined by the underlying quiver, rank of the bundles of F , and orbit corresponding

to the degeneracy locus.
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CHAPTER 1

Basic Definitions and Notation

In this chapter we introduce definitions and notation that will be used throughout

the rest of the document. In section 1.2 we define partitions and demonstrate a useful

action of the symmetric group on the partitions. Then we introduce Schur functions

and demonstrate several of their properties. Sections 1.3 and 1.4 detail two transforma-

tions of the Laurent polynomial ring that will be used to transform generating functions

introduced in chapter 2.

1.1. Alphabets and Basic Functions

All of the functions and identities that we introduce will be described on abstract

collections of indeterminates. However, many of these functions act independently on

various subcollections of indeterminates, thus care has to be made in describing them.

Definition 1.1.1. An alphabet is an ordered set of indeterminates. A finite alpha-

bet is indexed by a subset of the natural numbers while an infinite alphabet is indexed

by the integers. A positive alphabet is an infinite alphabet K such that k0 = 1 and

ki = 0 for i < 0.

Alphabets will be denoted with a doublestruck capital letter and its indeterminates

will be denoted with the corresponding lower case letters. For example, if A is an alphabet

with card(A) = |A| = n ∈ N then A = (a1, . . . , an). For collections of alphabets the

collection will have a subscripted index and the collection itself will be denoted with a

Fraktur letter. For example, if A is a collection of alphabets with card(A) = |A| = N

then A = (A1, . . . ,AN).



Elements of alphabets belonging to a collection will be double subscripted where the

first subscript denotes which alphabet the variable is from while the second denotes which

variable. So A1 = (a1,1, a1,2, . . . , a1,n1). The commas will be dropped when there is no

confusion between subscripts.

Suppose A is an alphabet of cardinality at least n. If α ∈ Zn then the monomial

associated to α is

Aα =
n∏
i=1

aαii .

If card(A) > n, then append zeroes at the end of α so that α ∈ Z|A|. This yields the

same result, but allows us to assume that α has as many entries as A has variables.

This same double subscript notation style mentioned above will be used for associated

vectors.

The disjoint union of two alphabets will be a useful operation and it will be denoted

A+ B. It is important to note that the order of the indeterminates is preserved in A+ B,

meaning that if card(A) = n and card(B) = m then A+ B = (a1, . . . , an, b1, . . . , bm).

At times it will be said that two alphabets are equal, written A = B. To be more

precise about what this means, if A = B then card(A) = card(B) and ai = bi, ∀i.

Let Πr(A) be the ring of Laurent polynomials in the indeterminates of A with coef-

ficients in r and let Symmr(A) be the subring of symmetric Laurent polynomials. Then

Πr(A) can be viewed as a Symmr(A)-module. The notation Π+
r and Symm+

r will be used

to distinguish the subrings of polynomials and symmetric polynomials with non-negative

exponents.

If A = (A1, . . . ,Ap) is a collection of alphabets, then define the sets Symmr(A) ⊂

Πr(A) as

Πr(A) = Πr

(
p⋃
i=1

Ai

)
,

Symmr(A) =

p⋂
i=1

SymmΠr(A1,...,Ai−1,Ai+1,...,Ap)
(Ai).
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Therefore, Symmr(A) is symmetric in each alphabet, Ai, but it is not symmetric between

the alphabets. Define Π+
r (A) and Symm+

r (A) to be the subrings of polynomials and

symmetric polynomials with non-negative exponents.

Definition 1.1.2. Let A,B be alphabets of cardinality n and m. Define the following

functions:

(1.1) step(A) =
n∏
i=1

an−ii ,

(1.2) V (A) =
∏

1≤i<j≤n

(ai − aj),

(1.3) Res(A|B) =
∏
a∈A

∏
b∈B

(a− b).

Note that for k = |A|·(|A|−1)
2

, Disc(A) = (−1)k · V (A) is the (Vandermonde) discrimi-

nant and (1.3) is the resultant of A and B.

Definition 1.1.3. Let A be an alphabet of cardinality n and α ∈ Zn. Define the

anti-symmetrization of Aα to be

(1.4) AsymA (Aα) = det(aαij )1≤i,j≤n

and extend AsymA Z-linearly to all of ΠZ(A).

Let n = (n1, . . . , nN) ∈ NN . If A = {Ai}Ni=1 is a collection of alphabets with

card(Ai) = ni and αi ∈ Zni then

AsymA

(
N∏
i=1

Aαii

)
:=

N∏
i=1

AsymAi (Aαii )

and extend AsymA Z-linearly to all of ΠZ(A).

10



By using the Leibniz formula for the determinant it can be seen that

(1.5) AsymA (Aα) =
∑
σ∈Sn

(
sgn(σ) ·

n∏
i=1

a
ασ(i)

i

)
.

Proposition 1.1.4. AsymA is an SymmZ(A)-module homomorphism of ΠZ(A).

Proof. The additivity of AsymA comes from the definition.

Let Aα ∈ ΠZ(A) and s ∈ SymmZ(A).

AsymA(s · p) =
∑
σ∈Sn

(
sgn(σ) · s ·

n∏
i=1

a
ασ(i)

i

)

= s ·
∑
σ∈Sn

(
sgn(σ) ·

n∏
i=1

a
ασ(i)

i

)
.

Since s is invariant under any permutation of its variables. 2

1.2. Partitions and Schur Functions

The ultimate goal of the dissertation is to prove results about quiver polynomials in

terms of Schur determinants and Schur functions. Schur functions are defined in terms

of partitions so we need to introduce some basic concepts from the study of partitions.

Furthermore, we will introduce an action of the symmetric group on the set of partitions

and n-vectors that will be very useful when we discuss the Jacobi-Trudi transform in

section 1.3.

1.2.1. Partitions and the Bott Action.

Definition 1.2.1. A partition of k of length n is a non-negative sequence of

weakly decreasing integers, λ = (λ1, . . . , λm) with k = |λ| =
∑k

i=1 λi. The length,

denoted `(λ) = n, is the location of the last non-zero entry of the partition.

Partitions will frequently be treated as n-vectors throughout this document. Further-

more, we can append zeroes on the end of a partition without inherently changing the

partition. For example (3, 2, 0, 0) is equal to (3, 2) as partitions. This allows us to apply

11



some operations to partitions whose length is not sufficient. For example, if card(A) = 3

then A(2,1) really means A(2,1,0).

Definition 1.2.2. There is an action of Sn on Zn defined by:

(σ · α)i = ασ−1(i) − σ−1(i) + i.

This action will be referred to as the Bott action. If two n-vectors are in the same

orbit under this action then we will say that the vectors are Bott similar.

Proposition 1.2.3. The Bott action is an action of Sn .

Proof. The only question is composition. Let σ, τ ∈ Sn.

((σ ◦ τ) · α)i = (σ · (τ · α))i

= (τ · α)σ−1(i) − σ−1(i) + i

= ατ−1σ−1(i) − τ−1σ−1(i) + σ−1(i)− σ−1(i) + i

= α(στ)−1(i) − (στ)−1(i) + i

= ((σ ◦ τ) · α)i.

2

Proposition 1.2.4. Under the Bott action, if an orbit contains a weakly decreasing

n-vector then it contains a unique weakly decreasing n-vector.

Proof. Suppose that λ is a weakly decreasing n-vector and σ ∈ Sn. If σ 6= id then

let i be the largest natural number (less than n) such that σ(i) 6= i. Therefore σ(i) < i

and σ−1(i) < i. Hence

(σ · λ)σ(i) − (σ · λ)i = (λi − i+ σ(i))−
(
λσ−1(i) − σ−1(i) + i

)
=
(
λi − λσ−1(i)

)
+ (σ(i)− i) +

(
σ−1(i)− i

)
< 0

12



because λi−λσ−1(i) < 0 (λ is weakly decreasing) and the other two terms are also negative

from above. Therefore σ · λ is not weakly decreasing. This shows that the only weakly

decreasing n-vector that λ is Bott similar to is itself.

Note that existence of such a weakly decreasing n-vector will be discussed in propo-

sition 1.3.3. 2

1.2.2. Schur Functions.

Definition 1.2.5. Suppose that A is an alphabet and λ is a partition with `(λ) =

n ≤ |A|. Define the Schur polynomial with parameter λ, sλ as

(1.6) sλ(A) =
AsymA

(
Aλ · step(A)

)
V (A)

.

Proposition 1.2.6. If λ is a partition then sλ(A) ∈ Symm+
Z (A).

Proof. For any partition λ,AsymA(Aλ · step(A)) ∈ Π+
Z (A) and it is anti-symmetric

in A since applying σ ∈ Sn to α is equivalent to column swaps in (1.4). Therefore

AsymA(Aλ·step(A))
V (A)

∈ Π+
Z (A).

Let τ ∈ Sn be an adjacent transposition. AsymA(Aλ · step(A)) = −AsymA(Aτ ·λ ·

step(A)), and V (A) = −V (τ · A), so

AsymA(Aλ · step(A))

V (A)
=
AsymA(Aτ ·λ · step(A))

V (τ · A)
.

Therefore sλ(A) = AsymA(Aλ·step(A))
V (A)

∈ Symm+
Z (A). 2

Remark. The origin of the Bott action is the connection between Schur function

and the anti-symmetrization function. When studying a Schur function with partition

λ this corresponds to the anti-symmetrization of Aλ · step(A) =
∏n

i=1 a
λi+n−i
i . Applying

the canonical action of Sn to A gives the same results as applying the Bott action to λ.
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When λ = (r), Sλ(A) is the complete symmetric funciton hr(A), and when λ =

(1r), sλ(A) is the elementary symmetric function er(A). There are two alternate expres-

sions for Sλ(A) in terms of the complete and elementary symmetric functions:

Jacobi-Trudi: sλ(A) = det (hλi−i+j(A))1≤i,j≤n ,

Nägelsbach-Kostka : sλ(A) = det
(
eλ′i−i+j(A)

)
1≤i,j≤m ,

where λ′ = (λ′1, . . . , λ
′
m) is the conjugate of the partition λ.

Theorem 1.2.7. (Littlewood-Richardson Rule)

If A is an alphabet and λ, µ are partitions with `(λ), `(µ) ≤ card(A) then

(1.7) sλ(A) · sµ(A) =
∑
ν

cνλ,µsν(A)

where cνλ,µ ≥ 0.

Theorem 1.2.8. The Schur polynomials form a linear basis for the symmetric poly-

nomials.

Remark. The proof of these theorems will not be presented here. For the curious

reader, see [M].

