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ABSTRACT

ERIC P. CHOATE: Small Amplitude Oscillatory Flows of Nematic Liquid
Crystal Polymers.

(Under the direction of M. Gregory Forest)

This dissertation presents two theoretical predictions of the behavior of solutions of nematic

liquid crystal polymers when subjected to small amplitude flows that are oscillatory in time.

First, we review theoretical models for predicting the behavior of nematic liquid crystals, in-

cluding Leslie-Ericksen theory, which only attempts to capture the mean direction of molecular

orientation, and Doi-Hess kinetic theory, which defines a probability density function on the

unit sphere for the molecular orientation and also the mesocscopic orientation tensor models

derived from it, which are the models that we will examine. In Chapter 2, we examine shear

flow in the monodomain limit, in which there are no spatial gradients in molecular orientation,

and we use multiple timescale perturbation analysis to capture very slowly developing effects

in the dynamic moduli, similar to experimental observations. Then, in Chapter 3, we relax the

monodomain restriction and examine the effect of heterogeneity in the molecular orientation

and the choice of two special anchoring conditions for the orientation at the plates. We re-

cover a Leslie-Ericksen-type prediction, formally connect imposed stress and imposed velocity

boundary conditions in shear flow, and establish an equivalence at the level of the storage and

loss moduli between shear flow and Poiseuille flow.
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Chapter 1

Theory of Nematic Liquid Crystal Polymers

In this chapter, we define different types of models that are used to predict the behavior of a

solution of nematic liquid crystal polymers in response to a fluid flow. The specific flows of

interest are small amplitude oscillator shear flow and Poiseuille flow. Also, we will discuss some

important orientation-dependent rheological properties that can be measured experimentally

and also predicted once we have solved for the molecular orientation.

1.1 What are nematic liquid crystals?

In elementary school science classes, we learn that there are three distinct states of matter:

solid, liquid, and gas. As is often the case with elementary school descriptions, later in life,

we learn that the division of matter is somewhat more complicated. The example that we will

examine in this dissertation is that of liquid crystals. These substances do not have the simple

melting transition from solid to liquid of a substance like water, but instead they have distinct

intermediate states in between the “solid” and “liquid” states. Specifically, liquid crystals are

observed to “melt” from solid to the liquid crystal phase, and then “melt” again at a higher

temperature to an isotropic liquid phase. In this intermediate liquid crystal state, called the ne-

matic phase, the molecules lose their positional order making them liquid-like and allowing them

to flow, but the molecules, which are roughly shaped like either long, thin rods or flat disks, still

retain some degree of the orientational order found in a crystal.1 Then at higher temperatures,

in the isotropic state, this orientational order is also lost. Figure 1.1 shows a cartoon of the

isotropic and nematic phases. Transitions from the isotropic phase back to the nematic phase
1There are other types of liquid crystal phases called smectic or cholesteric phases that retain a partial

positional ordering in one or two dimensions. Additionally, some substances melt from a solid through one or
more smectic phases before arriving at a nematic phase.



Figure 1.1: A cartoon illustrating the difference between solutions in the isotropic and nematic
phases. In the nematic phase, the major director n1 represents the preferred direction of
molecular alignment.

can be driven by decreasing the temperature, a thermotropic transition, or by increasing the

concentration of a (usually dilute) solution of liquid crystals in a Newtonian solvent, a lyotropic

transition. Some examples of nematic liquid crystals include N -(p-methoxybenzylidene)-p-

butylaniline (MBBA), poly-γ-benzyl-L-glutamate (PBLG) in m-cresol, and the tobacco mosaic

virus in an aqueous solution.

In this chapter, we will review theoretical models used to predict when a substance is in

the nematic phase and the nature of the molecular orientation of that phase. First, Leslie-

Ericksen theory only attempts to describe the preferred direction of the molecules, and then

the later kinetic theory of Doi and Hess attempts to refine this preferred orientation and provide

a measure of the strength of this preference.

We will idealize these molecules as monodisperse rigid spheroids with an axis of symmetry

with length l and the transverse axis of length d. The aspect ratio is R = l
d , but it enters the

theory mainly through the molecular geometry parameter

a =
R2 − 1
R2 + 1

. (1.1)

Infinitely thin rods correspond to the limit a → 1, spheres to a = 0, and infinitely thin disks

to a → −1. The majority of this dissertation will discuss finitely thin rods, usually with either

2
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Figure 1.2: The geometries of our flows.

a = 0.8 or a = 0.9 . For disks, we use either a = −0.8 or a = −0.9. These spheroids are

assumed to be uniformly dispersed in a dilute solution in a viscous solvent.

1.2 Small amplitude oscillatory shear and Poiseuille flows

In this dissertation, we will discuss two different types of flow between two parallel plates. In

the shear flow studied in Chapters 2 and 3, the plates are moved parallel to each other in the

x-direction, driven with either an imposed stress or an imposed velocity and inducing a flow by

drag forces. In Chapter 3, we also examine Poiseuille flow in which the plates remain stationary

and flow is induced by an oscillatory pressure gradient in the x-direction.

For both flow types, we center our coordinate axes at the midpoint between the plates,

but for reasons discussed in Chapter 3, we will choose the gap separation to be h for shear

flow but 2h for Poiseuille flow, as depicted in Figure 1.2. We will choose h = 10−4m as our

characteristic length scale. By choosing uniform boundary conditions on both plates, we will

assume throughout this dissertation that the fluid velocity takes the form

v = (vx(y), 0, 0)T (1.2)

3



and also that the nematic orientation is constant in the x- and z-directions. This allows us to

focus on the one-dimensional structures that develop across the gap.

For the velocity v, we define the velocity gradient as (∇v)ij = vi,j = ∂vi
∂xj

. The rate-of-strain

tensor D = 1
2

(∇v +∇vT
)

and the vorticity tensor Ω = 1
2

(∇v −∇vT
)

are respectively the

symmetric and antisymmetric parts the velocity gradient. Under the geometrical restrictions

above, we have

D =
1
2

∂vx

∂y




0 1 0

1 0 0

0 0 0




and Ω =
1
2

∂vx

∂y




0 1 0

−1 0 0

0 0 0




. (1.3)

1.3 Leslie-Ericksen Theory

An early theory for modeling a flowing nematic liquid crystal solution was developed by Leslie

and Ericksen. Leslie-Ericksen (LE) theory attempts to provide only the major director, or

the mean direction of the orientation of the molecules. For small-molecule nematics, when

orientation is assumed to be instantaneous on the laboratory time scale, LE theory generally

works well; however for slower molecular orientation times of larger polymeric nematics, LE

theory begins to break down. (Larson, 1999)

First, Ericksen proposed a transversely isotropic fluid (TIF), which treats the major director

n as the axis of symmetry of a rigid spheroid which is rotated by the surrounding flow, which

results in the Jeffery orbit equation

ṅ = Ω · n + λL(D · n−D : nnn), (1.4)

where λL is known as the Leslie tumbling parameter for reasons outlined below. The D : nnn

term is included so that n remains a unit vector. This is coupled to the fluid velocity through

a Navier-Stokes equation with the stress tensor

τ = 2µD + 2µ1D : nnnn + µ2(nn ·D + D · nn), (1.5)

for three constant viscosities µ, µ1, and µ2.

4



Leslie took Ericksen’s TIF and added a molecular field h to account for the Frank distortional

stresses generated by spatial variations in n. In the absence of an electromagnetic field, h is

written as the sum of three different types of distortional stresses—splay, twist, and bend:

hS = K1∇(∇ · n),

hT = −K2(A∇× n +∇× (An)),

hB = K3(B× (∇× n) +∇× (∇×B)),

(1.6)

where A = n · (∇× n) and B = n× (∇× n). Often, the single-constant approximation

K = K1 = K2 = K3 (1.7)

is used so that h simplifies to

h = K∆n. (1.8)

Using this field, Leslie transformed (1.4) into

γ1N = −γ2(D · n−D : nnn) + h− h · nn, (1.9)

for N = ṅ−Ω · n, and wrote the stress tensor in the form

τ = α1D : nnnn + α2nN + α3Nn + α4D + α5nn ·D + α6D · nn, (1.10)

where the coefficients αi are called the Leslie viscosities, and

γ1 = α3 − α2, and γ2 = α6 − α5. (1.11)

Additionally, the Parodi relationship gives the constraint

α6 = α2 + α3 + α5. (1.12)

If h = 0, then (1.9) reduces to (1.4) with the identification of the Leslie tumbling parameter as

5



λL = −γ2

γ1
= α2+α3

α2−α3
.

1.4 Kinetic theory

A more complicated theory was developed later by Doi and Hess (cf. (Doi and Edwards, 1986;

Hess, 1976; Wang, 2002)) to account for variability in the degree of orientation of the molecules.

In this kinetic theory, f(m,x, t) denotes the probability density function corresponding to the

probability that the axis of symmetry of a spheroidal molecule at location x is aligned with the

direction m (||m|| = 1) at time t. The Smoluchowski equation for f(m,x, t) is given by (Doi

and Edwards, 1986):

df
dt = R · [D̂r(m)(Rf + 1

kBT fRV )]−R · [m× ṁf ], (1.13)

where R = m× ∂
∂m is the rotational gradient operator, kB is the Boltzmann constant, T is the

absolute temperature, and V is an excluded volume potential. For a given by (1.1),

ṁ = Ω ·m + a[D ·m−D : mmm] (1.14)

is the Jeffery orbit for a single molecule subjected to flow. The rotational diffusion coefficient

D̂r(m) is given by

D̂r(m) =





Dr , for constant rotary diffusivity,

Dr(∫
‖m′‖=1 ‖m×m′‖f(m′,t)dm′

)2 , otherwise,
(1.15)

=





Dr , for constant rotary diffusivity,

Dr
(1−mm:M)2

, otherwise,
(1.16)

with Dr the averaged rotational diffusion rate. In this dissertation, we will use only the constant

rotary model. The averaged rotational diffusion rate for a rod in a dilute solution is given by

Dr = βDr0(νl3)−2 (1.17)

6



where β = 104, ν is the polymer number density, and the Dr0 is the dilute-solution rotational

diffusion rate, which is given by the Kirkwood-Auer formula

Dr0 =
3kBT (ln(l/d)− γ)

πηsl3
, (1.18)

where γ is a constant usually taken to be 0.8, and ηs is the solvent viscosity (Larson, 1999).

For the excluded volume potential, we will use a modified version of the Marrucci-Greco

potential (Wang, 2002)

V = −3
2NkBT

[ (
1 + L2

24 ∆
)
M : mm + L2

48

(∇∇M :: mmmm + (∇∇ : M4) : mm
)]

. (1.19)

The overall strength of the potential is characterized by the dimensionless polymer concentration

parameter N . The two polymer interaction length scales introduced here, L and L, respectively

represent strength of the isotropic and anisotropic distortional elastic stresses (Wang, 2002). In

this context, isotropic means that there is no preferred mode of distortion in the splay, blend,

or twist sense of (1.6). We define the nondimensional parameter θ = L2

L2 to characterize the

relative strength of the anisotropic distortional elasticity so that θ = 0 corresponds to the single

Frank constant approximation of Leslie-Ericksen theory (1.7). Despite the notation, θ can take

values in [−1,∞), being negative for disk-shaped molecules and positive for rods.

The potential (1.19) depends on f through the second moment tensor

M = 〈mm〉 =
∫

‖m‖=1
mm f(m, t) dm, (1.20)

and the fourth moment M4 = 〈mmmm〉. Note that M is symmetric and that since m is a

unit vector, M has trace 1.

1.5 Mesoscopic Tensor Models

One way to attack the Smoluchowski equation (1.13) is by expanding f in spherical harmonics

(cf. (Forest et al., 2005)); however in this dissertation we will approach (1.13) from a different

direction and get information about f through its second moment tensor M, or the traceless

7



mesoscopic orientational tensor

Q = M− I
3
. (1.21)

By multiplying (1.13) by mm and then integrating with respect to m, we can get an equation

for M

d
dtM = Ω ·M−M ·Ω + a(D ·M + M ·D− 2D : M4)

−6Dr

[
Q−N(M ·M−M : M4)− NL2

48 (∆M ·M + M ·∆M− 2∆M : M4)

−NL2

96

[
(∇∇M)

...M4 + (M4
...∇∇M)T + M · (∇∇ : M4 − 4M6 :: ∇∇M)

+((∇∇M)
...M4)T + M4

...∇∇M + (∇∇ : M4) ·M− 2M4 : (∇∇ : M4)
]]

,

(1.22)

where M6 = 〈mmmmmm〉 is sixth moment of f . In order to close the system for M and v,

we apply the Doi approximations

M4 ≈ MM, (1.23)

M6 ≈ MMM. (1.24)

A discussion of other closure models is found in (Forest and Wang, 2003).

1.6 Stress Tensor

For our stress tensor, we use that of (Wang, 2002). We write the extra stress as the sum of four

parts:

τ = τV is + τNE + τ IE + τAE . (1.25)

Isotropic stresses will be lumped in with the pressure p. The viscous stress is represented by

The elastic and viscous parts of the stress are respectively given by

τV is = 2ηsD + 3νkBT [ζ1 (D ·M + M ·D) + ζ2D : M4 + ζ3D] , (1.26)

8



where

ζ1 = ζ(0)
(

1
I3
− 1

I1

)
, ζ2 = ζ(0)

(
J1

I1J3
+ 1

I1
− 2

I3

)
, ζ3 = ζ(0)

I1
,

I1 = 2R
∫∞
0

dx
(1+x)3

√
R2+x

, I3 = R(R2 + 1)
∫∞
0

dx

(1+x)2(R2+x)
3
2
,

J1 = R
∫∞
0

xdx

(1+x)3
√

(R2+x)
, J3 = R

∫∞
0

xdx

(1+x)2(R2+x)
3
2
,

(1.27)

where ζ(0) is a free parameter with units of time to be experimentally characterized. In this

dissertation we will use ζ(0) = 0.01 s.

The three remaining stresses are elastic in nature. The nematic elastic stress

τNE = 3aνkBT [Q−N(M ·M−M : M4)] (1.28)

arises from molecular orientation being locally out of nematic equilibrium. The isotropic dis-

tortional elastic stress is

τ IE = νkBTNL2

32

[
2(1− a)M ·∆M− 2(1 + a)∆M ·M

+4a∆M : M4 −Mkl,iMkl,j + M : ∇∇M)
]
,

(1.29)

and the anisotropic distortional elastic stress is

τAE = νkBTNL2

32

[− (1 + a)(∇∇M
...M4 + (M4

...∇∇M)T + (∇∇ : M4) ·M)

+(1− a)((∇∇M
...M4)T + M4

...∇∇M + M · (∇∇ : M4))

+a(4M6 :: ∇∇M + 2M4 : (∇∇ : M4))
]
.

(1.30)

The dimensionless linear momentum balance is

dv
dt = 1

ρ∇ · (−pI + τ ), (1.31)

where ρ is the fluid density.
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1.7 In-plane Subspace and Spectral Representation

The orientation tensor Q is symmetric and has trace 0, and so it has five independent com-

ponents. However, the system (1.22) and (1.31) has a reflection symmetry with respect to the

x-y plane, and so it possesses an “in-plane” subspace in which there are only three degrees of

freedom in the orientation. In this dissertation, we will restrict to this subspace in which Q is

forced to have the eigenvector n3 = (0, 0, 1), which is equivalent to imposing Qxz = Qyz = 0.

A result of this restriction is that if the major director n1 and the minor director n2 start in

the flow-flow gradient plane, they remain in that plane.

We choose to represent these three degrees of freedom (two in the eigenvalues and one in

the eigenvectors of Q) in terms of the in-plane director angle ψ and the scalar order parameters

s and β as

Q = s
(
n1n1 − I

3

)
+ β

(
n2n2 − I

3

)
, (1.32)

n1 = (cosψ, sinψ, 0), n2 = (− sinψ, cosψ, 0). (1.33)

This is a standard “spectral representation” of the orientation tensor, where n1 and n2 are

eigenvectors, and s = d1 − d2 and β = d2 − d3 are differences of the eigenvalues di of M

corresponding to the eigenvectors ni. The restrictions that 0 ≤ di ≤ 1 and that d1 +d2 +d3 = 1

place restrictions on the allowable values of s and β, as illustrated in Figure 1.3.

In calling n1 the major director, we have assumed that d1 is the unique largest eigenvalue

of M. (This corresponds to s > β and s > 0.) However, there are situations in which this is not

true. In a sense, if d2 is the unique largest eigenvalue (This corresponds to β > s, 0.) then we

have simply chosen the wrong alignment for which to assign ψ = 0, and there are no significant

physical differences between these cases. However, if d3 is the unique largest eigenvalue (or

s, β < 0), then the major director is n3 = (0, 0, 1), which corresponds to a logrolling state.

This means that the molecules are on average aligned orthogonal to the x-y plane rather than

parallel to it.

Additionally, there are special states in which there are repeated eigenvalues. The state

d1 = d2 = d3 = 1
3 , that is s = β = 0, corresponds to the isotropic state of the fluid because

the pdf f(m) ≡ 1
4π , and thus there are no distinguished directions. The situations in which
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Figure 1.3: The allowable values of the order parameters lie inside a triangle in s-β space. The
dashed lines represent the uniaxial states.

there are only two distinct eigenvalues of Q are called uniaxial states, in contrast to the biaxial

states in which there are three distinct eigenvalues. These are depicted by the dashed lines in

Figure 1.3. The logrolling uniaxial state d3 > d1 = d2 (s = β < 0) is not significantly different

than a biaxial logrolling state. However, when d1 = d2 > d3 (s = β > 0), the major director is

not well-defined, a degenerate situation that we will call a defect. The main feature of a defect

alignment is not that the molecules are on average parallel to a special vector, but instead the

best that can be said is that on average, they are orthogonal to a special vector, in this case n3.

