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ABSTRACT 
 

David E. Gorelick: Joint mitigation of supply and financial risk in regional water supply 
management under uncertainty 

(Under the direction of Gregory W. Characklis) 
 

 
Municipal water utilities are tasked with providing reliable, safe, and affordable drinking 

water for over 250 million Americans. Accomplishing this can be costly and complicated. In 

2017, over $110 billion of public funding alone was spent to maintain United States drinking 

water infrastructure. Changes in climate, land use, and water demand introduce uncertainty in 

water availability. Growing variability in supply and demand impacts water supply reliability, 

increasing volatility of water utility costs and revenues, generating financial risk that disrupts 

utility operations and raises customer water rates. Water utilities have a range of tools for jointly 

managing supply and financial risks, including building new supply infrastructure, implementing 

water use restrictions during droughts, and cooperatively managing infrastructure through inter-

utility agreements. To navigate supply and demand uncertainties and provide reliable, affordable 

water service, it is key for utilities to identify actions and decision-making rules that work 

effectively under a wide range of future conditions, taking greater advantage of available tools. 

However, no research in the water supply management and planning field to this point has 

applied dynamic adaptive management modeling to explore utility hydrologic vulnerability and 

the financial impacts of regional inter-utility agreements, nor developed adaptive financial 

modeling to quantify utility budgetary responses to water supply planning decisions. This 

dissertation employs a novel, integrated supply and financial risk modeling approach to address 
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outstanding questions faced by water utilities, specifically: (1) How vulnerable are utilities to 

climate and land-use landcover change uncertainty, and how can mitigation action influence their 

vulnerability? (2) Can inter-utility cooperation help mitigate supply and/or financial risk? (3) 

How robust are regional inter-utility agreements under uncertainty? (4) How can utilities 

financially adapt to meet water demands? Results of this work demonstrate: (a) how utility 

decision-making can mitigate (and sometimes exacerbate) climate and land use change impacts 

on water availability; (b) the financial benefits and drawbacks of inter-utility regional 

cooperation, relative to independent utility operation; and (c) the adaptive capacity of water 

utility budgets to finance water supply infrastructure expansion under uncertainty in demand 

growth and climate. Addressing these questions highlights the opportunities water utilities have 

to ensure reliable future water service. 
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CHAPTER 1 : INTRODUCTION 

 

Water utilities worldwide share the same mission: to provide a reliable source of high-

quality water for customers (AWWA, 2018). Doing so requires utilities to constantly adapt to 

uncertain future conditions, mitigating risks to water supply through both short-term drought 

management and long-term infrastructure planning (Gleick, 2003; WUCA, 2016). This is a 

massive endeavor – in 2017, more than $110 billion USD of public funding alone went toward 

U.S. water utility infrastructure (CBO, 2018), and the U.S. Environmental Protection Agency 

estimates nearly $400 billion USD is needed by 2030 to maintain drinking water infrastructure 

(USEPA, 2011). However, maintaining the high levels of supply capacity needed to meet 

demand during extreme drought has become much more challenging, as a result of fewer cost-

effective expansion options remaining and more restrictive environmental approval processes 

(NRC, 2012; Perry & Praskievicz, 2017).  Consequently, adaptive drought mitigation actions 

have come into more common use by utilities to counter water supply risks. Conservation (e.g. 

water use restrictions, drought surcharge pricing, low-flow water fixtures) to reduce water 

demand (Boyle, 2014; Geller et al., 1983; Kenney et al., 2004; Milman & Polsky, 2016; 

Olmstead & Stavins, 2009) and transfers of water from adjacent utilities or other users (e.g., 

agriculture) to temporarily increase supply (Characklis et al., 2006; Gupta & van der Zaag, 2008; 

Lund & Israel, 1995; NRC, 1992) typically offer lower-cost and less environmentally 

burdensome options for drought management does infrastructure expansion.  
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Transfers and temporary conservation carry financial consequences as they are 

implemented intermittently, dictated by drought. Utility financial stability can be stressed by the 

sudden occurrence, and the resulting revenue losses or cost increases, of these adaptive drought 

mitigation measures (Baum & Characklis, 2020; Hughes et al., 2014; Zeff et al., 2020; Zeff & 

Characklis, 2013). Because water utilities have primarily fixed costs (e.g., debt service on bonds 

that finance infrastructure), and have prices set to recover revenues which are difficult to change 

on short notice, any significant variability in costs or revenues can lead to budgetary shortfalls 

that jeopardize their ability to meet debt obligations (Hughes & Leurig, 2013). Any increase in 

the risk of missing debt payments or being unable to meet bond covenants – an agreement 

between a utility and debt holders, requiring the utility to maintain specific financial 

benchmarks, demonstrating fiscal stability (AWWA, 2011; Raftelis, 2005) – can result in a lower 

credit rating, increasing a utility’s future cost of capital (i.e. interest on debt) and lead to higher 

costs and increased water rates for customers (Leurig, 2010). This is a critical concern for utility 

managers, as the financing costs of debt can constitute over 20% of a water utility’s operating 

budget (NACWA, 2015). As water utilities have come to rely increasingly on adaptive drought 

management measures, jointly managing both financial risk and supply risk has become a 

growing priority for utilities (Gold et al., 2019; Herman et al., 2015; Paulson et al., 2018). 

Simultaneous mitigation of supply and financial risk presents a very different set of challenges 

than have been faced by water utilities in the past, when utilities mostly sought to combat 

drought by maintaining significant volumes (rarely used) supply capacity, and paid for it via debt 

service payments that were predictable decades into the future, even as it likely led to higher 

long-term costs.  
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Reliably meeting demands under a new paradigm of coupled adaptive water supply and 

financial management is also made more difficult today by the compounding uncertainties 

utilities face in both short- and long-term planning (Brown et al., 2015; Harou et al., 2010; 

Loucks & van Beek, 2017; Lund, 2015). Changes in climate and land use patterns can alter (and 

already have altered) hydrologic behavior – precipitation patterns, for example (Fig. 1.1) – on 

which water supply system design is based and from which future water availability is predicted 

(IPCC, 2014a; World Bank, 2016; WUCA, 2016).  

 

 

Figure 1.1: Change in annual precipitation between 1951 and 2010 over North America. Adapted 
from Figure 26-3 of the 2014 Intergovernmental Panel on Climate Change (IPCC) Assessment 
Report 5 (AR5). 

 
 



4 
 

Demand for water is also difficult to predict (Fig. 1.2), due to a mix of factors including 

weather, climate, population growth, per-capita usage, conservation, and consumer willingness-

to-pay (Nawaz et al., 2019). Institutional changes can add complexity to planning, subjecting 

utilities to unexpected regulatory or governance structures that may imperil their water supply 

reliability or financial solvency (Beecher, 2013; Ioris, 2012). Inter-utility cooperative agreements 

that involve sharing supply capacity to reduce long-term costs and increase supply reliability are 

also increasingly common, further complicating utility supply and financial management (EPA 

Office of Water, 2017; Silvestre et al., 2018; Tran et al., 2019). 

 

 

Figure 1.2: Water demand (points) from 1965 to 2018 and long-term demand projections (lines) 
by the Orange Water and Sewer Authority (OWASA). Dates of projections given in the inset 
boxes next to projection lines. Figure provided courtesy of OWASA. 
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Given the potential uncertainties from many sources, and the wide range of possible 

mitigation actions that utilities may take to reduce risks, research focus in the field of water 

supply management and planning has more recently shifted toward identification of robust 

policies – policies which perform well under uncertainty – to sustain future supply reliability and 

financial stability (Hoekstra et al., 2018). Dynamic adaptive modeling frameworks have emerged 

as valuable decision support tools, through which a utility or regional system of multiple utilities 

can react to changing hydrologic, demand, and institutional conditions by triggering mitigation 

actions (Kingsborough et al., 2016; Kwakkel et al., 2015; Trindade et al., 2019). However, the 

broad scope of hydrologic, demand, institutional, and cooperative uncertainties, along with range 

of potential adaptive capabilities of regional water utility systems, has revealed a number of 

critical-yet-unaddressed areas of research in water supply and financial risk management and 

modeling.  

This research advances the academic literature of the water resources management field 

by answering a series of these questions through novel utility-scale modeling, jointly exploring 

the regional water supply and financial risks facing water utilities and opportunities to mitigate 

these risks through independent adaptation and regional cooperation. In doing so, this 

dissertation advances both the methodologies and applications of regional water supply and 

financial risk management. Those questions are below (along with reference to the chapter of 

this work in which they are addressed):  

 

How vulnerable are utilities to climate and land-use landcover change uncertainty, and 

how can mitigation action influence their vulnerability (Chapter 2)? It remains an open question 

how vulnerable water utilities are with respect to the combined effects of both climate and land-
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use landcover (LULC) change, as well as the degree to which each represents a major source of 

uncertainty in future water availability (USGCRP, 2018; World Bank, 2016). Climate and LULC 

change have been extensively studied separately to assess their hydrologic impacts (Milly et al., 

2005; Piao et al., 2010; Schewe et al., 2014), but scrutiny of their joint impacts on water supply 

has only begun more recently (Forbes et al., 2018; Martin et al., 2017; Morán-Tejeda et al., 2015; 

Tong et al., 2012). Of past research, few studies of water supply account for water resources 

management (McDonald et al., 2014) and none consider adaptive management responses by 

utilities to dynamically mitigate hydrologic risk. Because climate and LULC change are 

coincident and can occur both gradually and abruptly (especially urban land use change), 

accounting for dynamic adaptive response by utilities to changes in hydrologic conditions can 

provide a more realistic picture of a region’s vulnerability to hydrologic uncertainty. This chapter 

is the first study of regional water supply management to explicitly evaluate the impacts of 

hydrologic change when adaptive utility responses are applied, either for an individual utility or 

region, representing an advancement in both methodology and application with the water 

resources management field. This chapter has been published in Water Resources Research:  

Gorelick, D. E., L. Lin, H. B. Zeff, Y. Kim, J. M. Vose, J. W. Coulston, D. N. Wear, L. 

E. Band, P. M. Reed, and G. W. Characklis (2020). Accounting for adaptive water supply 

management when quantifying climate and land cover change vulnerability. Water Resources 

Research, 56, e2019WR025614. 

 

Can inter-utility cooperation help mitigate supply and/or financial risk (Chapter 3)? 

Uncertainty with respect to future hydrology and demand has the potential to influence utility 

water supply reliability, but regional context and governance are also important factors. Utilities 
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are searching for cost-effective ways to meet rising demands and ensure supply reliability under 

uncertainty, and those with limited supply infrastructure expansion options are increasingly 

considering partnerships with adjacent utilities (Reedy & Mumm, 2012; Sjöstrand et al., 2018). 

Inter-utility partnerships can be attractive for a number of reasons: reducing costs via economies 

of scale (Tran et al., 2019); providing access to additional supply options (Reedy & Mumm, 

2012); generating a source of revenue from unused capacity, as utilities often maintain surplus 

supply and treatment capacity (EFC, 2009). Many utilities in the U.S. and internationally already 

employ inter-utility (or inter-local) agreements as supply management tools through joint 

ownership and operation of treatment facilities (Apex et al., 2015), intermittent sales of excess 

supply capacity (Commissioners, 2013; OWASA & Durham, 2009), and many other forms 

(Kurki et al., 2016; Silvestre et al., 2018). However, outside of limited cost-benefit analyses to 

compare regional inter-utility agreement alternatives (Sjöstrand et al., 2019), no academic studies 

have quantified the financial impacts of implementing future agreements within existing regional 

systems. By studying utility financial outcomes (total debt service paid on infrastructure, added 

cost per unit of water treated, etc.) under different agreements and demand growth scenarios, this 

analysis identifies important challenges for regional development. Furthermore, this chapter 

demonstrates a demand scenario analysis to investigate regional financial risk under inter-utility 

agreements that contributes to the field through a broadening of existing applications of scenario 

analysis. This chapter has been published in Journal – American Water Works Association: 

Gorelick, D. E., Zeff, H. B., Hughes, J., Eskaf, S., & Characklis, G. W. (2019). Exploring 

Treatment and Capacity‐Sharing Agreements Between Water Utilities. Journal‐American Water 

Works Association, 111(9), 26-40. 
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How robust are regional inter-utility agreements under uncertainty (Chapter 4)? While it 

is necessary to understand both supply and financial outcomes of inter-utility agreements, it is 

also key to understand how robust the performance of an agreement is under both hydrologic and 

demand uncertainty. When reducing supply risk, regional cooperation may simultaneously 

introduce “counterparty risk,” as a participating utility can be subject to increased exposure to 

regional demand and hydrologic uncertainty that impacts other partners to an agreement. Should 

demands not grow at projected rates after an agreement is reached, or hydrologic patterns 

change, cooperation among multiple partners (facing different local water supply and demand 

circumstances) may exacerbate risk rather than mitigating it. Previous studies of inter-utility 

agreements have not quantified financial risk resulting from their implementation, nor have they 

compared the robustness of different agreements under uncertainty within a dynamic adaptive 

management framework where utilities can respond to changing conditions (Arena et al., 2014; 

Sjöstrand et al., 2019). It is also important to explore the ‘stability’ of inter-utility agreements – a 

well-performing regional agreement may not guarantee strong performance for all individual 

utility partners (Bendz & Boholm, 2019; Dinar & Howitt, 1997; Read et al., 2014). Decision-

making from centralized (regional) vs. distributed (local, individual utility) perspectives has been 

studied in water management (Gold et al., 2019; Herman et al., 2014), but to date no research has 

focused on how regional and individual utility financial outcomes are simultaneously impacted 

across differing inter-utility agreements. This analysis demonstrates how robustness conflicts are 

shared among regional utilities across different agreements, underscoring the benefits inter-

utility agreements can offer for managing regional supply and financial risks while 

simultaneously highlighting conditions that strain cooperation. In doing so, this chapter provides 

a first-of-its-kind application of regional water supply management policy optimization under 
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uncertainty to evaluate the efficacy of inter-utility agreements. This chapter is currently under 

review for publication in the journal Water Resources Research. 

 

How can utilities financially adapt to meet water demands (Chapter 5)? Consideration of 

both supply and financial risks means water managers must simultaneously balance investment 

to ensure reliable water supply with affordability for consumers (Ajami et al., 2018; Baird, 2010; 

Dickinson et al., 2015; Jeff Hughes et al., 2014; Schwartz et al., 2017). To do so effectively, 

utilities adapt to changing budgetary conditions (as they do for water supply) to meet key 

performance benchmarks of financial stability. Such benchmarks include covenants: often 

required of utilities by creditors seeking assurance that debt issued via bonds will be repaid, 

covenants represent a key factor in utility budgets (AWWA, 2011; Raftelis, 2005). Violation of 

covenants risks a downgrade of a utility’s credit rating, meaning higher interest rates on bonds 

for capital projects, raising the cost of debt-financed water supply infrastructure upgrades 

(Beecher et al., 1993; Hughes et al., 2014; Wirick et al., 1997).  However, no academic studies 

have directly quantified the financial impacts of water supply system adaptation (i.e. supply 

infrastructure expansion) on utility covenants. Furthermore, no research to date has integrated 

consideration of covenants into simulation of future utility operations and infrastructure 

planning, nor used them to trigger adaptive financial responses to preserve budget stability. This 

research introduces a coupled water supply-financial modeling framework, developed to track 

utility budgetary decision-making in response to future water demand shifts and infrastructure 

expansion. No previous studies have developed or tested adaptive financial modeling for water 

utilities; this chapter thus represents a novel contribution through its methodological 

advancement of regional water supply management modeling and application in a real-world 
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setting. By quantifying the effects of infrastructure planning decisions and demand growth on 

covenants and water rates, results of this work reveal the value of integrating dynamic adaptive 

financial and water supply decision-making for financial risk mitigation for long-term 

infrastructure planning.  

 

Research done towards completion of this dissertation advances the understanding and 

modeling of regional water supply resource management and risk mitigation, by addressing 

shortcomings of the field in accounting for hydrologic and demand uncertainty, as well as critical 

financial feedbacks and cooperative agreements, in regional supply systems. Takeaways here 

offer insights to water resource managers on implementation of mitigation strategies to aid their 

task of providing reliable, affordable water service in the future. 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

 

 
 
 

CHAPTER 2 : ACCOUNTING FOR ADAPTIVE WATER SUPPLY MANAGEMENT 
WHEN QUANTIFYING CLIMATE AND LANDCOVER CHANGE VULNERABILITY1 
 

2.1 Introduction 

Large population centers are increasingly subject to uncertainty in future water 

availability, jeopardizing their ability to meet demands (Milly et al., 2005). Climate change will 

have wide-ranging consequences for freshwater availability (AWWA, 2018; IPCC, 2014a; 

World Bank, 2016; WUCA, 2016). Shifts in streamflow trends have already been observed over 

the historic record (Milly et al., 2008), and future projections suggest a greater likelihood of 

extreme hydrologic events in the form of droughts and flooding (Foley et al., 2005; IPCC, 2014a; 

Mann & Gleick, 2015). Land use and land cover (LULC) change can also have substantial 

impact on water availability (Byrd et al., 2015; Martin et al., 2017). Timing and magnitude of 

runoff can be disrupted through urbanization (Jenerette & Wu, 2001), impacting downstream 

reservoir storage levels and streamflow. In urban areas, climate and LULC change will 

jeopardize water supply availability in tandem with increases to population and water demands 

(McDonald et al., 2011). In order to reliably meet future water demands, it is essential that water 

utilities are informed on the impacts and interactions of climate and land use changes to water 

availability.  

Climate and LULC changes can furthermore have interactive effects (Pielke, 2005). 

Many papers have discussed the separate impacts of climate or LULC change on runoff and 

 
1 This chapter has been published: Gorelick, D. E., L. Lin, H. B. Zeff, Y. Kim, J. M. Vose, J. W. Coulston, D. N. 
Wear, L. E. Band, P. M. Reed, and G. W. Characklis (2020). Water Resources Research, 56, e2019WR025614. 
https://doi.org/10.1029/2019WR025614 
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water availability (N. S. Christensen et al., 2004; Marquès et al., 2013; Piao et al., 2010; Schewe 

et al., 2014), but until recently few studies had investigated water availability impacts of climate 

and LULC change in combination or in great detail (Tong et al., 2012; Tu, 2009). Despite more 

recent work over the past decade, uncertainty remains as to the relative dominance of climate or 

LULC factors on streamflow changes (Ye et al., 2013). 

Furthermore, hydrological response to climate and LULC change will not be regionally 

uniform. Impacts on water availability vary spatially, owing to the unique characteristics of local 

eco-hydrologic systems and their responses to environmental change (Forbes et al., 2018). For 

example, Bhaduri et al. (2000) estimated that an 18% increase in urban land across a watershed 

in Indiana led to over 80% increase in runoff. Martin et al. (2017) concluded urbanization in a 

central North Carolina catchment had limited impacts on annual runoff, though future impacts 

would be heavily dependent on fine-scale type, timing, and location of LULC change within the 

catchment. Tong et al. (2012) noted that increased urban land cover increases annual runoff and 

alleviates water shortage during dry years in an Ohio watershed. However, Tu's (2009) analysis 

of a more urbanized catchment found climate and LULC changes significantly alter the seasonal 

distribution of streamflow rather than annual runoff. Case-by-case variation in hydrologic 

response suggests that information on local hydrologic system characteristics becomes essential 

when considering the mixed effects of climate change and LULC change on water supply (Byrd 

et al., 2015; Frans et al., 2013; J. Kim et al., 2013; Lopez-Moreno et al., 2014; Martin et al., 

2017; Tong et al., 2012; Ye et al., 2013).  

While reservoir inflows strongly depend on upstream LULC and climatic conditions, 

water utility operations and regional population pressures also strongly influence the 

vulnerability of urban areas to water supply shortages (Zeff et al., 2014). When reservoir levels 
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drop, utilities may implement a variety of mitigation strategies. Both short-term decisions, such 

as use of conservation or use restrictions (Olmstead et al., 2007; Olmstead & Stavins, 2009b) and 

transfers of water (Characklis et al., 2006; Gorelick et al., 2018; Palmer & Characklis, 2009), as 

well as long-term mitigation through infrastructure expansion (Kwakkel et al., 2012; Zeff et al., 

2016) can help utilities navigate periods of high water supply risk. Mixing decision-making at 

different timescales allows planning flexibility for utilities to dynamically adapt to changing 

conditions (Kwakkel et al., 2015); these adaptive policy pathways have emerged in the academic 

literature as a state-of-the-art planning paradigm for water utilities (Haasnoot et al., 2013), but 

have yet to be rigorously applied to questions of climate and LULC hydrologic change. 

Along with ensuring reliable water supply for customers, water utilities must also 

maintain stable, affordable costs. Balancing the tradeoff between service reliability and financial 

stability requires that utilities track and respond to system conditions other than water 

availability alone (Zeff & Characklis, 2013). Studies on water availability under climate and 

LULC change to this point, however, present results that do not strongly capture a broad set of 

water planning and management objectives. By generally assuming that more (less) water 

equates to good (bad) outcomes and/or quantifying water availability through simplistic metrics, 

it is difficult to infer the water supply impacts associated with LULC and climate change without 

capturing utility-level management responses and their financial implications. For instance, a 

number of works assess water yield or availability in terms of runoff per capita, ratio of available 

water to human or environmental demands, or similar indices (Arnell et al., 2011; Arnell & 

Lloyd-Hughes, 2014; Boithias et al., 2014; Caldwell et al., 2012; Gosling & Arnell, 2016; 

Rijsberman, 2006; Vorosmarty, 2000). Some studies present water availability changes relative 

to the historic record of streamflow (Kim et al., 2013). Others have approximated utility action in 
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the form of water supply capacity (reservoir) expansion (Lopez-Moreno et al., 2014). While such 

techniques are a useful litmus test of climatic and LULC impacts on water supply, they fall short 

in representing key aspects of reservoir operations and utility decision-making, offering an 

incomplete picture of resilience to external stressors.  

This work seeks to move beyond previous analyses of water availability by evaluating 

hydrologic (i.e. climate and LULC) change at two stages, (1) as water availability output from 

eco-hydrologic modeling (reservoir inflows) and (2) as indicators of management system 

performance at a water utility scale. Our framework can therefore address two main questions 

not convincingly analyzed by previous work: (1) what are the regional impacts of hydrologic 

change with and without management system consideration; (2) how can management decision-

making influence the impacts of hydrologic change? This methodology is applied to a case study 

within the larger Research Triangle region of central North Carolina, a rapidly growing and 

urbanizing region where substantial hydrologic and water resource management modeling of 

current and future conditions has already begun (Gorelick et al., 2018; Herman et al., 2016; Kim 

et al., 2017; Kirsch et al., 2013; Zeff et al., 2016) but to this point is yet to be consolidated into a 

coupled modeling framework. In doing so, we show both the relative influences of climate 

change and LULC change on water management, and that representation of water availability 

without consideration of utility decision-making can obscure important controls on provision of 

water for human use. While this work is not meant as a comprehensive study over all regions 

with respect to eco-hydrological, climatic, and land use aspects specific to the Research Triangle, 

we present a generalizable methodology for water supply vulnerability assessment, reproducible 

across the US where comparable data is available. 
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2.2 Methods 

This study applies a multi-step methodology (Fig. 2.1) to evaluate water supply 

vulnerability due to climate and LULC change. Projected changes in temperature and 

precipitation from general circulation models (GCMs) of the Coupled Model Intercomparison 

Project Phase 5 (CMIP5) integrated with local climate records are used to project future climate, 

while LULC change is projected from 2011 baseline conditions across urban and forested 

landscapes, including expected changes in forest ecological composition and structure (Fig. 

2.1a). Projections are used to drive regional eco-hydrologic modeling, simulating future water 

availability for regional reservoirs (Fig. 2.1b). Four future hydrologic scenarios are tested: (1) 

baseline, where current climate and land use patterns are static across the modeling period; (2) 

climate change, following an intermediate emissions scenario (Intergovernmental Panel on 

Climate Change’s [IPCC] Representative Concentration Pathway [RCP] 6.0 Scenario); (3) high 

resolution LULC changes, projected based on biophysical and socio-economic factors; (4) 

simultaneous climate and LULC change.  

To comprehensively evaluate management and planning outcomes, an exploratory 

stochastic scenario analysis was used to better account for variability within eco-hydrologic 

modeling projections (Fig. 2.1c). The expanded stochastic analysis is applied to simulation of 

water utility decision-making for three Research Triangle utilities (Cary, Durham, Orange Water 

and Sewer Authority [OWASA]), where performance in evaluated based on three operational 

performance indicators under each hydrologic scenario (Fig. 2.1d) from 2015 to 2060. Water 

availability is evaluated before (as reservoir inflows) and after (in terms of utility service 

reliability, conservation implementation frequency, and infrastructure investment indicators) 
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consideration of utility decision-making to better understand the interactions between hydrologic 

change and management actions.  

       

 

Figure 2.1: Study modeling framework for assessing water availability under hydrologic change 
in the Research Triangle. Climate and LULC change projections (a) drive eco-hydrologic 
modeling to simulate water availability under four hydrologic scenarios (b). Water availability 
estimates are sampled to produce synthetic realizations of future reservoir inflows (c), which 
drive water supply management modeling for the region to determine utility performance 
outcomes (d). 

  

2.2.1 Regional characteristics 

Our exploratory scenario analysis is tested within the greater Research Triangle region of 

North Carolina (henceforth Triangle) and its surrounding water supply drainage catchments (Fig. 

2.2). Home to over 2 million residents, the Triangle is bracing for rapid population and economic 

growth over the next half-century (TJCOG, 2014) and the accompanying land use changes. 

Significant increases to urban area are projected for the Triangle, consistent with expectations for 

the Southeast US at large (Carter et al., 2018; Wear, 2013), that will alter streamflow patterns as 

forest cover is reduced. The Triangle falls within the Southeast climate region (Carter et al., 

2018) with hot and humid weather in summertime and high temperature variation in winter. 



17 
 

Average annual precipitation across the historical record is 1124 millimeters per year (mm/yr), 

while in the more recent 1990-1999 decade average annual precipitation in the Triangle was 

1,167 mm/yr with a standard deviation of 142 mm/yr. Annual runoff is on average only about 

26% of the annual precipitation partially due to high evapotranspiration from forested land that 

still dominates the region. Future hydrologic conditions in the region, resulting from climate 

change, are also highly uncertain. Though predictive skill of precipitation in climate models for 

the Southeast US remains low (Seager et al., 2009), the area has experienced increased frequency 

of extreme flooding and drought events that is expected to worsen (Aalst et al., 2014). 

Split across two major drainage basins – the Neuse River and Cape Fear River Basins – a 

number of smaller basins (or catchments) are delineated in this study based on drainage into 

regional water supply reservoirs (Fig. 2.2, beige). The majority of urbanized area and water 

demand fall within the service areas of three water utilities in the Triangle – Durham, Cary, and 

OWASA, with combined 2010 average demands of almost 50 million gallons/day (TJCOG, 

2014) – whose water supply is dependent on outflow from watersheds within the larger Neuse 

and Cape Fear River Basins (Fig. 2.2). The Flat River (USGS 02085500) and Little River (USGS 

0208521324) basins drain, respectively, into Durham’s Lake Michie and Little River reservoirs 

within the Neuse River basin. Cane Creek (USGS 02096846) and Morgan Creek (USGS 

02097464) basins drain into OWASA’s Cane Creek and University Lake reservoirs. The Haw 

River (USGS 02096960) and New Hope River (USGS 02097314) basins drain to Jordan Lake, 

which is managed by the United States Army Corps of Engineers and serves as the primary water 

supply source for Cary. Urbanized drainage areas of Triangle cities also contribute runoff to 

Jordan Lake (Fig. 2.2, pink).  
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Figure 2.2: Research Triangle region of the Southeast US. Six watersheds (beige) contribute 
inflows to regional reservoirs (blue) along with additional, ungaged runoff from urban basins 
(pink). Study reservoirs provide water supply to three urban utilities (orange), which may also 
transfer treated water through existing interconnections (purple, dashed). 

 

Subbasins of the Triangle have distinct land use characteristics that can result in varied 

hydrological patterns between them (Table 2.1). Forest and pasture land dominate Durham’s Flat 

River and Little River catchments. The Haw River basin, primarily located west of the heavily 
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populated cities of the Research Triangle, as well as Cane Creek and Morgan Creek basins, are 

largely undeveloped, covered by forested area, pasture and some row crops. Land around Jordan 

Lake (Fig. 2.2; pink) and New Hope Creek catchments is dominated by older urban and rapidly 

urbanizing areas but otherwise surrounded by forest and residual agricultural land. The Triangle 

is in a topographical transitional zone between the coastal plain and the Piedmont plateau, having 

an average slope of 5.6% with geologic settings of fractured crystalline bedrock and rolling hills 

to the west and a lower-lying Triassic basic dominated by deep sedimentary rock to the east 

running through Durham. Though a rapidly urbanizing and growing region, forest currently 

dominates the greater Triangle, primarily consisting of Carya tomentosa (hickory), Quercus alba 

(white oak), Q. rubra (red oak), Q. prinus (chestnut oak), Liriodendron tulipifera (tulip tree) and 

Liquidambar styraciflua (sweetgum). About 19% of forested area is evergreen forest with pine 

plantations (loblolly pine).  

 

Table 2.1: Regional and watershed-level landcover characteristics (2010) for the Research 
Triangle. Primary landcover is forest, followed by roughly equal proportions of pasture and 
urban land. 

Watershed 

Catchment 
drainage area 
(sq. km) % Forest 

% Pasture/ 
Agriculture 

% Low-
intensity 
urban 

% High-
intensity 
urban 

Cane Creek 19.7 78.7 17.2 4.0 0.0 
Morgan Creek 21.4 75.4 19.4 4.6 0.0 
Flat River 385.1 64.4 28.3 6.2 0.7 
Little River 202.7 66.8 27.3 5.4 0.1 
New Hope 
Creek 198.9 56.4 5.4 30.5 7.4 
Haw River 3359.6 51.5 27.8 15.4 3.5 
Regional 
Average   59.5 19.8 15.1 3.2 
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2.2.2 Climate and land use projections 

2.2.2.1 CMIP5 Projections 

To project climate change across the Triangle, we evaluated both historical regional 

climate patterns and CMIP5 climate projections (Table 2.2). Historical climate records were 

collected by the National Weather Service (NWS) Cooperative Observation Program (COOP) 

from stations across North Carolina, providing daily maximum and minimum temperature and 

daily precipitation from 1940 to 2010. Generally, monthly temperatures decreased slightly 

during the period of 1940-1975 but show warming from 1980 to present time. Monthly 

precipitation, by contrast, did not vary significantly year-to-year in the Triangle but displayed a 

consistent seasonal pattern of high precipitation in winter (Jan-Mar) and summer (Jul-Sept) and 

low precipitation in spring (Apr-Jun) and fall (Oct-Dec). 

The CMIP5 GCM products of monthly average daily temperature and monthly 

precipitation were provided in a statistically downscaled form at 1/8-degree (~12 km) spatial 

resolution. Downscaling and bias correction were previously done using the bias correction and 

spatial disaggregation (BCSD) and daily bias-correction and constructed analogs (BCCA) 

techniques (Brekke et al., 2013). CMIP5 projections under RCP 6.0 were used, consistent with 

LULC change projections by previous studies of central North Carolina (Martin et al., 2017; 

Wear, 2013). Six GCMs (Table 2.2) were selected for evaluation and eco-hydrologic model 

application – downscaled products from these GCMs are each available at monthly timescale, 

from 1950 to 2099 at 1/8-degree resolution. Downscaled, daily results were available for the 

region, however the available daily data, particularly precipitation, are highly inconsistent with 

the historical records in terms of seasonality and auto-correlation structures. To prevent these 

inconsistencies from translating into streamflow prediction and alter hydrologic dynamics in the 
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eco-hydrologic models, monthly GCM results combined with historical records were instead 

used to project future climate that has consistent auto-correlation structure and seasonality of 

weather. 

 

Table 2.2: Selected CMIP5 GCMs. Downscaled products of each were used to forecast climate 
change in the Triangle to 2060. 

GCM Primary reference 

Commonwealth Scientific and Industrial 
Research Organization, Atmospheric Research, 
Australia CSIRO Gordon et al., 2002 

NASA/Goddard Institute for Space Studies, USA GISS Russell et al., 2000 

Met Office Hadley Center HADG Gordon et al., 2000 

National Center for Atmospheric Research, USA CCSM Collins et al., 2006 

Center for Climate System Research, National 
Institute for Environmental Studies, and Frontier 
Research Center for Global Change, Japan MIROC 

Hasumi & Emori, 
2007 

U.S. Dept. of Commerce/NOAA/Geophysical 
Fluid Dynamics Laboratory, USA GFDL 

Delworth et al., 
2006 

 

This set of six GCMs was chosen to provide a diverse assessment of climate futures, 

spanning the wide range of GCM precipitation and temperature projections for the Triangle. 

Each GCM has unique seasonal change trajectories for temperature and precipitation (Fig. 2.3). 

Both GFDL and GISS show large increases in precipitation during spring to fall with moderate 

increase in winter; GFDL suggests high increases in temperature for all seasons; GISS suggests a 

relatively muted increase in temperature for all seasons; CCSM shows moderate increase in 

precipitation in winter and spring; CSIRO projects small precipitation increases in winter and 

moderated increase in spring and fall; HADG and MIROC project minimal change in summer 

precipitation. In terms of reservoir recharge, GFDL, GISS, and CCSM show precipitation 
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increase in winter, which benefits reservoir recharge whereas CSIRO, HADG, and MIROC show 

little precipitation increase in winter. 

 

 

Figure 2.3: Triangle projections of temperature (a) and precipitation (b) under climate change 
relative to recent conditions (2000-2010), aggregated seasonally and decadally. Specific results 
for each of six CMIP5 GCMs overlaid on boxplots.  

 

Downscaled CMIP5 outputs were averaged and aggregated by COOP station using 

Thiessen polygons to compare against historical data. Across the historical period (1950-1975), 

downscaled CMIP5 temperatures did not show decreasing trends reflected by COOP records. 

Seasonal CMIP5 and COOP precipitation patterns showed agreement, but CMIP5 winter 

precipitations were not as high as observed. Additionally, CMIP5 daily/weekly precipitation 

patterns were quite different from the observed record in terms of autocorrelation and 

distribution of events. As a result, we did not directly use CMIP5 daily outputs for our study 

because historical trends were not adequately preserved and instead combined COOP observed 
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data with CMIP5 projected trends following a change-factors approach for climate projection (as 

in Martin et al., 2017). In order to preserve autocorrelation in monthly and daily meteorological 

COOP data, monthly time series from 1978-2010 (period of warming) were first de-trended then 

projected (recycling each 30 years) following CMIP5 monthly trends. Monthly delta factors for 

temperature and precipitation were then applied to the 30-year daily data. This method preserved 

interannual variability at monthly and daily time scales. 

 

2.2.2.2 Landcover modeling and projections 

Output from a statistical spatial model described by Martin et al. (2017) and Wear (2013) 

of plausible change across land cover classes at 30-meter spatial resolution was used to project 

future LULC and forest change in the Triangle (Fig. 2.4).  We note that these methods provide 

information on current, and project future, forest ecosystem conditions required for our eco-

hydrological modeling approach to integrate feedbacks between climate, land cover, ecosystem 

water use, with surface and subsurface water stores and fluxes. The methods are designed to 

balance consistency with climate projections based on emissions/economic scenarios, with local 

development conditions, trends and planning at municipal levels.  The methods follow Martin et 

al. (2017), but also incorporate planning projections of development suitability in the Triangle 

synthesized by the Triangle J Council of Governments (TJCOG) to further condition land use 

transition probabilities. Methods are described in detail in Martin et al. (2017), though a brief 

summary is provided here.   

Estimating baseline and future land use at a 30 meter (m) resolution required a 

multimodel approach that included data from the US Forest Service’s Forest Inventory and 

Analysis (FIA) and the 2011 National Land Cover Database (NLCD).  The FIA consists of a 
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network of permanent forest plots, including urban forest, that are inventoried on a regular basis 

for stand overstory and understory species, tree size class, crown conditions and other 

information.  The NLCD classifies vegetation heights <5 m as shrub/scrub land cover (LC), even 

if the land use is young forest.  To account for this, forest land use was translated from LC using 

a model derived from FIA observations, a time series of NLCD land cover, and current NLCD 

percent tree canopy cover.  All pixels assigned as forest land use were assigned attributes such as 

forest type from a plot in the FIA database with similar characteristics (e.g., climate, topography, 

soils) using an ensemble approach.  All other land use types were assigned using the 2011 

NLCD.   

 

Figure 2.4: Land use for current (a) and projected (c,d) decades across the Triangle and 
corresponding regional water demand growth projections (b). A reduction of dense forested area 
in future decades is observed due to continued urban growth.  
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County-level land use change is projected as a function of regional county-level 

population growth and socioeconomic projections (household income, agricultural land values) 

consistent with economic assumptions in the climate model emissions scenarios as described by 

Wear (2013). Future forest conditions are projected using the US Forest Service Assessment 

System (US-FAS) (Martin et al. 2017) that provides future forest conditions for every FIA plot 

based on projected climate, forest age, forest type, and likelihood of harvest.  County-level LU 

projections were refined to a 30-m scale using a spatial allocation model that determined the 

probability of each pixel converting to a different land use or remaining the same.  Changes in 

forest conditions (e.g., growth, forest type, etc.) are derived from the US-FAS projections that 

are allocated to each plot using plot-level spatial imputations.   

Rapid urban development is anticipated to occur in and around the cities of Chapel Hill, 

Cary, Durham, and Raleigh that constitute the traditional Research Triangle region (Fig. 2.4, 

righthand areas on a,c,d). The expected types of development include intensifying existing urban 

area (i.e., from low urban density to high urban density), increased sprawl of existing 

metropolitan areas, and new urbanizing rural areas in the forested hillslopes of the Triangle. 

Areas outside the traditional Triangle urban areas, such as the Haw River basin feeding Jordan 

Lake, however, are projected to remain relatively rural. There is minimal future urban 

development expected in the Haw Basin; outside two population centers of Greensboro (Fig. 2.4, 

red areas in map area to the left) and Burlington (Fig. 2.4, center red areas of a,c,d), the basin is 

expected to maintain its levels of pastureland and forest. Urbanization is expected to occur to 

greater extents beginning in 2030 based on development projections from each regional 

municipality, depending on the trajectory of development envisioned (and planned for by 

regional governments) in currently rural watershed areas. This information was used to condition 
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transition probabilities of land use and the effects of land use transition based on proximal land 

use, projected at decadal time steps in LULC modeling. However, as an approximation of 

variability in the effect of urbanization, the specific type of urbanization (ex: the prevalence of 

highly vs. moderately impervious surfaces in future development) was varied between land-use 

parameterizations of eco-hydrologic models (as described in following sections). 

