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Abstract 

MENG JIN: Spatiotemporal dynamics of gradient sensing and polarization in yeast 
(Under the direction of Dr. Timothy Elston) 

 
Cells are able to interpret different kinds of spatial information. Characterizing the 

spatiotemporal dynamics in signal transduction is essential to understand how a cell 

process information from its environment. Here, we quantitatively studied the gradient 

sensing and polarization in budding yeast Saccharomyces cerevisiae, using mathematical 

modeling and time-lapse microscopy. In the gradient sensing, we found that yeast cells 

can dynamically remodel local pheromone gradient and achieve better gradient sensing 

by secreting Bar1, a protease that degrades α-factor. Altering the local environment also 

avoids non-productive cell-cell interactions. During the polarity establishment without 

spatial cues, imaging with high spatiotemporal resolution revealed oscillation in the 

initial clustering of polarity factors, suggesting the presence of a negative feedback loop 

that disperses the factors. Mathematical modeling including an additional negative 

feedback reproduced similar dynamics and predicted that negative feedback would confer 

robustness to the polarity circuit, and make the kinetics of competition between polarity 

clusters relatively insensitive to the concentrations of polarity factors. These predictions 

were confirmed experimentally. Lastly, to understand how scaffold protein processes the 

spatial information of pheromone, we presented preliminary results for characterizing the 

kinetics of pheromone induced Ste5 membrane recruitment using time-lapse fluorescent 

imaging and single cell tracking. 
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CHAPTER 1.  

Introduction 
 

 

1.1 Overview 

To survive and thrive in a changing environment, cells must respond correctly to 

intra- and extra-cellular stimuli. The information of stimuli transmits through multiple 

layers of signaling proteins, activates corresponding effectors and causes correct 

responses. Yet, cells are neither well-stirred test tubes nor live in well-stirred solutions. 

Internal and external stimuli sometimes encode spatial information, such as a specific 

position on membrane or the distance from nutrients. In these cases, steps in signal 

transduction must occur at the right place with coordinated spatiotemporal dynamics to 

transmit the spatial information. The knowledge of general mechanisms or network 

motifs that regulate a spatiotemporal behavior and the reasons for choosing a specific 

regulatory mechanism will deepen our understanding of the design principle of biological 

systems. 

  In single cells, one process that requires well-organized spatiotemporal dynamics 

is chemotaxis. During chemotaxis, cells need to interpret the spatial position of input 

signals and then polarize to move or grow towards the right direction. We use budding 

yeast Saccharomyces cerevisiae as the model system to understand the regulation of 
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spatiotemporal signaling in polarization and gradient sensing. In this chapter, we 

introduce the biological background of polarization and gradient sensing in yeast cells 

and current understanding of design principles of chemotaxis pathways through 

theoretical modeling. 

 

1.2 Polarization and gradient sensing in budding yeast 

Yeast cells exist in diploid and haploid forms. Both diploid and haploid yeast can 

proliferate through budding. Haploid yeast has two mating types, a- and α-. Both mating 

types secrete a mating-type specific pheromone to attract cells of the opposite mating 

type. When haploid a- and α- cells are mixed, the diffusive pheromone from α -cells 

would generate a gradient attracting a-cells to change their morphology and grow 

towards the α mating partners. This process is referred as chemotropic growth. When two 

haploids of opposite mating type are close, they change their morphology to mate and 

form an a/α diploid cell. 

Polarization and gradient sensing are key processes in the life of yeast cells. No 

matter what specific growth yeast cells choose, budding, chemotropic or mating, 

polarization regulates the morphological change. Cells need to polarize to transport 

proteins to daughter cells during budding, determine the growth direction during 

chemotropic growth and prepare cell fusion during mating. Since yeast cells are 

immobile and their growth is slow, a good sense of the direction of pheromone gradient is 

important for finding possible mating partners. 
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1.2.1 Regulators in yeast polarization pathway 

The master regulator in yeast polarization is a Rho-family GTPase Cdc42, which 

regulates the polarization of actin cytoskeleton (Adams et al., 1990; Sloat et al., 1981; 

Zheng et al., 1994). Cdc42 is active in guanosine triphosphate (GTP) bound state and 

inactive in guanosine diphosphate GDP bound state. During polarization, GTP bound 

Cdc42 accumulates in the “front” of a cell and interacts with effectors, leading the actin 

polymerization. Inactive GDP-Cdc42 forms a complex with guanosine nucleotide 

dissociation inhibitors (GDI) in the cytoplasm. GDI prevents the GDP dissociation and 

keeps Cdc42 in its inactive state (Koch et al., 1997; Park and Bi, 2007). When Cdc42 

binds to cell membrane, the hydrophobic geranyl-geranyl group at C-terminal is released 

from hydrophobic pocket in GDI, thereby dissociating from GDI at the same time 

(Masuda et al., 1994). In the same way, GDI can extract GDP-bound Cdc42 from 

membrane to cytoplasm (Masuda et al., 1994). Cdc24, a guanine exchange factor (GEF) 

for Cdc42, activates Cdc42 by replacing GDP with GTP (Sloat et al., 1981; Zheng et al., 

1994). In polarized cells, Cdc24 binds to cell membrane by forming complex with a 

scaffold protein Bem1 (Ito et al., 2001; Park and Bi, 2007). Before polarization, Cdc24 

stays in nucleus and cytoplasm (Shimada et al., 2000). GTP-Cdc42 is deactivated when 

the GTPase-activating proteins (GAPs), Bem2, Bem3, Rga1, Rga2 and Rgd2 hydrolyze 

GTP back to GDP (Park and Bi, 2007).  

 Polarity establishment requires multiple effectors of GTP-Cdc42. Two p21-

activated kinases (PAKs), Ste20 and Cla4, are involved in organizing actin and septin 

skeletons (Park and Bi, 2007). PAKs specifically bind with GTP-Cdc42 via Cdc42/Rac 

Interactive Binding (CRIB) domain and localize at the leading edge with GTP-Cdc42. 
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Scaffold protein Bem1 is required for polarity establishment, as bem1 cells are deficient 

in polarization, with large, round shapes (Bender and Pringle, 1991). It brings GTP-

Cdc42, Cdc24 and PAKs close in space, enhance the local activation of Cdc42 (Ito et al., 

2001; Kozubowski et al., 2008; Winters and Pryciak, 2005). Polarized GTP-Cdc42 

triggers the polymerization of actin filaments by its interaction with formin Bni1 (Park 

and Bi, 2007; Pruyne and Bretscher, 2000a). Bni1 has both CRIB domain that binds with 

GTP-Cdc42 and a formin homology 2 (FH2) domain, which helps to nucleate actin 

polymerization (Evangelista et al., 2002). Yet, how GTP-Cdc42 binding regulates Bni1 

activity is still unclear. A group of polarity determining proteins named as polarisome, 

Spa2, Pea2 and Bud6 are found to help Bni1 function (Moseley and Goode, 2006).  

Two cytoskeletons, actin and septin, are regulated by Cdc42 (Park and Bi, 2007; 

Pruyne and Bretscher, 2000b). Polarized Cdc42 and its effectors serve as nucleation and 

anchor sites for actin and septin cytoskeletons. Two actin structures, patches and cables, 

are involved in bud growth and morphological change in pheromone. Actin patches are 

made of short and branched actin filaments, mainly involved in endocytosis (Kaksonen et 

al., 2003). Actin cables are formed by bundles of actin filaments, providing tracks to 

transport material for cell wall reconstruction and bud growth. Cargos trafficking along 

actin cables include secretory vesicles, protein-mRNA complexs and vacuolar 

membranes (Park and Bi, 2007; Pruyne and Bretscher, 2000b). Two type V myosins, 

Myo2p and Myo4p deliver these cargos towards polarized Cdc42 (Irazoqui and Lew, 

2004; Segal and Bloom, 2001). Septins are a family of GTP-binding, filament-forming 

protein (Park and Bi, 2007), recruited at the sites of polarized Cdc42 and then 

transformed into a ring structure (Kim et al., 1991). Septins tether and restrict cytokinetic 
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components at the mother-bud neck, strength the cell way at the division site and 

probably stop lateral diffusion on membrane between mother and daughter cells 

(Gladfelter et al., 2001). Without polarized Cdc42, cytoskeleton is randomly organized in 

the cytoplasm, and cells become large and round due to isotropical growth (Ayscough et 

al., 1997). 

 

1.2.2 Ability to break symmetry  

In most cases, cell polarity is initiated by specific spatial cues, such as active 

receptors or budding markers. However, yeast cells can spontaneously polarize in a 

random direction without any spatial cues from either budding signaling (Bender, 1993; 

Bender and Pringle, 1989a; Chant and Herskowitz, 1991a; Park et al., 1993) or 

pheromone gradient (Madden and Snyder, 1992). This spontaneous “Symmetry-break” 

requires an autocatalytic activation of Cdc42 triggered by random fluctuation. Scaffold 

protein Bem1 has been identified as a crucial factor in the autocatalytic activation by 

connecting GEF and p21-activated kinases (PAK) together (Kozubowski et al., 2008).  

Kozubowski et. al. proposed a mechanism to explain how this autocatalytic loop leads to 

the polarization of active Cdc42 (Kozubowski et al., 2008). In that mechanism, Bem1 

provides a link between GEF and PAKs so that randomly activated GTP-Cdc42 

molecules can contact closely with GEF by forming a complex with PAK-Bem1-GEF 

through the PAK binding domain.  GEF in the complex then activates of more nearby 

GDP-Cdc42 molecules, which recruit more Bem1-GEF molecules and thus lead to the 

accumulation of GTP-Cdc42 in a constrained area close to the initial seeding GTP-Cdc42 

molecule (Kozubowski et al., 2008) (Fig. 1.1). Although actin cables can transport 
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polarity proteins that reinforce polarization, it is less critical for symmetry breaking, since 

cells establish polarity normally even without actin cables (Ayscough et al., 1997; 

Irazoqui et al., 2003).   

Besides the autocatalytic loop, there are two important properties in the pathway 

that ensure the local activation of GDP-Cdc42. One is that the diffusion on the cell 

membrane is much slower than that in mammalian cells (Valdez-Taubas and Pelham, 

2003), limiting the diffusion of localized GTP-Cdc42 and Bem1-GEF complex. The other 

is that fewer freely diffusing Bem1-GEF molecules left in cytoplasm or membrane as the 

polarity patch recruits more Bem1-GEF and GTP-Cdc42 (Goryachev and Pokhilko, 

2008). The depletion of non-complexed Bem1-GEF prevents the accumulation of GTP-

Cdc42 everywhere.  

  

 

 

 

  

 

Figure. 1.1 The autocatalytic activation of Cdc42. Figure adapted from (Johnson et 
al., 2011) 
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1.2.3 Polarize to the right direction 

1.2.3.1 Polarization in response to internal cues 

 When there is no external stimulus, yeast cells follow cell cycle and polarize at 

pre-determined positions to produce buds. Haploid cells bud following an axial pattern 

that both mother and daughter cells bud close to their previous budding site (Chant and 

Pringle, 1995; Park and Bi, 2007). However, diploid cells bud in a different way.  Mother 

diploid cells bud either close or opposite to their daughter cells, but daughter cells always 

bud away from their mother (Chant and Pringle, 1995; Park and Bi, 2007).  

 The specific position for budding is marked by landmark proteins. In haploid 

cells, the central landmark protein is Axl2, which localizes at the mother-bud neck and 

remains at the division site after cytokinesis (Roemer et al., 1996). Diploid cells use 

several landmark proteins, Bud8, Bud9, Rax1 and Rax2, to select budding site. Bud8p 

and Bud9 localizes at the distal pole and the proximal pole of daughter cells, respectively 

(Harkins et al., 2001; Kang et al., 2004). Rax1p and Rax2p localize to both poles of both 

mother and daughter cell, and they are persistent markers through multiple cell divisions 

(Kang et al., 2004). 

 How is polarization biased to these landmark proteins during budding? The Ras-

like GTPase Rsr1 tells the polarity machinery the position of budding markers (Bender 

and Pringle, 1989a; Chant and Herskowitz, 1991a). Rsr1 is activated by its GEF, Bud5 

(Bender, 1993; Chant and Herskowitz, 1991a) and inactivated by its GAP, Bud2 (Bender, 

1993; Park et al., 1993). The GEF of Rsr1 localizes to budding sites through interactions 

with the landmark proteins, resulting in a local accumulation of GTP-Rsr1 (Kang et al., 

2001). GTP-Rsr1 then specifically interacts with Cdc24 and recruits more Cdc24 
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molecules locally(Park et al., 1997). Finally clusters of Cdc24 trigger the positive 

feedback of Cdc42 activation, polarized cytoskeleton and bud emergence at the site 

marked by the landmarks. 

  

1.2.3.2 Polarization in response to pheromone 

 When there are enough pheromone molecules from cells of the opposite mating 

type, haploid yeast cells redirect their polarization and grow towards the source of 

pheromone (Segall, 1993). Polarized cytoskeletons lead to change in morphology. At 

intermediate pheromone levels, cells elongate forming tube-like shapes; at high 

pheromone concentrations, cells form a pear-shaped mating projection named shmoo (Fig 

1.2A).  

 The spatial information of pheromone is transmitted to the polarity machinery 

through G-protein coupled receptors (GPCRs) and heterotrimer G proteins (Gαβγ). Upon 

pheromone binding, the receptors (α factor receptor Ste2 in a-cells and a factor receptor 

Ste3 in α cells) catalyze the GDP to GTP exchange of the Gα subunit (Gpa1), releasing 

Gβγ (Ste4/Ste18) subunits from GTP-Gα (Dohlman and Thorner, 2001). When GTP 

bound Gα is hydrolyzed to GDP bound form, GDP-Gα rebinds to Gβγ and switches the 

pheromone signal off (Dohlman and Thorner, 2001).  
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Figure 1.2. Polarization in response to pheromone.  
A) Yeast cells show distinct responses to  different doses of pheromone. B). A simplified 
schematic representation of signal transduction from pheromone to downstream effectors. 
See text and (Dohlman and Thorner, 2001; Park and Bi, 2007) for details.  
 

 Free Gβγ activates two branches of signaling in response to pheromone (Fig. 

1.2B). The first branch is polarization. Free Gβγ recruits Cdc24, the GEF of Cdc42, to its 

vicinity through binding to the adaptor protein Far1 (Butty et al., 1998; Nern and 

Arkowitz, 1999). Cdc24 then activates Cdc42 and initiates polarization at the site with 

high concentration of free Gβγ, or liganded receptors.  
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 The other branch activated by Gβγ in response to pheromone is the mitogen-

activated protein kinase (MAPK) pathway. The MAPK kinase kinase Ste11 is activated 

by Ste20, the PAK in polarization pathway (Drogen et al., 2000). The active Ste11 

phosphorylates MAPK Ste7, which further phosphorylates and activates MAPK Fus3 and 

Kss1 (Errede et al., 1993; Gartner et al., 1992; Neiman and Herskowitz, 1994). The 

Scaffold Ste5 is recruited to cell membrane by Gβγ (Pryciak and Huntress, 1998). It 

brings Ste11, Ste7 and Fus3/Kss1 together, improving the signaling efficiency and fine-

tuning the dynamics of the activity of kinases (Good et al., 2009; Hao et al., 2008). 

Active Fus3 releases the inhibition of the transcriptional factor Ste12 so that Ste12 can 

activate a specific set of genes under the promoters containing the pheromone-responsive 

element (PRE) (Cook et al., 1996; Elion et al., 1993; Kronstad et al., 1987). MAPK 

signaling stops cell cycle and releases Far1 and Cdc24 from nucleus as a complex so that 

they can bind to Gβγ and anchor the polarization.  

1.2.4 Visualizing gradient sensing in microfluidic devices 

Advances in microfluidic devices and live cell microscopy facilitate the way we 

study the polarization and gradient sensing, by providing well-controlled 

microenvironments around cells and visualizing individual proteins at high spatial and 

temporal resolution. Before the advent of microfluidic devices, chemotaxis assays usually 

immersing a chemattractant-filled pipet in a cell suspension and allowing cells to sense 

and respond to the radical chemical gradient from the pipet tip (Segall, 1993). However, 

these techniques could not provide accurate measurement of chemoattractant gradients 

and thus quantitative and rigorous characterization of spatial dynamics of polarity 

proteins. Carefully designed microfluidic chips overcome these limits. Microfluidic chips 
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can repeatedly mix separate inputs through a network of channel to create spatial 

gradients of extracellular chemical concentrations (Dertinger et al., 2001; Jeon et al., 

2000). For non-adhesive cells, spatial gradients are established by passive diffusion, 

preventing perturbation from active flow. These microfluidic chips can also create 

temporally changing environment, such as switching the direction of spatial gradients. 

  

1.3 Theoretical modeling  

How do current protein-protein interactions enable cells to polarize and track 

gradients? Why do polarization and gradient pathways form their current network 

structure? Theoretical modeling has been applied in the field to answer these questions. 

1.3.1 Turing mechanism 

 Alan Turing proposed the first model to explain pattern formation out of 

homogenous protein distribution (Turing, 1952). In his model, cells produce two freely 

diffusing “morphogens” that control their own production and degradation. One 

morphogen diffuses slowly and enhances the production of both morphogens, and the 

second diffuses more quickly and is inhibitory (Turing, 1952). The trick of spontaneous 

symmetry breaking is inhomogeneous diffusion, which makes the system unstable to 

small spatial perturbations.  

 Gierer and Meinhardt generalized the original Turing model to a network motif 

that combines short-range positive feedback with long-range negative feedback (Gierer 

and Meinhardt, 1972; Meinhardt and Gierer, 1974). The local positive feedback is 

sufficient to amplify spatial fluctuations or shallow gradients of chemoattractants to a 

steep gradient of activated polarity factors inside the cell. Global inhibition blocks the 
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activation of polarity factors in the other area in the cell. There are two basic principles 

for global inhibition: depleting the substrate of the positive feedback or inducing an 

inhibitor of the positive feedback.  

 In yeast polarization pathway, autocatalytic activation of membrane GTP-Cdc42, 

slow-diffusing membrane proteins and depletion of Bem1-GEF build a basic activator-

substrate-depletion model for polarity establishment (Goryachev and Pokhilko, 2008). 