It is fairly clear that the product of two symmetric polynomials is symmetric. Thus

the so-called Littlewood-Richardson coefficients, cνλ,µ, are a way of expressing a product of

Schur polynomials in the basis of Schur polynomials. Furthermore, they can be realized

as counting the number of tableau of a prescribed type. This makes it clear that the

coefficients must be positive.

Corollary 1.2.9. If A is an alphabet and λ = (λ1, . . . , λN) is a list of partitions

with `(λi) = ni, and ni ≤ card(A),∀i then

(1.8)
N∏
i=1

sλi(A) =
∑

ν1,...,νN−1

(
N−1∏
j=1

c
νj
νj−1,λj+1

)
sνN−1

(A)

where the sum on the right is over all partitions νi for 1 ≤ i < N and ν0 = λ1.

14



Proof. (by induction on N)

The initial case when N = 2 is the Littlewood-Richardson Rule, (1.7).

Assume the theorem is true for all N ≤ k,

k+1∏
i=1

sλi(A) =

(
k∏
i=1

sλi(A)

)
· sλk+1

(A)

=

 ∑
ν1,...,νk−1

(
k−1∏
j=1

c
νj
νj−1,λj+1

)
sνk−1

(A)

 · sλk+1
(A)

=
∑

ν1,...,νk−1

(
k−1∏
j=1

c
νj
νj−1,λj+1

)(
sνk−1

(A) · sλk+1
(A)
)

=
∑

ν1,...,νk−1

(
k−1∏
j=1

c
νj
νj−1,λj+1

)(∑
νk

cνkνk−1,λk+1
sνk(A)

)

=
∑

ν1,...,νk

(
k∏
j=1

c
νj
νj−1,λj+1

)
sνk(A).

2

Remark. If we let ν = (ν1, . . . , νN−1) and define cν =
∏N−1

j=1 c
νj
νj−1,λj+1

, we have a

much more readable statement that
∏N

i=1 sλi(A) =
∑

ν cνsνN−1
(A). Furthermore, for

each such ν note that c
νj
νj−1,λj+1

≥ 0 therefore cν ≥ 0.

1.3. The Jacobi-Trudi Transform

Recall the Jacobi-Trudi formula, above: sλ(A) = det(hλi−i+j(A))1≤i,j≤n. If one writes

the Schur functions in the algebraic basis of the complete symmetric polynomials then

one can envision that the formula is actually a map that takes a vector and a finite

alphabet and gives a polynomial in a positive alphabet–{hi} in this case. If instead

of evaluating the right hand side of the equality in terms of the complete symmetric

functions we chose to evaluate it in an arbitrary positive alphabet the resulting object

is called a Schur determinant. The Schur determinant will be formally defined and

discussed in further detail in Chapter 3.

15



The goal of this section is to consider the function that transforms the monomial Aλ

into the corresponding Schur determinant. We then wish to extend this function to the

entire Laurent polynomial ring of A.

1.3.1. Definition and Basic Identities.

Definition 1.3.1. If A is an alphabet of cardinality n, α ∈ Zn, and K is an infinite

alphabet, the Jacobi-Trudi transform is a function, ∆K
A : ΠZ(A)→ ΠZ(K), given by

(1.9) ∆K
A(Aα) = det(kαi−i+j)1≤i,j≤n

on the monomials and extended Z-linearly to all of ΠZ(A).

One can see that the Jacobi-Trudi transform matches the Jacobi-Trudi identity when

α is the partition λ and K is the set of complete symmetric polynomials.

If A = {Ai}Ni=1 is a collection of finite alphabets, αi appropriate length vectors, and

K = {Ki}Ni=1 a collection of infinite alphabets then extend the Jacobi-Trudi transform as

follows:

(1.10) ∆K
A

(
N∏
i=1

Aαii

)
=

N∏
i=1

∆Ki
Ai (Aαii )

and extend the transform Z-linearly.

Lemma 1.3.2. If α ∈ Zn and σ ∈ Sn then for any alphabet A of cardinality n and

infinite alphabet K

∆K
A(Aα) = sgn(σ) ·∆K

A(Aσ·α),

where σ · α signifies the Bott action.

16



Proof. Suppose τ is an adjacent transposition, that is τ(i) = i + 1 for 1 ≤ i < n.

Note that τ = τ−1 because it is a transposition. Therefore

∆K
A(Aτ ·α) = det(k(τ ·α)i−i+j)1≤i,j≤n

= det(kατ(i)−τ(i)+i−i+j)1≤i,j≤n

= det(kατ(i)−τ(i)+j)1≤i,j≤n

= −det(kαi−i+j)1≤i,j≤n

by swapping the rows i and τ(i). Every permutation can be written as a product of

adjacent transpositions and the action is a group action so the lemma follows by setting

σ =
∏m

k=1 τk and noting that sgn(σ) = (−1)m. 2

Proposition 1.3.3. If α ∈ Zn then either α is Bott similar to a weakly decreasing

n-vector or ∆K
A(Aα) = 0 for any alphabet A of cardinality n and positive alphabet K.

Proof. Consider the matrix created in the calculation of the Jacobi-Trudi transform:

M = [kαi−i+j]1≤i,j≤n. Let Ri be the ith row of M . det(M) = 0 if and only if
∑n

i=1 ciRi = 0

for some ci ∈ C. However, since the entries of each Ri are completely defined by any one

entry, we could simply look at the first entry and the linear relation becomes:

det(M) = 0 ⇐⇒
n∑
i=1

ci · kαi−i+1 = 0.

But since the k’s are indeterminates there are no relations among them. Therefore for

the determinant to be 0 there must be s, t such that

1 ≤ s < t ≤ n and αs − s+ 1 = αt − t+ 1, or αt − s = αt − t. Thus

∆K
A(Aα) = 0 ⇐⇒ αt − t = αs − s for some s < t.

Suppose that ∆K
A(Aα) 6= 0. If we set ᾱi = αi + n− i then for all s < t, ᾱs 6= ᾱt. Since

the entries of ᾱ are unique they can be ordered so that they are (strictly) decreasing.

Call this permutation of the entries σ so (ᾱ)σ(i) > (ᾱ)σ(i+1).

17



σ · α is a semi-partition because

(σ · α)i = (ᾱ)σ(i) − n+ i

> (ᾱ)σ(i+1) − n+ i

= (σ · α)i+1 − 1.

This means α is Bott similar to σ · α, which completes the proof. 2

1.3.2. ∆-equivalence. One of the main strengths of the Jacobi-Trudi transform is that

it creates an equivalence relation on the collection of power series. Thus when making

certain claims about the Jacobi-Trudi transform, one can replace difficult power series or

polynomials with simpler polynomials as long as they are in the same equivalence class.

Proposition 1.3.4. The Jacobi-Trudi transform creates an equivalence relation on

power series. That is, if f, g are power series in the variables of A then

f ∼∆ g ⇐⇒ ∆K
A(f) = ∆K

A(g)

for a collection of positive alphabets K.

Note that on the left side the decorations for ∆ have been dropped. This is done for

readability and the decorations will be included if it is ever unclear as to which alphabets

are being used.

Proof. Note that f ∼∆ g ⇐⇒ ∆K
A(f − g) = 0 because ∆ is Z-linear. This

immediately shows that the relation is both symmetric and reflexive.

If f ∼∆ g and g ∼∆ h then

∆K
A(f − h) = ∆K

A(f − g + g − h)

= ∆K
A(f − g) + ∆K

A(g − h)

= 0.

2

18



In light of this equivalence relation and lemma 1.3.2, together they say that for any

given monomial Aα, either

Aα ∼∆ 0 or Aα ∼∆ ±Aλ

where λ is a weakly decreasing n-vector. However, if K is a positive alphabet this state-

ment can be made much stronger. Suppose λ is weakly decreasing but not a partition,

so λn < 0. Now

∆K
A(Aλ) = det(kλi−i+j).

But if one considers the last row of the matrix generated in the above definition, λn −

n+ j < 0 (since j ≤ n), so kλn−n+j = 0. Therefore the last row of the matrix is a row of

zeroes and ∆K
A(λ) = 0.

So either

(1.11) Aα ∼∆ 0 or Aα ∼∆ ±Aλ

where λ is a partition.

Consider that a power series in the variables of A can be written as

f =
∑

α=(α1,...,αn)

(
cα ·

ni∏
i=1

Aαii

)

where each αi ∈ Zni . If we set

g =
∑

λ=(λ1,...,λn)

(
dλ ·

ni∏
i=1

Aλii

)

where

dλ =
∑

σi∈Sni

(
cσ·λ

n∏
i=1

sgn(σi)

)
and (σ · λ)i = σi · λi

then f ∼∆ g.

This becomes clear if one simply replaces each Aαii with sgn(τ) · Aλii where λ is the

unique partition with τ ·α = λ. Thus each equivalence class has a canonical representative
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where each n-vector is weakly decreasing (or a partition if K is a collection of positive

alphabets).

1.3.3. Connections of ∆ to Schur Functions

and Anti-Symmetrization. Suppose that A = {Ai}Ni=1 is a collection of finite alpha-

bets with card(Ai) = ni and f ∈ Π+
Z (A). Further suppose that K = {Ki}Ni=1 is a collection

of disjoint positive alphabets and ∆K
A(f) = 0. Then it is immediate that for any other

collection of positive alphabets, K′ = {K′i}Ni=1, ∆K′

A (f) = 0.

SetHi = H(Ai) to be the set of complete symmetric polynomials in the indeterminates

of Ai. It is true that Hi forms an algebraic basis of Symm+
Z (Ai) so there are no algebraic

relations among the polynomials. This means that H = {Hi}Ni=1 is a collection of disjoint

positive alphabets.

The following theorem and its corollary will be used extensively in later chapters.

Theorem 1.3.5. Suppose A = {Ai}Ni=1 is a collection of finite alphabets with card(Ai) =

ni. If f ∈ ΠZ(A) and H = {Hi}Ni=1 is the collection of complete symmetric polynomials

in the indeterminates of Ai then

AsymA

(
f ·

N∏
i=1

step(Ai)

)
= 0 ⇐⇒ ∆H

A(f) = 0.

Proof. Consider

AsymA

(
f ·

N∏
i=1

step(Ai)

)
= 0 ⇐⇒

AsymA

(
f ·
∏N

i=1 step(Ai)
)

∏N
i=1 V (Ai)

= 0

⇐⇒ ∆H
A(f) = 0.

2

For the following corollaries let K = {Ki}Ni=1 be a collection of disjoint positive alpha-

bets.
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Corollary 1.3.6. If f ∈ ΠZ(A), then

AsymA

(
f ·

N∏
i=1

step(Ai)

)
= 0 ⇐⇒ ∆K

A(f) = 0.