In other words, there is not one “favored” direction, but instead the molecules only agree to

reject one direction without reaching a consensus favorite. The two other uniaxial states with

defects are s = 0 with β < 0 and β = 0 with s < 0, and they are aligned orthogonal to n2 and

n1, respectively.

In terms of the probability density function f , in a biaxial state f(m) is an ellipsoid, but

at a uniaxial state, f is a spheroid. The defect states correspond to f being a oblate spheroid.

The alignments of remaining non-defect uniaxial states s = 0 with β > 0 and β = 0 with s > 0,
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in which f is an prolate spheroid, are not significantly different from those biaxial states nearby

in s-β space.

The system for s, β, ψ, and vx that we will analyze in this dissertation is

∂s
∂t = a

3
∂vx
∂y g0(s, β) sin 2ψ − 6Dr

(
U(s) + 2Nsβ

3 (1− s + β)
)

−DrNL2

6

(
(s− β)g0(s, β)

(
∂ψ
∂y

)2
+ 1

2g1(s, β) ∂2s
∂y2 + 1

2g2(s, β)∂2β
∂y2

)

+DrNL2

48

[
g3(s, β, ψ)∂2ψ

∂y2 + (g4(s, β) + g5(s, β) cos 2ψ) ∂2s
∂y2

+(g6(s, β) + g7(s, β) cos 2ψ)∂2β
∂y2 + (g8(s, β) + g9(s, β) cos 2ψ)

(∂ψ
∂y

)2

+2
3(−1 + 3 cos 2ψ)g1(s, β)

(
∂s
∂y

)2
− 2

3(1 + 3 cos 2ψ)g2(s, β)
(

∂β
∂y

)2

+sin 2ψ
(
g10(s, β) ∂s

∂y + g11(s, β)∂β
∂y

)∂ψ
∂y

+2
3

(− (1 + 3 cos 2ψ)g1(s, β) + (−1 + 3 cos 2ψ)g2(s, β)
)

∂s
∂y

∂β
∂y

]
,

(1.34)

∂β
∂t = −a

3
∂vx
∂y g0(β, s) sin 2ψ − 6Dr

(
U(β) + 2Nsβ

3 (1− β + s)
)

−DrNL2

6

(
(s− β)g0(β, s)

(
∂ψ
∂y

)2
+ 1

2g1(β, s)∂2β
∂y2 + 1

2g2(β, s) ∂2s
∂y2

)

+DrNL2

48

[
− g3(β, s, ψ)∂2ψ

∂y2 + (g4(β, s)− g5(β, s) cos 2ψ)∂2β
∂y2

+(g6(β, s)− g7(β, s) cos 2ψ) ∂2s
∂y2 + (g8(β, s)− g9(β, s) cos 2ψ)

(∂ψ
∂y

)2

−2
3(1 + 3 cos 2ψ)g1(β, s)

(
∂β
∂y

)2
− 2

3(1− 3 cos 2ψ)g2(β, s)
(

∂s
∂y

)2

+sin 2ψ
(− g10(β, s)∂β

∂y − g11(β, s) ∂s
∂y

)∂ψ
∂y

+2
3

(
(−1 + 3 cos 2ψ)g1(β, s)− (1 + 3 cos 2ψ)g2(β, s)

)
∂s
∂y

∂β
∂y

]
,

(1.35)

∂ψ
∂t = −1

2
∂vx
∂y

(
1− a

3
s+β+2

s−β cos 2ψ
)

+ DrNL2

24
s+β+2
(s−β)2

∂
∂y

(
(s− β)2 ∂ψ

∂y

)

+DrNL2

16 (2 + s + β)
[

1
9(s−β)2

∂
∂y

(
(2 + s + β)(s− β)2 ∂ψ

∂y

)

+sin 2ψ
(

1+5s−4β
54(s−β)

∂2s
∂y2 + 1+5β−4s

54(s−β)
∂2β
∂y2 + s−β

3

(∂ψ
∂y

)2
)

− cos 2ψ
((

∂s
∂y + ∂β

∂y

)∂ψ
∂y + s−β

3
∂2ψ
∂y2

)]
,

(1.36)

∂vx
∂t = 1

ρ

(− ∂p
∂x + ∂τxy

∂y

)
, (1.37)
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for the shear stress

τxy =
[
ηs + 3νkBT

( ζ1
6 (s + β + 2) + ζ2

4 (s− β)2 sin2 2ψ + ζ3
2

)]
∂vx
∂y

+3aνkBT
2 sin 2ψ

[
U(s)− U(β)− 4Nsβ

3 (s− β)
]

+νkBTNL2

16

[(
1− a

3
s+β+2

s−β cos 2ψ
)

∂
∂y

(
(s− β)2 ∂ψ

∂y

)

+a
3 sin 2ψ

(
h0(β, s)∂2β

∂y2 − h0(s, β) ∂2s
∂y2 + 2(s− β)(g0(s, β) + g0(β, s))

(∂ψ
∂y

)2
)]

+νkBTNL2

32

[
h1(s, β, ψ)∂2ψ

∂y2 + h2(s, β, ψ) ∂2s
∂y2 − h2(β, s, ψ)∂2β

∂y2 + h3(s, β, ψ)
(∂ψ

∂y

)2

+a
9 sin 2ψ

(
(−1 + 3 cos 2ψ)h0(s, β)

(
∂s
∂y

)2
+ (1 + 3 cos 2ψ)h0(β, s)

(
∂β
∂y

)2 )

+(h3(s, β) + h4(s, β) cos 2ψ) ∂s
∂y + (h3(β, s)− h4(β, s) cos 2ψ)∂β

∂y

)∂ψ
∂y

+h5(s, β, ψ) ∂s
∂y

∂β
∂y

]

(1.38)

where

U(s) = s
(
1− N

3 (1− s)(2s + 1)
)
, g0(s, β) = 1 + 2s− β + 3sβ − 3s2,

g1(s, β) = (s− 1)(1 + 2s− β), g2(s, β) = s(1− s + 2β),

g3(s, β, ψ) = 2 sin 2ψ(1 + s)(s− β)(1 + s + β − 2(s2 − sβ + β2)),

g4(s, β) = −1
3(1 + s)(8s2 + sβ − 4s− 4− β2 + 5β)

g5(s, β) = 1
9(2(s− 1)(1 + 2s)(5 + 18s) + 17β + 22sβ − 99s2β + 45sβ2 − 7β2),

g6(s, β) = 1
3s(s2 + 4s− 17β − sβ − 8β2 − 5)

g7(s, β) = 1
9(17s + 20s2 − 9s3 + 99s2β − 5sβ − 16β2 − 72sβ2 + 8β + 8),

g8(s, β) = −2
3(s− β)

(
4 + 13s− 8s2 − 9s3 − 5β + 11sβ + β2 + 9sβ2

)
,

g9(s, β) = −2(s− β)(−2 + 13s3 + β + β2 − 4s2 − 22s2β − 7s + 3sβ + 13sβ2)
)
,

g10(s, β) = −4(−1 + 4s3 − 5s2β + β2 + s(−3 + β(3β − 1))),

g11(s, β) = −4(1 + 2s− 3s3 + β + 2sβ + 5s2β − 2β2 − 4sβ2),

(1.39)
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h0(s, β) = (1− β + 2s)(1 + β − s),

h1(s, β, ψ) = 1
3(s− β)2(2 + s + β − 3(s− β) cos 2ψ)− a

18(s− β)2
(
2 cos 2ψ (2+s+β)2

s−β

−3
(
1 + 2(s2 − sβ + β2) + cos 4ψ(3− 2s2 + 2β − 2β2 + 2s + 2sβ)

))
,

h2(s, β, ψ) = 1
18 sin 2ψ

[
a(8s3 + 4s2 − 7s2β + 3β2 + β2 − 8s− 11sβ − 2sβ2 − 4

−3 cos 2ψ(s− β)(8s2 + 5β2 − β − 3s− 11sβ − 3)) + (1 + 5s− 4β)(s− β)
]
,

h3(s, β, ψ) = sin 2ψ(s− β)
(
(s− β)2 − a

9

(
9s3 + 7s2 − 9s2β − 8s− 9sβ2 − 13sβ+

+9β3 − 7β2 − 8β − 8 + 3(s− β) cos 2ψ(10− 13s2 + 6s + 22sβ + 6β − 13β2)
))

,

h4(s, β) = −3(s− β)2 − a
9 (2 + s + β)(4 + 3s + β),

h5(s, β, ψ) = a
9 sin 2ψ

(
(s− β)(s + β − 1)

+3 cos 2ψ(3s2 + (β − 1)(2 + 3β)− s(1 + 6β))
)
.

(1.40)

1.8 Rheological Properties

One motivation for solving the system (1.34)-(1.38) is that once the stress tensor is known, we

are able to make predictions of certain rheological properties that can be measured in laboratory

experiments (Larson, 1999).

1.8.1 Storage and Loss Moduli

In a perfectly neo-Hookean solid, the shear stress is proportional to the shear strain γ:

τneo−Hookean
xy = Gγ, (1.41)

for the shear modulus G. For a perfectly Newtonian fluid, however, the shear stress is propor-

tional to the strain rate γ̇:

τNewtonian
xy = ηγ̇, (1.42)

for the shear viscosity η. It is assumed that the strain and strain rate are macroscopic quantities

defined for the system as a whole, and not defined locally inside the substance so that the stress

response is also homogeneous, and the shear modulus and viscosity are material properties.

A complex fluid such as a solution of nematic liquid crystal polymers possesses properties

14



similar to both a neo-Hookean solid and a Newtonian fluid. One method to probe the com-

bination of these two dissimilar elements is through linear viscoelasticity. In this case, it is

expected that the velocity gradient is approximately linear in y and oscillatory in time so that

the macroscopic shear strain can be written as

γ = γ0 sinωt. (1.43)

The macroscopic strain rate is then just

γ̇ = γ̇0 cosωt, (1.44)

where γ̇0 = γ0ω. Thus, a measure of a substance’s solid-like and liquid-like properties can be

made if the shear stress τxy can be decomposed into the sum of a part in-phase with the strain

and another out-of-phase (or in-phase with the strain rate):

τxy = γ0

(
G′(ω) sinωt + G′′(ω) cosωt

)
. (1.45)

The in-phase term G′(ω) is called the storage modulus and the out-of-phase term G′′(ω) is called

the loss modulus. To mimic the notation in (1.43), the complex modulus is

G∗ = G′ + iG′′. (1.46)

Alternatively, from the perspective of (1.44), the complex viscosity is defined as

η∗ = η′ − iη′′ =
G∗

iω
. (1.47)

The ratio

G′′

G′ = tan δ (1.48)

is known as the loss tangent, and it is large for a substance that is more liquid-like and small

for a substance is more solid-like.
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The ultimate goals of the chapters that follow are to make predictions of the storage and

lose moduli.

1.8.2 Normal Stress Differences

Two other important rheological properties are the first and second normal stress differences,

defined by

N1 = τxx − τyy,

N2 = τyy − τzz,
(1.49)

respectively. Non-zero normal stress differences indicate a force exerted by the fluid pushing

the plates apart or pulling them together.
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Chapter 2

Shear flow in the monodomain Limit

In the so-called “monodomain limit,” it is assumed that there are no spatial gradients in the ori-

entation variables, which in turn allows us to remove hydrodynamic feedback from the problem.

Therefore, it allows us to impose a linear velocity profile and then compute the orientation’s

reaction. A modified version of this chapter appears in Choate and Forest (2006).

2.1 Monodomain limit and nondimensionalization

In the monodomain limit, the interaction lengths L and L are assumed to be small compared

to the length scale over which distortions occur, allowing us to effectively ignore the spatial

gradients in the system (1.34)-(1.38). Thus, we can assume that for small amplitude oscillatory

shear flow the velocity is simply linear in y, and we will write it as

vx = γ̇0y cosωt, (2.1)

where γ̇0 = A0ω
h is a shear rate composed of the gap width h, the maximum relative amplitude

of the oscillatory displacement of the parallel plates A0, and the frequency of the oscillation ω.

This crude simplification is indeed shown to be physically relevant for the fluid near the center

of the channel when the plate separation is wide.

Under these restriction that s, β, and ψ are functions of time only, the system (1.34)-(1.36)

reduces to

ṡ = −6Dr

(
U(s) + 2Nsβ

3 (1− s + β)
)

+ a
3 γ̇0 cosωt(1 + 2s− β + 3sβ − 3s2) sin 2ψ,

β̇ = −6Dr

(
U(β) + 2Nsβ

3 (1− β + s)
)− a

3 γ̇0 cosωt(1 + 2β − s + 3sβ − 3β2) sin 2ψ,

ψ̇ = −1
2 γ̇0 cosωt

(
1− a

3
s+β+2

s−β cos 2ψ
)

,

(2.2)



and it is this system of ordinary differential equations that we we analyze in this chapter.

As a characteristic timescale we choose tr = (6Dr)−1, the timescale of molecular rotational

diffusion. For small molecule liquid crystals, this timescale is quite fast; however, from (1.18),

for the larger polymeric molecules of the present discussion, the rotational diffusion is slow

enough to have an observable effect. In this dissertation, we will use Dr = 35 s−1. Thus, the

nondimensional velocity is

vx = De y cosωt (2.3)

where we have defined the nondimensional Deborah number

De =
γ̇0

6Dr
(2.4)

as the ratio of the shear rate to the rate of rotational diffusion so that the small amplitude limit

is De << 1. The system (2.2) reduces to

ṡ = −U(s)− 2Nsβ
3 (1− s + β) + a

3De cosωt(1 + 2s− β + 3sβ − 3s2) sin 2ψ, (2.5)

β̇ = −U(β)− 2Nsβ
3 (1− β + s)− a

3De cosωt(1 + 2β − s + 3sβ − 3β2) sin 2ψ, (2.6)

ψ̇ = −1
2De cosωt

(
1− a

3
s+β+2

s−β cos 2ψ
)

. (2.7)

2.2 Degenerate quiescent equilibrium

The system (2.5)-(2.7) possesses very special equilibrium solutions when there is no flow, that

is, when De = 0. In this case we find that (2.5)-(2.7) reduces to

ṡ = −U(s)− 2Nsβ

3
(1− s + β) (2.8)

β̇ = −U(β)− 2Nsβ

3
(1− β + s) (2.9)

ψ̇ = 0, (2.10)
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or in its equivalent tensor form

Q̇ = Q−N(M ·M−M : MM). (2.11)

From (1.39), U(s) = s(1− N
3 (1− s)(2s+1)), and so the only material parameter in this system

is the nondimensional concentration parameter N .

In general, the equilibrium order parameter system (2.8)-(2.9) has seven steady solutions,

but for the purposes of this dissertation, we will ignore the five solutions that are unstable to

perturbations in the form of a shear flow for all N > 0 (Forest and Wang, 2003)). One of the

remaining two solutions is the isotropic solution

(s, β) = (0, 0), (2.12)

which exists for all N > 0 but is only stable for 0 < N < 3. This solution corresponds to the

state in which the molecules have no preferred orientation either because the concentration is

too low for the molecules to effective communicate with each other or because the temperature

is too high.

Additionally, if the concentration is sufficiently high, N > 8
3 , then there is also the uniaxial

nematic equilibrium solution

(s, β) = (seq, 0) (2.13)

for

seq =
1
4

(
1 + 3

√
1− 8

3N

)
. (2.14)

This solution is stable if it is defined. Thus, in the region 8
3 < N < 3, the isotropic and

nematic solutions are bistable, but when N > 3, (seq, 0) is the only solution stable to shear

perturbations. For the remainder of this dissertation, we will assume that N is well into the

nematic range, using N = 6 so that seq = 0.809.

While the concentration selects the degree to which the molecules are ordered, in the absence
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of flow, the preferred direction of this ordering is not selected. Indeed, from (2.10), any constant

value

ψ ≡ Ψ0 (2.15)

is a solution. (We choose −π
2 < Ψ0 ≤ π

2 .) Several authors (cf. (Forest et al., 2003; Hess and

Kröger, 2004; Lee et al., 2006; Marrucci and Greco, 1993; Rienäcker and Hess, 1999; Rienäcker

et al., 2002a,b)) have explored the role of this orientational degeneracy in steady shear.

In the following, we will use this orientationally degenerate equilibrium solution as our initial

conditions for (2.5)-(2.7):

s(t = 0) = seq, β(t = 0) = 0, ψ(t = 0) = Ψ0. (2.16)

We shall see that some phenomena are sensitive to the initial value of the director angle.