 

2.2.3 Eco-hydrologic modeling 

2.2.3.1 Model selection  

The impact of each modeled hydrologic scenario on regional water availability was 

determined using both the Regional Hydro-Ecologic Simulation Systems (RHESSys) model 

(Tague & Band, 2004a) and the Soil and Water Assessment Tool model (SWAT; Neitsch et al., 

2011). Both models have been widely used for LULC change and climate change studies, with 

SWAT frequently applied for larger basins (Bucak et al., 2017; Du et al., 2013; J. Kim et al., 

2013; Yuri Kim et al., 2017; Schilling et al., 2009; Yin et al., 2017) and RHESSys in small and 

medium size catchments where greater detail in the spatial pattern of land cover, vegetation, and 

infrastructure is required (Bart et al., 2016; Hwang et al., 2018; Martin et al., 2017; Shin et al., 

2019; Zia et al., 2016). Additionally, RHESSys has been widely applied in simulation of 

spatially-distributed surface and subsurface runoff, evapotranspiration, carbon and nitrogen 

cycling, and soil moisture under various land use and climate change scenarios (e.g., Band et al., 

1996; Bart et al., 2016; Garcia et al., 2016; Hanan et al., 2017; Hwang et al., 2009, 2018; Lin, 

2013; Lin et al., 2015; Martin et al., 2017; Miles & Band, 2015; Tague & Band, 2004b). 

Both RHESSys and SWAT were applied in this study to suit the level of development 

and potential land use management in the Triangle water supply catchments and broader Haw 
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River basin. SWAT modeling of hydrologic processes is implemented in hydrologic response 

units (HRUs) that independently contribute to catchment runoff irrespective of position in the 

landscape as it is spatially lumped at the sub-basin level and does not provide distributed routing 

(Meng et al., 2018), making SWAT suitable for modeling large basins with spatially well-

segregated landscapes (e.g. forested land clearly separated from urban centers and agricultural 

lands) such as the Haw River basin. RHESSys does not use generalized HRUs (as in SWAT), but 

parameterizes each patch (typically grid cells, but can be multi-resolution or non-grid meshes) 

based on local canopy, soil, land use and topographic conditions. SWAT HRUs are formed by 

intersecting soil and land use type with slope classes, though only one slope class was used here 

as terrain of Triangle basins is relatively flat. 

By contrast, RHESSys is a fully distributed model that simulates surface/subsurface 

processes and routes water and solutes through each grid cell. This allows representation of 

routing among interspersed land covers within the terrestrial flow fields, and spatially explicit 

management options such as stream buffer requirements. RHESSys couples elements of the 

ecosystem models BIOME‐BGC (Running & Hunt, 1993) and CENTURY (Parton et al., 1987), 

with a distributed watershed model for surface and subsurface lateral flowpaths, with surface and 

subsurface water flux modified from Wigmosta et al. (1994). Additionally, sub-grid LULC 

configurations can also be implemented in the RHESSys model, enabling RHESSys to handle 

mixed and heterogeneous LULC at a fine spatial resolution (e.g. multiple canopy layers, pervious 

and impervious surfaces, suitable for urban regions). Projected LULC change can be directly 

incorporated into grid and sub-grid levels within RHESSys, interacting with soil properties, flow 

paths, and ecosystems.  
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RHESSys uses a landscape hierarchical structure over nested patch, hillslope and 

watershed scales, and operates at high resolution, facilitating the direct representation of detailed 

urban to rural development on hydrologic and ecosystem processes. Eco-hydrologic process 

components at the patch, hillslope and catchment scales simulate feedbacks and interaction 

between climate, atmospheric CO2, forest composition and structure, and development form to 

generate runoff, streamflow, groundwater flow, and evapotranspiration dynamics. As forest 

conditions are highly variable in space and will vary in time, with forest as the dominant land 

use, the eco-hydrologic components are considered necessary to estimate future response to 

climate change. These features are particularly important when projecting urban expansion and 

management in Durham, Chapel Hill, Cary, and their local catchments containing urban, mixed 

land uses (Fig. 2.4) that are expanding into forested land. As a result, RHESSys was used for 

more detailed eco-hydrologic modeling in all catchments for this work, other than the Haw River 

basin.  

More detail on RHESSys and SWAT model development for this study can be found in 

subsections 2.2.3.2 and 2.2.3.3 and in sub-sections S1 and S2 of Chapter 7, section 2.A.  

Previous comparisons of SWAT and RHESSys streamflow simulations in the Flat River (one of 

Durham’s water supply watersheds) over the gauge record (since 1926), showed comparable 

results, and comparison of projected SWAT and RHESSys streamflow from 2020 – 2060 

showed good agreement with the exception of a very wet period around 2040 (Y. Kim et al., 

2008). 
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2.2.3.2 Model calibration and bias correction 

Both RHESSys and SWAT models were calibrated and validated at the USGS gaged 

catchments that are the major tributaries to the reservoirs. Eco-hydrologic models were 

calibrated using a standard Monte Carlo method and data from 2000-2003 water years, in which 

2001 is a dry year and 2002 is a wet year. Calibration was then validated with data from 2007-

2009 water years. Peak NSE for gauged water supply watersheds range from .71 to .89 for 

monthly flow for the calibration period, and 0.58 to 0.88 for monthly flow for the validation 

period.  More details for model calibration statistics are given in Table S2.1. Parameters from 

best-performing models, with weekly Nash-Sutcliffe Efficiency (NSE) coefficient and weekly 

log NSE values in the top 10% of calibrations, were used to generate water availability estimates. 

Due to rapid growth in the Triangle over the historic period, only relatively recent observations 

were used to calibrate and validate the eco-hydrologic models, carefully selecting calibration and 

validation periods containing hydrologic dynamics (i.e., both wet and dry years) important for 

this work. 

To capture the lengthy historical record of reservoir inflows, long-period simulations of 

calibrated RHESSys and SWAT models were additionally performed. Modeled reservoir inflows 

were compared to empirical estimates of historical reservoir inflows at USGS gage sites in the 

region from 1930-2011 for bias correction (HydroLogics, 2011; Kirsch et al., 2013). These 

empirical estimates of unimpaired reservoir inflows were previously adjusted to remove effects 

of reservoir operations and consumptive withdrawals (i.e., municipal, industrial, agricultural 

demands) as well as gage location (if a gage is not located immediately upstream of a reservoir, 

additional inflow is added to account for runoff into the reservoir below the gage) (HydroLogics, 

2011). Additional bias correction using these products was done to be consistent with Triangle 
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utilities who make use of this reservoir inflow product for planning purposes and therefore 

ensure consistent inflow prediction from eco-hydrologic models for input to water supply 

management modeling; more detail on bias correction and validation is available in Chapter 7. 

 

2.2.3.3 Eco-hydrologic model simulation 

To account for uncertainty in eco-hydrologic and LULC modeling, multiple model 

parameterizations were undertaken to provide multiple realizations of water availability under 

each hydrologic scenario tested. As described previously, we used six different CMIP5 RCP 6.0 

GCMs to project future climate change. For LULC change, we used six (separate) projected sets 

of 30-m resolution LULC change, three following a higher rate of urban development, three 

following a slower trajectory (see section 2.A in Chapter 7 for detail). Each of the projected sets 

contain six LULC states representing decadal change in each of the six decades from 2010-2019 

to 2060-2069, as well as three levels of urban canopy projection for the developed areas.  Based 

on model fit during the calibration-validation process, we selected four parameter sets at each 

gaged catchment that produced the best model predictions on streamflow in calibration-

validation period and long historical period for eco-hydrological simulation (Chapter 7, Table 

S2.1). In all, 24 combinations of model parameter sets, LULC realizations, GCMs and urban 

canopy levels were selected for simulation (Chapter 7, Table S2.2). Each of the 24 combinations 

was chosen to capture possible extreme scenarios (i.e., worst scenario approach) such as a dry 

climate with intense urban development. Multiple inflow timeseries were generated from these 

selected combinations for each scenario and represent the uncertainty in this multi-step process. 
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2.2.4 Water availability scenarios 

Incorporating climate and LULC trends of specific modeled hydrologic scenarios, 

RHESSys and SWAT simulations of the Triangle provide bias-corrected estimates of future 

water availability to 2060 under a range of parameterizations. This study focuses on the 

outcomes of four distinct future scenarios (Fig. 2.1b): (1) baseline; (2) climate change; (3) land 

use and landcover change; (4) simultaneous climate and land use-landcover change. Climate 

trends projections of CMIP5 outputs of temperature and precipitation are applied to observed 

records for modeled scenarios 2 and 4 to simulate climate change over the Triangle region. For 

scenarios 1 and 3, where climatic conditions are unchanged from present time, no perturbations 

were made to observed climate records. Simultaneously, scenarios 3 and 4 assume LULC change 

across watersheds of the Triangle; scenarios 1 and 2, by contrast, assume future Triangle 

landcover use patterns remain similar to current conditions. Water availability from each 

modeled scenario was determined by forcing RHESSys and SWAT eco-hydrologic models, 

described above, with climate station data projections either with (scenarios 2 and 4) or without 

(scenarios 1 and 3) a climate change signal, as described in the previous sub-section, along with 

one of two assumptions about future LULC change (static landscape into the future, scenarios 1 

and 2, versus urban growth and forest reductions, scenarios 3 and 4).  

It should be noted that the scenario analysis described in this section (2.2.4) is separate 

from the simulations described as being produced by eco-hydrologic modeling in section 2.2.3. 

The projections of climate and land use previously developed to drive eco-hydrologic modeling 

(“multiple model parameterizations” referred to in section 2.2.3.3) are not the same as the 

hydrologic scenarios defined here. Each scenario, as detailed in the remainder of section 2.2 and 
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results, consists of multiple eco-hydrologic model simulations, each simulation a different 

parameterization of the eco-hydrologic model under a different CMIP5 and/or LULC trend.  

 

2.2.5 Synthetic hydrology development 

Each eco-hydrologic projection of water availability, just as the historic record itself, 

represents a single realization of stochastic environmental processes. Constrained by 

computational intensity of eco-hydrologic modeling, evaluation of management decision-making 

and outcomes under only a handful of eco-hydrologic model simulations cannot effectively 

locate robust management strategies. However, use of stochastic, or “synthetic” generation of 

hydrology has been widely applied in the field of water resources management to resolve issues 

of limited data availability and for evaluation of management strategies (Borgomeo et al., 2015; 

Hao & Singh, 2016; Herman et al., 2016; Kirsch et al., 2013; Nowak et al., 2010; Quinn et al., 

2017). Synthetic generation is especially valuable for questions of system performance, where 

evaluation under the historical record alone can produce an inaccurate representation of 

outcomes, even under stationary hydrologic conditions, and over-estimations in the robustness or 

viability of tested management actions (Loucks & van Beek, 2017; Vogel & Stedinger, 1988).  

To capture a more comprehensive range of hydrologic variability, eco-hydrologic model 

simulations of water availability (reservoir inflows) were statistically sampled to generate 

thousands of stochastic reservoir inflow timeseries (realizations). Generating synthetic hydrology 

allows for a more robust identification of effective management strategies, subjecting water 

supply management decision-making (described in the following section) to a wider array of 

extreme high and low flow conditions than is possible from eco-hydrologic modeling products 

alone (Fig. 2.5).  
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Simulated eco-hydrologic model outputs, each driven using a different GCM and/or 

LULC parameterization, were statistically re-sampled to generate 1,000 future timeseries of 

streamflow and lake evaporation for the region over the study period for each scenario. This 

process ensures that differences in temperature and precipitation projections from selected 

GCMs, as well as discrepancies in LULC projections, are represented in synthetic hydrology 

developed for water supply scenario analysis. Eco-hydrologic model 

parameterizations/simulations were sampled equally within each scenario – if 20 eco-hydrologic 

simulations were done for the a given scenario, each simulation was re-sampled to create 50 

synthetic realizations of regional hydrology based on its specific results, for 1,000 total 

realizations – which implies that any modeled climate or land use change effect was given equal 

probability of occurrence.  

 

Figure 2.5: Example comparison of historic Durham reservoir inflows from the Little River 
(black) to eco-hydrologically-modeled (red) and synthetic, stochastic (grey) products. Modeled 
results from 2010-2020 based on stationary (historic) hydrologic conditions.  

 

Another reason to employ synthetic generation is to evaluate impacts of hydrologic non-

stationarity (Herman et al., 2016), such as changes due to climate or LULC change. This work 
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built upon an existing streamflow generator for stationary hydrology (Giuliani et al., 2017; 

Quinn et al., 2017), sampling from decadally-shifting eco-hydrologic modeling outputs to 

generate transient reservoir inflow and lake net evaporation records, correlated across multiple 

Triangle sites, at a monthly time step through Cholesky decomposition (Kirsch et al., 2013), and 

dis-aggregated using a k-nearest neighbor method (Nowak et al., 2010) to a weekly time step for 

water supply modeling. Due to the non-stationary nature of eco-hydrologic outputs under climate 

and land-use change, sampling was done decadally to capture shifting statistical properties of 

eco-hydrologically simulated records and 10-year synthetic realizations were combined to 

produce complete stochastic timeseries futures. More detailed description of generator 

construction and validation can be found in Supplement S3 in Chapter 7. For each hydrologic 

scenario described in the previous section, one-thousand synthetic futures of inflow and net 

evaporation from 2010 to 2060, the planning period for regional water utilities, were generated 

for each regional reservoir. 

 

2.2.6 Water supply management modeling 

2.2.6.1 Modeling framework 

A comprehensive analysis of water availability and the impact of future hydrologic 

change on urban water supply is incomplete without consideration of water utility controls on 

water management. Given eco-hydrologic modeling output of reservoir inflows to three major 

Triangle utilities – Cary (Jordan Lake), Durham (Little River Reservoir and Lake Michie), and 

OWASA (Cane Creek Reservoir, University Lake, and Stone Quarry) – this work simulates 

weekly utility decision-making from 2015 to 2060 (consistent with previous work by Zeff et al. 

[2016] in the Triangle) under each climate and LULC scenario in order to assess the impact of 
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change on utility performance indicators (outcomes). Monte Carlo model simulations for each 

evaluation of the water supply model simulate weekly decision-making under 1,000 separate 

synthetic hydrologic futures (synthetic development described in previous section and Chapter 

7).  

Current and future regional water demand for each utility are based on projections of 

population and per-capita water use by TJCOG (2014), while week-to-week modeled demands 

are determined based on a joint probability density function with reservoir inflows, randomly 

sampled to perturb weekly demands based on relatively wet or dry hydrologic conditions 

(Gorelick et al., 2018). Each regional utility’s projection of demand growth was developed based 

on a wide number of factors including population and economic growth expectations, changes to 

service boundaries, adjustments in per-capita water use across different water use sectors, effects 

of pricing and price elasticity of demand on water use, among other factors (TJCOG, 2014). 

Broadly speaking, population growth is expected to occur for all Triangle municipalities while 

per-capita demands fall with an increase in demand-side efficiency (such as more prevalent low-

flow fixtures in households). These two effects result in an overall water demand increase for the 

region as population growth more than offsets per-capita demand reductions. 

Utility decisions to build infrastructure or utilize short-term mitigation strategies are 

triggered by each utility’s perceived risk-of-failure (ROF), quantifying the probability of utility 

water supply falling below 20% of capacity over the following year, a failure threshold set based 

on conversations with Triangle utility officials. Risk-of-failure triggers, set as decision variables 

for each model evaluation, control when infrastructure is constructed, when water transfers 

occur, and when use restrictions are enacted. The set of ROF triggers and other parameters 

governing utility decision-making over a model evaluation can be referred to as the development 
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pathway followed by the Triangle utilities. Balancing the use of infrastructure investment and 

short-term mitigation (conservation, water transfers) within a portfolio of water supply 

management actions influences tradeoffs across both short- and long-term performance 

indicators. Short-term mitigation during drought periods can push large structural investments 

into the future, influencing long-term planning pathways, but represent unexpected variable 

costs. Infrastructure built in response to infrequent drought events can be a very expensive 

strategy to address low-frequency supply risk, impacting the magnitude and timing of short-term 

action as well. Used in tandem as part of dynamic adaptive policy pathways, mixing decisions at 

different timescales can provide benefits in terms of planning flexibility but carry tradeoffs in 

terms of system performance.  

The initial (historic) state of the water supply management model reflects current regional 

development conditions in the Triangle, adapted from a regional water management model 

designed for Triangle water utilities which was validated against historical conditions 

(HydroLogics, 2011). Further validation of reservoir operations under historic conditions has 

been done as part of past research in the Triangle (Kirsch et al., 2013); for additional detail on 

Triangle water supply modeling, implementation of ROF and decision variable specification, see 

Gorelick et al. (2018) and Zeff et al. (2016). 

 

2.2.6.2 Utility performance metrics 

Each evaluation of the regional water supply model simulates utility decisions across 

one-thousand independent hydrologic realizations under a single set of decision triggers – ROF 

triggers for water transfers, infrastructure, restriction use, etc. – and calculates performance 

indicators (outcomes) based on aggregations of utility performance across all 1,000 realizations 
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(timeseries from 2015-2060), described in Equations 1-3 below. Performance indicators of water 

supply reliability, use restriction frequency, and infrastructure investment are formulated 

following a risk-averse, “mini-max” approach that determines utility robustness to uncertainty by 

identifying worst-case outcomes regionally and across time (McPhail et al., 2018); water 

managers tend to be risk-averse (Mozenter et al., 2018), and mini-max performance objective 

formulation mirrors such risk preferences. The form and justification of each performance 

indicator are below. 

Reliability of the Triangle 𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅 for one model evaluation is represented by the worst-

performing utility 𝑢𝑢, within the set of all regional water utilities 𝑈𝑈, in terms of annual failure 𝐹𝐹 

across each realization 𝑟𝑟 (with 𝑁𝑁𝑟𝑟 = 1,000 realizations) and simulation year 𝑦𝑦 in the set of years 

𝑌𝑌 (2015-2060, 𝑁𝑁𝑦𝑦 = 46 years). A year of any simulation within a model evaluation within which 

at least one week has total reservoir storage for the utility in question below 20% of capacity is 

considered to be in failure, and the value of 𝐹𝐹 for that year takes the value 1. Any year without 

weekly failures takes the value 𝐹𝐹 = 0. Utilities have a clear objective to provide reliable water 

service; minimization of the reliability indicator value represents regional improvement in utility 

performance (Eq. 1). Any disruption of water service or supply failure carries serious financial 

penalties for a utility, not to mention the public health and safety concerns with regard to pipe 

seepage that worsen as system failure persists. 

 

Min𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅 = max
𝑈𝑈

�
max
𝑌𝑌
�∑ 𝐹𝐹𝑟𝑟,𝑢𝑢,𝑦𝑦𝑟𝑟 �

𝑁𝑁𝑟𝑟
�       (1) 
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Similarly, water utilities hope to minimize restriction use frequency 𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (Eq. 2); 

constant imposition of conservation upon customers can be unpopular. Restriction use 𝑅𝑅 is 

summed across all years and realizations – any year with restrictions gives the value 𝑅𝑅 = 1, with 

𝑅𝑅 = 0 for other years – and the worst-performing utility in terms of conservation frequency 

represents the regional indicator value. The competing nature of reliability and conservation 

frequency utility indicators implies a tradeoff in performance, which has been observed by past 

work in the Triangle (Gorelick et al., 2018; Zeff et al., 2014); with reduced incidence of use 

restriction, reliability declines (failure rate increases), and vice versa. 

 

Min𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = max
𝑈𝑈

�
∑ ∑ 𝑅𝑅𝑟𝑟,𝑢𝑢,𝑦𝑦𝑦𝑦𝑟𝑟

𝑁𝑁𝑟𝑟𝑁𝑁𝑦𝑦
�       (2) 

 

Conservation programs by a water utility can reduce water use during drought but result 

in reduced revenues (financial risk), introducing revenue volatility and jeopardize a water 

utility’s financial stability (Jeffrey Hughes & Leurig, 2013). Utilities consistently facing 

financial hardship also run the risk of credit downgrades; future infrastructure maintenance or 

expansion then become more expensive as interest rates on bonds increase, in turn leading to 

increased rates for customers. Similarly, utilities are interested in minimizing the infrastructure 

investment costs necessary to sustainably meet long-term demand, avoiding the rate increases 

accompanying a large debt burden. An indicator of regional infrastructure investment 𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is 

calculated to measure average realization present-value infrastructure costs across a model 

evaluation (Eq. 3).  
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Debt service payments 𝐷𝐷𝑆𝑆𝑟𝑟,𝑢𝑢,𝑦𝑦 on infrastructure bonds made in each year 𝑦𝑦 of each 

realization 𝑟𝑟 for each utility 𝑢𝑢 are discounted in time at a discount rate 𝑑𝑑 of 5% (implying that 

deferred infrastructure investment, and reduced present-value cost, is preferable in terms of 

system performance) and summed across time. Calculation of the cost indicator for a model 

evaluation of discounted debt service payments is done by averaging total discounted debt 

service of each realization, which is summed across each entire realization rather than each year 

(whereas the previous two performance metrics rely on annual measures).  

 

Min𝑓𝑓𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = max
𝑈𝑈

�
∑ ∑

𝐷𝐷𝐷𝐷𝑟𝑟,𝑢𝑢,𝑦𝑦
(1 + 𝑑𝑑)𝑦𝑦−1𝑦𝑦𝑟𝑟

𝑁𝑁𝑟𝑟
�      (3) 

 

Though subtle aspects of our utility performance metrics are region-specific (i.e. the 

reservoir storage level that designates a storage “failure”), objectives of minimizing water supply 

failures, mandatory use restriction implementation, and financial risk are all critical and 

generalizable goals of every water utility. 

 

2.6.3 Infrastructure development pathways 

In line with Triangle utility goals of maintaining high reliability and low restriction use 

frequency two well-behaved solutions – two contrasting water supply model parameter sets, 

chosen from a Pareto-approximate set of solutions for the Triangle utilities originally optimized 

by Zeff et al. (2016) – were selected that maintain reliability greater than 96% (failure one year 

in twenty-five on aggregate) and restriction frequency less than 20% (one-in-five years on 

average) under baseline (scenario 1) conditions.  
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The two solutions, or “development pathways,” were based on operational designs 

outlined in planning studies by regional utilities (TJCOG 2014). A development pathway can be 

thought of as one infrastructure development sequence which, combined with short-term drought 

mitigation options available to each utility, represents a single parameterization of the water 

utility decision-making model (one “state of the world”). While a single pathway is constituted 

of available infrastructure options in a given evaluation of the water supply model, sequencing of 

infrastructure options in each realization is dynamic. Utilities may trigger infrastructure 

construction when ROF rises above a pre-defined trigger level; because ROF is recalculated 

weekly as conditions change, infrastructure investment is adaptive to hydrologic change through 

its dependence on ROF for implementation. 

The development pathways prioritize short-term drought mitigation and infrastructure 

investment decision-making differently; their contrasting behavior – based on differences in risk 

tolerance (ROF) triggers – emphasizes the potential short- and long-term management controls 

on water supply management performance outcomes regionally and for individual utilities. Each 

of the two pathways was evaluated under all four hydrologic scenarios. Measuring performance 

with respect to supply reliability, conservation frequency, and infrastructure investment 

indicators under simulations of high baseline (no climate or LULC change) performance can 

demonstrate the broad physical and financial influence of hydrologic change on regional water 

resource management systems, including the ability of hydrologic change to exacerbate tradeoffs 

across performance indicators relative to baseline conditions. 
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2.3 Results 

The following text and figures describe regional water availability under each of four 

modeled hydrologic scenarios – (1) future hydrology consistent with present-day climate and 

land use conditions; (2) climate change in line with IPCC RCP 6.0 projections; (3) LULC 

change, largely continued urbanization of the region (and forest ecosystem change); (4) 

combined effects of climate and LULC change – through measures of inflow to Triangle 

reservoirs as well as utility performance indicators of supply reliability, conservation (use 

restriction) frequency, and infrastructure cost. Figure 2.6 highlights the differences in streamflow 

to regional reservoirs under each hydrologic scenario and across time.  Figure 2.7 visualizes 

performance indicators for each Triangle utility and the overall region under all hydrologic 

scenarios, exploring indicator performance tradeoffs and impacts of infrastructure development 

across two select development pathways. Figure 2.8 details an example of time-evolving risk and 

infrastructure decision-making for one regional utility.  

 

2.3.1 Raw water availability  

A common water availability metric of use is streamflow, or reservoir inflow. Fig. 2.6 

shows 52-week (1-year) moving sum Triangle reservoir inflows for each utility of the study, both 

before and after 2030. This temporal division at 2030 is useful for this region as more significant 

development of the contributing water supply watersheds is projected to begin at or after this 

date, with prior development concentrating in areas that do not drain into the water supply 

reservoirs considered in this analysis. Inflows to each utility are quantified for drought events of 

low probability – return periods of 5 years or longer – and differentiated by hydrologic scenario. 
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The intention of Fig. 2.6 is to visualize how water availability is quantified as a direct output 

from eco-hydrologic modeling, before any consideration of management. 

 

 

Figure 2.6: 52-week (1-year) moving sum of reservoir inflows for low-flow return periods, given 
for Triangle utilities (panel columns) before and after 2030 (panel rows) under each hydrologic 
scenario (colors). Box plot ranges show the distribution of flows for each return period across 
1,000 synthetic hydrologic realizations. Both climate (blue) and LULC change (red) increase 
reservoir inflows and act additively in combination (green). Inflows after 2030 (bottom row of 
panels) are greater under hydrologic change than before 2030 (top row).  

 

2.3.1.1 Hydrologic change influence on reservoir inflows 

Climate (Fig. 2.6, blue) and LULC change (Fig. 2.6, red) result in an increase to water 

availability during drought across all utilities before and after 2030 with the exception of pre-

2030 Durham. The effects of climate and LULC hydrologic change were additive, with largest 
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increases to water availability seen when both effects were modeled in tandem (Fig. 2.6, green). 

One exception to inflow increases can be seen for Durham under LULC alone before 2030 (Fig. 

2.6(B)(1)); flows under LULC change in this case were similar to flows under baseline 

conditions (Fig. 2.6, black) or slightly reduced on average for low-flow return periods. Durham 

water supply catchments are more rural, without significant development envisioned before 

2030. Variability of inflows, demonstrated by the width of boxplots in Fig. 2.6, tended to 

increase under hydrologic change relative to baseline conditions. Climate change generally 

displayed wider variability in inflows than LULC change. The combination of climate and 

LULC change effects caused the widest ranges in reservoir inflow availability (Fig. 2.6, green). 

With respect to reservoir inflows, results here indicate that both climate and LULC change could 

reduce the probability of low-flow, drought events across the Triangle. 

 

2.3.1.2 Differences of inflow across space and time 

The impacts of climate and LULC change on drought flow severity varied between utility 

and between early (pre-2030) and late (2031-2060) time periods. The impacts of hydrologic 

change manifest more heavily after 2030 (Fig. 2.6(2)) than before (Fig. 2.6(1)). The largest 

absolute increases to inflows relative to baseline conditions due to either climate or LULC 

change were seen in Cary (Fig. 2.6I), while largest percentage increases were seen in Durham 

(Fig. 2.6(B)). Before 2030, climate change increases Durham inflows while LULC change 

maintains or reduces flows relative to baseline conditions (Fig. 2.6(B)(1)). LULC change 

increased OWASA inflows to a much larger degree than climate change across both time periods 

(Fig. 2.6(A)).   
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2.3.2 Utility operational impacts of hydrologic changes 

Measuring utility performance under hydrologic change through reservoir water 

availability alone does not capture additional factors, such as demand growth or financial risk, 

controlling management outcomes. Figure 2.7 summarizes utility performance according to 

indicators of reliability (measured as storage failure frequency; Fig. 2.7, left axis of each panel), 

restriction use frequency (center axis of each panel), and infrastructure investment (right axis) for 

each utility (and the total region) under two contrasting development pathways. Each panel of 

Fig. 2.7 is a separate parallel axis plot; each panel contains multiple lines across all three 

performance indicators. One line represents an evaluation of the water supply model and its 

performance for each indicator. To compare the performance of an evaluation against another, 

observe their relative locations on the plot – if one line crosses a vertical indicator axis at a lower 

point than another line, the former model evaluation has performed better than the latter based on 

that indicator (an ideal evaluation of the model would result in a horizontal line across the 

bottom of the plot).  

Eight separate model evaluations (2 development pathways by 4 hydrologic scenarios) 

are shown in Fig. 2.7; each evaluation’s indicator outcomes are given for every utility (Fig. 2.7, 

rows) and for the region as a whole. Differences between indicator values of separate model 

evaluations (lines) are absolute changes in indicator value. Reliability indicator values on Fig. 

2.7 range from 0% (an ideal level of no failures) to 4% (1-in-25 years experiences storage 

failure); restriction frequency ranges from 0% (ideal, no restriction use) to 5% (1-in-20 years 

implemented conservation); infrastructure investment range in Fig. 2.7 ranges from $0 (ideal, no 

infrastructure spending triggered) to $500 million (discounted total over the 2015-2060 year 

period). In comparison to Fig. 2.6, Fig. 2.7 is intended to demonstrate by contrast the complex 
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nature of utility vulnerability to hydrologic change when considering performance based on 

management objectives, rather than reservoir inflow and water availability alone.  

 

 

Figure 2.7: Panels of parallel axis plots showing modeled outcomes based on three regional 
utility performance indicators. Model evaluations under tested hydrologic scenarios (colors) are 
given for each regional utility and the overall region (rows) for two contrasting development 
pathways (columns). Each line represents one model evaluation’s performance across each 
indicator.  
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2.3.2.1 Comparing reservoir inflow and utility performance indicators 

While reservoir inflows increase regionally as a result of climate and/or LULC change, 

the effect of hydrologic change on utility performance indicators was not as direct. In some 

cases, trends of increased reservoir inflows seen in Fig. 2.6 under each hydrologic scenario were 

reflected in management indicators – OWASA restriction frequency under development pathway 

2 (Fig. 2.7(A)(2), center axis) is an example of this. In other cases, inflow increases did not result 

in improved management outcomes; Durham reliability under development pathway 1 degraded 

under LULC change relative to baseline conditions (Fig. 2.7(B)(1), left axis, red). In other cases, 

hydrologic change had marginal influence on management objectives – Cary experienced little 

change in indicator value due to hydrologic change, and infrastructure investment indicators 

across all utilities were relatively inelastic to hydrologic change. Climate change was generally 

more influential than LULC change in improving indicator values relative to baseline (Fig. 

2.7(D)(1)) despite often contributing less reservoir inflow (Fig. 2.6), though the opposite was 

true in some cases (Fig. 2.7(A)(2)).  

 

2.3.2.2 Differences between utility outcomes 

Indicator performance varied widely between utilities. OWASA and Cary, already with 

very reliable performance levels under baseline conditions, did not see substantial improvement 

in reliability due to hydrologic change (Fig. 2.7(A and C), left axes). Durham, on the other hand, 

consistently saw reliability improvement as a result of climate change, but not LULC change 

(Fig. 2.7(B)). Infrastructure investment indicator values for Cary were unaffected by hydrologic 

change; Cary expands water treatment capacity based on demand growth targets that occur soon 

after 2015, which hydrologic change does not impact. Durham saw varied impact of hydrologic 
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change on infrastructure investment, which was also dependent on the development pathway 

(more detail in next sub-section). Climate change and combined climate and LULC change 

impacts infrastructure investment improvement for OWASA more-so than LULC change, as 

they were for restriction use frequency in Durham. 

 

2.3.2.3 Differences between development pathway outcomes 

How utility performance indicators responded to hydrologic change was also dependent 

on the development pathway followed. Under pathway 1 (Fig. 2.7, left panels), infrastructure 

development opportunities are more extensive for OWASA but restricted for Durham – the 

opposite is true for those utilities in pathway 2 (Fig. 2.7, right panels). Pathway 1 prioritizes the 

option for Durham and OWASA to jointly develop water withdrawal and treatment infrastructure 

on Jordan Lake, followed by additional, independent options such as implementation of 

reclaimed water reuse for Durham or University Lake expansion for OWASA. Under pathway 2, 

Jordan Lake development is still prioritized, though OWASA is now allotted a larger treatment 

(and financing) allocation in the Jordan Lake development than allocated in pathway 1, and the 

opposite is true for Durham. In both pathways, Cary has the singular option to expand its Jordan 

Lake water treatment plant. Both prioritization order and permitting period, the number of years 

from 2015 that must elapse before a project can be built, factored into the relative availability 

and implementation of infrastructure in either pathways 1 or 2. A full list of potential 

infrastructure development options and their implementation constraints for Triangle utilities is 

provided in Table 1 of Zeff et al. (2016).  

Risk tolerance levels (ROF trigger levels for infrastructure development and restriction 

use) also differed between pathways. OWASA’s short-term risk tolerance in pathway 1 is much 
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greater (ROF trigger for restriction use is higher) than in pathway 2, leading to a more substantial 

influence of hydrologic changes on the restriction use indicator in pathway 2 (with a low ROF 

trigger level, restriction use is more frequent and sensitive to mild or moderate droughts). Under 

pathway 1, LULC change also results in a degradation in Durham reliability relative to baseline 

conditions, while pathway 2 showed no reduction in reliability due to LULC change (Fig. 2.7(B), 

red, left axis). Because the development pathways shown here represent two different sets of 

decision-making “rules” for utilities, our results demonstrate that utility actions can influence 

management outcomes and provide considerably control over hydrologic change impacts on 

water resource systems.  

When more infrastructure development options were available, more variability in the 

infrastructure investment indicator also occurred. In pathway 1, hydrologic change did not 

impact infrastructure investment indicator levels for Durham, while they are affected in pathway 

2 (Fig. 2.7(B)(2)), especially by climate change. LULC change increased infrastructure 

investment relative to baseline for OWASA under pathway 1 (Fig. 2.7(A)(1), red), but led to a 

slight reduction in investment under pathway 2. 

 

2.3.3 Durham hydrologic change impacts 

To explore the mechanisms driving utility performance outcomes under hydrologic 

change, we present detailed results for Durham under both tested development pathways in Fig. 

2.8. The four panels of Fig. 2.8(a) show weekly storage failure frequency histograms for Durham 

reservoirs across 1,000 hydrologic realizations tested under each hydrologic scenario. These 

results are given for both development pathways (panel columns) before and after 2030 (panel 

rows). The two panels of Fig. 2.8(b) give timeseries examples of two realizations of weekly 
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Durham reservoir storage from 2015-2060 under either climate (left panel) or LULC (right 

panel) change and following both development pathways (line type). While Figures 2.6 and 2.7 

visualize simulation-scale vulnerability at a regional level, Fig. 2.8 provides realization-level 

details to reveal the interplay between individual realizations of hydrologic change and their 

impact on water availability when infrastructure and management are considered. 
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Figure 2.8: (a) Histograms of Durham weekly storage failure frequency across 1,000 synthetic 
hydrologic realizations, differentiated by hydrologic scenario (color), development pathway 
(column), and time period (row). Each panel shows the percent of all realizations that see a given 
range of storage failure. (b) Timeseries examples of Durham reservoir storage for a single 
realization under climate (left panel) and LULC (right panel) change for each of the two 
development pathways modeled (line type). Discontinuity around 2032-2033 due to 
infrastructure development.  
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2.3.3.1 Storage failure frequency under baseline conditions 

Durham storage failure frequency in each realization, used to calculate the reliability 

performance indicator as shown in Equation 1, is distributed unevenly in time and differs 

between development pathways for each hydrologic scenario. Under baseline conditions (Fig. 

8(a), black), failure frequency is relatively consistent across development pathways before 2030 

(Fig. 2.8(a)(A), black). After 2030, baseline failures are much more common under development 

pathway 1 than pathway 2 (Fig. 2.8(a)(B), black). This difference in frequency is primarily 

caused by infrastructure development availability – Durham has limited ability to expand 

infrastructure to meet growing demands in pathway 1, leading to increased storage failure 

relative to pathway 2.  

 

2.3.3.2 Failure frequency under hydrologic change 

The same behavior of failure frequency exhibited under baseline conditions is also 

observed under the climate change scenario to a lesser degree (Fig. 2.8(a), blue). Failure 

frequency for Durham under the LULC change scenario is greater than baseline conditions 

before 2030 (Fig. 2.8(a)(A), red compared to black), and failures with combined LULC and 

climate change are greater than those under just climate change before 2030 (Fig. 2.8(a)(A), 

green compared to blue). This behavior as a result of LULC change is linked to trends in 

reservoir inflows to Durham before 2030 (Fig. 2.6(a)(B)(1), red). Drought event flows under 

LULC change were found to be approximately equal to, or slightly lower than, baseline flows on 

average, while also exhibiting extreme values beyond those observed under baseline conditions 

for some return periods. The change to extreme flow event frequency, as well as small changes 

in average drought flows, had heavy influence on failure rates for Durham under LULC change 
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before 2030. After 2030, however, hydrologic scenarios with LULC change (Fig. 2.8(a)(B), red 

and green histograms) show failure rates lower than those observed under baseline or climate 

change conditions for both development pathways.   

 

2.3.3.3 Influence of short-term drought mitigation 

Both short and long-term utility decision-making, as well as hydrologic change, had 

influence over Durham’s susceptibility to storage failure. Based on regional infrastructure 

planning, Durham has limited ability to expand storage or treatment capacity infrastructure until 

at least 2030 in either development pathway. As a result, differences in failure frequency 

between pathways before 2030 (Fig. 2.8(a)(A)) are primarily due to hydrologic change and 

short-term drought mitigation actions (i.e. use restrictions) only. Short-term mitigation is carried 

out when risk-of-failure levels for Durham reach a fixed trigger level, which is higher (less risk 

averse) for development pathway 1 than for pathway 2 (higher risk aversion). Because of 

differences in utility decision-making related to drought mitigation, failure frequency for 

Durham before 2030 is reduced under pathway 2 (Fig. 2.8(a)(A)(2)) more than under pathway 1 

(Fig. 2.8(a)(A)(1)) for all hydrologic scenarios. Mitigation is also more effective at reducing 

failure rate in baseline (black) and LULC change (red) scenarios before 2030 in Durham, as 

neither scenario sees increases to reservoir inflows in this time period relative to scenarios under 

climate change.  
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2.3.3.4 Relative influences of infrastructure investment and hydrologic change 

After 2027, infrastructure development is available for Durham (Fig. 2.8(b)), greatly 

reducing the frequency of storage failure after 2030 in most cases (Fig. 2.8(a)(B)). However, 

under development pathway 1, baseline and climate change scenarios see either a continuation or 

increase of failure frequency after 2030 relative to before 2030 (Fig. 2.8(a)(1), blue and black). 