Different from this Turing mechanism, Altschuler et al. demonstrated that the positive 

feedback alone and molecular fluctuations without global inhibition are sufficient to 

generate spontaneous cell polarization (Altschuler et al., 2008). However, this mechanism 

is sensitive to the abundance of polarity proteins and inactivation rate of GTP-Cdc42. 

Overexpressing Cdc42 or reducing the GTP-Cdc42 hydrolysis rate would make the 

model deficient in polarization.  

 

1.3.2 Local excitation global inhibition (LEGI) model 

 Similar to yeast cells, social amoeba Dictyostelium discoideum can polarize either 

randomly in uniform stimulus or in the direction of shallow gradients of chemoattractant 

(1-2% difference in concentration between the front and rear of the cell) (Iglesias and 

Devreotes, 2008). Moreover, they show both sensitivity to changing gradients and 

adaptation in spatially unchanged stimuli: the steady-state response depends on the ratio 

between the local and global receptor signals (Janetopoulos et al., 2004). Studies of 

Dictyostelium chemotaxis revealed several network structures that account for the 

polarization and gradient tracking. 
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 A series models with “local excitation global inhibition” (LEGI) module have 

been applied to explain the adaptive gradient sensing in Dictyostelium cells (Jilkine and 

Edelstein-Keshet, 2011; Kutscher et al., 2004; Levchenko and Iglesias, 2002). The central 

structure of LEGI model is an incoherent feedforward loop, which can achieve perfect 

adaptation (Behar et al., 2007; Ma et al., 2009; Takeda et al., 2012). The signal from 

receptor directly activates two counteracting processes: a fast-acting local activator and a 

slow global inhibitor. Both of them regulate the downstream effectors. Since the response 

of effectors depends on the ratio of activator to inhibitor but not their absolute levels, this 

network structure is capable of perfect adaptation to uniform stimulation, high sensitivity 

to gradient change and is robust to changes in parameters (Levchenko and Iglesias, 

2002).   

 However, the LEGI mechanism itself cannot provide strong amplification. During 

gradient sensing, cells should also be able to amplify the shallow external gradient or 

stochastic noise to a much steeper spatial distribution of intracellular molecules. To 

achieve this function, three different network topologies have been proposed to combine 

with the LEGI module. One topology downstream of the LEGI module is a positive 

feedback that can generate switch-like response (Iglesias and Devreotes, 2008; 

Levchenko and Iglesias, 2002). Another way to overcome the limit of amplification is the 

“balanced inactivation model” with a cytosolic inhibitor (Levine et al., 2006). The 

cytosolic inhibitor is able to bind to membrane, inactivate the slow activator and deplete 

both itself and the activator from the membrane (Levine et al., 2006). A third topology to 

amplify the input is an excitable network motif. Gradients of chemoattractants are sensed 

by a LEGI module, which serves as an input for a noise-driven excitable system (Hecht et 
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al., 2010; Xiong et al., 2010). The LEGI model offers small amplification of the noisy 

input, increasing the probability to trigger the excitable network. The spatially excitable 

model is capable of spontaneous polarization, adaptation and gradient tracking (Xiong et 

al., 2010).  

 

1.3.3 Competition and relocation 

 In living cells, multiple polarity spots emerge in responding to noisy input or 

multiple sources and compete until one wins. When the direction of stimuli changes, the 

polarity spot would move to or re-establish at the new position. However, the simple 

Turing mechanism can only explain the polarity establishment. Since the pattern is built 

by strong positive feedback in a simple Turing mechanism, once established, there is 

hardly any force to destroy the pattern. Therefore, the Turing patterns are usually 

independent of the strength of external stimuli and tend to lock at one site, unresponsive 

to future changes. For example, if the direction of pheromone gradients around yeast cells 

is reversed, it would take a long time to redirect the polarized GTP-Cdc42 only with the 

redistributed shallow free Gβγ gradient and the low concentration of remaining cytosolic 

Bem1-GEF complex that could rebuild positive feedback. The previous modeling based 

on simple Turing mechanism has already shown that the time taken to resolve 

competition between clusters would depend on the amount of polarized protein in each 

cluster (Howell et al., 2009). 

 To account for the formation and competition between multiple polarity spots, 

Meinhardt modified the basic Turing mechanism with two inhibitors: a global one to 

generate patterns and a delayed local one to deactivate local polarity later (Meinhardt, 
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1999). The additional local inhibitor enables the model to polarize spontaneously, 

dismantle and rebuilt local polarities and adapt rapidly to a changed external gradient 

(Meinhardt, 1999). A group of mass-conserved activator-substrate-depletion models also 

enable transient formation of multi-peak states, which then converge to a single peak 

solution (Otsuji et al., 2007; Otsuji et al., 2010). 

 

1.4 Summary 

Although we know the detailed biochemical interactions to transmit the spatial 

information of pheromone gradient to downstream effectors by free Gβγ, the precise 

mechanism for tracking the direction of gradient is still unclear. Knowing where to grow 

is a complicate task for yeast cells. First, cells need to give up the internal spatial cue 

from budding markers and switch to external cue of pheromone gradients. Since the bud 

site is still used for polarization in uniform pheromone fields and mutants of Cdc24 or 

Far1 (Dorer et al., 1995), cells probably first polarize at budding site, and then the free 

Gβγ proteins compete with position signal from Rsr1 to control the position of polarity 

cluster.  

 Another difficulty is to detect a small concentration difference across the length of 

a yeast cell. The size of a yeast cell is about 5 micron in diameter. If a yeast cell is in a 

linear gradient from 0 to 150 nM crossing 100 micron, there is only 7.5 nM difference in 

pheromone concentration across the cell. The fluctuation in the number of pheromone 

molecules due to diffusion makes the gradient detection even harder. Additionally, as 

discussed above, the budding signal further confuses the polarity machinery.  
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 The third challenge is that MATa-cells secrete a protease Bar1 that degrades 

pheromone from MATa cells while sensing the pheromone gradient. Why do yeast cells 

degrade the signal they need? How do cells tell the small difference? How does this 

shallow gradient compete with the budding signals? These questions are the initial 

motivation of work in Chapter 2. We presented our current understanding for the first 

question in Chapter 2. We showed that yeast cells achieve better gradient sensing by 

using protease to actively modify the spatial profile of external stimulus. 

 Competition probably does not only occur in gradient sensing, but also controls 

the singularity in budding, because with or without budding markers, yeast cells produce 

one and only one daughter cell. Although the positive feedback in the Turing mechanism 

is capable of amplifying small spatial perturbations to produce multiple clusters, 

mathematical modeling has shown that initial clusters compete for the substrate of 

positive feedback until one wins, or several clusters merge into a single cluster 

(Goryachev and Pokhilko, 2008; Howell et al., 2009). Do yeast cells use competition to 

guarantee singularity in budding? If not, how do cells ensure only one polarity spot? To 

answer these questions, Howell et. al. developed a protocol for high temporal resolution 

imaging. In Chapter 3, we presented unexpected spatiotemporal dynamics of polarity 

establishment from the high-resolution imaging and provided possible mechanisms to 

explain the observed dynamics. 

  In chapter 4, we showed preliminary results of the spatiotemporal dynamics of 

Ste5, the scaffold protein that couples the information of stimulus to both polarization 

pathway and the activity of MAPK cascade. Chapter 5 summarized these results and 

discussed about some future directions. 

 



 

CHAPTER 2.  

Regulation of pheromone gradient during chemotropic growth via 
protease bar1 

 

 

2.1 Overview 

 In the yeast Saccharomyces cerevisiae haploid MATa and MATa cells secrete cell-

type-specific pheromones (a-factor and a-factor, respectively) that promote cell fusion 

and the formation of a MATa/MATa diploid. Pheromone stimulation leads to a well-

defined series of events required for mating, including readily-assayed responses such as 

MAPK phosphorylation, new gene transcription and morphological changes. At high 

doses of pheromone cells arrest in G1 and form the characteristic “shmoo” morphology. 

However at intermediate levels of a-factor, MATa-cells undergo chemotropic growth in 

which they elongate in the direction of increasing a-factor concentrations (Dorer et al., 

1995; Erdman and Snyder, 2001; Hao et al., 2008; Paliwal et al., 2007; Segall, 1993).  

 A property that distinguishes MATa from MATa cells is that the former secrete the 

protease Bar1 that degrades a-factor secreted by MATa cells (Ciejek and Thorner, 1979; 

Hicks and Herskowitz, 1976).  MATa cells lack an a-factor specific protease. It is widely 

thought that Bar1 serves to “desensitize” the pheromone pathway and restore normal cell 

division if mating is unsuccessful (Chan and Otte, 1982). However, Jackson and Hartwell 
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showed that bar1 mutant cells are poorly able to find a mating partner when presented 

with a mixture of pheromone-producing and non-producing MATa cells (Jackson and 

Hartwell, 1990). This finding suggests that Bar1 has an important positive role in mating, 

despite attenuating the initial stimulus. Using an analogy to electrostatics, Barkai et al. 

postulated that a homogenous concentration of Bar1 limits the diffusion range of a-factor, 

thereby creating local pheromone gradients that are better aligned with the direction of 

the nearest MATa cell (Barkai et al., 1998).  Alby et al. observed that a secreted protease 

helps to prevent rare same-sex mating in C. albicans (Alby et al., 2009).  Here, we 

combine experimental and computational approaches to explore how Bar1 promotes 

accurate gradient detection and proper mating behavior. In particular, we showed that 

Bar1 allowed cells of the same mating type to avoid one another, thereby minimizing 

unproductive encounters, while dynamically magnifying pheromone gradients in the 

direction of the opposite mating type.  

 

2.2 Same-sex avoidance 

 Experiments performed in a microfluidic gradient chamber showed that MATa 

cells tended to avoid each other as they elongated (Fig. 2.1A, left panel).  We reasoned 

that self-avoidance could contribute to increased mating efficiency by reducing non-

productive encounters with cells of the same mating type. We reasoned further that self-

avoidance behavior might be dependent on Bar1, which has been shown to have a 

positive role with respect to mating partner selection. 

To investigate if Bar1 is sufficient to explain the self-avoidance behavior, we 

developed a computational platform for simulating chemotropic growth (Fig. 2.1B and 
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C). Full details of the computational platform and justification of parameter values are 

        

Figure 2.1.  Bar1 provides a self-avoidance mechanism.  
A) Experiments performed in a microfluidic gradient chamber. BAR1 cells show self-
avoidance (left panel), whereas bar1∆ cells tend to grow parallel to one another (right panel). 
Arrows indicate the direction of growth. B) Schematic diagram of the initial configuration for 
simulations of the gradient chamber. C) Schematic diagram of cell growth simulation. D) 
Simulated cell growth demonstrated that MATa cells avoid one another during chemotropic 
growth in a gradient chamber. Arrows indicate the direction of growth. The color bar at the 
right shows the color scale for pheromone concentrations (nM) within the computational 
domains. 



 20 

given in the Materials and Methods. The microfluidic chamber is taken to be a square 

domain, and MATa cells within the chamber are initially represented as circles (Fig. 

2.1B). Bar1 is released from MATa cells and degrades α-factor in the surrounding fluid.  

To simulate the pheromone gradient inside the microfluidic chamber the pheromone 

concentration at the right edge of the computational domain was held at 100 nM, while 

the pheromone concentration at the left boundary was set at zero. The concentrations of 

Bar1 and pheromone are governed by Eqs. (1) and (2), respectively, in the Material and 

Methods. These equations are run to steady state to determine the initial concentration 

profiles.  

The Kd for the pheromone receptor Ste2 has been reported to be approximately 5 

nM (Jenness et al., 1986). Therefore, we assumed a local pheromone concentration of at 

least 1 nM is required to initiate a response. We also assumed gradient detection is 

possible for local pheromone concentrations ranging from 1-50 nM. Cell elongation is 

modeled by inserting successive growth segments into the cell (Fig. 2.1C). After each 

elongation step, the concentration profiles of Bar1 and pheromone are recalculated. To 

determine the initial direction of growth, the relative α-factor gradient was computed 

(Materials and Methods). The relative gradient is the difference in α-factor concentration 

across the cell divided by the average concentration over the same region and is therefore 

a dimensionless quantity. Based on measurements made in our microfluidics chamber, 

we set a relative gradient of 0.025 as the threshold for detectable pheromone gradients 

(Hao et al., 2008). For steeper gradients, cells elongate in the direction of the pheromone 

gradient. For gradients below the threshold, elongation occurs in a random direction. 

Once a cell has begun to elongate (hereafter “grow”), Bar1 release occurs in a polarized 
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fashion from the leading edge and the relative gradient is measured across the leading 

growth segment (Material and Methods). To model pheromone-induced synthesis of 

Bar1, we assumed that the synthesis rate increases proportionally to the size of the 

growing cell.  If the gradient becomes sub-threshold during elongation, then the cell 

continues to grow in the same direction; otherwise the cell reorients in the direction of the 

gradient (Fig. 2.1C).  

Our simulations indicated that Bar1 released locally from MATa cells was 

sufficient to allow these cells to avoid one another within the gradient chamber (Fig. 

2.1D). Indeed, the results of our simulations were similar to the behavior observed 

experimentally (Fig. 2.1A, left panel). In particular, our simulation reproduced the 

situation in which two neighboring MATa cells having initiated growth opposite the α-

factor gradient turned away from each other as they reoriented toward the gradient (Fig. 

2.1D, left panel). In this scenario, cells lacking Bar1 would be equally likely to turn 

towards each other as apart from one another.   

To confirm a role for Bar1 in self-avoidance, we repeated the gradient 

experiments with cells that lack BAR1.  In contrast to wildtype, bar1∆ cells elongated 

parallel to one another and frequently collided (Fig. 2.1A, right panel). To quantify the 

effects of Bar1, we measured the angle between MATa cells that were initially adjacent in 

the gradient chamber (Fig. 2.2 top panel).  For cells expressing Bar1, the average angle 

between two neighbor cells (93.9° ±2.3, n=22) was larger than that observed for the 

bar1∆ cells (43.4° ±4.0, n=15).  We then measured the angle between elongating cells 

and the direction of the gradient (taken to be 0°). After sufficiently long times (350 min), 
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essentially the same number of BAR1 and bar1∆ cells aligned their growth with the 

gradient (Fig. 2.2 bottom panel).  

 

Figure 2.2 Measure gradient tracking in BAR1 and bar1Δ cells.  
Top: Times series for the average angle between adjacent cells in the microfluidic chambers. The 
average angle is 93.9° ±2.3 (n=22) for BAR1 MATa cells (red bars), and 43.4° ±4.0 (n=15) for 
bar1Δ MATa cells (blue bars). Error bars correspond to 95% confidence intervals. Bottom: 
Histograms for the angle between the direction of the pheromone gradient in the microfluidic 
chamber and the direction of cell growth at 350 min. 
 

2.3 Improved mating efficiency by local Bar1 

 Initially, to quantify the contribution of Bar1 to mating preference, we performed 

mating assays with MATa cells either expressing or lacking Bar1. In both cases, we 

mixed a population of MATa cells with an equal number of MATa or MATα cells either 

in the absence or presence of exogenously added α-factor (Materials and Methods) (Fig. 
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2.3 A&B). The mating partners had complementary selectable markers, allowing 

quantitation of mating frequencies. Bar1 promoted mating between MATa and MATα 

cells (Fig. 2.3A). Opposite sex mating efficiency decreased in the presence of 

exogenously added pheromone and decreased further in the absence of Bar1. In contrast, 

same sex matings increased in the presence of added pheromone and also when Bar1 was 

absent (Fig. 2.3B). Same sex mating between MATa cells is attributed to autocrine 

signaling promoted by low levels of α-factor expressed by this cell-type (Bender and 

Sprague, 1989; Whiteway et al., 1988). This phenomenon could account for the ability of 

Bar1 to limit same-sex mating and is consistent with the positive effects of exogenous 

pheromone (Fig. 2.3B). Diploid cells from the same-sex mating assay successfully mated 

with a MATα-tester strain and did not sporulate, verifying these cells did not result from a 

rare mating-type switch in the population and subsequent opposite sex mating events (see 

Materials and Methods for details).  

The data presented in Figs. 2.3A and B demonstrate Bar1 affects the efficiency of 

both MATa x MATα and MATa x MATa mating. However, these experiments do not 

distinguish local versus global effects of the protease. For the case of MATa x MATα 

mating, a uniform background of Bar1 could sharpen α-factor gradients (Barkai et al., 

1998) and reduce saturating concentrations of α-factor to levels where gradient sensing is 

possible. Additionally, a global reduction of α-factor is expected to diminish the 

frequency of same-sex mating. Our simulations suggest that by causing MATa cells to 

avoid one another, local gradients of Bar1 also may play a role in reducing same-sex 

mating.  Therefore, we devised experiments to test if the local release of Bar1 contributed 

to the efficiency of either MATa x MATα or MATa x MATa mating.  
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Figure 2.3 Relative mating efficiency for opposite and same sex mating.  
A) MATa x MATα mating (Table 1, crosses 2 and 4) at different concentrations of exogenous α-
factor. B) MATa x MATa mating (Table 1, crosses 1 and 3) using the same concentrations of 
exogenous α-factor as in A. Mating efficiencies in A and B are relative to that for the MATa x 
MATα BAR1 mixture (Table 1, cross 2) with no exogenous pheromone. C) MATa x MATα 
mating without (Table 1, crosses 2 and 4) or with (Table 1, crosses 10 and 12) MATa decoy cells 
to equalize the amount of Bar1 protease in the mating mixtures.  D) MATa x MATa mating in the 
absence (Table 1, crosses 1 and 3) or presence (Table 1, crosses 9 and 11) of MATa decoy cells 
to equalize the amount of Bar1 protease in mating mixtures. Mating efficiencies without or with 
decoy cells in C and D are relative to the efficiency of MATa x MATα mixtures without (Table 1, 
cross 2) or with decoy cells (Table 1, cross 10), respectively. For A – D, the red bars correspond 
to BAR1 mating partners and the blue bars correspond to bar1∆ mating partners. Error bars 
correspond to 95% confidence intervals.  
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These experiments involved mixtures of “mating partners” with complementing 

alleles to allow for the selection of diploid fusion products and “decoys” with alleles that 

fail to complement either partner. To keep the total amount of Bar1 and the fraction of 

potential mating partners comparable between mating mixtures, BAR1 decoys were 

included in experiments involving bar1∆ mating partners and bar1∆  decoys were 

included in experiments with BAR1 mating partners. This experimental design ensures 

that any observed difference in the mating efficiency (opposite or same sex) could be 

attributed to local effects of Bar1. 

