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ABSTRACT

Christian Elizabeth Douglas: Statistical Methods for Assessing the Effect of Mortality
on Rates of Change and Variability in a Longitudinal Study of the Elderly

(Under the direction of Lloyd Edwards)

Despite the benefits of longitudinal analysis for describing the aging process, it is

not absent of complications. Failing to account for nonrandom attrition and other

mechanisms that affect the ability to acquire follow-up measurements may result

in estimates on a relatively healthy or advantaged sample in terms of health and

economic means. In modeling the process of aging in older adults, handling of attrition

requires careful attention, since attrition can affect the interpretation of the conclusions.

Longitudinal studies of older adults are particularly sensitive to the truncation due to

death, which is usually the largest category of nonresponse in studies of older adults.

We examine the effect of death on rates of change and variability on a well-established

data set of older adults leaving in the community. Our assessment utilizes models

proposed to analyze data with outcomes truncated due to death.

Using proposed methods, we analyzed an imputed NC EPESE dataset allowing only

truncation due to death. Simulations were completed to evaluate the models ability

to estimate the rates of change under varying burdens of death. Additionally, the use

of these methods in presence of non-participation and death was examined using the

original NC EPESE. Allowing the missing mechanisms to depend on the outcomes of

interest, simulations were conducted to describe the methods behavior in estimating

rates of change for non-missing completely at random data. Finally, an assessment of
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the variability about the parameter estimates was completed.

Sample size and missing completely at random burdens of death were not extremely

impactful on the models ability to estimate the rates of change. However, this was not

true for not missing at random data for estimates of rates of change or variability.
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CHAPTER 1: LITERATURE REVIEW

1.1 Introduction

Any research with aims to understand and describe the processes and mechanisms

of change over a span of time must not only collect longitudinal data but must make use

of some sort of longitudinal analysis strategy. Unlike cross-sectional studies that collect

data at a single moment in time on each individual in a sample, longitudinal designs

attempt to measure the same set of variables on a single cohort following a specified

data-measuring schedule. Compared to cross-sectional analyses, longitudinal analyses

can be more efficient, more robust to model selection, and have increased statistical

power (Edwards, 2000). Although longitudinal analysis has its advantages over cross-

sectional designs, it comes with a set of disadvantages that includes time constraints,

lack of statistical methods, and dropout. Because of the potential for selection bias and

its effects on external and internal validity, Norris (1985) and Markides et al. (1982)

suggest that attrition could be the greatest threat to the analysis of longitudinal data.

Within the realms of gerontological research, specifically the study of aging and

human development, longitudinal data analysis has proven to be the most productive

approach (Alwin and Campbell, 2001). The shift in the focus of aging research

from age associations (study of older adults) to the process of aging along with the

advancement in longitudinal analytical methods and availability of computing tools

has made longitudinal analysis more feasible. To emphasize further, there is an

indisputable difference, especially in the older highly heterogeneous adult population,
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between comparing cognitive function of 70-year-olds and 75-year-olds (cross-sectional

analysis) and the change in cognitive function as a person ages from 70 to 75

(longitudinal analysis). Ferraro and Kelley-Moore (2003) revealed that the cross-

sectional methodology was utilized as the main source of data analysis published in

an aging journal, even though the studies acquired their data longitudinally. Yet,

when studying a process such as aging or an outcome correlated with aging, subjects’

temporal issues must be carefully collected and analyzed by methods that allow

modeling of correlations and temporal changes.

Despite the benefits of longitudinal analysis for describing the aging process,

longitudinal analysis is not absent of complications. Longitudinal data collection

faces retention challenges that may lead to a type of selection bias known as attrition

bias (Diggle and Kenward, 1994; Elias and Robbins, 1991; Little, 1995; Mcardle and

Hamagami, 1992). Failing to account for nonrandom attrition and other mechanisms

that affect the ability to acquire follow-up measurements may result in estimates on a

relatively healthy or advantaged sample in terms of health and economic means. Miller

and Wright (1995) explained that attrition can lead to bias in two ways–by altering

the sample from the original intended sample and by affecting the covariance. In

modeling the process of aging in older adults, the handling of attrition requires careful

attention because attrition can affect the interpretation of the inference (Norris, 1985).

Longitudinal studies of older adults are particularly sensitive to truncation due to

death, which is usually the largest category of non-response in studies of older adults

(Markides et al., 1982; Schaie, 1996; Rhodes, 2005).

Longitudinal studies of geriatric health outcomes with truncation due to death will

most likely be biased if survival status is not taken into account. When investigators are

interested in estimating the trajectory of an outcome that is not mortality but is highly

predictive of death, not considering survival status could lead to incorrect inferences on
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a majority healthy and alive sample. This has been appropriately termed the “healthy

survivor” effect by Murphy et al. (2011). To avoid bias and misleading inferences about

the change in a longitudinal outcome, the joint distribution of the longitudinal outcome

and survival should be modeled.

Missingness due to non-response is different from censoring due to death, for those

that die during a study will not have future responses (Dufouil et al., 2004). In

these cases, methods such as imputation are not appropriate. Unfortunately, very

few statistical methods exist for death that occurs during follow-up compared to

those methods to accommodate missingness in follow-up due to non-response. The

most recent literature on truncation due to death is focused on principal stratification

(Frangakis and Rubin, 2002; Frangakis et al., 2007). Most recently, Kurland et al.

(2009) proposed methods for analyzing longitudinal outcomes truncated by death,

with an emphasis on matching the research question to the method and interpretation

of the results. Absent from their evaluation of these models were discussions on

bias, estimation, and efficiency of the methods. However, estimation and bias were

examined by Kurland and Heagerty (2005) in some detail for the partly conditional

model, which is also referred to as the regression conditioned on being alive (RCA)

model. Understanding how bias can be introduced and correctly estimating uncertainty

(standard errors) and the efficiency limits of the proposed regression models are

important issues for longitudinal data analysis. This refined perspective provides a

more thorough literature on regression models used to analyze missing outcomes due

to death.

In the following subsection, notation for the general linear, general linear mixed, and

generalized linear regression models are provided. These are all popular models used

to analyze longitudinal data. Section 1.3 provides the background and study design

for the data used to assess and compare the models in the present study. Section 1.4
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introduces notation for repeated measures with missingness and discusses the nature

of missing data assumptions in longitudinal analysis. Section 1.5 explores models that

incorporate death in the mean model, and Section 1.6 offers a review of the literature.

1.2 Repeated Measures Models

This dissertation utilizes three different regression models: general linear model,

general linear mixed model, and generalized linear model for longitudinal data. For

each model let yi = (yi1, yi2, . . . , yipi)
′, i = 1, 2, . . . , N denote an pi × 1 vector of

the responses for the ith subject that are independent and are assumed to be from

a distribution belonging to the class of the exponential family distributions. Let Xi

denote a pi × q known design matrix of for the ith subject. Finally, let β be a q × 1

vector of unknown population parameters. The notation for the general linear model

for repeated measures data is given as

yi = Xiβ + εi, (1.1)

where εi is an pi × 1 vector of random variables with mean 0(pi×1) and variance

Σεi = var(yi) = Vi, an pi × pi matrix with elements of the form var(εit) = σYi,tt

and cov(εis, εit) = σyi,st such that s 6= t.

Whereas the general linear model is useful when estimating the population-average

estimates for continuous outcomes, the general linear mixed model, detailed by Laird

and Ware (1982), can be used to estimate subject-specific means for repeated continuous

measures and is viewed as a special case of the general linear model. The notation is

as follows:

yi = Xiβ +Zidi + ei, (1.2)

with
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yi is the pi × 1 vector of outcome responses for the ith unit,

Xi is the pi × q known design matrix for the fixed effects for subject i,

β is the q × 1 vector of unknown fixed effects parameters,

Zi is the pi ×m design matrix for the (m× 1) random effects, di,

di is the subject–specific unknown parameters,

D is the m×m covariance matrix of the (m× 1) random effects, di

(mutually independent),

Σei is the pi × pi covariance matrix for the random errors, ei

(mutually independent).

In this model, the random effects, di, and the random errors, ei, are assumed to

be independent for all i = 1, . . . , N . For the purpose of estimation we assume that

di ∼ N(0,D) and ei ∼ N(0, σ2Ii), so that the var(yi) = Vi = ZiDZ
′
i + σ2I.

The generalized linear model for repeated measures, introduced by Nelder and

Wedderburn (1972) uses estimating equations, proposed by Zeger et al. (1988) to

estimate population averages for repeated, non-normal outcomes. Taking yi and Xi as

described above, the general notation for the generalized linear model for the marginal

mean of yi given Xi is given as

g {E(yi)} = g(µi) = Xiβ (1.3)

where g is a one-to-one continuous differentiable function called a link function. The

link function relates the means of the response to the linear predictors, Xiβ. Let

matrix Vi represent the estimate of the covariance matrix of yi and Ri (α) be an pi×pi

“working” correlation matrix that is identified by the vector of parameters, α. Then
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the covariance matrix of yi is modeled as,

Vi = φA
1
2
i Ri (α)A

1
2
i ,

where Ai is an (pi × pi) diagonal matrix with a variance function that is determined

by the assumed probability distribution of the outcomes, var(µij), as the jth diagonal

element and φ is a dispersion parameter that may be known or may be estimated from

the data dependent upon the distribution assumption. The generalized linear model

allows for the distributions of the errors to be non-normal. Further, these models focus

on the estimation of the average response over the population rather than regression

parameters.

1.3 Missing Data in Longitudinal Studies

1.3.1 Overview

By introducing a data model and a non-response model, we can analytically explain

the effects of missing data in the analysis of longitudinal data (Laird, 1988). We will

limit our overview to non-response in the outcome only and not within covariates.

Using similar notation as before, let yi = (yi1, yi2, . . . , yip)
′, i = 1, 2, . . . , N denote a

p × 1 vector of the responses for the ith subject. We let Xi denote a p × q matrix of

covariates for the ith subject, which contains both individual covariates and the design

on time. This matrix is routinely denoted as the design matrix. Finally, we let β be a

q × 1 vector of unknown parameters and εi be a p× 1 vector of random variables with

mean 0(p×1) and variance Σyi a p× p matrix with elements of the form var(εit) = σyi,tt

and cov(εis, εit) = σyi,st. Hence, the linear model for subject i takes the form,

yi = Xiβ + εi,
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where E(yi) = Xiβ and var(yi) = Σyi is the matrix of covariance parameters. The

specification of the data model is completed by noting f(yi|Xi,β) is the multivariate

density of yi conditional on Xi and β, where inference interests are in the components

of β and var(yi) = Σyi .

The non-response model is formed by letting Ri = (Ri1, Ri2, . . . , Rip)
′ denote a p×1

vector of indicator variables for the ith subject, such that Rit = 1 if yit is observed,

and Rit = 0 otherwise. Let ν denote the vector of parameters of the non-response

model. The model is completed by denoting f(Ri|yi,Xi,ν) as the multivariate density

of Ri given yi,Xi, and ν. The non-response model does not describe the reasons

or the processes that lead to the missing outcome variables; instead, the non-response

model is a probabilistic selection mechanism given the outcome variables and covariates,

(yi,Xi) that is central in understanding, developing, and applying modern missing data

methods (Rathouz and Preisser, 2013).

Using the notation above and following the discussion from Little and Rubin (2002),

we can define the complete data likelihood as

f(yi,Ri|Xi,β, ν) = f(yi|Xi,β)f(Ri|yi,Xi,ν). (1.4)

The denotation of Ri allows us to partition the response vector into two components,

y′ = (yoi , y
m
i ), yoi for the responses that are observed (Rit = 1) and ymi for the responses

that are not observed (Rit = 0). Naturally, the dimensions of yoi and ymi may vary for

each subject. Using the established notation, the density of the observed data is given

as

f(yoi ,Ri|Xi,β, ν) =

∫
f(yoi ,y

m
i ,Ri|β, ν,Xi)dy

m
i , (1.5)

where integration is over the sample space of ymi . Using the notion from equation (1.4),
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the equation (1.5) can be expressed as

f(yoi ,Ri|Xi,β, ν) =

∫
f(yoi ,y

m
i |Xi,β)f(Ri|yoi ,ymi ,Xi,ν)dymi , (1.6)

with integration over the sample space of ymi .

1.3.2 Missing Data Assumptions for Outcome Variables, y

Rubin (1976) introduced and Laird (1988) discussed a missing data hierarchy. This

hierarchy helps illustrate more easily the effects of the non-response model in likelihood-

based inference analysis. In the missing at random (MAR) scenario, the probability of

the non-response process is not dependent on ymi given yoi . That is, we assume

f(Ri|yoi ,ymi ,Xi,ν) = f(Ri|yoi ,Xi,ν). (1.7)

By substituting (1.7) in (1.6) and integrating, the observed data density becomes

f(yoi ,Ri|Xi,β, ν) = f(Ri|yoi ,Xi,ν)f(yoi |Xi,β). (1.8)

A stronger assumption than MAR is missing completely at random (MCAR).

Data are said to missing completely at random when the non-response mechanism

is independent of both the observed and the missing values of the outcome, (y). That

is,

Pr(Ri|yoi ,ymi ,Xi) = Pr(Ri).

Essentially, the observed data can be considered a random sample of the population.

Consequently, in general, any methods of analysis that are valid on the complete dataset

will yield valid inference when the analysis is based on only observed data.

Because the missing-mechanism is independent of those observations that are
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missing from the intended complete data, the parameters of the outcome model, β,

and non-response model, ν, are distinct, and MCAR or MAR data are referred to

as ignorable. This ignorability speaks to the fact that MCAR and MAR data can

ignore Pr(Ri|yi,Xi) and obtain a valid likelihood-based analysis, provided the model

for f(yi|Xi) is correctly specified.

Missing data where (Ri|yoi ) is related to or depends on some components of ymi is

referred to as non-missing at random (NMAR) or non-ignorable missingness. To obtain

valid inference, methods of analysis on data with NMAR require the specification of

a model for the missing mechanism. The distribution of ymi is not the same for the

completers or the target population. Instead, the distribution of ymi depends on yoi

and Pr(Ri|yi,Xi), which makes modeling and including the missing mechanism in

analysis critical and necessary for valid inferences. Any assumptions made about the

missingness process for NMAR data are wholly unverifiable from the observed data.

Therefore, many authors stress the importance of conducting sensitivity analyses.

Some studies have variables observed for all subjects that could be used to denote

the history of the change, presence, or absence of outcome variables. These variables

are typically not part of the primary inference of the analysis and are predictive of

the missing response values. Such variables are known as auxiliary variables. In the

presence of auxiliary variables, Ψi, the MAR assumption requires that the missing

mechanism is independent of the missing responses given (yoi ,Xi,Ψi). Similarly, the

more stringent assumption, MCAR, requires the missing mechanism to be independent

of (yi,Xi,Ψi), when auxiliary information is present. Although auxiliary data can

be helpful in meeting the MAR assumption, missingness due to MAR is not truly

ignorable unless the missingness only occurs in the response variable, there exist no

auxiliary information, and full likelihood analyses, (yoi |Xi), are pursued.
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1.4 Incorporating Death in Mean Models

1.4.1 Overview

Little and Rubin (2002) and Little (1995) discussed two general classes

of factorizations of the joint model (y,R), selection models, p(y,R|β,ν) =

p(R|y,β,ν)p(y|β), where p(y|β) represents the model of the complete data and

p(R|y,β,ν) represents the missing data mechanism; and pattern-mixture models,

p(y,R|η, π) = p(y|R,η)p(R|π), where y is conditioned on the missing data pattern

R. Allowing survival, S, to represent survival time such as age at death or weeks

from baseline until death, the joint distribution f(yi,Si) denotes the probability that

subject i’s outcomes takes a vector of specific values and survives to a specific time, s.

In regression models that describe the relationship of predictors and the longitudinal

outcomes, survival must be either implicitly or explicitly modeled. The joint probability

can be factored in two ways: f(y)f(S|y) and f(y|S)f(S). Depending on how or

if the longitudinal outcome conditions on survival status, S, the regression analysis

of y can be categorized as being unconditional, fully conditional, partly conditional,

or joint. When deciding which regression analysis should be considered for analysis

of longitudinal data with follow-up truncated by death, Kurland et al. (2009) urged

investigators to match analysis methods to research aims, for each method’s target

population of inference are different for each model. Each method and its target

population is summarized in Table 1.1 and described in the sections that follow.

1.4.2 Unconditional Models: f(yi)

Unconditional models are useful if deaths do not occur or if deaths do not result in

truncation. Considering these models would be appropriate if a researcher’s question

of interest is on the expected changeover time of a response in an immortal cohort or
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if death does not affect the outcome. The estimation methods for these likelihood-

based models implicitly impute values for those who die (Laird, 1988). Because of

this fact, this method is typically not useful in gerontological research studies that

are interested in the change of an outcome over time at the subject level. Yet, if the

outcome of interest is focused on phenomena such as the rate of decline, recurrence,

or other change following some action of a biological substance that can be collected

at baseline and tested over time without requiring additional collections, then survival

would not affect the outcome and the unconditional model would be a reasonable

approach. Because unconditional models are assuming that death does not occur or

that death does not cause truncation, the missing mechanism, survival, can be ignored

without compromising the validity of the inference. This scenario follows a situation

that is modeled by f(yi|Xi,β) =
∫
Ri
fyi|Xi,β)dymi = f(yoi |Xi,β).

1.4.3 Fully Conditional Models: f(yi|Si = s)

Fully conditional mean models for y given S = s follow the pattern-mixture

factorization of the joint distribution of (y,S), f(y,S) = f(y|S)f(S). In these models,

inference regards the changing-over time of the longitudinal outcome variable stratified

by the time of subjects’ deaths.

Pattern-Mixture

Typically, pattern-mixture models are not as popular as selection models because

they do not directly model the marginal distribution of y (Little, 1993). However,

when analyzing a longitudinal response with non-ignorable missing data due to death,

pattern-mixture models are favored over selection models. In this setting of missingness

due to death, pattern-mixture models can be completely identifiable by introducing a

categorical variable in the main effects model that denotes the different strata for time
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of death (Ribaudo et al., 2000; Pauler et al., 2003). Consequently, analysis will yield a

mixture of distributions of the longitudinal response outcome. Each stratum will have

its own trajectory of the response outcome. An advantage of this approach is accurate

representation of individuals’ responses over time.

In order to better understand the nature of the proposed pattern-mixture models,

let’s first examine the notation of the general pattern-mixture model as described by

Little (1993). First, assume that there are q0, q1, . . . , qL missing patterns in a population

and let q0 represent the pattern with complete responses. Let ri take the value r for

missing pattern qr, and let nr equal the number of subjects with qr missing pattern

such that ΣL
r=0nr = N (total number of subjects). Now we have that ri follows a

multinomial distribution with probability p(ri = r) = πr, r = 0, 1, . . . , L. Finally, we

can represent the distribution of yi as,

f(yi|ri,ϑ(r)) = f(y
(r)
i,o |ri = r,ϑ(r)

o )f(y
(r)
i,m|ri = r,y

(r)
i,o ,ϑ

(r)
m,r·o,r). (1.9)

y
(r)
i,o represent the observed responses in pattern qr and y

(r)
i,m represent the missing

response variables in pattern qr. The parameters ϑ
(r)
o and ϑ

(r)
m,r·o,r are functions of ϑ(r)

and are assumed to be distinct for all values of r. Because death is a form of monotone

missingness, the analysis within the patterns can ignore the non-response mechanism

if separate analyses are conducted for each missing pattern.

