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ABSTRACT

John Bainbridge: Modeling the Diffusion of Sentinel Lymph Node Biopsy in Breast Cancer

Treatment.

(Under the direction of Pranab Sen and Chirayath Suchindran)

Use of a generalized linear mixed model with a binary outcome and logit link function is

proposed to generate trajectories of the probability of use of novel medical procedures. It is hy-

pothesized that the shape of these innovation adoption trajectories vary by institution and region

and are influenced by patient, institutional, and geographic factors. The example of the adoption of

sentinel lymph node biopsy in the treatment of early stage breast cancer is used to demonstrate the

model’s utility and improvement over those typically used in registry and claims-based research.

Surveillance, Epidemiology, and End Results (SEER)-Medicare data from 1999 to 2007 was used

as the basis for these model-based trajectories. Fixed effects included patient, institution, and re-

gional variables including a cubic polynomial of time for each region. Random effects were at

the institution level and included a cubic polynomial of time. Results indicated a better fit of the

multilevel model with a polynomial of time in comparison to standard models and that patient,

institutional, and geographic factors influence the shape of the adoption trajectory of this novel

medical procedure.

Additionally, an evidence-based medical implementation index (EMII) was developed and

tested using sentinel node biopsy adoption trends. Data were analyzed in aggregate and at the

institution level. A single summary metric, based upon the area under the curve, was derived to

quantify the pattern of adoption ranging from 0-100, with higher scores reflecting earlier adoption.

The EMII was compared between SEER regions and between institutions. Differences in adoption

patterns were found for SEER regions and institutions (p < .001 for each effect). For SEER re-

gions (n=15) the SLNB EMII range was 33 (New Mexico) to 66 (Seattle). For all institutions: n =

720, range = 4 - 87, mean = 46, S.D. = 20, bell-shaped distribution.
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Finally, four estimation techniques for the random effects parameters were compared to maxi-

mum likelihood using quadrature based estimates, two types of pseudo-likelihood (PL), and jack-

knifed estimates based on these. The estimates were compared via D-, A-, and E-efficiency. Re-

sults indicated that even with jackknifing, PL estimates of the variance and thier confidence inter-

vals were biased.
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1 LITERATURE REVIEW

1.1 Introduction

1.1.1 Measuring Quality of Cancer Care

Quality of care in the treatment of cancer is an important issue and awareness has been height-

ened ever since the Institute of Medicine released its recommendations in Ensuring Quality Can-

cer Care (39). One of the IOM’s recommendations of primary importance to this work is to

“Measure and monitor the quality of care using a core set of quality measures.” Other recommen-

dations included; “Services for the un- and underinsured should be enhanced to ensure entry to,

and equitable treatment with, the cancer care system”, “Studies are needed to find out why specific

segments of the population ... do not receive appropriate cancer care”, and “Cancer care quality

measures should be used to hold providers ... accountable for demonstrating that they provide and

improve quality of care.” While the first and last call explicitly for a set of metrics, the other two

implicitly require metrics in order to be achieved. The focus of this work is the research used to

generate the metrics that are used to measure, and ultimately improve, quality of medical care for

breast cancer patients.

One indication that quality care is being provided is the use of new evidence-based procedures.

One such procedure used in early stage breast cancer lymph node staging is Sentinel Lymph Node

Biopsy (SLNB), originally called sentinel lymphadenectomy (20). It is being used in place of

Axillary Lymph Node Dissection (ALND) in some cases when appropriate (20; 8; 15; 19), although

seemingly with disparities for at risk groups (22; 35; 11; 45; 9; 44). In section 1.1.2 we describe

the procedures.
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1.1.2 Lymph Node Staging Procedures for Breast Cancer Treatment

Axillary Lymph Node Dissection (ALND)

ALND involves the removal of all level one and two ipsilateral axillary lymph nodes. It is an

extensive procedure and associated morbidities include, lymphedema, nerve paresthesias, axillary

seromas, and infections. Its primary purpose is to provide pathological nodal staging information.

It also serves the function of removing any metastatic tissue that is involved with the axillary lymph

nodes.

Figure 1.1: Sentinel lymph node biopsy procedure.

Sentinel Lymph Node Biopsy (SLNB)

SLNB is a less invasive procedure than ALND, where a few lymph nodes are removed, typi-

cally 1 to 3, and interoperatively assessed for metastatic involvement (8; 24). A standard version

of the procedure during the time period of this study started with injecting a blue dye and a ra-

dioactive tracer near the site of the tumor (36). After some time has passed both visual inspection

and a Geiger counter are used to determine which lymph node(s) the lymph near the tumor drains

to. These are excised and assessed for metastatic involvement. If it is determined that there is in-

volvement then the next node in the lymph chain is excised and examined. Using this information

it can then be determined whether to perform a completion ALND.

2



SLNB as Standard of Care for Early Stage Breast Cancer Treatment

Up through the late 1990’s the standard practice had been to perform ALND for lymph node

staging in cases of early stage breast cancer. With the advent of SLNB in the mid 1990’s and a

growing body of evidence that it was equivalent to ALND in outcomes for pathologically node

negative cases it became the standard of care (62; 13; 52; 14; 41; 54; 55; 61; 56). Medicare started

reimbursing its use in 1999 while it was still in clinical trials since early evidence suggested it was

a preferred treatment option in many cases. With the conclusion of the clinical trials SLNB became

the documented standard of care for lymphatic staging of early stage breast cancer (26).

In the following section the data source for modeling the use of SLNB, SEER-Medicare cancer

registry and claims data, is described and reviewed.

1.1.3 SEER-Medicare: Combined Cancer Registry and Medicare Claims data

SEER-Medicare data is a rich data source for treatment and outcomes of cancer in the United

States but is rather complex. It is a joining of cancer registry data and the associated Medicare

data for individuals that have Medicare coverage. It has been described extensively elsewhere,

particularly in a supplement to Medical Care in 2002 (59; 4; 25; 48). What follows in a basic

description of each of the components starting with the cancer registry data and how it’s collected.

SEER Cancer Registry Program

According to information provided during the National Cancer Institute’s SEER-Medicare data

training workshop in March 2010 (60), the Surveillance, Epidemiology, and End Results (SEER)

program contracts with state health programs and universities to operate incident cancer registries

in geographic regions around the United States of America. Currently the registries cover about

26% of the US population. The 17 registries are each headed by a different investigator and each

registry works differently. They do however use a standardized reporting system for data transmis-

sion to NCI.

It should be noted that the program is for the most part facility based and thus information for

services provided in a physician’s office might be missing or incomplete. It should also be noted
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that for many variables there is a hierarchical structure, that is, some values supersede other values

even though both are true e.g. the maximum value is reported. The types of data included are,

diagnostic, staging, treatment, and limited demographics.

Registry data can come from a variety of sources but a case is first identified via a report from

a service provider where a cancer diagnosis was made, an autopsy report, or from a death certifi-

cate submitted to the cancer registry for the geographical region where the entity is located. In

SEER-Medicaid research it is a standard practice to exclude those cases that were only identified

via autopsy or death certificate. Thus the reporting sources include at least one of; a Hospital Inpa-

tient/Outpatient or Clinic, a Laboratory (Hospital or Private), a Physician’s Office/Private Medical

Practitioner, or a Nursing/Convalescent Home/Hospice.

There are a variety of missing data issues for SEER data. Registries don’t capture 100% of all

incident cases, although the expectation is at least 98%. SEER missing data is more likely to have

come from patients who were primarily treated at physician’s offices (rather than at a hospital or

clinic). Pathological staging data ‘overwrites’ clinical staging data and we don’t know if this has

happened or not for breast cancer (prostate cancer has separate clinical staging variables). Only

94% of the cases aged 65 or older link to Medicare data and it is unknown if this is differential,

but assumed not. Unlinked cases are not included in SEER-Medicare data. Changes in coding

systems over time have led to some staging and treatment information being collected during some

time frames but not others (or defined somewhat differently). Race data categories depend on time

period, SEER race data however is considered better than Medicare race data. Missing/unknown

categories for some SEER variables during analysis behave more like a separate level (or are sim-

ilar to another level) rather than seeming to come from the other levels proportionally. Six months

of 2005 data for Louisiana are somewhat sparse due to severe storms and an indicator variable flags

this time period. There were four new SEER registries in 2000, there is no prior data for them.

Next we consider the Medicare data that is provided by NCI in their release of SEER-Medicare

data.
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Medicare data as Provided by the SEER-Medicare Program

Medicare data used in studies of SLNB consists of eligibility, inpatient stay, outpatient service,

physician service, and durable medical equipment (which includes some cancer medications) in-

formation. Eligible individuals include qualifying individuals age 65 or greater, those with end

stage renal disease, and certain people with disabilities. Note that this is administrative (billing)

data for services that are paid for based on Medicare policy in effect at the time of service. This

has implications for completeness, particularly for procedures not covered at the time of service.

The pertinent information is obtained from four files: the hospital inpatient stay file (MEDPAR),

which has one record per hospital stay, the hospital outpatient claims file (OUTSAF), which has

one record per billable item, the non-hospital provider claims file (NCH), which has one record per

billable item, and the durable medical equipment file (DME), which includes cancer medications.

Medicare data also has its share of missing data issues. Census data sometimes is missing,

and the usual strategy is to use zip code based data in this case. There are still a (very small)

number of missing after this strategy is employed although. Physicians tend to be erratic in billing

for services they know Medicare won’t pay for, so for uncovered services there will be ‘missing’

claims data. Similarly some services are ‘bundled’ with others and only the code for the more

extensive procedure is provided. One needs to be familiar with Medicare policy during time period

of interest and during some years the location of interest in order to finesse the complexities.

Medicare was supposed to have the exact same coverage for services throughout the US but during

the early 2000’s some of the fiscal intermediaries had slightly different policies or effective dates

for service coverage. E.g. different regions (primarily) of the country had different start dates for

coverage of SLNB depending on which fiscal intermediary (FI) processed a hospital’s claims. An

additional issue is that, according to a Medicare data training workshop provided by RESDAC,

a person always has the same FI processing their claims as when they first signed up. Thus,

individuals that moved during the time period where there were differences in FI policies may

have had the policies imposed based upon their previous residence’s FI.
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Concluding this section is a description of the SEER-Medicare data methodology.

SEER-Medicare data Methodology

SEER-Medicare methodology is as follows. From the SEER website, “Geographic areas were

selected for inclusion in the SEER Program based on their ability to operate and maintain a high

quality population-based cancer reporting system and for their epidemiologically significant pop-

ulation subgroups. The population covered by SEER is comparable to the general US population

with regard to measures of poverty and education. The SEER population tends to be somewhat

more urban and has a higher proportion of foreign-born persons than the general US population.”

Thus, it is not a probability sample and all generalizations to populations outside of the SEER re-

gions must be model based. This data is then linked to Medicare eligibility data and a 94% linkage

rate has been found for cases where the first cancer occurred at an age of 65 or greater. Cases

where there is a successful link are kept.

The data file creation process starts with SEER data being transformed from the format of one

record per incidence of primary cancer to a person level format. The data for the first ten cancers

is retained, i.e. it is changed from tall to wide structure with truncating any incidences of cancer

after the first ten. Variables are created for each of the (up to) ten cancers including all the different

coding systems over time. This leads to many empty data elements and requires knowledge of

which set of variables are to be used for any given incidence of cancer. This is determined by

cancer number, date of diagnosis, and for a few variables cancer type.

This information is combined with demographic and eligibility information from the Medicare

program to create the Patient Entitlement and Diagnosis Summary File (PEDSF) file. The name is

a little misleading as it includes all of the (selected by NCI) SEER data, not just the diagnosis infor-

mation. It also includes (de-identified and ‘fuzzed’) census tract and zip code level demographic

(census) information.

In this next section Rogers theory of the diffusion of innovation is reviewed. It is a theory that

has informed and framed much of the work done in modeling the use of SLNB.
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1.1.4 Rogers Theory of the Diffusion of Innovation

Before looking at individual studies on the use of SLNB, it is useful to consider Rogers’ (1962)

theory on the diffusion of innovation. It explicitly is part of the conceptual basis of at least two

papers on the use of SLNB (9; 44) and will be used in the development of the model in this

work. He proposed that the uptake by a population of an innovation, be it a product, an idea, or

a procedure, follows a consistent pattern. This pattern can be described by a S-shaped curve on a

graph, with the proportion of a population that has adopted the innovation on the y-axis and time

on the x-axis. It has aspects of a cumulative distribution function and is similar in shape to the

logistic function, with the exception that it starts at zero and can eventually reach 100%. Thus the

model should permit examining whether it is the case with the diffusion of SLNB.

The taxonomy for Rogers’ five categories of adopter types is Innovators, Opinion Leaders,

Early Majority, Late Majority, and Laggards. He suggests that the proportion of a population that

falls into each category is, respectively, 2.5%, 13.5%, 34%, 34%, and 16% and it’s around the point

when 16% of the population has adopted the innovation that the function begins its steepest slope.

I hypothesize that at the hospital level that one will be able to identify these different adopter types

and thus the model should permit testing this as well. In the case of assessing the rate of use of

a procedure over time, one way to identify the different categories is by graphical examination of

individual hospitals’ rate of use of over time. Numerically, a formula could be devised to categorize

hospitals based upon their subject specific intercept terms and the subject specific polynomial if

the effect of time is included in a model.

A limitation of Rogers model is that it only speaks to the time period when adoption is occur-

ring and thus is a non-decreasing function over time. It also is limited to the choice of adopt or

not adopt, so differential adoption isn’t explicitly addressed. One could however easily imagine

separate curves for different situations i.e. the curve is conditional upon some set of factors. For

modeling the use of a procedure over a longer timespan it would be useful to consider the possibil-

ity of decreasing use, particularly for subpopulations. Possible reasons for decreasing use among a
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(sub)population are, the procedure is found to have issues, it is supplanted by a newer technology,

there is a substantial increase in cost to payer relative to alternatives (or benefit), and a change in

incentives to the decision maker that reward different choices. Thus we need to extend Rogers’

theory to model the lifecycle of a procedure where there is a decreasing component at some point.

A good model will permit testing for these possibilities. In the case of a model that uses a global

polynomial to measure the effect of time, it essentially requires the use of a cubic term.

In section 1.2, seven papers that examined the use of SLNB in early stage breast cancer are

reviewed, starting with their methodologies, variables, and results in subsection 1.2.1 and then

with a greater focus on the statistical models employed in subsection 1.2.2.