 For opposite sex mating, MATa cells that expressed Bar1 mated more efficiently 

than bar1∆ MATa cells when decoy cells were included in the mixtures (Fig. 2.3C). In 

contrast, for same-sex mating in the presence of decoys bar1∆ cells mated more 

efficiently than BAR1 cells (Fig. 2.3D). These results demonstrated that the local release 

of Bar1 favors opposite-sex mating while disfavoring same sex encounters. As 

demonstrated above, Bar1 provides a mechanism for self-avoidance. Self-avoidance 

would not only diminish opportunities of same sex mating, but also improve opposite sex 

mating by reducing the occurrence of two MATa cells competing for the same MATα 

partner.  

 

2.4 Expanding searching area  

We next performed simulations to investigate potential mechanisms for how the 

local release of Bar1 improves MATa x MATα mating. In the mating assays a large 

number of MATa and MATα cells were mixed together. In this situation, the initial α-

factor concentration experienced by the MATa cells is expected to be fairly 
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homogeneous, although fluctuations in cell density will generate local regions containing 

clusters of MATa or MATα cells.  This scenario is similar to situations in the wild when a 

cluster of MATa cells encounters a cluster MATα cells. To investigate the role of Bar1 in 

such a scenario, we performed simulations in which multiple MATa cells are exposed to a 

homogenous background of α-factor. To establish a spatially uniform α-factor 

concentration in the absence of MATa cells, the pheromone concentration at the 

boundaries of the computational domain is held fixed at 50 nM.  These simulations 

revealed MATa cells tended to avoid one another as they elongated, so that they grew 

radially outward away from the center of the colony.  This behavior allowed them to 

explore a large area in search of a mating partner (Fig. 2.4A).  In contrast, when cells 

lacking Bar1 were started in the same initial geometry, they grew in random directions 

and frequently collided with each other. Consequently these cells searched a reduced area 

(Fig. 2.4C) and would therefore encounter fewer potential mating partners.  
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Figure 2.4. Bar1 increases the search area of MATa cells.  
A) Simulated growth of BAR1 cells occurs radially outward from the center of the colony. Arrows 
indicate the direction of growth. Inset: The initial distribution. B) Growth of BAR1 cells 
(BY4741-15) exposed to a constant pheromone background of 100 nM in microfluidic chamber. 
The upper panel corresponds t = 0 and lower panel to t = 315 min.  C) Simulated growth of bar1∆ 
cells. The cells grow in random directions. Inset: The initial distribution.  D) Growth of bar1∆ 
cells (BY4741-30) exposed to a constant pheromone background of 10 nM in microfluidic 
chamber. The upper panel corresponds t = 0 and lower panel to t = 415 min. Large number of 
pairs of cells exhibiting parallel growth. In both B and D, the upper panel is a DIC image showing 
the initial distribution of cells and the lower panel shows leading edge of polarization via Bem1-
GFP.  

 

To test the results of these simulations, we used the microfluidic chamber to 

expose both BAR1 and bar1∆ MATa cells to homogeneous pheromone concentrations. 

We tracked the direction of cell growth by following green fluorescent protein fused to 

Bem1 (Bem1-GFP), a protein that marks the leading edge of polarized growth (Irazoqui 

et al., 2003). We found clear qualitative agreement between the simulations and the 
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behavior of both the BAR1 (Fig. 2.4A and B) and bar1∆ strains (Figs. 2.4C and D). We 

next investigated the range of pheromone concentrations over which MATa cells avoid 

each other during elongated growth. The upper limit for the α-factor concentration is 

roughly 150 nM, above which cells do not elongate but form well-defined mating 

projections (data not shown). The lower limit is roughly 50 nM, below which the cells do 

not respond to pheromone. Between these limits (75, 100, and 120 nM), Bar1 expressing 

cells exhibit self avoidance (Supplemental Movies). At doses compatible with elongated 

growth in bar1∆ cells (5-30 nM) the self avoidance behavior is absent (data not shown).  

One striking feature seen for the case of bar1∆ cells is the high frequency of pairs 

of cells that elongated parallel to one another. These pairs represent mother and daughter 

cells that initially polarized toward each other at the former bud site. The direction of 

polarization of both cells then rotated until growth was no longer occluded. Because these 

cells lack Bar1, the pairs continue to grow parallel as predicted. Of the 55 

mother/daughter pairs counted, 45 exhibited parallel growth (31 grew in the same 

direction, 14 grew in opposite directions). By contrast, in the BAR1 strain, none of 62 

mother/daughter pairs exhibited parallel growth. This ability of Bar1 to prevent 

mother/daughter pairs from growing parallel to each other may be important in 

preventing competition for the same mating partner. 

2.5 Amplifying pheromone gradients during elongation 

Our results indicated that spatial heterogeneities in Bar1 concentration played an 

important role in shaping the local α-factor concentration. To determine how Bar1 

improved the efficiency with which opposite mating types located each other, we used 

our computational platform to investigate several scenarios involving MATa and MATα 
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cells. In the first case, a single MATa cell was presented with two potential mating 

partners (Fig. 2.5A inset) but was placed closer to the MATα cell on the left.  In this 

geometry, both BAR1 and bar1∆ cells can detect the initial pheromone gradient and 

follow the same trajectory as they elongate. However, the initial gradient experienced by 

the BAR1 cell was larger than that of the bar1∆ cell and sharpened greatly as the MATa 

cell elongated (Fig. 2.5A, red curve). In contrast, without Bar1 the gradient remained 

shallow (Fig. 2.5A, blue line).  

Next we considered a geometry in which BAR1 and bar1∆ cells were able to 

detect α-factor, but initially unable to detect a gradient. This initial condition is 

accomplished by placing the MATa cell slightly to the left of the mid-point between the 

two MATα cells. In this case, both cell types were expected to polarize in a random 

direction.  We tested three representative initial growth directions (Fig. 2.5B, inset). In all 

cases, a super-threshold gradient quickly developed as the cell expressing Bar1 grew 

(Fig. 2.5B, red lines), enabling this cell to reorient its direction of growth and find the 

nearest mating partner (Fig 2.5B, inset - red arrows). In contrast, the pheromone gradient 

across the bar1∆ cell remained below the detectable limit (Fig. 2.5B, blue lines), and cell 

growth proceeded in the original direction of polarization (Fig. 2.5B, inset blue arrows).   
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Figure 2.5. Local release of Bar1 amplifies pheromone gradients during 
chemotropic growth.  
A) The relative pheromone gradient (maximum difference in pheromone concentration across the 
leading growth segment divided by the average concentration over that segment) measured by a 
MATa cell expressing Bar1 (red curve) or lacking Bar1 (blue curve) as a function of the 
elongation step. Inset: the MATa cell is placed close enough to the left MATα cell so that both the 
BAR1 (red line) and bar1∆ (blue line) cells can detect a gradient. Arrows indicate the direction of 
growth. B) The same as in A except the MATa cell is placed near the midpoint of the two MATα 
cells, but slightly closer to the left cell (Inset). In this scenario, the local release of Bar1 allows 
MATa cells to reorient when the initial relative gradients of α-factor are sub-threshold and 
polarization occurs in a random direction. 
 

Our results suggest that Bar1 improves mating efficiency by progressively 

amplifying the relative pheromone gradient across MATa cells, because the MATa cell 

acts like a pheromone sink where pheromone is continuously degraded by Bar1. If we 
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make the simplifying assumptions that MATa cells are perfect sinks (that is they absorb 

all α-factor near them) and MATα cells are a constant source of pheromone, then the 

relative α-factor gradient between the two cells increases as the inverse of the distance 

between them.  This prediction is in qualitative agreement with the results of our 

simulations (Fig. 2.5 A and B). Thus, our investigations suggest that the release of Bar1 

by MATa cells reshapes pheromone concentrations to amplify gradients toward 

appropriate mating partners.  An added advantage of Bar1 remaining highly localized 

around MATa-cells is that gradient amplification is achieved without a drastic reduction 

in the overall level of α-factor.  

 Finally, we investigated a more complex geometry in which a pair of MATa cells 

are presented with two potential MATα mating partners (Fig. 2.6). Both MATa cells were 

positioned closer to the MATα cell on the left. In the absence of Bar1, the pheromone 

gradients were sub-threshold (data not shown). If the Bar1 concentration was assumed 

constant and equal to the concentration near the surface of a MATa cell (1.6 nM), then 

both MATa cells detected a gradient and approached the MATα cell on the left (Fig. 

2.6B). However, when the MATa cells released Bar1, the top MATa cell grew away from 

the bottom MATa cell and toward the MATα cell to the right (Fig. 2.6C). This result held 

for a range of initial geometries (Fig. 2.6A). These simulations showed how self 

avoidance through the local release of Bar1 can prevent competition for the same mating 

partner and thereby improve mating efficiency.  
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Figure 2.6. Bar1 allows MATa cells to find unique mating partners.  
A) Two MATa cells (a1 and a2) are presented with two potential MATα mating partners (α1 and 
α2). The dashed gray circles represent other initial position for a1 that were tested and in each case 
produced similar results. The lines with red arrow heads represent the direction of growth.  B) In 
the presence of a uniform background of Bar1, a1 and a2 compete for α1. C) When a1 and a2 

locally release Bar1, a2 grows away from a1 and toward α2 enabling both cells to find a unique 
mating partner. The color bar at the right shows the color scale for pheromone concentrations 
(nM) within the computational domains. 
 

2.6 Discussion  

Bar1 promotes mating efficiency despite its ability to degrade the mating stimulus 

(Chan and Otte, 1982; Ciejek and Thorner, 1979; Jackson and Hartwell, 1990). Previous 

computational studies have investigated the role of Bar1 in mating.  Barkai et. al. (Barkai 

et al., 1998) proposed that Bar1 improves the alignment of the pheromone gradient with 

the direction of the nearest MATα-cell. Andrews et. al. (Andrews et al., 2010) extended 

this work to show that the local release of Bar1 increases the gradient of liganded 

receptor across a MATa cell. Here, we considered how the α-factor gradient is 

dynamically modified as yeast undergo chemotropic growth and navigate toward mating 

partners. Our results indicate that Bar1 dramatically sharpens the relative pheromone 
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gradient as MATa cells elongate. An important consequence is that MATa cells can 

efficiently adjust their direction of elongation, if initial growth is not toward a mating 

partner.  

Our investigations also revealed that local accumulation of Bar1 causes a 

depletion of α-factor between adjacent MATa cells, which in turn produces local 

pheromone gradients that promote self avoidance. Thus, the continuous reshaping of 

local pheromone gradients enables MATa cells to efficiently locate a suitable partner 

while avoiding interactions unlikely to produce a successful mating event. The insights 

from our simulations are supported by our experimental findings showing that bar1∆ 

cells do not exhibit avoidance and instead collide and grow in parallel with each other. 

Consequently bar1∆ cells have increased frequency of MATa-MATa mating. Although 

the effects of Bar1 on same-sex matings are significant, they are substantially less than 

those reported for the distantly-related yeast Candida albicans (Alby et al., 2009). Under 

physiological conditions C. albicans exist primarily as a/α diploids and rarely mate. This 

physiology contrasts with that of S. cerevisiae, where opposite sex mating is an important 

part of its life cycle.  Thus Bar1 alone may provide a sufficient impediment to same sex 

mating in C. albicans but multiple mechanisms are in place to prevent the detrimental 

consequences of same sex mating in S. cerevisiae. 

Analogous events have been reported in other systems. For instance the 

mechanisms that promote directed migration of neutrophils and Dictyostelium 

discoideum have been extensively studied (Van Haastert and Devreotes, 2004). In these 

examples secreted enzymes serve to degrade the initiating signal. In D. discoideum, 

secreted cAMP serves to induce cell migration, aggregation and differentiation. cAMP is 
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in turn degraded by the secreted phosphodiesterase PdsA. In the absence of PdsA, 

gradient detection and cellular migration is compromised (Garcia et al., 2009). Thus just 

as pheromone gradients in yeast are shaped by the secretion of Bar1, cAMP gradients in 

D. discoidium may likewise be shaped by a secreted cyclic nucleotide phosphodiesterase. 

In summary, our findings indicate that hormone proteases can serve dual 

functions, to reduce the signal, as well as shape concentration gradients for optimal signal 

detection and responsiveness. More generally, our findings reveal that cells can 

dynamically remodel their environment to avoid non-productive cell-cell interactions. 

 

2.7 Computational Methods 

2.7.1 Framework for chemotropic growth  

We developed a computational platform for studying yeast chemotropic growth. 

This platform is built on COMSOL with MATLAB (Comsol Inc., Burlington, MA). 

Schematic diagrams of the simulation platform are given in Figs. 2.1B and C. The 

process for simulating chemotropic growth is as follows: 

1. The computational domain that contains the cells is taken to be a square. 

Initially, cells are assumed to have a circular geometry (Fig. 2.1B). 

Biochemical species, reactions, boundary conditions and initial conditions are 

defined in the relevant domains (see below).  

2. We assume that cell growth occurs on a longer timescale than the chemical 

reactions and thermal diffusion. Therefore, all chemical species reach their 

steady state before cell growth occurs. This simplification allows us to 

separate solving the reaction-diffusion equations from growing the cells. 
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Solving the reaction-diffusion equations produces the spatial profiles for the 

extracellular pheromone and Bar1 concentrations. 

3. The location of the maximum (Pmax) and minimum (Pmin) pheromone 

concentration around each cell is found.  The relative gradient is then 

computed as: 2 (Pmax-Pmin)/(Pmax+Pmin). If the absolute level of 

pheromone and the relative gradient are above threshold, a narrow rectangular 

segment is inserted between the half circle defined with Pmax as its midpoint 

and the half circle defined with Pback as its midpoint (Fig. 2.1C). Otherwise 

the cell is elongated in a random or pre-specified direction. The half circle, 

which contains Pmax and is moved to accommodate S1, is defined as the 

leading edge. The other half circle is taken to be the back of cell and remains 

fixed throughout the simulation. 

4. Following cell elongation, the program recomputes the steady-state profiles of 

the reaction-diffusion equations.  

5. In later growth steps, only the pheromone concentration across the leading 

segment is considered, because this is where growth occurs. For this case the 

relative gradient is computed as 2(Pmax-Pmin)/(Pmax+Pmin), where Pmax 

and Pmin are the maximum and minimum pheromone concentration, 

respectively, over the leading segment. If the relative gradient is above 

threshold, a new segment is inserted between the leading edge and the 

previous segment and rotated by angle formed by the previous direction of 

growth and Pmax (Fig. 2.1C). Otherwise the new segment is inserted in the 
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same direction as the previous one. Steps 4 and 5 are repeated until all cells 

grow to the desired length or two cells collide with each other. 

 

2.7.2 Chamber simulations  

For the gradient simulations (Fig. 2.1B), the concentration of pheromone on the 

left and right edges of the chamber domain is fixed at 0 and 100 nM, respectively, which 

creates a linear gradient across the chamber domain. In this case, no flux boundary 

conditions are used along the top and bottom edges of the chamber. For the chamber 

simulations with a constant pheromone background (Fig. 2.4), the pheromone 

concentration is fixed at all boundaries of the computational domain. The boundary 

conditions for Bar1 are absorbing at the four edges (i.e., the concentration is taken to be 

zero at these boundaries). The pheromone and Bar1 concentrations are computed from 

the following equations: 

      (1) 

                                         (2)  

where Dbar1 and Dph are the diffusion coefficients for Bar1 and pheromone, respectively; 

sb(x,y) is the flux of Bar1 from a-cells; db and dph are the rate constants for degradation of 

Bar1 and pheromone, respectively, and kb is the rate constant for Bar1 mediated 

degradation of pheromone.  Initially, MATa cells are assumed to emit Bar1 at constant 

rate uniformly across the entire cell. Once the cells begin to elongate, Bar1 is released in 

a polarized fashion exclusively from the leading growth segment. The assumption of 

polarized release of Bar1 during chemotropic growth is not necessary to reproduce the 

( )1
[ 1] [ 1] , [ 1] bar b b
Bar D Bar s x y d Bar

t
∂

= ∆ + −
∂

  

∂[Ph]
∂t

= Dph∆[Ph]− kb[Bar1][Ph]− dph[Ph]



 37 

qualitative features of the model. To simulate pheromone induced Bar1 expression, the 

flux out of the leading segment is increased in proportion to the size of the cell.  

 

2.7.3 Simulations with MATa and MATα cells  

For simulations involving MATa- and MATα- cells (Figs. 2.5 and 2.6), MATα 

cells are assumed to emit α-factor uniformly across the cell surface. Again Bar1 is 

released from MATa cells. The equations for the pheromone and Bar1 concentrations are 

the same as Eqs. (1) and (2) with the addition of a source term in Eq. (2),  sPh(x,y)= 75 

nM/s,  for the release of α-factor from MATα cells. The growth direction is determined 

using the relative gradient as described above. The boundary conditions for α-factor and 

Bar1 are no flux. 

 

2.7.4 Parameter estimation 

There are 7 model parameters: the synthesis and degradation rates of Bar1 and 

pheromone (sBar1, dBar1, sph, dph), degradation of pheromone by Bar1 (kBar1), and diffusion 

of pheromone and Bar1 (Dph, DBar1). We estimated the synthesis, degradation and 

diffusion rates of pheromone based on the molecules size and the generation of a 

reasonable concentration profile around a MATα-cell.  

We assume that spatial gradients of pheromone and Bar1 only exist in two 

dimensions (x and y). This assumption is valid for the microfluidic chamber, which has a 

height of h = 5 microns and for the mating assays, which take place on an agar surface. 

The pheromone concentration Cp is measured in units of nanomolar (nM). In the absence 
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of other cells, the steady-state profile for Cp around a MATα cell is described by the 

following equation: 

       (3) 

where  is the Laplace operator in polar coordinates, dP is 

the pheromone degradation rate, Dp is the diffusion coefficient, and jP is the pheromone 

flux density (molecules/(area-sec)) at the cell boundary located at r0. The flux density jP is 

computed as follows. Assume pheromone molecules are synthesized inside the cell at a 

rate of of SX (nM/s) and released uniformly over the surface of the cell. Then the flux per 

unit area is the product of synthesis rate and the ratio of the cell volume to surface area jp 

= SX r0/3.   