Principal Stratification

Another fully conditional model is principal stratification. This method describes

the average causal effects for selected principal strata defined by potential survival

outcomes (Frangakis and Rubin, 2002; Hayden et al., 2005; Egleston et al., 2007,

2009). In principal stratification models, the response is estimated only in the strata of

individuals expected to live for a predetermined time, s, regardless of exposure. Unlike
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pattern-mixture models, principal stratification not only conditions on actual survival,

it also conditions on counterfactual survival status. The attractiveness of this method

is that the inference is on the principal strata that would live regardless of exposure

or treatment, allowing for the separation of the effect of the exposure and death from

the effect of the exposure and the outcome. This approach is most useful in analyzing

treatment and intervention effects in randomized clinical trials designs. However, this

approach requires many untestable assumptions about the counterfactual information

that is not collected.

The notation for principal stratification involves a vector of covariates, Xi, a

manipulable exposure variable to which subjects can be randomized, Zi = z, a survival

indicator for a subject at each exposure level, Di(z), such that Di(z) = 0 represents

survival at exposure z, an indicator variable Ri for signifying if a subject reaches the

end of the study, (Ri = 1 if not lost to follow-up; 0 otherwise), and the outcome for a

subject at each exposure level, Yi(z). In this model, the interest lies in the estimate of

the association of Zi and Yi(z) in the stratum of patients that will survive regardless

of the value of z, Di(z) = 0 (alive) for all z, which can be assessed by estimating the

unidentifiable survivor average causal effect (SACE), which is defined as

µ = E {Yi(1)|D(z) = 0]− E [Yi(0)|D(z) = 0} .

Terminal Decline

A third fully conditional model uses a time scale that counts backwards from death

instead of forward in years. This model is useful for measuring the “dying process” and

thus utilizes the responses of decedents only (Siegler, 1975; Diehr et al., 2002; Wilson

et al., 2003). Terminal decline is attractive when the researchers interest is in changes

related to the imminence of death versus changes due to aging.
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This fully conditional model is similar to the pattern-mixture model in that the

missing pattern category determines the length of outcome vector. Unlike the pattern-

mixture model, the terminal decline model allows the trajectory of the outcome over

the new time scale to be estimated for the entire sample.

1.4.4 Partly Conditional Models: f(yi|Si > s)

Partly conditional models estimate the mean of the response conditioned on each

subject being alive beyond time s. These models are different from the unconditional

case where the analysis methods model the correlation structure of the repeated data

implicitly and impute missing data without any differentiation between dropout due to

death and dropout due to other reasons. In order to avoid this forced imputation, partly

conditional models are estimated by treating longitudinal data as independent. Kurland

and Heagerty (2005) call the partly conditional method “regression conditioning on

being alive” (RCA). This method describes the dynamic cohort of survivors and models

the change in the prevalence of the outcome among survivors at each measurement

occasion.

As mentioned above, likelihood based approaches cannot directly estimate or

parameterize partly conditional means; instead, the models are fit using generalized

estimating equations (GEE) (Liang and Zeger, 1986) with independence working

correlation. This analysis should yield consistent estimation as long as the model is

correctly specified (Crowder, 1986).

1.4.5 Joint Models: f(yi,Si)

Although general pattern-mixture and selection models begin as joint models, their

inference interests are in either the marginal or the conditional means of the longitudinal

response. Joint models encompass the repeated response as well as survival data. Diehr
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et al. (1995) introduced a joint model by defining the probability of being alive and

healthy (PAH) and a related method to predict the PAH for a prescribed amount of

time. Johnson (2002) models the PAH generally as

PAH(s) = P (Q(s) > q, S > s) = P (Q(s) > q|S > s)P (S > s), (1.10)

where S > S represents being alive at time s and Q(s) > q represents being healthy

at time s. Equation (1.10) has a very similar structure to the general pattern-mixture

model and can be seen as a special case of the pattern-mixture model. However, unlike a

pattern-mixture model that locks participants in specific strata, the PAH model allows

subjects to move from being alive and healthy to being alive and unhealthy and vice

versa. Subjects are not allowed to transition out of the dead strata once they have

entered it.

1.5 Data: NC EPESE

In 1980, the Epidemiology, Demography, and Biometry Program (EDBP) initiated

the “Established Populations for Epidemiologic Studies of the Elderly” (EPESE)

project in order to conform to the mandate to authorize the planning, initiation,

direction, coordination, and analysis of longitudinal epidemiologic studies of specific

diseases and conditions affecting the elderly. Some of the most prominent purposes

of the EPESE project are to study risk factors for chronic diseases in the elderly

and to identify predictors of mortality, hospitalization, and placement in long-term

care facilities. Specifically, the project was designed to produce estimates of the

prevalence and incidence of chronic conditions, impairments, and disabilities with their

associated risk factors, and to quantify the changes in these characteristics and the

general functioning of individuals. EPESE results were expected to affect policies on
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illness prevention practices and to lengthen the time older adults can live independently

in their own homes.

Funded by the National Institute on Aging (NIA), North Carolina Established

Populations of Epidemiological Studies of the Elderly (NC EPESE), officially known

as the Piedmont Health Survey of the Elderly, was the fourth site added to the larger

multi-center prospective population-based epidemiologic study of health status and the

physical, social, and cognitive functioning of persons 65 years of age and older living

in communities. An additional major goal for the data collected at the North Carolina

EPESE centers was to study racial difference in mortality and health of older persons.

Established in 1986, the North Carolina cohort was a sample of 4,162 persons 65

years or older residing in households in Durham, Warren, Franklin, Granville, and

Vance counties (one urban county, four rural) in the Central Piedmont area of North

Carolina. The site was over 50% black and the geographic area selected was diverse,

allowing both racial and urban/rural comparisons to be made regarding the distribution

of certain risk factors and disease. Of the 4,162 subjects selected on the basis of a four-

stage, race-stratified sampling design, 48% (including similar proportions of blacks

and whites) lived in an urban setting. Participants were surveyed in person on four

occasions: Wave 1 (1986-1987); Wave 2 (1989-1990); Wave 3 (1992-1993); and Wave 4

(1996-1997). At each of these waves, depression symptoms, blood pressure, and physical

functioning level were among the outcomes that were measured.

The measure of depression used was the CES-D, a self-report index of depressive

symptoms developed by the Center for Epidemiological Studies of the National Institute

of Mental Health (Radloff, 1977). This index consists of 20 statements, each describing

a symptom or absence of a symptom. Whereas the CES-D in its original form permitted

graded responses for each item, the modification used in this survey allowed only two

responses, (“Yes” or “No”), scored 1 or 0, respectively (Blazer et al., 1991). Blazer
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et al. (1991) justified a CES-D score of 9 or more to be sufficient for categorizing those

subjects who are pre-screened for being clinically depressed versus the 16 score cut-off

established by Radloff (1977).

Blood pressure of all participants was measured by trained interviewers using the

Hypertension Detection and Follow-Up Program protocol (1978). Participants were

seated and a standard mercury column sphygmomanometer was employed. Two blood

pressure measurements were taken. The outcome of interest for blood pressure for this

dissertation was the average of these two measurements. We note here that nearly all

the subjects were on a medication regiment to normalize blood pressure.

One of the measures of physical functioning measured in the NC EPESE was seven

activities of daily living (ADL): bathing, dressing, walking, grooming, transferring from

bed to chair, eating, and toileting (Katz et al., 1970; Branch et al., 1984). For each

activity, it was denoted whether or not assistance was needed. The number of activities

requiring any level of assistance became the physical function score for each participant.

To date, very little literature exists on the patterns and progression of depression

scores, especially among older adults. Most of the literature is on the progression

of the diagnosis of those older adults who are depressed (Kuchibhatla et al., 2012).

Similarly, among the published articles using EPESE data, there are not many articles

that provide a longitudinal account of systolic and diastolic blood pressures. The lack

of these types of analyses has led to many conflicting results. The variable nature

of blood pressure measurements and the many factors influencing their values make

interpretation of cross-sectional results questionable and limited. Measuring physical

functional independence with ADLs, li (2005), revealed evidence that supported

significantly greater change in functional dependency for those who died during the

study than those who remained in the study or dropped out. Participants who remained

in the study or left the study both had a steady mean of mild physical functional
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dependency. Combined, these three health responses represent different categories of

the overall health, vitality, and independence of older adults.

1.6 Summary

Collecting longitudinal data on older populations leads to greater risks of truncation

due to death. Analysis of changes in responses truncated by death is likely to be biased

and thus survival should necessarily be considered in the analysis. The NC EPESE

studies that were initiated by the National Institutes on Aging (NIA) to estimate the

incidences and prevalences of health conditions and to uncover predictors and correlates

of death and diseases should be analyzed with the most accurate techniques. Further,

this study that followed the health of certain cohorts for 10 years could benefit from new

techniques to incorporate death information when the interest is in the mean change

over time of a morbidity outcome that is truncated by death.

In the literature there exist discussions and suggestions on incorporating missingness

due to death in mean regression models. These models are assumed to be unbiased for

the estimands and highlight the correct interpretation for each proposed model. Even

though bias (on β), estimation, and efficiency, V (β̂), are important components of data

analysis, they have not been clearly reviewed and discussed for these models. In an

attempt to provide guidelines for those analyzing gerontological longitudinal data in

the presence of death, these components deserve attention and exploration.

This dissertation assesses the performance of the proposed models (unconditional,

pattern-mixture, principal stratification, terminal decline, partly conditional, and joint

model) for truncated longitudinal outcomes by analyzing a cohort from a well-known

longitudinal study of older adults, comparing the changes in the results for different

types of missing data, and assessing the effects of varying percentages of missingness

due to death on bias and efficiency of the models via simulations. Chapter 2 presents
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estimates of the rates of change of the four outcomes from the NC EPESE as estimated

by the proposed models, when non-response is due to death only. Chapter 3 discusses

the effects of the models when death and non-participation are both present. Chapter 4

provides simulations to evaluate bias and efficiency of the models under varying missing

assumptions. Finally, a discussion and suggestion of needed avenues of future work are

offered in Chapter 5.
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Table 1.1: Summary of statistical regression models for longitudinal response and
survival and its population of inference
Regression Methods Population of Inference Research Aim

A. Unconditional Models An immortal cohort where What is the longitudinal
subjects are expected to die effect of an outcome
or where death does not on an immortal cohort
induce missingness

B. Fully Conditional Model: Cohorts created by their What is the longitudinal
Pattern Mixture survival status change in an outcome

for different survival
cohorts

C. Fully Conditional Model: Cohort of those that will What is the expected
Principal Stratification survive for s years difference in an

regardless of outcome for different
treatment/exposure levels of treatment/

exposure among subjects
surviving a given time

D. Fully Conditional Model: Decedents What is the behavior
Terminal Decline of a longitudinal

outcome as subjects
nears death

E. Partly Conditional Model Dynamic cohort of What is the longitudinal
sample survivors trend of an outcome from

a dynamic cohort

F. Joint Model Complete mortal sample What percentage
of subjects are alive
and healthy over time
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CHAPTER 2: ANALYSIS OF NC EPESE TO INCORPORATE
SURVIVAL IN THE ANALYSIS OF OUTCOMES

TRUNCATED DUE TO DEATH

2.1 Introduction

The North Carolina Established Populations of Epidemiological Studies of the

Elderly (NC EPESE) was a prominent observational prospective study that has been

utilized to provide the narrative of incidences and prevalences of chronic illness,

cognitive and physical impairments, and other disabilities, along with their risk factors

and the changes of these characteristics of older adults as they age in the community.

Analyses of this study and its sister studies have informed the needs of health care

services for the prevention of illnesses plaguing adults in later life and strategies for

maintaining function of older adults aging outside of health care facilities. Since the

end of 2012, there have been 341 publications in the form of manuscripts, letters, and

books that referenced any of the EPESE studies. From 1996 to the end of 2012, there

have been 90 publications on the NC EPESE, and only 6 of the publications used a

form of longitudinal methodology for its primary statistical analysis. None of the 6

publications made any distinctions between missing not due to death and missing due

to death.

The six methods for incorporating death, examined by Kurland et al. (2009),

have never been used to analyze the EPESE data. In addition, there have not

been discussions or comments pertaining to the effect of death on bias, estimation,

and efficiency in the proposed regression models. Without a full description of the
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strengths and weakness of each proposed method, an understanding of the role of

death in conditions that affect physical function, quality of life, and self-sufficiency are

incomplete. Incomplete knowledge of the proposed methods could lead to erroneous

conclusions that could misinform important policy affecting the elderly.

2.2 Effect of Death in NC EPESE

For the purpose of this dissertation, 26 of the subjects were excluded from the

original 4,162 participants because they identified themselves as other than black or

white. Another four subjects were not included because their ages were less than 65

at the baseline survey. Because of a focus on mortality, dates of death were collected

throughout the data collection for NC EPESE and continued 10 years after the study

ended. During the 10-year study period, 2,046 of the 4,132 (49.5%) eligible participants

had death dates before the end of the study. These participants were 40.5% male and

55.5% black. At the time of death, the average age of the participants was 79.22

(SD=7.47) years old, and the average number of years to death from baseline was

5.09 (SD=4.52). This dissertation is interested in examining the role of death on the

modeling of the mean and covariance models when longitudinal data are truncated

due to death in the NC EPESE. To begin this analysis, we first assume a situation

where data are only missing due to death. For this hypothetical situation, missing data

from subjects because of non-response will require imputation. Hence, the NC EPESE

dataset was altered by imputing these values for the outcomes of interest (depression

scores, blood pressures, and ADL score) for those subjects who had missing values due

to non-response. Single imputation was completed using proc mi in SAS 9.2 (Yang,

2002). Figure 2.1 describes the “completers” (no imputation required) as those subjects

who survived beyond the study and provided complete data for each outcome of interest

for each measurement occasion and those subjects who died before the end of the study
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but provided complete information up to their deaths.

The effect of death in the modified NC EPESE was graphically assessed by dividing

the decedents into two subgroups by baseline age–those greater than and equal to 85-

years-old and those younger than 85. The population-expected means for the depression

scores, the systolic and diastolic blood pressures, and the physical function scores up to

10 years prior to death were plotted. To serve as a reference, the end-of-study survivors

were divided similarly into two subgroups and with their outcome trajectories graphed

with their decedent counterparts.

In Figure 2.2, the decedents and survivors have similar mean CES-D scores 10

years from death (end of study). As the decedents approached death, their trajectories

increased more sharply than the survivors’ trajectories in both cohorts. Although both

trends increased over time, the trajectories were statistically different (p < 0.001) for

those less than 85-years-old and those greater than or equal to 85.

The effect of death in Figure 2.3 for systolic blood pressure is not as apparent as

in the depression data. Nonetheless, the systolic blood pressure trend for the survivors

younger than 85 were nearly constant whereas the decedents experienced a decline.

Both groups declined in the 85 and older graph and were not statistically different.

The population-expected mean diastolic blood pressure (Figure 2.4) for the survivors

had a steeper decline over the 10-year period than the decedents in both age groups.

The trends for the survivors and decedents were similar in each graph, albeit the trend

for decedents 85-years-old and older was shifted down approximately two units.

Physical functional is known to be highly predictive of death. The results in Figure

2.5 supports this relationship. As decedents get closer to death, the number of ADLs

accomplished alone decreased. If the decedents are older than 85, this trend is more

severe.

All of these non-mortality outcomes have some association with death and make it
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difficult to correctly analyze and interpret findings without considering survival. The

six regression models introduced by Kurland et al. (2009) are options for analyzing the

outcomes with a treatment of survival.

2.3 Analysis of Modified NC EPESE

The unconditional, pattern-mixture models and terminal decline models (Kurland

et al., 2009) for each outcome were fitted using a linear mixed model with a random

intercept and slope as described by Laird and Ware (1982). The standard linear mixed

effect model is written as

yi = Xiβ +Zidi + ei (2.1)

where yi is a pi × 1 of observations on person i for i = 1, . . . , N ; Xi is a pi × q known,

constant design matrix for person i; β is a q×1 vector of unknown, constant population

parameters; Zi is a pi×2 known and constant design matrix for person i; di =

di0
di1

 is

the corresponding 2×1 vector of unknown random effects (random intercept and slope);

and ei is a pi × 1 vector of unknown random errors. Vectors di and ei are assumed to

be from a Gaussian distribution and independent with mean E(di) = 0 and E(ei) = 0

and var(di) = D, where D =

 σ2
d0

σd0d1

σd0d1 σ2
d1

 and var(ei) = Σei = σ2Ii. Each model

assumed homogenous variance for subjects measurements across time with no expected

correlation between the measurements for all subjects, σ2Ii, (conditional on the random

effects) and allowed the random effects to be independent with unique variances. Hence

var(yi) = Vi = ZiDZ
T
i + σ2Ii.

To estimate these models when data are not complete, an E-M algorithm proposed

by Dempster et al. (1977) and used by Laird and Ware (1982) and Dempster et al.
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(1981b) may be used to obtain maximum likelihood estimates of β, di, D, and σ2. To

see this, we take θ to the vector of the covariance components and then note that the

estimates for the fixed and random effects when variance is unknown is given as

β̂(θ̂) =

(
N∑
i=1

XT
i ŴiXi

)−1 N∑
i=1

XT
i Ŵiyi (2.2)

and

d̂(θ̂) = D̂ZT
i Ŵi(yi −Xiβ̂(θ̂)). (2.3)

These are the weighted least square equations with estimates for Ŵi = V̂ −1i with

V̂i = Σ̂ei +ZiD̂Z
T
i , where Σ̂ei is the estimate of the variance-covariance matrix of ei.