Remark. In corollary 1.3.6 if one relaxes the disjoint requirement on the alphabets

of K then one still has the following:

AsymA

(
f ·

N∏
i=1

step(Ai)

)
= 0⇒ ∆K

A(f) = 0.

Corollary 1.3.7. If f, g ∈ ΠZ(A) then

AsymA

(
f ·

N∏
i=1

step(Ai)

)
= AsymA

(
g ·

N∏
i=1

step(Ai)

)

⇐⇒ ∆K
A(f) = ∆K

A(g).

Corollary 1.3.8. If f ∈ SymmZ(A) and g, h ∈ ΠZ(A) with g ∼∆ h then

∆K
A(f · g) = ∆K

A(f · h).

Proof. Consider

AsymA

(
f · g ·

N∏
i=1

step(Ai)

)
= f · AsymA

(
g ·

N∏
i=1

step(Ai)

)
.

2

1.3.4. The Schur Representative. If K is a collection of positive alphabets it was

previously stated that there is a canonical representative in each ∆-equivalence class

comprised of monomials indexed by partitions. However, we are about to show that

there is another representative that is equally as useful and it is convenient to change

representatives at times.

Proposition 1.3.9. Each ∆-equivalence class has a unique representative consisting

of a Z-linear combination of Schur polynomials.
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Proof. Let A be a finite alphabet of cardinality n and let λ be a partition with

`(λ) ≤ n. Consider

AsymA(Aλ · step(A)) = sλ(A) · V (A)(1.12)

= sλ · AsymA(step(A))(1.13)

= AsymA(sλ(A) · step(A)).(1.14)

This immediately implies that for any infinite alphabet, K,

(1.15) ∆K
A(Aλ) = ∆K

A(sλ(A)).

Since each canonical representative is unique, so too must these Schur representatives. 2

1.4. The Chern Transform

The Chern transform is closely related to the Jacobi-Trudi transform. It is so called

because it was initially a map from the Laurent polynomial ring directly to the Chern

classes of a vector bundle. However, in this dissertation it is presented on arbitrary

alphabets for abstraction purposes. Its relationship to the Jacobi-Trudi transform will

be presented in detail in chapter 3.

Definition 1.4.1. Suppose that A is an alphabet of cardinality n, α ∈ Zn, and K is

a positive alphabet. The Chern transform is a function, CK
A : ΠZ(A) → ΠZ(K) given

by

(1.16) CK
A (Aα) =

n∏
i=1

kαi

on the monomials and extended Z-linearly to all of ΠZ(A).

If A = {Ai}Ni=1 is a collection of finite alphabets, αi appropriate length vectors, and

K = {Ki}Ni=1 a collection of positive alphabets then extend the Chern transform as follows:

(1.17) CK
A

(
N∏
i=1

Aαii

)
=

N∏
i=1

CKi
Ai (Aαii )
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and extend the transform Z-linearly.

Proposition 1.4.2. Suppose that A,B are alphabets with card(A) = n and card(B) =

m. If K is a positive alphabet then

CK
A+B = CK,K

A,B .

Proof. Let α ∈ Zn+m. Set αA = (α1, . . . , αn) and αB = (αn+1, . . . , αm). Then

CK
A+B ((A+ B)α) =

(
n∏
i=1

kαi

)
·

(
n+m∏
i=n+1

kαi

)

= CK
A (AαA) · CK

B (BαB)

= CK,K
A,B ((A+ B)α) .

2

1.4.1. Connections Between the Jacobi-Trudi Transform and Chern Trans-

form. Here we show how the Jacobi-Trudi Transform and the Chern Transform are

related.

Lemma 1.4.3. Suppose that A is a finite alphabet with card(A) = n and K is an

infinite alphabet. If f ∈ ΠZ(A) then

CK
A

(
f ·Disc(A) ·

n∏
i=1

a1−i
i

)
= ∆K

A(f),

where Disc(A) =
∏

1≤i<j≤n(aj − ai) is the (Vandermonde) discriminant.

Proof. Since ∆ and C are both linear, it suffices to prove this for a monomial Aα.

Consider the following:
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∆K
A(Aα) = det(kαi+j−i) =

∑
σ∈Sn

sgn(σ)
n∏
i=1

kασ(i)+i−σ(i)(1.18)

= CK
A

(∑
σ∈Sn

sgn(σ)
n∏
i=1

aασ(i)+i−σ(i)

)
.(1.19)

But then we know that

(1.20) Disc(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aσ(i)−1.

Therefore

Aα ·Disc(A) ·
n∏
i=1

a1−i =
∑
σ∈Sn

sgn(σ) ·
n∏
i=1

aαii · a1−i
i · aσ(i)−1

i(1.21)

=
∑
σ∈Sn

sgn(σ) ·
n∏
i=1

a
αi+σ(i)−i
i(1.22)

=
∑
σ∈Sn

sgn(σ) ·
n∏
j=1

a
ασ(j)+j−σ(j)

j ,(1.23)

by letting i = σ−1(j), letting the sum run over all σ−1, and relabeling σ−1 with σ. This

completes the proof.

2
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CHAPTER 2

Generating Sequences

In this chapter we introduce the quiver, quiver representations, the idea of an orbit

closure, quiver polynomials, and a way of generating the quiver polynomial related to an

orbit closure.

2.1. Quiver Polynomials

LetQ = (Q0, Q1) be an oriented graph (quiver), with vertex setQ0 = {1, 2, . . . , n} and

a finite setQ1 of arrows. There are two canonical functions, t, h : Q1 → Q0 that return the

tail and head of an arrow, respectively. For a fixed dimension vector e = (e1, . . . , en) ∈ Nn

a quiver representation associates a vector space Ei = Cei with each vertex and a linear

map ϕa : Et(a) → Eh(a) to each arrow.

Let V be the vector space V = ⊕a∈Q1Hom(Et(a), Eh(a)). The group

G = ×ni=1GL(Ei) � V

by

(gi)
n
i=1 · (ϕa)a∈Q1 =

(
gh(a) ◦ ϕa ◦ g−1

t(a)

)
a∈Q1

.

A Dynkin quiver is a quiver whose underlying unoriented graph is one of the simply-

laced Dynkin graphs An, Dn, E6, E7, orE8. It is known that such quivers have finitely

many orbits when acted on by G–for any orientation and any dimension vector. This

result is known as Gabriel’s Theorem, [BGP]. Furthermore the orbits have an explicit

description, as follows. Consider the set Φ+ of positive roots, and the set {αi : i =

1, . . . , n} of simple roots for the corresponding root system. For a positive root α define

d(α) ∈ Nn by α =
∑n

i=1 di(α)αi. The orbits of V with Dynkin graph Q and dimension



vector e are in one-to-one correspondence with the vectors

(2.1) (mα) ∈ NΦ+

, for which
∑
α∈Φ+

mαdi(α) = ei, for i = 1, . . . , n.

Note that the list of orbits does not depend on the orientation of Q. The closure of the

orbit corresponding to the vector m = (mα) ∈ NΦ+
will be denoted Sm.

Consider the G-equivariant cohomology class represented by the orbit closure Sm in

V as described in the introduction,

[Sm] ∈ H∗G(V ;Z).

It is known that

H∗GL(Ei)
(V ) = Z[cj(γi) : j = 1, . . . , ei],

the polynomial ring in the universal Chern classes of the canonical bundle over the

classifying space, BGL. Therefore

H∗G(V ) = ⊗ni=1Z[cj(γi) : j = 1, . . . , ei] = Z[cj(γi) : i = 1, . . . , n; j = 1, . . . , ei].

Since [Sm] ∈ H∗G(V ), a polynomial ring, the class [Sm] is called the quiver polynomial

corresponding to the orbit closure Sm.

Following [B08] and [RR], the presentation of quiver polynomials will be in terms of

some special polynomials in H∗G(V ). For i ∈ Q0 define

T (i) = {j ∈ Q0|∃a ∈ Q1 with t(a) = j, h(a) = i},

H(i) = {j ∈ Q0|∃a ∈ Q1 with t(a) = i, h(a) = j},

and let τi = ⊕j∈T (i)γj.
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We express quiver polynomials in terms of the Chern classes of the dual bundles

cj(τ
∗
i − γ∗i ), which are defined by the formal expansion

∞∑
k=0

ck(τ
∗
i − γ∗i )tk =

∑dimτi
k=0 ck(τi)(−t)k∑ei
k=0 ck(γi)(−t)k

=

∏
j∈T (i)

(∑ej
k=0 ck(γj)(−t)k

)∑ei
k=0 ck(γi)(−t)k

.

2.2. Construction of Generating Sequences

In this section we present methods for constructing generating sequences correspond-

ing to any simply-laced Dynkin quiver as well as present examples using these methods.

2.2.1. A Generating Sequence Corresponding to an Orbit (Closure). Fix a

Dynkin quiver Q = (Q0, Q1) with vertex set Q0 = {1, 2, . . . , n}.

2.2.1.1. Resolution Pairs. If e, f ∈ Nn are dimension vectors let

(2.2) 〈e, f〉 =
n∑
i=1

eifi −
∑
a∈Q1

et(a)fh(a)

denote the Euler form for Q. By identifying a positive root for the underlying Dynkin

diagram α with its dimension vector d(α) ∈ Nn where α =
∑n

i=1 di(α)αi for simple roots

αi we can extend the Euler form to the positive roots.

Definition 2.2.1. Let Φ′ ⊂ Φ+ be a subset of the positive roots of Q. A partition

Φ′ = I1 ∪ I2 ∪ . . . ∪ Is

is called directed if 〈α, β〉 ≥ 0 for all α, β ∈ Ij for (1 ≤ j ≤ n), and 〈α, β〉 ≥ 0 ≥ 〈β, α〉

for all α ∈ Ii, β ∈ Ij with 1 ≤ i < j ≤ s.

Proposition 2.2.2. (Reineke, [Re]) A directed partition of any subset of the positive

roots exists for any Dynkin quiver.

Here we will observe that if I1 ∪ . . . ∪ Is is a directed partition of Φ+ then removing

roots from the directed partition does not change the directed property. Therefore it suf-

fices to show that a directed partition of the positive roots exists for any Dynkin quiver.
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For a complete proof see [Re].

Fix a dimension vector, e. Next, we will define a resolution pair for an orbit closure,

Sm ⊂ V .

Choose the vector m = (mα) ∈ NΦ+
corresponding to an orbit closure Sm by (2.1).