1.2 Previous Research in the use of SLNB in Early Stage Breast Cancer Treatment

With Rogers’ theory in mind let’s examine some of the work to date on the use of SLNB in

breast cancer treatment.

1.2.1 Methodology, Variables and Results

Maggard et al. (2005) (35) used SEER data from 12 regions from 1998 to 2000, treating patient

as the unit of analysis, and performed multivariable logistic regression to identify predictors of the

use of SLNB during that time frame. Included were those cases that had an AJCC stage of I or II.

Those cases with “Histologies corresponding to squamous cell, spindle cell, carcinoid, sarcoma,

Paget’s disease, and in situ tumors were excluded from the analysis.”(35) They must have received

definitive surgery, Lumpectomy or Mastectomy, and received SLNB, ALND, or both.

Variables included in the model were all categorical (reference levels are underlined) and in-

cluded; SEER Registry, Tumor grade, Tumor stage (I, II), Age at diagnosis (<40, 40-49, 50-59,

60-69, 70-79, and 80+), Race/ethnicity (White, Black, Hispanic, Asian, and Other), Marital status

(Not married vs. Married), Year of diagnosis (1998, 1999, 2000), and Surgery type (Lumpectomy

vs. Mastectomy). While stating that they controlled for registry and tumor grade they did not

give any information about how these variables were handled in the model. They found that older

women and minority groups, as well as those receiving mastectomies were less likely to have a
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SLNB performed then their respective reference groups.

Chen et al. (2008) (11) used National Cancer Database data from 1998 to 2005, treating patient

as the unit of analysis, and performed several multivariable logistic regressions to examine the ef-

fect of patient, clinical, facility, and neighborhood characteristics, as well as year, on the receipt of

SLNB. Inclusion criteria were; TNM staging of T1N0M0 or T2N0M0, received definitive surgery,

received nodal staging, and no missing demographic data. They found all of the variables included

in their models to be highly statistically significant with the exception of a few levels (mostly the

‘missing’ level) of a small number of variables. No attempt was made to do multi-level modeling

despite the clearly multi-level nature of the data.

It should be noted that Urbach and Austin’s (2005) (53) paper ‘Conventional models overesti-

mate the statistical significance of volume-outcome associations, compared with multilevel mod-

els’, in the Journal of Clinical Epidemiology, points out just that, along with providing an example

analysis using hospital procedure volume to predict an outcome. This of course would generalize

to any higher level covariate in a multi-level structure, but is particularly of note since several of

the SLNB papers use hospital procedure volume as a predictor variable including Chen et al.

Rescigno, Zampell, and Axelrod (2009) (45) used SEER data from 14 regions from 1998 to

2004, treating patient as the unit of analysis, and performed multivariable logistic regression to

examine factors involved in the nodal staging procedures used. Inclusion criteria were; T1 to T3,

N0 and N1, and M0 based on TNM staging, received definitive surgery, and status of nodal staging

known. Variables included in the model were at the disease, patient, and neighborhood levels but

no hospital level information was included. They found both appropriate and inappropriate use

of SLNB and ALND, with significant effects of disease factors, age, Hispanic (but not African

American) ethnicity/race, and neighborhood level demographics.

Carpenter et al. (2011) (9) used SEER-Medicare data from seven regions from 2000 to 2002

and employed a three level multilevel model where patient was nested within hospital, which was

nested in SEER region, to examine the factors involved in the diffusion of the use of SLNB during
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this time frame. The model was implented by use of a Generalized Linear Mixed Model with

random intercept terms for hospital nested within SEER region and SEER region. Inclusion criteria

were; 66 or older at the date of first diagnosis of primary breast cancer, 12 months Medicare parts A

and B eligibility prior to diagnosis, 24 months Medicare parts A and B eligibility post diagnosis (or

until death), no HMO coverage during the study period, were not identified via autopsy nor death

certificate, received definitive surgery, and received nodal staging. Variables included in the model

were at the disease, patient, neighborhood, hospital, and regional levels. They found that hospital

level variables, other than year, had the largest effect, African Americans and older patients were

much less likely to receive SLNB, and many variables previously reported to be significant were

not found to be statistically significant.

Reeder-Hayes et al. (2011) (44) used the same data as Carpenter et al. but performed multivari-

able logistic regression with GEE estimation of within hospital correlations. Variables included in

the model were similar as Carpenter et al. but included a variable for receipt of Medicaid, which

was found to have a rather large (OR 0.61, C.I. 0.47,0.78) and significant effect.

Meyer et al. (2013) (38) used SEER-Medicare data from 2000 to 2005 but it is unclear what

their model actually was. In the abstract they say they used a generalized linear model with gen-

eralized estimating equations while in the text they say they used SAS’s PROC GLIMMIX which

‘uses random effects and takes into account the clustering of patients within physicians and physi-

cians within hospitals.’ They also indicate that they used Maximum Likelihood with the Laplace

method for numeric integration. Given the lack of a clearly stated model we are unable to assess it

further.

Arrington et al. (2013) (3) used SEER data from 1998 to 2008 looking across all ages with a

focus on urban vs. rural populations. They used multivariate logistic analysis but did not control

for the hierarchical nature of the data.

Next we focus more in depth on the statistical models that the five papers with known models

used for their analyses.
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1.2.2 Statistical models

In this section we will look at the statistical models used in each of the papers, including

the model assumptions. The three model types used are all variants of logistic regression. They

are binomial logistic regression, a marginal model with generalized estimating equation (GEE)

estimates of parameters including within cluster correlation, and a generalized linear mixed model

(GLMM). To begin we consider the papers that used binomial logistic regression.

Binomial logistic regression - A type of generalized linear model

Four of the papers considered used binomial logistic regression for modeling the receipt of

SLNB. There is a substantial body of literature on logistic regression but a standard reference is

McCullagh and Nelder (1989) (37), whose notation and terminology is used in this section. For

describing logistic regression McCullagh and Nelder use the framework of generalized linear mod-

els (GLM) originally developed by Nelder and Wedderburn (1972) (40). The main components of

a GLM include the error distribution, a link function, and the systematic component. The vari-

ance function and the dispersion parameter stem from the choice of main components. Thus for

the case, such as in the first three papers, where there are only categorical explanatory variables,

binomial logistic regression can be described as follows:

Model description

Let N be the total number of patients observed in a study. x is a vector of length p whose elements

consist of categorical explanatory variables. A covariate class, such as described in McCullagh

and Nelder (1989) (37), is a distinct combination of covariate levels for the explanatory variables.

There are n covariate classes and i is the index for the covariate classes such that i = 1 to n.

Thus, a covariate class is all observations that have the covariate vector (xi1, xi2, . . . , xip). mi is

the number of observations in the ith covariate class.

Now, let Y be the response vector of length n consisting of counts of receipt of SLNB for each

covariate class. π is a vector of length n consisting of the probabilities of SLNB for each covariate

class. η is a vector of length n consisting of the log odds of SLNB for each covariate class. β is
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the parameter value vector of length p. X is the design matrix of size p×n. m is a vector of length

n consisting of the covariate class counts.

Then using the GLM framework and the case of binomial logistic regression with categorical

explanatory variables; we have error distributions that are binomial and independent, use of the

logit for the link function, and a systematic component that is linear on the logit scale. These main

components of the GLM as well as the corresponding variance function and dispersion parameter,

φ can be written for each covariate class as follows:

Error distribution Yi ∼ Bin(mi, πi), where Yj ⊥ Yk and j 6= k

Logit link function ηi = log

(

πi

1− πi

)

Systematic component ηi = xT
i β

Variance function πi(1− πi) Dispersion parameter φi =

(

1

mi

)

The primary model assumption is that conditional upon the explanatory variables the binary

outcomes are generated by a bernoulli process with each event independent and identically dis-

tributed. Another important assumption is that the model is correctly specified and all necessary

independent variables are included in the model. Parameters can be estimated with maximum like-

lihood estimation although the EM algorithm is needed if there are missing values for any of the

explanatory variables.

Parameter Estimation

Parameter estimation can be accomplished via either the Iteratively Reweighted Least Squares

Algorithm, also known as Fisher Scoring, or by use of the Newton-Raphson Algorithm. Proc

Logistic in SAS defaults to Fisher Scoring and it is described in the documentation as well as a

more complete description in McCullagh and Nelder (1989) (37). Following is a description of the

process using Fisher Scoring drawing heavily on McCullagh and Nelder (1989) section 4.4.
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To begin note that the log likelihood for the binomial distribution is:

l (π;y) =

n
∑

i=1

[

yi log

(

πi

1− πi

)

+mi log (1− πi)

]

(McCullagh and Nelder’s 4.11).

and that it’s derivatives with respect to πi and βr are:

∂l

∂πi

=
yi −miπi

πi (1− πi)

∂l

∂βr

=

n
∑

i=1

yi −miπi

πi (1− πi)

∂πi

∂βr

noting that:

∂πi

∂βr

=
dπi

dηi

∂ηi
∂βr

=
dπi

dηi
xir and

dπi

dηi
= πi (1− πi)

Then McCullagh and Nelder’s equation 4.14:

∂l

∂βr

=
n

∑

i=1

yi −miπi

πi (1− πi)

dπi

dηi
xir

in matrix notation becomes:

∂l

∂β
= XT (Y − µ)

Fisher’s information for β is given by McCullagh and Nelder’s equation 4.15:

−E

(

∂2l

∂βr∂βs

)

=
∑

i

mi

πi (1− πi)

∂πi

∂βr

∂πi

∂βs

=
∑

i

mi

(dπi/dηi)
2

πi (1− πi)
xirxis =

{

XTWX
}

rs

Where W (in reduced form) is a diagonal weight matrix:

W = diag {miπi (1− πi)}
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Let Z, the adjusted dependent variable, have components:

zi = η̂i +
yi −miπ̂i

mi

dηi
dπi

McCullagh and Nelder’s 4.16 is the equation that maximum likelihood estimates satisfy:

XTWXβ̂ = XTWZ

Parameter estimates can be obtained by starting with a value for β̂, say β̂(0), based upon initial

estimates for π̂(0) using the data (with an appropriate adjustment for the cases where π̂
(0)
i = 0 and

π̂
(0)
i = 1) and then solved iteratively using least-square methods.

The revised estimate is:

β̂(m+1) =
(

XTWX
)

−1
XTWZ

With values on the right based upon the estimates from the previous iteration. The process is

continued until convergence is obtained.

In the next section we look a paper that used a marginal model in an attempt to control for the

within cluster correlation.

Logistic regression - Marginal model

Reeder-Hayes et al. (44) used a marginal (population averaged) model and GEE based esti-

mates of the parameters with an unstructured correlation matrix. This model, unlike the previous,

takes into account the fact that observations from the same hospital are likely to be correlated by

treating the hospital as a cluster and modeling the within cluster correlation. It is called a marginal

model to emphasize the fact that only the explanatory variables are used in generating the explana-

tory parameter estimates. The specifics of the model are as follows:
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Model description

Let N be the total number of patients observed. There are n hospitals (clusters) and i is the index

for the hospitals so that i = 1 to n. j indexes the patients within a hospital and there are mi

patients in the ith hospital, so j = 1 to mi. The response vector Yi = (Yi1, . . . , Yimi
)T consists of

zeros and ones that indicate each patients (non)receipt of SLNB. The components of the model are

as follows:

Error distribution Yij ∼ Bern(πij)

Logit link function ηij = log

(

πij

1− πij

)

Systematic component ηij = xT
ijβ

Variance function πij(1−πij) Correlation structure Corr (Yij, Yik) = αjk

Note that in this type of model the expected value and the variance of Yij are modeled sep-

arately. Also note that since only the first two moments are given a likelihood function can not

be specified. This leads to the use of quasi-likelihood estimates for the parameters. The model

assumptions include that any missing outcome data is missing completely at random (MCAR)

(46; 31).

Following is a description of the estimation process, it is based heavily on course notes from Pro-

fessor Herring’s longitudinal data analysis class which for this topic are based on Liang and Zeger

(1986) (31).

Parameter Estimation

The working covariance matrix is defined as Vi = φiA
.5
i R (α)A.5

i where Ai is a diagonal matrix

with the values of v (µij) on the diagonal and R (α) is the working correlation matrix indexed by

α.

Estimation of β is accomplished by the use of generalized estimating equations where it is the

solution to:

n
∑

i=1

DT
i V

−1
i (Yi − µi) = 0 where Di =

∂µi

∂β

15



A two stage iterative procedure is then used. 1. With the current estimates of α and φ we obtain

an estimate of β. 2. Using the current estimate of β, α and φ are estimated using the standardized

residuals:

rij =
(Yij − µ̂ij)

v (µ̂ij)
.5

The last model considered is a three level random effects model, found in Carpenter et al. (9).

Logistic regression - Three level random effects model

The statistical model employed in Carpenter et al. (9) uses a generalized linear mixed model

with a logit link function. It is a three level random effects model with random intercept terms for

hospital nested within SEER region at the second level and SEER region at the third level. There

are fixed effect covariates at the person (first) level as well as at the hospital (second) level.

It can be formulated as follows:

Model description

Let N be the total number of patients observed. There are m third level units, SEER regions,

which are indexed by k such that k = 1 to m. There are nk second level units, hospitals, in each

third level unit which are indexed by jk. Let ljk be the count of first level units, patients, in each

hospital, indexed by ijk. Thus, the jth hospital in the kth SEER region has ljk patients. Let Y be

the response vector of length N consisting of zeros and ones indicating each patients (non)receipt

of SLNB. π is a vector of length N consisting of the expected value of Y , that is the probability

of SLNB, for each patient. η is a vector of length N consisting of the log odds of SLNB for

each patient. x
(1)
ijk is a vector of length p whose elements consist of first (patient) level explanatory

variables. x
(2)
jk is a vector of length q whose elements consist of second (hospital) level explanatory

variables. β(1) and β(2) are the corresponding fixed effect parameter value vectors of length p and

q respectively. b(2) and b(3), are multivariate normal random variables with means of zero and

b ∼ MVN (0,G), where G is the covariance matrix.
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The three levels of the systematic component for each patient are:

First level model ηijk = β0jk + x
(1)T
ijk β(1)

Second level model β0jk = β0k + x
(2)T
jk β(2) + b

(2)
jk

Third level model β0k = β0 + b
(3)
k

Thus, β0 is the fixed effect that represents the mean of the logit across all SEER regions, β0k is

the mean value for the kth SEER region, and β0jk is the mean value for the jth hospital in the kth

SEER region.