The steady-state solution of Eq. (3) is  

       (4) 

 

where K0 and K1 are modified Bessel function of the second kind. The diffusion 

coefficient of pheromone is estimated from its molecular weight to be 125 µm2/s. Based 

on Eq. (4), we chose the synthesis rate of pheromone to be 75 nM/s and the degradation 

rate to be 0.005sec-1. With these values the pheromone concentration of 5nM at the 

surface of a MATα cell and drops to 20% of this value 100 µm away from the source. 
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This synthesis rate requires a MATα-cell with 5 µm diameter to produce 3000 pheromone 

molecules per second.  

Bar1 emitted from a MATa cell satisfies an equation analogous to Eq. (3). 

Because Bar1 is substantially larger than pheromone, we chose its synthesis rate to be 1.5 

nM/s, 50 times slower than that of pheromone. Once a MATa cell begins to elongate, we 

assumed Bar1 is released exclusively from the leading edge. We assumed Bar1 degrades 

at a rate of 0.05 sec-1, which is 10 fold faster compared with pheromone. We take the 

diffusion coefficient of Bar1 to be 6.25 µm2/s, which is 20 times slower than pheromone 

diffusion coefficient. With these values the concentration of Bar1 in unit volume at the 

surface of the cell is 0.85nM and drops to 20% of its value at distance of 13 µm.  The 

rationale for these choices is given next.  

 

2.7.5 Robustness in parameter values 

Among the 7 free parameters, we systematically varied sBar1, dBar1, sph and kBar1 

and quantified their effects on self-avoidance and sharpening of the pheromone gradient. 

 Self-avoidance of adjacent MATa cells. For MATa cells to show self-avoidance 

(an angle of >20° between adjacent cells) the model parameters should satisfy two 

conditions:  

1) Bar1 dependent degradation of pheromone (kBar1[Bar1])  needs to be around 2 

orders of magnitude larger than spontaneous pheromone degradation (dph) (Fig. 

2.7A).  This ratio can be increased by increasing the Bar1 related parameters sBar1 

and kBar1. Decreasing the Bar1 degradation rate dBar1 also affects this ratio. 



 40 

However, this parameter increases the width of Bar1’s distribution around a 

MATa cell, which is in opposition to the second condition.  

2) The distribution of Bar1 is required to be localized around MATa-cells (Fig. 

2.7B).  If the Bar1 distribution is too broad, then because of condition 1, the 

pheromone concentration around multiple MATa cells is reduced to low levels, 

making the establishment of sharp pheromone gradients difficult and the angle 

between two neighboring MATa cells is small. There are two ways to restrict the 

Bar1 distribution, rapid degradation or slow diffusion. One alternative effect that 

would effectively limit the distribution of Bar1 around MATa cells is if a portion 

of the protease remained trapped in the periplasmic space between the cell wall 

and the plasma membrane.   

 Sharpening pheromone gradients. We investigated how the ability of Bar1 to 

sharpen pheromone gradients depends on the model parameters sPh, dBar1, and kBar1 using 

the same geometry of MATa and MATα-cells as in Fig. 2.5B. The synthesis rate of 

pheromone, sPh, changes the amount of pheromone around a MATα cell, but did not 

affect the relative gradient. Similar to improving self-avoidance, increasing the ratio of 

kBar1[Bar1]/ dph sharpens pheromone gradients (Fig. 2.7B).  One way to increase this ratio 

is to decrease the Bar1 degradation rate dBar1, which broadens the Bar1 distribution and 

increases the amount of Bar1 in the medium.   A uniform background of Bar1 is 

sufficient to generate large pheromone gradients, because under this condition the α-

factor distribution is proportional to 
 
which asymptotically decreases 

as exp(-(kBar1 [Bar1]/Dp )1/2 r ) for large r (Barkai et al., 1998). However, this sharpening 
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of the gradient comes at the cost of a significant reduction in the pheromone 

concentration, making it easy for the absolute amount of pheromone to drop below a 

detectable level.  Keeping the Bar1 concentration localized around MATa cells allows α-

factor concentrations to remain relatively high, while at the same time providing a 

mechanism for amplifying the pheromone gradient as MATa cells elongate.  

 

Figure 2.7. Robustness in parameter values.  
A) The angle between two adjacent MATa cells as function of Log(kBar1 [Bar1]/dph). The solid 
line: increasing kBar1; dashed line: varying the Bar1 synthesis rate, sBar1. Both parameters are 
varied over two orders of magnitude. B) The angle between two adjacent MATa cells as a 
function of the distance from a MATa cell at which the Bar1 concentration drops to 20% of its 
value. This distance is increased by decreasing dBar1 (0.5, 0.25, 0.1, 0.05, 0.01 and 0.005 sec-1). 
The three different curves represent different values of kBar1. C) The relative gradient as a 
function of Log(kBar1 [Bar1]/dph). The circles: changing kBar1 ; the diamonds: changing dBar1.  

 



 

CHAPTER 3.   

Modeling spatiotemporal dynamics in polarization pathway during 
budding  

 

 

3.1 Overview 

Polarity establishment employs an evolutionarily ancient machinery centered around the 

conserved Rho-family GTPase Cdc42p (Park and Bi, 2007). During polarization, GTP-

Cdc42p becomes concentrated at the cortical site destined to be the “front” of the cell. In 

response to cell-cycle cues, Saccharomyces cerevisiae cells concentrate polarity 

regulators at one of several predictable sites defined by landmark proteins (Park and Bi, 

2007). In the absence of interpretable landmarks (e.g. in rsr1∆ mutants), however, yeast 

cells nevertheless polarize and bud at a single, random site (Bender and Pringle, 1989b; 

Chant and Herskowitz, 1991b).  Such “symmetry breaking” polarization requires the 

scaffold protein Bem1p, which associates with the Cdc42p-directed guanine-nucleotide-

exchange factor (GEF), Cdc24p, and a p21-activated kinase (PAK) (Bose et al., 2001; 

Gulli et al., 2000; Irazoqui et al., 2003; Kozubowski et al., 2008).  This complex is 

thought to mediate a positive feedback loop that enables small stochastic clusters of GTP-

Cdc42p to become amplified (Kozubowski et al., 2008). Mathematical modeling 

suggested that although more than one stochastic cluster could be amplified in this 
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manner, Bem1p complexes would soon become depleted from the cytoplasm, after which 

the clusters would compete with each other and the largest one would win (Goryachev 

and Pokhilko, 2008; Howell et al., 2009). Thus, Bem1p-mediated positive feedback 

combined with competition for limiting Bem1p complexes could explain why rsr1∆ yeast 

cells polarize to one and only one position (Howell et al., 2009). 

 

 The competition hypothesis predicts that polarity establishment should frequently 

proceed via a transient intermediate stage with more than one polarity cluster, but there is 

limited experimental evidence for such intermediates as only rare, fleeting two-cluster 

instances were identified in rsr1∆ cells (Howell et al., 2009).  Thus, either competition 

occurs very rapidly, or some other mechanism ensures that only a single cluster develops.  

To distinguish between these possibilities, we developed higher-resolution filming 

 

Figure. 3.1. Competition and merging of Bem1-GFP clusters during polarity 
establishment 
Inverted images (so dark spots represent concentrations of Bem1-GFP) of rsr1∆/rsr1∆ BEM1-
GFP/BEM1-GFP cells breaking symmetry. Neck: the “old” neck signal in the attached 
daughter cell is often still visible.  Time in min:sec. Scale bar 2 µm.  A) Growth of multiple 
clusters and resolution to a single cluster. Bem1 clusters (numbered in the key at right) in 3 
representative cells: t=0 indicates the first detection of polarized signal. B) The co-existence 
time between the first detection of 2-3 faint clusters and the first frame showing a single 
cluster is plotted (n=19). The experiments were designed and conducted by Audrey 
Howell, Chi-Fang Wu and Dr. Daniel Lew. 
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conditions that circumvented the phototoxicity of previous protocols.  We now document 

the frequent formation of more than one polarity cluster, and rapid competition between 

clusters, during symmetry-breaking polarization in rsr1∆ cells.  Rapid filming of initial 

polarity establishment also revealed unexpected oscillatory clustering of polarity factors, 

indicative of negative feedback.  Mathematical modeling suggested that negative 

feedback could confer advantageous features, including robustness and rapid competition 

between clusters even in the face of increasing polarity factor concentrations.  

Experimental tests confirmed these predictions, suggesting that negative feedback 

improves the robustness of the yeast polarity circuit. 

 

3.2 Oscillatory polarization from high-resolution imaging  

 To reveal the dynamics in the early stage of polarity establishment, Howell et. al. 

developed a new protocol for high-resolution imaging without phototoxicity (Howell et 

al., 2012). By synchronizing cells in hydroxyurea (HU), cells function normally under 

increased light exposure and are much less photosensitive compared with unsynchronized 

cells. This protocol enabled the high-frequency imaging that could capture fine 

spatiotemporal dynamics. In diploid cells breaking symmetry (rsr1∆/rsr1∆), 28% of cells 

(n = 67) with two or three initial clusters of polarized scaffold Bem1p-GFP kept only a 

single cluster at bud emergence, through either competition between multiple clusters or 

merging nearby clusters (Fig. 3.1A). The duration to determine to a single cluster was 

within 2 min on average (Fig. 3.1B).  These data indicate that the singularity of 

polarization cluster is achieved by rapid competition and merging between multiple 

initial polarization clusters. 
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 Frequent imaging at early stage of polarization revealed unexpected oscillations 

of the polarity spot. Bem1p-GFP dissipated rapidly after concentrated at a polarity site, 

and then repeated this accumulation-dispersal cycle one or two times until it finally 

stabilized at the budding site (Fig. 3.2A and B). The intensity of Bem1p-GFP polarity 

spot in the second and third cycles is dimmer than that during the first cycle in the 

 

Figure. 3.2. Oscillation of Bem1p-GFP clusters before bud emergence 
A) Representative cell displaying oscillatory clustering of Bem1.  Top: Cropped images of the 
polarization site at 45 s intervals: t=0 is 45 s before the first detection of polarized signal, and 
trace ends at bud emergence.  Bottom: Amount of Bem1-GFP in the cluster.  B) Bem1 
accumulation in 8 other cells. C) Averaged plot from 36 cells aligned by the first peak. D) 
Power spectrum analysis of 12 cells with longest traces.  E) Representative cell displaying 
relocating cluster of Bem1.  An initial cluster (arrow) dispersed, and a new cluster appeared 
(arrowhead) at what became the bud site. The experiments were designed and conducted by 
Audrey Howell, Chi-Fang Wu and Dr. Daniel Lew. 
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averaged behavior of multiple cells (Fig. 3.2C). In 15% of cells with a single initial 

cluster, the polarized Bem1p-GFP spot is dispersed completely and re-polarized at a 

different position (Figure 3.2E).  

 Oscillatory behavior was not unique for Bem1p; other polarity factors displayed 

similar dynamics. Cdc24p, and Cdc24-GFP and Bem1p-tdTomato signals oscillated in 

           

Figure. 3.3.  Cdc42p and Cdc24p polarization dynamics are coincident with 
Bem1p 
A) Bem1p-tdTomato and Cdc24p-GFP oscillate in parallel.  Top: Cropped images of the 
polarization site at 45 s intervals.  Bottom: Quantification. B) Bem1p-GFP and GTP-Cdc42p 
(visualized using the PBD-tdTomato probe) oscillate in parallel. C) Bem1p-tdTomato and 
GFP-Cdc42p oscillate in parallel. The experiments were designed and conducted by 
Audrey Howell, Chi-Fang Wu and Dr. Daniel Lew. 
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parallel (Fig. 3.3A).  Fluorescent probes to detect GTP-Cdc42p (Tong et al., 2007) and 

total Cdc42p (Bi et al., 2000) also revealed oscillatory signals that paralleled Bem1p 

behavior (Fig. 3.3B, C).  However, these probes were somewhat toxic, and the incidence 

of cells displaying high-amplitude oscillations was reduced when these probes were 

expressed.  Cells displaying multiple competing clusters, as well as relocation, were also 

 

Figure. 3.4.  Competition and relocation of Cdc42p and Cdc24p 
A) Bem1p-tdTomato and Cdc24p-GFP co-cluster and compete (clusters are numbered in the 
key at right). B) Bem1p-tdTomato and Cdc24p-GFP clusters relocate in parallel. C) Bem1p-
tdTomato and GFP-Cdc42p (upper panels), and GFP-Cdc42p and PBD-tdTomato (lower 
panels) co-cluster and compete. D) Bem1p-GFP and GTP-Cdc42p clusters relocate in parallel. 
The experiments were designed and conducted by Audrey Howell, Chi-Fang Wu and Dr. 
Daniel Lew. 

 



 48 

observed (Fig. 3.4), indicating that the core polarity regulators all concentrate, disperse, 

and reappear in concert.  

  

3.3 The cause of oscillatory polarization 

 What causes the oscillation? In the original model of yeast polarity establishment 

(Goryachev and Pokhilko, 2008), the only inhibition for a polarity spot to grow comes 

from the depletion of free Bem1-GEF molecules. This inhibition is sufficient to keep the 

polarity spot in a local area, but could not dismantle the already accumulated proteins. 

The damped intensity of a polarity spot suggests that an additional negative regulation 

become strong enough to inhibit the polarity machinery after the polarity spot growing to 

a certain size.  

3.3.1 Cytoskeletal factors 

 One candidate for this negative inhibition is the cytoskeleton. Polarization of 

GTP-Cdc42p induces the actin polymerization. F-actin cables mediate exocytosis, which 

could transport vesicles either diluting GTP-Cdc42p concentrations at polarity spot 

(Layton et al., 2011) or containing GAPs to inactivate polarized GTP-Cdc42p (Knaus et 

al., 2007; Ozbudak et al., 2005). Endocytosis of Cdc42p or other factors could also 

disrupt polarity (Irazoqui et al., 2005; Yamamoto et al., 2010). These negative inhibitory 

mechanisms would disappear if no polarity spots exist and thus not affect re-establishing 

the polarity. Moreover, actin patches (labeled with Abp1-mCherry) clustered at the 

polarization site about 90s following initial clustering of Bem1p (Howell et al., 2009), 

which coincided with Bem1p-GFP dispersal (Fig 3.5A and B). Thus actin polarization is 

temporally correlated with dispersal of polarity factors. However, disrupting actin 
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polymerization by Latrunculin A (LatA) did not stop the polarity spot oscillating or 

 

Figure. 3.5.  Actin and septin polarization are delayed relative to Bem1p 
A) Abp1p-mCherry (marker for actin patches) clusters as Bem1p-GFP begins to disperse. B) 
Abp1p-mCherry clustering follows Bem1p-GFP clustering and remains at the old site as 
Bem1p relocates (arrowhead).  Asterisk: old mother-bud neck. C) Actin patches are 
dispersed upon Lat A treatment. D) Bem1p-GFP oscillation persists in Lat A. Top: Cropped 
images of the polarization site at 45 s intervals.  Middle: Quantification of Bem1p-GFP. 
Bottom: Six other examples of oscillation in Lat A. The experiments were designed and 
conducted by Audrey Howell, Chi-Fang Wu and Dr. Daniel Lew. 
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relocation (Fig 3.5C, D and E). In particular, the number of oscillations before budding 

was increased in LatA treated cells (Fig 3.5D). These data indicated that the oscillatory 

dynamics was damped but not caused by F-actin. 

 

Figure. 3.5.  Actin and septin polarization are delayed relative to Bem1p 
E) Relocation of Bem1p-GFP in Lat A-treated cell. F) Septin (Cdc3p-mCherry) recruitment 
begins after initial oscillation of Bem1p-GFP. G) Septin recruitment begins after relocation of 
Bem1p. No septin signal appears at the position of the first Bem1p-GFP cluster (arrow).  
Bem1p-GFP then relocates to the site of the old mother-bud neck (arrowhead) where 
remaining septins from cytokinesis obscure the new ring. G) Septin recruitment (arrowhead) 
begins after resolution of multi-cluster Bem1p intermediate (arrow). The experiments were 
designed and conducted by Audrey Howell, Chi-Fang Wu and Dr. Daniel Lew. 
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 The septin Cdc3p-mCherry accumulated ~4 min after the initial clustering of 

Bem1p-GFP (Fig. 3.5F), after relocation or competition had occurred (Fig 3.5G and H). 

Therefore, the septin ring is too late to disperse the polarized cluster of Bem1p-GFP.  

 

3.3.2 Possible negative feedback in the pathway 

 Oscillatory dynamics in most biological processes is related with negative 

feedback (Novak and Tyson, 2008). Since the cytoskeleton has been ruled out, the cause 

of observed oscillation is more likely to be negative feedback from the biochemical 

reactions in the pathway. 

 As mentioned before, only substrate depletion is not enough to dismantle an 

established polarity spot. We proposed two mechanisms to account for the negative 

feedback that builds up slower than the clustering and that fades away when polarization 

disappears (Fig. 3.6A). One mechanism is increasing the negative regulation, e.g. GTP 

hydrolysis, through active GTP-Cdc42p; the other is disrupting the positive feedback of 

clustering. Both mechanisms are based on the original model described by Goryachev 

and Pokhilko (Goryachev and Pokhilko, 2008) (Fig. 3.6A, model 1). 