Let Φ′ = {α|mα 6= 0} ⊂ Φ+ and let Φ′ = I(Sm) = I1 ∪ . . . ∪ Is be a directed partition.

For each j ∈ {1, . . . , s} write

∑
α∈Ij

mαα = (p
(j)
1 , . . . , p(j)

n ) ∈ Nn

and let i(j) = (i1, . . . , il) be any sequence of the vertices i ∈ Q0 for which p
(j)
i 6= 0, with

no vertices repeated and ordered so that the tail of any arrow of Q comes before its head.

Then for each j let r(j) = (p
(j)
i1
, . . . , p

(j)
il

).

Then let i and r be the concatenated sequences i = i(1)i(2) . . . i(s) and r = r(1)r(2) . . . r(s).

Definition 2.2.3. The pair i, r is called a resolution pair for Sm.

2.2.1.2. Resolution Functions. For a given resolution pair

i = (i1, . . . , ip), r = (r1, . . . , rp)

define the base set of variables Ak = {ak1, . . . , akrk} for k = 1, . . . , p. Set

Bk =
⋃
l>k
il=ik

Al Ck =
⋃
l>k

il∈H(ik)

Al nk =
∑
l>k

il∈T (ik)

rl −
∑
l>k
il=ik

rl.

Next we define various functions in the ∪kAk variables. For 1 ≤ k ≤ p define • the

monomial factors

Mk =

rk∏
s=1

(aks)
nk ,

• and the interference factors

Ik =
∏
a∈Ak

∏
b∈Bk

(
1− a

b

)∏
c∈Ck

(
1− a

c

) .
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2.2.1.3. Generating Sequences.

Definition 2.2.4. The (iterated residue) generating sequence associated to an

orbit closure Sm with directed partition I(Sm) is GI =
∏p

k=1MkIk.

This next theorem describes how to use the generating functions associated to I(Sm)

to compute the quiver polynomial associated to Sm. Consider the Taylor expansion of

GI , that is replace all 1
1−x/u factors with

∑∞
k=0

(
x
u

)k
. If we set Kj = {cn(τ ∗ij − γ

∗
ij

)}n then

we have the following theorem.

Theorem 2.2.5. (Rimányi)

The quiver polynomial can be computed as

(2.3) [Sm] = ∆
K1,...,Kp
A1,...,Ap (GI) .

Proof. The proof of this theorem is in [RR]. 2

2.3. Generating Sequence Examples

2.3.1. Example 1. Consider the inward-pointing A3 quiver: 1 → 2 ← 3. The (non-

simple) positive roots of the root system A3 are αij =
∑

i≤u≤j αu, for i, j ∈ {1, 2, 3} with

i < j. Consider the orbit corresponding to the linear combination
∑

1≤i≤j≤3mijαij. One

directed partition is

Φ+ = I(Sm) = {α2} ∪ {α12, α23, α13} ∪ {α1, α3}.

This generates the resolution pair i = (2, 1, 3, 2, 1, 3), r = (m2,m12+m13,m23+m13,m12+

m13 + m23,m1,m3). For the special case m13 = m12 = m2 = m3 = 1 and all other m•

are zero we have that

A1 = {a1,1}, A2 = {a2,1, a2,2}, A3 = {a3,1},

A4 = {a4,1, a4,2}, A5 = ∅, A6 = {a6,1}.
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For readability suppose we rename the variables so that

A1 = {u}, A2 = {v1, v2}, A3 = {w}, A4 = {x1, x2}, A5 = ∅, A6 = {z}.

This gives the generating sequence

GI =
u2x1x2

(
1− u

x1

)(
1− u

x2

) (
1− w

z

)
w
(

1− v1
x1

)(
1− v2

x1

)(
1− v1

x2

)(
1− v2

x2

)(
1− w

x1

)(
1− w

x2

) .
The quiver polynomial is

[Sm] = ∆K2,K1,K3,K2,K3

{u},{v1,v2},{w},{x1,x2},{z}(GI)

Since each Ki is a positive alphabet, the part of Gm that isn’t immediately mapped

to zero by ∆ is −u3 + u2x2 + u2v2. Hence the corresponding quiver polynomial is

(2.4) − c3(γ∗1 + γ∗3 − γ∗2) + c2(γ∗1 + γ∗3 − γ∗2)c1(γ∗1 + γ∗3 − γ∗2) + c2(γ∗1 + γ∗3 − γ∗2)c1(−γ∗1)

2.3.2. Example 2. Now consider the same orbit with same choice of m, but with choice

of directed partition

Φ+ = J (Sm) = {α2, α12, α23} ∪ {α13, α1, α3}.

This generates the resolution pair i = (1, 3, 2, 1, 3, 2), r = (m12,m23,m12 +m2 +m23,m1 +

m13,m13 +m3,m13). So we have

A1 = {a1,1}, A2 = ∅, A3 = {a3,1, a3,2},

A4 = {a4,1}, A5 = {a5,1, a5,2}, A6 = {a6,1}.

For readability suppose we rename the variables so that

A1 = {u}, A2 = ∅, A3 = {w1, w2}, A4 = {x}, A5 = {y1, y2}, A6 = {z}.
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Thus we have a second generating sequence

GJ =
w2

1w
2
2

(
1− u

x

) (
1− w1

z

) (
1− w2

z

)
u
(

1− u
w1

)(
1− u

w2

) (
1− x

z

) (
1− u

z

) (
1− y1

z

) (
1− y2

z

) .
By theorem 2.2.5

[Sm] = ∆K1,K2,K1,K3,K2

{u},{w1,w2},{x},{y1,y2},{z}(GJ ).

Note that the variable z only appears in the denominators. Therefore multiplying by any

factor that contains a z will create a term that has a negative exponent and is mapped

to zero by ∆. This technique is then repeated with the variable x. This gives

GJ ∼∆ G
(2)
J =

w2
1w

2
2

(
1− u

x

)
u
(

1− u
w1

)(
1− u

w2

)
∼∆ G

(3)
J =

w2
1w

2
2

u
(

1− u
w1

)(
1− u

w2

)
∼∆ G

(4)
J = w1w

2
2 + w2

2u− w3
1

∼∆ GI .

This is the same result as the previous example.

2.3.3. Example 3. Consider the inward-oriented D4 quiver with vertices labelled as

follows:

2

1

34 .
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The simple roots are α1, α2, α3, and α4. The remaining positive roots of the root system

are

α1k = α1 + αk, for k = 2, 3, 4,

αij = α1 + αi + αj, for i, j ∈ {2, 3, 4} and i < j,

β = α1 + α2 + α3 + α4,

δ = 2 · α1 + α2 + α3 + α4.

A directed partition for this quiver is

I = {α1} ∪ {α12, α13, α14, δ} ∪ {α23, α24, α34} ∪ {α2, α3, α4, β}.

Let us select the special case that m12 = m13 = m34 = m4 = 1 and all other m• are 0.

This gives the reduced directed partition

J = {α12, α13} ∪ {α34} ∪ {α3},

with resolution pair

i = (2, 3, 1, 3, 4, 1, 4),

r = (m12,m13,m12 +m13,m34,m34,m34,m4) = (1, 1, 2, 1, 1, 1, 1).

Calculating the alphabets (and relabeling the variables for readability), we have

A1 = {a}, A2 = {b}, A3 = {c1, c2}, A4 = {d},

A5 = {x}, A6 = {y}, A7 = {z}.

This gives us the generating sequence

GJ =
c2

1c
2
2y

bx
· (1− b/d)(1− c1/y)(1− c2/y)(1− x/z)

(1− a/c1)(1− a/c2)(1− b/c1)(1− b/c2)(1− d/y)(1− x/y)
.
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Therefore, the quiver polynomial is

[Sm] = ∆K2,K3,K1,K3,K4,K1,K4

{a},{b},{c1,c2},{d},{x},{y},{z}(GJ ).

Notice that z and d only appear in denominators. Thus, by the argument in the

previous examples,

GJ ∼∆ G
(2)
J =

c2
1c

2
2y

bx
· (1− c1/y)(1− c2/y)

(1− a/c1)(1− a/c2)(1− b/c1)(1− b/c2)(1− d/y)(1− x/y)
.

The only way to get x out of the denominator is to select a
(
x
y

)n
term with n > 0 from

(1− x/y) =
∑∞

k=0

(
x
y

)k
. Therefore,

G
(2)
J ∼∆ G

(3)
J =

c2
1c

2
2

b

(
∞∑
k=0

(
x

y

)k)
(1− c1/y)(1− c2/y)

(1− a/c1)(1− a/c2)(1− b/c1)(1− b/c2)(1− d/y)
.

But now, y only appears in denominators. So once again we can state

G
(3)
J ∼∆ G

(4)
J =

c2
1c

2
2

b
· 1

(1− a/c1)(1− a/c2)(1− b/c1)(1− b/c2)

∼∆ G
(5)
J = 2a+ b+ c1 + c2

So the quiver polynomial is

∆K2,K3,K1

{a},{b},{c1,c2}(2a+ b+ c1 + c2) = 2 · k2,1 + k3,1 + k1,1(2.5)

= 2 · c1(γ∗2) + c1(γ∗3) + c1(γ∗2 + γ∗3 + γ∗4 − γ∗1).(2.6)

2.4. Truncating the Generating Series

We introduce a shorthand notation for some of the previous products appearing in our

functions so that we can discuss them directly. Throughout this section fix a collection

of alphabets A = {A1, . . . ,AN} with card(Ai) = ni and a collection of positive alphabets

K = {K1, . . . ,KN}.
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Recall the following:

Bk =
⋃
l>k
il=ik

Al, Ck =
⋃
l>k

il∈H(ik)

Al.

Definition 2.4.1. Define the Cauchy product

K(Ak,A∨l ) =
∏
a∈Ak
b∈Al

(
1− a

b

)−1

.

In our above discussion we would consider the Taylor expansion of such a function,

K(Ak,A∨l ) =
∏
a∈Ak
b∈Al

∞∑
i=0

(a
b

)i
.

However, we will show that one can replace such a power series with a polynomial

without affecting the ∆-image of the quiver polynomial.

Consider that one can rewrite any power series in the basis of monomials, so for K:

K(Ak,A∨l ) =
∑

α,β∈Zn
cα,βAαkA

β
l .

Define

Kp(Ak,A∨l ) =
∑

α,β∈Zn
dα,βAαkA

β
l

where

dα,β =

 cα,β if
∑
αi ≤ p

0 otherwise
.

We need not worry about the size of β because if
∑
βi 6=

∑
αi then cα,β = 0.