At the same time, both hydrologic scenarios including LULC change (Fig. 2.8(a)(1), red and 

green) see substantial reductions in failure frequency after 2030 in pathway 1. These different 

outcomes are a result of two concurrent causes: (1) urbanization in the Durham reservoir 

catchments that ramps up after 2030, and (2) expansion of water supply infrastructure. Under 

baseline and climate change only scenarios, no LULC change resulting from urbanization occurs 

to further increase water availability to reservoirs after 2030. With LULC change effects, the 

remaining two hydrologic scenarios utilize excess urban (and exburban) runoff to reduce storage 

failure frequency from 2030-2060.  

The level to which infrastructure is expanded can be as consequential as hydrologic 

change. Under baseline and climate change conditions, development pathway 1 is less effective 

than pathway 2 at reducing storage failure frequency (Fig. 2.8(a)(B), black and blue). Without 

additional reservoir inflow from LULC change, the major differences in failure frequency are 

due to the differing degrees of infrastructure expansion. An example of this behavior is given for 

one realization of Durham reservoir storage under the climate change scenario for both 

development pathways (Fig. 2.8(b), left panel). Development pathway 2 (Fig. 2.8(b), dotted line) 

sees Durham opt to expand reservoir capacity after 2030 to a greater degree than pathway 1 (Fig. 

2.8(b), solid line). Because climate change does not increase reservoir inflows as substantially as 

LULC change, demand growth outpaces long-run water availability increases due to climate 
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change. The additional reservoir capacity available in pathway 2 insulates Durham from storage 

failures that pathway 1 experiences (Fig. 2.8(b), left panel – difference between solid and dotted 

lines of 2058 drought event). The same drop in failure frequency due to additional storage 

capacity in pathway 2 is also observed for baseline hydrologic conditions. 

 

2.3.3.5 LULC urbanization timing effects on failure frequency 

Timing of urbanization in Durham catchments has a different impact on failure 

frequency. Between development pathways 1 and 2, Durham failure frequency is effectively 

unchanged after 2030 if LULC change occurs (Fig. 2.8(a)(B), red and green) despite differences 

in infrastructure investment noted in the previous paragraph. Urbanization begins to drive 

reservoir inflow increases after 2030 when additional development occurs in Durham 

catchments, a later shift than seen in Cary or OWASA. This additional inflow provides Durham 

enough water (relative to baseline conditions) to offset future demand growth. However, the 

abrupt change to LULC combined with a reliance on risk-of-failure (calculated based on a 

moving window of past hydrologic conditions) to trigger infrastructure development means that 

Durham is slow to adapt to this hydrologic regime shift. As a result, no matter to what degree 

water supply infrastructure is expanded after 2030, LULC change drives late-term reduction in 

failure frequency (Fig. 2.8(b), right panel). While baseline and climate change scenarios depend 

on more infrastructure investment to reduce supply failure, LULC change improves supply 

reliability irrespective of the level of infrastructure expansion. 
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2.4 Discussion 

To understand the effects hydrologic change may have on the Triangle regional system, 

as well as how management decision-making can influence outcomes under hydrologic change, a 

number of factors must be considered: (1) hydroclimatic factors driving changes to regional 

water availability; (2) the impact of hydroclimatic changes on reservoir inflows and utility 

performance; (3) influence of utility decisions on performance indicators and their interactions 

with hydrologic change.  

 

2.4.1 Eco-hydrologic drivers of water availability 

Changes to streamflow as a result of climate or LULC change manifest differently across 

seasons. For ease of comprehension, we detail the causes of inflow changes for the growing 

season (May – October) and the dormant season when most reservoir recharge occurs 

(November – April). In the Triangle, where reservoirs are sized anticipating that they will refill 

annually, utility managers expect reservoirs to be full or near full at the end of April. The 

following six months, the growing season, experience the bulk of outdoor water use and 

increased evapotranspiration not present in colder months, and reservoir volumes are generally 

reduced.  

Under climate change, an increase in precipitation during the dormant season relative to 

baseline (hydrologically stationary) conditions results in increased reservoir recharge. During the 

growing season increase in flows is not as evident, possibly due to increased summer and fall 

temperatures that extend the growth period for vegetation, increasing evapotranspiration (ET) in 

early spring and late fall. Under LULC change, runoff increases over urbanizing areas in the 

Triangle (area surrounding Jordan Lake, including Durham catchments) but does so to a smaller 
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degree over the larger Haw River Basin that is projected to remain heavily forested (Fig. 2.6I, 

difference before and after 2030). Where forest land cover is converted to urban developed area, 

leaf area index is reduced and runoff significantly increases due to a drop in ET. The magnitude 

of this effect is dependent upon the type of urban development; whether development is dense 

(sprawling) or more (less) intensive, which varied between LULC projections, can influence the 

effect of urbanization on reservoir inflow. In this work, LULC change through urbanization 

increases runoff through a decrease in ET and increased impervious surface, while climate 

change increases runoff through increased precipitation in the Triangle.  

Climate change generally resulted in wider variability in reservoir inflows than did LULC 

change. This may partially be due to development in the Triangle being, and expected to 

continue being, dominated by relatively low density forms of urbanization with significant 

remaining forest and open development (low impervious area). This development increases 

groundwater recharge, increasing base flows, while limiting increases in stormflow compared to 

dense development. The areas projected to have increasing dense development are largely 

outside the contributing watershed areas for the Triangle. Therefore, the impacts of urbanization 

in the Triangle are somewhat mitigated compared to climate change based on the form of 

development largely anticipated. Of course, results are sensitive to the projected land use 

changes based on rates and types of development.   

Though climate change may be a strong driver of change to streamflows, climate effects 

and LULC effects are not necessarily additive in terms of their joint effects on water availability 

(i.e. Figure 2.6 distributions). In our study region, runoff generation is primarily controlled by 

precipitation, water consumption by forest (i.e., evapotranspiration), and the type of urban 

development that occurs. Most of the denser new development in the Triangle is outside of the 
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drainage areas to the regional reservoirs, and small amounts of LULC change in Triangle 

catchments are dominated by the simulated effects of climate change and in places can offset 

climate change effects. However, should deforestation (i.e., LULC change) become more 

prevalent, as is expected after 2030, LULC change can have strong effects on return flows, 

yielding streamflow signals that are different than those from climate change as 

evapotranspiration patterns change. Climate change widens the variation of return flows, but 

LULC change increases flow while also decreasing its variation. When both effects occur in 

tandem our results indicate an increase in overall flow with wider variation, but not in a linear 

additive sense. This nonlinear behavior can be strongly influenced by specific types of LULC 

development that, in cases, offset some effects of climate change. As an example, increased 

growing season length and temperature due to climate change can increase annual ET, but be 

offset by impervious surface runoff and increased soil and groundwater recharge in open areas, 

supporting higher baseflows. 

It should be noted that while modeling baselines for eco-hydrologic studies are typically 

given as 30-year periods, our baseline was limited to 2000-2010. Land use has changed 

dramatically over the most recent 30-year period, with population doubling and the development 

of two regional water supply reservoirs. Therefore, baseline streamflow conditions over a longer 

period would introduce strong non-stationarity. The 2000-2010 decade included a range of very 

wet to very dry conditions (with the wettest and driest years in decades) but was not (at the 

decadal level) unusually wet or dry. There has been a progressive warming in the region over the 

past three decades, consistent with most other global regions. It was not our purpose to establish 

2000-2010 as a long-term historic mean, as climate, land use, and streamflow regimes have been 

changing. We note that a thirty year mean temperature and level of urbanization would be biased 
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low compared to current conditions. Given our use of a delta method for downscaling, it is 

crucial that we capture as complete a picture of historical variability as possible. At the same 

time, our hybrid approach using eco-hydrologic models in combination with synthetic 

streamflow generation is also valuable as a means of capturing the internal variability of the 

hydrologic system. 

Land use in the Triangle has been rapidly changing with the expansion of low to medium 

density urban areas, and some densification of city centers. Water quality of reservoirs receiving 

urban runoff is of high interest, and the extent of stormwater controls is under intense debate. We 

did not explicitly incorporate stormwater management facilities in the simulations of urban areas, 

but most of this implementation was in the form of detention storage during this period, and was 

not designed for flow volume reduction at weekly to monthly time steps. Our eco-hydrologic 

modeling was evaluated with weekly to monthly flow levels, consistent with the water resources 

model resolution. Finer temporal scale evaluation (e.g. hourly, daily) would be limited by both 

available precipitation records for some of our water supply watersheds, and are less relevant for 

water supply evaluation. However, further incorporation of flood potential and water quality 

trends based on hydroclimate and land use development would require finer temporal and spatial 

model resolution. An additional reason for using RHESSys for urban area flow modeling is the 

ability to scale the simulations to much finer resolutions to resolve individual stormwater control 

features and the increasing set of green infrastructure and urban canopy in the area (e.g. Miles 

and Band, 2015) which requires detailed ecohydrological process representation.  This links the 

analysis of full watershed runoff and reservoir recharge to methods to evaluate scenario risk 

management approaches to both water quantity and quality mitigation, which is the subject of 

follow-on research. 
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2.4.2 Hydrologic impacts on utility performance 

Generally, when more water was available to reservoirs through hydrologic change, 

reliability improves and restriction usage falls. However, indicator performance varied widely 

between utilities. Drawing water from the largest reservoir in the Triangle, Jordan Lake, Cary 

indicator performance was relatively unaffected by hydrologic change or shifts in reservoir 

inflows (Fig. 2.7I). With moderate demand growth expected over the 45-year modeling period 

and ample water storage and treatment capacity under baseline conditions, increases in water 

availability were inconsequential to Cary. Durham and OWASA, by contrast, showed wider 

ranges of performance outcomes due to hydrologic change (Fig. 2.7(A and B)). Interestingly, 

LULC change alone (red) led to cases of worse indicator performance for both Durham and 

OWASA than model evaluations with climate change (blue and green) despite being an overall 

larger hydrologic contributor to increased water availability. For Durham, performance outcomes 

were degraded by LULC change scenarios because substantial increases in runoff due to LULC 

change in the water supply drainage areas do not accelerate until 2030 (Fig. 2.6(B)).  

Similarly, OWASA saw performance indicators negatively impacted by LULC change, 

but to a lesser degree than Durham (Fig. 2.7(A)(1)). OWASA indicator degradation relative to 

baseline results was also primarily driven by early-term water availability (Fig. 2.6(A)(1)); 

OWASA’s baseline indicators of restriction use and infrastructure investment under development 

pathway 1 were already well-performing (Fig. 2.7(A)(1), black), and small changes to reservoir 

inflow persistence from LULC change without substantial increase in drought flows during 

2015-2030 drove slight increases in restriction use frequency and heightened risk-of-failure, 

driving small increases to infrastructure investment (Fig. 2.7(A)(1), red). An increase in 

impervious surface cover as a result of LULC change can lead to increased “flashiness” of runoff 
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from lands that are highly impervious; larger amounts of runoff are likely immediately following 

precipitation events, but these events are followed by periods of reduced runoff. Large events 

may also not be completely retained as reservoir storage if inflows are too great over a short 

period of time and must be spilled out of the reservoir. Reduced consistency of base flow into 

reservoirs can exacerbate drought, resulting in lower rates of reliability even compared to 

baseline conditions in some cases.  

The perceived impact of droughts to utilities is also dependent upon what metrics utilities 

judge their performance by. Reliability and use restriction frequency were relatively sensitive 

metrics to hydrologic change in this work, while infrastructure investment was not. Infrastructure 

investment is triggered not only based on risk-of-failure (like use restrictions) but also by the 

availability of infrastructure options to be built, limiting its range of outcomes. That being said, 

investment is a useful indicator of utility performance as a proxy for long-term financial health, 

something not provided by indicators of reservoir inflows or reliability.  

 

2.4.3 Influence of utility decision-making on performance outcomes 

A primary takeaway from our results is that changes to utility development pathways – 

decisions made by utilities regarding when to implement water transfers, use restrictions, and 

expand infrastructure – can influence performance outcomes and either mute or amplify the 

effects of hydrologic change on management outcomes for utilities. Both the type (climate vs. 

LULC) and timing (before or after 2030) of hydrologic change caused different interactions with 

utility decision-making and drought mitigation, leading to a range of performance outcomes for 

Triangle utilities that were heavily dependent on the risk preferences and infrastructure 

availability of the development pathway modeled. Infrastructure expansion after 2030, 
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specifically, was found to strongly influence the reaction of performance outcomes to hydrologic 

change. Where storage capacity could be expanded sufficiently, the rate of storage failures 

dropped. In other cases large infrastructure expansion was unnecessary, as increased runoff due 

to urbanization ensured growing demands could be offset in the long-term. The degree to which 

infrastructure expansion was available, as well as what type of hydrologic change was occurring, 

impacted management outcomes.  

One consideration to note is that development pathways applied in this study were 

previously identified through modeling under stationary hydrologic conditions (Zeff et al., 2016). 

This is consistent with regional planning where future infrastructure sequences were developed 

based primarily on projections of demand growth and limited consideration of changes to 

hydrologic conditions. Reliance on infrastructure sequencing developed a priori without 

consideration of hydrologic change runs the risk of over-investment and increased financial 

burden on local utilities (and their customers) should water availability increase, as well as 

under-investment and supply provision risk should water availability be reduced more than 

expected. 

What is clear is that the common practice of evaluating future water availability alone 

neglects or overly simplifies the operational abilities of humans to mitigate water scarcity. 

However, because this study focuses on a region projected to become wetter in the future rather 

than drier, the value of including utility water supply management operations is not immediately 

obvious. When more water is available, outcomes measured both in terms of water availability or 

utility performance indicators tend to improve, leading to the potential conclusion that the 

additional step of accounting for utility decision-making is unnecessary. This is not the case – 

without an evaluation of utility supply and financial reliability under different hydrologic 
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conditions, important operational factors are overlooked. There is clear need for more explicit 

representation of water management systems in future analyses of water availability, especially 

in regions not expected to become wetter. Due to the ability of water managers and utilities to 

effectively mitigate periods of water scarcity, studies of water availability should more 

rigorously consider management systems if they mean to accurately assess vulnerability to future 

hydrologic changes.  

 

2.4.4 Additional considerations 

While shifts in hydrologic patterns caused by climate or LULC effects appear likely to 

increase reservoir inflows regionally, they may also introduce new risks such as flooding from 

impervious surfaces, increased groundwater levels, and greater stormwater pollutant loading of 

water supply reservoirs. Though not a focus of our analysis – the water supply modeling 

framework presented here is meant to assess supply and financial risks that result due to water 

scarcity and drought – increases in flooding events would likely have ecological consequences as 

well. Increased flash flooding could increase nutrient loading into surface waterways and water 

supply reservoirs, degrading drinking water quality, which is an issue of current major concern 

and debate in the Triangle.  

With respect to this analysis of water scarcity, however, the impact of flooding is muted 

in surface water dependent systems of reservoirs like those in the Triangle that cannot hold more 

water than their capacity allows. From a water supply modeling standpoint, and the standpoint of 

concerns over water scarcity, whether a reservoir receives enough inflow to fill to its capacity or 

a much greater volume of inflow, with most of it passing immediately downstream via spill 

structures, is largely irrelevant as both provide for the same volume of available water supply. 
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That said, high-flow flooding events and stormwater pollution in reservoirs like Jordan Lake, 

which is operated by the US Army Corps of Engineers to manage water quality and flooding 

along with water supply, are areas of concern for future work in water resources management. 

An increase in water availability does not automatically alleviate all regional worries of 

future water scarcity under hydrologic change. Both climate and LULC change may affect the 

variability of water availability, changing the frequency of both drought and flooding as well as 

the persistence of wet and dry conditions. One week of heavy rain followed by four weeks of dry 

weather may produce the same amount of reservoir inflow as five weeks of steady, less extreme 

precipitation, but a “flashy” hydrologic regime would create difficult operating conditions for a 

utility trying to balance flood risk and water supply reliability when holding or releasing inflows.  

Extrapolating results from this study to other locations should also be done with caution, 

as the geographic, hydrologic, and institutional conditions of the Triangle are not the same across 

the US or globe. As well, despite results suggesting the region will become wetter as a result of 

climate change, significant uncertainty remains about whether that will actually occur (IPCC, 

2014b; Program, 2017). The six GCM projections used in our study represent a broad 

perspective on the potential impacts of climate change in the Triangle region, but their 

disagreement on outcomes for this region of the Southeastern US demonstrate non-negligible 

uncertainty regarding future climate conditions. We chose RCP 6.0 to be consistent with land-

use/landcover projections of county level population, housing, employment, forest product 

demand and forest change of previous regional studies and to evaluate climate change 

vulnerability along a “moderate” trajectory. The choices of our six representative GCMs were 

made due to their collective spanning of the wide precipitation and temperature CMIP5 

projections in the Research Triangle, as well as the differences in seasonal change trajectories 
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relative to each other. Together, those two factors provided a diverse set of GCMs, showcasing a 

range of potential climate futures.  

At the same time, generating thousands of hydrologic scenarios was done in part to 

address an overall shortcoming of all downscaled GCM analyses in underrepresenting drought 

extremes and the innate hydro-climatic variability where the calibration process focuses on a 

limited record of observed streamflows that are not a strong representation of extreme quantiles 

(i.e., drought flows). Because this work focused on the demonstration of our modeling 

framework and consistency between modeling components, our focus was not on expanding the 

range of RCP scenarios included, though this process should be used for future work. Although 

RCP 6.0 is a somewhat moderate scenario, our results highlight significant changes in how 

drought extremes will evolve. 

We have also quantified an additive effect between climate and LULC change in terms of 

water availability – future scenarios with either effect isolated showed increased reservoir 

inflows relative to baseline conditions, and both effects together further increased water 

availability. However, the same positive interaction between LULC and climate change may not 

materialize in other regions. In the Triangle, land use trends toward urbanization and general 

climate trends toward warming and increased rainfall were complementary in terms of water 

availability, but in other places like the Southwest US will see decreased rainfall as a result of 

climate change. We emphasize that results of combined modeling are not necessarily 

generalizable, but the methods are, considering the incorporation of best available regional 

LULC and climate change projections.  

Furthermore, while the intricacies of results from this work tend to be region-specific, it 

would be difficult to demonstrate the value of the analysis framework without considering 
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regional decision-making and its impact in the case at hand; where past work has omitted the 

impact of actions by management actors in an effort to provide generalizability, it has often 

overlooked the importance of these small factors that can noticeably affect the regional 

vulnerability under a given future scenario.  We note that this includes both utility decision 

making, and local forms of urbanization. This does, in some ways, impact generalizability, but 

inclusion of these considerations also makes the important point that they can be critical, even if 

a bit “messy”.  This work serves to introduce a comprehensive framework for assessing water 

supply vulnerability and provide an example of the integration of global scale products 

downscaled and used in specific decision making context. Applying this under different climates 

and development trajectories will be the goal of future work. 

 

2.5 Conclusions 

This study demonstrates an extensive effort to integrate important factors – including 

climate and land use change effects, as well as utility management and infrastructure planning, 

on water supply availability – which have typically been considered in isolation for their effects 

on water supply management. This connectivity allows for previously overlooked insights for 

governing a region’s ability to provide water where and when it is needed. In the Triangle region, 

landcover and climate change are both likely to increase water supply availability, however 

improvements as a result are non-uniform across management system performance indicators, 

highlighting the need for consideration of financial and management-based interests in 

evaluation of vulnerability to hydrologic change. Furthermore, utility decision-making can hold 

notable influence over the impact of hydrologic change through both short-term (e.g. 

conservation use) and longer-term (infrastructure investment) actions, in some cases even 
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countering the beneficial effects of additional water supply. The effectiveness of infrastructure 

development to mitigate water scarcity is also strongly sensitive to climate and land-use change 

influences as well as the timing and sequencing of infrastructure planning. As a result, this work 

underscores the need to consider adaptive management system responses and decision-relevant 

performance measures when assessing the impacts of hydrologic change on water availability. 
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CHAPTER 3 : EXPLORING TREATMENT AND CAPACITY‐SHARING 
AGREEMENTS BETWEEN WATER UTILITIES2 

 

3.1 Introduction 

Water utilities have the unenviable task of having to predict the future. Utilities are 

responsible for meeting future water demands of their customers in an environment rich with 

uncertainty that includes changing population, per-capita use, and economic growth all of which 

impact future demands. In communities with positive growth, keeping up with demand often 

requires infrastructure investment years or decades before future use projections materialize, 

resulting in large amounts of spare capacity paid for but unused in the interim.  

One way utilities can manage and share the financial risk of a large capital commitment 

before expected demands materialize is to partner with adjacent utilities through the creation of 

regional utilities or cooperative agreements offering a means of sharing infrastructure costs by 

sharing project capacity (EFC 2009, Tran et al. 2019). Given the need to rely on long-term 

demand projections when planning structural expansions, however, capacity sharing approaches 

and agreements can also be a source of financial and supply risk if future demands diverge from 

predictions. Questions of facility management can further complicate matters. Are agreement 

partners co-owners of a facility? Does only one manage day-to-day operations? Was a regional 

authority created to serve all parties? These and others concerns can potentially strain the 

willingness for agreement partners to amiably cooperate. To underline the importance of 

 
2 This work has been published: Gorelick, D. E., Zeff, H. B., Hughes, J., Eskaf, S., & Characklis, G. W. (2019). 
Journal‐American Water Works Association, 111(9), 26-40. 
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understanding risks within capacity sharing agreements, we quantify the risks of cooperative 

agreements under a range of future demand scenarios, using a test case in the Research Triangle 

of North Carolina, to better inform utilities considering such agreements. 

 

Implementing capacity sharing agreements. The approach for sharing capacity is often 

made possible through state law in the United States allowing a diverse range of customized 

water provider models (i.e. authorities, joint management agencies), cooperative contracts, 

financial policies, or interlocal agreements. A combination of provider models, policies and 

agreements can be used to structure numerous capacity sharing approaches. Due to the range of 

natural, regulatory, and institutional environments across the US, it is impossible to detail in this 

work the complete scope of capacity sharing agreements available to partnering utilities. Based 

on our observations of some of the most common elements of capacity sharing agreement 

structures place across the US (Fig. 3.1), this paper weighs the relative merits of each by 

identifying sources of risk inherent in each contract structure.  

 

Figure 3.1: Schematic of capacity-sharing agreements, comparing a traditional, no-cooperation 
infrastructure development model with two cooperative agreement types. Third-party agreements 
(not pictured) can be added to reduce excess capacity (top row, shaded) when available through 
sales to additional partners, lowering debt service obligations proportionately (bottom row). 
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Fully reserved fixed capacity allocations. One way to understand differences between 

capacity sharing agreements is in the context of different approaches to paying for unused project 

capacity. Traditionally, without any sort of inter-utility cooperation, a water utility anticipating 

future growth would invest in additional system infrastructure, paying debt service on the entire 

project even though most of its capacity remains unused as demands grow (Fig. 3.1, left panel). 

There are many examples of this type of situation, where utilities plan and acquire the water or 

wastewater capacity they need on their own without any type of partnership. However, in many 

situations going it alone is infeasible financially (paying for capacity that goes unused for years) 

or from a regulatory standpoint (e.g. limited number of available withdrawal or effluent permits).  

 

In other cases, a partnership offers attractive economies of scale (e.g. capital costs of a 

single 100 MGD facility may be significantly lower than the costs of three smaller facilities that 

together equal 100 MGD). The most basic form of capacity sharing consists of multiple utilities 

jointly developing infrastructure, deciding what percent of the facility they wish to reserve, and 

agreeing to pay the proportional costs for the capacity regardless of when or whether they use 

their full amount (Fig. 3.1, center panel). In some ways, this is the structural equivalent to partner 

utilities building separate, smaller facilities, but ideally with lower costs than having multiple, 

separate facilities as utilities are able to incur operational benefits by sharing costs.  

A partnership approach can be implemented in several ways. Often, they take the form of 

a fixed capacity allocation, through joint ownership or long term capacity reservation agreement 

on an infrastructure project (Fig. 3.1, center column). Each utility reserves a stake in the total 

capacity of the project and provides financing relative to the proportion of total capacity 

allocated, receiving treated water at a wholesale price in return. This type of agreement was 
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implemented in 2014 in the North Carolina Research Triangle; three water utilities – serving the 

towns of Cary, Apex, and Morrisville, NC – opened the Western Wake Water Reclamation 

Facility (WWWRF), a wastewater treatment facility operated solely by Cary but shared by all 

three (Apex et al. 2015). Each utility has a fixed capacity share, entitling them to a fixed amount 

of wastewater treatment capacity. All debt financing and fixed operating costs (separate from 

volumetric costs incurred directly from wastewater treatment) are borne in proportion to the 

capacity allocation of each utility in the plant.  

A hallmark of this fixed allocations approach to a cooperative agreement is the 

simplicity. Permanent capacity share divisions can be easily explained and financing easily 

calculated, a benefit for utility officials when convincing a governing board or the general public 

that such an agreement is sensible. On the other hand, being locked into an allocation set based 

on long-term demand projections forces utilities to pay for presently unused capacity. 

Furthermore, if projections for one of the partners is much less accurate than for the others, 

having a fixed allocation can quickly become a problem: projections that underestimate growth 

can leave a utility short of capacity to meet demands; overestimating growth leaves the utility 

with relatively large debt service payments, for excess capacity that will not be used, with 

limited revenues generated by the slow growth. In a worst case scenario, this approach can lead 

to one or more partners suffering so much disproportional financial hardship that their ability to 

remain in the partnership may suffer and expose the entire agreement to financial risk.  

Uniform rate payments. In the case of WWWRF, the agreement involves independent 

utilities using a contract to create the capacity sharing framework. In others situations, a new 

entity such as an authority may be created to structure the sharing framework and then, in turn, 

enter into additional agreements with other utilities. For example, utilities may be reliant upon an 
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over-arching regional authority for provision of water or wastewater services at wholesale rates, 

which utilities can then distribute to customers. In Florida, the Tampa Bay Water Authority 

follows this format through agreements with the communities of Tampa, St. Petersburg, New 

Port Richey, as well as Hillsborough, Pinellas and Pasco Counties. Formed in 1998 in response 

to environmental concerns, area governments sold all groundwater wellfields to Tampa Bay 

Water. As part of the agreement, each member government (with the City of Tampa, also 

maintaining other water supply sources, as an exception) agreed to exclusively purchase water 

from Tampa Bay Water. In exchange, Tampa Bay Water is obligated to meet all member 

government demands (Asefa 2015). Because this region expects to grow into the future, the 

terms of the agreement leaves Tampa Bay Water charged with developing additional water 

supply infrastructure to meet future demands, as well as maintain existing wellfields. Utilities 

that rely on Tampa Bay Water for water could have entered into some type of allocation structure 

similar to what was done in the Triangle, however the utility partners instead chose a very 

different approach. Tampa Bay Water recovers all of its capacity capital costs as well as 

operating costs through a uniform volumetric rate on water sales to member governments. 

Based on the total demands from member utilities in a given year, the uniform rate is set 

in order to recover any expected fixed costs, including any financial commitments to structural 

rehabilitation or expansion by Tampa Bay Water. As a result, the uniform rate paid by member 

utilities can vary year-to-year (Fig. 3.1, right column). As opposed to the fixed allocation 

agreement model of WWWRF in which member utilities must pay fixed costs that cover both 

their used and unused capacity in the project, the Tampa Bay Water uniform rate structure allows 

costs to partnering utilities to shift in time according to changes in aggregate demand. This 

approach provides benefits to growing utilities that do not yet require the water supply capacity 
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they will need in the far future by essentially spreading the cost of unused capacity among 

agreement partners based on current use. In the example of a uniform rate agreement in Fig. 3.1, 

Utility 1 (purple) and Utility 2 (green) have about the same demand when repayment begins on 

incurred debt, but Utility 2 grows faster than Utility 2. Under the uniform rate agreement 

structure, the two utilities have almost equal shares of debt service initially, but Utility 2 is 

responsible for more and more debt as repayment continues and demands grow. 

The relative impact of the uniform rate approach on different partners can vary based on 

their initial capacity projections/requirements and their actual growth patterns. If expected 

growth for a utility never materializes, for instance, then the other utility partners will end up 

paying higher volumetric rates to cover the fixed costs of the unused capacity originally reserved 

for the utility. Furthermore, with Tampa Bay Water obligated to meet any demands, there is 

reduced incentive for member utilities to encourage conservation. Member utilities have fixed 

costs of their own distribution systems, meaning reduced retail water sales increases the 

volumetric price they need to charge their end users to cover distribution. Any utility conserving 

much more water than others on the agreement would experience reduced revenues in their own 

system while paying wholesale rates driven by infrastructure development to meet demands of 

other, non-conserving partners. So long as costs of new capacity is shared volumetrically among 

members, faster growth in individual systems results in lower costs to end users in those systems 

while slower growth increases end user costs.  

Temporary capacity sharing through third-party contracts. When infrastructure 

investment based on long-term demand projections results in long periods of time with capacity 

that is not needed, as could be the case for the WWWRF or for future supply options developed 

by Tampa Bay Water, another option for facility owners is to make this spare capacity available 
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through temporary contracts with outside partners. In Colorado, the Water, Infrastructure and 

Supply Efficiency (WISE) Partnership (between the Cities of Aurora and Denver and parties to 

the South Metro Water Supply Authority, SMWSA) leveraged excess capacity in its existing 

Prairie Waters Project through contracted water sales between Aurora (and Denver) and 

SMWSA (Commissioners 2013). By entering into “take-or-pay” agreements with SMWSA, 

Aurora delivers water annually, sold at a set volumetric rate, as excess capacity is available, but 

is obligated to deliver a fixed amount of water over each decade of the contract. When Aurora 

makes water available SMWSA must either (a) purchase water at the current volumetric rate, or 

(b) make a “minimum payment” to compensate Aurora for the right to purchase water.  

An agreement of this nature can provide a stable source of revenues for the selling party, 

in this case Aurora, as well as a consistent source of water for the buyer over the long term. The 

same obligations that make this an appealing agreement structure, however, also generate risk for 

both parties. In any given year, there may be no guarantee of water deliveries to the buyer. Even 

if a minimum allowable sale per time period is specified, a multi-year drought combined with 

unexpected rapid growth may leave the seller at the end of a ten-year period obligated to sell 

large quantities of water that no longer would be considered excess capacity. The buyer, even in 

cases where water is not needed or wanted, would be required to purchase at least some of any 

supply made available. Because of the uncertain nature of deliveries guaranteed under take-or-

pay contracts or minimum purchase agreements, it is imperative that water buyers be in a 

situation that allows for the risk of water delivery volatility. For instance, groundwater users 

(making up all of the buyers under the WISE partnership) are able to draw water as needed in the 

absence of available water deliveries and have the operational flexibility necessary to enter into 

such an agreement.  
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Not as restrictive as take-or-pay agreements, an agreement might also take the form of a 

volumetric contract without obligations of delivery or provision for either party. The City of 

Durham, NC, for instance, maintains a mutual aid agreement with neighboring Chapel Hill, NC 

to provide water through shared interconnections in times of scarcity (OWASA & Durham 

2009). Should either party request an emergency transfer of water at any volume, the other 

would attempt to fulfill the request, and be compensated at a volumetric rate for water 

transferred, but is not obligated to do so. In the context of Durham and Chapel Hill, this 

interlocal agreement covers emergency conditions only; more generally, this agreement structure 

could be applied between utilities under any conditions and be used to transfer water when spare 

reservoir capacity became available. 

For communities within the same geographic area – and therefore often experiencing 

similar climate and weather patterns – the right to refuse or reduce the volume of water 

transferred as a result of an agreement of this nature may be beneficial should the entire region 

fall into drought. Just as the take-or-pay agreements introduce risk to either party due to their 

more stringent clauses, though, a voluntary agreement is risky for the inverse. In a voluntary 

agreement, there is no assurance that any given transfer request will be completely or partially 

fulfilled. Ideally, neither party would rely on such an arrangement as a primary source of water 

supply or revenues.  

Partially reserved capacity allocations with periodic adjustments. The Water and Sewer 

Authority of Cabarrus County (WSACC), a North Carolina wholesale wastewater utility formed 

to serve other utilities (similar to the Tampa Bay Water Authority) developed an innovative debt 

distribution policy to allocate capital costs to capacity holders in a unique manner (WSACC 

2004). Initially, each retail wastewater provider was required to request and reserve capacity in 
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the WSACC treatment facility. The debt service obligations of each purchaser were proportional 

to the percentage of their allocation over the total allocated amount. Capacity that was formally 

reserved could be allocated in the future but until that time occurred would be covered by the 

fixed payments of the current allocation holders. If, in the future, a utility exceeded their reserved 

allocation, they were obligated to revise their reserved capacity and were responsible for paying 

an adjusted amount of debt service for that year. Not only would current and future payments be 

based on updated allocations, but payment obligations would become retroactive as if the 

updated allocations had been fixed over the lifetime of the agreement to date. Utilities with 

increasing allocations relative to others would thus be made to compensate other agreement 

members for their increased share through ”Square One Adjustment” payments, while members 

with allocations shrinking relative to others would be paid by other utilities in proportion to the 

reduction.  

Through WSACC’s Square One payments, debt service responsibilities can be adjusted 

to scale with changing allocations, offering a flexibility not available under long-term, fixed 

allocation agreements. Depending on the scale of change to allocations of participating partners, 

retroactive “true-up” payments could range from minimal to substantial. In the case of WSACC, 

adjustments appeared to become so small that WSACC discontinued the retroactive portion of 

the agreement after several years.  

Additional considerations for capacity sharing agreements. The agreement structures 

presented above are only the tip of the iceberg when it comes to the shape agreements may take. 

An agreement can be bolstered or undone by its own unique context and, to differing degrees, 

not perform as expected.  
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Beyond the structural components of an agreement (when water is transferred, when 

payments must occur, flexibility of capacity allocations, etc.), external sources of uncertainty can 

also impact the effectiveness of an agreement. One such example is the interlocal agreement 

between the Karengnodi Water Authority (KWA) and local communities in eastern Michigan. 

The KWA, formed by several units of government including Genesse County and the City of 

Flint, MI, began construction of a pipeline capable of delivering water from Lake Huron to 

Genesse County, Flint and a host of surrounding populations. Construction of the pipeline to 

provide water to interested communities was the founding purpose of the KWA (City of Flint 

2013).  

To allocate pipeline capacity and financing, KWA sold annual allocations in increments 

of 1 MGD “units” (up to 85 MGD permitted for the pipeline) on a first come, first served basis 

(Authority 2010). Each unit carried a monthly fee for the capacity reservation, combined with a 

uniform volumetric rate on water sold to ensure all KWA costs (including payments on debt for 

pipeline construction) could be met (Authority 2010).  

However, the agreement structure for KWA pipeline allocation carried high levels of risk 

for both the KWA and any community relying on the pipeline for supply. A capacity “buyer” in 

the KWA pipeline was not obligated to purchase water (when available) from KWA and could 

modify or exit any agreement with KWA after one year. Without guaranteed revenues from 

water sales, KWA was forced to turn to limited tax pledges by its founding members to secure a 

general obligation bond for the project. At the same time, if KWA was unable to attract a large 

enough pool of capacity buyers, the wholesale rate would become expensive if only a fraction of 

the pipeline capacity was reserved.  
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To make matters more complicated, the KWA pipeline was constructed as a preferred 

lower cost alternative to an existing regional water supply source, the Great Lakes Water 

Authority (GLWA). Realistically, this places an upper bound on the rate KWA could charge 

utilities purchasing capacity in the pipeline without losing customers to the GLWA. Political risk 

also surrounds this project. Primarily owing to Flint’s recent water crisis, local officials became 

wary of shifting the City’s water supply again away from Detroit to a different source (Colomer 

2017). As a result Flint, having initially purchased a stake in the KWA pipeline, chose in the 

future not to purchase pipeline capacity, instead entering a long-term agreement with the GLWA 

(Colomer 2018). While the eventual terms of the agreement with GLWA shifted some of this 

responsibility to GLWA, the loss of Flint as a significant KWA pipeline partner could result in 

costs being absorbed by other partners. In partnering with Flint under the structure of the original 

agreement, Genesse County therefore took on significant counterparty risk through the KWA 

that they may not have taken on if other approaches had been followed.  

 

3.2 Case Study and Methods 

To offer a quantitative perspective on the impact the initial capacity sharing approach can 

have on partners’ costs and risk allocation, we applied different combinations of the capacity 

sharing approaches discussed above to a project currently under consideration in the Research 

Triangle (Triangle) of North Carolina. The Triangle is one of the nation’s fastest-developing 

areas, and municipalities within the region are concerned with the effective allocation of Jordan 

Lake, the largest water source in the Triangle, in order to meet future demand growth. Five local 

government utilities– Pittsboro, Chatham County, Orange Water and Sewer Authority 

(OWASA), Orange County, and Durham – have partnered to begin planning and eventually 
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finance a new water treatment plant on the west side of Jordan Lake (WJLWTP) that will help to 

meet each utility’s future demands (Governments 2014). Most of the plant’s initial demands are 

expected to come from Durham, currently by far the largest user among the partners, and shift 

toward the other utilities by 2060 – Pittsboro and Chatham County are presently relatively small 

but have the fastest projected demand growth in the region. Other utilities in the area are 

currently not formal partners but could be interested in acquiring either long term or short term 

capacity from the plant. Given all factors in play, an agreement should be designed that (1) 

adequately allocates capacity and costs among partners, and (2) can adapt to unexpected future 

conditions (i.e. shifts in demand growth from projections).   