The variances of these estimates are defined as

ˆvar
[
β̂(θ̂)

]
=

(
N∑
i=1

XT
i ŴiXi

)−1
(2.4)

and

ˆvar
[
d̂(θ̂)

]
= D̂ZT

i

Ŵi − ŴiXi

(
N∑
i=1

XT
i ŴiXi

)−1
XT

i Ŵi

ZiD̂ (2.5)

If di, ei, and yi were to be observed, then closed-forms of the maximum likelihood

estimates of Σei and D based on quadratic forms in di and ei for i = 1, . . . , N can

be obtained. For the variance structure assumed for the linear mixed models in this

analysis (var(di) = D a 2×2 nonnegative definite matrix and the var(ei) = Σei = σ2Ii)

these estimates would take the form

σ̂2 =
N∑
i=1

eTi ei/

N∑
i=1

pi = t1/

N∑
i=1

pi (2.6)
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and

D̂ = N−1
N∑
i=1

did
T
i = t2/N. (2.7)

The equations above show that the sufficient statistics of the covariance components

are t1 and the non-redundant components of the vector t2. An estimate of θ could

be used to approximate the estimates of the missing sufficient statistics by setting the

sufficient statistics to their expectations given the observed outcome vector, yi. Before

these equations can be denoted, we must define θ̂, β̂(θ̂) and d̂i(θ̂) to be estimates of

θ, β, and di, respectively. Estimates of the sufficient statistics, t1 and t2 are computed

as

t̂1 = E

{
N∑
i=1

eTi ei|yi, β̂(θ̂), θ̂

}

=
N∑
i=1

{
E
[
eTi ei|yi, β̂(θ̂), θ̂

]}
=

N∑
i=1

[
êi(θ̂)T êi(θ̂) + tr(var

{
ei|yi, β̂(θ̂), θ̂

}
)
]

(2.8)

and

t̂2 = E

{
N∑
i=1

did
T
i |yi, β̂(θ̂), θ̂

}

=
N∑
i=1

{
E
[
did

T
i |yi, β̂(θ̂), θ̂

]}
=

N∑
i=1

{
d̂i(θ̂)d̂i(θ̂)T + var

(
di|yi, β̂(θ̂), θ̂

)}
(2.9)

where êi(θ̂) = E(ei|yi, β̂(θ̂), θ̂) = yi −Xiβ̂(θ̂) − Zid̂i(θ̂). The maximum likelihood

estimates of the parameters are found by starting with a suitable initial value for θ̂ and

then iterating between 2.8 and 2.9 (evaluation-steps) and (2.6) and (2.7) (maximizing-

steps) until arriving at convergence.
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An alternative method for computing the ML estimates is the Newton-Raphson

(N-R) algorithm for linear mixed-effects models, which are based on the first- and

second-order partial derivatives of the log-likelihood functions. The log-likelihood of

the stacked responses, yi, used to derive estimates is denoted as

l(y;β,θ) = − ln(2π)
N∑
i=1

pi
2
− 1

2

N∑
i=1

ln |Vi| −
1

2

N∑
i=1

(yi −Xiβ)TV −1i (yi −Xiβ). (2.10)

As detailed by Jennrich and Schluchter (1986), the N-R algorithm iteratively computes

new parameter values from current parameter values, using

 β̃
θ̃

 =

 β◦
θ◦

−
 Hββ Hβθ

Hθβ Hθθ


−1  sβ

sθ

 (2.11)

with

H =

 Hββ Hβθ

Hθβ Hθθ

 =

 ∂2l
∂β∂β

∂2l
∂β∂θ

∂2l
∂θ∂β

∂2l
∂θ∂θ

 (2.12)

and

s =

 sβ
sθ

 =

 ∂l
∂β

∂l
∂θ

 . (2.13)

H is referred to as the Hessian matrix, and s is often described as the gradient or score

vector. During the computation algorithm, these values are evaluated using the current

values of the parameters.

Both the E-M and N-R estimation methods implicitly impute values for those

beyond their time in the study. Therefore, when death is not included in the estimation,

as in unconditional models, the population of interest is the original target population,

which has been described as an immortal sample (Dufouil et al., 2004). When

longitudinal outcomes are due to death, this estimation method may not be the most
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appropriate option due to selection bias (Little and Rubin, 2002).

The pattern-mixture model, as denoted previously in equation 1.9, would average

over all of the missing patterns, which would imply an implicit extrapolation within

each pattern. This type of analysis is not useful when the missing patterns are due

only to death. Therefore, Pauler et al. (2003) recommends considering death as a joint

outcome instead of a nuisance parameter. Under this advice, the pattern-mixture model

in the analysis of the modified NC EPESE is given as follows

yri = Xiβ
r +Zid

r
i + eri , (2.14)

where r represents the cohorts who died between the first follow-up and the second

follow-up (r = 1), between the second follow-up and the third follow-up (r = 2), and

the completers (r = 3). The covariance structures for pattern-mixture structures are

the same used in the unconditional specifications for each cohort, r. This regression

method is attractive because it should give accurate depictions of the trajectories of

an outcome for each survival cohort, but requires conditioning on death, which is not

known at baseline.

The last method that was fitted using a linear mixed model was the terminal decline

model. Terminal decline in this dissertation is confined to the prognostic trend among

those subjects that die before the end of the study’s observational period. In order to

model the terminal decline, the temporal change of interest shifts from the years post-

baseline to the years from death. By letting 0 represent the time of death, the years

from death are demarcated by their negative magnitudes. Thus, the model specification

remains the same as those represented in the unconditional model except that the

years post-baseline variable is replaced by the years from death variables. To denote

the new design of time, the design matrix in the equation (2.15) is represented by the

matrix Ai. The matrix Ui is the design matrix for the random intercept and slope of
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time from death. The structures of the covariance matrices remain unchanged from

the unconditional and pattern-mixture models. Hence, the terminal decline model is

modeled as

yi = Aiβ +Uidi + ei. (2.15)

The primary interest of the principal-stratification method is estimating the

unidentifiable survivor average causal effect (SACE)(Frangakis and Rubin, 2002;

Hayden et al., 2005; Holland, 1986; Robins and Greenland, 2000; Rubin, 1974, 2000),

which is defined as the difference in the outcome for those with the exposure or

treatment and the outcome of those without the exposure given participants would

survive despite their assigned exposure group. Using the notation introduced in Chapter

1, the SACE takes the following form for a continuous outcome

µ∗ = E [Yi(1)|D(z) = 0]− E [Yi(0)|D(z) = 0] . (2.16)

Although others have proposed estimation methods for the SACE for randomized

studies (Gilbert et al., 2003; Hayden et al., 2005; Zhang and Rubin, 2003), the SACE in

this dissertation uses the estimation method proposed by Egleston et al. (2007). This

estimation method was developed to be used in observational studies and estimates the

SACE by using a set of unidentifiable assumptions. This estimation was designed to

correct the bias that may be a result of both non-response and baseline differences for

those with or without the exposure. To describe the estimation method, the notation

present in Chapter 1 must be revisited.

First, let X be a vector of covariates, which included the baseline age centered at

baseline. The exposure categories were the race-gender groups (white-female, white-

male, black-female, and black-male). The exposure indicator is denoted as Z (1 if the

race-gender of interest; 0 otherwise). The survival indicator for the given exposure is

29



denoted by D(Z), such that D(Z) = 0 represents survival for exposure status Z. An

indicator variable R signifies if a subject reaches the end of the study, (R = 1 if not

lost to follow; 0 otherwise), and the outcome for exposure is given as Y (Z). For each

exposure value, n independent and identically distributed observed data were gathered,

O = {Oi = {Xi, Zi, Di, Ri( if Di = 0), Yi( if Di = 0 and Ri = 1)} , i = 1, . . . , n} .

The four principal strata are defined as

1. Individuals who would survive regardless of exposure, D(0) = D(1) = 0. (S1)

2. Those who would die if they have the exposure but survive if they do not,

D(0) = 0, D(1) = 1. (S2)

3. Those who would die regardless of exposure, D(0) = D(1) = 1. (S3)

4. Those who would die if they do not have the exposure of interest and would

survive if they do, D(0) = 1, D(1) = 0. (S4)

The assumptions evoked to identify SACE are given below.

1. Stable Unit Treatment Value Assumption (Rubin, 1980), which states that

individual’s potential outcomes are not dependent on the exposure status of either

the other participants potential outcomes or the mechanism in which the exposure

was acquired.

2. Monotonicity is an assumption described by Gilbert et al. (2003) and Zhang

and Rubin (2003). This assumption states that acquiring the exposure is not

protective to death and implies that principal stratum S4 does not exist. For

example, the principal stratum in which an individual is expected to survive if

she were a black female but is expected to die if she were not a black female
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is not allowed in this estimation. This assumption may be violated for some of

the exposure levels for evidence exists of gender-race death associations (Yao and

Robert, 2011).

3. Strong ignorability of “treatment” assignment (Rosenbaum and Rubin, 1983)

implies that developing an exposure is independent of the potential outcomes

given the covariates. In an observational study, this assumption means that the

exposure statuses (exposed vs. not exposed) are similar within each covariate

level. Thus, the probability of an individual surviving given membership or non-

membership in the exposure group given the covariates is denoted as gz(X) =

P [D(Z) = 0|X]. Further E [Y (Z)|D(Z) = 0,X] = E [Y |D = 0, Z = z,X].

4. For those who survive, the non-response of the non-mortality outcome is

independent of the value of the outcomes within levels of exposure status and

covariates. This provides a situation that is similar to the missing at random

(MAR) assumption. Coupled with the previous assumption, this assumption

makes it possible to identify the expected mean of the outcome for those

who would survive but have missing outcomes within the exposure status and

covariates. That is, hz(X) = E [Y (Z)|D(Z) = 0,X].

The quantity displayed in the results section is the estimate to

E [Y (1)|D(Z) = 0, R = 1,X] at each survey follow-up period. From the above

assumptions, we have the following:

E [Y (1)|S1] = E [Y (1)|D(1) = 0]

= E {E [Y (1)|D(1),X]}

=
∑

E [Y (1)|D(1) = 0,X]P [D(1) = 0|X]

=
∑

h1(X)g1(X).
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The mean for each race-gender “exposure” was estimated for each measurement

occasion using ordinary least squares regression (h1(X)) and the g1(X) was estimated

from a logistic regression model. Only one covariate, baseline age centered about the

mean, was considered for both models.

The trends produced by the partly conditional model estimate the expected

population mean trend on the subject being alive. This method is useful when the

interest is the regression of a repeated measure on the participant being alive. That is,

E(Yij|Xij, Si > tj). Likelihood methods like the linear mixed model discussed above do

not directly parameterize partly conditional models for the estimation method imposes

responses for decedents. Rather, Kurland and Heagerty (2005) demonstrate that the

generalized estimating equations (Liang and Zeger, 1986) with an independent working

correlation directly parameterize the regression model for the target population of those

who are alive at the time of collection.

For the partly conditional mean µUij = E(Yij|Xij), an unbiased, linear quasi-score

equation for the regression parameter vector βU is given by

U(βU) =
N∑
i=1

pi∑
j=1

∂µUij
∂β

(Yij − µUij). (2.17)

By letting Aij be an indicator variable that equals 1 if Si > tj and 0 otherwise, the

quasi-score contributions can be restricted to ensure inference on the target population.

The new quasi-score equation becomes

U(βA) =
N∑
i=1

pi∑
j=1

Aij
∂µAij
∂βA

(Yij − µAij). (2.18)

This model will yield consistent estimators and valid inference for µAij using a directly
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parameterized partly conditional regression model with a link function g.

g(µAi ) = Xiβ
A, (2.19)

where µAij = E(yij|Xij, Si > tj) = E(yij|Xij, Aij = 1) given that the regression model

is correctly specified (Crowder, 1986). The outcomes for this model were fitted as a

generalized linear regression model with an identity link and an independent working

correlation structure.

The probability of being alive and healthy (PAH) (Johnson, 2002) for each

participant i was calculated according to the following equation:

PAH(s)i = P (Qi(s) > q,Si > s|Xi) = P (Qi(s) > q|Si > s)P (Si > s), (2.20)

where Q(s)i represents the dichotomous health variable and Si represent the survival

time variable. Utilizing repeated logistic regression with an unstructured correlation

matrix, the probability of being not depressed (< 9 depressive symptoms), the

probability of being non-hypertensive (systolic blood pressure < 140 or diastolic blood

pressure< 90), and the probability of not having any activities of daily living limitations

(ADL< 1) were calculated for each follow-up period and each gender-race combination.

The probability of survival was estimated from a Cox proportional hazards model given

by

λ(s|x) = λ0(s) exp(β1x1 + β2x2 + . . .+ βpxp) = exp(β′x), (2.21)

where x is a p dimensional vector of covariates (centered age at baseline, gender, and

race) and β is a p-dimensional vector of regression. The covariates are the same for

both the logistic and hazard models to make interpretations simpler. The bias in this

model is introduced in the estimates of the probabilities of the repeated measure. If

missing in the outcome can be assumed to be missing at random (MAR), then the
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likelihood models would produce unbiased estimates. In contrast, missingness that is

not missing at random (NMAR) could introduce bias in the estimation.

2.4 Results

Figure 2.6(a)-(f), Figure 2.7(a)-(f), Figure 2.8(a)-(e) and Figure 2.9(a)-(f) depict the

results of the analysis of the Duke EPESE data using the different proposed methods

for assessing the rates of change based on research inquiries for depression scores (CES-

D), systolic blood pressure, diastolic blood pressure, and physical function (ADLs),

respectively. In all of the models, the baseline variables–age (centered about the mean),

race (1 if subjects identify as black and 0 if subjects identify as white), and gender (1 if

subjects are identified as male and 0 if subjects are identified as female) – are included

as covariates with the exception of the principal stratification model. The principal

stratification model uses one’s race and gender identification as exposures and age as

the only covariate.

In Figure 2.6(a), black females have the highest initial depression value and white

males have the lowest baseline depression score. However, each group experiences

similar annual rates of change ranging from 0.86-0.90 with women displaying a slightly

lower rate. Figure 2.6(b) offers evidence that those that did not die during the study

had fewer depressive symptoms than the decedents. Those participants who survived

to the first follow-up had the most dissimilar rates of change in CES-D scores. Most

notable was the decline in CES-D for black males. Examining the trajectories of the

number of depressive symptoms of those individuals that are expected to survive until

the end of the study despite their race-gender classification, we found that three years

post-baseline scores were lower than the scores at baseline. Further, all groups, except

for white males, had estimated CES-D scores at six and ten years post-baseline that

follow a similar rate of increase in CES-D (Figure 2.6(c)). Nearing death (Figure
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2.6(d)), women had about four depressive symptoms, which is approximately one more

than their male counterparts. The terminal decline trends were similar by race. The

dynamic cohort’s depression rates of change, as modeled by the partly conditional

model, were two units lower than those reported in the model assuming an immortal

cohort (unconditional model), but the trends were similar. Although men began the

study with a higher probability of being alive and having less than nine depressive

symptoms (0.92 vs. 0.89; Figure 2.6(f)), over time women became more likely to be

healthy and alive.

The unconditional regression model of systolic blood pressure resulted in similar

baseline and annual rates of change by gender (Figure 2.7(a)). Women had baseline

systolic blood pressures of 144 millimeters of mercury (mmHg), which was higher than

their male counterparts. Moreover, the women’s rates of decline were only half of the

decline rates for the males (0.11 mmHg per year). Women completers in the pattern-

mixture graph (Figure 2.7(b)) had the lowest initial systolic blood pressure compared

to the cohorts of women that did not complete the study. Yet, their annual rates of

change were positive and nearly constant, whereas the rates of change of the other

female survival cohorts represented annual rates of decline ranging from 0.55-0.94. The

initial systolic blood pressures for the men were the same across the survival cohorts,

but their annual rates of decline were smallest among the completers. In Figure 2.7(c),

the systolic blood pressure oscillated between a higher mean systolic blood pressure and

a slight lower mean, except for white males, who experienced increases in their mean

systolic blood pressure after the first follow-up. Mean systolic blood pressure slightly

decreased as participants approached their deaths. The terminal rates of decline were

similar by race (Figure 2.7(d)). The blood pressure regressed on those being alive

(partly conditional) mirrored the rates from the unconditional model. Depicted in

Figure 2.7(f), women were less than 50% likely to be alive and non-hypertensive while
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men were approximately 50% alive and non-hypertensive. As the groups aged, the

men’s probability of being alive and non-hypertensive declined more rapidly than the

women’s rates.

Rates of change in the mean diastolic blood pressure for the immortal cohort were

similar across race-gender groups. Additionally, black women and men had similar

baseline values for diastolic blood pressure measurements, which remained true for

white men and women (Figure 2.8(a)). In Figure 2.8(b), the baseline values of diastolic

blood pressure are very similar across the survival cohorts for each race-gender group.

Nonetheless, white men and women who died after the first follow-up only experienced

small declines in their diastolic blood pressure measurements annually. The trend of

diastolic blood pressure for those who would survive regardless of race or gender had

similar baseline values to the unconditional and pattern-mixture completers’ regression

models, except for white males. Although the baseline values are similar, the rates of

change for the principal stratification were much higher than the other two methods.

Men’s mean diastolic blood pressure declined more rapidly than the womens as they

neared death (Figure 2.8(d)). Figure 2.8(e) displays the estimated means of diastolic

blood pressure for those alive at the given follow-up occasion. These values are similar

to the unconditional model results.

Unconditional regressed ADLs graph in Figure 2.9(a) display similar baseline values

by race and similar rates of increase by gender. Figure 2.9(b) offers evidence that

those that did not die during the study had fewer physical functioning limitations

than the study decedents. The rates of change were similar by race-gender groups

for r = 1 and r = 2 survival cohorts. For those who would survive regardless

of race-gender assignment, their rates of change were similar by gender. The men

seem to have a leveling of physical functioning dependency, while women continued

to experience increases in their mean physical function limitations (Figure 2.9(c)). As
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women approach death, their physical function dependency increased more rapidly

than men (0.30 versus 0.25). The physical functioning estimated means of the mutable

population had comparable means to the mean estimates of the unconditional model

for each race-gender group (Figure 2.9(e)). Black women were the most physically

limited at baseline with a PAH of 0.63. The others had probabilities greater than 0.70.

Even though the annual rate of decline was slightly higher for males than females (0.07

annual rate of decline), the graphical trends were alike.

2.5 Simulation of Varying Death Burden

To evaluate the ability of the unconditional, pattern-mixture, and partly conditional

models to estimate rates of change in the Center for Epidemiologic Studies Depression

(CES-D) scores, systolic and diastolic blood pressures, and activities of daily living

(ADL) of a complete dataset without bias for various MCAR burdens of death, we

simulated a sample from a theoretical population. Each of the four outcomes were

treated as continuous outcomes and were generated from the mixed model with a

random intercept and slope as described in equation (2.1). Four waves of longitudinal

outcomes were simulated from a normal distribution with mean Xiβ and covariance

Σi = ZiDiZ
T
i + σ2Ii, where D was allowed to be unstructured. For each outcome,

the design matrix Xi consisted of a column vector of ones for the intercept, a column

vector for time of measurements post-baseline (0, 3, 6, 10 years), a column vector of

baseline age centered about the mean, a column vector of indicators for identifying as

black, a column vector of indicators for identifying as male, a column vector indicating

time by race, and a column vector indicating time by sex. The design matrix of the

random effects, (Zi), was constructed as a column vector of ones for the intercept

and a column vector for the time of measurements post-baseline (0, 3, 6, 10 years).

The race-gender combination values were treated as multinomial random variables and
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were generated accordingly: white males (π = 0.16), black males (π = 0.19), and white

females (π = 0.29). Age was simulated assuming it was from a normal distribution

dictated by the mean and standard deviation in each race-gender group from the NC

EPESE. Similarly, time of measurements mirrored the NC EPESE. Thus, we assume

measurements were only possible at baseline, and 3, 6, and 10 years post-baseline. The

values of the parameters β, σ2, andD used in the simulation are given for each outcome

below.