 In the first mechanism, we assumed that polarized GTP-Cdc42p could activate 

nearby GAPs via PAK mediated phosphorylation (Fig. 3.6A, model 2). The 

phosphorylated GAPs are more efficient at hydrolyzing GTP-Cdc42p, and then destroy 

the polarization. The clustering starts again when activated GAPs return to the normal 

state. We also assumed that the dephosphorylation of GAPs is slow, which sets a time 

delay between the dispersal and rebuild of a polarity spot.  
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 The second mechanism assumed that the GTP-Cdc42p could modify the Bem1p-

Cdc24p complex, probably by phosphorylation, reducing the binding affinity of the 

modified Bem1p-GEF with GTP-Cdc42p (Fig. 3.6A, model 3). The positive feedback is 

disrupted because that the GTP-Cdc42p-Bem1p-Cdc24p complex breaks down after 

modification and that modified Bem1p complex accumulates in the cytoplasm, unable 

to rebind with GTP-Cdc42p. The accumulation starts again when most modified Bem1p-

GEF molecules are reset to the unmodified state. Similar to the first mechanism, the 

removal of this modification, probably dephosphorylation, is a slow process so as to 

 

Figure 3.6 Negative feedback can cause oscillatory polarization 
A) Diagram of the starting model (1) and two variants incorporating negative feedback via a 
Cdc42p-directed GAP (2) or the Bem1p complex (3). Positive feedback is indicated by red 
arrows, and negative feedback by blue arrows. We assume that GTP-Cdc42p/PAK activates 
the GAP (blue GAP, model 2) or inactivates Bem1p complex components (blue complex, 
model 3). Phosphorylated proteins are then dephosphorylated in the cytoplasm (green arrows). 
B) Snapshots from simulations. The square represents a 2D plasma membrane and color 
indicates GTP-Cdc42p concentration. Snapshots are indicated by red dots in the tracings to the 
right, plotting GTP-Cdc42p concentration with time. 
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setup a time delay. The detailed assumptions and model equations are listed in the 

Appendix II. 

 Both mechanisms were able to reproduce the damped oscillatory polarization 

observed in experiments with proper parameters (Fig. 3.6B). The spatiotemporal 

dynamics was fine-tuned by the timing between the dissipating and the next round 

clustering. Generally, the positive feedback took off before the negative feedback settled 

at its minimal strength, resulting in a damped second peak (Fig. 3.12, point 8 and 9). 

Strong oscillations only occurred in a very narrow parameter space. When the clustering 

initiated immediately after the dissipation reaching its minimal strength, both models 

predicted approximately sustained oscillation on the entire membrane (Fig. 3.12, point 6 

and 7). In this regime, addition of noise to the models converted the spatially uniform 

oscillation into sustained oscillatory clustering, and clusters were able to compete and 

relocate (Fig. 3.12, point 6 and 7). Thus, addition of negative feedback and noise can in 

principle reproduce all of the polarity dynamics observed in cells. 

 

3.4 More important properties than oscillation 

 The dynamics predicted by two negative feedback mechanisms are comparable in 

periodicity, polarization kinetics and cluster relocating. So what are unique properties due 

to negative feedback? Knowing this, we could understand why the yeast polarization 

pathway has built-in negative feedback.  

3.4.1 Robustness 

 One distinct property we proposed for the polarization pathway with negative 

feedback is robustness to changes in the key polarity proteins abundance. If the amount 
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of critical players, such as Cdc42p and Bem1p complex, increases several folds, then the 

stronger positive feedback would tend to activate more GTP-Cdc42p; meanwhile, the 

negative feedback would increase correspondingly and restrict the growth of polarity 

clusters. In contrast, if there is no negative feedback, the substrate-depletion could hardly 

keep the polarization local, causing activation over the entire membrane.  

 

 
 

Figure 3.7 Negative feedback improves robustness of the polarity model 
A) Behavior of model 1 at varying polarity protein concentration.  Red, Turing-unstable 
region: polarization occurs in response to small perturbation.  Blue/grey, regions where both 
uniform and polarized states are stable: polarization occurs in response to large perturbation. 
White: no polarized steady state. B) Behavior of model 2. Green, sustained oscillations. C) 
Behavior of model 3. D) Snapshots of simulations with 6.5-fold higher starting concentration 
of Cdc42p: model 1 spreads GTP-Cdc42p uniformly (left), whereas models 2 and 3 yield a 
polarized steady state (right). E) Robustness, indicated by the area of red regions, varies with 
changing negative-feedback parameters.  Model 3 was analyzed at the indicated values of 
kBEMdephos. 
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 By varying the total amount of Cdc42p and Bem1p complex, we compared the 

robustness in three models (model 1, with the positive feedback only and model 2 and 

3.3, two with different negative feedback mechanisms). We tested whether the model 

could polarize, and if so, how many active GTP-Cdc42p molecules stay in the polarity 

site. For model 1, polarization only occurred in a small region in the parameter space of 

Cdc42 and Bem1-GEF complex concentration (Fig 3.7A). Outside this area, the active 

Cdc42 distributed all over the membrane as the concentration of Cdc42 or Bem1 complex 

increased (Fig 3.7D). Consistent with our prediction, the parameter space for polarization 

in model 2 and 3 were expanded with the additional negative feedback, and cells were 

still be able to polarize with 6.5-fold increase in total Cdc42p (Fig 3.7 B, C and D). 

Therefore, the negative feedback makes the polarization pathway more robust to changes 

in component concentrations.  

 The degree of increased robustness depends on the negative feedback parameters. 

For example, decreasing the Bem1p complex dephosphorylation rate in model 3 

progressively broadened the polarization region (Fig 3.7E, red region). Similar 

predictions were obtained for model 2, which has a different molecular mechanism for 

negative feedback. Therefore, it is likely that negative feedback would improve 

robustness regardless of the precise feedback mechanism.   

 Is polarity establishment indeed robust to increases in Cdc42p or Bem1p-complex 

concentration? To test this, we used a galactose-regulated promoter to overexpress either 

Cdc42p or its GEF, Cdc24p. Because cells are more photosensitive when grown in 

galactose, we used an artificial Gal4p transcription factor fused to the estrogen receptor 

ligand-binding domain to allow induction by β-estradiol in glucose-containing media 
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(Takahashi and Pryciak, 2008). Filming of Bem1p-GFP revealed robust polarization even 

following ~7-fold overexpression of Cdc42p or Cdc24p (Fig 3.8A-C).  A previous 

study reported that Cdc42p overexpression blocked polarity establishment in cells lacking 

F-actin (Altschuler et al., 2008), but we found that polarization occurred with comparable 

efficiency whether or not cells overexpressed Cdc42p or Cdc24p, even in cells treated 

   

Figure 3.8 Polarization is robust to overexpression of Cdc42p or Cdc24p 
A) Western blot and quantification of Cdc42p (left) and Cdc24p-HA (right) in response to β-
estradiol (subsequent panels used 100 nM).  B-E) Bem1p-GFP polarization in representative 
cells overexpressing Cdc42p (B, D) or Cdc24p-HA (C, E), in the absence (B, C) or presence 
(D, E) of Lat A. F) Quantification of the % of cells that polarized in control (white), Cdc42p-
overexpressing (blue), or Cdc24p-HA-overexpressing (red) strains in the absence or presence 
of Lat A (mean +/- SEM). The experiments were designed and conducted by Audrey 
Howell, Chi-Fang Wu and Dr. Daniel Lew. 
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with Lat A (Fig 3.8D-F). Thus, polarity establishment in yeast is robust to increases in 

Cdc42p or Cdc24p concentration, beyond the capacity of a positive-feedback-only 

mechanism. 

 How much Bem1p-Cdc24p complex has been raised due to the overexpression of 

Cdc24p? If Cdc24p is not the limiting factor in the Bem1p-Cdc24p complex, its 

overexpression cannot represent the increase in the Bem1p-Cdc24p complex, and thus 

cannot prove that the polarity circuit is robust to increases in Bem1p complex. To 

circumvent potential controls on complex assembly, we expressed a Cdc24p-Cla4p 

(PAK) fusion protein that mimics the full complex (Kozubowski et al., 2008) (Fig 3.9A). 

As previously reported, this fusion protein cause hyperpolarized growth in budded cells 

(Kozubowski et al., 2008), but here we focus on its effects on initial polarity 

establishment. Time-lapse analysis indicated that a majority of cells expressing the fusion 

could polarize, but some cells were delayed in polarization and a few cells underwent a 

full cell cycle without establishing polarity (Fig 3.9B). Overexpression of Cdc42p 

together with the Cdc24p-Cla4p fusion blocked polarity establishment in a large majority 

of cells, leading to the accumulation of large, unbudded, multinucleate cells (Fig 3.9C 

and D). The simplest interpretation of these findings is that combined expression of 

Cdc42p and a fusion protein that mimics the full Bem1p complex drives the system into 

the “white” regime of parameter space, where GTP-Cdc42p spreads throughout the 

cortex. 
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3.4.2 Fast competition between two polarity spots 

 Since competition between multiple clusters is a common phenomenon before 

budding, how does negative feedback affect competition between clusters? As mentioned 

in 1.3.3, one issue with a model based on typical Turing mechanism is slow resolution for 

 

Figure 3.9 Polarization is robust to overexpression of Cdc24p-Cla4p fusion 
A) Western blot and quantification of Cdc24p-GFP-Cla4p fusion. 1x indicates expression 
level from the CDC24 promoter. B) Cdc24p-GFP-Cla4p distribution in cells that do (top) or 
do not (bottom) polarize. Nuclei and vacuoles exclude the protein and appear light. C) Plot of 
budding index and frequency of multinucleate cells following induction of both Cdc24p-GFP-
Cla4p and Cdc42p. D) Representative cells from (C) after 0 h (left) or 4 h (right) of induction. 
Overlay of inverted DAPI staining and DIC images. Bar, 5 µm. The experiments were 
designed and conducted by Audrey Howell, Chi-Fang Wu and Dr. Daniel Lew. 
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competing polarity spots. One would expect that if the concentrations of polarity 

components were increased, it would take longer time to determine the winner spot 

(Howell et al., 2009). In contrast, for a polarization pathway with negative feedback, the 

dispersal increases in concert with the positive feedback, which could accelerate the 

competition between unequal clusters or keep the competition unaffected by changes in 

the protein abundance.  

 

 

Figure 3.10 Competition between clusters remains fast after overexpressing 
Cdc42p and Cdc24p 
A) Prevalence of high-amplitude oscillation (left), multi-cluster intermediates (middle), and 
relocating clusters (right) in control (white), Cdc42p-overexpressing (blue), or Cdc24p-HA-
overexpressing (red) strains (mean +/- SEM). ** significant difference between 
overexpressors and controls (p<0.01 by two-tailed t-test). B) Quantification of the time taken 
to resolve multi-cluster intermediates. C) The fraction of the GTP-Cdc42p-binding probe 
(mean +/- SEM) that is polarized in late G1 cells is similar with (right) or without (left) 
Cdc42p overexpression. Representative images shown at top. The experiments were 
designed and conducted by Audrey Howell, Chi-Fang Wu and Dr. Daniel Lew. 
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 So how fast is competition between multiple polarity clusters after overexpressing 

Cdc42p and Cdc24p? The kinetics of polarization and damping oscillation were altered 

by overexpression of Cdc42p and Cdc24p, and the frequency of cluster relocation was 

increased in cells overexpressing Cdc42p (Fig 3.10A). However, the resolution to a 

single cluster still occurred rapidly (Fig 3.10B), consistent with the prediction of negative 

feedback model. 

  How did cells maintain fast competition after overexpressing Cdc42p or Cdc24p? 

We measured the amount of GTP-Cdc42p in the polarized clusters using the fluorescent 

GTP-Cdc42p-binding reporter (Tong et al., 2007). Despite considerable cell-to-cell 

variation in the total amount of reporter in the cell, a relatively consistent ~19% of the 

probe was polarized in late-G1 wild-type cells (Fig 3.10C). Strikingly, a similar fraction 

of the probe was polarized in cells overexpressing Cdc42p (Fig 3.10C), suggesting that 

cells are able to buffer the polarized cluster against Cdc42p overexpression, explaining 

why competition remained rapid. 

  To assess how models with and without negative feedback would impact 

competition times, we simulated the competition duration between two clusters with an 

initial 55:45 ratio of GTP-Cdc42 content for model 1 (no negative feedback) and model 3 

(with negative feedback). The profile of two unequal clusters was obtained in two steps. 

First, we evolved a symmetric two-peak solution to steady state; then we adjusted the 

profile of GTP-Cdc42p from a 50:50 ratio to 55:45 (total Cdc42p was unchanged) and 

used this profile as the initial condition for competition simulation. Without negative 

feedback, the steady state level of GTP-Cdc42 increased as the concentrations of Cdc42 

or Bem1 complex rose, which caused competition duration extended proportionally (Fig 
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3.11A and B). Whereas, the negative feedback buffered the steady state level of GTP-

Cdc42 for high levels of Cdc42 or Bem1 complex, and thus the competition between two 

clusters remained rapid (Fig 3.11C and D), as observed experimentally (Fig 3.10B and 

 

Figure 3.11 Negative feedback buffers the accumulation of GTP-Cdc42p and can 
accelerate or abolish competition between clusters 
A) Steady-state GTP-Cdc42p levels in model 1 change rapidly as component concentrations 
are increased.  Color indicates steady-state GTP-Cdc42p concentration (calculated from the 
spatially uniform situation) in the parameter space displaying Turing instability. Circles 
indicate points used for simulations in B. B) Correlation between GTP-Cdc42p concentration 
and the time taken to resolve competition.  Each symbol represents a simulation, at parameter 
values from the circles in A, of the competition between two unequal clusters (ratio 55:45), 
plotting the time taken to resolve competition (Y axis) and the average GTP-Cdc42p 
concentration of the 2-cluster starting state (X axis). C) Steady-state GTP-Cdc42p levels in 
model 3 are buffered against increases in component concentrations. Symbols indicate points 
used for simulations in D.  White circles are as in A, whereas black symbols are in the 
expanded polarity region. Symbols labeled “a” and “b” indicate parameters used in E. D) 
Negative feedback maintains rapid competition in a broad range of parameter space. Kinetics 
of competition between clusters (as in B), at parameter values indicated in C.  Inset: expanded 
view of lower-left quadrant.  

 



 62 

C). Therefore, another advantage of having negative feedback in the polarization pathway 

is to maintain fast competition time even though the amount of proteins involved in 

positive feedback is increased.  

 The buffering effect of negative feedback significantly reduces competition times 

in the majority of the simulations, producing coexistence times consistent with the 

experimental observations (Fig 3.11D). However, this is not universally true in all parts 

of the parameter space. Whereas in model 1 a larger cluster always (eventually) out-

competed and eliminated a smaller cluster, in model 3, competition failed at sufficiently 

high Cdc42p and Bem1p complex concentrations. With these parameters, the clusters 

equalized rather than competing (Fig 3.11E), and simulations evolved to a stable steady 

 

Figure 3.12 Negative feedback buffers the accumulation of GTP-Cdc42p and can 
accelerate or abolish competition between clusters 
E) Negative feedback can lead to equalization of clusters instead of competition between 
clusters, at high levels of polarity proteins.  Simulations as described in B, with the indicated 
starting ratios between unequal clusters, using the parameter values from the symbols labeled 
“a” and “b” in C. F) Examples of 2-budded cells from a culture induced to express Cdc24p-
Cla4p fusion for 4 h. Overlay of inverted DAPI staining and DIC images. G) Simultaneous 
growth of two buds (arrow and arrowhead in different DIC z-planes) and polarization of 
Cdc24p-Cla4p fusion to both buds. The experiments were designed and conducted by 
Audrey Howell, Chi-Fang Wu and Dr. Daniel Lew. 
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state containing two equal clusters (Fig S3). In cells, this would presumably lead to 

formation of two buds. Interestingly, occasional cells (~1%) expressing the Cdc24p-

Cla4p fusion did make two buds (Fig 3.11F). Two-budded cells polarized stably to two 

sites (Fig 3.11G), though sometimes one site disappeared, leading to the development of 

unequal-sized buds. 

3.5 Fine-tuned spatiotemporal dynamics of polarization 

3.5.1 Possible dynamics in the parameter space of total Cdc42p and total Bem1p 

We examined the dynamical behavior of models (1), (2) and (3) in the plane of 

total Cdc42p and Bem1p complex concentration. The range of concentration is chosen 

from 0 to 10-fold of the concentrations from previous studies (Table 3). 

There are 8 types of spatiotemporal behavior based on the number of fixed points 

and their stability with respect to spatial perturbations (Fig. 3.12): 

(i) Monostable: The spatially homogeneous steady state has only one fixed point 

and it is stable to all perturbations (white regions in all bifurcation diagrams: point 4, Fig. 

3.12A). 

(ii) Bistable 1: Three spatially homogeneous fixed points exist, two of which are 

stable (blue regions in Fig. 3.7A and B, Fig 3.12). The fixed point with low GTP-Cdc42p 

is stable to all local perturbations, whereas the fixed point with high GTP-Cdc42p is 

stable to spatially homogenous perturbations but Turing unstable to spatial perturbations 

(point 1, Fig. 3.12A). 

(iii) Turing unstable: Only one fixed point exists, which is stable with regard to 

spatially uniform perturbations, but unstable given any small spatial perturbation (red 

regions in all bifurcation diagrams: points 2, 8, and 9, Fig. 3.12). In this region away 
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Figure 3.12. Spatiotemporal dynamics in different parts of model parameter space  
A) Behaviors of Model (1). Left: expanded view of the lower-left quadrant of the [Cdc42]-
[Bem1-complex] bifurcation diagram: numbered symbols indicate positions simulated at right. 
(#1) Bistable 1: depending on the strength of the perturbation, an initial perturbation decays 
back to the uniform steady state (1a) or grows to reach a polarized steady state (1b). [Cdc42] = 
4 µM, [Bem1-complex]= 0.01 µM. (#2) Turing Unstable: a small perturbation always 
polarizes. [Cdc42] = 5 µM, [Bem1-complex]= 0.017 µM.  (#3) Subcritical Turing Unstable: 
depending on the strength of the perturbation, an initial perturbation decays to a uniform 
steady state (3a) or grows to reach a polarized steady state (3b). [Cdc42] = 9 µM, [Bem1-
complex]= 0.034 µM.  (#4) Monostable: any initial perturbation leads to a uniform steady 
state. [Cdc42] = 9 µM, [Bem1-complex]= 0.045 µM.  B) Behaviors of Model (3). Left: 
expanded view of the lower-left quadrant of the [Cdc42]-[Bem1 complex] bifurcation 
diagram: numbered symbols indicate positions simulated at right. (#5) Excitable: a 
perturbation initially grows but then decays back to the uniform steady state. [Cdc42]= 4 µM, 
[Bem1-complex]= 0.011 µM. (#6) Mixed Turing and Hopf Unstable: sustained oscillations, 
switching between uniform and localized patterns. [Cdc42]= 5.2 µM, [Bem1-complex]= 
0.0135 µM. (#7) Mixed Turing and Hopf Unstable (closer to the center of the region): similar 
to (#6), but less frequent localized patterns are interspersed with more frequent spatially 
uniform oscillations. [Cdc42] = 4.4 µM, [Bem1-complex]= 0.016 µM. (#8) Turing Unstable 
(close to Hopf-Turing unstable region): damped oscillation on the way to a polarized steady 
state. [Cdc42]= 5 µM, [Bem1-complex]= 0.01775 µM. (#9) Turing Unstable (far from Hopf-
Turing unstable region): a polarized state with little oscillation. [Cdc42] = 8 µM, [Bem1-
complex]= 0.034 µM. Although not depicted, simulations in the Subcritical Turing Unstable 
(grey) and Monostable (white) regions of Model (3) behave similarly to the corresponding 
regions of Model (1). 
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from the lower boundary, all models produce stable polarity site(s), which do not 

oscillate. The majority of polarization occurs in this region. 