Parameters were estimated using maximum likelihood but required the use of quadrature in

order to generate the estimates. This model assumes that any missing outcome variable data are

missing at random (MAR) (46; 28; 49).

The following description of the estimation procedure draws heavily on the SAS documentation

(47) for the procedure used to fit the models, Proc GLIMMIX (see chapter 38), as well as Professor

Herrings 767 course notes.

Parameter Estimation

The joint probability density function, in general, is given by:

f (Yi|Xi,bi) f (bi)

but since the bi are unobserved the marginal likelihood function is used:

N
∏

i=1

∫

f (Yi|Xi,bi) f (bi) dbi

A two step procedure is used to get the maximum likelihood estimates, first obtain estimates
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for β and G based on the marginal likelihood, using adaptive quadrature numerical integration for

approximate estimates. Next, using these estimates generate predicted random effects values:

b̂i = E
(

bi|Yi, β̂, Ĝ
)

SAS 9.2 implements adaptive quadrature as follows (47), the quadrature rule is:

∫

∞

−∞

f (x) p (x) dx ≈
Q
∑

r=1

wrf (xr)

where p (x) is a probability density function, f (x) is some function to be integrated against

it, Q is the number of quadrature points, r is its index, and wr are the quadrature weights. In

our case f (x) is the conditional distribution given the random effects, and p (x) is the random

effects distribution. When the number of quadrature points is not specified ahead of time then

Proc GLIMMIX determines the number of quadrature points by evaluating the log likelihood at an

increasing number of points until a tolerance is met. Additionally, and separately, ‘the procedure

centers and scales the quadrature points by using the empirical bayes estimates (EBEs) of the

random effects and the Hessian matrix from the EBE suboptimization.’ The manual goes on to

state that this process improves the likelihood approximation ‘by placing the abscissas according

to the density function of the random effects.’

1.2.3 Limitations of Current Work

Looking at Carpenter et al. (9), being the work that most closely modeled the structure inher-

ent in SEER-Medicare data of the papers considered, we find several limitations that impair the

interpretability of the results.

Failure to account for repeated measures

One major limitation is the failure to take into account the repeated measures nature of the data,

this is compounded by the collapsing to diagnosis year from diagnosis month. The data provided

by the SEER-Medicare program provides the month of diagnosis rather than the exact date to help
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ensure anonymity of the patients. This study, like the others, however collapses the data to year

of diagnosis which both obscures within year trends and leads to having unidentified clusters, the

hospital and diagnosis month combination, within each diagnosis year. It’s been shown that failing

to include all levels in a binary response multilevel model leads to biased estimates (51). Using

a Laird and Ware repeated measures type model (28) treating the hospitals, nested within region,

as the units and maintaining the uniqueness of the diagnosis month, would have permitted more

accurate parameter and standard error estimates and provided more information about the shape of

the outcome trajectory.

Failure to account for covariates measured with error

Despite the potential for measurement error in the covariates, as is customary in many fields, the

covariates are treated as if they were perfect measurements of the construct of interest in all of the

papers considered. It has been shown that treating stochastic variables in a GLMM as if they were

non stochastic can lead to bias in parameter estimates and decreased precision of the estimates (57).

Models for GLMMs with measurement error in the covariates have been described as generalized

linear mixed measurement error models (GLMMeM) (58) and over the past 15 years or so, a variety

of approaches have been developed for working with this class of models. Several methods have

lately been proposed for addressing this issue primarily via the use of instrumental variables and

alternatives to maximum likelihood for parameter estimation (30; 42). Other approaches include

regression calibration, simulation extrapolation, likelihood based methods, and Monte Carlo EM

(MCEM) algorithm estimation of the MLE. (64; 7).

In regression calibration the true value of the covariate measured with error is predicted by

use of a regression model based upon the other available covariates. The predicted values are

then used in place of the original measured with error values in the model of interest without any

further adjustments. There are however issues with regression calibration for GLMMeMs with

binary outcomes as pointed out in Carrol et al. (2006) (10). While in general substituting the

predicted values would correctly specify the fixed effects structure in a GLMM (given that it was

orthogonal to the random effects structure) it doesn’t correctly specify the random effects structure.
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Given that in the binary outcome case they are not orthogonal then both the random effects and the

fixed effects estimates will be biased (58).

Simulation extrapolation is most suited for measurement errors that are additive (10) and gives

an approximate but inconsistent estimator (30). While the numerical integration estimates of the

(intractable) log likelihood suffer from high dimensionality of the random effects (64). The MCEM

approach can have computational challenges such as non-convergence due to the random effects

(64). Thus Li and Wang’s (2012) (30) approach combining instrumental variables with a method

of moment estimator (MME) using a simulation based approach in the cases (such as a GLMMeM

with a binary outcome) where the moments are intractable may be a useful tool. Their simulation

based approach also has the benefit of not requiring normally distributed random effects (29).

Limited Model Checking

Another limitation is that limited model checking was performed. While likelihood ratio tests

indicated that the fixed and random effect terms in the final model provided a better fit than the

models without them, no checking of model assumptions, particularly the normality of the random

effects, was attempted. It is known that the maximum likelihood parameter estimates for binary

outcome type Generalized Linear Mixed Models are sensitive to departures from normality for the

random effects (21; 18; 34; 33). Methods have been proposed for testing for model misspecification

but were not used (1). Perhaps it would be better to assume an alternate distribution or to use a

nonparametric estimate of the random effect (27; 2; 29). Tests for normality of the random effects

have been proposed (50; 18) and could have been used to test the need for non-normal random

effects.

Methodological Limitations

Methodological limitations primarily were a function of the exclusion criteria for the study,

they included: only examining a fairly short time span even though more data was available, using

data from a limited number of SEER regions (seven), excluding those patients that did not receive

any nodal staging, and excluding those cases whose staging information possibly did not meet

the criteria for use of SLNB. While there were reasons for all of these decisions there also are
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approaches, either statistical or methodological, that would permit use of a much larger and richer

analytical data set that would provide both more power and greater insight into when SLNB was

performed.

In the next section we consider estimators of the variance parameters of the random effects in

Generalized Linear Mixed Models and some methods to compare thier relative efficiency.

1.3 Random Effect Parameter Estimation in Generalized Linear Mixed Models

The two primary methods for estimating the variance parameters of the random effects in Gen-

eralized Linear Mixed Models are Maximum Likelihood (ML) (with numeric integration) and

Pseudo-likelihood (PL) (also called penalized quasi-likelihood). ML is the gold standard, partic-

ularly for binary outcomes, but is computationally intensive. The ML using quadrature algorithm

that is implemented in SAS Institute’s Proc Glimmix has been described in section 1.2.2.

1.3.1 GLMM specification

In this section we will use the following specification of the GLMM. Note that g−1 is the inverse

link function and in this section Z is the design matrix for the random effects. Other terms are as

defined previously in section 1.2.2.

E(Y |b) = g−1(η)

η = Xβ +Zb

Where

b ∼ N(0,G)

and

V ar(Y |b) comes from the exponential family

1.3.2 Pseudo-likelihood (PL)

The use of Pseudo-likelihood for estimation of variance parameters in a GLMM was proposed

in two separate papers in 1993 (5; 63). Both approaches make use of the generalized mixed model
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equations and iteratively solve for β and b.
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Where y∗, the ‘pseudo-data’, is alternately used to estimate β and b and is estimated using

their estimates from the previous iteration. Given its relative ease of computation it was the original

method used in Proc Glimmix and remains the default method.

In the next section bias in these estimators is discussed.

1.3.3 Bias in Estimates

It has been shown that for GLMMs with binary outcomes that PL based random effect variance

estimators are biased with the magnitude of the bias inversely related to cluster size (6; 32; 43).

ML based estimates have been found to have less/little bias in this case with quadrature based

approximations performing the best and Laplace based approximations somewhat less so (43).

In the next section one potential way of addressing parameter estimator bias is covered, the

jackknife procedure.

1.3.4 Jackknife process

The Quenouille-Tukey jackknife is a procedure for nonparametrically estimating a function

(statistic) of some unspecified distribution from the data at hand that should have less bias than

some simpler estimator and is a special case of bootstrapping (16). Simply put, the jackknife

estimator is the average of all possible instantiations of some estimator where a single data point

is left out of its calculation.

Parameter Estimation

The following specifies the jackknife estimator, θ̂(.) for some estimator θ̂.

θ̂(i) = θ̂(X1, X2, . . . , Xi−1, Xi+1, . . . , Xn)

θ̂(.) =
1

n

n
∑

i=1

θ̂(i)
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Bias Estimation and correction

Bias estimation can be done by Quenouille’s estimate of bias

B̂IAS = (n− 1)(θ̂ − θ̂(.))

and the bias corrected estimator is simply

θ̃ = θ̂ − B̂IAS

The next section covers three types of relative efficiency for multivariate estimators such as the

estimators of covariance matrices.

1.3.5 Comparing estimators via D-, A-, and E-efficiency

This section heavily draws on section 8.6 of Jureckova, Sen, and Picek (2011) (23) where

they discuss multivariate efficiency. In all three types of relative efficiency we will consider the

reference is the ML estimator and it is the Fisher information from that which is compared to the

asymptotic covariance matrix of the estimated random effects variance terms from the estimator

which is under consideration. Essentially each type of efficiency is a different statistic of the

eigenvalues of the product of asymptotic covariance matrix and the MLE Fisher’s information.

The specifics follow.

Let Tn be the estimator of interest of parameter θ, in our case the covariance matrix of the

random effects, and let υT be the dispersion matrix of
√
n(Tn − θ). Let I(θ) be the Fisher

information matrix and D0 is the diagonal matrix of the p eigenvalues of υTI(θ).

Then we have:

D-efficiency

is the pth root of the determinant of (D0)−1

A-efficiency

is the mean of the eigenvalues of (D0)−1
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E-efficiency

is the largest eigenvalue of (D0)−1
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2 CHARACTERIZING INNOVATION ADOPTION

2.1 Introduction

Quality of care in the treatment of cancer is an important issue and awareness has been height-

ened ever since the Institute of Medicine released its recommendations in Ensuring Quality Can-

cer Care (39). One of the IOM’s recommendations of primary importance to this work is to

“Measure and monitor the quality of care using a core set of quality measures.” Other recommen-

dations included; “Services for the un- and underinsured should be enhanced to ensure entry to,

and equitable treatment with, the cancer care system”, “Studies are needed to find out why specific

segments of the population ... do not receive appropriate cancer care”, and “Cancer care quality

measures should be used to hold providers ... accountable for demonstrating that they provide and

improve quality of care.” While the first and last call explicitly for a set of metrics, the other two

implicitly require metrics in order to be achieved. The focus of this work is to generate the basis

for a metric that can be used to measure, and ultimately improve, quality of medical care for all

patients.

One indication that quality care is being provided is the use of new evidence based procedures.

However, to date, there is no metric that captures the pattern of institutional adoption of a new

evidence based procedure. We propose that Innovation Adoption Trajectories could be used as the

basis for such a metric. The example we apply this approach to is the case of the adoption of Sen-

tinel Lymph Node Biopsy (SLNB) for pathologic lymphatic staging of early stage breast cancer

in the Medicare population. The statistical model used to generate these trajectories is a Logis-

tic Normal Generalized Linear Mixed Model. In the next three sections we define and describe

the theoretical basis for Innovation Adoption Trajectories, provide background information about

Sentinel Lymph Node Biopsy, and give a brief description of how the model is used to generate
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trajectories of the probability of use of SLNB.

We begin with a description of Innovation Adoption Trajectories.

2.1.1 Innovation Adoption Trajectories

We define innovation adoption trajectories as the model based estimates (or predicted values)

of the probability of use of a clinical trial proven procedure over the period of adoption of the

novel procedure by the medical community. It is proposed that these trajectories, derived from

institutional claims and registry data, can be a useful tool for understanding promoters and barriers

to evidence based medical practice. Characterization of these trajectories is motivated by Rogers’

(1962) theory of adoption of innovation.

Rogers proposed that the uptake by a population of an innovation, be it a product, an idea, or

a procedure, follows a consistent pattern. This pattern can be described by a S-shaped curve on a

graph, with the proportion of a population that has adopted the innovation on the y-axis and time

on the x-axis (Figure 2.1 - red dashed line). It is similar to the cumulative density function (CDF)

of the normal distribution, with the exception that it starts at zero and can eventually reach 100%.

He also proposed that there are five ‘adopter types’ in a population.

His taxonomy for these adopter types is Innovators, Early Adopters, Early Majority, Late Ma-

jority, and Laggards. He suggests that the proportion of a population that falls into each category

is, respectively, 2.5%, 13.5%, 34%, 34%, and 16%, the distribution of which resembles the proba-

bility density function of the normal distribution (Figure 2.1 - blue solid line).

Note that in Rogers’ theory it is assumed that an individual either uses or doesn’t use an in-

novation. Our innovation adoption trajectories assume that an individual (e.g., institution) has

multiple opportunities to make use of the innovation and does so with some probability that can

vary over time. It is assumed prototypically that these trajectories are monotonically increasing

functions over the time period that the medical community is adopting the innovation and have an

asymptote of one. However, neither of these is required to be the case. Hypothetical prototypical
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Figure 2.1: Distributions of Rogers’ adopter types

trajectories corresponding to the different adopter types are shown in Figure 2.2. These hypothet-

ical trajectories were generated using the CDFs of five Weibull distributions. The parameters for

these distributions were selected to approximate a 0.8 probability of use of the innovation at the

theoretical time point that an adopter type starts adopting an innovation and are simply meant to

be illustrative. To the best of our knowledge this is a novel extension of Rogers’ theory.

It is hypothesized that the trajectory of the medical procedure’s use is determined by the culture

of the institution as well as patient characteristics including morbidity. Institutional affiliations are

proposed as a proxy for institutional culture.

Next we describe SLNB and give some background about it’s adoption and describe why it is

a preferred staging procedure, in some cases, relative to the previous standard. Previous research

on it’s adoption is also presented.

2.1.2 Adoption of Sentinel Lymph Node Biopsy

The example used in this work is the case of the adoption of sentinel lymph node biopsy

(SLNB) in early stage breast cancer (BC) treatment in the Medicare population over the time period
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Figure 2.2: Hypothetical innovation adoption trajectories by adopter type.

of 1999 to 2007 when it was starting to be adopted by the medical community. Originally called

sentinel lymphadenectomy (20), it was being used in place of Axillary Lymph Node Dissection

(ALND) in some cases when appropriate (20; 8; 15; 19), although seemingly with disparities for

at risk groups (22; 35; 11; 45; 9; 44; 38).