CES-D score: βT =

(
3.243 0.086 0.065 0.356 −0.686 0.001 0.003

)

Σi = Zi

 5.32 −0.14

−0.14 0.39

ZT
i + 7.16Ii

Systolic BP: βT =

(
143.29 0.088 0.002 0.756 −2.326 −0.017 −0.136

)

Σi = Zi

139.69 −3.38

−3.38 0.91

ZT
i + 314.05Ii
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Diastolic BP: βT =

(
77.258 0.799 −0.289 2.775 1.529− 0.0006− 0.010

)

Σi = Zi

47.66 −2.26

−2.26 0.39

ZT
i + 92.94Ii

ADL score: βT =

(
0.742 0.211 0.114 0.243 0.133 0.001 −0.063

)

Σi = Z

 1.52 −0.002

−0.002 0.04

ZT + 1.78Ii

A 1,000 samples of complete data were generated for each sample size– N = 100,

N = 500, and N = 1000. After the complete datasets were generated, death indicators

were created from a Bernoulli random generating function to simulate participants

leaving the study because of death. Subjects in the simulated datasets became at risk

of death following baseline responses. One death indicator simulated a 10% death rate

per survey wave following baseline for an overall death rate of approximately 27% of

baseline participants. Another missing scheme allowed the death rate to increase as the

survey years increased by simulating a death indicator with a death rate of 10% after

baseline, 20% after the first follow-up, and 30% after the second follow-up, resulting in

an expected 50% of baseline participants dying before the end of the study. The final

indicator simulated a death rate of 30% per post-baseline survey wave resulting in an

expected overall death rate of 66%.
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2.6 Simulations Results

The choice is made to fit the unconditional, pattern-mixture, and partly conditional

models as described earlier for each of the 1,000 samples and for the three

death percentage scenarios. All analyses were performed using SAS v9.2. For

the unconditional and pattern-mixture models, maximum likelihood estimation was

provoked. The partly conditional models were estimated by generalized estimating

equations using an identity working correlation matrix and empirical standard errors

to account for the repeated continuous measures per subject. The relative bias of the

estimation for each mean per race-gender combination was computed. Tables 2.1 -

2.4 give the mean bias for each method by the different death percentage scenario.

Pattern-mixture models could only be performed for the 500 and 1,000 sample sizes.

The sample size of N = 100 did not provide enough participants for the survival cohorts

for some of the missing schemes.

Tables 2.1-2.4 give the mean relative bias of the estimates for each race-gender

combination five years post-baseline for the unconditional, pattern-mixture completers,

and partly conditional models. The unconditional model was able to estimate the mean

systolic and mean diastolic blood pressures with minimal bias relative to the true means

for each sample size and death percentage burdens. When estimating the mean CES-D

sores in the sample size of 500 and 1,000, the unconditional model seemed to perform

better when the overall percentage of death is small. The model that uses only the

completers had larger relative bias than the other models for all outcomes. Mean

depression scores were able to be estimated using the partly conditional model with a

relative biases that were smaller than the pattern-mixture model. The bias increased as

the overall percentage of death increased. None of the models were stable at estimating

the mean number of activities of daily living (ADL). Black males experienced alarmingly

high relative biases than the other race-gender groups for ADL. One explanation is
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because this groups estimation depends on the estimation of all parameters.

2.7 Discussion

By considering survival in the estimation of depression, systolic and diastolic blood

pressures, and functional dependency over time, the analyses presented in this paper

contribute to the previous understanding of the nature of these outcome through a new

level of reliability of the estimates as well as depictions of the outcomes trajectories.

Because the NC EPESE was part of an inaugural study on older adults living in

America and the only dataset that allowed for adequate race comparison, the dataset

has been studied intensely, in particular, for the outcome of depression. Blazer et al.

(1991) examined the association of age and depression using a cross-sectional regression

analysis. Their analysis concluded that age and depression had an indirect relationship

when adjusted for gender, income, physical disability, cognitive impairment, and social

support. Although our analysis did not account for some of the key covariates associated

with depression, each of the six models supported a direct association of aging and

depression, except for the trend for those black males who died before the second follow-

up. Furthermore, the graphs presented in 2.6(a)-(f) offer one of the few longitudinal

trends of depression on the North Carolina Established Populations of Epidemiological

Studies of the Elderly (NC EPESE). Thus, these results contributes to what we know

about depression over time for older adults.

Previous studies of blood pressure of the NC EPESE have asserted many conclusions

of hypertension in relation to race (Howard et al., 2009; Blazer et al., 2001; Gold et al.,

1996; Svetkey et al., 1993). For example, blacks in the NC EPESE have been previously

shown to have higher prevalence rates of hypertension than whites. Moreover, unlike

systolic blood pressure, diastolic blood pressure for older adults has been reported to

only be associated with mortality for whites (Blazer et al., 2001) Figure 2.7(f) supports
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that when survival status and hypertension are modeled together, a gender association

is more prominent than a race association. The joint model supports similar results by

gender in terms of both baseline values and rates of change in the probability of being

alive and healthy over time. However, race associations with blood pressure are visible

in the analysis of diastolic blood pressure.

Currently, mobile disability is defined as difficulty or dependency in carrying out

activities essential to independent living and desired activities important to ones

quality of life; it is typically screened through Activities of Daily Living (ADL) and

Instrumental Activities of Daily Living (IADL) citeptopinkova. Although this study

utilized only the ADL score to define limitations of physical functioning, the previously

reported racial gap in disability remained supported citeptaylor.

The major contribution of this study was the use of advanced statistical methods

that included survival status in the estimation of the longitudinal means of outcomes

from a subpopulation (NC EPESE) of the popular longitudinal study of older adults.

Additionally, the appropriate populations and aims of these models were presented.

These current findings, along with previous results of these outcomes, strengthen the

understanding of accurate changes of the outcome measures as a cohort of older adults

become older.

From the simulations with death indications that did not depend on the covariates

or the outcome (MCAR), we noticed that the estimated means for the immortal cohorts,

completers, and dynamic cohort of survivors five years post-baseline were reliable at

estimating the systolic and diastolic blood pressures, despite the burden of death.

However, there is evidence that the pattern-mixture carries a slight increase of bias

in its estimation of the means of the race-gender groups. The mean depression scores

were estimated by the different models with very little bias, generally, but the models

performed better when the sample size increased and the percentage of those who died
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was lower. The relative biases of the estimates of the mean of activities of daily living

scores were notably larger than the other outcomes, especially for black males. The

mean estimates for black males were dependent on all of the parameter estimates. The

reason for this occurrence is not quite clear, but we suspect that there may exist a

vulnerability in our simulation used to generate the data. With the exception of the

results from ADL, the models seem to perform quite well when the missing assumption

is MCAR.

In conclusion, the target of this study was to revisit the analysis of outcomes

from the NC EPESE and re-analyze the outcomes with models that integrate survival

status. The results presented in this study extend our knowledge of these outcomes

longitudinally and provide descriptions of survival-incorporating methods. Further, the

simulations offer insight that the different means produced by the survival incorporating

methods are similar when compared to the initial population of interest.
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Figure 2.1: Data imputation decision chart.

 

NC EPESE Participants 

Alive at 

the end of 

Study? Yes (Survivors) No (Decedents) 

Complete 

Data? 

Data up 

to death? 

Yes No Yes No 

No 

Imputation 

Imputation 

for all 

missing 

waves 

No 

Imputation 

Imputation 

for missing 

waves prior 

to death 

Describes the subjects whose outcome variables are subject to imputation in the North Carolina
EPESE.
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Figure 2.2: Mean Depression Score for those > 85 and those ≥ 85 years old.

The p value in each panel corresponds to the test of the difference in the rate of change due to death.

Figure 2.3: Mean Systolic Blood Pressure for those > 85 and those ≥ 85 years old.

The p value in each panel corresponds to the test of the difference in the rate of change due to death.

Figure 2.4: Mean Diastolic Blood Pressure for those > 85 and those ≥ 85 years old.

The p value in each panel corresponds to the test of the difference in the rate of change due to death.
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Figure 2.5: Mean Functional Score for those > 85 and those ≥ 85 years old.

The p value in each panel corresponds to the test of the difference in the rate of change due to death.
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Figure 2.6: Fitted trajectories of CES-D scores for EPESE participants
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Figure 2.7: Fitted trajectories of systolic blood pressure for EPESE participants
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Figure 2.8: Fitted trajectories of diastolic blood pressure for EPESE participants

 

a)  Unconditional  
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Figure 2.9: Fitted trajectories of ADL Scores for EPESE participants
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Table 2.1: CES-D - Relative Bias (×100) and (SE) of mean estimates five years post-baseline based on 1000 simulated
samples with three follow-up times at varying percentages of death per wave

Sample size= 100 Sample size= 500 Sample size= 1000
Model Mean 10% 10-20-30% 30% 10% 10-20-30% 30% 10% 10-20-30% 30%

Unconditional White Females -0.60 -1.21 0.16 0.20 0.10 0.39 -0.10 0.00 -0.33
(0.0063) (0.0065) (0.0074) (0.0026) (0.0028) (0.0031) (0.0020) (0.0020) (0.0024)

White Males -1.19 -1.49 -0.51 0.25 0.28 0.30 0.13 0.39 0.46
(0.0089) (0.0093) (0.0107) (0.0040) (0.0042) (0.0049) (0.0027) (0.0029) (0.0034)

Black Females 0.45 -0.17 0.51 0.23 0.42 0.51 -0.28 -0.18 -0.33
(0.0052) (0.0053) (0.0062) (0.0022) (0.0023) (0.0027) (0.0156) (0.0017) (0.0019)

Black Males 0.23 -0.12 0.06 0.37 0.23 0.54 -0.02 0.22 0.45
(0.0077) (0.0080) (0.0090) (0.0035) (0.0035) (0.0041) (0.0024) (0.0025) (0.0029)

Pattern White Females 0.26 0.48 0.27 -0.12 -0.42 -0.54
Mixture (0.0028) (0.0036) (0.0043) (0.0021) (0.0025) (0.0032)
Completers White Males 0.67 0.58 1.08 0.06 0.79 0.50

(0.0044) (0.0054) (0.0064) (0.0029) (0.0037) (0.0045)
Black Females 0.01 0.19 0.44 -0.28 -0.54 -0.26

(0.0024) (0.0031) (0.0036) (0.0017) (0.0021) (0.0024)
Black Males 0.42 0.32 1.28 -0.07 0.61 0.82

(0.0038) (0.0046) (0.0054) (0.0025) (0.0032) (0.0040)
Partly White Females -0.70 -1.49 0.08 0.23 0.26 0.38 -0.13 -0.22 -0.44
Conditional (0.0064) (0.0069) (0.0080) (0.0027) (0.0030) (0.0034) (0.0020) (0.0021) (0.0026)

White Males -1.02 -1.14 -0.63 0.45 0.48 0.58 0.12 0.54 0.55
(0.0093) (0.0099) (0.0118) (0.0042) (0.0045) (0.0052) (0.0027) (0.0030) (0.0036)

Black Females 0.26 -0.38 0.52 0.11 0.22 0.46 -0.30 -0.35 -0.35
(0.0054) (0.0057) (0.0068) (0.0022) (0.0025) (0.0029) (0.0016) (0.0019) (0.0020)

Black Males 0.26 0.24 0.06 0.38 0.49 0.75 -0.03 0.39 0.64
(0.0079) (0.0084) (0.0099) (0.0036) (0.0038) (0.0044) (0.0024) (0.0027) (0.0032)
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Table 2.2: Systolic BP - Relative Bias (×100) and (SE) of mean estimates five years post-baseline based on 1,000 simulated
samples with three follow-up times at varying percentages of death per wave

Sample size= 100 Sample size= 500 Sample size= 1000
Model Mean 10% 10-20-30% 30% 10% 10-20-30% 30% 10% 10-20-30% 30%

Unconditional White Females -0.07 -0.14 -0.01 0.02 0.01 0.04 -0.02 -0.01 -0.04
(0.0006) (0.0006) (0.0007) (0.0002) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)

White Males -0.07 -0.11 -0.04 0.01 0.01 0.01 0.01 0.03 0.03
(0.0007) (0.0007) (0.0008) (0.0003) (0.0003) (0.0004) (0.0002) (0.0002) (0.0003)

Black Females 0.05 -0.01 0.06 0.02 0.02 0.04 -0.03 -0.02 -0.03
(0.0005) (0.0005) (0.0006) (0.0002) (0.0002) (0.0003) (0.0002) (0.0002) (0.0002)

Black Males 0.05 0.02 0.02 0.01 0.02 0.01 0 0.02 0.04
(0.0007) (0.0007) (0.0008) (0.0003) (0.0003) (0.0004) (0.0002) (0.0002) (0.0003)

Pattern White Females -0.03 0.04 0.01 -0.02 -0.05 -0.05
Mixture (0.0003) (0.0003) (0.0004) (0.0002) (0.0002) (0.0003)
Completers White Males 0.05 0.04 0.06 0.01 0.06 0.05

(0.0003) (0.0004) (0.0005) (0.0002) (0.0003) (0.0003)
Black Females -0.00 0.01 0.05 -0.03 -0.05 -0.03

(0.0002) (0.0003) (0.0004) (0.0002) (0.0002) (0.0002)
Black Males 0.02 0.00 0.11 -0.00 0.05 0.07

(0.0003) (0.0004) 0.0005) (0.0002) (0.0003) (0.0003)
Partly White Females -0.07 -0.15 -0.00 0.02 0.02 0.03 -0.02 -0.02 -0.04
Conditional (0.0006) (0.0006) (0.0007) (0.0002) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)

White Males -0.07 -0.09 -0.04 0.02 0.02 0.02 0.01 0.03 0.04
(0.0007) (0.0008) (0.0009) (0.0003) (0.0003) (0.0004) (0.0002) (0.0002) (0.0003)

Black Females 0.05 -0.22 0.07 0.01 0.02 0.05 -0.03 -0.02 -0.03
(0.0005) (0.0006) (0.0006) (0.0002) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)

Black Males 0.05 0.04 0.03 0.01 0.02 0.04 -0.01 0.03 0.47
(0.0007) (0.0007) (0.0008) (0.0003) (0.0002) (0.0004) (0.0002) (0.0002) (0.0003)
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Table 2.3: Diastolic BP - Relative Bias (×100) and (SE) of mean estimates five years post-baseline based on 1,000 simulated
samples with three follow-up times at varying percentages of death per wave

Sample size= 100 Sample size= 500 Sample size= 1000
Model Parameters 10% 10-20-30% 30% 10% 10-20-30% 30% 10% 10-20-30% 30%
Unconditional White Females -0.07 -0.13 -0.01 0.02 0.01 0.03 -0.02 -0.01 -0.04

(0.0005) (0.0006) (0.0007) (0.0002) (0.0002) (0.0003) (0.0002) (0.0002) (0.0002)
White Males -0.07 -0.10 -0.05 0.00 0.00 0.00 0.00 0.02 0.03

(0.0006) (0.0007) (0.0008) (0.0003) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)
Black Females 0.04 -0.01 0.06 0.02 0.02 0.04 -0.03 -0.02 -0.03

(0.0005) (0.0005) (0.0006) (0.0002) (0.0002) (0.0002) (0.0001) (0.0002) (0.0002)
Black Males 0.04 0.02 0.02 0 0.02 0.01 0.00 0.02 0.03

(0.0006) (0.0006) (0.0007) (0.0003) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)
Pattern White Females 0.02 0.04 0.01 -0.02 -0.04 -0.04
Mixture (0.0002) (0.0003) (0.0004) (0.0002) (0.0002) (0.0003)
Completers White Males 0.03 0.03 0.05 0.00 0.05 0.04

(0.0003) (0.0004) (0.0004) (0.0002) (0.0003) (0.0003)
Black Females -0.00 0.01 0.05 -0.02 -0.04 -0.02

(0.0002) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)
Black Males 0.01 -0.00 0.09 -0.01 0.04 -0.06

(0.0003) (0.0003) (0.0004) (0.0002) (0.0002) (0.0003)
Partly White Females -0.07 -0.14 -0.04 0.02 0.01 0.02 -0.02 -0.02 -0.04
Conditional (0.0005) (0.0006) (0.0007) (0.0002) (0.0002) (0.0003) (0.0002) (0.0002) (0.0002)

White Males -0.07 -0.09 -0.04 0.01 0.01 0.01 0.00 0.02 0.03
(0.0006) (0.0007) (0.0008) (0.0003) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)

Black Females 0.04 -0.02 0.06 0.01 0.02 0.04 -0.03 -0.02 -0.03
(0.0005) (0.0005) (0.0006) (0.0002) (0.0002) (0.0002) (0.0001) (0.0002) (0.0002)

Black Males 0.04 0.03 0.02 0.00 0.01 0.03 -0.00 0.02 0.04
(0.0006) (0.0006) (0.0007) (0.0003) (0.0003) (0.0003) (0.0002) (0.0002) (0.0002)
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Table 2.4: ADL - Relative Bias (×100) and (SE) of mean estimates five years post-baseline based on 1,000 simulated samples
with three follow-up times at varying percentages of death per wave

Sample size= 100 Sample size= 500 Sample size= 1000
Model Parameters 10% 10-20-30% 30% 10% 10-20-30% 30% 10% 10-20-30% 30%
Unconditional White Females -1.79 -2.34 -1.18 -0.90 -1.01 -0.77 -1.27 -1.20 -1.46

(0.0055) (0.0057) (0.0064) (0.0023) (0.0024) (0.0027) (0.0017) (0.0018) (0.0020)
White Males 0.94 0.69 1.36 2.00 2.02 2.01 1.98 2.18 2.23

(0.0072) (0.0074) (0.0084) (0.0032) (0.0033) (0.0038) (0.0022) (0.0023) (0.0027)
Black Females 1.02 0.53 1.1 0.81 0.79 1.02 0.39 0.47 0.35

(0.0044) (0.0448) (0.0051) (0.0019) (0.0020) (0.0022) (0.0013) (0.0014) (0.0015)
Black Males 3.66 3.44 3.52 3.49 3.59 3.61 3.37 3.56 3.73

(0.0059) (0.0061) (0.0068) (0.0027) (0.0028) (0.0031) (0.0018) (0.0019) (0.0022)
Pattern White Females -0.86 -0.65 -1.01 -1.25 -1.52 -1.52
Mixture (0.0025) (0.0033) (0.0038 (0.0019) (0.0022) (0.0028)
Completers White Males 2.35 2.29 2.61 1.93 2.49 2.32

(0.0036) (0.0044) (0.0052) (0.0024) (0.0030) (0.0036)
Black Females 0.64 0.73 1.05 0.41 0.22 0.44

(0.0021) (0.0027) (0.0031) (0.0015) (0.0018) (0.0021)
Black Males 3.57 3.41 4.39 3.34 3.86 3.97

(0.0029) (0.0036) (0.0043) (0.0020) (0.0025) (0.0031)
Partly White Females -1.88 -2.52 -1.20 -0.89 -0.87 -0.85 -1.26 -1.35 -1.45
Conditional (0.0056) (0.0060) (0.0068) (0.0023) (0.0026) (0.0029) (0.0018) (0.0018) (0.0022)

White Males 1.02 0.96 1.30 2.15 2.18 2.20 1.97 2.26 2.33
(0.0074) (0.0078) (0.0091) (0.0033) (0.0035) (0.0041) (0.0022) (0.0024) (0.0028)

Black Females 0.93 0.38 1.57 0.73 0.78 1.06 0.39 0.37 0.36
(0.0045) (0.0047) (0.0055) (0.0019) (0.0021) (0.0024) (0.0014) (0.0015) (0.0016)

Black Males 3.73 3.69 3.56 3.53 3.58 3.89 3.36 3.67 3.82
(0.0060) (0.0064) (0.0073) (0.0027) (0.0029) (0.0033) (0.0019) (0.0020) (0.0024)
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CHAPTER 3: ASSESSMENT OF MODELS FOR ANALYZING
LONGITUDINAL OUTCOMES TRUNCATED DUE TO

DEATH AND NON-PARTICIPATION

3.1 Introduction

Very few if any observational studies that collect repeated measures on a sample

over several waves are able to achieve complete data collection. This is especially

true for large observational studies of older adults. Rhodes (2005), who performed a

meta-analysis on the characteristics of attrition as reported in 57 studies that analyzed

participants 50 years and older in 13 prestigious gerontological journals over a span of

30 years, reported an average overall attrition rate of 34%. Several reasons contributed

to this drop-out, but death, illness, and lack of interest were typically the main culprits.