At the lower boundary of this region, close to the region with mixed Turing and 

Hopf instability (see below), models (2) and (3) show damped oscillatory polarization 

(point 8, Fig. 3.12B). This type of behavior does not occur in model (1), and occurs in  a 

relatively narrow region of parameter space for models (2) and (3). 

(iv) Subcritical Turing unstable: For this case, only one uniform stable fixed point 

exists. However, it becomes unstable under sufficiently large spatial perturbations (the 

gray regions in all bifurcation diagrams: point 3, Fig. 3.12A) (Cross and Hohenberg, 

1993; Rovinsky and Menzinger, 1992). 

(v) Excitable: Three spatially homogeneous fixed points exist, but only one is 

stable. The stable fixed point is an unstable spiral: large enough homogenous 

perturbations can excite transient homogeneous increases in the level of active Cdc42p 

(cyan regions in Fig. 3.7B, C, E and Fig 3.12B). Spatially localized perturbations can 

induce transient polarization (point 5, Fig. 3.12B) (Hecht et al., 2010; Xiong et al., 2010). 

Excitable behavior does not occur in model (1). 

(vi) Turing and Hopf unstable: Only one fixed point exists, which is Hopf 

unstable and Turing unstable (green regions in Fig. 3.7B, C, E and Fig 3.12B) (De Wit et 

al., 1996). This type of behavior does not occur in model (1). 

Using appropriate parameter values, there are two other types of behavior:  

(vii) Bistable 0: Three fixed points exist for spatially homogeneous 

concentrations, two of which are stable with different levels of active Cdc42p. Both fixed 

points are stable to spatial perturbations.  
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(viii) Hopf unstable: Only one fixed point exists that is unstable to all 

perturbations. The long-term behavior of the system is uniform oscillations of active 

Cdc42p.  

The stability of (i), (ii), (iii), (v), (vii) and (viii) were assessed by numerically 

determining the steady state and calculating the eigenvalues for the linearized reaction 

equations in 1D. The Turing instability in (iii) and (vi) was determined by linear stability 

analysis (Murray, 2003). The boundary of region (iv) was determined by numerical 

simulations. All three models show similar behaviors in planes of other parameter values. 

 

3.5.2 Interaction between spatial range and duration of negative feedback 

 In model 2 and 3, relocation of the polarity cluster only occurred in the presence 

of noise. Intuitively, if the negative feedback strongly inhibits clustering in a local region 

and lasts for enough long time, then the new cluster would prefer a position away from 

the current polarity site as far as possible. That is, the spatial range of the negative 

feedback would alter the relocation property.  

 To test this, we modified model 2 by introducing intermediate reactions between 

GTP-Cdc42p-Bem1p complex and the GAPs (model 2b). GTP-Cdc42p-Bem1p complex 

leads to the membrane bind of a cytoplasmic species X, and then the membrane bound 

Xm activates cytoplasmic GAPs, increasing the hydrolysis rate of GTP-Cdc42p. The 

spatial distribution of effective GAPs in model 2b was steeper compared with that in 

model 2 (Fig 3.13A). Consistent with our hypothesis, given the more localized negative 

feedback, polarity cluster preferred a different position in the next round of polarization 

(Fig 3.13B). The spatial distribution works together with how fast the local negative 
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feedback disappears to control the relocation. For example, with fast deactivation of the 

active GAPs, polarization re-established at the center (Fig 3.13B) even though the GAP 

was more concentrated at the center (Fig 3.13A). The localized inhibition that lasts for 

enough long time makes relocation possible if the noise is too weak to shift polarization 

site. The local inhibition might come from a membrane bound effector of GTP-Cdc42p. 

  

 Interestingly, the strong polarity coupled with slow recovery of negative feedback 

can induce global inhibition that temporally kills the polarization. For example, the 

alternating polarization and several rounds of uniform oscillation occurred in model 2 and 

3(points 6 and 7, Fig. 3.12B). A spatially localized perturbation initiates formation of a 

 

Figure 3.13 Relocation is regulated by the spatial range and duration of negative 
feedback 
A) The spatial profile of effective GAPs when its concentration reaches maximum due to 
GTP-Cdc42p accumulation (pointed by the white arrows). All of them are normalized to their 
maximum value. Green line, red line and red open circles are corresponding to the top, middle 
and bottom kymographs on the right, respectively. B) The kymograph of GTP-Cdc42p for 
GAP profile on the left. Top: model 2; Middle: model 2b with intermediate reactions to keep 
GAP more concentrated at the polarity site; Bottom: model 2b, but the deactivation of GAP is 
fast.  
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polarized distribution of GTP-Cdc42p. The polarized GTP-Cdc42p caused a strong 

induction of negative feedback, which then destabilized polarization. As GTP-Cdc42p 

levels fall, the negative feedback is reduced, but remains sufficient to repress 

polarization. Thus, GTP-Cdc42p increases uniformly and then oscillates. Since these 

rounds of uniform activation of Cdc42p could not trigger strong inhibition, the strength of 

negative feedback dropped below threshold during this phase, enabling the positive 

feedback to accumulate GTP-Cdc42 locally. As the polarization of GTP-Cdc42p induced 

the negative feedback again, another round of uniform oscillations started. 

 

 The strength of polarization and the duration of negative feedback work in concert 

to control the period and position of oscillatory clustering, creating delicate 

                  

Figure 3.14 The strength of positive feedback and the duration of negative 
feedback control the period and relocation of clustering. 
A) The kymograph of GTP-Cdc42p, model 2b with k9=0.0175. B) The kymograph of 
GTP-Cdc42p of model 2b, k9=0.02.  
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spatiotemporal dynamics. For example, in model 2b (Fig 3.14A), the difference in the 

intensity of clusters a, b and c caused three types of re-clustering. Positive feedback 

accumulated an intermediate amount of GTP-Cdc42p in cluster a, which in turn created 

negative feedback of sufficient strength to relocate the next cluster. Due to this strong 

inhibition, cluster b did not accumulate as much GTP-Cdc42p as cluster a, and therefore 

the inhibition from cluster b was weaker than that in cluster a, but enough to shift 

polarization to the opposite position, forming cluster c. The inhibitory effect reduced to 

the minimum in the dampening phase of cluster c, giving cluster d the chance to form at 

the same site as cluster c and to accumulate the largest amount of GTP-Cdc42p. Then 

cluster d affected future clusters in a similar way as cluster a. By reducing the duration of 

the negative feedback through increasing the deactivation rate of GAPs (Fig 3.14B), the 

cluster b* could not inhibit polarization at the same site, forming a series clustering at the 

same position. The mismatched timing between the building up of positive feedback and 

the decay of negative feedback gradually accumulated more GTP-Cdc42p in new 

clusters, leading to the brightest spot (cluster c*) at the end of this series. Cluster c* reset 

the strong inhibition, and started a new round of brightening clusters with increasing 

intensity followed by a sudden relocation. 

 

3.6 General remarks 

3.6.1 Negative feedback during polarity establishment 

 Filming of symmetry-breaking polarization at high resolution under low-light 

imaging conditions revealed that clusters of polarity factors congregated rapidly (often 

within 45 s) and then unexpectedly dispersed, subsequently reforming and dispersing up 
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to three more times before stabilizing (Fig 3.2 and 3.3). Oscillatory clustering was not 

predicted by existing models of polarity establishment and suggests that positive-

feedback-mediated initial polarization is rapidly antagonized by a negative feedback 

loop. Mathematical modeling suggested that adding a negative feedback loop to a 

previous model for polarity establishment could lead to oscillatory clustering, and 

different negative feedback mechanisms (acting either through a Cdc42p-directed GAP or 

GEF) produced qualitatively similar results (Fig 3.6). Noise-containing simulations 

exhibited rapid multi-cluster competition followed by oscillation, as well as relocation of 

clusters. Thus, in appropriate parameter regimes, models that incorporate negative 

feedback and noise in addition to the previously modeled positive feedback can 

reproduce all of the polarity dynamics that we observed in cells. The mechanism of 

negative feedback in cells remains to be determined. 

Negative-feedback-containing models produced either sustained or intrinsically 

damped oscillations, depending on the concentrations of polarity factors (Fig 3.12). 

However, in cells the oscillatory clustering was always damped.  Damping was correlated 

with the arrival of septins at the polarization site, and was delayed in the absence of F-

actin (a condition that delays septin assembly) (Fig 3.5). Thus, it may be that the core 

polarity machinery has the capacity to produce sustained oscillatory clustering, and that 

downstream cytoskeletal factors act to dampen the oscillation. 

It is unclear what advantage could stem from high-amplitude oscillations in 

polarity factor concentration. When cells were exposed to more stressful imaging 

conditions, they exhibited lower-amplitude oscillation, as did cells filmed without the 

photo-protective hydroxyurea pretreatment (Howell et al., 2009). Given the sensitivity of 
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the behavior to filming conditions and component concentrations, it seems unlikely that 

such oscillation is important in and of itself. Instead, oscillation may have arisen as a 

byproduct of homeostatic negative feedback. As discussed below, adding negative 

feedback to the polarity model improves its robustness. Interestingly, robustness could be 

further improved by lowering the rates at which a negative-feedback-modified GEF or 

GAP returned to its baseline state.  Lowering those rates introduces a delay (as the 

modified GEF/GAP accumulates rapidly but takes time to return to its basal state), which, 

in turn, favors oscillatory behavior.  Thus, oscillations might arise as a byproduct of a 

negative-feedback loop that is present to optimize robustness. 

Oscillations in polarized growth (after polarity establishment) have been 

particularly well-studied in plants (Hepler et al., 2001), where the oscillatory growth of 

pollen tubes is thought to involve interlinked positive and negative feedback loops (Yan 

et al., 2009). It is unclear whether oscillation per se is advantageous, as pollen tubes 

switch from prolonged continuous growth to oscillatory growth without overt changes in 

overall elongation speed or morphology (Feijo et al., 2001). Thus, the use of negative 

feedback to promote homeostasis or robustness may lead in some cases to the appearance 

of unselected oscillations, which may or may not be beneficial in themselves (Cheong 

and Levchenko, 2010; Feijo et al., 2001). 

 

3.6.2 Robustness of polarity establishment 

Although capable of polarity establishment, a model that only contains positive 

feedback is fragile in that increasing concentrations of polarity factors quickly 

overwhelm the system, causing GTP-Cdc42p to spread all over the cortex. A benefit of 
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negative feedback is improved robustness to such changes: the negative feedback 

prevents runaway accumulation of GTP-Cdc42p, so the model retains the ability to 

polarize over a much wider range of polarity factor concentrations. Similar robustness 

predictions were obtained regardless of the modeled feedback mechanism or specific 

parameters (Figs 3.7 and S2). Thus, consistent with the well-known homeostatic 

influence of negative feedback in well-mixed systems (Brandman and Meyer, 2008), 

negative feedback confers improved robustness regardless of the precise feedback 

mechanism.   

The modeling results prompted us to test whether yeast polarization is indeed 

robust to increased levels of polarity factors, and we found that cells polarized just as 

efficiently when Cdc42p or Cdc24p were overexpressed. The robustness we observed is 

consistent with older reports that Cdc42p overexpression is tolerated by yeast (Ziman and 

Johnson, 1994), but contrary to the conclusion from a recent study suggesting that 

Cdc42p overexpression blocked polarity establishment in cells lacking F-actin.The 

apparent difference between those results and ours may stem from the fact that we 

overproduced wild-type Cdc42p whereas they used a myc-GFP-Cdc42p construct that is 

nonfunctional and potentially toxic when overexpressed. In addition, they used the same 

probe to score polarization, potentially making it difficult to detect a polarized signal 

above the high unpolarized background in overexpressing cells. We conclude that the 

yeast polarity establishment circuit is robust to variation in polarity factor concentration, 

even in cells lacking F-actin, and that robustness is likely to be conferred by negative 

feedback. 
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3.6.3 Competition between polarity clusters 

A long-standing question in the polarity field concerns why cells develop one and 

only one “front”.  We recently suggested that in yeast, positive feedback could give rise 

to more than one polarity cluster, but then the clusters would compete with each other so 

that a single winner would emerge (Howell et al., 2009). Alternatively, the small absolute 

numbers of a limiting polarity factor might make it unlikely that more than one cluster 

could develop (Altschuler et al., 2008). With previous filming protocols it was difficult to 

detect the multi-cluster intermediates predicted by the competition hypothesis (Howell et 

al., 2009), but with improved imaging we now document such intermediates in ~25% of 

cells breaking symmetry. Upon overexpression of Cdc24p or Cdc42p, the incidence of 

detectable multi-cluster intermediates increased to ~50%.  These numbers represent a 

lower bound for the real incidence of such intermediates, as technical issues may prevent 

us from detecting small and/or short-lived clusters. Thus, multi-cluster intermediates are 

very frequent and competition between polarity clusters is critical to prevent the 

development of more than one front. 

Multi-cluster intermediates were short-lived, resolving to a single cluster in 2 min 

(on average).  Surprisingly, competition was similarly rapid even in cells overexpressing 

Cdc24p or Cdc42p, which is inconsistent with the prediction from the positive-feedback-

only model that cells with more polarity factors should build clusters containing more 

polarity proteins.  As such clusters take longer to dismantle during competition, it should 

take considerably longer to resolve the competition in favor of a single winner.  Negative 

feedback can buffer the accumulation of polarity factors in clusters, so that 

overexpression need not significantly increase the amount of Cdc42p or other factors in 
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the cluster, explaining why competition did not take much longer in overexpressing cells 

than in controls.  Thus, a second benefit of negative feedback in the polarity circuit is that 

when more than one cluster forms, competition between clusters is more rapid. 

An unexpected prediction from mathematical modeling of polarity circuits with 

negative feedback was that at high Cdc42p and Bem1p complex concentration, 

competition should fail to resolve polarity clusters.  Instead, two clusters would tend to 

equalize so that each contains the same amount of polarity proteins.  Presumably, this 

would lead to the formation of two buds in yeast, perhaps explaining the observation of 

occasional two-budded cells in strains overexpressing Bem1p (Howell et al., 2009)or a 

Cdc24p-Cla4p fusion (Fig 3.11). However, such cells might also arise if competition 

were drastically slowed (Howell et al., 2009) 

We speculate that the cluster equalization predicted by the model at high polarity 

factor levels may be relevant to a currently unexplained behavior called tip-splitting or 

apical branching that occurs in a variety of fungi (Harris, 2008; Riquelme and Bartnicki-

Garcia, 2004) and is particularly well-studied in Ashbya gossypii (Knechtle et al., 2003). 

A. gossypii is an evolutionarily close relative of S. cerevisiae that uses related proteins to 

establish and maintain polarity, but grows as a multinucleate filamentous fungus 

(Dietrich et al., 2004).  As the hypha grows, accumulating more polarity factors, tip 

growth accelerates until at some point the polarization cluster expands (Schmitz et al., 

2006) and splits into two equal clusters, generating a Y-shaped branch in the hypha.  At 

the time of tip splitting, there are two neighboring polarity clusters that clearly do not 

compete with each other.  A polarity circuit with built-in negative feedback may explain 
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how these cells can sustain two equal clusters in close proximity, and why they do not do 

so until a large size has been reached. 

In conclusion, the oscillatory polarization observed under improved filming 

conditions reveals that the yeast polarity establishment circuit contains negative 

feedback.  Modeling suggests that negative feedback confers robustness as well as the 

capacity for rapid competition between polarity clusters.  The presence of negative 

feedback also raises the possibility that in appropriate circumstances, the system could be 

tuned to produce several polarity axes, which may be required for generating the more 

complex morphologies observed in other eukaryotes.  

 
 



 

CHAPTER 4.  

Kinetics of ste5 membrane recruitment 

 

 

4.1 Overview 

  When pheromone molecules bind to the G protein coupled receptors and activate 

G proteins, the information about the spatial distribution and concentration of pheromone 

molecules is transmitted to the downstream MAPK pathway and polarization pathway. 

The scaffold protein, Ste5, serves like a hub of input information. It interacts with active 

G proteins through its membrane recruitment and connects the MAPK pathway with 

polarization pathway through interaction with the PAK, Ste20, in the polarity spot (Fig. 

1.2B). 

Ste5 is recruited to membrane in a polarized way after pheromone treatment 

through binding with free Gβγ, and its spatial distribution follows the distribution of free 

Gβγ (Pryciak and Huntress, 1998). Moreover, the spatial localization of Ste5 affects the 

responses of the MAPK cascade to increasing levels of stimulus (Takahashi and Pryciak, 

2008). The dose response curve of MAPK cascade is graded if Ste5 is recruited to 

membrane, but switch-like if Ste5 remains in cytoplasm (Takahashi and Pryciak, 2008).  

Ste5 also couples the polarization pathway with the MAPK kinase activation 

cascade to initiate a pheromone response. Ste5 membrane recruitment by Gβγ facilitated 

the interaction between Ste20 and Ste5 membrane recruitment by Gβγ  
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facilitated the interaction between Ste20 and Ste11, amplified the Ste11 activation 

(Lamson et al., 2006). Besides, polarization of Cdc42 leads to asymmetry distribution of 

phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), which in turn stabilizes Ste5 on 

the membrane (Garrenton et al., 2010).  

Since Ste5 links information flow from both polarization pathway and MAPK 

cascade, it is interesting to understand how information from pheromone is encoded in 

the spatial and temporal dynamics of Ste5, and how Ste5 spatiotemporal dynamics affects 

the downstream signaling. These two questions motivated us to tracking the Ste5 

membrane binding and dissociation in single cells with different spatial profiles of input 

pheromone. 