2.3 Weak steady shear flow

Before we examine weak oscillatory shear, we will first look at weak steady shear, or De << 1

with ω = 0 in (2.5)-(2.7).1 We will employ “two-timing” asymptotic analysis similar to that used

in (Vicente Alonso et al., 2003) for a Landau-de Gennes model. The utility of this asymptotic

analysis is that one can effectively diagonalize the fast and slow response of the director and

order parameters, and thereby solve the system (2.5)-(2.7) in a hierarchy of simpler, lower

dimensional equations. The molecular relaxation timescale

T0 = t (2.17)

dominates the order parameter equations (2.5)-(2.6) while the director angle equation (2.7) is

on the slower shear flow timescale

T1 = De t. (2.18)
1As defined by (2.4), when ω = 0, then De = 0, and indeed, vx in (2.1) is 0. Therefore in steady shear, we

will define the Deborah number as De = γ̇0
Dr

where γ̇0 is the imposed shear rate and use vx = De y.
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We treat the initial slow time as zero, but we allow for the initial value of the fast time T00 = t0

to be a free parameter, the role of which will be discussed below. We will use the expansions

s = seq + De sss
1 (T0, T1) + O(De2), (2.19)

β = 0 + De βss
1 (T0, T1) + O(De2), (2.20)

ψ = ψss
0 (T0, T1) + De ψss

1 (T0, T1) + O(De2), (2.21)

where the superscript ss denotes steady shear. Alternatively, the orientation tensor can be

expanded as

Q = seq

(
nss

1,0n
ss
1,0 − I

3

)

+De
[
sss
1

(
nss

1,0n
ss
1,0 − I

3

)
+ βss

1

(
nss

2,0n
ss
2,0 − I

3

)
+ seqψ

ss
1

(
nss

1,0n
ss
2,0 + nss

2,0n
ss
1,0

)]

+O(De2),

(2.22)

where nss
1,0 = (cosψss

0 , sinψss
0 , 0) and nss

2,0 = (− sinψss
0 , cosψss

0 , 0).

At zeroth order in De, we quickly see that ∂ψss
0

∂T0
= 0, and so at first order (2.7) yields

∂ψss
1

∂T0
= −dψss

0
dT1

− 1
2 (1− λ0 cos 2ψss

0 (T1)) , (2.23)

where we have define the Leslie tumbling parameter λ0 = λ(seq, 0) with

λ(s, β) =
a

3
2 + s + β

s− β
. (2.24)

Integrating (2.23) with respect to T0, we see that

ψss
1 (T0, T1) = −T0

(
dψss

0
dT1

+ 1
2 (1− λ0 cos 2ψss

0 (T1))
)

+ ψ̄ss
1 (T1), (2.25)

The solvability condition that ψss
1 remains bounded as a function of T0 yields

dψss
0

dT1
= −1

2 (1− λ0 cos 2ψss
0 ) . (2.26)

Thus one recovers the well-known director angle equation from Leslie-Ericksen theory, which
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comes from (1.4) in the in-plane monodomain limit. It is separable and can be integrated in

closed form, which we represent by ψss
0 (T1) = Ψ(T1 + φ0), where

Ψ(x) =





tan−1

(√
1−λ2

0

1+λ0
tan

(
−
√

1−λ2
0

2 x

))
, if |λ0| < 1,

tan−1

(
tanψL tanh

(√
λ2
0−1

2 x

))
, if |λ0| > 1 and |Ψ0| < |ψL|,

tan−1

(
tanψL coth

(√
λ2
0−1

2 x

))
, if |λ0| > 1 and |ψL| < |Ψ0| < π

2 ,

(2.27)

where

ψL = tan−1

(√
λ2

0 − 1
λ0 + 1

)
(2.28)

is the classical Leslie angle, and

φ0 =





− 2√
1−λ2

0

tan−1

(
1+λ0√
1−λ2

0

tanΨ0

)
, if |λ0| < 1,

2√
λ2
0−1

tanh−1
(

tanΨ0
tan ψL

)
, if |λ0| > 1 and |Ψ0| < |ψL|,

2√
λ2
0−1

coth−1
(

tanΨ0
tan ψL

)
, if |λ0| > 1 and |ψL| < |Ψ0| < π

2 .

(2.29)

Thus if |λ0| < 1, then ψss
0 (De t) is periodic with period T ss = 2π

De
√

1−λ2
0

, meaning that

the director tumbles. However, if |λ0| > 1, then the director aligns relative to the flow with

ψss
0 (De t) decaying to the Leslie alignment angle ψL. These two different behaviors are depicted

for rods in Figure 2.1 and for disks in Figure 2.2.

To our knowledge the exact role of the initial director angle Ψ0 has not been previously

amplified. It is often hidden in a generic constant of integration and sometimes taken to be zero.

This is understandable since the qualitative effect of Ψ0 on ψss
0 is not significant, introducing

only a phase shift in the tumbling regime, and in the flow-aligning case only affecting the

direction from which the director approaches the Leslie angle (ψss
0 will not pass through −ψL

on its way to ψL), as illustrated in Figure 2.1. We shall show below, however, that the effect of

Ψ0 is qualitatively significant for oscillatory shear.
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Figure 2.1: The two different responses, tumbling and flow-aligning, to steady shear for rods
with a = 0.8 (λ0 = 0.926) and 0.9 (λ0 = 1.042) for Ψ0 = −55◦,−35◦, 0◦, 35◦, and 55◦. For
a = 0.9, ψL = 8.128◦. [N = 6, De = 0.1.]
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Figure 2.2: The two steady shear responses for disks with a = −0.8 (λ0 = −0.926) and −0.9
(λ0 = −1.042) for Ψ0 = −55◦,−35◦, 35◦, 55◦, and ±90◦. For a = −0.9, ψL = −81.87◦. [N = 6,
De = 0.1.]

23



Using ψss
0 (T1), the O(De) order parameter equations are triangular system

∂βss
1

∂T0
= −a1β

ss
1 + aa4 sin 2ψss

0 (T1),
∂sss

1
∂T0

= −a2s
ss
1 + a3β

ss
1 + aa5 sin 2ψss

0 (T1),
(2.30)

where

a1 = N
3

(
2s2

eq + 2seq − 1 + 3
N

)
= Nseq

a2 = N
3

(
6s2

eq − 2seq − 1 + 3
N

)
= N

3

(
seq + 2− 6

N

)
,

a3 = 2N
3

(
s2
eq − seq

)
= 1

2(a2 − a1),

a4 = 1
3(seq − 1),

a5 = 1
3

(
1 + 2seq − 3s2

eq

)
= 1

6(seq − 1 + 9
N ).

(2.31)

This can be solved exactly by quadrature:

βss
1 (T0, T1) = a sin 2ψss

0 (T1)a4
a1

(
1− ea1(T00−T0)

)
,

sss
1 (T0, T1) = a sin 2ψss

0 (T1)
(

a3a4+a5a1
a1a2

− a4
2a1

ea1(T00−T0) + a4−2a5
2a2

ea2(T00−T0)
)

,
(2.32)

The two order parameter relaxation rates a1 and a2 are the same rates identified in (Larson

and Mead, 1989a). In the nematic region N > 3, a1 > a2 > 1
2 . However, in the bistable region

8
3 < N < 3, a2 → 0 as N → 8

3 .

Thus for steady shear, at leading order the tensor model predicts the same director behav-

ior as Leslie-Ericksen theory coupled with order parameters that decay exponentially to the

quiescent uniaxial values modified by O(De) corrections that are proportional to sin 2ψss
0 . The

main parameter in determining qualitative behavior is the Leslie “material parameter” λ0 which

is identified for nematic polymers as dependent on aspect ratio through a and concentration

through seq (Forest and Wang, 2003).

Using (2.32), the analysis can be continued to get ψ̄ss
1 . At O(De2), (2.7) is

∂ψss
2

∂T0
= −dψ̄ss

1
dT1

− a2

3s2
eq

(
(seq(seq + 2)ψ̄ss

1 sin 2ψss
0 +

a
2 sin 4ψss

0

(
a3a4+a1a5−a2a4(1+seq)

a1a2
+ a4(2seq−1)

2a1
ea1(T00−T0) + a4−2a5

2a2
ea2(T00−T0)

) )
.

(2.33)

We observe that for ψss
2 to be bounded as a function of T0, we must require that dψ̄ss

1
dT1

= 0. In
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the flow-aligning regime, it is easy to solve (2.33) for this constant ψ̄ss
1 in the limit T0 → ∞.

This can improve the approximation to the flow-alignment angle to

ψL + De
3((seq + 1)a4a2 − a3a4 − a1a5)

a1a2(seq + 2)2
. (2.34)

Also, the first order asymptotic expressions for the order parameters are

s = seq + Dea(a3a4+a5a1)
a1a2

sin 2ψL,

β = Deaa4
a1

sin 2ψL.
(2.35)

2.4 Weak Oscillatory Shear Flow

2.4.1 Leslie-Ericksen for weak oscillatory shear flow

Anticipating a similar relationship between the tensor and Leslie-Ericksen models for the more

complicated dynamics of oscillatory shear, we begin our investigation of oscillatory shear with

the non-autonomous generalization of the LE director angle equation,

dψLE

dt
= −1

2
De cosωt (1− λ0 cos 2ψLE) . (2.36)

This equation can also be solved exactly:

ψLE(t) = Ψ
(

De
sinωt− sinωt0

ω
+ φ0

)
, (2.37)

where the function Ψ is defined by (2.27). This solution predicts an oscillatory response for

both “tumbling” and “flow-aligning” nematic liquids as classified based on their steady shear

response. This oscillatory behavior is a consequence of the “internal clock,” De
ω sinωt, which

oscillates between ±De
ω , on which the with function Ψ is evaluated. Thus the director angle

oscillates about the initial angle Ψ0.

Figure 2.3 compares ψLE to a numerical solution of the tensor model (2.5)-(2.7) where ψ, s,

and β are coupled. We observe: ψLE accurately captures the oscillatory nature of the director

angle for small times, a few dozen periods of the plates. However, for larger times, a slow drift

of the mean director angle of the tensor model emerges, and furthermore the drift dynamics
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Figure 2.3: The Leslie-Ericksen theory prediction (dark band) of oscillation around the initial
value Ψ0 coincides with the numerical solution (light band) for the first few plate oscillations,
but the mean of the numerical solution slowly drifts toward either 0◦ (if |Ψ0| < 45◦) or ±90◦

(if 45◦ < |Ψ0| < 90◦). [N = 6, a = 0.8 (λ0 = 0.926), De = 0.1, and ω = 1 for Ψ0 = 35◦ and
Ψ0 = 55◦.]

are sensitive to initial data.

More complete numerical studies show the asymptotic value of the mean angle is parallel

to the plates when |Ψ0| < π
4 or perpendicular to the plates when π

4 < |Ψ0| < π
2 . For the LE

model, the asymptotic value of the mean is simply Ψ0, independent of the initial data, and

independent of the Leslie parameter λ0.

2.4.2 Failure of the two-timing argument used for steady shear

Before using multiple timescale perturbation analysis in oscillatory shear, we must briefly discuss

the additional timescale introduced when ω 6= 0. We limit the present discussion to relatively

fast plate oscillation, or ω >> De, and use cosωt = cosωT0 when time appears explicitly

in (2.5)-(2.7). Additionally we note that we have used the term “mean” loosely, for indeed

ω
2π

∫ t+ π
ω

t− π
ω

ψLE(t′) dt′ 6= Ψ0 (unless Ψ0 = 0), but instead
∫ t+ π

ω

t− π
ω

sgn(ψLE(t′)−Ψ0) dt′ = 0. For the
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remainder of the paper we use “mean” to refer to integrating with respect to T0 only over one

period allowing the mean to remain a function of the slow time T1.

If the two-timing argument from Section 2.3 is followed again for oscillatory shear, we still

have ∂ψ0

∂T0
= 0 so that ψ0(T0, T1) ≡ ψ̃0(T1), but (2.25) becomes

∂ψ1

∂T0
= −dψ̃0

dT1
− 1

2
cosωT0

(
1− λ0 cos 2ψ̃0(T1)

)
. (2.38)

After integration with respect to T0, one finds that

ψ1(T0, T1) = −(T0 − T00)dψ̃0

dT1
− sin ωT0−sin ωT00

2ω

(
1− λ0 cos 2ψ̃0

)
+ ψ̃1(T1). (2.39)

Thus, the solvability condition for ψ1 to remain bounded as a function of T0 is now dψ̃0

dT1
= 0,

implying that ψ0(T0, T1) ≡ Ψ0, which clearly does not capture the long time dynamics of the

numerical solutions shown in Figure 2.3. We shall see that in fact this longtime drift of the

mean of the oscillation arises from the emergence of higher harmonics in the O(De2) balance,

arising precisely through the small amplitude oscillations of the tumbling parameter λ(s, β).

Thus, LE theory with its constant order parameter cannot yield this effect.

2.4.3 A third slower timescale

Since the two times T0 = t and T1 = De t do not prove to be enough to capture the drift in

Figure 2.3, we will introduce a new, slower time T2 = De2t. Instead of ψ0(T0, T1) ≡ Ψ0 of

the previous section, we now allow ψ0(T0, T1, T2) ≡ ψ̄0(T2), and replace ψ̃1(T1) in (2.39) with

ψ̃1(T1, T2).

Even though ψ̄0(T2) is not yet known, it does not prevent us from solving the system for

the order parameters at O(De):

∂β1

∂T0
= −a1β1 + aa4 cosωT0 sin 2ψ̄0(T2),

∂s1
∂T0

= −a2s1 + a3β1 + aa5 cosωT0 sin 2ψ̄0(T2),
(2.40)

where the ai are given by (2.31). This system can be solved by quadrature, and we see that the

order parameters quickly decay to sinusoidal states with an amplitude that may vary slowly
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with time:

β1 = a sin 2ψ̄0(T2)
(
aβ1 cosωT0 + bβ1 sinωT0 + cβ1e

a1(T00−T0)
)

s1 = a sin 2ψ̄0(T2)
(
as1 cosωT0 + bs1 sinωT0 + cβ1

2 ea1(T00−T0) + cs1e
a2(T00−T0)

)
,

(2.41)

where

aβ1 = a1a4

a2
1+ω2 , bβ1 = ωa4

a2
1+ω2 , cβ1 = −aβ1 cosωT00 − bβ1 sinωT00,

as1 = a3(a2aβ1
−ωbβ1

)+a5a2

a2
2+ω2 , bs1 = a3(ωaβ1

+a2bβ1
)+a5ω

a2
2+ω2 ,

cs1 = −as1 cosωT00 − bs1 sinωT00 − cβ1
2 .

(2.42)

We briefly pause to note that we have the freedom to add functions of T1 and T2 to cβ1 and

cs1 , but we will suppress these terms since they would be quickly killed by the exponentially

decaying factors. We also observe that judiciously fine tuning T00 can make either cβ1 = 0 or

cs1 = 0, thereby eliminating our choice of terms that decay exponentially with rates a1 or a2,

leaving us with only one decay rate in the first order terms.

Now that we have s1 and β1 given by (2.41), we can better approximate the tumbling

parameter λ(s, β) with

λ(seq + Des1, Deβ1) = λ0 + Deλ1 + O(De2), (2.43)

where

λ1 = 2a
3s2

eq
((1 + seq)β1 − s1)

= sin 2ψ̄0(T2)
(
2B1 cosωT0 + 2B2 sinωT0 + B3e

a1(T00−T0) + B4e
a2(T00−T0)

) (2.44)

where

B1 = a2

3s2
eq

((1 + seq)aβ1 − as1) ,

B2 = a2

3s2
eq

((1 + seq)bβ1 − bs1) ,

B3 = a2

3s2
eq

cβ1(2seq + 1), B4 = − 2a2

3s2
eq

cs1 .

(2.45)
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Thus, at second order, (2.7) simplifies to

∂ψ2

∂T0
= −∂ψ̃1

∂T1
− dψ̄0

dT2
+ 1

2 cosωT0

(−2λ0ψ1 sin 2ψ̄0 + λ1 cos 2ψ̄0

)

= −∂ψ̃1

∂T1
− dψ̄0

dT2

−λ0 cosωT0 sin 2ψ̄0(ψ̃1 + 1
2ω (1− λ0 cos 2ψ̄0)(sinωT0 − sinωT00))

+ sin 4ψ̄0

4

(
2B1 cos2 ωT0 + 2B2 sinωT0 cosωT0

+cos ωT0(B3e
a1(T00−T0) + B4e

a2(T00−T0))
)
.

(2.46)

Integrating with respect to T0, we find

ψ2 = (T0 − T00)
(
−dψ̄0

dT2
− ∂ψ̃1

∂T1
+ B1

4 sin 4ψ̄0

)
+ B1

8ω sin 4ψ̄0(sin 2ωT0 − sin 2ωT00)

−
(

B2
8ω sin 4ψ̄0 + λ0

8ω2 sin 2ψ̄0(1− λ0 cos 2ψ̄0)
)

(cos 2ωT0 − cos 2ωT00)

−λ0 sin 2ψ̄0

(
ψ̃1 + (1− λ0 cos 2ψ̄0) sin ωT00

2ω

)
sin ωT0−sin ωT00

ω + ψ̃2(T1, T2)

−B3 sin 4ψ̄0

4(a2
1+ω2)

(
(a1 cosωT0 − ω sinωT0)ea1(T00−T0) − (a1 cosωT00 − ω sinωT00)

)

−B4 sin 4ψ̄0

4(a2
2+ω2)

(
(a2 cosωT0 − ω sinωT0)ea2(T00−T0) − (a2 cosωT00 − ω sinωT00)

)
.

(2.47)

In order for ψ2 to be a bounded function of T0, we impose the solvability condition

dψ̄0

dT2
+

∂ψ̃1

∂T1
− B1

4
sin 4ψ̄0 = 0. (2.48)

Integrating with respect to T1, we have

ψ̃1(T1, T2) = −T1

(
dψ̄0

dT2
− B1

4
sin 4ψ̄0

)
+ ψ̄1(T2). (2.49)

In order for ψ̃1 to be bounded as a function of T1, we impose the solvability condition

dψ̄0

dT2
=

B1

4
sin 4ψ̄0 (2.50)

This equation is separable and can be integrated in closed form to get

ψ̄0(T2) = 1
2 tan−1(eB1T2 tan 2Ψ0) + π(sgn(Ψ0)−sgn(tan 2Ψ0))

4 , (2.51)

where the sgn(Ψ0)− sgn(tan 2Ψ0) term is included to allow 1
2 tan−1 to return values onto the

29



intervals (−π
2 ,−π

4 ) and (π
4 , π

2 ) when appropriate.