2.4.1. Truncating the Interference Factors. In light of our new notation, the inter-

ference factors can be written:

Ik = K(Ak,C∨k )
∏
a∈Ak
b∈Bk

(
1− a

b

)
.
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Define

Ik,p = Kp(Ak,C∨k )
∏
a∈Ak
b∈Bk

(
1− a

b

)
to be a truncated interference factor.

Theorem 2.4.2. For each k = 1, . . . , N there is a pk such that

N∏
k=1

MkIk ∼∆K
A

N∏
k=1

MkIk,pk .

We will suspend the proof of this until we have shown a few more facts.

2.4.2. Laurent Series are ∆-Similar to Power Series. Let f be a Laurent series in

the variables of A. Then

f =
∑

α=(α1,...,αp)

cα

N∏
k=1

Aαkk .

Choose a term of f: T = cα
∏N

k=1A
αk
k . Suppose for some k that there is an i with

1 ≤ i ≤ nk and (αk)i ≤ −nk. Now αk is Bott similar to a unique non-increasing vector,

call it β. Because of the assumptions on αk, β will have a negative entry and thus not

be a partition. Therefore

∆Kk
Ak (Aαkk ) = ±∆Kk

Ak (Aβk) = ∆Kk
Ak (0)⇒ ∆K

A(T ) = ∆K
A(0).

See statement (1.11).

Proposition 2.4.3. Suppose that g is a polynomial in the variables of A and 1 ≤

s ≤ N . There is a p ∈ N such that

g ·
s∏

k=1

K(Ak,C∨k ) ∼∆K
A
g ·Kp(As,C∨s ) ·

s−1∏
k=1

K(Ak,C∨k ).

Proof. Let f be the Laurent series

f = g ·
s∏

k=1

K(Ak,C∨k ) = g ·
s∏

k=1

∏
a∈Ak
c∈Ck

∞∑
i=0

(a
c

)i .
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So any given term of h appears as

dα,δ

p∏
k=1

Aαkk
Cδkk

= d̄ᾱ

p∏
k=1

Aᾱkk .

Where α = (α1, . . . , αN), δ = (δ1, . . . , δN), and ᾱ = (ᾱ1, . . . , ᾱN).

Consider f as a Laurent series in the variables of Cs.

Note that each term of the series of K(As,C∨s ) reduces the exponents of the indetermi-

nants of Cs, but no terms of f increase these exponents. This is because the numerators

are comprised of only those Al with l ≤ s, while Cs is comprised of certain Al with l > s.

Since g is a polynomial, it has only finitely many terms. Thus there are only finitely

many terms where ∀aki ∈ Cs, ᾱki > −rk (to paraphrase: “the exponents stay sufficiently

large”). The terms where the exponents are not “suffienctly large” will be ∆-equivalent

to zero, therefore all but finitely many terms of f (as a Laurent series in the variables of

Cs) are ∆-equivalent to 0. This is exactly the claim of the proposition. 2

2.4.3. Proof of Theorem 2.4.2. Now we are prepared to prove theorem 2.4.2:

Proof. Let g =
∏N

k=1

(
Mk ·

∏
a∈Ak
b∈Bk

(
1− a

b

))
. Note that g is a polynomial. By

proposition 2.4.3 there is a pN such that:

g ·
N∏
k=1

Ik ∼∆K
A
g · IN,pN ·

N−1∏
k=1

Ik.

Then note that g · IN,pN is a polynomial and use proposition 2.4.3, again. And thus

through “N” applications of proposition 2.4.3 one has completed the proof. 2

Therefore, if

(2.7) [Sm] = ∆K
A

(
N∏
k=1

MkIk

)
then [Sm] = ∆K

A

(
N∏
k=1

MkIk,pk

)
,

for some pk ∈ N. Further,
∏N

k=1MkIk,pk ∈ Π+
Z (A).
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2.5. The Numerator Lemma and Gluing Property

This section introduces a rather powerful tool which is called “the Numerator Lemma.”

This lemma describes how to collapse variables from the same vertex into one alphabet.

2.5.1. The Lemma.

Definition 2.5.1. Define the rational resultant of two alphabets, A and B, to be

RRes(A|B) =
∏
a∈A

∏
b∈B

(
1− b

a

)
.

Remark. Note that RRes(A|B) ·
∏

a∈A a
|B| = Res(A|B).

Lemma 2.5.2. (Numerator Lemma)

Suppose that A = (A1, . . . ,AN) is a collection of finite alphabets with card(Ai) = ni

and K = (K1, . . . ,KN) is a collection of infinite alphabets that are all equal. If f ∈ ΠZ(A)

then

∆K
A

(
f ·
∏
j>i

RRes(Aj|Ai)

)
= ∆K1

A1+...+AN (f).

Proof. For readability in the following proof, let Disc(A) =
∏

A∈ADisc(A) and

Disc (
∑
A) = Disc(A1 + . . .+ AN).

We know from chapter one, lemma 1.4.3, that

∆K
A

(
f ·
∏
j>i

RRes(Aj|Ai)

)
= CK

A

(
f ·Disc(A) ·

∏
j>i

RRes(Aj|Ai) ·
k∏
i=1

nj∏
j=1

a1−j
i,j

)
(2.8)

= CK
A

(
f ·Disc(A) ·

∏
j>i

Res(Aj|Ai)∏
a∈Aj a

ni
·

k∏
i=1

nj∏
j=1

a1−j
i,j

)
(2.9)

= CK
A

(
f ·Disc

(∑
A
)
·

k∏
i=1

nj∏
j=1

a
1−j+

P
q<i nq

i,j

)
(2.10)

= CK1
A1+...+Ak

(
f ·Disc

(∑
A
)
·

k∏
i=1

nj∏
j=1

a
1−j+

P
q<i nq

i,j

)
(2.11)

= ∆K1
A1+...+Ak(f).(2.12)
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2

Corollary 2.5.3. (The Gluing Property)

Suppose that A and B are finite alphabets of cardinality n and m, respectively. If K

is a positive alphabet and λ, µ are partitions with `(λ) ≤ n, `(µ) ≤ m, then

∆K
A+B(sλ(A) · sµ(B)) = ∆K

A+B(sν(A+ B))

where

νi =


λi if i ≤ `(λ)

µi−n if n < i ≤ n+ `(µ)

0 otherwise

.

Example. Suppose A = {a1, a2},B = {b1, b2, b3}, λ = (2), µ = (2, 1). Then ν =

(2, 0, 2, 1, 0) and

∆K
A+B(s(2)(A) · s(2,1)(B)) = ∆K

A+B(s(2,0)(A) · s(2,1,0)(B))(2.13)

= ∆K
A+B(s(2,0,2,1,0)(A+ B))(2.14)

= ∆K
A+B(−s(2,1,1,1,0)(A+ B)).(2.15)

Proof. (of Corollary 2.5.3)

By the numerator lemma,

∆K
A+B(sλ(A) · sµ(B)) = ∆K,K

A,B (sλ(A) · sµ(B) ·RRes(B|A)).

Now RRes(B|A) ∈ SymmZ[B](A) ∩ SymmZ[A](B) so

(2.16) AsymA,B(sλ(A)step(A) · sµ(B)step(B) ·RRes(B|A))

= AsymA,B(Aλstep(A) · Bµstep(B) ·RRes(B|A)).
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This gives that

∆K,K
A,B (sλ(A) · sµ(B) ·RRes(B|A)) = ∆K,K

A,B (Aλ · Bµ ·RRes(B|A))(2.17)

= ∆K,K
A,B ((A+ B)τ ·RRes(B|A))(2.18)

= ∆K
A+B((A+ B)ν)(2.19)

= ∆K
A+B(sν(A+ B))(2.20)

by reversing the previous arguments. 2

2.5.2. The Resultant-Free Generating Sequence. Consider an orbit closure, Sm,

with corresponding directed partition, I(Sm), and generating sequence, GI . Let i=(i1, . . . , iq),

r be the resolution pair derived from I. One can construct the resultant-free gener-

ating sequence through the following method. Set

(2.21) Dk =
∑
il=k

Al, and Kk = {cn(τ ∗ik − γ
∗
ik

)}n.

Now define the resultant-free interference factors for 1 ≤ k ≤ p:

Īk =
1∏

a∈Ak
c∈Ck

(
1− a

c

) = Ik ·RRes(Bk|Ak).

The resultant-free generating sequence associated to I(Sm) is defined as

HI =

p∏
k=1

MkĪk.

Theorem 2.5.4. The quiver polynomial can be obtained from the resultant-free gen-

erating sequence. That is, for N = card(Q0),

[Sm] = ∆K1,...,KN
D1,...,DN (HI).

Proof. The proof is just repeated application of the numerator lemma. 2
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One can further truncate the intereference factors as discussed in section 2.4 and to

have

[Sm] = ∆K1,...,KN
D1,...,DN

(
N∏
k=1

MkĪk,pk

)
,

for some pk ∈ N.

2.5.3. Example of the Resultant-Free Generating Sequence. Consider the source-

sink A4 quiver: 1 → 2 ← 3 → 4. The simple roots of the A4 root system are α1, α2, α3,

and α4. The remaining positive roots are αij =
∑

i≤u≤j αu, for i, j ∈ {1, 2, 3, 4} with

i < j.

A directed partition for this quiver is

I = {α2, α4, α24} ∪ {α12, α13, α14, α23} ∪ {α1, α3, α34}.

If we look at a generic case (rather than selecting values for the m•), we get that the

resolution pair is

i = (3, 2, 4, 1, 3, 2, 4, 1, 3, 4),

r = (m24,m2,m4,m12 +m13 +m14,m13 +m14 +m23,

m12 +m13 +m14 +m23,m14,m1,m3 +m34,m34).

The monomial term is

M =
A(m13+m14+m1+m3+m34)

2 A(m13+m23+m3)
3 A(m14+m1+m34)

6 A(m3)
7

A(m13+m14+m23+m3+m34)
1 A(m1)

4 A(m3+m34)
5

and the non-trivial resultant-free interference factors are

Ī1 =
∏
a∈A1

b∈A2+A3+A6+A7+A10

1

(1− a/b)
, Ī4 =

∏
a∈A4
b∈A6

1

(1− a/b)
,

Ī5 =
∏
a∈A5

b∈A6+A7+A9

1

(1− a/b)
, Ī9 =

∏
a∈A9
b∈A10

1

(1− a/b)
.
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If we define (1− A/B) =
∏

a∈A
b∈B

(1− a/b), then

HI = M · 1(
1− A1

A2+A3+A6+A7+A10

)(
1− A4

A6

)(
1− A5

A6+A7+A9

)(
1− A9

A10

) ,
and

∆K3,K2,K4,K1

A1+A5+A9,A2+A6,A3+A7+A10,A4+A8
(HI)

is the quiver polynomial.
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CHAPTER 3

Schur Positivity and Strong Schur Positivity Results

The purpose of this chapter is to present Schur positivity and strong Schur positivity

in terms of quiver polynomials. After introducing basic definitions in section 1, sections

2 through 4 will discuss basic theorems involving Schur positivity and strong Schur pos-

itivity. Finally section 5 will address which quivers and orbits are known to be strongly

Schur positive and any new Schur positivity results.