Over the past several decades, the characteristics of those participants in the different

categories have been established. For instance, those who are lost to follow-up in earlier

waves are typically lost due to lack of interest; however, the individuals who are lost

at later follow-up occasions are usually lost because of illness or death (Norris, 1985;

Schaie, 1996). Furthermore, those who are not retained in the study due to illness or

death have been shown to perform lower biologically, cognitively, and functionally than

those that leave for other reasons (Rhodes, 2005; Rabbit et al., 1994).

Generally, older adults, who are lost to attrition are outperformed by those who

remain. In this situation, internal and external validity are compromised from the

overrepresentation of healthier participants and underrepresentation of the effect on

the response as individuals get older. To protect from bias, it is imperative to account
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for attrition. Moreover, treating different reasons for loss-to-follow-up as the same may

not be valid or the best practice.

Several methods have been proposed to account for non-response and death.

As discussed previously, parametric likelihood models provide valid inference about

the parameters, say β, given the missing data is missing completely at random

(MCAR)(Rubin, 1976). Yet, the estimation methods for incomplete data may induce

selection bias when they implicitly impute the missing data by conditioning on the

observed data. To accommodate left and right censoring in the linear mixed model,

Hughes (1999) modified the E-M algorithm originally posed by Dempster et al. (1981a)

and utilized for the random effect models by Laird and Ware (1982). His procedure

was based on an example of the Monte Carlo E-M Algorithm (MCEM) introduced by

Wei and Tanner (1990). He observed (Qij, Cij) for subject i at time j, where Qij is the

response that could be censored and Cij is the censoring indicator. When the response

is not censored, Cij = 0, then Qij = Yij. Reaching the floor or the ceiling is represented

by Cij = −1 (implies Yij < Qij) and Cij = 1 (implies Yij > Qij), respectively. Just

as in Chapter 2, maximum likelihood estimates can be obtained from this estimation

model by employing the E-M algorithm. Including the new observed variables, Q and

C. The M-step of the algorithm is written as

β̂ =
(
XTŴX

)−1
XTŴE(y|C,Q, θ̂)

D̂ =
N∑
i=1

E
(
did

T
i |Ci,Qi, θ̂

)
/N

σ2 =
N∑
i=1

E
(
eTi ei|Ci,Qi, θ̂

)
/

N∑
i=1

pi

(3.1)

where θ̂ is a vector of values for the model parameters. The E-step involves solving the

expectations in equation (3.1). By letting
∫
yi(C,Q)

denote the integral over all of the yi

that are consisted with the observed Ci and Qi, and letting f denote a generic density
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function, the conditional densities of the covariance components can be written as

f(di|Ci,Qi, θ̂) =

∫
yi(C,Q)

f(di|yi, θ̂)f(yi|Ci,Qi, θ̂)dyi(C,Q)

f(ei|Ci,Qi, θ̂) =

∫
yi(C,Q)

f(ei|yi, θ̂)f(yi|Ci,Qi, θ̂)dyi(C,Q).

(3.2)

Then we have,

E
(
did

T
i |Ci,Qi, θ̂

)
=

∫
di

did
T
i f(di|Ci,Qi, θ̂)ddi

=

∫
di

did
T
i

∫
yi(C,Q)

f(di|yi, θ̂)f(yi|Ci,Qi, θ̂)dyi(C,Q)ddi

=

∫
yi(C,Q)

(∫
di

did
T
i f(di|yi, θ̂)ddi

)
f(yi|Ci,Qi, θ̂)dyi(C,Q)

=

∫
yi(C,Q)

E
(
did

T
i |yi, θ̂

)
f(yi|Ci,Qi, θ̂)dyi(C,Q).

(3.3)

Similarly, we have

E
(
eTi ei|Ci,Qi, θ̂

)
=

∫
yi(C,Q)

E
(
eTi ei|yi, θ̂

)
f(yi|Ci,Qi, θ̂)dyi(C,Q). (3.4)

The quantities E
(
did

T
i |yi, θ̂

)
and E

(
eTi ei|yi, θ̂

)
are the expectations that were given

in the E-step in Chapter 2. Thus, for censored data, the E-step requires averaging

the previous E-step (discussed in Chapter 2) over y, consistent with the observed

censoring pattern. To provide a general solution to the equations (3.3) and (3.4),

Hughes (1999) prescribed using Monte Carlo methods paired with the Gibbs sampler

approach (Gelfand and Smith, 1990). The method requires sampling from yi from
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f(yi|Ci,Qi, θ̂) and then using the sample to compute

E
(
did

T
i |Ci,Qi, θ̂

)
≈

L∑
l=1

E
(
did

T
i |yli, θ̂

)
/L

E
(
eTi ei|Ci,Qi, θ̂

)
≈

L∑
l=1

E
(
eTi ei|yli, θ̂

)
/L

E
(
yi|Ci,Qi, θ̂

)
≈

L∑
l=1

yli/L

(3.5)

where yli ∼ f(yi|Ci,Qi, θ̂). The L samples are generated through the Gibbs sampler

approach which requires an initial value of yi that is chosen from a distribution that

is close to f(yi|Ci,Qi, θ̂). Once an initial value has been selected, new values of yi

can be generated by iteratively sampling from the univariate conditional distributions

given as f(yij|yik:k 6=j, θ̂), for all j = 1, . . . , pi where Cij 6= 0.

The more popular methods suggested for modeling both non-participation and

death are semi-parametric regression methods through weighting. Appropriately,

these models are known as weighting generalized estimation equations (WGEE). The

models proposed are usually modifications of the class of weighted estimating equations

introduced by Robins et al. (1995). These models have been shown to provide consistent

and asymptotically normal estimators of regression parameters given the probability of

non-response at a given time t, which depends only on the past values of covariates and

responses up to time t, that is, t− 1. Further, the probability of a non-response model

can be specified given the past observed data. These models are preferred because

they are typically computationally simple and do not require the joint modeling of

the response and missing mechanism (Rosenbaum, 1987). Rajan and Leurgans (2010)

presented a weighted generalized estimation equations approach that accounts for death

and monotone non-participation by treating the two categories of attrition as different

events and modeling the two events separately.
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Additionally, Kurland and Heagerty (2005) described handling monotone non-

response in the regression conditioned on being alive (RCA) models. Shardell and

Miller (2008) extends the literature on RCA models describing a weighted generalized

estimating equation that estimates outcomes on those who are alive and considers death

and non-monotone missing of time varying covariates and outcomes. The Rajan and

Leurgans (2010) and Kurland and Heagerty (2005) approaches are presented below.

Both models begin with the marginal mean regression model of yi given Xi,

E(yi|Xi) = g−1(Xiβ).

This is the generalized linear model described in equation (1.3). Under missing

completely at random (MCAR), these models have been shown to have consistent and

asymptotically normal estimators of the regression parameters by solving the following

generalized estimating equation (GEE):

U(β̂) = N−1/2
N∑
i=1

DT
i V

−1
i (yi − µi) = 0, (3.6)

where yi is a vector of responses for subject i, µi = E(yi), Di = ∂µ/∂βT , and Vi is

a pi × pi invertible working covariance matrix of yi, where pi is the length of yi and

Vi = φA
1
2
i Ri(α)A

1
2
i . Ai is an (pi× pi) diagonal matrix with a variance function that is

determined by the assumed probability distribution of the outcomes along the diagonal,

and φ is a dispersion parameter that may be known or may be estimated from the data

dependent upon the distribution assumption.

Rajan and Leurgans (2010) proposed a class of weighted estimating equations

with two indicators of missing patterns–due to non-response and death. This was

accomplished by defining two indicator variables Rij and Sij to indicate non-response

and death, respectively. Three states were defined:
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1. Rij = Sij = 0 signifies that the subject i was observed at occasion j.

2. Rij = 0 and Sij = 1 denotes that subject i was decease by time j. Death implies

a monotone missing pattern, that is, if Sij = 1 then Si(j+1) = 1.

3. Rij = 1 and Sij = 0 indicates that subject i is alive but was not observed at time

j.

The non-participation missing pattern was assumed to be monotonic. Moreover,

covariates were assumed to have complete data. Further, the random variable pair

(Rij, Sij) was assumed to satisfy the following probabilistic model for a subject being

responsive or observed:

P (Rij = Sij = 0|Ri(j−1) = Si(j−1) = 0, Xij, yij)

= P (Rij = Sij = 0|Ri(j−1) = Si(j−1) = 0, Xi(j−1), yi(j−1))

= P (Rij = 0|Ri(j−1) = Si(j−1) = 0, Xi(j−1), yi(j−1))

× P (Sij = 0|Ri(j−1) = Si(j−1) = 0, Xi(j−1), yi(j−1))

(3.7)

The above equation shows that the joint probability of the two indicator random

variables given the past covariates and responses can be factored into two conditional

probability distributions. These conditional probabilities of the non-participation

and death indicators must be bounded and not equal to 0 to ensure consistent and

asymptotic normal estimates (Robins and Greenland, 2000). Under this assumption,

the probability of being responsive does not depend on a subject’s current or future

responses, which are akin to the missing at random assumption (MAR)(Rubin, 1976).

By assuming (3.7), we are able to identify E(yij|Xij) in the presence of missing

outcomes due to death and non-response in terms of the observed random variables,
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Rij and Sij, as

E(yij|Xij) =

∫ ∫
. . .

∫
E(yij|Rij, Sij, Xij, yi(j−1))×

j∏
t=1

dF (yit|Rit.Sit, Xit, yi(t−1))dyij

(3.8)

This estimate as described is a weighted average of E(yij|Rij, Sij, Xij, yi(j−1)) with the

specific weights
∏j

t=1 f(yij|Rij.Sij, Xij, yi(j−1)). If we denote ψij = P (Rij = Sij =

0|Ri(j−1) = Si(j−1) = 0, Xi(j−1), yi(j−1)), then ψij can be defined using a vector of

q × 1 unknown parameters α. That is, ψij = ψij(α) which is usually chosen to be a

multinomial function parameterized by α. Next, we define πij = ψi1(α)× · · · × ψij(α)

to be the probability that subject i responds at time j. When assumption (3.7) holds,

πij(α) is the conditional probability of observing participant i at time j given past

data. This leads to a diagonal matrix of weight observations for subject i of the

form Φi(α) = diag((1− ri1)(1− si1)/πi1(α), . . . , (1− rij)(1− sij)/πij(α)). In order to

improve efficiency, the generalized estimating equations described in (3.6) was modified

to include data from individuals with incomplete data. This was accomplished by

adding a term with zero expectations to the estimating equations, and defining the

new generalized estimating equation as

U(β̂, α̂) = N−1/2
N∑
i=1

{
DT

i V
−1
i Φi(α̂)(yi − µi)− (Φi(α̂)− 1)φ(yi; β̂, α̂)

}
= 0 (3.9)

where Φi(α̂) is the diagonal matrix of weights for subject i and φ(yi; β̂, α̂) is the

conditional probability of yi given the covariates and the observed response data.

Using the form of the Horvitz-Thompson estimator (Horvitz and Thompson, 1952),

the estimator of the mean is given as

µ̂ = N−1
N∑
i=1

{
(1−Ri)(1− Si)yi

π(Xi, α̂)
− (1−Ri)(1− Si)− π(Xi, α̂)

π(Xi, α̂)
E(yi|Ri.Si,Xi)

}
.

(3.10)
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Similar to Rajan and Leurgans (2010), Kurland and Heagerty (2005) modified their

regression conditioning on being alive (RCA) models by adapting the inverse probability

of censoring-weighted generalized estimating equations (IPCW-GEE) (Robins and

Greenland, 2000). This approach, as seen above, involves modeling the drop-out

pattern. To apply IPCW-GEE to estimate µAij = E(yij|Xij, Si > t) = E(yij|Xij, Aij =

1) weights, πAij must be estimated so that

E

(
Rij

πij
yij|Xij, Si > t

)
= E(yij|Xij, Si > t),

where Rij reflects the missing status and πAij = P (Rij = 1|Xi(j−1), Yi(j−1), Si > t).

Additionally, Kurland and Heagerty (2005) offer a hierarchy of missingness of RCA

models to highlight when drop-out is ignorable and to define how estimation methods

can be altered to accommodate missing data (Table 3.1). In the case of missing

completely at random (MCAR), P (Rij = 1|yi1, . . . , y1(j−1), yij, Si > tj) = P (Rij|Si >

tj). By taking the expected value with respect to the joint probability of the response

(y) and the pattern of dropout R given the subject being alive (Aij = 1), estimates of

βA can be shown to be consistent.

Ey,R|A
[
U(βA)

]
= Ey,R|A

{
N∑
i=1

pi∑
j=1

Aij
∂µy|A

∂β
Rij(yij − µy|Aij )

}

=
N∑
i=1

pi∑
j=1

AijEy,R|A

[
Rij

∂µy|A

∂β
(yij − µy|Aij )

]

=
N∑
i=1

pi∑
j=1

AijEy|A
[
∂µy|A

∂β
(yij − µy|Aij )ER|y,A(Rij = 1|Aij)

]

=
N∑
i=1

pi∑
j=1

AijEy|A
[
∂µy|A

∂β
(yij − µy|Aij )

]
P (Rij|Aij = 1)

= 0, if µAij = E(yij|Xij, Aij = 1).

(3.11)
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The above equation shows that under this missing assumption, estimation of βA is

consistent if the model is specified correctly. MCAR missing does not affect the

consistency of the estimates but could impact the efficiency of regression estimators

of βA.

Under the missing at random (MAR) assumption, we have

P (Rij = 1|yi1, . . . , y1(j−1), yij, Si > tj)

= P (Rij = 1|yi1, . . . , y1(j−1), Si > tj)

= πAij

(3.12)

For this case, it can be shown that the dropout process is not ignorable and must be

modeled correctly to obtain valid inference about µAij. On the other hand, the model of

survival is ignorable. Again, we weight the quasi-score equation by the inverse of the

censoring weights, πAij = P (Rij = 1|yi1, . . . , yi(j−1), Si > tj) and take the expectation of

the observed data distribution to obtain

Ey,R|A
[
U(βA)

]
=

N∑
i=1

pi∑
j=1

AijEy|A

[
ER|y,A

(
Rij

πAij

)
∂µy|A

∂β
(yij − µy|Aij )

]

=
N∑
i=1

pi∑
j=1

AijEy|A

[
πAij
πAij

∂µy|A

∂β
(yij − µy|Aij )

]
if Rij is MAR

= 0 if µAij = E(yij|Xij, Si > tj).

(3.13)

Whereas MCAR and MAR model the missing pattern given being alive, Si > tj,

MCAR-S and MAR-S models the missing pattern conditioned on being alive and

survival time, Si = s, s > tj. These missing assumptions can accommodate dropout for

RCA data in a similar manner using the IPC weights as cited in Table 3.1. Shardell

and Miller (2008) extended the work of Kurland and Heagerty (2005) to show how to

specify and estimate appropriate weights for RCA models for non-monotonic missing
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in the outcome and covariates.

3.2 Vulnerabilities of the Survival Incorporating Models

Unconditional models have been described as being inappropriate if death is

dependent on observed and unobserved responses, f(R|yo,ym). In Chapter 2, evidence

was presented to suggest that missing due to death is missing not at random (MNAR)

for each response – depression, systolic and diastolic blood pressures, and physical

functioning dependence. Further challenges of the unconditional model are to estimate

unbiased estimates of the population regression parameters with missing due to non-

response.

As defined and when used with missing due to death only, the pattern-mixture and

terminal decline methods regress the response value over complete data (sample) for

the population of interest. However, the inclusion of non-response for other reasons

compromises the ability of the estimation process to produce unbiased estimators.

Subsequently, the parameters of the regression mean will be under the same scrutiny

as the unconditional models. Under MCAR, the estimates will be unbiased and the

inference will remain valid. Similarly, MAR data will produce unbiased estimates, but

dissimilarly, the target of inference will be altered. Efficiency for either case is not as

strong as it would be under completely observed data.

Without the inverse probability weights and the correct specifications of the missing

pattern and mean model, the generalized estimating equations would be unlikely to

produce a consistent and asymptotically normal regression estimator in the presence of

non-MCAR non-response. The methods of principal stratification, partly conditional,

and joint, as models defined in this dissertation, evoke generalized estimating equations

to contribute to the estimation of their mean regression parameters. Those components

dependent on GEE for estimation will be susceptible to bias.
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3.3 NC EPESE Data with non-participation and death

For the purpose of this analysis, 26 of the subjects were excluded because they

identified themselves as other than black or white. Another four subjects were not

included because their ages were less than 65 at the baseline survey. The analysis

sample was completed by excluding one subject for not providing a value for any of the

outcomes for the initial interview. The resulting baseline dataset was 34.9% male and

54.6% black with a mean age of 73.57-years-old. During the 10-year study period 2,045

of the 4,131 remaining subjects in the sample had death dates before the end of the

study. A total of 712 individuals either died during the study but dropped from the

study at a survey that was prior to the measurement occasion of their deaths or survived

during the surveillance period but exited the study before the study concluded. When

determining missing status, individuals were only categorized as missing if all of the four

outcomes had missing values at a given measurement occasion. Those subjects who had

a date of death that occurred before the end of the surveillance period and a response

for the survey period that occurred just before death were considered as dropout due to

death. Participants that had a response for at least one of the outcome measurements

at the third follow-up were considered as completers. All other individuals were labeled

as the cohort that had non-response for other reasons. The cohort of subjects with non-

response due to death was more likely to be black, male, and older on average than the

cohorts of the completers or those with non-response for other reasons (Table 3.2).