Lymph Node Staging Procedures

Axillary Lymph Node Dissection (ALND)

ALND involves the removal of all level one and two ipsilateral axillary lymph nodes. It is an

extensive procedure and associated morbidities include, lymphedema, nerve paresthesias, axillary

seromas, and infections. Its primary purpose is to provide pathological nodal staging information.

It also serves the function of removing any metastatic tissue that is involved with the axillary lymph

nodes.
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Sentinel Lymph Node Biopsy (SLNB)

SLNB is a less invasive procedure than ALND, where a few lymph nodes are removed, typi-

cally 1 to 3, and intraoperatively assessed for metastatic involvement (8; 24). A standard version

of the procedure during the time frame of this study started with injecting a blue dye and a radioac-

tive tracer near the site of the tumor (36). After some time has passed both visual inspection and

a Geiger counter are used to determine which lymph node(s) the lymph near the tumor drains to.

These are excised and assessed for metastatic involvement. If it is determined that there is involve-

ment then the next node in the lymph chain is excised and examined. Using this information it can

then be determined whether to perform a completion ALND.

SLNB as Standard of Care for Early Stage Breast Cancer Treatment

Up through the late 1990’s the standard practice had been to perform ALND for pathologic

lymph node staging in cases of early stage BC. With the advent of SLNB in the mid 1990’s and

a growing body of evidence that it was equivalent to ALND in outcomes for pathologic node

negative cases it became the standard of care (62; 13; 52; 14; 41; 54; 55; 61; 56). Medicare started

reimbursing its use in 1999 while it was still in clinical trials since early evidence suggested it was

a preferred treatment option in many cases. With the conclusion of the clinical trials SLNB became

the documented standard of care for lymphatic staging of early stage breast cancer (26).

Previous Research

Factors that have been associated with the rate of SLNB’s use over time include disease, patient,

neighborhood, physician, institutional, and regional characteristics (22; 35; 11; 45; 9; 44; 38; 3).

However, to date, the literature on this topic does not take into account both the multilevel and

repeated measures over time aspects that are inherent in this data. Prior research on factors

influencing the use of SLNB in BC treatment primarily used multivariable logistic regression

(22; 35; 11; 45; 3). Two studies used intercept only random effects models (9; 38) to control

for the multilevel nature of the data. One study used logistic regression with GEE based estimates
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of the within hospital correlations (44). These last three studies essentially assumed that the cor-

relations between any two patients within a given hospital were the same regardless the amount

of time between their diagnoses. All of these works treated time (diagnosis year) as an unordered

categorical variable.

The next section briefly describes the statistical model used and how trajectories are generated

from it.

2.1.3 Use of Generalized Linear Mixed Model

The method we used to generate innovation adoption trajectories is to model the receipt of the

novel procedure (0,1) at the patient level by applying a generalized linear mixed model (GLMM

- logistic normal). This model is parameterized to capture the multilevel (patient, institution, and

region) and longitudinal nature of the data. This type of model has been extensively described

(28; 49; 17) as well as best practices for fitting (12; 1). We then make use of the estimated values

over time, based upon the fixed effects, to generate regional trajectories. Generation of institutional

trajectories is accomplished by calculating the predicted values over time for a given institution by

combining the relevant region and hospital level fixed effects and the best linear unbiased predictors

(BLUPs) of the random effects for that institution.

2.2 Methods

2.2.1 Data

We make use of the Surveillance, Epidemiology, and End Results (SEER)-Medicare database

which has both cancer registry and procedure claims data, as well as some patient demographics

and institutional data (59; 4; 25; 48). It is derived from 14 cancer registries covering 17 geographic

regions across the US. Individual cases are linked to the corresponding Medicare claims and el-

igibility information. For those cases where the first primary cancer occurred at an age of 65 or

greater there is a success rate of 94 percent in linking to Medicare data. It has been described

extensively elsewhere, particularly in a supplement to Medical Care in 2002 (59; 4; 25; 48). What

follows in a basic description of each of the components.
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We start with the cancer registry data and how it’s collected.

SEER Cancer Registry Program:

The National Cancer Institute’s Surveillance Research Program contracts with state health pro-

grams and universities to operate incident cancer registries in geographic regions around the United

States of America. Currently the registries cover about 28% of the US population. The 17 reg-

istries are each headed by a different investigator and each registry works differently. They do

however use a standardized reporting system for data transmission to NCI. When data is received

by NCI it is stored in a format of one record per incident cancer diagnosis. It should be noted

that the program is for the most part facility based and thus information for services provided in a

physician’s office might be missing or incomplete. It should also be noted that for many variables

there is a hierarchical structure, that is, some values supersede other values even though both are

true (e.g., the maximum value is reported). The types of data included are: diagnostic, staging,

treatment, and limited demographics.

Registry data can come from a variety of sources, but a case is first identified via a report from:

a service provider where a cancer diagnosis was made, an autopsy report, or from a death certifi-

cate submitted to the cancer registry for the geographical region where the entity is located. In

SEER-Medicare research it is a standard practice to exclude those cases that were only identified

via autopsy or death certificate. Thus the reporting sources include at least one of: a Hospital Inpa-

tient/Outpatient or Clinic, a Laboratory (Hospital or Private), a Physician’s Office/Private Medical

Practitioner, or a Nursing/Convalescent Home/Hospice.

There are a variety of missing data issues for SEER data. Registries don’t capture 100% of

all incident cases, although the expectation is at least 98%. Missing data is more likely to have

come from patients who were primarily treated at physician’s offices (rather than at a hospital

or clinic). Pathological staging data ‘overwrites’ clinical staging data and if is unknown if this

has occurred for breast cancer (prostate cancer has separate clinical staging variables). Changes

in coding systems over time have led to some staging and treatment information being collected

during some time frames but not others (or defined somewhat differently). Race data categories
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depend on time period, SEER race data however is considered better than Medicare race data. Six

months of 2005 data for Louisiana are somewhat sparse due to severe storms and an indicator

variable flags this time period. There were four new SEER registries in 2000 and there is no prior

data for them.

Finally it should be noted that SEER data is not a probability sample and all generalizations

to populations outside of the SEER regions must be model based. From the SEER website, “Geo-

graphic areas were selected for inclusion in the SEER Program based on their ability to operate and

maintain a high quality population-based cancer reporting system and for their epidemiologically

significant population subgroups. The population covered by SEER is comparable to the general

US population with regard to measures of poverty and education. The SEER population tends to

be somewhat more urban and has a higher proportion of foreign-born persons than the general US

population.”

Next we consider the Medicare data that is provided by NCI in their release of SEER-Medicare

data.

Medicare data as Provided by the SEER-Medicare Program:

Medicare data used in this study consists of eligibility, inpatient stay, outpatient service, physi-

cian service, and durable medical equipment (which includes some cancer medications) informa-

tion. Medicare eligible individuals include qualifying individuals age 65 or greater, those with end

stage renal disease, and certain people with disabilities. Note that this is administrative (billing)

claims data for services that are paid for based on Medicare policy in effect at the time of ser-

vice. This has implications for completeness, particularly for procedures not covered at the time

of service.

Medicare data also has its share of missing data issues. Physicians tend to be erratic in billing

for services they know Medicare won’t pay for, so for uncovered services there will be ‘missing’

claims data. Similarly some services are ‘bundled’ with others and only the code for the more

extensive procedure is provided. One needs to be familiar with Medicare policy during time period

of interest and during some years the location of interest in order to finesse the complexities.
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Medicare was supposed to have the exact same coverage for services throughout the US but

during the early 2000’s some of the fiscal intermediaries (FI) had slightly different policies or ef-

fective dates for service coverage. E.g. different regions (primarily) of the country had different

start dates for coverage of SLNB depending on which FI processed a hospital’s claims. An ad-

ditional issue is that a person always has the same FI processing their claims as when they first

signed up. Thus, individuals that moved during the time period where there were differences in FI

policies may have had the policies imposed based upon their previous residence’s FI.

An overview of SEER-Medicare data methodology follows.

SEER-Medicare data Methodology:

SEER-Medicare methodology is as follows. Selected SEER registry data elements (those ele-

ments with known poor reliability are excluded) from each incident cancer diagnosis, up to the first

ten, are put into a format of one record per person. This data is then linked to Medicare eligibility

data and a 94% linkage rate has been found for cases where the first cancer occurred at an age of

65 or greater. Cases where there is a successful link are kept. It is unknown whether there is any

selection bias in the linkage process but assumed not.

This information is combined with demographic and eligibility information from the Medicare

program to create the Patient Entitlement and Diagnosis Summary File (PEDSF) file. The name

is a little misleading as it includes all of the (selected by NCI) SEER data, not just the diagnosis

information. It also includes (de-identified and ‘fuzzed’) census tract and zip code level demo-

graphic (census) information. Census data sometimes is missing, and the usual strategy is to use

zip code based data in this case. There are however, still a (very small) number of missing values

after this strategy is employed.

Next is the inclusion criteria for this study.

Inclusion Criteria

The main inclusion criteria for this study are that the Medicare recipient is female with her first

or only incident primary breast cancer occurring during the years of 1999 to 2007. A valid diagno-

sis month must be present and the reporting source must not be autopsy nor death certificate. This
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cancer must have occurred at age of 66 or later and the basis for Medicare coverage must not be

End Stage Renal Disease (ESRD). The individual must have had both parts A and B coverage from

12 months prior to diagnosis month until 12 months post diagnosis month (or until death) without

HMO coverage during this time period. This is to ensure that the claims data is available for both

inpatient and outpatient services. It also enables calculation of a comorbidity index for preexisting

conditions. The inclusion criteria for this study are broad with respect to disease characteristics.

This will permit examining both indicated as well as contraindicated use of SLNB. It also provides

more information to base the models upon in comparison to sub-setting to some smaller popula-

tion. Definitive treatment must have occurred within 12 months of diagnosis. This is necessary in

order to be able to identify the institution where a SLNB may have been performed. After all cri-

teria were applied there were 76478 patients included in the analysis and 2030 institutions where

they received treatment.

Concluding this section is a description of the variables used in this work.

Variables included in the modeling process

Region level

SEER region, with rural GA and Atlanta combined, is a fixed effect. Time (month of diagnosis),

scaled to 0 to 1 from start of study period, January 1999 to end of study period December 2007,

Time2, and Time3, are fixed effects at the region level.

Hospital level

The continuous time variables are random effects at the hospital level. There were three hospi-

tal level fixed effects: ACOSOG, an indicator variable for institutional affiliation with the American

College of Surgeons Oncology Group, a sponsor of a SLNB clinical trial, Co-op group, an indica-

tor variable for other NCI cooperative groups having breast cancer research portfolios including;

National Surgical Adjuvant Breast and Bowel Project, Cancer and Leukemia Group B, Southwest

Oncology Group, and the Eastern Cooperative Oncology Group, and Teaching Hospital, an indi-

cator variable for medical school affiliation. The interaction with the linear effect of time for all
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hospital level fixed effects was also examined.

Person level

Demographics

There were three demographic person level fixed effects: Race being African American (AA),

an indicator variable, with the reference group being all other races, Age, a categorical variable of

patient age at diagnosis, with levels of: 66 to 69 (which is the reference group), 70 to 74, 75 to

79, and 80 plus, and Medicaid, an indicator variable for the patient being dual eligible during the

year of diagnosis, a proxy for individual low income status. The interactions of the person level

variables were explored as well as interactions with the linear effect of time.

Disease and treatment variables

Disease characteristic variables included the fixed effects of: Tumor grade, a four level cat-

egorical variable with the reference being ‘well differentiated’ and three indicator variables for

the levels of ‘poorly differentiated’, ‘moderately differentiated’, and ‘unknown or not assessed’,

Tumor size, we transformed the two continuous size variables (there are two due to a change in

coding systems over time) into T staging categories from AJCC TNM staging. The reference cat-

egory was T1c. This was the only staging variable used as it is the only constant staging data over

time with changes in systems occurring during the timeframe of this study. Additionally, we do

not know whether the N staging reported was clinical or pathologic, presumably for those who

received nodal staging it was pathologic, while for those where there was no indication of staging

it is unclear. Thus an inaccurate assessment of the effect of N staging is a concern, given that

treatment decisions at that point in treatment are based upon the clinical results. The interaction

between tumor grade and size was also included.

Treatment variables included surgery type and receipt of SLNB. Surgery was a three level cate-

gorical variable for the receipt of breast conserving surgery (BCS) and or mastectomy with the

reference category being BCS only. The other two levels were mastectomy only and both BCS and
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mastectomy. It was hypothesized that various factors that would influence surgery type (and sub-

sequent surgeries) would also influence the use of SLNB. Receipt of SLNB (0,1) was the outcome

variable and based upon both claims and registry data.

2.2.2 Proposed Model

The proposed model is a three level mixed effects logistic normal model with random intercept

and cubic polynomial of time at the second level for the systematic component.

Let Y be the response vector of length N consisting of zeros and ones indicating each patients

(non)receipt of SLNB. π (X,Z, γ) is a vector of length N consisting of the expected value of Y ,

that is, the probability of the receipt of SLNB for each patient. η is a vector of length N consisting

of the log odds. X is the design matrix with variables at the patient, hospital, and region levels.

β is the set of parameter values associated with the respective variables in the design matrix. Z

is a subset of X consisting of the design matrix for the random effect variables, in this case the

polynomial of time at the second, hospital, level. γ is the random effect matrix.

The general form of the systematic component of this model is:

η = logit (E(Y |γ)) = Xβ +Zγ (2.1)

While the error function is:

Y |γ ∼ Bern(π) where Ys ⊥ Yt and s 6= t (2.2)

Note that:

Z = [1, time, time2, time3] (2.3)

and

γ ∼ MVN4(0,G) (2.4)
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With an unstructured covariance matrix:

G =



















σ2
1 σ21 σ31 σ41

σ21 σ2
2 σ32 σ42

σ31 σ32 σ2
3 σ43

σ41 σ42 σ43 σ2
4



















(2.5)

Let N be the total number of patients observed in the M hospitals in the L regions. Each patient

is observed only once and they are assumed to be i.i.d. within a hospital and over time conditional

upon the patient, hospital, and regional covariates. There are L third level units, regions, which are

indexed by k such that k = 1 to L. There are nk second level units, hospitals, in each third level

unit which are indexed by jk. There are ojk patients within a given hospital indexed by ijk.