3.1. Schur Determinants

Recall the Jacobi-Trudi transform ∆K
A : ΠZ(A) → ΠZ(K). We want to describe the

image of the generating sequences discussed in Chapter 2 so we need to introduce some

new terminology.

Definition 3.1.1. Suppose K is an infinite alphabet. If λ ∈ Zn then the Schur

determinant with parameter λ is

Sλ(K) = ∆K
A(Aλ)

for some finite alphabet, A with card(A) = n.

If K = (K1, . . . ,KN) is a collection of infinite alphabets and λ = (λ1, . . . , λN) with

λi ∈ Zni , then one can simply extend the above definition to get

Sλ(K) = ∆K
A(Aλ1

1 · · ·A
λN
N )

with Ai disjoint finite alphabets with card(Ai) = ni.

Essentially the monomial functions form a linear basis of the polynomials and the

Schur determinants are the images of the monomials under the Jacobi-Trudi transform.



Since the Jacobi-Trudi transform is linear then the Schur determinants spand the image

of the Jacobi-Trudi transform.

3.2. Schur Positivity

Let f ∈ Symm+
Z (A) for some finite alphabet A. Suppose that f =

∑
λ cλsλ(A) is

written in terms of the Schur polynomials. We know that such an expression exists

and is unique since the Schur polynomials are a linear basis for the space of symmetric

polynomials. If each cλ ≥ 0 then f is said to be Schur positive.

One can extend this notion to Schur positivity for polynomials that are symmetric

in each variable set of A = (A1, . . . ,AN) with card(Ai) = ni. If f ∈ Symm+
Z (A), then

f =
∑

λ=(λ1,...,λN )

(
cλ ·

∏N
i=1 sλi(Ai)

)
. Thus f can be said to be Schur positive if and only

if each cλ ≥ 0.

Definition 3.2.1. Let f ∈ Z[[A]] be a power series symmetric in each Ai, then

f =
∑∞

k=0 fk(A) where fk ∈ ΠZ(A) is homogeneous of degree k. Then f is Schur

positive if and only if fk(A) is Schur positive for all k.

Definition 3.2.2. Let f be a Laurent series (polynomial) in the variables of A.

Then f =
∑

α=(α1,...,αp) cα ·
∏p

i=1Aαp , where αi ∈ Zni . The integer part of f is f =∑
α=(α1,...,αp) cα ·

∏p
i=1Aαp , where αi ∈ (Z≥0)ni . The integer part of f is denoted ip(f).

Definition 3.2.3. Let f be a Laurent series (polynomial) in the variables of A. Then

f is Schur positive if and only if the integer part of f is Schur positive.

3.3. Expressing a Quiver Polynomial in Terms of Schur Determinants

It was proven by A. Buch [B08] that quiver polynomials can be expressed uniquely

in terms of Schur determinants. That is, if we set Kk = {cn(τ ∗ik − γ
∗
ik

)}n, where τik =

⊕j∈T (ik)γj, then

[Sm] =
∑

λ=(λ1,...,λN )

(
cλ ·

N∏
i=1

Sλi(Ki)

)
.
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The cohomological part of Buch’s conjecture is that when a quiver polynomial is

expressed in this way that each cλ is non-negative.

Proposition 3.3.1. If A is a finite alphabet with card(A) = n, K is a positive alpha-

bet, and λ ∈ Zn then

∆K
A(sλ(A)) = Sλ(K).

Proof. We know that ∆K
A(sλ(A)) = ∆K

A(Aλ) = Sλ(K). 2

This makes it clear that for a given quiver and orbit closure, Sm, Buch’s conjecture

holds if and only if there is a Schur positive function, f ∈ ΠZ(A), such that

∆K
A(f) = [Sm].

Thus one can say that the quiver polynomial is Schur positive without confusion.

Using this language, Buch’s claim is that quiver polynomials associated to all quivers of

ADE-type are Schur positive.

3.4. Strong Schur Positivity

The goal of this section is to extend the idea of Schur positivity to Laurent polynomials

and Laurent series. This is done by decomposing the series (or polynomial) into a sum

of polynomials that are homogeneous and then reimagining Schur positivity in terms of

these homogeneous polynomials.

Definition 3.4.1. Suppose A = (A1, . . . ,AN) is a collection of finite alphabets with

card(Ai) = ni. Let f be a Laurent series (polynomial) in the variables of A. Then f is

strongly Schur positive if

f ·
N∏
i=1

A(ki)
i

is Schur positive for all ki ≥ 0.

Recall that A(k) =
∏

a∈A a
k.

44



Remark. If A is an alphabet of cardinality n and λ ∈ Zn is non-increasing with

λn < 0, then let ν ∈ Zn be ν = (λn, . . . , λn). We can define

sλ(A) =
sλ+ν(A)

sν(A)
.

Keeping this in mind, the definition of f being strongly Schur positive is equivalent

to f being able to be written in the following form:

f =
∑

λ=(λ1,...,λN )

cλ

N∏
i=1

sλi(Ai),

where cλ ≥ 0, ∀λ with λi ∈ Z|Ai| non-increasing.

Proposition 3.4.2. If f, g are two Laurent series that are strongly Schur positive

then their product is also strongly Schur positive.

Proof. Suppose that A = (A1, . . . ,AN) is a collection of finite alphabets. Write

f =
∑

λ=(λ1,...,λN )

cλ ·
N∏
j=1

sλj(Aj),

g =
∑

µ=(µ,...,µN )

cµ ·
N∏
j=1

sµj(Aj).

Therefore,

f · g =
∑
λ,µ

cλcµ ·
N∏
j=1

sλj(Aj)sµj(Aj)

=
∑
ν

(∑
λ,µ

cλcµc
νj
λj ,µj

)
·
N∏
j=1

sνj(Aj).

Since each cλ, cµ, c
νj
λj ,µj

≥ 0 then
∑

λ,µ cλcµc
νj
λj ,µj

≥ 0. 2

Again, we wish to extend this idea to orbit closures. Let D = {Dk} with Dk =∑
il=k

Al, and let K = (K1, . . . ,KN) be a collection of disjoint infinite alphabets.
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Definition 3.4.3. Let Q be a quiver, Sm be an orbit closure associated to Q and

I(Sm) be a directed partition obtained from the orbit closure. We say that the directed

partition is strongly Schur positive if the resultant-free generating sequence HI is

∆K
D-equivalent to a strongly Schur positive Laurent series hI .

The function hI is the result of applying the gluing property, corollary 2.5.3, to the

resultant-free generating sequence, HI , and then selecting the Schur representative.

Definition 3.4.4. Consider an orbit arising from a quiver. We say the orbit is

strongly Schur positive if there is a strongly Schur positive directed partition associ-

ated to the orbit.

Remark. Notice that there is a significant difference between stating that an orbit

is Schur positive and stating that it is strongly Schur positive. When one states that an

orbit is Schur positive it means that all generating sequences derived from all directed

partitions are Schur positive. Stating that an orbit is strongly Schur positive is simply

an existence statement–that there is an associated directed partition with a generating

sequence that is strongly Schur positive.

Proposition 3.4.5. Any orbit closure that is strongly Schur positive is also Schur

positive.

Proof. Let Sm be an orbit closure that is strongly Schur positive and let I(Sm) be

the associated strongly Schur positive directed partition. Then the derived resultant-free

generating sequence HI satisfies

∆K
D(HI) = ∆K

D(hI)

where hI is a strongly Schur positive Laurent series.

Since hI is a Laurent series it can be written as a sum of monomials. As per (1.11)

each of these monomials is ∆-similar to a monomial with non-negative exponents or it
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is ∆-similar to 0. Thus hI is ∆-equivalent to the integer part of hI . Since hI is strongly

Schur positive, it’s integer part must be Schur positive.

Thus

[Sm] = ∆K
D(HI) = ∆K

D(hI) = ∆K
D(ip(hI))

for K = {Kk} and Kk = {cn(τ ∗ik − γ
∗
ik

)}n. 2

3.5. n-Step Desingularizations

In Rimányi’s paper [RR] he constructs a multi-step desingularization. In the final

step of the desingularization, the quiver polynomial is trivial. Then Rimanyi undoes his

desingularization step-by-step and keeps track of how each step affects the quiver polyno-

mial. If the process required n steps then it is referred to as an n-step desingularization.

One immediate consequence is that if the desingularization is n-step, then the associated

directed partition will be comprised of (n+ 1) sets (and vice-versa).

Definition 3.5.1. Suppose that Q is a quiver of ADE type with a n-step desingular-

ization and associated directed partition I = I1∪ . . .∪In+1. A next-step desingulariza-

tion is any quiver, orbit, and associated directed partion, J that admits an (n+ 1)-step

desingularization with J = J1∪ . . .∪Jn+1∪Jn+2 where Ji is equal to Ii (except possibly

up to relabeling) for all i ≤ n+ 1.

Example. Consider the equi-oriented A3 quiver: E1 → E2 → E3. This admits a

2-step desingularization with directed partition

I = {α22} ∪ {α33, α23, α13} ∪ {α11, α33}.

Even though the A4 quiver: E1 → E2 ← E3 ← E4, with directed partition

JΦ+ = {α22} ∪ {α12, α23, α13, α24} ∪ {α11, α33, α14} ∪ {α34, α44}
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is not a next-step desingularization, if we choose an orbit with m24 = m14 = 0 then the

directed partition becomes

J (Sm) = {α22} ∪ {α12, α23, α13} ∪ {α11, α33} ∪ {α34, α44}.

This directed partition is a next-step desingularization of I.

Lemma 3.5.2. (Next-Step)

Suppose that S1m is an orbit with a strongly Schur positive directed partition I and

S2m is an orbit with directed partition J that is a next-step desingularization of I(S1m).

Then S2m is Schur positive.