The slow-time effect of ψ̄0(T2) is term is the most important term, driving all the slow effects.

However, before we analyze those effects in the next section, we first continue the asymptotic

analysis, and since ψ0(T0, T1, T2) = ψ̄0(T2), we will drop the bar on ψ̄0(T2). Proceeding to the

second order balance for the order parameters, we find to be

∂β2

∂T0
= −a1β2 + 2N(2seq + 1)(β2

1 − 2s1β1)

+a cosωT0

(
2a4ψ1 cos 2ψ0 + 1

3(s1 − (2 + 3s+)β1) sin 2ψ0

)

= −a1β2 + a2 sin 2ψ0

(
f1 cos2 ωT0 + f2 sin2 ωT0 + f3 sinωT0 cosωT0

+ea1(T00−T0)(f4 cosωT0 + f5 sinωT0) + ea2(T00−T0)(f6 cosωT0 + f7 sinωT0)

+f8e
(a1+a2)(T00−T0)

)− aa4
ω cos 2ψ0(1− λ0 cos 2ψ0) cosωT0 sinωT0

+aa4 cos 2ψ0

(
(1− λ0 cos 2ψ0) sin ωT00

ω + 2ψ̄1

)
cosωT0,

(2.52)

where

f1 = N
3 (2seq + 1)(a2

β1
− 2as1aβ1) + 1

3(as1 − (2 + 3s+)aβ1),

f2 = N
3 (2seq + 1)(b2

β1
− 2bs1bβ1)

f3 = N
3 (2seq + 1)(2aβ1bβ1 − (as1bβ1 + aβ1bs1)) + 1

3(bs1 − (2 + 3seq)bβ1),

f4 = N
3 (2seq + 1)cβ1(aβ1 − 2as1)−

cβ1
6 (3 + 6seq),

f5 = N
3 (2seq + 1)cβ1(bβ1 − 2bs1), f6 = −2N

3 (2seq + 1)aβ1cs1 − 1
3cs1 ,

f7 = −2N
3 (2seq + 1)bβ1cs1 , f8 = −2N

3 (2seq + 1)cβ1cs1 .

(2.53)

We can solve (2.52) to get

β2 = a2 sin2 2ψ0

[
aβ2 + bβ2 cos 2ωT0 + cβ2 sin 2ωT0 + iβ2e

(a1+a2)(T00−T0)

+ea1(T00−T0)(dβ2 + eβ2 cosωT0 + fβ2 sinωT0)

+ea2(T00−T0)(gβ2 cosωT0 + hβ2 sinωT0)
]

+a cos 2ψ0(1− λ0 cos 2ψ0) [(jβ2 cos 2ωT0 + kβ2 sin 2ωT0 + lβ2 cosωT0

+mβ2 sinωT0 + pβ2e
a1(T00−T0)

]

+aψ̄1 cos 2ψ0(nβ2 cosωT0 + oβ2 sinωT0 + qβ2e
a1(T00−T0))

(2.54)
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where

aβ2 = f1+f2

2a1
, bβ2 = a1(f1−f2)−2ωf3

2(a2
1+4ω2)

, cβ2 = 2ω(f1−f2)+a1f3

2(a2
1+4ω2)

,

dβ2 = −aβ2 − bβ2 cos 2ωT00 − cβ2 sin 2ωT00 − (eβ2 + gβ2) cos ωT00

−(fβ2 + hβ2) sin ωT00 − iβ2 , eβ2 = −f5

ω , fβ2 = f4

ω ,

gβ2 = (a1−a2)f6−ωf7

(a1−a2)2+ω2 , hβ2 = (a1−a2)f7+ωf6

(a1−a2)2+ω2 , iβ2 = − f8

a2
,

jβ2 = − a4

a2
1+4ω2 , kβ2 = a1a4

2ω(a2
1+4ω2)

, lβ2 = − a1a4

a2
1+ω2

sin ωT00
ω ,

mβ2 = −a4 sin ωT00

a2
1+ω2 , nβ2 = 2a1a4 sin ωT00

a2
1+ω2 , oβ2 = 2a4ω sin ωT00

a2
1+ω2 ,

pβ2 = −jβ2 cos 2ωT00 − kβ2 sin 2ωT00 − lβ2 cosωT00 −mβ2 sinωT00,

qβ2 = −nβ2 cosωT00 − oβ2 sinωT00.

(2.55)

Similarly, we see that

∂s2
∂T0

= −a2s2 + a3β2 + N
3 ((1− 6seq)s2

1 + (4seq − 2)s1β1 − 2seqβ
2
1)

+a cosωT0

(
2a5ψ1 cos 2ψ0 + 1−3seq

3 (2s1 − β1) sin 2ψ0

)

= −a2s2 + a2 sin 2ψ0

(
g0 + g1 cos 2ωT0 + g2 sin 2ωT0 + g7e

(a1+a2)(T00−T0)+

ea1(T00−T0)g3(cosωT0 + g4 sinωT0) + ea2(T00−T0)(g5 cosωT0 + g6 sinωT0)

+g8e
2a1(T00−T0) + g9e

2a2(T00−T0) + g10e
a1(T00−T0)

)

+a cos 2ψ0(1− λ0 cos 2ψ0) (g11 cos 2ωT0 + g12 sin 2ωT0 + g13 cosωT0

+g14 sinωT0 + g15e
a1(T00−T0)

)

+aψ̄1 cos 2ψ0

(
g16 cosωT0 + g17 sinωT0 + g18e

a1(T00−T0)
)
,

(2.56)
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where

g0 = N
6 ((1− 6seq)(a2

s1
+ b2

s1
) + (4seq − 2)(as1aβ1 + bs1bβ1)− 2seq(a2

β1
+ b2

β1
))

+a3aβ2 + 1−3seq

6 (2(as1 + bs1)− aβ1 − bβ1), g12 = a3kβ2 − a5
2ω ,

g1 = N
6 ((1− 6seq)(a2

s1
− b2

s1
) + (4seq − 2)(as1aβ1 − bs1bβ1)− 2s+(a2

β1
− b2

β1
))

+a3bβ2 + 1−3seq

6 (2(as1 − bs1)− aβ1 + bβ1), g10 = a3dβ2 , g11 = a3jβ2 ,

g2 = a3cβ2 + N
3 ((1− 6seq)as1bβ1 + (2seq − 1)(as1bβ1 + aβ1bs1)− 2seqaβ1bβ1)

+1−3seq

6 (2bs1 − bβ1), g13 = a3lβ2 + a5 sin ωT00
ω , g14 = a3mβ2 ,

g3 = a3eβ2 + N
3 ((1− 6seq)as1cβ1 + (2seq − 1)(2as1 + aβ1)cβ1 − 4seqaβ1cβ1),

g4 = a3fβ2 + N
3 ((1− 6seq)bs1cβ1 + (2seq − 1)(2bs1 + bβ1)cβ1 − 4seqbβ1cβ1),

g5 = a3gβ2 + N
3 ((2− 12seq)cs1aβ1 + (4seq − 2)as1cs1) + 1−3seq

3 2cs1 ,

g6 = a3hβ2 + N
3 ((2− 12seq)cs1bβ1 + (4seq − 2)bs1cs1), g16 = a3nβ2 + 2a5,

g7 = a3iβ2 − N
3 (2seq + 1)cs1cβ1 , g8 = N

12(2seq − 7)c2
β1

,

g9 = N
3 (1− 6seq)c2

s1
, g15 = a3pβ2 , g17 = a3oβ2 , g18 = a3qβ2 ,

(2.57)

As before, we can solve (2.56) to get

s2 = a2 sin2 2ψ0 (as2 + bs2 cos 2ωT0 + cs2 sin 2ωT0

+ea1(T00−T0)(ds2 + es2 cosωT0 + fs2 sinωT0) + is2e
(a1+a2)(T00−T0)

+ea2(T00−T0)(ss2 + gs2 cosωT0 + hs2 sinωT0) + rs2e
2a2(T00−T0)

)

+a cos 2ψ0(1− λ0 cos 2ψ0) (js2 cos 2ωT0 + ks2 sin 2ωT0 + ls2 cosωT0

+ms2 sinωT0 + ps2e
a1(T00−T0) + ts2e

a2(T00−T0)
)

+aψ̄1 cos 2ψ0(nβ2 cosωT0 + oβ2 sinωT0 + qβ2e
a1(T00−T0) + us2e

a2(T00−T0))

(2.58)
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where

as2 = g0

a2
, bs2 = a2g1−2ωg2

a2
2+4ω2 , cs2 = 2ωg1+a2f2

a2
1+4ω2 , ds2 = − g10

a1−a2

es2 = − (a1−a2)g3+ωg4

(a1−a2)2+ω2 , fs2 = − (a1−a2)g4−ωg3

(a1−a2)2+ω2 , gs2 = −g6

ω , hs2 = g5

ω ,

is2 = − g7

a1
, js2 = a2g11−2g12ω

a2
2+4ω2 , ks2 = a2g12+2g12ω

a2
2+4ω2 , ls2 = a2g13−g14ω

a2
2+ω2 ,

ms2 = a2g14+g13ω
a2
2+ω2 , ns2 = a2g16−g17ω

a2
2+ω2 , os2 = a2g17+g16ω

a2
2+ω2 , ps2 = − g15

a1−a2
,

ss2 = −as2 − bs2 cos 2ωT00 − cs2 sin 2ωT00 − ds2 − es2 cosωT00 − fs2 sinωT00

−gs2 cosωT00 − hs2 sinωT00 − is2 − rs2 , qs2 = − g18

a1−a2
, rs2 = −g8+g9

a2
,

ts2 = −js2 cos 2ωT00 − ks2 sin 2ωT00 − ls2 cosωT00 −ms2 sinωT00 − ps2 ,

us2 = −ns2 cosωT00 − os2 sinωT00 − qs2 .

(2.59)

The second order term in the expansion of the tumbling parameter λ is

λ2 = 2a
3s3

eq

(
seq(1 + seq)β2 − seqs2 + s2

1 − (2 + seq)s1β1 + (1 + seq)β2
1

)
. (2.60)

In order to find ψ̄1(T2), the still unknown portion of ψ1, we now examine the third order

balance of the angle equation

∂ψ1

∂T2
+ ∂ψ2

∂T1
+ ∂ψ3

∂T0
= cosωT0

(
(2λ0ψ

2
1 − λ2) cos 2ψ0 + 2(λ1ψ1 + λ0ψ2) sin 2ψ0

)
, (2.61)

or

∂ψ3

∂T0
= −dψ̄1

dT2
− B1λ0

2 sin 2ψ0 sin 4ψ0
sin ωT0−sin ωT00

ω − ∂ψ̃2

∂T1

+cos ωT0

(
H1 + H2 cos 2ωT0 + H3 sin 2ωT0 + H13e

2a1(T00−T0)

+(H4 + H6ψ̄1) cosωT0 + (H5 + H7ψ̄1) sinωT0 + H14e
2a2(T00−T0)

+ea1(T00−T0)(H8 cosωT0 + H9 sinωT0 + H15 + H17ψ̄1)

+ea2(T00−T0)(H10 cosωT0 + H11 sinωT0 + H16 + H17ψ̄1)

+H12e
(a1+a2)(T00−T0) + H18ψ̄0e

a2(T00−T0) + H19ψ̄
2
1 + H20ψ̄1 + H21ψ̃2

)
,

(2.62)
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where the Hi are known functions of T2 through ψ0(T2):

H1 = λ0 sin 2ψ0

(
(1− λ0 cos 2ψ0)

(
λ0 cos 2ωT00−4B2ω

4ω2 sin 2ψ0 + λ0 sin2 2ωT00
ω

)

+ sin 4ψ0

2

(
B3(a1 cos ωT00−ω sin ωT00)

a2
1+ω2 + B4(a2 cos ωT00−ω sin ωT00)

a2
2+ω2

+B2 cos 2ωT00−B1 sin 2ωT00
2ω

))
+ cos 2ψ0

(
λ0(1+2 sin2 ωT00)

4ω2 (1− λ0 cos 2ψ0)2 − h1

)
,

H2 = sin2 2ψ0

(
2B2
ω cos 2ψ0(1− λ0 cos 2ψ0)−

λ0

(
B2
2ω cos 2ψ0 + λ0

4ω2 (1− λ0 cos 2ψ0)
))

+cos 2ψ0

(
λ0(1+2 sin2 ωT00)

4ω2 (1− λ0 cos 2ψ0)2 − h1

)
,

H3 = B1
2ω sin2 2ψ0

(
λ0
4 − 1 + λ0 cos 2ψ0)

)
− h3 cos 2ψ0,

H4 = 2B1 sin ωT00
ω sin2 2ψ0(1− λ0 cos 2ψ0)− h4 cos 2ψ0,

H5 = 2B2ω−λ2
0 sin 2ωT00

ω2 sin2 2ψ0(1− λ cos 2ψ0)

− cos 2ψ0

(
sin ωT00

2ω2 (1− λ0 cos 2ψ0)2 + h5

)
,

H6 = 4B1 sin2 2ψ0 − h6 cos 2ψ0,

H7 = 4B2ω−2λ2
0

ω sin2 2ψ0 −
(

λ0
ω (1− λ0 cos 2ψ0) + h7

)
cos 2ψ0,

H8 = − cos 2ψ0

(
h8 + B3λ0a1

a2
1+ω2 sin2 2ψ0

)
, H10 = − cos 2ψ0

(
h10 + B4λ0a2

a2
2+ω2 sin2 2ψ0

)
,

H9 = B3 sin2 2ψ0

ω

(
1 + λ0(1−ω2)

a2
1+ω2 cos 2ψ0

)
− h9 cos 2ψ0,

H11 = −h11 cos 2ψ0 − B4 sin2 2ψ0

ω

(
1 + λ0(1+ω2)

a2
2+ω2 cos 2ψ0

)

H12 = −h12 cos 2ψ0, H15 = B3λ0 sin 2ωT00
ω (1− λ0 cos 2ψ0) sin2 2ψ0 − h15 cos 2ψ0,

H13 = −h13 cos 2ψ0,

H14 = −h14 cos 2ψ0,

H16 = −h16 cos 2ψ0 + B4λ0 sin 2ωT00
ω (1− λ0 cos 2ψ0) sin2 2ψ0, H21 = 2λ0 sin 2ψ0

H17 = B3λ0
ω sin2 2ψ0 − h17 cos 2ψ0,

H18 = B4λ0
ω sin2 2ψ0 − h18 cos 2ψ0,

H19 = 2λ0 cos 2ψ0, H20 = 2λ0 sin ωT00
ω (1− λ0 cos 2ψ0) cos 2ψ0 + 2λ2

0 sin ωT00

ω sin2 ψ0,

(2.63)

where the hi are the appropriate coefficients from λ2. We can integrate with respect to T0 to
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get

ψ3 = (T0 − T00)
(
−dψ̄1

dT2
+ B1λ0

2ω sinωT00 sin 2ψ0 sin 4ψ0 − ∂ψ̃2

∂T1
+ H4+H6ψ̄1

2

)

+
(

B1λ0
2ω sin 2ψ0 sin 4ψ0 − H3

2

)
cos ωT0−cos ωT00

ω

+H2
6

sin 3ωT0−sin 3ωT00
ω − H3

6
cos 3ωT0−cos 3ωT00

ω + H4+H6ψ̄1

4
sin 2ωT0−sin 2ωT00

ω

+
(
H1 + H19ψ̄

2
1 + H20ψ̄1 + H21ψ̃2 + H2

2

)
sin ωT0−sin ωT00

ω

−H5+H7ψ̄1

4
cos 2ωT0−cos 2ωT00

ω

−ea1(T00−T0)
(

H8
2a1

+ a1H8+2ωH9

2(a2
1+4ω2)

cos 2ωT0 + a1H9−ωH8

2(a2
1+ω2)

sin 2ωT0

)
+ H8

2a1

−ea2(T00−T0)
(

H10
2a2

+ a2H10+2ωH11

2(a2
2+4ω2)

cos 2ωT0 + a2H11−ωH10

2(a2
2+4ω2)

sin 2ωT0

)
+ H10

2a2

+
(

a1H8+2ωH9

2(a2
1+4ω2)

+ a2H10+2ωH11

2(a2
2+4ω2)

)
cos 2ωT00

+
(

a1H9−ωH8

2(a2
1+4ω2)

+ a2H11−ωH10

2(a2
2+4ω2)

)
sin 2ωT00

−H12

(
e(a1+a2)(T00−T0) (a1+a2) cos ωT0−ω sin ωT00

(a1+a2)2+ω2 − (a1+a2) cos ωT00−ω sin ωT0

(a1+a2)2+ω2

)

−H13

(
e2a1(T00−T0) 2a1 cos ωT0−ω sin ωT00

4a2
1+ω2 − 2a1 cos ωT00−ω sin ωT0

4a2
1+ω2

)

−H14

(
e2a2(T00−T0) 2a2 cos ωT0−ω sin ωT00

4a2
2+ω2 − 2a2 cos ωT00−ω sin ωT0

4a2
2+ω2

)

−(H15 + H17ψ̄1)
(
ea1(T00−T0) a1 cos ωT0−ω sin ωT00

a2
1+ω2 − a1 cos ωT00−ω sin ωT0

a2
1+ω2

)

−(H16 + H18ψ̄1)
(
ea2(T00−T0) a2 cos ωT0−ω sin ωT00

a2
2+ω2 − a2 cos ωT00−ω sin ωT0

a2
2+ω2

)
.