Agreement structures and demand scenarios. To address both of these points, we 

evaluate a handful of agreement structures and approaches under different future growth 

scenarios (Fig. 3.2). We assume three cost sharing structures based on the approaches and 

examples described above: (1) fixed capacity allocations; (2) fixed capacity allocations with 

volumetric third-party sales and take-or-pay contracts available to other utilities; (3) uniform rate 

payments that are adjusted each year based on actual usage. Each approach is subjected to 

several future scenarios of demand growth (with demand growing as projected for each utility 

unless otherwise mentioned): (a) demand grows as projected for all utilities; (b) all regional 

utilities grow slower than expected; (c) Pittsboro and Chatham County experience slower-than-

anticipated demand growth; (d) Pittsboro and Chatham County demand rises rapidly over a short 

period (ex: large commercial or mixed-use development occurs), then levels off slowly; (e) 

Durham and OWASA demands slow and gradually plateau after 20 years. Comparing the 

resultant costs to utilities in each combination of agreement and demand scenario can offer 

insight to the issues and tradeoffs utilities may face when implementing cooperative agreements. 
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Figure 3.2: Modeled demand scenarios over lifetime of debt repayment 

 

Modeling description. A Microsoft Excel model of the WJLWTP project was constructed 

to simulate water demands to the WTP and financial payments by utilities annually over a 

twenty-five-year period. The WJLWTP project was assumed to be debt financed, repaid after 

twenty-five years with constant, equal annual payments over the life of the bond. Additional 

costs could occur as well, such as both fixed and variable (relative to amount of water treated at 

the plant) operations and maintenance (O&M) as well as payments between utilities for water 

delivered as a part of volumetric or take-or-pay contracts. Different components of the WJLWTP 

project are split into stages within the model described in further detail in Appendix 2; for 
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simplicity, each stage was constructed on the same year. Based on estimates of future use by JLP 

(2014), Chatham County, Durham, Orange County3, OWASA, and Pittsboro were assigned fixed 

allocations in the WJLWTP of 30.3%, 51.5%, 3.0%, 6.1%, and 9.1% of built treatment capacity. 

These values were only applied to modeled agreements where treatment capacity allocations 

were fixed. Initial capital costs ($243.3 million total), and estimates of O&M costs were based on 

a preliminary study by JLP (2014). Evaluation of results is based on costs incurred from the 

project to each utility, converted and presented as levelized, “unit” cost ($/kgal) of water 

treatment per utility (the total financing obligation for a utility divided by sum of its total water 

demand over the lifetime of the project) and the net present value cost per utility (the sum of 

present-valued annual costs to a utility over the financing period of the project). Additional 

detail, including the year-to-year calculation of allocations, costs, and water demands, can be 

found in Appendix 2.  

 

3.3 Results 

Three cost sharing approaches (fixed allocations, fixed allocations with a 2 MGD 

minimum purchase agreement with another utility and uniform rate), were tested under four 

different future demand conditions. Differences between combinations of cost sharing 

approaches and demand scenarios are outlined here based on unit costs per thousand gallons of 

water treated (Figures 3.3 and 3.4), which include fixed and variable operations and maintenance 

costs. Present valuation over the 25-year WJLWTP project assumes a 2.7% discount rate.  

Variation in Outcomes. Depending on the approach modeled, utilities experienced 

notable differences in capital commitment and unit costs (Fig. 3.3). With fixed allocations, 

 
3 Based on conversations with Triangle officials, it is possible that Orange County is no longer actively pursuing an 
allocation stake in the WJLWTP. 
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Chatham County and Pittsboro would see higher unit cost of water treatment than Durham, 

Orange County, and OWASA when demands grow as anticipated regionally (Fig. 3.3, left 

panel). When another utility is available as a buyer for unused treatment capacity through 

minimum purchase agreements in early years of the project, the unit cost of water treatment for 

all utilities drops relative to an agreement structure with fixed allocations and no third-party sales 

(Fig. 3.3, center vs. left panels); this reduction in unit costs is felt more strongly by Chatham 

County and Pittsboro, whose small water demands in early years relative to large allocation 

stakes anticipating future growth expose them to high unit cost of treatment unless another utility 

can provide compensation for some of their unused capacity.  

 

Figure 3.3: Unit costs of treated water for agreement member utilities across three tested 
approaches under expected demand growth conditions. Costs shown are those accrued over a 25-
year debt repayment period. 

True to name, uniform rate payment agreements lead to nearly even unit cost of treatment 

for participating utilities (Fig. 3.3, right panel). The small utilities of Chatham County and 

Pittsboro that requested relatively large fixed capacity allocations benefit from having a uniform 

rate agreement; this occurs because the uniform rate agreement weights annual payments by 
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member utilities based on observed demands, not future expectations. Until Chatham County and 

Pittsboro “grow” into their expected long-run demands, utilities with already large demands pay 

the bulk of debt service on the project. Because of this, Durham, Orange County, and OWASA 

unit costs increase because their demands are initially greater than the other two utilities but do 

not grow at as fast into the future. Table 3.1 summarizes the general characteristics of utilities in 

the Triangle and the contract structure likely to benefit each based on regional expectations of 

future growth. 

 

Table 3.1: Triangle utility classification and outcomes under expected conditions 

Utility Relative Size  
(2010 
population) 

Expected 
Demand 
Growth 

Lowest Unit 
Cost  
Agreement 

Primary Risk 
Source 

Chatham 
County 

Small (10,200) Fast Uniform Rate Low demand 
growth 

Durham Large 
(227,100) 

Slow Fixed 
Allocations 

Counterparty 
over-projection 
of demand 

Orange 
County 

Small (100) Slow Fixed 
Allocations 

Counterparty 
over-projection 
of demand 

OWASA Large (79,400) Slow Uniform Rate Counterparty 
mis-projection 
of demand 

Pittsboro Small (3,700) Fast Uniform Rate Low demand 
growth 

 

Consequences of demand growth scenarios. The future demand trends of member utilities 

too have a substantial impact on the financial outcomes of each agreement structure. To 

summarize the influence of changes in demand growth, we will focus on the changes to unit cost 

and net present value cost fluctuations for Pittsboro (Fig. 3.4). When Pittsboro growth falls 
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below expectations, unit costs rise under fixed allocation agreements even when third-party sales 

are available (Fig. 3.4, left/center panels). This pronounced increase in costs is because Pittsboro 

chooses to reserve a large allocation stake relative to its initial demand, making marginal 

reductions in demand growth especially costly. Conversely, rapid early growth in Pittsboro 

reduces unit costs for the utility. Both effects indicate that sales agreements in concert with fixed 

allocations cannot entirely insulate a utility on this project from the financial risk of demand 

uncertainty.  

 

 

Figure 3.4: Unit costs of treated water for Pittsboro across three tested contract structures under 
five demand growth scenarios. 

 

To a smaller degree, changing demand growth by other utilities like Durham and 

OWASA can also influence Pittsboro. A plateauing of Durham and OWASA demand marginally 

raises unit costs for Pittsboro and other utilities by increasing the share of costs borne by 

Pittsboro under a uniform rate agreement (Fig. 3.4, right panel). However, a fixed allocation 
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agreement structure prevents Pittsboro from experiencing counterparty risk as a result of 

incorrectly-projected demands by other utilities in this example, as capacity allocations and 

payments by utilities on them are fixed regardless of demand growth trends. While debt service 

payments and costs related to fixed allocation sizes do not affect Pittsboro net present value costs 

between demand scenarios, changes in variable O&M or volumetric-based treatment costs also 

impact the net present value costs of the project for Pittsboro. Under a uniform rate agreement, 

net present value costs for Pittsboro are able to scale as demand changes, spreading the financial 

risk of over-projecting future demands among project partners and reducing unit costs. This “cost 

spreading” feature of a uniform rate agreement is likely appealing to initially small utilities like 

Pittsboro hoping to grow rapidly but may not have capital on hand to cover payments on a large 

fixed capacity allocation before demands mature. 

  

3.4 Discussion and Conclusions 

While each of the agreement approaches discussed above has appealing elements, they 

can also carry notable risk for utilities taking part in them. Uncertainty in future demands may 

cause fixed allocation agreements to become unpalatable, especially for utilities like Pittsboro or 

Chatham County who are small but expect to contribute the majority of demand growth among 

partner utilities. However, a uniform rate agreement may not seem as fair for a relatively large 

utility like Durham, already contributing the largest portion of funding for a project, having to 

cover potential shortfalls in future demand that Pittsboro may experience through an increase in 

payments and paying for unused capacity reservations for Pittsboro while the utility grows (even 

if growth occurs as projected). Having flexible allocation agreements, like the uniform rate 

structure presented here, can be a useful way to spread risk of demand uncertainty among 
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agreement partners, but for the same reason it may be advantageous as well to lock into a fixed 

allocation instead. Though it did not prove to be a perfect solution in our modeling to demand 

mis-projection, having third-party agreements in place with other utilities such as minimum 

purchase or take-or-pay contracts can provide flexibility for utilities owning fixed capacity in a 

project to lease portions of unused capacity temporarily, limiting financial exposure of demand 

uncertainty.   

Along with unit costs of a potential agreement, changes in net present value costs to each 

utility are also important to consider (Fig. 3.5). Durham, with the greatest demands among 

participating utilities, is always responsible for the bulk of costs across all agreement structures. 

Under most demand scenarios, Chatham County and Pittsboro contribute the second and third 

largest amounts toward covering project costs. Relative to an agreement with fixed allocations 

(Fig. 3.5, left panel), sales to other utilities through minimum purchase agreements reduce the net 

present value costs of the project to all participating utilities. Even a modest 2 MGD minimum 

purchase agreement can reduce collective costs to member utilities by tens of millions of dollars 

(Fig. 3.5, Raleigh costs, center panel). Implementation of a uniform rate agreement structure has 

different impacts depending on the evolution of demands for each utility (Fig. 3.5, right panel), 

but under expected demand conditions Durham covers more costs than it would with fixed 

allocations because other member utilities are using much smaller portions of treatment capacity 

for most of the 25-year bond repayment period. Smaller utilities – most notably Chatham County 

– pay less than they would have given fixed allocations for the same reason.  
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Figure 3.5: Net present-valued costs for each member utility across agreement structures under 
expected future demand growth. Cost estimates aggregated over debt repayment period of 25 
years with discount rate of 2.7%. 

 

Just as cooperative agreements can be mutually beneficial, they also subject utilities to 

counterparty risk. In a fixed allocation agreement, for example, a utility expecting to grow 

considerably might be incentivized to underestimate its growth when requesting an allocation, if 

it felt that political intervention to correct any supply shortfalls would occur or that it could enter 

a temporary contract with another utility with a capacity allocation to purchase its spare capacity. 

Both options could save a utility by avoiding debt service obligations of owning a larger capacity 

stake in the project (potentially placing a heavier burden on other stakeholders) while still 

offering a pathway to fulfilling demands. Similarly, one out of several utilities paying a uniform 

rate to receive water from a regional authority might be incentivized to overestimate future 

demands if the regional authority is obligated to provide supply to each member utility. Any 

costs of additional infrastructure built would be spread among all utilities uniformly, even if the 

others have no need for future supply increases.  



87 
 

Another important facet of any cooperative agreement is how ownership of structural 

assets is organized. Direct ownership by a utility of a stake in a water treatment plant or 

reservoir, as is the case with the WWWRF, can have benefits. On the other hand, relying on a 

regional authority to provide water and develop infrastructure – leaving utilities as wholesale 

customers rather than operators of water supply – may be preferred.  

There are any number of ways neighboring utilities may choose to cooperate through 

cooperative agreements. As such, it is imperative to weigh the costs and benefits of different 

methods when designing and agreeing to any contract. By identifying and evaluating a range of 

designs already in place, this work offers guidance to utility managers and regional planners on 

the risks of infrastructure planning and management coordinated between multiple partners. 
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CHAPTER 4 : IMPACT OF INTER-UTILITY AGREEMENTS ON COOPERATIVE 
REGIONAL WATER INFRASTRUCTURE INVESTMENT AND MANAGEMENT 

PATHWAYS4 
 

4.1 Introduction 

Water utilities anticipate a range of risks to future water supply reliability and the 

provision of affordable services (AWWA, 2018). Hydrologic changes, resulting from climate 

and land use-landcover (LULC) changes, will likely lead to increasing uncertainty in the quantity 

and timing of surface and groundwater availability in many regions world-wide (IPCC, 2014b; 

USGCRP, 2018; World Bank, 2016; WUCA, 2016). Water demand growth is also expected to be 

a significant driver of future water scarcity (AghaKouchak et al., 2015, 2021). Spending on 

maintenance of aging water and wastewater infrastructure is also increasing (CBO, 2015, 2018), 

further straining the budgets of utilities trying to ensure reliable water supply while keeping 

customer rates affordable. 

Increasingly, utilities are turning to ‘portfolio’ strategies that couple supply expansion 

with water use restrictions, and, increasingly, water transfers to address water supply risks 

(Brown et al., 2015; Loucks & van Beek, 2017; Lund, 2015). These techniques can be effective, 

but face challenges; as one example, supply-side capacity expansion has traditionally been the 

favored option for meeting long-term demand growth (AWWA, 2011; Gleick, 2003), however 

the rate of new dam and reservoir construction has declined in recent decades as the number 

 
4 This chapter has been submitted for publication: Gorelick, D.E., Gold, D.F., Reed, P.M., & Characklis, G.W. 
(2021). Impact of inter-utility agreements on cooperative regional water infrastructure investment and management 
pathways. In review. Water Resources Research. https://www.essoar.org/doi/abs/10.1002/essoar.10507429.1  
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cost-effective sites has dwindled and regulatory approval has become more onerous (Perry & 

Praskievicz, 2017). Short-term, drought mitigation measures such as water use restrictions 

(demand-side action) enjoy widespread use (Kenney et al., 2004; Milman & Polsky, 2016), but 

frequent implementation can be unpopular with customers and restrictions may not meet their 

desired reduction targets (Olmstead & Stavins, 2009a). Similarly, water transfers have shown 

promise as a short-term tool to alleviate scarcity (Gupta & van der Zaag, 2008; Lund & Israel, 

1995; NRC, 1992), but typically involve additional costs, sometimes in the form of expanded 

conveyance infrastructure, which can discourage their implementation (Characklis et al., 2006a; 

Israel & Lund, 1995). Water transfers may also occur intermittently and at varying magnitude, 

adding complexity.  

Water transfer purchases and water use restrictions are often motivated by drought and 

are thus implemented at unexpected intervals such that the cost increases and revenue reductions, 

respectively, can also carry unexpected financial risk (Barr & Ash, 2015; Baum & Characklis, 

2020; Lund, 1993; Tiger et al., 2014). Mismatch between a utility’s primarily fixed costs – debt 

service owed on infrastructure and fixed operating expenditures – and volumetric water sales can 

destabilize utility cashflow, potentially leading to budget shortfalls. Even if this does not occur, 

any elevated risk of non-performance with respect to debt payments can result in lower credit 

ratings and a higher cost-of-capital, a particular concern in the capital-intensive water utility 

sector, culminating in higher rates for customers (Hughes et al., 2014; Hughes & Leurig, 2013; 

Raftelis, 2005). 

As an alternative, water utilities are more frequently considering inter-utility agreements, 

leveraging proximity and surplus capacity with neighboring utilities to provide additional 

operational and planning flexibility (EFC, 2009; Kurki et al., 2016; Reedy & Mumm, 2012; 
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Silvestre et al., 2018; Sjöstrand et al., 2018, 2019; Tran et al., 2019). Inter-utility agreements 

between utilities (sometimes termed inter-local agreements) can take a variety of forms that offer 

a range of benefits (EPA Office of Water, 2017): economies of scale in development and 

operation of regional water supply infrastructure (Apex et al., 2015); emergency or intermittent 

access to additional water supply (OWASA & Durham, 2009); and consistent sources of revenue 

from leasing of excess water supply or treatment capacity (Commissioners, 2013; Reedy & 

Mumm, 2012). However, despite widespread use, and long-standing institutional structures 

allowing inter-local agreements to facilitate cooperation in US states (e.g. NC General Statutes, 

1971), quantitative assessment of their ability to mitigate both supply and financial risk is 

limited. In addition, differences in the legal definition of an inter-local agreement across U.S. 

states, as well as internationally, hamper the ability of past research to offer generalizable 

takeaways regarding agreement performance.  

Several studies have reviewed the breadth and efficacy of regional agreements in practice 

(Silvestre et al., 2018; Tran et al., 2019), often via survey or data collection from utilities or 

resource managers engaged in existing partnerships (Bendz & Boholm, 2019; Kurki et al., 2016). 

A handful of studies have attempted to quantify economic costs and benefits (Arena et al., 2014; 

Sjöstrand et al., 2018, 2019) or financial outcomes (Gorelick et al., 2019) of agreements through 

scenario modeling of regional case studies, but are limited in the sources of uncertainty 

addressed and do not consider dynamic adaptive response by utility managers to mitigate time-

evolving risks (i.e., droughts). Other studies of regional utility-scale decision-making under 

broad hydrologic and operational uncertainties include dynamic risk management by system 

actors (Gold et al., 2019; Mortazavi-Naeini et al., 2014; Tian et al., 2018; Trindade et al., 2019); 

however, inter-utility agreement structures have not been the primary focus of these studies, and 
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alternative agreement structures were not considered. Important questions therefore remain 

regarding the structure of inter-utility agreements, particularly as relates to their performance 

under uncertainty. 

While inter-utility cooperation has advantages over independent utility financing and 

operation, agreements may also bring about unintended consequences (Bendz & Boholm, 2019; 

Feiock, 2013). Cooperative control over water supply and operations can expose agreement 

partners to the risks of other partners (their counterparties) with whom they share financial and 

operational ties. The risk of supply failure may increase if partnerships involve consolidation of 

supply or treatment capacity to a single facility (Sjöstrand et al., 2018). The structure of an 

agreement involving commitment to fixed or variable capacity or joint financing may also limit 

its effectiveness if external conditions (e.g., demand growth) diverge from projections (Gorelick 

et al., 2019). In addition, costs and benefits of a regional partnership may not be shared equitably 

between individual partners (Dinar et al., 1992; Dinar & Howitt, 1997; Parrachino et al., 2006); 

collective action that requires compromise between utilities may be short-lived if an agreement 

becomes impractical for one or more participants as conditions change, even if it results in a 

better aggregate outcome at the regional scale (Madani & Dinar, 2012; Read et al., 2014).  

Broadly, there are a number of ways in which counterparty risk may evolve under 

hydrologic and demand growth uncertainty. Many studies have considered the influence of 

endogenous (e.g., utility decision-making) and exogenous (e.g., population growth) factors may 

have on individual or regional utility performance (Borgomeo et al., 2018; Gold et al., 2019; 

Herman et al., 2015). However, little attention has been given to how increasing institutional 

connectivity via cooperative agreements may degrade utility (or regional) outcomes by partially 

exposing an individual utility to a partner’s risks. Furthermore, despite recognition of demand 
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growth as an important factor in water utility performance outcomes (Donkor et al., 2014; 

Herman et al., 2014; Trindade et al., 2019), projections of future growth in practice are often 

reduced to simplistic, linear trends (TJCOG, 2014; Walker, 2013) that exclude potential year-to-

year uncertainty in growth rate. Quantifying the success of inter-utility agreement structures will 

require not only consideration of the flexibility of the agreement, but also contextual factors such 

as agreement partners, alternative supply projects, hydrologic and demand growth conditions.  

This research represents the first application of dynamic adaptive water supply and 

management modeling and multi-objective optimization to evaluate the impact of inter-utility 

agreements in regional contexts. Specifically, this work explores the factors contributing to the 

benefits as well as the financial risks in inter-utility agreements through modeling cooperative 

regional infrastructure investment and water portfolio management that impacts six adjacent 

water utilities in the North Carolina Research Triangle (Triangle). Two inter-utility agreement 

structures are tested across a range of demand futures to assess their robustness under demand 

growth uncertainty. Through a comparison of supply and financial performance across 

agreement structures, at both a regional and individual utility scales, results respond to the 

questions: (1) how do differences in inter-utility agreement structure impact supply and financial 

risk across multiple utilities, and (2) to what degree do demand growth uncertainty and 

counterparty risk influence the viability of regional cooperation? 

 

4.2 Methods 

This work assesses the impact of different inter-utility agreement formulations on 

regional and individual utility performance in the Triangle through multi-utility regional 

modeling of decision-making, evaluating both water supply and financial outcomes under 
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uncertainty. Multi-objective optimization is included in the modeling framework to understand 

the optimal tradeoffs for each agreement structure.  

 

4.2.1 Region of Focus 

The Triangle is a rapidly growing region with a recent history of drought that has raised 

concerns about water supply reliability. Home to more than two million residents, the Triangle 

historically refers to the three major cities of the region, Raleigh, Durham, and Chapel Hill. 

Growth patterns in the larger Triangle area have also spread to nearby towns of Cary, Pittsboro, 

and regions of Chatham County. This study broadens beyond prior published studies of the 

Triangle by integrating water utilities from all six areas – Town of Cary Water Resources 

Department, Chatham County Public Utilities, City of Durham Department of Water 

Management, Orange Water and Sewer Authority (OWASA; Chapel Hill), Town of Pittsboro 

Public Utilities, and Raleigh Water (Figure 4.1) – into our regional modeling framework. 

Water demands in the Triangle are expected to grow considerably in the future (Table 

4.1), however demand growth is anticipated to be asymmetric geographically. Utilities for larger 

population centers Raleigh, Durham, Cary, and OWASA do not expect rapid growth, while 

Pittsboro plans for demand increases of nearly an order of magnitude by 2060 (relative to 2015). 

Chatham County has three water service areas, however the County projects the vast majority of 

population and water demand growth to occur in its North System (Hazen and Sawyer, 2020). As 

a result, Chatham County North is the only water service area included in regional planning and 

therefore the only County system considered in this analysis. 
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Figure 4.1: Six population centers (colors) of this study in the Research Triangle of North 
Carolina. Water demands (in annual average millions of gallons per day) are given from 2015 to 
2060 on inset plots based on utility projections (TJCOG, 2014; Hazen and Sawyer, 2020). 

 
Table 4.1: Projected Research Triangle water demands in millions of gallons per day (MGD). 

Triangle Utility 2020 2040 2060 
Cary** 27.5 40.7 45.0 
Chatham County (North System)* 2.1 2.4 2.6 
Durham 30.7 38.1 44.4 
OWASA 8.3 10.8 12.9 
Pittsboro* 1.1 2.6 5.6 
Raleigh 64.4 91.3 115.0 
Total (avg MGD) 134.1 185.9 225.5 

* Pittsboro and Chatham County demands from 2019 projections by Hazen and Sawyer (2020) 
** Represents sum demands of Towns of Cary, Apex, and Morrisville 
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Given demand growth projections, the Triangle utilities plan to expand water supply 

infrastructure (Table 4.2). A range of potential projects are under consideration by each utility or 

group of utilities to secure reliable water supply, differing in size (supply or treatment capacity), 

capital cost, earliest year construction may begin (represented here as the required permitting 

period for a project before it may be constructed), and whether the project is cooperative across 

multiple utilities. 

Regional interconnections between utility water distribution systems also allow utilities 

to transfer quantities of treated water upon request. Durham, OWASA, and Raleigh can purchase 

treated water transfers from Cary’s water treatment plant (WTP) that are then piped via 

interconnection to the purchasing utility. Durham can also sell water to Chatham County via 

transfer through a shared interconnection, as can Pittsboro through a separate interconnection. 

Transfers via these interconnections have been used in the past as alternative sources during 

times of high demand and/or low supply (OWASA & Durham, 2009); other interconnections in 

the Triangle are used to regularly supply water that meets a utility’s demands. Triangle utilities 

also employ conservation to manage water demand, implementing both voluntary and mandatory 

water restrictions if necessary to reduce water use. Each Triangle utility maintains one or more 

reserve (contingency) funds to mitigate financial disruptions, such as cost and revenue 

fluctuations from restriction or water transfer use. 

 

 

 

 

 



96 
 

Table 4.2: Available infrastructure expansion options for Triangle utilities. Based on regional 
planning documents and consulting reports (TJCOG, 2014). 

 
* project that may be implemented in multiple stages, stage capacity and costs are cumulative 
˄ cooperative project between utilities 
ᵃ utility not included in modeling 
† costs not included in modeling (project occurs immediately after start of modeling period but is 
not ROF-triggered) 
 

4.2.2 Problem Formulation 

4.2.2.1 Regional Water Supply Simulation Model 

To simulate water supply system planning and management through 2060 by Triangle 

utilities, this study develops a utility-scale computational model of the regional system using the 

WaterPaths stochastic simulation software. WaterPaths was developed specifically to enable 

computationally-efficient representation of multi-actor water systems under deep uncertainty 

(Trindade et al., 2020). WaterPaths offers computational flexibility to simulate the broad suite of 

decision-making options available for water utilities to adapt to evolving risks. The simulation 

framework is able to efficiently scale with high numbers of regional actors (utilities), incorporate 

a wide range of uncertainties (i.e. of hydrology, demand, and additional deeply uncertain 

factors), and facilitate simulation as well as optimization of water supply infrastructure planning 

Project Utility
Capacity             
(MG or MGD)

Capital Cost      
($USD millions)

Earliest Availability 
(year)

Cary-Apex WTP Upgrades* Cary 8.0, 16.0 121.5†, 243.0† 2015
Cape Fear River Intake in Harnett County Cary 12.2 221.4 2032
Allocated Treatment Capacity in Sanford, NC WTP˄ Cary / Sanfordᵃ 10.0 56.0 2015

Allocated Treatment Capacity in Sanford, NC WTP*˄
Chatham County / Pittsboro 
/ Sanfordᵃ

1.0, 2.0 / 3.0, 9.0 7.9, 11.2 / 49.6, 69.3 2022, 2028

Western Jordan Lake Regional WTP*˄
Chatham County / Durham / 
OWASA / Pittsboro

33.0, 54.0 243.3, 316.8 2020, 2022

Reuse of Reclaimed Water* Durham 2.2, 11.3 27.5, 104.4 2022
Teer Quarry Durham 1315.0 22.6 2022
Lake Michie Reservoir Expansion* Durham 2500.0, 7700.0 158.3, 203.3 2032
Cane Creek Reservoir Expansion OWASA 3000.0 127.0 2032
Stone Quarry Expansion* OWASA 1500.0, 2200.0 1.4, 64.6 2037
University Lake Expansion OWASA 2550 107 2032
Haw River Intake and WTP Expansion* Pittsboro 2.0, 4.0 18.6, 27.9 2017, 2020
Falls Lake Reallocation Raleigh 5637 142 2022
Little River Reservoir Raleigh 3700 263 2032
Neuse River Intake Raleigh 16 225.5 2032
Richland Creek Quarry Raleigh 4000 400 2055
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policies. This study contributes an extension of a prior WaterPaths Triangle system 

implementation, expanding from four to six regional utilities (Gorelick et al., 2020) and 

exploring a wider range of uncertainties (detailed below). 

 

4.2.2.2 Risk-of-Failure (ROF) Based Adaptive Management 

Within WaterPaths, utility decisions to develop infrastructure, request water transfers, 

and implement use restrictions are made via state-aware rules, resulting in adaptive ‘pathways’ 

of action by utilities taken in response to changing risks. Decisions are triggered based on risk-

of-failure (𝑅𝑅𝑅𝑅𝐹𝐹𝑈𝑈,𝑡𝑡), the dynamically-updating probability of supply storage falling below 20% of 

capacity or demands exceeding 90% of treatment capacity for a utility 𝑈𝑈 at time 𝑡𝑡 over the 

following (a) year for short-term ROF or (b) 1.5 years for long-term ROF (H. B. Zeff et al., 

2016).  

When short-term ROF rises above a trigger threshold 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑈𝑈,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, actions to implement 

use restrictions or purchase water transfers are taken to reduce water supply and/or treatment 

capacity risk. Long-term ROF is used to trigger infrastructure development of any project 𝐼𝐼𝑃𝑃𝑈𝑈 ∈

𝐼𝐼𝐼𝐼����⃑ , where 𝐼𝐼𝐼𝐼����⃑  is the set of all potential projects (Table 4.2 in this case). The sequencing of 

infrastructure project development for a utility is determined by the availability of each project 

(Table 4.2, right column) at the time a decision is triggered as well as a project’s predetermined 

preference relative to other potential projects. WaterPaths also tracks revenues for each utility 

from weekly water sales, as well as utility contingency (reserve) funds that can be used to meet 

unexpected revenue reductions due to restrictions or increased costs arising from water transfers. 

All infrastructure projects, water portfolio instruments, and ROF-based rules have been specified 
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in collaboration with the Triangle utilities. For more on WaterPaths functionality, see Trindade et 

al. (2020). 

 

4.2.2.3 Sampling States-of-the-World for Monte Carlo Simulation 

Risk-of-failure evolves based on reservoir capacity dynamics that change depending on 

hydroclimatic conditions, human demands, and path dependent management actions (i.e., short-

term weekly portfolio management combined with long-term annual infrastructure investments).  

To fully exploit the adaptive nature of ROF-based decisions, we expose candidate infrastructure 

investment and water portfolio policies to a broad set of plausible future states-of-the-world 

(SOWs). This represents an exploratory modeling centered approach for identifying 

infrastructure investment and water portfolio policy rules that effectively adapt to highly 

challenging conditions (Bankes, 1993; Moallemi et al., 2020). Uncertainties that comprise future 

SOWs can be categorized as being either a “well-characterized” uncertainty (WCU), with a 

known probability distribution or large amounts of historical data, or a deep uncertainty (DU), 

without a known probability and limited historical data (Kwakkel et al., 2016; Marchau et al., 

2019). In this study, hydro-climatic internal variability is treated as a stationary WCU (i.e. 

synthetic stochastic hydrology, described in section 4.2.2.3.1 below). DUs included in this study 

include water demands, economic factors, climate change along with deeply uncertain 

management and policy factors, within our modeling framework. For this work, five hundred 

SOWs, each representing one set of future conditions, were generated using a Latin Hypercube 

Sampling (LHS) approach (Figure 4.2).  
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Figure 4.2: Visualization of DU sampling of SOWs, including timeseries realizations of 
hydrologic (reservoir inflow) and utility water demand along with DU factors sampled via LHS. 
Timeseries samples of hydrologic and demand WCUs are coupled with DU factor samples to 
form the set of SOWs. 
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Table 4.3: Description and ranges of deeply uncertain factors 

Factor Description Range 
(multiplier 
factor) 

Bond Term 
(Bterm) 

affects number of years over which infrastructure 
capital costs are repaid as debt service 0.8-1.2 

   
Bond Interest 
Rate (Brate) 

factor adjusts fixed interest rate on bonds for 
infrastructure 0.6-1.2 

   
Discount Rate 
(Drate) 

applied to the discount rate, affecting how future 
infrastructure investment is discounted to 2015 0.6-1.4 

   
Restriction 
Efficacy (REU: 
6 factors, 1 per 
utility) 

impacts how effective use restrictions are at reducing 
water demand 0.8-1.2 

   
Lake 
Evaporation I 

controls the rate water is evaporated from regional 
reservoirs 0.9-1.1 

   
WJLWTP 
Permitting 
Period (PP) 

brings forward or delays the year after which the 
WJLWTP can be constructed 0.75-1.5 

   
WJLWTP 
Construction 
Time (CT) 

lengthens the construction time that would be needed to 
build WJLWTP 1.0-1.2 

   
Sinusoidal 
Demand 
Variables   
    α controls amplitude of sinusoidal function 0.000001-0.13 
    β affects shape and periodicity of sinusoidal function 3000-6000 
    ρ shifts sinusoidal function period 600-1200 

 

Each row of panels in Fig. 4.2 denotes a single SOW, 𝛹𝛹𝑖𝑖, in the set of all sampled SOWs, 

𝜳𝜳𝒔𝒔, generated through the combined sampling of both well-characterized and deeply uncertain 

factors. WCU in hydrology (𝜳𝜳𝑾𝑾𝑾𝑾𝑾𝑾) is sampled from synthetic records of hydroclimatic 

conditions, generated from patterns in historical observations (described in the following sub-

sections). Additionally, Table 4.3 lists the DU factors included in our analysis, their relevance, 
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and testing ranges, which were based on values used in previous Triangle research by Trindade 

et al. (2017; 2019). Each SOW contains one set 𝛹𝛹𝐷𝐷𝐷𝐷,𝑖𝑖 of sampled DU factors 𝜳𝜳𝑫𝑫𝑫𝑫 ∋

[𝝋𝝋𝑺𝑺𝑺𝑺,𝝋𝝋𝑳𝑳𝑳𝑳𝑳𝑳], containing demand growth realizations 𝝋𝝋𝑺𝑺𝑺𝑺 (development described in section 

4.2.2.3.2) and multiplicative factors 𝝋𝝋𝑳𝑳𝑳𝑳𝑳𝑳 ∋ �𝐵𝐵�⃑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐵𝐵�⃑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝐷𝐷��⃑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑹𝑹𝑹𝑹,𝐸𝐸�⃑ ,𝑃𝑃𝑃𝑃�����⃑ ,𝐶𝐶𝐶𝐶�����⃑ , 𝛼⃑𝛼,𝛽𝛽, 𝜌⃑𝜌� applied 

to perturb financial parameters of utility debt financing – bond term length 𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, bond flat 

interest rates 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and discount rate 𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 – along with use restriction efficacy for each utility 

𝑅𝑅𝐸𝐸𝑈𝑈, rate of lake evaporation 𝐸𝐸, permitting period 𝑃𝑃𝑃𝑃 and construction time 𝐶𝐶𝐶𝐶, and sinusoidal 

effects on demand growth 𝛼𝛼, 𝛽𝛽, and 𝜌𝜌 (detailed in 4.2.2.3.2).  

 

4.2.2.3.1 Hydrologic Realization Development 

The WCU samples of hydrology account for the internal variability of the hydrological 

record by generating synthetic timeseries of regional reservoir inflows. The full ensemble of 

synthetic inflows are developed through statistical resampling of the historical record 

(represented as full natural inflows, developed by HydroLogics, 2011) that preserves 

autocorrelation and spatial correlation patterns of the past through Cholesky decomposition 

while producing a wider range of extreme events than what is present in the historical record 

(Kirsch et al., 2013); this expanded evaluation of extreme conditions holds value as evaluation 

based on historical data alone can miss extreme events and overestimate the robustness of a 

potential development pathway or policy (Herman et al., 2016; Quinn et al., 2017; Vogel & 

Stedinger, 1988). For additional detail on water supply modeling in the Triangle, risk-of-failure 

policy, or synthetic generation of streamflows, see Gorelick et al. (2018) and Herman et al. 

(2016). 
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4.2.2.3.2 Demand Realization Development 

Future water demand is based on projections of population and per-capita water use 

(TJCOG, 2014; Hazen and Sawyer, 2020), and week-to-week fluctuations are modeled through a 

joint probability distribution with inflows (as a proxy for the relationship between weather 

conditions and water demand; hot, dry days see higher outdoor water use, as an example) (Zeff 

& Characklis, 2013). Though per-capita water use has been in decline, Triangle utilities 

anticipate that population growth increases will more than offset this effect leading to overall 

increased future water demand for the region. Consistent with the ensemble of hydrologic 

realizations used, 500 realizations of demand (𝝋𝝋𝑫𝑫) with seasonal variation and response to 

hydrologic conditions are generated to match, using a joint probability distribution between 

historical water demand and reservoir inflows as a proxy for hydrologic conditions (as described 

by Zeff et al., 2013, 2014).  

Demand growth is also infamously difficult to accurately forecast at decadal time-scales 

(Walker, 2013). Previous studies that treat demand growth rate as deeply uncertain have been 

limited to examination of ranges of constant, linear growth projections (Herman et al., 2015; 

Trindade et al., 2019). However, water demand growth rate is often non-constant and non-

monotonic, and the assumption of constant linear growth may lead water managers to 

mischaracterize risks associated with demand growth. In this study, we account for potential 

non-monotonic demand growth through a sinusoidal factor approach. This sinusoidal scaling 

approach has previously been applied by Quinn et al. (2018) and Trindade et al. (2020) to 

emulate hydrologic variability in synthetic streamflow projections. Deeply uncertain sinusoidal 

factors are repurposed here to stress utilities under temporally varying demand growth rate 

changes.  
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Equation (12) below describes how DU factors 𝛼𝛼,𝛽𝛽,𝜌𝜌 control demand growth. These 

sampled sinusoidal factors 𝑚𝑚𝑠𝑠,𝑡𝑡 are mapped to individual demand realization, impacting the 

shape and rate of water demand growth in each SOW. 

 

𝑚𝑚𝑠𝑠,𝑡𝑡(𝛼𝛼,𝛽𝛽,𝜌𝜌) = 1 + 𝛼𝛼 sin �
2𝜋𝜋𝜋𝜋
𝛽𝛽 + 𝜌𝜌

� − 𝛼𝛼 sin(𝜌𝜌)                                    (1) 

 

Trindade et al. (2020) calibrated 𝛼𝛼,𝛽𝛽 and 𝜌𝜌 to increase or decrease streamflow means no 

more than 20% compared to historical conditions. Similarly, in this study, we chose sinusoidal 

factor ranges of 𝛼𝛼,𝛽𝛽 and 𝜌𝜌 to ensure future annual average demands could not be more than 25% 

different than utility demand projections. Our approach for synthetic demand realization 

generation is demonstrated in Figure 4.3. Panel A shows a demand growth projection without the 

sinusoidal factor multiplier applied. Panel B demonstrates how the factor may be used to 

generate two very different demand projections and the bottom panel shows the time-varying 

sinusoidal factors used to generate the records in panel B. By applying sinusoidal factors to 

demand realizations that follow existing utility projections of demand growth, this study can 

explore the impacts of both long-term and shorter-term changes in how demand projections on 

utility planning. Mathematically, the generation of sinusoidal demand timeseries 𝝋𝝋𝑺𝑺𝑺𝑺,𝒔𝒔 of each 

SOW can be written as  

𝝋𝝋𝑺𝑺𝑺𝑺,𝒔𝒔,𝒕𝒕 = 𝑚𝑚𝑠𝑠,𝑡𝑡(𝛼𝛼,𝛽𝛽,𝜌𝜌) ∗ 𝜑𝜑𝐷𝐷,𝑠𝑠,𝑡𝑡                                                       (2) 

 

for all weeks 𝑡𝑡 in each SOW 𝑠𝑠.  

 



104 
 

 

Figure 4.3: Deeply uncertain sinusoidal factors used to generate diversity between two example 
demand realizations. Parameters in bottom panel generate the factor timeseries plotted using 
Equation (1), with 𝑡𝑡 changing across time, and the outcome sinusoidal demand realizations 
described in Equation (2). 

 
 
4.2.2.4 Deeply Uncertain Optimization Framework 

Many-objective optimization is performed to search for model parameters (decision 

variables) that provide the best possible outcomes across utility objectives. Recent work has 

found that including deep uncertainty in the many-objective search can improve the robustness 

of candidate alternatives (Bartholomew & Kwakkel, 2020; Eker & Kwakkel, 2018; Trindade et 

al., 2017; Watson & Kasprzyk, 2017). Our research employs a DU Optimization framework 
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(Trindade et al., 2017) to search for Pareto approximate regional agreements that are robust to a 

wide range of plausible future scenarios. In DU optimization, each candidate regional agreement 

is evaluated across 500 DU SOWs, generated using the sampling strategy shown in Figure 4.2. 