Noting that:

x
(11)⊺
ijk = [timeijk, time2ijk, time3ijk]

The three levels of the systematic component are:

ηijk = α00jk + x
(10)⊺
ijk α01jk + x

(11)⊺
ijk α1jk (2.6)

α00jk = β00k + x
(2)⊺
jk β01k + γ

(2)
0jk (2.7)

α1jk = β10k + x
(2)⊺
jk β11k + γ

(2)
1jk (2.8)

β00k = λ00 + x
(3)⊺
k λ01 (2.9)

β10k = λ10 + x
(3)⊺
k λ11 (2.10)

x
(1)
ijk is a vector of length p whose elements consist of first (patient) level explanatory variables.

For notational convenience it is broken out into x
(10)
ijk consisting of the demographic and disease

level characteristics that are assumed to have the same effect upon the intercept for the entire
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population and x
(11)
ijk which consists of a cubic of time. Time corresponds to the patient’s diagnosis

month relative to the start and end of the study (normalized to a value between 0 and 1). Note that

the patient level variables (other than time) are stochastic and time varying in this context relative

to the higher levels. It is assumed that their values at any given time point are not related to the

outcome values of other patients at prior time points. x
(2)
jk is a vector of length q whose elements

consist of second (hospital) level explanatory variables which may be time varying. x
(3)
k is a vector

of length r whose elements consist of third (region) level explanatory variables.

Equations 2.6 to 2.10 can be expressed as a single equation:

ηijk =λ00 + x
(3)⊺
k λ01 + x

(2)⊺
jk β01 + x

(10)⊺
ijk α01jk+

x
(11)⊺
ijk λ10 + x

(11)⊺
ijk x

(3)⊺
k λ11 + x

(11)⊺
ijk x

(2)⊺
jk β11k+

γ
(2)
0jk + x

(11)⊺
ijk γ

(2)
1jk

(2.11)

Where the fixed effect intercept terms are on the first line of equation 2.11, the fixed ‘slope’

terms are on the second line, and the random intercept and slope is on the third line. Thus from the

first line, λ00 is the overall intercept, x
(3)⊺
k λ01 are the regional deviations from the overall intercept,

x
(2)⊺
jk β01 are hospital characteristic deviations from the overall intercept, and x

(10)⊺
ijk α01jk are patient

level deviations from the overall intercept. From the second line we respectively, the overall slope,

the regional deviations from the overall slope, and the hospital characteristics deviations from the

overall slope. The random effects in the third line represent hospitals deviations from the overall

intercept and slope since we are assuming that the random effects distributions are the same for all

regions.

Concluding the methodology section is a description of the modeling process.

2.2.3 Modeling Process

A forward and reverse stepwise modeling process was used to obtain the best fitting model

for this set of data. The decision criteria for retaining variables in the model were chosen as to

not over fit the model and with an eye towards parsimony. Likelihood ratio tests were performed,
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when appropriate, with the decision criteria of retaining terms whose inclusion generated either a

p-value of less than .001 or an improvement in the BIC otherwise.

Preliminary models, looking at the time and random effects specification, started with a simple

logistic regression of the use of SLNB with the fixed effect terms of SEER region and a set of

indicator variables for time (year) and no other terms in the model. Next was a similar model

except for using a cubic polynomial of time instead of the year indicator variables. The third

model looked at separate cubic polynomials for each SEER region. The next tested the need for a

random intercept of hospital(region). The last three models in the preliminary analysis added the

random terms of time, time2, and time3 respectively, all with unstructured covariance matrices.

We then proceeded to build a model based on the random effect specification of a cubic poly-

nomial of time with an unstructured covariance matrix for hospital(region). These models added in

a stepwise fashion, the fixed effects of disease characteristics, surgery type, patient demographics,

and institutional characteristics. Finally a reverse modeling process was employed to determine

which variables interacted with linear time and the best fitting model was kept as the final specifi-

cation of the fixed effects.

To confirm the appropriateness of the random effects specification a reverse process was used

and four additional models were created that sequentially removed the highest order random effect

term from the preceding model.

2.3 Results

2.3.1 Model Fitting Results

The results of the preliminary model fitting process are shown in Table 2.1. It includes the val-

ues for each model of: -2×loglikelihood (-2LL), the likelihood ratio test significance (LRT), when

applicable, for comparing the model to the preceding model, and the model Bayesian Information

Criteria (BIC). The number of asterisks in the LRT column correspond to p-values of less than

0.05, 0.01, and 0.001.
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The results indicate that relative to the standard (and each subsequent) model there are incre-

mental improvements by: using a cubic polynomial of continuous time, having separate polyno-

mials for each SEER region, including a random intercept for hospital, including a random linear

effect of time, including a random quadratic of time, and including a random cubic of time. In

each case (where applicable) the LRT had a p-value of less than 0.001. In the cases where the LRT

was not applicable there was an improvement in the BIC.

Table 2.1: Preliminary Model Fit Statistics

Model Description -2LL LRT BIC

GLM 1 Fixed effects of Region with categorical time 91103 NA 91373

GLM 2 Fixed effects of Region and cubic of time 90975 NA 91178

GLM 3 Fixed effects of Region interacted with cubic of time 90756 *** 91262

GLMM 0 GLM 3 + Random intercept for hospital(region) 82568 NA 82918

GLMM 1 GLMM 0 + Random linear time 81677 *** 82156

GLMM 2 GLMM 1 + Random quadratic time 81427 *** 81930

GLMM 3 GLMM 2 + Random cubic time 81356 *** 81889

Table 2.2 shows the results for the forward stepwise model building process for the proposed

fixed effects. All of the proposed main effects were found to improve the model fit with p-values

of less than 0.001. The interaction of tumor size and tumor grade was found to be significant

(p<0.001). The only demographic interaction found to be significant (p<0.05, with an improve-

ment in the BIC) was between age and Medicaid status. The interactions of the hospital covariates

were not included as they did not meet the inclusion criteria. The only interaction with time found

to be significant (p<0.001) was that with the set of hospital covariates.
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Table 2.2: Model Fit Statistics for Significance of Fixed Effects

Model Description -2LL LRT BIC

GLMM 4 GLMM 3 + Tumor size and grade 77841 *** 78450

GLMM 5 GLMM 4 + Tumor size grade interaction 77711 *** 78503

GLMM 6 GLMM 5 + Sugery type(s) 76554 *** 77361

GLMM 7 GLMM 6 + Demographics 74651 *** 75496

GLMM 8 GLMM 7 + Hospital covariates 74442 *** 75310

GLMM 9 GLMM 8 + Demographic interactions 74426 NS 75371

GLMM 10 GLMM 8 + Age by Medicaid interaction 74432 * 75323

GLMM 11 GLMM 10 + Hospital covariate interactions 74416 ** 75338

GLMM 12 GLMM 10 + Hospital covariates by time 74381 *** 75295

Table 2.3 shows the results for the confirmation of the necessity of the random effects terms.

These results were based on a reverse stepwise process with GLMM 13 being compared to GLMM

12, GLMM 14 being compared to GLMM 13, and so on. The results indicate that all random

effects terms were highly significant (for the nested models) with p-values less than 0.001 and that

excluding the random intercept substantially increased the BIC. Given the confirmation of the best

fitting model including the cubic polynomial of time in the random effects, GLMM 12 was selected

as the final model.

Table 2.3: Model Fit Statistics for Significance of Random Effects

Model Description -2LL LRT BIC

GLMM 13 GLMM 12 without random cubic of time 74476 *** 75337

GLMM 14 GLMM 13 without random quadratic of time 74742 *** 75580

GLMM 15 GLMM 14 without random time 75531 *** 76353

GLM 4 GLMM 15 without random intercept 81947 NA 83151

In the next section we present the parameter estimates for the final model.
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2.3.2 Final Model Parameter Estimates

Parameter estimates for the best fitting model are presented for the fixed effects in Tables 2.1

to 2.6 and for the random effects in Table 2.7. We start with the fixed effects.

Fixed Effects

Table 2.4: SEER Region Parameter Estimates

SEER Region Intercept time time2 time3

1 - San Francisco -3.35 4.31 2.79 -2.78

2 - Connecticut -4.35 14.24 -15.26 6.32

20 - Detroit -4.80 13.27 -14.89 7.86

21 - Hawaii -4.09 6.38 -0.88 -0.12

22 - Iowa -5.29 10.65 -4.70 0.08

23 - New Mexico -3.31 2.38 10.23 -8.38

25 - Seattle -2.98 11.24 -8.39 1.60

26 - Utah -3.44 2.64 9.93 -8.05

27 - Atlanta and 37 - Rural Georgia -3.83 9.94 -6.94 1.80

31 - San Jose -3.09 5.31 2.46 -3.48

35 - Los Angeles -3.79 10.55 -10.26 4.10

41 - Greater California -3.29 6.40 -0.14 -1.84

42 - Kentucky -4.00 11.56 -11.44 5.08

43 - Louisiana -3.29 4.64 1.25 -1.81

44 - New Jersey -3.25 9.83 -9.28 3.80

Table 2.5: Tumor Characteristics Parameter Estimates

Tumor Grade/Size T1mic T1a T1b T1c T2 T3/4 Unkown

Well Differentiated -1.07 -0.27 0.04 0.00 -0.33 -0.81 -1.33

Moderately Differentiated -1.12 -0.53 -0.05 -0.01 -0.46 -1.21 -1.48

Poorly Differentiated -0.71 -0.71 -0.30 -0.22 -0.62 -1.61 -1.67

Undifferentiated -1.24 -1.54 -1.30 -1.14 -0.93 -1.41 -1.70

Unknown, Not Assesed -0.94 -1.06 -0.87 -0.52 -0.68 -1.21 -1.85
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Table 2.6 gives parameter estimates for the final model treatment, demographic, and hospital

variables. Note that these are on the log odds scale as the presence of interactions would require

calculations at specific levels to give meaningful odds ratios for most of the effects. The baseline

group for this model is patients who: were non African American, received BCS only, had a well

differentiated tumor, whose tumor size was T1c, were of age of 66 to 69 at diagnosis, not on med-

icaid, and whose hospital had no affiliations.

Thus relative to this group we can see that receipt of mastectomy, whether as the first surgery or

subsequent surgery, led to a decrease in the odds of receipt of SLNB. Likewise for African Amer-

icans. For older women and those on Medicaid the story is a little more complicated given the

significant interaction. The interaction can however, be interpreted as either an additional increase

in the (negative) effect of age for those on Medicaid or an additional (negative) effect of Medicaid

for older patients. Receiving treatment at a teaching hospital, at cooperative group affiliated hos-

pital, and particularly an ACOSOG affiliated hospital, early in the time period examined, led to a

increase in the odds of receipt of SLNB. Although this increase in odds diminished over the course

of the study with the teaching hospital and ACOSOG effects being reduced to almost nothing. In-

terestingly, the cooperative group effect did not attenuate as much over time. Note that time effects

were examined for the patient level covariates in a separate model (data not shown) whose results

indicated that there was no change over time for the patient demographic variables.
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Table 2.6: Treatment, Demographic, and Hospital Variables Parameter Estimates

Effect Estimate Std. Error DF t p value

BCS Only 0.000 . . . .

Mastectomy Only -0.694 0.023 74346 30.23 <.0001

Both BCS and Mastectomy -0.597 0.032 74346 18.71 <.0001

African American -0.315 0.044 74346 -7.14 <.0001

65 to 69 0.000 . . . .

70 to 74 -0.058 0.029 3301 -2.00 0.0453

75 to 79 -0.174 0.029 3301 -5.92 <.0001

80 plus -0.905 0.029 3301 30.84 <.0001

On Medicaid -0.344 0.061 74346 -5.62 <.0001

65 to 69 on Medicaid 0.000 . . . .

70 to 74 on Medicaid -0.111 0.082 74346 -1.35 0.1783

75 to 79 on Medicaid -0.269 0.085 74346 -3.14 0.0017

80 plus on Medicaid -0.142 0.084 74346 -1.70 0.0893

Teaching Hospital 0.334 0.132 74346 2.54 0.0111

Cooperative Group Affiliation 1.064 0.154 2014 6.89 <.0001

ACOSOG Affiliation 1.243 0.181 2014 6.85 <.0001

Teaching Hospital over time -0.330 0.176 74346 -1.88 0.0601

Cooperative Group over time -0.335 0.188 74346 -1.78 0.0756

ACOSOG over time -1.068 0.212 74346 -5.05 <.0001

Random Effects

Table 2.7 gives the random effects variance components estimates for the final model in bold.

The standard errors are in parentheses and the correlations are in the lower triangle of the matrix

in italics.

Table 2.7: Variance Component Estimates

Intercept Time Time2 Time3

Intercept 3.3 (0.5) -7.0 ( 2.5) 5.7 ( 5.0) -0.9 ( 3.0)

Time -0.43 82.9 (20.5) -159.1 (43.7) 84.7 (26.2)

Time2 0.17 -0.93 354.8 (95.4) -206.0 (57.8)

Time3 -0.04 0.83 -0.98 125.6 (35.2)
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2.3.3 Trajectories Based on Final Model

Figure 2.3 shows the trajectories for a typical hospital that has no affiliations in each SEER

region for patients with the reference values for the disease and demographic variables. These

trajectories are based on the fixed effect parameters of SEER region and their interactions with the

cubic polynomial of time.

Figure 2.4 shows the trajectories of five example hospitals within the San Francisco SEER

selected to demonstrate the amount of variability within a SEER region.

Figure 2.5 shows the trajectories for the different levels of variables that policy could presum-

ably impact within the San Francisco SEER regioin. For example hospitals could recieve incen-

tives to belong to a cooperative group or at risk populations could be targeted to help alleviate the

disparity in services recieved in comparison to the not at risk population.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$,,," %!!!" %!!$" %!!%" %!!&" %!!'" %!!(" %!!)" %!!*" %!!+"

-./"01./23425"

65//72829:"

;7:153:"

<.=.33"

>5=."

?7="@7A325"

-7.BC7"

D:.E"

F:C./:."

-./"G547"

H54"F/I7C74"

6.C3J51/3."

K7/:92LM"

H59343.//."

?7="G7147M"

Figure 2.3: SEER Region Trajectories
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Figure 2.4: Trajectories of Sample Hospitals in San Francisco SEER Region

2.4 Discussion

The primary finding is that the Innovation Adoption Trajectories of SLNB do vary by institu-

tion and region as indicated by the the significance of the polynomial of time in the random and

fixed effects. Thus they are a potential candidate for the basis of quality metrics that measure the

adoption of evidence based procedures.