(2.64)

In order for ψ3 to be bounded as a function of T0, we require as a solvability condition

∂ψ̃2

∂T1
= −dψ̄1

dT2
+

B1λ0 sinωT00

2ω
sin 2ψ0 sin 4ψ0 +

H4 + H6ψ̄1

2
(2.65)

so that

ψ̃2 = T1

(
−dψ̄1

dT2
+

B1λ0 sinωT00

2ω
sin 2ψ0 sin 4ψ0 +

H4 + H6ψ̄1

2

)
+ ψ̄2(T2). (2.66)

Thus, in order for ψ1 to remain bounded as a function of T1, we impose the solvability condition

dψ̄1

dT2
=

B1λ0 sinωT00

2ω
sin 2ψ0 sin 4ψ0 +

H4 + H6ψ̄1

2
(2.67)
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This can be expressed as

dψ̄1

dT2
= ψ̄1

(
2B1 sin2 2ψ0(T2) + 2a2

3s2
eq

cos2 2ψ0(T2)((1 + seq)nβ2 − ns2)
)

+sinωT00

[
(B1

ω sin2 2ψ0(T2)

+ 2a2

3s2
eq

cos2 2ψ0(T2)(1− λ0 cos 2ψ0(T2))×(
a1a4(1+seq)

ω(a2
1+ω2)

+ 1
a2
2+ω2

(
a3a4(ω−a2a3)

a2
1+ω2 + a2a3a5

ω

))]
.

(2.68)

The solution for ψ̄1(T2) can be expressed using hypergeometric functions; however, the impor-

tant thing to notice from this equation is that ψ̄1 is proportional to sinωT00. Therefore, if we

choose to start the clock at T00 = 0, then ψ̄1 ≡ 0. We will choose to do so for the remainder of

this dissertation.

2.4.4 Summary

We now summarize the results of our multiple timescale perturbation analysis taking into

account the choice of using T00 = 0 before comparing the asymptotics to a numerical solution

in the next section. First for the director angle, at zeroth order, we see exponential decay –

exponential, but driven by the slow time T2 – of the tangent of twice the director angle:

ψ0(T2) = 1
2 tan−1(eB1T2 tan 2Ψ0) + π(sgn(Ψ0)−sgn(tan 2Ψ0))

4 , (2.69)

for B1 = a2

3s2
eq

((1 + seq)aβ1 − as1). Using the two order parameter decay rates,

a1 = Nseq, a2 =
N

3

(
seq + 2− 6

N

)
, (2.70)

which are both positive, is it easy to see that B1 is negative by expressing it in the form

B1 = −a2(a1a2(3a1 + a2) + (a1 + 3a2)ω2)
2Ns2

eq(a2
1 + ω2)(a2

2 + ω2)
. (2.71)
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From (2.69), we observe that

sin 2ψ0 =




− eB1T2 tan 2Ψ0√

1+e2B1T2 tan2 2Ψ0

, if π
4 < |Ψ0| < π

2 ,

eB1T2 tan 2Ψ0√
1+e2B1T2 tan2 2Ψ0

, if |Ψ0| < π
4 ,

(2.72)

cos 2ψ0 =




− 1√

1+e2B1T2 tan2 2Ψ0

, if π
4 < |Ψ0| < π

2 ,

1√
1+e2B1T2 tan2 2Ψ0

, if |Ψ0| < π
4 ,

. (2.73)

From this, we note that sin2 2ψ0(T2) exhibits logistic decay with T2.

The first order term is rapid oscillation with a small and slowly varying amplitude

ψ1(T0, T2) = − 1
2ω

sinωT0 (1− λ0 cos 2ψ0(T2)) . (2.74)

Thus, to first order, we can write the angle as

ψ(T0, T2) =





−π
2 + 1

2 tan−1(eB1T2 tan 2Ψ0)

−De

(
1 + λ0√

1+e2B1T2 tan2 2Ψ0

)
sin ωT0

2ω , if −π
2 < Ψ0 < −π

4 ,

1
2 tan−1(eB1T2 tan 2Ψ0)

−De

(
1− λ0√

1+e2B1T2 tan2 2Ψ0

)
sin ωT0

2ω , if −π
4 < Ψ0 < π

4 ,

π
2 + 1

2 tan−1(eB1T2 tan 2Ψ0)

−De

(
1 + λ0√

1+e2B1T2 tan2 2Ψ0

)
sin ωT0

2ω , if π
4 < Ψ0 < π

2 .

(2.75)

For the order parameters, we find that to first order, they are

β1(T0, T2) = a sin 2ψ0(T2)
(
aβ1 cosωT0 + bβ1 sinωT0 − aβ1e

−a1T0
)

s1(T0, T2) = a sin 2ψ0(T2)
(
as1 cosωT0 + bs1 sinωT0 − aβ1

2 e−a1T0 + cs1e
−a2T0

)
,

(2.76)

where

aβ1 = a1a4

a2
1+ω2 , bβ1 = ωa4

a2
1+ω2 ,

as1 = a3(a2aβ1
−ωbβ1

)+a5a2

a2
2+ω2 , bs1 = a3(ωaβ1

+a2bβ1
)+a5ω

a2
2+ω2 , cs1 = −as1 + aβ1

2 .
(2.77)
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The second order terms are

β2 = a2 sin2 2ψ0

[
aβ2 + bβ2 cos 2ωT0 + cβ2 sin 2ωT0

+e−a1T0(dβ2 + eβ2 cosωT0 + fβ2 sinωT0)

+e−a2T0(gβ2 cosωT0 + hβ2 sinωT0) + iβ2e
−(a1+a2)T0

]

+a cos 2ψ0(1− λ0 cos 2ψ0)
(
jβ2 cos 2ωT0 + kβ2 sin 2ωT0 − jβ2e

−a1T0
)

s2 = a2 sin2 2ψ0

[
as2 + bs2 cos 2ωT0 + cs2 sin 2ωT0

+e−a1T0(ds2 + es2 cosωT0 + fs2 sinωT0)

+e−a2T0(ss2 + gs2 cosωT0 + hs2 sinωT0) + is2e
−(a1+a2)T0 + rs2e

−2a2T0

]

+a cos 2ψ0(1− λ0 cos 2ψ0)
(
js2 cos 2ωT0 + ks2 sin 2ωT0 + ps2e

−a1T0 + ts2e
−a2T0

)

(2.78)

where

aβ2 = f1+f2

2a1
, bβ2 = a1(f1−f2)−2ωf3

2(a2
1+4ω2)

, cβ2 = 2ω(f1−f2)+a1f3

2(a2
1+4ω2)

, eβ2 = −f5

ω ,

dβ2 = −aβ2 − bβ2 − eβ2 − gβ2 − iβ2 , fβ2 = f4

ω , gβ2 = (a1−a2)f6−ωf7

(a1−a2)2+ω2 ,

hβ2 = (a1−a2)f7+ωf6

(a1−a2)2+ω2 , iβ2 = − f8

a2
, jβ2 = − a4

a2
1+4ω2 , kβ2 = a1a4

2ω(a2
1+4ω2)

as2 = g0

a2
, bs2 = a2g1−2ωg2

a2
2+4ω2 , cs2 = 2ωg1+a2f2

a2
1+4ω2 , ds2 = − g10

a1−a2

es2 = − (a1−a2)g3+ωg4

(a1−a2)2+ω2 , fs2 = − (a1−a2)g4−ωg3

(a1−a2)2+ω2 , gs2 = −g6

ω , hs2 = g5

ω ,

is2 = − g7

a1
, js2 = a2g11−2g12ω

a2
2+4ω2 , ks2 = a2g12+2g12ω

a2
2+4ω2 , ps2 = − g15

a1−a2
,

rs2 = −g8+g9

a2
, ss2 = −as2 − bs2 − ds2 − es2 − gs2 − is2 − rs2 ,

ts2 = −js2 − ps2 .

(2.79)

where the fi and the gi are given by (2.53) and (2.57), respectively.

Also, we can fully describe the orientation tensor to first order as

Q = Q0(T2) + DeQ1(T0, T2) + O(De2), (2.80)
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which we can write as a linear combination of these three matrices

A0 =
1
6




1 0 0

0 1 0

0 0 −2




, (2.81)

A1(T2) =
1

2
√

1 + e2B1T2 tan2 2Ψ0




1 eB1T2 tan2 Ψ0 0

eB1T2 tan2 2Ψ0 −1 0

0 0 0




, (2.82)

A2(T2) =
1

2
√

1 + e2B1T2 tan2 2Ψ0




−eB1T2 tan2 Ψ0 1 0

1 eB1T2 tan2 2Ψ0 0

0 0 0




. (2.83)

In terms of this basis,

Q0(T2) =





seq(A0 −A1(T2), if π
4 < |Ψ0| < π

2 ,

seq(A0 + A1(T2)), if |Ψ0| < π
4 ,

(2.84)

and

Q1(T0, T2) =





s1(T0, T2)(A0 −A1(T2)) + β1(T0, T2)(A0 + A1(T2))

+seqψ1(T0, T2)A2(T2), if π
4 < |Ψ0| < π

2 ,

s1(T0, T2)(A0 + A1(T2)) + β1(T0, T2)(A0 −A1(T2))

−seqψ1(T0, T2)A2(T2), if |Ψ0| < π
4 ,

(2.85)

2.5 Analysis and comparison to numerical solution

2.5.1 Slow drift of the director angle

Our asymptotic model for the director angle (2.75) predicts rapid oscillation around a slowly

varying mean. This mean is simply ψ0(T2), and its drift towards either 0 or ±π
2 drives the

phenomena that we detail in the following sections.

The amplitude of the oscillation about ψ0 is small, and its envelope is also a function of T2.
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We can characterize the amplitude by defining the envelop of the oscillation with

ψ±(T2) = ψ
(
± π

2ω
, T2

)
. (2.86)

We note that ψ+ is often the bottom edge of the envelope. The asymptotic values of ψ± are

ψ∞± =





−π
4 ∓ De

2ω (1 + λ0) if −π
2 < Ψ0 < −π

4 ,

∓De
2ω (1− λ0) if |Ψ0| < π

4 ,

π
4 ∓ De

2ω (1 + λ0) if π
4 < Ψ0 < π

2 .

(2.87)

Figures 2.4 and 2.5 show ψ0(T2) and ψ±(T2) plotted on top numerical solutions for ψ for rod-

shaped nematics, and Figures 2.6 and 2.7 show the similar plots for disks. Figures 2.4 and 2.6

depict the response of rods (a = 0.8) and disks (a = −0.8) that tumble under steady shear

(|λ0| < 1) while Figures 2.5 and 2.7 show thinner rods (a = 0.9) and disks (a = −0.9) that

tumble under steady shear (|λ0| < 1).

It is interesting to compare this to the response to steady shear. In steady shear, the

dominant parameter in determining the nature of the response is the tumbling parameter λ0,

a material parameter that depends on the concentration N and molecular shape parameter a.

However, in oscillatory shear, the initial value of the director angle Ψ0 determines the longtime

asymptotic response. Compare Figures 2.4 and 2.5 with Figure 2.1. For the mean director

angle ψ0, there is no difference between rods and the disks with the reciprocal aspect ratio, or

in other words, ψ0 depends not on a but on |a|. When |Ψ0| < π
4 , the mean drifts towards zero,

but when π
4 < |Ψ0| < π

2 , the mean drifts towards ±π
2 . However, as illustrated in the comparison

of Figures 2.4 and 2.5 with Figures 2.6 and 2.7, there is a difference in the amplitude of the

oscillations between rods and disks. When |Ψ0| < π
4 , for rods, the amplitude slowly decreases

whereas for disks, the amplitude slowly increases. This behavior is reversed when π
4 < |Ψ0| < π

2 .

In this case, it is the disks that exhibit the slowly decreasing amplitude while the amplitude

slowly increases for rods.

For both rods and disks, there is a qualitative dependence on λ0 in oscillatory shear, but it is

much subtler than the steady shear. First consider |λ0| > 1 so that the steady shear alignment
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Figure 2.4: For rods, the oscillating numerical solution compared with our predicted predicted
mean ψ0 and envelope ψ± for the same parameters as Figure 2.3. These parameter values for
steady shear are in the tumbling regime.
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Figure 2.5: The oscillating numerical solution compared with our predicted predicted mean ψ0

and envelope ψ± for the same concentration and flow parameters as Figure 2.4, but for thinner
rods with a = 0.9 (or λ0 = 1.04). These parameter values are in the steady shear flow-aligning
regime.
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Figure 2.6: For disks, the oscillating numerical solution compared with our predicted predicted
mean ψ0 and envelope ψ± for a = −0.8. These parameter values for steady shear are in the
tumbling regime.
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Figure 2.7: The oscillating numerical solution compared with our predicted predicted mean ψ0

and envelope ψ± for the same concentration and flow parameters as Figure 2.6, but for flatter
disks with a = 0.9 (or λ0 = 1.04). These parameter values are in the steady shear flow-aligning
regime.
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angle ψL is defined. For rods, suppose

ψL < |Ψ0| < π

4
, (2.88)

(or for disks with λ0 < −1, when π
4 < |Ψ0| < −ψL). Thus ψ0(T2) starts at Ψ0 and begins to

slowly drift towards zero, and therefore, there is a moment when ψ0 passes through ±ψL. At

this moment, the envelope pinches with ψ+ = ψ− = ±ψL, as illustrated in Figure 2.8. The

close-up shows that our predicted envelope may slightly overestimate the value of the angle,

but the amplitude of the numerical solution is at its minimum near ψL, which is represented

by the horizontal dashed line. At this point, given the definition of ψL, 1 − λ0 cos 2ψL = 0,

and thus for a brief window of time, the first order term Deψ1 is actually smaller than the

second order term De2ψ2. If we simplify ψ2 from (2.47) by ignoring the term proportional to

(1− λ0 cos 2ψL), the exponential terms, and unknown term ψ̄2, to

ψ2 =
sin 4ψ0

4

(
B1

2ω
sin 2ωT0 − B2

2ω
cos 2ωT0 − B3a1

a2
1 + ω2

− B4a2

a2
2 + ω2

)
, (2.89)

and so near ψ0 = ψL, the first harmonics become suppressed in favor of the second harmonics.

The vertical dotted lines in Figure 2.8 have been add at the beginning of each period to highlight

this effect. Figure 2.9 shows the result of the addition of the second order term from (2.89)

compared to the numerical solution.

Additionally, it is interesting to note that initially, the angle oscillations are 180◦ out of phase

with the plates, that is, ψ decreases when the top plate is moving in the forward. However,

when the first harmonic terms return to dominance after ψ passes through ±ψL, ψ is now in

phase with the plates. This brief emergence of the second harmonics and the phase shift do

not occur for values of Ψ0 that do not satisfy (2.88) when |λ0| > 1, or for any value of Ψ0 when

|λ0| < 1.
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Figure 2.8: When |λ0| > 1, the predicted envelope edges cross if ψ passes through |ψL|. The
dashed line is ψL = 8.128◦ for λ0 = 1.04. [N = 6, a = 0.9, De = 0.1, ω = 1, Ψ0 = 35◦.]
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Figure 2.9: The addition of the second order term ψ2 given by (2.89) (the dark line) and the
numerical solution (the light line) for λ0 = 1.04. [N = 6, a = 0.9, De = 0.1, ω = 1, Ψ0 = 35◦.]

2.5.2 Frequency dependency of the slow decay rate

Although from (2.69), we see that tan 2ψ0 decays exponentially with the slow time T2 for all

frequencies, we observe that the decay rate

B1 = −a2(a1a2(3a1 + a2) + (a1 + 3a2)ω2)
2Ns2

eq(a2
1 + ω2)(a2

2 + ω2)
, (2.90)
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Figure 2.10: The decay rate B1 shows a strong dependence upon the frequency, being O(ω−2)
as ω →∞.

has a dependence on ω. Figure 2.10 shows a logarithmic plot of B1 as a function of ω. We

observe that B1 = O(ω−2) as ω → ∞. Thus, for higher frequencies, the slow drift in the

director angle is less observable, and so the effects outlined below are also less observable for

higher frequencies. This effect is often compounded by our choice to measure quantities in

terms of number of periods of oscillation, which for higher frequencies also gives a shorter time

for the director to drift compared to lower frequencies.

In the above analysis, we assumed that ω >> De, but since the middle time T1 = De t

did not appear in the analysis and since we see that B1 is relatively constant with respect to

small frequencies, we will now ease this restriction to ω >> De2. Additionally we observe good

agreement between our asymptotics and numerical solutions in this regime, and some of the

effects below are easier to observe for these smaller frequencies.

2.5.3 Order parameters

In general, the order parameters have roughly elliptical orbits in s-β phase space, but the

fluctuations of β from zero are very small indicating that the shear-induced biaxiality is a

weak effect. Figure 2.11 demonstrates the effect of the initial angle on the order parameters,

tracking numerical solutions in s-β space for twenty plate oscillations. The amplitude of the

order parameters starts large for |Ψ0| near π
4 and small for |Ψ0| near 0 or ±π

2 and then decays,
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Figure 2.12: The dependence of the director angle and the order parameters on Ψ0. [N = 6,
a = 0.8, De = 0.1, ω = 1]

as illustrated in Figure 2.12. Our first order asymptotic predictions of s and β from (2.76)

match these very well, and given that they are proportional to sin 2ψ0(T2), they predict the

dependence on Ψ0 shown in the numerical solutions, and also predict the slow decay in the

amplitude with T2, with the square of the amplitude decaying logistically from (2.72). These

decay effects are much less dramatic for rapid oscillations due to the effect in Section 2.5.2.
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2.5.4 Order parameter period halving

We observe an interesting phenomenon that is easier to see when ω ≈ De and Ψ0 is small.