The terminology Pareto approximate refers to high quality approximation representations of 

tradeoffs where improvements in performance in any single objective comes at the cost of 

performance in one or more of the remaining objectives. The optimization problem can be 

mathematically described as a search for a set of Pareto-optimal policies 𝜽𝜽∗ which minimize the 

objective function vector 𝐹⃑𝐹 such that 

 

𝜽𝜽∗ = min
𝜽𝜽
𝐹⃑𝐹                                                                     (3) 

where 

 

𝐹⃑𝐹(𝜽𝜽,𝑿𝑿,𝜳𝜳𝒔𝒔,𝑎𝑎) = [−𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅,𝑓𝑓𝑅𝑅𝑅𝑅 ,𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁 ,𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 ,𝑓𝑓𝑊𝑊𝑊𝑊𝑊𝑊 ,𝑓𝑓𝑈𝑈𝑈𝑈]                               (4) 

 

In Equation (2), the objective function vector 𝐹⃑𝐹 contains six regional supply and financial 

objectives: 𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅 is the objective of supply reliability (negated above, as maximizing reliability is 

equivalent to minimizing failure in this problem); 𝑓𝑓𝑅𝑅𝑅𝑅 is the restriction use frequency objective; 

𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁 represents the net present cost of infrastructure investment; 𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃  is the peak financial cost 

objective; 𝑓𝑓𝑊𝑊𝑊𝑊𝑊𝑊 gives the objective of worst-case cost; 𝑓𝑓𝑈𝑈𝑈𝑈  describes the unit cost of service 

objective. Each objective is described in further detail below. Objective values in Equation (4) 

are conditioned based on  
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𝜽𝜽 = �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�����������⃑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝐼𝐼𝐼𝐼����⃑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝐶𝐶𝐶𝐶𝐶𝐶��������⃑ , 𝐽𝐽𝐽𝐽𝐽𝐽�������⃑ ,𝐷𝐷𝐷𝐷�����⃑ ,𝑇𝑇𝑇𝑇𝑇𝑇��������⃑ 𝜏𝜏
����������⃑ �                                      (5) 

 

𝑿𝑿 = [𝑥⃑𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑥⃑𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆]                                                           (6) 

 

𝜳𝜳𝒔𝒔 = �
𝜳𝜳𝑾𝑾𝑾𝑾𝑾𝑾

𝜳𝜳𝑫𝑫𝑫𝑫 ∋ [𝝋𝝋𝑺𝑺𝑺𝑺,𝝋𝝋𝑳𝑳𝑳𝑳𝑳𝑳]                                                     (7) 

 

where 𝜽𝜽 is a candidate set of decision variables, 𝑿𝑿 represents the time-varied state of both short- 

and long-term ROF (𝑥⃑𝑥𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑥⃑𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆), 𝜳𝜳𝒔𝒔 contains vectorized sampled sets (𝑠𝑠) of both (a) well 

characterized uncertainties (WCU; 𝛹𝛹𝑊𝑊𝑊𝑊𝑊𝑊) and (b) deeply uncertain (DU) variables (𝛹𝛹𝐷𝐷𝐷𝐷), and 

𝑎𝑎 ∈ [𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑎𝑎𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜] indicates the tested inter-utility cooperative formulation 

(described in detail in section 4.2.3.3).  

In Equation (5), 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�����������⃑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the vector of all risk-of-failure triggers for each regional 

utility for potential 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∈ [𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖], 𝐼𝐼𝐼𝐼����⃑ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a 

vector of ranking variables for each potential infrastructure project 𝐼𝐼𝐼𝐼, 𝐶𝐶𝐶𝐶𝐶𝐶��������⃑  is a vector of annual 

utility contingency fund contributions (specifically the fraction of annual revenues contributed), 

𝐽𝐽𝐽𝐽𝐽𝐽�������⃑  is a vector containing each regional utility’s Jordan Lake water supply allocation, 𝐷𝐷𝐷𝐷�����⃑ =

�𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑏𝑏�⃑ � is the vector holding regional demand projection variables where 𝑏𝑏�⃑  is the vector 

of demand buffers for all utilities, and 𝑇𝑇𝑇𝑇𝑇𝑇��������⃑ 𝜏𝜏 is the vector of initial WJLWTP treatment 

allocations for each partner utility.  
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Equation (7) above details the set of deeply uncertain factors 𝜳𝜳𝒔𝒔, containing both (a) 

WCU from sampling hydrologic realizations, as well as (b) realizations of water demand and 

vectors of key DU factors. 

4.2.2.4.1 Regional Performance Metrics 

Assessment of utility performance from each model evaluation is based on values generated 

across six regional objectives:  

 

1. Water supply reliability (𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅); frequency of annual supply failure (𝐹𝐹𝑟𝑟,𝑈𝑈,𝑦𝑦 = 1 if any week 

during a calendar year 𝑦𝑦 ∈ 𝒀𝒀 = [2015,2060] in which storage drops below 20% of 

supply capacity or demand exceeds 90% of treatment capacity, 0 otherwise) across 𝑁𝑁𝑟𝑟 =

 500 states-of-the-world (𝑟𝑟) is quantified to measure the ability of a utility (𝑈𝑈) to maintain 

reliable water service. To determine a regional objective value, the maximum objective 

value across the set of all utilities (𝑈𝑈��⃑ ) is taken.  

 

𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅 = max
𝑈𝑈∈𝑈𝑈���������⃑

�
max
𝒀𝒀
�∑ 𝐹𝐹𝑟𝑟,𝑈𝑈,𝑦𝑦𝑟𝑟 �

𝑁𝑁𝑟𝑟
�                                                 (8) 

2. Restriction use frequency (𝑓𝑓𝑅𝑅𝑅𝑅); utilities have incentive to limit the amount of time 

restrictions are implemented, as it can be politically unpopular and reduce utility 

revenues (Hughes et al., 2014); the fraction of years (𝑁𝑁𝑦𝑦 = 46) with at least one week of 

use restrictions in place over a model evaluation is therefore another important 

performance metric. Restriction use indicator 𝑅𝑅𝑟𝑟,𝑈𝑈,𝑦𝑦 = 1 when year 𝑦𝑦 of realization 𝑟𝑟 has 

at least 1 week of restrictions implemented by utility 𝑈𝑈, and is 0 otherwise.  
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𝑓𝑓𝑅𝑅𝑅𝑅 = max
𝑈𝑈∈𝑈𝑈

�
∑ ∑ 𝑅𝑅𝑟𝑟,𝑈𝑈,𝑦𝑦𝑦𝑦𝑟𝑟

𝑁𝑁𝑟𝑟𝑁𝑁𝑦𝑦
�                                                      (9) 

 

3. Infrastructure net present cost (𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁); large infrastructure investments often force water 

utilities to increase water rates, a step they would prefer to defer or avoid altogether.  

When population and water demand growth are projected to exceed existing capacity, 

however, supply infrastructure expansion may become necessary. Quantifying net present 

infrastructure investment – present-valued debt service 𝐷𝐷𝐷𝐷𝑟𝑟,𝑢𝑢,𝑦𝑦 based on a discount rate 

𝑑𝑑, summed across SOWs 𝑟𝑟 and years 𝑦𝑦 for each utility 𝑈𝑈 – can be compare with and 

without inter-utility agreements to demonstrate their ability to reduce overall 

infrastructure investment. 

 

𝑓𝑓𝑁𝑁𝑁𝑁𝑁𝑁 = max
𝑈𝑈∈𝑈𝑈���������⃑

�
∑ ∑

𝐷𝐷𝐷𝐷𝑟𝑟,𝑈𝑈,𝑦𝑦
(1 + 𝑑𝑑)𝑦𝑦−1𝑦𝑦𝑟𝑟

𝑁𝑁𝑟𝑟
�                                          (10) 

 

4. Peak annual costs (𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃); tracking the peak annual sum of drought mitigation costs and 

debt service paid across each realization offers more detail on the financial health of a 

utility in each model evaluation, where a utility’s goal is to minimize peak costs relative 

to revenue streams. This objective returns the average of each realization’s worst year, in 

terms of the fraction of utility annual volumetric revenue (𝐴𝐴𝐴𝐴𝐴𝐴) required to cover annual 

debt service 𝐷𝐷𝐷𝐷, contingency fund contribution 𝐶𝐶𝐶𝐶𝐶𝐶, revenue losses to restriction use 𝑅𝑅𝑅𝑅, 

and costs of purchasing water transfers 𝑇𝑇𝑇𝑇. 
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𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 = max
𝑈𝑈∈𝑈𝑈���������⃑

⎣
⎢
⎢
⎡∑ max

𝑦𝑦∈[2015,2060]
�
𝐷𝐷𝐷𝐷𝑟𝑟,𝑈𝑈,𝑦𝑦 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟,𝑈𝑈,𝑦𝑦 + 𝑅𝑅𝐶𝐶𝑟𝑟,𝑈𝑈,𝑦𝑦 + 𝑇𝑇𝐶𝐶𝑟𝑟,𝑈𝑈,𝑦𝑦

𝐴𝐴𝐴𝐴𝑅𝑅𝑟𝑟,𝑈𝑈,𝑦𝑦
� 𝑟𝑟

𝑁𝑁𝑟𝑟
⎦
⎥
⎥
⎤
       (11) 

 

5. Worst-case cost (WCC); while infrastructure spending over the full planning period is 

important, financial volatility due to drought mitigation in any given year is also a key 

utility concern. Specifically, water utilities are concerned with years where revenue 

losses from restrictions and costs of water transfers cannot be met with existing 

contingency funds (𝐶𝐶𝐹𝐹). To identify the worst-case costs a utility could face, this 

objective quantifies the 99th percentile highest annual cost across all SOWs (𝑟𝑟).   

 

𝑓𝑓𝑊𝑊𝑊𝑊𝑊𝑊 = max
𝑈𝑈∈𝑈𝑈���������⃑

�𝑃𝑃99 � max
𝑦𝑦∈[2015,2060]

�
𝑅𝑅𝐶𝐶𝑟𝑟,𝑈𝑈,𝑦𝑦 + 𝑇𝑇𝐶𝐶𝑟𝑟,𝑈𝑈,𝑦𝑦 − 𝐶𝐶𝐹𝐹𝑟𝑟,𝑈𝑈,𝑦𝑦

𝐴𝐴𝐴𝐴𝑅𝑅𝑟𝑟,𝑈𝑈,𝑦𝑦
���             (12) 

 

6. Unit cost of infrastructure expansion (UC); similar to objective 3, this objective 

quantifies present-valued debt service paid relative to water demand growth over the 

planning period, offering an assessment of how financially-efficient a utility is able to be 

when mitigating supply risk. 

 

𝑓𝑓𝑈𝑈𝑈𝑈 = max
𝑈𝑈∈𝑈𝑈���������⃑

⎣
⎢
⎢
⎢
⎢
⎢
⎡
∑ ∑

𝐷𝐷𝐷𝐷𝑟𝑟,𝑈𝑈,𝑦𝑦
(1 + 𝑑𝑑)𝑦𝑦−1

�𝐷𝐷𝑟𝑟,𝑌𝑌,𝑦𝑦 − 𝐷𝐷𝑟𝑟,𝑌𝑌,2015�
𝑦𝑦𝑟𝑟

𝑁𝑁𝑟𝑟

⎦
⎥
⎥
⎥
⎥
⎥
⎤

                                     (13) 
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4.2.2.5 Cooperative Formulations of Inter-Utility Agreement 

Five of the six Triangle utilities (Raleigh excluded) have water supply allocations from 

Jordan Lake, the region’s largest water source. Only Cary and Chatham County have direct 

access to their Jordan Lake allocations through independent WTPs, necessitating that other 

regional utilities access their own allocations through purchases of treated Jordan Lake water 

from either Cary or Chatham County. In 2018, partially in response to this bottleneck of Jordan 

Lake water supply access, regional utilities formed the Triangle Water Supply Partnership to 

determine how shared infrastructure on Jordan Lake could have regional water supply benefits. 

As a result, the development of a shared WTP on Jordan Lake is being considered by Chatham 

County, Durham, OWASA, and Pittsboro (Table 4.2B, Western Jordan Lake Regional WTP, or 

WJLWTP). These four partnering utilities in the development would be allocated treatment 

capacity in the WJLWTP, from which they may pipe treated water directly to their respective 

distribution systems (TJCOG, 2014; JLP, 2014). As a part of such an infrastructure project, an 

agreement between Triangle water utilities to finance and operate the WJLWTP would be 

required. Inter-utility and capacity-sharing agreements are common across the U.S. and globally 

(Silvestre et al., 2018; Tran et al., 2019). Differences in how an agreement is structured, 

however, can have significant impacts on the water supply and financial outcomes for 

participating partners (Gorelick et al., 2019; Sjöstrand et al., 2018).  

Assessment of inter-utility agreement formulations within our water supply modeling 

framework requires each formulation be evaluated under identical conditions for comparison of 

performance, as well as against a formulation without agreement that contains only independent 

infrastructure planning by utilities. Therefore, this paper tests three model formulations:  
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1. Regional utilities have the option to develop the WJLWTP with fixed treatment capacity 

and financing allocations (4.2.3.5.1) 

2. The WJLWTP may be developed with adjustable treatment capacity and financial 

allocations (4.2.3.5.2) 

3. No cooperative agreement is reached, and Triangle utilities do not develop a joint 

WJLWTP (4.2.3.5.3). 

 

4.2.2.5.1 Fixed Capacity Treatment Allocations 

Fixed allocation inter-utility agreements are common. For example, the Cary-Apex WTP 

serves the towns of Cary, Apex, and Morrisville where each hold a fixed capacity allocation 

while Cary operates the plant (Cary-Apex WTP Agreement, 2015). Under such an agreement, 

treatment capacity allocations (in terms of maximum quantity of water treated per day) for each 

partner utility are fixed when the WTP comes online after construction. Each partner’s share of 

the capital costs of construction are set based on the fraction of capacity allocated to each. 

Conveyance and other variable costs of water treatment or transfer, which are relatively small in 

comparison to capital costs, are not considered within the agreement structures evaluated in this 

research. The allocation of treatment capacity and debt service on capital expenditures for the 

WJLWTP under a fixed allocation agreement is described by (14) and (15) below: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈,𝑦𝑦 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈,𝜏𝜏                                                               (14) 

 

𝐷𝐷𝑆𝑆𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝑈𝑈,𝑦𝑦 =
𝑇𝑇𝑇𝑇𝐴𝐴𝑈𝑈,𝜏𝜏

∑ 𝑇𝑇𝑇𝑇𝐴𝐴𝑢𝑢,𝜏𝜏𝑢𝑢 ∈ 𝑈𝑈��⃑
∗ 𝐷𝐷𝑆𝑆𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝑦𝑦                                        (15) 
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Here, 𝜏𝜏 is the year in which the WJLWTP begins operating, 𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈,𝑦𝑦 is the treatment 

capacity allocation for utility 𝑈𝑈 in year 𝑦𝑦 ≥ 𝜏𝜏, 𝑈𝑈��⃑  is the set of WJLWTP partner utilities, 

𝐷𝐷𝑆𝑆𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝑦𝑦 is the total debt service owed for capital costs and interest on the WJLWTP in year 

𝑦𝑦 to be disbursed among agreement partner utilities. Debt service is modeled for this work for 

each utility such that 𝐷𝐷𝑆𝑆𝑝𝑝,𝑈𝑈,𝑦𝑦 for any future infrastructure project 𝑝𝑝 (Table 4.2B) is equal in all 

repayment years 𝑦𝑦 ∈ 𝑌𝑌𝑝𝑝 where 𝑌𝑌𝑝𝑝 is the set of years from project 𝑝𝑝 beginning operation (and debt 

repayment begins) to the year of debt maturity for that project. 

 

4.2.2.5.2 Adjustable Treatment Allocations 

Alternatively, an inter-utility agreement with flexibility in allocations may be beneficial 

to partner utilities. An adjustable capacity agreement is designed to ensure that the unit cost of 

treating water in a given year is equal between partners, no matter how much use occurs in 

aggregate; as an example, this type of accounting is used to cover costs of development by 

Tampa Bay Water Authority, which charges a uniform rate for supply to its six wholesale 

customers by scaling water supply production for each customer to match their respective levels 

of demand each year (Asefa, 2015). This work abstracts an adjustable capacity agreement 

structure, in which the rate of water can be set annually based on water use by all partners and 

costs – debt service, in this case – to be recovered over the year. Capacity allocations for 

WJLWTP partners are adjusted based on expected near-term water demand, allowing allocations 

to be adjustable year-to-year. The treatment capacity allocation under this agreement structure is 

described by (16) and (17): 
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𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈,𝑦𝑦 = � 
𝑇𝑇𝑇𝑇𝐴𝐴𝑈𝑈,𝜏𝜏 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑦𝑦 = 𝜏𝜏

𝑇𝑇𝑇𝑇𝐴𝐴𝑈𝑈,𝑦𝑦−1 + �𝑊𝑊𝑊𝑊𝑊𝑊𝐽𝐽𝐽𝐽,𝑈𝑈,𝑦𝑦 ∗ 𝐷𝐷𝐷𝐷𝑅𝑅𝑈𝑈,𝑦𝑦� 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑦𝑦 > 𝜏𝜏                        (16) 

 

𝐷𝐷𝐷𝐷𝑅𝑅𝑈𝑈,𝑦𝑦 = 𝑓𝑓�𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑏𝑏𝑈𝑈�                                                      (17) 

 

Under an adjustable agreement, capacity allocations in each year 𝑦𝑦 > 𝜏𝜏 are based on the 

previous year allocation for utility 𝑈𝑈 ∈ 𝑈𝑈��⃑ , adjusted based on estimated annual demand growth 

rate 𝐷𝐷𝐷𝐷𝑅𝑅𝑈𝑈,𝑦𝑦 and the fraction of water supply drawn from Jordan Lake 𝑊𝑊𝑊𝑊𝑊𝑊𝐽𝐽𝐽𝐽,𝑈𝑈,𝑦𝑦. Each utility’s 

reliance on Jordan Lake is, in part, governed by the water supply allocation 𝐽𝐽𝐽𝐽𝐴𝐴𝑈𝑈 awarded to the 

each utility in Jordan Lake by the US Army Corps of Engineers that operates the reservoir. 

Demand growth estimates for a utility are a function of how often re-projections of demand are 

done (𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝), the length of the recent historical record (𝑙𝑙𝑝𝑝𝑟𝑟𝑜𝑜𝑜𝑜) used to estimate future demand, and 

any buffer (safety factor hedge against high growth) a utility may add (𝑏𝑏𝑈𝑈). Debt service 

allocations are, like in a fixed agreement, proportionate to treatment capacity allocations. 

 

4.2.2.5.3 No Cooperative Agreement 

Though Triangle utilities intend to develop the WJLWTP, it remains possible that no 

agreement is reached and the facility is not constructed or financed. This potential alternative is 

also tested as a cooperative formulation in our work. 
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4.2.2.6 Computational Experiment and Multi-Objective Optimization Search  

In this study, we employed the Borg multi-objective evolutionary algorithm (MOEA), 

which has demonstrated as an effective tools for identifying high-quality Pareto approximate 

solutions to non-linear, complex problems such as those in water supply management (Hadka & 

Reed, 2013). Optimization runs for each formulation were run on The Cube Cluster of the 

Cornell University Center for Advanced Computing and the Stampede2 Cluster of the Texas 

Advanced Computing Center (TACC) Extreme Science and Engineering Discovery Environment 

(XSEDE). Borg MOEA optimization seeds were allowed to progress for a maximum of 150,000 

function evaluations. A single reference set of solutions was identified after combining 

individual reference sets from each seed across all inter-utility agreement formulations. Runtime 

diagnostics were performed using hypervolume and visual analytics to confirm convergence; 

more detailed discussion of the Borg MOEA optimization diagnostics and validation of reference 

set performance using an-out-of-sample set of SOWs is shown in Supplement A. 

 

4.2.2.6.1 Defining Satisfactory Regional Performance 

To identify management portfolios that produce satisfactory utility water supply and 

financial performance under uncertainty, reference set solutions identified in DU optimization 

are screened based on three key management criteria. The criteria of satisfaction are based on 

feedback from Triangle utilities’ personnel, previously used to screen results from similar past 

research in the region (Herman et al., 2015; H. B. Zeff et al., 2014): 

1. Reliability ≥ 99%: to meet demands, utility water supply storage cannot fall below 20% 

of capacity more than once in 100 years. 
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2. Restriction Use Frequency ≤ 20%: to maintain their efficacy and avoid public frustration, 

regional utilities hope to implement use restrictions less than 1-in-5 years on average. 

3. Worst-Case Cost ≤ 5% AVR: unplanned financial disruptions of more than 5% AVR in a 

given year would be ruinous for regional utilities’ budgets – only states-of-the-world that 

can minimize worst-case cost below this threshold, a function of hydrologic, demand, and 

utility decision-making factors, are acceptable. 

 

4.3 Results 

Results from DU optimization of three potential inter-utility cooperative formulations – 

where a shared WTP on Western Jordan Lake (WJLWTP) is (1) developed with fixed treatment 

allocations for each utility; (2) with adjustable capacity allocations; (3) not built, and no 

agreement is made – are presented below. Beginning with outcomes at a regional objective level 

(section 4.3.1), results span both regional and individual utility (4.2.2) objective performance for 

Pareto-approximate solutions under all formulations. Key relationships between decision 

variables and objective outcomes (4.2.3), as well as characteristics of representative solutions 

(4.2.4), are further explored to quantify differences in utility behavior and performance between 

cooperation formulations.  

 

4.3.1 Regional Objective Outcomes 

Figure 4.4 is a parallel axis plot of the Pareto-approximate reference set of solutions 

across all cooperative formulations. Each line across the six vertical axes represents regional 

objective results for a single solution of the reference set. The lower a solution crosses an 

objective’s vertical axis, the better its performance in that objective. Solutions of the Pareto-
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approximate reference set (Fig. 4.4, light grey, 𝑛𝑛 = 29,654) include non-dominated solutions 

across all optimizations performed (one for each formulation). Objective values represented for a 

solution are the “minimax” objective value across all utilities – the worst-performing utility, in 

terms of each objective, represents the regional objective value for that solution. These results 

are shown in two panels on Figure 4.4: Figure 4.4(I) visualizes the objective outcomes of the 588 

solutions that meet utilities’ performance criteria; Figure 4.4(II) identifies one high-performance 

representative solution under each cooperative formulation – meeting stricter performance 

criteria of greater than 99.2% reliability, less than 5% restriction use frequency, and less than 2% 

AVR worst-case cost – for subsequent exploration in this section.  
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Figure 4.4: Parallel axis plot of the Pareto-approximate reference set of solutions (light grey), 
with solutions meeting utility performance criteria in color. Solution performance is shown 
across management objectives (from left to right). Each colored line represents objective results 
for a single solution. Solution performance is better if its line is closer to the bottom of the plot 
across each objective. Panel (I) compares the full reference set of solutions to those meeting 
criteria; panel (II) identifies three representative high-performance solutions meeting utility 
criteria, used for detailed comparison in subsequent results.  

 
Imposing the utilities’ performance criteria on the reference set yields a smaller suite of 

tradeoff solutions with high reliability, limited restriction use, and low worst-case costs, shown 

on Fig. 4.4(I) in color. Of the 588 solutions that meet the utilities’ criteria, 506 include a fixed 

capacity agreement for development of the WJLWTP (Fig. 4.4(I), orange), 52 use an adjustable 
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capacity WJLWTP agreement (Fig. 4.4(I), yellow), and only 30 had no cooperative agreement 

and no  development of the WJLWTP (Fig. 4.4(I), blue). The relatively limited number of 

solutions able to meet utility performance criteria without an inter-utility agreement indicates 

that inter-utility agreements contribute planning flexibility and regional performance benefits 

through both the fixed and adjustable capacity variants. This is especially apparent in terms of 

net present cost of infrastructure (Fig. 4.4, third vertical axis), where the highlighted solutions 

meeting the utilities’ performance criteria without an inter-utility agreement required relatively 

high investment in infrastructure expansion; solutions with an agreement  could meet 

performance criteria at lower levels of infrastructure investment. 

 
 
4.3.2 Individual Utility Objective Outcomes 

Objective performance of Pareto-approximate solutions in Fig. 4.4 show only regional 

outcomes; however, identifying differences in individual utility performance is key to 

understanding how inter-utility agreements may benefit utilities asymmetrically. Figure 4.5 

shows for which solutions of Fig. 4.4 that an individual utility was the ‘driver’ of that solution’s 

objective value, answering the question: how often, for a particular objective, was each utility the 

worst-performing?  
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Figure 4.5: Fraction of solutions – in the (top row) Pareto-approximate reference set and (bottom 
row) solutions meeting utility criteria – for which an individual utility (color) represents the 
worst-performing of the region for a particular objective (x-axis), by formulation (rows). 

 
 

Across the full reference set of solution (Fig. 4.5, top row of panels), a handful of 

differences between solutions with an inter-utility agreement (Fig. 4.5(1,2), top panels) and those 

without (Fig. 4.5(3), top panel) emerge. When an inter-utility agreement is available across all 

solutions, allowing Triangle partnering utilities to develop the WJLWTP, Durham (yellow) is 

less-frequently the utility of lowest reliability (Fig. 4.5, first column of top panels), with Raleigh 

(dark grey) becoming the most frequent utility to attain the lowest reliability. Only in solutions 

without any inter-utility agreement does OWASA (black) appear as the worst-performing utility 

in terms of reliability.  

Financially, a larger share of solutions with inter-utility agreement show Pittsboro (light 

grey) as the worst-performing utility for both peak financial and worst-case cost objectives (Fig. 
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4.5, fourth and fifth columns of each panel), compared to solutions without an agreement. 

Whether or not cooperation via the WJLWTP is possible, Chatham County is the worst-

performing utility in terms of unit cost of infrastructure expansion (Fig. 4.3B, sixth column) 

across almost all solutions.  

Between the full set of solutions and solutions meeting utilities’ performance criteria 

(Fig. 4.5, bottom row of panels; corresponding with solutions of Fig. 4.4(I) in color), other shifts 

in distribution of worst-performing regional utilities are apparent. These differences indicate 

which utilities may act as a “limiting factor” for regional performance as criteria for satisfactory 

performance become increasingly strict. For example, Raleigh was the utility of greatest 

infrastructure net present cost (Fig. 4.5, third column in each panel) across all solutions meeting 

utility performance criteria under fixed and adjustable cooperative formulations (Fig. 4.5(1,2)). 

Similarly, OWASA (black) became the worst-performing utility most frequently as measured by 

worst-case cost in solutions meeting performance criteria, and Pittsboro or Chatham County 

were almost exclusively responsible for the regional peak financial cost objective value in the 

same solutions. 

 

4.3.3 Cooperative Formulation Differences on Jordan Lake 

When evaluating the benefits of the cooperative inter-utility agreement formulations, it is 

important to distinguish the impacts across the partnering utilities for a WJLWTP – Chatham 

County, Durham, OWASA, and Pittsboro. Figure 4.6 shows the ranges of the utilities’ objective 

outcomes for solutions meeting the regional performance criteria under each agreement 

formulation.  
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Figure 4.6: Range of (top panel) infrastructure net present cost and (bottom panel) peak financial 
cost objective values across Pareto-approximate reference set solutions meeting utility 
performance criteria, for utility partners to a WJLWTP agreement (x-axis) under each 
cooperative formulation (color).  

 
 

Broadly, infrastructure net present cost (Fig. 4.6, top panel) and peak financial cost 

objective values (Fig. 4.6, bottom panel) improve for Chatham County and Durham under inter-

utility cooperation formulations with the WJLWTP included (Fig. 4.6, orange and yellow), 

versus solutions without a WJLWTP agreement made (Fig. 4.6, blue). By contrast, OWASA and 

Pittsboro generally experience the worst financial objective outcomes when a WJLWTP is 
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constructed. As the largest utility partner to the WJLWTP, Durham invests more than other 

partners in infrastructure net present costs regardless of formulation. Chatham County and 

Pittsboro are relatively small utilities, so they experience larger variability in peak financial cost 

than OWASA and Durham. On average, a fixed allocation WJLWTP agreement (Fig. 4.6, 

orange) formulation resulted in lower objective values than under an adjustable capacity 

agreement (Fig. 4.6, yellow), but solutions with adjustable capacity agreements could out-

perform fixed capacity allocation agreements in some cases. Also, fixed capacity allocation 

agreements more frequently resulted in poor-performance (i.e., high objective values), in 

comparison to adjustable capacity agreements (Fig. 4.6, longer tails and outliers on upper bounds 

of boxplots).   

The effects of inter-utility agreements on an individual utility’s objective performance are 

not only tied to the agreement formulations but also to differences in a utility’s exposure to the 

decisions of its counterparties (other WJLWTP partner utilities). Figure 4.7 explores the 

statistical relationships observed between initial treatment capacity allocations for each utility 

partnering on the WJLWTP and utility financial objective outcomes. Under a fixed capacity 

allocation agreement (Fig. 4.7, top row of panels), each utility’s WJLWTP initial treatment 

capacity allocation is strongly positively correlated (green) to that utility’s financial objective 

outcomes, with the exception of Chatham County who maintain a minimal initial allocation 

across most solutions. When allocations are fixed, the objective outcomes for a single utility are 

not strongly correlated with the initial allocations of other utilities.  

Under an adjustable capacity agreement (Fig. 4.7, bottom row of panels), however, a 

utility’s objective performance is more substantially correlated to the treatment allocations of 

other utilities – OWASA offers a particularly clear example (Fig. 4.7, bottom row, third column 
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of panels), where OWASA objective outcomes are strongly positively correlated to its own 

WJLWTP allocation size, but also strongly negatively correlated (purple) with Chatham and 

Pittsboro treatment allocations. Increased sensitivity to other utilities’ adjustable allocations 

appears for Durham and Chatham as well; in fact, Durham’s financial objective outcomes (Fig. 

4.7, second row, second columns of panels) become more correlated to Chatham County and 

Pittsboro allocations than to the City’s own allocation. Though the utilities do have statistically 

significant impacts on the objective outcomes of their partners through fixed agreements (i.e., 

Durham and Pittsboro), the correlations are positive and relatively weak, indicating that initial 

fixed allocations of one partner may impact another adversely, but only to a small degree. 
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Figure 4.7: Spearman correlation coefficients (color) and p-value statistical significance 
(asterisks) between (rows) individual utility financial objective values and (columns) initial 
treatment capacity allocations in the WJLWTP for Pareto-approximate solutions meeting utility 
performance criteria under each cooperative formulation (rows of panels).  

 
 
4.3.4 Demand Growth Influences on Infrastructure Pathways 

Cooperation on the WJLWTP has significant influence on regional performance despite 

being just one potential infrastructure project within a larger set of investment options for the 

utilities to develop. Fig. 4.8 details how infrastructure pathways evolve across SOWs of three 

high-performance example solutions that meet utility performance criteria (Fig. 4.4(II)), chosen 

for their similar initial treatment allocations in the WJLWTP.  
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Figure 4.8: Infrastructure development pathways from 2015-2060 (x-axis) by utility across 
example solutions (shown in Fig. 4.4(II)) in each cooperative formulation (columns). Darker 
shading indicates a higher fraction of SOWs where an infrastructure option (y-axis) is 
constructed.   

 
 

When the WJLWTP (Fig. 4.8, Regional) is utilized under a fixed or adjustable capacity 

allocation formulation, it is constructed and/or expanded before 2035 in the majority of SOWs. 

Implementation of the WJLWTP has consequences for agreement partners, especially Durham 

who avoids constructing up to four independent infrastructure options (Fig. 4.8(3), Durham). 

Pittsboro is able to avoid a large/high expansion of its Haw River Intake project with a fixed 

WJLWTP agreement. The Haw River Intake is built in almost all SOWs when no WJLWTP 

agreement is made. When the WJLWTP is constructed, Pittsboro instead blends the use of a 

small/low expansion of the regional WJLWTP with deferred construction of a Sanford intake. 
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Chatham County, when the WJLWTP is available, can similarly defer construction of a Sanford 

intake (a shared project with Pittsboro) and/or reduce the scale of Sanford intake required. 

OWASA, the fourth partner utility on the WJLWTP, has no representation in Fig. 4.8, indicating 

no other infrastructure is built by OWASA other than the WJLWTP.  

Differences in pathways between cooperative formulations can be attributed, in part, to 

how each WJLWTP agreement formulation responds to demand growth and allocates treatment 

capacity and debt service among partners. Fig. 4.9 visualizes how treatment allocations are set 

year-to-year for the WJLWTP under two example SOWs of high and low demand under each 

WJLWTP cooperative formulation (A and B from Fig. 4.4(II)). 

 

Figure 4.9: Year-to-year treatment allocations in the WJLWTP for each utility (color), under (1) 
fixed and (2) adjustable capacity allocation agreement formulations, under two example SOWs 
of high (top panels) and low (bottom panels) demand growth. Relative shares of debt service 
paid by each utility over the course of capital repayment for each utility is shown by inset pie 
charts for each realization.  
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Aspects of Fig. 4.9 demonstrate the relative benefits and drawbacks of each cooperative 

agreement formulation, in terms of treatment capacity availability and financial responsibility. 

Under a fixed capacity agreement (Fig. 4.9, left column), utility treatment capacity and debt 

service (pie charts) are steady over time, though differences in demand growth (Fig. 4.9, panel 

rows) impacts the initial sizing of WJLWTP construction. When an adjustable capacity 

agreement is used (Fig. 4.9, right column), annual treatment capacity allocations increase as 

water demands grow, which results in reduced overall debt service paid by smaller partner 

Pittsboro (light grey), primarily at the expense of larger partners Durham (yellow) and OWASA 

(black). When capacity is available, an adjustable agreement also allows Chatham County 

(brown) to accumulate a larger share of treatment capacity as it grows, compared to the fixed 

allocation agreements. If initial treatment capacity allocations sum to less than the total available 

capacity, and no additional partners join the project, an adjustable agreement can adapt to make 

use of that excess capacity as demands shift, while a fixed agreement cannot. 

 

4.4 Discussion 

Contextualizing results of this study within the two primary research aims – (1) how may 

differences in inter-utility agreement structure impact utility supply and financial risk, and (2) to 

what degree do demand growth uncertainty and counterparty risk influence the viability of 

regional cooperation – requires interpretation of regional (4.4.1) and individual (4.4.2) utility 

performance, as well as what effects counterparty risk (4.4.3) and demand growth uncertainty 

(4.4.4) may have to influence performance under cooperative agreement formulations.  
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4.4.1 Regional performance with inter-utility agreements 

Inter-utility cooperative agreements for the WJLWTP offer the Research Triangle region 

substantially more planning flexibility to meet utility performance criteria of high reliability, low 

restriction use frequency, and low worst-case costs compared to futures without any cooperation 

to develop a shared WTP on Jordan Lake. That flexibility specifically offers partner utilities 

(Chatham County, Durham, OWASA, Pittsboro) the ability to defer or avoid other infrastructure 

projects they might have had to build otherwise.  

While it is possible for the Triangle to meet regional performance criteria without a 

cooperative agreement, such solutions exhibited significantly higher infrastructure investment 

(indicated by high infrastructure net present cost objective values) and peak financial costs. The 

behavior of non-agreement solutions indicates a strong tradeoff between reliability, restriction 

use, worst-case costs, and infrastructure investment; substantially increasing supply and 

treatment capacity through infrastructure expansion, increasing infrastructure net present cost, 

which can then increase reliability and decrease restriction frequency. Worst-case costs are 

similarly reduced, as the frequency of water transfer purchases and restriction implementation is 

reduced due to higher levels of treatment or supply capacity available to a utility. Use of an inter-

utility agreement, in comparison, can reduce the severity of this tradeoff through economies-of-

scale, offering the region the potential to reduce infrastructure investment without compromising 

water supply or financial performance.  

 

4.4.2 Individual utility tradeoffs to meet regional performance criteria 

Inter-utility cooperative formulations offer clear water supply and financial objective 

performance benefits regionally, relative to solutions without an agreement, but differences in 
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performance between fixed and adjustable capacity allocation agreement formulations were not 

as obvious at a regional scale. To identify the diverse impacts that inter-utility agreements can 

have across the multi-actor Triangle system, individual utility outcomes across water supply and 

financial objectives in solutions that meet utility performance criteria are most informative.  

This analysis finds that the worst-performing utility in terms of each performance 

objective, which drives the regional objective value, varied by objective. For some objectives an 

individual utility is the worst-performing for all solutions meeting utility criteria, such as Raleigh 

driving regional outcomes of infrastructure net present cost. Related to infrastructure spending, 

Raleigh also shows to be the worst-performing utility in cooperative solutions meeting utility 

performance criteria in terms of water supply reliability, with Durham being the only other utility 

exhibiting worst regional reliability outcomes; Raleigh, not being a partner to Jordan Lake WTP 

development, is forced to respond to low reliability levels through substantial independent 

investment in its own infrastructure projects. However, when no agreement is used, Durham is 

most frequently the worst-performing utility in terms of reliability. This discrepancy between 

cooperative formulation is due to inter-utility agreement on the WJLWTP, allowing Durham a 

lower-cost pathway to expanding water supply and treatment capacity earlier. Cooperation via 

the WJLWTP also reduces Durham exposure to drought and demand growth that later result in 

reduced reliability, a pathway that does not exist without Jordan Lake cooperation.  

Chatham County and Pittsboro almost exclusively represent the region’s worst-

performing utilities for peak financial cost in solutions meeting regional utility performance 

criteria. Because both Chatham County and Pittsboro have the smallest demands – and projected 

demands – of Triangle utilities, financial fluctuations of debt service paid on infrastructure 

expansion have an outsized impact on them compared to other utilities. While about 15% of 
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solutions meeting utility criteria under a fixed allocation agreement show Chatham County to be 

the worst-performing utility in terms of peak financial cost, this percentage rises to more than 

25% of solutions under an adjustable capacity agreement. Pittsboro, the faster-growing of the 

two smallest partners, has an incentive to reserve an allocation in the WJLWTP much larger than 

its projected demands would suggest if allocations are fixed and cannot be revised later as 

demands grow. However, reservation of a large fixed allocation results in Pittsboro more often 

being the worst-performing utility, paying debt service on the WJLWTP as a higher percentage 

of their annual revenues in early years before demands have grown. Chatham County, being 

small and projected to grow slowly, reserves very small fixed WJLWTP allocations and (mostly) 

avoids the financial risk outcomes seen by Pittsboro. Under an adjustable agreement where 

treatment allocations can grow in time with demand, Chatham County still has incentive to 

request a small initial allocation in a WJLWTP; however, Pittsboro now does as well, which 

means that the same treatment allocation between agreement formulations for Chatham County 

can result in a larger share of debt service owed under an adjustable agreement.  