The utility of this type of model in comparison to standard models is three fold: it has the

capability of looking at hospital specific outcomes over time, it is more robust to missing data, and

it fits considerably better. Additionally, the estimates of the parameters and p-values should be

both more precise and more trustworthy based on theoretical considerations (51; 53).

Although no comparison was made to the GEE based population average model some consid-

erations would suggest that the GLMM might be preferred. The primary factor is that the GLMM
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Figure 2.5: Effect of Policy Variables within San Francisco SEER Region

approach permits subject (hospital) specific estimates of the trajectories, something that is not pos-

sible with a GEE based approach. Another is that GEE based models depend on missing data being

MCAR, something that may not be true of SEER-Medicare data, while the GLMM only requires

MAR.

Previously reported disparities related to race and SES were found to continue throughout

the study period as there was no significant interaction with time for these variables. Previously

reported positive effects of NCI cooperative group affiliation were found to be present but their

effect attenuated over time as indicated by the statistically significant interaction with time for

these variables. It would seem that these affiliations were associated with a head start for those

institutions but the other institutions caught up by the end of the study period.

Whether institutional culture is impacted by these affiliations or whether the culture of early

adopter institutions drives having the affiliations can not be discerned by this associative study. It
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should also be noted that the basic assumptions (1) - (4), albeit reasonable, may not be always very

tenable, particularly when there are numerous covariables and when the assumption of multinor-

mality in (3) may be questionable. Possible departures from these model assumptions may affect

the p-values, particularly in the tail. This aspect needs to be studied in greater detail. Further

research could include looking at whether some other random effects distribution would provide

a better fitting model given the known sensitivity of the binary outcome GLMM to the random

effects distribution specification (21; 18; 34; 33).
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3 EVIDENCE BASED MEDICINE IMPLEMENTATION INDEX

3.1 Introduction

Clinical trial results enable evidence-based change in practice but their adoption may vary

by institution and region. Innovation adopter types were originally proposed by Rogers’ (1962)

in his theory of the diffusion of innovation. Rogers proposed five categories of adopter types,

innovators, early adopters, early majority, late majority, and laggards. He hypothesized that these

types comprised 2.5, 13.5, 34, 34, and 16 percent of the population respectively. This work extends

his original idea of the time until use of an innovation to a metric that characterizes the pattern of

the rate of use of an innovation over time.

In order for an institutional metric to be useful it should be easy to understand, be generalizable

among different conditions, control for case-mix, and allow fluctuation of caseload over time. To

meet these objectives we propose a two step process. First institutional trajectories of the rate of

use of an innovation are created that control for disease and patient characteristics. This is done by

use of a generalized linear mixed model (GLMM). Next, the area under the curve (AUC) of each

institution’s trajectory is calculated. Early adopters will have larger values of this metric while

those that adopt later will have smaller values.

As a test case for this metric, we considered the procedure of sentinel node biopsy (SLNB)

and its adoption among hospitals participating in the SEER-Medicare registry from 1999 to 2007.

Sentinel node biopsy is a surgical procedure adopted in the last 20 years as a less morbid alternative

to axillary lymph node dissection (ALND) for determining lymphatic spread of tumor in early

stage breast cancer. Prior to initiation of clinical trials of SLNB, standard of care for lymph node

assessment required an axillary lymph node dissection (ALND) which conferred over a 20% risk

of lymphedema and occasional long-term nerve injury.
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The introduction of SLNB in the mid 1990’s, followed by a growing body of level I and level

II evidence demonstrating equivalent accuracy as ALND for pathologically node negative cases

allowed SLNB to supplant ALND as the standard of care (62; 13; 52; 14; 41; 54; 55; 61; 56).

Medicare started reimbursing its use in 1999 while it was still in clinical trials since early evidence

suggested it was a preferred treatment option in many cases. With the conclusion of the clinical

trials SLNB became the documented standard of care for lymphatic staging of early stage breast

cancer (26).

We propose that variability in adoption of clinical trial results can be captured by quantifying

innovation adopter type. In this work we make the assumptions that institutions have consistent

cultures over time (albeit changeable) and that individual physicians both contribute to the culture

and in general follow the treatment patterns of the prevailing institutional culture.

3.2 Methods

3.2.1 Data Description

The data used to generate the models of trajectories of rate of use of SLNB in indicated cases

come from the NCI SEER-Medicare database, which is derived from 14 cancer registries covering

17 geographic regions across the US. Individual cases are linked to the corresponding Medicare

claims and eligibility information. For those cases where the first primary cancer occurred at an

age of 65 or greater there is a success rate of 94 percent in linking to Medicare data This data

source is described extensively elsewhere (59; 4; 25).

The patient-level inclusion criteria are that the Medicare recipient is female with her first or

only incident primary breast cancer occurring during the years of 1999 to 2007. A valid diagnosis

month must be present and the reporting source must not be autopsy nor death certificate. This

cancer must have occurred at age of 66 or later and the basis for Medicare coverage must not be

End Stage Renal Disease (ESRD). The individual must have had both parts A and B coverage from

12 months prior to diagnosis month until 12 months post diagnosis month (or until death) without

HMO coverage during this time period. This is to ensure that the claims data are available for both
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inpatient and outpatient services. The inclusion criteria for this study were broad with respect to

disease characteristics. This will permit examining both indicated as well as contraindicated use of

SLNB over time. Definitive treatment must have occurred within 12 months of diagnosis. This is

necessary in order to be able to identify the institution where a SLNB may have been performed.

Patients that received neoadjuvant chemotherapy are excluded from the analysis. In total, 74,516

patients met the inclusion criteria for this study with an associated 2,004 institutions where surgery

was performed.

At the hospital-level the inclusion criteria are that there must have been at least 15 cases that

met the patient-level inclusion criteria treated at that hospital during the time period of the study.

In order to be included in the final analysis all the hospital-level covariates needed to be present.

720 institutions were included after applying these criteria with 70,371 associated patients. Two

institutions had missing hospital-level covariates and were excluded from the final hospital level

analysis.

3.2.2 Use of GLMM to generate institutional trajectories

Generalized linear mixed models with a binary outcome are a standard way of generating tra-

jectories for outcomes such as treat/no treat or use of procedure A vs. procedure B when there are

either multilevel or longitudinal aspects to the data. It is an extension of logistic regression that

handles cases that violate several assumptions of simple logistic regression. Given that institutions

are routinely grouped by region or have registries they report to that service a particular region, as

well as the measurement of use of a procedure at the patient level, it is natural to use a multilevel

approach. Since we are interested in the rate of use of a procedure over time we also want to control

for the repeated measures (at the institution level) aspect of the data. They also have the advantage

that they handle missing or unbalanced data well given the assumption that data are missing at

random. This approach, however, does require the use of data from a population of institutions,

possibly from multiple regions in order to create the model.

Fixed effect terms in the multilevel longitudinal model included the SEER regions and their
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interactions with time. These estimate the trajectory of the the typical hospital in each region.

Additionally there were fixed effects for patient age and disease characteristics. Random effects

of time at the hospital nested within SEER region level provide estimates of how a hospital’s

trajectory varied from the typical hospital within the SEER region. The reference group used in

generating institutional trajectories consisted of T1/2, well-differentiated tumor, and aged 66 to 69.

3.2.3 AUC of trajectories

In using the AUC of trajectories to characterize adopter types we are assuming the trajectories

are non-decreasing functions over the time span considered. This would imply the ordering of the

AUC corresponds to the ordering of adopter type. The AUC of these model based trajectories is

not simply the average rate of use of the procedure, but a function that weights all time points

equally regardless of fluctuations in case load as well as controlling for case-mix.

The area under the curve of the trajectories was calculated based on the parameter estimates

from the GLMM. For SEER regions this was based on the fixed effects of region and region by the

cubic polynomial of time. For institutions they were based on the regional estimate plus (or minus)

the institution specific random effects estimate.

3.2.4 Institution level analysis

In general we are proposing that the Evidence Based Implementation Index (EMII) be a func-

tion of a set of procedures whose AUC’s are combined to form the metric. However, in this single

procedure proof of concept, further analysis was performed using the EMII based upon the single

procedure’s AUC. Hospital level covariates such as whether it was a teaching hospital and what

cooperative groups the institution was affiliated with were then examined to see if the EMII would

vary by membership status. Simple descriptive statistics of the EMII were generated overall and by

hospital characteristic. Additionally an ANOVA type approach was used, modeling the relation-

ship between institutional variables and the EMII. This was done to control for the effects of SEER

region and unequal cell sizes of the combinations of variables while estimating the magnitudes of

effect of the hospital characteristic.
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3.3 Results

3.3.1 GLMM results

All terms in the model were highly statistically significant and used in calculating the EMII.

3.3.2 Regional trajectories

Trajectories of the SEER regions are based upon the fixed effects of the GLMM and in these

hospital specific models represent the trajectory of a hypothetical ‘typical hospital’ from the region.

Figure 3.1 shows these trajectories; the difference between adoption patterns is evident with Seattle

clearly being an early adoption region followed by Connecticut and then other SEER regions.
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Figure 3.1: SEER Regional Trajectories of the rate of use of SLNB

3.3.3 Institutional Trajectories

Institutional trajectories are based upon the combination of the relevant fixed effects (i.e. the

SEER region and its interaction with time) and the predicted random effect values for the cubic

of time for that institution. Sample hospital trajectories from the San Francisco SEER region are
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Figure 3.2: Trajectories of Sample Hospitals in San Francisco SEER Region

shown to demonstrate the variability found within a given region are shown in Figure 3.2

3.3.4 EMII

Region level values of the EMII are given in Table 3.1 in the ‘typical’ column. These represent

the EMII of a typical hospital in the SEER region. Note that the typical value may not be the same

as the mean value. The number of institutions included from each region in also given.

Table 3.1 also includes the mean, standard deviation, minimum, and maximum values at the

hospital level within each SEER region and overall. Graphical examination of all 720 institutions

indicates a bell shaped curve (data not shown). This would be consistent with Rogers’ theory of

a somewhat normal shaped distribution of adopter types. Table 3.2 gives the values for different

hospital characteristics. Note that these groups are not mutually exclusive.
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3.3.5 Model with EMII as outcome looking at hospital characteristics

The results of the exploratory analysis using the EMII as the outcome measure found that after

controlling for regional variations there was strong evidence (p< .01 for the system of variables)

that the variables of: ACOSOG affiliation, Teaching hospital, there being at least one Cooperative

group affiliation besides ACOSOG (One Plus), the interaction of Teaching hospital and One Plus,

and there being at least four cooperative group memberships other than ACOSOG (Four Plus), had

significant association with the EMII. The effects of One Plus and Four Plus are additive which

gives the net effect of there being three categories, no additional cooperative group memberships

(the base case), one to three additional cooperative group affiliations, and four plus.

Table 3.1: Descriptive statistics of the EMII overall and by SEER region.

SEER Region n Typical EMII Mean EMII Std. Dev. Min EMII Max EMII

San Francisco 27 42 46 17 9 76

Connecticut 34 56 56 13 29 81

Detroit 34 36 40 18 11 73

Hawaii 14 35 38 17 13 79

Iowa 69 35 38 20 7 86

New Mexico 23 33 37 23 10 84

Seattle 33 66 66 13 41 87

Utah 24 42 45 15 17 69

Atlanta 24 49 51 16 25 81

San Jose 15 48 50 20 15 72

Los Angeles 60 41 45 20 12 77

Greater CA 152 45 48 19 4 87

Kentucky 60 40 43 18 14 82

Louisiana 64 35 39 22 7 86

New Jersey 87 47 49 18 11 83

ALL 720 46 20 4 87
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Table 3.2: Descriptive statistics of the EMII by hospital characteristics

Characteristic n Mean EMII Std. Dev. Min EMII Max EMII

No affiliations 282 37 19 4 86

ACOSOG 111 59 16 16 87

NCI Comprehensive

Cancer Center 21 68 12 46 85

Teaching Hospital 284 51 19 8 87

1 to 3 Co-op Groups

(other than ACOSOG) 261 51 17 10 86

4 or more Coop Groups

(other than ACOSOG) 91 60 16 16 87

There was also moderate evidence (p=.07) that NCI comprehensive cancer centers had an ad-

ditional effect upon the EMII beyond the effect of teaching hospital, ACOSOG, and number of

cooperative group memberships. All of these institution level variables were associated with an

increase in the EMII except for the interaction of Teaching Hospital and One Plus which was neg-

ative and indicated that the effect of One Plus was less for Teaching Hospitals than Non-Teaching

Hospitals. Table 3.3 gives the estimated model adjusted values of the EMII for each region and

their standard errors. Note that the region-level estimates correspond to the case where the institu-

tion is not a teaching hospital and has no affiliations. Table 3.4 gives the estimated effects of the

institutional-level variables and their standard errors and p-values.

3.4 Discussion

We have demonstrated that the EMII differentiates uptake of new procedures (specifically,

SLNB) among regions and institutions as well as between different hospitals types and institutional

affiliations. While it doesn’t show cause and effect, it provides a method to quantify which regions

and types of institutions are early adopters of clinical trial results. This information, if made

available, could be used by patients to select service providers (early adopters) as well as to drive

institutional behaviors for early adoption.
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Table 3.3: Estimated EMII values by region for non affiliated hospitals

SEER Region Estimate Std. Err.

San Francisco 35 3

Connecticut 44 3

Detroit 29 3

Hawaii 32 5

Iowa 32 2

New Mexico 32 4

Seattle 57 3

Utah 39 3

Atlanta 43 4

San Jose 42 4

Los Angeles 36 2

Greater CA 42 2

Kentucky 36 2

Louisiana 35 2

New Jersey 37 2

Table 3.4: Institutional affiliation estimated effects

Effect Estimate Std. Err. p-value

ACOSOG 7 2 .0015

Teaching Hospital 5 2 .022

Plus One 12 2 <.0001

Teaching Hospital*Plus One -7 3 .025

Plus Four 6 2 .013

NCI Comprehensive CC 8 4 .070

In the United States, more than $3 billion are spent in clinical trials research annually by the

NIH alone, and these studies are only meaningful in their ability to change clinical practice and

improve outcomes on a wide scale. Reasonable concerns that trials may yield positive results but

nevertheless fail to drive practice change likely impact both current and future federal resource

allocation into clinical trials. Prime examples of this may be found in prevention studies: NSABP

P01 discovered almost a 50% reduction in breast cancer incidence with 5 years of tamoxifen use.