Figure 2.13 shows snapshots of the order parameters for two periods of plate oscillation for the

first two periods, and periods 101 and 102, 501 and 502, and 1001 and 1002 with ω = De = 0.1

and Ψ0 = 5◦. Notice that the order parameter oscillations start out with the same period as

the plates and the director angle, but these oscillations are not exactly sinusoidal in nature.

However, after a hundred plate oscillations, as the amplitudes of the order parameter decreases,

the shape of the waveform changes. Then after five hundred plate oscillations, the decrease in

the amplitude of the oscillations stops with the order parameters finally decaying to a constant

amplitude oscillation at twice the frequency of the plates and the director angle. Since both

the numerical and our asymptotics are plotted in Figure 2.13, we find that this phenomenon

can be readily explained from the asymptotic forms.

From (2.76) and (2.78), if the terms that decay exponentially with the fast time T0 are

ignored, the order parameters to second order take the forms

s = seq + Dea sin 2ψ0 (as1 cosωT0 + bs1 sinωT0)

+De2a2 sin2 2ψ0

[
as2 + bs2 cos 2ωT0 + cs2 sin 2ωT0

]

+De2a cos 2ψ0(1− λ0 cos 2ψ0)
[
js2 cos 2ωT0 + ks2 sin 2ωT0

]

β = De a sin 2ψ0

[
aβ1 cosωT0 + bβ1 sinωT0

]

+De2a2 sin2 2ψ0

[
aβ2 + bβ2 cos 2ωT0 + cβ2 sin 2ωT0

]

+De2a cos 2ψ0(1− λ0 cos 2ψ0)
[
jβ2 cos 2ωT0 + kβ2 sin 2ωT0

]
.

(2.91)

Since the terms that oscillate at the frequency of the plates are O(De) they are initially the

dominant terms, but they are also proportional to sin 2ψ0, which decays with T2. In this

situation, they decay far enough so that the O(De2) proportional to cos 2ψ0(1 − λ0 cos 2ψ0),

which oscillate at twice the plate frequency, become the dominant terms. Thus, in the T2 →∞
limit, we have

s∞(T0) = seq + De2a(1− λ0)
[
js2 cos 2ωT0 + ks2 sin 2ωT0

]

β∞(T0) = De2a(1− λ0)
[
jβ2 cos 2ωT0 + kβ2 sin 2ωT0

]
.

(2.92)
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Figure 2.13: Snapshots of the order parameters strobed for two periods of plate oscillation
after 100, 500, and 1000 periods. Initially, the order parameters have the same period as the
plates and the director angle. However, over the course of the first 200 plate oscillations, the
order parameter oscillations slowly double in frequency, unlike ψ remains at the plate frequency.
[N = 6, a = 0.8, De = 0.1, ω = 0.1, Ψ0 = 5◦]

When ψ0 → ±π
2 , the 1− λ0 is replaced by −1− λ0.
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2.6 Rheological properties

Now that we have s, β, and ψ (and equivalently Q) to first order, we can construct the stress

tensor to first order. Given the monodomain restrictions, only the viscous stress τV is (1.26)

and the nematic elastic stresses τNE (1.28) are present. We will nondimensionalize the stress

here with τ = 3νkBT ≈ 105 Pa so that the stress tensor is now

τ = a
(
Q−N(M ·M−M : MM)

)
+ µ1 (D ·M + M ·D) + µ2D : MM + µ3D, (2.93)

where µ1 = 6Drζ1, µ2 = 6Drζ2, and µ3 = 8Drηs

νkBT + 6Drζ3. To order first order, τV is can be

computed using just seq and ψ0(T2), but nematic elastic stress, s1 and β1 arise:

τNE = De a
(
(a2s1 − a3β1)n̄1n̄1 + a1β1n̄2n̄2

)
, (2.94)

where n̄1 = (cosψ0, sinψ0, 0) and n̄2 = (− sinψ0, cosψ0, 0). Since from (2.76), s1 and β1 are

both proportional to sin 2ψ0(T2), when ψ0 is near 0 or ±π
2 , there are no elastic stresses in the

monodomain prediction at leading order. This was observed in Larson and Mead (1989a), but

now with our slow-time dependence of ψ0, we are able to say that in the system slowly migrates

to oscillation about one of these to elastic-stress free states.

We can also express the extra stress to order De using an integral as

τ =
∫ T0

0
G(T0 − T ′0)D(T ′0) dT ′0 (2.95)

where the relaxation modulus is

G(u)(·) = a2
(
(a1a4e

−a1u + a2(2a5 − a4)e−a2u) ((·) : n1n1)
(
n1n1 − I

3

)

−2a1a4e
−a1u((·) : n2n2)

(
n2n2 − I

3

))

+δ(u)
((

2
3µ1 + µ3

)
(·) + µ1s+ ((·) · n1n1 + n1n1 · (·))

+µ2s
2
+((·) : n1n1)n1n1

)
.

(2.96)

In the limit a = 1, if the viscous terms are dropped, then the e−a2u term is the same as the one

in (Larson and Mead, 1989a) restricted to the in-plane case, but our e−a1u terms are different
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due to the presence of the biaxial n2n2 term.

2.6.1 Shear stress and storage and loss moduli

In order to make a prediction of the storage modulus G′(ω) and the loss modulus G′′(ω), we

need to write the shear stress in the form of (1.45). To do this, we will first wait until the

transient terms that decay exponentially with the fast time T0 have become small enough to

ignore. The only T0-dependence that remains in the shear stress is a dependence upon either

cosωT0 or sinωT0. Therefore we will proceed by allowing the storage and loss moduli to not

only be a function of the plate frequency ω but also to retain a dependence on the slow time

T2.

To define the moduli from (1.45), we must first define a macroscopic shear strain in the form

of (1.43). Given our nondimensional monodomain velocity vx = De y cosωt, the appropriate

macroscopic shear strain is

γ =
De

ω
sinωt = γ0 sinωt. (2.97)

The viscous part of the shear stress is

τV is
xy (T0, T2) = De cosωT0

(µ1

6
(2 + seq) +

µ3

2
+

µ2

4
s2
eq sin2 2ψ0(T2)

)
. (2.98)

Notice that this is entirely out-of-phase with the strain (2.97) and hence can contribute only to

the loss modulus. The nematic elastic part however takes the form

τNE
xy (T0, T2) = De a sin 2ψ0(T2)

[
a2
2 s1(T0, T2)− a2+a1

4 β1(T0, T2)
]

= De a2 sin2 2ψ0(T2)
[
cosωT0

(
a2
2 as1 − a2+a1

4 aβ1

)

+sin ωT0

(
a2
2 bs1 − a2+a1

4 bβ1

)]
.

(2.99)

Since this has both sinωT0 and cos ωT0 terms, it also contributes to the loss modulus, and it

provides the only terms in the storage modulus, which we can now write as

G′(ω, T2) = C1(ω) sin2 2ψ0(T2) (2.100)
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where

C1(ω) = ω
(a2

2
bs1(ω)− a2 + a1

4
bβ1(ω)

)

=
a2(1− seq)

12
a2(a2

1 + a2
2(3 + 6seq))ω2 + (a1 + a2(3 + 6seq))ω4

(a2
1 + ω2)(a2

2 + ω2)
. (2.101)

The loss modulus is

G′′(ω, T2) = η̂ ω + C2(ω) sin2 2ψ0(T2), (2.102)

where

η̂ =
µ1(2 + seq)

6
+

µ3

2
(2.103)

C2(ω) =
µ2s

2
eq

4
ω + ω

(a2

2
as1(ω)− a2 + a1

4
aβ1(ω)

)

=
µ2s

2
eq

4
ω +

a2(1− seq)
12

a2
1a

2
2(4 + 6seq)ω + (a2

1 + (3 + 6seq)a2
2)ω

3

(a2
1 + ω2)(a2

2 + ω2)
. (2.104)

If the viscous terms are dropped (that is, the µi are set to zero), then in the limit a = 1 these

are the same as those given in (Larson and Mead, 1989a) with the exception of the dependence

on T2. The ω-dependence of the storage and loss moduli are depicted in Figure 2.14 after 10,

100, and 1000 plate oscillations. As T2 increases, the moduli slowly decay, an effect much more

apparent for low frequencies due the ω-dependence of B1 detailed in Section 2.5.2. Figure 2.15

shows the same information as Figure 2.14, but it highlights the effect of the differing values

of the initial angle Ψ0. When the initial angle Ψ0 is near ±π
2 , the storage modulus shows an

increase of approximately an order or magnitude over those with Ψ0 near 0 or π
2 . The loss

modulus also shows an increase near |Ψ0| = π
4 , but the effect is smaller, only on the order of

a factor of 2. Before the slow decay takes effect, we observe that asymptotically, the storage

modulus behaves as

G′(ω) ≈ a2(1−seq)(a2
1+a2

2(3+6seq))

12a2
1a2

e2B
(0)
1 De2t tan2 2Ψ0

1+e2B
(0)
1 De2t tan2 2Ψ0

ω2, as ω → 0,

G′(ω) ≈ a2(1−seq)(a1+a2(3+6seq))
12 sin2 2Ψ0, as ω →∞,

(2.105)
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[a = 0.9, N = 6, ζ(0) = 0.01]
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and Ψ0 = 10◦ highlighting the effect of the initial angle Ψ0. [a = 0.9, N = 6, ζ(0) = 0.01]

where B
(0)
1 = − a2(3a1+a2)

2N2s2
eqa2

1a2
2
. The loss modulus is

G′′(ω) ≈
[
η̂ +

(
µ2s2

eq

4 + a2(1−seq)(2+3seq)
6

)
e2B

(0)
1 De2t tan2 2Ψ0

1+e2B
(0)
1 De2t tan2 2Ψ0

]
ω, as ω → 0,

G′′(ω) ≈
[
η̂ + µ2s2

eq

4 sin2 2Ψ0

]
ω, as ω →∞.

(2.106)
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2.6.2 Comparison to experiments

From (2.72), the key factor in the long-time behavior of G′ and G′′ becomes explicit:

sin2 2ψ0(T2) =
e2B1T2 tan2 2Ψ0

1 + e2B1T2 tan2 2Ψ0
. (2.107)

We immediately deduce that the dynamic moduli G′ and G′′ obey a logistic long-time decay

law. Figure 2.16 illustrates this property for three different values of Ψ0.

The solid lines in Figure 2.16 represent starting the oscillatory shear with the initial angle

Ψ0 aligned with the steady shear flow-aligning angle ψL. In (Larson and Mead, 1989b; Mold-

enaers and Mewis, 1986), flow-aligning solutions of PBLG were subjected to a lengthy period

of steady shear to pre-align the molecules with ψL before the application of oscillatory shear

for a long period of time. While the initial conditions of our “theoretical experiment” differs

from the laboratory experiments slightly2, the predictions in Figure 2.16 are consistent with the

experimental data for G′′ and the scaled G′′ = G′′(t=∞)−G′′(t)
G′′(t=∞)−G′′(t=0) in spite of the claim in (Larson

and Mead, 1989b) that the monodomain theory cannot predict this decay. The decay of G′

is consistent with their experiments in that they do observe decay; however they observe two

effects that we do not. First, we predict that G′ decays to zero, whereas they observe it decaying

to a finite plateau greater than zero. Additionally, in some but not all of the experiments of

Larson and Mead (1989b), it was observed that G′ after a lengthy period of decay slowly began

to increase slightly, which is an effect that we do not predict.

In addition, it was experimentally observed that tc, the characteristic time required for the

dynamic moduli to complete one-third of their decay, was inversely proportional to the shear

rate of the pre-aligning shear. Since our set-up has no pre-aligning shear rate, we cannot speak

directly to this; however, we can compute the characteristic decay time for quiescent initial

data and find that tc = 1
2B1De2 ln 2

3+tan2 2Ψ0
.

2The initial conditions of our order parameters are at their zero-shear equilibrium values whereas if a steady
shear had been applied immediately prior to the oscillatory shear, the order parameters would be given by (2.35).
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2.6.3 First and second normal stress differences

The first normal stress difference is

N1 = τxx − τyy = De cos 2ψ0

(
µ2s2

eq

2 sin 2ψ0 cosωT0 + a
(
a2s1 − a1+a2

2 β1

))
, (2.108)

and it can be expressed using the shear stress notation from (2.101) and (2.104):

N1 = De sin 4ψ0

(
C2(ω)

ω cosωT0 + C1(ω)
ω sinωT0

)
, (2.109)

where the terms that decay exponentially with T0 have been ignored. The second normal stress

difference is

N2 = τyy − τzz

= De
[ (

µ1seq

2 + µ2s2
eq

2 sin2 ψ0

)
sin 2ψ0 cosωT0

+a
(

a2
2 s1 + 3a1−a2

4 β1 −
(

a2
2 s1 − a1+a2

4 β1

)
cos 2ψ0

) ]

= De sin 2ψ0 ((D1 + D2 cos 2ψ0) cos ωT0 + (D3 + D4 cos 2ψ0) sinωT0) .

(2.110)
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Figure 2.17: The first normal stress differences for oscillatory shear with Ψ0 = 15◦, Ψ0 = 35◦

and Ψ0 = 55◦. [N = 6, a = 0.8, De = 0.1, ω = 1]

where the terms that decay exponentially with T0 have been ignored and

D1 = µ1seq

2 + µ2s2
eq

4 + a2(a2
2 as1 + 3a1−a2

4 aβ1),

D2 = −C2(ω)
ω ,

D3 = a2
(

a2
2 bs1 + 3a1−a2

4 bβ1

)
,

D4 = −C1(ω)
ω .

(2.111)

The normal stress differences also show a slow time effect. As shown in Figure 2.17, the

first normal stress difference oscillates around zero, but the amplitude varies slowly. If Ψ0 is in

(−π
2 ,−3π

8 ), (−π
8 , π

8 ), or (3π
8 , π

2 ), then the amplitude slowly decreases, decaying to zero. However,

if Ψ0 is in either (−3π
8 ,−π

8 ) or (π
8 , 3π

8 ), then as ψ0(T2) drifts, the amplitude of N1 will slowly

increase until T2 = − 1
2B1

ln tan2 2Ψ0, when N1 reaches its maximum amplitude, and then it will

slowly decrease, eventually decaying to zero. The zeroes of the amplitude of N1 are when ψ0 is

0,±π
4 , or ±π

2 , and the maxima occur when (and if) ψ0 passes through ±π
8 or ±3π

8 .

The slow time effects are more apparent for the second normal stress difference, as depicted

in Figure 2.18. The amplitude of N2 can exhibit behavior qualitatively similar to N1 for some

values of Ψ0, However, the amplitude of N2 can have local extrema or other zeroes in between
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Figure 2.18: The second normal stress differences for oscillatory shear with Ψ0 = 15◦ Ψ0 = 35◦

and Ψ0 = 55◦. [N = 6, a = 0.8, De = 0.1, ω = 1]

the zeroes at 0 and ±π
2 , the location of which depend upon N , a, and ω. As T2 increases,

ψ0 can drive the amplitudes of N1 and N2 through these extrema or zeros. An additional

difference between N1 and N2 lies in their phase shifts relative to the plates. For N1, the phase

shift is tan−1 C1(ω)
C2(ω) and is independent of the initial angle. However for N2, the phase shift

is tan−1 D3+D4 cos 2ψ0(T2)
D1+D2 cos 2ψ0(T2) , and thus, N2 can experience a change in the phase shift during the

course of the experiment.
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2.7 Concluding remarks

2.7.1 An alternative derivation

The derivation in Section (2.4) can be seen from a different point of view as taking the prediction

ψLE = Ψ
(

De
sinωT0

ω
+ φ0

)
, (2.112)

but instead of using the constant φ0 of (2.69), we now allow it to be an unknown function of

T2. Once φ0(T2) is determined, the approximation

ψ(T0, T2) = Ψ(φ0(T2)) + DeΨ′(φ0(T2))
sinωT0

ω
+ O(De2) (2.113)

is the same as (2.75).

2.7.2 Other closure approximations

We now briefly address the robustness of these drift phenomena to closure approximation used

to approximate the fourth moment M4 as a function of M. The two other algebraic closures

addressed in (Forest and Wang, 2003) (those of Tsuji-Rey (Tsuji and Rey, 1997) and Hinch-Leal

1 (Hinch and Leal, 1976)) produce the same qualitative behavior as the Doi closure presented

here: the same two stress-free asymptotic states with the same basins of attraction, independent

of closure, and the long-time decrease of the dynamic moduli. The non-algebraic Hinch-Leal 2

closure yields similar behavior for sufficiently low nematic concentrations. However, at higher

concentrations it predicts different bi-stable asymptotic states where ψ0(T2) drifts toward ±π
4 ,

which are not elastic stress free, and it predicts a long-time increase in the dynamic moduli.

These modified properties appear to be a nonphysical closure artifact.

2.7.3 Conclusion

We have examined the mesoscopic monodomain in-plane Doi-Hess tensor model for a nematic

liquid crystal polymer subjected to an imposed small amplitude oscillatory shear flow. A

multiple timescale perturbation analysis predicts sensitivity in the director angle and storage

and loss moduli to initial value of the director angle Ψ0 that is experimentally relevant on long
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timescales. This analysis was motivated by a return to the classical papers of Moldenaers and

Mewis (Moldenaers and Mewis, 1986) and Larson and Mead (Larson and Mead, 1989a) on

linear viscoelasticity of nematic polymers, armed with current analytical understanding of the

role of orientational degeneracy of nematic equilibria in simple shear.