4.2 Kinetics of Ste5 membrane recruitment 

To obtain the kinetics of Ste5 membrane recruitment during elongation, we filmed 

cells expressing Ste5-(GFP)3 in a uniform pheromone concentration of 75nM. Cells were 

synchronized at M phase with 15mg/ml Nocodazole before pheromone treatment to 

remove the variability due to cell cycle. By tracking single cells, the kinetics of Ste5 

polarization and membrane recruitment were obtained (Fig. 4.1).  

 Without pheromone, Ste5-(GFP)3 stayed in cytosol and was slightly concentrated 

in the nucleus (Fig. 4.1, top row).  Unlike Bem1-GFP polarization in response to 

pheromone, there were more fluctuations in Ste5 polarization (Fig. 4.2A). Before visible 

polarization of Ste5, speckles of Ste5 were recruited to membrane, spreading along the 

cell perimeter (Fig 4.1, middle row). Stable polarization started about 10~15min after 

switching on pheromone, but disappeared occasionally and with large cell-to-cell 
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variability (Fig 4.1, middle row and Fig. 4.2A). To quantify the change in the intensity of 

Ste5 polarization, we calculated the ratio between mean Ste5 intensity in brightest region 

and in the other (“dark”) area on membrane (Fig 4.2A and B). Averaging over 23 cells, 

Ste5 polarization occurred about 8 min after given pheromone (Fig. 4.2B). Different from 

Ste5 polarization in a small area on membrane, its membrane recruitment, measured as 

the ratio of mean Ste5-(GFP)3 intensity on membrane to that in cytosol, rose immediately 

after pheromone treatment (Fig 4.2 C). 

                  
 

Figure. 4.1 Time lapse imaging of Ste5-(GFP)3 in 75 nM uniform pheromone 
 Top row: Ste5-(GFP)3 distribution at zero pheromone (imaging every 2min). Middle row: 
imaging Ste5-(GFP)3 every 4 min immediately after adding pheromone. Bottom row: after 36 
min in pheromone.  
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4.3 General remarks and future plans 

The measured kinetics of Ste5 membrane binding was slower than expected. 

Although we do not have the time course of MAPK activation in synchronized cells, the 

phosphorylation of Fus3 and Kss1 rise up within 10 min of pheromone treatment in 

asynchronized cells (Hao et al., 2008). The phosphorylation rate is consistent with the 

change in the ratio of average Ste5 in membrane to cytosol, but earlier than the stable 

polarization of Ste5. This leads us to wonder how the activation of downstream kinases 

changes when Ste5 polarizes, since the polarization of Ste5 would concentrate its binding 

partners and amplify signaling through the kinase cascade. 

 Similar results were obtained by imaging cells every 2 min upon pheromone 

 

Figure. 4.2 Quantify the kinetics of Ste5 membrane recruitment  
A) Single cell trajectories of the ratio between mean intensity of Ste5-(GFP)3 in polarized 
clusters and that in non-polarized region on membrane. Each trajectory is normalized by the 
mean of this ratio in the cell before given pheromone. B) The mean of single cell trajectories 
in A). C) The ratio of mean Ste5-(GFP)3  intensity on membrane intensity to that in cytosol. 
Pheromone was given after 4 min. The shaded region indicates the dynamics of Ste5-(GFP)3 
in the absence of pheromone, and images were taken every 4 min after given pheromone.  The 
plots in B) and C) averaged 23 cells, grouped into mothers and daughters.  
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treatment (polarization occurred after 11min of pheromone treatment.). However, we 

need to measure the photobleaching rate of the Ste5-(GFP)3 and correct our quantification 

by the photobleaching rate.  

Imaging Ste5 membrane binding and dissociation provides a straightforward way 

to see how stimulus is transmitted at the level of Ste5. To test the effect of absolute 

pheromone levels on Ste5 membrane recruitment, we will film Ste5-(GFP)3 at 150nM 

uniform pheromone and compare the kinetics of Ste5 membrane binding with that in 

75nM uniform pheromone. The dissociation kinetics will also be measured by switching 

uniform pheromone off. Aligning the on/off membrane kinetics of Ste5 with the 

activation/deactivation profile of kinases in the cascade and changes in transcription 

would provide clues about the regulation between layers in the MAPK signaling pathway 

(Yu et al., 2008).  

Filming cells in pheromone gradients would also address how Ste5 dynamics 

encodes the spatial distribution of pheromone. By comparing dynamics of Ste5 in cells in 

the middle of 0~150nM (0~300nM) gradient with those in 75nM (150nM) uniform 

pheromone, we would know whether steeper pheromone gradients accelerate Ste5 

polarization. Since Ste5 polarization requires Gβγ binding, we could infer the distribution 

of free Gβγ in different pheromone gradients, bypassing the difficulty of probing active 

G-proteins. Moreover, we could map the spatial dynamics of receptors (Ste2), Ste5 and 

polarity machinery (e.g. Bem1) to determine how spatial information is processed at 

different levels of signal transduction and to understand how cells sense the pheromone 

gradients. 

 



 

CHAPTER 5.  

Conclusions and future directions 

 

 
Our initial goal was to quantitatively understand polarization and gradient sensing 

and thereby find crucial network motifs that regulate the spatial and temporal dynamics 

in these processes. Starting from this, we now understood one aspect of gradient tracking: 

why degrading pheromone from α cells improves the mating with α cells. By combining 

microfluidic experiments and computational simulation, our results showed that through 

secreting the protease Bar1, yeast cells actively modify the pheromone gradients around 

them, which enables them to avoid unproductive same-sex contact, to expand searching 

area, to amplify pheromone gradients and to reduce competition for a common mating 

partner. Multiple benefits come from a simple strategy: altering the spatial dynamics of 

input signal. Similar strategy might be applied in other systems. For instance, 

Dictyostelium cells secrete phosphodiesterase PdsA to degrade the cAMP for better 

sensing cAMP gradients (Garcia et al., 2009). 

By considering the physical limit of gradient sensing, Endres and Wingreen 

analytically showed that secreting proteases such as Bar1 or Pds enables cells to measure 

gradients with higher accuracy (Endres and Wingreen, 2008). In the presence of 

proteases, a cell behaves as an absorbing sphere, which infers gradients from the 

absorbed surface particle density (e.g. density of pheromone molecules degraded
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by Bar1) over time. The previously “observed” particles have already been degraded and 

would never be re-measured (Endres and Wingreen, 2008). In this way, the perfectly 

absorbing sphere has higher accuracy in gradient detection than a monitoring sphere (or a 

cell that does not secrete proteases), which infers gradient from positions of freely 

diffusing particles inside a cell and “observed” particles are likely to be re-measured. 

 However, how cells track the shallow gradients is still puzzling. First, whether the 

realistic gradients sensed by yeast cells are beyond the theoretical uncertainty of 

measured gradient is unknown. The detailed ligand-receptor binding and downstream 

signaling events, such as receptor dimerization, might further increase measurement 

uncertainty. Second, the duration of gradient sensing is long enough (on the timescale of 

hours) that yeast cells probably combine other processes, e.g. vesicle trafficking and 

receptor endocytosis, to overcome the low accuracy gradient detection.   

 One attractive mechanism to estimate external gradient is time averaging of 

liganded receptors and free Gβγ. When cells polarize in the range of pheromone gradients 

optimal for gradient sensing, the polarization occurs rapidly but wanders along the cell 

perimeter.  The speed of patch moving is regulated by vesicles traveling along actin 

cables, because these vesicles dilute the concentration of polarity factors in the polar 

patch and shift the centroid of polar patch by inserting more membrane to the polarity site 

(Johnson et al., 2012; Layton et al., 2011). The high mobility enables the polar patch to 

interact with receptors and free Gβγ over the entire membrane. If one region on the cell 

membrane accumulates more liganded receptors and free Gβγ molecules, the polar patch 

would move slowly in that region due to the interaction between Gβγ and Cdc24. As the 

polarity patch would spend more time at the region with high levels of liganded receptors 
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and free Gβγ, the growth would be biased toward that region and align with the direction 

of external pheromone gradients. 

 Additionally, the spatial information about external gradients is likely to be 

processed at the level of G-protein coupled receptors and G-proteins, allowing the spatial 

information easier to be interpreted by polarity clusters. First, following ligand binding, 

receptors would be phosphorylated, endocytosed, and degraded (Hicke and Riezman, 

1996; Hicke et al., 1998). The endocytosis of liganded receptor may improve gradient 

sensing by the “absorbing sphere” mechanism proposed by Endres et al (Endres and 

Wingreen, 2009a, b). However, when the endocytosis occurs after given pheromone, how 

fast the endocytosis is, and how pheromone level affects the endocytosis kinetics are 

remain to be determined to draw conclusions about the role of endocytosis in gradient 

sensing. Meanwhile, delivering newly synthesized receptors to membrane is probably 

biased toward the region with high concentrations of polarity factors, and thus reinforces 

the interaction between polarity patch, active receptors and free Gβγ. The cycling 

between receptor endocytosis and exocytosis over long time may integrate the abundance 

of external pheromone over time and amplify the concentration difference between the 

front and the back of a cell in a shallow gradient.  

 With high spatiotemporal resolution and mathematical modeling, we revealed an 

additional negative feedback imbedded in the polarity circuit. More than making initial 

polarity clusters oscillating, the negative feedback improved the robustness in spatial 

dynamics, in both polarity establishment and competition between multiple polarity 

clusters. Tuning the parameters controlling the strength and time delay of the negative 

feedback gave fine-tuned spatiotemporal dynamics of polarity factors. In those 
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kymographs describing how polarity patterns evolved, polarization also brought extra 

negative feedback to alter the frequency of temporal oscillation. 

The properties of network motifs with different interaction topology have been 

intensively studied in temporal dynamics (Alon, 2006). The gain in robustness by 

negative feedback in both spatial and temporal dynamics raises the question: how 

different are the functions of a network motif in spatial dynamics compared with those in 

temporal dynamics? How would diffusion of components in a network motif affect the 

temporal behavior and alter characters of that motif? One similar example is that the 

perfect adaptation in temporal dynamics from an integral-feedback controller motif could 

also scale (adapt) morphogen gradients with the size of embryos (Ben-Zvi and Barkai, 

2010). Although not all characterized network motifs can be adapted in spatial signaling 

with biological meanings, understanding the spatial dynamics of network motifs would 

extend our knowledge about the design principles of biological systems. 

Another interesting modeling direction is to include the stochastic processes into 

spatial modeling and simulations. Fluctuation in protein numbers and slow diffusion may 

push individual reactions away from mean-field descriptions. For example, in section 

3.5.1, only by including stochastic membrane binding and dissociation of Bem1, the 

uniform oscillation is changed to oscillatory clustering, relocation of clusters and rapid 

multi-cluster competition followed by oscillation. Then how would the noise from 

diffusion and other chemical reactions perturb the dynamics of polarity spot? Moreover, 

lots of biological processes, such as endocytosis and exocytosis, are discontinuous, 

adding extra noise to the system. With all these stochastic processes, how do cells buffer 

or make use of noise in spatial signaling? Spatial stochastic modeling and quantitative 
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live-cell imaging would help us to reveal mechanisms that regulate the spatiotemporal 

dynamics in a noisy environment.  
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APPENDIX I 
I.1 Yeast strains   

A list of strains used in these studies and their complete genotype is provided in 

Table 1. 

Table 1. Strains used in Chapter 2 

Strain Genotype 

BY4741 MATa BAR1 LYS2 met15∆0 his3∆1 leu2∆0 ura3∆0 
BY4742 MATα BAR1 lys2∆0 MET15 his3∆1 leu2∆0 ura3∆0 
aBY4742-2 MATα bar1∆::HisG

-URA3-HisG 
lys2∆0 MET15 his3∆1 leu2∆0 ura3∆0 

aBY4741-15 MATa BAR1 LYS2 met15∆0 his3∆1 leu2∆0 ura3∆0 
   GFP-BEM1::His3MX6 
aBY4741-30 MATa bar1∆::HisG

-URA3-HisG 
LYS2 met15∆0 his3∆1 leu2∆0 ura3∆0 

   GFP-BEM1::His3MX6 
bBYE007-1B MATa BAR1 lys2∆0 MET15 his3∆1 leu2∆0 ura3∆0 
bBYE007-1C MATa BAR1 LYS2 met15∆0 his3∆1 leu2∆0 ura3∆0 
bBYE007-2B MATα BAR1 LYS2 met15∆0 his3∆1 leu2∆0 ura3∆0 
bBYE007-6C MATa BAR1 lys2∆0 met15∆0 his3∆1 leu2∆0 ura3∆0 
bBYE007-6A MATα bar1∆::HisG

-URA3-HisG  
lys2∆0 MET15 his3∆1 leu2∆0 ura3∆0 

bBYE007-2A MATa bar1∆::HisG
-URA3-HisG 

lys2∆0 MET15 his3∆1 leu2∆0 ura3∆0 

bBYE007-3A MATa bar1∆::HisG
-URA3-HisG 

LYS2 met15∆0 his3∆1 leu2∆0 ura3∆0 

bBYE007-4A MATα bar1∆::HisG
-URA3-HisG 

LYS2 met15∆0 his3∆1 leu2∆0 ura3∆0 

bBYE007-5B MATa bar1∆::HisG
-URA3-HisG 

lys2∆0 met15∆0 his3∆1 leu2∆0 ura3∆0 

bBYE007-
14D 

MATα bar1∆::HisG
-URA3-HisG 

lys2∆0 MET15 his3∆1 leu2∆0 ura3∆0 

KZ8-5C MATa his4-38  
ura1-1 

     

KZ8-1D MATα His4-38 ura-
1-1 

     

aStrains are isogenic to BY4741 or BY4742. 
bStrains are segregants from a cross between BY4741 and BY4742-2 
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Table 2. Mating mixtures. 

Cross Mating 
Partners 
(Decoy) 

Cell type BAR1 Selectable Marker Genotype 

1 BYE007-1B x 
BYE007-1C 

a x a BAR1 x BAR1 lys2∆0/LYS2  MET15/ met15∆0 

2 BYE007-1B x 
BYE007-2B 

a x α BAR1 x BAR1 lys2∆0/LYS2  MET15/ met15∆0 

3 BYE007-2A x 
BYE007-3A 

a x a bar1∆ x 
bar1∆ 

lys2∆0/LYS2  MET15/ met15∆0 

4 BYE007-2A x 
BYE007-4A 

a x α bar1∆ x 
bar1∆ 

lys2∆0/LYS2  MET15/ met15∆0 

5 BYE007-1B x 
BYE007-6A 

a x α BAR1 x BAR1 lys2∆0/ lys2∆0 MET15/MET15 

6 BYE007-1C x 
BYE007-2B 

a x α BAR1 x BAR1 LYS2/LYS2 met15∆0/ met15∆0 

7 BYE007-2A x 
BYE007-14D 

a x α bar1∆ x 
bar1∆ 

lys2∆0/ lys2∆0 MET15/MET15 

8 BYE007-3A x 
BYE007-4A 

a x α bar1∆ x 
bar1∆ 

LYS2/LYS2 met15∆0/ met15∆0 

9 BYE007-1B x 
BYE007-1C 

a x a BAR1 x BAR1 lys2∆0/LYS2  MET15/ met15∆0 

 BYE007-5B a bar1∆ lys2∆0 met15∆0) 
10 BYE007-1B x 

BYE007-2B 
a x α BAR1 x BAR1 lys2∆0/LYS2  MET15/ met15∆0 

 BYE007-5B a bar1∆ lys2∆0 met15∆0) 
11 BYE007-2A x 

BYE007-3A 
a x a bar1∆ x 

bar1∆ 
lys2∆0/LYS2  MET15/ met15∆0 

 BYE007-6C a BAR1 lys2∆0 met15∆0) 
12 BYE007-2A  

x BYE007-4A 
a x α bar1∆ x 

bar1∆ 
lys2∆0/LYS2  MET15/ met15∆0 

 BYE007-6C a BAR1 lys2∆0 met15∆0) 
 

I.1.2 Chemotropic growth assays   

The microfluidic device used for chemotropic assays and preparation of cells for 

imaging were described previously (Hao et al., 2008). The pheromone concentration 

ranged from 0 to 100 nM in the cell chamber for DIC and fluorescence imaging of BAR1 

cells (BY4741-15; BEM1-GFP::His3MX6) and 0 – 20 nM for bar1∆ cells (BY4741-30; 
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bar1∆::HisG-URA3-HisG BEM1-GFP::His3MX6).  To quantify self-avoidance for these 

two strains, the angle between two adjacent MATa cells was measured every 50 minutes 

from the time that cells started to elongate during chemotropic growth. This angle is 

defined as the angle between the two lines from the growth tip to the contact point of the 

two cells. The alignment between the direction of growth and the gradient was quantified 

by the angle between vectors indicating the growth direction and the direction of gradient 

at 350 minutes. Microscopy was performed with a Nikon Ti-E inverted microscope using 

a Photometrics CoolSNAP HQ2 Monochrome camera. Acquisition was performed with 

Metamorph (Molecular Devices; http://www.photomet.com). Image processing and 

analysis was done using MATLAB (Mathworks, Natick, MA) and ImageJ 

(http://rsbweb.nih.gov/ij/). 

 

I.3 Quantitative mating assays   

BAR1 and bar1∆ strains with nonrevertible and complementing nutritional 

markers were derived from BY4741and BY4742 (Table 1) and assessed for opposite 

cell-type (MATa x MATα) and same cell-type (MATa x MATa) mating efficiency in the 

absence or presence of exogenous pheromone using a modification of the procedure 

described by Sprague (Sprague, 1991).  Table 2 lists the different mating mixtures that 

were assessed in these experiments. Cells for making these mating mixtures were grown 

in liquid YPD medium to the early-log phase (5 x 106 to 1.5 x 107 cells per ml).  

In experiments to assess the effects of mating pheromone on mating efficiencies, 

mixtures were made with 1 x 106 cells of each mating partner in suspensions (200 µl) 

containing 0, 0.75, 1.5, 3, or 6 µM of exogenous mating pheromone (α-factor).  Each 

http://www.photomet.com/
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suspension was pipetted onto a 25-mm filter (0.45-µm pore size; Millipore Corp., 

Bedford, Mass.) on the surface of a separate YPD plate with the corresponding 

concentration of mating pheromone.  