 

4.4.3 Counterparty effects of cooperative infrastructure development 

Regional supply and financial outcomes may improve as a result of inter-utility 

cooperation but impacts to individual utilities may go unnoticed, due to the asymmetric size and 

growth trends of each partner utility. One example of this is that inter-utility cooperation offers 

clear financial benefits to Durham and Chatham County relative to futures without cooperation, 

reducing infrastructure investment and peak financial costs, while cooperation simultaneously 

has negative effects on OWASA and (to a lesser degree) Pittsboro. Because Chatham County, 

OWASA, and Pittsboro are relatively small utilities in the Triangle, their increased financial risk 
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or levels of infrastructure investment as a result of cooperation may not negatively impact 

regional financial objective outcomes; instead, larger utilities Cary, Durham, or Raleigh can, 

conversely, have an outsized impact on regional objectives.  

When comparing fixed and adjustable cooperative formulations, generally better 

performance for solutions was attained under a fixed allocation agreement formulation. In part, 

adjustable agreement solutions resulted in less-effective cooperation because of the counterparty 

exposure each partner utility faces as result of decisions made by other partners,  as demonstrated 

by the increased strength of correlation between partner utility objective outcomes and other 

utilities’ initial treatment allocations when allocations are adjustable. When allocations are fixed 

each utility can more effectively control its own objective outcomes. With adjustable allocations, 

a tradeoff in financial performance appears between larger (Durham and OWASA) and smaller 

(Chatham County and Pittsboro) WJLWTP partners – with smaller initial treatment allocations 

for Durham and OWASA comes increased financial costs for Chatham County and Pittsboro, 

and vice versa. While adjustable capacity agreements can offer financial benefits to smaller 

partners ‘growing into’ their treatment allocations as demands rise, the counterparty effects can 

constrain the overall value of an adjustable inter-utility agreement.  

 

4.4.4 Infrastructure pathway adaptation via inter-utility agreement 

Cooperation between partner utilities on Jordan Lake could not only impact the decision-

making and infrastructure pathways of partners but also those of other regional utilities like Cary 

and Raleigh. When a WJLWTP is constructed, Cary less frequently chooses to build a Harnett 

County Intake, or defers doing so until after 2035, compared to SOWs where no regional 

agreement is reached. The changes to Cary infrastructure pathways are due to (a) more frequent 
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requests of water transfers from Cary to Durham, OWASA, and Pittsboro during periods of 

water scarcity when no Jordan Lake agreement is available; (b) the capacity of Cary’s water 

supply allocation in Jordan Lake, which can be susceptible to lower levels in the 2050s as 

demands grow and raise Cary’s risk of supply failure. Regional cooperation on a shared WTP is 

able to relieve pressure from Cary to reduce its effective treatment and supply capacity to meet 

regional transfer requests, giving Cary more flexibility to defer or avoid medium-to-long-term 

infrastructure expansion – as a result, regional cooperation does not only offer benefits to partner 

utilities, but other actors in the region as well.  

Raleigh also appears to benefit from the existence of a WJLWTP agreement, despite not 

being a partner, as the agreement often keeps it from investing in the Neuse River Intake after 

2040 when Jordan Lake cooperation is ongoing. However, Raleigh is the utility with the greatest 

infrastructure net present cost in all solutions meeting regional performance criteria, but not all 

of those cooperative formulation solutions saw less infrastructure investment than solutions 

without cooperation. With the WJLWTP built, Durham and other partners can more easily 

achieve the performance criteria of 99% supply reliability, putting the onus of regional 

improvement on Raleigh; as a result, maintaining a regional reliability of at least 99% requires 

Raleigh to balance (over)investment in infrastructure against increased risk-of-failure. In some 

states of the world, Raleigh can do so without expanding infrastructure to the extent necessary 

when no WJLWTP exists, but that is not always the case. 

While cooperation is regionally beneficial, this study documented how individual utilities 

may simultaneously experience unintended financial consequences. This may be most apparent 

for OWASA, who do not opt to invest in independent infrastructure options in almost all 

solutions meeting regional performance criteria. This implies that OWASA is unlikely to be the 
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WJLWTP partner to trigger construction of the project and doesn’t experience elevated risk-of-

failure levels that would necessitate infrastructure expansion of any project before 2060.  

 

4.4.5 Additional considerations 

Just as infrastructure expansion was not limited to cooperative development on Jordan 

Lake, other aspects of the Research Triangle management and planning system could impact the 

results of this work. One example could be how satisfactory regional performance is quantified. 

Regional water managers were polled to determine the performance criteria, used to screen our 

Pareto-approximate set for management policies that were robust under uncertainty, with a 

preference for risk-averse solutions. Should performance criteria be relaxed (or tightened), 

different conclusions could be drawn about the ability of management policies or cooperative 

agreements to meet utility goals. However, the regional benefits of cooperation compared to 

scenarios without cooperation under the selected reliability, restriction use, and cost performance 

criteria are a strong indicator that inter-utility agreements are a broadly useful technique to 

reduce water supply and financial risk.  

Similarly, the minimax approach for objective calculation used here can well identify 

solutions that improve overall regional outcomes in a multi-actor system but does not always 

explicitly reveal conflict and tradeoffs among the objectives of the individual participating 

actors. Future work to improve or locate shortcomings of a minimax approach in the Triangle 

system should include re-analysis of solutions identified here, re-optimized for individual utility 

objectives.  

Though this work applied a sinusoidal factor method to subject water utilities to greater 

uncertainty in demand growth than in past studies of this nature, our research still falls short of 
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quantifying system dynamics under two important uncertainties: (a) spatial asymmetry of 

demand growth; and (b) management response to realized vs. projected demand. Sinusoidal 

factors were applied to all utility demand projections uniformly, meaning changes to demand 

growth rate were regionally correlated. Even within a single region, however, demand growth 

can react differently spatially (i.e. in suburbs where growth is planned vs. already urbanized 

areas, an economic recession having different impacts based on development type and zoning, 

etc.). By anchoring sinusoidal factor perturbations to long-term demand projections of each 

individual utility, our work is partially able to account for spatial disparities in growth rate, but 

future work to better assess spatial asymmetry in growth among regional actors would be 

valuable to the water systems management literature. Secondly, this study was able to test utility 

performance under realized demand growth changes, but not changes in how utilities project 

long-term growth; because utilities generally make decisions on infrastructure development at a 

decadal scale, based on projections, this work has only addressed one “side of the coin” in terms 

of decision-making under demand growth uncertainty. The authors hope future work into 

demand growth uncertainty will investigate not only the impacts of changes in demand growth 

over time, but also of changes to how utilities dynamically project demands and choose to 

develop infrastructure as a result. 

 

4.5 Conclusions 

Cooperation between urban water utilities is increasingly common. Partnerships can offer 

lower costs via economies of scale through shared ownership or use of a supply, water treatment 

plant, or other facility. However, cooperation may also expose partners to counterparty risk. 

Under agreements made based on highly uncertain long-term projections of demand growth and 
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water availability, unexpected changes can introduce both supply and financial risk. Risks may 

also be compounded by the structure of the agreement itself. This work demonstrates both the 

benefits that inter-utility cooperative agreements can provide, as well as the added counterparty 

risk that may jeopardize the effectiveness of cooperation. To identify key differences in 

cooperative strategy, both individual and regional utility objectives must be considered under a 

broad range of conditions. Results of this work can inform regional decision-makers considering 

cooperative partnerships to manage risk and provide general guidance for the development of 

robust regional water supply management strategies under uncertainty. 
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CHAPTER 5 : THE POTENTIAL OF DYNAMIC ADAPTIVE RISK MITIGATION 
ACROSS WATER UTILITY INSTITUTIONAL STRUCTURES 

 

5.1 Introduction 

Water utilities in growing urban regions must constantly adapt to meet increasing water 

demands (AWWA, 2018). To provide reliable water supply during shorter-term drought, utilities 

adopt a range of strategies, including temporary water use restrictions (Kenney et al., 2004; 

Milman & Polsky, 2016; Zeff et al., 2020), transfers of water from adjacent utilities or 

agricultural users (Characklis et al., 2006; Gorelick et al., 2018; Lund & Israel, 1995; Palmer & 

Characklis, 2009), and cooperation between water systems (Jensen et al., 2020; Kurki et al., 

2016; Tran et al., 2019) to mitigate the risk of supply failure. Over longer planning horizons, 

utilities primarily meet growing demands through investment in supply infrastructure 

improvement and expansion (Gleick, 2003; Krueger et al., 2019; Padowski et al., 2016; Perry & 

Praskievicz, 2017). However, the high cost of a new reservoir, water treatment plant, or other 

capital project (e.g. pipeline, aqueduct) to shield against water supply shortage can strain utility 

budgets, often leading to water rate hikes (Boyle, 2014; Zhong et al., 2019).  

Water managers must therefore balance investment to expand water supply with 

affordability for end users (Ajami et al., 2018; Baird, 2010; Dickinson et al., 2015; Hughes et al., 

2014; Schwartz et al., 2017). Many innovative strategies to aid utilities in the simultaneous 

mitigation of water supply risks and financial risks have been studied, including adaptation of 

reservoir operations to changing supply and demand conditions (Benson, 2018; Castelletti et al., 

2020), use of financial instruments to preserve utility budgets in years of water scarcity (Baum & 
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Characklis, 2020; Coleman et al., 2015; Denaro et al., 2020), implementation of alternative water 

rate structures (J. Beecher, 1999; Boyle, 2014), and consolidation or inter-utility partnership 

(Klien & Michaud, 2019; Silvestre et al., 2018). Development of modeling frameworks that 

identify policies or sequences of actions (pathways) that perform well under uncertainty have 

also been applied to quantify the combined outcomes of differing adaptation options (Herman et 

al., 2015; Hoekstra et al., 2018; Kwakkel et al., 2012; Trindade et al., 2020).  

While financial outcomes have more recently begun to be considered alongside supply 

performance (Baum et al., 2020; Zeff & Characklis, 2013), no studies of future water utility 

planning and management have directly quantified the financial impacts of water supply system 

adaptation in terms of decision-relevant metrics used by utilities. Debt covenants, which 

typically include one or more measures of financial health, are often required of utilities by 

creditors seeking assurance that debt issued through bonds for infrastructure expansion will be 

repaid (Raftelis, 2005; TBW, 2018b), represent a key factor in utility budgets (Alegre et al., 

2016; AWWA, 2011; Beecher et al., 1993; Hughes et al., 2014; Jordan et al., 1996; Wirick et al., 

1997). However, it is uncommon in the research literature to see a direct quantification of a 

utility’s ability to maintain covenants as a result of infrastructure investment, even though it is an 

important measure of a utility’s financial health. Previous work has quantified utility financial 

performance in other ways: the fraction of utility revenues devoted to drought mitigation and 

debt service on infrastructure expansion (Gold et al., 2019; Gorelick et al., 2020; Zeff et al., 

2014); revenue and cost fluctuations due to demand management and water rate changes (Sahin 

et al., 2018); infrastructure and budgetary policy impacts on consumer affordability (Gorelick et 

al., 2019; Jensen et al., 2020; Rehan et al., 2015); cost/benefit analysis of potential infrastructure 

projects (Furlong et al., 2017). Nonetheless, such reflections of financial standing only capture 
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subsets of the budgetary response of a utility to changing system conditions, and are not those 

focused on by groups such as the credit ratings agencies whose assessments directly impact the 

interest utilities pay on debt. Studies able to quantify utility performance in terms of debt 

covenant metrics, such as debt service coverage or operating ratios, have been limited to surveys 

of historical utility budgets (Iovino, 2020; Marques & Monteiro, 2001; Tsagarakis, 2013). Yet no 

studies have calculated covenant ratios in concert with simulations of utility operations and 

planning, nor have any modeled utility budgets in a manner that allows for dynamic reactions to 

swings in costs and revenues that threaten violation of covenant thresholds. The latter are critical 

to utility senior management (e.g., CEO, CFO) as they must be met to ensure good standing with 

creditors and maintain low financing costs on debt, which can constitute more than 20% of a 

water utility operating budget (NACWA, 2015).  

Even without explicit consideration of financial adaptation by existing water supply 

management efforts, such frameworks proposed in the literature have had little success being 

understood, adopted, and applied by decision-makers (Smith et al., 2019). Though studies 

emphasizing collaboration between practitioners and researchers – “double” or “triple-loop” 

learning, to evaluate and improve upon existing understanding of water management systems – 

are increasingly common (Johannessen et al., 2019; McLoughlin et al., 2020), adoption of 

recommendations by researchers in practice is less prevalent (Lawrence & Haasnoot, 2017). One 

reason for lack of uptake is differences between modeling frameworks used by academic studies 

to assess management conditions and those of practitioners. However, to this point no studies of 

water supply management have emphasized either (a) decision-relevant quantification of 

financial status within modeling frameworks in use by practitioners, or (b) coordination with 
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practitioners (in this case utility managers and personnel) to adopt modeling updates and 

recommendations.  

This study develops a coupled adaptive water supply and financial risk assessment 

framework for use by the Tampa Bay Water Authority (TBW) in Florida, the Southeast U.S.’ 

largest water wholesaler, tasked with collectively meeting the demands of six retail water utilities 

in the Tampa Bay region (Asefa, 2015; Asefa et al., 2014; Wang et al., 2020). Developed as a 

collaborative effort between TBW personnel and external researchers, results of this work 

provide insight into the value of detailed financial modeling in long-term forecasting as well as 

the ability of coupled adaptive supply and financial modeling to improve water utility decision-

making in practice. 

 

5.2 Methods 

This research summarizes the benefits of adaptive management for improving water 

supply reliability and financial modeling capabilities of the Tampa Bay Water Authority (5.2.1). 

Existing TBW modeling, used for weekly operational and long-term infrastructure planning 

(5.2.2), is coupled with a financial risk assessment model (5.2.3). System performance across 

relevant supply and financial performance indicators (5.2.4) is evaluated through Monte Carlo 

simulation of hydroclimatic and demand growth uncertainty (5.2.5). Improvements allow for 

consideration of decision-relevant water supply and financial utility objectives and demonstrate 

the value of adaptive management (or learning) in a real-world system. 
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5.2.1 Case Study Region 

This study centers on the Tampa Bay, FL region in the southeastern U.S. (Figure 5.1). 

More than 2.5 million people reside within the three cities (City of Tampa, City of St. 

Petersburg, City of New Port Richey) and three counties (Hillsborough, Pasco, Pinellas) of the 

Tampa Bay region served by the Tampa Bay Water Authority (TBW). Formed in 1998 through 

interlocal agreement between regional member governments, TBW is obligated to meet drinking 

water demands of these six governments through wholesale and delivery of treated water to their 

respective water utilities until 2038. One of the six utilities served by TBW, the City of Tampa 

(CoT), self-supplies a portion of its water demand with infrastructure developed independently.  

 

Figure 5.1: Counties and municipalities served by Tampa Bay Water and major components of 
TBW water supply infrastructure. 

 

Tampa Bay Water was created primarily to resolve regional issues of groundwater over-

withdrawal, which had degraded environmental conditions and lowered the regional? water table 
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due to inadequate action by member governments to reduce pumping. As part of its agreement to 

meet regional water demands, TBW assumed ownership of regional groundwater production 

wellfields and has expanded supply infrastructure to include surface water and desalination 

sources. Surface and desalination currently make up over 50% of TBW water supply under 

normal hydroclimatic conditions. TBW expects system-wide demands to meet or exceed 200 

million gallons per day (MGD) under dry conditions by 2030, and 210 MGD by 2040, while 

current supply capacity under dry conditions is approximately 190 MGD (TBW, 2018b).  

Existing TBW supply infrastructure includes 13 groundwater production wellfields, a 

regional surface water treatment plant (SWTP) with sustainable treatment capacity of 90 MGD, 

the 15.5 billion gallon (BG) C.W. Bill Young Regional Reservoir (off-stream; water is pumped 

in and out, not naturally filled via streamflow), the Tampa Bypass Canal – originally constructed 

by the US Army Corps of Engineers to divert floodwaters from the Hillsborough River into 

Tampa Bay – with a maximum withdrawal permit of 258 MGD, a pump station on the Alafia 

River with a withdrawal permit maximum of 60 MGD (subject to minimum flow constraints), 

the Tampa Bay Desalination Plant (with a maximum production rate of 20 MGD), and over 150 

miles of treated water transmission mains linking all facilities and delivery points to member 

governments. Groundwater withdrawals are permitted under three separate agreements: (a) 

Consolidated Well Use Permit (CWUP) with a 90 MGD permitted capacity; South-Central 

Hillsborough County wellfields (SCH) with a 24 MGD capacity; Brandon Urban Dispersed 

wellfields (BUD) with a 6 MGD permitted capacity.  

Though existing surface and groundwater withdrawal permit volumes exceed TBW’s 

expected long-term needs, other factors such as environmental flow requirements, seasonality of 

surface water availability, water temperature and level at TBW’s desalination facility, as well as 
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asymmetry in regional demand growth leave TBW with a need to expand supply and 

transmission infrastructure to deliver enough water to meet regional demands. TBW is 

considering several supply expansion and operation adjustment pathways to meet demands 

expected by 2040 and demand growth over the next 10 years driven by rapid growth in South 

Central Hillsborough County (SCH), where water infrastructure delivery capacity may be 

exceeded as soon as 2025. Based on screening of infrastructure expansion options to meet SCH 

demands, outlined in TBW’s 2018 Long-Term Master Water Plan, a subset of development 

pathways were identified for further study (Table 5.1).  

 

Table 5.1: Delivery capacity (in Million Gallons per Day) and estimated costs (in millions of 
USD) of potential water supply expansion or operational changes under consideration by TBW 
to meet future demands. 

Infrastructure 
Pathway 

Pipeline to South Central Hillsborough 
County (est. capital, annual operating cost) 

Expansion of Surface WTP 
(est. capital, operating cost) 

1 (baseline) 12.5 MGD ($151.7M, $0.7M) - 
2 12.5 MGD 20 MGD ($88.2M, $1.6M) 

 

Primarily to ensure demand growth in South Central Hillsborough County can be met, 

TBW is planning to construct a transmission pipeline that will connect its existing distribution 

system to a delivery point in SCH. To further aid in meeting SCH demands, and in preparation of 

demand growth across all member governments, TBW is also considering expansion of their 

surface water treatment plant by 20 MGD.  

 

5.2.2 Tampa Bay Water System-Wide Reliability Evaluation (SWRE) Framework 

TBW curates a suite of water supply reliability models to assess the status and future 

needs of its system; this collection is referred to as the System-Wide Reliability Evaluation 
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(SWRE). SWRE is a simulation-optimization modeling framework used for utility operational 

support and long-term planning, primarily composed of two component models – the 

Operational Modeling System Version 1 (OMS1; section 5.2.2.1) and the Optimized Regional 

Operations Plan (OROP; 5.2.2.2). Together, the coupled OMS1 and OROP evaluations are able 

to project the effects of meeting regional water demands from 2021 to 2040 (TBW’s planning 

horizon) on groundwater levels, surface water storage, and desalination plant production, 

including whether withdrawal permits or capacity limits may be violated in order to do so. 

 

5.2.2.1 Operational Modeling System, Version 1 (OMS1) 

The Operational Modeling System, Version 1 is a MATLAB-based water routing model, 

used by TBW to simulate daily surface water availability for TBW based on surface water 

inflows and City of Tampa demands. Surface water can be withdrawn by TBW via the Tampa 

Bypass Canal (TBC), Alafia River pump station, or C.W. Bill Young Regional Reservoir, for 

treatment and delivery to member governments. The City of Tampa may self-supply with water 

from its own Hillsborough River Reservoir, and during drought the City may also purchase 

additional water from TBW. TBW can deliver treated water to the City of Tampa with regional 

transmission mains or through sales of untreated water pumped from the Harney Canal (a 

component of the Tampa Bypass Canal) to the Hillsborough Reservoir, a process known as 

Harney Augmentation. OMS1 simulates surface water inflows and City of Tampa demands at a 

daily timestep, providing Harney Augmentation, reservoir, and TBC storage levels. See Fig. 7.3 

in Appendix 4.3 for a visual description and details on the system configuration of OMS1. 
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5.2.2.2 Optimized Regional Operations Plan (OROP) 

The Optimized Regional Operations Plan Model (OROP) is an optimization model, run at 

a daily timestep in connection with OMS1, identifying the least-cost strategy for delivering water 

to member governments (see Fig. 5.4 in Appendix 4.3 for visualization of the OROP system 

model). As surface water availability is estimated at withdrawal points by OMS1, OROP 

optimizes the routing of available surface, groundwater, and desalination supply within the TBW 

system of transmission mains to members’ points of connection. Before the entire SWRE (OMS-

1 and OROP) can advance to the next day of water supply simulation, OROP must identify a 

routing strategy based on cost minimization, with different costs assigned to each water source 

and transmission main segment. If no feasible solution can be found, routing is accomplished 

with slack variables; water withdrawal permit capacities at groundwater wellfields and surface 

water intakes may be temporarily exceeded to meet demand growth across the system. Choices 

made by OROP to meet each day’s demands are transferred back to OMS1 to inform initial 

conditions of the subsequent timestep. 

 

5.2.2.3 Combining OROP and OMS1 for TBW Water Supply Reliability Evaluation 

To evaluate the impact of water supply infrastructure and operational change on the TBW 

system, structural improvements (Table 5.1) can be implemented within OROP and OMS1 as 

pre-specified changes that activate on specific timesteps. As TBW expects demands in South 

Central Hillsborough County to exceed its capacity to deliver water to the area by 2028, all 

infrastructure improvements tested within the SWRE modeling framework are assumed to come 

online at the end of 2027. Other than OROP optimization in each daily timestep of modeling to 

locate least-cost water delivery routing by TBW to its member governments, SWRE is not 
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dynamically adaptive to changing hydroclimatic or demand conditions; water shortage mitigation 

action (e.g., use restriction) or infrastructure expansion cannot be triggered during an SWRE 

framework evaluation. Future infrastructure projects, as described above, may come online 

during an evaluation, but the date must be pre-specified. 

 

5.2.3 Implementation of the Financial Risk Assessment Tool (FRAT) 

This work introduces the Financial Risk Assessment Tool (FRAT), a financial forecasting 

tool for tracking key financial funds and flows across future fiscal years (Fig. 5.2). Daily 

simulation of water supply deliveries to member governments within SWRE are passed to FRAT 

and used to estimate monthly water sales revenues across the modeling horizon (2021-2040). 

Sales may occur via two operations: (a) sales of treated water by TBW to member governments, 

delivered through TBW’s network of transmission mains, charged a volumetric Uniform Rate set 

by TBW; (b) sales of untreated water to the City of Tampa through the Tampa Bypass Canal 

(Harney Augmentation), which are charged a separate, smaller volumetric rate.  
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Figure 5.2: Flowchart linking SWRE (orange) outputs of water deliveries and infrastructure 
expansion timing to annual financial model flows of FRAT. 

 

The Uniform Rate, set annually for the next FY at the end of each current fiscal year 

(FY), is estimated based on projected water demands and TBW’s Annual Estimate, which is the 

sum of projected next-FY operating expenses, debt service, and required transfers into reserve 

funds. Dividing the Annual Estimate by projected water demand, the Uniform Rate per unit of 

water sold can be calculated for an upcoming FY. The Uniform Rate itself is split into two 

portions: (a) a fixed rate charge levied monthly to member governments in proportion to their 

previous FY demands, designed to offset all TBW fixed operating expenses; (b) a variable rate, 

set to cover TBW variable operating expenses, that is charged monthly based on water deliveries 

to member governments in the current FY.  

Debt service is tabulated annually within FRAT as a sum of existing debt held by TBW 

on bonds previously issued for capital improvements (CIP), rehabilitation and renewal (R&R), 
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and large investments for supply infrastructure, remaining Acquisition Credits – debt owed to 

member governments on water supply assets ceded to TBW during its 1998 formation – and debt 

on new supply infrastructure projects (including those in Table 5.1). Debt on future large supply 

projects assumes a 30-year amortization schedule on bonds issued and a flat 4% interest rate, 

consistent with rates of recently issued bonds by TBW (TBW, 2019). Based on TBW plans to 

maintain debt service at or below approximately $80 million annually, only interest is paid on 

debt incurred through financing of new infrastructure projects until FY 2032, after which 

payments on principal also begin. FRAT also tabulates balances and transfers of CIP, R&R, rate 

stabilization, utility reserve, and other TBW funds in each FY, based on historical trends of 

reserve fund transfer policy, the current FY Uniform Rate, debt service owed, water deliveries, 

additional miscellaneous revenues and costs, and required transfers to meet TBW regulations.  

At the end of each FY, FRAT combines historical trends of budgetary policy (i.e. 

inflation and demand growth rates, etc.) with realized outcomes (actuals) from the current FY to 

project a budget for the subsequent FY. Budget estimation accounts for debt and rate covenants 

(described in 5.2.4), reserve fund requirements (set in accordance with TBW’s Master Bond 

Resolution), future water demand growth, management of the Uniform Rate (e.g. ensuring rate 

does not rise too quickly year-over-year), as well as new and existing debt service. The budget 

estimation process culminates in setting of the Uniform Rate based on a budgeted Annual 

Estimate and projected water demands. Differentiation between budget estimation and actuals in 

each FY allows FRAT to better approximate the “real-world” budget-setting process and avoid 

an assumption of “perfect foresight” through which budget estimation and actuals of each FY 

would be equal (for example, the water demand projection used to set a FY budget by FRAT 

may not equal deliveries over that FY observed in SWRE). FRAT directly calculates TBW rate 
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and debt covenants, as well as all reserve fund balances and the Uniform Rate, for all future 

fiscal years across the planning horizon (2021-2040).  

 

5.2.4 Coupled SWRE and FRAT Modeling 

Despite the capability of TBW to model the effects of supply infrastructure changes and 

its ability to meet future demands, SWRE alone does not include consideration of financial 

processes or metrics in such changes nor long-term fiscal modeling of demand growth impacts to 

Authority budgeting. To make adaptive financial and budgetary assessment possible in 

connection with water supply system changes, this work develops the FRAT as a financial 

component to the SWRE to translate the impacts of hydroclimatic change, demand growth, and 

infrastructure expansion into financial outcomes (Fig. 5.3). The coupled SWRE-FRAT 

framework is able to model financial responses by TBW that adapt to changing environmental 

and demand conditions as well as to year-to-year changes to the Authority’s budget.  
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Figure 5.3: Description of coupled water supply-financial assessment framework, combining 
existing TBW SWRE modeling with a financial component. 

 

Development of the SWRE-FRAT framework was necessary to address a key TBW 

management goal of quantifying future system performance beyond the current scope, expanding 

assessment to also include financial health. TBW evaluation of system conditions using SWRE 

has historically been done based on a user-defined Level of Service (LoS) threshold, with LoS 

being a metric quantified as the percent of Monte Carlo realizations of future hydroclimatic and 

demand conditions that meet regional demands (Asefa et al., 2014). A LoS level of 99%, for 

example, is linked to the greatest regional water demand that could be met in 99% of tested 

realizations. Demand is ‘met’ for LoS if a realization never experiences a 1-month-or-longer 

period of demand exceeding delivery capacity without violation of withdrawal permits. Short-

term, one-month (30 day) periods where demands are not met in SWRE are assumed by TBW as 

able to be mitigated through short-term water use restrictions or other drought mitigation action 

that TBW or regional utilities could implement.  
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While Level of Service can offer an indication of overall system reliability, it does not 

reflect vulnerability or resiliency of the TBW water supply system, nor financial outcomes 

related to infrastructure expansion. In response, this work expanded upon LoS to identify several 

key reliability and financial indicators that offer TBW a more comprehensive view of system 

performance, answering the questions: (a) how often can TBW expect future supply shortfalls; 

(b) where will shortfalls manifest within the supply system; (c) how severe will supply shortfalls 

be; (d) how do planned future infrastructure investments impact TBW financial performance (f) 

under hydroclimatic and demand growth uncertainty; (e) how can management intervention 

influence financial stability? 

 

5.2.4.1 Supply reliability performance metrics 

Water supply system performance is assessed based on three proposed metrics of water 

supply shortfall, supply shortfall asymmetry, and shortfall severity, quantifying reliability, 

vulnerability, and resiliency of the TBW supply system. While Level of Service can only be 

calculated based on a summary of performance across all realizations, each performance metric 

below is quantified on more granular temporal scales (i.e. per year or fiscal year). 

 

5.2.4.1.1 Supply shortfall 

For TBW, as with all water supply authorities, being able to reliably meet demands is a 

primary objective (Asefa et al., 2014; AWWA, 2018). Though TBW anticipates they are able to 

mitigate up to 30 consecutive days of permit violation through drought management programs, it 

remains key for the utility to monitor the overall potential for shortfalls in future years. Supply 

shortfall (or reliability) 𝑅𝑅𝑟𝑟 is defined for TBWA as the fraction of realizations 𝑟𝑟 containing at 
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least one period of 30 or more consecutive days in which demand cannot be met without water 

supply deliveries exceeding withdrawal permit levels: 

 

𝑅𝑅𝑟𝑟 =
1
𝑁𝑁𝑟𝑟

� 𝜆𝜆𝑟𝑟
𝑟𝑟∈𝑁𝑁𝑟𝑟

                                                                     (1) 

𝜆𝜆𝑟𝑟 = � 10     max(𝑺𝑺𝑫𝑫𝒓𝒓)
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

                                                              (2) 

 

where 𝑺𝑺𝑫𝑫𝒓𝒓 is the set of shortfall durations in a given realization. 

 

 

5.2.4.1.2 Shortfall asymmetry 

Within regional water supply systems, it is common for demand, population growth, 

hydroclimatic conditions, and other factors to vary asymmetrically in space and time (Gold et al., 

2019; Herman et al., 2014; TJCOG, 2014); this reality complicates planning for TBW, which is 

considering large-scale system enhancements in response to demand growth of one sub-region 

(TBW, 2018b). As a result, regional supply shortfall asymmetries are a second objective of 

interest.  

Shortfall asymmetry magnitude 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 is defined for each TBW system point 𝑆𝑆𝑆𝑆𝑆𝑆 where 

withdrawal permit violations or demand shortfalls are ‘allowed’ by slack variables in SWRE 

modeling – surface water withdrawal from the Alafia River and Tampa Bypass Canal; 

groundwater withdrawal from wellfields under the CWUP and SCH permits; supply delivery 

shortfalls to SCH. This metric annually tracks the level to which permit capacities are exceeded 

or deliveries fall short of demands for the system points named:  
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𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆,𝑦𝑦 = max
d∈{1..365}

�𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆,𝑑𝑑�                                                      (3) 

 

𝑀𝑀𝑀𝑀𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆,𝑑𝑑 =
1

30
�𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆,𝑑𝑑+𝑖𝑖

29

𝑖𝑖=0

 ∀ 𝑑𝑑 ∈ {1,365}                                        (4) 

 

where 𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆,𝑑𝑑 is the magnitude of violation of a given day, in MG of permit capacity exceeded or 

unmet demand for a given source, and 𝑀𝑀𝑀𝑀𝑉𝑉𝑆𝑆𝑆𝑆𝑆𝑆 is the 30-day moving average of such violations.  

 

 

5.2.4.1.3 Shortfall severity 

Along with supply-side capability to meet water demand, TBW engages is demand-side 

management and cooperation with member governments to encourage water conservation during 

periods of scarcity and drought (TBW, 2017). As a result, TBW is resilient in its ability to 

recover from short periods of supply shortfall. Considering that shortfalls found in SWRE 

modeling do not consider short-term drought mitigation response, a final supply metric of 

interest to TBW is the longest continuous period of supply shortfall 𝑆𝑆𝑦𝑦 in each future year: 

 

𝑆𝑆𝑦𝑦 = max�𝝋𝝋𝒚𝒚�                                                                     (5) 

 

where 𝝋𝝋𝒚𝒚 is a vector containing the length (in days) of each continuous period of supply shortfall 

within a given year. Supply shortfall is calculated as the sum of withdrawal permit and delivery 

shortfall magnitude per day across the TBW system; any day with shortfall > 0 is counted as a 

day of shortfall when calculating 𝑆𝑆𝑦𝑦. 
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5.2.4.2 Financial performance metrics 

Water utilities must consider both water supply and financial goals in decision-making 

(Baum & Characklis, 2020; Gorelick et al., 2020; Zeff et al., 2014). This is true of Tampa Bay 

Water – maintaining financial stability is a core component of the Authority’s strategic goals that 

must be accounted for (TBW, 2018b); however, like most utilities, TBW water supply and 

financial stability have been largely pursued separately. As TBW plans infrastructure expansions 

to meet future system water demands, the Authority must also maintain good standing in terms 

of its financial metrics lest it raise concerns with ratings agencies and/or the municipal bond 

market. These benchmarks, or covenants, are defined as: (a) debt covenant, 

 

𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝐹𝐹𝐹𝐹 =
𝑅𝑅𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛,𝐹𝐹𝐹𝐹

𝐷𝐷𝑆𝑆𝐹𝐹𝐹𝐹 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶,𝐹𝐹𝐹𝐹 + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑅𝑅&𝑅𝑅,𝐹𝐹𝐹𝐹
                                  (6) 

 

where 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 in fiscal year 𝐹𝐹𝐹𝐹 is the ratio of FY net revenues against the sum of debt service and 

budgeted deposits into CIP and R&R reserve funds, and (b) rate covenant 

 

𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐹𝐹𝐹𝐹 =
𝑅𝑅𝑅𝑅𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛,𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅,𝐹𝐹𝐹𝐹

𝐷𝐷𝑆𝑆𝐹𝐹𝐹𝐹
                                          (7) 

 

for which 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is the ratio of net revenues and utility reserve fund balance relative to debt 

service. Tampa Bay Water is required to maintain a debt covenant ratio of at least 1.0 and a rate 

covenant ratio of at least 1.25 in each fiscal year by the utility’s Master Bond Resolution, 

developed between TBW and its constituent member governments, indicating the Authority is 

financially stable and capable of meeting any debt obligations (TBW, 2019). Should covenants 
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be violated, TBW risks credit rating downgrades and subsequent increased interest rates on 

future debt issued for supply infrastructure. Net revenues for covenant calculations are equal to 

the sum of TBW FY water sales revenues, unencumbered funds remaining from the previous 

fiscal year, non-sales revenues and additional funds made available from the Authority’s Rate 

Stabilization reserve fund, less Acquisition Credits owed, necessary deposits to reserve funds, 

and all operating expenses. 

To meet covenant thresholds, TBW is able to make budgetary adjustments such as 

changing the Uniform Rate of water sales to generate revenues in line with changing operating 

costs. Setting the Uniform Rate is done each fiscal year based on expectations for the following 

year; to provide quantitative context on how TBW budgets adapt to future conditions, the 

Uniform Rate is also presented in this work alongside covenant ratios. The Uniform Rate 𝑈𝑈𝑅𝑅𝐹𝐹𝐹𝐹 

is estimated as 

 

𝑈𝑈𝑅𝑅𝐹𝐹𝐹𝐹 =
𝐴𝐴𝐸𝐸𝐹𝐹𝐹𝐹
𝐷𝐷𝐷𝐷𝐹𝐹𝐹𝐹

                                                                      (8) 

 

 

where 𝐴𝐴𝐸𝐸𝐹𝐹𝐹𝐹 is the Annual Estimate for a particular fiscal year; the Annual Estimate, made at the 

end of each FY, is the estimate of total costs for the following FY, including fixed and variable 

operating costs, debt service, Acquisition Credits owed, and deposits to reserve funds. 𝐷𝐷𝐸𝐸𝐹𝐹𝐹𝐹 is 

the TBW estimate of water demand for the given FY. Water demand is estimated based on the 

previous FY water demand and a demand growth rate (assumed at 1.5%, consistent with 

historical demand growth).  
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5.2.5 Problem Formulation 

This research presents a stochastic computational framework for simultaneous adaptive 

financial and water supply system performance assessment, by contrasting current TBW SWRE 

framing of infrastructure expansion impacts on supply reliability with a coupled and expanded 

SWRE-FRAT framework (Fig. 5.4). This coupled framework is used to simulate both water 

supply effects of infrastructure development alongside the financial ramifications for future 

TBW covenants and water rates.  

 

 

Figure 5.4: Flowchart of computational experiment.  

 

5.2.5.1 Probabilistic Demand Forecast 

Since 2009, TBW has evaluated and updated its future demand forecasts based on newly-

observed trends. In parallel, TBW also annually updates a probabilistic Monte Carlo ensemble of 

synthetic demand realizations across the planning horizon to 2045 (TBW, 2018a). This study 

applies TBW’s 2021 long-term probabilistic demand forecast, designed for planning purposes 

over 20-30 year time horizons, to test regional performance under future demand uncertainty. 
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Demand projections are developed independently in each of TBW’s six water demand planning 

regions (3 cities and portions of 3 counties), based on changes to “drivers” of water demand 

within each region. Drivers include single and multi-family residences, as well as non-residential 

properties; the future demand forecast will increase based on expectation that the number of 

residences (drivers) in a particular planning region will increase. A single “point” forecast to 

2045 is developed based on best estimates of explanatory variables of demand (i.e. rainfall, 

temperature, housing unit density, market penetration of new high-efficiency water fixtures, 

etc.). The forecast is calibrated using data from 2001-2013 and validated over the period 2014-

2018, with corrections applied for each calendar month to address discrepancies between model 

performance and observed demands over the validation period.  

A probabilistic forecast is also developed, realized with an ensemble of 1,000 daily 

demand records through 2045. This forecast is generated using a “rate-of-use-times-driver” 

approach. Demand is partitioned into three sectors: single family homes, multi-family homes and 

non-residential. Sector specific models estimate the average monthly demand, known as the “rate 

of use” for each water consuming entity, called a “driver unit”. Rate of use is estimated using 

variables including price, efficiency factors and weather variables. These variables are projected 

independently and not correlated with one another. Uncertainty in exploratory variables is 

represented by fitting distributions to the estimated rate of use and driver units for the three 

sectors. Then, single values of each parameter are jointly sampled to construct the ensemble of 

Monte Carlo realizations. Estimation of driver units begins by establishing point projections for 

income, population, persons per household and price using data from the Florida Bureau of 

Economic and Business Research (BEBR), Moody’s Analytics, and the Florida Department of 

Transportation. Ranges of uncertainty and probability density functions are ten estimated though 
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data from population projections from the BEBR and socioeconomic variables from Moody’s 

Analytics. Population projections from the BEBR utilize multivariate normal distributions for 

each county and each year. Distributions derived from Moody’s Analytics data include data on 

the number of households, fraction of single-family homes, median household income and 

employment. Joint distributions for these parameters are constructed considering cross-

correlations between variables. BEBR and Moody’s distributions are sampled independently of 

one another. Real marginal price of water is assumed to be normally distributed and independent 

between Water Demand Planning Areas. Efficiency is estimated using a uniform distribution 

across a range of plausible values derived from examining a set of 49 possible efficiency 

scenarios. Weather variables are simulated using a bootstrapping method. Model uncertainty is 

included through bootstrapping from historical model residuals. More information on TBW’s 

demand forecasting methodology, see Appendix 4.1. 