Specifically, we predict a slow drift dynamics of the major director of the orientational

distribution. The drift phenomenon is due to the coupling of the director to order parameter

fluctuations, and thus would not be observed in small molecule liquid crystals and the Leslie-

Ericksen model. The envelope and mean of the drift dynamics is explicitly characterized, which

predicts bistable longtime asymptotic orientational states, one with the major director along

the flow axis and the other along the flow-gradient axis. These states are distinguished in

that they are the minima of the purely elastic shear stress component, as noted in (Larson

and Mead, 1989a). Remarkably, the basins of attraction of the bistable longtime states do not

depend on material parameters (e.g., the Leslie tumbling parameter which determines tumbling

versus flow-alignment in simple steady shear); rather, the initial director orientation angle alone

determines the two drift dynamic routes and final states. These results are then converted

into predictions of the storage and loss moduli, which are predicted to obey a logistic long-

time decay law consistent with experimental observations of (Moldenaers and Mewis, 1986).

The bistable drift dynamics yield the same order of magnitude loss modulus, yet an order of

magnitude difference in storage modulus which is due solely to the initial director orientation

angle. Experiments which bias the initial director of the nematic sample, as with steady pre-

shear, would thereby not observe this sensitivity in storage modulus.

The monodomain predictions of linear viscoelastic properties in oscillatory shear are a pre-

cursor to structure-dependent properties of nematic polymers and rigid rod suspensions. The

present monodomain results predict the loss modulus dominates the storage modulus at essen-

tially all frequencies. On the other hand, defect-ridden nematic polymer suspensions have been

observed to obey the opposite extreme, with nearly solid-like linear viscoelastic response (Colby

et al., 2001).
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Chapter 3

One-dimensional heterogeneity in small amplitude

oscillatory flow

We now relax the monodomain restriction of the previous chapter and allow the orientation

tensor and the velocity to vary in the y direction. Oscillatory shear flows of small molecule

nematic liquid crystals have been studied by Burghardt (Burghardt, 1991) and de Andrade

Lima and Rey (de Andrade Lima and Rey, 2006) using Leslie-Ericksen theory under the single

Frank constant approximation. This includes spatial distortions in the director angle generated

by isotropic elasticity and flow feedback; here we extend their analysis to allow for excluded

volume effects, or variations in the degree of orientation, and unequal Frank elasticity constants

with the Marrucci-Greco potential (1.19). The present analysis also extends our results of Cui

et al. (Cui et al., 2006) on the importance of anisotropic elasticity in steady shear flows, from

the zero frequency limit to the full spectrum.

We formulate the flow-nematic equations and boundary conditions in such a way that the

same moduli predictions arise for oscillatory flow, stress, and pressure driving conditions, what

one might call “rheological equivalence between shear and Poiseuille flows.” The analysis is

tractable for both tangential and homeotropic anchoring, allowing for their explicit comparison,

which reveals strong variability of linear viscoelastic response to wall anchoring conditions.

Further studies on the anchoring dependence of storage and loss moduli will require numerical

simulations.

3.1 Dimensional analysis and boundary conditions

In this chapter, we consider oscillatory flow between parallel plates driven either by drag from

moving plates or by pressure gradients. To establish equivalence between shear flow and



Poiseuille flow for measuring and modeling of the storage and loss moduli, we find it useful

to consider slightly different geometrical setups for the two flows. The separation of the plates

is h for shear flow, but 2h for Poiseuille flow, as depicted in Figure 1.2. In each case, we nondi-

mensionalize the gap dimension y by h and choose y = 0 to correspond to the midpoint of the

gap. This choice, in essence, identifies the bottom half of a Poiseuille response with the full gap

of a shear response.

To make contact with scaling analysis of Burghardt, de Andrade Lima and Rey, and using

connections from the tensor model to the Leslie-Ericksen model from (Wang, 2002), we choose

as a characteristic stress the Frank stress

τF =
K

h2
=

νkTNL2s2
eq

8h2
, (3.1)

where K is the Frank constant. This is a measure of the stress caused by spatial gradients in

molecular orientation. We define a characteristic Leslie viscosity

η0 =
νkTs2

eq

Dr
, (3.2)

and then we define the characteristic timescale as

t0 =
η0

τF
=

8h2

NL2Dr
. (3.3)

The velocity scale is taken to be h
t0

.

We now identify two nondimensional parameters that arise in the flow-nematic equations

and boundary conditions. The Ericksen number Er is the ratio of the viscous stress to the

Frank stress, and the Deborah number De is the ratio of the characteristic shear rate to the

rotational diffusion rate. These numbers take different forms depending upon the type of flow

imposed, which we amplify next.

For shear flow, if we impose the boundary condition

τxy

(
y = ±1

2

)
= τ0 cosωt (3.4)
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on the stress, then we can use the characteristic viscosity to convert this into the effective shear

rate γ̇eff = τ0
η0

so that

Er =
τ0

τF
, De =

γ̇eff

Dr
. (3.5)

This definition of Er is consistent with the Leslie-Ericksen theory (Burghardt, 1991; de Andrade

Lima and Rey, 2006); however, since there is no molecular relaxation rate in LE theory, there

is no analogue of De.

For the velocity boundary condition

vx

(
y = ±1

2

)
= ±v0 cosωt, (3.6)

different definitions must be used. We can use the gap width h to define a shear rate γ̇0 = v0
h ,

and then we can use the characteristic viscosity to convert this to an effective viscous stress

τeff = γ̇0η0 in order to define

Er =
τeff

τF
, De =

γ̇0

Dr
. (3.7)

Thus for shear flow, the nondimensional boundary conditions are





τxy

(
y = ±1

2

)
= Er cosωt, for imposed stress,

vx

(
y = ±1

2

)
= ±Er cosωt, for imposed velocity.

(3.8)

For Poiseuille flow, we use the pressure gradient

∇p =
(( ∂p

∂x

)
0
cosωt, 0, 0

)
, (3.9)

where
( ∂p

∂x

)
0

is constant and negative, and then nondimensionalize so that

Er = − h
2τF

( ∂p
∂x

)
0
, De = − h

2η0Dr

( ∂p
∂x

)
0
, (3.10)
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and the nondimensional pressure gradient is

∇p = (2Er cosωt, 0, 0). (3.11)

For all flows, the above definitions satisfy

Er

De
=

8h2

NL2
. (3.12)

While the following equations reduce to Leslie-Ericksen-type behavior in the limit De → 0, we

observe that one drawback to this nondimensionalization is that the limit Er → ∞ does not

recover the monodomain equations.

Under this nondimensionalization, (1.22) becomes

∂
∂tM = Ω ·M−M ·Ω + a(D ·M + M ·D− 2D : M4)

−6Er
De [Q−N(M ·M−M : M4)] + ∆M ·M + M ·∆M− 2∆M : M4

+ θ
2 [(∇∇M)

...M4 + ((∇∇M)
...M4)T + M4

...∇∇M + (M4
...∇∇M)T

+M · (∇∇ : M4) + (∇∇ : M4) ·M− 4M6 :: ∇∇M− 2M4 : (∇∇ : M4)].

(3.13)

On the boundary, M is assumed to take the fixed uniaxial nematic equilibrium form

M
(
y = ±1

2

)
= seq

(
n0n0 − I

3

)
+ I

3
(3.14)

where n0 is an arbitrary unit vector in the x-y plane. (These are the boundary conditions for

shear flow. The only difference for Poiseuille flow is that they are applied at y = ±1.) In terms

of the spectral variables, the boundary conditions are

s(y = ±1
2) = seq, β(y = ±1

2) = 0, ψ(y = ±1
2) = ψ0 (3.15)

where ψ0 is an arbitrary constant director angle.
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The dimensionless parts of the stress tensor are

τV is = µ1(D ·M + M ·D) + µ2D : M4 + µ3D, (3.16)

τNE = 3a
s2
0

Er
De [Q−N(M ·M−M : M4)], (3.17)

τ IE = 1−a
2s2

0
M ·∆M− 1+a

2s2
0
∆M ·M + a

s2
0
∆M : M4

− 1
4s2

0
(Mkl,iMkl,j −M : ∇∇M),

(3.18)

τAE = θ[ a
2s2

0
(2M6 :: ∇∇M + M4 : (∇∇ : M4))

−1+a
4s2

0
(∇∇M

...M4 + (M4
...∇∇M)T + (∇∇ : M4) ·M)

+1−a
4s2

0
((∇∇M

...M4)T + M4
...∇∇M + M · (∇∇ : M4))],

(3.19)

where µ1 = 3ζ1Dr

s2
0

, µ2 = 3ζ2Dr

s2
0

, and µ3 = 2 ηs

η0
+ 3ζ3Dr

s2
0

.

The dimensionless linear momentum balance is

Re ∂v
∂t = ∇ · (−pI + τ ), (3.20)

where Re = ρh2

τF t20
defines a Reynolds number. For large molecule LCPs, t0 can be 103s or larger,

and so with ρ ≈ 103kg/m3, h ≈ 10−4m, and τF ≈ 0.1Pa, we estimate Re ≈ 10−10 so that we

can safely ignore the fluid inertia term. In our analysis below, the equations are still tractable

when inertia is included, but our solutions confirm the effect is negligible, and so we omit the

details.

Given the chosen boundary conditions (3.8) for shear and our pressure condition (3.11) for

Poiseuille flow, the appropriate asymptotic limit to examine the linear response is the small

Ericksen number limit. Therefore we propose the solution ansatz for the orientation tensor and

flow:

s = s0 +
∑∞

k=1 Erks(k)(y, t), β = 0 +
∑∞

k=1 Erkβ(k)(y, t),

ψ = ψ0 +
∑∞

k=1 Erkψ(k)(y, t), vx = 0 +
∑∞

k=1 Erkv
(k)
x (y, t).

(3.21)
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Equivalently, we can expand Q in powers of Er as Q = Q0 +
∑∞

k=1 ErkQ(k)(y, t) for which

Q(1) = s0ψ
(1)




− sin 2ψ0 cos 2ψ0 0

cos 2ψ0 sin 2ψ0 0

0 0 0




+ s(1)−β(1)

2




cos 2ψ0 sin 2ψ0 0

sin 2ψ0 − cos 2ψ0 0

0 0 0




+ s(1)+β(1)

6 I.

(3.22)

Additionally, we represent the stress by τ =
∑∞

k=1 Erkτ (k).

At O(Er), the nondimensionalized system (1.34)-(1.37) transforms to

∂s(1)

∂t = ( 2
N + θ(2(1+seq)

3N − 5+18seq

9N cos 2ψ0))∂2s(1)

∂y2

−2(1−seq)
3

(
2 + θ( seq(seq+5)

6 − 8+25seq+45s2
eq

18 cos 2ψ0)
)

∂2β(1)

∂y2

+sin 2ψ0

(
a

1+2seq−3s2
eq

3
∂v

(1)
x

∂y + θ
seq(1+seq)

N
∂2ψ(1)

∂y2

)
,

(3.23)

∂β(1)

∂t = − sin 2ψ0

(
a

1−seq

3
∂vx
∂y + θseq

N
∂2ψ(1)

∂y2

)
+ 4θ

9N cos 2ψ0
∂2s(1)

∂y2

+1−seq

27

(
18 + θ

2(4 + seq + (10− 7seq) cos 2ψ0)
) ∂2β(1)

∂y2 ,
(3.24)

∂ψ(1)

∂t = −1
2 (1− λL cos 2ψ0) ∂v

(1)
x

∂y + 2+seq

3

[
1 + θseq

2 (λL
a − cos 2ψ0)

]
∂2ψ(1)

∂y2

+ θλL
36a sin 2ψ0

(
(1 + 5seq)∂2s(1)

∂y2 + (1− 4seq)∂2β(1)

∂y2

)
,

(3.25)

0 =





∂τ
(1)
xy

∂y , for shear flow,

2 cosωt + ∂τ
(1)
xy

∂y , for Poiseuille flow,
(3.26)

τ
(1)
xy =

(
µ1(seq+2)

6 + µ2s2
eq

4 sin2 2ψ0 + µ3

2

)
∂v

(1)
x

∂y + 1
2

[
1− λL cos 2ψ0

+θ
(

(2+seq)(1+a)
6 − 3seq+(2+seq)λL

6 cos 2ψ0 − a(2N−3)
6N sin2 2ψ0

) ]
∂2ψ(1)

∂y2

− sin 2ψ0

[ (
a

2Ns2
eq
− θ

(
1+5seq

72seq
− a

(
1+seq

6Ns2
eq

+ Ns2
eq−18

48Ns2
eq

cos 2ψ0

))
∂2s(1)

∂y2

)

−
(

a(1−s2
eq)

6s2
eq

− θ
(

1−4seq

72s2
eq

+ a
(

s3
eq−3s2

eq+4

72s2
eq

− 3−5s2
eq+seq

24seq
cos 2ψ0

)))
∂2β(1)

∂y2

]
,

(3.27)

where λL = a(2+seq)
3seq

is the Leslie tumbling parameter (Forest and Wang, 2003).

3.2 Normal and tangential anchoring

At this point, we restrict to two special anchoring conditions, which identify both a dramatic

simplification of the new model equations (3.23)-(3.27) and a protocol that highlights the most
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transparent relationship between experimental data and linear viscoelastic moduli. If the an-

choring is either parallel to the flow direction (tangential anchoring, ψ0 = 0), or perpendicular

to the plates (normal or homeotropic anchoring, ψ0 = π
2 ), then as observed in (Larson and

Mead, 1989a), the nematic elastic stress of a monodomain, which comes only from being out

of equilibrium, is zero at leading order. Additionally, as observed in Chapter 2, a monodomain

under small amplitude oscillatory shear flow will asymptotically drift to oscillations around one

of these two orientations.

3.2.1 Decoupling of order parameters from director angle and velocity

These special anchoring conditions provide the significant modeling advantage that the system

of four equations (3.23)-(3.27) decouples into two systems of two equations, one for the order

parameters and another for the angle and velocity. The order parameter system is

∂s(1)

∂t = ( 2
N + θ(2(1+seq)

3N ∓ 5+18seq

9N ))∂2s(1)

∂y2

−2(1−s0)
3

(
2 + θ( seq(seq+5)

6 ∓ 8+25seq+45s2
eq

18 )
)

∂2β(1)

∂y2 ,

∂β(1)

∂t = ± 4θ
9N

∂2s(1)

∂y2 + 1−seq

27

(
18 + θ

2(4 + seq ± (10− 7seq))
) ∂2β(1)

∂y2 .

(3.28)

Since s(1) and β(1) are zero at the boundary of this linear system, we find that s(1)(y, t) ≡
β(1)(y, t) ≡ 0.

Therefore, near these two orientations, at leading order, the only elastic stresses are distor-

tional, and the leading order dynamics dominated by the director angle and velocity. Thus,

the leading order asymptotic description of the director angle and fluid velocity reduces to the

same basic form as those derived for normal anchoring with LE theory (Burghardt, 1991; de

Andrade Lima and Rey, 2006):

∂ψ(1)

∂t
= AΘ(θ)

∂2ψ(1)

∂y2
+ B

∂v
(1)
x

∂y
, (3.29)

0 =





∂τ
(1)
xy

∂y , for shear flow,

2 cosωt + ∂τ
(1)
xy

∂y , for Poiseuille flow,
(3.30)

τ (1)
xy = −BΘ(θ)

∂2ψ(1)

∂y2
+ C

∂v
(1)
x

∂y
, (3.31)
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where A = seq+2
3 , C = µ1(seq+2)

6 + µ3

2 ,

B =




−1−λL

2 , if ψ0 = 0,

−1+λL
2 , if ψ0 = π

2 ,
(3.32)

and where the anisotropy of the molecular elasticity is encoded by

Θ(θ) =





1 + θ
1−seq

3 , if ψ0 = 0,

1 + θ
1+2seq

3 , if ψ0 = π
2 .

(3.33)

Since θ ≥ −1, (AC + B2)Θ(θ) > 0, and as shown in (Cui et al., 2006), all steady solutions of

the system (3.29)-(3.31) are stable for both steady shear and steady Poiseuille flows.

3.2.2 Effect of anisotropic elasticity

We now observe one additional advantage of the normal and tangential anchoring conditions:

the anisotropic distortional elasticity may now be scaled out of the problem by rescaling the

characteristic stress as τF → ΘτF and the time as t0 → t0
Θ . From (3.1) and (3.3), this renor-

malization is equivalent to rescaling L2 by Θ and rescales the Ericksen number as Er → Er
Θ .

Notice that from (3.2), η0 is unaffected by this rescaling. Therefore, at these special anchor-

ing conditions, the effects due to anisotropic distortional elasticity can be absorbed into the

isotropic distortional elasticity by a simple scaling law. This simplification does not hold for

tilted anchoring. Since θ > 0 for rods and θ < 0 for disks, the anisotropic distortional elasticity

effectively increases the isotropic distortional elasticity for rods but decreases it for disks. In

both cases, the effect of normal anchoring is stronger than tangential. For the remainder of the

paper, we analyze the system (3.29)-(3.31) in the isotropic elastic limit θ = 0 so that Θ(θ) = 1.