However, this has not led to an increased uptake in chemoprevention, even 15 years after these
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results were first reported. The reason underlying the low uptake is multifactorial, but an instru-

ment such as the EMII could be of importance in tracking, reporting, and encouraging widespread

adoption of clinical trials findings shown with a high level of evidence to likely to positively impact

human health.

There are some important limitations of the study which merit discussion. First, the data we

analyzed were limited to an older Medicare population so that its relevance to younger patients

requires further testing. Moreover, there could be indications for and against use of the sentinel

node biopsy procedure in individuals which may be difficult to capture. One example of this is in

those women who were candidates for sentinel node biopsy, but in whom age and comorbidities

were clinically deemed to preclude additional surgical procedures. One way in which this could

be addressed is to evaluate the proportion of patients receiving axillary staging by ALND versus

SLNB rather than evaluating the rate of SLNB uptake alone. However, this could create an ad-

ditional confounder in that women with obviously positive nodes at diagnosis would be correctly

treated with ALND instead of SLNB and thus not represent poor uptake of SLNB. Such issues will

require individual consideration for each procedure measured. Nevertheless, this study provides

an indication of how such a metric may be constructed, in the older Medicare population which

carries the greatest cancer burden.

Further research is clearly needed to see if this approach holds across different procedures and

different disease types as well as for populations other than Medicare patients. If to be used as a

quality metric, benchmarks would need to be generated in order to assess where an institution is at

in its process of adopting evidence based medicine. Finally, although it is assumed that the use of

evidence based medicine improves outcomes, the correspondence between this metric and actual

outcomes must be assessed.
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4 ESTIMATION OF VARIANCE COMPONENTS

4.1 Introduction

In the previous two chapters we have seen that a Logistic Normal Mixed Model (LNMM) can

be useful in characterizing the adoption trajectories of Sentinel Lymph Node Biopsy (SLNB) of

hospitals serving women on Medicare with breast cancer using SEER-Medicare data. However

it has been assumed that the use of Maximum Likelihood (ML) Estimators of the variance com-

ponents of the random effects is preferable in contrast to pseudo-likelihood (PL) estimators. One

reason for this assumption is that it has been shown that in a LNMM the PL estimator leads to

biased results for the fixed effects (6; 32). ML with quadrature based estimation has been shown

to have the least bias, while ML with Laplace estimation is somewhere in between (43).

One aspect that has not been considered previously is whether the bias inherent in the PL

estimators could be reduced by use of a jackknife approach (16). Nor has the relative efficiency

(23) of the estimators been compared in a LNMM. In order to investigate these aspects, a model

employing random intercept and slope terms (and their covariance) was created with the subject

being hospital nested within SEER region. It is assumed that patients are i.i.d. after controlling

for all other factors and that any change over time in a hospital’s use of SLNB is due to changes

in physician/hospital practice rather than changes in the patient population. In order to increase

precision, stratification by number of patients a hospital treated over the course of time the data

covered (1999 to 2007) was performed.

Two types of PL estimators were considered, Maximum Subject Specific PL (MSPL) and Re-

stricted Subject Specific PL (RSPL). MSPL (and it’s stratified jack knifed version) was included as

it’s results might be more comparable to the ML estimator. RSPL was included as it is frequently
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used. Random effects covariance matrix estimator efficiency was compared via A-, D-, and E- ef-

ficiency metrics which permitted multivariate comparisons in efficiency between ML and the four

other estimator types, MSPL, RSPL, stratified jackknifed MSPL and stratified jackknifed RSPL.

By use of the efficiency metrics we can quantify overall differences in the covariance matrices with

respect to the stated precision of the estimates.

4.2 Methods

Five estimators were used to estimate the variance components of a LNMM with random in-

tercept and slope at the second level of a three level heirarchical model. The dataset used was

SEER-Medicare data which is briefly described in the next section.

4.2.1 Data

The data used to generate the models of trajectories of rate of use of SLNB in indicated cases

come from the NCI SEER-Medicare database, which is derived from 14 cancer registries covering

17 geographic regions across the US. Individual cases are linked to the corresponding Medicare

claims and eligibility information. This data source is described extensively elsewhere (59; 4; 25).

A quick overview of SEER-Medicare data methodology follows.

Selected SEER registry data elements (those elements with known poor reliability are ex-

cluded) from each incident cancer diagnosis, up to the first ten, are put into a format of one record

per person. This data is then linked to Medicare eligibility data and a 94% linkage rate has been

found for cases where the first cancer occurred at an age of 65 or greater. Cases where there is a

successful link are kept.

This information is combined with demographic and eligibility information from the Medicare

program to create the Patient Entitlement and Diagnosis Summary File (PEDSF) file. The name is

a little misleading as it includes all of the (selected by NCI) SEER data, not just the diagnosis infor-

mation. It also includes (de-identified and ‘fuzzed’) census tract and zip code level demographic

(census) information.

Fixed effect eariables used in the modeling process included SEER region, time (scaled 0 to 1
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over the range of the data), SEER region by time, an indicator variable for institutional affiliation

with the American College of Surgeons Oncology Group, a sponsor of a SLNB clinical trial,

an indicator variable for other NCI cooperative groups having breast cancer research portfolios

including; National Surgical Adjuvant Breast and Bowel Project, Cancer and Leukemia Group

B, Southwest Oncology Group, and the Eastern Cooperative Oncology Group, and an indicator

variable for medical school affiliation. Interactions with the linear effect of time for all hospital

level fixed effects were also included.

There were three demographic person level fixed effects: Race being African American (AA),

an indicator variable, with the reference group being all other races, Age, a categorical variable of

patient age at diagnosis, with levels of: 66 to 69 (which is the reference group), 70 to 74, 75 to 79,

and 80 plus, and Medicaid, an indicator variable for the patient being dual eligible during the year

of diagnosis, a proxy for individual low income status.

Disease characteristic variables included the fixed effects of: Tumor grade, a four level cat-

egorical variable with the reference being ‘well differentiated’ and three indicator variables for

the levels of ‘poorly differentiated’, ‘moderately differentiated’, and ‘unknown or not assessed’,

Tumor size, we transformed the two continuous size variables (there are two due to a change in

coding systems over time) into T staging categories from AJCC TNM staging. The reference cat-

egory was T1c. This was the only staging variable used as it is the only constant staging data over

time with changes in systems occurring during the timeframe of this study. Additionally, we do

not know whether the N staging reported was clinical or pathologic, presumably for those who

received nodal staging it was pathologic, while for those where there was no indication of staging

it is unclear. The interaction between tumor grade and size was also included.

Treatment variables included surgery type and receipt of SLNB. Surgery was a three level

categorical variable for the receipt of breast conserving surgery (BCS) and or mastectomy with

the reference category being BCS only. The other two levels were mastectomy only and both

BCS and mastectomy. It was hypothesized that various factors that would influence surgery type
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(and subsequent surgeries) would also influence the use of SLNB. Receipt of SLNB (0,1) was the

outcome variable and based upon both claims and registry data.

In the next section the specification of the LNMM is given.

4.2.2 Logistic Normal Mixed Model

In this section we will use the following specification of the Generalized Linear Mixed Model.

Note that g−1 is the inverse link function and Z is the design matrix for the random effects.

E(Y |b) = g−1(η)

η = Xβ +Zb

Where

b ∼ N(0,G)

and

V ar(Y |b) comes from the exponential family

For the LNMM:

Let N be the total number of patients observed. There are n hospitals (clusters) and i is the

index for the hospitals so that i = 1 to n. j indexes the patients within a hospital and there are mi

patients in the ith hospital, so j = 1 to mi. The response vector Yi = (Yi1, . . . , Yimi
)T consists of

zeros and ones that indicate each patients (non)receipt of SLNB.

Error distribution Yij ∼ Bern(πij)

Logit link function ηij = log

(

πij

1− πij

)

The next section describes the use of Pseudo-Likelihood in variance parameter estimation.
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4.2.3 Variance Parameter Estimation - Pseudo-Likelihood

The use of Pseudo-likelihood for estimation of variance parameters in a GLMM was proposed

in two separate papers in 1993 (5; 63). Both approaches make use of the generalized mixed model

equations and iteratively solve for β and b.
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ZTWX ZTWZ+G−1













β
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=







XTWy∗

ZTWy∗







Where y∗, the ‘pseudo-data’, is alternately used to estimate β and b and is estimated using

their estimates from the previous iteration.

The following description of the ML estimation procedure draws heavily on the SAS docu-

mentation (47) for the procedure used to fit the models, Proc GLIMMIX (see chapter 38).

4.2.4 Variance Parameter Estimation - Maximum Likelihood with quadrature

The joint probability density function, in general, is given by:

f (Yi|Xi,bi) f (bi)

but since the bi are unobserved the marginal likelihood function is used:

N
∏

i=1

∫

f (Yi|Xi,bi) f (bi) dbi

A two step procedure is used to get the maximum likelihood estimates, first obtain estimates

for β and G based on the marginal likelihood, using adaptive quadrature numerical integration for

approximate estimates. Next, using these estimates generate predicted random effects values:

b̂i = E
(

bi|Yi, β̂, Ĝ
)

Adaptive quadrature is implemented as follows (47), the quadrature rule is:
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∫

∞

−∞

f (x) p (x) dx ≈
Q
∑

r=1

wrf (xr)

where p (x) is a probability density function, f (x) is some function to be integrated against

it, Q is the number of quadrature points, r is its index, and wr are the quadrature weights. In

our case f (x) is the conditional distribution given the random effects, and p (x) is the random

effects distribution. When the number of quadrature points is not specified ahead of time then

Proc GLIMMIX determines the number of quadrature points by evaluating the log likelihood at an

increasing number of points until a tolerance is met. Additionally, and separately, ‘the procedure

centers and scales the quadrature points by using the empirical bayes estimates (EBEs) of the

random effects and the Hessian matrix from the EBE suboptimization.’ The manual goes on to

state that this process improves the likelihood approximation ‘by placing the abscissas according

to the density function of the random effects.’

The next section describes the jackknife procedure.

4.2.5 Jackknife procedure

In general, the jackknife estimator (16) is derived as follows: θ̂n(4.1) is the estimator based

upon all the data, in our case Xk is the data from all the patients in the kthhospital. θ̂i
n−1(4.2)

are the estimators based upon the data less the ith element, θ̂i
J (4.3) are the pseudovalues of the

jackknife, and θ̂J (4.4) is the jackknife estimator.

θ̂n = θ̂ (X1, . . . ,Xn) (4.1)

θ̂i
n−1 = θ̂ (X1, . . . ,Xi−1,Xi+1, . . . ,Xn) (i = 1, . . . , n) (4.2)

θ̂i
J = nθ̂n − (n− 1)θ̂i

n−1 (i = 1, . . . , n) (4.3)
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θ̂J =
1

n

n
∑

i=1

θ̂i
J

= nθ̂n − (n− 1)
¯̂
θ
i

n−1

(4.4)

In the next section the stratification of the data that was done is described.

4.2.6 Stratified sampling

In order to reduce bias and to provide estimates for different size hospitals we have subdivided

the data into three strata. The strata are: small institutions with 1 to 49 patients in the data, medium

institutions with 50 to 199 patients in the data, and large institutions with 200 or more patients in

the data. Respectively there are s, m, and l institutions in the strata and they are indexed by o, p,

and q. Thus we have θ̂Js, θ̂Jm, and θ̂Jl (4.5) as our jackknife estimators for the three strata. We

then use a weighting function to combine these three into an overall estimate.

θ̂Js =
1

s

s
∑

o=1

θ̂o
Js

θ̂Jm =
1

m

m
∑

p=1

θ̂
p
Jm

θ̂Jl =
1

l

l
∑

q=1

θ̂
q
Jl

(4.5)

In the next section the derivation of the jackknifed asymptotic covariance matrix is considered.

4.2.7 Jackknifing the asymptotic covariance matrix

At this point we note that there are two ways to derive the jackknifed asymptotic covariance

matrix. The first is to define θ̂ as the estimator of the covariance matrix and calculate υJ (4.6) using

a function of the pseudovalues and the jackknifed estimator.
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υJ =
1

n− 1

n
∑

i=1

(

θ̂i
J − θ̂J

)(

θ̂i
J − θ̂J

)

⊺

(4.6)

The other is to define θ̂ as the estimator of the asymptotic covariance matrix,υ̂,and get the jack-

knifed estimator directly. This however calls for a modication of (4.3) and thus (4.4) to (4.8) and

(4.9) via the transformations in (4.7). Note that r in (4.7) is the number of fixed effect parameters

in the model and that we are essentially treating υ̂n as the MSE in a regression model while υ̂∗

n

is the corresponding SSE. Finally we must put the jackknifed estimate back on the original scale

(4.10).

υ̂n =
1

n− r
υ̂∗

n

υ̂i
n−1 =

1

n− r − 1
υ̂∗i
n−1

(4.7)

υ̂∗i
J = (n− r) υ̂∗

n − (n− r − 1)υ̂∗i
n−1 (i = 1, . . . , n)

= (n− r)2 υ̂n − (n− r − 1)2υ̂i
n−1

(4.8)

υ̂∗

J =
1

n

n
∑

i=1

υ̂∗i
J

= (n− r)2 υ̂n − (n− r − 1)2 ¯̂υ
i

n−1

(4.9)

υ̂J∗ =
1

n− r
υ̂∗

J (4.10)

Having done this for each of the three strata, we obtain a pooled optimally weighted estimate

υ̂JP where the strata are combined (4.11).
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υ̂JP =
(

υ̂−1
Js + υ̂−1

Jm + υ̂−1
Jl

)

−1
(4.11)

The next section reviews estimation of multivariate relative efficiency.

4.2.8 Efficiency of Estimators

This section draws on section 8.6 of Jureckova, Sen, and Picek (2011) (23) where they discuss

multivariate efficiency. In all three types of relative efficiency we will consider the reference is

the ML estimator and it is the fisher information from that which is compared to the asymptotic

covariance matrix of the estimated random effects variance terms from the estimator which is under

consideration. Essentially each type of efficiency is a different statistic of the eigenvalues of the

product of asymptotic covariance matrix and the MLE fishers information. The specifics follow.

Let Tn be the estimator of interest of parameter θ, in our case the covariance matrix of the

random effects, and let υT be the dispersion matrix of Tn − θ. Let I(θ) be the Fisher information

matrix and D0 is the diagonal matrix of the p eigenvalues of υTI(θ).

Then we have:

D-efficiency

is the pth root of the determinant of (D0)−1 and is the geometric mean of the eigenvalues.