3.4 Results

Figures 3.1-3.4 present the resulting trajectories of the analysis of the NC EPESE

data with non-response and death using the different proposed methods for assessing the

rates of change based on research inquiries and truncation due to death for depression
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scores (CES-D), systolic and diastolic blood pressures, and physical function (ADLs),

respectively, for those subjects who were 73.57-years-old at baseline. In all of the

models, the baseline covariates were age (centered about the baseline mean), race (1

if subjects identified as black and 0 if subjects identified as white), and gender (1 if

subjects are identified as male and 0 if subjects are identified as female). Table 3.3

provides the annual rates of change for the first five years for each regression method

by outcome for the data with missingness due to death and non-response and for the

data with missingness due to death only (imputed values).

3.4.1 Depression

In the previous analysis of imputed data, the unconditional method yielded

estimates that were similar across the race-gender groups. This conclusion was upheld

for the unconditional analysis of the dataset without any imputation, except that the

estimates of the rates of change were approximately 0.06 units smaller and the rate of

change was no longer statistically significant. As in the previous unconditional analysis,

the estimates for the intercept, gender, race, and age remained significant for the new

analysis.

Those individuals who did not survive beyond the first follow-up survey

demonstrated a decline in their number of depression symptoms; nonetheless, the

remaining two cohorts exhibited increases in depression symptoms over time. The race-

gender groups for the second follow-up and final follow-up survival cohorts had annual

rates of increase that ranged from 0.04 to 0.06, with the exception of white males in the

second follow-up survival cohort whose slope was 0.16. All of these slopes are less than

the estimated slopes from the analysis of the imputed data (0.10-0.24). Moreover, the

annual rates of change in the existing analysis for the 6- and 10-year survival cohorts

were more similar than their rates in the previous analysis. The effect of the covariates
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had no change from the previous results for those individuals with death dates beyond

the end of the study surveillance period. Only the intercept and gender effects were

statistically significant in the analysis of the data with non-response and truncation due

to death for the first follow-up survival cohort. The age effect, which was significant in

the analysis of the imputed data, was no longer significant for the unaltered dataset.

In the second follow-up survival cohort for depression, intercept and gender remained

significant and race and the effect of gender over time became statistically significant.

The principal stratification method for estimating depression concluded that the

annual rates of change were small and negative across race-gender groups for the present

data analysis, while the results from the previous results were small and positive across

race-gender groups. Over the first five years, as demonstrated in Figure 1c, depression

symptoms had a significant decline annually for the principal stratification model. The

negative slopes in the principal stratification were also seen in the slopes of the race-

gender cohorts for the pattern-mixture model for the first follow-up survival cohort,

yet the baseline values of depressive symptoms were similar to the initial values of the

third follow-up survival cohort (Figures 3.1b-c).

In the terminal decline analysis, black females nearly had no slope, which is 0.12

units lower than the slope of the black females in the terminal decline results of the

imputed data. White females and black males had comparable slopes in the current

analysis, which was similar to the results for the previous data, yet the data analysis

of the NC EPESE without imputation was about 0.07 units lower. In the previous

result, the terminal decline rates of change were akin to the pattern-mixture’s second

follow-up survival cohort conclusions. Nevertheless, the terminal decline findings for

the unaltered dataset do not share this trend. In the previous analysis, the intercept,

gender, and trend effects were significant. These variables remained significant in the

terminal decline analysis of the unaltered data, along with the trend for race becoming
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significant and the age covariate losing significance.

The partly conditional regression of the NC EPESE without imputation resulted in

small and negative annual rates of change for the first five years, while the race-gender

annual rates of change for the partly conditional analysis performed on the imputed

data were small but positive. The slopes for each race-gender are like those reported

from the principal stratification. This was not the case for the imputed data.

The other regression methods resulted in different trends and significant covariates

in their analysis of the dataset that allowed non-response to be missing for non-

death causes than the results from the data with truncation only due to death. In

contrast, the joint model that offers a method to account for the survival and the non-

mortality outcome values simultaneously produced similar annual rates of change for

both datasets.

3.4.2 Systolic Blood Pressure

The unconditional modeling of the systolic blood pressure on the NC EPESE dataset

without imputation resulted in varying annual rates of change for each race-gender

groups, unlike the imputed data results that expressed comparable slopes by gender.

Black men experienced the greatest annual decline (-0.30), which was also true in the

unconditional analysis of the NC EPESE representing non-response only due to death

(-0.24). The decline for white males trailed just behind black males as in the previous

analysis of the death-only dataset, except at a lesser magnitude (-0.17 vs. -0.22).

Black women declined at a rate of 0.06 annually compared to the 0.11 annual decline in

systolic blood pressure for the non-response due to death-only dataset. Unexpectedly,

white females experienced an increased annual rate of change (0.06) instead of a decline

(-0.09) as in the prior results of the analysis of the death-only dataset. Nearly all of

the slopes from the previous model rendered annual rates of change that were similar
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by gender, yet this pattern was not sustained in the current analysis.

Analysis for those individuals who were alive at the 3-year survey but not beyond

concluded with rates of annual change for the female groups that were higher than the

rates of change from the analysis with the modified NC EPESE dataset (Figure 3.2 b).

On the other hand, the slopes for males in the original data were lower than the rate

for males in the imputed data. Notably, the annual rate of change for white males was

drastically different (-1.28 vs. -2.97). Additionally, estimated annual rates of change

for the second follow-up survival cohort were lower for the females in the dataset that

allowed other reasons for non-response than the dataset with only dropout due to death

and higher for the males in the dataset with all missing than the males with death non-

response only with alarming differences for white females (-0.24 vs. -0.55) and black

males (-0.52, -0.31). The analysis for those individuals who were alive until the end

of the study but could have non-response had drastically higher rates of change for

females than the females who did not have non-response. Black males also experienced

an increase but it was more modest. White males in the dataset that had non-response

not due to death produced a smaller annual rate of change than the rate of change for

the males in the dataset with dropout due to death.

Gender and the intercept were statistically significant in the original analysis for

all three survival cohorts. In the pattern-mixture analysis for the data with MCAR

non-response, only the intercept was significant for the first follow-up survival cohort.

Age became significant while the change-over time no longer explained the variation

in the changes in systolic blood pressure for the second follow-up survival cohort. For

the last survival cohort, the trend over time joined gender and intercept as significant

covariates.

All of the race-gender groups for the all-inclusive non-response NC EPESE had

positive estimated slopes for the principal stratification trajectories, whereas the
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estimated slopes for males in the principal stratification analysis of the imputed NC

EPESE experienced a decline. Furthermore, Table 3.3 shows that the slopes from two

datasets are highly dissimilar in magnitude. Moreover, the estimates of the slopes for

females in the non-manipulated NC EPESE were markedly higher than the data with

imputation, 0.51 vs. 0.04 for black females and 0.33 vs. 0.12 for white females.

When comparing the annual rates of change estimates from the analysis completed

on the current NC EPESE and the imputed NC EPESE, the terminal decline estimates

have the least differences. All of the slopes report decreasing trends for each race-gender

group as previous reported from the analysis on the modified dataset. Moreover, the

magnitudes were alike with the exception of the slope reported for white females, which

is lower in magnitude (-0.31 vs. -0.58). In the new analysis, the years from death was

no longer significant, but the intercept and gender effect sustained their significance.

The estimates from the partly conditional model and the joint model were very

similar for the race-gender groups in the present dataset as in the previous imputed

dataset. All of the estimates of rates of change declined; white females had a smaller

decline in the unaltered dataset than in the modified one for the partly conditional

analysis. Almost identical conclusions were produced in both datasets.

3.4.3 Diastolic Blood Pressure

The analysis for the diastolic blood pressure did not have any difference in the

covariates that were statistically significant for the two datasets for any of the methods.

Consequently, the estimated annual rate of change for the first five years was nearly

the same for each of the methods for the two datasets. Notably, in the principal

stratification model the estimates were lower for the data with all types of non-response

than the death-only drop-out dataset, except for white females.
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3.4.4 Activities of Daily Living

Similar to the diastolic blood pressure regression results, the activities of daily

living had almost identical conclusions for each method for both datasets. However,

the inference had some minor changes. The unconditional and the partly conditional

regression analyses of the NC EPESE, allowing all drop-out types, resulted in an

addition of the significance of a race trend. The pattern-mixture, terminal decline,

and joint models had similar annual rates of change and the same significant covariates

for each dataset. The other methods produced almost identical results in the analysis

of the two datasets, but the principal stratification method did not. Each of the annual

rates of increase was lower in the analysis of the non-imputed data than in the imputed

data.

3.5 Simulation of MAR and NMAR Death and Non-Participation

In order to assess the proposed models’ abilities to accurately estimate the means of

the Center for Epidemiologic Studies Depression (CES-D) scores, systolic and diastolic

blood pressures, and activities of daily living (ADL) of a complete dataset without

bias when a subject’s missing status (death or non-response) is dependent on study

covariates and the response, a sample was generated from a theoretical population.

Each of the four outcomes were treated as continuous outcomes and were generated

from the mixed model with a random intercept and slope as described in equation

(2.1). Four waves of longitudinal outcomes were simulated from a normal distribution

with mean Xiβ and covariance Σi = ZiDiZ
T
i + σ2Ii, where D was allowed to be

unstructured. For each outcome, the design matrix Xi consisted of a column vector of

ones for the intercept, a column vector for time of measurements post-baseline (0, 3, 6,

10 years), a column vector of baseline age centered about the mean, a column vector of

indicators for identifying as black, a column vector of indicators for identifying as male,
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a column vector indicating time by race, and a column vector indicating time by sex.

The design matrix of the random effects, (Zi), was constructed as a column vector of

ones for the intercept and a column vector for the time of measurements post- baseline

(0, 3, 6, 10 years). The race-gender combinations values were treated as multinomial

random variables and were generated accordingly, white males (π = 0.16), black males

(π = 0.19), and white females (π = 0.29). Age was simulated while assuming it was

from a normal distribution dictated by the mean and standard deviation in each race-

gender group from the NC EPESE. Similarly, time of measurements mirrored the NC

EPESE. Thus, we assume measurements were only possible at baseline, and 3, 6, and 10

years post-baseline. The values of the parameters β, σ2, and D used in the simulation

are given for each outcome below.

CES-D score: βT =

(
3.243 0.086 0.065 0.356 −0.686 0.001 0.003

)

Σi = Zi

 5.32 −0.14

−0.14 0.39

ZT
i + 7.16Ii

Systolic BP: βT =

(
143.29 0.088 0.002 0.756 −2.326 −0.017 −0.136

)

Σi = Zi

139.69 −3.38

−3.38 0.91

ZT
i + 314.05Ii
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Diastolic BP: βT =

(
77.258 0.799 −0.289 2.775 1.529− 0.0006− 0.010

)

Σi = Zi

47.66 −2.26

−2.26 0.39

ZT
i + 92.94Ii

ADL score: βT =

(
0.742 0.211 0.114 0.243 0.133 0.001 −0.063

)

Σi = Z

 1.52 −0.002

−0.002 0.04

ZT + 1.78Ii

A 1,000 samples of complete data were generated for each sample size – N = 100,

N = 500, and N = 1000. After the complete datasets were generated, missing

indicators were created to represent participants leaving the study because of death

or non-participation. Subjects in the simulated datasets became at risk of death or

dropout following baseline responses.

For convenience, an ordinal ranking for the missing categories, such as death (k =

1), non-response (k = 2), and completers was assumed. Following this assumption,

a cumulative regression model was used to simulate missing categories with known

probabilities for each wave for each outcome with dependence on the baseline covariates

and the previously observed response values. Missing at random due to death and non-

response was modeled using the cumulative regression model described below:

logit(γik) = logit[P (yi ≤ k)] = ηk + xTβ (3.14)

with xi representing a vector of the covariates – sex (male=1, 0 otherwise), race
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(black=1, 0 otherwise), baseline age centered about the baseline mean, lag measurement

occasion, ti(j−1) (lag wave), the additional effects on the probability over the lag

measurement occasion given one identifies as male (male-lag wave interaction) and

given one identifies as black (black-lag wave interaction), and the previous (lag) response

outcome value (yi(j−1))– and β representing their corresponding regression parameters:

βT =

(
0.1 0.05 0.001 0.001 −0.02 −0.02 .01

)
. ηk represents the intercept for

the k cumulative logit. The ηk by outcome is given as

CES-D Score:

η1
η2

 =

−1.6

−1.2

 Systolic BP:

η1
η2

 =

−3.0

−2.6



Diastolic BP:

η1
η2

 =

−2.4

−2.0

 ADL:

η1
η2

 =

−1.6

−1.2


Using the estimates of the probabilities as a parameter in a random Bernoulli generator,

these models led to 31% missing due to death and 13% missing due to non-response

for each outcome.

Non-missing at random (NMAR) indicators were simulated in a similar manner. For

the NMAR assumption, we allow the probabilities to depend on the current response

outcomes (yij). The design matrix, xi, described above replaces ti(j−1) with tij and

yi(j−1) with yij. The parameter vector, βT and the outcome-specific intercepts, ηk’s,

remain the same as defined for the previous MAR models. Using the probabilities

estimated from the new cumulative models, we obtained 30% of the individuals missing

due to death and 13% missing due to non-participation for each outcome.

3.6 Simulations Results

We chose to fit the unconditional, pattern-mixture, and partly conditional models

as described earlier for each of the 1,000 samples of the N = 500 and N = 1000
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simulated datasets with the MAR and NMAR missing profiles. All analyses were

performed using SAS v9.2. For the unconditional and pattern-mixture models,

maximum likelihood estimation was provoked. The partly conditional models were

estimated by generalized estimating equations using an identity working correlation

matrix and empirical standard errors to account for the repeated continuous measures

per subject. The bias of the estimation for each mean per race-gender combination was

computed. Tables 3.4 - 3.7 give the mean relative bias for each method.

When the missingness was assumed to be not missing at random (NMAR –

dependent on outcomes that may not be observed), the mean estimates of CES-D scores

and systolic and diastolic blood pressures for the immortal cohort, the study completers,

and the dynamic survival group were underestimated (negative relative bias). Moreover,

the unconditional model, which is modeled using the linear mixed model, was able to

estimate the mean depression and blood pressure values with minimal bias. However,

the linear mixed model was not as robust against bias when only information from the

completers was utilized. As one would expect, the partly conditional model, which is

estimated by generalized estimating equations using an identity working correlation, did

not estimate the means of the outcomes without substantial bias for either missing at

random (MAR) or not missing at random (NMAR). The outcome measuring physical

functional limitations did not support any trends regarding the bias present in the

estimation by missing assumption, samples size, or model type.

3.7 Discussion

Through applying the advanced longitudinal regression methods that incorporate

survival in a dataset with outcomes truncated due to death and non-response and

comparing the results to a previous analysis from a dataset with outcomes truncated

due to death only, we have revealed that some of the methods were able to provide
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similar results despite the presence of non-response for other reasons. The annual rates

of change in Table 3 for the joint models are nearly identical for both sets of data.

Following these results, evidence suggests that the estimates of probability of being

alive and healthy (PAH) were the most steady. The consistency of the PAH values are

estimated in a manner that is similar to the weighted estimating equations.

Despite the percentage of values that were imputed in the previous analysis, annual

rates of change were primarily alike by model for activities of daily living (ADLs) and

diastolic blood pressure. Although Table 3.2 indicates that systolic and diastolic blood

pressures had comparable missingness due to death and non-response, systolic blood

pressure annual rates of change and inference were not similar to previous results for

any of the statistical modeling methods. Correspondingly, depression had dissimilar

outcomes by model but its percentage of non-response not due to death was more than

60% greater than the percentage of non-response for ADLs. One possible explanation

for the models different performance for the outcomes of systolic and diastolic blood

pressures is that the systolic blood pressures contained a higher level of variance than

diastolic blood pressures. This variance in systolic blood pressures was likely reduced

due to the single imputation of those values that were not truncated due to death.

By conducting simulations, we were able to gain distinctive evidence of the models’

performance under varying conditions. These simulation results allowed us to compare

the models’ ability to estimate the true means of the original population when missing

is due to MAR or NMAR death and non-response. The biases for the NMAR

missing scenario for these outcomes were much greater in magnitude and were typically

negative. The underestimation of the population means provided evidence of a possible

”healthy survivor“ effect influencing the estimates. Further, the simulation results

provided evidence that suggest that investigators should be cautious when choosing an

estimation model and should examine which missing assumptions can be considered for
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their data.