 

5.2.5.2 Hydroclimatic Futures 

The Flow Modeling System, Version 2 (FMS2) Model, developed by Hazen & Sawyer 

for use by TBW (TBW, 2018), combines rainfall models at the three rainfall stations in the 

Tampa Bay region to generate synthetic realizations of future streamflow. FMS2 applies 

historical rainfall data to develop synthetic daily surface water flow records in the Hillsborough 

and Alafia Rivers, and Tampa Bypass Canal (TBC), the main sources of TBW and the City of 

Tampa surface water supplies.  

From FMS2 records, 1,000 stochastic rainfall timeseries were then synthetically 

generated for TBW (Hazen and Sawyer, 2010) to simulate a range of future surface water inflow 

conditions in the Hillsborough and Alafia Rivers. These flow timeseries are based on rainfall 
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observations from the three gaging stations (Plant City, St. Leo, and Cypress Creek). Each of the 

1,000 timeseries was generated for 100 years, with the first 22 years taken for simulation in 

TBW’s 2018 Long-Term Master Water Plan (2018-2040) and first 20 years are used for this 

study (2021-2040). Monthly streamflows were generated synthetically and then dis-aggregated 

to a daily timestep. Monthly generation is best to capture rainfall-streamflow correlation, but 

daily is needed to match the scale of water use permits. Dis-aggregation was done using a 

"multivariate non-parametric" k-nearest neighbor approach (Lall & Sharma, 1996). Additional 

steps were taken to account for month-to-month transitions of flow, temporal autocorrelation, 

and spatial correlation of streamflow. For more detail on FMS2 validation and development of 

synthetic hydroclimatic futures, see Appendix 4.2. 

 

5.2.5.3 SWRE-FRAT Pathways and Performance Outcomes 

The ensembles of 1,000 demand and 1,000 hydroclimatic realizations, described above, 

are combined through Latin Hypercube Sampling (LHS) to form a joint Monte Carlo assessment 

of TBW system performance under hydroclimatic and demand uncertainty. Of 1 million possible 

demand and hydroclimatic pairs of conditions (1,000 demand times 1,000 hydroclimatic 

realizations), 1,000 paired realizations of demand and hydroclimate are identified by LHS and 

passed to the SWRE-FRAT framework, where TBW performance is determined according to 

metrics described in section 5.2.4.  

The Monte Carlo ensemble evaluation is repeated for two infrastructure pathways (Table 

5.2A) – a (1) baseline pathway with development of a pipeline to South Central Hillsborough 

County, and (2) a pathway with both a SCH pipeline and SWTP expansion completed in 2028. 

Evaluation is also done under a range of potential financial management interventions; TBW has 
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maintained a Uniform Rate of $2.559 per thousand gallons (kgal) of water delivered over the last 

10 fiscal years, but this may be subject to change in future budgets (TBW, 2019). Financial 

outcomes are tested here under conditions of (a) a “hands-off” Uniform Rate set based on the 

Annual Estimate and water demand projections of SWRE-FRAT without intervention by 

managers, (b) fixed Uniform Rate at present-day level, and (c) a Uniform Rate with gradual, 

controlled growth where the Uniform Rate rises steadily within a range of 0.5-1% per year. 

Differences between the above rate-setting policies will elicit the ability of TBW to financially 

adapt when revenues from water sales are constrained (or not). 

 

5.3 Results 

Results across 1,000 LHS realizations of hydroclimatic and demand conditions from 

2021-2040 are developed, comparing supply reliability and financial performance metrics under 

a baseline infrastructure pathway (Table 5.1, pathway 1; 5.3.1), results across infrastructure 

pathways (5.3.2), and the contrasting implications of demand growth on water supply and 

financial outcomes (5.3.3).  

 

5.3.1 Performance metric outcomes under baseline infrastructure pathway 

5.3.1.1 Supply shortfall (water supply reliability) 

Quantifying supply shortfall, or system-wide reliability, provides a generalized view of 

Tampa Bay Water’s ability to meet regional demands in future years. Fig. 5.5 details TBW 

reliability in terms of the percentage of SWRE realizations without a supply shortfall in each 

future year, under the baseline infrastructure pathway.  
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Figure 5.5: Fraction of realizations in SWRE-FRAT evaluation of baseline infrastructure 
pathway without supply shortfall in each future year for (a) TBW’s service area other than South 
Central Hillsborough County and (b) South Central Hillsborough County only. 

 

Tampa Bay Water expects to expand delivery capacity of its distribution system in 2028, 

to meet growing demands of South Central Hillsborough County (SCH) that cannot be met with 

delivery capacity of the existing transmission mains operated by TBW. In the baseline 

infrastructure pathway, this is achieved with development of the SCH pipeline project. As a 

result, SWRE shows a large increase in reliability – realizations without supply shortfall – after 
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2028 for the SCH region (Fig. 5.5(b)). While demand growth before 2028 has significant 

negative impacts to SCH water supply reliability, the remainder of the TBW service area does 

not see the same large reductions in supply reliability, due to a water distribution capacity 

“bottleneck” in SCH severely limiting water delivery to the sub-region (Fig. 5.5(a)). However, as 

regional demand continues to grow in the 2030s, supply shortfall becomes more common across 

SWRE realizations for both SCH and the region as a whole.  

 

5.3.1.2 Shortfall asymmetry 

Regional supply shortfalls and reliability offer one picture of TBW system performance, 

however the metric is unable to capture dynamics between different system points. Fig. 5.6 

quantifies the magnitude (in MGD) of supply shortfalls at five key system points: withdrawal 

permit violations of Alafia River and Tampa Bypass Canal (TBC) surface waters; withdrawal 

permit violations of South Central Hillsborough County and Consolidated Well Use permits 

(CWUP) for groundwater; delivery shortfalls to SCH.  
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Figure 5.6: Shortfall magnitude at key surface water (left column), groundwater (center column), 
and delivery (right column) system points. Lines indicate the magnitude of shortfall reached in 
the worst-performing 15% (solid), 10% (dot-dash), and 5% (dotted) realizations of SWRE under 
a baseline infrastructure pathway.  

 

Asymmetry in system shortfalls is presented, in terms of the 15th, 10th, and 5th 

percentiles of shortfall magnitude across all 1,000 SWRE realizations tested, providing 

perspective on TBW system performance under dry hydroclimatic conditions and/or high 

demand growth futures. Consistent with the degradation in reliability for SCH from 2021 to 2027 

(Fig. 5.5(b)), this trend is reflected by a growing magnitude of delivery shortfalls to South 

Central Hillsborough County (Fig. 5.6, top right panel). After 2028, SCH shortfalls are reduced 

with the introduction of a new pipeline to deliver water to the sub-region. For the majority of the 

TBW system, however, shortfalls of the TBW system continue to increase in dry and high-
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demand realizations after 2028, primarily manifesting through violation of SCH and CWUP 

groundwater permits (Fig. 5.6, center column). While shortfalls do occur for some realizations at 

the Tampa Bypass Canal and Alafia River surface water withdrawal points, this behavior was 

only significant in the worst-performing 5% of SWRE realizations. 

 

5.3.1.3 Covenant response to Uniform Rate management intervention  

The financial risk experienced by TBW under a baseline infrastructure pathway can vary 

widely based on management intervention to control the Uniform Rate, responsible for the vast 

majority of TBW annual revenues. Fig. 5.7 shows future rate and debt covenant outcome ranges 

under three different uniform rate-setting policies for TBW across 1,000 hydroclimatic and 

demand realizations – (a) “hands-off” Uniform Rate set based on the Annual Estimate and water 

demand projections of SWRE-FRAT without additional intervention by managers (green), (b) 

fixed Uniform Rate at present-day level (blue), and (c) a Uniform Rate with gradual, controlled 

growth where the Uniform Rate rises steadily within a range of 0.5-1% per year (red).  

 

Figure 5.7: FRAT estimates of uniform rate (left), debt (center) and rate (right) covenant levels 
in future fiscal years, based on three rate-setting policies (colors). Dashed lines show covenant 
ratios that must be maintained by TBW.  
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Maintenance of the current uniform rate (Fig. 5.7, blue), which has not changed in the 

previous 10 fiscal years, would subject TBW to significant financial risk of covenants falling 

below required thresholds (dashed lines) while paying down existing debt. After fiscal year 2032 

most existing debt held by TBW has matured, including Acquisition Credits expiring after FY 

2028, resulting in a visible jump in projected rate covenant levels and reduction in the Uniform 

Rate (Fig. 5.7, green). Debt covenant drops below the 1.0 required threshold in a fraction of 

realizations under all Uniform Rate policies, but only a fixed Uniform Rate constrains TBW 

budgets from quickly rebounding to rectify it. Even with a controlled growth policy, capping 

Uniform Rate growth at 1% annually, TBW could largely avoid consistent or severe violations of 

debt and rate covenant thresholds (Fig. 5.7, red).  

 

5.3.2 Performance differences across infrastructure pathways 

Tampa Bay Water is considering a 20 MGD expansion of its surface water treatment 

plant (SWTP), alongside construction of a pipeline to increase delivery capacity to South Central 

Hillsborough County. Results below explore the impact of additional 2028 SWTP expansion on 

supply shortfall and financial metric outcomes. 

 

5.3.2.1 Shortfall severity 

Shortfall outcomes from SWRE modeling do not account for demand management and 

conservation that TBW or member governments can implement during periods of scarcity. As a 

result, TBW estimates that continuous periods of shortfall lasting less than 1 month can be 

mitigated through demand management. Fig. 5.8 shows shortfall severity, in terms of the longest 

period of days with supply shortfall in each future year, in the worst-performing percentiles of 
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SWRE realizations under the infrastructure pathway 2 with both a SCH Pipeline and SWTP 

expansion in 2028. In practice, the “worst-performing” percentiles of coupled hydroclimatic and 

demand realizations primarily include high-demand, dry conditions. 

 

 

Figure 5.8: Shortfall severity of realization percentiles of SWRE under infrastructure pathway 2. 
Lines indicate the severity of shortfall reached in the worst-performing 15% (solid), 10% (dot-
dash), and 5% (dashed) realizations. 

 

Results show that, by 2027, more than 15% of tested realizations see at least six 

consecutive months (180 days) of supply shortfall (i.e. groundwater overdraft), far beyond the 

levels that TBW estimates can be mitigated with demand management. Infrastructure expansion 

in 2028 is able to reduce shortfall severity significantly; however, by 2031 the worst 10% of 

realizations all experience shortfall in 9 of 12 months (270 days), and by 2036 experience 

shortfall every day of the calendar year.  
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5.3.2.2 Probability of un-manageable shortfall (1 month or longer) 

Due to TBW’s concern over supply shortfall periods lasting more than one month (30 

consecutive days), comparison of infrastructure pathways was done to also identify the first year 

of each SWRE realization in which this threshold is violated, resulting in an exceedance curve of 

growing risk of shortfall over the planning horizon (Fig. 5.9).  

 

Figure 5.9: Percent of SWRE realizations seeing at least one month of consecutive daily supply 
shortfalls per year, separated by infrastructure pathway (color and line type).  

 

Prior to 2027, before any substantial infrastructure expansion is possible, about 5% of 

tested hydroclimatic and demand realizations experience at least one consecutive month of 

supply shortfall within an annual period (Fig. 5.9). However, implementation of the SCH 
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pipeline, as well as the addition of the SWTP expansion infrastructure in 2028, stabilizes 

shortfall severity until the early 2030s (Fig. 5.9, green dotted). Construction of only the SCH 

pipeline in 2028 (Fig. 5.9, blue dashed) – the baseline infrastructure pathway – is unable to 

prevent demand growth from causing a steep increase in 1-month-or-longer supply shortfalls 

after 2028, showing 20% of future realizations experiencing such conditions by 2033 and 

continued increase in shortfall prevalence across realizations to 2040.  

 

5.3.2.3 Probability of covenant violation 

Like in Fig. 5.9, visualization of how often financial covenants are violated in future 

infrastructure pathways offers a useful comparison of performance. Fig. 5.10 shows the 

frequency of covenant violations across Uniform Rate setting policies (colors) under each 

infrastructure pathway (boxes).  
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Figure 5.10: Count of realizations (out of 1,000 total per evaluation) with debt (left column of 
panels in each box) and rate (right column in each box) covenant violations under each 
infrastructure pathway (large boxes), by Uniform Rate setting policy (color and rows of plots).  

 

Debt covenant violations for TBW are much more common in future simulation than rate 

covenant violations (Fig. 5.10, left columns of panels in each box), owing primarily to 

management of the TBW budget over historical fiscal years preceding FY 2021 when debt 

covenant ratio levels were maintained close to the 1.0 threshold and rate covenant ratio levels 

were held high relative to the 1.25 threshold. Almost all observed rate covenant violations occur 

when the Uniform Rate is fixed to current levels until 2040, regardless of infrastructure pathway 

(Fig. 5.10, blue, right columns of panels); for reference, TBW has not raised the Uniform Rate 

over the last 10 years. Fewer debt and rate covenant violations were observed under a fixed 
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Uniform Rate policy for the baseline infrastructure pathway, relative to infrastructure pathway 2 

with expansion of the SWTP included (Fig. 5.10, blue, left vs. right boxes).  

Frequency of debt covenant violations under a “hands-off” policy (Fig. 5.10, green) 

generally decreased year-over-year during the planning horizon, except for small increases in 

FYs 2032 and 2033 as TBW’s budget reacts to principal repayment beginning on debt issued to 

build new water supply infrastructure in 2028. Violations under a controlled growth Uniform 

Rate policy (Fig. 5.10, red) were most common under the baseline infrastructure pathway and 

peaked between FYs 2031-2033, also in connection to increases in new debt service obligations 

during those fiscal years. Peaking of violations under fixed Uniform Rate policy occurred at 

different periods, during FYs 2026-2030 and FYs 2038-2040, where a combination of rising 

demands and operating costs plus steady or increasing debt service was unable to be matched by 

reduced revenues from a fixed Uniform Rate.  

 

5.3.3 Contrasting supply and financial risks of high vs. low demand growth 

Coupling supply and financial modeling also offers insights to the “double-edged sword” 

of risks faced by TBW and other water utilities, in terms of susceptibility to uncertainty in future 

water demand. Fig. 5.11 depicts TBW Uniform Rate response under low-demand, relatively wet 

realizations (Fig. 5.11, blue) for infrastructure pathway 2 (SCH pipeline and SWTP expansion in 

2028) against all realization outcomes under a controlled growth Rate policy (grey). By 

contrasting the below results to those of high-demand, relatively dry realizations exhibited in 

Fig. 5.8, risks to both water supply and financial stability are observed for TBW. 
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Figure 5.11: Example of financial risk facing TBW under low water demand conditions for 
infrastructure pathway 2 with both an SCH pipeline and SWTP expansion in terms of Uniform 
Rate levels under a controlled growth Rate policy, highlighting realizations with 5th percentile-
or-smaller demands.  

 

In contrast to results shown in Fig. 5.8 – supply shortfall spanning the majority of months 

per year by the 2030s in high-demand, dry realizations – Fig. 5.11 shows that Uniform Rate 

increases, and therefore TBW financial risks, are greatest under low demand realizations (Fig. 

5.11, blue). Rate increases necessary to pay down infrastructure investments and match operating 

costs under these low demand futures are projected to grow the FY 2040 Uniform Rate by almost 

20% relative to FY2020. By investing in substantial supply infrastructure expansion, TBW may 

experience severe financial risk should demands fall below projections; at the same time, TBW 

faces supply reliability risk from potential rapid demand growth that requires significant 

infrastructure investment to mitigate.  
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5.4 Discussion 

5.4.1 Adaptive modeling to develop multi-criteria performance assessment 

Adaptive modeling using a multi-criteria performance assessment for Tampa Bay Water 

provides value through quantification of supply resilience and financial stability alongside 

supply reliability (which is already provided as Level of Service in past TBW evaluation). 

Changes in system reliability indicate that infrastructure expansion to meet South-Central 

Hillsborough County (SCH) demand growth should be implemented by 2028, if not sooner, and 

that a second stage of infrastructure expansion should be considered in the 2030s to improve 

supply reliability. However, reliability alone is unable to reveal asymmetries in TBW system 

shortfalls or system behavior under extreme supply and demand conditions.  

Quantifying shortfall severity by consecutive days with supply shortfall also reveals a 

balance between TBW’s supply risk tolerance and infrastructure investment costs. The 2030s 

will bring significant increases to supply shortfall severity – periods that cannot be totally 

mitigated through demand management and conservation – and may require additional 

infrastructure expansion by TBW. However, safeguarding against shortfalls that might occur in 

95% of potential futures, as opposed to 90% of futures, could mean a difference of 3-4 years in 

timing (not to mention scale) of infrastructure expansion. The Authority’s chosen level of 

acceptable risk (in terms of supply shortfall) will inevitably influence the timing and cost of 

future infrastructure projects. Should infrastructure expansion occur earlier, additional debt 

service will be incurred across more years when TBW already carries significant existing debt; 

this could result in an increased water rate or depleted reserves over the late 2020s, or deferred, 

large debt service payments in later years that will complicate the Authority’s decision-making 

on financing of additional projects as demands grow. Alternatively, the tradeoff from delaying 
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implementation of supply expansion would reduce the need for rate increases and financial risk 

in the short term, but also decrease the reliability of water supply and risk demands rapidly rising 

to levels than the existing system can meet. 

 

5.4.2 Financial balance of infrastructure development and Uniform Rate 

Balancing infrastructure investment and supply reliability in future years cannot be done 

without an integrated parallel assessment of financial status, made possible for TBW using our 

proposed SWRE-FRAT framework. Tampa Bay Water carries significant existing debt, which 

they expect to pay off annually at a rate of about $70-80 million until after fiscal year 2031 

(when most existing debt has matured). As with the maturation of existing debt, the addition of 

new debt to finance a SCH pipeline and SWTP expansion will influence TBW Uniform Rate and 

covenant values. Without management policy intervention to control the Uniform Rate, 

reduction of existing debt will greatly reduce annual operating costs for TBW and, all else being 

equal, allow a drop in the Uniform Rate without risking severe financial consequences. However, 

it is unlikely that the Uniform Rate would be allowed to vary widely or decline, as evidenced by 

the last 10 fiscal years having the same Rate. Even so, results indicate that TBW should consider 

a management policy that allows at least a gradual increase in the Uniform Rate to generate 

enough revenues to match rising operating costs without drawing frequently from reserve funds.  

Across varying realizations of demand, a range of budgetary factors also influence TBW 

financial outcomes. Because the Uniform Rate is set before each fiscal year begins, it is based on 

projections of demand growth rather than actual demands of that FY. This discrepancy between 

projected and realized demand creates uncertainty in revenue generation, which subsequently 

leads to fluctuations in reserve funds to compensate. Subsequently, TBW policy on the size of, 
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deposits to, and withdrawals from Rate Stabilization, CIP, R&R, and other reserve funds will 

directly influence covenant outcomes; as such, differences between projected and realized 

demands can lead to ‘downstream’ financial distress throughout the TBW budget. This analysis 

also assumed interest rate and repayment period of new debt issued to fund TBW projects, 

however in practice the maturity and interest rates on issued debt vary, as does the repayment 

schedule for each issuance (i.e. delayed principal repayments). Changes in debt policy, such as 

renegotiation of existing debt into FYs 2030 and beyond or shortened timelines for repayment 

(TBW itself is only authorized to operate until 2038), may have significant impacts to financial 

status but fell outside the scope of this analysis. As well, the assumed inflation rate in operating 

expenses holds considerable influence over financial outcomes in far future fiscal years; changes 

in inflation, or in the difference between budgeted and realized operating costs (TBW generally 

sees operating costs in a given FY realized about 15% less than projected), could further disrupt 

financial stability of TBW.  

 

5.4.3 Additional considerations 

One drawback of this analysis is the lack of demand management representation within 

SWRE modeling. Outside of selling low-flow fixtures to businesses and households in the 

Tampa Bay area and encouraging conservation, TBW must rely on member governments and the 

Southwestern Florida Water Management District (SWFWMD) to officially declare water 

shortages and implement restrictions or other demand management actions during drought. This 

shortcoming means that SWRE outputs likely represent a low-end representation of TBW’s 

ability to manage scarcity. On the other hand, optimization of SWRE’s routing of water 

deliveries from supply sources, where shortfalls are generated when slack variables are used to 
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locate feasible solutions, does not preserve slack deficiencies between timesteps; this behavior 

means SWRE may present a “best-case” view of shortfalls and day-to-day system conditions. 

Furthermore, this framework contains no dynamic relationship between hydroclimatic conditions 

and demand (i.e. demands are not reduced during abnormally wet conditions, as has often been 

observed for retail water demand).  

 

5.5 Conclusion 

Sustainable water supply management under uncertain future conditions requires broad 

consideration of the impacts to water utility performance, including both supply reliability and 

financial conditions. Working with practitioners of the Tampa Bay Water Authority, major 

contributions of this work include the quantification of financial performance integrated with 

adaptive modeling of water supply operations, capabilities not apparent in any previous studies 

of utility performance. Expansion of utility assessment to include both water supply and financial 

metrics was able to reveal key tradeoffs, consequences of under-investment to meet demand, and 

potential impacts on water affordability not possible with previous analysis. Findings here are 

valuable to water managers, at both TBW and other utilities, as guidance on how similar 

frameworks may be effectively applied within different supply systems, and to inform research 

through lessons learned in a practical setting that can be accounted for in development or 

adjustment of modeling frameworks in the future. 

 

5.6 Acknowledgements 

The authors would like to thank Tampa Bay Water for funding this research. As well, we 

thank TBW finance (Maribel Medina and Christina Sackett), planning (Solomon Erkyihun and 



175 
 

Ken Herd), and information technology (Brian Kyle) staff for their constant assistance in 

accessing data, interpreting findings, and troubleshooting all modeling and technical issues.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



176 
 

 
 
 
 

CHAPTER 6 : CONCLUSIONS 

 

This dissertation focuses on a broad set of risks and uncertainties faced by urban water 

utilities. Between climate and land use change, demand growth, cooperative agreements, and 

adaptive financing, it describes several key discoveries which are summarized and expanded 

upon below. Furthermore, this work exposes the need for additional study in a number of areas 

within the field of water resources planning and management, topics which are also briefly 

discussed herein. 

6.1 Key takeaways for urban water supply and financial risk management under uncertainty 

Water utilities worldwide share the same mission: to provide a reliable source of high-

quality water to customers. Doing so requires utilities to constantly adapt to uncertain future 

conditions, mitigating water supply risk through both short-term drought management and long-

term infrastructure planning. However, management and planning are challenging – ensuring 

robust, reliable water supply in an uncertain future necessitates careful decision-making for 

infrastructure implementation and financial planning. These are interrelated, as infrastructure and 

management decisions generate financial risks to water utilities if drought mitigation incurs 

unexpected cost and revenue fluctuations, or if long-term choices on infrastructure to service 

rising water demands must be built earlier than expected. As a result, water supply management 

to meet utilities’ missions must also consider the financial implications; the joint modeling and 

mitigation of supply risk and financial risk are the subject of this dissertation. 
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Key to understanding, and subsequently managing, evolving risks is the identification 

and proper quantification of the major uncertainties that strain water utility operations and 

financing. Chief among these uncertainties are hydrologic variability arising from climate and 

land use change; climate change is expected to impact (and already has to some degree) water 

supply availability through changes in evapotranspiration and precipitation in watersheds feeding 

water supply reservoirs, while land use change and urbanization will influence the timing and 

magnitude of surface water runoff. Though climate and land use change uncertainties are 

consequential to water supply, and well-studied across academia and industry, there is limited 

research of their combined effects on water supply systems and few studies that rigorously 

account for adaptive infrastructure investment and management interventions in response to 

these uncertainties, as well as the resulting financial impacts. As a result, past work falls short in 

representing key aspects of reservoir operations, utility decision-making, and financing, offering 

an incomplete picture of vulnerability to external stressors. In some cases, this leads to simply 

equating more (or less) water from climate and land use change to better (or worse) outcomes. 

By contrast, this study describes an extensive effort to integrate important factors – including 

climate and land use change effects, as well as utility management and infrastructure planning, 

on water supply availability – which have typically been considered in isolation for their effects 

on water supply management. Chapter 2 of this dissertation therefore provides a novel 

methodological contribution to the water resources management field by coupling state-of-the-art 

hydrological modeling of climate and land use change with an adaptive water utility decision-

making model to quantify water supply vulnerability to hydrologic change. Through a regional 

application in North Carolina, this new modeling connectivity allows for new insights into 
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governing a region’s ability to provide water, in a cost-effective and financially-sustainable 

manner, where and when it is needed.  

Though landcover and climate change are both likely to increase water supply availability 

in North Carolina’s Research Triangle, improvements in utility performance are non-uniform, 

highlighting the need to consider financial and management-based performance when evaluating 

vulnerability to hydrologic change. Furthermore, utility decision-making can notably reduce the 

impact of climate and land use change through both short-term (e.g. conservation) and long-term 

(infrastructure) actions, in some cases even countering the beneficial effects of additional water 

supply. The effectiveness of supply infrastructure development in reducing supply risk is also 

strongly sensitive to climate and land use change influences, as well as the timing and 

sequencing of infrastructure planning. Altogether, this work underscores the need for water 

utilities to consider adaptive management system responses and decision-relevant performance 

measures when assessing the impacts of climate and land use change uncertainty on water 

availability. 

Beyond hydrologic change, utilities face additional risk to water supply reliability and 

affordability as a result of demand growth uncertainty. For utilities in rapidly growing regions, 

demand growth also can pose a significant financial risk; near-term investment may be necessary 

to meet future demand levels but must be paid for by the current, smaller customer base. For 

utilities in regions that are more densely populated, one cost-reducing alternative are inter-utility 

agreements. These cooperative agreements – now commonplace among neighboring utilities and 

municipalities in the US and worldwide – can reduce costs via economies of scale and help limit 

environmental impacts as more resource-efficient substitutes for independent investments by 

individual utilities. However, uncertainty in demand growth (i.e. deviations from the projections 
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that underpin a cooperative agreement) can introduce both supply and financial risk to utility 

partners. These risks may be compounded by asymmetric growth in demand across partners, or if 

the structure of the agreement itself limits adaptive responses by each utility. As such, water 

utilities considering inter-utility agreements must be informed on the benefits and drawback of 

potential agreements, as well as the impacts of both hydrologic and demand growth uncertainty 

on their performance.  

Through a pair of studies, this research details a range of agreements currently in use by 

utilities across the US, and the potential water supply and financial risks of different agreements 

under demand growth uncertainty are quantified through an example in the Research Triangle. 

Despite the increasing prevalence of inter-utility agreements in practice, no previous research has 

quantified the financial risks of inter-utility agreement to partnering utilities under demand 

growth, hydrologic, and institutional (i.e. independent decision-making by a utility and its 

partners) uncertainty. As a result, Chapters 3 and 4 of this dissertation demonstrate an innovative 

application of adaptive water supply and financial modeling to explore the benefits and 

drawbacks of inter-utility partnerships. This involved comparing joint financing of a water 

treatment plant through fixed or adjustable capacity shares to independent infrastructure planning 

for each regional utility. Inter-utility agreements, coupled with structured financing for 

partnering utilities, can significantly improve regional supply reliability and financial outcomes 

versus independent planning by individual utilities, providing financial flexibility to address 

water supply risks should demands fluctuate. Improvements in performance, measured as 

regional supply reliability and financial volatility, mask tradeoffs among individual agreement 

partners. Adjustable treatment capacity allocations may add flexibility to inter-utility agreements, 

but also increase the financial risk of each utility as a function of the decision-making of the 
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other partners. It is important to note that even regional utilities that do not plan to participate in 

an inter-utility agreement can still benefit from the agreement. In showcasing the significant 

benefits of carefully designed and evaluated inter-utility agreements, this work provides a 

template to aid decision-makers considering water supply partnerships in other regions, 

especially in the face of wide-ranging uncertainties. 

The final focus of this dissertation centers on how utilities financially adapt to meet 

uncertain future conditions related to supply, demand, and financial status. Despite debt 

financing for infrastructure being a central component of utility budgets, few studies have 

directly quantified decision-relevant financial outcomes (and the associated risks) of water 

supply system adaptation under uncertainty. Covenants, often required of utilities by creditors 

seeking assurance that debt will be repaid, represent a key factor in utility budgets, as most major 

water supply infrastructure is debt-financed. However, no previous studies have (a) calculated 

covenants in simulations of future utility operations and infrastructure planning, nor (b) modeled 

utility budgets to dynamically adapt to swings in costs and revenues with covenants as triggers of 

adaptive financial responses to supply infrastructure expansion that preserve budget stability. 

This work develops an integrated adaptive operational and financial modeling framework for the 

Tampa Bay Water Authority (TBW) to characterize the impacts of long-term infrastructure 

planning decisions, representing the first methodological advancement in the water resources 

management field to mechanistically forecast water utility financial adaptation to water supply 

decision-making. The coupled water supply-financial modeling framework is able to track TBW 

budgetary decisions in response to future water demand shifts and infrastructure expansion, 

quantifying the effects of infrastructure planning decisions and demand growth on changes to 

water rates, a key utility concern, that must be made to satisfy covenants. These results, for the 
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first time, directly quantify adaptive financial response (e.g., financial risk mitigation) by a water 

utility to infrastructure expansion, providing a template for future assessments of supply and 

financial risks by water utilities. 

In total, the research described in this dissertation fills several gaps in the field of water 

resources planning and management, showcasing a range of methodological and applied 

advances in coupled supply and financial modeling for water utilities. In doing so, this document 

provides a blueprint for future studies of water utility risk assessment as well as for sustainable 

water utility planning by managers themselves.      

 

6.2 Recommendations for improved water supply and financial systems modeling, and future 
challenges (and opportunities) for urban water utilities 

 

Throughout the conduction of this research, many more interesting questions arose than 

could be fully explored. Below, I would like to quickly discuss several of the most interesting 

topics, as well as potential pathways for future research. 

Perfect foresight in demand growth uncertainty modeling. One aspect of water supply 

system modeling with which I constantly struggled was the relationship between how utilities 

project water demand growth and how that growth materialized (or didn’t) in reality. It is no 

secret that demand growth is very difficult to project with long-term accuracy for a utility service 

area, especially given uncertainty in zoning rules, water rates, climatic conditions, annexation or 

incorporation of new communities, hardening of demand after drought and conservation 

measures, and more. These uncertainties call into question (a) whether it is appropriate to use 

water demand and population growth projections derived from water utility master plans, the US 

Census, or by another authority, as the basis for demand growth in water resource systems 
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research, and (b) whether designing experiments to test utility robustness under demand growth 

uncertainty around projections implies that utilities have a degree of “perfect foresight.” As 

research in this field continues, I look forward to seeing further investigation into reducing 

demand uncertainties, specifically with respect to the distinctions made between demand 

projection and demand realization uncertainties, as well as which utilities actually react to when 

making long-term planning decisions for infrastructure. 

Generalizability of systems modeling for utility risk assessment. Successful modeling of 

water supply systems requires careful balance between the site-specific intricacies (read: 

accuracy) of a regional model and its generalizability; in my experiences, the former quality 

allows for practitioners (water managers and utilities) to make practical use of findings, while the 

latter quality justifies the work academically. In this work, however, I felt both the greatest 

academic and practical contributions were made through collaboration with practitioners at 

Tampa Bay Water on research that emphasized site-specific details and regionally-tailored 

modeling about generalizability. Working directly with utility staff quickly led to identification 

of interesting (and unique) focus areas that contributed to utility objectives (exploring impacts of 

infrastructure development for supply planning decisions) as well as academic progress (novel 

adaptive financial modeling to support water supply decision-making). As a result, I suggest that 

future research on regional water utility risk mitigation focus less on ensuring a generalizable 

analysis framework, and instead (a) emphasize details of the case at hand, even if more complex 

modeling is required, and (b) elicit constant feedback from stakeholders (i.e. utility planning and 

executive staff) to learn what information is most useful as well as what details are unnecessary. 

Accounting for accounting. Directly related to the importance of capturing case-by-case 

nuance within water supply systems models, I was surprised to find that successful modeling of 
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financial risks and the dynamic adaptation of utility budgets to infrastructure investment required 

a well-nuanced understanding of financial accounting practices and terminology. Without the 

daily assistance of (and detailed data from) TBW’s financing staff to enhance my understanding 

of the utility’s operating budget, it would have been impossible to construct an accurate model of 

TBW’s finances that could directly link every key element of their budget (covenants, water rate, 

debt service, reserve funds, etc.) and form the framework to provide adaptive financial modeling. 

It would benefit future modeling efforts that intend to accurately model utility response to 

financial risk to consult not only utility financing and accounting staff, but to also take academic 

courses in this area. 

Avenues for future research. One of the most interesting angles for continuing research in 

this field relates to how regulatory and institutional uncertainty will impact water supply and 

financial risks in urban regions. Inter-utility agreement structures are “the tip of the iceberg” in 

this sense, and I will be interested to see how increased prevalence (and diversity) of cooperative 

agreements will generate (or alleviate) regional water supply challenges. This is particularly 

compelling within the context of the Tampa Bay Water Authority, formed to resolve legal 

conflict between utilities of the Tampa Bay region that could not agree to cooperate on 

sustainable groundwater use. Incorporating such uncertainties – the degree to which partners 

cooperate; agreement clauses to incentivize cooperation; state or federal regulatory change 

impacts on regional supply management – will be a computational challenge.  

Another financial uncertainty that could be better accounted for in future research is the 

growing creativity in debt financing mechanisms. Utilities can now find flexibility in the debt 

scheduling of individual bond issuances (timing of principal repayment, date to maturity, 

refunding bonds, etc.). “Green” bonds offer benefits for environmentally-friendly projects, such 
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as landscaping for stormwater flow reduction, where investors can earn greater returns if the 

project performs well. As well, government-subsidized financing (i.e. the federal US Water 

Infrastructure Finance and Innovation Act (WIFIA)) provides another potential financing outlet. 

Because water utilities operate with a large fraction of their budget dedicated to debt service 

(especially larger utilities that can juggle many debt-financed projects), their mix of available 

funding sources may have a significant impact on financial stability under other uncertainties. 

Finally, a major shortcoming of this work (and much of the work in the water systems 

field) is the lack of consideration of water supply quality and how it will influence utility 

financial risk. In North Carolina and many other places, emerging contaminants in surface and 

groundwater (i.e. PFAS and Gen-X) pose a threat to water quality and therefore are a financial 

risk to water utilities who must provide safe drinking water. As such contaminants are assigned 

threshold concentrations for safe human consumption – and utilities become legally responsible 

for ensuring that emerging contaminant concentrations in drinking water falls below those levels 

– it will require a financial investment in water treatment for many utilities. While this may be a 

larger problem for smaller utilities without the revenues to afford retrofitting or replacement of 

existing treatment infrastructure, urban utilities will not be immune. 

 

6.3 Final thoughts 

Despite the outstanding questions and interesting tangents that remain, I feel this 

dissertation makes a significant contribution to both the academic literature of water supply 

resource management, as well as the overall body of knowledge related to water utility 

management. By developing state-of-the-art frameworks for assessment and consideration of 

hydrologic and demand growth uncertainties, cooperative water supply management, and 
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adaptive financial risk mitigation, this work provides a launching point for future research. I look 

forward to seeing how this work is built upon by future students to drive further innovation in 

water resources management and planning. 
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APPENDIX 1: CHAPTER 2 SUPPLMENTARY MATERIAL 

Introduction. Supplemental information provided here gives additional detail on the 

selection (S1) and calibration/validation (S2) of eco-hydrologic modeling from this study as well 

as technical detail and validation results of stochastic streamflow and evapotranspiration record 

generation (S3).  

Text S1: Technical detail of eco-hydrologic modeling. RHESSys is a spatially explicit 

and distributed eco-hydrologic process-based model; spatially distributed LULC data, as well as 

elevation, soils, impervious surface cover, forest LAI, urban canopy LAI, forest type, and 

computation of stomatal physiology, carbon assimilation and allocation, are directly incorporated 

in the modeling spatial unit at the same spatial resolution of LULC data used in this study. 

RHESSys is used for simulation of streamflow generation in the urbanized and forest area of the 

Triangle, and to generate information to modulate demand for outdoor water use (not described 

in this paper). The model must balance computational cost and accuracy of RHESSys 

representation of the complex Triangle area over the wide array of tree species with distinct 

water use traits. Using local measurements at Duke Forest (e.g. Pataki & Oren, 2003; Pataki et 

al., 1998), we adapt RHESSys forest parameterization with tree density weighted 

ecophysiological parameters for deciduous and evergreen canopy types.  This approach 

approximates the region’s distribution of tree species based on the dominant species in each 

forest type (from the FIA based imputations). We have previously shown that this locally 

weighted parameterization can significantly improve watershed ecohydrological predictions (Lin 

et al., 2018). Daily precipitation and temperature, along with estimated radiation and vapor 

pressure deficit (by Running et al., 1987) are spatially distributed into hillslopes and patches 



187 
 

based on elevation, slope, and aspect. Model hydrologic processes then redistribute the 

precipitation into evapotranspiration, surface detention, soil moisture, shallow and deep 

groundwater at the patch level, and simulate water movement among patches along topographic 

flow paths, yielding streamflow in the receiving channel network.  

SWAT modeling occurs at the hydrologic response unit (HRU) spatial scale, a zonal 

classification of LULC, slope, and soil. Unlike RHESSys, SWAT is a lumped model at the sub-

basin level, in which all HRUs directly contribute to the total sub-basin runoff by a time-lag 

water release function. SWAT incorporates LULC change in the Haw River basin at the sub-

basin level, with projected LULC changes centralized around existing developed area. 