We comment that the above analysis establishes the most efficient and transparent protocols

for the prediction of linear viscoelastic moduli of nematic polymers. The model parameters can

be fit for using these anchoring conditions, and then the full model can be studied numerically

to ascertain the linear response for tilted anchoring conditions.
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3.3 Linear viscoelasticity moduli for shear flow

We now establish the stress-strain relationship needed to define the storage and loss moduli for

shear flow. Along the way, we find that this relationship is independent of the choice to impose

stress or plate velocity boundary conditions, and indeed, the solutions for these two boundary

conditions are equivalent up to a rescaling and phase shift. Since the system (3.29)-(3.31) is

linear, and the driving conditions are sinusoidal in time, the standard analysis for determination

of the linear viscoelastic moduli is to suppress transients and seek a frequency-locked solution

of the form

ψ(1)(y, t) = ψ1(y) cos ωt + ψ2(y) sin ωt,

v
(1)
x (y, t) = v1(y) cosωt + v2(y) sinωt.

(3.34)

After substituting (3.34) into (3.29)-(3.31), we obtain the following general solution for the

resulting system of ordinary differential equations

ψ1(y) = C1 cosh ry cos ry + C2 sinh ry sin ry − B
Cω τ2,

ψ2(y) = C2 cosh ry cos ry − C1 sinh ry sin ry + B
Cω τ1,

(3.35)

v1(y) = −Br
C [(C1 − C2) cosh ry sin ry − (C1 + C2) sinh ry cos ry] + τ1

C y,

v2(y) = −Br
C [(C1 + C2) cosh ry sin ry + (C1 − C2) sinh ry cos ry] + τ2

C y,

(3.36)

where r =
√

Cω
2(AC+B2)

.

Although we have not yet applied boundary conditions to determine the constant coefficients

C1, C2, τ1, and τ2 in (3.35) and (3.36), we recognize that from (3.30) and (3.31), the frequency-

locked shear stress is independent of y and takes the form

τ (1)
xy = τ1 cosωt + τ2 sinωt. (3.37)
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For both imposed shear and imposed velocity, the director boundary conditions are

ψ1(±1
2) = 0, ψ2(±1

2) = 0. (3.38)

Applying these to (3.35) allows us to express C1 and C2 as functions of τ1 and τ2:

C1 = τ1
2B
Cω

sin r
2

sinh r
2

cosh r+cos r + τ2
2B
Cω

cos r
2

cosh r
2

cosh r+cos r ,

C2 = −τ1
2B
Cω

cos r
2

cosh r
2

cosh r+cos r + τ2
2B
Cω

sin r
2

sinh r
2

cosh r+cos r .

(3.39)

Thus, if we define the motion of the upper plate as

V = V1 cosωt + V2 sinωt, (3.40)

with Vi = vi(1
2) using (3.39) in (3.36), we establish a direct relationship between the components

of the shear stress and the components of velocity at the upper plate:

V1 = E2τ1 + E1τ2, V2 = −E1τ1 + E2τ2,

E1 = B2r
C2ω

sinh r−sin r
cosh r+cos r , E2 = 1

2C − B2r
C2ω

sinh r+sin r
cosh r+cos r .

(3.41)

Therefore, (3.37) and the macroscopic strain

γ = 2
ω (V1 sinωt− V2 cosωt) (3.42)

provide the stress-strain relationship that we need in order to identify the storage and loss
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moduli as, respectively,

G′(ω) = ω
2

τ2V1−τ1V2

V 2
1 +V 2

2
= ω

2
E1

E2
1+E2

2

= 2B2C2ω2r(sinh r−sin r)
(8B4r2+C2ω2)(cosh r+cos r)−16B4r2 cos r−4B2Crω(sin r+sinh r)

,

(3.43)

G′′(ω) = ω
2

τ1V1+τ2V2

V 2
1 +V 2

2
= ω

2
E2

E2
1+E2

2

= C2ω2(Cω(cosh r+cos r)−2B2r(sinh r+sin r))
(8B4r2+C2ω2)(cosh r+cos r)−16B4r2 cos r−4B2Crω(sin r+sinh r)

.

(3.44)

Thus we have predicted the storage and loss moduli independent of the choice to impose oscil-

latory stress or velocity on the plates. Figure 3.1 shows the effect of normal versus tangential

anchoring on the storage and loss moduli. There is no qualitative difference in the dynamic

moduli between the steady shear distinction of flow-aligning (λL > 1) and tumbling nematics

(λL < 1) regimes, a prediction that is consistent with the monodomain predictions of Chapter

2. We plot only the flow-aligning case with a = 0.9 (λL = 1.04). Given the scaling laws for

anisotropic elasticity in Section 3.2.2, the effect of θ on the moduli is also a simple scaling:

G(ω; θ) = Θ(θ)G( ω
Θ(θ) ; 0). (3.45)

For normal anchoring, (3.43)) and (3.44) predict similar behavior of G′ and G′′ with respect

to ω for nematic polymers as those found in (Burghardt, 1991; de Andrade Lima and Rey, 2006)

for heterogeneous liquid crystals with normal anchoring. We discuss this behavior now in order

to highlight the significant differences normal anchoring and tangential anchoring conditions,

which were not specified in (Burghardt, 1991; de Andrade Lima and Rey, 2006).

Except for a region of moderate frequencies, the loss modulus G′′(ω) exhibits nearly linear

behavior at high and low frequencies with a low frequency offset:

G′′(ω) =
(
C + B2

A

)
ω, as ω → 0,

G′′(ω) = C ω, as ω →∞.
(3.46)
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Figure 3.1: The effect of normal (solid lines) and tangential (dashed lines) anchoring on the
dynamic moduli in the isotropic elasticity limit, θ = 0.

The constant shift between the high and low frequency limit, B2

A = 3(1∓λL)2

4(s0+2) , is always positive.

However, we get an immediate insight into the difference between tangential and normal anchor-

ing and rods versus platelets: for rods (when λL ≈ 1) with normal anchoring, B2 = (1+λL)2

4 ≈ 1,

whereas for tangential anchoring, B2 = (1−λL)2

4 ≈ 0. Thus, normal anchoring exhibits an in-

creased loss modulus for low frequencies over tangential anchoring, but for high frequencies, the

two anchoring conditions yield approximately the same values. However, for platelets, λL ≈ −1

so that the effect of anchoring is reversed with tangential anchoring showing a low frequency

increase over normal anchoring.

For the storage modulus, we also find different asymptotic regimes for high and low fre-

quencies, but they have distinct scaling behaviors:

G′(ω) = B2

12A2 ω2, as ω → 0,

G′(ω) = B2
√

2C
AC+B2

√
ω, as ω →∞.

(3.47)

For reasons similar to the loss modulus behavior at low frequencies, the overall factor of B2
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is the dominant feature in both regimes, accounting for the two to three orders of magnitude

difference in G′(ω) between normal and tangential anchoring shown in Figure 3.1.

3.4 Comparison to monodomains

Now we turn our attention to how these moduli predictions of heterogeneous polymers differ

from those of a monodomain in shear flow. Since the nondimensionalization employed in this

chapter was not designed to recover the monodomain equations analyzed in Chapter 2 in any

particular asymptotic limit, some caution should be made in a direct comparison of the present

results with those of Chapters 2. Nevertheless, each model provides a prediction of the storage

and loss moduli, and so some degree of comparison is possible.

For the nondimensionalization and asymptotic analysis used in this chapter, the mon-

odomain solution ansatz for (3.23)-(3.27), i.e., s(1), β(1), and ψ(1) are functions of t only and

∂v
(1)
x

∂y = cosωt, yields different predictions than that used in Chapter 2. Specifically, in this case

the shear stress has no elastic component and is given by

τ
(1)
xy,monodomain =

(
µ1(s0+2)

6 + µ2s2
0

4 sin2 2ψ0 + µ3

2

)
cosωt. (3.48)

Thus, under this nondimensionalization, G′(ω) = 0 and G′′(ω) = (C + µ2s2
0

4 sin2 2ψ0)ω. Both

this monodomain prediction and that from Chapter 2, the two special anchoring conditions in

our present discussion restrict to the same prediction. When ψ0 = 0 or π
2 ,

G′(ω) = 0, G′′(ω) = Cω. (3.49)

Note that η̂ from (2.103) is equal to C in terms of the dependence on the nondimensional

parameters µ1 and µ3, but the definitions of these nondimensional parameters are different

in each chapter. The main advantage of the different approaches of the two chapters is the

comparison of the effect of the nematic elastic stresses generated by a monodomain with a tilted

angle in Chapter 2 with the effect of heterogeneity, which the present chapter has elucidated

when the effects of tilted anchoring are suppressed.

The major qualitative difference between the nematic elastic stress from a tilted mon-
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odomain and the isotropic elastic stress from a heterogeneous sample with normal or tangential

anchoring lies in the scaling law for G′(ω) for high frequencies. From (2.106), G′(ω) = O(1) as

ω →∞ in contrast to the scaling G′(ω) = O(
√

ω) found in (3.47).

3.5 Equivalence of flows

Now we examine the equivalence between imposed velocity and imposed stress boundary con-

ditions in further detail. In this section, the subscript τ represents the coefficients for imposed

stress boundary conditions, and the subscript v indicates imposed velocity boundary conditions.

If the stress is imposed, then we have

τ1,τ = 1, τ2,τ = 0, (3.50)

and so from (3.41),

V1,τ = E2, V2,τ = −E1,

C1,τ = 2B
Cω

sin r
2

sinh r
2

cosh r+cos r , C2,τ = − 2B
Cω

cos r
2

cosh r
2

cosh r+cos r .

(3.51)

However for imposed velocity, the boundary conditions are

V1,v = 1, V2,v = 0, (3.52)

and so

τ1,v = 2G′′
ω = E2

E2
1+E2

2
, τ2,v = 2G′

ω = E1

E2
1+E2

2
,

C1,v = C1,ττ1,v − C2,ττ2,v, C2,v = C2,ττ1,v + C1,ττ2,v.

(3.53)

It can be shown that within the gap, the solutions from these two boundary conditions differ

only by a rescaling and a phase shift of χ = − tan−1 E1
E2

:

ψ
(1)
τ (y, t) =

√
E2

1 + E2
2 ψ

(1)
v

(
y, t− χ

ω

)
, v

(1)
x,τ (y, t) =

√
E2

1 + E2
2 v

(1)
x,v

(
y, t− χ

ω

)
. (3.54)
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Figure 3.2: The in-phase V1 and out-of-phase V2 response of the upper plate velocity to imposed
stress for tangential (dashed lines) and normal (solid lines) anchoring.

For imposed stress, the velocity components of the upper plate are shown in Figure 3.2.

For tangential anchoring, there is no observable frequency dependence. For normal anchoring

under high frequencies, the plate motion is the same as for tangential anchoring. However, for

moderate frequencies, there is a significant out-of-phase response, and for lower frequencies,

there is a significant decrease in the velocity compared to tangential anchoring, as indicated by

the presence of the B2 term the low-frequency limit compared to the high-frequency limit:

lim
ω→0

V1 = A
2(AC+B2)

, lim
ω→∞V1 = 1

2C . (3.55)

To help us compare the macroscopic response of the velocity and the director angle with

the imposed stress τ
(1)
xy = cosωt, we write the plate velocity as

V = V0 cos(ωt− δ), (3.56)

where tan δ = G′′
G′ is the loss tangent, and we define

Ψ = ψ(1)(0, t) = Ψ0 cos(ωt− φ) (3.57)

to be the director angle at the midpoint between the plates. Figure 3.3 shows plots of phase
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angles δ and φ, and the amplitudes V0 and Ψ0 as functions of ω. For normal anchoring at

high and low frequencies and at tangential anchoring for all frequencies, the velocity is always

out of phase with the stress by π
2 . However, for normal anchoring with moderate frequencies,

the plates are closer to in-phase with the stress. The angle is in-phase with the stress for low

frequencies, but for larger frequencies it is in-phase with the plates. This transition occurs

at a lower frequency for tangential anchoring than normal. The amplitude of the angle is

constant for low frequencies, but is O(ω−1) for high frequencies and much larger for normal

than tangential anchoring.

3.5.1 Poiseuille Flows

Now we turn our attention to the linear viscoelasticity generated by an imposed small amplitude

oscillatory Poiseuille flow. Again, we seek solutions to (3.29)-(3.31) of the form (3.34) and find
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that

ψ1(y) = D1 cosh ry sin ry + D2 sinh ry cos ry,

ψ2(y) = −D2 cosh ry sin ry + D1 sinh ry cos ry − 2B
Cωy,

v1(y) = Br
C [(D1 + D2) cosh ry cos ry + (D1 −D2) sinh ry sin ry] + D3 − y2

C ,

v2(y) = Br
C [(D1 −D2) cosh ry cos ry − (D1 + D2) sinh ry sin ry] + D4

(3.58)

where r is the same as for oscillatory shear. Applying the boundary conditions

ψ1(±1) = ψ2(±1) = v1(±1) = v2(±1) = 0 (3.59)

determines that

D1 = 4B cos r sinh r
Cω(cosh 2r−cos 2r) , D2 = − 4B sin r cosh r

Cω(cosh 2r−cos 2r) ,

D3 = 1
C − 2B2r(sinh 2r−sin 2r)

C2ω(cosh 2r−cos 2r)
, D4 = −2B2r(sinh 2r+sin 2r)

C2ω(cosh 2r−cos 2r)
.

(3.60)

At the middle of the gap where the fluid undergoes its maximum displacement, we define

the components of the macroscopic fluid velocity as

V1 = v1(0) = Br
C (D1 + D2) + D3 = 2E2,

V2 = v2(0) = Br
C (D1 −D2) + D4 = −2E1,

(3.61)

where E1 and E2 are the same quantities defined in (3.41) for shear flow. Thus, the motion of

the midline of the fluid relative to the bottom plate in Poiseuille flow is the same as the motion

of the top plate in shear flow with imposed stress of relative to the bottom plate.

The stress components are simply τ1 = −2y and τ2 = 0, and if we use the average stress

τ̄ (1)
xy =

∫ 0

−1
τ1 cosωt + τ2 sinωt dy = cosωt (3.62)
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to compute the storage and loss moduli relative to the macroscopic strain rate

γ =
1
ω

(V1 sinωt− V2 cosωt), (3.63)

we find that G′(ω) and G′′(ω) give exactly the same formulas as those for oscillatory shear

given by (2.102) and (2.100). Thus in a macroscopic sense, the bottom half of the channel in

Poiseuille flow can be seen as oscillatory “plate” of fluid moving against a fixed bottom plate,

“rheologically equivalent” to a shear flow.

3.5.2 Heterogeneity of shear and Poiseuille flows

We have carefully scaled the Poiseuille flow experiment so that from a macroscopic perspective,

it can be seen as a fluid trapped between two plates separated by the same distance, moving

at the same relative velocity, and having the same average stress across the gap as the shear

flow experiment with imposed stress boundary conditions. Furthermore, since ψ(1) is an odd

function of y in Poiseuille flow, we effectively have the same anchoring conditions at the virtual

plate top plate as the physical plate in shear flow. We now look closer and examine the interior

of the responses where we find both similarities and differences.

First, the plate frequency induces a new length scale 1
r which defines a “boundary layer”

near the plates with thickness proportional to 1√
ω
. However, since the thickness of the boundary

layer increases as the frequency decreases, if ω < 8(A + B2

C ), then in shear flow the boundary

layers are thick enough that they collide, filling the entire gap. It is different for Poiseuille flow

since the boundary layer is present at the physical plate but not at the virtual plate.

In Figure 3.4, we plot the velocity profiles of the two flows for normal anchoring. To plot

them on the same coordinate axes, we have shifted the shear flow so that the lower plate

coincides with that of Poiseuille flow. While the Poiseuille flow is faster in both the in-phase

and out-of-phase components, the out-of-phase components of both flows are only significant

for moderate frequencies. For tangential anchoring, the velocity profiles have no significant

dependence on ω.

In Figure 3.5, we plot ψ∗i (y) = ψi(y)
Ψ0

, which are the director angle profiles for both shear

and Poiseuille flows scaled by Ψ0 from Figure 3.3, the magnitude of ψ(1) halfway between the
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Figure 3.5: The scaled in-phase ψ∗1 (solid line) and out-of-phase ψ∗2 (dashed line) director angles
for normal anchoring.

plates for shear flow. Both flows have a similar dependence on the frequency in that for low

frequencies, ψ1 is dominant, with ψ2 being insignificant, but as ω increases, ψ2 increases and

eventually surpasses ψ1 in dominance, although ψ2 is O(ω−1) as ω →∞. For low frequencies,

the profiles of the two flows are quite similar in shape, but as the frequency increases, the

profiles become less similar.

3.6 Conclusion

We have examined small amplitude oscillatory shear and Poiseuille flows of nematic polymers,

using a Doi-Hess-Marrucci-Greco mesoscopic tensor model, incorporating heterogeneity and

highlighting the effects of normal versus tangential anchoring at the plates. At these two special

anchoring conditions, the nematic polymer response simplifies dramatically, and we recover

77



Leslie-Ericksen-type dynamics for the velocity and the major axis of the orientation tensor

(the primary director). The order parameters are then driven by the flow-director response

functions. Furthermore, at these two anchoring conditions, the effects of anisotropic molecular

elasticity to be absorbed into the one-constant Frank elastic potential by a simple rescaling.

Through a judicious nondimensionalization, we show rheological equivalence between shear

flow with both imposed stress or velocity boundary conditions and Poiseuille flow; both ex-

periments yield the same storage and loss moduli when anchoring conditions at the plates are

identical (either tangential or homoetropic). An important physical prediction is the strong de-

pendence of the storage and loss moduli on plate anchoring conditions of the nematic director,

with two-to-three orders of magnitude in the storage modulus between normal and tangential

anchoring. A deeper investigation into the effect of plate anchoring conditions is warranted,

which will require numerical simulations.
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