3.8 Conclusion

Very few studies have been published on the performance of the proposed models

for non-mortality outcomes truncated due to death. This study presented a comparison

analysis of the models analyzing data with missing due to death with imputed non-

response and data with MAR or NMAR missing due to death and non-response to

better understand how the assumptions affected the estimates and inference. Some

of the proposed methods for analyzing data to account for survival have been shown

to be more sensitive to imputation than other models. The simulations for depression

and blood pressure measures were in support of using unconditional models when death

and non-response is missing at random (MAR). Without proper weights, the simulation

results supported the fact that the linear mixed model is able to produce minimal biased

estimates under the assumption of MAR and assuming the sample is immortal, unlike

the partly conditional model.
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Figure 3.1: Fitted trajectories of CES-D scores for EPESE participants

 

a)  Unconditional              b) Fully Conditional:  Pattern-Mixture 

         

 

c) Fully Conditional:  Principal Stratification          d) Fully Conditional:  Terminal Decline 

          

 

e)  Partly Conditional        f) Joint Model 
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Figure 3.2: Fitted trajectories of systolic blood pressure for EPESE participants

 

    a)  Unconditional             b) Fully Conditional:  Pattern-Mixture 

         

 

c) Fully Conditional:  Principal Stratification          d) Fully Conditional:  Terminal Decline 

          

 

e)  Partly Conditional              f) Joint Model 

 

           

130

135

140

145

150

155

160

0 1 2 3 4 5 6 7 8 9 10

m
m

H
g

Years post baseline

Systolic BP: Unconditional Model

Black Female

White Female

Black Male

White Male

130

135

140

145

150

155

160

0 1 2 3 4 5 6 7 8 9 10

m
m

H
g

Years post baseline

Systolic BP: Pattern Mixture Model

Black Female

White Female

Black Male

White Male

130

135

140

145

150

155

160

0 1 2 3 4 5 6 7 8 9 10

m
m

H
g

Years post baseline

Systolic BP:  Prinicpal Stratification Model

Black Female

White Female

Black Male

White Male

130

135

140

145

150

155

160

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

m
m

H
g

Years to death

Systolic BP: Terminal Decline

Black Female

White Female

Black Male

White Male

130

135

140

145

150

155

160

0 1 2 3 4 5 6 7 8 9 10

m
m

H
g

Years post baseline

Systolic BP:  Partly Conditional Model

Black Female

White Female

Black Male

White Male

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 6 7 8 9 10

P
A

H

Years post baseline

Normal Blood Pressure and Survival:  Joint Model

Black Female

White Female

Black Male

White Male

79



Figure 3.3: Fitted trajectories of diastolic blood pressure for EPESE participants

 

    a)  Unconditional             b) Fully Conditional:  Pattern-Mixture 

         

 

c) Fully Conditional:  Principal Stratification          d) Fully Conditional:  Terminal Decline 

          

 

e)  Partly Conditional             
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Figure 3.4: Fitted trajectories of ADL Scores for EPESE participants

 

a)  Unconditional              b) Fully Conditional:  Pattern-Mixture 

         

 

c) Fully Conditional:  Principal Stratification          d) Fully Conditional:  Terminal Decline 

          

 

e)  Partly Conditional           f) Joint Model 
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Table 3.1: Monotone dropout in the outcome hierarchy and required IPC weights for directly
parameterized RCA models
Dropout Dropout pattern assumption: IPC weights πij
pattern P (Rij = 1|yi, Si = s) becomes for IEE quasi-score

MCAR P (Rij = 1|Si > tj) None: f(Ri) is ignorable
MCAR-S P (Rij = 1|Si = s) πSij = P (Rij = 1|Si = s, Si > tj)

MAR P (Rij = 1|Si > tj , yi1, . . . , yi(j−1)) πAij = P (Rij = 1|yi1, . . . , yi(j−1), St > tj)

MAR-R P (Rij = 1|Si = s, yi1, . . . , yi(j−1)) πSij = P (Rij = 1|yi1, . . . , yi(j−1), Si = s, Si > tj)

Table 3.2: Baseline demographics by drop-out categories for each outcome

Missing Type Outcomes

Depression Systolic Diastolic ADL Overall
BP BP

Due to Death (N) 1416 1581 1570 1760 1787
Male N (%) 611 (43) 658 (42) 655 (42) 729 (41) 742 (41)
Black N (%) 792 (56) 885 (56) 880 (56) 1000 (57) 1015 (57)
Age Mean (sd) 74.9 (7.03) 75.6 (7.34) 75.6 (7.36) 75.8 (7.4) 75.8 (7.38)
Base Outcome Mean (sd) 0.11 (0.32) 143.93 (21.13) 78.88 (12.44) 1.54 (2.19)

Other Reasons (N) 1163 806 818 758 712
Male N (%) 334 (29) 245 (30) 250 (31) 232 (31) 211 (30)
Black N (%) 635 (55) 417 (52) 423 (52) 387 (51) 361 (51)
Age Mean (sd) 74.5 (6.60) 73.3 (6.24) 73.3 (6.22) 73.2 (6.30) 73.2 (6.26)
Base Outcome Mean (sd) 0.10 (0.30) 143.92 (20.69) 79.03 (11.81) 0.61 (1.39)

Completers (N) 1389 1479 1473 1603 1632
Male N (%) 437 (31) 455 (31) 453 (31) 477 (30) 490 (30)
Black N (%) 723 (52) 804 (54) 802 (54) 864 (54) 882 (54)
Age Mean (sd) 70.7 (4.78) 71.2 (5.10) 71.2 (5.08) 71.3 (5.18) 71.3 (5.19)
Base Outcome Mean (sd) 0.73 (0.26) 142.03 (19.47) 79.89 (11.43) 0.45 (1.20)
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Table 3.3: Outcomes’ annual rates of change for each model for the non-response due to all
reasons dataset and non-response due to death-only dataset
Outcomes Black Female White Female Black Male White Male

Models All Death only All Death only All Death only All Death only

Depression
Unconditional 0.01 0.07 0.02 0.09 0.02 0.09 0.03 0.09
Pattern-Mix 1 -0.10 -0.12 -0.10 -0.12 -0.20 -0.03 -0.06 0.04
Pattern-Mix 2 0.05 0.15 0.05 0.15 0.06 0.19 0.16 0.24
Pattern-Mix 3 0.04 0.11 0.04 0.10 0.05 0.12 0.05 0.11
Principal Strat -0.01 0.03 -0.04 0.00 -0.04 0.02 -0.02 0.06
Terminal Dec 0.00 0.12 0.10 0.17 0.08 0.17 0.18 0.22
Partly Cond -0.01 0.07 -0.00 0.06 -0.02 0.06 -0.01 0.05
PAH -0.04 -0.04 -0.04 -0.04 -0.06 -0.06 -0.06 -0.05

Systolic BP
Unconditional -0.07 -0.11 0.06 -0.09 -0.30 -0.24 -0.17 -0.22
Pattern-Mix 1 -1.24 -0.94 -1.12 -0.92 -1.40 -1.66 -1.28 -2.97
Pattern-Mix 2 -0.49 -0.58 -0.24 -0.55 -0.52 -0.31 -0.34 -0.29
Pattern-Mix 3 0.06 0.01 0.21 0.06 -0.26 -0.23 -0.11 -0.18
Principal Strat 0.51 0.04 0.33 0.12 0.16 -0.06 0.07 -0.20
Terminal Dec -0.49 -0.53 -0.31 -0.58 -0.43 -0.38 -0.26 -0.23
Partly Cond -0.11 -0.12 -0.03 -0.12 -0.22 -0.19 -0.14 -0.19
PAH -0.02 -0.01 -0.02 -0.02 -0.03 -0.03 -0.03 -0.03

Diastolic BP
Unconditional -0.79 -0.80 -0.76 -0.80 -0.85 -0.81 -0.82 -0.81
Pattern-Mix 1 -1.49 -1.27 -0.48 -0.40 -1.37 -1.24 -0.36 -0.37
Pattern-Mix 2 -0.88 -0.85 -0.90 -0.91 -1.08 -1.01 -1.10 -1.08
Pattern-Mix 3 -0.74 -0.77 -0.73 -0.78 -0.85 -0.82 -0.84 -0.83
Principal Strat -0.72 -0.84 -0.83 -0.77 -0.77 -0.85 -0.83 -0.84
Terminal Dec -0.49 -0.46 -0.51 -0.49 -0.67 -0.61 -0.70 -0.64
Partly Cond -0.79 -0.79 -0.78 -0.80 -0.78 -0.77 -0.77 -0.78

ADL
Unconditional 0.23 0.23 0.21 0.21 0.16 0.17 0.14 0.15
Pattern-Mix 1 0.47 0.46 0.50 0.47 0.35 0.39 0.38 0.40
Pattern-Mix 2 0.42 0.38 0.42 0.40 0.30 0.29 0.30 0.32
Pattern-Mix 3 0.19 0.21 0.16 0.18 0.12 0.14 0.08 0.11
Principal Strat 0.13 0.17 0.07 0.14 0.09 0.15 0.01 0.10
Terminal Dec 0.33 0.31 0.34 0.33 0.23 0.24 0.24 0.26
Partly Cond 0.17 0.18 0.14 0.16 0.10 0.12 0.08 0.05
PAH -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06
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Table 3.4: CES-D - Relative Bias (×100) and (SE) of mean estimates five years post-baseline based on 1,000 simulated
samples with three follow-up times for MAR and NMAR

Sample size= 100 Sample size= 500 Sample size= 1000
Model Parameters MAR NMAR MAR NMAR MAR NMAR
Unconditional White Females -0.56 -1.54 0.28 -1.09 0.11 -1.29

(0.0069) (0.0068) (0.0029) (0.0030) (0.0022) (0.0021)
White Males -1.15 -2.16 0.38 -1.50 0.49 -1.05

(0.0100) (0.0097) (0.0445) (0.0046) (0.0031 (0.0029)
Black Females 0.04 -0.143 0.22 -0.69 -0.39 -1.21

(0.0055) (0.0056) (0.0024) (0.0024) (0.0018) (0.0017)
Black Males -0.28 -1.87 0.39 0.44 -0.06 -0.89

(0.0083) (0.0084) (0.0041) (0.0039) (0.0027) (0.0026)
Pattern White Females -0.82 -1.60 -0.79 -1.72
Mixture (0.0032) (0.0032) (0.0024) (0.0023)
Completers White Males -1.17 -1.91 -0.55 -1.85

(0.0049) (0.0049) (0.0034) (0.0031)
Black Females -0.53 -1.13 -1.16 -1.59

(0.0026) (0.0026) (0.0019) (0.0018)
Black Males -0.70 -1.22 -0.93 -1.58

(0.0044) (0.0042) (0.0029) (0.0028)
Partly White Females -1.22 -1.85 -0.53 -1.55 -0.66 -1.69
Conditional (0.0071) (0.0070) (0.0031) (0.0031) (0.0023) (0.0022)

White Males -1.75 -2.79 -0.72 -1.83 -0.37 -1.74
(0.0101) (0.0100) (0.0047) (0.0047) (0.0033) (0.0031)

Black Females -0.65 -1.63 -0.4 -1.08 -1.05 -1.63
(0.0058) (0.0059) (0.0025) (0.0025) (0.0019) (0.0018)

Black Males -0.92 -2.33 -0.46 -1.14 -0.79 -1.56
(0.0087) (0.0087) (0.0042) (0.0041) (0.0028) (0.0027)
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Table 3.5: Systolic BP - Relative Bias (×100) and (SE) of mean estimates five years post-baseline based on 1,000 simulated
samples with three follow-up times for MAR and NMAR

Sample size= 100 Sample size= 500 Sample size= 1000
Model Parameters MAR NMAR MAR NMAR MAR NMAR
Unconditional White Females -0.14 -0.49 0.00 -0.40 -0.02 -0.44

(0.0006) (0.0006) (0.0003) (0.0003) (0.0002) (0.0002)
White Males -0.10 -0.52 -0.01 -0.40 0.02 -0.41

(0.0007) (0.0008) (0.0003) (0.0003) (0.0002) (0.0002)
Black Females -0.01 -0.35 0.03 -0.39 -0.03 -0.43

(0.0006) (0.0006) (0.0002) (0.0002) (0.0002) (0.0002)
Black Males 0.02 -0.38 0.02 -0.40 0.01 -0.39

(0.0007) (0.0007) (0.0003) (0.0003) (0.0002) (0.0002)
Pattern White Females -0.47 -0.55 -0.47 -0.61
Mixture (0.0003) (0.0003) (0.0002) (0.0002)
Completers White Males -0.51 -0.55 -0.48 -0.58

(0.0004) (0.0004) (0.0002) (0.0003)
Black Females -0.44 -0.55 -0.50 -0.60

(0.0003) (0.0003) (0.0002) (0.0002)
Black Males -0.47 -0.55 -0.51 -0.57

(0.0004) (0.0004) (0.0002) (0.0002)
Partly White Females -0.38 -0.59 -0.25 -0.48 -0.25 -0.53
Conditional (0.0006) (0.0006) (0.0003) (0.0003) (0.0002) (0.0002)

White Males -0.36 -0.61 -0.28 -0.49 -0.24 -0.50
(0.0008) (0.0008) (0.0003) (0.0003) (0.0002) (0.0002)

Black Females -0.24 -0.44 -0.21 -0.47 -0.27 -0.52
(0.0006) (0.0006) (0.0002) (0.0003) (0.0002) (0.0002)

Black Males -0.22 -0.46 -0.23 -0.48 -0.26 -0.49
(0.0007) (0.0007) (0.0003) (0.0003) (0.0002) (0.0002)
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Table 3.6: Diastolic BP - Relative Bias (×100) and (SE) of mean estimates five years post-baseline based on 1,000 simulated
samples with three follow-up times for MAR and NMAR

Sample size= 100 Sample size= 500 Sample size= 1000
Model Parameters MAR NMAR MAR NMAR MAR NMAR
Unconditional White Females -0.05 -0.24 0.03 -0.20 -0.01 -0.23

(0.0006) (0.0006) (0.0002) (0.0002) (0.0002) (0.0002)
White Males -0.04 -0.21 -0.01 -0.23 0.01 -0.21

(0.0007) (0.0007) (0.0003) (0.0003) (0.0002) (0.0002)
Black Females 0.02 -0.22 0.04 -0.18 -0.03 -0.22

(0.0005) (0.0005) (0.0002) (0.0002) (0.0002) (0.0002)
Black Males 0.03 -0.19 0.00 -0.21 0.00 -0.20

(0.0006) (0.0006) (0.0003) (0.0003) (0.0002) (0.0002)
Pattern White Females -0.18 -0.29 -0.24 -0.32
Mixture (0.0003) (0.0003) (0.0002) (0.0002)
Completers White Males -0.23 -0.32 -0.22 -0.29

(0.0003) (0.0003) (0.0002) (0.0002)
Black Females -0.20 -0.26 -0.26 -0.30

(0.0002) (0.0002) (0.0002) (0.0002)
Black Males -0.24 -0.29 -0.25 -0.27

(0.0003) (0.0003) (0.0002) (0.0002)
Partly White Females -0.13 -0.28 -0.07 -0.24 -0.12 -0.27
Conditional (0.0006) (0.0006) (0.0003) (0.0002) (0.0002) (0.0002)

White Males -0.12 -0.24 -0.11 -0.27 -.0.10 -0.25
(0.0007) (0.0007) (0.0003) (0.0003) (0.0002) (0.0002)

Black Females -0.10 -0.26 -0.07 -0.22 -0.14 -0.26
(0.0005) (0.0005) (0.0002) (0.0002) (0.0002) (0.0002)

Black Males -0.01 -0.21 -0.11 -0.24 -0.12 -0.24
(0.0006) (0.0006) (0.0003) (0.0003) (0.0002) (0.0002)

86



Table 3.7: ADL - Relative Bias (×100) and (SE) of mean estimates five years post-baseline based on 1,000 simulated samples
with three follow-up times for MAR and NMAR

Sample size= 100 Sample size= 500 Sample size= 1000
Model Parameters MAR NMAR MAR NMAR MAR NMAR
Unconditional White Females -2.27 -2.29 -0.61 -1.4 -1.24 -1.58

(0.0059) (0.0059) (0.0025) (0.0025) (0.0019) (0.0018)
White Males 1.13 0.23 2.00 1.36 2.23 1.61

(0.0079) (0.0076) (0.0034) (0.0034) (0.0024) (0.0024)
Black Females 0.98 0.22 0.93 0.59 0.27 0.14

(0.0047) (0.0047) (0.0021) (0.0020) (0.0014) (0.0014)
Black Males 0.50 2.64 3.34 3.19 3.44 3.08

(0.0063) (0.0064) (0.0029) (0.0029) (0.0020) (0.0020)
Pattern White Females -1.02 -1.67 -1.64 -1.88
Mixture (0.0028) (0.0027) (0.0020) (0.0020)
Completers White Males 1.51 1.10 1.66 1.34

(0.0037) (0.0038) (0.0026) (0.0036)
Black Females 0.50 0.30 -0.09 -0.11

(0.0022) (0.0023) (0.0016) (0.0016)
Black Males 2.85 2.89 2.92 2.85

(0.0032) -0.0031 (0.0021) (0.0021)
Partly White Females -2.46 -2.87 -0.84 -1.65 -0.155 -1.79
Conditional (0.0062) (0.0062) (0.0026) (0.0026) (0.0020) (0.0019)

White Males 0.83 0.04 1.72 1.15 1.87 1.35
(0.0081) (0.0080) (0.0035) (0.0036) (0.0025) (0.0025)

Black Females 0.12 -0.06 0.62 0.43 0.01 -0.02
(0.0049) (0.0049) (0.0021) (0.0021) (0.0015) (0.0015)

Black Males 3.23 2.74 2.99 3.06 3.13 2.87
(0.0067) (0.0067) (0.0030) (0.0030) (0.0021) (0.0020)

87



CHAPTER 4: EFFICIENCY OF MODELS USED TO ANALYZE
LONGITUDINAL OUTCOMES TRUNCATED DUE TO

DEATH

4.1 Introduction

In public health and medical research, the interest is usually in estimating the fixed

effects and in making inference about the parameters (Gurka et al., 2011). These

estimates provide the average change in the response for the population. The nature

of the missing data can potentially impact or bias the inference of the estimates

of interest (Crouchley and Ganjali, 2002). The focus for this chapter is limited to

efficiency concerning the marginal models of the unconditional, pattern-mixture, and

partly conditional models.

As a reminder, the general linear mixed model for the combined N subjects is given

as

y = Xβ +Zd+ e, (4.1)

with,
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y is the
∑N

i=1 pi × 1 stacked vector of the response vectors, yi for all i

X is the
∑N

i=1 pi × q stacked matrix of known design matrices, Xi for each subject i

β is the q × 1 vector of unknown population parameters

Z is the
∑N

i=1 pi ×mN block-diagonal matrix with the pi ×m

design matrix, Zi of the m× 1 random effects,

di, for each subject i on the main diagonal

d is the mN × 1 stacked vector of subject-specific unknown

parameters, di for each subject i

∆ is the mN ×mN block-diagonal covariance matrix with the (m×m)

covariance matrix, D of random effects, di, on the main diagonal

e is the
∑N

i=1 pi × 1 stacked vector of residual errors for each subject i

Σe is the
∑N

i=1 pi ×
∑N

i=1 pi block-diagonal

covariance matrix with the covariances, Σei for the random errors, ei

on the main diagonal

and V ar(y) = V which is a block-diagonal matrix with blocks of Vi = ZiDZ
′
i + Σei

on the main diagonal and zeroes elsewhere.

Marginally, y ∼ N(Xβ,V ). When the fixed effects are of primary interest,

the maximum likelihood (ML) estimate for β conditional on the estimates of the

variance components of V is given as β̂(θ̂) = (XT V̂ −1(θ̂)X)−1XT V̂ −1(θ̂)y =

(
N∑
i=1

XT
i V̂

−1
i (θ̂)Xi)

−1
N∑
i=1

XT
i V̂

−1
i (θ̂)yi, where θ̂ is the estimate of the covariance

components. The ML estimate of the parameters is normally distributed with

mean β and covariance, var(β̂(θ̂)) = (XTV −1(θ̂)X)−1. Under maximum likelihood

estimation, the var(β̂(θ̂)) is underestimated because the estimation neglects the

variability induced from the estimation of θ̂. For this reason, generally, residual

(or restricted) maximum likelihood (REML) estimation, which was introduced by
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Patterson and Thompson (1971), is preferable to estimate the covariance components.

Verbeke and Molenberghs (2000) describes REML’s estimation of the variance

components as the process of maximizing the likelihood function of a collection of

residual contrasts, U = ATy, where A is an (
N∑
i=1

pi × (
N∑
i=1

pi − q)) full-column rank

matrix with columns orthogonal of the design matrix X. The error contrast, U , follows

a normal distribution with E(U) = 0 and var(U) = ATViA. REML estimates of θ

are computed by optimizing the REML log-likelihood function Harville (1977), which

takes the form

lREML(θ) = −1

2

[
(
N∑
i=1

(pi)− q)

]
ln(2π)− 1

2

N∑
i=1

ln(|Vi|)

− 1

2

∑
i = 1N(yi −Xiβ̂)TVi(yi −Xiβ̂)

− 1

2

N∑
i=1

ln(|XT
i V

−1
i Xi|)

(4.2)

where β̂ is the expression given previously. By accounting for the loss of degrees of

freedom from the estimation of the fixed effects, β, REML estimation produces unbiased

estimates for the covariance parameter components.