Observe that if we let i,r be the resolution pair for I and j,s be the resolution pair

for J . Set p equal to the length of i and q equal to the length of j. Note that ik = jk and

rk = sk for all k up to the length of i. Finally, let A = (A1, . . . ,Aq) be finite alphabets

with card(At) = st and Kk = {cn(τ ∗jk − γ
∗
jk

)}n,K = (K1, . . . ,Kq).

Define the following for 1 ≤ k ≤ p,

n̂k =
∑
l>p

jl∈T (ik)

sl −
∑
l>p
jl=ik

sl, Lk =

rk∏
t=1

an̂kk,t.

and for p+ 1 ≤ t ≤ q,

B̂t =
∏
l<t
jl=jt

Al Ĉt =
∏
l<t

jl∈T (jt)

Al.

Notice that if ik = il then n̂k = n̂l. This means that all variables associated to the

vertex ik have their exponent increased (or decreased) by the same amount.

Suppose that GI is the generating sequence associated to I and GJ is the generating

sequence associated to J . Then

GJ = GI ·

(
p∏

k=1

Lk

)
·

q∏
k=p+1

∏
a∈Ak
b∈B̂k

(1− b/a)∏
a∈Ak
c∈Ĉk

(1− c/a)
.
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Since we are trying to show that GJ is Schur positive we can disregard any terms

with negative exponents as the Jacobi-Trudi transform will map these to zero, by (1.11).

Let

gt = GI ·

(
p∏

k=1

Lk

)
·

t∏
k=p+1

∏
a∈Ak
b∈B̂k

(1− b/a)∏
a∈Ak
c∈Ĉk

(1− c/a)

so gq = GJ . Now let’s put the proof on hold to show the following.

Proposition 3.5.3. For p < t < q, ∆K
A(gt) = ∆K

A(gt+1).

Proof. As stated above, we can disregard any terms with negative exponents. The

factor ∏
a∈At+1

b∈B̂t+1

(1− b/a)∏
a∈At+1

c∈Ĉt+1

(1− c/a)

is the only instance of the variables from At+1 in all of gt+1–and they can only occur with

non-positive exponents. Thus when gt+1 is expanded out as a Laurent series, the only

terms that aren’t mapped to zero by the Jacobi-Trudi transform must have received a

factor of 1 from this piece. This proves the proposition. 2

Proof. (of Lemma 3.5.2)

Proposition 3.5.3 shows that

∆K
A(GJ ) = ∆K

A

(
GI ·

p∏
k=1

Lk

)
.

Let J be the maximal entry of j, that is the number of verticies in the quiver associated

to J . Define D = (D1, . . . ,DJ) with Dk =
∑

il=k
Al (where order is preserved) and

Lk = {cn(τ ∗k − γ∗k)}n,L = (L1, . . . ,LJ). After applying the numerator lemma we get the

resultant-free generating sequence:

∆K
A(GJ ) = ∆L

D

(
HI ·

J∏
k=1

∏
d∈Dk

dn̂k

)

= ∆L
D

(
hI ·

J∏
k=1

∏
d∈Dk

dn̂k

)
,
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where hI is a strongly Schur positive Laurent series in the variables of D. This last step

is justified because
∏J

k=1

∏
d∈Dk d

n̂k is symmetric in each Dk and the alphabets of L are

disjoint.

Now hI is strongly Schur positive so, by definition, the integer part of hI ·
∏J

k=1

∏
d∈Dk d

n̂k

is Schur positive. But ∆L
D(f) = ∆L

D(ip(f)) for any Laurent series f . This completes the

proof. 2

3.5.1. Schur Postitivity of 1-step Desingularizations.

Proposition 3.5.4. All 0-step desingularizations are strongly Schur positive.

Proof. Consider a quiver, Q, and orbit closure, Sm, that admit a 0-step desingular-

ization with directed partition I(Sm). Note that the partition I is comprised of exactly

one set so we can refer to that set as I without confusion. Using the notation of chapter

2 and by theorem 2.2.5 we have

[Sm] = ∆K
A

 N∏
k=1

A(nk)
k ·

∏
a∈Ak
b∈Bk

(1− a/b)∏
a∈Ak
b∈Ck

(1− a/c)

 .

However, since there is only one set in the directed partition, Bk = ∅ for each k and each

alphabet in K is disjoint.

Now each factor,

A(nk)
k ·K(Ak,C∨k ) = s(nk)(Ak) ·

∑
λ

sλ(Ak)sλ(Ck)

=
∑
λ

sλ+(nk)(Ak)sλ(Ck)

is strongly Schur positive. Therefore, by proposition 3.4.2, the product is strongly Schur

positive. 2

Corollary 3.5.5. All 1-step desingularizations are Schur positive.

Proof. Every 1-step desingularization is a next-step desingularization of a 0-step

desingularization. By Lemma 3.5.2 this completes the proof. 2
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Note that if we could extend the conclusion of Lemma 3.5.2 to show strong Schur

positivity, this would completely prove Buch’s conjecture. This is because every n-step

desingularization is a next-step desingularization of a (n− 1)-step desingularization.

3.5.2. Results for An. The “equi-oriented An quiver” is the quiver: • → • → . . .→ •,

where there are n verticies (by convention the vertices of any An quiver are labelled from

left to right). The equi-oriented An quiver has a directed partition, I = I1 ∪ . . . ∪ In

where In−j+1 = {αjk}nk=j, for any n. For example, if n = 3 then I = {α33}∪ {α22, α23}∪

{α11, α12, α13}.

Therefore the equi-oriented An+1 quiver with the directed partition J = J0 ∪ . . . ∪

Jn where Jn−j = {αjk}nk=j is a next-step desingularization of the I desingulariza-

tion. Continuing with the previous example J = {α33} ∪ {α22, α23} ∪ {α11, α12, α13} ∪

{α00, α01, α02, α03}.

Theorem 3.5.6. The directed partition I is strong Schur positive.

Proof. Consider the equi-oriented An quiver with directed partition I and the equi-

oriented An+1 quiver with directed partition J as described above, where J is a next-step

desingularization of I. If j, s is the resolution pair associated to J consider j(n+1), s(n+1)

the contribution that Jn+1 makes to the resolution pair. By construction of the resolution

pair,

j(n+1) = (0, 1, 2, . . . , n), s(n+1) =

(
n∑
k=0

m0k,

n∑
k=1

m0k, . . . ,m0n

)
.

Set N = card(Q0) and D = (D1, . . . ,DN) with Dk =
∑

il=k
Al (where order is pre-

served) and compute n̂k = s
(n+1)
jk−1

− s(n+1)
jk

= m0(k−1). Therefore

∆K
A(GJ ) = ∆L

D

(
HI ·

N∏
k=1

∏
d∈Dk

dn̂k

)
(3.1)

= ∆L
D

(
HI ·

N∏
k=1

∏
d∈Dk

dm0(k−1)

)
.(3.2)
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It is known that all orbits arising from quivers of type equi-oriented An are Schur

positive, [KMS]. This means that ∆K
A(GJ ) = ∆L

D(f) where f is Schur positive. Again,

this holds for any orbit and therefore any choices of m0(k−1) for k = 1, . . . , N . Thus

HI ·
∏r

k=1

∏
d∈Dk d

m0(k−1) is Schur positive for any values of m0(k−1) ≥ 0. This is exactly

the definition of HI being strongly Schur positive, which implies that I is a strongly

Schur positive directed partition. Though this orbit was assumed to have no roots of

multiplicity zero, if any of the roots do have multiplicy zero simply substitute zero into

those variables associated to those roots in HI . 2

Corollary 3.5.7. Every orbit of the equi-oriented An quiver is strongly Schur posi-

tive.

3.6. Simple Sinks and Simple Sources

In this section we discuss how some simple roots affect the Schur positivity or strong

Schur positivity of an orbit.

Definition 3.6.1. Suppose Q = (Q0, Q1) is a quiver of ADE-type. A simple sink

is a simple root αi ∈ Φ+ such that the vertex i ∈ Q0 is a sink. A simple source is a

simple root αi ∈ Φ+ such that the vertex i ∈ Q0 is a source.

3.6.1. Simple Sinks. Let Q = (Q0, Q1) be a quiver of ADE-type, α be a simple sink

at vertex i ∈ Q0, and β ∈ Φ+ any positive root. Consider the Euler form applied to α

and β:

< α, β > =

|Q0|∑
j=1

αjβj −
∑
a∈Q1

αt(a)βh(a)(3.3)

= αiβi,(3.4)

because (α)t(a) = 0, since vertex i is a sink. Therefore < α, β >≥ 0,∀β.

This means that when constructing a directed partition, one can always put the simple

sinks as the first set. That is, suppose Φ′ ⊂ Φ+ is a subset of the positive roots, and
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Φsk ⊂ Φ+ is the set of simple sinks. If Φ′ = I1 ∪ . . . ∪ Is is a directed partition, then

Φ′ = (Φsk ∩ Φ′) ∪ (I1 − Φsk) ∪ . . . ∪ (Is − Φsk) is another directed partition.

Proposition 3.6.2. Let Q = (Q0, Q1) be a quiver with orbit, Sm, and directed par-

tition Φ′ = I. If I(Sm) is strongly Schur positive then the orbit with associated directed

partition J (Sm′) = (Φsk − Φ′) ∪ I is strongly Schur positive.

Essentially this proposition asserts that if (after applying the numerator lemma) the

generating sequence for a directed partition is strongly Schur positive then recalculating

the generating sequence with added simple sinks in front of the directed partition will

not change strong Schur positivity.

Proof. First, observe that if α, β /∈ Φ′ are simple sinks at vertices k, l, respectively,

and J1 = {α, β}∪I, J2 = {α}∪{β}∪I then the generating funcitons are equal. That is,

GJ1 = GJ2 . This is clear by constructing the resolution pairs for each directed partition.

If i=(i1, . . . , ip),r=(r1, . . . , rp) is the resolution pair for I then i’=(k, l, i1, . . . , ip), r’ =

(mk,ml, r1, . . . , rp) is the resolution pair for both J1 and J2.

Since the resolution pairs are the same, so are the generating sequences. Thus it

suffices to prove this theorem adding only one simple sink at a time.

Let GI be the generating sequence for I(Sm) and let α /∈ Φ′ be a simple sink at vertex

j. As mentioned previously, the resolution pair for the directed partition J = {α} ∪ I

will be i’=(j = i0, i1, . . . , ip),r’=(mj = r0, r1, . . . , rp). Therefore,

GJ = A(n0)
0 ·

∏
a∈A0
b∈B0

(
1− a

b

)
·GI .

This is because vertex j is a sink, so C0 = ∅. After applying the numerator lemma, we

have

HJ = A(n0)
0 ·HI .
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Let k = minl>0{il = j}. Then

n0 = nk − rk +
∑
k>l>0
il∈T (j)

rl.