Both SWAT and RHESSys models have been calibrated and validated to produce 

consistent hydrologic outputs between different modeled basins in response to climate change 

and LULC change despite variation in model sensitivities (E. Morán-Tejeda et al., 2013; Enrique 

Morán-Tejeda et al., 2015). For example, SWAT is more sensitive to climate change than 

RHESSys, while RHESSys is more sensitive to LULC change than SWAT. While SWAT is a 

lumped (semi-distributed) model, calculating model processes at the HRU level, RHESSys is a 

distributed model using pixels as the processing unit. This, as well as differences in equations 

governing water balance, impacts parameter sensitivities to LULC change between SWAT and 

RHESSys and requires different model calibration and bias correction strategies. More detail on 

RHESSys and SWAT model development for this study can be found in subsections 2.2.3.2 and 

2.2.3.3 of the main text as well as the following section of the supplementary material. 

 

Text S2: Eco-hydrologic model bias correction detail. Both RHESSys and SWAT models 

were calibrated and validated at the USGS catchments nested inside the reservoir drainage 



188 
 

basins, e.g., USGS Little River for the Little River reservoir, USGS Flat River for the Lake 

Michie, USGS Cane Creek and Morgan Creek for Cane Creek reservoir and University Lake, 

respectively. Calibrated parameters of the New Hope and Morgan Creek subbasins (within 

University Lake drainage area) were used for the urban areas surrounding Jordan Lake.  Total 

inflow to Jordan Lake was calculated as the combined outflow from the Haw River, Morgan 

Creek and New Hope basins, as well as un-gaged tributaries surrounding Jordan Lake. When 

estimating inflow to the reservoir by these eco-hydrological models, we included the ungauged 

area within the reservoir drainage basin into the model. The ungauged areas in the Little River 

reservoir and Lake Michie drainage basins are small as the gauges are immediately upstream of 

the reservoirs. The ungauged areas in the Cane Creek and University Lake watersheds include 

surrounding urban landscape and further downstream areas. The Jordan Lake watershed is the 

largest in our study, including the Haw River drainage basin and all the surrounding areas near 

Jordan Lake (e.g., New Hope, Cary, Morrisville, Apex, and part of Holly Spring and Durham 

drainage areas).  

Water supply management modeling done by Triangle utilities made use of estimated 

reservoir inflow products (Kirsch et al. 2013), records previously used to develop and calibrate 

our modeling of the region. Therefore, RHESSys / SWAT daily inflow to reservoirs were 

statistically corrected by the previously-estimated daily reservoir inflow records from 1945 to 

2009.  To account for differences between modeled and estimated historical inflows, current and 

historical LULC, and modeled and observed conditions, we utilized a quantile bias correction 

method based on the historical period of reservoir inflows (1940-2011). This was done following 

the widely-used bias-correction method of quantile mapping, a methods particularly common in 

climate change studies mapping modeled meteorological time series to the locally observed 
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records (J. H. Christensen et al., 2008; Maraun et al., 2010). For each day of a year (Julian day; 

j), daily inflow (Qj) data were gathered from multiple years, as well as within a 15-day window 

(7-day prior and 7-day after), to construct cumulative inflow distributions: one for 

RHESSys/SWAT inflow (Fmodel, Qj) and another one for the previous estimation (Frecord, Qj). For 

any particular day (i) and its corresponding year day (j), the cumulative value (Fmodel, Qj[qi]) is 

calculated for RHESSys / SWAT inflow (qi) and used to map onto the previous inflow 

estimations used in water supply modeling (F-1
record, Qj[Fmodel, Qj[qi]]). The difference between qi 

and F-1
record, Qj[Fmodel, Qj[qi]] is used to adjusted the RHESSys/SWAT inflow to the previous 

reservoir inflow. Results from calibration and validation are included below in Table S2.1 in 

terms of Nash-Sutcliffe Efficiency coefficient. Parameter selection for SWAT and RHESSys 

models was further refined by closely matching the 60-year weekly inflow auto-correlation 

between the modeled and historical (empirical) references. 

There are multiple realizations in each modeling components, representing uncertainty. 

For climate change, we used six different CMIP5 RCP 6.0 GCMs to project the future change. 

For LULC change, we used six projected realizations of 30-m resolution LULC change (each 

projected realization contains 6 chronic LULC representing the decadal changes), and each 

realization further has 3 levels of urban canopy projections in the developed area.  For 

ecohydrological models, we selected four parameter sets at each of the six USGS gaged 

catchments that produced the best model predictions on streamflow in calibration-validation 

period and long historical period. In this study, multiple realizations of climate and LULC 

change are input into the ecohydrologic models that were parameterized using different 

parameter sets. Thus, multiple inflow timeseries were generated from these multiple climate-

LULC input and ecohydrological model settings for each scenario and represent the uncertainty 
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in this multi-step process. In all, 24 combinations of model parameter sets, LULC realizations, 

GCMs and urban canopy levels were selected for simulation in this work (Table S2.2). 

Numbered sets within LULC realizations and parameter sets indicate unique organizations of 

LULC or model parameters in Table S2.2. See Figure S2.1 for further illustration of model 

linkages before water supply management modeling is considered in the analysis framework. 

 

Text S3: Synthetic generator description and validation. To comprehensively evaluate 

water utility objective performance under future hydrologic scenarios, a wider range of weekly 

future realizations from 2015-2060 than could be provided by eco-hydrologic modeling alone are 

needed. To do so, this work built upon the Kirsch-Nowak synthetic generator, an existing semi-

parametric stochastic streamflow generator for stationary hydrology (previously applied by 

Giuliani, Quinn, Herman, Castelletti, & Reed, 2017 and Quinn, Reed, Giuliani, & Castelletti, 

2017). Rather than creating synthetic records of a stationary historic record of hydrology, as in 

the two aforementioned studies, non-stationary synthetic records are generated by sampling from 

decadally-shifting eco-hydrologic modeling outputs (from RHESSys and SWAT) to generate 

concurrent, transient records of reservoir inflow and lake net evaporation at seven sites (four sets 

of reservoir inflow and three sets of net evapotranspiration). Synthetic outputs were validated 

through comparison of flow duration curves, and spatial and temporal autocorrelation structures 

to contemporaneous eco-hydrologic modeling records. Eco-hydrologic modeling records of 

2010-2020 flows were previously bias corrected to be in line with empirically-estimated 

reservoir inflow data of the same period. 

Based on the methodology of Kirsch et al. (2013), records of reservoir inflow and net 

lake evaporation from eco-hydrologic modeling of each hydrologic scenario were first 
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aggregated to a monthly timestep before sampling to produce synthetic records occurs. Sampling 

at a monthly level was preferred to weekly or daily aggregations for more consistent preservation 

of an inter-annual, or seasonal, signal. Records are then log-transformed (net evaporation 

records, which can take positive or negative absolute values, were first exponentiated) and first 

and second-order moments are removed from the data, providing de-trended residuals for 

sampling that follow a standard normal distribution. For each decade of synthetic data generated 

for each site, 120 months (ten years) of monthly residuals are sampled from the available record; 

the same set of random numbers is used to select residuals across sites in order to preserve 

spatial correlation. This process is repeated in time to produce each realization of synthetic data 

from 2015-2060. For example, to produce a single synthetic realization of 2010-2030 inflows, 

120 monthly residuals are randomly sampled from the eco-hydrologic record of 2020-2029 

inflows and appended to 120 monthly random samples of the available 2010-2019 residual 

record. For each hydrologic scenario, one-thousand 46-year synthetic realizations across all 

seven sites are generated. Once residuals for each realization have been sampled, temporal 

autocorrelation structures of eco-hydrologic records are applied to the randomly-selected 

synthetic residuals through Cholesky decomposition and the synthetic realizations are 

subsequently back-transformed into real space by applying monthly means and standard 

deviations to the residual data and exponentiating it. To preserve intra-annual autocorrelation 

Cholesky decomposition was done in two steps: (1) as described and (2) shifted six months 

forward. Finally, the first six months of data in each synthetic year from the original set and the 

months 7-12 from the shifted set are concatenated to form the final synthetic realization with 

temporal autocorrelation preserved (see documentation for the Kirsch-Nowak generator on 

GitHub for further explanation of this step).  
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Following sampling, monthly sets of synthetic streamflows for a given decade across all 

sites are disaggregated to a daily level using a k-nearest neighbor (kNN) method (detailed in 

Nowak et al., 2010). For a given month in the synthetic record, flow of the month at each site is 

compared across all observed records for the same calendar month, including monthly periods 

beginning ± 7 days from the start of that month (i.e. for February flows, aggregations of flow 

from the last week of January to the penultimate week of February, as well as aggregations of 

from the second week of February to the first week of March), Euclidean distance between 

observed and synthetic flows is calculated for each site and summed to determine observed 

months of the record most closely resembling synthetic flow results across all sites 

simultaneously. Using a Kernel estimator to assign probabilities to each distance estimate (Lall 

& Sharma, 1996), one month is probabilistically-selected from k nearest neighbors where k is 

taken to be the square root of the number of observed years on record (Lall et al., 1996; Nowak 

et al., 2010). Once a month has been selected, the observed daily patterns in flow of that monthly 

period across sites is used to proportionately disaggregate synthetic record flows such that all 

synthetic monthly flow is disaggregated amongst days in the month to match the patterns 

observed on record in the selected monthly period. To match the weekly time step required by 

the water resources modeling in this paper, daily values were then aggregated to a weekly level 

assuming a 52-week year. Disaggregating monthly values to daily levels, followed by re-

aggregation to weekly time step, was done due to the incongruity between daily and weekly 

records. Fifty-two weeks do not fit evenly into 12-month periods, but can be synthesized 

properly based on summation of each seven days of flow. 

To then construct a single realization of 2015-2060 flows for a single hydrologic scenario 

at one site, decadally-sampled synthetic flows for each decade in 2010-2060 are appended, then 
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clipped to capture the 46-year period desired for water supply modeling. As stated previously, 

this process is done 1,000 times per scenario per site to generate a comprehensive set of 

hydrologic futures, allowing water supply modeling to capture influence of each hydrologic 

scenario on utility management objectives.  

To validate generator performance, flow duration curves, temporal autocorrelation, and 

spatial correlation were examined across monthly and weekly time steps of each decadal period 

for both observed (RHESSys and SWAT projections) and synthetic records (Figures S3.1-S3.8). 

Monthly results are shown here for each scenario – both aggregation levels displayed high levels 

of agreement across all scenarios. Red lines in the plots represent observed record values, while 

grey and blue lines and boxplots show the range of synthetic flow records. Synthetic records 

were generated for four reservoir inflow sites (at Jordan Lake [Haw River], Cane Creek 

Reservoir [Cane Creek; CCR], Little River Reservoir [Little River], and Lake Michie [Flat 

River]) and three lake evaporation timeseries (at Cane Creek Reservoir, Jordan Lake, and Lake 

Michie).  
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Figure 7.1: Conceptual diagram of linkages between components of the modeling framework, 
emphasizing modeling steps before water supply management modeling occurs (climate and land 
use projections informing eco-hydrologic modeling) 
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Figure 7.2. Synthetic generator validation of monthly flow duration curves for the baseline 
hydrologic scenario (scenario 1). Synthetic records (grey) are shown against eco-hydrologic 
model outputs (red) by site (row) and decade (column) for four reservoir inflow records (top four 
rows) and three evaporation sites at regional reservoirs (bottom three rows). Synthetic records 
show steady ability to retain probabilistic monthly flow trends of eco-hydrologic modeling of 
reservoir inflows (red lines centered among many grey lines) while simultaneously providing a 
wide range of variability between synthetic realizations (thickness of grey area). 
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Figure 7.3. Synthetic generator validation of the baseline scenario 1 of: (a) monthly temporal 
autocorrelation at each regional site (row) for each decade (column) modeled. Red line depicts 
eco-hydrologic model output temporal autocorrelation across 12 months of lag, and blue 
boxplots show the range of autocorrelation observed across all synthetic realizations statistically 
constructed from eco-hydrologic records. Synthetic records are observed to preserve eco-
hydrologically modeled autocorrelation well across all sites and time periods. (b) spatial 
correlation comparisons across sites by decade (facets). Colors show the difference between 
spatial correlation in flows between eco-hydrologic model outputs and averages across all 
synthetic realizations. Colors are close to white, indicating a close agreement between synthetic 
and eco-hydrologic records, with eco-hydrologic records tending to preserve slightly more the 
intra-site correlations in flow. 
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Figure 7.4. Synthetic generator validation of monthly flow duration curves for the climate 
change hydrologic scenario (scenario 2). Synthetic records (grey) are shown against eco-
hydrologic model outputs (red) by site (row) and decade (column) for four reservoir inflow 
records (top four rows) and three evaporation sites at regional reservoirs (bottom three rows). 
Synthetic records show steady ability to retain probabilistic monthly flow trends of eco-
hydrologic modeling of reservoir inflows (red lines centered among many grey lines) while 
simultaneously providing a wide range of variability between synthetic realizations (thickness of 
grey area). 
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Figure 7.5. Synthetic generator validation of the climate change scenario 2 of: (a) monthly 
temporal autocorrelation at each regional site (row) for each decade (column) modeled. Red line 
depicts eco-hydrologic model output temporal autocorrelation across 12 months of lag, and blue 
boxplots show the range of autocorrelation observed across all synthetic realizations statistically 
constructed from eco-hydrologic records. Synthetic records are observed to preserve eco-
hydrologically modeled autocorrelation well across all sites and time periods. (b) spatial 
correlation comparisons across sites by decade (facets). Colors show the difference between 
spatial correlation in flows between eco-hydrologic model outputs and averages across all 
synthetic realizations. Colors are close to white, indicating a close agreement between synthetic 
and eco-hydrologic records, with eco-hydrologic records tending to preserve slightly more the 
intra-site correlations in flow. 
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Figure 7.6. Synthetic generator validation of monthly flow duration curves for the land use 
hydrologic scenario (scenario 3). Synthetic records (grey) are shown against eco-hydrologic 
model outputs (red) by site (row) and decade (column) for four reservoir inflow records (top four 
rows) and three evaporation sites at regional reservoirs (bottom three rows). Synthetic records 
show steady ability to retain probabilistic monthly flow trends of eco-hydrologic modeling of 
reservoir inflows (red lines centered among many grey lines) while simultaneously providing a 
wide range of variability between synthetic realizations (thickness of grey area). 
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Figure 7.7. Synthetic generator validation of the land use scenario 3 of: (a) monthly temporal 
autocorrelation at each regional site (row) for each decade (column) modeled. Red line depicts 
eco-hydrologic model output temporal autocorrelation across 12 months of lag, and blue 
boxplots show the range of autocorrelation observed across all synthetic realizations statistically 
constructed from eco-hydrologic records. Synthetic records are observed to preserve eco-
hydrologically modeled autocorrelation well across all sites and time periods. (b) spatial 
correlation comparisons across sites by decade (facets). Colors show the difference between 
spatial correlation in flows between eco-hydrologic model outputs and averages across all 
synthetic realizations. Colors are close to white, indicating a close agreement between synthetic 
and eco-hydrologic records, with eco-hydrologic records tending to preserve slightly better the 
intra-site correlations in flow, save two evaporation sites in the first decade. 



201 
 

 

Figure 7.8. Synthetic generator validation of monthly flow duration curves for the climate and 
land use hydrologic scenario (scenario 4). Synthetic records (grey) are shown against eco-
hydrologic model outputs (red) by site (row) and decade (column) for four reservoir inflow 
records (top four rows) and three evaporation sites at regional reservoirs (bottom three rows). 
Synthetic records show steady ability to retain probabilistic monthly flow trends of eco-
hydrologic modeling of reservoir inflows (red lines centered among many grey lines) while 
simultaneously providing a wide range of variability between synthetic realizations (thickness of 
grey area). 



202 
 

 

Figure 7.9. Synthetic generator validation of the climate and land use scenario 4 of: (a) monthly 
temporal autocorrelation at each regional site (row) for each decade (column) modeled. Red line 
depicts eco-hydrologic model output temporal autocorrelation across 12 months of lag, and blue 
boxplots show the range of autocorrelation observed across all synthetic realizations statistically 
constructed from eco-hydrologic records. Synthetic records are observed to preserve eco-
hydrologically modeled autocorrelation well across all sites and time periods. (b) spatial 
correlation comparisons across sites by decade (facets). Colors show the difference between 
spatial correlation in flows between eco-hydrologic model outputs and averages across all 
synthetic realizations. Colors are close to white, indicating a close agreement between synthetic 
and eco-hydrologic records, with eco-hydrologic records tending to preserve slightly better the 
intra-site correlations in flow, save two evaporation sites in the first decade. 
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Calibra
tion 

period 

Validat
ion 

period 

Catchm
ent 

USGS 
ID 

Area 
(sq. 
km) 

weekly 
NSE 

weekly 
log 
NSE 

monthl
y NSE 

weekly 
NSE 

weekly 
log 
NSE 

monthl
y NSE 

Cane 
Creek 

020968
46 19.7 

0.68±0.
02 

0.69±0.
02 

0.71±0.
02 

0.51±0.
06 

0.68±0.
04 

0.62±0.
08 

Morgan 
Creek 

020974
64 21.4 

0.78±0.
02 

0.63±0.
03 

0.89±0.
01 

0.53±0.
05 

0.68±0.
01 

0.88±0.
04 

Flat 
River 

020855
00 385.1 

0.70±0.
02 

0.60±0.
02 

0.78±0.
02 

0.49±0.
02 

0.48±0.
03 

0.68±0.
04 

Little 
River 

020852
1324 202.7 

0.71±0.
01 

0.69±0.
04 

0.78±0.
01 

0.43±0.
01 

0.62±0.
03 

0.69±0.
02 

New 
Hope 

020973
14 198.9 

0.74±0.
03 

0.51±0.
01 

0.74±0.
01 

0.48±0.
02 

0.61±0.
02 

0.69±0.
03 

Haw 
River 

020969
60 329.6 

0.76±0.
01 

0.75±0.
02 

0.74±0.
01 

0.61±0.
03 

0.56±0.
08 

0.58±0.
02 

Table 7.1. RHESSys and SWAT calibration and validation statistics for Triangle catchments.   
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LULC 
Realization GCM Parameter Set Urban Canopy Density 
less-urban 2 GISS set 1 mid 
less-urban 3 CCSM set 3 mid 
less-urban 3 GISS set 4 mid 
less-urban 1 CCSM set 3 high 
less-urban 2 GFDL set 4 high 
more-urban 1 GISS set 2 none 
more-urban 2 GFDL set 4 none 
more-urban 2 GISS set 4 mid 
more-urban 1 CCSM set 1 high 
more-urban 3 GFDL set 3 high 
more-urban 3 GISS set 2 high 
less-urban 1 CSIRO set 3 none 
less-urban 1 MIROC set 2 none 
less-urban 2 MIROC set 1 none 
less-urban 2 CSIRO set 4 mid 
less-urban 1 HADG set 2 high 
less-urban 3 CSIRO set 4 high 
less-urban 3 HADG set 3 high 
more-urban 1 HADG set 1 none 
more-urban 3 CSIRO set 2 none 
more-urban 2 HADG set 1 mid 
more-urban 3 HADG set 3 mid 
more-urban 1 MIROC set 2 high 
more-urban 2 CSIRO set 1 high 

Table 7.2. Eco-hydrologic modeling simulations defined by the landcover realization, 
downscaled GCM data, parameter set, and urban canopy density driving simulation of water 
availability. Numbered sets within LULC realizations and parameter sets indicate unique 
organizations of LULC or model parameters. 
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APPENDIX 2: CHAPTER 3 MODELING METHODOLOGY 

 
For each stage 𝑠𝑠 of a project, the following parameters are specified: fixed treatment 

capacity 𝐶𝐶𝑠𝑠 (in millions of gallons per day; MGD), upfront capacity expenses 𝐸𝐸𝐸𝐸𝑃𝑃𝑠𝑠, fixed annual 

operation and maintenance costs 𝐹𝐹𝐹𝐹𝑀𝑀𝑠𝑠, variable annual O&M costs 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠, construction year of 

the project stage 𝑦𝑦𝑠𝑠, bond term 𝐵𝐵𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑠𝑠 and interest rate 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑠𝑠, and a cost escalator term 𝑒𝑒𝑠𝑠 (to 

approximate increasing annual fixed O&M into the future). A project with multiple utility 

partners, such as the WJLWTP, is parameterized within the model for each utility 𝑈𝑈 through 

specification of: water use peaking factor 𝑓𝑓𝑈𝑈, initial total water demand 𝐷𝐷𝑈𝑈,0 (in MGD, based on 

2010 levels), annual rate of demand growth 𝑟𝑟𝑑𝑑𝑈𝑈 (in MGD/year), number of customers of the 

utility 𝑁𝑁𝐶𝐶𝑈𝑈, and a predefined growth scenario (detailed below). Each utility is also assigned a 

capacity share of the project for each project stage 𝐶𝐶𝑆𝑆𝑈𝑈,𝑠𝑠 along with any water a utility (in 

MGDs) is allocated to treat/buy per year through minimum purchase 𝑀𝑀𝑀𝑀𝐴𝐴𝑈𝑈,𝑠𝑠 and take-or-pay 

𝑇𝑇𝑇𝑇𝐴𝐴𝑈𝑈,𝑠𝑠 agreements.  

Demand growth scenarios are represented via annual growth units. For instance, expected 

growth would be a modeled with numbers sequentially ordered from 0 to 24, one per year of the 

25-year modeling range, meaning that demand grew 1 unit per year for 25 years, with the first 

year having demand equal to initial demands. As such, demand 𝐷𝐷𝑈𝑈,𝑦𝑦 in a future year 𝑦𝑦  for utility 

𝑈𝑈 is calculated based on the “units” of annual demand growth 𝑑𝑑𝑑𝑑𝑢𝑢𝑈𝑈,𝑦𝑦 that have occurred to that 

point following this formula of linear growth: 𝐷𝐷𝑈𝑈,𝑦𝑦 = 𝐷𝐷𝑈𝑈,0 + 𝑑𝑑𝑑𝑑𝑢𝑢𝑈𝑈,𝑦𝑦 ∗ 𝑟𝑟𝑑𝑑𝑈𝑈. Under expected 

demand growth conditions, 𝑑𝑑𝑑𝑑𝑢𝑢𝑈𝑈,𝑦𝑦 = 𝑦𝑦 (demand grows at one annual unit per year).  

To determine treatment capacities and water use by each utility per year, a number of 

steps are required. First, available project treatment capacity 𝐴𝐴𝐶𝐶𝑦𝑦 (capacity available for 
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allocation) for current year 𝑦𝑦 is determined, equal to ∑ 𝐶𝐶𝑠𝑠𝑠𝑠  where 𝑦𝑦 ≥ 𝑦𝑦𝑠𝑠. Each utility’s capacity 

share in the project, as well as any spot purchases made, and final total use of treatment capacity 

annually, are determined via the following steps: 

1. Capacity shares 𝐶𝐶𝑆𝑆𝑈𝑈,𝑦𝑦 for each utility in the project each year are determined based on 

the agreement type. If allocations are fixed, they are equal to the portions specified 

above, mathematically set such that 𝐶𝐶𝑆𝑆𝑈𝑈,𝑦𝑦 = ∑ 𝐶𝐶𝑆𝑆𝑈𝑈,𝑠𝑠𝑠𝑠  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑦𝑦 ≥ 𝑦𝑦𝑠𝑠. If a 

uniform rate agreement is used, allocations are determined based on expected demand 

(including a peaking factor) of a utility relative to the other users, also factoring in 

minimum purchase agreements related to all active stages of the project: 

𝐶𝐶𝑆𝑆𝑈𝑈,𝑦𝑦 = 𝐴𝐴𝐶𝐶𝑌𝑌 ∗
𝑚𝑚𝑚𝑚𝑚𝑚�𝐷𝐷𝑈𝑈,𝑦𝑦𝑓𝑓𝑈𝑈 ,𝑀𝑀𝑀𝑀𝐴𝐴𝑈𝑈�

∑ 𝑚𝑚𝑚𝑚𝑚𝑚�𝐷𝐷𝑈𝑈,𝑦𝑦𝑓𝑓𝑈𝑈 ,𝑀𝑀𝑀𝑀𝐴𝐴𝑈𝑈�𝑈𝑈
  

2. Spot purchases 𝑆𝑆𝑃𝑃𝑈𝑈,𝑦𝑦 for a utility as part of any take-or-pay agreements each year are 

calculated. Assuming that excess treatment capacity is available (𝐴𝐴𝐶𝐶𝑦𝑦 >

∑ min�𝐶𝐶𝑆𝑆𝑈𝑈,𝑦𝑦 ,𝐷𝐷𝑈𝑈,𝑦𝑦𝑓𝑓𝑈𝑈�𝑈𝑈 ), spot purchases take the minimum value between the following 

two equations: 

𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑇𝑇𝑇𝑇𝐴𝐴𝑈𝑈,𝑠𝑠
𝑠𝑠

,𝐷𝐷𝑈𝑈,𝑦𝑦𝑓𝑓𝑈𝑈 − 𝐶𝐶𝑆𝑆𝑈𝑈,𝑦𝑦� 

�𝐴𝐴𝐶𝐶𝑦𝑦 −�min�𝐶𝐶𝑆𝑆𝑈𝑈,𝑦𝑦,𝐷𝐷𝑈𝑈,𝑦𝑦𝑓𝑓𝑈𝑈�
𝑈𝑈

� ∗ �
𝐶𝐶𝑆𝑆𝑈𝑈,𝑦𝑦

𝐴𝐴𝐶𝐶𝑦𝑦
� 

3. Total use 𝑇𝑇𝐷𝐷𝑈𝑈,𝑦𝑦 by each utility each year is then calculated as the minimum value of 

either demand 𝐷𝐷𝑈𝑈,𝑦𝑦 or the sum of a utility’s raw capacity share and spot purchases 

�𝐶𝐶𝑆𝑆𝑈𝑈,𝑦𝑦+𝑆𝑆𝑃𝑃𝑈𝑈,𝑦𝑦

𝑓𝑓𝑈𝑈
�.  
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Finally, cash flows relating to the project are determined. Total debt service 𝐷𝐷𝐷𝐷𝑃𝑃𝑦𝑦, fixed 

and variable operation and maintenance 𝐹𝐹𝐹𝐹𝑀𝑀𝑦𝑦 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑉𝑉𝑀𝑀𝑦𝑦 are calculated based on stages of 

project that are active and their component costs, as well as the capacity allocated to each utility 

and total use by each utility. Spot purchases by any utility are assumed to be paid out to utilities 

with allocations in proportion to their allocation stakes, and unit costs per available capacity: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑈𝑈,𝑦𝑦 =
�min�𝐶𝐶𝑆𝑆𝑈𝑈,𝑦𝑦,𝐷𝐷𝑈𝑈,𝑦𝑦𝑓𝑓𝑈𝑈��
∑ min�𝐶𝐶𝑆𝑆𝑈𝑈,𝑦𝑦,𝐷𝐷𝑈𝑈,𝑦𝑦𝑓𝑓𝑈𝑈�𝑈𝑈

∗ ��𝑆𝑆𝑃𝑃𝑈𝑈,𝑦𝑦
𝑈𝑈

− 𝑆𝑆𝑃𝑃𝑈𝑈,𝑦𝑦� ∗
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APPENDIX 3: CHAPTER 4 MULTI-OBJECTIVE OPTIMIZATION DETAILS AND 
SOW VALIDATION 

 
Runtime diagnostics on Borg optimization seeds were performed using hypervolume and 

visual analytics to confirm convergence (Fig. 10). Six random seeds for each formulation were 

run for 150,000 function evaluations (NFE). An additional test run of 50,000 NFE was also 

included in the reference set, as runtime diagnostics using the Hypervolume indicator (Zitzler et 

al., 2003) confirmed that the algorithm converged before 50,000 NFE. 

 

Figure 7.10: Visual analysis of Borg optimization seed convergence. Individual seed (panels) 
reference sets were screened for solutions satisfying utility reliability, restriction use, and worst 
case cost performance criteria for each formulation (rows) and compared to the full reference set 
of solutions across all seeds (right column of panels). Seeds with a maximum of both 50,000 and 
150,000 function evaluations were able to successfully identify solutions meeting criteria. 
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Following DU optimization, Pareto approximate reference set solutions that meet 

utilities’ performance criteria were re-evaluated under a separate set of 500 SOWs to validate 

robustness of solutions identified by the DU optimization and ensure representative solutions 

presented in results did not represent outlier solutions (i.e. satisfactory in initial DU optimization 

but not in re-evaluation. Fig. 11 shows the ability of solutions identified as satisfactory under 

both (a) the SOW set used in DU optimization, and (b) the re-evaluation SOW set to perform 

similarly, demonstrating the ability of DU optimization to successfully identify robust policy 

pathways. 

 

Figure 7.11: Comparison of regional objective performance by solutions identified by DU 
optimization as meeting utilities’ performance criteria under base SOWs (x-axis) to performance 
of the same solutions under the re-evaluation SOWs set (y-axis). Colors and rows of panels 
separate inter-utility agreement formulations, columns separate the six regional objectives. Dots 
represent solutions that met performance criteria under both base and re-evaluation SOW sets. 
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Table 3 provides further detail on the ability of DU optimization satisfactory solutions to 

remain so under re-evaluation with different SOWs. Of 588 satisfactory solutions identified by 

DU optimization, 434 were also satisfactory in re-evaluation. When re-evaluation criteria of 

reliability satisfaction was loosened by 0.04%, the number of satisfactory solutions rises to  

546. In all sets, the relative percentages of satisfactory solutions found under each inter-utility 

agreement formulation were consistent (parentheticals in Table 3), providing confidence that DU 

optimization correctly identified inter-utility cooperative agreements as robust options for 

improving regional performance. Furthermore, our re-analysis confirmed that representative 

solutions, used for example analysis in Fig. 4.4 of the main text, satisfied utility criteria in both 

SOW sets.  

 

Table 7.3: Summary statistics comparing the number of solutions under both (a) the initial 
reference set identified by DU optimization, and (b) the re-evaluation of satisfactory solutions 
under new SOWs that meet utility performance criteria.  

 
Number of solutions meeting utility performance criteria by 
formulation (and percent of all solutions): 

States-of-the-World 
0: No 
Agreement 

1: Fixed 
Capacity 

2: Adjustable 
Capacity Total 

Reference (with 
Reliability performance 
criteria of 99%) 30 (5%) 506 (86%) 52 (9%) 588 (100%) 

Re-evaluation (with 
Reliability performance 
criteria of 99%) 19 (4%) 385 (89%) 30 (7%) 434 (74%) 

Re-evaluation (with 
Reliability performance 
criteria of 98.6%) 26 (5%) 473 (86%) 47 (9%) 546 (93%) 
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APPENDIX 4: CHAPTER 5 SUPPLEMENTARY MATERIAL 

5.1: Probabilistic Demand Forecasting Details 

Tampa Bay Water’s latest long-term demand forecasting model was developed in 2017 

by Hazen & Sawyer. Retail water demand is modeled using three sector specific models, single 

family (SF), multi-family (MF) and non-residential (NR). Each model is used to generate 

demand forecasts fore each of the region's Water Demand Planning Areas (WDPAs). Each 

model uses a rate-of-use-times-driver approach for calculating demand. The sector-specific 

monthly mean, or rate-of-use is calculated per water consuming entity, multiplied by the number 

of driver units of the given entity. For example, the SF model defines a driver unit as one single 

family dwelling unit, it then calculates the monthly retail demand of a housing unit and 

multiplies it by the number of housing units in the WDPA. The MF model uses MF dwelling 

units as drivers and the NR model uses units of 1,000 square feet.  

This model is then used to make a point forecast for regional demand through 2045, as 

well as a probabilistic forecast. The point forecast is created using best estimates for predictions 

of explanatory variables through 2045; explanatory variables included in each WDPA model 

include rainfall, temperature, real median household income, real marginal price of water, 

persons per household, housing unit density, fraction of use from reclaimed water services, non-

residential square footage, and market penetration of high-efficiency water fixtures. Model 

estimates are adjusted to account for wholesale water purchases and unbilled water sales. The 

model is fit using data from 2001-2013 and evaluated over the period 2014-2018. Based on the 

performance in the validation set, multiplicative calibration factors are set to correct the 

discrepancies between forecasted values and observations during the validation period. A 

separate calibration factor is used for each sector, WDPA and month of the year. 
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The probabilistic forecast uses Monte Carlo simulation to generate an ensemble of 

probabilistic demand records through 2045. The forecast accounts for both uncertainty in the 

exploratory variables and in model parameters. Uncertainty in exploratory variables was 

accounted for by fitting distributions to each uncertain parameter and sampling. All input data 

aside from weather variables was assumed to be normally distributed, some data was sampled 

from multivariate normal distributions to account for cross correlations while variables were 

assumed to be independent. Weather variables were simulated using a bootstrapping method. 

Model uncertainty was accounted for by bootstrapping from historical model residuals. The 

overall forecast for TBW demand in 2018 had a -1.34% error, in aggregate across the three 

forecast models from all WDPAs.  

 

5.2: Flow Modeling System V2 Hydroclimatic Realization Development 

The Flow Modeling System, Version 2 (FMS2) Model, developed by Hazen & Sawyer 

consultants for use by Tampa Bay Water, combines rainfall models at the three rainfall stations 

in the Tampa Bay region to generate synthetic realizations of future streamflow. Rainfall models 

developed for rainfall stations at Plant City, St. Leo, and Cypress Creek wellfield were based on 

106 years of available historical record (1901-2006); concurrent records at all sites are available 

from 1977-2006. Rainfall patterns from 1901-2006 are similar to the record from 1977-2006 in 

terms of total annual rainfall, though monthly totals (ex: comparing all Januarys on record to 

1977-2006 Januaries) showed substantial changes, indicating shifting seasonality. They also 

observe that calendar month average flows could shift noticeably between any two arbitrary 30-

year periods of the historic record. St. Leo and Plant City rainfall records, which span the entire 

106-year record, were used for streamflow estimates. Records generated of rainfall are in inches 
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of rain, while synthetic flow timeseries are in units of MGD (for daily flows) or average monthly 

MGD (for monthly flows). 

Rainfall records are used to simulate monthly flow in the Hillsborough River at Morris 

Bridge, the Alafia River at Bell Shoals, and un-gaged groundwater inflows/runoff into the 

Tampa Bypass Canal (TBC) lower and middle pools. FMS2 was "specifically designed to 

maximize the explanatory power of rainfall inputs in determining source flows." These monthly 

estimates are disaggregated to daily levels with inter-month daily flow continuity. From these 

four sets of daily flow timeseries, other daily models were developed to simulate flows at the 

Hillsborough Reservoir, in Cypress Creek, Trout Creek, and un-gaged runoff (as net losses in 

runoff) into the Hillsborough Reservoir. Data limitations at monthly scale meant these timeseries 

were not developed at monthly levels. Hillsborough River flow at Morris Bridge at a daily scale 

was used to simulate flow at the additional sites, including using leading simulations of Morris 

Bridge flows to produce daily estimates of Hillsborough River flow at Zephyrhills (needed for 

simulation of Lower Hillsborough River Minimum flow requirements). These flows were 

simulated at major USGS gage locations from which historical data was available. 

The process of developing flow records starts with the generation of an ensemble of 

rainfall records from historic data at/for the three stations already mentioned. Monthly rainfall 

was modeled with a Hidden Markov model that factored "wetness" of preceding states when 

probabilistically determining a given month's rainfall. Next, a seasonal-multivariate linear 

regression model was applied to generate ensembles of flow at Morris Bridge, un-gaged TBC 

flow, and Alafia River - Bell Shoals. The regression model accepts generated ensembles of 

rainfall records from the three rainfall sites as the only predictors. Spatial and temporal 

correlations are preserved by generating output for all three sites at the same time using 
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concurrent timeseries. These 3 monthly ensembles are then disaggregated to daily levels (method 

given above). Remaining flow site ensembles of flow timeseries are then generated using 

regressions with some combination of daily level flows from the sites with existing data, always 

including Morris Bridge daily flow as an explanatory variable. 

Separate models were built for each rainfall station and each calendar month to develop 

rainfall records (36 total models). Cypress Creek rainfall models did not perform (match 

historical distributions) as well as Plant City and St. Leo models. However, because rainfall 

models are univariate models, rainfall simulations are generated individually rather than as an 

ensemble of the region. There is also an inherent area of concern regarding the use of the 106-

year rainfall record to develop rainfall (and flow) ensembles rather than the most recent 30 years 

on record. However, because every 30-year period on record shows different trends than the 

overall record, no climate change signal persistence could be confidently seen. It falls to future 

work to determine how to incorporate climate change into modeling. 

One-thousand stochastic rainfall timeseries were synthetically generated for TBW (Hazen 

and Sawyer, 2010) to simulate a range of future surface water inflows in the Hillsborough and 

Alafia Rivers. These flow timeseries are based on rainfall observations from the three gaging 

stations (Plant City, St. Leo, and Cypress Creek). Each of the 1,000 timeseries was generated for 

100 years, with the first 22 years taken for simulation in TBW’s 2018 Long-Term Master Water 

Plan (2018-2040) and first 20 years are used for this study (2020-2040). Stochastic flow models 

developed as a part of FMS2 include all surface water source flows for City of Tampa and TBW. 

Monthly streamflows were generated synthetically and then dis-aggregated to a daily timestep. 

Monthly generation is best to capture rainfall-streamflow correlation, but daily is needed to 

match the scale of water use permits. Dis-aggregation was done using a "multivariate non-
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parametric" k-nearest neighbor approach (Lall and Sharma, 1996). Additional steps were taken 

to account for month-to-month transitions of flow, temporal autocorrelation, and spatial 

correlation of streamflow.  

 

5.3: Systemwide Reliability Evaluation Visualizations 

 

 

Figure 7.12: Visual description of OMS1-modeled TBW system components (from Hazen and 
Sawyer, 2010). Indicates the physical connections between TBW Enhanced Surface Water 
System (green box) that incorporates all surface water supply assets including the Young 
Reservoir, Regional Surface WTP, and water withdrawal intakes from the Alafia River and the 
Lower Pool of the Tampa Bypass Canal. The figure also depicts the ability of the City of Tampa 
(COT, yellow box) to self-supply water from the Hillsborough Reservoir, which is also 
connected to the Tampa Bypass Canal via the Harney Canal, which TBW may use to sell 
untreated water to COT. S160, S161, and S162 represent locks separating different pools of the 
Tampa Bypass Canal and Hillsborough Reservoir, and HRD is the Hillsborough River Dam. 
Arrows indicate direction of inflows and outflows from surface water sources.  
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Figure 7.13: Schematic of the Optimized Regional Operations Plan Model. Green and yellow 
triangles indicate supply nodes, with yellow stars indicating supply sources estimated by the 
Operational Modeling System, V1. Orange nodes indicate water treatment plants, and red 
triangles indicate points of connection where deliveries to member government must be made to 
meet water demands. Lines indicate existing transmission mains. 
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