In the preceding chapters, the computational E-M algorithm was discussed. For

incomplete data, the E-M algorithm’s expectation step conceptually creates a complete

dataset by assuming the data is balanced and that the dependent variable is complete.

One of the most problematic issues of the E-M algorithm is that it is computationally

heavy and slow to reach convergence. This estimation process can also overpromise

because likelihood is maximized over the complete data rather than the observed data.

An alternative numerical computational method is the Newton-Raphson algorithm

(N-R). The N-R algorithm is the most commonly used algorithm for either maximum

likelihood or restricted maximum likelihood estimation for the linear mixed model. This

numerical optimization procedure minimizes (−2) times the ML profile log-likelihood

90



function for ML estimation given below and REML log-likelihood functions for REML

estimation, given in (4.2).

lML(θ) = −1

2

N∑
i=1

(pi) ln(2π)− 1

2

N∑
i=1

ln(|Vi)− 12
∑
i=1

(yi −Xiβ̂)TVi(yi −Xiβ̂) (4.3)

where β̂ is the expression given previously. For each iteration, the N-R algorithm

requires computing the vector of partial derivatives and second derivative matrix with

respect to the covariance parameters, which is given as

 β̃
θ̃

 =

 β◦
θ◦

−
 Hββ Hβθ

Hθβ Hθθ


−1  sβ

sθ

 (4.4)

with

H =

 Hββ Hβθ

Hθβ Hθθ

 =

 ∂2l
∂β∂β

∂2l
∂β∂θ

∂2l
∂θ∂β

∂2l
∂θ∂θ

 (4.5)

and

s =

 sβ
sθ

 =

 ∂l
∂β

∂l
∂θ

 . (4.6)

H is referred to as the Hessian matrix and s is often described as the gradient or score

vector. During the computation algorithm these values are evaluated using the current

values of the parameters. Details for this numerical method have been published by

Jennrich and Schluchter (1986).

For the partly conditional model (Kurland et al., 2009; Kurland and Heagerty,

2005), we estimate the fixed effects using independent estimating equations. Under

this approach, an estimator β̂AI of βA, where βA is the direct parameterization of those

who are alive at the time of measurement, is the solution of the score equations of the
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form:

U(βA) =
N∑
i=1

pi∑
j=1

Aij
∂µAij
∂β

(Yij − µAij) = 0, (4.7)

where Aij is an indicator variable that equals 1 if the individual i survives beyond the

current survey wave and 0 otherwise. Variance of β̂AI can be consistently estimated by

the sandwich estimator corresponding to the independent estimating equations:

[
XTŴX

]−1 [ N∑
i=1

XT
i (yi − µ̂Ai )(yi − µ̂Ai )TXi

] [
XTŴX

]−1
(4.8)

where X is a matrix of stacked Xi’s and Ŵ is a diagonal matrix of final weights if any

exist. The sandwich estimator was first proposed by Huber (1967) and White (2007)

and later applied to longitudinal data by Liang and Zeger (1986). In large samples, this

estimator provides an appropriate estimator of var(β̂AI ) regardless of the true variance

structure of yi. Zeger et al. (1988) asserted that the sandwich estimator is highly

efficient when the within-subject correlation is weak.

Given the current estimates of the nuisance parameters, φ and α, the estimate β̂A

can be computed by the following iterative procedure:

β̂Aj+1 = β̂Aj −

{
N∑
i=1

∂µATi (β̂j)

∂βA
Ṽ −1i (β̂j)

∂µAi (β̂Aj )

∂βA

}−1

×

{
N∑
i=1

∂µATi (β̂j)

∂βA
Ṽ −1i (β̂j)(yi − µAi (β̂j))

} (4.9)

where Ṽ −1i (β̂j) is the variance of yi with the estimates of the nuisance parameters.

This procedure is a modification of Fisher’s scoring method. The computing process

for β̂ oscillates between a modified Fisher scoring for β and the moment estimation of

the nuisance parameters.
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4.1.1 Inference of the Fixed Effects

Making generalizations about the average change of any outcome in the populations

requires testing of the fixed effects or a linear combination of the fixed effects. In the

linear mixed model, the inference about β is established by constructing Wald-like tests

using the estimated standard errors. For any known matrix L a test of the hypothesis

H0 : Lβ = 0 versus HA : Lβ 6= 0 (4.10)

is conducted from the fact that

(β̂ − β)TL

L( N∑
i=1

XT
i V

−1
i (θ̂)X

)−1
LT

−1L(β̂ − β) (4.11)

asymptotically follows a chi-squared distribution with rank(L).

Because of the variability introduced from the estimation of the covariance

parameters, the chi-squared reference distribution is replaced by an approximate F-

distribution. A scaled-Wald statistic was introduced by Kenward and Roger (1997)

that adjusts the covariance estimate to account for the additional introduced variability.

Interests for most gerontologists and public health scientists lie in the population mean–

that is, the fixed effects–and the specification of the covariance structure will impact

the results. Gurka et al. (2011) postulated that inference for the fixed effects is not

robust to the misspecification of the covariance in the linear mixed model. Furthermore,

Gurka (2006) demonstrated that no one method will reliably identify the best covariance

model, especially for small samples.

The sandwich estimator developed by Liang and Zeger (1986) for the var(β̂) has

been shown to be robust to covariance model misspecification, but is not as efficient

as the true covariance model (Gurka et al., 2011). For the linear mixed model with
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assumed Gaussian errors, the sandwich estimator, also referred to as the robust or

empirical variance estimator, is specified as

var(β̂) = (XTV −1X)−1(XTV −1(y −Xβ̂)(y −Xβ̂)TV −1X(XTV −1X)−1 (4.12)

In their study of the sensitivity of inference for the fixed effects in linear mixed

models to misspecification of the error distribution, Jacqmin-Gadda et al. (1980)

found that inference was not compromised when Gaussian errors were assumed but

the true distribution was either non-Gaussian or heteroscedastic. Additionally, they

concluded that the mixed model with random intercept and slope is more robust to

misspecification of the covariance structure than the compound symmetrical model

with a random intercept only.

Thus far, we have examined the bias in a subset of the models proposed to

incorporate survival in the estimates of non-mortality outcomes. Bias in the regression

models is represented by the difference of the true value of the regression parameter β

and the expected value of its estimate. That is,

Bias = B
(
β̂(θ̂)

)
= β(θ̂)− E

(
β̂(θ̂)

)
.

Bias of the regression parameters indicates if the estimator is under- or over-estimating

the value of the parameter.

Efficiency is based on the mean squared error (MSE) of the estimator. The mean

squared error is a characteristic of the estimator that combines the variance of the

estimator and its bias. For the ML unbiased estimator for β shown previously, the

MSE of β is given as

MSE
[
β̂(θ̂)

]
= var

(
β̂(θ̂)

)
+B

(
β̂(θ̂)

)
= var

(
β̂(θ̂)

)
.
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The variance of an unbiased estimator for a parameter, say θ is bounded below by the

Fisher information matrix as stated by the Cramér-Rao inequality: var(θ) ≥ I−1(θ),

where I(θ) is the Fisher information. The Fisher information is the second moment of

the partial derivative with respect to θ of the log-likelihood, such that

I(θ) = E

[(
∂l

∂θ

)2

|θ

]
. (4.13)

Efficiency of an estimator is a measurement of the optimality of an estimator. Because

estimators with small variance are more precise, a more efficient estimator essentially

requires fewer samples than an inefficient estimator.

4.1.2 Efficiency in Models with Truncated Outcomes due to Death

To examine the efficiency of estimators for parameters of the unconditional, pattern-

mixture, and the partly conditional models, we reexamined the previous simulations.

Each of the four outcomes were treated as continuous outcomes and were generated

from the mixed model with a random intercept and slope as described in equation

(2.1). Four waves of longitudinal outcomes were simulated from a normal distribution

with mean Xiβ and covariance Σi = ZiDiZ
T
i + σ2Ii, where D was allowed to be

unstructured. For each outcome, the design matrix Xi consisted of a column vector of

ones for the intercept, a column vector for time of measurements post-baseline (0, 3, 6,

10 years), a column vector of baseline age centered about the mean, a column vector of

indicators for identifying as black, a column vector of indicators for identifying as male,

a column vector indicating time by race, and a column vector indicating time by sex.

The design matrix of the random effects, (Zi), was constructed as a column vector of

ones for the intercept and a column vector for the time of measurements post-baseline

(0, 3, 6, 10 years). The race-gender combinations values were treated as multinomial

random variables and were generated accordingly: white males (π = 0.16), black males
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(π = 0.19), and white females (π = 0.29). Age was simulated assuming it was from a

normal distribution dictated by the mean and standard deviation in each race-gender

group from the NC EPESE. Similarly, time of measurements mirrored the NC EPESE,

and we therefore assume measurements were only possible at baseline, and 3, 6, and 10

years post-baseline. The values of the parameters β, σ2, and D used in the simulation

are given for each outcome below.

CES-D score: βT =

(
3.243 0.086 0.065 0.356 −0.686 0.001 0.003

)

Σi = Zi

 5.32 −0.14

−0.14 0.39

ZT
i + 7.16Ii

Systolic BP: βT =

(
143.29 0.088 0.002 0.756 −2.326 −0.017 −0.136

)

Σi = Zi

139.69 −3.38

−3.38 0.91

ZT
i + 314.05Ii
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Diastolic BP: βT =

(
77.258 0.799 −0.289 2.775 1.529− 0.0006− 0.010

)

Σi = Zi

47.66 −2.26

−2.26 0.39

ZT
i + 92.94Ii

ADL score: βT =

(
0.742 0.211 0.114 0.243 0.133 0.001 −0.063

)

Σi = Z

 1.52 −0.002

−0.002 0.04

ZT + 1.78Ii

A 1,000 samples of complete data were generated for each sample size– N = 100,

N = 500, and N = 1000. After the complete datasets were generated, missing

indicators were created to represent participants leaving the study because of death

or non-participation. Subjects in the simulated datasets became at risk of death or

dropout following baseline responses.

In each dataset, a death indicator was created from a Bernoulli random generating

function to simulate participants leaving the study because of death at a rate of 10%

per survey wave following baseline for an overall death rate of approximately 27%.

For convenience, an ordinal ranking for the missing categories, such as death (k =

1), non-response (k = 2), and completers was assumed. Following this assumption,

a cumulative regression model was used to simulate missing categories with known

probabilities for each wave for each outcome with dependence on the baseline covariates
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and previous observed response values. Missing at random due to death and non-

response was modeled using the cumulative regression model described below:

logit(γik) = logit[P (yi ≤ k)] = ηk + xTβ (4.14)

with xi representing a vector of the covariates – sex (male=1, 0 otherwise), race

(black=1, 0 otherwise), baseline age centered about baseline mean, lag measurement

occasion, ti(j−1) (lag wave), the additional effects on the probability over the lag

measurement occasion given one identifies as male (male-lag wave interaction) and

given one identifies as black (black-lag wave interaction) and the previous (lag) response

outcome value (yi(j−1)) – and β representing their corresponding regression parameters:

βT =

(
0.1 0.05 0.001 0.001 −0.02 −0.02 .01

)
. ηk represents the intercept for

the k cumulative logit. The ηk by outcome is given as

CES-D Score:

η1
η2

 =

−1.6

−1.2

 Systolic BP:

η1
η2

 =

−3.0

−2.6



Diastolic BP:

η1
η2

 =

−2.4

−2.0

 ADL:

η1
η2

 =

−1.6

−1.2


Using the estimates of the probabilities as a parameter in a random Bernoulli generator,

these models led to 31% missing due to death and 13% missing due to non-response

for each outcome. The linear mixed model was fitted by evoking the REML estimation

and the partly conditional model was fitted as described previously. All analyses were

performed in SAS v9.2.
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4.2 Results

The outcome with the most efficient fixed-effects estimator proved to be the

ADL (Figure 4.4) for each of the models–unconditional, pattern-mixture, and partly

conditional models. The efficiency of the estimation of the effect of the centered baseline

age and the effect of the time of measurement was similar for each outcome and model

by sample size. As expected, the increase in sample size from 500 to 1,000 increased

the efficiency of the estimation for all three models for every outcome.

4.3 Discussion

Gurka et al. (2011) performed a simulation that showed that if the true variance-

covariance structure of a linear mixed model is compound symmetric, but a structure

allowing the random effects to be correlated with different variance and the within error

to have homogenous variance is modeled, then the standard errors can underestimated.

The distribution used to generate the ADL values were nearly from a normal

distribution with a compound symmetric variance-covariance structure. This could

be one explanation of the ADL outcome behaving much differently than the other

dependent variables. The graphs in Figures 4.1-4.4 support that the models considered

are less efficient in estimation categorical parameters. Similarly, each model for

each outcome has difficulty estimating intercepts. Unconditional models and partly

conditional models were the most efficient.
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Figure 4.1: Parameter’s Root Mean Squared Errors for Depression by Missing Pattern
and Sample Size
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Figure 4.2: Parameter’s Root Mean Squared Errors for Systolic BP by Missing Pattern
and Sample Size
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Figure 4.3: Parameter’s Root Mean Squared Errors for Diastolic BP by Missing Pattern
and Sample Size
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Figure 4.4: Parameter’s Root Mean Squared Errors for ADL by Missing Pattern and
Sample Size
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CHAPTER 5: CONCLUSIONS AND FURTHER RESEARCH

5.1 Summary

This dissertation has contributed to the discussion of the effects of mortality on rates

of change and variability in unconditional, pattern-mixture, and partly conditional

models to analyze longitudinal outcomes truncated by deaths. By applying the

proposed models to an established dataset we were able to broadly compare previous

conclusions and the conclusions resulting from the proposed models. Next, we compared

the performance of the models in the presence of death and non-participation to results

when response truncation was only due to death. Further, using data generated from

a theoretical distribution, we evaluated the proposed models for fitting longitudinal

outcomes truncated by deaths on their ability to avoid bias in the parameters and in

the variance of the parameters when analyzing datasets with different missing data

burdens.

Our first objective was to apply the proposed methods to an established dataset

with death data and allowing missing to only be due to death. Although most of

the results were similar to the previously published results of the NC EPESE, there

were a few surprises. For instance, the direct relationship of the CES-D score and age

was not supported in previous analysis. Unsurprisingly, the simulations with different

percentages of MCAR deaths produced minimal biased mean values for the race-gender

groups due to being asymptotically unbiased.

After examining the models’ performance in estimating means from incomplete

data with MCAR death, we wanted to assess the methods ability to accurately
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analyze data with a mixture of reasons for truncation of outcome variables–death

and non-participation. The NC EPESE dataset was analyzed again without imputing

incomplete data not due to death and compared to the previous results of the imputed

NC EPESE data. The results showed that for some outcomes the results where nearly

identical. For example, the diastolic blood pressure and activities of daily living

(ADL) score rates of change did not differ significantly. Additionally, the probability

of being alive and healthy (PAH) joint model was the most stable. Results from the

simulation provided evidence that when missing due to NMAR death and non-response

the unconditional, pattern-mixture, and partly conditional models underestimated

depression and blood pressure means.

We concluded with reviewing the efficiency in the estimation of the marginal models.

The models were the most efficient in estimating the regression parameters for the ADL

score. Overall, the unconditional model and the partly conditional model were similar

in efficiency by sample size and missing assumption. Because the pattern-mixture

model for complete lack of information from the non-completers, the pattern-mixture

model had higher inefficiency in estimating the fixed effects than the other two models.

Death is a major obstacle in longitudinal studies of older adults. Over the years,

studies that have collected longitudinal data from a cohort of older individuals did not

always utilize longitudinal techniques to assess the associations and rates of change

while controlling for relevant confounding characteristics. Using these techniques to

analyze a well-established study of community-dwelling seniors is important to ensure

that the most suitable analysis is being conducted, especially when the study is designed

to inform policy and best practices. Besides knowing the question of interest to

determine the proper method, this research has shown that for certain outcomes the

models are able to provide similar results to the initial population even with 60% of

the population leaving the study due to death. A closer look at the properties of the
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outcomes may be of interest in future research. Additionally, this dissertation has

shown that death is correlated to many of the common health outcomes researched in

older populations. In order to incorporate the mortality in the analysis of longitudinal

responses, we firmly advocate that mortality status be included as a design variable

and monitored during the study and, if possible, beyond.

5.1.1 Future Research

This dissertation focused on the performance of the models for their intended

purpose and their robustness when other reasons for missingness are present. Each

model aims to offer an estimate of the mean of the response. Another component of

obtaining a reliable estimate of the population mean is selecting the most parsimonious

model. For those models that can be estimated using linear mixed models, Orelien and

Edwards (2008) and Edwards et al. (2008) have proposed a R2 statistic for selecting

the fixed effects that contribute to the best model fit. For many social scientists that

may consider several variables that are presumed to affect the response, ensuring that

power is maximized by not over-fitting is important. Understanding the effectiveness

of the R2 statistic for these models in cohorts with large percentages of deaths would

further prescribe the correct usages of these models in longitudinal studies of older

populations.

Just as important as correctly specifying the mean model is selecting the most

appropriate covariance structure. Although the estimate of β remains consistent and

asymptotically normal when V = var(y) is specified incorrectly, the estimate ˆvar(β̂) =

(XTV −1X)−1 is no longer valid nor completely efficient. In this dissertation, the

methods were compared assuming a set covariance model, but effort was not made to

assess if the assumed covariance was supportive of the data or the most parsimonious.

Verbeke and Molenberghs (2000) stated that the sandwich estimator that is employed
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to estimate many generalized linear models is less efficient than specifying the correct

covariance model.

In our assessment of the proposed models, we only considered modeling data with

assumed normal errors. Assessing the models’ performance in estimating outcomes with

non-normal errors and including the other three models – terminal decline, principal

stratification and the joint models – would contribute to the completion of the discussion

of these models and their strengths and limitations in estimating rates of change and

modeling the variability of longitudinal data with outcomes truncated to death.

One of the many purposes of the North Carolina Established Populations for

Epidemiological Studies of the Elderly (NC EPESE) study was to measure the changes

in chronic conditions, impairments, and general function in older community-dwelling

adults. Nonetheless, some measurements of the chronic conditions and impairments

were scheduled very sparsely (e.g., three years for blood pressure measurements). This

design weakness could have been accommodated by using other indicators because many

illnesses affect the progression of other conditions. Future research should examine the

outcomes measured or simulated with smaller gaps in time of measurements. Efforts

should also be given to the consideration of the effect of modeling an outcome that has

been shown to be highly associated or predictive to other disorders.

As mentioned in the summary, mortality status information could add valuable

strength to the analysis of data with truncation due to death. The extent of this

strength has yet to be quantified. Further, the circumstances to reach an optimal

strength have not been described (e.g., the number of years after the observational

period to monitor participants mortality status).
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