In experiments to assess the effects of global Bar1, MATa BAR1 or bar1∆ “decoy 

cells” lacking markers for selecting mating products with the tester partners were 

included to equalize the amount of Bar1 protease present in mating mixtures and ensure 

the total number of mating partners remained constant.  MATa x MATa BAR1 or bar1∆ 

mating mixtures were made with 2.5 x 105 cells of each tester partner and 5 x 105 cells of 

the MATa bar1∆ or BAR1 decoy strain, respectively.  Similarly, MATa x MATα BAR1 or 

bar1∆ mating mixtures were made with 2.5 x 105 cells of each tester partner and 2.5 x 

105 cells of the MATa bar1∆ or BAR1 decoy strain.  (Note, MATα BAR1 cells do not 

produce or secrete Bar1.) After 5h (30°C), the cells were collected and diluted for plating 

on selective medium (synthetic dextrose supplemented with histidine, leucine, and uracil) 

to determine diploids/ml and on nonselective medium (synthetic complete dextrose) to 

determine total cells/ml (diploids and haploids).  Reported mating efficiencies in the 

experiments without decoy cells are the ratio of diploids to total cells normalized to that 

for the reference MATa x MATα BAR1 mixture without pheromone (Table 2, cross 2).  

For the experiments with decoy cells, mating efficiencies are the ratio of diploids to total 

cells normalized to the MATa x MATα BAR1 mixture containing bar1∆ decoy cells.  

(Table 2, cross 10).  Three independent assays were done for each mating mixture at the 

specified pheromone doses.  

 The auxotrophic markers in these strains are coding sequence deletions that are 

nonrevertible. Therefore, only fusion products with complementing nutritional markers 
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(LYS2/lys2∆0 met15∆0/MET15) grow on selective medium.  To confirm this assertion, 

two plating controls were included in parallel with the quantitative mating assays.  First, 

2 x 106 cells of the MATa haploid strains used for mating mixtures 1 and 3 (Table 2) 

were incubated separately on YPD filters and plated on selective medium at the same 

dilution as for the MATa x MATa mating mixtures.  Second, crosses between opposite 

cell-type partners with noncomplementing selectable markers (Table 2, Crosses 5-8) 

were made in the absence of exogenous pheromone, incubated on YPD filters, and plated 

on selective medium at the same dilution as for the MATa x MATα mating mixtures.  No 

colonies were observed on any of these control plates. 

 

I.4 Cell-type verification  

The cell-type of rare diploids from MATa x MATa mating mixtures was tested to 

discern whether they are products of same or opposite cell-type mating. (The latter could 

result if information at MAT switched from MATa to MATα in rare cells in the 

population.) MATa/MATa diploid cells mate efficiently with MATα but not MATa 

haploids to form viable triploid fusion products.  By contrast, MATa/MATα diploid cells 

mate with neither. We performed a qualitative mating assay with tester strains KZ8-5C 

(MATa) and KZ8-1D (MATα) to test isolated colonies from the selective plates to 

distinguish between MATa/MATa and MATa/α fusion products (Sprague, 1991).  Isolates 

from selective plates corresponding to MATa x MATa mating mixtures made without or 

with the specified amounts of exogenous pheromone were tested for mating ability (200 

BAR1 and 200 bar1∆ isolates from two independent experiments).  40 isolates from the 

BAR1 MATa x ΜΑΤα mating mixture without exogenous pheromone were included for 
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reference.  All 400 diploids that were tested from the MATa x MATa mixtures mated with 

the MATα tester but not the MATa tester strain consistent with assignment of the MATa 

cell-type to these fusion products.  As expected, none of the 40 MATa/MATα diploids 

mated with either tester strain.  Additionally, 12 isolates each from selective plates of the 

MATa x MATa and MATa x MATα mixtures without exogenous pheromone were tested 

for sporulation.  No spore asci were observed for products from the same sex mating 

mixtures, whereas all of those from the opposite mating type mixtures produced spore 

asci. 
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APPENDIX II 

 

II.1. Modeling oscillatory polarization with negative feedback  

II.1.1 Positive feedback only  

 

Figure S1. Models with and without negative feedback  
Model (1) has positive feedback only, model (2) has a negative feedback loop via activation of a 
cytoplasmic GAP, and model (3) has negative feedback via disruption of the Bem1p complex.  
The reaction schemes correspond to the cartoons diagrammed in Fig. 3.6A.  See text for details.   

 

This model is similar to the one developed by Goryachev (Goryachev and 

Pokhilko, 2008; Howell et al., 2009) with the simplifying assumption that the role of the 

GDI, which binds GDP-Cdc42p and allows it to exchange between membrane and 

cytoplasm (Johnson et al., 2009), can be incorporated in the rate constants for GDP-

Cdc42p exchange between membrane and cytoplasm (Fig. S3). Other model assumptions 

include: 

(i) GDP-Cdc42p can exchange between the plasma membrane and cytoplasm. 

The membrane-bound and cytoplasmic forms are labeled as Cdc42D and Cdc42Ic, 

respectively. GTP-Cdc42p (Cdc42T) is always associated with the plasma membrane.  
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(ii) The Bem1p complex can exchange between cytoplasm (indicated as 

Bem1GEFc) and membrane (indicated as Bem1GEFm). Either form can bind to GTP-

Cdc42p on the membrane, generating a complex indicated as Bem1GEFCdc42T. 

(iii) The GEF activity of the Bem1p complex increases 2-fold when it binds GTP-

Cdc42p (Howell et al., 2009).  

(iv) GAP activity is spatially uniform and is incorporated in the first-order 

hydrolysis rate constant k2r.  

(v) The GEF and GAP are not saturated by substrate (GDP-Cdc42p or GTP-

Cdc42p respectively). 

(vi) The cell dimensions, total Cdc42p, and total Bem1p complex are all constant. 

The ratio of membrane volume to cytoplasmic volume is indicated by η. 

(vii) All membrane-bound species have the same diffusion coefficient, Dm, and all 

cytosolic species the same diffusion coefficient, Dc, with Dc >> Dm.  

Model parameter values are listed in the Table below. This model is described by 

the following reaction-diffusion equations: 
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II.1.2 Negative feedback via GAP activation 

We assume that GTP-Cdc42p activates a cytoplasmic GAP, perhaps by 

phosphorylation of the GAP by the PAK Cla4p (Cla4p is a Cdc42p effector and part of 

the Bem1p complex) (Fig S3). The total GAP concentration is assumed to be 1 µM. The 

two states of the GAP are denoted as GAPc (basal GAP activity) and GAP*
c (high GAP 

activity). Active GAP is γ-fold more active than basal GAP. We imagine that a PAK 

bound to one molecule of GTP-Cdc42p would phosphorylate a GAP molecule transiently 

bound to a neighboring molecule of GTP-Cdc42p, so the GAP activation rate would be 

proportional to the product Bem1GEFCdc42T x Cdc42T x GAPc. GAP inactivation is 

assumed to occur in the cytoplasm at a constant rate k7. Model parameter values are listed 

in the Table below. This model is described by the following equations: 
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II.1.3 Negative feedback via disruption of the Bem1p complex: 

We assume that GTP-Cdc42p initiates a feedback loop that leads to the 

modification of the Bem1GEFCdc42T complex. Upon dissociation this yields Cdc42T 

and a modified Bem1GEF* that cannot rebind Cdc42T until its modification has been 

reversed by a spatially uniform cytoplasmic process characterized by the first-order rate 
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constant k7 (Fig. S3). One possible mechanism for this negative feedback loop would be 

that the PAK Cla4p in one Bem1GEFCdc42T phosphorylates Bem1p complex 

components in a neighboring Bem1GEFCdc42T, changing their affinity for each other or 

for GTP-Cdc42p. In this scenario, the rate at which Bem1GEFCdc42T is modified is 

proportional to the square of the Bem1GEFCdc42T concentration. To keep additional 

assumptions to a minimum, we assumed that although the modified Bem1p complex 

cannot re-associate with GTP-Cdc42p, it retains basal GEF activity and transitions 

between the membrane and cytoplasm at the same rates as the unmodified complex. 

Model parameter values are listed in the Table below. This model is described by the 

following equations: 
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II.1.4 Simulation with noise 

In the main text, all of the simulations were deterministic, but given the cell-to-

cell variability of polarity dynamics observed experimentally, we expect that stochastic 

noise has significant influence on the dynamics.  As a first step to see how minimal 

amount of noise would affect the deterministic model, we added low-amplitude white 

noise to the Bem1p complex concentration at the membrane and in the cytoplasm (to 

preserve mass) and kept other species unaffected by noise. Another reason for choosing 

these two species is that cytoplasmic Bem1p complex is the least abundant species; 

fluctuations arising from stochastic variations in Bem1p complex behavior might be 

relatively large. We replaced the deterministic equations for Bem1GEFc and Bem1GEFm 
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with: 

 

 

where ξ(t) is temporally uncorrelated, statistically independent Gaussian white 

noise, and the strength of this noise is set by the constant s=0.0001.  

In the presence of the simple noise term, the model predicts sustained oscillatory 

clustering as well as repeated competing and relocating with proper parameters. It seems 

likely that septins or other extrinsic non-modeled factors would stabilize the clusters in 

cells.  

 

II.1.5 Parameter Values 

Model parameter values for all models are listed in the Table below. Here we 

provide a brief description of how the model 1 parameter values were estimated. 

The GDI-related rate constants (simplified to k1 and k1r in this work) were 

estimated based on real-time FRET measurements reporting interaction kinetics of 

recombinant human Cdc42p and GDI with insect cell membranes in vitro (Johnson et al., 

2009).   

The GEF- and GAP-regulated rate constants for GDP/GTP exchange and GTP 

hydrolysis by Cdc42p (k2, k2p, and k2r) were estimated based on in vitro rates of GDP 
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release and GTP hydrolysis by recombinant yeast Cdc42p upon incubation with crude 

yeast lysates from synchronized cells (Howell et al., 2009).   

Because we do not have specific data on the weak interaction of Bem1p 

complexes with the membrane, the relevant rate constants (k3 and k3r) were estimated 

based on similar PX-domain/membrane interactions in the literature (Goryachev and 

Pokhilko, 2008) 

The binding/dissociation of the Bem1p complex to/from GTP-Cdc42p is a 

simplification of a more complex situation in which reversible binding reactions occur 

between GTP-Cdc42p and PAK, between PAK and Bem1p, and between Bem1p and 

Cdc24p.  Because the SH3-mediated PAK-Bem1p interaction is likely to be the most 

labile of these, the relevant rate constants (k4, k5, and k5r) are estimated based on other 

SH3 interactions in the literature (Howell et al., 2009).   

The membrane diffusion constant was estimated based on FRAP analysis of GFP-

tagged prenylated reporters in latrunculin-treated cells (to eliminate endocytosis) (Marco 

et al., 2007).   

Although the general ballpark values of these parameters are as realistic as we are 

able to estimate, the modeling results in this paper should be treated as qualitative rather 

than quantitative.  Because the mechanism of negative feedback is unknown, the negative 

feedback parameters (k6 and k7) are purely speculative. 
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Figure S2.  The effect of negative feedback on robustness does not depend on 
specific rate parameters 
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A) Bifurcation diagrams of model (1) (positive feedback only) and model (3) (with negative 
feedback via the Bem1p complex) are displayed as pairs (model 1 above, model 3 below) for 
various values of the rate constants. Each parameter was increased or decreased 3-fold from its 
original value, and the Turing-unstable region (red) was determined by linear stability analysis.  
B) Summary indicating that negative feedback increases the polarization region in all cases. The 
area of the polarization region (red) as a fraction of the total area in relative Cdc42p and Bem1p 
complex space is plotted as a measure of the model’s robustness to varying levels of polarity 
factors. Blue and red bars report model (1) and (3) respectively. Paired bars use the same 
parameter set, and pairs are ordered by increasing robustness of model 1.  

 

Table 3. Parameter Values 

  Model (1) Model (2) Model (3) Reference (Model 1) 
k1 0.9 s-1 1 s-1 0.9 s-1 This work 
k1r 0.15 s-1 0.125 s-1 0.15 s-1 This work 
k2 0.16 µM-1s-1 0.2 µM-1s-1 0.16 µM-1s-1 (Howell et al., 2009) 
k2p 0.35 µM-1s-1 0.6 µM-1s-1 0.35 µM-1s-1 (Howell et al., 2009) 
k2r 0.32 s-1 0.3 s-1 0.32 s-1 (Howell et al., 2009) 
k3 10 s-1 10 s-1 10 s-1 (Goryachev and 

Pokhilko, 2008) 
k3r 10 s-1 10 s-1 10 s-1 (Goryachev and 

Pokhilko, 2008) 
k4 10 µM-1s-1 7.5 µM-1s-1 10 µM-1s-1 (Goryachev and 

Pokhilko, 2008) 
k4r - 2.5 s-1 - This work 
k5 10 µM-1s-1 10 µM-1s-1 10 µM-1s-1 (Goryachev and 

Pokhilko, 2008) 
k5r 10 s-1 10 s-1 10 s-1 (Howell et al., 2009) 
k6 - 0.2 µM-2s-1 0.05 µM-1s-1 This work 
k7 - 0.00475 s-1 0.0022 s-1 This work 
γ - 10 - This work 
η 0.01 0.01 0.01 (Goryachev and 

Pokhilko, 2008) 
Dc 10 µm2s-1 10 µm2s-1 10 µm2s-1 (Goryachev and 

Pokhilko, 2008) 
Dm 0.036 µm2s-1 0.036 µm2s-1 0.036 µm2s-1 (Marco et al., 2007) 
Total 
Cdc42p 

5 µM 5 µM 5 µM (Goryachev and 
Pokhilko, 2008) 

Total 
Bem1p 
complex 

0.017 µM 0.017 µM 0.017 µM (Goryachev and 
Pokhilko, 2008) 

Total GAP - 1 µM - This work 
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II.2. Competition and equalization of two polarity foci 

We used model (1) (positive feedback only) and model (3) (with negative 

feedback) to examine how negative feedback affects competition between polarized foci. 

Simulations were done on a 1D line (L=5π µm) with periodic boundary conditions, 

representing a cell perimeter.  

To simulate competition between two unequal GTP-Cdc42p foci, we evolved a 

symmetric two-peak solution for the points in parameter space shown in Fig. 6. This was 

done by transiently including a spatial dependence of the rate constant k3 for Bem1 

binding to the membrane. Specifically, we took k3(θ) to consist of two identical Gaussian 

distributions centered at π/2 and  3π/2. After the spatial dependence of k3 was removed 

and the two peaks had reached steady state, we adjusted the profile of GTP-Cdc42p from 

a 50:50 ratio between the peaks to various other ratios (55:45, 60:40, 70:30, 80:20 or 

90:10) keeping total Cdc42p constant. The shared points (white circles in Fig. 6) are 

limited to low Bem1p complex concentrations because model (1) could not sustain a two-

peak distribution with larger amounts of Bem1p complex: once the spatial dependence of 

k3 was withdrawn, the peaks flattened out to a homogeneous distribution that was 

unstable to spatial perturbation. 

The competition simulations for each point started with the two-peak profiles 

adjusted as described above. We defined the duration of competition as the time taken to 

reach a state in which the peak GTP-Cdc42p concentration in the larger focus was 10-

fold that of the smaller focus.  

Whereas all points tested for model (1) (positive feedback only) displayed 
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competition, in model (3) (with negative feedback) there was a transition from 

competition (point #1, Fig. S3) to conditional equalization (point #2, Fig. S3) as the total 

amounts of Cdc42p and the Bem1p complex were increased. By conditional equalization 

we mean that the two peaks became equal in size if the initial difference was less than a 

certain threshold. As the total Cdc42p and Bem1p complex amounts were increased 

further, two different peaks would equalize regardless of their relative size (Fig. 3.10E; 

point #3, Fig. S3). These three behaviors are depicted as blue (competition), green 

(equalization), and blue-green (conditional equalization) regions in Fig. S3, as 

determined by sampling 53 randomly distributed points. 

To examine how this behavior impacts a biologically realistic situation, we asked 

how many peaks would form if simulations were initiated with a variety of initial 

conditions. We show three representative points in Fig. S3C. In the competition region, 

only one peak formed no matter what initial conditions were used (point #1, Fig. S3C). In 

the conditional equalization region, different initial conditions led to either one or two 

peaks (point #2, Fig. S3C). In the equalization region, two peaks of GTP-Cdc42p were 

established independent of the initial conditions (point #3, Fig. S3C). 
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Figure S3.  Competition and equalization between clusters in Model (3) 
A) Three regions with different types of competition behavior in [Cdc42]-[Bem1-complex] 
bifurcation diagram of Model (3). Blue region (competition): two unequal peaks compete and the 
larger one wins. Green region (equalization): two unequal peaks equalize and then coexist. Blue-
green region (conditional equalization): competition or equalization, depending on the starting 
difference between the two peaks (see B). White region: no polarization occurs. The numbered 
symbols indicate positions simulated in B. 

B) Simulated competition and equalization. Simulations were initiated with two peaks at opposite 
ends of the cell perimeter, containing the indicated color-coded ratios of GTP-Cdc42p.  The 
fraction of GTP-Cdc42p in each peak is plotted as a function of time. Top: at point #1 (white 
circle), the two peaks always compete. Middle: at point #2 (red circle), two similar-sized peaks 
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equalize (e.g. ratio 55:45) but very unequal peaks compete (e.g. ratio 70:30). Bottom: at point #3 
(red square), two peaks always equalize. 

C) Simulated behavior with different initial conditions. Simulations were initiated with the initial 
perturbations in GTP-Cdc42p shown at left, at the points in the bifurcation diagram (#1-3) 
indicated in A. Top: a single initial spike leads to development of one peak at points #1 and #2, 
but two peaks at point #3.  Second row: two nearby spikes merge to form a single peak at points 
#1 and #2, but two peaks at point #3. Third row: two unequal spikes compete at point #1 but 
equalize at points #2 and 3. Bottom: a noisy initial input develops to a single peak at point #1 but 
two equal peaks at points #2 and 3. Thus, in the competition region all simulations develop a 
single peak and in the equalization region all simulations develop two peaks, independent of 
initial conditions. In between, the number of peaks depends on initial condition (point #2).  
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