A-efficiency

is the mean of the eigenvalues of (D0)−1 and is the arithmatic mean. It will always be equal to

or greater than the value for the D-efficiency.

E-efficiency

is the largest eigenvalue of (D0)−1 and will always be larger than both the D- and A-efficiency

values.
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4.2.9 Relative efficiencies to be calculated

The two types of pseudoliklihood we will be considering are Maximum Subject Specific Pseu-

dolikelihood (MSPL) and Restricted Subject Specific Pseudolikelihood (RSPL). We will caclulate

both jackknifed and unjackknifed versions of their D, A, and E relative efficiencies. Note that for

both the non-jackknifed and the jackknifed estimates we use a pooled Fisher’s information matrix

(4.12).

I(θ)P = I(θ)s + I(θ)m + I(θ)l (4.12)

Thus we end up with four sets of efficiencies stemming from: ΛMSPL,ΛRSPL which are based

on the non-jackknifed and pooled constituent elements, and ΛJ−MSPL,ΛJ−RSPL which are based

upon the jackknifed and pooled estimates.

4.3 Results

In the following two sections the estimates for the the values of the covariance matrix for each

estimation type and the relative efficiencies will be given. We start with the covariance matrix

parameter estimates for both the overall models as well as the stratified and jack knifed models.

4.3.1 Parameter Estimates

Table 4.1 gives the variance and covariance estimates for each of the estimation methods: Max-

imum Likelihood (ML), Maximum Subject Specific Pseudolikelihood (MSPL), Restricted Subject

Specific Pseudolikelihood (RSPL), RSPL jack knife (JK), and MSPL jack knife. The standard

errors are also provided for the non-jack knife estimation methods. The jack knife based estimates

stem from the hospital group averages weighted by the number of hospitals in the group.

The intercept variance term estimates range from 1.98 to 2.49. The covariance term estimates

range from -1.36 to -1.69. The slope variance term estimates range from 2.05 to 2.41. For the
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intercept and the covariance estimates ML had the largest absolute values, while MSPL JK had the

smallest absolute values. For the slope estimate RSPL JK had the largest estimate while MSPL

had the smallest estimate.

Table 4.1: Covariance parameter estimates

Variable ML Std Err MSPL Std Err RSPL Std Err RSPL JK MSPL JK

Intercept 2.49 0.21 2.04 0.15 2.11 0.16 2.13 1.98

Covariance -1.69 0.20 -1.45 0.16 -1.51 0.16 -1.53 -1.36

Slope 2.28 0.23 2.05 0.20 2.17 0.22 2.41 2.12

Table 4.2 gives the variance and covariance estimates for each of the estimation methods broken

out by hospital group (strata). The number of hospitals (M) and patients (n) are given for each

group. For ML there was a downward trend in the absolute value of the parameter estimates going

from the hospitals with the fewest patients in the data to the hospitals with the most patients in

the data. The two PL estimators had the smallest parameter estimates in the hospital group with

the most number of patients with the midsize group having the highest values. Comparing the ML

estimates to the PL estimates we find that in the ‘1 to 49’ group the ML estimates were noticeably

larger than the PL estimates. In the ‘50 to 199’ group the estimates were similar across the five

estimator types. In the ‘200+’ group the ML and the MSPL estimates were similar while the RSPL

estimates were somewhat higher. The combined estimates from the three strata shown in table

4.4 are based upon a weighting scheme using the inverse of the variance for each group and the

number of hospitals.
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Table 4.2: Covariance parameter estimates by hospital group

Group M n Variable ML Std Err MSPL Std Err RSPL Std Err

1 to 49 1624 12738 Intercept 3.11 0.47 2.01 0.26 2.15 0.28

Covariance -2.04 0.52 -1.33 0.33 -1.49 0.35

Slope 3.49 0.75 2.16 0.50 2.46 0.54

50 to 199 323 33291 Intercept 2.35 0.26 2.15 0.23 2.34 0.26

Covariance -1.85 0.26 -1.69 0.23 -1.87 0.26

Slope 2.37 0.31 2.20 0.29 2.46 0.32

200+ 99 30441 Intercept 0.89 0.15 0.87 0.14 1.10 0.20

Covariance -0.81 0.17 -0.79 0.16 -1.02 0.22

Slope 1.18 0.22 1.15 0.22 1.51 0.30

Table 4.3: Asymptotic covariance matrices by hospital group

Group Variable MLE MSPL RSPL

1 to 49 Intercept 0.217 -0.208 0.180 0.070 -0.075 0.076 0.077 -0.084 0.086

Covariance -0.208 0.268 -0.311 -0.075 0.110 -0.144 -0.084 0.124 -0.164

Slope 0.180 -0.311 0.567 0.076 -0.144 0.255 0.086 -0.164 0.291

50 to 199 Intercept 0.068 -0.060 0.051 0.054 -0.048 0.041 0.066 -0.059 0.051

Covariance -0.060 0.067 -0.070 -0.048 0.055 -0.058 -0.059 0.067 -0.072

Slope 0.051 -0.070 0.098 0.041 -0.058 0.083 0.051 -0.072 0.103

200+ Intercept 0.022 -0.022 0.022 0.021 -0.020 0.020 0.039 -0.038 0.038

Covariance -0.022 0.027 -0.033 -0.020 0.026 -0.031 -0.038 0.048 -0.058

Slope 0.022 -0.033 0.050 0.020 -0.031 0.048 0.038 -0.058 0.089

7
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Table 4.4: Covariance parameter estimates combined across groups

Variable ML MSPL RSPL

Intercept 2.30 1.87 2.09

Covariance -1.68 -1.33 -1.53

Time 2.47 2.01 2.35

4.3.2 D-, A-, and E-Efficiency Estimates for MLE vs. MSPL and RSPL

Table 4.5 shows the D-, A-, and E-efficiencies for the four pseudolikelihood based estimators

relative to Maximum Likelihood. The Jackknifed RSPL values are the lowest, ranging from 0.68 to

0.75, followed by the RSPL values ranging from 0.79 to 0.86, and the two non-jack knifed versions

being noticeably greater then the respective jack knifed estimators.

Table 4.5: D-, A-, and E-efficiency estimates

Type RSPL MSPL J-RSPL J-MSPL

D 0.792 1.190 0.682 0.839

A 0.793 1.191 0.683 0.843

E 0.860 1.270 0.754 0.912

Given the similarity of the D and A efficiencies an example case seems in order. Looking at the

MSPL eigenvalues we have (1.135, 1.167, and 1.270). Plugging these values into the respective

formulae for the three efficiency types as shown in section 4.2.8 we get the results as seen in Table

4.5.

4.4 Discussion

In this study we considered five different estimators of the covariance parameters in a LNMM.

We looked at the overall estimates of the parameters, the stratified estimates, the combined strati-

fied estimates and their relative efficiencies. While there were some differences across the overall

estimates the most striking differences were found across the three strata. These differences were

both in the parameter estimates and in the standard errors of the estimates. The differences in the

parameter estimates across strata indicate that the larger institutions were more similar to each other
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than the smaller institutions. The differences in the standard errors, particularly for the smaller in-

stitutions, across estimator types seem to indicate that the PL estimators underestimate the width

of the confidence interval for the parameters. Taken together these two sets of results strongly

suggest that stratification by institution size in addition to using maximum likelihood is useful for

promoting both precision in the variance estimates and precision in the confidence intervals for

these estimates.

The results of the relative efficiencies seem to correspond to the relationship between the stan-

dard errors as seen in table 4.2. That is the standard errors are consistently smaller for MSPL than

ML while the standard errors for RSPL are larger than ML for one of the strata (200+). Given that

ML is more reliable than PL this would seem to suggest that besides the parameter estimates being

biased for PL that the confidence limits are biased as well. For MSPL for this data the confidence

intervals would be too narrow regardless of strata, while the bias seems to be highly variable, both

too wide and too narrow, for RSPL.

With respect to whether jackknifing would improve the PL estimates in some fashion it seems

that the answer is, partially. As far as parameter estimate bias it does seem to reduce the difference

(for the pooled estimates) between the ML and PL estimates. It also seems that the jackknifing

procedure has the effect of increasing the standard errors for both types of PL. While this is a good

thing for the MSPL standard error estimates it increases the bias for RSPL. It should be noted that

the D-efficiencies are actually slightly lower than the A-efficiencies (as would be expected) but the

difference is out at the third decimal.

These results overall strengthen the argument that ML should be used whenever possible when

using a LNMM and also highlight that stratification should be considered when analyzing SEER-

Medicare data.

72



5 SUMMARY AND CONCLUSION

In the last three chapters we have looked at: creating a quality metric based on a logistic

normal model that characterizes adopter type, quantifing the adoption of innovation by institutions

and regions by use of the area under the curve, and considered the effect of estimator type on

the random effect variance components of the model. Here we recap the findings of chapters two

through four as well as suggest some implications of these findings.

In chapter two we considered whether the proposed logistic normal model with hospital level

random effects of a polynomial of time fit the data any better than models previously used in

studies of the diffusion of SLNB. We also considered whether the trajectories based upon this

model could be used as the basis of a metric that characterized adopter of innovation type. For

both of these questions the answer is yes. As demonstrated by the forward model fitting process,

which essentially recapitulated the type of models used over time, it was found that the random

effects model fit the data better and that hospital level random effects of a cubic of time fit the data

best among those models considered. It was also found that this model differentiated between:

regions, hospital within regions, and covariates of interest, thus potentially could be used as the

basis for a metric that measured adopter type.

Additionally, for those interested in more fully understanding the impact of the variables of

interest, treating time as a continuous variable permits the simple examination, via a single inter-

action effect, of changes over time in the magnitude of the effect of a factor associated with the

use of SLNB. For example, it was found that the magnitude of the effect of ACOSOG membership

diminished over time. At the beginning of the time period examined in the analysis the effect of

ACOSOG was rather large, being a ACOSOG member was strongly associated with greater rate

of use of SLNB early in it’s adoption period. Towards the end of the time period examined that
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effect had diminished substantially. Likewise, there was some evidence (p=0.076) that teaching

hospital affiliation had it’s somewhat smaller effect completely disappear by the end of the study

period. Being a member of one of the four cooperative groups considered had a slightly smaller

effect than ACOSOG at the beginning but ended up having a larger effect at the end. Although, it’s

effect possibly (p=0.060) saw some attenuation.

In chapter three, building upon the logistic normal model developed in chapter two, a simple

metric was proposed to quantify adopter type, the area under the curve of the trajectories generated

by the logistic normal model. We called this metric the evidence based medicine implementation

index (EMII). Using a logistic normal model that did not include hospital characteristics, the EMII

was calculated for each hospital. To verify that the EMII of the hospitals did in fact differentiate

between the categories of hospital characteristics, an additional model that used the EMII as the

outcome and hospital characteristics as the independent variables showed that the EMII did vary

consistently by hospital characteristic.

In chapter four we looked at whether the type of estimator of the random effect variance com-

ponent affected either the parameter estimates or the estimate of the uncertainty of the parameter

estimates (the asymptotic covariance matrix). Maximum likelihood was used as the reference es-

timator type against which several forms of pseudo-likelihood based estimators were compared.

When looking at different sizes of hospitals it was found that the number of hospitals in the strata

was associated with considerable variation in the standard error of the RSPL estimator. This sug-

gests that a varying amount of bias in the standard errors of the variance parameter estimates is

present for RSPL in comparison to maximum likelihood. For MSPL the bias was consistently in

the direction of too narrow a confidence interval. This supports the preference of using maximum

likelihood based estimation instead of pseudo-likelihood when possible.

One additional aspect of the data that was discovered, but not discussed in chapter four, is that

the magnitude (and even significance) of the fixed effects seem to vary with the hospital size strata.

For those interested in policy this might be an interesting aspect to explore. Previous work has
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looked at the effect of hospital size with mixed results, but only the main effect and in some papers

it was not found to be significant. The different fixed effect parameter values over the strata of

hospital size would indicate that the interaction of hospital size with the other factors of interest

should be considered.

Other possibilities for further research include: modeling other procedures whose adoption is

of interest, investigating creation of a composite metric that is based upon multiple procedures,

looking at whether the EMII, in conjunction with other quality indicators, predicts outcomes, pa-

tient satisfaction, or costs, and methodological topics such as the use of distributions other than

normal in model construction.
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A APPENDIX A

A.1 Data Description

Here is an overview of the data. Additional background material describing the structure of the

SEER-Medicare database and the variables in each file can be found on the SEER-Medicare web

site: http://healthcaredelivery.cancer.gov/seermedicare/

Contained in Patient Entitlement and Diagnosis Summary File (PEDSF)

SEER Region

Reporting Source

Diagnosis Month and Year

Age at diagnosis

Diagnostic data

Staging data

Treatment data

Eligibility data by month including HMO and medicaid status

Demographics from SEER registries

Demographics from CMS

Medicare data files

Hospital inpatient stay file (MEDPAR) - one record per hospital stay

Hospital outpatient claims file (OUTSAF) - one record per billable item

Non-hospital provider claims file (NCH) - one record per billable item

Durable Medical Equipment file (DME) - includes cancer medications

Hospital data (HOSPITAL) provided by NCI for 1996, 1998, and 2000 to 2006

Healthcare cost report data (HCRIS)
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Provider of Service data (POS)

Affiliations in 2002 and 2005

Derived variables:

Time is a scaled zero to one function of diagnosis month and the time span covered by this

study.

Indicator variable for receipt of SLNB based on claims data and SEER registry data

Claims from OUTSAF and NCH files

From diagnosis month to 30 days post first surgery date

HCPCS codes of 38792 or 78195.

SEER variables used depended on year of diagnosis

1999 to 2002 SLNB was identified by a 1 or a 3 value of the variable sxscop1

2003 to 2007 a 2, 6, or 7 value of the sxscof1 variable indicated SLNB

Surgery type (BCS, Mastectomy, both) obtained from MEDPAR and OUTSAF claims

Hospital level variables for institution where first definitive surgery performed

Teaching hospital

NCI designated cancer center in 2002

Member of Cooperative group in 2002 (SWOG, CALGB, NSABP, or ECOG)

Member of ACOSOG 2002
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A.2 Calculating Area Under the Curve in Chapter three

The AUC was calculated by use of an approximation that calculated the probability of receipt

of SLNB for each of the 108 months in the study (using the midpoint). These probabilities were

a function of the fixed effects plus (for individual hospitals) the best linear unbiased predictors.

These probabilities were then summed and divided by 108. SAS macro is available upon request.
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