But α is the only simple root associated with vertex j. Therefore, for each vertex asso-

ciated to j that contributes a positive value to rk, it must contribute the same value to

at least one vertex adjacent to j. Since vertex j is a sink, there must be an arrow from

the adjacent vertex to vertex j, meaning that

∑
k>l>0
il∈T (j)

rl ≥ rk ⇒ n0 ≥ nk.

Let L = (L1, . . . ,L|Q0|) be a collection of infinite alphabets and define

D = (D1, . . . ,D|Q0|), with Dt =
⋃
l>0
il=t

Al,

D′ = (D1, . . . ,Dj−1,A0 + Dj,Dj+1 . . . ,D|Q0|).

Now consider all of the variables in Dj. Because vertex j is a sink, there are no arrows

coming from it. Therefore, these variables never appear in the numerators of the Cauchy

products appearing in HI which means that the exponents of these variables are always

less than nk.

If n0 ≥ nk ≥ µ1, for some µ ∈ Z|Dj |, non-increaing, and

∆
Lj
Dj(D

µ
j ) = ∆

Lj
Dj(sµ(Dj)), then

∆
Lj
A0+Dj(A

(n0)
0 · Dµj ) = ∆

Lj
A0+Dj(s{A0,µ}(A0 + Dj))

with {n0, µ} non-increasing.

So if we write

∆L
D(HI) = ∆L

D

 ∑
λ=(λ1,...,λn)

cλ

|Q0|∏
l=1

Dλll

 ,
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for λl ∈ Z|Dl| non-increasing, then

∆L
D′(A

(n0)
0 ·HI) = ∆L

D′

 ∑
λ=(λ1,...,λn)

cλs{(n0),λj}(A0 + Dj)
∏
l 6=j

sλl(Dl)

 .

This completes the proof. 2

Corollary 3.6.3. Let Q = (Q0, Q1) be a quiver with orbit, Sm, and directed partition

Φ′ = I. If I(Sm) is Schur positive then the orbit with associated directed partition

J (Sm′) = (Φsk − Φ′) ∪ I is Schur positive.

Proof. The proof is the same except one can assume that the λl are partitions and

L is a collection of positive alphabets. 2

3.6.2. Simple Sources. Let Q = (Q0, Q1) be a quiver of ADE-type, α a simple source

at vertex i ∈ Q0, and β ∈ Φ+ any positive root. Consider the Euler form applied to β

and α:

< β, α > =

|Q0|∑
j=1

βjαj −
∑
a∈Q1

βt(a)αh(a)(3.5)

= αiβi,(3.6)

because αh(a) = 0, since vertex i is a source. Therefore < β, α >≥ 0,∀β.

This means that when construting a directed partition, one can always put the simple

sources as the last set. That is, suppose Φ′ ⊂ Φ+ is a subset of the positive roots, and

Φsr ⊂ Φ+ is the set of simple sources. if Φ′ = I1 ∪ . . . ∪ Is is a directed partition, then

Φ′ = (I1 − Φsr) ∪ . . . ∪ (Is − Φsr) ∪ (Φsr − Φ′) is another directed partition.

Proposition 3.6.4. Let Q = (Q0, Q1) be a quiver with orbit, Sm, and directed par-

tition Φ′ = I. If I(Sm) is strongly Schur positive then the orbit with associated directed

partition J (Sm′) = I ∪ (Φsr − Φ′) is strongly Schur positive.

We will hold off on the proof to make one observation.
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Lemma 3.6.5. Suppose that A is a finite alphabet and λ is a partition with card(A) =

|λ| = n and define µ to be the (n+ k)-vector with

µi =

 λi − k if i ≤ n

0 if i > n
.

That is, µ = {λ− (k)n, (0)k}. If λn < k then sµ(A) = 0.

Proof. Suppose that λn < k. But λ is a partition, so λn ≥ 0. Therefore, −k ≤

µn = λn − k < 0. Consider the transposition σ ∈ Sn such that σ(n) = n − µn. Under

the Bott action,

(σ · µ)n = µn−µn + n− (n− µn) = µn,(3.7)

(σ · µ)n−µn = µn + (n− µn)− n = 0 = µn−µn .(3.8)

So σ · µ = µ and sµ(A) = −sσ·µ(A) = −sµ(A), which must mean that sµ(A) = 0. 2

Proof. (of proposition 3.6.4)

First, observe that if α, β /∈ Φ′ are simple sources at vertices k, l, respectively, and

J1 = I ∪ {α, β}, J2 = I ∪ {α} ∪ {β} then the generating funcitons are equal. That is,

GJ1 = GJ2 . This is clear by constructing the resolution pairs for each directed partition.

If i=(i1, . . . , ip),r=(r1, . . . , rp) is the resolution pair for I then i’=(i1, . . . , ip, k, l), r’ =

(r1, . . . , rp,mk,ml) is the resolution pair for both J1 and J2.

Since the resolution pairs are the same, so are the generating sequences. Thus it

suffices to prove this theorem adding only one simple source at a time.

Let GI be the generating sequence for I(Sm) and let α /∈ Φ′ be a simple source

at vertex j. As mentioned previously, the resolution pair for the directed partition

J = I ∪ {α} will be i’=(i1, . . . , ip, ip+1 = j),r’=(r1, . . . , rp, rp+1
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= mj). Define D̄ =
∑

l∈H(j)Dl. Therefore,

GJ =

(∏
c∈D̄

cmj

)∏
b∈Dj

b−mj


 ∏
a∈Ap+1

b∈Dj

(
1− b

a

) ·GI .
This is because vertex j is a source, so Cl ∩ Ap+1 = ∅ for all l. After applying the

numerator lemma, we have

HJ =

(∏
c∈D̄

cmj

)∏
b∈Dj

b−mj

 ·HI .
Let L = (L1, . . . ,L|Q0|) be a collection of infinite alphabets and define

D = (D1, . . . ,D|Q0|), with Dt =
⋃
l<p+1
il=t

Al,

D′ = (D1, . . . ,Dj−1,Dj + Ap+1,Dj+1 . . . ,D|Q0|).

First consider all of the variables in Dj. Because vertex j is a source, there are no arrows

going into it. Therefore, these variables never appear in the denominators of the Cauchy

products appearing in HI which means that the exponents of all of these variables are

at least as big as nk.

By lemma 3.6.5, if µ is a partition then either ν = {µ− (mj)
|Dj |, (0)mj} is a partition

or sν(Dj + Ap+1) = 0. Thus, if

∆
Lj
Dj(D

µ
j ) = ∆

Lj
Dj(sµ(Dj)), then

∆
Lj
Dj+Ap+1

Dµj ·∏
b∈Dj

b−mj

 = ∆
Lj
Dj+Ap+1

(sν(A0 + Dj))

with ν a partition.

So if we write

∆L
D(HI) = ∆L

D

 ∑
λ=(λ1,...,λn)

cλ

|Q0|∏
l=1

Dλll

 ,
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for λl ∈ Z|Dl| non-increasing, then

∆L
D′

HI ·∏
b∈Dj

b−mj

 = ∆L
D′

 ∑
λ=(λ1,...,λn)

cλsν(Dj + Ap+1)
∏
l 6=j

sλl(Dl)

 .

Next consider that
∏

c∈D̄ c
mj ∈ SymmZ(D′) so,

(3.9) ∆L
D′

HI ·
∏
b∈Dj

b−mj

(∏
c∈D̄

cmj

)

= ∆L
D′

 ∑
λ=(λ1,...,λn)

cλsν(Dj + Ap+1)

(∏
l∈D̄

sλl+(mj)(Dl)

)∏
l 6=j
l/∈D̄

sλl(Dl)


 .

Since ν, λl + (mj), and λl are non-increasing, this completes the proof. 2

3.7. Results for A3

Theorem 3.7.1. Consider the inward-oriented A3 quiver: • → • ← •, with directed

partition I = {α2}∪{α12, α23, α13}∪{α1, α3}. Any orbit associated to I is strongly Schur

positive.

Proof. The inward-oriented A3 quiver with directed partition

J = {α12, α23, α13}

with any orbit associated to J is strongly Schur positive because it is a 0-step desin-

gularization. By propositions 3.6.4 and 3.6.2, adding simple sinks to the beginning and

simple sources to the end of J doesn’t change strong Schur positivity. This completes

the proof. 2

Theorem 3.7.2. Consider the outward-oriented A3 quiver: • ← • → •, with directed

partition I = {α1, α3}∪{α12, α23, α13}∪{α2}. Any orbit associated to I is strongly Schur

positive.
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Proof. The outward-oriented A3 quiver with directed partition

J = {α12, α23, α13}

with any orbit associated to J is strongly Schur positive because it is a 0-step desin-

gularization. By propositions 3.6.4 and 3.6.2, adding simple sinks to the beginning and

simple sources to the end of J doesn’t change strong Schur positivity. This completes

the proof. 2

Corollary 3.7.3. Any orbit of any quiver of type A3 with any orientation is strongly

Schur positive.

Proof. Corollary 3.5.7 and theorems 3.7.1 and 3.7.2 show that for any orbit of any

A3 quiver there is a directed patition such that together they are strongly Schur positive.

2

3.8. Results for A4

Let us name the A4 quivers:

(1) Equi-oriented: • → • → • → •.

(2) Single-sink: • → • ← • ← •.

(3) Sink-source: • → • ← • → •.

(4) Single-source: • ← • → • → •.

One can see by exhaustion that these are the only quivers of type A4.

Theorem 3.8.1. Any orbit that excludes simple sources that is associated to a quiver

of A4-type, with any orientation, is Schur positive.

Proof. This is already known for the equi-oriented A4 quivers. For the others con-

sider the following.

In light of corollary 3.5.5, all one-step desingularizations are Schur positive. Further,

from corollary 3.6.3, beginning a directed partition with simple sinks doesn’t change
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Schur positivity for associated orbits. Thus it suffices to find a directed partition for each

quiver Φ+ = I1 ∪ I2 ∪ I3 where I1 is comprised of only simple sinks .

For the single-sink A4 quiver let

Φ+ = {α2} ∪ {α12, α13, α23} ∪ {α3, α24, α14, α34}.

For the sink-source A4 quiver let

Φ+ = {α2, α4} ∪ {α12, α24} ∪ {α13, α23, α14, α34}.

For the single-source A4 quiver let

Φ+ = {α1, α4} ∪ {α14, α24, α34} ∪ {α12, α23, α13}.

This suffices for the proof. 2
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